WorldWideScience

Sample records for bacterial community dynamics

  1. Jellyfish modulate bacterial dynamic and community structure.

    Science.gov (United States)

    Tinta, Tinkara; Kogovšek, Tjaša; Malej, Alenka; Turk, Valentina

    2012-01-01

    Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom-forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish-enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to 'jellyfish-associated' and 'free-living' bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into possible changes in

  2. Jellyfish modulate bacterial dynamic and community structure.

    Directory of Open Access Journals (Sweden)

    Tinkara Tinta

    Full Text Available Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom-forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish-enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to 'jellyfish-associated' and 'free-living' bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into

  3. Dynamics of seawater bacterial communities in a shellfish hatchery.

    Science.gov (United States)

    Powell, S M; Chapman, C C; Bermudes, M; Tamplin, M L

    2013-08-01

    Bacterial disease is a significant issue for larviculture of several species of shellfish, including oysters. One source of bacteria is the seawater used throughout the hatchery. In this study carried out at a commercial oyster hatchery in Tasmania, Australia, the diversity of the bacterial community and its relationship with larval production outcomes were studied over a 2-year period using terminal restriction fragment length polymorphism and tag-encoded pyrosequencing. The bacterial communities were very diverse, dominated by the Alphaproteobacteria, Gammaproteobacteria, Flavobacteria and Cyanobacteria. The communities were highly variable on scales of days, weeks and seasons. The difference between the intake seawater and treated clean seawater used in the hatchery was smaller than the observed temporal differences in the seawater throughout the year. No clear correlation was observed between production outcomes and the overall bacterial community structure. However, one group of Cyanobacterial sequences was more abundant when mass mortality events occurred than when healthy spat were produced although they were always present.

  4. Dynamics of bacterial community in the gut of Cornu aspersum

    Directory of Open Access Journals (Sweden)

    ZDRAVKA KOLEVA

    2015-12-01

    Full Text Available The dynamics of the bacterial community in the intestinal tract of Cornu aspersum was investigated during different states of its life cycle. Two approaches were applied – culture and non-culture. The non-culture approach was performed by ARDRA of 16S rDNA using two of the six tested endonucleases. Data were analyzed by hierarchical cluster analysis. The restriction of 16S rDNA samples from the snail of different physiological states with endonucleases HinfI and Csp6I resulted in generation of different profiles depending on the snail states. By the culture approach we found that the total number of cultivable bacteria, representatives of Enterobacteriaceae, lactic acid bacteria, amylolitic and cellulolytic bacteria were the most abundant in active state of the snails. Cellulolytic bacteria were not detected in juveniles of C. aspersum. Escherichia coli, Clostridium perfringens as well as bacteria from the genus Salmonella, Shigella and Pseudomonas were not detected. Bacteria of the genus Aeromonas were found in juveniles of C. aspersum, after that their number decrease and were not found in hibernating snails. On the base of the two applied approaches this study shows that the bacterial flora in the intestinal tract of C. aspersum is affected by the seasonal and environmental variations and undergoes quantitative and qualitative changes during the different states of the life cycle. The snails harbor in their gut intestinal bacteria, which possess biochemical potentiality to degrade the plant components.

  5. Protozoa Drive the Dynamics of Culturable Biocontrol Bacterial Communities.

    Science.gov (United States)

    Müller, Maren Stella; Scheu, Stefan; Jousset, Alexandre

    2013-01-01

    Some soil bacteria protect plants against soil-borne diseases by producing toxic secondary metabolites. Such beneficial biocontrol bacteria can be used in agricultural systems as alternative to agrochemicals. The broad spectrum toxins responsible for plant protection also inhibit predation by protozoa and nematodes, the main consumers of bacteria in soil. Therefore, predation pressure may favour biocontrol bacteria and contribute to plant health. We analyzed the effect of Acanthamoeba castellanii on semi-natural soil bacterial communities in a microcosm experiment. We determined the frequency of culturable bacteria carrying genes responsible for the production of the antifungal compounds 2,4-diacetylphloroglucinol (DAPG), pyrrolnitrin (PRN) and hydrogen cyanide (HCN) in presence and absence of A. castellanii. We then measured if amoebae affected soil suppressiveness in a bioassay with sugar beet seedlings confronted to the fungal pathogen Rhizoctonia solani. Amoebae increased the frequency of both DAPG and HCN positive bacteria in later plant growth phases (2 and 3 weeks), as well as the average number of biocontrol genes per bacterium. The abundance of DAPG positive bacteria correlated with disease suppression, suggesting that their promotion by amoebae may enhance soil health. However, the net effect of amoebae on soil suppressiveness was neutral to slightly negative, possibly because amoebae slow down the establishment of biocontrol bacteria on the recently emerged seedlings used in the assay. The results indicate that microfaunal predators foster biocontrol bacterial communities. Understanding interactions between biocontrol bacteria and their predators may thus help developing environmentally friendly management practices of agricultural systems.

  6. Protozoa Drive the Dynamics of Culturable Biocontrol Bacterial Communities.

    Directory of Open Access Journals (Sweden)

    Maren Stella Müller

    Full Text Available Some soil bacteria protect plants against soil-borne diseases by producing toxic secondary metabolites. Such beneficial biocontrol bacteria can be used in agricultural systems as alternative to agrochemicals. The broad spectrum toxins responsible for plant protection also inhibit predation by protozoa and nematodes, the main consumers of bacteria in soil. Therefore, predation pressure may favour biocontrol bacteria and contribute to plant health. We analyzed the effect of Acanthamoeba castellanii on semi-natural soil bacterial communities in a microcosm experiment. We determined the frequency of culturable bacteria carrying genes responsible for the production of the antifungal compounds 2,4-diacetylphloroglucinol (DAPG, pyrrolnitrin (PRN and hydrogen cyanide (HCN in presence and absence of A. castellanii. We then measured if amoebae affected soil suppressiveness in a bioassay with sugar beet seedlings confronted to the fungal pathogen Rhizoctonia solani. Amoebae increased the frequency of both DAPG and HCN positive bacteria in later plant growth phases (2 and 3 weeks, as well as the average number of biocontrol genes per bacterium. The abundance of DAPG positive bacteria correlated with disease suppression, suggesting that their promotion by amoebae may enhance soil health. However, the net effect of amoebae on soil suppressiveness was neutral to slightly negative, possibly because amoebae slow down the establishment of biocontrol bacteria on the recently emerged seedlings used in the assay. The results indicate that microfaunal predators foster biocontrol bacterial communities. Understanding interactions between biocontrol bacteria and their predators may thus help developing environmentally friendly management practices of agricultural systems.

  7. Restructuring of the Aquatic Bacterial Community by Hydric Dynamics Associated with Superstorm Sandy

    Science.gov (United States)

    Ulrich, Nikea; Rosenberger, Abigail; Brislawn, Colin; Wright, Justin; Kessler, Collin; Toole, David; Solomon, Caroline; Strutt, Steven; McClure, Erin

    2016-01-01

    ABSTRACT Bacterial community composition and longitudinal fluctuations were monitored in a riverine system during and after Superstorm Sandy to better characterize inter- and intracommunity responses associated with the disturbance associated with a 100-year storm event. High-throughput sequencing of the 16S rRNA gene was used to assess microbial community structure within water samples from Muddy Creek Run, a second-order stream in Huntingdon, PA, at 12 different time points during the storm event (29 October to 3 November 2012) and under seasonally matched baseline conditions. High-throughput sequencing of the 16S rRNA gene was used to track changes in bacterial community structure and divergence during and after Superstorm Sandy. Bacterial community dynamics were correlated to measured physicochemical parameters and fecal indicator bacteria (FIB) concentrations. Bioinformatics analyses of 2.1 million 16S rRNA gene sequences revealed a significant increase in bacterial diversity in samples taken during peak discharge of the storm. Beta-diversity analyses revealed longitudinal shifts in the bacterial community structure. Successional changes were observed, in which Betaproteobacteria and Gammaproteobacteria decreased in 16S rRNA gene relative abundance, while the relative abundance of members of the Firmicutes increased. Furthermore, 16S rRNA gene sequences matching pathogenic bacteria, including strains of Legionella, Campylobacter, Arcobacter, and Helicobacter, as well as bacteria of fecal origin (e.g., Bacteroides), exhibited an increase in abundance after peak discharge of the storm. This study revealed a significant restructuring of in-stream bacterial community structure associated with hydric dynamics of a storm event. IMPORTANCE In order to better understand the microbial risks associated with freshwater environments during a storm event, a more comprehensive understanding of the variations in aquatic bacterial diversity is warranted. This study

  8. Bacterial Community Dynamics and Polycyclic Aromatic Hydrocarbon Degradation during Bioremediation of Heavily Creosote-Contaminated Soil

    OpenAIRE

    Viñas, Marc; Sabaté, Jordi; Espuny, María José; Solanas, Anna M.

    2005-01-01

    Bacterial community dynamics and biodegradation processes were examined in a highly creosote-contaminated soil undergoing a range of laboratory-based bioremediation treatments. The dynamics of the eubacterial community, the number of heterotrophs and polycyclic aromatic hydrocarbon (PAH) degraders, and the total petroleum hydrocarbon (TPH) and PAH concentrations were monitored during the bioremediation process. TPH and PAHs were significantly degraded in all treatments (72 to 79% and 83 to 87...

  9. Dynamic bacterial communities on reverse-osmosis membranes in a full-scale desalination plant.

    Science.gov (United States)

    Manes, C-L de O; West, N; Rapenne, S; Lebaron, P

    2011-01-01

    To better understand biofouling of seawater reverse osmosis (SWRO) membranes, bacterial diversity was characterized in the intake water, in subsequently pretreated water and on SWRO membranes from a full-scale desalination plant (FSDP) during a 9 month period. 16S rRNA gene fingerprinting and sequencing revealed that bacterial communities in the water samples and on the SWRO membranes were very different. For the different sampling dates, the bacterial diversity of the active and the total bacterial fractions of the water samples remained relatively stable over the sampling period whereas the bacterial community structure on the four SWRO membrane samples was significantly different. The richness and evenness of the SWRO membrane bacterial communities increased with usage time with an increase in the Shannon diversity index of 2.2 to 3.7. In the oldest SWRO membrane (330 days), no single operational taxonomic unit (OTU) dominated and the majority of the OTUs fell into the Alphaproteobacteria or the Planctomycetes. In striking contrast, a Betaproteobacteria OTU affiliated to the genus Ideonella was dominant and exclusively found in the membrane used for the shortest time (10 days). This suggests that bacteria belonging to this genus could be one of the primary colonizers of the SWRO membrane. Knowledge of the dominant bacterial species on SWRO membranes and their dynamics should help guide culture studies for physiological characterization of biofilm forming species.

  10. Bacterial Invasion Dynamics in Zebrafish Gut Microbial Communities

    Science.gov (United States)

    Logan, Savannah; Jemielita, Matthew; Wiles, Travis; Schlomann, Brandon; Hammer, Brian; Guillemin, Karen; Parthasarathy, Raghuveer

    Microbial communities residing in the vertebrate intestine play an important role in host development and health. These communities must be in part shaped by interactions between microbial species as they compete for resources in a physically constrained system. To better understand these interactions, we use light sheet microscopy and zebrafish as a model organism to image established gut microbial communities as they are invaded by robustly-colonizing challengers. We demonstrate that features of the challenger, including motility and spatial distribution, impact success in invasion and in outcompeting the original community. We also show that physical characteristics of the host, such as the motility of the gut, play important roles in mediating inter-species competition. Finally, we examine the influence of the contact-dependent type VI secretion system (T6SS), which is used by specific bacteria to cause cell lysis by injecting toxic effector proteins into competitors. Our findings provide insights into the determinants of microbial success in the complex ecosystems found in the gut.

  11. Imaging the Population Dynamics of Bacterial Communities in the Zebrafish Gut

    Science.gov (United States)

    Jemielita, Matthew; Taormina, Michael; Burns, Adam; Zac Stephens, W.; Hampton, Jennifer; Guillemin, Karen; Parthasarathy, Raghuveer

    2013-03-01

    The vertebrate gut is home to a diverse microbial ecosystem whose composition has a strong influence on the development and health of the host organism. While researchers are increasingly able to identify the constituent members of the microbiome, very little is known about the spatial and temporal dynamics of commensal microbial communities, including the mechanisms by which communities nucleate, grow, and interact. We address these issues using a model organism: the larval zebrafish (Danio rerio) prepared microbe-free and inoculated with controlled compositions of fluorophore-expressing bacteria. Live imaging with light sheet fluorescence microscopy enables visualization of individual bacterial cells as well as growing colonies over the entire volume of the gut over periods up to 24 hours. We analyze the structure and dynamics of imaged bacterial communities, uncovering correlations between population size, growth rates, and the timing of inoculations that suggest the existence of active changes in the host environment induced by early bacterial exposure. Our data provide the first visualizations of gut microbiota development over an extended period of time in a vertebrate.

  12. The bias associated with amplicon sequencing does not affect the quantitative assessment of bacterial community dynamics.

    Directory of Open Access Journals (Sweden)

    Federico M Ibarbalz

    Full Text Available The performance of two sets of primers targeting variable regions of the 16S rRNA gene V1-V3 and V4 was compared in their ability to describe changes of bacterial diversity and temporal turnover in full-scale activated sludge. Duplicate sets of high-throughput amplicon sequencing data of the two 16S rRNA regions shared a collection of core taxa that were observed across a series of twelve monthly samples, although the relative abundance of each taxon was substantially different between regions. A case in point was the changes in the relative abundance of filamentous bacteria Thiothrix, which caused a large effect on diversity indices, but only in the V1-V3 data set. Yet the relative abundance of Thiothrix in the amplicon sequencing data from both regions correlated with the estimation of its abundance determined using fluorescence in situ hybridization. In nonmetric multidimensional analysis samples were distributed along the first ordination axis according to the sequenced region rather than according to sample identities. The dynamics of microbial communities indicated that V1-V3 and the V4 regions of the 16S rRNA gene yielded comparable patterns of: 1 the changes occurring within the communities along fixed time intervals, 2 the slow turnover of activated sludge communities and 3 the rate of species replacement calculated from the taxa-time relationships. The temperature was the only operational variable that showed significant correlation with the composition of bacterial communities over time for the sets of data obtained with both pairs of primers. In conclusion, we show that despite the bias introduced by amplicon sequencing, the variable regions V1-V3 and V4 can be confidently used for the quantitative assessment of bacterial community dynamics, and provide a proper qualitative account of general taxa in the community, especially when the data are obtained over a convenient time window rather than at a single time point.

  13. Bacterial Communities: Interactions to Scale

    Directory of Open Access Journals (Sweden)

    Reed M. Stubbendieck

    2016-08-01

    Full Text Available In the environment, bacteria live in complex multispecies communities. These communities span in scale from small, multicellular aggregates to billions or trillions of cells within the gastrointestinal tract of animals. The dynamics of bacterial communities are determined by pairwise interactions that occur between different species in the community. Though interactions occur between a few cells at a time, the outcomes of these interchanges have ramifications that ripple through many orders of magnitude, and ultimately affect the macroscopic world including the health of host organisms. In this review we cover how bacterial competition influences the structures of bacterial communities. We also emphasize methods and insights garnered from culture-dependent pairwise interaction studies, metagenomic analyses, and modeling experiments. Finally, we argue that the integration of multiple approaches will be instrumental to future understanding of the underlying dynamics of bacterial communities.

  14. Dynamics of bacterial communities before and after distribution in a full-scale drinking water network

    KAUST Repository

    El Chakhtoura, Joline

    2015-05-01

    Understanding the biological stability of drinking water distribution systems is imperative in the framework of process control and risk management. The objective of this research was to examine the dynamics of the bacterial community during drinking water distribution at high temporal resolution. Water samples (156 in total) were collected over short time-scales (minutes/hours/days) from the outlet of a treatment plant and a location in its corresponding distribution network. The drinking water is treated by biofiltration and disinfectant residuals are absent during distribution. The community was analyzed by 16S rRNA gene pyrosequencing and flow cytometry as well as conventional, culture-based methods. Despite a random dramatic event (detected with pyrosequencing and flow cytometry but not with plate counts), the bacterial community profile at the two locations did not vary significantly over time. A diverse core microbiome was shared between the two locations (58-65% of the taxa and 86-91% of the sequences) and found to be dependent on the treatment strategy. The bacterial community structure changed during distribution, with greater richness detected in the network and phyla such as Acidobacteria and Gemmatimonadetes becoming abundant. The rare taxa displayed the highest dynamicity, causing the major change during water distribution. This change did not have hygienic implications and is contingent on the sensitivity of the applied methods. The concept of biological stability therefore needs to be revised. Biostability is generally desired in drinking water guidelines but may be difficult to achieve in large-scale complex distribution systems that are inherently dynamic.

  15. Characterization of bacterial community dynamics in a full-scale drinking water treatment plant.

    Science.gov (United States)

    Li, Cuiping; Ling, Fangqiong; Zhang, Minglu; Liu, Wen-Tso; Li, Yuxian; Liu, Wenjun

    2017-01-01

    Understanding the spatial and temporal dynamics of microbial communities in drinking water systems is vital to securing the microbial safety of drinking water. The objective of this study was to comprehensively characterize the dynamics of microbial biomass and bacterial communities at each step of a full-scale drinking water treatment plant in Beijing, China. Both bulk water and biofilm samples on granular activated carbon (GAC) were collected over 9months. The proportion of cultivable cells decreased during the treatment processes, and this proportion was higher in warm season than cool season, suggesting that treatment processes and water temperature probably had considerable impact on the R2A cultivability of total bacteria. 16s rRNA gene based 454 pyrosequencing analysis of the bacterial community revealed that Proteobacteria predominated in all samples. The GAC biofilm harbored a distinct population with a much higher relative abundance of Acidobacteria than water samples. Principle coordinate analysis and one-way analysis of similarity indicated that the dynamics of the microbial communities in bulk water and biofilm samples were better explained by the treatment processes rather than by sampling time, and distinctive changes of the microbial communities in water occurred after GAC filtration. Furthermore, 20 distinct OTUs contributing most to the dissimilarity among samples of different sampling locations and 6 persistent OTUs present in the entire treatment process flow were identified. Overall, our findings demonstrate the significant effects that treatment processes have on the microbial biomass and community fluctuation and provide implications for further targeted investigation on particular bacteria populations.

  16. Dynamic changes of bacterial community under bioremediation with Sphingobium sp. LY-6 in buprofezin-contaminated soil.

    Science.gov (United States)

    Liu, Yuan; Hou, Qianqian; Liu, Wanru; Meng, Yawen; Wang, Guangli

    2015-08-01

    Buprofezin is a commonly used chemical with satisfactory biological activity against sucking insect pests, but its disposal can cause serious environmental problems. To study the feasibility of remedying contamination by buprofezin, microcosm experiments were carried out to study the effects of various concentrations of buprofezin and Sphingobium sp. LY-6 on soil bacterial communities in soils collected from vegetable fields. In this experiment, the results showed that buprofezin was effectively degraded by Sphingobium sp. LY-6 in incubation soils. Comparing to non-incubated soils, the cumulative degradation ratio of buprofezin was significantly increased, up to the extent of 85 and 51%, in the initial concentration of 10 and 100 mg kg(-1). The abundance and community structure of the bacterial communities were analysed by real-time PCR (qPCR) and terminal-restriction fragment length polymorphism (T-RFLP). The findings suggest that buprofezin had a negative effect on soil bacterial community, and decreases in bacterial abundance were observed in the later part of the incubation period. The bacterial community structure and diversity shifted significantly at each sampling time. In conclusion, the buprofezin-degrading strain LY-6 played a major role in the bioremediation of the buprofezin-contaminated soil and influenced the dynamics and structure of the bacterial community, demonstrating the great potential of exogenous microorganisms for soil remediation.

  17. Functional diversity and dynamics of bacterial communities in a membrane bioreactor for the treatment of metal-working fluid wastewater.

    Science.gov (United States)

    Grijalbo, Lucía; Garbisu, Carlos; Martín, Iker; Etxebarria, Javier; Gutierrez-Mañero, F Javier; Lucas Garcia, Jose Antonio

    2015-12-01

    An extensive microbiological study has been carried out in a membrane bioreactor fed with activated sludge and metal-working fluids. Functional diversity and dynamics of bacterial communities were studied with different approaches. Functional diversity of culturable bacterial communities was studied with different Biolog™ plates. Structure and dynamics of bacterial communities were studied in culturable and in non-culturable fractions using a 16S rRNA analysis. Among the culturable bacteria, Alphaproteobacteria and Gammaproteobacteria were the predominant classes. However, changes in microbial community structure were detected over time. Culture-independent analysis showed that Betaproteobacteria was the most frequently detected class in the membrane bioreactor (MBR) community with Zoogloea and Acidovorax as dominant genera. Also, among non-culturable bacteria, a process of succession was observed. Longitudinal structural shifts observed were more marked for non-culturable than for culturable bacteria, pointing towards an important role in the MBR performance. Microbial community metabolic abilities assessed with Biolog™ Gram negative, Gram positive and anaerobic plates also showed differences over time for Shannon's diversity index, kinetics of average well colour development, and the intensely used substrates by bacterial community in each plate.

  18. Molecular assessment of bacterial community dynamics and functional endpoints during sediment bioaccumulation test

    NARCIS (Netherlands)

    Diepens, N.J.; Dimitrov, M.R.; Koelmans, A.A.; Smidt, H.

    2015-01-01

    Whole sediment toxicity tests play an important role in environmental risk assessment of organic chemicals. It is not clear, however, to what extent changing microbial community composition and associated functions affect sediment test results. We assessed the development of bacterial communities in

  19. Dynamics of bacterial community development in the reef coral Acropora muricata following experimental antibiotic treatment

    Science.gov (United States)

    Sweet, M. J.; Croquer, A.; Bythell, J. C.

    2011-12-01

    Development of the bacterial community associated with the coral Acropora muricata (= formosa) was monitored using 16S rRNA gene-based techniques and abundance counts over time following experimental modification of the existing microbial community using the antibiotic ciprofloxacin. Abundance of bacteria was reduced >99% by the treatment, resulting in significant changes in bacterial community structure. Following redeployment to their natural environment, some settlement and re-growth of bacteria took place within a few hours, including ribosomal types that were not present, or in low abundance, in the natural microbiota. However, complete recovery of the bacterial community required longer than 96 h, which indicates a relatively slow settlement and growth of bacteria from the water column and suggests that turnover of the natural community is similarly slow. The early developing community was dominated by antibiotic-resistant bacteria from the natural microbiota that survived the treatment and proliferated in the absence of natural competitors, but also included some non-resident ribotypes colonizing from the water column. Almost, all these opportunists were significantly reduced or eliminated within 96 h after treatment, demonstrating a high resilience in the natural bacterial community. Potential pathogens, including a Clostridium sp., inhabited the coral at low abundances, only becoming prevalent when the natural microbiota was disturbed by the treatment. The healthy coral-associated microbiota appears to be strongly controlled by microbial interactions.

  20. Bacterial community dynamics over successional stages of Australian biological soil crusts

    Science.gov (United States)

    Chilton, Angela; Woodhouse, Jason; Neilan, Brett

    2015-04-01

    A key aspect for successful ecological rehabilitation is understanding the naturally occurring ecosystem and landscape function which is to be restored. This allows for recovery indicators to be identified and criteria to be developed to assess progress and outcomes. In arid rangelands, environmental stresses result in characteristically heterogeneous landscapes where biological soil crusts (BSCs) cover large expanses of inter-plant areas. Here, BSCs perform crucial roles in nutrient cycling and re-distribution, affect hydrological patterns and stabilise the soil surface. They also serve as a large reservoir of microbial and avascular plant biodiversity. The recognition of these important roles has resulted in increased global arid rehabilitation efforts employing BSCs. Within Australia, research has focused on the macro components of BSCs including lichens and mosses, however, there have been insufficient studies examining the BSC bacterial communities and their dynamics over different successional stages. This project surveyed the bacterial community of crust-free soil and three successional stages of undisturbed BSCs from New South Wales (NSW), Australia, in order to provide reference standards of naturally occurring Australian BSCs. Visual assessments were conducted and BSCs were categorised as Early, Mid or Late stage depending on colour, thickness, topography and presence of lichens and mosses. The crust-free soil and different stages were sampled within three 50 m2 plots of the same edaphic conditions near the town of Cobar, NSW. High throughput sequencing using the Illumina MiSeq platform was performed targeting the V2 region of the 16S rRNA gene. Preliminary analysis has revealed a clear distinction between the crust-free and crusted soil while Canonical Analysis of Principal Co-ordinates (CAP) suggests the presence of two distinct BSC microbial communities despite three stages being sampled. Across all sample types, the dominant phyla were Actinobacteria

  1. Dynamics of bacterial communities in soils of rainforest fragments under restoration processes

    Science.gov (United States)

    Vasconcellos, Rafael; Zucchi, Tiago; Taketani, Rodrigo; Andreote, Fernando; Cardoso, Elke

    2014-05-01

    The Brazilian Atlantic Forest ("Mata Atlântica") has been largely studied due to its valuable and unique biodiversity. Unfortunately, this priceless ecosystem has been widely deforested and only 10% of its original area still remains. Many projects have been successfully implemented to restore its fauna and flora but there is a lack of information on how the soil bacterial communities respond to this process. Thus, our aim was to evaluate the influence of soil attributes and seasonality on soil bacterial communities of rainforest fragments under restoration processes. Soil samples from a native site and two ongoing restoration fragments with different ages of implementation (10 and 20 years) were collected and assayed by using culture-independent approaches. Our findings demonstrate that seasonality barely altered the bacterial distribution whereas soil chemical attributes and plant diversity highly influenced the bacterial community structure during the restoration process. Moreover, the strict relationship observed for two bacterial groups, Solibacteriaceae and Verrucomicrobia, one with the youngest (10 years) and the other with the oldest (native) site suggests their use as bioindicators of soil quality and soil recovery of forest fragments under restoration.

  2. Bacterial community dynamics in a rotating biological contactor treating 2-fluorophenol-containing wastewater.

    Science.gov (United States)

    Duque, Anouk F; Bessa, Vânia S; Castro, Paula M L

    2014-01-01

    One of the main factors affecting the performance of rotating biological contactors (RBC) is the biofilm characteristics. Therefore, a deep understanding of the microbial population dynamics and structure of the biofilm is mandatory if optimization of organic matter and nutrients removal is targeted. This study focused on the effects of organic shock loads of 2-fluorophenol (2-FP) on the microbial diversity present in an RBC biofilm. The RBC was seeded with activated sludge from a conventional wastewater treatment plant and was operated during 496 days. During the first 126 days, the RBC was subjected to intermittent 2-FP shocks of 25 mg l(-1) and no degradation occurred. Therefore, the reactor was subsequently augmented with a 2-FP-degrading strain (FP1). Afterwards, the RBC had a stable performance when subjected to 2-FP shocks up to 50 mg l(-1) and to a starvation period, as indicated by removal of the compound. Denaturing gradient gel electrophoresis (DGGE) revealed large shifts in microbial communities present in the first and fifth stages, although no clear relation between the sample collection time and spatial factor was found. Phylogenetic affiliation of some predominant members was assessed by direct sequencing of correspondent DGGE bands. Affiliations to α-, β- and δ-Proteobacteria were found. Several bacterial strains isolated from the reactor showed capacity for 2-FP degradation. Strain FP1 was successfully recovered from the biofilm by plating and by DGGE, reinforcing that bioaugmentation was successfully achieved.

  3. Bacterial community dynamics in a swine wastewater anaerobic reactor revealed by 16S rDNA sequence analysis.

    Science.gov (United States)

    Liu, An-Chi; Chou, Chu-Yang; Chen, Ling-Ling; Kuo, Chih-Horng

    2015-01-20

    Anaerobic digestion is a microbiological process of converting organic wastes into digestate and biogas in the absence of oxygen. In practice, disturbance to the system (e.g., organic shock loading) may cause imbalance of the microbial community and lead to digester failure. To examine the bacterial community dynamics after a disturbance, this study simulated an organic shock loading that doubled the chemical oxygen demand (COD) loading using a 4.5L swine wastewater anaerobic completely stirred tank reactor (CSTR). Before the shock (loading rate=0.65gCOD/L/day), biogas production rate was about 1-2L/L/day. After the shock, three periods representing increased biogas production rates were observed during days 1-7 (∼4.0L/L/day), 13 (3.3L/L/day), and 21-23 (∼6.1L/L/day). For culture-independent assessments of the bacterial community composition, the 454 pyrosequencing results indicated that the community contained >2500 operational taxonomic units (OTUs) and was dominated by three phyla: Bacteroidetes, Firmicutes, and Proteobacteria. The shock induced dynamic changes in the community composition, which was re-stabilized after approximately threefold hydraulic retention time (HRT). Intriguingly, upon restabilization, the community composition became similar to that observed before the shock, rather than reaching a new equilibrium.

  4. Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation.

    Science.gov (United States)

    Röling, Wilfred F M; Milner, Michael G; Jones, D Martin; Lee, Kenneth; Daniel, Fabien; Swannell, Richard J P; Head, Ian M

    2002-11-01

    Degradation of oil on beaches is, in general, limited by the supply of inorganic nutrients. In order to obtain a more systematic understanding of the effects of nutrient addition on oil spill bioremediation, beach sediment microcosms contaminated with oil were treated with different levels of inorganic nutrients. Oil biodegradation was assessed respirometrically and on the basis of changes in oil composition. Bacterial communities were compared by numerical analysis of denaturing gradient gel electrophoresis (DGGE) profiles of PCR-amplified 16S rRNA genes and cloning and sequencing of PCR-amplified 16S rRNA genes. Nutrient amendment over a wide range of concentrations significantly improved oil degradation, confirming that N and P limited degradation over the concentration range tested. However, the extent and rate of oil degradation were similar for all microcosms, indicating that, in this experiment, it was the addition of inorganic nutrients rather than the precise amount that was most important operationally. Very different microbial communities were selected in all of the microcosms. Similarities between DGGE profiles of replicate samples from a single microcosm were high (95% +/- 5%), but similarities between DGGE profiles from replicate microcosms receiving the same level of inorganic nutrients (68% +/- 5%) were not significantly higher than those between microcosms subjected to different nutrient amendments (63% +/- 7%). Therefore, it is apparent that the different communities selected cannot be attributed to the level of inorganic nutrients present in different microcosms. Bioremediation treatments dramatically reduced the diversity of the bacterial community. The decrease in diversity could be accounted for by a strong selection for bacteria belonging to the alkane-degrading Alcanivorax/Fundibacter group. On the basis of Shannon-Weaver indices, rapid recovery of the bacterial community diversity to preoiling levels of diversity occurred. However, although

  5. Bacterial Community Structure and Dynamics During Corn-Based Bioethanol Fermentation.

    Science.gov (United States)

    Li, Qing; Heist, E Patrick; Moe, Luke A

    2016-02-01

    Corn-based fuel ethanol facilities mix enzymatically treated, gelatinized corn starch with water to generate a "mash" that is used as the substrate in large-scale (∼500,000 gallon) yeast-based fermentations. In contrast to other food and beverage fermentations (e.g., cheese, wine), bioethanol production is presumed to be optimal when bacteria are absent from the fermentation-thus maximizing conversion of glucose to ethanol-yet the facilities are not sterilized. Culture-based analysis has suggested that lactic acid bacteria occupy this niche and, under certain circumstances, can outcompete the dedicated fermentation yeast for nutrients. Here, we use 16S rRNA gene amplicon sequencing to probe bacterial community structure during bioethanol fermentation. Nineteen total batches from five corn-based fuel ethanol fermentation facilities were analyzed. From each batch, five samples were taken. This includes the contents of the yeast propagation tank at inoculation, three samples taken at intervals during the fermentation, and a sample taken at the end of fermentation. Bacterial community structure was compared with time, between facility, between fermentor, between batches from the same fermentor, and against environmental variables within each fermentation. Communities were dominated by members of the Firmicutes and Proteobacteria phyla, with lactic acid bacteria dominating the communities in two of the five facilities. In the other facilities, Proteobacteria (largely members of the Pseudomonas and Escherichia-Shigella genera) outcompete the lactic acid bacteria. In most cases, the yeast propagation tank inoculum imparted a rich bacterial community, but the batches vary regarding whether this inoculum was the primary driver of the fermentation community structure.

  6. Evaluating seasonal dynamics of bacterial communities in marine fish aquaculture: a preliminary study before applying phage therapy.

    Science.gov (United States)

    Pereira, Carla; Salvador, Sara; Arrojado, Cátia; Silva, Yolanda; Santos, Ana L; Cunha, Angela; Gomes, Newton C M; Gomes, Newton; Almeida, Adelaide

    2011-04-01

    The increasing problem of antibiotic resistance in common pathogenic bacteria and the concern about the spreading of antibiotics in the environment bring the need to find new methods to control fish pathogens. Phage therapy represents a potential alternative to antibiotics, but its use in aquaculture requires a detailed understanding of bacterial communities, namely of fish pathogenic bacteria. Therefore, in this study the seasonal dynamics of the overall bacterial communities, microbiological water quality and disease-causing bacteria were followed in a marine aquaculture system of Ria de Aveiro (Portugal). Analysis of the bacterial diversity of the water samples by denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments indicates that the bacterial community structure varied seasonally, showing a higher complexity during the warm season. The diversity of the main fish pathogenic bacteria, assessed by DGGE targeting the Vibrio genus, showed lower seasonal variation, with new dominating populations appearing mainly in the spring. Bacterial indicators, faecal coliforms and enterococci, enumerated by the filter-membrane method, also varied seasonally. The fluorescent in situ hybridization (FISH) results showed that the specific groups of bacteria varied during the study period and that the non-indigenous Enterobactereaceae family was the most abundant group followed by Vibrio and Aeromonas. The seasonal variation detected in terms of density and structure of total and pathogenic bacterial communities demonstrates the need for a careful monitoring of water through the year in order to select the suitable phages to inactivate fish pathogenic bacteria. The spring season seems to be the critical time period when phage therapy should be applied.

  7. The Prestige oil spill: bacterial community dynamics during a field biostimulation assay.

    Science.gov (United States)

    Jiménez, Núria; Viñas, Marc; Bayona, Josep M; Albaiges, Joan; Solanas, Anna M

    2007-12-01

    A field bioremediation assay using the oleophilic fertilizer S200 was carried out 12 months after the Prestige heavy fuel-oil spill on a beach on the Cantabrian coast (north Spain). This assay showed that S200-enhanced oil degradation, particularly of high-molecular-weight n-alkanes and alkylated PAHs, suggesting an increase in the microbial bioavailability of these compounds. The bacterial community structure was determined by cultivation-independent analysis of polymerase chain reaction-amplified 16S rDNA by denaturing gradient gel electrophoresis. Bacterial community was mainly composed of alpha-Proteobacteria (Rhodobacteriaceae and Sphingomonadaceae). Representatives of gamma-Proteobacteria (Chromatiales, Moraxellaceae, and Halomonadaceae), Bacteroidetes (Flavobacteriaceae), and Actinobacteria group (Nocardiaceae and Corynebacteriaceae) were also found. The addition of the fertilizer led to the appearance of the bacterium Mesonia algae in the early stages, with a narrow range of growth substrates, which has been associated with the common alga Achrosiphonia sonderi. The presence of Mesonia algae may be attributable to the response of the microbial community to the addition of N and P rather than indicating a role in the biodegradation process. The Rhodococcus group appeared in both assay plots, especially at the end of the experiment. It was also found at another site on the Galician coast that had been affected by the same spill. This genus has been associated with the degradation of n-alkanes up to C(36). Taking into account the high content of heavy alkanes in the Prestige fuel, these microorganisms could play a significant role in the degradation of such fuel. A similar bacterial community structure was observed at another site that showed a similar degree of fuel weathering.

  8. Bacterial community dynamics are linked to patterns of coral heat tolerance

    KAUST Repository

    Ziegler, Maren

    2017-02-10

    Ocean warming threatens corals and the coral reef ecosystem. Nevertheless, corals can be adapted to their thermal environment and inherit heat tolerance across generations. In addition, the diverse microbes that associate with corals have the capacity for more rapid change, potentially aiding the adaptation of long-lived corals. Here, we show that the microbiome of reef corals is different across thermally variable habitats and changes over time when corals are reciprocally transplanted. Exposing these corals to thermal bleaching conditions changes the microbiome for heat-sensitive corals, but not for heat-tolerant corals growing in habitats with natural high heat extremes. Importantly, particular bacterial taxa predict the coral host response in a short-term heat stress experiment. Such associations could result from parallel responses of the coral and the microbial community to living at high natural temperatures. A competing hypothesis is that the microbial community and coral heat tolerance are causally linked.

  9. Bacterial community dynamics are linked to patterns of coral heat tolerance

    Science.gov (United States)

    Ziegler, Maren; Seneca, Francois O.; Yum, Lauren K.; Palumbi, Stephen R.; Voolstra, Christian R.

    2017-02-01

    Ocean warming threatens corals and the coral reef ecosystem. Nevertheless, corals can be adapted to their thermal environment and inherit heat tolerance across generations. In addition, the diverse microbes that associate with corals have the capacity for more rapid change, potentially aiding the adaptation of long-lived corals. Here, we show that the microbiome of reef corals is different across thermally variable habitats and changes over time when corals are reciprocally transplanted. Exposing these corals to thermal bleaching conditions changes the microbiome for heat-sensitive corals, but not for heat-tolerant corals growing in habitats with natural high heat extremes. Importantly, particular bacterial taxa predict the coral host response in a short-term heat stress experiment. Such associations could result from parallel responses of the coral and the microbial community to living at high natural temperatures. A competing hypothesis is that the microbial community and coral heat tolerance are causally linked.

  10. Community dynamics and glycoside hydrolase activities of thermophilic bacterial consortia adapted to switchgrass

    Energy Technology Data Exchange (ETDEWEB)

    Gladden, J.M.; Allgaier, M.; Miller, C.S.; Hazen, T.C.; VanderGheynst, J.S.; Hugenholtz, P.; Simmons, B.A.; Singer, S.W.

    2011-05-01

    Industrial-scale biofuel production requires robust enzymatic cocktails to produce fermentable sugars from lignocellulosic biomass. Thermophilic bacterial consortia are a potential source of cellulases and hemicellulases adapted to harsher reaction conditions than commercial fungal enzymes. Compost-derived microbial consortia were adapted to switchgrass at 60 C to develop thermophilic biomass-degrading consortia for detailed studies. Microbial community analysis using small-subunit rRNA gene amplicon pyrosequencing and short-read metagenomic sequencing demonstrated that thermophilic adaptation to switchgrass resulted in low-diversity bacterial consortia with a high abundance of bacteria related to thermophilic paenibacilli, Rhodothermus marinus, and Thermus thermophilus. At lower abundance, thermophilic Chloroflexi and an uncultivated lineage of the Gemmatimonadetes phylum were observed. Supernatants isolated from these consortia had high levels of xylanase and endoglucanase activities. Compared to commercial enzyme preparations, the endoglucanase enzymes had a higher thermotolerance and were more stable in the presence of 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]), an ionic liquid used for biomass pretreatment. The supernatants were used to saccharify [C2mim][OAc]-pretreated switchgrass at elevated temperatures (up to 80 C), demonstrating that these consortia are an excellent source of enzymes for the development of enzymatic cocktails tailored to more extreme reaction conditions.

  11. Bacterial community dynamics during in-situ bioremediation of petroleum waste sludge in landfarming sites.

    Science.gov (United States)

    Katsivela, E; Moore, E R B; Maroukli, D; Strömpl, C; Pieper, D; Kalogerakis, N

    2005-03-01

    In-situ bioremediation of petroleum waste sludge in landfarming sites of Motor Oil Hellas (petroleum refinery) was studied by monitoring the changes of the petroleum composition of the waste sludge, as well as the changes in the structure of the microbial community, for a time period of 14 months. The analyses indicated an enhanced degradation of the petroleum hydrocarbons in the landfarming areas. A depletion of n-alkanes of approximately 75-100% was obtained. Marked changes of the microbial communities of the landfarms occurred concomitantly with the degradation of the petroleum hydrocarbons. The results obtained from terminal restriction fragment length polymorphism (T-RFLP) analysis of polymerase chain reaction (PCR) amplified 16S rRNA genes demonstrated that bacteria originating from the refinery waste sludge and newly selected bacteria dominated the soil bacterial community during the period of the highest degradation activity. However, the diversity of the microbial community was decreased with increased degradation of the petroleum hydrocarbons contained in the landfarms. T-RFLP fingerprints of bacteria of the genera Enterobacter and Ochrobactrum were detected in the landfarmed soil over the entire treatment period of 14 months. In contrast, the genus Alcaligenes appeared in significant numbers only within the 10 month old landfarmed soil. Genes encoding catechol 2,3-dioxygenase (subfamily I.2.A) were detected only in DNA of the untreated refinery waste sludge. However, none of the genes known to encode the enzymes alkane hydroxylase AlkB, catechol 2,3-dioxygenase (subfamily I.2.A) and naphthalene dioxygenase nahAc could be detected in DNA of the landfarmed soils.

  12. Seasonal Dynamics of the Airborne Bacterial Community and Selected Viruses in a Children’s Daycare Center

    Science.gov (United States)

    Prussin, Aaron J.; Vikram, Amit; Bibby, Kyle J.; Marr, Linsey C.

    2016-01-01

    Children’s daycare centers appear to be hubs of respiratory infectious disease transmission, yet there is only limited information about the airborne microbial communities that are present in daycare centers. We have investigated the microbial community of the air in a daycare center, including seasonal dynamics in the bacterial community and the presence of specific viral pathogens. We collected filters from the heating, ventilation, and air conditioning (HVAC) system of a daycare center every two weeks over the course of a year. Amplifying and sequencing the 16S rRNA gene revealed that the air was dominated by Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes that are commonly associated with the human skin flora. Clear seasonal differences in the microbial community were not evident; however, the community structure differed when the daycare center was closed and unoccupied for a 13-day period. These results suggest that human occupancy, rather than the environment, is the major driver in shaping the microbial community structure in the air of the daycare center. Using PCR for targeted viruses, we detected a seasonal pattern in the presence of respiratory syncytial virus that included the period of typical occurrence of the disease related to the virus; however, we did not detect the presence of adenovirus or rotavirus at any time. PMID:26942410

  13. Impact of Short-Term Acidification on Nitrification and Nitrifying Bacterial Community Dynamics in Soilless Cultivation Media

    Science.gov (United States)

    Levkovitch, Irit; Negreanu, Yael; Dowd, Scot; Frenk, Sammy; Silber, Avner

    2012-01-01

    Soilless medium-based horticulture systems are highly prevalent due to their capacity to optimize growth of high-cash crops. However, these systems are highly dynamic and more sensitive to physiochemical and pH perturbations than traditional soil-based systems, especially during nitrification associated with ammonia-based fertilization. The objective of this study was to assess the impact of nitrification-generated acidification on ammonia oxidation rates and nitrifying bacterial community dynamics in soilless growth media. To achieve this goal, perlite soilless growth medium from a commercial bell pepper greenhouse was incubated with ammonium in bench-scale microcosm experiments. Initial quantitative real-time PCR analysis indicated that betaproteobacterial ammonia oxidizers were significantly more abundant than ammonia-oxidizing archaea, and therefore, research focused on this group. Ammonia oxidation rates were highest between 0 and 9 days, when pH values dropped from 7.4 to 4.9. Pyrosequencing of betaproteobacterial ammonia-oxidizing amoA gene fragments indicated that r-strategist-like Nitrosomonas was the dominant ammonia-oxidizing bacterial genus during this period, seemingly due to the high ammonium concentration and optimal growth conditions in the soilless media. Reduction of pH to levels below 4.8 resulted in a significant decrease in both ammonia oxidation rates and the diversity of ammonia-oxidizing bacteria, with increased relative abundance of the r-strategist-like Nitrosospira. Nitrite oxidizers (Nitrospira and Nitrobacter) were on the whole more abundant and less sensitive to acidification than ammonia oxidizers. This study demonstrates that nitrification and nitrifying bacterial community dynamics in high-N-load intensive soilless growth media may be significantly different from those in in-terra agricultural systems. PMID:22773643

  14. Ruminal Bacterial Community Composition in Dairy Cows Is Dynamic over the Course of Two Lactations and Correlates with Feed Efficiency.

    Science.gov (United States)

    Jewell, Kelsea A; McCormick, Caroline A; Odt, Christine L; Weimer, Paul J; Suen, Garret

    2015-07-01

    Fourteen Holstein cows of similar ages were monitored through their first two lactation cycles, during which ruminal solids and liquids, milk samples, production data, and feed consumption data were collected for each cow during early (76 to 82 days in milk [DIM]), middle (151 to 157 DIM), and late (251 to 257 DIM) lactation periods. The bacterial community of each ruminal sample was determined by sequencing the region from V6 to V8 of the 16S rRNA gene using 454 pyrosequencing. Gross feed efficiency (GFE) for each cow was calculated by dividing her energy-corrected milk by dry matter intake (ECM/DMI) for each period of both lactation cycles. Four pairs of cows were identified that differed in milk production efficiency, as defined by residual feed intake (RFI), at the same level of ECM production. The most abundant phyla detected for all cows were Bacteroidetes (49.42%), Firmicutes (39.32%), Proteobacteria (5.67%), and Tenericutes (2.17%), and the most abundant genera included Prevotella (40.15%), Butyrivibrio (2.38%), Ruminococcus (2.35%), Coprococcus (2.29%), and Succiniclasticum (2.28%). The bacterial microbiota between the first and second lactation cycles were highly similar, but with a significant correlation between total community composition by ruminal phase and specific bacteria whose relative sequence abundances displayed significant positive or negative correlation with GFE or RFI. These data suggest that the ruminal bacterial community is dynamic in terms of membership and diversity and that specific members are associated with high and low milk production efficiency over two lactation cycles.

  15. Effects of CeO2 nanoparticles on system performance and bacterial community dynamics in a sequencing batch reactor.

    Science.gov (United States)

    Qiu, Guanglei; Neo, Sin-Yi; Ting, Yen-Peng

    2016-01-01

    The effects of CeO2 nanoparticles (NPs) on the system performance and the bacterial community dynamics in a sequencing batch reactor (SBR) were investigated, along with the fate and removal of CeO2 NPs within the SBR. Significant impact was observed on nitrification; NH4+-N removal efficiency decreased from almost 100% to around 70% after 6 days of continuous exposure to 1.0 mg/L of CeO2 NPs, followed by a gradual recovery until a stable value of around 90% after 20 days. Additionally, CeO2 NPs also led to a significant increase in the protein content in the soluble microbial products, showing the disruptive effects of CeO2 NPs on the extracellular polymeric substance matrix and related activated sludge structure. Denaturing gradient gel electrophoresis analysis showed remarkable changes in the bacterial community structure in the activated sludge after exposure to CeO2 NPs. CeO2 NPs were effectively removed in the SBR mainly via sorption onto the sludge. However, the removal efficiency decreased from 95 to 80% over 30 days. Mass balance evaluation showed that up to 50% of the NPs were accumulated within the activated sludge and were removed with the waste sludge.

  16. Dynamics of bacterial community structure on intertidal sandflat inhabited by the ghost shrimp Nihonotrypaea harmandi (Decapoda: Axiidea: Callianassidae) in Tomioka Bay, Amakusa, Japan.

    Science.gov (United States)

    Wada, Minoru; Urakawa, Tatsuyuki; Tamaki, Akio

    2016-02-01

    Callianassid (ghost) shrimp has been claimed as an ecosystem engineer, as it is one of the most powerful bioturbating macrobenthos in intertidal sandflats. However, our knowledge about the relationship between areal distribution of bottom-dwelling ghost shrimps and dynamics of sediment microbial community structure remains obscured. We used automated ribosomal intergenic spacer analysis (ARISA) to reveal the bacterial community dynamics in the sediment of intertidal sandflat of Tomioka Bay, Kyushu, Japan, which is predominantly inhabited by a burrow-dwelling callianassid shrimp Nihonotrypaea harmandi. We found that the bacterial community structures of high and middle shrimp population areas were significantly differentiated from those of low population area (ANOSIM, R=0.10-0.18, p0.1). These results illustrated the potential importance of shrimp population density as a key factor in shaping the bacterial community structure and interpreting their dynamics in the sandflat. Furthermore, greater similarity between burrow and non-burrow communities was found in samples taken in autumn through winter than in those in summer (one-way ANOVA, pshrimp in permeable sandflat would strongly homogenize sediment particles, enhance solute transport surrounding the burrow and ambient subsurface substrate, and therefore reduce spatial differentiation of the bacterial community structure between the two sites. A comparison between present and previous studies of axiidean (former taxonomic group name, thalassinidean) ghost shrimps provides us with a comprehensive understanding of the shrimps' impacts on bacterial community dynamics, highlighting the importance of sediment permeability, a characteristic determined by the type of sediment, as a key controlling factor to shape spatial heterogeneity of bacterial community structure around burrow.

  17. Comparison of bacterial community structure and dynamics during the thermophilic composting of different types of solid wastes: anaerobic digestion residue, pig manure and chicken manure.

    Science.gov (United States)

    Song, Caihong; Li, Mingxiao; Jia, Xuan; Wei, Zimin; Zhao, Yue; Xi, Beidou; Zhu, Chaowei; Liu, Dongming

    2014-09-01

    This study investigated the impact of composting substrate types on the bacterial community structure and dynamics during composting processes. To this end, pig manure (PM), chicken manure (CM), a mixture of PM and CM (PM + CM), and a mixture of PM, CM and anaerobic digestion residue (ADR) (PM + CM + ADR) were selected for thermophilic composting. The bacterial community structure and dynamics during the composting process were detected and analysed by polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) coupled with a statistic analysis. The physical-chemical analyses indicated that compared to single-material composting (PM, CM), co-composting (PM + CM, PM + CM + ADR) could promote the degradation of organic matter and strengthen the ability of conserving nitrogen. A DGGE profile and statistical analysis demonstrated that co-composting, especially PM + CM + ADR, could improve the bacterial community structure and functional diversity, even in the thermophilic stage. Therefore, co-composting could weaken the screening effect of high temperature on bacterial communities. Dominant sequencing analyses indicated a dramatic shift in the dominant bacterial communities from single-material composting to co-composting. Notably, compared with PM, PM + CM increased the quantity of xylan-degrading bacteria and reduced the quantity of human pathogens.

  18. Bacterial community dynamics in surface flow constructed wetlands for the treatment of swine waste.

    Science.gov (United States)

    Ibekwe, A M; Ma, J; Murinda, Shelton; Reddy, G B

    2016-02-15

    Constructed wetlands are generally used for the removal of waste from contaminated water. In the swine production system, wastes are traditionally flushed into an anaerobic lagoon which is then sprayed on agricultural fields. However, continuous spraying of lagoon wastewater on fields can lead to high N and P accumulations in soil or lead to runoff which may contaminate surface or ground water with pathogens and nutrients. In this study, continuous marsh constructed wetland was used for the removal of contaminants from swine waste. Using pyrosequencing, we assessed bacterial composition within the wetland using principal coordinate analysis (PCoA) which showed that bacterial composition from manure influent and lagoon water were significantly different (P=0.001) from the storage pond to the final effluent. Canonical correspondence analysis (CCA) showed that different bacterial populations were significantly impacted by ammonium--NH4 (P=0.035), phosphate--PO4(3-) (P=0.010), chemical oxygen demand--COD (P=0.0165), total solids--TS (P=0.030), and dissolved solids--DS (P=0.030) removal, with 54% of the removal rate explained by NH4+PO4(3-) according to a partial CCA. Our results showed that different bacterial groups were responsible for the composition of different wetland nutrients and decomposition process. This may be the major reason why most wetlands are very efficient in waste decomposition.

  19. Dynamic changes in bacterial community structure and in naphthalene dioxygenase expression in vermicompost-amended PAH-contaminated soils.

    Science.gov (United States)

    Di Gennaro, Patrizia; Moreno, Beatriz; Annoni, Emanuele; García-Rodríguez, Sonia; Bestetti, Giuseppina; Benitez, Emilio

    2009-12-30

    The aim of the present study was to explore the potential for using vermicompost from olive-mill waste as an organic amendment for enhanced bioremediation of polycyclic aromatic hydrocarbons (PAHs)-contaminated soils. The focus was to analyse the genetic potential and the naphthalene dioxygenase (NDO) expression of the bacterial communities involved in the degradation of naphthalene, as chemical model for the degradation of PAH. The structure of the metabolically active bacterial population was evidenced in the RNA-based denaturing gradient gel electrophoresis (DGGE) profiles. The relative expression of NDO was determined with real-time PCR in both the soil and the vermicompost cDNA. Naphthalene changed the structure of the metabolically active bacterial community in the vermicompost when this was artificially contaminated. When used as amendment, naphthalene-free vermicompost modified the bacterial population in the PAH-contaminated soil, evidenced in the DGGE gels after 1 month of incubation. In the amended soil, the vermicompost enhanced the NDO enzyme expression with a concomitant biodegradation of naphthalene. The effect of the vermicompost was to induce the expression of biodegradation indicator genes in the autochthonous bacterial community and/or incorporate new bacterial species capable of degrading PAH. The results indicated that vermicompost from olive-mill wastes could be considered a suitable technology to be used in PAH bioremediation.

  20. Dynamics of bacterial communities in two unpolluted soils after spiking with phenanthrene: soil type specific and common responders

    Directory of Open Access Journals (Sweden)

    Guo-Chun eDing

    2012-08-01

    Full Text Available Considering their key role for ecosystem processes, it is important to understand the response of microbial communities in unpolluted soils to pollution with polycyclic aromatic hydrocarbons (PAH. Phenanthrene, a model compound for PAH, was spiked to a Cambisol and a Luvisol soil. Total community DNA from phenanthrene-spiked and control soils collected on days 0, 21 and 63 were analyzed based on PCR-amplified 16S rRNA genefragments. Denaturing gradient gel electrophoresis (DGGE fingerprints of bacterial communities increasingly deviated with time between spiked and control soils. In taxon specific DGGE, significant responses of Alphaproteobacteria and Actinobacteria became only detectable after 63 days, while significant effects on Betaproteobacteria were detectable in both soils after 21 days. Comparison of the taxonomic distribution of bacteria in spiked and control soils on day 63 as revealed by pyrosequencing indicated soil type specific negative effects of phenanthrene on several taxa, many of them belonging to the Gamma-, Beta- or Deltaproteobacteria. Bacterial richness and evenness decreased in spiked soils. Despite the significant differences in the bacterial community structure between both soils on day 0, similar genera increased in relative abundance after PAH spiking, especially Sphingomonas and Polaromonas. However, this did not result in an increased overall similarity of the bacterial communities in both soils.

  1. A pyrosequencing insight into sprawling bacterial diversity and community dynamics in decaying deadwood logs of Fagus sylvatica and Picea abies.

    Science.gov (United States)

    Hoppe, Björn; Krger, Krüger; Kahl, Tiemo; Arnstadt, Tobias; Buscot, François; Bauhus, Jürgen; Wubet, Tesfaye

    2015-04-08

    Deadwood is an important biodiversity hotspot in forest ecosystems. While saproxylic insects and wood-inhabiting fungi have been studied extensively, little is known about deadwood-inhabiting bacteria. The study we present is among the first to compare bacterial diversity and community structure of deadwood under field conditions. We therefore compared deadwood logs of two temperate forest tree species Fagus sylvatica and Picea abies using 16S rDNA pyrosequencing to identify changes in bacterial diversity and community structure at different stages of decay in forest plots under different management regimes. Alphaproteobacteria, Acidobacteria and Actinobacteria were the dominant taxonomic groups in both tree species. There were no differences in bacterial OTU richness between deadwood of Fagus sylvatica and Picea abies. Bacteria from the order Rhizobiales became more abundant during the intermediate and advanced stages of decay, accounting for up to 25% of the entire bacterial community in such logs. The most dominant OTU was taxonomically assigned to the genus Methylovirgula, which was recently described in a woodblock experiment of Fagus sylvatica. Besides tree species we were able to demonstrate that deadwood physico-chemical properties, in particular remaining mass, relative wood moisture, pH, and C/N ratio serve as drivers of community composition of deadwood-inhabiting bacteria.

  2. Dynamics of bacterial communities in rice field soils as affected by different long-term fertilization practices.

    Science.gov (United States)

    Ahn, Jae-Hyung; Lee, Shin Ae; Kim, Jeong Myeong; Kim, Myung-Sook; Song, Jaekyeong; Weon, Hang-Yeon

    2016-11-01

    Fertilization and the response of the soil microbial community to the process significantly affect crop yield and the environment. In this study, the seasonal variation in the bacterial communities in rice field soil subjected to different fertilization treatments for more than 50 years was investigated using 16S rRNA sequencing. The simultaneous application of inorganic fertilizers and rice straw compost (CAPK) maintained the species richness of the bacterial communities at levels higher than that in the case of non-fertilization (NF) and application of inorganic fertilizers only (APK) in the initial period of rice growth. The seasonal variation in the bacterial community structure in the NF and APK plots showed cyclic behavior, suggesting that the effect of season was important; however, no such trend was observed in the CAPK plot. In the CAPK plot, the relative abundances of putative copiotrophs such as Bacteroidetes, Firmicutes, and Proteobacteria were higher and those of putative oligotrophs such as Acidobacteria and Plactomycetes were lower than those in the other plots. The relative abundances of organotrophs with respiratory metabolism, such as Actinobacteria, were lower and those of chemoautotrophs that oxidize reduced iron and sulfur compounds were higher in the CAPK plot, suggesting greater carbon storage in this plot. Increased methane emission and nitrogen deficiency, which were inferred from the higher abundances of Methylocystis and Bradyrhizobium in the CAPK plot, may be a negative effect of rice straw application; thus, a solution for these should be considered to increase the use of renewable resources in agricultural lands.

  3. Association of running manner with bacterial community dynamics in a partial short-term nitrifying bioreactor for treatment of piggery wastewater with high ammonia content.

    Science.gov (United States)

    Du, Wei-Li; Huang, Qiang; Miao, Li-Li; Liu, Ying; Liu, Zhi-Pei

    2016-12-01

    Optimization of running parameters in a bioreactor requires detailed understanding of microbial community dynamics during the startup and running periods. Using a novel piggery wastewater treatment system termed "UASB + SHARON + ANAMMOX" constructed in our laboratory, we investigated microbial community dynamics using the Illumina MiSeq method, taking activated sludge samples at ~2-week intervals during a ~300-day period. Ammonia-oxidizing bacteria (AOB) were further investigated by quantification of AOB amoA genes and construction of gene clone libraries. Major changes in bacterial community composition and dynamics occurred when running manner was changed from continuous flow manner (CFM) to sequencing batch manner (SBM), and when effluent from an upflow anaerobic sludge blanket (UASB) reactor for practical treatment of real piggery wastewater was used as influent; differences among these three experimental groups were significant (R (2)  = 0.94, p level thereafter. Relative abundance of the genus Nitrosomonas increased from ~0.67 % during the CFM period to 8.0 % by day 220, and thereafter decreased to a near-constant ~1.6 %. Environmental factors such as load ammonia, effluent ammonia, effluent nitrite, UASB effluent, pH, and DO levels collectively drove bacterial community dynamics and contributed to maintenance of effluent NH4 (+)-N/NO2 (-)-N ratio ~1. Theses results might provide useful clues for the control of the startup processes and maintaining high efficiency of such bioreactors.

  4. Daily dynamics of bacterial numbers, CO2 emissions from soil and relationships between their wavelike fluctuations and succession of the microbial community

    Science.gov (United States)

    Semenov, A. M.; Bubnov, I. A.; Semenov, V. M.; Semenova, E. V.; Zelenev, V. V.; Semenova, N. A.

    2013-08-01

    The daily dynamics of the number of copiotrophic and oligotrophic bacteria (in colony-forming units) and CO2 emissions from cultivated soils after short- and long-term disturbances were studied for 25-27 days in a microfield experiment. The relationship of the wavelike fluctuations of the bacterial number and CO2 emission with the succession of the soil microbial community was determined by the polymerase chain reaction method—denaturing gradient gel electrophoresis (PCR-DGGE). Short-term disturbances involved the application of organic or mineral fertilizers, pesticides, and plant residues to the soils of different plots. The long-term effect was a result of using biological and intensive farming systems for three years. The short-term disturbances resulted in increased peaks of the bacterial number, the significance of which was confirmed by harmonics analysis. The daily dynamics of the structure of the soil microbial community, which was studied for 27 days by the DGGE method, also had an oscillatory pattern. Statistical processing of the data (principal components analysis, harmonics and cross-correlation analyses) has revealed significant fluctuations in the structure of microbial communities coinciding with those of the bacterial populations. The structure of the microbial community changed within each peak of the dynamics of the bacterial number (but not from peak to peak), pointing to the cyclical character of the short-term succession. The long-term effects resulted in a less intense response of the microbiota—a lower rate of CO2 emission from the soil cultivated according to the organic farming system.

  5. Soil carbon quality and nitrogen fertilization structure bacterial communities with predictable responses of major bacterial phyla

    OpenAIRE

    2014-01-01

    Agricultural practices affect the soil ecosystem in multiple ways and the soil microbial communities represent an integrated and dynamic measure of soil status. Our aim was to test whether the soil bacterial community and the relative abundance of major bacterial phyla responded predictably to long-term organic amendments representing different carbon qualities (peat and straw) in combination with nitrogen fertilization levels and if certain bacterial groups were indicative of specific treatm...

  6. Dynamics of bacterial communities during the ripening process of different Croatian cheese types derived from raw ewe's milk cheeses.

    Science.gov (United States)

    Fuka, Mirna Mrkonjić; Wallisch, Stefanie; Engel, Marion; Welzl, Gerhard; Havranek, Jasmina; Schloter, Michael

    2013-01-01

    Microbial communities play an important role in cheese ripening and determine the flavor and taste of different cheese types to a large extent. However, under adverse conditions human pathogens may colonize cheese samples during ripening and may thus cause severe outbreaks of diarrhoea and other diseases. Therefore in the present study we investigated the bacterial community structure of three raw ewe's milk cheese types, which are produced without the application of starter cultures during ripening from two production sites based on fingerprinting in combination with next generation sequencing of 16S rRNA gene amplicons. Overall a surprisingly high diversity was found in the analyzed samples and overall up to 213 OTU97 could be assigned. 20 of the major OTUs were present in all samples and include mostly lactic acid bacteria (LAB), mainly Lactococcus, and Enterococcus species. Abundance and diversity of these genera differed to a large extent between the 3 investigated cheese types and in response to the ripening process. Also a large number of non LAB genera could be identified based on phylogenetic alignments including mainly Enterobacteriaceae and Staphylococcacae. Some species belonging to these two families could be clearly assigned to species which are known as potential human pathogens like Staphylococcus saprophyticus or Salmonella spp. However, during cheese ripening their abundance was reduced. The bacterial genera, namely Lactobacillus, Streptococcus, Leuconostoc, Bifidobacterium, Brevibacterium, Corynebacterium, Clostridium, Staphylococcus, Thermoanerobacterium, E. coli, Hafnia, Pseudomonas, Janthinobacterium, Petrotoga, Kosmotoga, Megasphaera, Macrococcus, Mannheimia, Aerococcus, Vagococcus, Weissella and Pediococcus were identified at a relative low level and only in selected samples. Overall the microbial composition of the used milk and the management of the production units determined the bacterial community composition for all cheese types to a

  7. Dynamics of bacterial communities during the ripening process of different Croatian cheese types derived from raw ewe's milk cheeses.

    Directory of Open Access Journals (Sweden)

    Mirna Mrkonjić Fuka

    Full Text Available Microbial communities play an important role in cheese ripening and determine the flavor and taste of different cheese types to a large extent. However, under adverse conditions human pathogens may colonize cheese samples during ripening and may thus cause severe outbreaks of diarrhoea and other diseases. Therefore in the present study we investigated the bacterial community structure of three raw ewe's milk cheese types, which are produced without the application of starter cultures during ripening from two production sites based on fingerprinting in combination with next generation sequencing of 16S rRNA gene amplicons. Overall a surprisingly high diversity was found in the analyzed samples and overall up to 213 OTU97 could be assigned. 20 of the major OTUs were present in all samples and include mostly lactic acid bacteria (LAB, mainly Lactococcus, and Enterococcus species. Abundance and diversity of these genera differed to a large extent between the 3 investigated cheese types and in response to the ripening process. Also a large number of non LAB genera could be identified based on phylogenetic alignments including mainly Enterobacteriaceae and Staphylococcacae. Some species belonging to these two families could be clearly assigned to species which are known as potential human pathogens like Staphylococcus saprophyticus or Salmonella spp. However, during cheese ripening their abundance was reduced. The bacterial genera, namely Lactobacillus, Streptococcus, Leuconostoc, Bifidobacterium, Brevibacterium, Corynebacterium, Clostridium, Staphylococcus, Thermoanerobacterium, E. coli, Hafnia, Pseudomonas, Janthinobacterium, Petrotoga, Kosmotoga, Megasphaera, Macrococcus, Mannheimia, Aerococcus, Vagococcus, Weissella and Pediococcus were identified at a relative low level and only in selected samples. Overall the microbial composition of the used milk and the management of the production units determined the bacterial community composition for all

  8. Soil bacterial community responses to global changes

    DEFF Research Database (Denmark)

    Bergmark, Lasse

    /change the microbial community towards a higher fungal dominance. That could lead to a change in the carbon and nutrient flow in soil. In Manuscript 2 the impact of climate change manipulations and the seasonal dynamics of soil fungi and bacterial communities are investigated. Our results show that the soil fungal......Soil bacteria and archaea are essential for ecosystem functioning and plant growth through their degradation of organic matter and turnover of nutrients. But since the majority of soil bacteria and archaea are unclassified and “nonculturable” the functionality of the microbial community and its...... overall importance for ecosystem function in soil is poorly understood. Global change factors may affect the diversity and functioning of soil prokaryotes and thereby ecosystem functioning. To gain a better understanding of the effects of global changes it is of fundamental importance to classify...

  9. Forensic identification using skin bacterial communities

    OpenAIRE

    FIERER Noah; Lauber, Christian L.; Zhou, Nick; McDonald, Daniel; Costello, Elizabeth K.; Knight, Rob

    2010-01-01

    Recent work has demonstrated that the diversity of skin-associated bacterial communities is far higher than previously recognized, with a high degree of interindividual variability in the composition of bacterial communities. Given that skin bacterial communities are personalized, we hypothesized that we could use the residual skin bacteria left on objects for forensic identification, matching the bacteria on the object to the skin-associated bacteria of the individual who touched the object....

  10. Analysis of run-to-run variation of bar-coded pyrosequencing for evaluating bacterial community shifts and individual taxa dynamics.

    Science.gov (United States)

    Ge, Yuan; Schimel, Joshua P; Holden, Patricia A

    2014-01-01

    Bar-coded pyrosequencing has been increasingly used due to its fine taxonomic resolution and high throughput. Yet, concerns arise regarding the reproducibility of bar-coded pyrosequencing. We evaluated the run-to-run variation of bar-coded pyrosequencing in detecting bacterial community shifts and taxa dynamics. Our results demonstrate that pyrosequencing is reproducible in evaluating community shifts within a run, but not between runs. Also, the reproducibility of pyrosequencing in detecting individual taxa increased as a function of taxa abundance. Based on our findings: (1) for studies with modest sequencing depth, it is doubtful that data from different pyrosequencing runs can be considered comparable; (2) if multiple pyrosequencing runs are needed to increase the sequencing depth, additional sequencing efforts should be applied to all samples, rather than to selected samples; (3) if pyrosequencing is used for estimating bacterial population dynamics, only the abundant taxa should be considered; (4) for less-abundant taxa, the sequencing depth should be increased to ensure an accurate evaluation of taxon variation trends across samples.

  11. Complexity and Dynamics of the Winemaking Bacterial Communities in Berries, Musts, and Wines from Apulian Grape Cultivars through Time and Space.

    Directory of Open Access Journals (Sweden)

    Marinella Marzano

    Full Text Available Currently, there is very little information available regarding the microbiome associated with the wine production chain. Here, we used an amplicon sequencing approach based on high-throughput sequencing (HTS to obtain a comprehensive assessment of the bacterial community associated with the production of three Apulian red wines, from grape to final product. The relationships among grape variety, the microbial community, and fermentation was investigated. Moreover, the winery microbiota was evaluated compared to the autochthonous species in vineyards that persist until the end of the winemaking process. The analysis highlighted the remarkable dynamics within the microbial communities during fermentation. A common microbial core shared among the examined wine varieties was observed, and the unique taxonomic signature of each wine appellation was revealed. New species belonging to the genus Halomonas were also reported. This study demonstrates the potential of this metagenomic approach, supported by optimized protocols, for identifying the biodiversity of the wine supply chain. The developed experimental pipeline offers new prospects for other research fields in which a comprehensive view of microbial community complexity and dynamics is desirable.

  12. Bacterial community succession in pine-wood decomposition

    Directory of Open Access Journals (Sweden)

    Anna eKielak

    2016-03-01

    Full Text Available Though bacteria and fungi are common inhabitants of decaying wood, little is known about the relationship between bacterial and fungal community dynamics during natural wood decay. Based on previous studies involving inoculated wood blocks, strong fungal selection on bacteria abundance and community composition was expected to occur during natural wood decay. Here we focused on bacterial and fungal community compositions in pine wood samples collected from dead trees in different stages of decomposition. We showed that bacterial communities undergo less drastic changes than fungal communities during wood decay. Furthermore, we found that bacterial community assembly was a stochastic process at initial stage of wood decay and became more deterministic in later stages, likely due to environmental factors. Moreover, composition of bacterial communities did not respond to the changes in the major fungal species present in the wood but rather to the stage of decay reflected by the wood density. We concluded that the shifts in the bacterial communities were a result of the changes in wood properties during decomposition and largely independent of the composition of the wood-decaying fungal communities.

  13. Effect of surfactants on PAH biodegradation by a bacterial consortium and on the dynamics of the bacterial community during the process.

    Science.gov (United States)

    González, N; Simarro, R; Molina, M C; Bautista, L F; Delgado, L; Villa, J A

    2011-10-01

    The aim of this work was to evaluate the effect of a non-biodegradable (Tergitol NP-10) and a biodegradable (Tween-80) surfactant on growth, degradation rate and microbial dynamics of a polycyclic aromatic hydrocarbon (PAHs) degrading consortium (C2PL05) from a petroleum polluted soil, applying cultivable and non cultivable techniques. Growth and degradation rate were significantly lower with Tergitol NP-10 than that with Tween-80. Toxicity did not show any significant reduction with Tergitol NP-10 whereas with Tween-80 toxicity was almost depleted (30%) after 40 days. Regarding to the cultured bacteria, Pseudomonas and Stenotrophomonas groups were dominant during PAH degradation with Tergitol NP-10, whereas Enterobacter and Stenotrophomonas were dominant with Tween-80. DGGE analyses (PRIMER and MDS) showed that bacteria composition was more similar between treatments when PAHs were consumed than when PAHs concentration was still high. Community changes between treatments were a consequence of Pseudomonas sp., Sphingomonas sp., Sphingobium sp. and Agromonas sp.

