WorldWideScience

Sample records for bacterial cellulose membranes

  1. Filtration properties of bacterial cellulose membranes

    OpenAIRE

    Lehtonen, Janika

    2015-01-01

    Bacterial cellulose has the same molecular formula as cellulose from plant origin, but it is characterized by several unique properties including high purity, crystallinity and mechanical strength. These properties are dependent on parameters such as the bacterial strain used, the cultivation conditions and post-growth processing. The possibility to achieve bacterial cellulose membranes with different properties by varying these parameters could make bacterial cellulose an interesting materi...

  2. Self-supported silver nanoparticles containing bacterial cellulose membranes

    International Nuclear Information System (INIS)

    Hydrated bacterial cellulose (BC) membranes obtained from cultures of Acetobacter xylinum were used in the preparation of silver nanoparticles containing cellulose membranes. In situ preparation of Ag nanoparticles was achieved from the hydrolytic decomposition of silver triethanolamine (TEA) complexes. Scanning electron microscopy (SEM) images and X-ray diffraction (XRD) patterns both lead to the observation of spherical metallic silver particles with mean diameter of 8 nm well adsorbed onto the BC fibriles

  3. Self-supported silver nanoparticles containing bacterial cellulose membranes

    Energy Technology Data Exchange (ETDEWEB)

    Barud, Hernane S.; Barrios, Celina; Regiani, Thais; Marques, Rodrigo F.C. [Institute of Chemistry-UNESP, CP 355, Zip 14801-970, Araraquara, SP, 14801-970 (Brazil); Verelst, Marc; Dexpert-Ghys, Jeannette [Centre d' Elaboration de Materiaux et d' Etudes Structurales, CEMES, UPR No. 8011 - Universite Toulouse III, B.P. 94347, 29 rue Jeanne Marvig, 31055 Toulouse Cedex (France); Messaddeq, Younes [Institute of Chemistry-UNESP, CP 355, Zip 14801-970, Araraquara, SP, 14801-970 (Brazil); Ribeiro, Sidney J.L. [Institute of Chemistry-UNESP, CP 355, Zip 14801-970, Araraquara, SP, 14801-970 (Brazil)], E-mail: sidney@iq.unesp.br

    2008-05-01

    Hydrated bacterial cellulose (BC) membranes obtained from cultures of Acetobacter xylinum were used in the preparation of silver nanoparticles containing cellulose membranes. In situ preparation of Ag nanoparticles was achieved from the hydrolytic decomposition of silver triethanolamine (TEA) complexes. Scanning electron microscopy (SEM) images and X-ray diffraction (XRD) patterns both lead to the observation of spherical metallic silver particles with mean diameter of 8 nm well adsorbed onto the BC fibriles.

  4. In-vitro Degradation Behaviour of Irradiated Bacterial Cellulose Membrane

    Directory of Open Access Journals (Sweden)

    D. Darwis

    2012-08-01

    Full Text Available Bacterial cellulose membrane synthesized by Acetobacter xylinum in coconut water medium has potential application for Guided bone Regeneration. However, this membrane may not meet some application requirements due to its low biodegradation properties. In this paper, incorporation of gamma irradiation into the membrane is a developed strategy to increase its biodegradability properties. The in–vitro degradation study in synthetic body fluid (SBF of the irradiated membrane has been analyzed during periods of 6 months by means of weight loss, mechanical properties and scanning electron microscopy observation compared to that the un-irradiated one. The result showed that weight loss of irradiated membrane with 25 kGy and 50 kGy and immersed in SBF solution for 6 months reached 18% and 25% respectively. While un-irradiated membrane did not give significant weight loss. Tensile strength of membranes decreases with increasing of irradiation dose and further decreases in tensile strength is observed when irradiated membrane was followed by immersion in SBF solution. Microscope electron image of cellulose membranes shows that un-irradiated bacterial cellulose membrane consists of dense ultrafine fibril network structures, while irradiation result in cleavage of fibrils network of cellulose. The fibrils network become loosely after irradiated membrane immersed in SBF solution due to released of small molecular weight carbohydrates formed during by irradiation from the structure

  5. In-vitro Degradation Behaviour of Irradiated Bacterial Cellulose Membrane

    International Nuclear Information System (INIS)

    Bacterial cellulose membrane synthesized by Acetobacter xylinum in coconut water medium has potential application for Guided bone Regeneration. However, this membrane may not meet some application requirements due to its low biodegradation properties. In this paper, incorporation of gamma irradiation into the membrane is a developed strategy to increase its biodegradability properties. The in-vitro degradation study in synthetic body fluid (SBF) of the irradiated membrane has been analyzed during periods of 6 months by means of weight loss, mechanical properties and scanning electron microscopy observation compared to that the un-irradiated one. The result showed that weight loss of irradiated membrane with 25 kGy and 50 kGy and immersed in SBF solution for 6 months reached 18% and 25% respectively. While un-irradiated membrane did not give significant weight loss. Tensile strength of membranes decreases with increasing of irradiation dose and further decreases in tensile strength is observed when irradiated membrane was followed by immersion in SBF solution. Microscope electron image of cellulose membranes shows that un-irradiated bacterial cellulose membrane consists of dense ultrafine fibril network structures, while irradiation result in cleavage of fibrils network of cellulose. The fibrils network become loosely after irradiated membrane immersed in SBF solution due to released of small molecular weight carbohydrates formed during by irradiation from the structure (author)

  6. Bacterial cellulose and bacterial cellulose-vaccarin membranes for wound healing.

    Science.gov (United States)

    Qiu, Yuyu; Qiu, Liying; Cui, Jing; Wei, Qufu

    2016-02-01

    Bacterial cellulose (BC) and bacterial cellulose-vaccarin (BC-Vac) membranes were successfully produced in large scale. BC was synthesized by Gluconacetobacter xylinum. BC-Vac membranes were prepared by immersing BC in vaccarin solution. The surface morphologies of BC and BC-Vac membranes were examined by a scanning electron microscope (SEM) and an atomic force microscopy (AFM). The images showed that BC-Vac exhibited the characteristic 3D nanofibrillar network of BC matrix but there was adhesion between fibers. The mechanical properties of BC and BC-Vac membranes were evaluated and the results indicated that the adding of drug vaccarin into the BC membranes increased the malleability indicated by the increment in elongation at break compared with BC. Fourier transform infrared spectroscopy (FTIR) analysis was conducted to confirm the incorporation of vaccarin in BC-Vac and investigate the hydroxyl interactions between BC and drug vaccarin. Cell viability and cell attachment studies demonstrated that BC and BC-Vac membranes had no cytotoxicity and could be a good carrier for cell growth. The wound healing performance was examined in vivo by rat skin models. Histological observations revealed that wounds treated with BC-Vac epithelialized and regenerated faster than treated with BC. Therefore, BC-Vac was considered as a potential candidate for wound dressing materials. PMID:26652377

  7. Optically transparent membrane based on bacterial cellulose/polycaprolactone

    Directory of Open Access Journals (Sweden)

    H. S. Barud

    2013-01-01

    Full Text Available Optically transparent membranes from bacterial cellulose (BC/polycaprolactone (PCL have been prepared by impregnation of PCL acetone solution into dried BC membranes. UV-Vis measurements showed an increase on transparency in BC/PCL membrane when compared with pristine BC. The good transparency of the BC/PCL can be related to the presence of BC nanofibers associated with deposit of PCL nano-sized spherulites which are smaller than the wavelength of visible light and practically free of light scattering. XRD results show that cellulose type I structure is preserved inside the BC/PCL membrane, while the mechanical properties suggested indicated that PCL acts as a plasticizer for the BC membrane. The novel BC/PCL membrane could be used for preparation of fully biocompatible flexible display and biodegradable food packaging.

  8. Antimicrobial Bacterial Cellulose-Silver Nanoparticles Composite Membranes

    Directory of Open Access Journals (Sweden)

    Hernane S. Barud

    2011-01-01

    Full Text Available Antimicrobial bacterial cellulose-silver nanoparticles composite membranes have been obtained by “in situ” preparation of Ag nanoparticles from hydrolytic decomposition of silver nitrate solution using triethanolamine as reducing and complexing agent. The formation of silver nanoparticles was evidenced by the X-ray diffraction, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and absorption in the UV-Visible (350 nm to 600 nm. Thermal and mechanical properties together with swelling behavior for water were considered. TEA concentration was observed to be important in order to obtain only Ag particles and not a mixture of silver oxides. It was also observed to control particle size and amount of silver contents in bacterial cellulose. The composite membranes exhibited strong antimicrobial activity against Gram-negative and Gram-positive bacteria.