  14. Dynamic Succession Law of Bacterial Communities during Domestic Waste Composting%生活垃圾堆肥过程中细菌群落演替规律

    Institute of Scientific and Technical Information of China (English)

    党秋玲; 刘驰; 席北斗; 魏自民; 李鸣晓; 杨天学; 李晔

    2011-01-01

    The PCR-DGGE technique was used to study the dynamic succession law of bacterial communities during composting of Municipal Solid Waste (MSW). The microbial metagenomic DNA was extracted from samples in different periods of composting,and the V3 region of 16S rDNA was amplified for analyzing the change of the bacterial community during the composting process.DGGE prints showed that the bacterial community changed dramatically with the rise of temperature. New predominant bacteria appeared at the end of the composting process. This indicated that the bacterial community changed in different composting periods. Clustering analysis results showed that 14 samples were divided into two families at 55 ℃. The similarity of the two families was only 13% , indicating that the bacterial community structure was different in the normal temperature process ( < 55 ℃ ) and high temperature process ( > 55 ℃ ), The results of DNA sequencing showed that: caterpillar pathogen H. obtusa and human waste sample gene were detected in the rising temperature period; thermophilic microbe Clostridium thermocellu, which can decompose cellulose, was the dominant group in the high-temperature composting; and, lots of uncultured bacterial appeared when the temperature was lower than 55 ℃.%应用PCR-DGGE技术研究生活垃圾堆肥过程中的细菌群落演替规律,对堆肥不同时期的宏基因组DNA进行提取,扩增16S rDNA的V3区,分析生活垃圾堆肥过程中细菌群落的变化.DGGE图谱表明,随着堆体温度的升高,DNA条带表现出了明显的动态变化,降温期出现了新的优势条带并趋于稳定,说明堆肥不同时期的细菌群落发生了更替.对条带分布进行聚类分析,结果表明:以55 ℃为界,将14个堆肥样品划分为2个族,族间的相似性仅为13%,说明堆肥过程中常温期(55 ℃)微生物群落结构差别较大.对优势条带回收测序的结果表明:在升温期,堆肥堆体中检测到H.obtusa和人类

  15. BACTERIAL COMMUNITY DYNAMICS AND ECOTOXICOLOGICAL ASSESSMENT DURING BIOREMEDIATION OF SOILS CONTAMINATED BY BIODIESEL AND DIESEL/BIODIESEL BLENDS.

    Science.gov (United States)

    Matos, G I; Junior, C S; Oliva, T C; Subtil, D F; Matsushita, L Y; Chaves, A L; Lutterbach, M T; Sérvulo, E F; Agathos, S N; Stenuit, B

    2015-01-01

    The gradual introduction of biodiesel in the Brazilian energy landscape has primarily occurred through its blending with conventional petroleum diesel (e.g., B20 (20% biodiesel) and B5 (5% biodiesel) formulations). Because B20 and lower-level blends generally do not require engine modifications, their use as transportation fuel is increasing in the Brazilian distribution networks. However, the environmental fate of low-level biodiesel blends and pure biodiesel (B100) is poorly understood and the ecotoxicological-safety endpoints of biodiesel-contaminated environments are unknown. Using laboratory microcosms consisting of closed reactor columns filled with clay loam soil contaminated with pure biodiesel (EXPB100) and a low-level blend (EXPB5) (10% w/v), this study presents soil ecotoxicity assessement and dynamics of culturable heterotrophic bacteria. Most-probable-number (MPN) procedures for enumeration of bacteria, dehydrogenase assays and soil ecotoxicological tests using Eisenia fetida have been performed at different column depths over the course of incubation. After 60 days of incubation, the ecotoxicity of EXPB100-derived samples showed a decrease from 63% of mortality to 0% while EXPB5-derived samples exhibited a reduction from 100% to 53% and 90% on the top and at the bottom of the reactor column, respectively. The dehydrogenase activity of samples from EXPB100 and EXPB5 increased significantly compared to pristine soil after 60 days of incubation. Growth of aerobic bacterial biomass was only observed on the top of the reactor column while the anaerobic bacteria exhibited significant growth at different column depths in EXPB100 and EXPB5. These preliminary results suggest the involvement of soil indigenous microbiota in the biodegradation of biodiesel and blends. However, GC-FID analyses for quantification of fatty acid methyl esters (FAMEs) and aliphatic hydrocarbons and targeted sequencing of 16S rRNA tags using illumina platforms will provide important

  16. Biodiversity and dynamics of the bacterial community of packaged king scallop (Pecten maximus) meat during cold storage.

    Science.gov (United States)

    Coton, M; Joffraud, J J; Mekhtiche, L; Leroi, F; Coton, E

    2013-09-01

    The microbial biodiversity and dynamics of king scallops meat and coral during cold storage (cold chain rupture: 1/3 storage time at 4 °C followed by 2/3 at 8 °C), was assessed by combining culture-dependant and -independent methods. Products were packaged as follows: aerobic, vacuum packed and 3 different CO2/N2 modified atmospheres and the impact of these conditions on the microbial communities was assessed. Results indicated that under air (current packaging condition), the dominant species corresponded to Brochothrix thermosphacta, Pseudomonas spp. and Shewanella spp. These species have regularly been associated in the literature with food (especially seafood), and product spoilage. Moellerella wisconsensis was the only species detected on VRBG medium, however, its impact on the food product is unclear. Packaging conditions influenced the ecosystem equilibrium and biodiversity. Except for day 8, the lowest counts for all studied flora were observed for modified atmosphere packaging (MAP) containing >80% CO2. Moreover, in these conditions, higher biodiversity by Temporal Temperature Gradient Gel Electrophoresis (TTGE) and the non-detection of specific flora (i.e. Pseudoalteromonas haloplanktis) were observed. At day 8, scallops packaged using these conditions were still acceptable from a sensorial point of view (odour), although the initial load of the king scallop was high (total psychrotrophic flora reached 5.5 log CFU/g).

  17. Antibiotics promote aggregation within aquatic bacterial communities

    Directory of Open Access Journals (Sweden)

    Gianluca eCorno

    2014-07-01

    Full Text Available The release of antibiotics (AB into the environment poses several threats for human health due to potential development of ABresistant natural bacteria. Even though the use of low-dose antibiotics has been promoted in health care and farming, significant amounts of AB are observed in aquatic environments. Knowledge on the impact of AB on natural bacterial communities is missing both in terms of spread and evolution of resistance mechanisms, and of modifications of community composition and productivity. New approaches are required to study the response of microbial communities rather than individual resistance genes. In this study a chemostat-based experiment with 4 coexisting bacterial strains has been performed to mimicking the response of a freshwater bacterial community to the presence of antibiotics in low and high doses. Bacterial abundance rapidly decreased by 75% in the presence of AB, independently of their concentration, and remained constant until the end of the experiment. The bacterial community was mainly dominated by Aeromonas hydrophila and Brevundimonas intermedia while the other two strains, Micrococcus luteus and Rhodococcus sp. never exceed 10%. Interestingly, the bacterial strains, which were isolated at the end of the experiment, were not AB-resistant, while reassembled communities composed of the 4 strains, isolated from treatments under AB stress, significantly raised their performance (growth rate, abundance in the presence of AB compared to the communities reassembled with strains isolated from the treatment without AB. By investigating the phenotypic adaptations of the communities subjected to the different treatments, we found that the presence of AB significantly increased co-aggregation by 5-6 fold.These results represent the first observation of co-aggregation as a successful strategy of AB resistance based on phenotype in aquatic bacterial communities, and can represent a fundamental step in the understanding of

  18. Bacterial communities associated with the lichen symbiosis.

    Science.gov (United States)

    Bates, Scott T; Cropsey, Garrett W G; Caporaso, J Gregory; Knight, Rob; Fierer, Noah

    2011-02-01

    Lichens are commonly described as a mutualistic symbiosis between fungi and "algae" (Chlorophyta or Cyanobacteria); however, they also have internal bacterial communities. Recent research suggests that lichen-associated microbes are an integral component of lichen thalli and that the classical view of this symbiotic relationship should be expanded to include bacteria. However, we still have a limited understanding of the phylogenetic structure of these communities and their variability across lichen species. To address these knowledge gaps, we used bar-coded pyrosequencing to survey the bacterial communities associated with lichens. Bacterial sequences obtained from four lichen species at multiple locations on rock outcrops suggested that each lichen species harbored a distinct community and that all communities were dominated by Alphaproteobacteria. Across all samples, we recovered numerous bacterial phylotypes that were closely related to sequences isolated from lichens in prior investigations, including those from a lichen-associated Rhizobiales lineage (LAR1; putative N(2) fixers). LAR1-related phylotypes were relatively abundant and were found in all four lichen species, and many sequences closely related to other known N(2) fixers (e.g., Azospirillum, Bradyrhizobium, and Frankia) were recovered. Our findings confirm the presence of highly structured bacterial communities within lichens and provide additional evidence that these bacteria may serve distinct functional roles within lichen symbioses.

  19. Bacterial community succession in pine-wood decomposition

    NARCIS (Netherlands)

    Kielak, Anna; Scheublin, Tanja; Mendes, L.W.; Van Veen, Johannes A; Kuramae, Eiko Eurya

    2016-01-01

    BACKGROUND: Though bacteria and fungi are common inhabitants of decaying wood, little is known about the relationship between bacterial and fungal community dynamics during natural wood decay. Based on previous studies involving inoculated wood blocks, strong fungal selection on bacteria abundance a

  20. Forensic identification using skin bacterial communities.

    Science.gov (United States)

    Fierer, Noah; Lauber, Christian L; Zhou, Nick; McDonald, Daniel; Costello, Elizabeth K; Knight, Rob

    2010-04-06

    Recent work has demonstrated that the diversity of skin-associated bacterial communities is far higher than previously recognized, with a high degree of interindividual variability in the composition of bacterial communities. Given that skin bacterial communities are personalized, we hypothesized that we could use the residual skin bacteria left on objects for forensic identification, matching the bacteria on the object to the skin-associated bacteria of the individual who touched the object. Here we describe a series of studies de-monstrating the validity of this approach. We show that skin-associated bacteria can be readily recovered from surfaces (including single computer keys and computer mice) and that the structure of these communities can be used to differentiate objects handled by different individuals, even if those objects have been left untouched for up to 2 weeks at room temperature. Furthermore, we demonstrate that we can use a high-throughput pyrosequencing-based ap-proach to quantitatively compare the bacterial communities on objects and skin to match the object to the individual with a high degree of certainty. Although additional work is needed to further establish the utility of this approach, this series of studies introduces a forensics approach that could eventually be used to independently evaluate results obtained using more traditional forensic practices.

  1. Optimal control methods for controlling bacterial populations with persister dynamics

    Science.gov (United States)

    Cogan, N. G.

    2016-06-01

    Bacterial tolerance to antibiotics is a well-known phenomena; however, only recent studies of bacterial biofilms have shown how multifaceted tolerance really is. By joining into a structured community and offering shared protection and gene transfer, bacterial populations can protect themselves genotypically, phenotypically and physically. In this study, we collect a line of research that focuses on phenotypic (or plastic) tolerance. The dynamics of persister formation are becoming better understood, even though there are major questions that remain. The thrust of our results indicate that even without detailed description of the biological mechanisms, theoretical studies can offer strategies that can eradicate bacterial populations with existing drugs.

  2. Urban greenness influences airborne bacterial community composition.

    Science.gov (United States)

    Mhuireach, Gwynne; Johnson, Bart R; Altrichter, Adam E; Ladau, Joshua; Meadow, James F; Pollard, Katherine S; Green, Jessica L

    2016-11-15

    Urban green space provides health benefits for city dwellers, and new evidence suggests that microorganisms associated with soil and vegetation could play a role. While airborne microorganisms are ubiquitous in urban areas, the influence of nearby vegetation on airborne microbial communities remains poorly understood. We examined airborne microbial communities in parks and parking lots in Eugene, Oregon, using high-throughput sequencing of the bacterial 16S rRNA gene on the Illumina MiSeq platform to identify bacterial taxa, and GIS to measure vegetation cover in buffer zones of different diameters. Our goal was to explore variation among highly vegetated (parks) versus non-vegetated (parking lots) urban environments. A secondary objective was to evaluate passive versus active collection methods for outdoor airborne microbial sampling. Airborne bacterial communities from five parks were different from those of five parking lots (p=0.023), although alpha diversity was similar. Direct gradient analysis showed that the proportion of vegetated area within a 50m radius of the sampling station explained 15% of the variation in bacterial community composition. A number of key taxa, including several Acidobacteriaceae were substantially more abundant in parks, while parking lots had higher relative abundance of Acetobacteraceae. Parks had greater beta diversity than parking lots, i.e. individual parks were characterized by unique bacterial signatures, whereas parking lot communities tended to be similar to each other. Although parks and parking lots were selected to form pairs of nearby sites, spatial proximity did not appear to affect compositional similarity. Our results also showed that passive and active collection methods gave comparable results, indicating the "settling dish" method is effective for outdoor airborne sampling. This work sets a foundation for understanding how urban vegetation may impact microbial communities, with potential implications for designing

  3. Effect of Sphingobium yanoikuyae B1 inoculation on bacterial community dynamics and polycyclic aromatic hydrocarbon degradation in aged and freshly PAH-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Cunliffe, Michael [Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT (United Kingdom); Kertesz, Michael A. [Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT (United Kingdom)]. E-mail: michael.kertesz@manchester.ac.uk

    2006-11-15

    Sphingobium yanoikuyae B1 is able to degrade a range of polycyclic aromatic hydrocarbons (PAHs) and as a sphingomonad belongs to one of the dominant genera found in PAH-contaminated soils. We examined the ecological effect that soil inoculation with S. yanoikuyae B1 has on the native bacterial community in three different soils: aged PAH-contaminated soil from an industrial site, compost freshly contaminated with PAHs and un-contaminated compost. Survival of S. yanoikuyae B1 was dependent on the presence of PAHs, and the strain was unable to colonize un-contaminated compost. Inoculation with S. yanoikuyae B1 did not cause extensive changes in the native bacterial community of either soil, as assessed by denaturing gel electrophoresis, but its presence led to an increase in the population level of two other species in the aged contaminated soil community and appeared to have an antagonistic affect on several members of the contaminated compost community, indicating niche competition. - Sphingobium yanoikuyae B1 does not cause major changes in the native bacterial community while colonizing PAH-contaminated soils, but some niche competition is evident.

  4. Association of running manner with bacterial community dynamics in a partial short-term nitrifying bioreactor for treatment of piggery wastewater with high ammonia content

    OpenAIRE

    Du, Wei-Li; Huang, Qiang; Miao, Li-Li; Liu,Ying; Liu, Zhi-Pei

    2016-01-01

    Optimization of running parameters in a bioreactor requires detailed understanding of microbial community dynamics during the startup and running periods. Using a novel piggery wastewater treatment system termed “UASB + SHARON + ANAMMOX” constructed in our laboratory, we investigated microbial community dynamics using the Illumina MiSeq method, taking activated sludge samples at ~2-week intervals during a ~300-day period. Ammonia-oxidizing bacteria (AOB) were further investigated by quantific...

  5. The bacterial community of entomophilic nematodes and host beetles.

    Science.gov (United States)

    Koneru, Sneha L; Salinas, Heilly; Flores, Gilberto E; Hong, Ray L

    2016-05-01

    Insects form the most species-rich lineage of Eukaryotes and each is a potential host for organisms from multiple phyla, including fungi, protozoa, mites, bacteria and nematodes. In particular, beetles are known to be associated with distinct bacterial communities and entomophilic nematodes. While entomopathogenic nematodes require symbiotic bacteria to kill and reproduce inside their insect hosts, the microbial ecology that facilitates other types of nematode-insect associations is largely unknown. To illuminate detailed patterns of the tritrophic beetle-nematode-bacteria relationship, we surveyed the nematode infestation profiles of scarab beetles in the greater Los Angeles area over a five-year period and found distinct nematode infestation patterns for certain beetle hosts. Over a single season, we characterized the bacterial communities of beetles and their associated nematodes using high-throughput sequencing of the 16S rRNA gene. We found significant differences in bacterial community composition among the five prevalent beetle host species, independent of geographical origin. Anaerobes Synergistaceae and sulphate-reducing Desulfovibrionaceae were most abundant in Amblonoxia beetles, while Enterobacteriaceae and Lachnospiraceae were common in Cyclocephala beetles. Unlike entomopathogenic nematodes that carry bacterial symbionts, insect-associated nematodes do not alter the beetles' native bacterial communities, nor do their microbiomes differ according to nematode or beetle host species. The conservation of Diplogastrid nematodes associations with Melolonthinae beetles and sulphate-reducing bacteria suggests a possible link between beetle-bacterial communities and their associated nematodes. Our results establish a starting point towards understanding the dynamic interactions between soil macroinvertebrates and their microbiota in a highly accessible urban environment.

  6. Characterization of coastal urban watershed bacterial communities leads to alternative community-based indicators

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C.H.; Sercu, B.; Van De Werhorst, L.C.; Wong, J.; DeSantis, T.Z.; Brodie, E.L.; Hazen, T.C.; Holden, P.A.; Andersen, G.L.

    2010-03-01

    Microbial communities in aquatic environments are spatially and temporally dynamic due to environmental fluctuations and varied external input sources. A large percentage of the urban watersheds in the United States are affected by fecal pollution, including human pathogens, thus warranting comprehensive monitoring. Using a high-density microarray (PhyloChip), we examined water column bacterial community DNA extracted from two connecting urban watersheds, elucidating variable and stable bacterial subpopulations over a 3-day period and community composition profiles that were distinct to fecal and non-fecal sources. Two approaches were used for indication of fecal influence. The first approach utilized similarity of 503 operational taxonomic units (OTUs) common to all fecal samples analyzed in this study with the watershed samples as an index of fecal pollution. A majority of the 503 OTUs were found in the phyla Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. The second approach incorporated relative richness of 4 bacterial classes (Bacilli, Bacteroidetes, Clostridia and a-proteobacteria) found to have the highest variance in fecal and non-fecal samples. The ratio of these 4 classes (BBC:A) from the watershed samples demonstrated a trend where bacterial communities from gut and sewage sources had higher ratios than from sources not impacted by fecal material. This trend was also observed in the 124 bacterial communities from previously published and unpublished sequencing or PhyloChip- analyzed studies. This study provided a detailed characterization of bacterial community variability during dry weather across a 3-day period in two urban watersheds. The comparative analysis of watershed community composition resulted in alternative community-based indicators that could be useful for assessing ecosystem health.

  7. Characterization of coastal urban watershed bacterial communities leads to alternative community-based indicators.

    Directory of Open Access Journals (Sweden)

    Cindy H Wu

    Full Text Available BACKGROUND: Microbial communities in aquatic environments are spatially and temporally dynamic due to environmental fluctuations and varied external input sources. A large percentage of the urban watersheds in the United States are affected by fecal pollution, including human pathogens, thus warranting comprehensive monitoring. METHODOLOGY/PRINCIPAL FINDINGS: Using a high-density microarray (PhyloChip, we examined water column bacterial community DNA extracted from two connecting urban watersheds, elucidating variable and stable bacterial subpopulations over a 3-day period and community composition profiles that were distinct to fecal and non-fecal sources. Two approaches were used for indication of fecal influence. The first approach utilized similarity of 503 operational taxonomic units (OTUs common to all fecal samples analyzed in this study with the watershed samples as an index of fecal pollution. A majority of the 503 OTUs were found in the phyla Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. The second approach incorporated relative richness of 4 bacterial classes (Bacilli, Bacteroidetes, Clostridia and alpha-proteobacteria found to have the highest variance in fecal and non-fecal samples. The ratio of these 4 classes (BBC:A from the watershed samples demonstrated a trend where bacterial communities from gut and sewage sources had higher ratios than from sources not impacted by fecal material. This trend was also observed in the 124 bacterial communities from previously published and unpublished sequencing or PhyloChip- analyzed studies. CONCLUSIONS/SIGNIFICANCE: This study provided a detailed characterization of bacterial community variability during dry weather across a 3-day period in two urban watersheds. The comparative analysis of watershed community composition resulted in alternative community-based indicators that could be useful for assessing ecosystem health.

  8. Predictability in community dynamics

    DEFF Research Database (Denmark)

    Blonder, Benjamin; Moulton, Derek E; Blois, Jessica

    2017-01-01

    prominent in disequilibrium ecology, proposing that communities track climate change following a fixed function or with a time delay. However, more complex dynamics are possible and may lead to memory effects and alternate unstable states. We develop graphical and analytic methods for assessing...

  9. Bacteriocin-Mediated Competitive Interactions of Bacterial Populations and Communities

    Science.gov (United States)

    Riley, Margaret A.

    Explaining the coexistence of competing species is a major challenge in community ecology. In bacterial systems, competition is often driven by the production of bacteriocins; narrow spectrum proteinaceous toxins that serve to kill closely related species providing the producer better access to limited resources. Bacteriocin producers have been shown to competitively exclude sensitive, nonproducing strains. However, the interaction dynamics between bacteriocin producers, each lethal to its competitor, are largely unknown. Several recent studies have revealed some of the complexity of these interactions, employing a suite of in vitro, in vivo, and in silico bacterial model systems. This chapter describes the current state of knowledge regarding the population and community ecology of this potent family of toxins.

  10. Patterning bacterial communities on epithelial cells.

    Directory of Open Access Journals (Sweden)

    Mohammed Dwidar

    Full Text Available Micropatterning of bacteria using aqueous two phase system (ATPS enables the localized culture and formation of physically separated bacterial communities on human epithelial cell sheets. This method was used to compare the effects of Escherichia coli strain MG1655 and an isogenic invasive counterpart that expresses the invasin (inv gene from Yersinia pseudotuberculosis on the underlying epithelial cell layer. Large portions of the cell layer beneath the invasive strain were killed or detached while the non-invasive E. coli had no apparent effect on the epithelial cell layer over a 24 h observation period. In addition, simultaneous testing of the localized effects of three different bacterial species; E. coli MG1655, Shigella boydii KACC 10792 and Pseudomonas sp DSM 50906 on an epithelial cell layer is also demonstrated. The paper further shows the ability to use a bacterial predator, Bdellovibriobacteriovorus HD 100, to selectively remove the E. coli, S. boydii and P. sp communities from this bacteria-patterned epithelial cell layer. Importantly, predation and removal of the P. Sp was critical for maintaining viability of the underlying epithelial cells. Although this paper focuses on a few specific cell types, the technique should be broadly applicable to understand a variety of bacteria-epithelial cell interactions.

  11. Bacterial community reconstruction using compressed sensing.

    Science.gov (United States)

    Amir, Amnon; Zuk, Or

    2011-11-01

    Bacteria are the unseen majority on our planet, with millions of species and comprising most of the living protoplasm. We propose a novel approach for reconstruction of the composition of an unknown mixture of bacteria using a single Sanger-sequencing reaction of the mixture. Our method is based on compressive sensing theory, which deals with reconstruction of a sparse signal using a small number of measurements. Utilizing the fact that in many cases each bacterial community is comprised of a small subset of all known bacterial species, we show the feasibility of this approach for determining the composition of a bacterial mixture. Using simulations, we show that sequencing a few hundred base-pairs of the 16S rRNA gene sequence may provide enough information for reconstruction of mixtures containing tens of species, out of tens of thousands, even in the presence of realistic measurement noise. Finally, we show initial promising results when applying our method for the reconstruction of a toy experimental mixture with five species. Our approach may have a potential for a simple and efficient way for identifying bacterial species compositions in biological samples. All supplementary data and the MATLAB code are available at www.broadinstitute.org/?orzuk/publications/BCS/.

  12. Diversity, Dynamics and Activity of Bacterial Communities during Production of an Artisanal Sicilian Cheese as Evaluated by 16S rRNA Analysis

    NARCIS (Netherlands)

    Randazzo, C.L.; Torriani, S.; Akkermans, A.D.L.; Vos, de W.M.; Vaughan, E.E.

    2002-01-01

    The diversity and dynamics of the microbial communities during the manufacturing of Ragusano cheese, an artisanal cheese produced in Sicily (Italy), were investigated by a combination of classical and culture-independent approaches. The latter included PCR, reverse transcriptase-PCR (RT-PCR), and de

  13. Bacterial community development in experimental gingivitis.

    Science.gov (United States)

    Kistler, James O; Booth, Veronica; Bradshaw, David J; Wade, William G

    2013-01-01

    Current knowledge of the microbial composition of dental plaque in early gingivitis is based largely on microscopy and cultural methods, which do not provide a comprehensive description of oral microbial communities. This study used 454-pyrosequencing of the V1-V3 region of 16S rRNA genes (approximately 500 bp), and bacterial culture, to characterize the composition of plaque during the transition from periodontal health to gingivitis. A total of 20 healthy volunteers abstained from oral hygiene for two weeks, allowing plaque to accumulate and gingivitis to develop. Plaque samples were analyzed at baseline, and after one and two weeks. In addition, plaque samples from 20 chronic periodontitis patients were analyzed for cross-sectional comparison to the experimental gingivitis cohort. All of the healthy volunteers developed gingivitis after two weeks. Pyrosequencing yielded a final total of 344,267 sequences after filtering, with a mean length of 354 bases, that were clustered into an average of 299 species-level Operational Taxonomic Units (OTUs) per sample. Principal coordinates analysis (PCoA) plots revealed significant shifts in the bacterial community structure of plaque as gingivitis was induced, and community diversity increased significantly after two weeks. Changes in the relative abundance of OTUs during the transition from health to gingivitis were correlated to bleeding on probing (BoP) scores and resulted in the identification of new health- and gingivitis-associated taxa. Comparison of the healthy volunteers to the periodontitis patients also confirmed the association of a number of putative periodontal pathogens with chronic periodontitis. Taxa associated with gingivitis included Fusobacterium nucleatum subsp. polymorphum, Lachnospiraceae [G-2] sp. HOT100, Lautropia sp. HOTA94, and Prevotella oulorum, whilst Rothia dentocariosa was associated with periodontal health. Further study of these taxa is warranted and may lead to new therapeutic approaches

  14. Dynamics of the functional gene copy number and overall bacterial community during microcystin-LR degradation by a biological treatment facility in a drinking water treatment plant.

    Science.gov (United States)

    Li, Jieming; Shimizu, Kazuya; Utsumi, Motoo; Nakamoto, Tomoko; Sakharkar, Meena Kishore; Zhang, Zhenya; Sugiura, Norio

    2011-06-01

    Information is limited on the potential for microcystins (MCs) degradation by carrier-attached biofilms obtained in winter that were not exposed to detectable levels of MCs in the preceding months. Under controlled laboratory conditions, we confirmed that microcystin-LR (MCLR) was effectively biodegraded within 5.5 days in cultures of the biofilm sampled in winter. Quantitative polymerase chain reaction (qPCR) assays revealed that seasonal variations in the MCLR-degradation potential of the biofilm were closely related to the initial MCLR-degrader population in the biofilm. Indigenous MCLR-degraders in the biofilm could accumulate by exposure to natural MCLR in the water column, accelerating MCLR-degradation. The qPCR assay suggested that MCLR may be a primary substrate for the degraders in the presence of another labile organic carbon associated with the biofilm under the present study conditions. qPCR and PCR-denaturing gradient gel electrophoresis (DGGE) for 16S rDNA demonstrated that the overall bacterial population from the winter biofilm rapidly increased with the MCLR-degrader population and remained stable after day 3.5, while the overall bacterial community structure shifted throughout the entire biodegradation period. This study is important to the in-depth understanding of microbial degradation of MCs and could facilitate the bioremediation of MCs in polluted habitats.

  15. Dynamics of bacterial gene regulation

    Science.gov (United States)

    Narang, Atul

    2009-03-01

    The phenomenon of diauxic growth is a classical problem of bacterial gene regulation. The most well studied example of this phenomenon is the glucose-lactose diauxie, which occurs because the expression of the lac operon is strongly repressed in the presence of glucose. This repression is often explained by appealing to molecular mechanisms such as cAMP activation and inducer exclusion. I will begin by analyzing data showing that these molecular mechanisms cannot explain the strong lac repression because they exert a relatively weak effect. I will then present a minimal model accounting only for enzyme induction and dilution, which yields strong repression despite the absence of catabolite repression and inducer exclusion. The model also explains the growth patterns observed in batch and continuous cultures of various bacterial strains and substrate mixtures. The talk will conclude with a discussion of the experimental evidence regarding positive feedback, the key component of the minimal model.

  16. Pyrene effects on rhizoplane bacterial communities.

    Science.gov (United States)

    Balcom, Ian N; Crowley, David E

    2009-09-01

    Certain plant species promote biodegradation of polycyclic aromatic hydrocarbons (PAHs), but few studies have examined the microbial populations that are associated with the rhizoplane of these plants. In this study, the bacterial composition of the rhizoplane were characterized for four plant species during in soils with different histories of exposure to PAH and in the presence or absence of a pyrene spike at 100 mg kg(-1) pyrene. Three of the plant species including Andropogon gerrardii, Panicum coloratum and Melilotus officinalis were known to stimulate PAH degradation. Wheat (Triticum aestivum) was used as a reference species. Results showed that after 90 days, approximately 45% of the pyrene spike disappeared from soil without plants. In contrast, cultivation of plants resulted in 95% disappearance of pyrene. There were no significant differences in the extent of pyrene disappearance for different plants. In all cases, 16S rRNA gene profiles of the rhizoplane were less complex in the pyrene-spiked soils, suggesting that richness and evenness of the predominant bacteria were reduced. Our results show that pyrene contamination results in significant shifts in the composition of rhizosphere bacterial communities that are still further influenced by the plant species and prior exposure history to PAH contamination.

  17. Bacterial symbionts in insects or the story of communities affecting communities.

    Science.gov (United States)

    Ferrari, Julia; Vavre, Fabrice

    2011-05-12

    Bacterial symbionts are widespread in insects and other animals. Most of them are predominantly vertically transmitted, along with their hosts' genes, and thus extend the heritable genetic variation present in one species. These passengers have a variety of repercussions on the host's phenotypes: besides the cost imposed on the host for maintaining the symbiont population, they can provide fitness advantages to the host or manipulate the host's reproduction. We argue that insect symbioses are ideal model systems for community genetics. First, bacterial symbionts directly or indirectly affect the interactions with other species within a community. Examples include their involvement in modifying the use of host plants by phytophagous insects, in providing resistance to natural enemies, but also in reducing the global genetic diversity or gene flow between populations within some species. Second, one emerging picture in insect symbioses is that many species are simultaneously infected with more than one symbiont, which permits studying the factors that shape bacterial communities; for example, horizontal transmission, interactions between host genotype, symbiont genotype and the environment and interactions among symbionts. One conclusion is that insects' symbiotic complements are dynamic communities that affect and are affected by the communities in which they are embedded.

  18. Molecular Characterization of Wetland Soil Bacterial Community in Constructed Mesocosms

    Science.gov (United States)

    2006-06-01

    characterize the soil bacterial community, pre-PCE injection, among three wetland plant species from the sedge family ( Cyperaceae ) within constructed...community among three wetland plant species from the sedge family ( Cyperaceae ) within a constructed reductive dechlorination wetland and to identify...injection, among three wetland plant species from the sedge family ( Cyperaceae ) within constructed wetland mesocosms and to identify any bacterial dominance

  19. Bacterial communities associated with white shrimp (Litopenaeus vannamei larvae at early developmental stages

    Directory of Open Access Journals (Sweden)

    ANTONIUS SUWANTO

    2010-04-01

    Full Text Available Bacterial communities associated with white shrimp (Litopenaeus vannamei larvae at early developmental stages. Biodiversitas 11 (2: 65-68.Terminal Restriction Fragment Length Polymorphism (T-RFLP was used to monitor the dynamics of the bacterial communities associated with early developmental stages of white shrimp (Litopenaeus vannamei larvae. Samples for analysis were egg, hatching nauplii, 24 hours old nauplii, and 48 hours old nauplii which were collected from one cycle of production at commercial hatchery. T-RFLP results indicated that the bacterial community associated with early stages of shrimp development might be transferred vertically from broodstock via egg. There was no significant difference between bacterial communities investigated, except the bacterial community of 48 hours old nauplii. Diversity analyses showed that the bacterial community of egg had the highest diversity and evenness, meanwhile the bacterial community of 48 hours old nauplii had the lowest diversity. Nine phylotypes were found at all stages with high abundance. Those TRFs were identified as γ- proteobacteria, α-proteobacteria, and bacteroidetes group.

  20. Interaction between resource identity and bacterial community composition regulates bacterial respiration in aquatic ecosystems

    Directory of Open Access Journals (Sweden)

    A. P. F. Pires

    Full Text Available Abstract Resource identity and composition structure bacterial community, which in turn determines the magnitude of bacterial processes and ecological services. However, the complex interaction between resource identity and bacterial community composition (BCC has been poorly understood so far. Using aquatic microcosms, we tested whether and how resource identity interacts with BCC in regulating bacterial respiration and bacterial functional diversity. Different aquatic macrophyte leachates were used as different carbon resources while BCC was manipulated through successional changes of bacterial populations in batch cultures. We observed that the same BCC treatment respired differently on each carbon resource; these resources also supported different amounts of bacterial functional diversity. There was no clear linear pattern of bacterial respiration in relation to time succession of bacterial communities in all leachates, i.e. differences on bacterial respiration between different BCC were rather idiosyncratic. Resource identity regulated the magnitude of respiration of each BCC, e.g. Ultricularia foliosa leachate sustained the greatest bacterial functional diversity and lowest rates of bacterial respiration in all BCC. We conclude that both resource identity and the BCC interact affecting the pattern and the magnitude of bacterial respiration in aquatic ecosystems.

  1. Bacterial dynamics in steady-state biofilters: beyond functional stability.

    Science.gov (United States)

    Cabrol, Léa; Malhautier, Luc; Poly, Franck; Lepeuple, Anne-Sophie; Fanlo, Jean-Louis

    2012-01-01

    The spatial and temporal dynamics of microbial community structure and function were surveyed in duplicated woodchip-biofilters operated under constant conditions for 231 days. The contaminated gaseous stream for treatment was representative of composting emissions, included ammonia, dimethyl disulfide and a mixture of five oxygenated volatile organic compounds. The community structure and diversity were investigated by denaturing gradient gel electrophoresis on 16S rRNA gene fragments. During the first 42 days, microbial acclimatization revealed the influence of operating conditions and contaminant loading on the biofiltration community structure and diversity, as well as the limited impact of inoculum compared to the greater persistence of the endogenous woodchip community. During long-term operation, a high and stable removal efficiency was maintained despite a highly dynamic microbial community, suggesting the probable functional redundancy of the community. Most of the contaminant removal occurred in the first compartment, near the gas inlet, where the microbial diversity was the highest. The stratification of the microbial structures along the filter bed was statistically correlated to the longitudinal distribution of environmental conditions (selective pressure imposed by contaminant concentrations) and function (contaminant elimination capacity), highlighting the central role of the bacterial community. The reproducibility of microbial succession in replicates suggests that the community changes were presumably driven by a deterministic process.

  2. Spatial structuring of bacterial communities within individual Ginkgo biloba trees.

    Science.gov (United States)

    Leff, Jonathan W; Del Tredici, Peter; Friedman, William E; Fierer, Noah

    2015-07-01

    Plant-associated microorganisms affect the health of their hosts in diverse ways, yet the distribution of these organisms within individual plants remains poorly understood. To address this knowledge gap, we assessed the spatial variability in bacterial community diversity and composition found on and in aboveground tissues of individual Ginkgo biloba trees. We sampled bacterial communities from > 100 locations per tree, including leaf, branch and trunk samples and used high-throughput sequencing of the 16S rRNA gene to determine the diversity and composition of these communities. Bacterial community structure differed strongly between bark and leaf samples, with bark samples harbouring much greater bacterial diversity and a community composition distinct from leaves. Within sample types, we observed clear spatial patterns in bacterial diversity and community composition that corresponded to the samples' proximity to the exterior of the tree. The composition of the bacterial communities found on trees is highly variable, but this variability is predictable and dependent on sampling location. Moreover, this work highlights the importance of carefully considering plant spatial structure when characterizing the microbial communities associated with plants and their impacts on plant hosts.

  3. Bacterial community composition associated with freshwater algae: species specificity vs. dependency on environmental conditions and source community.

    Science.gov (United States)

    Eigemann, Falk; Hilt, Sabine; Salka, Ivette; Grossart, Hans-Peter

    2013-03-01

    We studied bacterial associations with the green alga Desmodesmus armatus and the diatom Stephanodiscus minutulus under changing environmental conditions and bacterial source communities, to evaluate whether bacteria-algae associations are species-specific or more generalized and determined by external factors. Axenic and xenic algae were incubated in situ with and without allelopathically active macrophytes, and in the laboratory with sterile and nonsterile lake water and an allelochemical, tannic acid (TA). Bacterial community composition (BCC) of algae-associated bacteria was analyzed by denaturing gradient gel electrophoresis (DGGE), nonmetric multidimensional scaling, cluster analyses, and sequencing of DGGE bands. BCC of xenic algal cultures of both species were not significantly affected by changes in their environment or bacterial source community, except in the case of TA additions. Species-specific interactions therefore appear to overrule the effects of environmental conditions and source communities. The BCC of xenic and axenic D. armatus cultures subjected to in situ bacterial colonization, however, had lower similarities (ca. 55%), indicating that bacterial precolonization is a strong factor for bacteria-algae associations irrespective of environmental conditions and source community. Our findings emphasize the ecological importance of species-specific bacteria-algae associations with important repercussions for other processes, such as the remineralization of nutrients, and organic matter dynamics.

  4. Determinants of bacterial communities in Canadian agroforestry systems.

    Science.gov (United States)

    Banerjee, Samiran; Baah-Acheamfour, Mark; Carlyle, Cameron N; Bissett, Andrew; Richardson, Alan E; Siddique, Tariq; Bork, Edward W; Chang, Scott X

    2016-06-01

    Land-use change is one of the most important factors influencing soil microbial communities, which play a pivotal role in most biogeochemical and ecological processes. Using agroforestry systems as a model, this study examined the effects of land uses and edaphic properties on bacterial communities in three agroforestry types covering a 270 km soil-climate gradient in Alberta, Canada. Our results demonstrate that land-use patterns exert stronger effects on soil bacterial communities than soil zones in these agroforestry systems. Plots with trees in agroforestry systems promoted greater bacterial abundance and to some extent species richness, which was associated with more nutrient-rich soil resources. While Acidobacteria, Actinobacteria and Alphaproteobacteria were the dominant bacterial phyla and subphyla across land uses, Arthrobacter, Acidobacteria_Gp16, Burkholderia, Rhodanobacter and Rhizobium were the keystone taxa in these agroforestry systems. Soil pH and carbon contents emerged as the major determinants of bacterial community characteristics. We found non-random co-occurrence and modular patterns of soil bacterial communities, and these patterns were controlled by edaphic factors and not their taxonomy. Overall, this study highlights the drivers and co-occurrence patterns of soil microbial communities in agroforestry systems.

  5. Hydrocarbon pollutants shape bacterial community assembly of harbor sediments

    KAUST Repository

    Barbato, Marta

    2016-02-02

    Petroleum pollution results in co-contamination by different classes of molecules, entailing the occurrence of marine sediments difficult to remediate, as in the case of the Ancona harbor (Mediterranean Sea, Italy). Autochthonous bioaugmentation (ABA), by exploiting the indigenous microbes of the environment to be treated, could represent a successful bioremediation strategy. In this perspective we aimed to i) identify the main drivers of the bacterial communities\\' richness in the sediments, ii) establish enrichment cultures with different hydrocarbon pollutants evaluating their effects on the bacterial communities\\' composition, and iii) obtain a collection of hydrocarbon degrading bacteria potentially exploitable in ABA. The correlation between the selection of different specialized bacterial populations and the type of pollutants was demonstrated by culture-independent analyses, and by establishing a collection of bacteria with different hydrocarbon degradation traits. Our observations indicate that pollution dictates the diversity of sediment bacterial communities and shapes the ABA potential in harbor sediments.

  6. Do honeybees shape the bacterial community composition in floral nectar?

    Directory of Open Access Journals (Sweden)

    Yana Aizenberg-Gershtein

    Full Text Available Floral nectar is considered the most important reward animal-pollinated plants offer to attract pollinators. Here we explore whether honeybees, which act as pollinators, affect the composition of bacterial communities in the nectar. Nectar and honeybees were sampled from two plant species: Amygdalus communis and Citrus paradisi. To prevent the contact of nectar with pollinators, C. paradisi flowers were covered with net bags before blooming (covered flowers. Comparative analysis of bacterial communities in the nectar and on the honeybees was performed by the 454-pyrosequencing technique. No significant differences were found among bacterial communities in honeybees captured on the two different plant species. This resemblance may be due to the presence of dominant bacterial OTUs, closely related to the Arsenophonus genus. The bacterial communities of the nectar from the covered and uncovered C. paradisi flowers differed significantly; the bacterial communities on the honeybees differed significantly from those in the covered flowers' nectar, but not from those in the uncovered flowers' nectar. We conclude that the honeybees may introduce bacteria into the nectar and/or may be contaminated by bacteria introduced into the nectar by other sources such as other pollinators and nectar thieves.

  7. Sputum Bacterial and Fungal Dynamics during Exacerbations of Severe COPD.

    Directory of Open Access Journals (Sweden)

    Jin Su

    Full Text Available The changes in the microbial community structure during acute exacerbations of severe chronic obstructive pulmonary disease (COPD in hospitalized patients remain largely uncharacterized. Therefore, further studies focused on the temporal dynamics and structure of sputum microbial communities during acute exacerbation of COPD (AECOPD would still be necessary. In our study, the use of molecular microbiological techniques provided insight into both fungal and bacterial diversities in AECOPD patients during hospitalization. In particular, we examined the structure and varieties of lung microbial community in 6 patients with severe AECOPD by amplifying 16S rRNA V4 hyper-variable and internal transcribed spacer (ITS DNA regions using barcoded primers and the Illumina sequencing platform. Sequence analysis showed 261 bacterial genera representing 20 distinct phyla, with an average number of genera per patient of >157, indicating high diversity. Acinetobacter, Prevotella, Neisseria, Rothia, Lactobacillus, Leptotrichia, Streptococcus, Veillonella, and Actinomyces were the most commonly identified genera, and the average total sequencing number per sputum sample was >10000 18S ITS sequences. The fungal population was typically dominated by Candia, Phialosimplex, Aspergillus, Penicillium, Cladosporium and Eutypella. Our findings highlight that COPD patients have personalized structures and varieties in sputum microbial community during hospitalization periods.

  8. Supraglacial bacterial community structures vary across the Greenland ice sheet

    DEFF Research Database (Denmark)

    Cameron, Karen A.; Stibal, Marek; Zarsky, Jakub D.;

    2016-01-01

    The composition and spatial variability of microbial communities that reside within the extensive (>200 000 km(2)) biologically active area encompassing the Greenland ice sheet (GrIS) is hypothesized to be variable. We examined bacterial communities from cryoconite debris and surface ice across...

  9. Physiological and DNA fingerprinting of the bacterial community of Meloidogyne fallax egg masses

    NARCIS (Netherlands)

    Papert, A; Kok, CJ; van Elsas, JD

    2004-01-01

    Bacterial communities associated with the plant-parasitic nematode Meloidogyne fallax egg masses were compared with those present in the rhizoplane. Two agricultural soils with different nematode population dynamics were used in a glasshouse study, with either potato or tomato as host plant for the

  10. Impact of disinfection on drinking water biofilm bacterial community.

    Science.gov (United States)

    Mi, Zilong; Dai, Yu; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-11-01

    Disinfectants are commonly applied to control the growth of microorganisms in drinking water distribution systems. However, the effect of disinfection on drinking water microbial community remains poorly understood. The present study investigated the impacts of different disinfectants (chlorine and chloramine) and dosages on biofilm bacterial community in bench-scale pipe section reactors. Illumina MiSeq sequencing illustrated that disinfection strategy could affect both bacterial diversity and community structure of drinking water biofilm. Proteobacteria tended to predominate in chloraminated drinking water biofilms, while Firmicutes in chlorinated and unchlorinated biofilms. The major proteobacterial groups were influenced by both disinfectant type and dosage. In addition, chloramination had a more profound impact on bacterial community than chlorination.

  11. Endophytic bacterial community of a Mediterranean marine angiosperm (Posidonia oceanica

    Directory of Open Access Journals (Sweden)

    Neus eGarcias-Bonet

    2012-09-01

    Full Text Available Bacterial endophytes are crucial for the survival of many terrestrial plants, but little is known about the presence and importance of bacterial endophytes of marine plants. We conducted a survey of the endophytic bacterial community of the long-living Mediterranean marine angiosperm Posidonia oceanica in surface-sterilized tissues (roots, rhizomes and leaves by DGGE. A total of 26 Posidonia oceanica meadows around the Balearic Islands were sampled, and the band patterns obtained for each meadow were compared for the three sampled tissues. Endophytic bacterial sequences were detected in most of the samples analyzed. A total of 34 OTUs (Operational Taxonomic Units were detected. The main OTUs of endophytic bacteria present in P. oceanica tissues belonged primarily to Proteobacteria (α, γ and δ subclasses and Bacteroidetes. The OTUs found in roots significantly differed from those of rhizomes and leaves. Moreover, some OTUs were found to be associated to each type of tissue. Bipartite network analysis revealed differences in the bacterial endophyte communities present on different islands. The results of this study provide a pioneering step toward the characterization of the endophytic bacterial community associated with tissues of a marine angiosperm and reveal the presence of bacterial endophytes that differed among locations and tissue types.

  12. Distinct Habitats Select Particular Bacterial Communities in Mangrove Sediments

    Directory of Open Access Journals (Sweden)

    Lidianne L. Rocha

    2016-01-01

    Full Text Available We investigated the relationship among environmental variables, composition, and structure of bacterial communities in different habitats in a mangrove located nearby to an oil exploitation area, aiming to retrieve the natural pattern of bacterial communities in this ecosystem. The T-RFLP analysis showed a high diversity of bacterial populations and an increase in the bacterial richness from habitats closer to the sea and without vegetation (S1 to habitats covered by Avicennia schaueriana (S2 and Rhizophora mangle (S3. Environmental variables in S1 and S2 were more similar than in S3; however, when comparing the bacterial compositions, S2 and S3 shared more OTUs between them, suggesting that the presence of vegetation is an important factor in shaping these bacterial communities. In silico analyses of the fragments revealed a high diversity of the class Gammaproteobacteria in the 3 sites, although in general they presented quite different bacterial composition, which is probably shaped by the specificities of each habitat. This study shows that microhabitats inside of a mangrove ecosystem harbor diverse and distinct microbiota, reinforcing the need to conserve these ecosystems as a whole.

  13. Antagonistic interactions are sufficient to explain self-assemblage of bacterial communities in a homogeneous environment: a computational modeling approach

    Directory of Open Access Journals (Sweden)

    Román eZapién-Campos

    2015-05-01

    Full Text Available Most of the studies in Ecology have been devoted to analyzing the effects the environment has on individuals, populations, and communities, thus neglecting the effects of biotic interactions on the system dynamics. In the present work we study the structure of bacterial communities in the oligotrophic shallow water system of Churince, Cuatro Cienegas, Mexico. Since the physicochemical conditions of this water system are homogeneous and quite stable in time, it is an excellent candidate to study how biotic factors influence the structure of bacterial communities. In a previous study, the binary antagonistic interactions of 78 bacterial strains, isolated from Churince, were experimentally determined. We employ these data to develop a computer algorithm to simulate growth experiments in a cellular grid representing the pond. Remarkably, in our model, the dynamics of all the simulated bacterial populations is determined solely by antagonistic interactions. Our results indicate that all bacterial strains (even those that are antagonized by many other bacteria survive in the long term, and that the underlying mechanism is the formation of bacterial community patches. Patches corresponding to less antagonistic and highly susceptible strains are consistently isolated from the highly-antagonistic bacterial colonies by patches of neutral strains. These results concur with the observed features of the bacterial community structure previously reported. Finally, we study how our findings depend on factors like initial population size, differential population growth rates, homogeneous population death rates, and enhanced bacterial diffusion.

  14. Changes in soil bacterial community structure with increasing disturbance frequency.

    Science.gov (United States)

    Kim, Mincheol; Heo, Eunjung; Kang, Hojeong; Adams, Jonathan

    2013-07-01

    Little is known of the responsiveness of soil bacterial community structure to disturbance. In this study, we subjected a soil microcosm to physical disturbance, sterilizing 90 % of the soil volume each time, at a range of frequencies. We analysed the bacterial community structure using 454 pyrosequencing of the 16S rRNA gene. Bacterial diversity was found to decline with the increasing disturbance frequencies. Total bacterial abundance was, however, higher at intermediate and high disturbance frequencies, compared to low and no-disturbance treatments. Changing disturbance frequency also led to changes in community composition, with changes in overall species composition and some groups becoming abundant at the expense of others. Some phylogenetic groups were found to be relatively more disturbance-sensitive or tolerant than others. With increasing disturbance frequency, phylogenetic species variability (an index of community composition) itself became more variable from one sample to another, suggesting a greater role of chance in community composition. Compared to the tightly clustered community of the original undisturbed soil, in all the aged disturbed soils the lists of most abundant operational taxonomic units (OTUs) in each replicate were very different, suggesting a possible role of stochasticity in resource colonization and exploitation in the aged and disturbed soils. For example, colonization may be affected by whichever localized concentrations of bacterial populations happen to survive the last disturbance and be reincorporated in abundance into each pot. Overall, it appears that the soil bacterial community is very sensitive to physical disturbance, losing diversity, and that certain groups have identifiable 'high disturbance' vs. 'low disturbance' niches.

  15. Bacterial communities associated with production facilities of two newly drilled thermogenic natural gas wells in the Barnett Shale (Texas, USA).

    Science.gov (United States)

    Davis, James P; Struchtemeyer, Christopher G; Elshahed, Mostafa S

    2012-11-01

    We monitored the bacterial communities in the gas-water separator and water storage tank of two newly drilled natural gas wells in the Barnett Shale in north central Texas, using a 16S rRNA gene pyrosequencing approach over a period of 6 months. Overall, the communities were composed mainly of moderately halophilic and halotolerant members of the phyla Firmicutes and Proteobacteria (classes Βeta-, Gamma-, and Epsilonproteobacteria) in both wells at all sampling times and locations. Many of the observed lineages were encountered in prior investigations of microbial communities from various fossil fluid formations and production facilities. In all of the samples, multiple H(2)S-producing lineages were encountered; belonging to the sulfate- and sulfur-reducing class Deltaproteobacteria, order Clostridiales, and phylum Synergistetes, as well as the thiosulfate-reducing order Halanaerobiales. The bacterial communities from the separator and tank samples bore little resemblance to the bacterial communities in the drilling mud and hydraulic-fracture waters that were used to drill these wells, suggesting the in situ development of the unique bacterial communities in such well components was in response to the prevalent geochemical conditions present. Conversely, comparison of the bacterial communities on temporal and spatial scales suggested the establishment of a core microbial community in each sampled location. The results provide the first overview of bacterial dynamics and colonization patterns in newly drilled, thermogenic natural gas wells and highlights patterns of spatial and temporal variability observed in bacterial communities in natural gas production facilities.

  16. 3D printing of microscopic bacterial communities

    Science.gov (United States)

    Connell, Jodi L.; Ritschdorff, Eric T.; Whiteley, Marvin; Shear, Jason B.

    2013-01-01

    Bacteria communicate via short-range physical and chemical signals, interactions known to mediate quorum sensing, sporulation, and other adaptive phenotypes. Although most in vitro studies examine bacterial properties averaged over large populations, the levels of key molecular determinants of bacterial fitness and pathogenicity (e.g., oxygen, quorum-sensing signals) may vary over micrometer scales within small, dense cellular aggregates believed to play key roles in disease transmission. A detailed understanding of how cell–cell interactions contribute to pathogenicity in natural, complex environments will require a new level of control in constructing more relevant cellular models for assessing bacterial phenotypes. Here, we describe a microscopic three-dimensional (3D) printing strategy that enables multiple populations of bacteria to be organized within essentially any 3D geometry, including adjacent, nested, and free-floating colonies. In this laser-based lithographic technique, microscopic containers are formed around selected bacteria suspended in gelatin via focal cross-linking of polypeptide molecules. After excess reagent is removed, trapped bacteria are localized within sealed cavities formed by the cross-linked gelatin, a highly porous material that supports rapid growth of fully enclosed cellular populations and readily transmits numerous biologically active species, including polypeptides, antibiotics, and quorum-sensing signals. Using this approach, we show that a picoliter-volume aggregate of Staphylococcus aureus can display substantial resistance to β-lactam antibiotics by enclosure within a shell composed of Pseudomonas aeruginosa. PMID:24101503

  17. Bacterial Communities Associated with Different Anthurium andraeanum L. Plant Tissues

    OpenAIRE

    Sarria-Guzmán, Yohanna; Chávez-Romero, Yosef; Gómez-Acata, Selene; Montes-Molina, Joaquín Adolfo; Morales-Salazar, Eleacin; Dendooven,Luc; Yendi E. Navarro-Noya

    2016-01-01

    Plant-associated microbes have specific beneficial functions and are considered key drivers for plant health. The bacterial community structure of healthy Anthurium andraeanum L. plants was studied by 16S rRNA gene pyrosequencing associated with different plant parts and the rhizosphere. A limited number of bacterial taxa, i.e., Sinorhizobium, Fimbriimonadales, and Gammaproteobacteria HTCC2089 were enriched in the A. andraeanum rhizosphere. Endophytes were more diverse in the roots than in th...

  18. Pyrosequencing analysis of the bacterial community in drinking water wells.

    Science.gov (United States)

    Navarro-Noya, Yendi E; Suárez-Arriaga, Mayra C; Rojas-Valdes, Aketzally; Montoya-Ciriaco, Nina M; Gómez-Acata, Selene; Fernández-Luqueño, Fabián; Dendooven, Luc

    2013-07-01

    Wells used for drinking water often have a large biomass and a high bacterial diversity. Current technologies are not always able to reduce the bacterial population, and the threat of pathogen proliferation in drinking water sources is omnipresent. The environmental conditions that shape the microbial communities in drinking water sources have to be elucidated, so that pathogen proliferation can be foreseen. In this work, the bacterial community in nine water wells of a groundwater aquifer in Northern Mexico were characterized and correlated to environmental characteristics that might control them. Although a large variation was observed between the water samples, temperature and iron concentration were the characteristics that affected the bacterial community structure and composition in groundwater wells. Small increases in the concentration of iron in water modified the bacterial communities and promoted the growth of the iron-oxidizing bacteria Acidovorax. The abundance of the genera Flavobacterium and Duganella was correlated positively with temperature and the Acidobacteria Gp4 and Gp1, and the genus Acidovorax with iron concentrations in the well water. Large percentages of Flavobacterium and Pseudomonas bacteria were found, and this is of special concern as bacteria belonging to both genera are often biofilm developers, where pathogens survival increases.

  19. Supraglacial bacterial community structures vary across the Greenland ice sheet.

    Science.gov (United States)

    Cameron, Karen A; Stibal, Marek; Zarsky, Jakub D; Gözdereliler, Erkin; Schostag, Morten; Jacobsen, Carsten S

    2016-02-01

    The composition and spatial variability of microbial communities that reside within the extensive (>200 000 km(2)) biologically active area encompassing the Greenland ice sheet (GrIS) is hypothesized to be variable. We examined bacterial communities from cryoconite debris and surface ice across the GrIS, using sequence analysis and quantitative PCR of 16S rRNA genes from co-extracted DNA and RNA. Communities were found to differ across the ice sheet, with 82.8% of the total calculated variation attributed to spatial distribution on a scale of tens of kilometers separation. Amplicons related to Sphingobacteriaceae, Pseudanabaenaceae and WPS-2 accounted for the greatest portion of calculated dissimilarities. The bacterial communities of ice and cryoconite were moderately similar (global R = 0.360, P = 0.002) and the sampled surface type (ice versus cryoconite) did not contribute heavily towards community dissimilarities (2.3% of total variability calculated). The majority of dissimilarities found between cryoconite 16S rRNA gene amplicons from DNA and RNA was calculated to be the result of changes in three taxa, Pseudanabaenaceae, Sphingobacteriaceae and WPS-2, which together contributed towards 80.8 ± 12.6% of dissimilarities between samples. Bacterial communities across the GrIS are spatially variable active communities that are likely influenced by localized biological inputs and physicochemical conditions.

  20. Effects of growth stage and fulvic acid on the diversity and dynamics of endophytic bacterial community in Stevia rebaudiana Bertoni leaves.

    Science.gov (United States)

    Yu, Xuejian; Yang, Jinshui; Wang, Entao; Li, Baozhen; Yuan, Hongli

    2015-01-01

    The aim of this study was to learn the interactions among the endophytic bacteria, the plant growth, the foliar spray of fulvic acid, and the accumulation of steviol glycosides in the leaves of Stevia rebaudiana. Metagenomic DNA was extracted from the Stevia leaves at different growth stages with or without the fulvic acid treatment; and the diversity of endophytic bacteria in Stevia leaves was estimated by pyrosequencing of 16S rRNA genes. As results, Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes were found to be the dominant phyla despite the growth stages and fulvic acid application. Stevia growth stages strongly regulated composition of endophytic community. The genera Agrobacterium (12.3%) and Erwinia (7.2%) dominated in seedling stage were apparently declined in the vegetable and initial flowering stages, while Sphingomonas and Methylobacterium increased in mature leaves at harvest time, which showed that the mature leaves of Stevia preferred to accumulate some certain endophytic bacteria. Sphingomonas and Methylobacterium constituted an important part of the core endophytic community and were positively correlated with the stevioside content and UGT74G1 gene expression, respectively; while Erwinia, Agrobacterium, and Bacillus were negatively correlated with the stevioside accumulation. Fulvic acid treatment accelerated the variation of endophytes along the growth stages and increased the steviol glycosides content. This is the first study to reveal the community composition of endophytic bacteria in the Stevia leaves, to evidence the strong effects of growth stage and fulvic acid application on the endophytes of Stevia, and to demonstrate the correlation between the endophytic bacteria and the steviol glycosides accumulation.

  1. Effects of growth stage and fulvic acid on the diversity and dynamics of endophytic bacterial community in Stevia rebaudiana Bertoni leaves

    Science.gov (United States)

    Yu, Xuejian; Yang, Jinshui; Wang, Entao; Li, Baozhen; Yuan, Hongli

    2015-01-01

    The aim of this study was to learn the interactions among the endophytic bacteria, the plant growth, the foliar spray of fulvic acid, and the accumulation of steviol glycosides in the leaves of Stevia rebaudiana. Metagenomic DNA was extracted from the Stevia leaves at different growth stages with or without the fulvic acid treatment; and the diversity of endophytic bacteria in Stevia leaves was estimated by pyrosequencing of 16S rRNA genes. As results, Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes were found to be the dominant phyla despite the growth stages and fulvic acid application. Stevia growth stages strongly regulated composition of endophytic community. The genera Agrobacterium (12.3%) and Erwinia (7.2%) dominated in seedling stage were apparently declined in the vegetable and initial flowering stages, while Sphingomonas and Methylobacterium increased in mature leaves at harvest time, which showed that the mature leaves of Stevia preferred to accumulate some certain endophytic bacteria. Sphingomonas and Methylobacterium constituted an important part of the core endophytic community and were positively correlated with the stevioside content and UGT74G1 gene expression, respectively; while Erwinia, Agrobacterium, and Bacillus were negatively correlated with the stevioside accumulation. Fulvic acid treatment accelerated the variation of endophytes along the growth stages and increased the steviol glycosides content. This is the first study to reveal the community composition of endophytic bacteria in the Stevia leaves, to evidence the strong effects of growth stage and fulvic acid application on the endophytes of Stevia, and to demonstrate the correlation between the endophytic bacteria and the steviol glycosides accumulation. PMID:26379644

  2. Insights into the bacterial community and its temporal succession during the fermentation of wine grapes

    Directory of Open Access Journals (Sweden)

    Hailan ePiao

    2015-08-01

    Full Text Available Grapes harbor complex microbial communities. It is well known that yeasts, typically Saccharomyces cerevisiae, and bacteria, commonly the lactic acid fermenting Oenococcus oeni, work sequentially during primary and secondary wine fermentation. In addition to these main players, several microbes, often with undesirable effects on wine quality, have been found in grapes and during wine fermentation. However, still little is known about the dynamics of the microbial community during the fermentation process. In previous studies culture dependent methods were applied to detect and identify microbial organisms associated with grapes and grape products, which resulted in a picture that neglected the non-culturable fraction of the microbes. To obtain a more complete picture of how microbial communities change during grape fermentation and how different fermentation techniques might affect the microbial community composition, we employed next-generation sequencing (NGS. A better understanding of the microbial dynamics and their effect on the final product is of great importance to help winemakers produce wine styles of consistent and high quality. In this study, we focused on the bacterial community dynamics during wine vinification by amplifying and sequencing the hypervariable V1–V3 region of the 16S rRNA gene – a phylogenetic marker gene that is ubiquitous within prokaryotes. Bacterial communities and their temporal succession was observed for communities associated with organically and conventionally produced wines. In addition, we analyzed the chemical characteristics of the grape musts during the organic and conventional fermentation process. These analyses revealed distinct bacterial population with specific temporal changes as well as different chemical profiles for the organically and conventionally produced wines. In summary these results suggest a possible correlation between the temporal succession of the bacterial population and the

  3. Effects of growth stage and fulvic acid on the diversity and dynamics of endophytic bacterial community in Stevia rebaudiana Bertoni leaves

    Directory of Open Access Journals (Sweden)

    Xuejian eYu

    2015-08-01

    Full Text Available The aim of this study was to learn the interactions among the endophytic bacteria, the plant growth, the foliar spray of fulvic acid, and the accumulation of steviol glycosides in the leaves of Stevia rebaudiana. Metagenomic DNA was extracted from the Stevia leaves at different growth stages with or without the fulvic acid treatment; and the diversity of endophytic bacteria in Stevia leaves was estimated by pyrosequencing of 16S rRNA genes. As results, Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes were found to be the dominant phyla despite the growth stages and fulvic acid application. Stevia growth stages strongly regulated composition of endophytic community. The genera Agrobacterium (12.3 % and Erwinia (7.2 % dominated in seedling stage were apparently declined in the vegetable and initial flowering stages, while Sphingomonas and Methylobacterium increased in mature leaves at harvest time, which showed that the mature leaves of Stevia preferred to accumulate some certain endophytic bacteria. Sphingomonas and Methylobacterium constituted an important part of the core endophytic community and were positively correlated with the stevioside content and UGT74G1 gene expression, respectively; while Erwinia, Agrobacterium and Bacillus were negatively correlated with the stevioside accumulation. Fulvic acid treatment accelerated the variation of endophytes along the growth stages.

  4. Dynamical detection of network communities

    Science.gov (United States)

    Quiles, Marcos G.; Macau, Elbert E. N.; Rubido, Nicolás

    2016-05-01

    A prominent feature of complex networks is the appearance of communities, also known as modular structures. Specifically, communities are groups of nodes that are densely connected among each other but connect sparsely with others. However, detecting communities in networks is so far a major challenge, in particular, when networks evolve in time. Here, we propose a change in the community detection approach. It underlies in defining an intrinsic dynamic for the nodes of the network as interacting particles (based on diffusive equations of motion and on the topological properties of the network) that results in a fast convergence of the particle system into clustered patterns. The resulting patterns correspond to the communities of the network. Since our detection of communities is constructed from a dynamical process, it is able to analyse time-varying networks straightforwardly. Moreover, for static networks, our numerical experiments show that our approach achieves similar results as the methodologies currently recognized as the most efficient ones. Also, since our approach defines an N-body problem, it allows for efficient numerical implementations using parallel computations that increase its speed performance.

  5. Panamanian frog species host unique skin bacterial communities

    Directory of Open Access Journals (Sweden)

    Lisa K. Belden

    2015-10-01

    Full Text Available Vertebrates, including amphibians, host diverse symbiotic microbes that contribute to host disease resistance. Globally, and especially in montane tropical systems, many amphibian species are threatened by a chytrid fungus, Batrachochytrium dendrobatidis (Bd, that causes a lethal skin disease. Bd therefore may be a strong selective agent on the diversity and function of the microbial communities inhabiting amphibian skin. In Panamá, amphibian population declines and the spread of Bd have been tracked. In 2012, we completed a field survey in Panamá to examine frog skin microbiota in the context of Bd infection. We focused on three frog species and collected two skin swabs per frog from a total of 136 frogs across four sites that varied from west to east in the time since Bd arrival. One swab was used to assess bacterial community structure using 16S rRNA amplicon sequencing and to determine Bd infection status, and one was used to assess metabolite diversity, as the bacterial production of anti-fungal metabolites is an important disease resistance function. The skin microbiota of the three Panamanian frog species differed in OTU (operational taxonomic unit, ~bacterial species community composition and metabolite profiles, although the pattern was less strong for the metabolites. Comparisons between frog skin bacterial communities from Panamá and the US suggest broad similarities at the phylum level, but key differences at lower taxonomic levels. In our field survey in Panamá, across all four sites, only 35 individuals (~26% were Bd infected. There was no clustering of OTUs or metabolite profiles based on Bd infection status and no clear pattern of west-east changes in OTUs or metabolite profiles across the four sites. Overall, our field survey data suggest that different bacterial communities might be producing broadly similar sets of metabolites across frog hosts and sites. Community structure and function may not be as tightly coupled in

  6. Can the Bacterial Community of a High Arctic Glacier Surface Escape Viral Control?

    Science.gov (United States)

    Rassner, Sara M E; Anesio, Alexandre M; Girdwood, Susan E; Hell, Katherina; Gokul, Jarishma K; Whitworth, David E; Edwards, Arwyn

    2016-01-01

    Glacial ice surfaces represent a seasonally evolving three-dimensional photic zone which accumulates microbial biomass and potentiates positive feedbacks in ice melt. Since viruses are abundant in glacial systems and may exert controls on supraglacial bacterial production, we examined whether changes in resource availability would promote changes in the bacterial community and the dynamics between viruses and bacteria of meltwater from the photic zone of a Svalbard glacier. Our results indicated that, under ambient nutrient conditions, low estimated viral decay rates account for a strong viral control of bacterial productivity, incurring a potent viral shunt of a third of bacterial carbon in the supraglacial microbial loop. Moreover, it appears that virus particles are very stable in supraglacial meltwater, raising the prospect that viruses liberated in melt are viable downstream. However, manipulating resource availability as dissolved organic carbon, nitrogen, and phosphorous in experimental microcosms demonstrates that the photic zone bacterial communities can escape viral control. This is evidenced by a marked decline in virus-to-bacterium ratio (VBR) concomitant with increased bacterial productivity and number. Pyrosequencing shows a few bacterial taxa, principally Janthinobacterium sp., dominate both the source meltwater and microcosm communities. Combined, our results suggest that viruses maintain high VBR to promote contact with low-density hosts, by the manufacture of robust particles, but that this necessitates a trade-off which limits viral production. Consequently, dominant bacterial taxa appear to access resources to evade viral control. We propose that a delicate interplay of bacterial and viral strategies affects biogeochemical cycling upon glaciers and, ultimately, downstream ecosystems.

  7. Can the Bacterial Community of a High Arctic Glacier Surface Escape Viral Control?

    Science.gov (United States)

    Rassner, Sara M. E.; Anesio, Alexandre M.; Girdwood, Susan E.; Hell, Katherina; Gokul, Jarishma K.; Whitworth, David E.; Edwards, Arwyn

    2016-01-01

    Glacial ice surfaces represent a seasonally evolving three-dimensional photic zone which accumulates microbial biomass and potentiates positive feedbacks in ice melt. Since viruses are abundant in glacial systems and may exert controls on supraglacial bacterial production, we examined whether changes in resource availability would promote changes in the bacterial community and the dynamics between viruses and bacteria of meltwater from the photic zone of a Svalbard glacier. Our results indicated that, under ambient nutrient conditions, low estimated viral decay rates account for a strong viral control of bacterial productivity, incurring a potent viral shunt of a third of bacterial carbon in the supraglacial microbial loop. Moreover, it appears that virus particles are very stable in supraglacial meltwater, raising the prospect that viruses liberated in melt are viable downstream. However, manipulating resource availability as dissolved organic carbon, nitrogen, and phosphorous in experimental microcosms demonstrates that the photic zone bacterial communities can escape viral control. This is evidenced by a marked decline in virus-to-bacterium ratio (VBR) concomitant with increased bacterial productivity and number. Pyrosequencing shows a few bacterial taxa, principally Janthinobacterium sp., dominate both the source meltwater and microcosm communities. Combined, our results suggest that viruses maintain high VBR to promote contact with low-density hosts, by the manufacture of robust particles, but that this necessitates a trade-off which limits viral production. Consequently, dominant bacterial taxa appear to access resources to evade viral control. We propose that a delicate interplay of bacterial and viral strategies affects biogeochemical cycling upon glaciers and, ultimately, downstream ecosystems. PMID:27446002

  8. Variations of Bacterial Community Structure and Composition in Mangrove Sediment at Different Depths in Southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Lucas William Mendes

    2014-12-01

    Full Text Available Tropical mangroves are considered one of the most productive ecosystems of the world, being characterized as nurseries and food sources for fish and other animals. Microorganisms play important roles in these environments, and the study of bacterial communities is of paramount importance for a better comprehension of mangrove dynamics. This study focused on the structure and composition of bacterial communities in mangrove sediments at different depths and points, located in Southeastern Brazil. Terminal Restriction Fragment Length Polymorphism (T-RFLP was used to determine the community structure, and 16S rRNA gene pyrosequencing was used to characterize the community composition. Redundancy analysis of T-RFLP patterns revealed differences in bacterial community structure according to soil attributes and depth. The parameters K and depth presented significant correlation with general community structure. Most sequences were classified into the phylum Proteobacteria (88%, which presented differences according to the depth, where the classes Betaproteobacteria (21% and Deltaproteobacteria (16% were abundant at 10 cm and Epsilonproteobacteria (35% was abundant at 40 cm depth. Clear differences were observed in community composition as shown by the differential distribution of the phyla Firmicutes (1.13% and 3.8%, for 10 cm and 40 cm respectively, Chloroflexi (2.8% and 0.75%, and Acidobacteria (2.75% and 0.57% according to the depth. Bacterial diversity measurements indicated higher diversity in shallow samples. Taken together, our findings indicate that mangrove holds a diverse bacterial community, which is shaped by the variations found in the ecosystem, such as sediment properties and depth.

  9. Bacterial community profiles in low microbial abundance sponges

    KAUST Repository

    Giles, Emily

    2012-09-04

    It has long been recognized that sponges differ in the abundance of associated microorganisms, and they are therefore termed either \\'low microbial abundance\\' (LMA) or \\'high microbial abundance\\' (HMA) sponges. Many previous studies concentrated on the dense microbial communities in HMA sponges, whereas little is known about microorganisms in LMA sponges. Here, two LMA sponges from the Red Sea, two from the Caribbean and one from the South Pacific were investigated. With up to only five bacterial phyla per sponge, all LMA sponges showed lower phylum-level diversity than typical HMA sponges. Interestingly, each LMA sponge was dominated by a large clade within either Cyanobacteria or different classes of Proteobacteria. The overall similarity of bacterial communities among LMA sponges determined by operational taxonomic unit and UniFrac analysis was low. Also the number of sponge-specific clusters, which indicate bacteria specifically associated with sponges and which are numerous in HMA sponges, was low. A biogeographical or host-dependent distribution pattern was not observed. In conclusion, bacterial community profiles of LMA sponges are clearly different from profiles of HMA sponges and, remarkably, each LMA sponge seems to harbour its own unique bacterial community. © 2012 Federation of European Microbiological Societies.

  10. Functional recovery of biofilm bacterial communities after copper exposure.

    NARCIS (Netherlands)

    Boivin, Marie-Elène Y; Massieux, Boris; Breure, Anton M; Greve, Gerdit D; Rutgers, Michiel; Admiraal, Wim

    2006-01-01

    Potential of bacterial communities in biofilms to recover after copper exposure was investigated. Biofilms grown outdoor in shallow water on glass dishes were exposed in the laboratory to 0.6, 2.1, 6.8 micromol/l copper amended surface water and a reference and subsequently to un-amended surface wat

  11. Hydrocephalus in adults with community-acquired bacterial meningitis

    NARCIS (Netherlands)

    E. Soemirien Kasanmoentalib; M.C. Brouwer; A. van der Ende; D. van de Beek

    2010-01-01

    Objective: To evaluate the occurrence, treatment, and outcome of hydrocephalus complicating community-acquired bacterial meningitis in adults. Methods: Case series from a prospective nationwide cohort study from Dutch hospitals from 2006 to 2009. Results: Hydrocephalus was diagnosed in 26 of 577 epi

  12. Bacterial community profiles in low microbial abundance sponges.

    Science.gov (United States)

    Giles, Emily C; Kamke, Janine; Moitinho-Silva, Lucas; Taylor, Michael W; Hentschel, Ute; Ravasi, Timothy; Schmitt, Susanne

    2013-01-01

    It has long been recognized that sponges differ in the abundance of associated microorganisms, and they are therefore termed either 'low microbial abundance' (LMA) or 'high microbial abundance' (HMA) sponges. Many previous studies concentrated on the dense microbial communities in HMA sponges, whereas little is known about microorganisms in LMA sponges. Here, two LMA sponges from the Red Sea, two from the Caribbean and one from the South Pacific were investigated. With up to only five bacterial phyla per sponge, all LMA sponges showed lower phylum-level diversity than typical HMA sponges. Interestingly, each LMA sponge was dominated by a large clade within either Cyanobacteria or different classes of Proteobacteria. The overall similarity of bacterial communities among LMA sponges determined by operational taxonomic unit and UniFrac analysis was low. Also the number of sponge-specific clusters, which indicate bacteria specifically associated with sponges and which are numerous in HMA sponges, was low. A biogeographical or host-dependent distribution pattern was not observed. In conclusion, bacterial community profiles of LMA sponges are clearly different from profiles of HMA sponges and, remarkably, each LMA sponge seems to harbour its own unique bacterial community.

  13. Bacterial community diversity in municipal waste landfill sites.

    Science.gov (United States)

    Song, Liyan; Wang, Yangqing; Tang, Wei; Lei, Yu

    2015-09-01

    Little is known about the bacterial diversity of landfills and how environmental factors impact the diversity. In this study, PCR-based 454 pyrosequencing was used to investigate the bacterial communities of ten landfill leachate samples from five landfill sites in China. A total of 137 K useable sequences from the V3-V6 regions of the 16S rRNA gene were retrieved from 205 K reads. These sequences revealed the presence of a large number of operational taxonomic units (OTUs) in the landfills (709-1599 OTUs per sample). The most predominant bacterial representatives in the landfills investigated, regardless of geographic area, included Gammaproteobacteria, Firmicutes, and Bacteroidetes. The phyla Fusobacteria and Tenericutes were also found for the first time to be predominant in the landfills. The phylum Fusobacteria predominated (51.5 and 48.8%) in two semi-arid landfills, and the phylum Tenericutes dominated (30.6%) at one humid, subtropical landfill. Further, a large number of Pseudomonas was detected in most samples, comprising the dominant group and accounting for 40.9 to 92.4% of the total abundance. Principal component analysis (PCA) and cluster analysis based on OTU abundance showed that the abundant taxa separated the bacterial community. Canonical correlation analysis (CCA) suggested that precipitation and landfilling age significantly impact on the bacterial community structure. The bacterial community function (e.g., cellulolytic bacteria, sulfate-reducing bacteria (SRB), sulfate-oxidizing bacteria, and xenobiotic organic compound (XOC)-degrading bacteria) was also diverse, but the pattern is unclear.

  14. The pollutants removal and bacterial community dynamics relationship within a full-scale British Gas/Lurgi coal gasification wastewater treatment using a novel system.

    Science.gov (United States)

    Jia, Shengyong; Han, Hongjun; Zhuang, Haifeng; Hou, Baolin

    2016-01-01

    The novel system of EBA (based on external circulation anaerobic (EC) process-biological enhanced (BE) process-anoxic/oxic (A/O) process) was applied to treat the British Gas/Lurgi coal gasification wastewater in Erdos, China. After a long time of commissioning, the EBA system represented a stable and highly efficient performance, particularly, the concentrations of COD, NH4(+)-N, total organic carbon, total nitrogen and volatile phenols in the final effluent reached 53, 0.3, 18, 106mg/L and not detected, respectively. Both the GC-MS and fluorescence excitation-emission matrix analyses revealed significant variations of organic compositions in the effluent of different process. The results of high-throughput sequencing represented the EBA system composed 34 main bacteria which were affiliated to 7 phyla. In addition, the canonical correspondence analysis indicated high coherence among community composition, wastewater characteristics and environmental variables, in which the pH, mixed liquid suspended solids and total phenols loading were the most three significant variables.

  15. Bacterial communities of two ubiquitous Great Barrier Reef corals reveals both site- and species-specificity of common bacterial associates.

    Directory of Open Access Journals (Sweden)

    E Charlotte E Kvennefors

    Full Text Available BACKGROUND: Coral-associated bacteria are increasingly considered to be important in coral health, and altered bacterial community structures have been linked to both coral disease and bleaching. Despite this, assessments of bacterial communities on corals rarely apply sufficient replication to adequately describe the natural variability. Replicated data such as these are crucial in determining potential roles of bacteria on coral. METHODOLOGY/PRINCIPAL FINDINGS: Denaturing Gradient Gel Electrophoresis (DGGE of the V3 region of the 16S ribosomal DNA was used in a highly replicated approach to analyse bacterial communities on both healthy and diseased corals. Although site-specific variations in the bacterial communities of healthy corals were present, host species-specific bacterial associates within a distinct cluster of gamma-proteobacteria could be identified, which are potentially linked to coral health. Corals affected by "White Syndrome" (WS underwent pronounced changes in their bacterial communities in comparison to healthy colonies. However, the community structure and bacterial ribotypes identified in diseased corals did not support the previously suggested theory of a bacterial pathogen as the causative agent of the syndrome. CONCLUSIONS/SIGNIFICANCE: This is the first study to employ large numbers of replicated samples to assess the bacterial communities of healthy and diseased corals, and the first culture-independent assessment of bacterial communities on WS affected Acroporid corals on the GBR. Results indicate that a minimum of 6 replicate samples are required in order to draw inferences on species, spatial or health-related changes in community composition, as a set of clearly distinct bacterial community profiles exist in healthy corals. Coral bacterial communities may be both site and species specific. Furthermore, a cluster of gamma-proteobacterial ribotypes may represent a group of specific common coral and marine

  16. Dynamics of genome rearrangement in bacterial populations.

    Directory of Open Access Journals (Sweden)

    Aaron E Darling

    represent the first characterization of genome arrangement evolution in a bacterial population evolving outside laboratory conditions. Insight into the process of genomic rearrangement may further the understanding of pathogen population dynamics and selection on the architecture of circular bacterial chromosomes.

  17. Effects of sulfadiazine on soil bacterial communities

    DEFF Research Database (Denmark)

    Hangler, Martin

    as fertilizers on agricultural lands they represent a route for antibiotics into the soil environment where they may persist and affect levels of antibiotic resistance in soil microbial communities over time. In this work the level of tolerance to the antibiotic sulfadiazine (SDZ) was studied in a number......-threshold, of a non-contaminated soil environment at various pH of which to compare other soils. Soil samples representing a broad range of natural pH were collected from the pH gradient at the Hoosfield acid strip, part of the long-term field experiment at the Rothamstead Research Station (UK) and exposed...... and transport of SDZ at the interphase between dewatered SDZ-amended sewage sludge and soil. SDZ was not mineralized within sludge aggregates and travelled more than 10 mm into the surrounding soil. The strongest PICT response was observed in soils fertilized with organic fertilizers or inorganic NPK fertilizer...

  18. Experimental warming effects on the bacterial community structure and diversity

    Science.gov (United States)

    Kim, W.; Han, S.; Adams, J.; Son, Y.

    2014-12-01

    The objective of this study is to investigate the responses of soil bacterial community to future temperature increase by conducting open-field warming experiment. We conducted an open-field experimental warming system using infra-red heater in 2011 and regulated the temperature of warmed plots by 3oC higher than that of control plots constantly. The seeds of Pinus densiflora, Abies holophylla, Abies koreana, Betula costata, Quercus variabilis, Fraxinus rhynchophylla, and Zelkova serrata were planted in each 1 m × 1 m plot (n=3) in April, 2012. We collected soil samples from the rhizosphere of 7 tree species. DNA was extracted and PCR-amplified for the bacterial 16S gene targeting V1-V3 region. The paired-end sequencing was performed at Beijing Genome Institute (BGI, Hong Kong, China) using 2× 100 bp Hiseq2000 (Illumina). This study aimed to answer the following prediction/hypothesis: 1) Experimental warming will change the structure of soil bacterial community, 2) There will be distinct 'indicator group' which response to warming treatment relatively more sensitive than other groups. 3) Warming treatment will enhance the microbial activity in terms of soil respiration. 4) The rhizoplane bacterial communities for each of 7 tree species will show different response pattern to warming treatment. Since the sequence data does not arrive before the submission deadline, therefore, we would like to present the results and discussions on December 2014, AGU Fall Meeting.

  19. Epistemic communities and cluster dynamics

    DEFF Research Database (Denmark)

    Håkanson, Lars

    2003-01-01

    This paper questions the prevailing notions that firms within industrial clusters have privi-leged access to `tacit knowledge' that is unavailable - or available only at high cost - to firms located elsewhere, and that such access provides competitive advantages that help to explain the growth...... and development of both firms and regions. It outlines a model of cluster dynam-ics emphasizing two mutually interdependent processes: the concentration of specialized and complementary epistemic communities, on the one hand, and entrepreneurship and a high rate of new firm formation on the other....

  20. Dynamic provisioning for community services

    CERN Document Server

    Qi, Li

    2013-01-01

    Dynamic Provisioning for Community Services outlines a dynamic provisioning and maintenance mechanism in a running distributed system, e.g. the grid, which can be used to maximize the utilization of computing resources and user demands. The book includes a complete and reliable maintenance system solution for the large-scale distributed system and an interoperation mechanism for the grid middleware deployed in the United States, Europe, and China. The experiments and evaluations have all been practically implemented for ChinaGrid, and the best practices established can help readers to construc

  1. Exploring bacterial community structure and function associated with atrazine biodegradation in repeatedly treated soils.

    Science.gov (United States)

    Fang, Hua; Lian, Jianjun; Wang, Huifang; Cai, Lin; Yu, Yunlong

    2015-04-09

    Substantial application of the herbicide atrazine in agriculture leads to persistent contamination, which may damage the succeeding crops and pose potential threats to soil ecology and environmental health. Here, the degradation characteristics of atrazine and dynamic change of soil bacterial community structure and function as well as their relations were studied during three repeated treatments at the recommended, double, and five-fold doses. The results showed that the degradation half-life of atrazine obviously decreased with increased treatment frequency. Soil microbial functional diversity displayed a variation trend of suppression-recovery-stimulation, which was associated with increased degradation rate of atrazine. 16S amplicon sequencing was conducted to explore bacterial community structure and correlate the genus to potential atrazine degradation. A total of seven potentially atrazine-degrading bacterial genera were found including Nocardioides, Arthrobacter, Bradyrhizobium, Burkholderia, Methylobacterium, Mycobacterium, and Clostridium. These bacterial genera showed almost complete atrazine degradation pathways including dechlorination, dealkylation, hydroxylation, and ring cleavage. Furthermore, the relative abundance of four of them (i.e., Nocardioides, Arthrobacter, Methylobacterium, and Bradyrhizobium) increased with treatment frequency and atrazine concentration, suggesting that they may participate in atrazine degradation during repeated treatments. Our findings reveal the potential relationship between atrazine degradation and soil bacterial community structure in repeatedly treated soils.

  2. Assessment of bacterial community structure in nitrifying biofilm under inorganic carbon-sufficient and -limited conditions.

    Science.gov (United States)

    Bae, Hyokwan; Chung, Yun-Chul; Yang, Heejeong; Lee, Changsoo; Aryapratama, Rio; Yoo, Young J; Lee, Seockheon

    2015-01-01

    In this work, nitrification and changes in the composition of the total bacterial community under inorganic carbon (IC)-limited conditions, in a nitrifying moving bed biofilm reactor, was investigated. A culture-independent analysis of cloning and sequencing based on the 16S rRNA gene was applied to quantify the bacterial diversity and to determine bacterial taxonomic assignment. IC concentrations had significant effects on the stability of ammonia-oxidation as indicated by the reduction of the nitrogen conversion rate with high NH4(+)-N loadings. The predominance of Nitrosomonas europaea was maintained in spite of changes in the IC concentration. In contrast, heterotrophic bacterial species contributed to a high bacterial diversity, and to a dynamic shift in the bacterial community structure, under IC-limited conditions. In this study, individual functions of heterotrophic bacteria were estimated based on taxonomic information. Possible key roles of coexisting heterotrophic bacteria are the assimilation of organic compounds of extracellular polymeric substances produced by nitrifiers, and biofilm formation by providing a filamentous structure and aggregation properties.

  3. Monitoring bacterial and archaeal community shifts in a mesophilic anaerobic batch reactor treating a high-strength organic wastewater.

    Science.gov (United States)

    Lee, Changsoo; Kim, Jaai; Shin, Seung Gu; Hwang, Seokhwan

    2008-09-01

    Shifts in bacterial and archaeal communities, associated with changes in chemical profiles, were investigated in an anaerobic batch reactor treating dairy-processing wastewater prepared with whey permeate powder. The dynamics of bacterial and archaeal populations were monitored by quantitative real-time PCR and showed good agreement with the process data. A rapid increase in bacterial populations and a high rate of substrate fermentation were observed during the initial period. Growth and regrowth of archaeal populations occurred with biphasic production of methane, corresponding to the diauxic consumption of acetate and propionate. Bacterial community structure was examined by denaturing gel gradient electrophoresis (DGGE) targeting 16S rRNA genes. An Aeromonas-like organism was suggested to be mainly responsible for the rapid fermentation of carbohydrate during the initial period. Several band sequences closely related to the Clostridium species, capable of carbohydrate fermentation, lactate or ethanol fermentation, and/or homoacetogenesis, were also detected. Statistical analyses of the DGGE profiles showed that the bacterial community structure, as well as the process performance, varied with the incubation time. Our results demonstrated that the bacterial community shifted, reflecting the performance changes and, particularly, that a significant community shift corresponded to a considerable process event. This suggested that the diagnosis of an anaerobic digestion process could be possible by monitoring bacterial community shifts.

  4. Bayesian Overlapping Community Detection in Dynamic Networks

    CERN Document Server

    Ghorbani, Mahsa; Khodadadi, Ali

    2016-01-01

    Detecting community structures in social networks has gained considerable attention in recent years. However, lack of prior knowledge about the number of communities, and their overlapping nature have made community detection a challenging problem. Moreover, many of the existing methods only consider static networks, while most of real world networks are dynamic and evolve over time. Hence, finding consistent overlapping communities in dynamic networks without any prior knowledge about the number of communities is still an interesting open research problem. In this paper, we present an overlapping community detection method for dynamic networks called Dynamic Bayesian Overlapping Community Detector (DBOCD). DBOCD assumes that in every snapshot of network, overlapping parts of communities are dense areas and utilizes link communities instead of common node communities. Using Recurrent Chinese Restaurant Process and community structure of the network in the last snapshot, DBOCD simultaneously extracts the numbe...

  5. Identifying Community Structures in Dynamic Networks

    CERN Document Server

    Alvari, Hamidreza; Sukthankar, Gita; Lakkaraju, Kiran

    2016-01-01

    Most real-world social networks are inherently dynamic, composed of communities that are constantly changing in membership. To track these evolving communities, we need dynamic community detection techniques. This article evaluates the performance of a set of game theoretic approaches for identifying communities in dynamic networks. Our method, D-GT (Dynamic Game Theoretic community detection), models each network node as a rational agent who periodically plays a community membership game with its neighbors. During game play, nodes seek to maximize their local utility by joining or leaving the communities of network neighbors. The community structure emerges after the game reaches a Nash equilibrium. Compared to the benchmark community detection methods, D-GT more accurately predicts the number of communities and finds community assignments with a higher normalized mutual information, while retaining a good modularity.

  6. Microbial activity and bacterial community structure during degradation of microcystins

    DEFF Research Database (Denmark)

    Christoffersen, K.; Lyck, Susanne; Winding, A.

    2002-01-01

    Degradation of realistic microcystin concentrations in lake water with indigenous bacteria was studied in laboratory and field experiments following inoculation with lysed toxic algal material containing microcystin primarily from Microcystis sp. or purified commercial microcystin-LR to microcosms...... initial degradation rates occurred in 2 out of 7 cases, Microcystin was almost eliminated from the water after around 8 d. Results from concomitant measurements of bacterial abundance and net production showed an elevated bacterial activity within 1 to 2 d after the inoculation with algal lysates...... experiments were analysed by polymerase chain reaction-density gradient gel electrophoresis (PCR-DGGE) of 16S rDNA, which showed that the indigenous bacterial community responded quickly to the addition of lysates. Our study confirms that bacteria can efficiently degrade microcystins in natural waters...

  7. Bacterial communities associated with apical periodontitis and dental implant failure

    Directory of Open Access Journals (Sweden)

    Simon Dingsdag

    2016-11-01

    Full Text Available Background: Previously, we demonstrated that bacteria reside in apparently healed alveolar bone, using culture and Sanger sequencing techniques. Bacteria in apparently healed alveolar bone may have a role in peri-implantitis and dental implant failure. Objective: To compare bacterial communities associated with apical periodontitis, those colonising a failed implant and alveolar bone with reference biofilm samples from healthy teeth. Methods and results: The study consisted of 196 samples collected from 40 patients undergoing routine dental implant insertion or rehabilitation. The bacterial 16S ribosomal DNA sequences were amplified. Samples yielding sufficient polymerase chain reaction product for further molecular analyses were subjected to terminal restriction fragment length polymorphism (T-RFLP; 31 samples and next generation DNA sequencing (454 GS FLX Titanium; 8 samples. T-RFLP analysis revealed that the bacterial communities in diseased tissues were more similar to each other (p<0.049 than those from the healthy reference samples. Next generation sequencing detected 13 bacterial phyla and 373 putative bacterial species, revealing an increased abundance of Gram-negative [Prevotella, Fusobacterium (p<0.004, Treponema, Veillonellaceae, TG5 (Synergistetes] bacteria and a decreased abundance of Gram-positive [(Actinomyces, Corynebacterium (p<0.008] bacteria in the diseased tissue samples (n=5 relative to reference supragingival healthy samples (n=3. Conclusion: Increased abundances of Prevotella, Fusobacterium and TG5 (Synergistetes were associated with apical periodontitis and a failed implant. A larger sample set is needed to confirm these trends and to better define the processes of bacterial pathogenesis in implant failure and apical periodontitis. The application of combined culture-based, microscopic and molecular technique-based approaches is suggested for future studies.

  8. Mechanism of uranium (VI) removal by two anaerobic bacterial communities

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Monica [Centro de Ciencias do Mar, Universidade do Algarve, FCT-DQF (edificio 8), Campus de Gambelas, 8005-139 Faro (Portugal); Faleiro, Maria Leonor [IBB - Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, FCT, Campus de Gambelas, 8005-139 Faro (Portugal); Costa, Ana M. Rosa da [Centro de Investigacao em Quimica do Algarve, Universidade do Algarve, FCT, DQF, Campus de Gambelas, 8005-139 Faro (Portugal); Chaves, Sandra; Tenreiro, Rogerio [Universidade de Lisboa, Faculdade de Ciencias, Centro de Biodiversidade, Genomica Integrativa e Funcional (BioFIG), Campus de FCUL, Campo Grande, 1749-016 Lisboa (Portugal); Matos, Antonio Pedro [Servico de Anatomia Patologica, Hospital Curry Cabral, Lisboa (Portugal); Costa, Maria Clara, E-mail: mcorada@ualg.pt [Centro de Ciencias do Mar, Universidade do Algarve, FCT-DQF (edificio 8), Campus de Gambelas, 8005-139 Faro (Portugal)

    2010-12-15

    The mechanism of uranium (VI) removal by two anaerobic bacterial consortia, recovered from an uncontaminated site (consortium A) and other from an uranium mine (consortium U), was investigated. The highest efficiency of U (VI) removal by both consortia (97%) occurred at room temperature and at pH 7.2. Furthermore, it was found that U (VI) removal by consortium A occurred by enzymatic reduction and bioaccumulation, while the enzymatic process was the only mechanism involved in metal removal by consortium U. FTIR analysis suggested that after U (VI) reduction, U (IV) could be bound to carboxyl, phosphate and amide groups of bacterial cells. Phylogenetic analysis of 16S rRNA showed that community A was mainly composed by bacteria closely related to Sporotalea genus and Rhodocyclaceae family, while community U was mainly composed by bacteria related to Clostridium genus and Rhodocyclaceae family.

  9. Assessing the diversity of bacterial communities associated with plants

    Science.gov (United States)

    Andreote, Fernando Dini; Azevedo, João Lúcio; Araújo, Welington Luiz

    2009-01-01

    Plant–bacteria interactions result from reciprocal recognition between both species. These interactions are responsible for essential biological processes in plant development and health status. Here, we present a review of the methodologies applied to investigate shifts in bacterial communities associated with plants. A description of techniques is made from initial isolations to culture-independent approaches focusing on quantitative Polymerase Chain Reaction in real time (qPCR), Denaturing Gradient Gel Electrophoresis (DGGE), clone library construction and analysis, the application of multivariate analyses to microbial ecology data and the upcoming high throughput methodologies such as microarrays and pyrosequencing. This review supplies information about the development of traditional methods and a general overview about the new insights into bacterial communities associated with plants. PMID:24031382

  10. Host tissues as microhabitats for Wolbachia and quantitative insights into the bacterial community in terrestrial isopods.

    Science.gov (United States)

    Dittmer, J; Beltran-Bech, S; Lesobre, J; Raimond, M; Johnson, M; Bouchon, D

    2014-05-01

    Animal-bacterial symbioses are highly dynamic in terms of multipartite interactions, both between the host and its symbionts as well as between the different bacteria constituting the symbiotic community. These interactions will be reflected by the titres of the individual bacterial taxa, for example via host regulation of bacterial loads or competition for resources between symbionts. Moreover, different host tissues represent heterogeneous microhabitats for bacteria, meaning that host-associated bacteria might establish tissue-specific bacterial communities. Wolbachia are widespread endosymbiotic bacteria, infecting a large number of arthropods and filarial nematodes. However, relatively little is known regarding direct interactions between Wolbachia and other bacteria. This study represents the first quantitative investigation of tissue-specific Wolbachia-microbiota interactions in the terrestrial isopod Armadillidium vulgare. To this end, we obtained a more complete picture of the Wolbachia distribution patterns across all major host tissues, integrating all three feminizing Wolbachia strains (wVulM, wVulC, wVulP) identified to date in this host. Interestingly, the different Wolbachia strains exhibited strain-specific tissue distribution patterns, with wVulM reaching lower titres in most tissues. These patterns were consistent across different host genetic backgrounds and might reflect different co-evolutionary histories between the Wolbachia strains and A. vulgare. Moreover, Wolbachia-infected females carried higher total bacterial loads in several, but not all, tissues, irrespective of the Wolbachia strain. Taken together, this quantitative approach indicates that Wolbachia is part of a potentially more diverse bacterial community, as exemplified by the presence of highly abundant bacterial taxa in the midgut caeca of several A. vulgare populations.

  11. Effect of Copper Treatment on the Composition and Function of the Bacterial Community in the Sponge Haliclona cymaeformis

    KAUST Repository

    Tian, R.-M.

    2014-11-04

    Marine sponges are the most primitive metazoan and host symbiotic microorganisms. They are crucial components of the marine ecological system and play an essential role in pelagic processes. Copper pollution is currently a widespread problem and poses a threat to marine organisms. Here, we examined the effects of copper treatment on the composition of the sponge-associated bacterial community and the genetic features that facilitate the survival of enriched bacteria under copper stress. The 16S rRNA gene sequencing results showed that the sponge Haliclona cymaeformis harbored symbiotic sulfur-oxidizing Ectothiorhodospiraceae and photosynthetic Cyanobacteria as dominant species. However, these autotrophic bacteria decreased substantially after treatment with a high copper concentration, which enriched for a heterotrophic-bacterium-dominated community. Metagenomic comparison revealed a varied profile of functional genes and enriched functions, including bacterial motility and chemotaxis, extracellular polysaccharide and capsule synthesis, virulence-associated genes, and genes involved in cell signaling and regulation, suggesting short-period mechanisms of the enriched bacterial community for surviving copper stress in the microenvironment of the sponge. Microscopic observation and comparison revealed dynamic bacterial aggregation within the matrix and lysis of sponge cells. The bacteriophage community was also enriched, and the complete genome of a dominant phage was determined, implying that a lytic phage cycle was stimulated by the high copper concentration. This study demonstrated a copper-induced shift in the composition of functional genes of the sponge-associated bacterial community, revealing the selective effect of copper treatment on the functions of the bacterial community in the microenvironment of the sponge. IMPORTANCE This study determined the bacterial community structure of the common sponge Haliclona cymaeformis and examined the effect of copper

  12. Uncoupling of bacterial and terrigenous dissolved organic matter dynamics in decomposition experiments.

    Directory of Open Access Journals (Sweden)

    Daniel P R Herlemann

    Full Text Available The biodegradability of terrigenous dissolved organic matter (tDOM exported to the sea has a major impact on the global carbon cycle, but our understanding of tDOM bioavailability is fragmentary. In this study, the effects of preparative tDOM isolation on microbial decomposition were investigated in incubation experiments consisting of mesocosms containing mesohaline water from the Baltic Sea. Dissolved organic carbon (DOC consumption, molecular DOM composition, bacterial activities, and shifts in bacterial community structure were compared between mesocosms supplemented with riverine tDOM, either as filtered, particle-free river water or as a concentrate obtained by lyophilization/tangential ultrafiltration, and those containing only Baltic Sea water or river water. As shown using ultra-high-resolution mass spectrometry (15 Tesla Fourier-transform ion cyclotron resonance mass spectrometry, FT-ICR-MS covering approximately 4600 different DOM compounds, the three DOM preparation protocols resulted in distinct patterns of molecular DOM composition. However, despite DOC losses of 4-16% and considerable bacterial production, there was no significant change in DOM composition during the 28-day experiment. Moreover, tDOM addition affected neither DOC degradation nor bacterial dynamics significantly, regardless of the tDOM preparation. This result suggested that the introduced tDOM was largely not bioavailable, at least on the temporal scale of our experiment, and that the observed bacterial activity and DOC decomposition mainly reflected the degradation of unknown, labile, colloidal and low-molecular weight DOM, both of which escape the analytical window of FT-ICR-MS. In contrast to the different tDOM preparations, the initial bacterial inoculum and batch culture conditions determined bacterial community succession and superseded the effects of tDOM addition. The uncoupling of tDOM and bacterial dynamics suggests that mesohaline bacterial communities

  13. Diversity of Human Vaginal Bacterial Communities and Associations with Clinically Defined Bacterial Vaginosis▿ †

    Science.gov (United States)

    Oakley, Brian B.; Fiedler, Tina L.; Marrazzo, Jeanne M.; Fredricks, David N.

    2008-01-01

    Bacterial vaginosis (BV) is a common syndrome associated with numerous adverse health outcomes in women. Despite its medical importance, the etiology and microbial ecology of BV remain poorly understood. We used broad-range PCR to census the community structure of the healthy and BV-affected vaginal microbial ecosystems and synthesized current publicly available bacterial 16S rRNA gene sequence data from this environment. The community of vaginal bacteria detected in subjects with BV was much more taxon rich and diverse than in subjects without BV. At a 97% sequence similarity cutoff, the number of operational taxonomic units (OTUs) per patient in 28 subjects with BV was nearly three times greater than in 13 subjects without BV: 14.8 ± 0.7 versus 5.2 ± 0.75 (mean ± standard error). OTU-based analyses revealed previously hidden diversity for many vaginal bacteria that are currently poorly represented in GenBank. Our sequencing efforts yielded many novel phylotypes (123 of our sequences represented 38 OTUs not previously found in the vaginal ecosystem), including several novel BV-associated OTUs, such as those belonging to the Prevotella species complex, which remain severely underrepresented in the current NCBI database. Community composition was highly variable among subjects at a fine taxonomic scale, but at the phylum level, Actinobacteria and Bacteroidetes were strongly associated with BV. Our data describe a previously unrecognized extent of bacterial diversity in the vaginal ecosystem. The human vagina hosts many bacteria that are only distantly related to known species, and subjects with BV harbor particularly taxon-rich and diverse bacterial communities. PMID:18487399

  14. Diversity of human vaginal bacterial communities and associations with clinically defined bacterial vaginosis.

    Science.gov (United States)

    Oakley, Brian B; Fiedler, Tina L; Marrazzo, Jeanne M; Fredricks, David N

    2008-08-01

    Bacterial vaginosis (BV) is a common syndrome associated with numerous adverse health outcomes in women. Despite its medical importance, the etiology and microbial ecology of BV remain poorly understood. We used broad-range PCR to census the community structure of the healthy and BV-affected vaginal microbial ecosystems and synthesized current publicly available bacterial 16S rRNA gene sequence data from this environment. The community of vaginal bacteria detected in subjects with BV was much more taxon rich and diverse than in subjects without BV. At a 97% sequence similarity cutoff, the number of operational taxonomic units (OTUs) per patient in 28 subjects with BV was nearly three times greater than in 13 subjects without BV: 14.8 +/- 0.7 versus 5.2 +/- 0.75 (mean +/- standard error). OTU-based analyses revealed previously hidden diversity for many vaginal bacteria that are currently poorly represented in GenBank. Our sequencing efforts yielded many novel phylotypes (123 of our sequences represented 38 OTUs not previously found in the vaginal ecosystem), including several novel BV-associated OTUs, such as those belonging to the Prevotella species complex, which remain severely underrepresented in the current NCBI database. Community composition was highly variable among subjects at a fine taxonomic scale, but at the phylum level, Actinobacteria and Bacteroidetes were strongly associated with BV. Our data describe a previously unrecognized extent of bacterial diversity in the vaginal ecosystem. The human vagina hosts many bacteria that are only distantly related to known species, and subjects with BV harbor particularly taxon-rich and diverse bacterial communities.

  15. Influence of Starvation on the Structure of Gut-Associated Bacterial Communities in the Chinese White Pine Beetle (Dendroctonus armandi

    Directory of Open Access Journals (Sweden)

    Xia Hu

    2016-06-01

    Full Text Available This study investigated the influence of starvation on the structure of the gut bacterial community in the Chinese white pine beetle (Dendroctonus armandi. A total of 14 operational taxonomic units (OTUs0.03 clusters belonging to nine genera were identified. Denaturing gradient gel electrophoresis (DGGE profiles of bacterial PCR-amplified 16S rRNA gene fragments from the guts of starved male and female adults revealed that the bacterial community diversity increased after starvation. The dominant genus Citrobacter decreased significantly, whereas the genus Serratia increased in both starved female and starved male adults. The most predominant bacterial genus in D. armandi adults was Citrobacter, except for starved male adults, in which Serratia was the most abundant genus (27%. Our findings reveal that starvation affects gut bacterial dynamics in D. armandi, as has been observed in other insect species.

  16. Bacterial communities in tetrachloroethene-polluted groundwaters: a case study.

    Science.gov (United States)

    Kotik, Michael; Davidová, Anna; Voříšková, Jana; Baldrian, Petr

    2013-06-01

    The compositions of bacterial groundwater communities of three sites contaminated with chlorinated ethenes were analyzed by pyrosequencing their 16S rRNA genes. For each location, the entire and the active bacterial populations were characterized by independent molecular analysis of the community DNA and RNA. The sites were selected to cover a broad range of different environmental conditions and contamination levels, with tetrachloroethene (PCE) and trichloroethene (TCE) being the primary contaminants. Before sampling the biomass, a long-term monitoring of the polluted locations revealed high concentrations of cis-1,2-dichloroethene (cDCE) and vinyl chloride (VC), which are toxic by-products of the incomplete bacterial degradation of PCE and TCE. The applied pyrosequencing technique enabled known dechlorinators to be identified at a very low detection level (study revealed that only a few species dominated the bacterial communities, with Albidiferax ferrireducens being the only highly prominent member found at all three sites. Only a limited number of OTUs with abundances of up to 1% and high sequence identities to known dechlorinating microorganisms were retrieved from the RNA pools of the two highly contaminated sites. The dechlorinating consortium was likely to be comprised of cDCE-assimilating bacteria (Polaromonas spp.), anaerobic organohalide respirers (mainly Geobacter spp.), and Burkholderia spp. involved in cometabolic dechlorination processes, together with methylotrophs (Methylobacter spp.). The deep sequencing results suggest that the indigenous dechlorinating consortia present at the investigated sites can be used as a starting point for future bioremediation activities by stimulating their anaerobic and aerobic chloroethene degradation capacities (i.e. reductive dechlorination, and metabolic and cometabolic oxidation).

  17. Endosymbiont dominated bacterial communities in a dwarf spider.

    Directory of Open Access Journals (Sweden)

    Bram Vanthournout

    Full Text Available The microbial community of spiders is little known, with previous studies focussing primarily on the medical importance of spiders as vectors of pathogenic bacteria and on the screening of known cytoplasmic endosymbiont bacteria. These screening studies have been performed by means of specific primers that only amplify a selective set of endosymbionts, hampering the detection of unreported species in spiders. In order to have a more complete overview of the bacterial species that can be present in spiders, we applied a combination of a cloning assay, DGGE profiling and high-throughput sequencing on multiple individuals of the dwarf spider Oedothorax gibbosus. This revealed a co-infection of at least three known (Wolbachia, Rickettsia and Cardinium and the detection of a previously unreported endosymbiont bacterium (Rhabdochlamydia in spiders. 16S rRNA gene sequences of Rhabdochlamydia matched closely with those of Candidatus R. porcellionis, which is currently only reported as a pathogen from a woodlouse and with Candidatus R. crassificans reported from a cockroach. Remarkably, this bacterium appears to present in very high proportions in one of the two populations only, with all investigated females being infected. We also recovered Acinetobacter in high abundance in one individual. In total, more than 99% of approximately 4.5M high-throughput sequencing reads were restricted to these five bacterial species. In contrast to previously reported screening studies of terrestrial arthropods, our results suggest that the bacterial communities in this spider species are dominated by, or even restricted to endosymbiont bacteria. Given the high prevalence of endosymbiont species in spiders, this bacterial community pattern could be widespread in the Araneae order.

  18. Bacterial endophytic communities in the grapevine depend on pest management.

    Science.gov (United States)

    Campisano, Andrea; Antonielli, Livio; Pancher, Michael; Yousaf, Sohail; Pindo, Massimo; Pertot, Ilaria

    2014-01-01

    Microbial plant endophytes are receiving ever-increasing attention as a result of compelling evidence regarding functional interaction with the host plant. Microbial communities in plants were recently reported to be influenced by numerous environmental and anthropogenic factors, including soil and pest management. In this study we used automated ribosomal intergenic spacer analysis (ARISA) fingerprinting and pyrosequencing of 16S rDNA to assess the effect of organic production and integrated pest management (IPM) on bacterial endophytic communities in two widespread grapevines cultivars (Merlot and Chardonnay). High levels of the dominant Ralstonia, Burkholderia and Pseudomonas genera were detected in all the samples We found differences in the composition of endophytic communities in grapevines cultivated using organic production and IPM. Operational taxonomic units (OTUs) assigned to the Mesorhizobium, Caulobacter and Staphylococcus genera were relatively more abundant in plants from organic vineyards, while Ralstonia, Burkholderia and Stenotrophomonas were more abundant in grapevines from IPM vineyards. Minor differences in bacterial endophytic communities were also found in the grapevines of the two cultivars.

  19. Glyphosate effects on soil rhizosphere-associated bacterial communities.

    Science.gov (United States)

    Newman, Molli M; Hoilett, Nigel; Lorenz, Nicola; Dick, Richard P; Liles, Mark R; Ramsier, Cliff; Kloepper, Joseph W

    2016-02-01

    Glyphosate is one of the most widely used herbicides in agriculture with predictions that 1.35 million metric tons will be used annually by 2017. With the advent of glyphosate tolerant (GT) cropping more than 10 years ago, there is now concern for non-target effects on soil microbial communities that has potential to negatively affect soil functions, plant health, and crop productivity. Although extensive research has been done on short-term response to glyphosate, relatively little information is available on long-term effects. Therefore, the overall objective was to investigate shifts in the rhizosphere bacterial community following long-term glyphosate application on GT corn and soybean in the greenhouse. In this study, rhizosphere soil was sampled from rhizoboxes following 4 growth periods, and bacterial community composition was compared between glyphosate treated and untreated rhizospheres using next-generation barcoded sequencing. In the presence or absence of glyphosate, corn and soybean rhizospheres were dominated by members of the phyla Proteobacteria, Acidobacteria, and Actinobacteria. Proteobacteria (particularly gammaproteobacteria) increased in relative abundance for both crops following glyphosate exposure, and the relative abundance of Acidobacteria decreased in response to glyphosate exposure. Given that some members of the Acidobacteria are involved in biogeochemical processes, a decrease in their abundance could lead to significant changes in nutrient status of the rhizosphere. Our results also highlight the need for applying culture-independent approaches in studying the effects of pesticides on the soil and rhizosphere microbial community.

  20. Responses of bacterial communities in seagrass sediments to polycyclic aromatic hydrocarbon-induced stress.

    Science.gov (United States)

    Ling, Juan; Jiang, Yu-Feng; Wang, You-Shao; Dong, Jun-De; Zhang, Yan-Ying; Zhang, Yuan-Zhou

    2015-10-01

    The seagrass meadows represent one of the highest productive marine ecosystems, and have the great ecological and economic values. Bacteria play important roles in energy flow, nutrient biogeochemical cycle and organic matter turnover in marine ecosystems. The seagrass meadows are experiencing a world-wide decline, and the pollution is one of the main reasons. Polycyclic aromatic hydrocarbons (PAHs) are thought be the most common. Bacterial communities in the seagrass Enhalus acoroides sediments were analyzed for their responses to PAHs induced stress. Dynamics of the composition and abundance of bacterial communities during the incubation period were explored by polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) and quantitative PCR assay, respectively. Both the incubation time and the PAHs concentration played significant roles in determining the microbial diversity, as reflected by the detected DGGE bands. Analysis of sequencing results showed that the Gammaproteobacteria were dominant in the seagrass sediments, accounting for 61.29 % of all sequenced bands. As PAHs could be used as carbon source for microbes, the species and diversity of the PAH-added groups (group 1 and 2) presented higher Shannon Wiener index than the group CK, with the group 1 showing the highest values almost through the same incubation stage. Patterns of changes in abundance of the three groups over the experiment time were quite different. The bacterial abundance of the group CK and group 2 decreased sharply from 4.15 × 10(11) and 6.37 × 10(11) to 1.17 × 10(10) and 1.07 × 10(10) copies/g from day 2 to 35, respectively while bacterial abundance of group 1 increased significantly from 1.59 × 10(11) copies/g at day 2 to 8.80 × 10(11) copies/g at day 7, and then dropped from day 14 till the end of the incubation. Statistical analysis (UMPGA and PCA) results suggested that the bacterial community were more likely to be affected by the incubation time than the

  1. Temporal and Spatial Variations of Bacterial and Faunal Communities Associated with Deep-Sea Wood Falls

    Science.gov (United States)

    Bienhold, Christina; Wenzhöfer, Frank; Rossel, Pamela E.; Boetius, Antje

    2017-01-01

    Sinking of large organic food falls i.e. kelp, wood and whale carcasses to the oligotrophic deep-sea floor promotes the establishment of locally highly productive and diverse ecosystems, often with specifically adapted benthic communities. However, the fragmented spatial distribution and small area poses challenges for the dispersal of their microbial and faunal communities. Our study focused on the temporal dynamics and spatial distributions of sunken wood bacterial communities, which were deployed in the vicinity of different cold seeps in the Eastern Mediterranean and the Norwegian deep-seas. By combining fingerprinting of bacterial communities by ARISA and 454 sequencing with in situ and ex situ biogeochemical measurements, we show that sunken wood logs have a locally confined long-term impact (> 3y) on the sediment geochemistry and community structure. We confirm previous hypotheses of different successional stages in wood degradation including a sulphophilic one, attracting chemosynthetic fauna from nearby seep systems. Wood experiments deployed at similar water depths (1100–1700 m), but in hydrographically different oceanic regions harbored different wood-boring bivalves, opportunistic faunal communities, and chemosynthetic species. Similarly, bacterial communities on sunken wood logs were more similar within one geographic region than between different seas. Diverse sulphate-reducing bacteria of the Deltaproteobacteria, the sulphide-oxidizing bacteria Sulfurovum as well as members of the Acidimicrobiia and Bacteroidia dominated the wood falls in the Eastern Mediterranean, while Alphaproteobacteria and Flavobacteriia colonized the Norwegian Sea wood logs. Fauna and bacterial wood-associated communities changed between 1 to 3 years of immersion, with sulphate-reducers and sulphide-oxidizers increasing in proportion, and putative cellulose degraders decreasing with time. Only 6% of all bacterial genera, comprising the core community, were found at any time

  2. Wheat and Rice Growth Stages and Fertilization Regimes Alter Soil Bacterial Community Structure, but Not Diversity

    Directory of Open Access Journals (Sweden)

    Jichen Wang

    2016-08-01

    Full Text Available Maintaining soil fertility and the microbial communities that determine fertility is critical to sustainable agricultural strategies, and the use of different organic fertilizer regimes represents an important practice in attempts to preserve soil quality. However, little is known about the dynamic response of bacterial communities to fertilization regimes across crop growth stages. In this study, we examined microbial community structure and diversity across eight representative growth stages of wheat-rice rotation under four different fertilization treatments: no nitrogen fertilizer (NNF, chemical fertilizer (CF, organic-inorganic mixed fertilizer (OIMF and organic fertilizer (OF. Quantitative PCR (QPCR and high-throughput sequencing of bacterial 16S rRNA gene fragments revealed that growth stage as the best predictor of bacterial community abundance and structure. Additionally, bacterial community compositions differed between wheat and rice rotations. Relative to soils under wheat rotation, soils under rice rotation contained higher relative abundances (RA of anaerobic and mesophilic microbes and lower RA of aerophilic microbes. With respect to fertilization regime, NNF plots had a higher abundance of nitrogen–fixing Cyanobacteria. OIMF had a lower abundance of ammonia-oxidizing Thaumarchaeota compared with CF. Application of chemical fertilizers (CF and OIMF treatments significantly increased the abundance of some generally oligotrophic bacteria such those belonging to the Acidobacteria, while more copiotrophic of the phylum Proteobacteria increased with organic fertilizer application. A high correlation coefficient was found when comparing RA of Acidobacteria based upon QPCR versus sequence analysis, yet poor correlations were found for the Alpha- and Beta- Proteobacteria, highlighting the caution required when interpreting these molecular data. In total, crop, fertilization scheme and plant developmental stage all influenced soil

  3. Wheat and Rice Growth Stages and Fertilization Regimes Alter Soil Bacterial Community Structure, But Not Diversity.

    Science.gov (United States)

    Wang, Jichen; Xue, Chao; Song, Yang; Wang, Lei; Huang, Qiwei; Shen, Qirong

    2016-01-01

    Maintaining soil fertility and the microbial communities that determine fertility is critical to sustainable agricultural strategies, and the use of different organic fertilizer (OF) regimes represents an important practice in attempts to preserve soil quality. However, little is known about the dynamic response of bacterial communities to fertilization regimes across crop growth stages. In this study, we examined microbial community structure and diversity across eight representative growth stages of wheat-rice rotation under four different fertilization treatments: no nitrogen fertilizer (NNF), chemical fertilizer (CF), organic-inorganic mixed fertilizer (OIMF), and OF. Quantitative PCR (QPCR) and high-throughput sequencing of bacterial 16S rRNA gene fragments revealed that growth stage as the best predictor of bacterial community abundance and structure. Additionally, bacterial community compositions differed between wheat and rice rotations. Relative to soils under wheat rotation, soils under rice rotation contained higher relative abundances (RA) of anaerobic and mesophilic microbes and lower RA of aerophilic microbes. With respect to fertilization regime, NNF plots had a higher abundance of nitrogen-fixing Cyanobacteria. OIMF had a lower abundance of ammonia-oxidizing Thaumarchaeota compared with CF. Application of chemical fertilizers (CF and OIMF treatments) significantly increased the abundance of some generally oligotrophic bacteria such those belonging to the Acidobacteria, while more copiotrophic of the phylum Proteobacteria increased with OF application. A high correlation coefficient was found when comparing RA of Acidobacteria based upon QPCR vs. sequence analysis, yet poor correlations were found for the α- and β- Proteobacteria, highlighting the caution required when interpreting these molecular data. In total, crop, fertilization scheme and plant developmental stage all influenced soil microbial community structure, but not total levels of alpha

  4. Bacterial Communities Associated with Different Anthurium andraeanum L. Plant Tissues

    Science.gov (United States)

    Sarria-Guzmán, Yohanna; Chávez-Romero, Yosef; Gómez-Acata, Selene; Montes-Molina, Joaquín Adolfo; Morales-Salazar, Eleacin; Dendooven, Luc; Navarro-Noya, Yendi E.

    2016-01-01

    Plant-associated microbes have specific beneficial functions and are considered key drivers for plant health. The bacterial community structure of healthy Anthurium andraeanum L. plants was studied by 16S rRNA gene pyrosequencing associated with different plant parts and the rhizosphere. A limited number of bacterial taxa, i.e., Sinorhizobium, Fimbriimonadales, and Gammaproteobacteria HTCC2089 were enriched in the A. andraeanum rhizosphere. Endophytes were more diverse in the roots than in the shoots, whereas all shoot endophytes were found in the roots. Streptomyces, Flavobacterium succinicans, and Asteroleplasma were only found in the roots, Variovorax paradoxus only in the stem, and Fimbriimonas 97%-OTUs only in the spathe, i.e., considered specialists, while Brevibacillus, Lachnospiraceae, Pseudomonas, and Pseudomonas pseudoalcaligenes were generalist and colonized all plant parts. The anaerobic diazotrophic bacteria Lachnospiraceae, Clostridium sp., and Clostridium bifermentans colonized the shoot system. Phylotypes belonging to Pseudomonas were detected in the rhizosphere and in the substrate (an equiproportional mixture of soil, cow manure, and peat), and dominated the endosphere. Pseudomonas included nine 97%-OTUs with different patterns of distribution and phylogenetic affiliations with different species. P. pseudoalcaligenes and P. putida dominated the shoots, but were also found in the roots and rhizosphere. P. fluorescens was present in all plant parts, while P. resinovorans, P. denitrificans, P. aeruginosa, and P. stutzeri were only detected in the substrate and rhizosphere. The composition of plant-associated bacterial communities is generally considered to be suitable as an indicator of plant health. PMID:27524305

  5. Bacterial Communities of Three Saline Meromictic Lakes in Central Asia.

    Science.gov (United States)

    Baatar, Bayanmunkh; Chiang, Pei-Wen; Rogozin, Denis Yu; Wu, Yu-Ting; Tseng, Ching-Hung; Yang, Cheng-Yu; Chiu, Hsiu-Hui; Oyuntsetseg, Bolormaa; Degermendzhy, Andrey G; Tang, Sen-Lin

    2016-01-01

    Meromictic lakes located in landlocked steppes of central Asia (~2500 km inland) have unique geophysiochemical characteristics compared to other meromictic lakes. To characterize their bacteria and elucidate relationships between those bacteria and surrounding environments, water samples were collected from three saline meromictic lakes (Lakes Shira, Shunet and Oigon) in the border between Siberia and the West Mongolia, near the center of Asia. Based on in-depth tag pyrosequencing, bacterial communities were highly variable and dissimilar among lakes and between oxic and anoxic layers within individual lakes. Proteobacteria, Bacteroidetes, Cyanobacteria, Actinobacteria and Firmicutes were the most abundant phyla, whereas three genera of purple sulfur bacteria (a novel genus, Thiocapsa and Halochromatium) were predominant bacterial components in the anoxic layer of Lake Shira (~20.6% of relative abundance), Lake Shunet (~27.1%) and Lake Oigon (~9.25%), respectively. However, few known green sulfur bacteria were detected. Notably, 3.94% of all sequencing reads were classified into 19 candidate divisions, which was especially high (23.12%) in the anoxic layer of Lake Shunet. Furthermore, several hydro-parameters (temperature, pH, dissolved oxygen, H2S and salinity) were associated (P< 0.05) with variations in dominant bacterial groups. In conclusion, based on highly variable bacterial composition in water layers or lakes, we inferred that the meromictic ecosystem was characterized by high diversity and heterogenous niches.

  6. Bacterial communities in batch and continuous-flow wetlands treating the herbicide S-metolachlor

    Energy Technology Data Exchange (ETDEWEB)

    Elsayed, O.F. [Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS), UMR 7517 University of Strasbourg/ENGEES/CNRS (France); Génétique Moléculaire, Génomique, Microbiologie (GMGM), UMR 7156 University of Strasbourg/CNRS (France); Maillard, E. [Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS), UMR 7517 University of Strasbourg/ENGEES/CNRS (France); Vuilleumier, S. [Génétique Moléculaire, Génomique, Microbiologie (GMGM), UMR 7156 University of Strasbourg/CNRS (France); Imfeld, G., E-mail: imfeld@unistra.fr [Laboratory of Hydrology and Geochemistry of Strasbourg (LHyGeS), UMR 7517 University of Strasbourg/ENGEES/CNRS (France)

    2014-11-15

    Knowledge of wetland bacterial communities in the context of pesticide contamination and hydrological regime is scarce. We investigated the bacterial composition in constructed wetlands receiving Mercantor Gold{sup ®} contaminated water (960 g L{sup −1} of the herbicide S-metolachlor, > 80% of the S-enantiomer) operated under continuous-flow or batch modes to evaluate the impact of the hydraulic regime. In the continuous-flow wetland, S-metolachlor mass removal was > 40%, whereas in the batch wetland, almost complete removal of S-metolachlor (93–97%) was observed. Detection of ethanesulfonic and oxanilic acid degradation products further indicated S-metolachlor biodegradation in the two wetlands. The dominant bacterial populations were characterised by terminal restriction fragment length polymorphism (T-RFLP) and 454 pyrosequencing. The bacterial profiles evolved during the first 35 days of the experiment, starting from a composition similar to that of inlet water, with the use of nitrate and to a lesser extent sulphate and manganese as terminal electron acceptors for microbial metabolism. Proteobacteria were the most abundant phylum, with Beta-, Alpha- and Gammaproteobacteria representing 26%, 19% and 17% respectively of total bacterial abundance. Bacterial composition in wetland water changed gradually over time in continuous-flow wetland and more abruptly in the batch wetland. Differences in overall bacterial water structure in the two systems were modest but significant (p = 0.008), and S-metolachlor, nitrate, and total inorganic carbon concentrations correlated with changes in the bacterial profiles. Together, the results highlight that bacterial composition profiles and their dynamics may be used as bioindicators of herbicide exposure and hydraulic disturbances in wetland systems. - Highlights: • We evaluated the bacterial composition in wetlands treating S-metolachlor • Hydraulic regime impacted biogeochemical processes and S-metolachlor removal

  7. Temporal relationships exist between cecum, ileum and litter bacterial microbiomes in a commercial turkey flock, and subtherapeutic penicillin treatment impacts ileum bacterial community establishment

    Directory of Open Access Journals (Sweden)

    Jessica L Danzeisen

    2015-11-01

    Full Text Available Gut health is paramount for commercial poultry production, and improved methods to assess gut health are critically needed to better understand how the avian gastrointestinal tract matures over time. One important aspect of gut health is the totality of bacterial populations inhabiting different sites of the avian gastrointestinal tract, and associations of these populations with the poultry farm environment, since these bacteria are thought to drive metabolism and prime the developing host immune system. In this study, a single flock of commercial turkeys was followed over the course of twelve weeks to examine bacterial microbiome inhabiting the ceca, ileum, and corresponding poultry litter. Furthermore, the effects of low-dose, growth-promoting penicillin treatment (50 g/ton in feed on the ileum bacterial microbiome were also examined during the early brood period. The cecum and ileum bacterial communities of turkeys were distinct, yet shifted in parallel to one another over time during bird maturation. Corresponding poultry litter was also distinct yet more closely represented the ileal bacterial populations than cecal bacterial populations, and also changed parallel to ileum bacterial populations over time. Penicillin applied at low dose in feed significantly enhanced early weight gain in commercial poults, and this correlated with predictable shifts in the ileum bacterial populations in control versus treatment groups. Overall, this study identified the dynamics of the turkey gastrointestinal microbiome during development, correlations between bacterial populations in the gastrointestinal tract and the litter environment, and the impact of low-dose penicillin on modulation of bacterial communities in the ileum. Such modulations provide a target for alternatives to low-dose antibiotics.

  8. Bacterial communities vary between sinuses in chronic rhinosinusitis patients

    Directory of Open Access Journals (Sweden)

    Tom V Joss

    2016-01-01

    Full Text Available Chronic rhinosinusitis (CRS is a common and potentially debilitating disease characterized by inflammation of the sinus mucosa for longer than 12 weeks. Bacterial colonization of the sinuses and its role in the pathogenesis of this disease is an ongoing area of research. Recent advances in culture-independent molecular techniques for bacterial identification have the potential to provide a more accurate and complete assessment of the sinus microbiome, however there is little concordance in results between studies, possibly due to differences in the sampling location and techniques. This study aimed to determine whether the microbial communities from one sinus could be considered representative of all sinuses, and examine differences between two commonly used methods for sample collection, swabs and tissue biopsies. High-throughput DNA sequencing of the bacterial 16S rRNA gene was applied to both swab and tissue samples from multiple sinuses of 19 patients undergoing surgery for treatment of CRS. Results from swabs and tissue biopsies showed a high degree of similarity, indicating that swabbing is sufficient to recover the microbial community from the sinuses. Microbial communities from different sinuses within individual patients differed to varying degrees, demonstrating that it is possible for distinct microbiomes to exist simultaneously in different sinuses of the same patient. The sequencing results correlated well with culture-based pathogen identification conducted in parallel, although the culturing missed many species detected by sequencing. This finding has implications for future research into the sinus microbiome, which should take this heterogeneity into account by sampling patients from more than one sinus. It may also be of clinical importance, as determination of antibiotic sensitivities using culture of a swab from a single sinus could miss relevant pathogens that are localized to another sinus.

  9. Viral impacts on bacterial communities in Arctic cryoconite

    DEFF Research Database (Denmark)

    Bellas, Christopher M.; Anesio, Alexandre M.; Telling, Jon;

    2013-01-01

    The surfaces of glaciers are extreme ecosystems dominated by microbial communities. Viruses are found in abundance here, with a high frequency of bacteria displaying visible virus infection. In this study, viral and bacterial production was measured in Arctic cryoconite holes to address the control......, virus production was found to be high, up to 8.98 x 10(7) virus like particles g(-1) dry wt. h(-1) were produced, which is comparable to virus production in sediments around the globe. The virus burst size was assessed by transmission electron microscopy and found to be amongst the lowest recorded...

  10. Plant community and soil chemistry responses to long-term nitrogen inputs drive changes in alpine bacterial communities.

    Science.gov (United States)

    Yuan, Xia; Knelman, Joseph E; Gasarch, Eve; Wang, Deli; Nemergut, Diana R; Seastedt, Timothy R

    2016-06-01

    Bacterial community composition and diversity was studied in alpine tundra soils across a plant species and moisture gradient in 20 y-old experimental plots with four nutrient addition regimes (control, nitrogen (N), phosphorus (P) or both nutrients). Different bacterial communities inhabited different alpine meadows, reflecting differences in moisture, nutrients and plant species. Bacterial community alpha-diversity metrics were strongly correlated with plant richness and the production of forbs. After meadow type, N addition proved the strongest determinant of bacterial community structure. Structural Equation Modeling demonstrated that tundra bacterial community responses to N addition occur via changes in plant community composition and soil pH resulting from N inputs, thus disentangling the influence of direct (resource availability) vs. indirect (changes in plant community structure and soil pH) N effects that have remained unexplored in past work examining bacterial responses to long-term N inputs in these vulnerable environments. Across meadow types, the relative influence of these indirect N effects on bacterial community structure varied. In explicitly evaluating the relative importance of direct and indirect effects of long-term N addition on bacterial communities, this study provides new mechanistic understandings of the interaction between plant and microbial community responses to N inputs amidst environmental change.

  11. Experimental manipulations of microbial food web interactions in a humic lake: shifting biological drivers of bacterial community structure.

    Science.gov (United States)

    Kent, Angela D; Jones, Stuart E; Lauster, George H; Graham, James M; Newton, Ryan J; McMahon, Katherine D

    2006-08-01

    A previous multiyear study observed correlations between bacterioplankton community composition (BCC) and abundance and the dynamics of phytoplankton populations and bacterivorous grazers in a humic lake. These observations generated hypotheses about the importance of trophic interactions (both top-down and bottom-up) for structuring bacterial communities in this lake, which were tested using two multifactorial food web manipulation experiments that separately manipulated the intensity of grazing and the composition of the phytoplankton community. Our results, combined with field observations, suggest that a hierarchy of drivers structures bacterial communities in this lake. While other studies have noted links between aggregate measures of phytoplankton and bacterioplankton communities, we demonstrate here correlations between succession of phytoplankton assemblages and BCC as assessed by automated ribosomal intergenic spacer analysis (ARISA). We used a novel approach linking community ARISA data to phylogenetic assignments from sequence analysis of 16S rRNA gene clone libraries to examine the responses of specific bacterial phylotypes to the experimental manipulations. The synchronous dynamics of these populations suggests that primary producers may mediate BCC and diversity through labile organic matter production, which evolves in quality and quantity during phytoplankton succession. Superimposed on this resource-mediated control of BCC are brief periods of intense bacterivory that impact bacterial abundance and composition.

  12. Phylogenetic comparisons of bacterial communities from serpentine and nonserpentine soils.

    Science.gov (United States)

    Oline, David K

    2006-11-01

    I present the results of a culture-independent survey of soil bacterial communities from serpentine soils and adjacent nonserpentine comparator soils using a variety of newly developed phylogenetically based statistical tools. The study design included site-based replication of the serpentine-to-nonserpentine community comparison over a regional scale ( approximately 100 km) in Northern California and Southern Oregon by producing 16S rRNA clone libraries from pairs of samples taken on either side of the serepentine-nonserpentine edaphic boundary at three geographical sites. At the division level, the serpentine and nonserpentine communities were similar to each other and to previous data from forest soils. Comparisons of both richness and Shannon diversity produced no significant differences between any of the libraries, but the vast majority of phylogenetically based tests were significant, even with only 50 sequences per library. These results suggest that most samples were distinct, consisting of a collection of lineages generally not found in other samples. The pattern of results showed that serpentine communities tended to be more similar to each other than they were to nonserpentine communities, and these differences were at a lower taxonomic scale. Comparisons of two nonserpentine communities generally showed differences, and some results suggest that the geographical site may control community composition as well. These results show the power of phylogenetic tests to discern differences between 16S rRNA libraries compared to tests that discard DNA data to bin sequences into operational taxonomic units, and they stress the importance of replication at larger scales for inferences regarding microbial biogeography.

  13. Predictors of inferior outcome in community acquired bacterial meningitis.

    Science.gov (United States)

    Streharova, A; Krcmery, V; Kisac, P; Kalavsky, E; Holeckova, K; Lesnakova, A; Luzinsky, L; Adamkovicova, E; Pavlikova, Z; Spilakova, N; Kacunova, B; Dovalova, V; Wiczmandyova, O; Spanik, S; Liskova, A; Chovancova, D; Kovac, M; Ondrusova, A; Bauer, F; Benca, J; Rudinsky, B; Sramka, M; Kralova, J; Krsakova, J; Krumpolcova, M; Findova, L; Svabova, V; Sladeckova, V; Seckova, S; Saniova, J; Pavlicova, B; Taziarova, M; Bukovinova, P; Kolenova, A; Horvathova, E; Hvizdak, F; Luzica, R; Rolnikova, B; Bocakova, A; Grey, E; Bielova, M; Huttova, M; Sabo, I; Jalili, N

    2007-11-01

    The aim of this study was to assess mortality and sequellae within cases from Nationwide survey of community acquired meningitis and identify risk factors for inferior outcome. Risk factors such as underlying disease (diabetes mellitus, cancer, trauma, neonatal age, splenectomy, alcoholism, sepsis, other infections), etiology, clinical symptoms and outcome (death, improvement and cured after modifications of ATB therapy, cured without change of therapy, cured with neurologic sequellae) were recorded and analysed with univariate analysis (chi2 or t test for trends, CDC Atlanta 2004). Analysing risk factors for inferior outcome (death or cured with neurologic sequellae), we compared patients who died or survived with neurologic sequellae to all patients with community acquired bacterial meningitis. Univariate analysis showed that trauma (palcohol abuse (pdiabetes, S. aureus (pdiabetes mellitus (palcoholism (palcohol abuse (p<0.05), craniocerbral trauma (p<0.05) and less common in meningitis with pneumococcal etiology (p<0.05).

  14. [Prolonged cultivation of an anaerobic bacterial community producing hydrogen].

    Science.gov (United States)

    Belokopytov, B F; Ryzhmanova, Ia V; Laurinavichius, K S; Shcherbakova, V A

    2012-01-01

    This paper studies various methods of long-term maintenance of the process of hydrogen evolution during the growth of an aerobic bacterial community on a starch-containing environment. When cultured in separable trip fermentation mode for 72 days, from 0.10 to 0.23 H2/l of medium/day was formed. The regime of regular reseeding lasted more than 100 days, forming an average of 0.81 1 H2/l of medium/day. The advantages and disadvantages of different methods of microbial hydrogen production during a dark starch fermentation process are presented. From the obtained H2 forming microbial communities, we isolated an anaerobic spore-forming bacterium (strain BF). Phylogenetic analysis of the 16S RNA gene sequence of the new strain showed that according to its genotype it belongs to the Clostridium butyricum species.

  15. Spatiotemporal development of the bacterial community in a tubular longitudinal microbial fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Rae; Premier, Giuliano C. [Glamorgan Univ., Pontypridd (United Kingdom). Faculty of Advnaced Technology; Beecroft, Nelli J.; Avignone-Rossa, Claudio [Surrey Univ., Guildford (United Kingdom). Microbial Sciences; Varcoe, John R.; Slade, Robert C.T. [Surrey Univ., Guildford (United Kingdom). Chemical Sciences; Dinsdale, Richard M.; Guwy, Alan J. [Glamorgan Univ., Pontypridd (United Kingdom). Faculty of Health, Sport and Science; Thumser, Alfred [Surrey Univ., Guildford (United Kingdom). Biochemical Sciences

    2011-05-15

    The spatiotemporal development of a bacterial community in an exoelectrogenic biofilm was investigated in sucrose-fed longitudinal tubular microbial fuel cell reactors, consisting of two serially connected modules. The proportional changes in the microbial community composition were assessed by polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) and DNA sequencing in order to relate them to the performance and stability of the bioelectrochemical system. The reproducibility of duplicated reactors, evaluated by cluster analysis and Jaccard's coefficient, shows 80-90% similarity in species composition. Biofilm development through fed-batch start-up and subsequent stable continuous operation results in a population shift from {gamma}-Proteobacteria- and Bacteroidetes- to Firmicutes-dominated communities, with other diverse species present at much lower relative proportions. DGGE patterns were analysed by range-weighted richness (Rr) and Pareto-Lorenz evenness distribution curves to investigate the evolution of the bacterial community. The first modules shifted from dominance by species closely related to Bacteroides graminisolvens, Raoultella ornithinolytica and Klebsiella sp. BM21 at the start of continuous-mode operation to a community dominated by Paludibacter propionicigenes-, Lactococcus sp.-, Pantoea agglomerans- and Klebsiella oxytoca-related species with stable power generation (6.0 W/m{sup 3}) at day 97. Operational strategies that consider the dynamics of the population will provide useful parameters for evaluating system performance in the practical application of microbial fuel cells. (orig.)

  16. Discrete modelling of bacterial conjugation dynamics

    CERN Document Server

    Goni-Moreno, Angel

    2012-01-01

    In bacterial populations, cells are able to cooperate in order to yield complex collective functionalities. Interest in population-level cellular behaviour is increasing, due to both our expanding knowledge of the underlying biological principles, and the growing range of possible applications for engineered microbial consortia. Researchers in the field of synthetic biology - the application of engineering principles to living systems - have, for example, recently shown how useful decision-making circuits may be distributed across a bacterial population. The ability of cells to interact through small signalling molecules (a mechanism known as it quorum sensing) is the basis for the majority of existing engineered systems. However, horizontal gene transfer (or conjugation) offers the possibility of cells exchanging messages (using DNA) that are much more information-rich. The potential of engineering this conjugation mechanism to suit specific goals will guide future developments in this area. Motivated by a l...

  17. Analysis of bacterial chemotactic response using dynamic laser speckle

    Science.gov (United States)

    Murialdo, Silvia E.; Sendra, Gonzalo H.; Passoni, Lucía I.; Arizaga, Ricardo; Gonzalez, J. Froilán; Rabal, Héctor; Trivi, Marcelo

    2009-11-01

    Chemotaxis has a meaningful role in several fields, such as microbial physiology, medicine and biotechnology. We present a new application of dynamic laser speckle (or biospeckle) to detect different degrees of bacterial motility during chemotactic response experiments. Encouraging results showed different bacterial dynamic responses due to differences in the hardness of the support in the swarming plates. We compare this method to a conventional technique that uses white light. Both methods showed to be analogous and, in some cases, complementary. The results suggest that biospeckle processed images can be used as an alternative method to evaluate bacterial chemotactic response and can supply additional information about the bacterial motility in different areas of the swarm plate assay that might be useful for biological analysis.

  18. Phosphoproteome dynamics mediate revival of bacterial spores

    OpenAIRE

    2015-01-01

    Background Bacterial spores can remain dormant for decades, yet harbor the exceptional capacity to rapidly resume metabolic activity and recommence life. Although germinants and their corresponding receptors have been known for more than 30 years, the molecular events underlying this remarkable cellular transition from dormancy to full metabolic activity are only partially defined. Results Here, we examined whether protein phospho-modifications occur during germination, the first step of exit...

  19. Characterization of Olkiluoto bacterial and archaeal communities by 454 pyrosequencing

    Energy Technology Data Exchange (ETDEWEB)

    Bomberg, M.; Nyyssoenen, M.; Itaevaara, M. [VTT Technical Research Centre of Finland, Espoo (Finland)

    2012-06-15

    Recent advancement in sequencing technologies, 'Next Generation Sequencing', such as FLX 454 pyrosequencing has made it possible to obtain large amounts of sequence data where previously only few sequences could be obtained. This technique is especially useful for the study of community composition of uncultured microbial populations in environmental samples. In this project, the FLX 454 pyrosequencing technique was used to obtain up to 20 000 16S rRNA sequences or 10 000 mRNA sequences from each sample for identification of the microbial species composition as well as for comparison of the microbial communities between different samples. This project focused on the characterization of active microbial communities in the groundwater at the final disposal site of high radioactive wastes in Olkiluoto by FLX 454 pyrosequencing of the bacterial and archaeal ribosomal RNA as well as of the mRNA transcripts of the dsrB gene and mcrA gene of sulphate reducing bacteria and methanogenic archaea, respectively. Specific emphasis was put on studying the relationship of active and latent sulphate reducers and methanogens by qPCR due to their important roles in deep geobiochemical processes connected to copper corrosion. Seven packered boreholes were sampled anaerobically in Olkiluoto during 2009-2010. Groundwater was pumped from specific depths and the microbial cells werecollected by filtration on a membrane. Active microbial communities were studied based on RNA extracted from the membranes and translated to copy DNA, followed by sequencing by 454 Tag pyrosequencing. A total of 27 different bacterial and 17 archaeal taxonomic groups were detected.

  20. The structure and functions of bacterial communities in an agrocenosis

    Science.gov (United States)

    Dobrovol'skaya, T. G.; Khusnetdinova, K. A.; Manucharova, N. A.; Balabko, P. N.

    2016-01-01

    The most significant factor responsible for the specific taxonomic composition of the bacterial communities in the agrocenosis studied was found to be a part or organ of plants (leaves, flowers, roots, fruits). A stage of plant ontogeny also determines changes of taxa. In the course of the plant growth, eccrisotrophic bacteria are replaced by hydrolytic ones that belong to the group of cellulose-decomposing bacteria. Representatives of the proteobacteria genera that are difficult to identify by phenotypic methods were determined using molecular-biological methods. They were revealed only on oat leaves in the moist period. As the vetch-oat mixture was fertilized with BIOUD-1 (foliar application) in the phyllosphere of both oats and vetch, on all the plant organs, representatives of the Rhodococcus genus as dominants were isolated. This fact was related to the capability of bacteria to decompose the complex aromatic compounds that are ingredients of the fertilizers applied. Another positive effect for plants of the bacterial communities forming in agrocenoses is the presence of bacteria that are antagonists of phytopathogenic bacteria. Thus, in agrocenoses, some interrelationships promoting the growth and reproduction of plants are formed in crop plants and bacteria.

  1. Pervasive Selection for Cooperative Cross-Feeding in Bacterial Communities.

    Directory of Open Access Journals (Sweden)

    Sebastian Germerodt

    2016-06-01

    Full Text Available Bacterial communities are taxonomically highly diverse, yet the mechanisms that maintain this diversity remain poorly understood. We hypothesized that an obligate and mutual exchange of metabolites, as is very common among bacterial cells, could stabilize different genotypes within microbial communities. To test this, we developed a cellular automaton to model interactions among six empirically characterized genotypes that differ in their ability and propensity to produce amino acids. By systematically varying intrinsic (i.e. benefit-to-cost ratio and extrinsic parameters (i.e. metabolite diffusion level, environmental amino acid availability, we show that obligate cross-feeding of essential metabolites is selected for under a broad range of conditions. In spatially structured environments, positive assortment among cross-feeders resulted in the formation of cooperative clusters, which limited exploitation by non-producing auxotrophs, yet allowed them to persist at the clusters' periphery. Strikingly, cross-feeding helped to maintain genotypic diversity within populations, while amino acid supplementation to the environment decoupled obligate interactions and favored auxotrophic cells that saved amino acid production costs over metabolically autonomous prototrophs. Together, our results suggest that spatially structured environments and limited nutrient availabilities should facilitate the evolution of metabolic interactions, which can help to maintain genotypic diversity within natural microbial populations.