  9. Antimicrobial Bacterial Cellulose-Silver Nanoparticles Composite Membranes

    OpenAIRE

    Barud, Hernane S.; Thaís Regiani; Rodrigo F. C. Marques; Wilton R. Lustri; Younes Messaddeq; Ribeiro, Sidney J.L.

    2011-01-01

    Antimicrobial bacterial cellulose-silver nanoparticles composite membranes have been obtained by “in situ” preparation of Ag nanoparticles from hydrolytic decomposition of silver nitrate solution using triethanolamine as reducing and complexing agent. The formation of silver nanoparticles was evidenced by the X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and absorption in the UV-Visible (350 nm to 600 nm). Thermal and mechanical properties toge...

  10. Electrically conductive bacterial cellulose composite membranes produced by the incorporation of graphite nanoplatelets in pristine bacterial cellulose membranes

    Directory of Open Access Journals (Sweden)

    T. Zhou

    2013-09-01

    Full Text Available Graphite nanoplatelets (GNPs were utilized to improve the electrical conductivity of pristine bacterial cellulose (BC membranes. By physical and chemical methods, flake-shaped GNPs, weaving through the surface layer of web-like cellulose nanofibrils, were indeed fixed or trapped by the adjacent nanofibrils in the BC surface network, for comparison, rod-shaped multi-walled carbon nanotubes (MWCNTs were homogeneously inserted into BC membrane through the pore structures and tunnels within the BC membrane. Strong physical and chemical interaction exists between the BC nanofibrils and the particles of GNP or MWCNT even after 15 h sonication. BC membrane with 8.7 wt% incorporated GNPs reached the maximum electrical conductivity of 4.5 S/cm, while 13.9 wt% MWCNT/BC composite membrane achieved the maximum electrical conductivity of 1.2 S/cm. Compared with one dimensional (1-D MWCNTs, as long as GNPs inserted into BC membranes, the 2-D reinforcement of GNPs was proven to be more effective in improving the electrical conductivity of BC membranes thus not only break the bottleneck of further improvement of the electrical conductivity of BC-based composite membranes but also broaden the applications of BC and GNPs.

  11. Treatment of tympanic membrane perforation using bacterial cellulose: a randomized controlled trial

    OpenAIRE

    Fábio Coelho Alves Silveira; Flávia Cristina Morone Pinto; Sílvio da Silva Caldas Neto; Mariana de Carvalho Leal; Jéssica Cesário; José Lamartine de Andrade Aguiar

    2016-01-01

    ABSTRACT INTRODUCTION: Promising treatments for tympanic membrane perforation closure have been studied. Therapies derived from tissue engineering probably eliminate the need for conventional surgery. Bacterial cellulose is presented as an alternative that is safe, biocompatible, and has low toxicity. OBJECTIVES: To investigate the effect on healing of direct application of a bacterial cellulose graft on the tympanic membrane compared to the conventional approach with autologous fascia. ME...

  12. The effect of bacterial cellulose membrane compared with collagen membrane on guided bone regeneration

    Science.gov (United States)

    Lim, Youn-Mook; Jeong, Sung In; An, Sung-Jun; Kang, Seong-Soo

    2015-01-01

    PURPOSE This study was to evaluate the effects of bacterial cellulose (BC) membranes as a barrier membrane on guided bone regeneration (GBR) in comparison with those of the resorbable collagen membranes. MATERIALS AND METHODS BC membranes were fabricated using biomimetic technology. Surface properties were analyzed, Mechanical properties were measured, in vitro cell proliferation test were performed with NIH3T3 cells and in vivo study were performed with rat calvarial defect and histomorphometric analysis was done. The Mann-Whitney U test and the Wilcoxon signed rank test was used (α<.05). RESULTS BC membrane showed significantly higher mechanical properties such as wet tensile strength than collagen membrane and represented a three-dimensional multilayered structure cross-linked by nano-fibers with 60 % porosity. In vitro study, cell adhesion and proliferation were observed on BC membrane. However, morphology of the cells was found to be less differentiated, and the cell proliferation rate was lower than those of the cells on collagen membrane. In vivo study, the grafted BC membrane did not induce inflammatory response, and maintained adequate space for bone regeneration. An amount of new bone formation in defect region loaded with BC membrane was significantly similar to that of collagen membrane application. CONCLUSION BC membrane has potential to be used as a barrier membrane, and efficacy of the membrane on GBR is comparable to that of collagen membrane. PMID:26816579