  2. COMPOSITION AND ACTIVITY OF BACTERIAL COMMUNITY OF COAL TAILING

    Directory of Open Access Journals (Sweden)

    Blayda I. A.

    2014-10-01

    Full Text Available The aim of this research was to study the composition of aboriginal bacterial community of coal tailing and to evaluate lixiviation activity of different groups of microorganisms belonging to this community. Using standard microbiological techniques we obtained and quantified the saving cultures of microorganisms from different physiological groups — filamentous fungi, heterotrophic microorganisms, mesophilic and thermophilic moderately acidophilic sulfur-oxidizing chemolithotrophic bacteria. Their oxidative activity was also established. The optimal results were achieved for collective leaching of rare and heavy metals into the solution under thermophilic conditions, which are favorable for the growth and activity of Sulfobacillus and under mesophilic conditions with the usage of ferrous iron as an energy substrate. This confirms the leading role of A. ferrooxidans in the processes of bacterial leaching of metals. Comparing our results with the available literature data we made a conclusion that the qualitative composition of acidophilic chemolithotrophic bacteria living in technogenic waste did not differ from the microbiocenose structure of natural sulfide ores.

  3. Bacterial and protist community changes during a phytoplankton bloom

    KAUST Repository

    Pearman, John K.

    2015-10-01

    The present study aims to characterize the change in the composition and structure of the bacterial and microzooplankton planktonic communities in relation to the phytoplankton community composition during a bloom. High-throughput amplicon sequencing of regions of the 16S and 18S rRNA gene was undertaken on samples collected during a 20 day (d) mesocosm experiment incorporating two different nutrient addition treatments [Nitrate and Phosphate (NPc) and Nitrate, Phosphate and Silicate (NPSc)] as well as a control. This approach allowed us to discriminate the changes in species composition across a broad range of phylogenetic groups using a common taxonomic level. Diatoms dominated the bloom in the NPSc treatment while dinoflagellates were the dominant phytoplankton in the control and NPc treatment. Network correlations highlighted significant interactions between OTUs within each treatment including changes in the composition of Paraphysomonas OTUs when the dominant Chaetoceros OTU switched. The microzooplankton community composition responded to changes in the phytoplankton composition while the prokaryotic community responded more to changes in ammonia concentration.

  4. Associations between bacterial communities of house dust and infant gut

    Energy Technology Data Exchange (ETDEWEB)

    Konya, T.; Koster, B. [Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto (Canada); Maughan, H. [Department of Cell and Systems Biology, University of Toronto (Canada); Escobar, M. [Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto (Canada); Azad, M.B. [Department of Pediatrics, University of Alberta (Canada); Guttman, D.S. [Department of Cell and Systems Biology, University of Toronto (Canada); Sears, M.R. [Department of Medicine, McMaster University (Canada); Becker, A.B. [University of Manitoba (Canada); Brook, J.R. [Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto (Canada); Environment Canada (Canada); Takaro, T.K. [Faculty of Health Science, Simon Fraser University (Canada); Kozyrskyj, A.L. [Department of Pediatrics, University of Alberta (Canada); Scott, J.A., E-mail: james.scott@utoronto.ca [Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto (Canada)

    2014-05-01

    The human gut is host to a diverse and abundant community of bacteria that influence health and disease susceptibility. This community develops in infancy, and its composition is strongly influenced by environmental factors, notably perinatal anthropogenic exposures such as delivery mode (Cesarean vs. vaginal) and feeding method (breast vs. formula); however, the built environment as a possible source of exposure has not been considered. Here we report on a preliminary investigation of the associations between bacteria in house dust and the nascent fecal microbiota from 20 subjects from the Canadian Healthy Infant Longitudinal Development (CHILD) Study using high-throughput sequence analysis of portions of the 16S rRNA gene. Despite significant differences between the dust and fecal microbiota revealed by Nonmetric Multidimensional Scaling (NMDS) analysis, permutation analysis confirmed that 14 bacterial OTUs representing the classes Actinobacteria (3), Bacilli (3), Clostridia (6) and Gammaproteobacteria (2) co-occurred at a significantly higher frequency in matched dust–stool pairs than in randomly permuted pairs, indicating an association between these dust and stool communities. These associations could indicate a role for the indoor environment in shaping the nascent gut microbiota, but future studies will be needed to confirm that our findings do not solely reflect a reverse pathway. Although pet ownership was strongly associated with the presence of certain genera in the dust for dogs (Agrococcus, Carnobacterium, Exiguobacterium, Herbaspirillum, Leifsonia and Neisseria) and cats (Escherichia), no clear patterns were observed in the NMDS-resolved stool community profiles as a function of pet ownership.

  5. Associations between bacterial communities of house dust and infant gut.

    Science.gov (United States)

    Konya, T; Koster, B; Maughan, H; Escobar, M; Azad, M B; Guttman, D S; Sears, M R; Becker, A B; Brook, J R; Takaro, T K; Kozyrskyj, A L; Scott, J A

    2014-05-01

    The human gut is host to a diverse and abundant community of bacteria that influence health and disease susceptibility. This community develops in infancy, and its composition is strongly influenced by environmental factors, notably perinatal anthropogenic exposures such as delivery mode (Cesarean vs. vaginal) and feeding method (breast vs. formula); however, the built environment as a possible source of exposure has not been considered. Here we report on a preliminary investigation of the associations between bacteria in house dust and the nascent fecal microbiota from 20 subjects from the Canadian Healthy Infant Longitudinal Development (CHILD) Study using high-throughput sequence analysis of portions of the 16S rRNA gene. Despite significant differences between the dust and fecal microbiota revealed by Nonmetric Multidimensional Scaling (NMDS) analysis, permutation analysis confirmed that 14 bacterial OTUs representing the classes Actinobacteria (3), Bacilli (3), Clostridia (6) and Gammaproteobacteria (2) co-occurred at a significantly higher frequency in matched dust-stool pairs than in randomly permuted pairs, indicating an association between these dust and stool communities. These associations could indicate a role for the indoor environment in shaping the nascent gut microbiota, but future studies will be needed to confirm that our findings do not solely reflect a reverse pathway. Although pet ownership was strongly associated with the presence of certain genera in the dust for dogs (Agrococcus, Carnobacterium, Exiguobacterium, Herbaspirillum, Leifsonia and Neisseria) and cats (Escherichia), no clear patterns were observed in the NMDS-resolved stool community profiles as a function of pet ownership.

  6. Unraveling the Molecular Mechanisms Underlying the Nasopharyngeal Bacterial Community Structure

    Directory of Open Access Journals (Sweden)

    Wouter A. A. de Steenhuijsen Piters

    2016-03-01

    Full Text Available The upper respiratory tract is colonized by a diverse array of commensal bacteria that harbor potential pathogens, such as Streptococcus pneumoniae. As long as the local microbial ecosystem—also called “microbiome”—is in balance, these potentially pathogenic bacterial residents cause no harm to the host. However, similar to macrobiological ecosystems, when the bacterial community structure gets perturbed, potential pathogens can overtake the niche and cause mild to severe infections. Recent studies using next-generation sequencing show that S. pneumoniae, as well as other potential pathogens, might be kept at bay by certain commensal bacteria, including Corynebacterium and Dolosigranulum spp. Bomar and colleagues are the first to explore a specific biological mechanism contributing to the antagonistic interaction between Corynebacterium accolens and S. pneumoniae in vitro [L. Bomar, S. D. Brugger, B. H. Yost, S. S. Davies, K. P. Lemon, mBio 7(1:e01725-15, 2016, doi:10.1128/mBio.01725-15]. The authors comprehensively show that C. accolens is capable of hydrolyzing host triacylglycerols into free fatty acids, which display antipneumococcal properties, suggesting that these bacteria might contribute to the containment of pneumococcus. This work exemplifies how molecular epidemiological findings can lay the foundation for mechanistic studies to elucidate the host-microbe and microbial interspecies interactions underlying the bacterial community structure. Next, translation of these results to an in vivo setting seems necessary to unveil the magnitude and importance of the observed effect in its natural, polymicrobial setting.

  7. Understanding the bacterial communities of hard cheese with blowing defect.

    Science.gov (United States)

    Bassi, Daniela; Puglisi, Edoardo; Cocconcelli, Pier Sandro

    2015-12-01

    The environment of hard cheese encourages bacterial synergies and competitions along the ripening process, which might lead in defects such as clostridial blowing. In this study, Denaturing Gradient Gel Electrophoresis (DGGE), a quantitative Clostridium tyrobutyricum PCR and next-generation Illumina-based sequencing of 16S rRNA gene were applied to study 83 Grana Padano spoiled samples. The aim was to investigate the community of clostridia involved in spoilage, the ecological relationships with the other members of the cheese microbiota, and the effect of lysozyme. Three main genera were dominant in the analysed cheeses, Lactobacillus, Streptococcus and Clostridium, and the assignment at the species level was of 94.3% of 4,477,326 high quality sequences. C. tyrobutyricum and C. butyricum were the most prevalent clostridia. Hierarchical clustering based on the abundance of bacterial genera, revealed three main clusters: one characterized by the highest proportion of Clostridium, a second where Lactobacillus was predominant and the last, dominated by Streptococcus thermophilus. Ecological relationships among species were found: cheeses characterized by an high abundance of S. thermophilus and L. rhamnosus were spoiled by C. tyrobutyricum while, when L. delbrueckii was the most abundant Lactobacillus, C. butyricum was the dominant spoiling species. Lysozyme also shaped the bacterial community, reducing C. tyrobutyricum in favour of C. butyricum. Moreover, this preservative increased the proportion of L. delbrueckii and obligate heterofermentative lactobacilli and lowered L. helveticus and non-starter species, such as L. rhamnosus and L. casei.

  8. Bacterial communities of surface mixed layer in the Pacific sector of the western Arctic Ocean during sea-ice melting.

    Directory of Open Access Journals (Sweden)

    Dukki Han

    Full Text Available From July to August 2010, the IBRV ARAON journeyed to the Pacific sector of the Arctic Ocean to monitor bacterial variation in Arctic summer surface-waters, and temperature, salinity, fluorescence, and nutrient concentrations were determined during the ice-melting season. Among the measured physicochemical parameters, we observed a strong negative correlation between temperature and salinity, and consequently hypothesized that the melting ice decreased water salinity. The bacterial community compositions of 15 samples, includicng seawater, sea-ice, and melting pond water, were determined using a pyrosequencing approach and were categorized into three habitats: (1 surface seawater, (2 ice core, and (3 melting pond. Analysis of these samples indicated the presence of local bacterial communities; a deduction that was further corroborated by the discovery of seawater- and ice-specific bacterial phylotypes. In all samples, the Alphaproteobacteria, Flavobacteria, and Gammaproteobacteria taxa composed the majority of the bacterial communities. Among these, Alphaproteobacteria was the most abundant and present in all samples, and its variation differed among the habitats studied. Linear regression analysis suggested that changes in salinity could affect the relative proportion of Alphaproteobacteria in the surface water. In addition, the species-sorting model was applied to evaluate the population dynamics and environmental heterogeneity in the bacterial communities of surface mixed layer in the Arctic Ocean during sea-ice melting.

  9. Bacterial communities of surface mixed layer in the Pacific sector of the western Arctic Ocean during sea-ice melting.

    Science.gov (United States)

    Han, Dukki; Kang, Ilnam; Ha, Ho Kyung; Kim, Hyun Cheol; Kim, Ok-Sun; Lee, Bang Yong; Cho, Jang-Cheon; Hur, Hor-Gil; Lee, Yoo Kyung

    2014-01-01

    From July to August 2010, the IBRV ARAON journeyed to the Pacific sector of the Arctic Ocean to monitor bacterial variation in Arctic summer surface-waters, and temperature, salinity, fluorescence, and nutrient concentrations were determined during the ice-melting season. Among the measured physicochemical parameters, we observed a strong negative correlation between temperature and salinity, and consequently hypothesized that the melting ice decreased water salinity. The bacterial community compositions of 15 samples, includicng seawater, sea-ice, and melting pond water, were determined using a pyrosequencing approach and were categorized into three habitats: (1) surface seawater, (2) ice core, and (3) melting pond. Analysis of these samples indicated the presence of local bacterial communities; a deduction that was further corroborated by the discovery of seawater- and ice-specific bacterial phylotypes. In all samples, the Alphaproteobacteria, Flavobacteria, and Gammaproteobacteria taxa composed the majority of the bacterial communities. Among these, Alphaproteobacteria was the most abundant and present in all samples, and its variation differed among the habitats studied. Linear regression analysis suggested that changes in salinity could affect the relative proportion of Alphaproteobacteria in the surface water. In addition, the species-sorting model was applied to evaluate the population dynamics and environmental heterogeneity in the bacterial communities of surface mixed layer in the Arctic Ocean during sea-ice melting.

  10. Responses of Baltic Sea ice and open-water natural bacterial communities to salinity change.

    Science.gov (United States)

    Kaartokallio, Hermanni; Laamanen, Maria; Sivonen, Kaarina

    2005-08-01

    To investigate the responses of Baltic Sea wintertime bacterial communities to changing salinity (5 to 26 practical salinity units), an experimental study was conducted. Bacterial communities of Baltic seawater and sea ice from a coastal site in southwest Finland were used in two batch culture experiments run for 17 or 18 days at 0 degrees C. Bacterial abundance, cell volume, and leucine and thymidine incorporation were measured during the experiments. The bacterial community structure was assessed using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified partial 16S rRNA genes with sequencing of DGGE bands from initial communities and communities of day 10 or 13 of the experiment. The sea ice-derived bacterial community was metabolically more active than the open-water community at the start of the experiment. Ice-derived bacterial communities were able to adapt to salinity change with smaller effects on physiology and community structure, whereas in the open-water bacterial communities, the bacterial cell volume evolution, bacterial abundance, and community structure responses indicated the presence of salinity stress. The closest relatives for all eight partial 16S rRNA gene sequences obtained were either organisms found in polar sea ice and other cold habitats or those found in summertime Baltic seawater. All sequences except one were associated with the alpha- and gamma-proteobacteria or the Cytophaga-Flavobacterium-Bacteroides group. The overall physiological and community structure responses were parallel in ice-derived and open-water bacterial assemblages, which points to a linkage between community structure and physiology. These results support previous assumptions of the role of salinity fluctuation as a major selective factor shaping the sea ice bacterial community structure.

  11. Phylogenetic diversity of dominant bacterial communities during bioremediation of crude oil-polluted soil

    Directory of Open Access Journals (Sweden)

    Eugene Thomas Cloete

    2011-08-01

    Full Text Available Bioremediation of hydrocarbon pollutants is advantageous owing to the cost-effectiveness of the technology and the ubiquity of hydrocarbon degrading microorganisms in the soil. Soil microbial diversity is affected by hydrocarbon perturbation thus selective enrichment of hydrocarbon utilizers occurs. Hydrocarbons interact with the soil matrix and soil microorganisms determining the fate of the contaminants relative to their chemical nature and microbial degradative capabilities respectively. Bacterial dynamics in crude oil-polluted soil microcosms undergoing bioremediation were investigated over a 42-day period. Four out of the five microcosms containing 4kg of pristine soil each were contaminated with 4% Arabian light crude oil. Three microcosms were amended with either 25g of NPK fertilizer, calcium ammonium nitrate or poultry droppings respectively while the fourth designated oil-contaminated control was unamended. The fifth microcosm had only pristine soil and was set up to ascertain indigenous bacterial community structure pre-contamination. Biostimulated soils were periodically tilled and watered. Hydrocarbon degradation was measured throughout the experimental period by gas chromatography. Gas chromatographic tracing of residual hydrocarbons in biostimulated soils showed marked attenuation of contaminants starting from the second (day 14 till the sixth (day 42 week after contamination whereas no significant reduction in hydrocarbon peaks was seen in the oil contaminated control soil throughout the 6-week experimental period. Molecular fingerprints of bacterial communities involved in aerobic biodegradation of crude oil hydrocarbons in biostimulated soils and controls were generated with DGGE using PCR-amplification of 16S rRNA gene obtained from extracted total soil community DNA. DGGE fingerprints demonstrated that NPK, calcium ammonium nitrate and poultry droppings selected different bacterial populations during the active phase of oil

  12. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest.

    Science.gov (United States)

    Kembel, Steven W; O'Connor, Timothy K; Arnold, Holly K; Hubbell, Stephen P; Wright, S Joseph; Green, Jessica L

    2014-09-23

    The phyllosphere--the aerial surfaces of plants, including leaves--is a ubiquitous global habitat that harbors diverse bacterial communities. Phyllosphere bacterial communities have the potential to influence plant biogeography and ecosystem function through their influence on the fitness and function of their hosts, but the host attributes that drive community assembly in the phyllosphere are poorly understood. In this study we used high-throughput sequencing to quantify bacterial community structure on the leaves of 57 tree species in a neotropical forest in Panama. We tested for relationships between bacterial communities on tree leaves and the functional traits, taxonomy, and phylogeny of their plant hosts. Bacterial communities on tropical tree leaves were diverse; leaves from individual trees were host to more than 400 bacterial taxa. Bacterial communities in the phyllosphere were dominated by a core microbiome of taxa including Actinobacteria, Alpha-, Beta-, and Gammaproteobacteria, and Sphingobacteria. Host attributes including plant taxonomic identity, phylogeny, growth and mortality rates, wood density, leaf mass per area, and leaf nitrogen and phosphorous concentrations were correlated with bacterial community structure on leaves. The relative abundances of several bacterial taxa were correlated with suites of host plant traits related to major axes of plant trait variation, including the leaf economics spectrum and the wood density-growth/mortality tradeoff. These correlations between phyllosphere bacterial diversity and host growth, mortality, and function suggest that incorporating information on plant-microbe associations will improve our ability to understand plant functional biogeography and the drivers of variation in plant and ecosystem function.

  13. Biogeographic Congruency among Bacterial Communities from Terrestrial Sulfidic Springs

    Directory of Open Access Journals (Sweden)

    Brendan eHeadd

    2014-09-01

    Full Text Available Terrestrial sulfidic springs support diverse microbial communities by serving as stable conduits for geochemically diverse and nutrient-rich subsurface waters. Microorganisms that colonize terrestrial springs likely originate from groundwater, but may also be sourced from the surface. As such, the biogeographic distribution of microbial communities inhabiting sulfidic springs should be controlled by a combination of spring geochemistry and surface and subsurface transport mechanisms, and not necessarily geographic proximity to other springs. We examined the bacterial diversity of seven springs to test the hypothesis that occurrence of taxonomically similar microbes, important to the sulfur cycle, at each spring is controlled by geochemistry. Complementary Sanger sequencing and 454 pyrosequencing of 16S rRNA genes retrieved five proteobacterial classes, and Bacteroidetes, Chlorobi, Chloroflexi, and Firmicutes phyla from all springs, which suggested the potential for a core sulfidic spring microbiome. Among the putative sulfide-oxidizing groups (Epsilonproteobacteria and Gammaproteobacteria, up to 83% of the sequences from geochemically similar springs clustered together. Abundant populations of Hydrogenimonas-like or Sulfurovum-like spp. (Epsilonproteobacteria occurred with abundant Thiothrix and Thiofaba spp. (Gammaproteobacteria, but Arcobacter-like and Sulfurimonas spp. (Epsilonproteobacteria occurred with less abundant gammaproteobacterial populations. These distribution patterns confirmed that geochemistry rather than biogeography regulates bacterial dominance at each spring. Potential biogeographic controls were related to paleogeologic sedimentation patterns that could control long-term microbial transport mechanisms that link surface and subsurface environments. Knowing the composition of a core sulfidic spring microbial community could provide a way to monitor diversity changes if a system is threatened by anthropogenic processes or

  14. Mucin dynamics in intestinal bacterial infection.

    Directory of Open Access Journals (Sweden)

    Sara K Lindén

    Full Text Available BACKGROUND: Bacterial gastroenteritis causes morbidity and mortality in humans worldwide. Murine Citrobacter rodentium infection is a model for gastroenteritis caused by the human pathogens enteropathogenic Escherichia coli and enterohaemorrhagic E. coli. Mucin glycoproteins are the main component of the first barrier that bacteria encounter in the intestinal tract. METHODOLOGY/PRINCIPAL FINDINGS: Using Immunohistochemistry, we investigated intestinal expression of mucins (Alcian blue/PAS, Muc1, Muc2, Muc4, Muc5AC, Muc13 and Muc3/17 in healthy and C. rodentium infected mice. The majority of the C. rodentium infected mice developed systemic infection and colitis in the mid and distal colon by day 12. C. rodentium bound to the major secreted mucin, Muc2, in vitro, and high numbers of bacteria were found in secreted MUC2 in infected animals in vivo, indicating that mucins may limit bacterial access to the epithelial surface. In the small intestine, caecum and proximal colon, the mucin expression was similar in infected and non-infected animals. In the distal colonic epithelium, all secreted and cell surface mucins decreased with the exception of the Muc1 cell surface mucin which increased after infection (p<0.05. Similarly, during human infection Salmonella St Paul, Campylobacter jejuni and Clostridium difficile induced MUC1 in the colon. CONCLUSION: Major changes in both the cell-surface and secreted mucins occur in response to intestinal infection.

  15. Scale-Invariant Correlations in Dynamic Bacterial Clusters

    Science.gov (United States)

    Chen, Xiao; Dong, Xu; Be'er, Avraham; Swinney, Harry L.; Zhang, H. P.

    2012-04-01

    In Bacillus subtilis colonies, motile bacteria move collectively, spontaneously forming dynamic clusters. These bacterial clusters share similarities with other systems exhibiting polarized collective motion, such as bird flocks or fish schools. Here we study experimentally how velocity and orientation fluctuations within clusters are spatially correlated. For a range of cell density and cluster size, the correlation length is shown to be 30% of the spatial size of clusters, and the correlation functions collapse onto a master curve after rescaling the separation with correlation length. Our results demonstrate that correlations of velocity and orientation fluctuations are scale invariant in dynamic bacterial clusters.

  16. Highly heterogeneous soil bacterial communities around Terra Nova Bay of Northern Victoria Land, Antarctica.

    Directory of Open Access Journals (Sweden)

    Mincheol Kim

    Full Text Available Given the diminished role of biotic interactions in soils of continental Antarctica, abiotic factors are believed to play a dominant role in structuring of microbial communities. However, many ice-free regions remain unexplored, and it is unclear which environmental gradients are primarily responsible for the variations among bacterial communities. In this study, we investigated the soil bacterial community around Terra Nova Bay of Victoria Land by pyrosequencing and determined which environmental variables govern the bacterial community structure at the local scale. Six bacterial phyla, Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, Cyanobacteria, and Bacteroidetes, were dominant, but their relative abundance varied greatly across locations. Bacterial community structures were affected little by spatial distance, but structured more strongly by site, which was in accordance with the soil physicochemical compositions. At both the phylum and species levels, bacterial community structure was explained primarily by pH and water content, while certain earth elements and trace metals also played important roles in shaping community variation. The higher heterogeneity of the bacterial community structure found at this site indicates how soil bacterial communities have adapted to different compositions of edaphic variables under extreme environmental conditions. Taken together, these findings greatly advance our understanding of the adaption of soil bacterial populations to this harsh environment.

  17. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    Science.gov (United States)

    Ding, Tao; Melcher, Ulrich

    2016-01-01

    Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  18. Links between Plant and Rhizoplane Bacterial Communities in Grassland Soils, Characterized Using Molecular Techniques

    Science.gov (United States)

    Nunan, Naoise; Daniell, Timothy J.; Singh, Brajesh K.; Papert, Artemis; McNicol, James W.; Prosser, James I.

    2005-01-01

    Molecular analysis of grassland rhizosphere soil has demonstrated complex and diverse bacterial communities, with resultant difficulties in detecting links between plant and bacterial communities. These studies have, however, analyzed “bulk” rhizosphere soil, rather than rhizoplane communities, which interact most closely with plants through utilization of root exudates. The aim of this study was to test the hypothesis that plant species was a major driver for bacterial rhizoplane community composition on individual plant roots. DNA extracted from individual roots was used to determine plant identity, by analysis of the plastid tRNA leucine (trnL) UAA gene intron, and plant-related bacterial communities. Bacterial communities were characterized by analysis of PCR-amplified 16S rRNA genes using two fingerprinting methods: terminal restriction fragment length polymorphisms (T-RFLP) and denaturing gradient gel electrophoresis (DGGE). Links between plant and bacterial rhizoplane communities could not be detected by visual examination of T-RFLP patterns or DGGE banding profiles. Statistical analysis of fingerprint patterns did not reveal a relationship between bacterial community composition and plant species but did demonstrate an influence of plant community composition. The data also indicated that topography and other, uncharacterized, environmental factors are important in driving bacterial community composition in grassland soils. T-RFLP had greater potential resolving power than DGGE, but findings from the two methods were not significantly different. PMID:16269710

  19. Initial community and environment determine the response of bacterial communities to dispersant and oil contamination.

    Science.gov (United States)

    Ortmann, Alice C; Lu, YueHan

    2015-01-15

    Bioremediation of seawater by natural bacterial communities is one potential response to coastal oil spills, but the success of the approach may vary, depending on geographical location, oil composition and the timing of spill. The short term response of coastal bacteria to dispersant, oil and dispersed oil was characterized using 16S rRNA gene tags in two mesocosm experiments conducted two months apart. Despite differences in the amount of oil-derived alkanes across the treatments and experiments, increases in the contributions of hydrocarbon degrading taxa and decreases in common estuarine bacteria were observed in response to dispersant and/or oil. Between the two experiments, the direction and rates of changes in particulate alkane concentrations differed, as did the magnitude of the bacterial response to oil and/or dispersant. Together, our data underscore large variability in bacterial responses to hydrocarbon pollutants, implying that bioremediation success varies with starting biological and environmental conditions.

  20. Mechanical reaction-diffusion model for bacterial population dynamics

    CERN Document Server

    Ngamsaad, Waipot

    2015-01-01

    The effect of mechanical interaction between cells on the spreading of bacterial population was investigated in one-dimensional space. A nonlinear reaction-diffusion equation has been formulated as a model for this dynamics. In this model, the bacterial cells are treated as the rod-like particles that interact, when contacting each other, through the hard-core repulsion. The repulsion introduces the exclusion process that causes the fast diffusion in bacterial population at high density. The propagation of the bacterial density as the traveling wave front in long time behavior has been analyzed. The analytical result reveals that the front speed is enhanced by the exclusion process---and its value depends on the packing fraction of cell. The numerical solutions of the model have been solved to confirm this prediction.

  1. Boom clay borehole water, home of a diverse bacterial community

    Energy Technology Data Exchange (ETDEWEB)

    Wouters, Katinka; Moors, Hugo; Leys, Natalie [Belgian Nuclear Research Centre (SCK-CEN), Mol (Belgium)

    2013-07-01

    For over two decades, Boom Clay has been studied in the framework of geological disposal of nuclear waste thereby mainly addressing its geochemical properties. Today, also the microbiological properties and the possibility of microbes interacting with radionuclides or repository components including the waste form, in a host formation like Boom Clay are considered [2,3]. In the past, a reference composition for synthetic Boom Clay pore water (BCPW) was derived, based on interstitial water sampled from different layers within the Boom clay [1]. Similarly, the primary aim of this microbiological study was to determine the core BCPW bacterial community and identify representative water samples for future microbial directed lab experiments. In this respect, BCPW was sampled from different Boom Clay layers using the Morpheus piezometer and subsequently analysed by microscopy and molecular techniques, in search for overall shared and abundant micro-organisms. (authors)

  2. Characteristics of bacterial community in fog water at Mt. Tai: similarity and disparity under polluted and non-polluted fog episodes

    OpenAIRE

    Wei, Min; Xu, Caihong; Chen, Jianmin; Zhu, Chao; Li, Jiarong; Lv, Ganglin

    2016-01-01

    Bacteria, widely distributed in atmospheric bioaerosols, are indispensable component in fog water system and play an important role in atmospheric hydrological cycle. However, little is known about the bacterial community dynamics and ecological function, especially under the increasing serious air pollution events in North China Plain. Here we have a comprehensive characterization of bacterial community structure, variation and environmental influence about fog water collected at Mt. Tai und...

  3. Imported anthropogenic bacteria may survive the Antarctic winter and introduce new genes into local bacterial communities

    Directory of Open Access Journals (Sweden)

    Brat Kristian

    2016-03-01

    Full Text Available We studied dynamic changes in anthropogenic bacterial communities at a summer-operated Czech research base (the Mendel Research Station in the Antarctic during 2012 and 2013. We observed an increase in total numbers of detected bacteria between the beginning and the end of each stay in the Antarctic. In the first series of samples, bacteria of Bacillus sp. predominated. Surprisingly, high numbers of Gram-positive cocci and coliforms were found (including opportunistic human pathogens, although the conditions for bacterial life were unfavourable (Antarctic winter. In the second series of samples, coliforms and Gram-positive cocci predominated. Dangerous human pathogens were also detected. Yersinia enterocolitica was identified as serotype O:9. Antibiotic susceptibility testing showed medium-to-high resistance rates to ampicillin, cefalotin, cefuroxime, amoxicillin-clavulanate and gentamicin in Enterobacteriaceae. 16S rRNA sequencing showed high rates of accordance between nucleotide sequences among the tested strains. Three conclusions were drawn: (1 Number of anthropogenic bacteria were able to survive the harsh conditions of the Antarctic winter (inside and outside the polar station. Under certain circumstances (e.g. impaired immunity, the surviving bacteria might pose a health risk to the participants of future expeditions or to other visitors to the base. (2 The bacteria released into the outer environment might have impacts on local ecosystems. (3 New characteristics (e.g. resistance to antibiotics may be introduced into local bacterial communities.

  4. Effects Due to Rhizospheric Soil Application of an Antagonistic Bacterial Endophyte on Native Bacterial Community and Its Survival in Soil: A Case Study with Pseudomonas aeruginosa from Banana

    Science.gov (United States)

    Thomas, Pious; Sekhar, Aparna C.

    2016-01-01

    Effective translation of research findings from laboratory to agricultural fields is essential for the success of biocontrol or growth promotion trials employing beneficial microorganisms. The rhizosphere is to be viewed holistically as a dynamic ecological niche comprising of diverse microorganisms including competitors and noxious antagonists to the bio-inoculant. This study was undertaken to assess the effects due to the soil application of an endophytic bacterium with multiple pathogen antagonistic potential on native bacterial community and its sustenance in agricultural soil. Pseudomonas aeruginosa was employed as a model system considering its frequent isolation as an endophyte, wide antagonistic effects reported against different phytopathogens and soil pests, and that the species is a known human pathogen which makes its usage in agriculture precarious. Employing the strain ‘GNS.13.2a’ from banana, its survival in field soil and the effects upon soil inoculation were investigated by monitoring total culturable bacterial fraction as the representative indicator of soil microbial community. Serial dilution plating of uninoculated control versus P. aeruginosa inoculated soil from banana rhizosphere indicated a significant reduction in native bacterial cfu soon after inoculation compared with control soil as assessed on cetrimide- nalidixic acid selective medium against nutrient agar. Sampling on day-4 showed a significant reduction in P. aeruginosa cfu in inoculated soil and a continuous dip thereafter registering >99% reduction within 1 week while the native bacterial population resurged with cfu restoration on par with control. This was validated in contained trials with banana plants. Conversely, P. aeruginosa showed static cfu or proliferation in axenic-soil. Lateral introduction of soil microbiome in P. aeruginosa established soil under axenic conditions or its co-incubation with soil microbiota in suspension indicated significant adverse effects by

  5. Co-acclimation of bacterial communities under stresses of hydrocarbons with different structures

    Science.gov (United States)

    Wang, Hui; Wang, Bin; Dong, Wenwen; Hu, Xiaoke

    2016-10-01

    Crude oil is a complex mixture of hydrocarbons with different structures; its components vary in bioavailability and toxicity. It is important to understand how bacterial communities response to different hydrocarbons and their co-acclimation in the process of degradation. In this study, microcosms with the addition of structurally different hydrocarbons were setup to investigate the successions of bacterial communities and the interactions between different bacterial taxa. Hydrocarbons were effectively degraded in all microcosms after 40 days. High-throughput sequencing offered a great quantity of data for analyzing successions of bacterial communities. The results indicated that the bacterial communities responded dramatically different to various hydrocarbons. KEGG database and PICRUSt were applied to predict functions of individual bacterial taxa and networks were constructed to analyze co-acclimations between functional bacterial groups. Almost all functional genes catalyzing degradation of different hydrocarbons were predicted in bacterial communities. Most of bacterial taxa were believed to conduct biodegradation processes via interactions with each other. This study addressed a few investigated area of bacterial community responses to structurally different organic pollutants and their co-acclimation and interactions in the process of biodegradation. The study could provide useful information to guide the bioremediation of crude oil pollution.

  6. Phenanthrene and Pyrene Modify the Composition and Structure of the Cultivable Endophytic Bacterial Community in Ryegrass (Lolium multiflorum Lam

    Directory of Open Access Journals (Sweden)

    Xuezhu Zhu

    2016-11-01

    Full Text Available This study provides new insights into the dynamics of bacterial community structure during phytoremediation. The communities of cultivable autochthonous endophytic bacteria in ryegrass exposed to polycyclic aromatic hydrocarbons (PAHs were investigated with regard to their potential to biodegrade PAHs. Bacterial counts and 16S rRNA gene sequence were used in the microbiological evaluation. A total of 33 endophytic bacterial strains were isolated from ryegrass plants, which represented 15 different genera and eight different classes, respectively. Moreover, PAH contamination modified the composition and structure of the endophytic bacterial community in the plants. Bacillus sp., Pantoea sp., Pseudomonas sp., Arthrobacter sp., Pedobacter sp. and Delftia sp. were only isolated from the seedlings exposed to PAHs. Furthermore, the dominant genera in roots shifted from Enterobacter sp. to Serratia sp., Bacillus sp., Pantoea sp., and Stenotrophomonas sp., which could highly biodegrade phenanthrene (PHE. However, the diversity of endophytic bacterial community was decreased by exposure to the mixture of PAHs, and increased by respective exposure to PHE and pyrene (PYR, while the abundance was increased by PAH exposure. The results clearly indicated that the exposure of plants to PAHs would be beneficial for improving the effectiveness of phytoremediation of PAHs.

  7. Bacterial community composition in costal dunes of the Mediterranean along a gradient from the sea shore to the inland

    Science.gov (United States)

    Wasserstrom, Haggai; Kublik, Susanne; Wasserstrom, Rachel; Schulz, Stefanie; Schloter, Michael; Steinberger, Yosef

    2017-01-01

    Sand dunes are unique ecosystems with distinct features which limited the accumulation of biomass. The distance from seashore affects both the physical properties of the sand dunes and the biota living above- and below ground. The goal of the present study was to determine the effects of the distance from shore to inland on soil bacterial community composition during wet and dry season. We studied a chronosequence of sites close to the eastern Mediterranean coast. Bacterial diversity was assessed using directly extracted DNA from soil samples and 16 S ribosomal RNA gene fingerprinting. Our data indicates a significant influence of season and site on bacterial community structure. We showed that during the wet season soil organic matter, pH and salinity strongly influence bacterial community composition, whereas during the dry period bacterial diversity was mainly driven by the shortage of water at all sites. Consequently diversity was lowest during dry season at dunes close to the shore, whereas during the wet season the higher water content and the reduced salinity at the dunes which are more at the inland induced an increase in diversity, which illustrates the pronounced dynamics of microbial communities in soil over a season mainly at inland dunes.

  8. Bacterial dynamics in a microphytobenthic biofilm: A tidal mesocosm approach

    Science.gov (United States)

    Agogué, Hélène; Mallet, Clarisse; Orvain, Francis; De Crignis, Margot; Mornet, Françoise; Dupuy, Christine

    2014-09-01

    In intertidal mudflats, during low tide exposure, microphytobenthos (MPB) migrate vertically through the surface sediment and form, with the heterotrophic bacteria, a transient biofilm. Inside this biofilm, multiple interactions exist between MPB and bacteria. These micro-organisms secrete a wide range of extracellular polymeric substances (EPS), which are major components of the biofilm matrix. In this study, we used a tidal mesocosm experiment in order to decipher the interactions of the MPB-EPS-bacteria complex within the biofilm. We tried to determine if the EPS could control bacterial activities and/or production and/or richness according to the age of the biofilm and to the immersion/emersion period. The dynamics of biomasses of MPB and prokaryotes, the bacterial production, the hydrolysis of predominating organic constituents in the dissolved organic carbon (DOC) pool (i.e., carbohydrates and polypeptides), and the bacterial structure were studied in relation to the different EPS fractions (carbohydrates and proteins: colloidal and bound) dynamics during 8 days. Our experiment had emphasized the influence of the environmental conditions (light, immersion/emersion) on the interactions within the biofilm and also on the effects on biofilm aging. Bacterial production was always inhibited by the bound EPS-carbohydrate, especially during low tide. Our results suggest that the concentration and composition of EPS had a major role in the bacterial/MPB interactions: these interactions can be either positive or negative in order to regulate the productive phases of MPB and bacteria.

  9. Metabolic Complementation in Bacterial Communities: Necessary Conditions and Optimality

    Science.gov (United States)

    Mori, Matteo; Ponce-de-León, Miguel; Peretó, Juli; Montero, Francisco

    2016-01-01

    Bacterial communities may display metabolic complementation, in which different members of the association partially contribute to the same biosynthetic pathway. In this way, the end product of the pathway is synthesized by the community as a whole. However, the emergence and the benefits of such complementation are poorly understood. Herein, we present a simple model to analyze the metabolic interactions among bacteria, including the host in the case of endosymbiotic bacteria. The model considers two cell populations, with both cell types encoding for the same linear biosynthetic pathway. We have found that, for metabolic complementation to emerge as an optimal strategy, both product inhibition and large permeabilities are needed. In the light of these results, we then consider the patterns found in the case of tryptophan biosynthesis in the endosymbiont consortium hosted by the aphid Cinara cedri. Using in-silico computed physicochemical properties of metabolites of this and other biosynthetic pathways, we verified that the splitting point of the pathway corresponds to the most permeable intermediate. PMID:27774085

  10. Local and regional factors influencing bacterial community assembly.

    Science.gov (United States)

    Lindström, Eva S; Langenheder, Silke

    2012-02-01

    The classical view states that microbial biogeography is not affected by dispersal barriers or historical events, but only influenced by the local contemporary habitat conditions (species sorting). This has been challenged during recent years by studies suggesting that also regional factors such as mass effect, dispersal limitation and neutral assembly are important for the composition of local bacterial communities. Here we summarize results from biogeography studies in different environments, i.e. in marine, freshwater and soil as well in human hosts. Species sorting appears to be the most important mechanism. However, this result might be biased since this is the mechanism that is easiest to measure, detect and interpret. Hence, the importance of regional factors may have been underestimated. Moreover, our survey indicates that different assembly mechanisms might be important for different parts of the total community, differing, for example, between generalists and specialists, and between taxa of different dispersal ability and motility. We conclude that there is a clear need for experimental studies, first, to clearly separate regional and local factors in order to study their relative importance, and second, to test whether there are differences in assembly mechanisms depending on different taxonomic or functional groups.

  11. Bacterial adaptation to sublethal antibiotic gradients can change the ecological properties of multitrophic microbial communities.

    Science.gov (United States)

    Friman, Ville-Petri; Guzman, Laura Melissa; Reuman, Daniel C; Bell, Thomas

    2015-05-07

    Antibiotics leak constantly into environments due to widespread use in agriculture and human therapy. Although sublethal concentrations are well known to select for antibiotic-resistant bacteria, little is known about how bacterial evolution cascades through food webs, having indirect effect on species not directly affected by antibiotics (e.g. via population dynamics or pleiotropic effects). Here, we used an experimental evolution approach to test how temporal patterns of antibiotic stress, as well as migration within metapopulations, affect the evolution and ecology of microcosms containing one prey bacterium, one phage and two protist predators. We found that environmental variability, autocorrelation and migration had only subtle effects for population and evolutionary dynamics. However, unexpectedly, bacteria evolved greatest fitness increases to both antibiotics and enemies when the sublethal levels of antibiotics were highest, indicating positive pleiotropy. Crucially, bacterial adaptation cascaded through the food web leading to reduced predator-to-prey abundance ratio, lowered predator community diversity and increased instability of populations. Our results show that the presence of natural enemies can modify and even reverse the effects of antibiotics on bacteria, and that antibiotic selection can change the ecological properties of multitrophic microbial communities by having indirect effects on species not directly affected by antibiotics.

  12. Acidobacteria dominate the active bacterial communities of Arctic tundra with widely divergent winter-time snow accumulation and soil temperatures.

    Science.gov (United States)

    Männistö, Minna K; Kurhela, Emilia; Tiirola, Marja; Häggblom, Max M

    2013-04-01

    The timing and extent of snow cover is a major controller of soil temperature and hence winter-time microbial activity and plant diversity in Arctic tundra ecosystems. To understand how snow dynamics shape the bacterial communities, we analyzed the bacterial community composition of windswept and snow-accumulating shrub-dominated tundra heaths of northern Finland using DNA- and RNA-based 16S rRNA gene community fingerprinting (terminal restriction fragment polymorphism) and clone library analysis. Members of the Acidobacteria and Proteobacteria dominated the bacterial communities of both windswept and snow-accumulating habitats with the most abundant phylotypes corresponding to subdivision (SD) 1 and 2 Acidobacteria in both the DNA- and RNA-derived community profiles. However, different phylotypes within Acidobacteria were found to dominate at different sampling dates and in the DNA- vs. RNA-based community profiles. The results suggest that different species within SD1 and SD2 Acidobacteria respond to environmental conditions differently and highlight the wide functional diversity of these organisms even within the SD level. The acidic tundra soils dominated by ericoid shrubs appear to select for diverse stress-tolerant Acidobacteria that are able to compete in the nutrient poor, phenolic-rich soils. Overall, these communities seem stable and relatively insensitive to the predicted changes in the winter-time snow cover.

  13. Soil bacterial community composition altered by increased nutrient availability in Arctic tundra soils

    Directory of Open Access Journals (Sweden)

    Akihiro eKoyama

    2014-10-01

    Full Text Available The pool of soil organic carbon (SOC in the Arctic is disproportionally large compared to those in other biomes. This large quantity of SOC accumulated over millennia due to slow rates of decomposition relative to net primary productivity. Decomposition is constrained by low temperatures and nutrient concentrations, which limit soil microbial activity. We investigated how nutrients limit bacterial and fungal biomass and community composition in organic and mineral soils within moist acidic tussock tundra ecosystems. We sampled two experimental arrays of moist acidic tussock tundra that included fertilized and non-fertilized control plots. One array included plots that had been fertilized annually since 1989 and the other since 2006. Fertilization significantly altered overall bacterial community composition and reduced evenness, to a greater degree in organic than mineral soils, and in the 1989 compared to the 2006 site. The relative abundance of copiotrophic α-proteobacteria and β-proteobacteria was higher in fertilized than control soils, and oligotrophic Acidobacteria were less abundant in fertilized than control soils at the 1989 site. Fungal community composition was less sensitive to increased nutrient availability, and fungal responses to fertilization were not consistent between soil horizons and sites. We detected two ectomycorrhizal genera, Russula and Cortinarius spp., associated with shrubs. Their relative abundance was not affected by fertilization despite increased dominance of their host plants in the fertilized plots. Our results indicate that fertilization, which has been commonly used to simulate warming in Arctic tundra, has limited applicability for investigating fungal dynamics under warming.

  14. Bacterial dynamics and metabolite changes in solid-state acetic acid fermentation of Shanxi aged vinegar.

    Science.gov (United States)

    Li, Sha; Li, Pan; Liu, Xiong; Luo, Lixin; Lin, Weifeng

    2016-05-01

    Solid-state acetic acid fermentation (AAF), a natural or semi-controlled fermentation process driven by reproducible microbial communities, is an important technique to produce traditional Chinese cereal vinegars. Highly complex microbial communities and metabolites are involved in traditional Chinese solid-state AAF, but the association between microbiota and metabolites during this process are still poorly understood. In this study, we performed amplicon 16S rRNA gene sequencing on the Illumina MiSeq platform, PCR-denaturing gradient gel electrophoresis, and metabolite analysis to trace the bacterial dynamics and metabolite changes under AAF process. A succession of bacterial assemblages was observed during the AAF process. Lactobacillales dominated all the stages. However, Acetobacter species in Rhodospirillales were considerably accelerated during AAF until the end of fermentation. Quantitative PCR results indicated that the biomass of total bacteria showed a "system microbe self-domestication" process in the first 3 days, and then peaked at the seventh day before gradually decreasing until the end of AAF. Moreover, a total of 88 metabolites, including 8 organic acids, 16 free amino acids, and 66 aroma compounds were detected during AAF. Principal component analysis and cluster analyses revealed the high correlation between the dynamics of bacterial community and metabolites.

  15. Composition of the Cutaneous Bacterial Community in Japanese Amphibians: Effects of Captivity, Host Species, and Body Region.

    Science.gov (United States)

    Sabino-Pinto, Joana; Bletz, Molly Catherine; Islam, Mohammed Mafizul; Shimizu, Norio; Bhuju, Sabin; Geffers, Robert; Jarek, Michael; Kurabayashi, Atsushi; Vences, Miguel

    2016-08-01

    The cutaneous microbiota plays a significant role in the biology of their vertebrate hosts, and its composition is known to be influenced both by host and environment, with captive conditions often altering alpha diversity. Here, we compare the cutaneous bacterial communities of 61 amphibians (both wild and captive) from Hiroshima, Japan, using high-throughput amplicon sequencing of a segment of the 16S rRNA gene. The majority of these samples came from a captive breeding facility at Hiroshima University where specimens from six species are maintained under highly standardized conditions for several generations. This allowed to identify host effects on the bacterial communities under near identical environmental conditions in captivity. We found the structure of the cutaneous bacterial community significantly differing between wild and captive individuals of newts, Cynops pyrrhogaster, with a higher alpha diversity found in the wild individuals. Community structure also showed distinct patterns when comparing different species of amphibians kept under highly similar conditions, revealing an intrinsic host effect. Bacterial communities of dorsal vs. ventral skin surfaces did not significantly differ in most species, but a trend of higher alpha diversity on the ventral surface was found in Oriental fire-bellied toads, Bombina orientalis. This study confirms the cutaneous microbiota of amphibians as a highly dynamic system influenced by a complex interplay of numerous factors.

  16. Characterization of the Bacterial Communities of Life Stages of Free Living Lone Star Ticks (Amblyomma americanum)

    OpenAIRE

    Amanda Jo Williams-Newkirk; Rowe, Lori A.; Mixson-Hayden, Tonya R.; Dasch, Gregory A.

    2014-01-01

    The lone star tick (Amblyomma americanum) is an abundant and aggressive biter of humans, domestic animals, and wildlife in the southeastern-central USA and an important vector of several known and suspected zoonotic bacterial pathogens. However, the biological drivers of bacterial community variation in this tick are still poorly defined. Knowing the community context in which tick-borne bacterial pathogens exist and evolve is required to fully understand the ecology and immunobiology of the ...

  17. Understanding Microbial Communities: Function, Structure and Dynamics

    Science.gov (United States)

    2015-02-11

    microbial communities: Function, structure and dynamics’, at the Isaac Newton Institute, University of Cambridge, United Kingdom, from August to...dynamics’, at the Isaac Newton Institute, University of Cambridge, United Kingdom, from August to December 2014. The programme involved over 150...Communities: Function, Structure and Dynamics’, at the Isaac Newton Institute, Cambridge University, UK, from 19th August 2014 – 19th December 2014

  18. Responsiveness of soil nitrogen fractions and bacterial communities to afforestation in the Loess Hilly Region (LHR) of China

    Science.gov (United States)

    Ren, Chengjie; Sun, Pingsheng; Kang, Di; Zhao, Fazhu; Feng, Yongzhong; Ren, Guangxin; Han, Xinhui; Yang, Gaihe

    2016-06-01

    In the present paper, we investigated the effects of afforestation on nitrogen fractions and microbial communities. A total of 24 soil samples were collected from farmland (FL) and three afforested lands, namely Robinia pseudoacacia L (RP), Caragana korshinskii Kom (CK), and abandoned land (AL), which have been arable for the past 40 years. Quantitative PCR and Illumina sequencing of 16S rRNA genes were used to analyze soil bacterial abundance, diversity, and composition. Additionally, soil nitrogen (N) stocks and fractions were estimated. The results showed that soil N stock, N fractions, and bacterial abundance and diversity increased following afforestation. Proteobacteria, Acidobacteria, and Actinobacteria were the dominant phyla of soil bacterial compositions. Overall, soil bacterial compositions generally changed from Actinobacteria (Acidobacteria)-dominant to Proteobacteria-dominant following afforestation. Soil N fractions, especially for dissolved organic nitrogen (DON), were significantly correlated with most bacterial groups and bacterial diversity, while potential competitive interactions between Proteobacteria (order Rhizobiales) and Cyanobacteria were suggested. In contrast, nitrate nitrogen (NO3‑-N) influenced soil bacterial compositions less than other N fractions. Therefore, the present study demonstrated that bacterial diversity and specific species respond to farmland-to-forest conversion and hence have the potential to affect N dynamic processes in the Loess Plateau.

  19. Effects of temperature and fertilization on the structure of total versus active bacterial communities from sub-Antarctic seawater exposed to crude oil and diesel fuel

    Directory of Open Access Journals (Sweden)

    Arturo Rodríguez-Blanco

    2013-05-01

    Full Text Available Polar environments are exposed to the risk of oil pollution. However, there is limited knowledge regarding how the variation of physicochemical factors influencing biodegradation may affect bacterial community structure. The effects of temperature (4, 10 and 20°C and organic fertilization (Inipol EAP 22 on community structure and diversity of bacteria inhabiting Kerguelen sub-Antarctic waters were studied in crude- and diesel-amended microcosms. Dynamics of total (i.e., 16S rDNA-based and metabolically active (i.e., 16S rRNA-based bacterial community structure and diversity were monitored using capillary-electrophoresis single-strand conformation polymorphism. Results showed that total and active community structures were differently influenced by temperature and fertilization in the presence of hydrocarbons. Both fertilization and temperature induced changes in total community structure in the presence of crude oil and diesel. However, temperature showed a limited influence on active community structure, and fertilization induced changes in the presence of crude oil only. Simpson's index decreased for total bacterial communities at all temperatures in the presence of crude oil and diesel, whereas a lower reduction was observed for active bacterial populations. In the presence of fertilizer, the diversity of the whole community approached control values after seven incubation weeks; this was not observed for the active bacterial community. This study evidenced qualitative differences in total and active bacterial community structures of Kerguelen seawaters in the presence of hydrocarbons and different responses relative to variation in temperature and fertilization. These factors and hydrocarbons composition have to be taken into account to understand bacterial community dynamics after an oil spill.

  20. Detection of intracellular bacterial communities in human urinary tract infection.

    Directory of Open Access Journals (Sweden)

    David A Rosen

    2007-12-01

    Full Text Available BACKGROUND: Urinary tract infections (UTIs are one of the most common bacterial infections and are predominantly caused by uropathogenic Escherichia coli (UPEC. While UTIs are typically considered extracellular infections, it has been recently demonstrated that UPEC bind to, invade, and replicate within the murine bladder urothelium to form intracellular bacterial communities (IBCs. These IBCs dissociate and bacteria flux out of bladder facet cells, some with filamentous morphology, and ultimately establish quiescent intracellular reservoirs that can seed recurrent infection. This IBC pathogenic cycle has not yet been investigated in humans. In this study we sought to determine whether evidence of an IBC pathway could be found in urine specimens from women with acute UTI. METHODS AND FINDINGS: We collected midstream, clean-catch urine specimens from 80 young healthy women with acute uncomplicated cystitis and 20 asymptomatic women with a history of UTI. Investigators were blinded to culture results and clinical history. Samples were analyzed by light microscopy, immunofluorescence, and electron microscopy for evidence of exfoliated IBCs and filamentous bacteria. Evidence of IBCs was found in 14 of 80 (18% urines from women with UTI. Filamentous bacteria were found in 33 of 80 (41% urines from women with UTI. None of the 20 urines from the asymptomatic comparative group showed evidence of IBCs or filaments. Filamentous bacteria were present in all 14 of the urines with IBCs compared to 19 (29% of 66 samples with no evidence of IBCs (p < 0.001. Of 65 urines from patients with E. coli infections, 14 (22% had evidence of IBCs and 29 (45% had filamentous bacteria, while none of the gram-positive infections had IBCs or filamentous bacteria. CONCLUSIONS: The presence of exfoliated IBCs and filamentous bacteria in the urines of women with acute cystitis suggests that the IBC pathogenic pathway characterized in the murine model may occur in humans. The

  1. Gut bacterial communities across tadpole ecomorphs in two diverse tropical anuran faunas

    Science.gov (United States)

    Vences, Miguel; Lyra, Mariana L.; Kueneman, Jordan G.; Bletz, Molly C.; Archer, Holly M.; Canitz, Julia; Handreck, Svenja; Randrianiaina, Roger-Daniel; Struck, Ulrich; Bhuju, Sabin; Jarek, Michael; Geffers, Robert; McKenzie, Valerie J.; Tebbe, Christoph C.; Haddad, Célio F. B.; Glos, Julian

    2016-04-01

    Animal-associated microbial communities can play major roles in the physiology, development, ecology, and evolution of their hosts, but the study of their diversity has yet focused on a limited number of host species. In this study, we used high-throughput sequencing of partial sequences of the bacterial 16S rRNA gene to assess the diversity of the gut-inhabiting bacterial communities of 212 specimens of tropical anuran amphibians from Brazil and Madagascar. The core gut-associated bacterial communities among tadpoles from two different continents strongly overlapped, with eight highly represented operational taxonomic units (OTUs) in common. In contrast, the core communities of adults and tadpoles from Brazil were less similar with only one shared OTU. This suggests a community turnover at metamorphosis. Bacterial diversity was higher in tadpoles compared to adults. Distinct differences in composition and diversity occurred among gut bacterial communities of conspecific tadpoles from different water bodies and after experimental fasting for 8 days, demonstrating the influence of both environmental factors and food on the community structure. Communities from syntopic tadpoles clustered by host species both in Madagascar and Brazil, and the Malagasy tadpoles also had species-specific isotope signatures. We recommend future studies to analyze the turnover of anuran gut bacterial communities at metamorphosis, compare the tadpole core communities with those of other aquatic organisms, and assess the possible function of the gut microbiota as a reservoir for protective bacteria on the amphibian skin.

  2. Divergent responses of viral and bacterial communities in the gut microbiome to dietary disturbances in mice

    Energy Technology Data Exchange (ETDEWEB)

    Howe, Adina; Ringus, Daina L.; Williams, Ryan J.; Choo, Zi-Ning; Greenwald, Stephanie M.; Owens, Sarah M.; Coleman, Maureen L.; Meyer, Folker; Chang, Eugene B.

    2015-10-16

    To improve our understanding of the stability of mammalian intestinal communities, we characterized the responses of both bacterial and viral communities in murine fecal samples to dietary changes between high- and low-fat (LF) diets. Targeted DNA extraction methods for bacteria, virus-like particles and induced prophages were used to generate bacterial and viral metagenomes as well as 16S ribosomal RNA amplicons. Gut microbiome communities from two cohorts of C57BL/6 mice were characterized in a 6-week diet perturbation study in response to high fiber, LF and high-refined sugar, milkfat (MF) diets. The resulting metagenomes from induced bacterial prophages and extracellular viruses showed significant overlap, supporting a largely temperate viral lifestyle within these gut microbiomes. The resistance of baseline communities to dietary disturbances was evaluated, and we observed contrasting responses of baseline LF and MF bacterial and viral communities. In contrast to baseline LF viral communities and bacterial communities in both diet treatments, baseline MF viral communities were sensitive to dietary disturbances as reflected in their non-recovery during the washout period. The contrasting responses of bacterial and viral communities suggest that these communities can respond to perturbations independently of each other and highlight the potentially unique role of viruses in gut health.

  3. Divergent responses of viral and bacterial communities in the gut microbiome to dietary disturbances in mice

    Science.gov (United States)

    Howe, Adina; Ringus, Daina L; Williams, Ryan J; Choo, Zi-Ning; Greenwald, Stephanie M; Owens, Sarah M; Coleman, Maureen L; Meyer, Folker; Chang, Eugene B

    2016-01-01

    To improve our understanding of the stability of mammalian intestinal communities, we characterized the responses of both bacterial and viral communities in murine fecal samples to dietary changes between high- and low-fat (LF) diets. Targeted DNA extraction methods for bacteria, virus-like particles and induced prophages were used to generate bacterial and viral metagenomes as well as 16S ribosomal RNA amplicons. Gut microbiome communities from two cohorts of C57BL/6 mice were characterized in a 6-week diet perturbation study in response to high fiber, LF and high-refined sugar, milkfat (MF) diets. The resulting metagenomes from induced bacterial prophages and extracellular viruses showed significant overlap, supporting a largely temperate viral lifestyle within these gut microbiomes. The resistance of baseline communities to dietary disturbances was evaluated, and we observed contrasting responses of baseline LF and MF bacterial and viral communities. In contrast to baseline LF viral communities and bacterial communities in both diet treatments, baseline MF viral communities were sensitive to dietary disturbances as reflected in their non-recovery during the washout period. The contrasting responses of bacterial and viral communities suggest that these communities can respond to perturbations independently of each other and highlight the potentially unique role of viruses in gut health. PMID:26473721

  4. Resource availability and spatial heterogeneity control bacterial community response to nutrient enrichment in lakes.

    Directory of Open Access Journals (Sweden)

    Kathijo Jankowski

    Full Text Available The diversity and composition of ecological communities often co-vary with ecosystem productivity. However, the relative importance of productivity, or resource abundance, versus the spatial distribution of resources in shaping those ecological patterns is not well understood, particularly for the bacterial communities that underlie most important ecosystem functions. Increasing ecosystem productivity in lakes has been shown to influence the composition and ecology of bacterial communities, but existing work has only evaluated the effect of increasing resource supply and not heterogeneity in how those resources are distributed. We quantified how bacterial communities varied with the trophic status of lakes and whether community responses differed in surface and deep habitats in response to heterogeneity in nutrient resources. Using ARISA fingerprinting, we found that bacterial communities were more abundant, richer, and more distinct among habitats as lake trophic state and vertical heterogeneity in nutrients increased, and that spatial resource variation produced habitat specific responses of bacteria in response to increased productivity. Furthermore, changes in communities in high nutrient lakes were not produced by turnover in community composition but from additional taxa augmenting core bacterial communities found in lower productivity lakes. These data suggests that bacterial community responses to nutrient enrichment in lakes vary spatially and are likely influenced disproportionately by rare taxa.

  5. Response of fungal, bacterial and ureolytic communities to synthetic sheep urine deposition in a grassland soil.

    Science.gov (United States)

    Singh, Brajesh K; Nunan, Naoise; Millard, Peter

    2009-10-01

    In grazed pastures, soil pH is raised in urine patches, causing dissolution of organic carbon and increased ammonium and nitrate concentrations, with potential effects on the structure and functioning of soil microbial communities. Here we examined the effects of synthetic sheep urine (SU) in a field study on dominant soil bacterial and fungal communities associated with bulk soil and plant roots (rhizoplane), using culture-independent methods and a new approach to investigate the ureolytic community. A differential response of bacteria and fungal communities to SU treatment was observed. The bacterial community showed a clear shift in composition after SU treatment, which was more pronounced in bulk soil than on the rhizoplane. The fungal community did not respond to SU treatment; instead, it was more affected by the time of sampling. Redundancy analysis of data indicated that the variation in the bacterial community was related to change in soil pH, while fungal community was more responsive to dissolution of organic carbon. Like the universal bacterial community, the ureolytic community was influenced by the SU treatment. However, different taxa within the ureolytic bacterial community responded differentially to the treatment. The ureolytic community comprised of members from a range of phylogenetically different taxa and could be used to measure the effect of environmental perturbations on the functional diversity of natural ecosystems.

  6. Potential Use of Bacterial Community Succession in Decaying Human Bone for Estimating Postmortem Interval.

    Science.gov (United States)

    Damann, Franklin E; Williams, Daniel E; Layton, Alice C

    2015-07-01

    Bacteria are taphonomic agents of human decomposition, potentially useful for estimating postmortem interval (PMI) in late-stage decomposition. Bone samples from 12 individuals and three soil samples were analyzed to assess the effects of decomposition and advancing time on bacterial communities. Results indicated that partially skeletonized remains maintained a presence of bacteria associated with the human gut, whereas bacterial composition of dry skeletal remains maintained a community profile similar to soil communities. Variation in the UniFrac distances was significantly greater between groups than within groups (p < 0.001) for the unweighted metric and not the weighted metric. The members of the bacterial communities were more similar within than between decomposition stages. The oligotrophic environment of bone relative to soft tissue and the physical protection of organic substrates may preclude bacterial blooms during the first years of skeletonization. Therefore, community membership (unweighted) may be better for estimating PMI from skeletonized remains than community structure (weighted).

  7. Comparison of Metals and Tetracycline as Selective Agents for Development of Tetracycline Resistant Bacterial Communities in Agricultural Soil.

    Science.gov (United States)

    Song, Jianxiao; Rensing, Christopher; Holm, Peter E; Virta, Marko; Brandt, Kristian K

    2017-03-07

    Environmental selection of antibiotic resistance may be caused by either antibiotic residues or coselecting agents. Using a strictly controlled experimental design, we compared the ability of metals (Cu or Zn) and tetracycline to (co)select for tetracycline resistance in bacterial communities. Soil microcosms were established by amending agricultural soil with known levels of Cu, Zn, or tetracycline known to represent commonly used metals and antibiotics for pig farming. Soil bacterial growth dynamics and bacterial community-level tetracycline resistance were determined using the [(3)H]leucine incorporation technique, whereas soil Cu, Zn, and tetracycline exposure were quantified by a panel of whole-cell bacterial bioreporters. Tetracycline resistance increased significantly in soils containing environmentally relevant levels of Cu (≥365 mg kg(-1)) and Zn (≥264 mg kg(-1)) but not in soil spiked with unrealistically high levels of tetracycline (up to 100 mg kg(-1)). These observations were consistent with bioreporter data showing that metals remained bioavailable, whereas tetracycline was only transiently bioavailable. Community-level tetracycline resistance was correlated to the initial toxicant-induced inhibition of bacterial growth. In conclusion, our study demonstrates that toxic metals in some cases may exert a stronger selection pressure for environmental selection of resistance to an antibiotic than the specific antibiotic itself.

  8. Highly Heterogeneous Soil Bacterial Communities around Terra Nova Bay of Northern Victoria Land, Antarctica

    OpenAIRE

    Mincheol Kim; Ahnna Cho; Hyoun Soo Lim; Soon Gyu Hong; Ji Hee Kim; Joohan Lee; Taejin Choi; Tae Seok Ahn; Ok-Sun Kim

    2015-01-01

    Given the diminished role of biotic interactions in soils of continental Antarctica, abiotic factors are believed to play a dominant role in structuring of microbial communities. However, many ice-free regions remain unexplored, and it is unclear which environmental gradients are primarily responsible for the variations among bacterial communities. In this study, we investigated the soil bacterial community around Terra Nova Bay of Victoria Land by pyrosequencing and determined which environm...

  9. Identification of Bacterial Community Composition in Freshwater Aquaculture System Farming of Litopenaeus vannamei Reveals Distinct Temperature-Driven Patterns

    Directory of Open Access Journals (Sweden)

    Yuyi Tang

    2014-08-01

    Full Text Available Change in temperature is often a major environmental factor in triggering waterborne disease outbreaks. Previous research has revealed temporal and spatial patterns of bacterial population in several aquatic ecosystems. To date, very little information is available on aquaculture environment. Here, we assessed environmental temperature effects on bacterial community composition in freshwater aquaculture system farming of Litopenaeus vannamei (FASFL. Water samples were collected over a one-year period, and aquatic bacteria were characterized by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE and 16S rDNA pyrosequencing. Resulting DGGE fingerprints revealed a specific and dynamic bacterial population structure with considerable variation over the seasonal change, suggesting that environmental temperature was a key driver of bacterial population in the FASFL. Pyrosequencing data further demonstrated substantial difference in bacterial community composition between the water at higher (WHT and at lower (WLT temperatures in the FASFL. Actinobacteria, Proteobacteria and Bacteroidetes were the highest abundant phyla in the FASFL, however, a large number of unclassified bacteria contributed the most to the observed variation in phylogenetic diversity. The WHT harbored remarkably higher diversity and richness in bacterial composition at genus and species levels when compared to the WLT. Some potential pathogenenic species were identified in both WHT and WLT, providing data in support of aquatic animal health management in the aquaculture industry.

  10. Identification of bacterial community composition in freshwater aquaculture system farming of Litopenaeus vannamei reveals distinct temperature-driven patterns.

    Science.gov (United States)

    Tang, Yuyi; Tao, Peiying; Tan, Jianguo; Mu, Haizhen; Peng, Li; Yang, Dandan; Tong, Shilu; Chen, Lanming

    2014-08-07

    Change in temperature is often a major environmental factor in triggering waterborne disease outbreaks. Previous research has revealed temporal and spatial patterns of bacterial population in several aquatic ecosystems. To date, very little information is available on aquaculture environment. Here, we assessed environmental temperature effects on bacterial community composition in freshwater aquaculture system farming of Litopenaeus vannamei (FASFL). Water samples were collected over a one-year period, and aquatic bacteria were characterized by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and 16S rDNA pyrosequencing. Resulting DGGE fingerprints revealed a specific and dynamic bacterial population structure with considerable variation over the seasonal change, suggesting that environmental temperature was a key driver of bacterial population in the FASFL. Pyrosequencing data further demonstrated substantial difference in bacterial community composition between the water at higher (WHT) and at lower (WLT) temperatures in the FASFL. Actinobacteria, Proteobacteria and Bacteroidetes were the highest abundant phyla in the FASFL, however, a large number of unclassified bacteria contributed the most to the observed variation in phylogenetic diversity. The WHT harbored remarkably higher diversity and richness in bacterial composition at genus and species levels when compared to the WLT. Some potential pathogenenic species were identified in both WHT and WLT, providing data in support of aquatic animal health management in the aquaculture industry.

  11. Matrix composition and community structure analysis of a novel bacterial pyrite leaching community.

    Science.gov (United States)

    Ziegler, Sibylle; Ackermann, Sonia; Majzlan, Juraj; Gescher, Johannes

    2009-09-01

    Here we describe a novel bacterial community that is embedded in a matrix of carbohydrates and bio/geochemical products of pyrite (FeS(2)) oxidation. This community grows in stalactite-like structures--snottites--on the ceiling of an abandoned pyrite mine at pH values of 2.2-2.6. The aqueous phase in the matrix contains 200 mM of sulfate and total iron concentrations of 60 mM. Micro-X-ray diffraction analysis showed that jarosite [(K,Na,H(3)O)Fe(3)(SO(4))(2)(OH)(6)] is the major mineral embedded in the snottites. X-ray absorption near-edge structure experiments revealed three different sulfur species. The major signal can be ascribed to sulfate, and the other two features may correspond to thiols and sulfoxides. Arabinose was detected as the major sugar component in the extracellular polymeric substance. Via restriction fragment length polymorphism analysis, a community was found that mainly consists of iron oxidizing Leptospirillum and Ferrovum species but also of bacteria that could be involved in dissimilatory sulfate and dissimilatory iron reduction. Each snottite can be regarded as a complex, self-contained consortium of bacterial species fuelled by the decomposition of pyrite.

  12. Bacterial community analysis of Tatsoi cultivated by hydroponics.

    Science.gov (United States)

    Koo, Ok K; Kim, Hun; Kim, Hyun J; Baker, Christopher A; Ricke, Steven C

    2016-07-02

    Tatsoi (Brassica narinosa) is a popular Asian salad green that is mostly consumed as a source of fresh produce. The purpose of this study was to assess the microbial diversity of Tatsoi cultivated in a hydroponic system and of its ecosystem. Tatsoi leaves, nutrient solution, and perlite/earth samples from a trickle feed system (TFS) and an ebb-and-flow system (EFS) were collected and their microbial communities were analyzed by pyrosequencing analysis. The results showed that most bacteria in the leaves from the TFS contained genus Sporosarcina (99.6%), while Rhizobium (60.4%) was dominant in the leaves from the EFS. Genus Paucibacter (18.21%) and Pelomonas (12.37%) were the most abundant microbiota in the nutrient solution samples of the TFS. In the EFS, the nutrient solution samples contained mostly genus Rhodococcus and Acinetobacter. Potential microbial transfer between the leaves and the ecosystem was observed in the EFS, while samples in the TFS were found to share only one species between the leaves, nutrient solution, and earth. Together, these results show that the bacterial populations in Tatsoi and in its ecosystem are highly diverse based on the cultivation system.

  13. Soil phosphorus depletion and shifts in plant communities change bacterial community structure in a long-term grassland management trial.

    Science.gov (United States)

    Adair, Karen L; Wratten, Steve; Lear, Gavin

    2013-06-01

    Agricultural systems rely on healthy soils and their sustainability requires understanding the long-term impacts of agricultural practices on soils, including microbial communities. We examined the impact of 17 years of land management on soil bacterial communities in a New Zealand randomized-block pasture trial. Significant variation in bacterial community structure related to mowing and plant biomass removal, while nitrogen fertilizer had no effect. Changes in soil chemistry and legume abundance described 52% of the observed variation in the bacterial community structure. Legumes (Trifolium species) were absent in unmanaged plots but increased in abundance with management intensity; 11% of the variation in soil bacterial community structure was attributed to this shift in the plant community. Olsen P explained 10% of the observed heterogeneity, which is likely due to persistent biomass removal resulting in P limitation; Olsen P was significantly lower in plots with biomass removed (14 mg kg(-1) ± 1.3SE) compared with plots that were not mown, or where biomass was left after mowing (32 mg kg(-1) ± 1.6SE). Our results suggest that removal of plant biomass and associated phosphorus, as well as shifts in the plant community, have greater long-term impacts on soil bacterial community structure than application of nitrogen fertilizers.

  14. Ethylene removal evaluation and bacterial community analysis of vermicompost as biofilter material.

    Science.gov (United States)

    Fu, Yuming; Shao, Lingzhi; Liu, Hui; Tong, Ling; Liu, Hong

    2011-08-30

    Biofiltration of ethylene provides an environmentally friendly and economically beneficial option relative to physical/chemical removal, where selection of appropriate bed material is crucial. Here the vermicompost with indigenous microorganisms as bed material was evaluated for ethylene removal through batch test and biofilter experiment. Temporal and spatial dynamics of bacterial community in the vermicompost-biofilter under different ethylene loads were characterized by culture and denaturing gradient gel electrophoresis (DGGE) methods. The results showed that ethylene was effectively degraded by the vermicompost under conditions of 25-50% moisture content and 25-35°C temperature. The vermicompost-biofilter achieved nearly 100% ethylene removal up to an inlet load of 11mg m(-3)h(-1). Local nitrogen lack of the vermicompost in the biofilter was observed over operation time, but the change of pH was slight. DGGE analysis demonstrated that the bacterial abundance and community structure of vermicompost-biofilter varied with the height of biofilter under different ethylene loads. Pseudomonads and Actinobacteria were predominant in the biofilter throughout the whole experiment.