  13. Treatment of tympanic membrane perforation using bacterial cellulose: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Fábio Coelho Alves Silveira

    2016-04-01

    Full Text Available ABSTRACT INTRODUCTION: Promising treatments for tympanic membrane perforation closure have been studied. Therapies derived from tissue engineering probably eliminate the need for conventional surgery. Bacterial cellulose is presented as an alternative that is safe, biocompatible, and has low toxicity. OBJECTIVES: To investigate the effect on healing of direct application of a bacterial cellulose graft on the tympanic membrane compared to the conventional approach with autologous fascia. METHODS: Randomized controlled trial. Forty patients with tympanic membrane perforations secondary to chronic otitis media were included, and were randomly assigned to an experimental group (20, treated with a bacterial cellulose graft (BC and control group (20, treated with autologous temporal fascia (fascia. We evaluated the surgical time, hospital stay, time of epithelialization and the rate of tympanic perforation closure. Hospital costs were compared. The statistical significance level accepted was established at p < 0.05. RESULTS: The closure of perforations was similar in both groups. The average operation time in the fascia group was 76.50 min versus 14.06 min bacterial cellulose in the group (p = 0.0001. The hospital cost by the Brazilian public health system was R$ 600.00 for the bacterial cellulose group, and R$ 7778.00 for the fascia group (p = 0.0001. CONCLUSION: Bacterial cellulose grafts promoted the closure of the tympanic membrane perforations, and were demonstrated to be innovative, effective, safe, minimally invasive, efficacious and to have a very low cost.

  14. Bacterial Cellulose Membranes Used as Artificial Substitutes for Dural Defection in Rabbits

    OpenAIRE

    Chen Xu; Xia Ma; Shiwen Chen; Meifeng Tao; Lutao Yuan; Yao Jing

    2014-01-01

    To improve the efficacy and safety of dural repair in neurosurgical procedures, a new dural material derived from bacterial cellulose (BC) was evaluated in a rabbit model with dural defects. We prepared artificial dura mater using bacterial cellulose which was incubated and fermented from Acetobacter xylinum. The dural defects of the rabbit model were repaired with BC membranes. All surgeries were performed under sodium pentobarbital anesthesia, and all efforts were made to minimize suffering...

  15. Effect of electron beam irradiation on bacterial cellulose membranes used as transdermal drug delivery systems

    International Nuclear Information System (INIS)

    Ionizing radiation is an effective energetic source for polymer surfaces modification in order to obtain transdermal systems with different controlled release properties. In this work, gamma rays have been applied to induce changes in bacterial cellulose membranes. Permeation of drug (tetracycline) was theoretically and experimentally investigated starting from the effect of γ-irradiation on membranes permeability. Release and permeation of drug from irradiated and non-irradiated membranes have been performed using a diffusion cell

  16. Effect of electron beam irradiation on bacterial cellulose membranes used as transdermal drug delivery systems

    Science.gov (United States)

    Stoica-Guzun, Anicuta; Stroescu, Marta; Tache, Florin; Zaharescu, Traian; Grosu, Elena

    2007-12-01

    Ionizing radiation is an effective energetic source for polymer surfaces modification in order to obtain transdermal systems with different controlled release properties. In this work, gamma rays have been applied to induce changes in bacterial cellulose membranes. Permeation of drug (tetracycline) was theoretically and experimentally investigated starting from the effect of γ-irradiation on membranes permeability. Release and permeation of drug from irradiated and non-irradiated membranes have been performed using a diffusion cell.