  15. Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska.

    Science.gov (United States)

    Kim, Hye Min; Jung, Ji Young; Yergeau, Etienne; Hwang, Chung Yeon; Hinzman, Larry; Nam, Sungjin; Hong, Soon Gyu; Kim, Ok-Sun; Chun, Jongsik; Lee, Yoo Kyung

    2014-08-01

    The subarctic region is highly responsive and vulnerable to climate change. Understanding the structure of subarctic soil microbial communities is essential for predicting the response of the subarctic soil environment to climate change. To determine the composition of the bacterial community and its relationship with soil properties, we investigated the bacterial community structure and properties of surface soil from the moist acidic tussock tundra in Council, Alaska. We collected 70 soil samples with 25-m intervals between sampling points from 0-10 cm to 10-20 cm depths. The bacterial community was analyzed by pyrosequencing of 16S rRNA genes, and the following soil properties were analyzed: soil moisture content (MC), pH, total carbon (TC), total nitrogen (TN), and inorganic nitrogen (NH4+ and NO3-). The community compositions of the two different depths showed that Alphaproteobacteria decreased with soil depth. Among the soil properties measured, soil pH was the most significant factor correlating with bacterial community in both upper and lower-layer soils. Bacterial community similarity based on jackknifed unweighted unifrac distance showed greater similarity across horizontal layers than through the vertical depth. This study showed that soil depth and pH were the most important soil properties determining bacterial community structure of the subarctic tundra soil in Council, Alaska.

  16. 16S rRNA survey revealed complex bacterial communities and evidence of bacterial interference on human adenoids.

    Science.gov (United States)

    Ren, Tiantian; Glatt, Dominique Ulrike; Nguyen, Tam Nhu; Allen, Emma Kaitlynn; Early, Stephen V; Sale, Michele; Winther, Birgit; Wu, Martin

    2013-02-01

    Adenoid microbiota plays an important role in the development of various infectious and non-infectious diseases of the upper airways, such as otitis media, adenotonsillitis, rhinosinusitis and adenoid hypertrophy. Studies have suggested that adenoids could act as a potential reservoir of opportunistic pathogens. However, previous bacterial surveys of adenoids were mainly culture based and therefore might only provide an incomplete and potentially biased assessment of the microbial diversity. To develop an in-depth and comprehensive understanding of the adenoid microbial communities and test the 'pathogen reservoir hypothesis', we carried out a 16S rRNA based, culture-independent survey of bacterial communities on 67 human adenoids removed by surgery. Our survey revealed highly diverse adenoid bacterial communities distinct from those of other body habitats. Despite large interpersonal variations, adenoid microbiota shared a core set of taxa and can be classified into at least five major types based on its bacterial species composition. Our results support the 'pathogen reservoir hypothesis' as we found common pathogens of otitis media to be both prevalent and abundant. Co-occurrence analyses revealed evidence consistent with the bacterial interference theory in that multiple common pathogens showed 'non-coexistence' relationships with non-pathogenic members of the commensal microflora.

  17. Comparative survey of bacterial and archaeal communities in high arsenic shallow aquifers using 454 pyrosequencing and traditional methods.

    Science.gov (United States)

    Li, Ping; Jiang, Dawei; Li, Bing; Dai, Xinyue; Wang, Yanhong; Jiang, Zhou; Wang, Yanxin

    2014-12-01

    A survey of bacterial and archaeal community structure was carried out in 10 shallow tube wells in a high arsenic groundwater system located in Hetao Basin, Inner Mongolia by 16S rRNA gene based two-step nested PCR-DGGE, clone libraries and 454 pyrosequencing. 12 bacterial and 18 archaeal DGGE bands and 26-136 species-level OTUs were detected for all the samples. 299 bacterial and 283 archaeal 16S rRNA gene clones for two typical samples were identified by phylogenetic analysis. Most of the results from these different methods were consistent with the dominant bacterial populations. But the proportions of the microbial populations were mostly different and the bacterial communities in most of these samples from pyrosequencing were both more abundant and more diverse than those from the traditional methods. Even after quality filtering, pyrosequencing revealed some populations including Alishewanella, Sulfuricurvum, Arthrobacter, Sporosarcina and Algoriphagus which were not detected with traditional techniques. The most dominant bacterial populations in these samples identified as some arsenic, iron, nitrogen and sulfur reducing and oxidizing related populations including Acinetobacter, Pseudomonas, Flavobacterium, Brevundimonas, Massilia, Planococcus, and Aquabacterium and archaeal communities Nitrosophaera and Methanosaeta. Acinetobacter and Pseudomonas were distinctly abundant in most of these samples. Methanogens were found as the dominant archeal population with three methods. From the results of traditional methods, the dominant archaeal populations apparently changed from phylum Thaumarchaeota to Euryarchaeota with the arsenic concentrations increasing. But this structure dynamic change was not revealed with pyrosequencing. Our results imply that an integrated approach combining the traditional methods and next generation sequencing approaches to characterize the microbial communities in high arsenic groundwater is recommended.

  18. Effects due to rhizospheric soil application of an antagonistic bacterial endophyte on native bacterial community and its survival in soil: A case study with Pseudomonas aeruginosa from banana

    Directory of Open Access Journals (Sweden)

    Pious eThomas

    2016-04-01

    Full Text Available Effective translation of research findings from laboratory to agricultural fields is essential for the success of biocontrol or growth promotion trials employing beneficial microorganisms. The rhizosphere is to be viewed holistically as a dynamic ecological niche comprising of diverse microorganisms including competitors and noxious antagonists to the bio-inoculant. This study was undertaken to assess the effects due to the soil application of an endophytic bacterium with multiple pathogen antagonistic potential on native bacterial community and its sustenance in agricultural soil. Pseudomonas aeruginosa was employed as a model system considering its frequent isolation as an endophyte, wide antagonistic effects reported against different phytopathogens and soil pests, and that the species is a known human pathogen which makes its usage in agriculture precarious. Employing the strain ‘GNS.13.2a’ from banana, its survival in field soil and the effects upon soil inoculation were investigated by monitoring total culturable bacterial fraction as the representative indicator of soil microbial community. Serial dilution plating of uninoculated control versus P. aeruginosa inoculated soil from banana rhizosphere indicated a significant reduction in native bacterial cfu soon after inoculation compared with control soil as assessed on cetrimide- nalidixic acid selective medium against nutrient agar. Sampling on day-4 showed a significant reduction in P. aeruginosa cfu in inoculated soil and a continuous dip thereafter registering >99% reduction within one week while the native bacterial population resurged with cfu restoration on par with control. This was validated in contained trials with banana plants. Conversely, P. aeruginosa showed static cfu or proliferation in axenic-soil. Lateral introduction of soil microbiome in P. aeruginosa established soil under axenic conditions or its co-incubation with soil microbiota in suspension indicated

  19. Characterization of Bacterial Communities in Deep-Sea Hydrothermal Vents from Three Oceanic Regions.

    Science.gov (United States)

    He, Tianliang; Zhang, Xiaobo

    2016-04-01

    Deep-sea hydrothermal vents are considered to be one of the most spectacular ecosystems on Earth. Microorganisms form the basis of the food chain in vents controlling the vent communities. However, the diversity of bacterial communities in deep-sea hydrothermal vents from different oceans remains largely unknown. In this study, the pyrosequencing of 16S rRNA gene was used to characterize the bacterial communities of the venting sulfide, seawater, and tubeworm trophosome from East Pacific Rise, South Atlantic Ridge, and Southwest Indian Ridge, respectively. A total of 23,767 operational taxonomic units (OTUs) were assigned into 42 different phyla. Although Proteobacteria, Actinobacteria, and Bacteroidetes were the predominant phyla in all vents, differences of bacterial diversity were observed among different vents from three oceanic regions. The sulfides of East Pacific Rise possessed the most diverse bacterial communities. The bacterial diversities of venting seawater were much lower than those of vent sulfides. The symbiotic bacteria of tubeworm Ridgeia piscesae were included in the bacterial community of vent sulfides, suggesting their significant ecological functions as the primary producers in the deep-sea hydrothermal vent ecosystems. Therefore, our study presented a comprehensive view of bacterial communities in deep-sea hydrothermal vents from different oceans.

  20. Diversity surveys of soil bacterial community by cultivation-based methods and molecular fingerprinting techniques

    Institute of Scientific and Technical Information of China (English)

    LUO Hai-feng; QI Hong-yan; ZHANG Hong-xun

    2004-01-01

    By combining the cultivation methods with molecular fingerprinting techniques, the diversity surveys of soil bacterial community in 13 areas of China were carried out. The cultivable heterotrophic diversity was investigated by colony morphology on solid LB medium. Genetic diversity was measured as bands on denaturing gradient gel electrophoresis(DGGE) by the extraction and purification of the total soil DNA, and amplification of bacterial 16S rDNA fragments by polymerase chain reaction ( PCR). The Shannon-Wiener indices of diversity (H), richness (S)and evenness( EH ) were employed to estimate the diversity of soil bacterial community. The results showed that there was an obvious diversification existed in soil from the different areas. However, the genetic diversity estimated by PCR-DGGE can provide more comprehensive information on bacterial community than the cultivation-based methods. Therefore, it is suggested to combine the traditional methods with genetic fingerprinting techniques to survey and estimate soil bacterial diversity.

  1. Seasonality and resource availability control bacterial and archaeal communities in soils of a temperate beech forest.

    Science.gov (United States)

    Rasche, Frank; Knapp, Daniela; Kaiser, Christina; Koranda, Marianne; Kitzler, Barbara; Zechmeister-Boltenstern, Sophie; Richter, Andreas; Sessitsch, Angela

    2011-03-01

    It was hypothesized that seasonality and resource availability altered through tree girdling were major determinants of the phylogenetic composition of the archaeal and bacterial community in a temperate beech forest soil. During a 2-year field experiment, involving girdling of beech trees to intercept the transfer of easily available carbon (C) from the canopy to roots, members of the dominant phylogenetic microbial phyla residing in top soils under girdled versus untreated control trees were monitored at bimonthly intervals through 16S rRNA gene-based terminal restriction fragment length polymorphism profiling and quantitative PCR analysis. Effects on nitrifying and denitrifying groups were assessed by measuring the abundances of nirS and nosZ genes as well as bacterial and archaeal amoA genes. Seasonal dynamics displayed by key phylogenetic and nitrogen (N) cycling functional groups were found to be tightly coupled with seasonal alterations in labile C and N pools as well as with variation in soil temperature and soil moisture. In particular, archaea and acidobacteria were highly responsive to soil nutritional and soil climatic changes associated with seasonality, indicating their high metabolic versatility and capability to adapt to environmental changes. For these phyla, significant interrelations with soil chemical and microbial process data were found suggesting their potential, but poorly described contribution to nitrification or denitrification in temperate forest soils. In conclusion, our extensive approach allowed us to get novel insights into effects of seasonality and resource availability on the microbial community, in particular on hitherto poorly studied bacterial phyla and functional groups.

  2. Soil bacterial community structure responses to precipitation reduction and forest management in forest ecosystems across Germany.

    Science.gov (United States)

    Felsmann, Katja; Baudis, Mathias; Gimbel, Katharina; Kayler, Zachary E; Ellerbrock, Ruth; Bruelheide, Helge; Bruehlheide, Helge; Bruckhoff, Johannes; Welk, Erik; Puhlmann, Heike; Weiler, Markus; Gessler, Arthur; Ulrich, Andreas

    2015-01-01

    Soil microbial communities play an important role in forest ecosystem functioning, but how climate change will affect the community composition and consequently bacterial functions is poorly understood. We assessed the effects of reduced precipitation with the aim of simulating realistic future drought conditions for one growing season on the bacterial community and its relation to soil properties and forest management. We manipulated precipitation in beech and conifer forest plots managed at different levels of intensity in three different regions across Germany. The precipitation reduction decreased soil water content across the growing season by between 2 to 8% depending on plot and region. T-RFLP analysis and pyrosequencing of the 16S rRNA gene were used to study the total soil bacterial community and its active members after six months of precipitation reduction. The effect of reduced precipitation on the total bacterial community structure was negligible while significant effects could be observed for the active bacteria. However, the effect was secondary to the stronger influence of specific soil characteristics across the three regions and management selection of overstorey tree species and their respective understorey vegetation. The impact of reduced precipitation differed between the studied plots; however, we could not determine the particular parameters being able to modify the response of the active bacterial community among plots. We conclude that the moderate drought induced by the precipitation manipulation treatment started to affect the active but not the total bacterial community, which points to an adequate resistance of the soil microbial system over one growing season.

  3. Diversity and abundance of the bacterial community of the red Macroalga Porphyra umbilicalis: did bacterial farmers produce macroalgae?

    Directory of Open Access Journals (Sweden)

    Lilibeth N Miranda

    Full Text Available Macroalgae harbor microbial communities whose bacterial biodiversity remains largely uncharacterized. The goals of this study were 1 to examine the composition of the bacterial community associated with Porphyra umbilicalis Kützing from Schoodic Point, ME, 2 determine whether there are seasonal trends in species diversity but a core group of bacteria that are always present, and 3 to determine how the microbial community associated with a laboratory strain (P.um.1 established in the presence of antibiotics has changed. P. umbilicalis blades (n = 5, fall 2010; n = 5, winter 2011; n = 2, clonal P.um.1 were analyzed by pyrosequencing over two variable regions of the 16 S rDNA (V5-V6 and V8; 147,880 total reads. The bacterial taxa present were classified at an 80% confidence threshold into eight phyla (Bacteroidetes, Proteobacteria, Planctomycetes, Chloroflexi, Actinobacteria, Deinococcus-Thermus, Firmicutes, and the candidate division TM7. The Bacteroidetes comprised the majority of bacterial sequences on both field and lab blades, but the Proteobacteria (Alphaproteobacteria, Gammaproteobacteria were also abundant. Sphingobacteria (Bacteroidetes and Flavobacteria (Bacteroidetes had inverse abundances on natural versus P.um.1 blades. Bacterial communities were richer and more diverse on blades sampled in fall compared to winter. Significant differences were observed between microbial communities among all three groups of blades examined. Only two OTUs were found on all 12 blades, and only one of these, belonging to the Saprospiraceae (Bacteroidetes, was abundant. Lewinella (as 66 OTUs was found on all field blades and was the most abundant genus. Bacteria from the Bacteroidetes, Proteobacteria and Planctomycetes that are known to digest the galactan sulfates of red algal cell walls were well-represented. Some of these taxa likely provide essential morphogenetic and beneficial nutritive factors to P. umbilicalis and may have had

  4. Dynamics of Sequence -Discrete Bacterial Populations Inferred Using Metagenomes

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Sarah; Bendall, Matthew; Kang, Dongwan; Froula, Jeff; Egan, Rob; Chan, Leong-Keat; Tringe, Susannah; McMahon, Katherine; Malmstrom, Rex

    2014-03-14

    From a multi-year metagenomic time series of two dissimilar Wisconsin lakes we have assembled dozens of genomes using a novel approach that bins contigs into distinct genome based on sequence composition, e.g. kmer frequencies, and contig coverage patterns at various times points. Next, we investigated how these genomes, which represent sequence-discrete bacterial populations, evolved over time and used the time series to discover the population dynamics. For example, we explored changes in single nucleotide polymorphism (SNP) frequencies as well as patterns of gene gain and loss in multiple populations. Interestingly, SNP diversity was purged at nearly every genome position in some populations during the course of this study, suggesting these populations may have experienced genome-wide selective sweeps. This represents the first direct, time-resolved observations of periodic selection in natural populations, a key process predicted by the ecotype model of bacterial diversification.

  5. Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community

    DEFF Research Database (Denmark)

    Klümper, Uli; Riber, Leise; Dechesne, Arnaud

    2014-01-01

    range of IncP- and IncPromA-type broad host range plasmids from three proteobacterial donors to a soil bacterial community. We identified transfer to many different recipients belonging to 11 different bacterial phyla. The prevalence of transconjugants belonging to diverse Gram-positive Firmicutes...... bacteria and can, therefore, directly connect large proportions of the soil bacterial gene pool. This finding reinforces the evolutionary and medical significances of these plasmids....

  6. Risk factors for community-acquired bacterial meningitis in adults

    NARCIS (Netherlands)

    Adriani, K.S.

    2015-01-01

    Bacterial meningitis is an inflammation of the meninges and occurs when bacteria invade the subarachnoid space. The meninges are the protective membranes that surround the brain and the spinal cord. Bacterial meningitis is a life-threatening disease because the proximity of the infection to the brai

  7. Comparison of bacterial communities of conventional and A-stage activated sludge systems

    NARCIS (Netherlands)

    Gonzalez-Martinez, A.; Rodriguez-Sanchez, A.; Lotti, T.; Garcia-Ruiz, M.J.; Gonzalez-Lopez, J.; Van Loosdrecht, M.C.M.

    2016-01-01

    The bacterial community structure of 10 different wastewater treatment systems and their influents has been investigated through pyrosequencing, yielding a total of 283486 reads. These bioreactors had different technological configurations: conventional activated sludge (CAS) systems and very highly

  8. Invertebrate footprints on detritus processing, bacterial community structure, and spatiotemporal redox profiles

    NARCIS (Netherlands)

    Hunting, E.R.; Whatley, M.H.; van der Geest, H.G.; Mulder, C.; Kraak, M.H.S.; Breure, A.M.; Admiraal, W.

    2012-01-01

    Detritus processing is driven by a complex interplay between macroinvertebrate and microbial activities. Bioturbation/feeding activities of invertebrates in sediments are known to influence decomposition rates. However, direct effects of invertebrates on bacterial communities and detritus processing

  9. Impact of oil contamination and biostimulation on the diversity of indigenous bacterial communities in soil microcosms

    NARCIS (Netherlands)

    Evans, FF; Rosado, AS; Sebastian, GV; Casella, R; Machado, PLOA; Holmstrom, C; Kjelleberg, S; van Elsas, JD; Seldin, L

    2004-01-01

    The aim of this study was to analyse the effect of oil contamination and biostimulation (soil pH raise, and nitrogen, phosphate and sulphur addition) on the diversity of a bacterial community of an acidic Cambisol under Atlantic Forest. The experiment was based on the enumeration of bacterial popula

  10. Dynamic social community detection and its applications.

    Directory of Open Access Journals (Sweden)

    Nam P Nguyen

    Full Text Available Community structure is one of the most commonly observed features of Online Social Networks (OSNs in reality. The knowledge of this feature is of great advantage: it not only provides helpful insights into developing more efficient social-aware solutions but also promises a wide range of applications enabled by social and mobile networking, such as routing strategies in Mobile Ad Hoc Networks (MANETs and worm containment in OSNs. Unfortunately, understanding this structure is very challenging, especially in dynamic social networks where social interactions are evolving rapidly. Our work focuses on the following questions: How can we efficiently identify communities in dynamic social networks? How can we adaptively update the network community structure based on its history instead of recomputing from scratch? To this end, we present Quick Community Adaptation (QCA, an adaptive modularity-based framework for not only discovering but also tracing the evolution of network communities in dynamic OSNs. QCA is very fast and efficient in the sense that it adaptively updates and discovers the new community structure based on its history together with the network changes only. This flexible approach makes QCA an ideal framework applicable for analyzing large-scale dynamic social networks due to its lightweight computing-resource requirement. To illustrate the effectiveness of our framework, we extensively test QCA on both synthesized and real-world social networks including Enron, arXiv e-print citation, and Facebook networks. Finally, we demonstrate the applicability of QCA in real applications: (1 A social-aware message forwarding strategy in MANETs, and (2 worm propagation containment in OSNs. Competitive results in comparison with other methods reveal that social-based techniques employing QCA as a community detection core outperform current available methods.

  11. Dynamic social community detection and its applications.

    Science.gov (United States)

    Nguyen, Nam P; Dinh, Thang N; Shen, Yilin; Thai, My T

    2014-01-01

    Community structure is one of the most commonly observed features of Online Social Networks (OSNs) in reality. The knowledge of this feature is of great advantage: it not only provides helpful insights into developing more efficient social-aware solutions but also promises a wide range of applications enabled by social and mobile networking, such as routing strategies in Mobile Ad Hoc Networks (MANETs) and worm containment in OSNs. Unfortunately, understanding this structure is very challenging, especially in dynamic social networks where social interactions are evolving rapidly. Our work focuses on the following questions: How can we efficiently identify communities in dynamic social networks? How can we adaptively update the network community structure based on its history instead of recomputing from scratch? To this end, we present Quick Community Adaptation (QCA), an adaptive modularity-based framework for not only discovering but also tracing the evolution of network communities in dynamic OSNs. QCA is very fast and efficient in the sense that it adaptively updates and discovers the new community structure based on its history together with the network changes only. This flexible approach makes QCA an ideal framework applicable for analyzing large-scale dynamic social networks due to its lightweight computing-resource requirement. To illustrate the effectiveness of our framework, we extensively test QCA on both synthesized and real-world social networks including Enron, arXiv e-print citation, and Facebook networks. Finally, we demonstrate the applicability of QCA in real applications: (1) A social-aware message forwarding strategy in MANETs, and (2) worm propagation containment in OSNs. Competitive results in comparison with other methods reveal that social-based techniques employing QCA as a community detection core outperform current available methods.

  12. Dynamic Social Community Detection and Its Applications

    Science.gov (United States)

    Nguyen, Nam P.; Dinh, Thang N.; Shen, Yilin; Thai, My T.

    2014-01-01

    Community structure is one of the most commonly observed features of Online Social Networks (OSNs) in reality. The knowledge of this feature is of great advantage: it not only provides helpful insights into developing more efficient social-aware solutions but also promises a wide range of applications enabled by social and mobile networking, such as routing strategies in Mobile Ad Hoc Networks (MANETs) and worm containment in OSNs. Unfortunately, understanding this structure is very challenging, especially in dynamic social networks where social interactions are evolving rapidly. Our work focuses on the following questions: How can we efficiently identify communities in dynamic social networks? How can we adaptively update the network community structure based on its history instead of recomputing from scratch? To this end, we present Quick Community Adaptation (QCA), an adaptive modularity-based framework for not only discovering but also tracing the evolution of network communities in dynamic OSNs. QCA is very fast and efficient in the sense that it adaptively updates and discovers the new community structure based on its history together with the network changes only. This flexible approach makes QCA an ideal framework applicable for analyzing large-scale dynamic social networks due to its lightweight computing-resource requirement. To illustrate the effectiveness of our framework, we extensively test QCA on both synthesized and real-world social networks including Enron, arXiv e-print citation, and Facebook networks. Finally, we demonstrate the applicability of QCA in real applications: (1) A social-aware message forwarding strategy in MANETs, and (2) worm propagation containment in OSNs. Competitive results in comparison with other methods reveal that social-based techniques employing QCA as a community detection core outperform current available methods. PMID:24722164

  13. Bacterial communities of surface and deep hydrocarbon-contaminated waters of the Deepwater Horizon oil spill

    Science.gov (United States)

    Yang, T.; Nigro, L. M.; McKay, L.; Ziervogel, K.; Gutierrez, T.; Teske, A.

    2010-12-01

    with RV Walton Smith on May 30, at station WS 46 near the leak (28°N659.35; 88°W.43498). Water was collected and filtered from above the plume (800 m), within the plume (1170 m and 1210 m) and below the plume (1320 m) as indicated by Color Dissolved Organic Matter (CDOM) measurements. Clone libraries of both plume samples were dominated by a cluster of closely related 16S rRNA clones within the Oceanospirillales. The closest relatives were aerobic alkane oxidizers of the genera Oleispira and Thalassolituus. In contrast, the water samples above and below the plume showed distinct, diverse bacterial communities that lacked the characteristic clones of the hydrocarbon plume. Analysis of additional water samples from different locations and time points will further resolve spatial and temporal dynamics of oil degrading microbes in the water column. Thus far, our results indicate a stratified bacterial community in the oil-polluted water column with distinct types of oil-degrading bacteria in surface oil slicks and finely dispersed deepwater plumes.

  14. Phylogenetic and metagenomic analyses of substrate-dependent bacterial temporal dynamics in microbial fuel cells.

    Directory of Open Access Journals (Sweden)

    Husen Zhang

    Full Text Available Understanding the microbial community structure and genetic potential of anode biofilms is key to improve extracellular electron transfers in microbial fuel cells. We investigated effect of substrate and temporal dynamics of anodic biofilm communities using phylogenetic and metagenomic approaches in parallel with electrochemical characterizations. The startup non-steady state anodic bacterial structures were compared for a simple substrate, acetate, and for a complex substrate, landfill leachate, using a single-chamber air-cathode microbial fuel cell. Principal coordinate analysis showed that distinct community structures were formed with each substrate type. The bacterial diversity measured as Shannon index decreased with time in acetate cycles, and was restored with the introduction of leachate. The change of diversity was accompanied by an opposite trend in the relative abundance of Geobacter-affiliated phylotypes, which were acclimated to over 40% of total Bacteria at the end of acetate-fed conditions then declined in the leachate cycles. The transition from acetate to leachate caused a decrease in output power density from 243±13 mW/m2 to 140±11 mW/m2, accompanied by a decrease in Coulombic electron recovery from 18±3% to 9±3%. The leachate cycles selected protein-degrading phylotypes within phylum Synergistetes. Metagenomic shotgun sequencing showed that leachate-fed communities had higher cell motility genes including bacterial chemotaxis and flagellar assembly, and increased gene abundance related to metal resistance, antibiotic resistance, and quorum sensing. These differentially represented genes suggested an altered anodic biofilm community in response to additional substrates and stress from the complex landfill leachate.

  15. Comparative pyrosequencing analysis of bacterial community change in biofilm formed on seawater reverse osmosis membrane.

    Science.gov (United States)

    Kim, In S; Lee, Jinwook; Kima, Sung-Jo; Yu, Hye-Weon; Jang, Am

    2014-01-01

    The change in bacterial community structure induced by bacterial competition and succession was investigated during seawater reverse osmosis (SWRO) in order to elucidate a possible link between the bacterial consortium on SWRO membranes and biofouling. To date, there has been no definitive characterization of the microbial diversity in SWRO in terms of distinguishing time-dependent changes in the richness or abundance of bacterial species. For bacterial succession within biofilms on the membrane surface, SWRO using a cross-flow filtration membrane test unit was operated for 5 and 100h, respectively. As results of the pyrosequencing analysis, bacterial communities differed considerably among seawater and the 5 and 100 h samples. From a total of 33,876 pyrosequences (using a 95% sequence similarity), there were less than 1% of shared species, confirming the influence of the operational time factor and lack of similarity of these communities. During SWRO operation, the abundance of Pseudomonas stutzeri BBSPN3 (GU594474) belonging to gamma-Proteobacteria suggest that biofouling of SWRO membrane might be driven by the dominant influence of a specific species. In addition, among the bacterial competition of five bacterial species (Pseudomonas aeruginosa, Bacillus sp., Rhodobacter sp., Flavobacterium sp., and Mycobacterium sp.) competing for bacterial colonization on the SWRO membrane surfaces, it was exhibited that Bacillus sp. was the most dominant. The dominant influences ofPseudomonas sp. and Bacillus sp. on biofouling during actual SWRO is decisive depending on higher removal efficiency of the seawater pretreatment.

  16. Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests

    Science.gov (United States)

    Kaiser, Kristin; Wemheuer, Bernd; Korolkow, Vera; Wemheuer, Franziska; Nacke, Heiko; Schöning, Ingo; Schrumpf, Marion; Daniel, Rolf

    2016-01-01

    Soil bacteria provide a large range of ecosystem services such as nutrient cycling. Despite their important role in soil systems, compositional and functional responses of bacterial communities to different land use and management regimes are not fully understood. Here, we assessed soil bacterial communities in 150 forest and 150 grassland soils derived from three German regions by pyrotag sequencing of 16S rRNA genes. Land use type (forest and grassland) and soil edaphic properties strongly affected bacterial community structure and function, whereas management regime had a minor effect. In addition, a separation of soil bacterial communities by sampling region was encountered. Soil pH was the best predictor for bacterial community structure, diversity and function. The application of multinomial log-linear models revealed distinct responses of abundant bacterial groups towards pH. Predicted functional profiles revealed that differences in land use not only select for distinct bacterial populations but also for specific functional traits. The combination of 16S rRNA data and corresponding functional profiles provided comprehensive insights into compositional and functional adaptations to changing environmental conditions associated with differences in land use and management. PMID:27650273

  17. Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests

    Science.gov (United States)

    Kaiser, Kristin; Wemheuer, Bernd; Korolkow, Vera; Wemheuer, Franziska; Nacke, Heiko; Schöning, Ingo; Schrumpf, Marion; Daniel, Rolf

    2016-09-01

    Soil bacteria provide a large range of ecosystem services such as nutrient cycling. Despite their important role in soil systems, compositional and functional responses of bacterial communities to different land use and management regimes are not fully understood. Here, we assessed soil bacterial communities in 150 forest and 150 grassland soils derived from three German regions by pyrotag sequencing of 16S rRNA genes. Land use type (forest and grassland) and soil edaphic properties strongly affected bacterial community structure and function, whereas management regime had a minor effect. In addition, a separation of soil bacterial communities by sampling region was encountered. Soil pH was the best predictor for bacterial community structure, diversity and function. The application of multinomial log-linear models revealed distinct responses of abundant bacterial groups towards pH. Predicted functional profiles revealed that differences in land use not only select for distinct bacterial populations but also for specific functional traits. The combination of 16S rRNA data and corresponding functional profiles provided comprehensive insights into compositional and functional adaptations to changing environmental conditions associated with differences in land use and management.

  18. Exploration of methods used to describe bacterial communities in silage of maize (Zea mays) cultivars.

    Science.gov (United States)

    Brusetti, Lorenzo; Borin, Sara; Rizzi, Aurora; Mora, Diego; Sorlini, Claudia; Daffonchio, Daniele

    2008-01-01

    Different techniques to assess bacterial community structure and diversity were evaluated in silages prepared with four different maize cultivars, three conventional and one transgenic (cv. Tundra, event Bt-176). Plants were cultivated in the greenhouse and harvested after 30 days of growth. Silage samples were collected at successive times during fermentation and analyzed for bacterial counts and by various DNA-based fingerprinting techniques. Bacterial counts were similar between cultivars for the total culturable bacteria, sporeforming, and mesophilic and thermophilic lactic acid bacteria (LAB). Further analysis of the species composition of 388 LAB strains by intergenic transcribed spacer (ITS) PCR followed by sequencing of 16S rRNA gene did not reveal differences between cultivars. In contrast, molecular fingerprinting methods targeting whole bacterial communities, such as automated ribosomal intergenic spacers analysis (ARISA) and 16S rRNA gene length heterogeneity-PCR (LH-PCR), indicated that different maize silage batches or cultivars hosted different bacterial communities. Thus, ARISA and LH-PCR fingerprinting techniques offer a fast and sensitive method to compare bacterial communities, and to detect differences in silage bacterial communities.

  19. Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests.

    Science.gov (United States)

    Kaiser, Kristin; Wemheuer, Bernd; Korolkow, Vera; Wemheuer, Franziska; Nacke, Heiko; Schöning, Ingo; Schrumpf, Marion; Daniel, Rolf

    2016-09-21

    Soil bacteria provide a large range of ecosystem services such as nutrient cycling. Despite their important role in soil systems, compositional and functional responses of bacterial communities to different land use and management regimes are not fully understood. Here, we assessed soil bacterial communities in 150 forest and 150 grassland soils derived from three German regions by pyrotag sequencing of 16S rRNA genes. Land use type (forest and grassland) and soil edaphic properties strongly affected bacterial community structure and function, whereas management regime had a minor effect. In addition, a separation of soil bacterial communities by sampling region was encountered. Soil pH was the best predictor for bacterial community structure, diversity and function. The application of multinomial log-linear models revealed distinct responses of abundant bacterial groups towards pH. Predicted functional profiles revealed that differences in land use not only select for distinct bacterial populations but also for specific functional traits. The combination of 16S rRNA data and corresponding functional profiles provided comprehensive insights into compositional and functional adaptations to changing environmental conditions associated with differences in land use and management.

  20. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra

    Directory of Open Access Journals (Sweden)

    Congcong eShen

    2015-06-01

    Full Text Available The elevational diversity pattern for microorganisms has received great attention recently but is still understudied, and phylogenetic relatedness is rarely studied for microbial elevational distributions. Using a bar-coded pyrosequencing technique, we examined the biodiversity patterns for soil bacterial communities of tundra ecosystem along 2000–2500 m elevations on Changbai Mountain in China. Bacterial taxonomic richness displayed a linear decreasing trend with increasing elevation. Phylogenetic diversity and mean nearest taxon distance (MNTD exhibited a unimodal pattern with elevation. Bacterial communities were more phylogenetically clustered than expected by chance at all elevations based on the standardized effect size of MNTD metric. The bacterial communities differed dramatically among elevations, and the community composition was significantly correlated with soil total carbon, total nitrogen, C:N ratio, and dissolved organic carbon. Multiple ordinary least squares regression analysis showed that the observed biodiversity patterns strongly correlated with soil total carbon and C:N ratio. Taken together, this is the first time that a significant bacterial diversity pattern has been observed across a small-scale elevational gradient. Our results indicated that soil carbon and nitrogen contents were the critical environmental factors affecting bacterial elevational distribution in Changbai Mountain tundra. This suggested that ecological niche-based environmental filtering processes related to soil carbon and nitrogen contents could play a dominant role in structuring bacterial communities along the elevational gradient.

  1. Compositional Stability of the Bacterial Community in a Climate-Sensitive Sub-Arctic Peatland

    Science.gov (United States)

    Weedon, James T.; Kowalchuk, George A.; Aerts, Rien; Freriks, Stef; Röling, Wilfred F. M.; van Bodegom, Peter M.

    2017-01-01

    The climate sensitivity of microbe-mediated soil processes such as carbon and nitrogen cycling offers an interesting case for evaluating the corresponding sensitivity of microbial community composition to environmental change. Better understanding of the degree of linkage between functional and compositional stability would contribute to ongoing efforts to build mechanistic models aiming at predicting rates of microbe-mediated processes. We used an amplicon sequencing approach to test if previously observed large effects of experimental soil warming on C and N cycle fluxes (50–100% increases) in a sub-arctic Sphagnum peatland were reflected in changes in the composition of the soil bacterial community. We found that treatments that previously induced changes to fluxes did not associate with changes in the phylogenetic composition of the soil bacterial community. For both DNA- and RNA-based analyses, variation in bacterial communities could be explained by the hierarchy: spatial variation (12–15% of variance explained) > temporal variation (7–11%) > climate treatment (4–9%). We conclude that the bacterial community in this environment is stable under changing conditions, despite the previously observed sensitivity of process rates—evidence that microbe-mediated soil processes can alter without concomitant changes in bacterial communities. We propose that progress in linking soil microbial communities to ecosystem processes can be advanced by further investigating the relative importance of community composition effects versus physico-chemical factors in controlling biogeochemical process rates in different contexts.

  2. Seasonal variability in airborne bacterial communities at a high elevation site and their relationship to other air studies and to potential sources

    Science.gov (United States)

    Bowers, R. M.; Mccubbin, I. B.; Hallar, A. G.; Fierer, N.

    2012-12-01

    Airborne bacteria are a large component of the near-surface atmospheric aerosol; however we know surprisingly little about their spatiotemporal dynamics and even less about their distributions at high-elevation. With this work, we describe seasonal shifts in bacterial abundances, total particle abundances, and bacterial community structure at a high-elevation research station located in Colorado, USA. In addition, we describe the unique composition of these high-elevation airborne bacterial communities as compared to the bacteria commonly observed throughout the lower elevation atmosphere as well as bacteria common to major sources such as leaf surfaces, soils, water bodies and various other surfaces. To address these knowledge gaps, we collected aerosol samples on the rooftop of Storm Peak Laboratory (3200 m ASL) over the course of 2-3 week periods during each of the four calendar seasons. Total bacterial abundances were assessed via flow cytometry, total particle abundances were calculated with an aerodynamic particle sizer, and bacterial communities were characterized using a high-throughput barcoded DNA sequencing approach. The airborne bacterial communities at Storm Peak Lab were then used in a meta-analysis comparing Storm Peak bacteria to other near-surface (lower elevation) bacterial communities and to the communities of likely source environments. Bacterial abundances varied by season, which was similar but not identical to the changes in total particle abundances across the same sampling period. Airborne bacterial community structure varied significantly by season, with the summer communities being the most distinct. Season specific bacterial groups were identified, suggesting that a large proportion of the airborne community may be derived from nearby sources. However following a multi-environment meta-analysis using several air and source derived bacterial community datasets, the high-elevation air communities were the most distinct as compared to the

  3. Phosphorus chemistry and bacterial community composition interact in brackish sediments receiving agricultural discharges.

    Directory of Open Access Journals (Sweden)

    Hanna Sinkko

    Full Text Available BACKGROUND: External nutrient discharges have caused eutrophication in many estuaries and coastal seas such as the Baltic Sea. The sedimented nutrients can affect bacterial communities which, in turn, are widely believed to contribute to release of nutrients such as phosphorus from the sediment. METHODS: We investigated relationships between bacterial communities and chemical forms of phosphorus as well as elements involved in its cycling in brackish sediments using up-to-date multivariate statistical methods. Bacterial community composition was determined by terminal restriction fragment length polymorphism and cloning of the 16S rRNA gene. RESULTS AND CONCLUSIONS: The bacterial community composition differed along gradients of nutrients, especially of different phosphorus forms, from the estuary receiving agricultural phosphorus loading to the open sea. This suggests that the chemical composition of sediment phosphorus, which has been affected by riverine phosphorus loading, influenced on bacterial communities. Chemical and spatial parameters explained 25% and 11% of the variation in bacterial communities. Deltaproteobacteria, presumptively sulphate and sulphur/iron reducing, were strongly associated to chemical parameters, also when spatial autocorrelation was taken into account. Sulphate reducers correlated positively with labile organic phosphorus and total nitrogen in the open sea sediments. Sulphur/iron reducers and sulphate reducers linked to iron reduction correlated positively with aluminium- and iron-bound phosphorus, and total iron in the estuary. The sulphate and sulphur/iron reducing bacteria can thus have an important role both in the mineralization and mobilization of nutrients from sediment. SIGNIFICANCE: Novelty in our study is that relationships between bacterial community composition and different phosphorus forms, instead of total phosphorus, were investigated. Total phosphorus does not necessarily bring out interactions

  4. Comparative Analysis of the Composition of Intestinal Bacterial Communities in Dastarcus helophoroides Fed Different Diets

    OpenAIRE

    Wang, Wei-Wei; He, Cai; Cui, Jun; Wang, Hai-dong; Li, Meng-Lou

    2014-01-01

    The diversity of the intestinal bacterial communities in Dastarcus helophoroides (Fairmaire) (Coleoptera: Bothrideridae) larvae and adults was assayed by PCR-DGGE to determine whether different artificial diets could influence these bacterial communities. Two diets were used for feeding the larvae and four for the adults. Escherichia, Desemzia, Staphylococcus, Asticcacaulis, Cellvibrio, Aurantimonas, and Planomicrobium were isolated from the gut of the adults, with Escherichia and Staphylococ...

  5. Bacterial Community Structure and Biochemical Changes Associated With Composting of Lignocellulosic Oil Palm Empty Fruit Bunch

    OpenAIRE

    Mohd Huzairi Mohd Zainudin; Mohd Ali Hassan,; Umi Kalsom Md Shah; Norhani Abdullah; Mitsunori Tokura; Hisashi Yasueda; Yoshihito Shirai; Kenji Sakai; Azhari Samsu Baharuddin

    2013-01-01

    Bacterial community structure and biochemical changes during the composting of lignocellulosic oil palm empty bunch (EFB) and palm oil mill effluent (POME) anaerobic sludge were studied by examining the succession of the bacterial community and its association with changes in lignocellulosic components by denaturing gradient gel electrophoresis (DGGE) and the 16S rRNA gene clone library. During composting, a major reduction in cellulose after 10 days from 50% to 19% and the carbon content fro...

  6. A Greenhouse Assay on the Effect of Applied Urea Amount on the Rhizospheric Soil Bacterial Communities.

    Science.gov (United States)

    Shang, Shuanghua; Yi, Yanli

    2015-12-01

    The rhizospheric bacteria play key role in plant nutrition and growth promotion. The effects of increased nitrogen inputs on plant rhizospheric soils also have impacted on whole soil microbial communities. In this study, we analyzed the effects of applied nitrogen (urea) on rhizospheric bacterial composition and diversity in a greenhouse assay using the high-throughput sequencing technique. To explore the environmental factors driving the abundance, diversity and composition of soil bacterial communities, the relationship between soil variables and the bacterial communities were also analyzed using the mantel test as well as the redundancy analysis. The results revealed significant bacterial diversity changes at different amounts of applied urea, especially between the control treatment and the N fertilized treatments. Mantel tests showed that the bacterial communities were significantly correlated with the soil nitrate nitrogen, available nitrogen, soil pH, ammonium nitrogen and total organic carbon. The present study deepened the understanding about the rhizospheric soil microbial communities under different amounts of applied urea in greenhouse conditions, and our work revealed the environmental factors affecting the abundance, diversity and composition of rhizospheric bacterial communities.

  7. Bacterial community structure and diversity in a black soil as affected by long-term fertilization

    Institute of Scientific and Technical Information of China (English)

    WEI Dan; YANG Qian; ZHANG Jun-Zheng; WANG Shuang; CHEN Xue-Li; ZHANG Xi-Lin; LI Wei-Qun

    2008-01-01

    Black soil (Mollisol) is one of the main soil types in northeastern China.Biolog and polymerase chain reactiondenaturing gradient gel electrophoresis (PCR-DGGE) methods were used to examine the influence of various fertilizer combinations on the structure and function of the bacterial community in a black soil collected from Harbin,Heilongjiang Province.Biolog results showed that substrate richness and catabolic diversity of the soil bacterial community were the greatest in the chemical fertilizer and chemical fertilizer+manure treatments.The metabolic ability of the bacterial community in the manure treatment was similar to the control.DGGE fingerprinting indicated similarity in the distribution of most 16S rDNA bands among all treatments,suggesting that microorganisms with those bands were stable and not influenced by fertilization.However,chemical fertilizer increased the diversity of soil bacterial community.Principal component analysis of Biolog and DGGE data revealed that the structure and function of the bacterial community were similar in the control and manure treatments,suggesting that the application of manure increased the soil microbial population,but had no effect on the bacterial community structure.Catabolic function was similar in the chemical fertilizer and chemical fertilizer+manure treatments,but the composition structure of the soil microbes differed between them.The use of chemical fertilizers could result in a decline in the catabolic activity of fast-growing or eutrophic bacteria.

  8. Bacterial DNA segregation by dynamic SopA polymers

    OpenAIRE

    2005-01-01

    Many bacterial plasmids and chromosomes rely on ParA ATPases for proper positioning within the cell and for efficient segregation to daughter cells. Here we demonstrate that the F-plasmid-partitioning protein SopA polymerizes into filaments in an ATP-dependent manner in vitro, and that the filaments elongate at a rate that is similar to that of plasmid separation in vivo. We show that SopA is a dynamic protein within the cell, undergoing cycles of polymerization and depolymerization, and shut...

  9. The impact of shrimp farming effluent on bacterial communities in mangrove waters, Ceará, Brazil.

    Science.gov (United States)

    Sousa, O V; Macrae, A; Menezes, F G R; Gomes, N C M; Vieira, R H S F; Mendonça-Hagler, L C S

    2006-12-01

    The effects of shrimp farm effluents on bacterial communities in mangroves have been infrequently reported. Classic and molecular biology methods were used to survey bacterial communities from four mangroves systems. Water temperature, salinity, pH, total heterotrophic bacteria and maximum probable numbers of Vibrio spp. were investigated. Genetic profiles of bacterial communities were also characterized by polymerase chain reaction (PCR) amplification of eubacterial and Vibrio 16S rDNA using denaturing gradient gel electrophoresis (DGGE). Highest heterotrophic counts were registered in the mangrove not directly polluted by shrimp farming. The Enterobacteriaceae and Chryseomonas luteola dominated the heterotrophic isolates. Vibrio spp. pathogenic to humans and shrimps were identified. Eubacterial genetic profiles suggest a shared community structure independent of mangrove system. Vibrio genetic profiles were mangrove specific. Neither microbial counts nor genetic profiling revealed a significant decrease in species richness associated with shrimp farm effluent. The complex nature of mangrove ecosystems and their microbial communities is discussed.

  10. Inter- and Intraspecific Variations of Bacterial Communities Associated with Marine Sponges from San Juan Island, Washington

    KAUST Repository

    Lee, O. O.

    2009-04-10

    This study attempted to assess whether conspecific or congeneric sponges around San Juan Island, Washington, harbor specific bacterial communities. We used a combination of culture-independent DNA fingerprinting techniques (terminal restriction fragment length polymorphism and denaturing gradient gel electrophoresis [DGGE]) and culture-dependent approaches. The results indicated that the bacterial communities in the water column consisted of more diverse bacterial ribotypes than and were drastically different from those associated with the sponges. High levels of similarity in sponge-associated bacterial communities were found only in Myxilla incrustans and Haliclona rufescens, while the bacterial communities in Halichondria panicea varied substantially among sites. Certain terminal restriction fragments or DGGE bands were consistently obtained for different individuals of M. incrustans and H. rufescens collected from different sites, suggesting that there are stable or even specific associations of certain bacteria in these two sponges. However, no specific bacterial associations were found for H. panicea or for any one sponge genus. Sequencing of nine DGGE bands resulted in recovery of seven sequences that best matched the sequences of uncultured Proteobacteria. Three of these sequences fell into the sponge-specific sequence clusters previously suggested. An uncultured alphaproteobacterium and a culturable Bacillus sp. were found exclusively in all M. incrustans sponges, while an uncultured gammaproteobacterium was unique to H. rufescens. In contrast, the cultivation approach indicated that sponges contained a large proportion of Firmicutes, especially Bacillus, and revealed large variations in the culturable bacterial communities associated with congeneric and conspecific sponges. This study revealed sponge species-specific but not genus- or site-specific associations between sponges and bacterial communities and emphasized the importance of using a combination

  11. Inter- and Intraspecific Variations of Bacterial Communities Associated with Marine Sponges from San Juan Island, Washington▿

    Science.gov (United States)

    Lee, On On; Wong, Yue Him; Qian, Pei-Yuan

    2009-01-01

    This study attempted to assess whether conspecific or congeneric sponges around San Juan Island, Washington, harbor specific bacterial communities. We used a combination of culture-independent DNA fingerprinting techniques (terminal restriction fragment length polymorphism and denaturing gradient gel electrophoresis [DGGE]) and culture-dependent approaches. The results indicated that the bacterial communities in the water column consisted of more diverse bacterial ribotypes than and were drastically different from those associated with the sponges. High levels of similarity in sponge-associated bacterial communities were found only in Myxilla incrustans and Haliclona rufescens, while the bacterial communities in Halichondria panicea varied substantially among sites. Certain terminal restriction fragments or DGGE bands were consistently obtained for different individuals of M. incrustans and H. rufescens collected from different sites, suggesting that there are stable or even specific associations of certain bacteria in these two sponges. However, no specific bacterial associations were found for H. panicea or for any one sponge genus. Sequencing of nine DGGE bands resulted in recovery of seven sequences that best matched the sequences of uncultured Proteobacteria. Three of these sequences fell into the sponge-specific sequence clusters previously suggested. An uncultured alphaproteobacterium and a culturable Bacillus sp. were found exclusively in all M. incrustans sponges, while an uncultured gammaproteobacterium was unique to H. rufescens. In contrast, the cultivation approach indicated that sponges contained a large proportion of Firmicutes, especially Bacillus, and revealed large variations in the culturable bacterial communities associated with congeneric and conspecific sponges. This study revealed sponge species-specific but not genus- or site-specific associations between sponges and bacterial communities and emphasized the importance of using a combination

  12. Nitrogen deposition alters soil chemical properties and bacterial communities in the Inner Mongolia grassland

    Institute of Scientific and Technical Information of China (English)

    Ximei Zhang; Xingguo Han

    2012-01-01

    Nitrogen deposition has dramatically altered biodiversity and ecosystem functioning on the earth; however,its effects on soil bacterial community and the underlying mechanisms of these effects have not been thoroughly examined.Changes in ecosystems caused by nitrogen deposition have traditionally been attributed to increased nitrogen content.In fact,nitrogen deposition not only leads to increased soil total N content,but also changes in the NH4+-N content,NO3--N content and pH,as well as changes in the heterogeneity of the four indexes.The soil indexes for these four factors,their heterogeneity and even the plant community might be routes through which nitrogen deposition alters the bacterial community.Here,we describe a 6-year nitrogen addition experiment conducted in a typical steppe ecosystem to investigate the ecological mechanism by which nitrogen deposition alters bacterial abundance,diversity and composition.We found that various characteristics of the bacterial community were explained by different environmental factors.Nitrogen deposition decreased bacterial abundance that is positively related to soil pH value.In addition,nitrogen addition decreased bacterial diversity,which is negatively related to soil total N content and positively related to soil NO3--N heterogeneity.Finally,nitrogen.addition altered bacterial composition that is significantly related to soil NH4+-N content.Although nitrogen deposition significantly altered plant biomass,diversity and composition,these characteristics of plant community did not have a significant impact on processes of nitrogen deposition that led to alterations in bacterial abundance,diversity and composition.Therefore,more sensitive molecular technologies should be adopted to detect the subtle shifts of microbial community structure induced by the changes of plant community upon nitrogen deposition.

  13. Airborne Bacterial Communities in Residences: Similarities and Differences with Fungi

    OpenAIRE

    2014-01-01

    Genetic analysis of indoor air has uncovered a rich microbial presence, but rarely have both the bacterial and fungal components been examined in the same samples. Here we present a study that examined the bacterial component of passively settled microbes from both indoor and outdoor air over a discrete time period and for which the fungal component has already been reported. Dust was allowed to passively settle in five common locations around a home - living room, bedroom, bathroom, kitchen,...

  14. Airborne bacterial communities in residences: similarities and differences with fungi.

    Science.gov (United States)

    Adams, Rachel I; Miletto, Marzia; Lindow, Steven E; Taylor, John W; Bruns, Thomas D

    2014-01-01

    Genetic analysis of indoor air has uncovered a rich microbial presence, but rarely have both the bacterial and fungal components been examined in the same samples. Here we present a study that examined the bacterial component of passively settled microbes from both indoor and outdoor air over a discrete time period and for which the fungal component has already been reported. Dust was allowed to passively settle in five common locations around a home - living room, bedroom, bathroom, kitchen, and balcony - at different dwellings within a university-housing complex for a one-month period at two time points, once in summer and again in winter. We amplified the bacterial 16S rRNA gene in these samples and analyzed them with high-throughput sequencing. Like fungal OTU-richness, bacterial OTU-richness was higher outdoors then indoors and was invariant across different indoor room types. While fungal composition was structured largely by season and residential unit, bacterial composition varied by residential unit and room type. Bacteria from putative outdoor sources, such as Sphingomonas and Deinococcus, comprised a large percentage of the balcony samples, while human-associated taxa comprised a large percentage of the indoor samples. Abundant outdoor bacterial taxa were also observed indoors, but the reverse was not true; this is unlike fungi, in which the taxa abundant indoors were also well-represented outdoors. Moreover, there was a partial association of bacterial composition and geographic distance, such that samples separated by even a few hundred meters tended have greater compositional differences than samples closer together in space, a pattern also observed for fungi. These data show that while the outdoor source for indoor bacteria and fungi varies in both space and time, humans provide a strong and homogenizing effect on indoor bacterial bioaerosols, a pattern not observed in fungi.

  15. Airborne bacterial communities in residences: similarities and differences with fungi.

    Directory of Open Access Journals (Sweden)

    Rachel I Adams

    Full Text Available Genetic analysis of indoor air has uncovered a rich microbial presence, but rarely have both the bacterial and fungal components been examined in the same samples. Here we present a study that examined the bacterial component of passively settled microbes from both indoor and outdoor air over a discrete time period and for which the fungal component has already been reported. Dust was allowed to passively settle in five common locations around a home - living room, bedroom, bathroom, kitchen, and balcony - at different dwellings within a university-housing complex for a one-month period at two time points, once in summer and again in winter. We amplified the bacterial 16S rRNA gene in these samples and analyzed them with high-throughput sequencing. Like fungal OTU-richness, bacterial OTU-richness was higher outdoors then indoors and was invariant across different indoor room types. While fungal composition was structured largely by season and residential unit, bacterial composition varied by residential unit and room type. Bacteria from putative outdoor sources, such as Sphingomonas and Deinococcus, comprised a large percentage of the balcony samples, while human-associated taxa comprised a large percentage of the indoor samples. Abundant outdoor bacterial taxa were also observed indoors, but the reverse was not true; this is unlike fungi, in which the taxa abundant indoors were also well-represented outdoors. Moreover, there was a partial association of bacterial composition and geographic distance, such that samples separated by even a few hundred meters tended have greater compositional differences than samples closer together in space, a pattern also observed for fungi. These data show that while the outdoor source for indoor bacteria and fungi varies in both space and time, humans provide a strong and homogenizing effect on indoor bacterial bioaerosols, a pattern not observed in fungi.

  16. Bacterial communities in Malagasy soils with differing levels of disturbance affecting botanical diversity.

    Directory of Open Access Journals (Sweden)

    Leah C Blasiak

    Full Text Available Madagascar is well-known for the exceptional biodiversity of its macro-flora and fauna, but the biodiversity of Malagasy microbial communities remains relatively unexplored. Understanding patterns of bacterial diversity in soil and their correlations with above-ground botanical diversity could influence conservation planning as well as sampling strategies to maximize access to bacterially derived natural products. We present the first detailed description of Malagasy soil bacterial communities from a targeted 16S rRNA gene survey of greater than 290,000 sequences generated using 454 pyrosequencing. Two sampling plots in each of three forest conservation areas were established to represent different levels of disturbance resulting from human impact through agriculture and selective exploitation of trees, as well as from natural impacts of cyclones. In parallel, we performed an in-depth characterization of the total vascular plant morphospecies richness within each plot. The plots representing different levels of disturbance within each forest did not differ significantly in bacterial diversity or richness. Changes in bacterial community composition were largest between forests rather than between different levels of impact within a forest. The largest difference in bacterial community composition with disturbance was observed at the Vohibe forest conservation area, and this difference was correlated with changes in both vascular plant richness and soil pH. These results provide the first survey of Malagasy soil bacterial diversity and establish a baseline of botanical diversity within important conservation areas.

  17. Bacterial communities in Malagasy soils with differing levels of disturbance affecting botanical diversity.

    Science.gov (United States)

    Blasiak, Leah C; Schmidt, Alex W; Andriamiarinoro, Honoré; Mulaw, Temesgen; Rasolomampianina, Rado; Applequist, Wendy L; Birkinshaw, Chris; Rejo-Fienena, Félicitée; Lowry, Porter P; Schmidt, Thomas M; Hill, Russell T

    2014-01-01

    Madagascar is well-known for the exceptional biodiversity of its macro-flora and fauna, but the biodiversity of Malagasy microbial communities remains relatively unexplored. Understanding patterns of bacterial diversity in soil and their correlations with above-ground botanical diversity could influence conservation planning as well as sampling strategies to maximize access to bacterially derived natural products. We present the first detailed description of Malagasy soil bacterial communities from a targeted 16S rRNA gene survey of greater than 290,000 sequences generated using 454 pyrosequencing. Two sampling plots in each of three forest conservation areas were established to represent different levels of disturbance resulting from human impact through agriculture and selective exploitation of trees, as well as from natural impacts of cyclones. In parallel, we performed an in-depth characterization of the total vascular plant morphospecies richness within each plot. The plots representing different levels of disturbance within each forest did not differ significantly in bacterial diversity or richness. Changes in bacterial community composition were largest between forests rather than between different levels of impact within a forest. The largest difference in bacterial community composition with disturbance was observed at the Vohibe forest conservation area, and this difference was correlated with changes in both vascular plant richness and soil pH. These results provide the first survey of Malagasy soil bacterial diversity and establish a baseline of botanical diversity within important conservation areas.

  18. Co-occurrence patterns in aquatic bacterial communities across changing permafrost landscapes

    Directory of Open Access Journals (Sweden)

    J. Comte

    2015-07-01

    Full Text Available Permafrost thaw ponds and lakes are widespread across the northern landscape and may play a central role in global biogeochemical cycles, yet knowledge about their microbial ecology is limited. We sampled a set of thaw ponds and lakes as well as shallow rock-basin lakes that are located in distinct valleys along a North–South permafrost degradation gradient. We applied high-throughput sequencing of the 16S rRNA gene to determine co-occurrence patterns among bacterial taxa, and then analyzed these results relative to environmental variables to identify factors controlling bacterial community structure. Network analysis was applied to identify possible ecological linkages among the bacterial taxa and with abiotic and biotic variables. The results showed an overall high level of shared taxa among bacterial communities within each valley, however the bacterial co-occurrence patterns were non-random, with evidence of habitat preferences. There were taxonomic differences in bacterial assemblages among the different valleys that were statistically related to dissolved organic carbon concentration, conductivity and phytoplankton biomass. Co-occurrence networks revealed complex interdependencies within the bacterioplankton communities and showed contrasting linkages to environmental conditions among the main bacterial phyla. The thaw pond networks were composed of a limited number of highly connected taxa. This "small world network" property would render the communities more robust to environmental change but vulnerable to the loss of microbial keystone species.

  19. Phylogenetic analysis of bacterial community in deep-sea sediment from the western Pacific "warm pool"

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A depth profile of bacterial community structure in one deep-sea sediment core of the western Pacific "warm pool" (WP) was investigated and compared with that in a sediment sample from the eastern Pacific (EP) by phylogenetic analysis of 16S rDNA fragments.Five bacterial 16S rDNA clone libraries were constructed, and t33 clones with different restriction fragment length polymorphism(RFLP) patterns were sequenced. A phylogenetic analysis of these sequences revealed that the bacterial diversity in a sample from the WP was more abundant than that in the EP sample. The bacterial population in the sediment core of WP was composed of eight major lineages of the domain bacteria. Among them the γ-Proteobacteria was the predominant and most diverse group in each section of WP sediment core, followed by the α-Proteobacteria. The genus Colwellia belonging to γ-Proteobacteria was predominant in this sample.The shift of bacterial communities among different sections of the WP sediment core was δ-, ε-Proteobacteria, and Cytopahga-Flexibacteria-Bacteroides (CFB) group. The ratios between them in the bacterial communities all showed inversely proportional to the depth of sediment. The sequences related to sulphate reducing bacteria (SRB) were detected in every section. The bacterial community structure in this sediment core might be related to the environmental characteristics of the surface seawater of the western Pacific WP.

  20. Physical limits on bacterial navigation in dynamic environments.

    Science.gov (United States)

    Hein, Andrew M; Brumley, Douglas R; Carrara, Francesco; Stocker, Roman; Levin, Simon A

    2016-01-01

    Many chemotactic bacteria inhabit environments in which chemicals appear as localized pulses and evolve by processes such as diffusion and mixing. We show that, in such environments, physical limits on the accuracy of temporal gradient sensing govern when and where bacteria can accurately measure the cues they use to navigate. Chemical pulses are surrounded by a predictable dynamic region, outside which bacterial cells cannot resolve gradients above noise. The outer boundary of this region initially expands in proportion to the square root of time before rapidly contracting. Our analysis also reveals how chemokinesis-the increase in swimming speed many bacteria exhibit when absolute chemical concentration exceeds a threshold-may serve to enhance chemotactic accuracy and sensitivity when the chemical landscape is dynamic. More generally, our framework provides a rigorous method for partitioning bacteria into populations that are 'near' and 'far' from chemical hotspots in complex, rapidly evolving environments such as those that dominate aquatic ecosystems.

  1. Physical Limits on Bacterial Navigation in Dynamic Environments

    CERN Document Server

    Hein, Andrew M; Carrara, Francesco; Stocker, Roman; Levin, Simon A

    2015-01-01

    Many chemotactic bacteria inhabit environments in which chemicals appear as localized pulses and evolve by processes such as diffusion and mixing. We show that, in such environments, physical limits on the accuracy of temporal gradient sensing govern when and where bacteria can accurately measure the cues they use to navigate. Chemical pulses are surrounded by a predictable dynamic region, outside which bacterial cells cannot resolve gradients above noise. The outer boundary of this region initially expands in proportion to $\\sqrt{t}$, before rapidly contracting. Our analysis also reveals how chemokinesis - the increase in swimming speed many bacteria exhibit when absolute chemical concentration exceeds a threshold - may serve to enhance chemotactic accuracy and sensitivity when the chemical landscape is dynamic. More generally, our framework provides a rigorous method for partitioning bacteria into populations that are "near" and "far" from chemical hotspots in complex, rapidly evolving environments such as ...

  2. Population Dynamics of Patients with Bacterial Resistance in Hospital Environment

    Directory of Open Access Journals (Sweden)

    Leilei Qu

    2016-01-01

    Full Text Available During the past decades, the increase of antibiotic resistance has become a major concern worldwide. The researchers found that superbugs with new type of resistance genes (NDM-1 have two aspects of transmission characteristics; the first is that the antibiotic resistance genes can horizontally transfer among bacteria, and the other is that the superbugs can spread between humans through direct contact. Based on these two transmission mechanisms, we study the dynamics of population in hospital environment where superbugs exist. In this paper, we build three mathematic models to illustrate the dynamics of patients with bacterial resistance in hospital environment. The models are analyzed using stability theory of differential equations. Positive equilibrium points of the system are investigated and their stability analysis is carried out. Moreover, the numerical simulation of the proposed model is also performed which supports the theoretical findings.

  3. Resource availability and competition shape the evolution of survival and growth ability in a bacterial community.

    Directory of Open Access Journals (Sweden)

    Minna Pekkonen

    Full Text Available Resource availability is one of the main factors determining the ecological dynamics of populations or species. Fluctuations in resource availability can increase or decrease the intensity of resource competition. Resource availability and competition can also cause evolutionary changes in life-history traits. We studied how community structure and resource fluctuations affect the evolution of fitness related traits using a two-species bacterial model system. Replicated populations of Serratia marcescens (copiotroph and Novosphingobium capsulatum (oligotroph were reared alone or together in environments with intergenerational, pulsed resource renewal. The comparison of ancestral and evolved bacterial clones with 1 or 13 weeks history in pulsed resource environment revealed species-specific changes in life-history traits. Co-evolution with S. marcescens caused N. capsulatum clones to grow faster. The evolved S. marcescens clones had higher survival and slower growth rate then their ancestor. The survival increased in all treatments after one week, and thereafter continued to increase only in the S. marcescens monocultures that experienced large resource pulses. Though adaptive radiation is often reported in evolution studies with bacteria, clonal variation increased only in N. capsulatum growth rate. Our results suggest that S. marcescens adapted to the resource renewal cycle whereas N. capsulatum was more affected by the interspecific competition. Our results exemplify species-specific evolutionary response to both competition and environmental variation.

  4. Tropical soil bacterial communities in Malaysia: pH dominates in the equatorial tropics too.

    Science.gov (United States)

    Tripathi, Binu M; Kim, Mincheol; Singh, Dharmesh; Lee-Cruz, Larisa; Lai-Hoe, Ang; Ainuddin, A N; Go, Rusea; Rahim, Raha Abdul; Husni, M H A; Chun, Jongsik; Adams, Jonathan M

    2012-08-01

    The dominant factors controlling soil bacterial community variation within the tropics are poorly known. We sampled soils across a range of land use types--primary (unlogged) and logged forests and crop and pasture lands in Malaysia. PCR-amplified soil DNA for the bacterial 16S rRNA gene targeting the V1-V3 region was pyrosequenced using the 454 Roche machine. We found that land use in itself has a weak but significant effect on the bacterial community composition. However, bacterial community composition and diversity was strongly correlated with soil properties, especially soil pH, total carbon, and C/N ratio. Soil pH was the best predictor of bacterial community composition and diversity across the various land use types, with the highest diversity close to neutral pH values. In addition, variation in phylogenetic structure of dominant lineages (Alphaproteobacteria, Beta/Gammaproteobacteria, Acidobacteria, and Actinobacteria) is also significantly correlated with soil pH. Together, these results confirm the importance of soil pH in structuring soil bacterial communities in Southeast Asia. Our results also suggest that unlike the general diversity pattern found for larger organisms, primary tropical forest is no richer in operational taxonomic units of soil bacteria than logged forest, and agricultural land (crop and pasture) is actually richer than primary forest, partly due to selection of more fertile soils that have higher pH for agriculture and the effects of soil liming raising pH.

  5. Bacterial community in sclerotia of Cenococcum species and soil in sub-alpine forest, central Japan

    Science.gov (United States)

    Nonoyama, Y.; Narisawa, K.; Ohta, H.; Watanabe, M.

    2009-04-01

    Species of Cenococcum, ectomycorrhizal fungi, may be particularly abundant in cold- or nutrient-stressed habitats. The fungus is easily recognized by its jet-black hyphae, and distinct compact masses of fungal mycelium called sclerotia. They are hard, black, comparatively smooth and mostly spherical. Sclerotia are formed in rhizosphere and can provide sufficient inoculums for several years. The purpose of this study is to investigate bacterial community inside sclerotia, with an interest on contribution of sclerotia to microbial diversity in rhizosphere. To investigate bacterial community inside of the fungal sclerotia by 16S rDNA gene clone library, several hundred of sclerotia (ca. 1g) were collected from sub-alpine forest soil in central Japan. Furthermore, three sclerotium grains were applied to investigate internal bacteria community by culture method. The isolated bacterial strains were then proceeded to determine their 16S rDNA partial sequences. The predominant group determined by clone library analysis of 16S ribosomal RNA genes with DNA from the sclerotia was Acidobacteria in both sclerotia and soil. Bacterial community of sclerotia showed higher diversity compared to soil. On the contrary, bacterial flora isolated from single sclerotium differed each other. Additionally, the bacterial community was composed by limited species of related genus.

  6. The bacterial nucleoid: nature, dynamics and sister segregation.

    Science.gov (United States)

    Kleckner, Nancy; Fisher, Jay K; Stouf, Mathieu; White, Martin A; Bates, David; Witz, Guillaume

    2014-12-01

    Recent studies reveal that the bacterial nucleoid has a defined, self-adherent shape and an underlying longitudinal organization and comprises a viscoelastic matrix. Within this shape, mobility is enhanced by ATP-dependent processes and individual loci can undergo ballistic off-equilibrium movements. In Escherichia coli, two global dynamic nucleoid behaviors emerge pointing to nucleoid-wide accumulation and relief of internal stress. Sister segregation begins with local splitting of individual loci, which is delayed at origin, terminus and specialized interstitial snap regions. Globally, as studied in several systems, segregation is a multi-step process in which internal nucleoid state plays critical roles that involve both compaction and expansion. The origin and terminus regions undergo specialized programs partially driven by complex ATP burning mechanisms such as a ParAB Brownian ratchet and a septum-associated FtsK motor. These recent findings reveal strong, direct parallels among events in different systems and between bacterial nucleoids and mammalian chromosomes with respect to physical properties, internal organization and dynamic behaviors.

  7. Global change and terrestrial plant community dynamics.

    Science.gov (United States)

    Franklin, Janet; Serra-Diaz, Josep M; Syphard, Alexandra D; Regan, Helen M

    2016-04-05

    Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this paper, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on a literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change.

  8. The relationship between sea ice bacterial community structure and biogeochemistry: A synthesis of current knowledge and known unknowns

    Directory of Open Access Journals (Sweden)

    Jeff S. Bowman

    2015-10-01

    Full Text Available Abstract Sea ice plays an important role in high latitude biogeochemical cycles, ecosystems, and climate. A complete understanding of how sea ice biogeochemistry contributes to these processes must take into account the metabolic functions of the sea ice bacterial community. While the roles of sea ice bacteria in the carbon cycle and sea ice microbial loop are evidenced by high rates of bacterial production (BP, their metabolic diversity extends far beyond heterotrophy, and their functionality encompasses much more than carbon turnover. Work over the last three decades has identified an active role for sea ice bacteria in phosphate and nitrogen cycling, mutualistic partnerships with ice algae, and even prokaryotic carbon fixation. To better understand the role of sea ice bacteria in the carbon cycle the existing sea ice BP and primary production data were synthesized. BP in sea ice was poorly correlated with primary production, but had a strong, variable relationship with chlorophyll a, with a positive correlation below 50 mg chlorophyll a m-3 and a negative correlation above this value. These results concur with previous work suggesting that BP can be inhibited by grazing or the production of bacteriostatic compounds. To extend existing observations and predictions of other community functions a metabolic inference technique was used on the available 16S rRNA gene data. This analysis provided taxonomic support for some observed metabolic processes, as well as underexplored processes such as sulfur oxidation and nitrogen fixation. The decreasing spatial and temporal extent of sea ice, and altered timing of ice formation and melt, are likely to impact the structure and function of sea ice bacterial communities. An adequate modeling framework and studies that can resolve the functional dynamics of the sea ice bacterial community, such as community gene expression studies, are urgently needed to predict future change.

  9. The airway microbiota in cystic fibrosis: a complex fungal and bacterial community--implications for therapeutic management.

    Directory of Open Access Journals (Sweden)

    Laurence Delhaes

    Full Text Available BACKGROUND: Given the polymicrobial nature of pulmonary infections in patients with cystic fibrosis (CF, it is essential to enhance our knowledge on the composition of the microbial community to improve patient management. In this study, we developed a pyrosequencing approach to extensively explore the diversity and dynamics of fungal and prokaryotic populations in CF lower airways. METHODOLOGY AND PRINCIPAL FINDINGS: Fungi and bacteria diversity in eight sputum samples collected from four adult CF patients was investigated using conventional microbiological culturing and high-throughput pyrosequencing approach targeting the ITS2 locus and the 16S rDNA gene. The unveiled microbial community structure was compared to the clinical profile of the CF patients. Pyrosequencing confirmed recently reported bacterial diversity and observed complex fungal communities, in which more than 60% of the species or genera were not detected by cultures. Strikingly, the diversity and species richness of fungal and bacterial communities was significantly lower in patients with decreased lung function and poor clinical status. Values of Chao1 richness estimator were statistically correlated with values of the Shwachman-Kulczycki score, body mass index, forced vital capacity, and forced expiratory volume in 1 s (p = 0.046, 0.047, 0.004, and 0.001, respectively for fungal Chao1 indices, and p = 0.010, 0.047, 0.002, and 0.0003, respectively for bacterial Chao1 values. Phylogenetic analysis showed high molecular diversities at the sub-species level for the main fungal and bacterial taxa identified in the present study. Anaerobes were isolated with Pseudomonas aeruginosa, which was more likely to be observed in association with Candida albicans than with Aspergillus fumigatus. CONCLUSIONS: In light of the recent concept of CF lung microbiota, we viewed the microbial community as a unique pathogenic entity. We thus interpreted our results to highlight the potential

  10. Characterizing the bacterial communities in retail stores in the United States.

    Science.gov (United States)

    Hoisington, A; Maestre, J P; Kinney, K A; Siegel, J A

    2016-12-01

    The microorganisms present in retail environments have not been studied in detail despite the fact that these environments represent a potentially important location for exposure. In this study, HVAC filter dust samples in 13 US retail stores were collected and analyzed via pyrosequencing to characterize the indoor bacterial communities and to explore potential relationships between these communities and building and environmental parameters. Although retail stores contained a diverse bacterial community of 788 unique genera, over half of the nearly 118K sequences were attributed to the Proteobacteria phylum. Streptophyta, Bacillus, Corynebacterium, Pseudomonas, and Acinetobacter were the most prevalent genera detected. The recovered indoor airborne microbial community was statistically associated with both human oral and skin microbiota, indicating occupants are important contributors, despite a relatively low occupant density per unit volume in retail stores. Bacteria generally associated with outdoor environments were present in the indoor communities with no obvious association with air exchange rate, even when considering relative abundance. No significant association was observed between the indoor bacterial community recovered and store location, store type, or season. However, predictive functional gene profiling showed significant associations between the indoor community and season. The microbiome recovered from multiple samples collected months apart from the same building varied significantly indicating that caution is warranted when trying to characterize the bacterial community with a single sampling event.