  17. Effect of electron beam irradiation on bacterial cellulose membranes used as transdermal drug delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Stoica-Guzun, Anicuta [Department of Chemical Engineering, ' Politehnica' University Bucharest, 313 Splaiul Independentei, 060042 Bucharest (Romania)], E-mail: astoica@mt.pub.ro; Stroescu, Marta; Tache, Florin [Department of Chemical Engineering, ' Politehnica' University Bucharest, 313 Splaiul Independentei, 060042 Bucharest (Romania); Zaharescu, Traian [Advanced Research Institute for Electrical Engineering, 313 Splaiul Unirii, 030138 Bucharest (Romania)], E-mail: zaharescut@icpe-ca.ro; Grosu, Elena [Department of Chemical Engineering, ' Politehnica' University Bucharest, 313 Splaiul Independentei, 060042 Bucharest (Romania)

    2007-12-15

    Ionizing radiation is an effective energetic source for polymer surfaces modification in order to obtain transdermal systems with different controlled release properties. In this work, gamma rays have been applied to induce changes in bacterial cellulose membranes. Permeation of drug (tetracycline) was theoretically and experimentally investigated starting from the effect of {gamma}-irradiation on membranes permeability. Release and permeation of drug from irradiated and non-irradiated membranes have been performed using a diffusion cell.

  18. Effect of Electron-Beam Irradiation on Bacterial Cellulose Membranes Used as Transdermal Drug Delivery Systems

    International Nuclear Information System (INIS)

    Multiple methods are used to modify material surfaces. Radiation is an effective tool for polymer surfaces modification in order to obtain transdermal systems with different controlled release properties. Bacterial cellulose is a promising biomaterial synthesized by Acetobacter xylinum. It has a distinctive ultrafine reticulated structure that may become a perfect matrix as an optimal wound healing environment. In this work, high energy irradiation (γ rays from 137Cs) was applied to modify bacterial cellulose membranes. The effect of varying irradiation doses on membranes permeability was studied. Tetracycline was involved in the study of diffusivity as model drug. Release and permeation of drug from irradiated and non-irradiated membranes were done using a diffusion cell. The membrane permeability was determined using a psudo-steady state analysis based on Fick's law

  19. Controlled release and antibacterial activity of tetracycline hydrochloride-loaded bacterial cellulose composite membranes.

    Science.gov (United States)

    Shao, Wei; Liu, Hui; Wang, Shuxia; Wu, Jimin; Huang, Min; Min, Huihua; Liu, Xiufeng

    2016-07-10

    Bacterial cellulose (BC) is widely used in biomedical applications. In this study, we prepared an antibiotic drug tetracycline hydrochloride (TCH)-loaded bacterial cellulose (BC) composite membranes, and evaluated the drug release, antibacterial activity and biocompatibility. The structure and morphology of the fabricated BC-TCH composite membranes were characterized using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The TCH release results show that the incorporation of BC matrix to load TCH is able to control the release. In vitro antibacterial assay demonstrate that the developed BC-TCH composites displayed excellent antibacterial activity solely associated with the loaded TCH drug. More importantly, the BC-TCH composite membranes display good biocompatibility. These characteristics of BC-TCH composite membranes indicate that they may successfully serve as wound dressings and other medical biomaterials. PMID:27106158

  20. Polyethylenimine coated bacterial cellulose nanofiber membrane and application as adsorbent and catalyst.

    Science.gov (United States)

    Wang, Jianqiang; Lu, Xinkun; Ng, Pui Fai; Lee, Ka I; Fei, Bin; Xin, John H; Wu, Jian-yong

    2015-02-15

    Bacterial cellulose (BC) nanofiber membranes were simply aminalized by a flush-coating and post-crosslinking method. Firstly, wet BC membranes were flushed through by an aqueous solution of polyethylenimine (PEI) and glycerol diglycidyl ether (GDE) under vacuum suction, then further heated up to 70 °C to crosslink the resultant coating on the surface of the nanofibers. The PEI coated bacterial cellulose (BC@PEI) nanofiber membrane presented excellent adsorption performance for Cu(2+) and Pb(2+) ions from aqueous solutions. Desorption of these ions was achieved using ethylene diamine tetraacetic acid treatment. This cycle of adsorption and desorption was repeated for several times with good remain adsorption performance (over 90%). Furthermore, the adsorbed Cu(2+) ions can be reduced to copper nanoparticles, and showed excellent catalytic performance for methylene blue reduction in aqueous solution. The catalytic performance can remained after several times of usage. PMID:25460686

  1. Flexible magnetic membranes based on bacterial cellulose and its evaluation as electromagnetic interference shielding material

    International Nuclear Information System (INIS)

    Flexible magnetic membranes with high proportion of magnetite were successfully prepared by previous impregnation of the never dried bacterial cellulose pellicles with ferric chloride followed by reduction with sodium bisulfite and alkaline treatment for magnetite precipitation. Membranes were characterized by Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), vibrating magnetometer, field emission scanning electron microscopy (FEG-SEM) and impedance spectroscopy. Microwave properties of these membranes were investigated in the X-band (8.2 to 12.4 GHz). FEG-SEM micrographs show an effective coverage of the BC nanofibers by Fe3O4 nanoparticles. Membranes with up to 75% in weight of particles have been prepared after 60 min of reaction. Magnetite nanoparticles in the form of aggregates well adhered to the BC fibers were observed by SEM. The average crystal sizes of the magnetic particles were in the range of 10 ± 1 to 13 ± 1 nm (estimated by XRD). The magnetic particles in the BC pellicles presented superparamagnetic behavior with a saturation magnetization in the range of 60 emu g−1 and coercive force around 15 Oe. These magnetic pellicles also displayed high electrical permittivity and a potential application as microwave absorber materials. - Highlights: • Bacterial cellulose/magnetite nanocomposites with high incorporation degree of nanoparticles. • Magnetite nanoparticles well adhered to the surface of bacterial cellulose nanofibers. • A saturation magnetization of the nanoparticles in the BC pellicles of about 60 emu g−1. • Flexible membranes with high super-paramagnetic characteristic

  2. Production of bacterial cellulose membranes in a modified airlift bioreactor by Gluconacetobacter xylinus.

    Science.gov (United States)

    Wu, Sheng-Chi; Li, Meng-Hsun

    2015-10-01

    In this study, a novel bioreactor for producing bacterial cellulose (BC) is proposed. Traditional BC production uses static culture conditions and produces a gelatinous membrane. The potential for using various types of bioreactor, including a stirred tank, conventional airlift, and modified airlift with a rectangular wire-mesh draft tube, in large-scale production has been investigated. The BC obtained from these bioreactors is fibrous or in pellet form. Our proposed airlift bioreactor produces a membrane-type BC from Gluconacetobacter xylinus, the water-holding capacity of which is greater than that of cellulose types produced using static cultivation methods. The Young's modulus of the product can be manipulated by varying the number of net plates in the modified airlift bioreactor. The BC membrane produced using the proposed bioreactor exhibits potential for practical application. PMID:25823854

  3. Bacterial cellulose membrane as flexible substrate for organic light emitting devices

    International Nuclear Information System (INIS)

    Bacterial cellulose (BC) membranes produced by gram-negative, acetic acid bacteria (Gluconacetobacter xylinus), were used as flexible substrates for the fabrication of Organic Light Emitting Diodes (OLED). In order to achieve the necessary conductive properties indium tin oxide (ITO) thin films were deposited onto the membrane at room temperature using radio frequency (r.f.) magnetron sputtering with an r.f. power of 30 W, at pressure of 8 mPa in Ar atmosphere without any subsequent thermal treatment. Visible light transmittance of about 40% was observed. Resistivity, mobility and carrier concentration of deposited ITO films were 4.90 x 10-4 Ohm cm, 8.08 cm2/V-s and - 1.5 x 1021 cm-3, respectively, comparable with commercial ITO substrates. In order to demonstrate the feasibility of devices based on BC membranes three OLEDs with different substrates were produced: a reference one with commercial ITO on glass, a second one with a SiO2 thin film interlayer between the BC membrane and the ITO layer and a third one just with ITO deposited directly on the BC membrane. The observed OLED luminance ratio was: 1; 0.5; 0.25 respectively, with 2400 cd/m2 as the value for the reference OLED. These preliminary results show clearly that the functionalized biopolymer, biodegradable, biocompatible bacterial cellulose membranes can be successfully used as substrate in flexible organic optoelectronic devices