  11. Two decades of warming increases diversity of a potentially lignolytic bacterial community.

    Science.gov (United States)

    Pold, Grace; Melillo, Jerry M; DeAngelis, Kristen M

    2015-01-01

    As Earth's climate warms, the massive stores of carbon found in soil are predicted to become depleted, and leave behind a smaller carbon pool that is less accessible to microbes. At a long-term forest soil-warming experiment in central Massachusetts, soil respiration and bacterial diversity have increased, while fungal biomass and microbially-accessible soil carbon have decreased. Here, we evaluate how warming has affected the microbial community's capability to degrade chemically-complex soil carbon using lignin-amended BioSep beads. We profiled the bacterial and fungal communities using PCR-based methods and completed extracellular enzyme assays as a proxy for potential community function. We found that lignin-amended beads selected for a distinct community containing bacterial taxa closely related to known lignin degraders, as well as members of many genera not previously noted as capable of degrading lignin. Warming tended to drive bacterial community structure more strongly in the lignin beads, while the effect on the fungal community was limited to unamended beads. Of those bacterial operational taxonomic units (OTUs) enriched by the warming treatment, many were enriched uniquely on lignin-amended beads. These taxa may be contributing to enhanced soil respiration under warming despite reduced readily available C availability. In aggregate, these results suggest that there is genetic potential for chemically complex soil carbon degradation that may lead to extended elevated soil respiration with long-term warming.

  12. Biofilm bacterial communities in urban drinking water distribution systems transporting waters with different purification strategies.

    Science.gov (United States)

    Wu, Huiting; Zhang, Jingxu; Mi, Zilong; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-02-01

    Biofilm formation in drinking water distribution systems (DWDS) has many adverse consequences. Knowledge of microbial community structure of DWDS biofilm can aid in the design of an effective control strategy. However, biofilm bacterial community in real DWDS and the impact of drinking water purification strategy remain unclear. The present study investigated the composition and diversity of biofilm bacterial community in real DWDSs transporting waters with different purification strategies (conventional treatment and integrated treatment). High-throughput Illumina MiSeq sequencing analysis illustrated a large shift in the diversity and structure of biofilm bacterial community in real DWDS. Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Nitrospirae, and Cyanobacteria were the major components of biofilm bacterial community. Proteobacteria (mainly Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria) predominated in each DWDS biofilm, but the compositions of the dominant proteobacterial classes and genera and their proportions varied among biofilm samples. Drinking water purification strategy could shape DWDS biofilm bacterial community. Moreover, Pearson's correlation analysis indicated that Actinobacteria was positively correlated with the levels of total alkalinity and dissolved organic carbon in tap water, while Firmicutes had a significant positive correlation with nitrite nitrogen.

  13. Namib Desert dune/interdune transects exhibit habitat-specific edaphic bacterial communities.

    Science.gov (United States)

    Ronca, Sandra; Ramond, Jean-Baptiste; Jones, Brian E; Seely, Mary; Cowan, Don A

    2015-01-01

    The sand dunes and inter-dune zones of the hyper-arid central Namib Desert represent heterogeneous soil habitats. As little is known about their indigenous edaphic bacterial communities, we aimed to evaluate their diversity and factors of assembly and hypothesized that soil physicochemistry gradients would strongly shape dune/interdune communities. We sampled a total of 125 samples from 5 parallel dune/interdune transects and characterized 21 physico-chemical edaphic parameters coupled with 16S rRNA gene bacterial community fingerprinting using T-RFLP and 454 pyrosequencing. Multivariate analyses of T-RFLP data showed significantly different bacterial communities, related to physico-chemical gradients, in four distinct dune habitats: the dune top, slope, base and interdune zones. Pyrosequencing of 16S rRNA gene amplicon sets showed that each dune zone presented a unique phylogenetic profile, suggesting a high degree of environmental selection. The combined results strongly infer that habitat filtering is an important factor shaping Namib Desert dune bacterial communities, with habitat stability, soil texture and mineral and nutrient contents being the main environmental drivers of bacterial community structures.

  14. Potential mechanisms and environmental controls of TiO2 nanoparticle effects on soil bacterial communities.

    Science.gov (United States)

    Ge, Yuan; Priester, John H; Van De Werfhorst, Laurie C; Schimel, Joshua P; Holden, Patricia A

    2013-12-17

    It has been reported that engineered nanoparticles (ENPs) alter soil bacterial communities, but the underlying mechanisms and environmental controls of such effects remain unknown. Besides direct toxicity, ENPs may indirectly affect soil bacteria by changing soil water availability or other properties. Alternatively, soil water or other environmental factors may mediate ENP effects on soil bacterial communities. To test, we incubated nano-TiO2-amended soils across a range of water potentials for 288 days. Following incubation, the soil water characteristics, organic matter, total carbon, total nitrogen, and respiration upon rewetting (an indicator of bioavailable organic carbon) were measured. Bacterial community shifts were characterized by terminal restriction fragment length polymorphism (T-RFLP). The endpoint soil water holding had been reported previously as not changing with this nano-TiO2 amendment; herein, we also found that some selected soil properties were unaffected by the treatments. However, we found that nano-TiO2 altered the bacterial community composition and reduced diversity. Nano-TiO2-induced community dissimilarities increased but tended to approach a plateau when soils became drier. Taken together, nano-TiO2 effects on soil bacteria appear to be a result of direct toxicity rather than indirectly through nano-TiO2 affecting soil water and organic matter pools. However, such directs effects of nano-TiO2 on soil bacterial communities are mediated by soil water.

  15. The gut bacterial community of mammals from marine and terrestrial habitats.

    Science.gov (United States)

    Nelson, Tiffanie M; Rogers, Tracey L; Brown, Mark V

    2013-01-01

    After birth, mammals acquire a community of bacteria in their gastro-intestinal tract, which harvests energy and provides nutrients for the host. Comparative studies of numerous terrestrial mammal hosts have identified host phylogeny, diet and gut morphology as primary drivers of the gut bacterial community composition. To date, marine mammals have been excluded from these comparative studies, yet they represent distinct examples of evolutionary history, diet and lifestyle traits. To provide an updated understanding of the gut bacterial community of mammals, we compared bacterial 16S rRNA gene sequence data generated from faecal material of 151 marine and terrestrial mammal hosts. This included 42 hosts from a marine habitat. When compared to terrestrial mammals, marine mammals clustered separately and displayed a significantly greater average relative abundance of the phylum Fusobacteria. The marine carnivores (Antarctic and Arctic seals) and the marine herbivore (dugong) possessed significantly richer gut bacterial community than terrestrial carnivores and terrestrial herbivores, respectively. This suggests that evolutionary history and dietary items specific to the marine environment may have resulted in a gut bacterial community distinct to that identified in terrestrial mammals. Finally we hypothesize that reduced marine trophic webs, whereby marine carnivores (and herbivores) feed directly on lower trophic levels, may expose this group to high levels of secondary metabolites and influence gut microbial community richness.

  16. Changes in soil bacterial communities induced by the invasive plant Pennisetum setaceum in a semiarid environment

    Science.gov (United States)

    Rodriguez-Caballero, Gema; Caravaca, Fuensanta; del Mar Alguacil, María; Fernández-López, Manuel; José Fernández-González, Antonio; García-Orenes, Fuensanta; Roldán, Antonio

    2016-04-01

    Invasive alien species are considered as a global threat being among the main causes of biodiversity loss. Plant invasions have been extensively studied from different disciplines with the purpose of identifying predictor traits of invasiveness and finding solutions. However, less is known about the implication of the rhizosphere microbiota in these processes, even when it is well known the importance of the interaction between plant rhizosphere and microbial communities. The objective of this study was to determine whether native and invasive plants support different bacterial communities in their rhizospheres and whether there are bacterial indicator species that might be contributing to the invasion process of these ecosystems. We carried out a study in five independent locations under Mediterranean semiarid conditions, where the native Hyparrhenia hirta is being displaced by Pennisetum setaceum, an aggressive invasive Poaceae and soil bacterial communities were amplified and 454-pyrosequenced. Changes in the composition and structure of the bacterial communities, owing to the invasive status of the plant, were detected when the richness and alpha-diversity estimators were calculated as well as when we analyzed the PCoA axes scores. The Indicator Species Analysis results showed a higher number of indicators for invaded communities at all studied taxonomic levels. In conclusion, the effect of the invasiveness and its interaction with the soil location has promoted shifts in the rhizosphere bacterial communities which might be facilitating the invader success in these ecosystems.

  17. Active bacterial community structure along vertical redox gradients in Baltic Sea sediment

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Janet; Edlund, Anna; Hardeman, Fredrik; Jansson, Janet K.; Sjoling, Sara

    2008-05-15

    Community structures of active bacterial populations were investigated along a vertical redox profile in coastal Baltic Sea sediments by terminal-restriction fragment length polymorphism (T-RFLP) and clone library analysis. According to correspondence analysis of T-RFLP results and sequencing of cloned 16S rRNA genes, the microbial community structures at three redox depths (179 mV, -64 mV and -337 mV) differed significantly. The bacterial communities in the community DNA differed from those in bromodeoxyuridine (BrdU)-labeled DNA, indicating that the growing members of the community that incorporated BrdU were not necessarily the most dominant members. The structures of the actively growing bacterial communities were most strongly correlated to organic carbon followed by total nitrogen and redox potentials. Bacterial identification by sequencing of 16S rRNA genes from clones of BrdU-labeled DNA and DNA from reverse transcription PCR (rt-PCR) showed that bacterial taxa involved in nitrogen and sulfur cycling were metabolically active along the redox profiles. Several sequences had low similarities to previously detected sequences indicating that novel lineages of bacteria are present in Baltic Sea sediments. Also, a high number of different 16S rRNA gene sequences representing different phyla were detected at all sampling depths.

  18. The gut bacterial community of mammals from marine and terrestrial habitats.

    Directory of Open Access Journals (Sweden)

    Tiffanie M Nelson

    Full Text Available After birth, mammals acquire a community of bacteria in their gastro-intestinal tract, which harvests energy and provides nutrients for the host. Comparative studies of numerous terrestrial mammal hosts have identified host phylogeny, diet and gut morphology as primary drivers of the gut bacterial community composition. To date, marine mammals have been excluded from these comparative studies, yet they represent distinct examples of evolutionary history, diet and lifestyle traits. To provide an updated understanding of the gut bacterial community of mammals, we compared bacterial 16S rRNA gene sequence data generated from faecal material of 151 marine and terrestrial mammal hosts. This included 42 hosts from a marine habitat. When compared to terrestrial mammals, marine mammals clustered separately and displayed a significantly greater average relative abundance of the phylum Fusobacteria. The marine carnivores (Antarctic and Arctic seals and the marine herbivore (dugong possessed significantly richer gut bacterial community than terrestrial carnivores and terrestrial herbivores, respectively. This suggests that evolutionary history and dietary items specific to the marine environment may have resulted in a gut bacterial community distinct to that identified in terrestrial mammals. Finally we hypothesize that reduced marine trophic webs, whereby marine carnivores (and herbivores feed directly on lower trophic levels, may expose this group to high levels of secondary metabolites and influence gut microbial community richness.

  19. Impact of cadmium on the bacterial communities in the gut of Metaphire posthuma

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Shih-Hsiung; Chen, Mu-Hsuan; Chen, Chien-Cheng; Chen, Colin S. [Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan (China); Chen, Jiun-Hong [Department of Life Science, National Taiwan University, Taipei, Taiwan (China); Chen, Ssu Ching, E-mail: osycchna@ksts.seed.net.tw [Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan (China)

    2009-12-30

    The effects of cadmium (Cd) contamination in soil onto the bacterial communities of the guts pooled from ten Metaphire posthuma were addressed during 14 days' incubation. We found that about 50% of Cd (5 mg/kg, dry weight soil) in the contaminated soil was bio-accumulated into the earthworms. DNA was extracted from the guts of M. posthuma and their dwelling soil irrespective of Cd treatment for the analysis of the bacterial communities of guts in M. posthuma and in soil by PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis). A distinctive cluster of bacterial communities of the guts in the earthworm with and without Cd treatment using the analysis of unweighted pair-group method using arithmetic averages (UPGMA) was observed, indicating that the bacterial community of guts could be changed by Cd. However, no differences in the bacterial communities in soil irrespective of Cd treatment were observed, which could be resulted from the bioremediation of Cd by earthworms leading to insignificant effect of Cd on bacterial communities in soil. For the sequencing of some of the dominant bands in the DGGE profile, Bradyrhizobium japonicum, Stenotrophomonas sp. D2, and Labrys, sp. CC-BB4, whose sequences display an identity of more than 97% using blast program against a known sequence in the GeneBank database and Ribosomal database, were identified. Collectively, our results showed that earthworm treatment can decrease the concentrations of Cd in soil, and Cd cause a shift in the bacterial communities in the guts of M. posthuma. The application of M. posthuma for Cd bioremediation would be desired.

  20. Characterization of the bacterial communities of life stages of free living lone star ticks (Amblyomma americanum).

    Science.gov (United States)

    Williams-Newkirk, Amanda Jo; Rowe, Lori A; Mixson-Hayden, Tonya R; Dasch, Gregory A

    2014-01-01

    The lone star tick (Amblyomma americanum) is an abundant and aggressive biter of humans, domestic animals, and wildlife in the southeastern-central USA and an important vector of several known and suspected zoonotic bacterial pathogens. However, the biological drivers of bacterial community variation in this tick are still poorly defined. Knowing the community context in which tick-borne bacterial pathogens exist and evolve is required to fully understand the ecology and immunobiology of the ticks and to design effective public health and veterinary interventions. We performed a metagenomic survey of the bacterial communities of questing A. americanum and tested 131 individuals (66 nymphs, 24 males, and 41 females) from five sites in three states. Pyrosequencing was performed with barcoded eubacterial primers targeting variable 16S rRNA gene regions 5-3. The bacterial communities were dominated by Rickettsia (likely R. amblyommii) and an obligate Coxiella symbiont, together accounting for 6.7-100% of sequences per tick. DNAs from Midichloria, Borrelia, Wolbachia, Ehrlichia, Pseudomonas, or unidentified Bacillales, Enterobacteriaceae, or Rhizobiales groups were also detected frequently. Wolbachia and Midichloria significantly co-occurred in Georgia (p<0.00001), but not in other states. The significance of the Midichloria-Wolbachia co-occurrence is unknown. Among ticks collected in Georgia, nymphs differed from adults in both the composition (p = 0.002) and structure (p = 0.002) of their bacterial communities. Adults differed only in their community structure (p = 0.002) with males containing more Rickettsia and females containing more Coxiella. Comparisons among adult ticks collected in New York and North Carolina supported the findings from the Georgia collection despite differences in geography, collection date, and sample handling, implying that the differences detected are consistent attributes. The data also suggest that some members of the

  1. Characterization of the bacterial communities of life stages of free living lone star ticks (Amblyomma americanum.

    Directory of Open Access Journals (Sweden)

    Amanda Jo Williams-Newkirk

    Full Text Available The lone star tick (Amblyomma americanum is an abundant and aggressive biter of humans, domestic animals, and wildlife in the southeastern-central USA and an important vector of several known and suspected zoonotic bacterial pathogens. However, the biological drivers of bacterial community variation in this tick are still poorly defined. Knowing the community context in which tick-borne bacterial pathogens exist and evolve is required to fully understand the ecology and immunobiology of the ticks and to design effective public health and veterinary interventions. We performed a metagenomic survey of the bacterial communities of questing A. americanum and tested 131 individuals (66 nymphs, 24 males, and 41 females from five sites in three states. Pyrosequencing was performed with barcoded eubacterial primers targeting variable 16S rRNA gene regions 5-3. The bacterial communities were dominated by Rickettsia (likely R. amblyommii and an obligate Coxiella symbiont, together accounting for 6.7-100% of sequences per tick. DNAs from Midichloria, Borrelia, Wolbachia, Ehrlichia, Pseudomonas, or unidentified Bacillales, Enterobacteriaceae, or Rhizobiales groups were also detected frequently. Wolbachia and Midichloria significantly co-occurred in Georgia (p<0.00001, but not in other states. The significance of the Midichloria-Wolbachia co-occurrence is unknown. Among ticks collected in Georgia, nymphs differed from adults in both the composition (p = 0.002 and structure (p = 0.002 of their bacterial communities. Adults differed only in their community structure (p = 0.002 with males containing more Rickettsia and females containing more Coxiella. Comparisons among adult ticks collected in New York and North Carolina supported the findings from the Georgia collection despite differences in geography, collection date, and sample handling, implying that the differences detected are consistent attributes. The data also suggest that some members of

  2. Parental material and cultivation determine soil bacterial community structure and fertility.

    Science.gov (United States)

    Sun, Li; Gao, Jusheng; Huang, Ting; Kendall, Joshua R A; Shen, Qirong; Zhang, Ruifu

    2015-01-01

    Microbes are the key components of the soil environment, playing important roles during soil development. Soil parent material provides the foundation elements that comprise the basic nutritional environment for the development of microbial community. After 30 years artificial maturation of cultivation, the soil developments of three different parental materials were evaluated and bacterial community compositions were investigated using the high-throughput sequencing approach. Thirty years of cultivation increased the soil fertility and soil microbial biomass, richness and diversity, greatly changed the soil bacterial communities, the proportion of phylum Actinobacteria decreased significantly, while the relative abundances of the phyla Acidobacteria, Chloroflexi, Gemmatimonadetes, Armatimonadetes and Nitrospira were significantly increased. Soil bacterial communities of parental materials were separated with the cultivated ones, and comparisons of different soil types, granite soil and quaternary red clay soil were similar and different with purple sandy shale soil in both parental materials and cultivated treatments. Bacterial community variations in the three soil types were affected by different factors, and their alteration patterns in the soil development also varied with soil type. Soil properties (except total potassium) had a significant effect on the soil bacterial communities in all three soil types and a close relationship with abundant bacterial phyla. The amounts of nitrogen-fixing bacteria as well as the abundances of the nifH gene in all cultivated soils were higher than those in the parental materials; Burkholderia and Rhizobacte were enriched significantly with long-term cultivation. The results suggested that crop system would not deplete the nutrients of soil parental materials in early stage of soil maturation, instead it increased soil fertility and changed bacterial community, specially enriched the nitrogen-fixing bacteria to accumulate

  3. Characterization of successional changes in bacterial community composition during bioremediation of used motor oil-contaminated soil in a boreal climate.

    Science.gov (United States)

    Yan, Lijuan; Sinkko, Hanna; Penttinen, Petri; Lindström, Kristina

    2016-01-15

    The widespread use of motor oil makes it a notable risk factor to cause scattered contamination in soil. The monitoring of microbial community dynamics can serve as a comprehensive tool to assess the ecological impact of contaminants and their disappearance in the ecosystem. Hence, a field study was conducted to monitor the ecological impact of used motor oil under different perennial cropping systems (fodder galega, brome grass, galega-brome grass mixture and bare fallow) in a boreal climate zone. Length heterogeneity PCR characterized a successional pattern in bacterial community following oil contamination over a four-year bioremediation period. Soil pH and electrical conductivity were associated with the shifts in bacterial community composition. Crops had no detectable effect on bacterial community composition or complexity. However, the legume fodder galega increased soil microbial biomass, expressed as soil total DNA. Oil contamination induced an abrupt change in bacterial community composition at the early stage, yet the effect did not last as long as the oil in soil. The successional variation in bacterial community composition can serve as a sensitive ecological indicator of oil contamination and remediation in situ.

  4. A dynamic, mitotic-like mechanism for bacterial chromosome segregation.

    Science.gov (United States)

    Fogel, Michael A; Waldor, Matthew K

    2006-12-01

    The mechanisms that mediate chromosome segregation in bacteria are poorly understood. Despite evidence of dynamic movement of chromosome regions, to date, mitotic-like mechanisms that act on the bacterial chromosome have not been demonstrated. Here we provide evidence that the Vibrio cholerae ParAI and ParBI proteins are components of an apparatus that pulls the origin region of the large V. cholerae chromosome to the cell pole and anchors it there. ParBI interacts with a conserved origin-proximal, centromere-like site (parSI) that, following chromosome replication, segregates asymmetrically from one pole to the other. While segregating, parSI stretches far away from neighboring chromosomal loci. ParAI forms a dynamic band that extends from the pole to the segregating ParBI/parSI complex. Movement of ParBI/parSI across the cell occurs in concert with ParAI retraction. Deletion of parAI disrupts proper origin localization and segregation dynamics, and parSI no longer separates from nearby regions. These data suggest that ParAI forms a dynamic structure that pulls the ParBI-bound chromosome to the pole in a process analogous to anaphase of eukaryotic mitosis.

  5. Changes in bacterial community metabolism and composition during the degradation of dissolved organic matter from the jellyfish Aurelia aurita in a Mediterranean coastal lagoon.

    Science.gov (United States)

    Blanchet, Marine; Pringault, Olivier; Bouvy, Marc; Catala, Philippe; Oriol, Louise; Caparros, Jocelyne; Ortega-Retuerta, Eva; Intertaglia, Laurent; West, Nyree; Agis, Martin; Got, Patrice; Joux, Fabien

    2015-09-01

    Spatial increases and temporal shifts in outbreaks of gelatinous plankton have been observed over the past several decades in many estuarine and coastal ecosystems. The effects of these blooms on marine ecosystem functioning and particularly on the dynamics of the heterotrophic bacteria are still unclear. The response of the bacterial community from a Mediterranean coastal lagoon to the addition of dissolved organic matter (DOM) from the jellyfish Aurelia aurita, corresponding to an enrichment of dissolved organic carbon (DOC) by 1.4, was assessed for 22 days in microcosms (8 l). The high bioavailability of this material led to (i) a rapid mineralization of the DOC and dissolved organic nitrogen from the jellyfish and (ii) the accumulation of high concentrations of ammonium and orthophosphate in the water column. DOM from jellyfish greatly stimulated heterotrophic prokaryotic production and respiration rates during the first 2 days; then, these activities showed a continuous decay until reaching those measured in the control microcosms (lagoon water only) at the end of the experiment. Bacterial growth efficiency remained below 20%, indicating that most of the DOM was respired and a minor part was channeled to biomass production. Changes in bacterial diversity were assessed by tag pyrosequencing of partial bacterial 16S rRNA genes, DNA fingerprints, and a cultivation approach. While bacterial diversity in control microcosms showed little changes during the experiment, the addition of DOM from the jellyfish induced a rapid growth of Pseudoalteromonas and Vibrio species that were isolated. After 9 days, the bacterial community was dominated by Bacteroidetes, which appeared more adapted to metabolize high-molecular-weight DOM. At the end of the experiment, the bacterial community shifted toward a higher proportion of Alphaproteobacteria. Resilience of the bacterial community after the addition of DOM from the jellyfish was higher for metabolic functions than diversity

  6. Microbial community dynamics in the rhizosphere of a cadmium hyper-accumulator

    Science.gov (United States)

    Wood, J. L.; Zhang, C.; Mathews, E. R.; Tang, C.; Franks, A. E.

    2016-11-01

    Phytoextraction is influenced by the indigenous soil microbial communities during the remediation of heavy metal contaminated soils. Soil microbial communities can affect plant growth, metal availability and the performance of phytoextraction-assisting inocula. Understanding the basic ecology of indigenous soil communities associated with the phytoextraction process, including the interplay between selective pressures upon the communities, is an important step towards phytoextraction optimization. This study investigated the impact of cadmium (Cd), and the presence of a Cd-accumulating plant, Carpobrotus rossii (Haw.) Schwantes, on the structure of soil-bacterial and fungal communities using automated ribosomal intergenic spacer analysis (ARISA) and quantitative PCR (qPCR). Whilst Cd had no detectable influence upon fungal communities, bacterial communities underwent significant structural changes with no reduction in 16S rRNA copy number. The presence of C. rossii influenced the structure of all communities and increased ITS copy number. Suites of operational taxonomic units (OTUs) changed in abundance in response to either Cd or C. rossii, however we found little evidence to suggest that the two selective pressures were acting synergistically. The Cd-induced turnover in bacterial OTUs suggests that Cd alters competition dynamics within the community. Further work to understand how competition is altered could provide a deeper understanding of the microbiome-plant-environment and aid phytoextraction optimization.

  7. Competition of Escherichia coli O157 with a drinking water bacterial community at low nutrient concentrations.

    Science.gov (United States)

    Vital, Marius; Hammes, Frederik; Egli, Thomas

    2012-12-01

    In contrast to studies on (long-term) survival of enteric pathogens in the environment, investigations on the principles of their growth and competition with autochthonous aquatic bacteria are rare and unexplored. Hence, improved basic knowledge is crucial for an adequate risk assessment and for understanding (and avoiding) the spreading of waterborne diseases. Therefore, the pathogen Escherichia coli O157 was grown in competition with a drinking water bacterial community on natural assimilable organic carbon (AOC) originating from diluted wastewater, in both batch and continuous culture. Growth was monitored by flow cytometry enabling enumeration of total cell concentration as well as specific E. coli O157 detection using fluorescently-labelled antibodies. An enhanced competitive fitness of E. coli O157 with higher AOC concentrations, higher temperatures and increased dilution rates (continuous culture) was observed. A classical "opportunist" versus "gleaner" relationship, where E. coli O157 is the "opportunist", specialised for growth at high nutrient concentrations (μ(max): 0.87 h(-1) and K(s): 489 μg consumed DOC L(-1)), and the bacterial community is the "gleaner" adapted to nutrient-poor environments (μ(max): 0.33 h(-1) and K(s): 7.4 μg consumed DOC L(-1)) was found. The obtained competition results can be explained by the growth properties of the two competitors determined in pure cultures and it was possible to model many of the observed dynamics based on Monod kinetics. The study provides new insights into the principles governing competition of an enteric pathogen with autochthonous aquatic bacteria.

  8. Analysis of bacterial communities and bacterial pathogens in a biogas plant by the combination of ethidium monoazide, PCR and Ion Torrent sequencing.

    Science.gov (United States)

    Luo, Gang; Angelidaki, Irini

    2014-09-01

    The present study investigated the changes of bacterial community composition including bacterial pathogens along a biogas plant, i.e. from the influent, to the biogas reactor and to the post-digester. The effects of post-digestion temperature and time on the changes of bacterial community composition and bacterial pathogens were also studied. Microbial analysis was made by Ion Torrent sequencing of the PCR amplicons from ethidium monoazide treated samples, and ethidium monoazide was used to cleave DNA from dead cells and exclude it from PCR amplification. Both similarity and taxonomic analysis showed that the bacterial community composition in the influent was changed after anaerobic digestion. Firmicutes were dominant in all the samples, while Proteobacteria decreased in the biogas reactor compared with the influent. Variations of bacterial community composition in the biogas reactor with time were also observed. This could be attributed to varying composition of the influent. Batch experiments showed that the methane recovery from the digested residues (obtained from biogas reactor) was mainly related with post-digestion temperature. However, post-digestion time rather than temperature had a significant effect on the changes of bacterial community composition. The changes of bacterial community composition were also reflected in the changes of relative abundance of bacterial pathogens. The richness and relative abundance of bacterial pathogens were reduced after anaerobic digestion in the biogas reactor. It was found in batch experiments that bacterial pathogens showed the highest relative abundance and richness after 30 days' post-digestion. Streptococcus bovis was found in all the samples. Our results showed that special attention should be paid to the post-digestion since the increase in relative abundance of bacterial pathogens after post-digestion might reflect regrowth of bacterial pathogens and limit biosolids disposal vectors.

  9. Soil bacterial and fungal communities across a pH gradient in an arable soil.

    Science.gov (United States)

    Rousk, Johannes; Bååth, Erland; Brookes, Philip C; Lauber, Christian L; Lozupone, Catherine; Caporaso, J Gregory; Knight, Rob; Fierer, Noah

    2010-10-01

    Soils collected across a long-term liming experiment (pH 4.0-8.3), in which variation in factors other than pH have been minimized, were used to investigate the direct influence of pH on the abundance and composition of the two major soil microbial taxa, fungi and bacteria. We hypothesized that bacterial communities would be more strongly influenced by pH than fungal communities. To determine the relative abundance of bacteria and fungi, we used quantitative PCR (qPCR), and to analyze the composition and diversity of the bacterial and fungal communities, we used a bar-coded pyrosequencing technique. Both the relative abundance and diversity of bacteria were positively related to pH, the latter nearly doubling between pH 4 and 8. In contrast, the relative abundance of fungi was unaffected by pH and fungal diversity was only weakly related with pH. The composition of the bacterial communities was closely defined by soil pH; there was as much variability in bacterial community composition across the 180-m distance of this liming experiment as across soils collected from a wide range of biomes in North and South America, emphasizing the dominance of pH in structuring bacterial communities. The apparent direct influence of pH on bacterial community composition is probably due to the narrow pH ranges for optimal growth of bacteria. Fungal community composition was less strongly affected by pH, which is consistent with pure culture studies, demonstrating that fungi generally exhibit wider pH ranges for optimal growth.

  10. Responses of Soil Bacterial Communities to Nitrogen Deposition and Precipitation Increment Are Closely Linked with Aboveground Community Variation.

    Science.gov (United States)

    Li, Hui; Xu, Zhuwen; Yang, Shan; Li, Xiaobin; Top, Eva M; Wang, Ruzhen; Zhang, Yuge; Cai, Jiangping; Yao, Fei; Han, Xingguo; Jiang, Yong

    2016-05-01

    It has been predicted that precipitation and atmospheric nitrogen (N) deposition will increase in northern China; yet, ecosystem responses to the interactive effects of water and N remain largely unknown. In particular, responses of belowground microbial community to projected global change and their potential linkages to aboveground macro-organisms are rarely studied. In this study, we examined the responses of soil bacterial diversity and community composition to increased precipitation and multi-level N deposition in a temperate steppe in Inner Mongolia, China, and explored the diversity linkages between aboveground and belowground communities. It was observed that N addition caused the significant decrease in bacterial alpha-diversity and dramatic changes in community composition. In addition, we documented strong correlations of alpha- and beta-diversity between plant and bacterial communities in response to N addition. It was found that N enriched the so-called copiotrophic bacteria, but reduced the oligotrophic groups, primarily by increasing the soil inorganic N content and carbon availability and decreasing soil pH. We still highlighted that increased precipitation tended to alleviate the effects of N on bacterial diversity and dampen the plant-microbe connections induced by N. The counteractive effects of N addition and increased precipitation imply that even though the ecosystem diversity and function are predicted to be negatively affected by N deposition in the coming decades; the combination with increased precipitation may partially offset this detrimental effect.

  11. The Role of Abiotic Environmental Conditions and Herbivory in Shaping Bacterial Community Composition in Floral Nectar

    OpenAIRE

    Michal Samuni-Blank; Ido Izhaki; Sivan Laviad; Avi Bar-Massada; Yoram Gerchman; Malka Halpern

    2014-01-01

    Identifying the processes that drive community assembly has long been a central theme in ecology. For microorganisms, a traditional prevailing hypothesis states that "everything is everywhere, but the environment selects". Although the bacterial community in floral nectar may be affected by both atmosphere (air-borne bacteria) and animals as dispersal vectors, the environmental and geographic factors that shape microbial communities in floral nectar are unknown. We studied culturable bacteria...

  12. Diversity of arsenite oxidizing bacterial communities in arsenic-rich deltaic aquifers in West Bengal, India

    Directory of Open Access Journals (Sweden)

    Devanita eGhosh

    2014-11-01

    Full Text Available High arsenic (As concentration in groundwater has affected human health, particularly in South-East Asia putting millions of people at risk. Biogeochemical cycling of As carried out by different bacterial groups are suggested to control the As fluxes in aquifers. A functional diversity approach in link with As precipitation was adopted to study bacterial community structures and their variation within the As contaminated Bengal Delta Plain (BDP aquifers of India. Groundwater samples collected from two shallow aquifers in Karimpur II (West Bengal, India, during years 2010 and 2011, were investigated to trace the effects of inter-annual variability in precipitation on community structure and diversity of bacterial assemblages. The study focused on amplification, clone library generation and sequencing of the arsenite oxidase large sub-unit gene aioA and 16S rRNA marker, with respect to changes in elemental concentrations. New set of primers were designed to amplify the aioA gene as a phylogenetic marker to study taxonomically diverse arsenite oxidizing bacterial groups in these aquifers. Overall narrow distribution of bacterial communities based on aioA and 16S rRNA sequences observed was due to poor nutrient status and anoxic conditions in these As contaminated aquifers. Proteobacteria was the dominant phylum detected, within which Acidovorax, Hydrogenophaga, Albidiferax, Bosea and Polymorphum were the major arsenite oxidizing bacterial genera. The structure of bacterial assemblages including those of arsenite oxidizing bacteria were affected by an increase in major elemental concentrations (e.g., As, iron, sulfur, and silica within two sampling sessions, which was supported by PCA analysis. One of the significant findings of this study is detection of novel lineages of 16S rRNA-like bacterial sequences indicating presence of indigenous bacterial communities across both wells of BDP that can play important role in biogeochemical cycling of

  13. Impact of Phanerochaete chrysosporium on the Functional Diversity of Bacterial Communities Associated with Decaying Wood.

    Science.gov (United States)

    Hervé, Vincent; Ketter, Elodie; Pierrat, Jean-Claude; Gelhaye, Eric; Frey-Klett, Pascale

    2016-01-01

    Bacteria and fungi naturally coexist in various environments including forest ecosystems. While the role of saprotrophic basidiomycetes in wood decomposition is well established, the influence of these fungi on the functional diversity of the wood-associated bacterial communities has received much less attention. Based on a microcosm experiment, we tested the hypothesis that both the presence of the white-rot fungus Phanerochaete chrysosporium and the wood, as a growth substrate, impacted the functional diversity of these bacterial communities. Microcosms containing sterile sawdust were inoculated with a microbial inoculum extracted from a forest soil, in presence or in absence of P. chrysosporium and subsequently, three enrichment steps were performed. First, bacterial strains were isolated from different microcosms previously analyzed by 16S rRNA gene-based pyrosequencing. Strains isolated from P. chrysosporium mycosphere showed less antagonism against this fungus compared to the strains isolated from the initial forest soil inoculum, suggesting a selection by the fungus of less inhibitory bacterial communities. Moreover, the presence of the fungus in wood resulted in a selection of cellulolytic and xylanolytic bacterial strains, highlighting the role of mycospheric bacteria in wood decomposition. Additionally, the proportion of siderophore-producing bacteria increased along the enrichment steps, suggesting an important role of bacteria in iron mobilization in decaying-wood. Finally, taxonomic identification of 311 bacterial isolates revealed, at the family level, strong similarities with the high-throughput sequencing data as well as with other studies in terms of taxonomic composition of the wood-associated bacterial community, highlighting that the isolated strains are representative of the wood-associated bacterial communities.

  14. Impact of Phanerochaete chrysosporium on the Functional Diversity of Bacterial Communities Associated with Decaying Wood.

    Directory of Open Access Journals (Sweden)

    Vincent Hervé

    Full Text Available Bacteria and fungi naturally coexist in various environments including forest ecosystems. While the role of saprotrophic basidiomycetes in wood decomposition is well established, the influence of these fungi on the functional diversity of the wood-associated bacterial communities has received much less attention. Based on a microcosm experiment, we tested the hypothesis that both the presence of the white-rot fungus Phanerochaete chrysosporium and the wood, as a growth substrate, impacted the functional diversity of these bacterial communities. Microcosms containing sterile sawdust were inoculated with a microbial inoculum extracted from a forest soil, in presence or in absence of P. chrysosporium and subsequently, three enrichment steps were performed. First, bacterial strains were isolated from different microcosms previously analyzed by 16S rRNA gene-based pyrosequencing. Strains isolated from P. chrysosporium mycosphere showed less antagonism against this fungus compared to the strains isolated from the initial forest soil inoculum, suggesting a selection by the fungus of less inhibitory bacterial communities. Moreover, the presence of the fungus in wood resulted in a selection of cellulolytic and xylanolytic bacterial strains, highlighting the role of mycospheric bacteria in wood decomposition. Additionally, the proportion of siderophore-producing bacteria increased along the enrichment steps, suggesting an important role of bacteria in iron mobilization in decaying-wood. Finally, taxonomic identification of 311 bacterial isolates revealed, at the family level, strong similarities with the high-throughput sequencing data as well as with other studies in terms of taxonomic composition of the wood-associated bacterial community, highlighting that the isolated strains are representative of the wood-associated bacterial communities.

  15. Comparison of bacterial community structures in two systems of a sewage treatment plant using PCR-DGGE analysis

    Institute of Scientific and Technical Information of China (English)

    Abd El-Latif Hesham; Rong Qi; MinYang

    2011-01-01

    The combination of PCR amplification of 16S rRNA genes with denaturing gradient gel electrophoresis (DGGE) analysis was used to reveal the compositions and dynamics of bacterial communities in a sewage treatment plant with two systems,i.e.,an anoxicanaerobic-aerobic system (inverted A2O) and an anaerobic-anoxic-aerobic one (conventional A2O) over a period from February to July 2009,during which both systems experienced serious sludge bulking problems.The DGGE patterns showed that there were many common bands in both systems,suggesting the high similarity of bacterial communities of the two systems.Meanwhile,the moving window correlation analysis showed that the two systems experienced different microbial community structure changes during the period,which might be related with the different situations of the occurrence and disappearance of sludge bulking,as being reflected by sludge volume index (SVI) values.Major bands of DGGE patterns of sludge samples were further sequenced.Phylogenetic affiliation indicated that the majority of the sequences obtained were affiliated with Actinobacteria,Firmicutes,Bacteroidetes/Chlorobi group and α- and β-Proteobacteria.Two sequences showed high similarities to typical filamentous bacteria Microthrix parvicella and Nostocoida limicola I,indicating that these bacterial species have been involved in the sludge bulking problems.

  16. Dexamethasone in adults with community-acquired bacterial meningitis

    NARCIS (Netherlands)

    D. van de Beek; J. de Gans

    2006-01-01

    Bacterial meningitis in adults is a severe disease with high fatality and morbidity rates. Experimental studies have shown that the inflammatory response in the subarachnoid space is associated with an unfavourable outcome. In these experiments, corticosteroids, and in particular dexamethasone, were

  17. Risk factors for community-acquired bacterial meningitis

    DEFF Research Database (Denmark)

    Lundbo, Lene Fogt; Benfield, Thomas

    2017-01-01

    of these are pathogen-specific, while some are shared between different bacteria. METHODS: We searched the database PubMed to identify host risk factors for bacterial meningitis caused by the pathogens Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae type b, because they are three most common...

  18. Spatial and temporal changes in sulphate-reducing groundwater bacterial community structure in response to Managed Aquifer Recharge.

    Science.gov (United States)

    Reed, D A; Toze, S; Chang, B

    2008-01-01

    The population dynamics of bacterial able to be cultured under sulphate reducing condition was studied in conjunction with changes in aquifer geochemistry using multivariate statistics for two contrasting Managed Aquifer Recharge (MAR) techniques at two different geographical locations (Perth, Western Australia and Adelaide, South Australia). Principal component analysis (PCA) was used to investigate spatial and temporal changes in the overall chemical signature of the aquifers using an array of chemical analytes which demonstrated a migrating geochemical plume. Denaturing Gradient Gel Electrophoresis (DGGE) using DNA from sulphate-reducing bacteria cultures was used to detect spatial and temporal changes in population dynamics. Bacterial and geochemical evidence suggested that groundwater at greatest distance from the nutrient source was least affected by treated effluent recharge. The results suggested that bacterial populations that were able to be cultured in sulphate reducing media responded to the migrating chemical gradient and to the changes in aquifer geochemistry. Most noticeably, sulphate-reducing bacterial populations associated with the infiltration galleries were stable in community structure over time. Additionally, the biodiversity of these culturable bacteria was restored when aquifer geochemistry returned to ambient conditions during the recovery phase at the Adelaide Aquifer Storage and Recovery site.

  19. Pole-to-pole biogeography of surface and deep marine bacterial communities.

    Science.gov (United States)

    Ghiglione, Jean-François; Galand, Pierre E; Pommier, Thomas; Pedrós-Alió, Carlos; Maas, Elizabeth W; Bakker, Kevin; Bertilson, Stefan; Kirchmanj, David L; Lovejoy, Connie; Yager, Patricia L; Murray, Alison E

    2012-10-23

    The Antarctic and Arctic regions offer a unique opportunity to test factors shaping biogeography of marine microbial communities because these regions are geographically far apart, yet share similar selection pressures. Here, we report a comprehensive comparison of bacterioplankton diversity between polar oceans, using standardized methods for pyrosequencing the V6 region of the small subunit ribosomal (SSU) rRNA gene. Bacterial communities from lower latitude oceans were included, providing a global perspective. A clear difference between Southern and Arctic Ocean surface communities was evident, with 78% of operational taxonomic units (OTUs) unique to the Southern Ocean and 70% unique to the Arctic Ocean. Although polar ocean bacterial communities were more similar to each other than to lower latitude pelagic communities, analyses of depths, seasons, and coastal vs. open waters, the Southern and Arctic Ocean bacterioplankton communities consistently clustered separately from each other. Coastal surface Southern and Arctic Ocean communities were more dissimilar from their respective open ocean communities. In contrast, deep ocean communities differed less between poles and lower latitude deep waters and displayed different diversity patterns compared with the surface. In addition, estimated diversity (Chao1) for surface and deep communities did not correlate significantly with latitude or temperature. Our results suggest differences in environmental conditions at the poles and different selection mechanisms controlling surface and deep ocean community structure and diversity. Surface bacterioplankton may be subjected to more short-term, variable conditions, whereas deep communities appear to be structured by longer water-mass residence time and connectivity through ocean circulation.

  20. Changes in assembly processes in soil bacterial communities following a wildfire disturbance.

    Science.gov (United States)

    Ferrenberg, Scott; O'Neill, Sean P; Knelman, Joseph E; Todd, Bryan; Duggan, Sam; Bradley, Daniel; Robinson, Taylor; Schmidt, Steven K; Townsend, Alan R; Williams, Mark W; Cleveland, Cory C; Melbourne, Brett A; Jiang, Lin; Nemergut, Diana R

    2013-06-01

    Although recent work has shown that both deterministic and stochastic processes are important in structuring microbial communities, the factors that affect the relative contributions of niche and neutral processes are poorly understood. The macrobiological literature indicates that ecological disturbances can influence assembly processes. Thus, we sampled bacterial communities at 4 and 16 weeks following a wildfire and used null deviation analysis to examine the role that time since disturbance has in community assembly. Fire dramatically altered bacterial community structure and diversity as well as soil chemistry for both time-points. Community structure shifted between 4 and 16 weeks for both burned and unburned communities. Community assembly in burned sites 4 weeks after fire was significantly more stochastic than in unburned sites. After 16 weeks, however, burned communities were significantly less stochastic than unburned communities. Thus, we propose a three-phase model featuring shifts in the relative importance of niche and neutral processes as a function of time since disturbance. Because neutral processes are characterized by a decoupling between environmental parameters and community structure, we hypothesize that a better understanding of community assembly may be important in determining where and when detailed studies of community composition are valuable for predicting ecosystem function.

  1. Diversity of Bacterial Communities of Fitness Center Surfaces in a U.S. Metropolitan Area

    Directory of Open Access Journals (Sweden)

    Nabanita Mukherjee

    2014-12-01

    Full Text Available Public fitness centers and exercise facilities have been implicated as possible sources for transmitting community-acquired bacterial infections. However, the overall diversity of the bacterial community residing on the surfaces in these indoor environments is still unknown. In this study, we investigated the overall bacterial ecology of selected fitness centers in a metropolitan area (Memphis, TN, USA utilizing culture-independent pyrosequencing of the 16S rRNA genes. Samples were collected from the skin-contact surfaces (e.g., exercise instruments, floor mats, handrails, etc. within fitness centers. Taxonomical composition revealed the abundance of Firmicutes phyla, followed by Proteobacter and Actinobacteria, with a total of 17 bacterial families and 25 bacterial genera. Most of these bacterial genera are of human and environmental origin (including, air, dust, soil, and water. Additionally, we found the presence of some pathogenic or potential pathogenic bacterial genera including Salmonella, Staphylococcus, Klebsiella, and Micrococcus. Staphylococcus was found to be the most prevalent genus. Presence of viable forms of these pathogens elevates risk of exposure of any susceptible individuals. Several factors (including personal hygiene, surface cleaning and disinfection schedules of the facilities may be the reasons for the rich bacterial diversity found in this study. The current finding underscores the need to increase public awareness on the importance of personal hygiene and sanitation for public gym users.

  2. Light structures phototroph, bacterial and fungal communities at the soil surface.

    Directory of Open Access Journals (Sweden)

    Lawrence O Davies

    Full Text Available The upper few millimeters of soil harbour photosynthetic microbial communities that are structurally distinct from those of underlying bulk soil due to the presence of light. Previous studies in arid zones have demonstrated functional importance of these communities in reducing soil erosion, and enhancing carbon and nitrogen fixation. Despite being widely distributed, comparative understanding of the biodiversity of the soil surface and underlying soil is lacking, particularly in temperate zones. We investigated the establishment of soil surface communities on pasture soil in microcosms exposed to light or dark conditions, focusing on changes in phototroph, bacterial and fungal communities at the soil surface (0-3 mm and bulk soil (3-12 mm using ribosomal marker gene analyses. Microbial community structure changed with time and structurally similar phototrophic communities were found at the soil surface and in bulk soil in the light exposed microcosms suggesting that light can influence phototroph community structure even in the underlying bulk soil. 454 pyrosequencing showed a significant selection for diazotrophic cyanobacteria such as Nostoc punctiforme and Anabaena spp., in addition to the green alga Scenedesmus obliquus. The soil surface also harboured distinct heterotrophic bacterial and fungal communities in the presence of light, in particular, the selection for the phylum Firmicutes. However, these light driven changes in bacterial community structure did not extend to the underlying soil suggesting a discrete zone of influence, analogous to the rhizosphere.

  3. Bacterial community structure and predicted alginate metabolic pathway in an alginate-degrading bacterial consortium.

    Science.gov (United States)

    Kita, Akihisa; Miura, Toyokazu; Kawata, Satoshi; Yamaguchi, Takeshi; Okamura, Yoshiko; Aki, Tsunehiro; Matsumura, Yukihiko; Tajima, Takahisa; Kato, Junichi; Nishio, Naomichi; Nakashimada, Yutaka

    2016-03-01

    Methane fermentation is one of the effective approaches for utilization of brown algae; however, this process is limited by the microbial capability to degrade alginate, a main polysaccharide found in these algae. Despite its potential, little is known about anaerobic microbial degradation of alginate. Here we constructed a bacterial consortium able to anaerobically degrade alginate. Taxonomic classification of 16S rRNA gene, based on high-throughput sequencing data, revealed that this consortium included two dominant strains, designated HUA-1 and HUA-2; these strains were related to Clostridiaceae bacterium SK082 (99%) and Dysgonomonas capnocytophagoides (95%), respectively. Alginate lyase activity and metagenomic analyses, based on high-throughput sequencing data, revealed that this bacterial consortium possessed putative genes related to a predicted alginate metabolic pathway. However, HUA-1 and 2 did not grow on agar medium with alginate by using roll-tube method, suggesting the existence of bacterial interactions like symbiosis for anaerobic alginate degradation.

  4. Effects of Cry1Ab Bt maize straw return on bacterial community of earthworm Eisenia fetida.

    Science.gov (United States)

    Shu, Yinghua; Zhang, Yanyan; Zeng, Huilan; Zhang, Yahui; Wang, Jianwu

    2017-04-01

    The eco-toxicological effects of Bacillus thuringiensis (Bt) maize on earthworm life-history traits were widely studied and the results were controversial, while their effects on earthworm bacterial community have been rarely studied. Here, effects of two hybrids of Bt maize [5422Bt1 (event Bt11) and 5422CBCL (MON810)] straw return on Eisenia fetida bacterial community were investigated by the terminal restriction fragment length polymorphism (T-RFLP) and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) combing with DNA sequencing, compared to near-isogenic non-Bt maize (5422). Bt maize straw return had significant effects on soil nutrients, especially for available nitrogen (N). The significant differences were shown in soil bacterial community between Bt and non-Bt maize treatments on the 75(th) and 90(th) d, which was closely correlated with soil available N, P and K rather than Cry1Ab protein. There was no statistically significant difference in the bacterial community of earthworm gut contents between Bt and non-Bt maize treatments. The significant differences in the bacterial community of earthworm casts were found among three maize varieties treatments, which were closely correlated with Cry1Ab protein and N levels. The differentiated bacterial species in earthworm casts mainly belonged to Proteobacteria, including Brevundimonas, Caulobacter, Pseudomonas, Stenotrophomonas, Methylobacterium, Asticcacaulis and Achromobacter etc., which were associated with the mineralization, metabolic process and degradation of plants residues. Therefore, Bt maize straw return caused changes in the bacterial community of E. fetida casts, which was possibly caused by the direct (Cry1Ab protein) and non-expected effects (N levels) of Bt maize straw.

  5. High-throughput nucleotide sequence analysis of diverse bacterial communities in leachates of decomposing pig carcasses

    Directory of Open Access Journals (Sweden)

    Seung Hak Yang

    2015-09-01

    Full Text Available The leachate generated by the decomposition of animal carcass has been implicated as an environmental contaminant surrounding the burial site. High-throughput nucleotide sequencing was conducted to investigate the bacterial communities in leachates from the decomposition of pig carcasses. We acquired 51,230 reads from six different samples (1, 2, 3, 4, 6 and 14 week-old carcasses and found that sequences representing the phylum Firmicutes predominated. The diversity of bacterial 16S rRNA gene sequences in the leachate was the highest at 6 weeks, in contrast to those at 2 and 14 weeks. The relative abundance of Firmicutes was reduced, while the proportion of Bacteroidetes and Proteobacteria increased from 3–6 weeks. The representation of phyla was restored after 14 weeks. However, the community structures between the samples taken at 1–2 and 14 weeks differed at the bacterial classification level. The trend in pH was similar to the changes seen in bacterial communities, indicating that the pH of the leachate could be related to the shift in the microbial community. The results indicate that the composition of bacterial communities in leachates of decomposing pig carcasses shifted continuously during the study period and might be influenced by the burial site.

  6. Comparison of intestinal bacterial communities in grass carp,Ctenopharyngodon idellus,from two different habitats

    Institute of Scientific and Technical Information of China (English)

    NI Jiajia; YU Yuhe; ZHANG Tanglin; GAO Lei

    2012-01-01

    The intestinal bacteria of vertebrates form a close relationship with their host.External and internal conditions of the host,including its habitat,affect the intestinal bacterial community.Similarly,the intestinal bacterial community can,in turn,influence the host,particularly with respect to disease resistance.We compared the intestinal bacterial communities of grass carp that were collected from farm-ponds or a lake.We conducted denaturing gradient gel electrophoresis of amplified 16S rRNA genes,from which 66 different operational taxonomic units were identified.Using both the unweighted pair-group method with arithmetic means clustering and principal component analysis ordination,we found that the intestinal bacterial communities from the two groups of pond fish were clustered together and inset into the clusters of wild fish,except for DF-7,and there was no significant correlation between genetic diversity of grass carp and their intestinal bacterial communities(Mantel one-tailed test,R=0.157,P=0.175).Cetobacterium appeared more frequently in the intestine of grass carp collected from pond.A more thorough understanding of the role played by intestinal microbiota on fish health would be of considerable benefit to the aquaculture industry.

  7. Comparison of intestinal bacterial communities in grass carp, Ctenopharyngodon idellus, from two different habitats

    Science.gov (United States)

    Ni, Jiajia; Yu, Yuhe; Zhang, Tanglin; Gao, Lei

    2012-09-01

    The intestinal bacteria of vertebrates form a close relationship with their host. External and internal conditions of the host, including its habitat, affect the intestinal bacterial community. Similarly, the intestinal bacterial community can, in turn, influence the host, particularly with respect to disease resistance. We compared the intestinal bacterial communities of grass carp that were collected from farm-ponds or a lake. We conducted denaturing gradient gel electrophoresis of amplified 16S rRNA genes, from which 66 different operational taxonomic units were identified. Using both the unweighted pair-group method with arithmetic means clustering and principal component analysis ordination, we found that the intestinal bacterial communities from the two groups of pond fish were clustered together and inset into the clusters of wild fish, except for DF-7, and there was no significant correlation between genetic diversity of grass carp and their intestinal bacterial communities (Mantel one-tailed test, R=0.157, P=0.175). Cetobacterium appeared more frequently in the intestine of grass carp collected from pond. A more thorough understanding of the role played by intestinal microbiota on fish health would be of considerable benefit to the aquaculture industry.

  8. Host plant species determines symbiotic bacterial community mediating suppression of plant defenses

    Science.gov (United States)

    Chung, Seung Ho; Scully, Erin D.; Peiffer, Michelle; Geib, Scott M.; Rosa, Cristina; Hoover, Kelli; Felton, Gary W.

    2017-01-01

    Herbivore associated bacteria are vital mediators of plant and insect interactions. Host plants play an important role in shaping the gut bacterial community of insects. Colorado potato beetles (CPB; Leptinotarsa decemlineata) use several Solanum plants as hosts in their natural environment. We previously showed that symbiotic gut bacteria from CPB larvae suppressed jasmonate (JA)-induced defenses in tomato. However, little is known about how changes in the bacterial community may be involved in the manipulation of induced defenses in wild and cultivated Solanum plants of CPB. Here, we examined suppression of JA-mediated defense in wild and cultivated hosts of CPB by chemical elicitors and their symbiotic bacteria. Furthermore, we investigated associations between the gut bacterial community and suppression of plant defenses using 16 S rRNA amplicon sequencing. Symbiotic bacteria decreased plant defenses in all Solanum hosts and there were different gut bacterial communities in CPB fed on different host plants. When larvae were reared on different hosts, defense suppression differed among host plants. These results demonstrate that host plants influence herbivore gut bacterial communities and consequently affect the herbivore’s ability to manipulate JA-mediated plant defenses. Thus, the presence of symbiotic bacteria that suppress plant defenses might help CPB adapt to host plants. PMID:28045052

  9. Geo-Chip analysis reveals reduced functional diversity of the bacterial community at a dumping site for dredged Elbe sediment.

    Science.gov (United States)

    Störmer, Rebecca; Wichels, Antje; Gerdts, Gunnar

    2013-12-15

    The dumping of dredged sediments represents a major stressor for coastal ecosystems. The impact on the ecosystem function is determined by its complexity not easy to assess. In the present study, we evaluated the potential of bacterial community analyses to act as ecological indicators in environmental monitoring programmes. We investigated the functional structure of bacterial communities, applying functional gene arrays (GeoChip4.2). The relationship between functional genes and environmental factors was analysed using distance-based multivariate multiple regression. Apparently, both the function and structure of the bacterial communities are impacted by dumping activities. The bacterial community at the dumping centre displayed a significant reduction of its entire functional diversity compared with that found at a reference site. DDX compounds separated bacterial communities of the dumping site from those of un-impacted sites. Thus, bacterial community analyses show great potential as ecological indicators in environmental monitoring.

  10. Visualization of bacterial flagella dynamics in a viscous shear flow

    Science.gov (United States)

    Ali, Jamel; Kim, Minjun

    2016-11-01

    We report on the dynamics of tethered bacterial flagella in an applied viscous shear flow and analyze their behavior using image processing. Flagellin proteins were repolymerized into flagellar filaments functionalized with biotin at their proximal end, and allowed to self-assemble within a micro channel coated with streptavidin. It was observed that all attached flagellar filaments aligned with the steady shear flow of various polymeric solutions. Furthermore it was observed that many of the filaments were stretched, and at elevated flow rates began to undergo polymorphic transformations, which were initiated at one end of the flagellum. When undergoing a change to a different helical form the flagellum was observed to transform to an oppositely handed helix, as to counteract the viscous torque imparted by the shear flow. It was also observed that some flagellar filaments did not undergo polymorphic transformations, but rotated about their helical axis. The rate of this rotation appears to be a function of the applied flow rate. These results expand on previous experimental work and aid in the development of a novel platform that harnesses the autonomic response of a 'forest' of bacterial flagella for engineering applications. This work was funded by NSF Grant CMMI-1000255, KEIT MOTIE Grant No. 10052980, and with Government support under and awarded by DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a.

  11. Microbial Community Dynamics During Biogas Slurry and Cow Manure Compost

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hong-yan; LI Jie; LIU Jing-jing; L Yu-cai; WANG Xiao-fen; CUI Zong-jun

    2013-01-01

    This study evaluated the microbial community dynamics and maturation time of two compost systems: biogas slurry compost and cow manure compost, with the aim of evaluating the potential utility of a biogas slurry compost system. Denaturing gradient gel electrophoresis (DGGE), gene clone library, temperature, C/N ratio, and the germination index were employed for the investigation, cow manure compost was used as the control. Results showed that the basic strip and dominant strips of the DGGE bands for biogas slurry compost were similar to those of cow manure compost, but the brightness of the respective strips for each system were different. Shannon-Weaver indices of the two compost systems differed, possessing only 22%similarity in the primary and maturity stages of the compost process. Using bacterial 16S rRNA gene clone library analysis, 88 bacterial clones were detected. Further, 18 and 13 operational taxonomic units (OTUs) were present in biogas slurry and cow manure compost, respectively. The 18 OTUs of the biogas slurry compost belonged to nine bacterial genera, of which the dominant strains were Bacillus sp. and Carnobacterium sp.;the 13 OTUs of the cow manure compost belonged to eight bacterial genera, of which the dominant strains were Psychrobacter sp., Pseudomonas sp., and Clostridium sp. Results demonstrated that the duration of the thermophilic phase (more than 50°C) for biogas slurry compost was 8 d less than the according duration for cow manure compost, and the maturation times for biogas slurry and cow manure compost were 45 and 60 d, respectively. It is an effective biogas slurry assimilate technology by application of biogas slurry as nitrogen additives in the manufacture of organic fertilizer.

  12. Effects of Soil and Substrate Cultivation on Lettuce Rhizosphere Bacterial Community

    Directory of Open Access Journals (Sweden)

    LIANG Yun

    2017-01-01

    Full Text Available Rhizosphere bacterial community can promote the nutrition absorption of plant root, which result in the upgrade of plant quality. Cultivation system has effect on rhizosphere bacterial community. Four treatments were set to investigate the effects of two different cultivation systems, soil and substrate systems, for two varieties of lettuce, Shengxuan NO.5 and cv. Lollo Rossca.(two cultivation systems × two varieties. Each treatment had three pots as samples with 10 lettuce plants for each pot. After 30 days of transplanting, five plants of each pot were randomly selected, and rhizosphere soil or substrate was sampled. Real-time PCR and PCR-DGGE were implied to analyze the characteristics of rhizosphere bacterial community in each treatment. Real-Time PCR detection showed that the number of the population of rhizosphere bacteria in substrate system was significantly higher than that of soil system(P<0.05. PCR-DGGE profiles revealed that the diversity of substrate system was significantly higher than that of soil system. As for Shenxuan NO.5, the Shannon-Wiener index(H, Simpson index(Dand Pielou evenness index(Eof substrate system were significantly higher than that of soil system(P<0.05, and for cv.Lollo Rossca, index H of substrate system were significantly higher than that of soil system(P<0.05. RDA revealed that soil and substrate systems had different bacterial communities, and pH and nitrate nitrogen were two main factors that determining the community structure. In addition, water content, C/N, and available phosphorus were positively correlated with the development of bacterial community. Overall, soil and substrate cultivation systems had different rhizosphere bacterial community, and the quantity and diversity were higher in substrate system due to the physiochemical difference.

  13. Dynamics of adaptive immunity against phage in bacterial populations

    CERN Document Server

    Bradde, Serena; Tesileanu, Tiberiu; Balasubramanian, Vijay

    2015-01-01

    The CRISPR (clustered regularly interspaced short palindromic repeats) mechanism allows bacteria to adaptively defend against phages by acquiring short genomic sequences (spacers) that target specific sequences in the viral genome. We propose a population dynamical model where immunity can be both acquired and lost. The model predicts regimes where bacterial and phage populations can co-exist, others where the populations oscillate, and still others where one population is driven to extinction. Our model considers two key parameters: (1) ease of acquisition and (2) spacer effectiveness in conferring immunity. Analytical calculations and numerical simulations show that if spacers differ mainly in ease of acquisition, or if the probability of acquiring them is sufficiently high, bacteria develop a diverse population of spacers. On the other hand, if spacers differ mainly in their effectiveness, their final distribution will be highly peaked, akin to a "winner-take-all" scenario, leading to a specialized spacer ...

  14. A bacterial community-based index to assess the ecological status of estuarine and coastal environments

    KAUST Repository

    Aylagas, Eva

    2016-10-23

    Biotic indices for monitoring marine ecosystems are mostly based on the analysis of benthic macroinvertebrate communities. Due to their high sensitivity to pollution and fast response to environmental changes, bacterial assemblages could complement the information provided by benthic metazoan communities as indicators of human-induced impacts, but so far, this biological component has not been well explored for this purpose. Here we performed 16S rRNA gene amplicon sequencing to analyze the bacterial assemblage composition of 51 estuarine and coastal stations characterized by different environmental conditions and human-derived pressures. Using the relative abundance of putative indicator bacterial taxa, we developed a biotic index that is significantly correlated with a sediment quality index calculated on the basis of organic and inorganic compound concentrations. This new index based on bacterial assemblage composition can be a sensitive tool for providing a fast environmental assessment and allow a more comprehensive integrative ecosystem approach for environmental management. © 2016.

  15. Astaxanthin dynamics in Baltic Sea mesozooplankton communities

    Science.gov (United States)

    Snoeijs, Pauline; Häubner, Norbert

    2014-01-01

    The red pigment astaxanthin is a powerful antioxidant, which occurs in eggs and body tissues of crustaceans and fish. It is produced by crustaceans from algal carotenoids. In a two-year field study we assessed natural concentrations and dynamics of astaxanthin in mesozooplankton communities in the brackish Baltic Sea area. Astaxanthin levels varied between 0.37 and 36 ng L- 1. They increased with salinity along the Baltic Sea gradient and were linked to zooplankton biomass and phytoplankton community composition. Astaxanthin concentrations showed typical seasonal patterns and varied from 0.2 to 5.1 ng ind- 1, 0.2 to 3.4 ng (μg C)- 1 and 6 to 100 ng mm- 3. These concentrations were inversely related to water temperature and strongly linked to zooplankton community composition. Communities dominated by the calanoid copepods Temora longicornis, Pseudocalanus acuspes and Eurytemora spp. generally held the highest concentrations. With increasing cladocerans:copepods biomass ratios community astaxanthin concentrations decreased and with higher relative biomass of Acartia spp. the proportion of astaxanthin diesters decreased. Diesters prevailed in the cold season and they are thought to improve the antioxidant protection of storage lipids during winter. Climate change causes higher temperature and lower salinity in the Baltic Sea proper. This modifies zooplankton community composition, but not necessarily into a community with lower concentrations of astaxanthin since T. longicornis (high concentrations) has been reported to increase with higher temperature. However, decreased astaxanthin production in the ecosystem is expected if a basin-wide increase in the cladocerans:copepods biomass ratios would occur with further climate change.

  16. Safe-Site Effects on Rhizosphere Bacterial Communities in a High-Altitude Alpine Environment

    Directory of Open Access Journals (Sweden)

    Sonia Ciccazzo

    2014-01-01

    Full Text Available The rhizosphere effect on bacterial communities associated with three floristic communities (RW, FI, and M sites which differed for the developmental stages was studied in a high-altitude alpine ecosystem. RW site was an early developmental stage, FI was an intermediate stage, M was a later more matured stage. The N and C contents in the soils confirmed a different developmental stage with a kind of gradient from the unvegetated bare soil (BS site through RW, FI up to M site. The floristic communities were composed of 21 pioneer plants belonging to 14 species. Automated ribosomal intergenic spacer analysis showed different bacterial genetic structures per each floristic consortium which differed also from the BS site. When plants of the same species occurred within the same site, almost all their bacterial communities clustered together exhibiting a plant species effect. Unifrac significance value (P<0.05 on 16S rRNA gene diversity revealed significant differences (P<0.05 between BS site and the vegetated sites with a weak similarity to the RW site. The intermediate plant colonization stage FI did not differ significantly from the RW and the M vegetated sites. These results pointed out the effect of different floristic communities rhizospheres on their soil bacterial communities.

  17. Spatial and seasonal variations in bacterial communities of the Yellow Sea by T-RFLP analysis

    Institute of Scientific and Technical Information of China (English)

    Hongyuan WANG; Xiaolu JIANG; Ya HE; Huashi GUAN

    2009-01-01

    Four typical coastal sites (rocky shore, sandy shore, mud flat shore, and artificial harbor) at the Yellow Sea were chosen to investigate the spatial and seasonal variations in bacterial communities. This was accomplished by using terminal restriction fragment length polymorphism (T-RFLP) analysis of PCR amplified 16S rDNA fragments. Two kinds of tetrameric restriction enzymes, HhaI and MspI, were used in the experiment to depict the bacterial community diversity in different marine environments. It was found that the community compositions digested by the two enzymes separately were different. However, the results of bacterial community diversity derived from them were similar. The MDA analysis results of T-RFLP profiles coming from HhaI and MspI both exhibited a significant seasonal community shift for bacteria and a relatively low spatial variation among the four locations. With HhaI as the sample, the pair wise T-tests also revealed that variations were minor between each pair of marine environments, with R ranging from 0.198 to 0.349. However, the bacterial community structure in the mud flat site depicted a larger difference than each of the other three sites (R ranging from 0.282 to 0.349).

  18. Bacterial Diversity and Community Structure in Two Bornean Nepenthes Species with Differences in Nitrogen Acquisition Strategies.

    Science.gov (United States)

    Sickel, Wiebke; Grafe, T Ulmar; Meuche, Ivonne; Steffan-Dewenter, Ingolf; Keller, Alexander

    2016-05-01

    Carnivorous plants of the genus Nepenthes have been studied for over a century, but surprisingly little is known about associations with microorganisms. The two species Nepenthes rafflesiana and Nepenthes hemsleyana differ in their pitcher-mediated nutrient sources, sequestering nitrogen from arthropod prey and arthropods as well as bat faeces, respectively. We expected bacterial communities living in the pitchers to resemble this diet difference. Samples were taken from different parts of the pitchers (leaf, peristome, inside, outside, digestive fluid) of both species. Bacterial communities were determined using culture-independent high-throughput amplicon sequencing. Bacterial richness and community structure were similar in leaves, peristomes, inside and outside walls of both plant species. Regarding digestive fluids, bacterial richness was higher in N. hemsleyana than in N. rafflesiana. Additionally, digestive fluid communities were highly variable in structure, with strain-specific differences in community composition between replicates. Acidophilic taxa were mostly of low abundance, except the genus Acidocella, which strikingly reached extremely high levels in two N. rafflesiana fluids. In N. hemsleyana fluid, some taxa classified as vertebrate gut symbionts as well as saprophytes were enriched compared to N. rafflesiana, with saprophytes constituting potential competitors for nutrients. The high variation in community structure might be caused by a number of biotic and abiotic factors. Nitrogen-fixing bacteria were present in both study species, which might provide essential nutrients to the plant at times of low prey capture and/or rare encounters with bats.

  19. The role of abiotic environmental conditions and herbivory in shaping bacterial community composition in floral nectar.

    Science.gov (United States)

    Samuni-Blank, Michal; Izhaki, Ido; Laviad, Sivan; Bar-Massada, Avi; Gerchman, Yoram; Halpern, Malka

    2014-01-01

    Identifying the processes that drive community assembly has long been a central theme in ecology. For microorganisms, a traditional prevailing hypothesis states that "everything is everywhere, but the environment selects". Although the bacterial community in floral nectar may be affected by both atmosphere (air-borne bacteria) and animals as dispersal vectors, the environmental and geographic factors that shape microbial communities in floral nectar are unknown. We studied culturable bacterial communities in Asphodelus aestivus floral nectar and in its typical herbivorous bug Capsodes infuscatus, along an aridity gradient. Bacteria were sampled from floral nectar and bugs at four sites, spanning a geographical range of 200 km from Mediterranean to semi-arid conditions, under open and bagged flower treatments. In agreement with the niche assembly hypothesis, the differences in bacterial community compositions were explained by differences in abiotic environmental conditions. These results suggest that microbial model systems are useful for addressing macro-ecological questions. In addition, similar bacterial communities were found in the nectar and on the surface of the bugs that were documented visiting the flowers. These similarities imply that floral nectar bacteria dispersal is shaped not only by air borne bacteria and nectar consumers as previously reported, but also by visiting vectors like the mirid bugs.

  20. The role of abiotic environmental conditions and herbivory in shaping bacterial community composition in floral nectar.

    Directory of Open Access Journals (Sweden)

    Michal Samuni-Blank

    Full Text Available Identifying the processes that drive community assembly has long been a central theme in ecology. For microorganisms, a traditional prevailing hypothesis states that "everything is everywhere, but the environment selects". Although the bacterial community in floral nectar may be affected by both atmosphere (air-borne bacteria and animals as dispersal vectors, the environmental and geographic factors that shape microbial communities in floral nectar are unknown. We studied culturable bacterial communities in Asphodelus aestivus floral nectar and in its typical herbivorous bug Capsodes infuscatus, along an aridity gradient. Bacteria were sampled from floral nectar and bugs at four sites, spanning a geographical range of 200 km from Mediterranean to semi-arid conditions, under open and bagged flower treatments. In agreement with the niche assembly hypothesis, the differences in bacterial community compositions were explained by differences in abiotic environmental conditions. These results suggest that microbial model systems are useful for addressing macro-ecological questions. In addition, similar bacterial communities were found in the nectar and on the surface of the bugs that were documented visiting the flowers. These similarities imply that floral nectar bacteria dispersal is shaped not only by air borne bacteria and nectar consumers as previously reported, but also by visiting vectors like the mirid bugs.

  1. Safe-site effects on rhizosphere bacterial communities in a high-altitude alpine environment.

    Science.gov (United States)

    Ciccazzo, Sonia; Esposito, Alfonso; Rolli, Eleonora; Zerbe, Stefan; Daffonchio, Daniele; Brusetti, Lorenzo

    2014-01-01

    The rhizosphere effect on bacterial communities associated with three floristic communities (RW, FI, and M sites) which differed for the developmental stages was studied in a high-altitude alpine ecosystem. RW site was an early developmental stage, FI was an intermediate stage, M was a later more matured stage. The N and C contents in the soils confirmed a different developmental stage with a kind of gradient from the unvegetated bare soil (BS) site through RW, FI up to M site. The floristic communities were composed of 21 pioneer plants belonging to 14 species. Automated ribosomal intergenic spacer analysis showed different bacterial genetic structures per each floristic consortium which differed also from the BS site. When plants of the same species occurred within the same site, almost all their bacterial communities clustered together exhibiting a plant species effect. Unifrac significance value (P < 0.05) on 16S rRNA gene diversity revealed significant differences (P < 0.05) between BS site and the vegetated sites with a weak similarity to the RW site. The intermediate plant colonization stage FI did not differ significantly from the RW and the M vegetated sites. These results pointed out the effect of different floristic communities rhizospheres on their soil bacterial communities.

  2. Specific features of bacterial communities in floodplain agrocenoses

    Science.gov (United States)

    Dobrovol'Skaya, T. G.; Leont'evskaya, E. A.; Sneg, A. A.; Balabko, P. N.

    2010-04-01

    The analysis of the taxonomic structure of the bacterial complexes in the alluvial soils of the Oka River valley allowed revealing the distinct differences in the spectrum of the bacterial dominants in the virgin and cultivated soils. Arthrobacter and pigment coryneform bacteria are shown to predominate in the virgin soil; bacilli and pseudomonades are common in the soil under vegetables. On cabbage leaves and carrot roots (both healthy and rotten), the spectrum of dominants is composed of two genera of enterobacteria: Pantoea and Erwinia. As a result of the plowing in of vegetables into the soil, enterobacteria accumulate; among them, phytopathogenic species are present. Within a year after this plowing in and the new yield, the enterobacteria practically disappeared, but myxobacteria and cytophages developed. Since these bacteria belong to the cellulose-destroying prokaryotes, the increase in their contents in the soil testified to their participation in the decomposition of the buried vegetable residues. Weeds are known to concentrate various bacterial forms in the phylloplane; they enter from different ecological niches: soil, water, meadow, and agricultural plants. Representatives of phytopathogenic bacteria as minor components were found on weeds.

  3. Volcanic ash supports a diverse bacterial community in a marine mesocosm

    Science.gov (United States)

    Verena Witt,; Paul M Ayris,; Damby, David; Corrado Cimarelli,; Ulrich Kueppers,; Donald B Dingwell,; Gert Wörheide,

    2017-01-01

    Shallow-water coral reef ecosystems, particularly those already impaired by anthropogenic pressures, may be highly sensitive to disturbances from natural catastrophic events, such as volcanic eruptions. Explosive volcanic eruptions expel large quantities of silicate ash particles into the atmosphere, which can disperse across millions of square kilometres and deposit into coral reef ecosystems. Following heavy ash deposition, mass mortality of reef biota is expected, but little is known about the recovery of post-burial reef ecosystems. Reef regeneration depends partly upon the capacity of the ash deposit to be colonised by waterborne bacterial communities and may be influenced to an unknown extent by the physiochemical properties of the ash substrate itself. To determine the potential for volcanic ash to support pioneer bacterial colonisation, we exposed five well-characterised volcanic and coral reef substrates to a marine aquarium under low light conditions for 3 months: volcanic ash, synthetic volcanic glass, carbonate reef sand, calcite sand and quartz sand. Multivariate statistical analysis of Automated Ribosomal Intergenic Spacer Analysis (ARISA) fingerprinting data demonstrates clear segregation of volcanic substrates from the quartz and coral reef substrates over 3 months of bacterial colonisation. Overall bacterial diversity showed shared and substrate-specific bacterial communities; however, the volcanic ash substrate supported the most diverse bacterial community. These data suggest a significant influence of substrate properties (composition, granulometry and colour) on bacterial settlement. Our findings provide first insights into physicochemical controls on pioneer bacterial colonisation of volcanic ash and highlight the potential for volcanic ash deposits to support bacterial diversity in the aftermath of reef burial, on timescales that could permit cascading effects on larval settlement.

  4. Epiphytic bacterial communities of the alga Fucus vesiculosus in oil-contaminated water areas of the Barents Sea.

    Science.gov (United States)

    Pugovkin, D V; Liaimer, A; Jensen, J B

    2016-11-01

    Taxonomic compositions of epiphytic bacterial communities in water areas differing in levels of oil pollution were revealed. In total, 82 bacterial genera belonging to 16 classes and 11 phyla were detected. All detected representatives of epiphytic bacterial communities belonged to the phyla Actinobacteria, Bacteroidetes, Planctomycetes, Proteobacteria, Verrucomicrobia, Acidobacteria, Cyanobacteria, Firmicutes, and Fusobacteria and candidate division TM7. The ratio of the phyla in the communities varied depending on the levels of oil pollution. New data on taxonomic composition of uncultivated epiphytic bacterial communities of Fucus vesiculosus were obtained.

  5. High-Resolution Melt Analysis for Rapid Comparison of Bacterial Community Compositions

    DEFF Research Database (Denmark)

    Hjelmsø, Mathis Hjort; Hansen, Lars Hestbjerg; Bælum, Jacob

    2014-01-01

    and fertilization treatments. The HRM analysis identified a shift in the bacterial community composition in two of the treatments, both including the soil fumigant Basamid GR. These results were confirmed with both denaturing gradient gel electrophoresis (DGGE) analysis and 454-based 16S rRNA gene amplicon......In the study of bacterial community composition, 16S rRNA gene amplicon sequencing is today among the preferred methods of analysis. The cost of nucleotide sequence analysis, including requisite computational and bioinformatic steps, however, takes up a large part of many research budgets. High......-resolution melt (HRM) analysis is the study of the melt behavior of specific PCR products. Here we describe a novel high-throughput approach in which we used HRM analysis targeting the 16S rRNA gene to rapidly screen multiple complex samples for differences in bacterial community composition. We hypothesized...

  6. Bacterial Community in Different Populations of Rice Brown Planthopper Nilaparvata lugens (Stål)

    Institute of Scientific and Technical Information of China (English)

    XU Hong-xing; ZHENG Xu-song; YANG Ya-jun; WANG Xin; YE Gong-yin; LU Zhong-xian

    2014-01-01

    The structures of bacterial communities in the brown planthopper (BPH) Nilaparvata lugens (Stål) from different geographic and resistant virulent populations were analyzed by using denatured gradient gel electrophoresis (DGGE). Results showed that the bacterial communities in BPH nymph from the first to the fifth instars varied with nymphal growth and development. The bacterial communities in the first-instar BPH nymph were similar to those in adults. Nine geographic BPH populations were divided into three groups based on the cluster analysis of DGGE fingerprint. The first group was from the Philippines;the second group was from Thailand and Hainan, Yunnan and Zhejiang provinces of China; and the third group was from Vietnam and Guangxi, Hunan and Jiangxi provinces of China. BPH populations adapted to different resistant rice varieties. The BPH populations from Mudgo (with resistant gene Bph1) and ASD7 (with resistant gene bph2) differed with those of the susceptible rice variety TN1.

  7. Temperature adaptation of soil bacterial communities along an Antarctic climate gradient: predicting responses to climate warming

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Rousk, Johannes; Yergeau, Etienne;

    2009-01-01

    the leucine incorporation technique, in order to predict future changes in temperature sensitivity of resident soil bacterial communities. Soil samples were collected along a climate gradient consisting of locations on the Antarctic Peninsula (Anchorage Island, 67 °34'S, 68 °08'W), Signy Island (60 °43'S, 45......Soil microorganisms, the central drivers of terrestrial Antarctic ecosystems, are being confronted with increasing temperatures as parts of the continent experience considerable warming. Here we determined short-term temperature dependencies of Antarctic soil bacterial community growth rates, using...... °38'W) and the Falkland Islands (51 °76'S 59 °03'W). At each location, experimental plots were subjected to warming by open top chambers (OTCs) and paired with control plots on vegetated and fell-field habitats. The bacterial communities were adapted to the mean annual temperature of their environment...

  8. Bacterial community composition and chitinase gene diversity of vermicompost with antifungal activity.

    Science.gov (United States)

    Yasir, Muhammad; Aslam, Zubair; Kim, Seon Won; Lee, Seon-Woo; Jeon, Che Ok; Chung, Young Ryun

    2009-10-01

    Bacterial communities and chitinase gene diversity of vermicompost (VC) were investigated to clarify the influence of earthworms on the inhibition of plant pathogenic fungi in VC. The spore germination of Fusarium moniliforme was reduced in VC aqueous extracts prepared from paper sludge and dairy sludge (fresh sludge, FS). The bacterial communities were examined by culture-dependent and -independent analyses. Unique clones selected from 16S rRNA libraries of FS and VC on the basis of restriction fragment length polymorphism (RFLP) fell into the major lineages of the domain bacteria Proteobacteria, Bacteroidetes, Verrucomicrobia, Actinobacteria and Firmicutes. Among culture isolates, Actinobacteria dominated in VC, while almost equal numbers of Actinobacteria and Proteobacteria were present in FS. Analysis of chitinolytic isolates and chitinase gene diversity revealed that chitinolytic bacterial communities were enriched in VC. Populations of bacteria that inhibited plant fungal pathogens were higher in VC than in FS and particularly chitinolytic isolates were most active against the target fungi.

  9. BACTERIAL POPULATION DYNAMICS IN WASTE OILY EMULSIONS FROM THE METAL-PROCESSING INDUSTRY

    Directory of Open Access Journals (Sweden)

    Paweł Kaszycki

    2014-07-01

    Full Text Available Oil-containing wastewaters are regarded as main industrial pollutants of soil and water environments. They can occur as free-floating oil, unstable or stable oil-in-water (O/W emulsions, and in the case of extreme organic load, as water-in-oil (W/O emulsions. In this study two types of oily effluents, a typical O/W emulsion marked as E1 and a W/O emulsion E2, both discharged by local metal processing plants were examined to test their toxicity to microbial communities and the ability to serve as nutrient sources for bacterial growth. The organic contaminant load of the samples was evaluated on the basis of chemical oxygen demand (COD parameter values and was equal to 48 200 mg O2·dm-3 and >300 000 mg O2·dm-3 for E1 and E2, respectively.Both emulsions proved to be non toxic to bacterial communities and were shown to contain biodiverse autochthonous microflora consisting of several bacterial strains adapted to the presence of xenobiotics (the total of 1.36 · 106 CFU·cm-3 and 1.72 · 105 CFU·cm-3 was determined for E1 and E2, respectively. These indigenous bacteria as well as exogenously inoculated specialized allochthonous microorganisms were biostimulated so as to proliferate within the wastewater environment whose organic content served as the only source of carbon. The most favorable cultivation conditions were determined as fully aerobic growth at the temperature of 25 ºC. In 9 to 18 day-tests, autochthonous as well as bioaugmented allochthonous bacterial population dynamics were monitored. For both emulsions tested there was a dramatic increase (up to three orders of magnitude in bacterial frequency, as compared to the respective initial values. The resultant high biomass densities suggest that the effluents are susceptible to bioremediation. A preliminary xenobiotic biodegradation test confirmed that mixed auto- and allochthonous bacterial consortia obtained upon inoculation of the samples with microbiocenoses preselected for efficient

  10. Impacts of poultry house environment on poultry litter bacterial community composition.

    Science.gov (United States)

    Dumas, Michael D; Polson, Shawn W; Ritter, Don; Ravel, Jacques; Gelb, Jack; Morgan, Robin; Wommack, K Eric

    2011-01-01

    Viral and bacterial pathogens are a significant economic concern to the US broiler industry and the ecological epicenter for poultry pathogens is the mixture of bedding material, chicken excrement and feathers that comprises the litter of a poultry house. This study used high-throughput sequencing to assess the richness and diversity of poultry litter bacterial communities, and to look for connections between these communities and the environmental characteristics of a poultry house including its history of gangrenous dermatitis (GD). Cluster analysis of 16S rRNA gene sequences revealed differences in the distribution of bacterial phylotypes between Wet and Dry litter samples and between houses. Wet litter contained greater diversity with 90% of total bacterial abundance occurring within the top 214 OTU clusters. In contrast, only 50 clusters accounted for 90% of Dry litter bacterial abundance. The sixth largest OTU cluster across all samples classified as an Arcobacter sp., an emerging human pathogen, occurring in only the Wet litter samples of a house with a modern evaporative cooling system. Ironically, the primary pathogenic clostridial and staphylococcal species associated with GD were not found in any house; however, there were thirteen 16S rRNA gene phylotypes of mostly gram-positive phyla that were unique to GD-affected houses and primarily occurred in Wet litter samples. Overall, the poultry house environment appeared to substantially impact the composition of litter bacterial communities and may play a key role in the emergence of food-borne pathogens.

  11. Bacterial community in sediment from the Western Pacific "Warm Pool" and its relationship to environment

    Institute of Scientific and Technical Information of China (English)

    ZENG Runying; ZHAO Jing; ZHANG Rui; LIN Nianwei

    2005-01-01

    Total DNAs were extracted from different sections of deep sea sediment core sample collected from the Western Pacific "Warm Pool". The bacterial 16S ribosomal DNA (rDNA) clone libraries were constructed and analyzed by PCR-restriction fragment length polymorphism (RFLP) and DNA sequencing. The bacterial communities in these samples and their relationship to environment were analyzed consequently. The results indicated that among eight main bacterial groups found in these sediments, members of the γ-Proteobacteria were most abundant in each section of sediment core sample and the genus Colwellia belonging to γ-Proteobacteria was dominant in this area. Members of the α-Proteobacteria were found commonly existing in these samples, while members belonging to β-Proteobacteria were seldom detected. The diversity of bacterial communities from different sections of sediment core sample was δ- and ε-Proteo- bacteria and the bacterial group including genera Cytopahga, Flexibacteria and Bacteroides (CFB group). These bacteria all were inversely proportional to the depth of sediment. Phylogenetic analysis showed that there were 18%-30% and 15%-25% of total bacterial communities related to methane and sulfur metabolism respectively in each section of core sample, implicating that the metabolism of sulfur and methane played an important role in the substance and energy cycles of the Western Pacific "Warm Pool".

  12. Bacterial communities involved in soil formation and plant establishment triggered by pyrite bioweathering on arctic moraines.

    Science.gov (United States)

    Mapelli, Francesca; Marasco, Ramona; Rizzi, Agostino; Baldi, Franco; Ventura, Stefano; Daffonchio, Daniele; Borin, Sara

    2011-02-01

    In arctic glacier moraines, bioweathering primed by microbial iron oxidizers creates fertility gradients that accelerate soil development and plant establishment. With the aim of investigating the change of bacterial diversity in a pyrite-weathered gradient, we analyzed the composition of the bacterial communities involved in the process by sequencing 16S rRNA gene libraries from different biological soil crusts (BSC). Bacterial communities in three BSC of different morphology, located within 1 m distance downstream a pyritic conglomerate rock, were significantly diverse. The glacier moraine surrounding the weathered site showed wide phylogenetic diversity and high evenness with 15 represented bacterial classes, dominated by Alphaproteobacteria and pioneer Cyanobacteria colonizers. The bioweathered area showed the lowest diversity indexes and only nine bacterial families, largely dominated by Acidobacteriaceae and Acetobacteraceae typical of acidic environments, in accordance with the low pH of the BSC. In the weathered BSC, iron-oxidizing bacteria were cultivated, with counts decreasing along with the increase of distance from the rock, and nutrient release from the rock was revealed by environmental scanning electron microscopy-energy dispersive X-ray analyses. The vegetated area showed the presence of Actinomycetales, Verrucomicrobiales, Gemmatimonadales, Burkholderiales, and Rhizobiales, denoting a bacterial community typical of developed soils and indicating that the lithoid substrate of the bare moraine was here subjected to an accelerated colonization, driven by iron-oxidizing activity.

  13. Impacts of poultry house environment on poultry litter bacterial community composition.

    Directory of Open Access Journals (Sweden)

    Michael D Dumas

    Full Text Available Viral and bacterial pathogens are a significant economic concern to the US broiler industry and the ecological epicenter for poultry pathogens is the mixture of bedding material, chicken excrement and feathers that comprises the litter of a poultry house. This study used high-throughput sequencing to assess the richness and diversity of poultry litter bacterial communities, and to look for connections between these communities and the environmental characteristics of a poultry house including its history of gangrenous dermatitis (GD. Cluster analysis of 16S rRNA gene sequences revealed differences in the distribution of bacterial phylotypes between Wet and Dry litter samples and between houses. Wet litter contained greater diversity with 90% of total bacterial abundance occurring within the top 214 OTU clusters. In contrast, only 50 clusters accounted for 90% of Dry litter bacterial abundance. The sixth largest OTU cluster across all samples classified as an Arcobacter sp., an emerging human pathogen, occurring in only the Wet litter samples of a house with a modern evaporative cooling system. Ironically, the primary pathogenic clostridial and staphylococcal species associated with GD were not found in any house; however, there were thirteen 16S rRNA gene phylotypes of mostly gram-positive phyla that were unique to GD-affected houses and primarily occurred in Wet litter samples. Overall, the poultry house environment appeared to substantially impact the composition of litter bacterial communities and may play a key role in the emergence of food-borne pathogens.

  14. Bacterial community characterization and biogeochemistry of sediments from a tropical upwelling system (Cabo Frio, Southeastern Brazil)

    Science.gov (United States)

    Castelo-Branco, R.; Barreiro, A.; Silva, F. S.; Carvalhal-Gomes, S. B. V.; Fontana, L. F.; Mendonça-Filho, J. G.; Vasconcelos, V.

    2016-11-01

    The Cabo Frio Upwelling System is one of the largest and most productive areas in southeastern Brazil. Although it is well-known that bacterial communities play a crucial role in the biogeochemical cycles and food chain of marine ecosystems, little is known regarding the microbial communities in the sediments of this upwelling region. In this research, we address the effect of different hydrological conditions on the biogeochemistry of sediments and the diversity of bacterial communities. Biogeochemistry profiles of sediments from four sampling stations along an inner-outer transect on the continental shelf were evaluated and denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA gene fragments was used to study the bacterial community composition in these sediments. Our sequencing analysis of excised bands identified Alpha- and Gammaproteobacteria, Bacteroidetes and bacteria belonging to the Firmicutes phyla as the phylogenetic groups, indicating the existence of great diversity in these marine sediments. In this multidisciplinary study, the use of multivariate analysis was crucial for understanding how biogeochemical profiles influence bacterial community distribution. A Principal Component Analysis (PCA) indicated that the biogeochemical variables exhibited a clear spatial pattern that is mainly related to hydrological conditions. A Correspondence Analysis (CA) revealed an important association between certain taxonomic groups and specific sampling locations. Canonical Correspondence Analysis (CCA) demonstrated that the biogeochemistry influences the structure of the bacterial community in sediments. Among the bacterial groups identified, the most taxonomically diverse classes (Alphaproteobacteria and Gammaproteobacteria) were found to be distributed regardless of any studied biogeochemical variables influences, whereas other groups responded to biogeochemical conditions which, in turn, were influenced by hydrological conditions. This finding

  15. Humpback whale populations share a core skin bacterial community: towards a health index for marine mammals?

    Directory of Open Access Journals (Sweden)

    Amy Apprill

    Full Text Available Microbes are now well regarded for their important role in mammalian health. The microbiology of skin--a unique interface between the host and environment--is a major research focus in human health and skin disorders, but is less explored in other mammals. Here, we report on a cross-population study of the skin-associated bacterial community of humpback whales (Megaptera novaeangliae, and examine the potential for a core bacterial community and its variability with host (endogenous or geographic/environmental (exogenous specific factors. Skin biopsies or freshly sloughed skin from 56 individuals were sampled from populations in the North Atlantic, North Pacific and South Pacific oceans and bacteria were characterized using 454 pyrosequencing of SSU rRNA genes. Phylogenetic and statistical analyses revealed the ubiquity and abundance of bacteria belonging to the Flavobacteria genus Tenacibaculum and the Gammaproteobacteria genus Psychrobacter across the whale populations. Scanning electron microscopy of skin indicated that microbial cells colonize the skin surface. Despite the ubiquity of Tenacibaculum and Psychrobater spp., the relative composition of the skin-bacterial community differed significantly by geographic area as well as metabolic state of the animals (feeding versus starving during migration and breeding, suggesting that both exogenous and endogenous factors may play a role in influencing the skin-bacteria. Further, characteristics of the skin bacterial community from these free-swimming individuals were assembled and compared to two entangled and three dead individuals, revealing a decrease in the central or core bacterial community members (Tenacibaculum and Psychrobater spp., as well as the emergence of potential pathogens in the latter cases. This is the first discovery of a cross-population, shared skin bacterial community. This research suggests that the skin bacteria may be connected to humpback health and immunity and could

  16. Humpback whale populations share a core skin bacterial community: towards a health index for marine mammals?

    Science.gov (United States)

    Apprill, Amy; Robbins, Jooke; Eren, A Murat; Pack, Adam A; Reveillaud, Julie; Mattila, David; Moore, Michael; Niemeyer, Misty; Moore, Kathleen M T; Mincer, Tracy J

    2014-01-01

    Microbes are now well regarded for their important role in mammalian health. The microbiology of skin--a unique interface between the host and environment--is a major research focus in human health and skin disorders, but is less explored in other mammals. Here, we report on a cross-population study of the skin-associated bacterial community of humpback whales (Megaptera novaeangliae), and examine the potential for a core bacterial community and its variability with host (endogenous) or geographic/environmental (exogenous) specific factors. Skin biopsies or freshly sloughed skin from 56 individuals were sampled from populations in the North Atlantic, North Pacific and South Pacific oceans and bacteria were characterized using 454 pyrosequencing of SSU rRNA genes. Phylogenetic and statistical analyses revealed the ubiquity and abundance of bacteria belonging to the Flavobacteria genus Tenacibaculum and the Gammaproteobacteria genus Psychrobacter across the whale populations. Scanning electron microscopy of skin indicated that microbial cells colonize the skin surface. Despite the ubiquity of Tenacibaculum and Psychrobater spp., the relative composition of the skin-bacterial community differed significantly by geographic area as well as metabolic state of the animals (feeding versus starving during migration and breeding), suggesting that both exogenous and endogenous factors may play a role in influencing the skin-bacteria. Further, characteristics of the skin bacterial community from these free-swimming individuals were assembled and compared to two entangled and three dead individuals, revealing a decrease in the central or core bacterial community members (Tenacibaculum and Psychrobater spp.), as well as the emergence of potential pathogens in the latter cases. This is the first discovery of a cross-population, shared skin bacterial community. This research suggests that the skin bacteria may be connected to humpback health and immunity and could possibly serve

  17. Functional Characterization of Bacterial Communities Responsible for Fermentation of Doenjang: A Traditional Korean Fermented Soybean Paste.

    Science.gov (United States)

    Jung, Woo Yong; Jung, Ji Young; Lee, Hyo Jung; Jeon, Che Ok

    2016-01-01

    Doenjang samples were prepared in triplicate and their microbial abundance, bacterial communities, and metabolites throughout fermentation were analyzed to investigate the functional properties of microorganisms in doenjang. Viable bacterial cells were approximately three orders of magnitude higher than fungal cells, suggesting that bacteria are more responsible for doenjang fermentation. Pyrosequencing and proton nuclear magnetic resonance spectroscopy were applied for the analysis of bacterial communities and metabolites, respectively. Bacterial community analysis based on 16S rRNA gene sequences revealed that doenjang samples included Bacillus, Enterococcus, Lactobacillus, Clostridium, Staphylococcus, Corynebacterium, Oceanobacillus, and Tetragenococcus. These genera were found either in doenjang-meju or solar salts, but not in both, suggesting two separate sources of bacteria. Bacillus and Enterococcus were dominant genera during the fermentation, but their abundances were not associated with metabolite changes, suggesting that they may not be major players in doenjang fermentation. Tetragenococcus was dominant in 108 day-doenjang samples, when lactate, acetate, putrescine, and tyramine increased quickly as glucose and fructose decreased, indicating that Tetragenococcus might be primarily responsible for organic acid and biogenic amine production. Lactobacillus was identified as a dominant group from the 179-day samples, associated with the increase of γ-aminobutyric acid (GABA) and the decrease of galactose, indicating a potential role for this genus as a major GABA producer during fermentation. The results of this study clarified the functional properties of major bacterial communities in the doenjang fermentation process, contributing to the production of safe and high-quality doenjang.

  18. Functional characterization of bacterial communities responsible for fermentation of doenjang, a traditional Korean fermented soybean paste

    Directory of Open Access Journals (Sweden)

    Woo Yong eJung

    2016-05-01

    Full Text Available Doenjang samples were prepared in triplicate and their microbial abundance, bacterial communities, and metabolites throughout fermentation were analyzed to investigate the functional properties of microorganisms in doenjang. Viable bacterial cells were approximately three orders of magnitude higher than fungal cells, suggesting that bacteria are more responsible for doenjang fermentation. Pyrosequencing and proton nuclear magnetic resonance spectroscopy were applied for the analysis of bacterial communities and metabolites, respectively. Bacterial community analysis based on 16S rRNA gene sequences revealed that doenjang samples included Bacillus, Enterococcus, Lactobacillus, Clostridium, Staphylococcus, Corynebacterium, Oceanobacillus, and Tetragenococcus. These genera were found either in doenjang-meju or solar salts, but not in both, suggesting two separate sources of bacteria. Bacillus and Enterococcus were dominant genera during the fermentation, but their abundances were not associated with metabolite changes, suggesting that they may not be major players in doenjang fermentation. Tetragenococcus was dominant in 108 day-doenjang samples, when lactate, acetate, putrescine, and tyramine increased quickly as glucose and fructose decreased, indicating that Tetragenococcus might be primarily responsible for organic acid and biogenic amine production. Lactobacillus was identified as a dominant group from the 179-day samples, associated with the increase of γ-aminobutyric acid (GABA and the decrease of galactose, indicating a potential role for this genus as a major GABA producer during fermentation. The results of this study clarified the functional properties of major bacterial communities in the doenjang fermentation process, contributing to the production of safe and high-quality doenjang.

  19. Comparative analysis of the composition of intestinal bacterial communities in Dastarcus helophoroides fed different diets.

    Science.gov (United States)

    Wang, Wei-Wei; He, Cai; Cui, Jun; Wang, Hai-Dong; Li, Meng-Lou

    2014-01-01

    The diversity of the intestinal bacterial communities in Dastarcus helophoroides (Fairmaire) (Coleoptera: Bothrideridae) larvae and adults was assayed by PCR-DGGE to determine whether different artificial diets could influence these bacterial communities. Two diets were used for feeding the larvae and four for the adults. Escherichia, Desemzia, Staphylococcus, Asticcacaulis, Cellvibrio, Aurantimonas, and Planomicrobium were isolated from the gut of the adults, with Escherichia and Staphylococcus being the main bacterial communities, and the quantities of intestinal bacterial were different in the adults fed different diets. Specifically, the amount of intestinal bacteria from the adults fed different diets had the following ranking according to the major component of the diet: ant powder > darkling beetle pupa powder > cricket powder > silkworm pupa powder. Escherichia, Bacillus, Staphylococcus, Kurthia, Planococcaceae, Ralstonia, Leptothrix, Acinetobacter, and Pseudomonas were isolated from the gut of the larvae. The quantity of intestinal bacteria from the larvae fed the darkling beetle pupae was greater than that from the larvae fed other artificial diets. This study, for the first time, investigated the effect of artificial diets on the bacterial community and the intestinal microbial diversity of D. helophoroides.

  20. Diversity and composition of bacterial community in soils and lake sediments from an Arctic lake area

    Directory of Open Access Journals (Sweden)

    Nengfei Wang

    2016-07-01

    Full Text Available This study assessed the diversity and composition of bacterial communities within soils and lake sediments from an Arctic lake area (London Island, Svalbard. A total of 2,987 operational taxonomic units (OTUs were identified by high throughput sequencing, targeting bacterial 16S rRNA. The samples from four sites (three samples in each site were significantly different in geochemical properties and bacterial community composition. Proteobacteria and Acidobacteria were abundant phyla in the nine soil samples, whereas Proteobacteria and Bacteroidetes were abundant phyla in the three sediment samples. Furthermore, Actinobacteria, Chlorobi, Chlorofiexi, Elusimicrobia, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria significantly varied in their abundance among the four sampling sites. Additionally, members of the dominant genera, such as Clostridium, Luteolibacter, Methylibium, Rhodococus, and Rhodoplanes, were significantly different in their abundance among the four sampling sites. Besides, distance-based redundancy analysis revealed that pH (p < 0.001, water content (p < 0.01, ammonium nitrogen (NH4--N, p < 0.01, silicate silicon (SiO42--Si, p < 0.01, nitrite nitrogen (NO2--N, p < 0.05, organic carbon (p < 0.05, and organic nitrogen (p < 0.05 were the most significant factors that correlated with the bacterial community composition. The results suggest soils and sediments from a lake area in the Arctic harbor a high diversity of bacterial communities, which are influenced by many geochemical factors of Arctic environments.

  1. Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes

    Science.gov (United States)

    Wemheuer, Franziska; Kaiser, Kristin; Karlovsky, Petr; Daniel, Rolf; Vidal, Stefan; Wemheuer, Bernd

    2017-01-01

    Endophytic bacteria are critical for plant growth and health. However, compositional and functional responses of bacterial endophyte communities towards agricultural practices are still poorly understood. Hence, we analyzed the influence of fertilizer application and mowing frequency on bacterial endophytes in three agriculturally important grass species. For this purpose, we examined bacterial endophytic communities in aerial plant parts of Dactylis glomerata L., Festuca rubra L., and Lolium perenne L. by pyrotag sequencing of bacterial 16S rRNA genes over two consecutive years. Although management regimes influenced endophyte communities, observed responses were grass species-specific. This might be attributed to several bacteria specifically associated with a single grass species. We further predicted functional profiles from obtained 16S rRNA data. These profiles revealed that predicted abundances of genes involved in plant growth promotion or nitrogen metabolism differed between grass species and between management regimes. Moreover, structural and functional community patterns showed no correlation to each other indicating that plant species-specific selection of endophytes is driven by functional rather than phylogenetic traits. The unique combination of 16S rRNA data and functional profiles provided a holistic picture of compositional and functional responses of bacterial endophytes in agricultural relevant grass species towards management practices.

  2. Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes

    Science.gov (United States)

    Wemheuer, Franziska; Kaiser, Kristin; Karlovsky, Petr; Daniel, Rolf; Vidal, Stefan; Wemheuer, Bernd

    2017-01-01

    Endophytic bacteria are critical for plant growth and health. However, compositional and functional responses of bacterial endophyte communities towards agricultural practices are still poorly understood. Hence, we analyzed the influence of fertilizer application and mowing frequency on bacterial endophytes in three agriculturally important grass species. For this purpose, we examined bacterial endophytic communities in aerial plant parts of Dactylis glomerata L., Festuca rubra L., and Lolium perenne L. by pyrotag sequencing of bacterial 16S rRNA genes over two consecutive years. Although management regimes influenced endophyte communities, observed responses were grass species-specific. This might be attributed to several bacteria specifically associated with a single grass species. We further predicted functional profiles from obtained 16S rRNA data. These profiles revealed that predicted abundances of genes involved in plant growth promotion or nitrogen metabolism differed between grass species and between management regimes. Moreover, structural and functional community patterns showed no correlation to each other indicating that plant species-specific selection of endophytes is driven by functional rather than phylogenetic traits. The unique combination of 16S rRNA data and functional profiles provided a holistic picture of compositional and functional responses of bacterial endophytes in agricultural relevant grass species towards management practices. PMID:28102323

  3. Molecular profiling of rhizosphere bacterial communities associated with Prosopis juliflora and Parthenium hysterophorus.

    Science.gov (United States)

    Jothibasu, K; Chinnadurai, C; Sundaram, Sp; Kumar, K; Balachandar, Dananjeyan

    2012-03-01

    Prosopis juliflora and Parthenium hysterophorus are the two arid, exotic weeds of India that are characterized by distinct, profuse growth even in nutritionally poor soils and environmentally stressed conditions. Owing to the exceptional growth nature of these two plants, they are believed to harbor some novel bacterial communities with wide adaptability in their rhizosphere. Hence, in the present study, the bacterial communities associated with the rhizosphere of Prosopis and Parthenium were characterized by clonal 16S rRNA gene sequence analysis. The culturable microbial counts in the rhizosphere of these two plants were higher than bulk soils, possibly influenced by the root exudates of these two plants. The phylogenetic analysis of V1_V2 domains of the 16S rRNA gene indicated a wider range of bacterial communities present in the rhizosphere of these two plants than in bulk soils and the predominant genera included Acidobacteria, Gammaproteobacteria, and Bacteriodetes in the rhizosphere of Prosopis, and Acidobacteria, Betaproteobacteria, and Nitrospirae in the Parthenium rhizosphere. The diversity of bacterial communities was more pronounced in the Parthenium rhizosphere than in the Prosopis rhizosphere. This culture-independent bacterial analysis offered extensive possibilities of unraveling novel microbes in the rhizospheres of Prosopis and Parthenium with genes for diverse functions, which could be exploited for nutrient transformation and stress tolerance in cultivated crops.

  4. Changes in the Bacterial Community Structure of Remediated Anthracene-Contaminated Soils.

    Science.gov (United States)

    Delgado-Balbuena, Laura; Bello-López, Juan M; Navarro-Noya, Yendi E; Rodríguez-Valentín, Analine; Luna-Guido, Marco L; Dendooven, Luc

    2016-01-01

    Mixing soil or adding earthworms (Eisenia fetida (Savigny, 1826)) accelerated the removal of anthracene, a polycyclic aromatic hydrocarbon, from a pasture and an arable soil, while a non-ionic surfactant (Surfynol® 485) inhibited the removal of the contaminant compared to the untreated soil. It was unclear if the treatments affected the soil bacterial community and consequently the removal of anthracene. Therefore, the bacterial community structure was monitored by means of 454 pyrosequencing of the 16S rRNA gene in the pasture and arable soil mixed weekly, amended with Surfynol® 485, E. fetida or organic material that served as food for the earthworms for 56 days. In both soils, the removal of anthracene was in the order: mixing soil weekly (100%) > earthworms applied (92%) > organic material applied (77%) > untreated soil (57%) > surfactant applied (34%) after 56 days. There was no clear link between removal of anthracene from soil and changes in the bacterial community structure. On the one hand, application of earthworms removed most of the contaminant from the arable soil and had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of the Acidobacteria, Chloroflexi and Gemmatimonadetes, and an increase in that of the Proteobacteria compared to the unamended soil. Mixing the soil weekly removed all anthracene from the arable soil, but had little or no effect on the bacterial community structure. On the other hand, application of the surfactant inhibited the removal of anthracene from the arable soil compared to the untreated soil, but had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of Cytophagia (Bacteroidetes), Chloroflexi, Gemmatimonadetes and Planctomycetes and an increase in that of the Flavobacteria (Bacteroidetes) and Proteobacteria. Additionally, the removal of anthracene was similar in the different treatments of both the arable and pasture soil, but the

  5. Different bacterial communities associated with the roots and bulk sediment of the seagrass Zostera marina

    DEFF Research Database (Denmark)

    Jensen, Sheila Ingemann; Kühl, Michael; Priemé, Anders

    2007-01-01

    The bacterial community of Zostera marina-inhabited bulk sediment vs. root-associated bacteria was investigated by terminal restriction fragment length polymorphism and sequencing, and the spatial extension of the oxygen loss from roots was determined by oxygen microsensors. Extensive oxygen loss...... was found in the tip region of the youngest roots, and most of the rhizoplane of Z. marina roots was thus anoxic. A significant difference between the bacterial communities associated with the roots and bulk sediment was found. No significant differences were found between differently aged root...

  6. Changes in the soil bacterial communities in a cedar plantation invaded by moso bamboo.

    Science.gov (United States)

    Lin, Yu-Te; Tang, Sen-Lin; Pai, Chuang-Wen; Whitman, William B; Coleman, David C; Chiu, Chih-Yu

    2014-02-01

    Moso bamboo is fast-growing and negatively allelopathic to neighboring plants. However, there is little information on the effects of its establishment and expansion to adjacent forest soil communities. To better understand the impacts of bamboo invasion on soil communities, the phylogenetic structure and diversity of the soil bacterial communities in moso bamboo forest, adjacent Japanese cedar plantation, and bamboo-invaded transition zone were examined using a combination of 16S rRNA gene clone libraries and bar-coded pyrosequencing techniques. Based on the number of operational taxonomic units (OTUs), Shannon diversity index, Chao1 estimator, and rarefaction analysis of both techniques, the bamboo soil bacterial community was the most diverse, followed by the transition zone, with the cedar plantation possessing the lowest diversity. The results from both techniques revealed that the Acidobacteria and Proteobacteria predominated in the three communities, though the relative abundance was different. The 250 most abundant OTUs represented about 70% of the total sequences found by pyrosequencing. Most of these OTUs were found in all three soil communities, demonstrating the overall similarity among the bacterial communities. Nonmetric multidimensional scaling analysis showed further that the bamboo and transition soil communities were more similar with each other than the cedar soils. These results suggest that bamboo invasion to the adjacent cedar plantation gradually increased the bacterial diversity and changed the soil community. In addition, while the 10 most abundant OTUs were distributed worldwide, related sequences were not abundant in soils from outside the forest studied here. This result may be an indication of the uniqueness of this region.

  7. Bacterial community structure in treated sewage sludge with mesophilic and thermophilic anaerobic digestion.

    Science.gov (United States)

    Stiborova, Hana; Wolfram, Jan; Demnerova, Katerina; Macek, Tomas; Uhlik, Ondrej

    2015-11-01

    Stabilized sewage sludge is applied to agricultural fields and farmland due to its high organic matter content. The aim of this study was to investigate the effects of two types of sludge stabilization, mesophilic anaerobic digestion (MAD) and thermophilic anaerobic digestion (TAD), on bacterial communities in sludge, including the presence of pathogenic microorganisms. Bacterial community structure and phylogenetic diversity were analyzed in four sewage sludge samples from the Czech Republic. Analysis of 16S ribosomal RNA (rRNA) genes showed that investigated sludge samples harbor diverse bacterial populations with only a few taxa present across all samples. Bacterial diversity was higher in sludge samples after MAD versus TAD treatment, and communities in MAD-treated sludge shared the highest genetic similarities. In all samples, the bacterial community was dominated by reads affiliated with Proteobacteria. The sludge after TAD treatment had considerably higher number of reads of thermotolerant/thermophilic taxa, such as the phyla Deinococcus-Thermus and Thermotogae or the genus Coprothermobacter. Only one operational taxonomic unit (OTU), which clustered with Rhodanobacter, was detected in all communities at a relative abundance >1 %. All of the communities were screened for the presence of 16S rRNA gene sequences of pathogenic bacteria using a database of 122 pathogenic species and ≥98 % identity threshold. The abundance of such sequences ranged between 0.23 and 1.57 % of the total community, with lower numbers present after the TAD treatment, indicating its higher hygienization efficiency. Sequences clustering with nontuberculous mycobacteria were present in all samples. Other detected sequences of pathogenic bacteria included Streptomyces somaliensis, Acinetobacter calcoaceticus, Alcaligenes faecalis, Gordonia spp., Legionella anisa, Bordetella bronchiseptica, Enterobacter aerogenes, Brucella melitensis, and Staphylococcus aureus.

  8. Variable effects of dispersal on productivity of bacterial communities due to changes in functional trait composition.

    Directory of Open Access Journals (Sweden)

    Ina Severin

    Full Text Available Previous studies have shown variable relationships between dispersal rate and ecosystem functioning, but the reasons for and mechanisms behind variable dispersal rate-functioning patterns are currently unknown. In this study we used six bacterial lake water communities in a laboratory experiment in order to investigate how dispersal among communities influences community productivity by evaluating three different mechanisms: 1 changes in taxonomic diversity, 2 changes in phylogenetic diversity or 3 changes in the composition of functional traits. The experiment was conducted in two phases; (A a dialysis bag experiment where the dispersal rate among six communities was manipulated and the subsequent change in bacterial diversity and growth rate was recorded, and (B a regrowth experiment where we manipulated available resources to study how well a taxon grows on certain organic carbon resources, i.e. their functional traits. From experiment (B we could thus estimate changes in functional traits in communities in experiment (A. Bacterial production was affected by dispersal, but not consistently among lakes. Neither change in taxonomic or phylogenetic diversity with dispersal could explain the observed dispersal-productivity relationships. Instead, changes in trait composition with dispersal, especially the communities' ability to use p-coumaric acid, an aromatic compound, could explain the observed dispersal-productivity relationships. Changes in this trait caused by dispersal seemed especially important for bacterial productivity in waters with a high aromaticity of the organic matter pool. We conclude that the effect of dispersal on bacterial communities can affect ecosystem functioning in different ways, through changes in functional key-traits which are important for the local environment.

  9. Pyrosequencing-based assessment of bacterial community structure in mine soils affected by mining subsidence

    Institute of Scientific and Technical Information of China (English)

    Li Yuanyuan a; Chen Longqian a; ⇑; Wen Hongyu b; Zhou Tianjian a; Zhang Ting a

    2014-01-01

    Based on the 454 pyrosequencing approach, this research evaluated the influence of coal mining subsi-dence on soil bacterial diversity and community structure in Chinese mining area. In order to characterize the bacterial community comparatively, this study selected a field experiment site with coal-excavated subsidence soils and an adjacent site with non-disturbed agricultural soils, respectively. The dataset com-prises 24512 sequences that are affiliated to the 7 phylogenetic groups: proteobacteria, actinobacteria, bacteroidetes, gemmatimonadetes, chloroflexi, nitrospirae and unclassified phylum. Proteobacteria is the largest bacterial phylum in all samples, with a marked shift of the proportions of alpha-, beta-, and gammaproteobacteria. The results show that undisturbed soils are relatively more diverse and rich than subsided soils, and differences in abundances of dominant taxonomic groups between the two soil groups are visible. Compared with the control, soil nutrient contents decline achieves significant level in subsided soils. Correlational analysis showed bacterial diversity indices have significantly positive corre-lation with soil organic matter, total N, total P, and available K, but in negative relation with soil salinity. Ground subsidence noticeably affects the diversity and composition of soil microbial community. Degen-eration of soil fertility and soil salinization inhibits the sole-carbon-source metabolic ability of microbial community, leading to the simplification of advantage species and uneven distribution of microbial spe-cies. This work demonstrates the great potential of pyrosequencing technique in revealing microbial diversity and presents background information of microbial communities of mine subsidence land.

  10. A high-throughput sequencing ecotoxicology study of freshwater bacterial communities and their responses to tebuconazole.

    Science.gov (United States)

    Pascault, Noémie; Roux, Simon; Artigas, Joan; Pesce, Stéphane; Leloup, Julie; Tadonleke, Rémy D; Debroas, Didier; Bouchez, Agnès; Humbert, Jean-François

    2014-12-01

    The pollution of lakes and rivers by pesticides is a growing problem worldwide. However, the impacts of these substances on microbial communities are still poorly understood, partly because next-generation sequencing (NGS) has rarely been used in an ecotoxicology context to study bacterial communities despite its interest for accessing rare taxa. Microcosm experiments were carried out to evaluate the effects of tebuconazole (TBZ) on the structure and composition of bacterial communities from two types of freshwater ecosystem (lakes and rivers) with differing histories of pollutant contamination (pristine vs. previously exposed sites). Pyrosequencing revealed that bacterial diversity was higher in the river than in the lakes and in previously exposed sites than in pristine sites. Lakes and river stations shared very few OTUs, and differences at the phylum level were identified between these ecosystems (i.e. the relative importance of Actinobacteria and Gammaproteobacteria). Despite differences between these ecosystems and their contamination history, no significant effect of TBZ on bacterial community structure or composition was observed. Compared to functional parameters that displayed variable responses, we demonstrated that a combination of classical methods and NGS is necessary to investigate the ecotoxicological responses of microbial communities to pollutants.

  11. Bacterial communities associated with culex mosquito larvae and two emergent aquatic plants of bioremediation importance.

    Science.gov (United States)

    Duguma, Dagne; Rugman-Jones, Paul; Kaufman, Michael G; Hall, Michael W; Neufeld, Josh D; Stouthamer, Richard; Walton, William E

    2013-01-01

    Microbes are important for mosquito nutrition, growth, reproduction and control. In this study, we examined bacterial communities associated with larval mosquitoes and their habitats. Specifically, we characterized bacterial communities associated with late larval instars of the western encephalitis mosquito (Culextarsalis), the submerged portions of two emergent macrophytes (California bulrush, Schoenoplectuscalifornicus and alkali bulrush, Schoenoplectusmaritimus), and the associated water columns to investigate potential differential use of resources by mosquitoes in different wetland habitats. Using next-generation sequence data from 16S rRNA gene hypervariable regions, the alpha diversity of mosquito gut microbial communities did not differ between pond mesocosms containing distinct monotypic plants. Proteobacteria, dominated by the genus Thorsellia (Enterobacteriaceae), was the most abundant phylum recovered from C. tarsalis larvae. Approximately 49% of bacterial OTUs found in larval mosquitoes were identical to OTUs recovered from the water column and submerged portions of the two bulrushes. Plant and water samples were similar to one another, both being dominated by Actinobacteria, Bacteroidetes, Cyanobacteria, Proteobacteria and Verrucomicrobia phyla. Overall, the bacterial communities within C. tarsalis larvae were conserved and did not change across sampling dates and between two distinct plant habitats. Although Thorsellia spp. dominated mosquito gut communities, overlap of mosquito gut, plant and water-column OTUs likely reveal the effects of larval feeding. Future research will investigate the role of the key indicator groups of bacteria across the different developmental stages of this mosquito species.

  12. Diazotrophic potential among bacterial communities associated with wild and cultivated Agave species.

    Science.gov (United States)

    Desgarennes, Damaris; Garrido, Etzel; Torres-Gomez, Miryam J; Peña-Cabriales, Juan J; Partida-Martinez, Laila P

    2014-12-01

    Agaves are major biotic resources in arid and semi-arid ecosystems. Despite their ecological, economical and cultural relevance, many aspects of the microbial communities associated with agaves are still unknown. Here, we investigated the bacterial communities associated with two Agave species by 16S rRNA- Denaturing gradient gel electrophoresis fingerprinting and sequencing. We also evaluated the effects of biotic and abiotic factors in the structure of the bacterial communities. In parallel, we isolated and characterized diazotrophic bacteria associated with agaves, as Agave soils are characterized by their low nitrogen content. Our results demonstrate that in Agave, the structure of prokaryotic assemblages was mostly influenced by the community group, where the soil, episphere, and endosphere were clearly distinct. Proteobacteria (γ and α), Actinobacteria, and Acidobacteria were the dominant phyla. Bacterial communities in the episphere of agaves were mainly influenced by the host species, whereas in the endosphere were affected by the season. Fifteen bacterial taxa were common and abundant in the endosphere of both Agave species during the dry season. Notably, some of the confirmed diazotrophic strains belonged to this group, suggesting a possible beneficial role in planta.

  13. Co-occurrence patterns in aquatic bacterial communities across changing permafrost landscapes

    Science.gov (United States)

    Comte, J.; Lovejoy, C.; Crevecoeur, S.; Vincent, W. F.

    2016-01-01

    Permafrost thaw ponds and lakes are widespread across the northern landscape and may play a central role in global biogeochemical cycles, yet knowledge about their microbial ecology is limited. We sampled a set of thaw ponds and lakes as well as shallow rock-basin lakes that are located in distinct valleys along a north-south permafrost degradation gradient. We applied high-throughput sequencing of the 16S rRNA gene to determine co-occurrence patterns among bacterial taxa (operational taxonomic units, OTUs), and then analyzed these results relative to environmental variables to identify variables controlling bacterial community structure. Network analysis was applied to identify possible ecological linkages among the bacterial taxa and with abiotic and biotic variables. The results showed an overall high level of shared taxa among bacterial communities within each valley; however, the bacterial co-occurrence patterns were non-random, with evidence of habitat preferences. There were taxonomic differences in bacterial assemblages among the different valleys that were statistically related to dissolved organic carbon concentration, conductivity and phytoplankton biomass. Co-occurrence networks revealed complex interdependencies within the bacterioplankton communities and showed contrasting linkages to environmental conditions among the main bacterial phyla. The thaw pond networks were composed of a limited number of highly connected taxa. This "small world network" property would render the communities more robust to environmental change but vulnerable to the loss of microbial "keystone species". These highly connected nodes (OTUs) in the network were not merely the numerically dominant taxa, and their loss would alter the organization of microbial consortia and ultimately the food web structure and functioning of these aquatic ecosystems.

  14. Comparison of DNA preservation methods for environmental bacterial community samples

    Science.gov (United States)

    Gray, Michael A.; Pratte, Zoe A.; Kellogg, Christina A.

    2013-01-01

    Field collections of environmental samples, for example corals, for molecular microbial analyses present distinct challenges. The lack of laboratory facilities in remote locations is common, and preservation of microbial community DNA for later study is critical. A particular challenge is keeping samples frozen in transit. Five nucleic acid preservation methods that do not require cold storage were compared for effectiveness over time and ease of use. Mixed microbial communities of known composition were created and preserved by DNAgard™, RNAlater®, DMSO–EDTA–salt (DESS), FTA® cards, and FTA Elute® cards. Automated ribosomal intergenic spacer analysis and clone libraries were used to detect specific changes in the faux communities over weeks and months of storage. A previously known bias in FTA® cards that results in lower recovery of pure cultures of Gram-positive bacteria was also detected in mixed community samples. There appears to be a uniform bias across all five preservation methods against microorganisms with high G + C DNA. Overall, the liquid-based preservatives (DNAgard™, RNAlater®, and DESS) outperformed the card-based methods. No single liquid method clearly outperformed the others, leaving method choice to be based on experimental design, field facilities, shipping constraints, and allowable cost.

  15. Molecular characterization of bacterial communities in the human gastrointestinal tract

    NARCIS (Netherlands)

    Zoetendal, E.G.

    2001-01-01

    The human gastrointestinal (GI) tract is a complex ecosystem in which host and microbial cells live in close contact with each other. The microbial community in the human GI tract has an important nutritional and protective function and mainly consists of anaerobic bacteria. After birth, the germ-fr

  16. Molecular Characterization of Wetland Soil Bacterial Communities in Constructed Mesocosms

    Science.gov (United States)

    2008-03-01

    Baker, G.C. et al. (2003). Review and re-analysis of domain-specific 16S Primers. Journal of Microbiological Methods , 55, 541-555. Bardgett...Ribosomal DNA Fragments Used for Community Fingerprinting. Journal of Microbiological Methods , 44, 253-262. Woese, Carl R. & Fox, George E. (1977

  17. Temporal changes in soil bacterial and archaeal communities with different fertilizers in tea orchards.

    Science.gov (United States)

    Wang, Hua; Yang, Shao-hui; Yang, Jing-ping; Lv, Ya-min; Zhao, Xing; Pang, Ji-liang

    2014-11-01

    It is important to understand the effects of temporal changes in microbial communities in the acidic soils of tea orchards with different fertilizers. A field experiment involving organic fertilizer (OF), chemical fertilizer (CF), and unfertilized control (CK) treatments was arranged to analyze the temporal changes in the bacterial and archaeal communities at bimonthly intervals based on the 16S ribosomal RNA (rRNA) gene using terminal restriction fragment length polymorphism (T-RFLP) profiling. The abundances of total bacteria, total archaea, and selected functional genes (bacterial and archaeal amoA, bacterial narG, nirK, nirS, and nosZ) were determined by quantitative polymerase chain reaction (qPCR). The results indicate that the structures of bacterial and archaeal communities varied significantly with time and fertilization based on changes in the relative abundance of dominant T-RFs. The abundancy of the detected genes changed with time. The total bacteria, total archaea, and archaeal amoA were less abundant in July. The bacterial amoA and denitrifying genes were less abundant in September, except the nirK gene. The OF treatment increased the abundance of the observed genes, while the CF treatment had little influence on them. The soil temperature significantly affected the bacterial and archaeal community structures. The soil moisture was significantly correlated with the abundance of denitrifying genes. Of the soil chemical properties, soil organic carbon was the most important factor and was significantly correlated with the abundance of the detected genes, except the nirK gene. Overall, this study demonstrated the effects of both temporal alteration and organic fertilizer on the structures of microbial communities and the abundance of genes involved in the nitrogen cycle.

  18. Variable effects of dispersal on productivity of bacterial communities due to changes in functional trait composition

    DEFF Research Database (Denmark)

    Severin, Ina; Östman, Örjan; Lindström, Eva S.

    2013-01-01

    ) a dialysis bag experiment where the dispersal rate among six communities was manipulated and the subsequent change in bacterial diversity and growth rate was recorded, and (B) a regrowth experiment where we manipulated available resources to study how well a taxon grows on certain organic carbon resources, i......Previous studies have shown variable relationships between dispersal rate and ecosystem functioning, but the reasons for and mechanisms behind variable dispersal rate - functioning patterns are currently unknown. In this study we used six bacterial lake water communities in a laboratory experiment...... in order to investigate how dispersal among communities influences community productivity by evaluating three different mechanisms: 1) changes in taxonomic diversity, 2) changes in phylogenetic diversity or 3) changes in the composition of functional traits. The experiment was conducted in two phases; (A...

  19. Long- term manure exposure increases soil bacterial community potential for plasmid uptake

    DEFF Research Database (Denmark)

    Musovic, Sanin; Klümper, Uli; Dechesne, Arnaud;

    2014-01-01

    Microbial communities derived from soils subject to different agronomic treatments were challenged with three broad host range plasmids, RP4, pIPO2tet and pRO101, via solid surface filter matings to assess their permissiveness. Approximately 1 in 10 000 soil bacterial cells could receive and main......Microbial communities derived from soils subject to different agronomic treatments were challenged with three broad host range plasmids, RP4, pIPO2tet and pRO101, via solid surface filter matings to assess their permissiveness. Approximately 1 in 10 000 soil bacterial cells could receive...... and maintain the plasmids. The community permissiveness increased up to 100% in communities derived from manured soil. While the plasmid transfer frequency was significantly influenced by both the type of plasmid and the agronomic treatment, the diversity of the transconjugal pools was purely plasmid dependent...

  20. Effects of transient temperature conditions on the divergence of activated sludge bacterial community structure and function.

    Science.gov (United States)

    Nadarajah, Nalina; Allen, D Grant; Fulthorpe, Roberta R

    2007-06-01

    The effect of temperature fluctuations on bacterial community structure and function in lab-scale sequencing batch reactors treating bleached kraft mill effluent was investigated. An increase in temperature from 30 to 45 degrees C caused shifts in both bacterial community structure and function. Triplicate reactors were highly similar for 40 days following startup. After the temperature shift, their community structure and function started to diverge from each other and from the control. A multi-response permutation procedure confirmed that the variability in community structure between transient and control reactors were greater than that among the triplicate transient reactors. The fact that these disturbances manifest themselves in different ways in apparently identical reactors suggests a high degree of variability between replicate systems.

  1. Seasonal fluctuations of bacterial community diversity in agricultural soil and experimental validation by laboratory disturbance experiments.

    Science.gov (United States)

    Meier, Christoph; Wehrli, Bernhard; van der Meer, Jan Roelof

    2008-08-01

    Natural fluctuations in soil microbial communities are poorly documented because of the inherent difficulty to perform a simultaneous analysis of the relative abundances of multiple populations over a long time period. Yet, it is important to understand the magnitudes of community composition variability as a function of natural influences (e.g., temperature, plant growth, or rainfall) because this forms the reference or baseline against which external disturbances (e.g., anthropogenic emissions) can be judged. Second, definition of baseline fluctuations in complex microbial communities may help to understand at which point the systems become unbalanced and cannot return to their original composition. In this paper, we examined the seasonal fluctuations in the bacterial community of an agricultural soil used for regular plant crop production by using terminal restriction fragment length polymorphism profiling (T-RFLP) of the amplified 16S ribosomal ribonucleic acid (rRNA) gene diversity. Cluster and statistical analysis of T-RFLP data showed that soil bacterial communities fluctuated very little during the seasons (similarity indices between 0.835 and 0.997) with insignificant variations in 16S rRNA gene richness and diversity indices. Despite overall insignificant fluctuations, between 8 and 30% of all terminal restriction fragments changed their relative intensity in a significant manner among consecutive time samples. To determine the magnitude of community variations induced by external factors, soil samples were subjected to either inoculation with a pure bacterial culture, addition of the herbicide mecoprop, or addition of nutrients. All treatments resulted in statistically measurable changes of T-RFLP profiles of the communities. Addition of nutrients or bacteria plus mecoprop resulted in bacteria composition, which did not return to the original profile within 14 days. We propose that at less than 70% similarity in T-RFLP, the bacterial communities risk to

  2. Bacterial community composition and extracellular enzyme activity in temperate streambed sediment during drying and rewetting.

    Directory of Open Access Journals (Sweden)

    Elisabeth Pohlon

    Full Text Available Droughts are among the most important disturbance events for stream ecosystems; they not only affect stream hydrology but also the stream biota. Although desiccation of streams is common in Mediterranean regions, phases of dryness in headwaters have been observed more often and for longer periods in extended temperate regions, including Central Europe, reflecting global climate change and enhanced water withdrawal. The effects of desiccation and rewetting on the bacterial community composition and extracellular enzyme activity, a key process in the carbon flow of streams and rivers, were investigated in a typical Central European stream, the Breitenbach (Hesse, Germany. Wet streambed sediment is an important habitat in streams. It was sampled and exposed in the laboratory to different drying scenarios (fast, intermediate, slow for 13 weeks, followed by rewetting of the sediment from the fast drying scenario via a sediment core perfusion technique for 2 weeks. Bacterial community structure was analyzed using CARD-FISH and TGGE, and extracellular enzyme activity was assessed using fluorogenic model substrates. During desiccation the bacterial community composition shifted toward composition in soil, exhibiting increasing proportions of Actinobacteria and Alphaproteobacteria and decreasing proportions of Bacteroidetes and Betaproteobacteria. Simultaneously the activities of extracellular enzymes decreased, most pronounced with aminopeptidases and less pronounced with enzymes involved in the degradation of polymeric carbohydrates. After rewetting, the general ecosystem functioning, with respect to extracellular enzyme activity, recovered after 10 to 14 days. However, the bacterial community composition had not yet achieved its original composition as in unaffected sediments within this time. Thus, whether the bacterial community eventually recovers completely after these events remains unknown. Perhaps this community undergoes permanent changes

  3. The rate of change of a soil bacterial community after liming as a function of temperature.

    Science.gov (United States)

    Pettersson, M; Bååth, E

    2003-08-01

    The response of a bacterial community to liming of a forest humus soil (pH 4.9 increased to pH 7.5) was studied in the laboratory at three temperatures (5, 20, and 30 degrees C). As a comparison an unlimed soil (pH 4.9) and a soil limed in the field 15 years ago (pH around 6) were also included. The bacterial community tolerance of pH was measured using TdR incorporation. The pH of the bacterial suspensions (bacteria directly extracted from soil) was altered to 3.6 and 8.3 using different buffers before measuring TdR incorporation. The logarithmic ratio between TdR incorporation at 8.3 and 3.6 was then used as an indicator of the community pH tolerance. The rate of changes in the community tolerance to pH after liming was fastest for the soil incubated at 30 degrees C, but only minor differences in rate of change could be seen between samples incubated at 5 and 20 degrees C. Changes in phospholipid fatty acid (PLFA) pattern after increasing the pH were most rapid for the bacterial community in the soil incubated at 30 degrees C followed by the soil incubated at 20 degrees C, whereas no changes could be seen in the PLFA pattern of the soil incubated at 5 degrees C, even after 82 days' incubation. Thus, the changes in the PLFA pattern were considerably slower than the changes in bacterial community tolerance to pH measured using TdR incorporation.

  4. The Hoopoe's Uropygial Gland Hosts a Bacterial Community Influenced by the Living Conditions of the Bird

    Science.gov (United States)

    Rodríguez-Ruano, Sonia M.; Martín-Vivaldi, Manuel; Martín-Platero, Antonio M.; López-López, J. Pablo; Peralta-Sánchez, Juan M.; Ruiz-Rodríguez, Magdalena; Soler, Juan J.; Valdivia, Eva; Martínez-Bueno, Manuel

    2015-01-01

    Molecular methods have revealed that symbiotic systems involving bacteria are mostly based on whole bacterial communities. Bacterial diversity in hoopoe uropygial gland secretion is known to be mainly composed of certain strains of enterococci, but this conclusion is based solely on culture-dependent techniques. This study, by using culture-independent techniques (based on the 16S rDNA and the ribosomal intergenic spacer region) shows that the bacterial community in the uropygial gland secretion is more complex than previously thought and its composition is affected by the living conditions of the bird. Besides the known enterococci, the uropygial gland hosts other facultative anaerobic species and several obligated anaerobic species (mostly clostridia). The bacterial assemblage of this community was largely invariable among study individuals, although differences were detected between captive and wild female hoopoes, with some strains showing significantly higher prevalence in wild birds. These results alter previous views on the hoopoe-bacteria symbiosis and open a new window to further explore this system, delving into the possible sources of symbiotic bacteria (e.g. nest environments, digestive tract, winter quarters) or the possible functions of different bacterial groups in different contexts of parasitism or predation of their hoopoe host. PMID:26445111

  5. Pyrosequencing reveals the influence of organic and conventional farming systems on bacterial communities.

    Science.gov (United States)

    Li, Ru; Khafipour, Ehsan; Krause, Denis O; Entz, Martin H; de Kievit, Teresa R; Fernando, W G Dilantha

    2012-01-01

    It has been debated how different farming systems influence the composition of soil bacterial communities, which are crucial for maintaining soil health. In this research, we applied high-throughput pyrosequencing of V1 to V3 regions of bacterial 16S rRNA genes to gain further insight into how organic and conventional farming systems and crop rotation influence bulk soil bacterial communities. A 2×2 factorial experiment consisted of two agriculture management systems (organic versus conventional) and two crop rotations (flax-oat-fababean-wheat versus flax-alfalfa-alfalfa-wheat) was conducted at the Glenlea Long-Term Crop Rotation and Management Station, which is Canada's oldest organic-conventional management study field. Results revealed that there is a significant difference in the composition of bacterial genera between organic and conventional management systems but crop rotation was not a discriminator factor. Organic farming was associated with higher relative abundance of Proteobacteria, while Actinobacteria and Chloroflexi were more abundant in conventional farming. The dominant genera including Blastococcus, Microlunatus, Pseudonocardia, Solirubrobacter, Brevundimonas, Pseudomonas, and Stenotrophomonas exhibited significant variation between the organic and conventional farming systems. The relative abundance of bacterial communities at the phylum and class level was correlated to soil pH rather than other edaphic properties. In addition, it was found that Proteobacteria and Actinobacteria were more sensitive to pH variation.

  6. Pyrosequencing reveals the influence of organic and conventional farming systems on bacterial communities.

    Directory of Open Access Journals (Sweden)

    Ru Li

    Full Text Available It has been debated how different farming systems influence the composition of soil bacterial communities, which are crucial for maintaining soil health. In this research, we applied high-throughput pyrosequencing of V1 to V3 regions of bacterial 16S rRNA genes to gain further insight into how organic and conventional farming systems and crop rotation influence bulk soil bacterial communities. A 2×2 factorial experiment consisted of two agriculture management systems (organic versus conventional and two crop rotations (flax-oat-fababean-wheat versus flax-alfalfa-alfalfa-wheat was conducted at the Glenlea Long-Term Crop Rotation and Management Station, which is Canada's oldest organic-conventional management study field. Results revealed that there is a significant difference in the composition of bacterial genera between organic and conventional management systems but crop rotation was not a discriminator factor. Organic farming was associated with higher relative abundance of Proteobacteria, while Actinobacteria and Chloroflexi were more abundant in conventional farming. The dominant genera including Blastococcus, Microlunatus, Pseudonocardia, Solirubrobacter, Brevundimonas, Pseudomonas, and Stenotrophomonas exhibited significant variation between the organic and conventional farming systems. The relative abundance of bacterial communities at the phylum and class level was correlated to soil pH rather than other edaphic properties. In addition, it was found that Proteobacteria and Actinobacteria were more sensitive to pH variation.

  7. The Hoopoe's Uropygial Gland Hosts a Bacterial Community Influenced by the Living Conditions of the Bird.

    Directory of Open Access Journals (Sweden)

    Sonia M Rodríguez-Ruano

    Full Text Available Molecular methods have revealed that symbiotic systems involving bacteria are mostly based on whole bacterial communities. Bacterial diversity in hoopoe uropygial gland secretion is known to be mainly composed of certain strains of enterococci, but this conclusion is based solely on culture-dependent techniques. This study, by using culture-independent techniques (based on the 16S rDNA and the ribosomal intergenic spacer region shows that the bacterial community in the uropygial gland secretion is more complex than previously thought and its composition is affected by the living conditions of the bird. Besides the known enterococci, the uropygial gland hosts other facultative anaerobic species and several obligated anaerobic species (mostly clostridia. The bacterial assemblage of this community was largely invariable among study individuals, although differences were detected between captive and wild female hoopoes, with some strains showing significantly higher prevalence in wild birds. These results alter previous views on the hoopoe-bacteria symbiosis and open a new window to further explore this system, delving into the possible sources of symbiotic bacteria (e.g. nest environments, digestive tract, winter quarters or the possible functions of different bacterial groups in different contexts of parasitism or predation of their hoopoe host.

  8. The Hoopoe's Uropygial Gland Hosts a Bacterial Community Influenced by the Living Conditions of the Bird.

    Science.gov (United States)

    Rodríguez-Ruano, Sonia M; Martín-Vivaldi, Manuel; Martín-Platero, Antonio M; López-López, J Pablo; Peralta-Sánchez, Juan M; Ruiz-Rodríguez, Magdalena; Soler, Juan J; Valdivia, Eva; Martínez-Bueno, Manuel

    2015-01-01

    Molecular methods have revealed that symbiotic systems involving bacteria are mostly based on whole bacterial communities. Bacterial diversity in hoopoe uropygial gland secretion is known to be mainly composed of certain strains of enterococci, but this conclusion is based solely on culture-dependent techniques. This study, by using culture-independent techniques (based on the 16S rDNA and the ribosomal intergenic spacer region) shows that the bacterial community in the uropygial gland secretion is more complex than previously thought and its composition is affected by the living conditions of the bird. Besides the known enterococci, the uropygial gland hosts other facultative anaerobic species and several obligated anaerobic species (mostly clostridia). The bacterial assemblage of this community was largely invariable among study individuals, although differences were detected between captive and wild female hoopoes, with some strains showing significantly higher prevalence in wild birds. These results alter previous views on the hoopoe-bacteria symbiosis and open a new window to further explore this system, delving into the possible sources of symbiotic bacteria (e.g. nest environments, digestive tract, winter quarters) or the possible functions of different bacterial groups in different contexts of parasitism or predation of their hoopoe host.

  9. Changes of Bacterial Community Structure in Copper Mine Tailings After Colonization of Reed (Phragmites communis)

    Institute of Scientific and Technical Information of China (English)

    CHEN Yu-Qing; REN Guan-Ju; AN Shu-Qing; SUN Qing-Ye; LIU Chang-Hong; SHUANG Jing-Lei

    2008-01-01

    Soil samples were collected from both bare and vegetated mine tailings to study the changes in bacterial communities and soil chemical properties of copper mine tailings due to reed (Phragmites communis) colonization. The structures of bacterial communities were investigated using culture-independent 16S rRNA gene sequencing method. The bacterial diversity in the bare mine tailing was lower than that of the vegetated mine tailing. The former was dominated by sulfur metabolizing bacteria, whereas the latter was by nitrogen fixing bacteria. The bare mine tailing was acidic (pH = 3.78), whereas the vegetated mine tailing was near neutral (pH = 7.28). The contents of organic matter, total nitrogen, and ammonium acetate-extractable otassium in vegetated mine tailings were significantly higher than those in the bare mine tailings (P < 0.01), whereas available phosphorus and electrical conductivity were significantly lower than those in the bare mine tailings (P < 0.01). The results demonstrated that 16S rRNA gene sequencing could be successfully used to study the bacterial diversity in mine tailings. The colonization of the mine tailings by reed significantly changed the bacterial community and the chemical properties of tailings. The complex interactions between bacteria and plants deserve further investigation.

  10. Allochthonous carbon is a major regulator to bacterial growth and community composition in subarctic freshwaters

    Science.gov (United States)

    Roiha, Toni; Peura, Sari; Cusson, Mathieu; Rautio, Milla

    2016-09-01

    In the subarctic region, climate warming and permafrost thaw are leading to emergence of ponds and to an increase in mobility of catchment carbon. As carbon of terrestrial origin is increasing in subarctic freshwaters the resource pool supporting their microbial communities and metabolism is changing, with consequences to overall aquatic productivity. By sampling different subarctic water bodies for a one complete year we show how terrestrial and algal carbon compounds vary in a range of freshwaters and how differential organic carbon quality is linked to bacterial metabolism and community composition. We show that terrestrial drainage and associated nutrients supported higher bacterial growth in ponds and river mouths that were influenced by fresh terrestrial carbon than in large lakes with carbon from algal production. Bacterial diversity, however, was lower at sites influenced by terrestrial carbon inputs. Bacterial community composition was highly variable among different water bodies and especially influenced by concentrations of dissolved organic carbon (DOC), fulvic acids, proteins and nutrients. Furthermore, a distinct preference was found for terrestrial vs. algal carbon among certain bacterial tribes. The results highlight the contribution of the numerous ponds to cycling of terrestrial carbon in the changing subarctic and arctic regions.

  11. Cytokines and Chemokines as Biomarkers of Community-Acquired Bacterial Infection

    Directory of Open Access Journals (Sweden)

    Michal Holub

    2013-01-01

    Full Text Available Routinely used biomarkers of bacterial etiology of infection, such as C-reactive protein and procalcitonin, have limited usefulness for evaluation of infections since their expression is enhanced by a number of different conditions. Therefore, several inflammatory cytokines and chemokines were analyzed with sera from patients hospitalized for moderate bacterial and viral infectious diseases. In total, 57 subjects were enrolled: 21 patients with community-acquired bacterial infections, 26 patients with viral infections, and 10 healthy subjects (control cohorts. The laboratory analyses were performed using Luminex technology, and the following molecules were examined: IL-1Ra, IL-2, IL-4, IL-6, IL-8, TNF-α, INF-γ, MIP-1β, and MCP-1. Bacterial etiology of infection was associated with significantly (P<0.001 elevated serum concentrations of IL-1Ra, IL-2, IL-6, and TNF-α in comparison to levels observed in the sera of patients with viral infections. In the patients with bacterial infections, IL-1Ra and IL-8 demonstrated positive correlation with C-reactive protein, whereas, IL-1Ra, TNF-α, and MCP-1 correlated with procalcitonin. Furthermore, elevated levels of IL-1Ra, IL-6, and TNF-α decreased within 3 days of antibiotic therapy to levels observed in control subjects. The results show IL-1Ra as a potential useful biomarker of community-acquired bacterial infection.