  4. Bacterial cellulose membrane as flexible substrate for organic light emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Legnani, C.; Vilani, C. [CeDO-Organic Device Center, Dimat-Dimat, Inmetro, Duque de Caxias, RJ (Brazil); Calil, V.L. [CeDO-Organic Device Center, Dimat-Dimat, Inmetro, Duque de Caxias, RJ (Brazil); LOEM-Molecular Optoelectronic Laboratory-Physics Department-PUC-Rio, Rio de Janeiro, RJ (Brazil); Barud, H.S. [Institute of Chemistry, Sao Paulo State University-UNESP, CP 355 Araraquara, SP (Brazil); Quirino, W.G. [CeDO-Organic Device Center, Dimat-Dimat, Inmetro, Duque de Caxias, RJ (Brazil); Achete, C.A. [CeDO-Organic Device Center, Dimat-Dimat, Inmetro, Duque de Caxias, RJ (Brazil); COPPE-Programa de Engenharia Metalurgica e de Materiais, UFRJ, Rio de Janeiro, RJ (Brazil); Ribeiro, S.J.L. [Institute of Chemistry, Sao Paulo State University-UNESP, CP 355 Araraquara, SP (Brazil); Cremona, M. [CeDO-Organic Device Center, Dimat-Dimat, Inmetro, Duque de Caxias, RJ (Brazil); LOEM-Molecular Optoelectronic Laboratory-Physics Department-PUC-Rio, Rio de Janeiro, RJ (Brazil)], E-mail: cremona@fis.puc-rio.br

    2008-12-01

    Bacterial cellulose (BC) membranes produced by gram-negative, acetic acid bacteria (Gluconacetobacter xylinus), were used as flexible substrates for the fabrication of Organic Light Emitting Diodes (OLED). In order to achieve the necessary conductive properties indium tin oxide (ITO) thin films were deposited onto the membrane at room temperature using radio frequency (r.f.) magnetron sputtering with an r.f. power of 30 W, at pressure of 8 mPa in Ar atmosphere without any subsequent thermal treatment. Visible light transmittance of about 40% was observed. Resistivity, mobility and carrier concentration of deposited ITO films were 4.90 x 10{sup -4} Ohm cm, 8.08 cm{sup 2}/V-s and - 1.5 x 10{sup 21} cm{sup -3}, respectively, comparable with commercial ITO substrates. In order to demonstrate the feasibility of devices based on BC membranes three OLEDs with different substrates were produced: a reference one with commercial ITO on glass, a second one with a SiO{sub 2} thin film interlayer between the BC membrane and the ITO layer and a third one just with ITO deposited directly on the BC membrane. The observed OLED luminance ratio was: 1; 0.5; 0.25 respectively, with 2400 cd/m{sup 2} as the value for the reference OLED. These preliminary results show clearly that the functionalized biopolymer, biodegradable, biocompatible bacterial cellulose membranes can be successfully used as substrate in flexible organic optoelectronic devices.

  5. Bacterial cellulose nanofibrous membrane as thermal stable separator for lithium-ion batteries

    Science.gov (United States)

    Jiang, Fengjing; Yin, Lei; Yu, Qingchun; Zhong, Chunyan; Zhang, Junliang

    2015-04-01

    Thermal shrinkage is a severe problem for the conventional polyolefin separators. In this work, we report the excellent performance of bacterial cellulose (BC) nanofibrous membranes as separators for lithium (Li) ion batteries. Properties of BC separator including morphology, ionic conductivity, electrochemical stability, thermal stability, mechanical strength and battery charge-discharge performance are characterized and compared to a commercial separator membrane (Celgard® 2325). Because of the unique fibrous and cross-linked three-dimensional network structure, BC separator shows excellent dimensional stability up to 180 °C, good ionic conductivity and competitive battery performance.

  6. Flexible magnetic membranes based on bacterial cellulose and its evaluation as electromagnetic interference shielding material

    Energy Technology Data Exchange (ETDEWEB)

    Marins, Jéssica A., E-mail: Jessica.amarins@gmail.com [Universidade Federal do Rio de Janeiro/ Instituto de Macromoléculas, Centro de Tecnologia, Rio de Janeiro, RJ (Brazil); Soares, Bluma G., E-mail: bluma@ima.ufrj.br [Universidade Federal do Rio de Janeiro/ Instituto de Macromoléculas, Centro de Tecnologia, Rio de Janeiro, RJ (Brazil); Barud, Hernane S.; Ribeiro, Sidney J.L. [Universidade Estadual Paulista, Instituto de Química, UNESP, Araraquara, SP (Brazil)

    2013-10-15

    Flexible magnetic membranes with high proportion of magnetite were successfully prepared by previous impregnation of the never dried bacterial cellulose pellicles with ferric chloride followed by reduction with sodium bisulfite and alkaline treatment for magnetite precipitation. Membranes were characterized by Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), vibrating magnetometer, field emission scanning electron microscopy (FEG-SEM) and impedance spectroscopy. Microwave properties of these membranes were investigated in the X-band (8.2 to 12.4 GHz). FEG-SEM micrographs show an effective coverage of the BC nanofibers by Fe{sub 3}O{sub 4} nanoparticles. Membranes with up to 75% in weight of particles have been prepared after 60 min of reaction. Magnetite nanoparticles in the form of aggregates well adhered to the BC fibers were observed by SEM. The average crystal sizes of the magnetic particles were in the range of 10 ± 1 to 13 ± 1 nm (estimated by XRD). The magnetic particles in the BC pellicles presented superparamagnetic behavior with a saturation magnetization in the range of 60 emu g{sup −1} and coercive force around 15 Oe. These magnetic pellicles also displayed high electrical permittivity and a potential application as microwave absorber materials. - Highlights: • Bacterial cellulose/magnetite nanocomposites with high incorporation degree of nanoparticles. • Magnetite nanoparticles well adhered to the surface of bacterial cellulose nanofibers. • A saturation magnetization of the nanoparticles in the BC pellicles of about 60 emu g{sup −1}. • Flexible membranes with high super-paramagnetic characteristic.

  7. Bacterial cellulose/boehmite composites

    Energy Technology Data Exchange (ETDEWEB)

    Salvi, Denise T.B. de; Barud, Hernane S.; Messaddeq, Younes; Ribeiro, Sidney J.L. [Universidade Estadual Paulista Julio de Mesquita Filho. UNESP. Instituto de Quimica de Araraquara, SP (Brazil); Caiut, Jose Mauricio A. [Universidade de Sao Paulo. Departamento de Quimica - FFCLRP/USP, Ribeirao Preto, SP (Brazil)

    2011-07-01

    Composites based on bacterial cellulose membranes and boehmite were obtained. SEM results indicate that the bacterial cellulose (BC) membranes are totally covered by boehmite and obtained XRD patterns suggest structural changes due to this boehmite addition. Thermal stability is accessed through TG curves and is dependent on boehmite content. Transparency is high comparing to pure BC as can be seen through UV-vis absorption spectroscopy. (author)

  8. Bacterial cellulose/boehmite composites

    International Nuclear Information System (INIS)

    Composites based on bacterial cellulose membranes and boehmite were obtained. SEM results indicate that the bacterial cellulose (BC) membranes are totally covered by boehmite and obtained XRD patterns suggest structural changes due to this boehmite addition. Thermal stability is accessed through TG curves and is dependent on boehmite content. Transparency is high comparing to pure BC as can be seen through UV-vis absorption spectroscopy. (author)

  9. In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hu Weili; Chen Shiyan; Li Xin; Shi Shuaike; Shen Wei; Zhang Xiang [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of Textile Science and Technology (Ministry of Education), College of Materials Science and Engineering, Donghua University, Shanghai, 201620 (China); Wang Huaping, E-mail: wanghp@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of Textile Science and Technology (Ministry of Education), College of Materials Science and Engineering, Donghua University, Shanghai, 201620 (China)

    2009-05-05

    In situ synthesis of silver chloride (AgCl) nanoparticles was carried out under ambient conditions in nanoporous bacterial cellulose (BC) membranes as nanoreactors. The growth of the nanoparticles was readily obtained by alternating dipping of BC membranes in the solution of silver nitrate or sodium chloride followed by a rinse step. X-ray diffraction (XRD) patterns indicated the existence of AgCl nanoparticles in the BC and scanning electron microscopy (SEM) images showed that the AgCl nanoparticles well dispersed on the surface of BC and penetrated into the BC network. The AgCl nanoparticle-impregnated BC membranes exhibited high hydrophilic ability and strong antimicrobial activity against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive). The preparative procedure is facile and versatile, and provides a simple route to manufacturing of useful antimicrobial membranes, which would be a good alternative for antimicrobial wound dressing.

  10. In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes

    International Nuclear Information System (INIS)

    In situ synthesis of silver chloride (AgCl) nanoparticles was carried out under ambient conditions in nanoporous bacterial cellulose (BC) membranes as nanoreactors. The growth of the nanoparticles was readily obtained by alternating dipping of BC membranes in the solution