  12. Convergent development of anodic bacterial communities in microbial fuel cells.

    KAUST Repository

    Yates, Matthew D

    2012-05-10

    Microbial fuel cells (MFCs) are often inoculated from a single wastewater source. The extent that the inoculum affects community development or power production is unknown. The stable anodic microbial communities in MFCs were examined using three inocula: a wastewater treatment plant sample known to produce consistent power densities, a second wastewater treatment plant sample, and an anaerobic bog sediment. The bog-inoculated MFCs initially produced higher power densities than the wastewater-inoculated MFCs, but after 20 cycles all MFCs on average converged to similar voltages (470±20 mV) and maximum power densities (590±170 mW m(-2)). The power output from replicate bog-inoculated MFCs was not significantly different, but one wastewater-inoculated MFC (UAJA3 (UAJA, University Area Joint Authority Wastewater Treatment Plant)) produced substantially less power. Denaturing gradient gel electrophoresis profiling showed a stable exoelectrogenic biofilm community in all samples after 11 cycles. After 16 cycles the predominance of Geobacter spp. in anode communities was identified using 16S rRNA gene clone libraries (58±10%), fluorescent in-situ hybridization (FISH) (63±6%) and pyrosequencing (81±4%). While the clone library analysis for the underperforming UAJA3 had a significantly lower percentage of Geobacter spp. sequences (36%), suggesting that a predominance of this microbe was needed for convergent power densities, the lower percentage of this species was not verified by FISH or pyrosequencing analyses. These results show that the predominance of Geobacter spp. in acetate-fed systems was consistent with good MFC performance and independent of the inoculum source.

  13. Plant and soil fungal but not soil bacterial communities are linked in long-term fertilized grassland

    Science.gov (United States)

    Cassman, Noriko A.; Leite, Marcio F. A.; Pan, Yao; de Hollander, Mattias; van Veen, Johannes A.; Kuramae, Eiko E.

    2016-03-01

    Inorganic fertilization and mowing alter soil factors with subsequent effects-direct and indirect - on above- and below-ground communities. We explored direct and indirect effects of long-term fertilization (N, P, NPK, Liming) and twice yearly mowing on the plant, bacterial and fungal communities and soil factors. We analyzed co-variation using 16S and 18S rRNA genes surveys, and plant frequency and edaphic factors across treatments. The plant and fungal communities were distinct in the NPK and L treatments, while the bacterial communities and soil factors were distinct in the N and L treatments. Plant community diversity and evenness had low diversity in the NPK and high diversity in the liming treatment, while the diversity and evenness of the bacterial and fungal communities did not differ across treatments, except of higher diversity and evenness in the liming treatment for the bacteria. We found significant co-structures between communities based on plant and fungal comparisons but not between plant and bacterial nor bacterial and fungal comparisons. Our results suggested that the plant and fungal communities are more tightly linked than either community with the bacterial community in fertilized soils. We found co-varying plant, bacterial and fungal taxa in different treatments that may indicate ecological interactions.

  14. Toward Understanding the Dynamics of Microbial Communities in an Estuarine System

    KAUST Repository

    Zhang, Weipeng

    2014-04-14

    Community assembly theories such as species sorting theory provide a framework for understanding the structures and dynamics of local communities. The effect of theoretical mechanisms can vary with the scales of observation and effects of specific environmental factors. Based on 16S rRNA gene tag pyrosequencing, different structures and temporal succession patterns were discovered between the surface sediments and bottom water microbial communities in the Pearl River Estuary (PRE). The microbial communities in the surface sediment samples were more diverse than those in the bottom water samples, and several genera were specific for the water or sediment communities. Moreover, water temperature was identified as the main variable driving community dynamics and the microbial communities in the sediment showed a greater temporal change. We speculate that nutrient-based species sorting and bacterial plasticity to the temperature contribute to the variations observed between sediment and water communities in the PRE. This study provides a more comprehensive understanding of the microbial community structures in a highly dynamic estuarine system and sheds light on the applicability of ecological theoretical mechanisms.

  15. Effects of bacterial communities on biofuel-producing microalgae: stimulation, inhibition and harvesting.

    Science.gov (United States)

    Wang, Hui; Hill, Russell T; Zheng, Tianling; Hu, Xiaoke; Wang, Bin

    2016-01-01

    Despite the great interest in microalgae as a potential source of biofuel to substitute for fossil fuels, little information is available on the effects of bacterial symbionts in mass algal cultivation systems. The bacterial communities associated with microalgae are a crucial factor in the process of microalgal biomass and lipid production and may stimulate or inhibit growth of biofuel-producing microalgae. In addition, we discuss here the potential use of bacteria to harvest biofuel-producing microalgae. We propose that aggregation of microalgae by bacteria to achieve >90% reductions in volume followed by centrifugation could be an economic approach for harvesting of biofuel-producing microalgae. Our aims in this review are to promote understanding of the effects of bacterial communities on microalgae and draw attention to the importance of this topic in the microalgal biofuel field.

  16. Influence of uranium on bacterial communities: a comparison of natural uranium-rich soils with controls.

    Directory of Open Access Journals (Sweden)

    Laure Mondani

    Full Text Available This study investigated the influence of uranium on the indigenous bacterial community structure in natural soils with high uranium content. Radioactive soil samples exhibiting 0.26% - 25.5% U in mass were analyzed and compared with nearby control soils containing trace uranium. EXAFS and XRD analyses of soils revealed the presence of U(VI and uranium-phosphate mineral phases, identified as sabugalite and meta-autunite. A comparative analysis of bacterial community fingerprints using denaturing gradient gel electrophoresis (DGGE revealed the presence of a complex population in both control and uranium-rich samples. However, bacterial communities inhabiting uraniferous soils exhibited specific fingerprints that were remarkably stable over time, in contrast to populations from nearby control samples. Representatives of Acidobacteria, Proteobacteria, and seven others phyla were detected in DGGE bands specific to uraniferous samples. In particular, sequences related to iron-reducing bacteria such as Geobacter and Geothrix were identified concomitantly with iron-oxidizing species such as Gallionella and Sideroxydans. All together, our results demonstrate that uranium exerts a permanent high pressure on soil bacterial communities and suggest the existence of a uranium redox cycle mediated by bacteria in the soil.

  17. Effect of starch source in pelleted concentrates on fecal bacterial communities in Thoroughbred mares

    Science.gov (United States)

    High starch concentrates are often added to equine diets to meet digestible energy requirements of some horses, such as broodmares. Starch source has been shown to affect fecal bacterial communities of horses when fed cereal grains with little to no processing. Others suggest that grain processing, ...

  18. Influence of setup and carbon source on the bacterial community of biocathodes in microbial electrolysis cells

    NARCIS (Netherlands)

    Croesea, E.; Jeremiasse, A.W.; Marshall, I.P.G.; Spormann, A.M.; Euverink, G.J.W.; Geelhoed, J.S.; Stams, A.J.M.; Plugge, C.M.

    2014-01-01

    The microbial electrolysis cell (MEC) biocathode has shown great potential as alternative for expensive metals as catalyst for H2 synthesis. Here, the bacterial communities at the biocathode of five hydrogen producing MECs using molecular techniques were characterized. The setups differed in design

  19. Sub-Ice Microalgal and Bacterial Communities in Freshwater Lake Baikal, Russia.

    Science.gov (United States)

    Bashenkhaeva, Maria V; Zakharova, Yulia R; Petrova, Darya P; Khanaev, Igor V; Galachyants, Yuri P; Likhoshway, Yelena V

    2015-10-01

    The sub-ice environment of Lake Baikal represents a special ecotope where strongly increasing microbial biomass causes an "ice-bloom" contributing therefore to the ecosystem functioning and global element turnover under low temperature in the world's largest freshwater lake. In this work, we analyzed bacterial and microalgal communities and their succession in the sub-ice environment in March-April 2010-2012. It was found out that two dinoflagellate species (Gymnodinium baicalense var. minor and Peridinium baicalense Kisselew et Zwetkow) and four diatom species (Aulacoseira islandica, A. baicalensis, Synedra acus subsp. radians, and Synedra ulna) predominated in the microalgal communities. Interestingly, among all microalgae, the diatom A. islandica showed the highest number of physically attached bacterial cells (up to 67 ± 16 bacteria per alga). Bacterial communities analyzed with pyrosequencing of 16S rRNA gene fragments were diverse and represented by 161 genera. Phyla Proteobacteria, Verrucomicrobia, Actinobacteria, Acidobacteria, Bacteroidetes, and Cyanobacteria represented a core community independently on microalgal composition, although the relative abundance of these bacterial phyla strongly varied across sampling sites and time points; unique OTUs from other groups were rare.

  20. Bacterial community structure of a full-scale biofilter treating pig house exhaust air

    DEFF Research Database (Denmark)

    Kristiansen, Anja; Pedersen, Kristina Hadulla; Nielsen, Per Halkjær;

    2011-01-01

    Biological air filters represent a promising tool for treating emissions of ammonia and odor from pig facilities. Quantitative fluorescence in situ hybridization (FISH) and 16S rRNA gene sequencing were used to investigate the bacterial community structure and diversity in a full-scale biofilter...

  1. Influence of setup and carbon source on the bacterial community of biocathodes in microbial electrolysis cells

    NARCIS (Netherlands)

    Croese, Elsemiek; Jeremiasse, Adriaan W.; Marshall, Ian P.G.; Spormann, Alfred M.; Euverink, Gert-Jan W.; Geelhoed, Jeanine S.; Stams, Alfons J.M.; Plugge, Caroline M.

    2014-01-01

    The microbial electrolysis cell (MEC) biocathode has shown great potential as alternative for expensive metals as catalyst for H2synthesis. Here, the bacterial communities at the biocathode of five hydrogen producing MECs using molecular techniques were characterized. The setups differed in design (

  2. Culture-dependent and -independent molecular analysis of the bacterial community within uranium ore.

    Science.gov (United States)

    Islam, Ekramul; Sar, Pinaki

    2011-08-01

    The bacterial community structure within a uranium ore was investigated using culture-dependent and -independent clone library analysis and denaturing gradient gel electrophoresis of 16S rRNA genes. The major aerobic heterotrophic bacteria were isolated and identified, and their resistance to uranium and other heavy metals was characterized. Together with near neutral pH, moderate organic carbon content, elevated U and other heavy metals (V, Ni, Mn, Cu, etc.), the ore showed high microbial counts and phylotype richness. The bacterial community mainly consisted of uncultured Proteobacteria, with the predominance of γ - over β - and α -subdivisions, along with Actinobacteria and Firmicutes. A phylogenetic study revealed that nearly one-third of the community was affiliated to as yet uncultured and unidentified bacteria having a closer relationship to Pseudomonas. Lineages of Burkholderiaceae and Moraxellaceae were relatively more abundant in the total community, while genera affiliated to Xanthomonadaceae and Microbacteriaceae and Exiguobacterium were detected in the culturable fraction. More than 50% of the bacterial isolates affiliated to Stenotrophomonas, Microbacterium, Acinetobacter, Pseudomonas and Enterobacter showed resistance to uranium and other heavy metals. The study showed for the first time that uranium ore harbors major bacterial groups related to organisms having a wide range of environmentally significant functional attributes, and the most abundant members are possibly new groups/taxa. These findings provide new insights into U-ore geomicrobiology that could be useful in biohydrometallurgy and bioremediation applications.

  3. Arthritis in adults with community-acquired bacterial meningitis: a prospective cohort study

    NARCIS (Netherlands)

    Weisfelt, M.; van de Beek, D.; Spanjaard, L.; de Gans, J.

    2006-01-01

    Background: Although the coexistence of bacterial meningitis and arthritis has been noted in several studies, it remains unclear how often both conditions occur simultaneously. Methods: We evaluated the presence of arthritis in a prospective nationwide cohort of 696 episodes of community-acquired ba

  4. Distinct Bacterial Communities in Surficial Seafloor Sediments Following the 2010 Deepwater Horizon Blowout

    DEFF Research Database (Denmark)

    Yang, Tingting; Speare, Kelly; McKay, Luke

    2016-01-01

    A major fraction of the petroleum hydrocarbons discharged during the 2010 Macondo oil spill became associated with and sank to the seafloor as marine snow flocs. This sedimentation pulse induced the development of distinct bacterial communities. Between May 2010 and July 2011, full-length 16S rRN...

  5. Plants impact structure and function of bacterial communities in Arctic soils

    NARCIS (Netherlands)

    Kumar, Manoj; Mannisto, Minna K.; van Elsas, Jan Dirk; Nissinen, Riitta M.

    2016-01-01

    Microorganisms are prime drivers of ecosystem functions in the Arctic, and they are essential for vegetation succession. However, very little is known about the phylogenetic and functional diversities of the bacterial communities associated with Arctic plants, especially in low organic matter soils.

  6. Shift of bacterial community structure in two Thai soil series affected by silver nanoparticles using ARISA.

    Science.gov (United States)

    Chunjaturas, Wariya; Ferguson, John A; Rattanapichai, Wutthida; Sadowsky, Michael J; Sajjaphan, Kannika

    2014-07-01

    In this study we examined the influence of silver nanoparticles (SNP) on the bacterial community and microbial processes in two soils from Thailand, a Ayutthaya (Ay) and Kamphaengsaen soil series (Ks). Results of this analysis revealed that SNP did not affect to pH, electrical conductivity, cation exchange capacity, and organic matter in both the Ay and Ks series. Automated ribosomal intergenic spacer analysis (ARISA) analysis profiles showed that bacterial community decreased with increasing SNP concentration. Pearson's correlation coefficient and multidimensional scaling analyses indicated that the effects of SNP on the bacterial community structure depended more on soil types than SNP application rates and incubation periods. Additionally, the results showed that SNP application rates affected on amount of CO2 emissions, while SNP application rates had no effect on N mineralization in both soil types. This study is the first investigation of the effects of SNP on bacterial community using ARISA analysis. Our results might be useful to evaluate the risk associated with the applications of SNP for consumer products and agricultural practices.

  7. Gut bacterial community structure of two Australian tropical fruit fly species (Diptera: Tephritidae

    Directory of Open Access Journals (Sweden)

    Narit Thaochan

    2015-12-01

    Full Text Available The community structure of the alimentary tract bacteria of two Australian fruit fly species, Bactrocera cacuminata (Hering and Bactrocera tryoni (Froggatt, was studied using a molecular cloning method based on the 16S rRNA gene. Differences in the bacterial community structure were shown between the crops and midguts of the two species and sexes of each species. Proteobacteria was the dominant bacterial phylum in the flies, especially bacteria in the order Gammaproteobacteria which was prominent in all clones. The total bacterial community consisted of Proteobacteria (more than 75% of clones, except in the crop of B. cacuminata where more than 50% of clones belonged to Firmicutes. Firmicutes gave the number of the secondary community structure in the fly’s gut. Four orders, Alpha-, Beta-, Delta- and Gammaproteobacteria and the phyla Firmicutes and Actinobacteria were found in both fruit fly species, while the order Epsilonproteobacteria and the phylum Bacteroidetes were found only in B. tryoni. Two phyla, Actinobacteria and Bacteroidetes, were rare and less frequent in the flies. There was a greater diversity of bacteria in the crop of the two fruit fly species than in the midgut. The midgut of B. tryoni females and the midgut of B. cacuminata males had the lowest bacterial diversity.

  8. Bacterial community composition and diversity of five different permafrost-affected soils of Northeast Greenland.

    Science.gov (United States)

    Ganzert, Lars; Bajerski, Felizitas; Wagner, Dirk

    2014-08-01

    Greenland is one of the regions of interest with respect to climate change and global warming in the Northern Hemisphere. Little is known about the structure and diversity of the terrestrial bacterial communities in ice-free areas in northern Greenland. These soils are generally poorly developed and usually carbon- and nitrogen-limited. Our goal was to provide the first insights into the soil bacterial communities from five different sites in Northeast Greenland using culture-independent and culture-dependent methods. The comparison of environmental and biological data showed that the soil bacterial communities are diverse and significantly pH-dependent. The most frequently detected OTUs belonged to the phyla Acidobacteria, Bacteroidetes and (Alpha-, Beta-, Delta-) Proteobacteria. Low pH together with higher nitrogen and carbon concentrations seemed to support the occurrence of (Alpha-, Beta-, Delta-) Proteobacteria (at the expense of Acidobacteria), whereas Bacteroidetes were predominant at higher values of soil pH. Our study indicates that pH is the main factor for shaping bacterial community, but carbon and nitrogen concentrations as well may become important, especially for selecting oligotrophic microorganisms.

  9. HRT and nutrients affect bacterial communities grown on recirculation aquaculture system effluents

    NARCIS (Netherlands)

    Schneider, O.; Chabrillon-Popelka, M.; Smidt, H.; Haenen, O.L.M.; Sereti, V.; Eding, E.H.; Verreth, J.A.J.

    2007-01-01

    In a recirculation aquaculture system the drumfilter effluent can be used as substrate for heterotrophic bacterial production, which can be recycled as feed. Because the bacteria might contain pathogens, which could reduce its suitability as feed, it is important to characterize these communities. B

  10. Bacterial Community Structure and Biochemical Changes Associated With Composting of Lignocellulosic Oil Palm Empty Fruit Bunch

    Directory of Open Access Journals (Sweden)

    Mohd Huzairi Mohd Zainudin

    2013-11-01

    Full Text Available Bacterial community structure and biochemical changes during the composting of lignocellulosic oil palm empty bunch (EFB and palm oil mill effluent (POME anaerobic sludge were studied by examining the succession of the bacterial community and its association with changes in lignocellulosic components by denaturing gradient gel electrophoresis (DGGE and the 16S rRNA gene clone library. During composting, a major reduction in cellulose after 10 days from 50% to 19% and the carbon content from 44% to 27% towards the end of the 40-day composting period were observed. The C/N ratio also decreased. A drastic change in the bacterial community structure and diversity throughout the composting process was clearly observed using PCR-DGGE banding patterns. The bacterial community drastically shifted between the thermophilic and maturing stages. 16s rRNA clones belonging to the genera Bacillus, Exiguobacterium, Desemzia, and Planococcus were the dominant groups throughout composting. The species closely related to Solibacillus silvestris were found to be major contributors to changes in the lignocellulosic component. Clones identified as Thermobacillus xylanilyticus, Brachybacterium faecium, Cellulosimicrobium cellulans, Cellulomonas sp., and Thermobifida fusca, which are known to be lignocellulosic-degrading bacteria, were also detected and are believed to support the lignocellulose degradation.

  11. Shifts in soil bacterial community after eight years of land-use change.

    Science.gov (United States)

    Suleiman, Afnan Khalil Ahmad; Manoeli, Lupatini; Boldo, Juliano Tomazzoni; Pereira, Marcos G; Roesch, Luiz Fernando Wurdig

    2013-03-01

    The interaction between plants, soil and microorganisms is considered to be the major driver of ecosystem functions and any modification of plant cover and/or soil properties might affect the microbial structure, which, in turn, will influence ecological processes. Assuming that soil properties are the major drivers of soil bacterial diversity and structure within the same soil type, it can be postulated whether plant cover causes significant shifts in soil bacterial community composition. To address this question, this study used 16S rRNA pyrosequencing to detect differences in diversity, composition and/or relative abundance of bacterial taxa from an area covered by pristine forest, as well as eight-year-old grassland surrounded by the same forest. It was shown that a total of 69% of the operational taxonomic units (OTUs) were shared between environments. Overall, forest and grassland samples presented the same diversity and the clustering analysis did not show the occurrence of very distinctive bacterial communities between environments. However, 11 OTUs were detected in statistically significant higher abundance in the forest samples but in lower abundance in the grassland samples, whereas 12 OTUs occurred in statistically significant higher abundance in the grassland samples but in lower abundance in the forest samples. The results suggested the prevalence of a resilient core microbial community that did not suffer any change related to land use, soil type or edaphic conditions. The results illustrated that the history of land use might influence present-day community structure.

  12. Distinctive Feature of Microbial Communities and Bacterial Functional Profiles in Tricholoma matsutake Dominant Soil

    Science.gov (United States)

    Oh, Seung-Yoon; Fong, Jonathan J.; Park, Myung Soo; Lim, Young Woon

    2016-01-01

    Tricholoma matsutake, the pine mushroom, is a valuable forest product with high economic value in Asia, and plays an important ecological role as an ectomycorrhizal fungus. Around the host tree, T. matsutake hyphae generate a distinctive soil aggregating environment called a fairy ring, where fruiting bodies form. Because T. matsutake hyphae dominate the soil near the fairy ring, this species has the potential to influence the microbial community. To explore the influence of T. matsutake on the microbial communities, we compared the microbial community and predicted bacterial function between two different soil types—T. matsutake dominant and T. matsutake minor. DNA sequence analyses showed that fungal and bacterial diversity were lower in the T. matsutake dominant soil compared to T. matsutake minor soil. Some microbial taxa were significantly more common in the T. matsutake dominant soil across geographic locations, many of which were previously identified as mycophillic or mycorrhiza helper bacteria. Between the two soil types, the predicted bacterial functional profiles (using PICRUSt) had significantly distinct KEGG modules. Modules for amino acid uptake, carbohydrate metabolism, and the type III secretion system were higher in the T. matsutake dominant soil than in the T. matsutake minor soil. Overall, similar microbial diversity, community structure, and bacterial functional profiles of the T. matsutake dominant soil across geographic locations suggest that T. matsutake may generate a dominance effect. PMID:27977803

  13. Mesocosms of aquatic bacterial communities from the Cuatro Cienegas Basin (Mexico): a tool to test bacterial community response to environmental stress.

    Science.gov (United States)

    Pajares, Silvia; Bonilla-Rosso, German; Travisano, Michael; Eguiarte, Luis E; Souza, Valeria

    2012-08-01

    Microbial communities are responsible for important ecosystem processes, and their activities are regulated by environmental factors such as temperature and solar ultraviolet radiation. Here we investigate changes in aquatic microbial community structure, diversity, and evenness in response to changes in temperature and UV radiation. For this purpose, 15 mesocosms were seeded with both microbial mat communities and plankton from natural pools within the Cuatro Cienegas Basin (Mexico). Clone libraries (16S rRNA) were obtained from water samples at the beginning and at the end of the experiment (40 days). Phylogenetic analysis indicated substantial changes in aquatic community composition and structure in response to temperature and UV radiation. Extreme treatments with elevation in temperature or UV radiation reduced diversity in relation to the Control treatments, causing a reduction in richness and increase in dominance, with a proliferation of a few resistant operational taxonomic units. Each phylum was affected differentially by the new conditions, which translates in a differential modification of ecosystem functioning. This suggests that the impact of environmental stress, at least at short term, will reshape the aquatic bacterial communities of this unique ecosystem. This work also demonstrates the possibility of designing manageable synthetic microbial community ecosystems where controlled environmental variables can be manipulated. Therefore, microbial model systems offer a complementary approach to field and laboratory studies of global research problems associated with the environment.

  14. Autonomous Marine Robotic Technology Reveals an Expansive Benthic Bacterial Community Relevant to Regional Nitrogen Biogeochemistry.

    Science.gov (United States)

    Valentine, David L; Fisher, G Burch; Pizarro, Oscar; Kaiser, Carl L; Yoerger, Dana; Breier, John A; Tarn, Jonathan

    2016-10-06

    Benthic accumulations of filamentous, mat-forming bacteria occur throughout the oceans where bisulfide mingles with oxygen or nitrate, providing key but poorly quantified linkages between elemental cycles of carbon, nitrogen and sulfur. Here we used the autonomous underwater vehicle Sentry to conduct a contiguous, 12.5 km photoimaging survey of sea-floor colonies of filamentous bacteria between 80 and 579 m water depth, spanning the continental shelf to the deep suboxic waters of the Santa Barbara Basin (SBB). The survey provided >31 000 images and revealed contiguous, white-colored bacterial colonization coating > ∼80% of the ocean floor and spanning over 1.6 km, between 487 and 523 m water depth. Based on their localization within the stratified waters of the SBB we hypothesize a dynamic and annular biogeochemical zonation by which the bacteria capitalize on periodic flushing events to accumulate and utilize nitrate. Oceanographic time series data bracket the imaging survey and indicate rapid and contemporaneous nitrate loss, while autonomous capture of microbial communities from the benthic boundary layer concurrent with imaging provides possible identities for the responsible bacteria. Based on these observations we explore the ecological context of such mats and their possible importance in the nitrogen cycle of the SBB.

  15. Changes in the potential functional diversity of the bacterial community in biofilters

    Energy Technology Data Exchange (ETDEWEB)

    Grove, J.A.; Anderson, W.A.; Moo-Young, M. [Waterloo Univ., ON (Canada). Dept. of Chemical Engineering

    2007-12-15

    The bacterial community structure in a biofilter treating ethanol was investigated using community level physiological profiling. Laboratory scale biofilters of two sizes (5 or 11.5 cm internal diameter with 30 or 67 cm packed height, respectively) were packed with compost and a humidified airstream loaded with ethanol passed through them. Good removal efficiencies (82-100%) and elimination capacities (49-205 g ethanol m{sup -3} h{sup -1}) were observed in all units. Compost packing media samples were extracted and the community level physiological profiles assayed using Biolog Ecoplates. The community structure was found to be similar over a range of a few centimetres. No differences were observed between sample sizes of 0.5-1 and 6 g, and therefore, the smaller sample size (typical of that used in previous studies) is appropriate for use in the future. Two studies of parallel systems showed that the community structure diverged during the acclimation period (10 days) in one pair, but in another pair, no divergence was observed and a similar shift in community profile was observed in both units between 25 and 40 days of operation. Community level physiological profiling with Biolog Ecoplates is a useful method for detecting differences between and changes within the bacterial communities in biofilters. (orig.)

  16. Decreases in average bacterial community rRNA operon copy number during succession.

    Science.gov (United States)

    Nemergut, Diana R; Knelman, Joseph E; Ferrenberg, Scott; Bilinski, Teresa; Melbourne, Brett; Jiang, Lin; Violle, Cyrille; Darcy, John L; Prest, Tiffany; Schmidt, Steven K; Townsend, Alan R

    2016-05-01

    Trait-based studies can help clarify the mechanisms driving patterns of microbial community assembly and coexistence. Here, we use a trait-based approach to explore the importance of rRNA operon copy number in microbial succession, building on prior evidence that organisms with higher copy numbers respond more rapidly to nutrient inputs. We set flasks of heterotrophic media into the environment and examined bacterial community assembly at seven time points. Communities were arrayed along a geographic gradient to introduce stochasticity via dispersal processes and were analyzed using 16 S rRNA gene pyrosequencing, and rRNA operon copy number was modeled using ancestral trait reconstruction. We found that taxonomic composition was similar between communities at the beginning of the experiment and then diverged through time; as well, phylogenetic clustering within communities decreased over time. The average rRNA operon copy number decreased over the experiment, and variance in rRNA operon copy number was lowest both early and late in succession. We then analyzed bacterial community data from other soil and sediment primary and secondary successional sequences from three markedly different ecosystem types. Our results demonstrate that decreases in average copy number are a consistent feature of communities across various drivers of ecological succession. Importantly, our work supports the scaling of the copy number trait over multiple levels of biological organization, ranging from cells to populations and communities, with implications for both microbial ecology and evolution.

  17. Bacterial community diversity and variation in spray water sources and the tomato fruit surface

    Directory of Open Access Journals (Sweden)

    Ottesen Andrea R

    2011-04-01

    Full Text Available Abstract Background Tomato (Solanum lycopersicum consumption has been one of the most common causes of produce-associated salmonellosis in the United States. Contamination may originate from animal waste, insects, soil or water. Current guidelines for fresh tomato production recommend the use of potable water for applications coming in direct contact with the fruit, but due to high demand, water from other sources is frequently used. We sought to describe the overall bacterial diversity on the surface of tomato fruit and the effect of two different water sources (ground and surface water when used for direct crop applications by generating a 454-pyrosequencing 16S rRNA dataset of these different environments. This study represents the first in depth characterization of bacterial communities in the tomato fruit surface and the water sources commonly used in commercial vegetable production. Results The two water sources tested had a significantly different bacterial composition. Proteobacteria was predominant in groundwater samples, whereas in the significantly more diverse surface water, abundant phyla also included Firmicutes, Actinobacteria and Verrucomicrobia. The fruit surface bacterial communities on tomatoes sprayed with both water sources could not be differentiated using various statistical methods. Both fruit surface environments had a high representation of Gammaproteobacteria, and within this class the genera Pantoea and Enterobacter were the most abundant. Conclusions Despite the major differences observed in the bacterial composition of ground and surface water, the season long use of these very different water sources did not have a significant impact on the bacterial composition of the tomato fruit surface. This study has provided the first next-generation sequencing database describing the bacterial communities living in the fruit surface of a tomato crop under two different spray water regimes, and therefore represents an

  18. Forest floor community metatranscriptomes identify fungal and bacterial responses to N deposition in two maple forests

    Directory of Open Access Journals (Sweden)

    Cedar N Hesse

    2015-04-01

    Full Text Available Anthropogenic N deposition alters patterns of C and N cycling in temperate forests, where forest floor litter decomposition is a key process mediated by a diverse community of bacteria and fungi. To track forest floor decomposer activity we generated metatranscriptomes that simultaneously surveyed the actively expressed bacterial and eukaryote genes in the forest floor, to compare the impact of N deposition on the decomposers in two natural maple forests in Michigan, USA, where replicate field plots had been amended with N for 16 years. Site and N amendment responses were compared using about 75,000 carbohydrate active enzyme transcript sequences (CAZymes in each metatranscriptome. Parallel ribosomal RNA surveys of bacterial and fungal biomass and taxonomic composition showed no significant differences in either biomass or OTU richness between the two sites or in response to N. Site and N amendment were not significant variables defining bacterial taxonomic composition, but they were significant for fungal community composition, explaining 17 and 14% of the variability, respectively. The relative abundance of expressed bacterial and fungal CAZymes changed significantly with N amendment in one of the forests, and N-response trends were also identified in the second forest. Although the two ambient forests were similar in community biomass, taxonomic structure and active CAZyme profile, the shifts in active CAZyme profiles in response to N-amendment differed between the sites. One site responded with an over-expression of bacterial CAZymes, and the other site responded with an over-expression of both fungal and different bacterial CAZymes. Both sites showed reduced representation of fungal lignocellulose degrading enzymes in N-amendment plots. The metatranscriptome approach provided a holistic assessment of eukaryote and bacterial gene expression and is applicable to other systems where eukaryotes and bacteria interact.

  19. Molecular analysis of bacterial population structure and dynamics during cold storage of untreated and treated milk.

    Science.gov (United States)

    Rasolofo, Eric Andriamahery; St-Gelais, Daniel; LaPointe, Gisele; Roy, Denis

    2010-03-31

    Spoilage bacteria in milk are controlled by treatments such as thermization, microfiltration and addition of carbon dioxide. However, little information is known about the changes in microbial communities during subsequent cold storage of treated milk. Culture-dependent methods and a direct molecular approach combining 16S rRNA gene clone libraries and quantitative PCR (Q-PCR) were applied to obtain a better overview of the structure and the dynamics of milk microbiota. Raw milk samples were treated by the addition of carbon dioxide (CO(2)), thermization (TH) or microfiltration (MF) and stored at 4 degrees C or 8 degrees C up to 7d. Untreated milk (UT) was used as a control. Psychrotrophic and staphylococci bacteria were enumerated in the milk samples by culture methods. For the molecular approach, DNA was extracted from milk samples and 16S rRNA gene was amplified by PCR with universal primers prior to cloning. The Q-PCR method was used to evaluate the dynamics of dominant bacterial species revealed by clone library analysis of 16S rRNA gene. Comparison of the 16S rRNA gene sequence indicated that the two most abundant operational taxonomic units (OTU), determined at 97% identity, belonged to the class Gammaproteobacteria (40.3% of the 1415 sequences) and Bacilli (40%). Dominant bacterial species in UT, CO(2) and TH milk samples at day 3 were affiliated with Staphylococcus, Streptococcus, Clostridia, Aerococcus, Facklamia, Corynebacterium, Acinetobacter and Trichococcus. Dominant bacterial species detected in MF milk were Stenotrophomonas, Pseudomonas and Delftia, while Pseudomonas species dominated the bacterial population of UT, CO(2) and MF milk samples at day 7. Staphylococcus and Delftia were the dominant bacterial species in thermized milk. Q-PCR results showed that populations of S. aureus, A. viridans, A. calcoaceticus, C. variabile and S. uberis were stable during 7d of storage at 4 degrees C. Populations of P. fluorescens, S. uberis and total bacteria

  20. Community acquired urinary tract infection: etiology and bacterial susceptibility

    Directory of Open Access Journals (Sweden)

    Dias Neto José Anastácio

    2003-01-01

    Full Text Available PURPOSE: Urinary tract infections (UTI are one of the most common infectious diseases diagnosed. UTI account for a large proportion of antibacterial drug consumption and have large socio-economic impacts. Since the majority of the treatments begins or is done completely empirically, the knowledge of the organisms, their epidemiological characteristics and their antibacterial susceptibility that may vary with time is mandatory. OBJECTIVE: The aim of this study was to report the prevalence of uropathogens and their antibiotic susceptibility of the community acquired UTI diagnosed in our institution and to provide a national data. METHODS: We analyzed retrospectively the results of urine cultures of 402 patients that had community acquired urinary tract infection in the year of 2003. RESULTS: The mean age of the patients in this study was 45.34 ± 23.56 (SD years. There were 242 (60.2% females and 160 (39.8% males. The most commonly isolated organism was Escherichia coli (58%. Klebsiella sp. (8.4% and Enterococcus sp.(7.9% were reported as the next most common organisms. Of all bacteria isolated from community acquired UTI, only 37% were sensitive to ampicillin, 51% to cefalothin and 52% to trimethoprim/sulfamethoxazole. The highest levels of susceptibility were to imipenem (96%, ceftriaxone (90%, amikacin (90%, gentamicin (88%, levofloxacin (86%, ciprofloxacin (73%, nitrofurantoin (77% and norfloxacin (75%. CONCLUSION: Gram-negative agents are the most common cause of UTI. Fluoroquinolones remains the choice among the orally administered antibiotics, followed by nitrofurantoin, second and third generation cephalosporins. For severe disease that require parenteral antibiotics the choice should be aminoglycosides, third generation cephalosporins, fluoroquinolones or imipenem, which were the most effective.

  1. Model Studies of the Dynamics of Bacterial Flagellar Motors

    Energy Technology Data Exchange (ETDEWEB)

    Bai, F; Lo, C; Berry, R; Xing, J

    2009-03-19

    The Bacterial Flagellar Motor is a rotary molecular machine that rotates the helical filaments which propel swimming bacteria. Extensive experimental and theoretical studies exist on the structure, assembly, energy input, power generation and switching mechanism of the motor. In our previous paper, we explained the general physics underneath the observed torque-speed curves with a simple two-state Fokker-Planck model. Here we further analyze this model. In this paper we show (1) the model predicts that the two components of the ion motive force can affect the motor dynamics differently, in agreement with the latest experiment by Lo et al.; (2) with explicit consideration of the stator spring, the model also explains the lack of dependence of the zero-load speed on stator number in the proton motor, recently observed by Yuan and Berg; (3) the model reproduces the stepping behavior of the motor even with the existence of the stator springs and predicts the dwelling time distribution. Predicted stepping behavior of motors with two stators is discussed, and we suggest future experimental verification.

  2. Metagenomic Analysis of Bacterial Communities of Antarctic Surface Snow.

    Science.gov (United States)

    Lopatina, Anna; Medvedeva, Sofia; Shmakov, Sergey; Logacheva, Maria D; Krylenkov, Vjacheslav; Severinov, Konstantin

    2016-01-01

    The diversity of bacteria present in surface snow around four Russian stations in Eastern Antarctica was studied by high throughput sequencing of amplified 16S rRNA gene fragments and shotgun metagenomic sequencing. Considerable class- and genus-level variation between the samples was revealed indicating a presence of inter-site diversity of bacteria in Antarctic snow. Flavobacterium was a major genus in one sampling site and was also detected in other sites. The diversity of flavobacterial type II-C CRISPR spacers in the samples was investigated by metagenome sequencing. Thousands of unique spacers were revealed with less than 35% overlap between the sampling sites, indicating an enormous natural variety of flavobacterial CRISPR spacers and, by extension, high level of adaptive activity of the corresponding CRISPR-Cas system. None of the spacers matched known spacers of flavobacterial isolates from the Northern hemisphere. Moreover, the percentage of spacers with matches with Antarctic metagenomic sequences obtained in this work was significantly higher than with sequences from much larger publically available environmental metagenomic database. The results indicate that despite the overall very high level of diversity, Antarctic Flavobacteria comprise a separate pool that experiences pressures from mobile genetic elements different from those present in other parts of the world. The results also establish analysis of metagenomic CRISPR spacer content as a powerful tool to study bacterial populations diversity.

  3. Metagenomic Analysis of Bacterial Communities of Antarctic Surface Snow

    Directory of Open Access Journals (Sweden)

    Anna eLopatina

    2016-03-01

    Full Text Available The diversity of bacteria present in surface snow around four Russian stations in Eastern Antarctica was studied by high throughput sequencing of amplified 16S rRNA gene fragments and shotgun metagenomic sequencing. Considerable class- and genus-level variation between the samples was revealed indicating a presence of inter-site diversity of bacteria in Antarctic snow. Flavobacterium was a major genus in one sampling site and was also detected in other sites. The diversity of flavobacterial type II-C CRISPR spacers in the samples was investigated by metagenome sequencing. Thousands of unique spacers were revealed with less than 35% overlap between the sampling sites, indicating an enormous natural variety of flavobacterial CRISPR spacers and, by extension, high level of adaptive activity of the corresponding CRISPR-Cas system. None of the spacers matched known spacers of flavobacterial isolates from the Northern hemisphere. Moreover, the percentage of spacers with matches with Antarctic metagenomic sequences obtained in this work was significantly higher than with sequences from much larger publically available environmental metagenomic database. The results indicate that despite the overall very high level of diversity, Antarctic Flavobacteria comprise a separate pool that experiences pressures from mobile genetic elements different from those present in other parts of the world. The results also establish analysis of metagenomic CRISPR spacer content as a powerful tool to study bacterial populations diversity.

  4. Phyllosphere bacterial community of floating macrophytes in paddy soil environments as revealed by illumina high-throughput sequencing.

    Science.gov (United States)

    Xie, Wan-Ying; Su, Jian-Qiang; Zhu, Yong-Guan

    2015-01-01

    The phyllosphere of floating macrophytes in paddy soil ecosystems, a unique habitat, may support large microbial communities but remains largely unknown. We took Wolffia australiana as a representative floating plant and investigated its phyllosphere bacterial community and the underlying driving forces of community modulation in paddy soil ecosystems using Illumina HiSeq 2000 platform-based 16S rRNA gene sequence analysis. The results showed that the phyllosphere of W. australiana harbored considerably rich communities of bacteria, with Proteobacteria and Bacteroidetes as the predominant phyla. The core microbiome in the phyllosphere contained genera such as Acidovorax, Asticcacaulis, Methylibium, and Methylophilus. Complexity of the phyllosphere bacterial communities in terms of class number and α-diversity was reduced compared to those in corresponding water and soil. Furthermore, the bacterial communities exhibited structures significantly different from those in water and soil. These findings and the following redundancy analysis (RDA) suggest that species sorting played an important role in the recruitment of bacterial species in the phyllosphere. The compositional structures of the phyllosphere bacterial communities were modulated predominantly by water physicochemical properties, while the initial soil bacterial communities had limited impact. Taken together, the findings from this study reveal the diversity and uniqueness of the phyllosphere bacterial communities associated with the floating macrophytes in paddy soil environments.

  5. Evident bacterial community changes but only slight degradation when polluted with pyrene in a red soil

    Directory of Open Access Journals (Sweden)

    Gaidi eRen

    2015-01-01

    Full Text Available Understanding the potential for PAH degradation by indigenous microbiota and the influence of PAHs on native microbial communities is of great importance for bioremediation and ecological evaluation. Various studies have focused on the bacterial communities in the environment where obvious PAH degradation was observed, little is known about the microbiota in the soil where poor degradation was observed. Soil microcosms were constructed with a red soil by supplementation with a high-molecular-weight PAH (pyrene at three dosages (5, 30, and 70 mg.kg-1. Real-time PCR was used to evaluate the changes in bacterial abundance and pyrene dioxygenase gene (nidA quantity. Illumina sequencing was used to investigate changes in diversity, structure, and composition of bacterial communities. After 42 days of incubation, no evident degradation was observed. The poor degradation ability was associated with the stability or significant decrease of abundance of the nidA gene. Although the abundance of the bacterial 16S rRNA gene was not affected by pyrene, the bacterial richness and diversity were decreased with increasing dosage of pyrene and the community structure was changed. Phylotypes affected by pyrene were comprehensively surveyed: (1 at the high taxonomic level, seven of the abundant phyla/classes (relative abundance >1.0% including Chloroflexi, AD3, WPS-2, GAL5, Alphaproteobacteria, Actinobacteria, and Deltaproteobacteria and one rare phylum Crenarchaeota were significantly decreased by at least one dosage of pyrene, while 3 phyla/classes (Acidobacteria, Betaproteobacteria, and Gammaproteobacteria were significantly increased; and (2 at the lower taxonomic level, the relative abundances of twelve orders were significantly depressed, whereas those of nine orders were significantly increased. This work enhanced our understanding of the biodegradation potential of pyrene in red soil and the effect of pyrene on soil ecosystems at the microbial community

  6. Molecular Comparison of Bacterial Communities on Peripheral Intravenous Catheters and Matched Skin Swabs.

    Directory of Open Access Journals (Sweden)

    Md Abu Choudhury

    Full Text Available Skin bacteria at peripheral intravenous catheter (PIVC insertion sites pose a serious risk of microbial migration and subsequent colonisation of PIVCs, and the development of catheter related bloodstream infections (CRBSIs. Common skin bacteria are often associated with CRBSIs, therefore the bacterial communities at PIVC skin sites are likely to have major implications for PIVC colonisation. This study aimed to determine the bacterial community structures on skin at PIVC insertion sites and to compare the diversity with associated PIVCs. A total of 10 PIVC skin site swabs and matching PIVC tips were collected by a research nurse from 10 hospitalised medical/surgical patients at catheter removal. All swabs and PIVCs underwent traditional culture and high-throughput sequencing. The bacterial communities on PIVC skin swabs and matching PIVCs were diverse and significantly associated (correlation coefficient = 0.7, p<0.001. Methylobacterium spp. was the dominant genus in all PIVC tip samples, but not so for skin swabs. Sixty-one percent of all reads from the PIVC tips and 36% of all reads from the skin swabs belonged to this genus. Staphylococcus spp., (26%, Pseudomonas spp., (10% and Acinetobacter spp. (10% were detected from skin swabs but not from PIVC tips. Most skin associated bacteria commonly associated with CRBSIs were observed on skin sites, but not on PIVCs. Diverse bacterial communities were observed at skin sites despite skin decolonization at PIVC insertion. The positive association of skin and PIVC tip communities provides further evidence that skin is a major source of PIVC colonisation via bacterial migration but microbes present may be different to those traditionally identified via culture methods. The results provide new insights into the colonisation of catheters and potential pathogenesis of bacteria associated with CRBSI, and may assist in developing new strategies designed to reduce the risk of CRBSI.

  7. Bacterial community structure in two permafrost wetlands on the Tibetan Plateau and Sanjiang Plain, China.

    Science.gov (United States)

    Yun, Juanli; Ju, Yiwen; Deng, Yongcui; Zhang, Hongxun

    2014-08-01

    Permafrost wetlands are important methane emission sources and fragile ecosystems sensitive to climate change. Presently, there remains a lack of knowledge regarding bacterial communities, especially methanotrophs in vast areas of permafrost on the Tibetan Plateau in Northwest China and the Sanjiang Plain (SJ) in Northeast China. In this study, 16S rRNA-based quantitative PCR (qPCR) and 454 pyrosequencing were used to identify bacterial communities in soils sampled from a littoral wetland of Lake Namco on the Tibetan Plateau (NMC) and an alluvial wetland on the SJ. Additionally, methanotroph-specific primers targeting particulate methane monooxygenase subunit A gene (pmoA) were used for qPCR and pyrosequencing analysis of methanotrophic community structure in NMC soils. qPCR analysis revealed the presence of 10(10) 16S rRNA gene copies per gram of wet soil in both wetlands, with 10(8) pmoA copies per gram of wet soil in NMC. The two permafrost wetlands showed similar bacterial community compositions, which differed from those reported in other cold environments. Proteobacteria, Actinobacteria , and Chloroflexi were the most abundant phyla in both wetlands, whereas Acidobacteria was prevalent in the acidic wetland SJ only. These four phyla constituted more than 80 % of total bacterial community diversity in permafrost wetland soils, and Methylobacter of type I methanotrophs was overwhelmingly dominant in NMC soils. This study is the first major bacterial sequencing effort of permafrost in the NMC and SJ wetlands, which provides fundamental data for further studies of microbial function in extreme ecosystems under climate change scenarios.

  8. Molecular Comparison of Bacterial Communities on Peripheral Intravenous Catheters and Matched Skin Swabs.

    Science.gov (United States)

    Choudhury, Md Abu; Marsh, Nicole; Banu, Shahera; Paterson, David L; Rickard, Claire M; McMillan, David J

    2016-01-01

    Skin bacteria at peripheral intravenous catheter (PIVC) insertion sites pose a serious risk of microbial migration and subsequent colonisation of PIVCs, and the development of catheter related bloodstream infections (CRBSIs). Common skin bacteria are often associated with CRBSIs, therefore the bacterial communities at PIVC skin sites are likely to have major implications for PIVC colonisation. This study aimed to determine the bacterial community structures on skin at PIVC insertion sites and to compare the diversity with associated PIVCs. A total of 10 PIVC skin site swabs and matching PIVC tips were collected by a research nurse from 10 hospitalised medical/surgical patients at catheter removal. All swabs and PIVCs underwent traditional culture and high-throughput sequencing. The bacterial communities on PIVC skin swabs and matching PIVCs were diverse and significantly associated (correlation coefficient = 0.7, pskin swabs. Sixty-one percent of all reads from the PIVC tips and 36% of all reads from the skin swabs belonged to this genus. Staphylococcus spp., (26%), Pseudomonas spp., (10%) and Acinetobacter spp. (10%) were detected from skin swabs but not from PIVC tips. Most skin associated bacteria commonly associated with CRBSIs were observed on skin sites, but not on PIVCs. Diverse bacterial communities were observed at skin sites despite skin decolonization at PIVC insertion. The positive association of skin and PIVC tip communities provides further evidence that skin is a major source of PIVC colonisation via bacterial migration but microbes present may be different to those traditionally identified via culture methods. The results provide new insights into the colonisation of catheters and potential pathogenesis of bacteria associated with CRBSI, and may assist in developing new strategies designed to reduce the risk of CRBSI.

  9. Bacterial community response to petroleum hydrocarbon amendments in freshwater, marine, and hypersaline water-containing microcosms.

    Science.gov (United States)

    Jurelevicius, Diogo; Alvarez, Vanessa Marques; Marques, Joana Montezano; de Sousa Lima, Laryssa Ribeiro Fonseca; Dias, Felipe de Almeida; Seldin, Lucy

    2013-10-01

    Hydrocarbon-degrading bacterial communities from freshwater, marine, and hypersaline Brazilian aquatic ecosystems (with water salinities corresponding to 0.2%, 4%, and 5%, respectively) were enriched with different hydrocarbons (heptadecane, naphthalene, or crude oil). Changes within the different microcosms of bacterial communities were analyzed using cultivation approaches and molecular methods (DNA and RNA extraction, followed by genetic fingerprinting and analyses of clone libraries based on the 16S rRNA-coding gene). A redundancy analysis (RDA) of the genetic fingerprint data and a principal component analysis (PCA) of the clone libraries revealed hydrocarbon-enriched bacterial communities specific for each ecosystem studied. However, within the same ecosystem, different bacterial communities were selected according to the petroleum hydrocarbon used. In general, the results demonstrated that Acinetobacter and Cloacibacterium were the dominant genera in freshwater microcosms; the Oceanospirillales order and the Marinobacter, Pseudomonas, and Cycloclasticus genera predominated in marine microcosms; and the Oceanospirillales order and the Marinobacter genus were selected in the different hydrocarbon-containing microcosms in hypersaline water. Determination of total petroleum hydrocarbons (TPHs) in all microcosms after 32 days of incubation showed a decrease in the hydrocarbon concentration compared to that for the controls. A total of 50 (41.3%) isolates from the different hydrocarbon-contaminated microcosms were associated with the dominant operational taxonomic units (OTUs) obtained from the clone libraries, and their growth in the hydrocarbon contaminating the microcosm from which they were isolated as the sole carbon source was observed. These data provide insight into the general response of bacterial communities from freshwater, marine, and hypersaline aquatic ecosystems to petroleum hydrocarbon contamination.

  10. The effect of antibiotics on associated bacterial community of stored product mites.

    Directory of Open Access Journals (Sweden)

    Jan Kopecky

    Full Text Available Bacteria are associated with the gut, fat bodies and reproductive organs of stored product mites (Acari: Astigmata. The mites are pests due to the production of allergens. Addition of antibiotics to diets can help to characterize the association between mites and bacteria.Ampicillin, neomycin and streptomycin were added to the diets of mites and the effects on mite population growth (Acarus siro, Lepidoglyphus destructor and Tyrophagus putrescentiae and associated bacterial community structure were assessed. Mites were treated by antibiotic supplementation (1 mg g(-1 of diet for 21 days and numbers of mites and bacterial communities were analyzed and compared to the untreated control. Bacterial quantities, determined by real-time PCR, significantly decreased in antibiotic treated specimens from 5 to 30 times in A. siro and T. putrescentiae, while no decline was observed in L. destructor. Streptomycin treatment eliminated Bartonella-like bacteria in the both A. siro and T. putrescentiae and Cardinium in T. putrescentiae. Solitalea-like bacteria proportion increased in the communities of neomycin and streptomycin treated A. siro specimens. Kocuria proportion increased in the bacterial communities of ampicillin and streptomycin treated A. siro and neomycin and streptomycin treated L. destructor.The work demonstrated the changes of mite associated bacterial community under antibiotic pressure in pests of medical importance. Pre-treatment of mites by 1 mg g(-1 antibiotic diets improved mite fitness as indicated accelerated population growth of A. siro pretreated streptomycin and neomycin and L. destructor pretreated by neomycin. All tested antibiotics supplemented to diets caused the decrease of mite growth rate in comparison to the control diet.

  11. Bacterial communities in the rhizosphere of Vitis vinifera L. cultivated under distinct agricultural practices in Argentina.

    Science.gov (United States)

    Vega-Avila, A D; Gumiere, T; Andrade, P A M; Lima-Perim, J E; Durrer, A; Baigori, M; Vazquez, F; Andreote, F D

    2015-02-01

    Plants interact with a myriad of microbial cells in the rhizosphere, an environment that is considered to be important for plant development. However, the differential structuring of rhizosphere microbial communities due to plant cultivation under differential agricultural practices remains to be described for most plant species. Here we describe the rhizosphere microbiome of grapevine cultivated under conventional and organic practices, using a combination of cultivation-independent approaches. The quantification of bacterial 16S rRNA and nifH genes, by quantitative PCR (qPCR), revealed similar amounts of these genes in the rhizosphere in both vineyards. PCR-DGGE was used to detect differences in the structure of bacterial communities, including both the complete whole communities and specific fractions, such as Alphaproteobacteria, Betaproteobacteria, Actinobacteria, and those harboring the nitrogen-fixing related gene nifH. When analyzed by a multivariate approach (redundancy analysis), the shifts observed in the bacterial communities were poorly explained by variations in the physical and chemical characteristics of the rhizosphere. These approaches were complemented by high-throughput sequencing (67,830 sequences) based on the V6 region of the 16S rRNA gene, identifying the major bacterial groups present in the rhizosphere of grapevines: Proteobacteria, Actinobacteria, Firmicutes, Bacteriodetes, Acidobacteria, Cloroflexi, Verrucomicrobia and Planctomycetes, which occur in distinct proportions in the rhizosphere from each vineyard. The differences might be related to the selection of plant metabolism upon distinct reservoirs of microbial cells found in each vineyard. The results fill a gap in the knowledge of the rhizosphere of grapevines and also show distinctions in these bacterial communities due to agricultural practices.

  12. Impacts of methamidophos, copper, and their combinations on bacterial community structure and function in black soil

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Huiwen; ZHOU; Qixing; ZHANG; Qianru; ZHANG; Chengg

    2005-01-01

    The potential ecotoxicologial risks of methamidophos, copper, and their combinations on microbial community of black soil ecosystem in the Northeast China were assessed in species richness and structures by using 16S rDNA-PCR-DGGE analysis approach, and functional characteristics at community levels by using BIOLOGGN system analysis method as well as two conventional methods(DHA and SIR). All results of DGGE banding fingerprint patterns(amplified by bacterial specific 16S rDNA V3 high variable region universal primer) indicated that the species richness of bacterial community in tested soil was significantly decreased to different extents by using different concentrations of single methamidophos, copper, especially some of their combinations had worse effects than their corresponding single factors. In addition,the structures of soil bacterial community had been disturbed under all stresses applied in this study because of the enrichment of some species and the disappearance of other species from the bacterial community. The effects of the single factors with lower concentrations on the communiy structure were weaker than those with higher concentrations. Moreover, the bacterial community structures under the combined stresses of methamidophos and copper were significantly different from those of control and their corresponding single factors. The change of DHA and carbon source substrate utilizing fingerprint patterns based on BIOLOGGNsystem were two relatively sensitive directors corresponding to the stress presented in this study. Between methamodophos and copper, there happened the significant joint-toxic actions when they were used in combination on DHA and carbon source substrate utilizing fingerprint patterns of soil bacterial communities. The DHA of soil under the combined stresses was lower than that of the control and that under the single factors, and the BIOLOGGN substrate utilizing patterns of soil treated by combinations were distinctively

  13. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System

    KAUST Repository

    Prest, E. I.

    2016-10-28

    Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year drinking water monitoring campaign in a full-scale distribution system operating without detectable disinfectant residual. A total of 368 water samples were collected on a biweekly basis at the water treatment plant (WTP) effluent and at one fixed location in the drinking water distribution network (NET). The samples were analysed for heterotrophic plate counts (HPC), Aeromonas plate counts, adenosine-tri-phosphate (ATP) concentrations, and flow cytometric (FCM) total and intact cell counts (TCC, ICC), water temperature, pH, conductivity, total organic carbon (TOC) and assimilable organic carbon (AOC). Multivariate analysis of the large dataset was performed to explore correlative trends between microbial and environmental parameters. The WTP effluent displayed considerable seasonal variations in TCC (from 90 × 103 cells mL-1 in winter time up to 455 × 103 cells mL-1 in summer time) and in bacterial ATP concentrations (<1–3.6 ng L-1), which were congruent with water temperature variations. These fluctuations were not detected with HPC and Aeromonas counts. The water in the network was predominantly influenced by the characteristics of the WTP effluent. The increase in ICC between the WTP effluent and the network sampling location was small (34 × 103 cells mL-1 on average) compared to seasonal fluctuations in ICC in the WTP effluent. Interestingly, the extent of bacterial growth in the NET was inversely correlated to AOC concentrations in the WTP effluent (Pearson’s correlation factor r = -0.35), and positively correlated with water temperature (r = 0.49). Collecting a large dataset at high frequency over a two year period enabled the characterization of previously

  14. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System.

    Science.gov (United States)

    Prest, E I; Weissbrodt, D G; Hammes, F; van Loosdrecht, M C M; Vrouwenvelder, J S

    2016-01-01

    Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year drinking water monitoring campaign in a full-scale distribution system operating without detectable disinfectant residual. A total of 368 water samples were collected on a biweekly basis at the water treatment plant (WTP) effluent and at one fixed location in the drinking water distribution network (NET). The samples were analysed for heterotrophic plate counts (HPC), Aeromonas plate counts, adenosine-tri-phosphate (ATP) concentrations, and flow cytometric (FCM) total and intact cell counts (TCC, ICC), water temperature, pH, conductivity, total organic carbon (TOC) and assimilable organic carbon (AOC). Multivariate analysis of the large dataset was performed to explore correlative trends between microbial and environmental parameters. The WTP effluent displayed considerable seasonal variations in TCC (from 90 × 103 cells mL-1 in winter time up to 455 × 103 cells mL-1 in summer time) and in bacterial ATP concentrations (water temperature variations. These fluctuations were not detected with HPC and Aeromonas counts. The water in the network was predominantly influenced by the characteristics of the WTP effluent. The increase in ICC between the WTP effluent and the network sampling location was small (34 × 103 cells mL-1 on average) compared to seasonal fluctuations in ICC in the WTP effluent. Interestingly, the extent of bacterial growth in the NET was inversely correlated to AOC concentrations in the WTP effluent (Pearson's correlation factor r = -0.35), and positively correlated with water temperature (r = 0.49). Collecting a large dataset at high frequency over a two year period enabled the characterization of previously undocumented seasonal dynamics in the distribution

  15. Field-based evidence for consistent responses of bacterial communities to copper contamination in two contrasting agricultural soils.

    Science.gov (United States)

    Li, Jing; Ma, Yi-Bing; Hu, Hang-Wei; Wang, Jun-Tao; Liu, Yu-Rong; He, Ji-Zheng

    2015-01-01

    Copper contamination on China's arable land could pose severe economic, ecological and healthy consequences in the coming decades. As the drivers in maintaining ecosystem functioning, the responses of soil microorganisms to long-term copper contamination in different soil ecosystems are still debated. This study investigated the impacts of copper gradients on soil bacterial communities in two agricultural fields with contrasting soil properties. Our results revealed consistent reduction in soil microbial biomass carbon (SMBC) with increasing copper levels in both soils, coupled by significant declines in bacterial abundance in most cases. Despite of contrasting bacterial community structures between the two soils, the bacterial diversity in the copper-contaminated soils showed considerably decreasing patterns when copper levels elevated. High-throughput sequencing revealed copper selection for major bacterial guilds, in particular, Actinobacteria showed tolerance, while Acidobacteria and Chloroflexi were highly sensitive to copper. The thresholds that bacterial communities changed sharply were 800 and 200 added copper mg kg(-1) in the fluvo-aquic soil and red soil, respectively, which were similar to the toxicity thresholds (EC50 values) characterized by SMBC. Structural equation model (SEM) analysis ascertained that the shifts of bacterial community composition and diversity were closely related with the changes of SMBC in both soils. Our results provide field-based evidence that copper contamination exhibits consistently negative impacts on soil bacterial communities, and the shifts of bacterial communities could have largely determined the variations of the microbial biomass.

  16. Field-based evidence for consistent responses of bacterial communities to copper contamination in two contrasting agricultural soils

    Directory of Open Access Journals (Sweden)

    Jing eLi

    2015-02-01

    Full Text Available Copper contamination on China’s arable land could pose severe economic, ecological and healthy consequences in the coming decades. As the drivers in maintaining ecosystem functioning, the responses of soil microorganisms to long-term copper contamination in different soil ecosystems are still debated. This study investigated the impacts of copper gradients on soil bacterial communities in two agricultural fields with contrasting soil properties. Our results revealed consistent reduction in soil microbial biomass carbon (SMBC with increasing copper levels in both soils, coupled by significant declines in bacterial abundance in most cases. Despite of contrasting bacterial community structures between the two soils, the bacterial diversity in the copper-contaminated soils showed considerably decreasing patterns when copper levels elevated. High-throughput sequencing revealed copper selection for major bacterial guilds, in particular, Actinobacteria showed tolerance, while Acidobacteria and Chloroflexi were highly sensitive to copper. The thresholds that bacterial communities changed sharply were 800 and 200 added copper mg kg-1 in the fluvo-aquic soil and red soil, respectively, which were similar to the toxicity thresholds (EC50 values characterized by SMBC. Structural equation model (SEM analysis ascertained that the shifts of bacterial community composition and diversity were closely related with the changes of SMBC in both soils. Our results provide field-based evidence that copper contamination exhibits consistently negative impacts on soil bacterial communities, and the shifts of bacterial communities could have largely determined the variations of the microbial biomass.

  17. Analysis of bacterial communities and bacterial pathogens in a biogas plant by the combination of ethidium monoazide, PCR and Ion Torrent sequencing

    DEFF Research Database (Denmark)

    Luo, Gang; Angelidaki, Irini

    2014-01-01

    composition and bacterial pathogens were also studied. Microbial analysis was made by Ion Torrent sequencing of the PCR amplicons from ethidium monoazide treated samples, and ethidium monoazide was used to cleave DNA from dead cells and exclude it from PCR amplification. Both similarity and taxonomic analysis...... showed that the bacterial community composition in the influent was changed after anaerobic digestion. Firmicutes were dominant in all the samples, while Proteobacteria decreased in the biogas reactor compared with the influent. Variations of bacterial community composition in the biogas reactor...

  18. Distinct bacterial communities in surficial seafloor sediments following the 2010 Deepwater Horizon blowout

    Directory of Open Access Journals (Sweden)

    Tingting Yang

    2016-09-01

    Full Text Available A major fraction of the petroleum hydrocarbons discharged during the 2010 Macondo oil spill became associated with and sank to the seafloor as marine snow flocs. This sedimentation pulse induced the development of distinct bacterial communities. Between May 2010 and July 2011, full-length 16S rRNA gene clone libraries demonstrated bacterial community succession in oil-polluted sediment samples near the wellhead area. Libraries from early May 2010, before the sedimentation event, served as the baseline control. Freshly deposited oil-derived marine snow was collected on the surface of sediment cores in September 2010, and was characterized by abundantly detected members of the marine Roseobacter cluster within the Alphaproteobacteria. Samples collected in mid-October 2010 closest to the wellhead contained members of the sulfate-reducing, anaerobic bacterial families Desulfobacteraceae and Desulfobulbaceae within the Deltaproteobacteria, suggesting that the oil-derived sedimentation pulse triggered bacterial oxygen consumption and created patchy anaerobic microniches that favored sulfate-reducing bacteria. Phylotypes of the polycyclic aromatic hydrocarbon-degrading genus Cycloclasticus, previously found both in surface oil slicks and the deep hydrocarbon plume, were also found in oil-derived marine snow flocs sedimenting on the seafloor in September 2010, and in surficial sediments collected in October and November 2010, but not in any of the control samples. Due to the relative recalcitrance and stability of polycyclic aromatic compounds, Cycloclasticus represents the most persistent microbial marker of seafloor hydrocarbon deposition that we could identify in this dataset. The bacterial imprint of the DWH oil spill had diminished in late November 2010, when the bacterial communities in oil-impacted sediment samples collected near the Macondo wellhead began to resemble their pre-spill counterparts and spatial controls. Samples collected in summer

  19. Persistence of bacterial and archaeal communities in sea ice through an Arctic winter.

    Science.gov (United States)

    Collins, R Eric; Rocap, Gabrielle; Deming, Jody W

    2010-07-01

    The structure of bacterial communities in first-year spring and summer sea ice differs from that in source seawaters, suggesting selection during ice formation in autumn or taxon-specific mortality in the ice during winter. We tested these hypotheses by weekly sampling (January-March 2004) of first-year winter sea ice (Franklin Bay, Western Arctic) that experienced temperatures from -9 degrees C to -26 degrees C, generating community fingerprints and clone libraries for Bacteria and Archaea. Despite severe conditions and significant decreases in microbial abundance, no significant changes in richness or community structure were detected in the ice. Communities of Bacteria and Archaea in the ice, as in under-ice seawater, were dominated by SAR11 clade Alphaproteobacteria and Marine Group I Crenarchaeota, neither of which is known from later season sea ice. The bacterial ice library contained clones of Gammaproteobacteria from oligotrophic seawater clades (e.g. OM60, OM182) but no clones from gammaproteobacterial genera commonly detected in later season sea ice by similar methods (e.g. Colwellia, Psychrobacter). The only common sea ice bacterial genus detected in winter ice was Polaribacter. Overall, selection during ice formation and mortality during winter appear to play minor roles in the process of microbial succession that leads to distinctive spring and summer sea ice communities.

  20. Competition and facilitation between the marine nitrogen-fixing cyanobacterium Cyanothece and its associated bacterial community.

    Science.gov (United States)

    Brauer, Verena S; Stomp, Maayke; Bouvier, Thierry; Fouilland, Eric; Leboulanger, Christophe; Confurius-Guns, Veronique; Weissing, Franz J; Stal, LucasJ; Huisman, Jef

    2014-01-01

    N2-fixing cyanobacteria represent a major source of new nitrogen and carbon for marine microbial communities, but little is known about their ecological interactions with associated microbiota. In this study we investigated the interactions between the unicellular N2-fixing cyanobacterium Cyanothece sp. Miami BG043511 and its associated free-living chemotrophic bacteria at different concentrations of nitrate and dissolved organic carbon and different temperatures. High temperature strongly stimulated the growth of Cyanothece, but had less effect on the growth and community composition of the chemotrophic bacteria. Conversely, nitrate and carbon addition did not significantly increase the abundance of Cyanothece, but strongly affected the abundance and species composition of the associated chemotrophic bacteria. In nitrate-free medium the associated bacterial community was co-dominated by the putative diazotroph Mesorhizobium and the putative aerobic anoxygenic phototroph Erythrobacter and after addition of organic carbon also by the Flavobacterium Muricauda. Addition of nitrate shifted the composition toward co-dominance by Erythrobacter and the Gammaproteobacterium Marinobacter. Our results indicate that Cyanothece modified the species composition of its associated bacteria through a combination of competition and facilitation. Furthermore, within the bacterial community, niche differentiation appeared to play an important role, contributing to the coexistence of a variety of different functional groups. An important implication of these findings is that changes in nitrogen and carbon availability due to, e.g., eutrophication and climate change are likely to have a major impact on the species composition of the bacterial community associated with N2-fixing cyanobacteria.

  1. Temperature-driven shifts in the epibiotic bacterial community composition of the brown macroalga Fucus vesiculosus.

    Science.gov (United States)

    Stratil, Stephanie B; Neulinger, Sven C; Knecht, Henrik; Friedrichs, Anette K; Wahl, Martin

    2013-04-01

    The thallus surface of the brown macroalga Fucus vesiculosus is covered by a specific biofilm community. This biofilm supposedly plays an important role in the interaction between host and environment. So far, we know little about compositional or functional shifts of this epibiotic bacterial community under changing environmental conditions. In this study, the response of the microbiota to different temperatures with respect to cell density and community composition was analyzed by nonculture-based methods (denaturing gradient gel electrophoresis and 454 pyrosequencing of the 16S rRNA gene). Redundancy analysis showed that despite high variability among host individuals temperature accounted for 20% of the variation in the bacterial community composition, whereas cell density did not differ between groups. Across all samples, 4341 bacterial operational taxonomic units (OTUs) at a 97% similarity level were identified. Eight percent of OTUs were significantly correlated with low, medium, and high temperatures. Notably, the family Rhodobacteraceae increased in relative abundance from 20% to 50% with increasing temperature. OTU diversity (evenness and richness) was higher at 15 °C than at the lower and higher temperatures. Considering their known and presumed ecological functions for the host, change in the epibacterial community may entail shifts in the performance of the host alga.

  2. Changes in bacterial community of anthracene bioremediation in municipal solid waste composting soil

    Institute of Scientific and Technical Information of China (English)

    Shu-ying ZHANG; Qing-feng WANG; Rui WAN; Shu-guang XIE

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are common contaminants in a municipal solid waste (MSW) composting site.Knowledge of changes in microbial structure is useful to identify particular PAH degraders.However,the microbial community in the MSW composting soil and its change associated with prolonged exposure to PAHs and subsequent biodegradation remain largely unknown.In this study,anthracene was selected as a model compound.The bacterial community structure was investigated using terminal restriction fragment length polymorphism (TRFLP) and 16S rRNA gene clone library analysis.The two bimolecular tools revealed a large shift of bacterial community structure after anthracene amendment and subsequent biodegradation.Genera Methylophilus,Mesorhizobium,and Terrimonas had potential links to anthracene biodegradation,suggesting a consortium playing an active role.

  3. Seasonal Dynamics of Marine Microbial Community in the South Sea of Korea.

    Directory of Open Access Journals (Sweden)

    Sung-Suk Suh

    Full Text Available High-resolution 16S rRNA tag pyrosequencing was used to obtain seasonal snapshots of the bacterial diversity and community structure at two locations in Gosung Bay (South Sea, Korea over a one year period. Seasonal sampling from the water column at each site revealed highly diverse bacterial communities containing up to 900 estimated Operational Taxonomic Units (OTUs. The Alphaproteobacteria and Gammaproteobacteria were the most abundant groups, and the most frequently recorded OTUs were members of Pelagibacter and Glaciecola. In particular, it was observed that Arcobacter, a genus of the Epsilonproteobacteria, dominated during summer. In addition, Psedoalteromonadaceae, Vibrionaceae and SAR11-1 were predominant members of the OTUs found in all sampling seasons. Environmental factors significantly influenced the bacterial community structure among season, with the phosphate and nitrate concentrations contributing strongly to the spatial distribution of the Alphaproteobacteria; the Gammaproteobacteria, Flavobacteria, and Actinobacteria all showed marked negative correlations with all measured nutrients, particularly silicon dioxide and chlorophyll-a. The results suggest that seasonal changes in environmental variables contribute to the dynamic structure of the bacterial community in the study area.

  4. Diversity of planktonic and attached bacterial communities in a phenol-contaminated sandstone aquifer.

    Science.gov (United States)

    Rizoulis, Athanasios; Elliott, David R; Rolfe, Stephen A; Thornton, Steven F; Banwart, Steven A; Pickup, Roger W; Scholes, Julie D

    2013-07-01

    Polluted aquifers contain indigenous microbial communities with the potential for in situ bioremediation. However, the effect of hydrogeochemical gradients on in situ microbial communities (especially at the plume fringe, where natural attenuation is higher) is still not clear. In this study, we used culture-independent techniques to investigate the diversity of in situ planktonic and attached bacterial communities in a phenol-contaminated sandstone aquifer. Within the upper and lower plume fringes, denaturing gradient gel electrophoresis profiles indicated that planktonic community structure was influenced by the steep hydrogeochemical gradient of the plume rather than the spatial location in the aquifer. Under the same hydrogeochemical conditions (in the lower plume fringe, 30 m below ground level), 16S rRNA gene cloning and sequencing showed that planktonic and attached bacterial communities differed markedly and that the attached community was more diverse. The 16S rRNA gene phylogeny also suggested that a phylogenetically diverse bacterial community operated at this depth (30 mbgl), with biodegradation of phenolic compounds by nitrate-reducing Azoarcus and Acidovorax strains potentially being an important process. The presence of acetogenic and sulphate-reducing bacteria only in the planktonic clone library indicates that some natural attenuation processes may occur preferentially in one of the two growth phases (attached or planktonic). Therefore, this study has provided a better understanding of the microbial ecology of this phenol-contaminated aquifer, and it highlights the need for investigating both planktonic and attached microbial communities when assessing the potential for natural attenuation in contaminated aquifers.

  5. Comparing mesophilic and thermophilic anaerobic digestion of chicken manure: Microbial community dynamics and process resilience

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Qigui; Takemura, Yasuyuki; Kubota, Kengo [Department of Civil and Environmental Engineering, Graduate School of Engineering Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan);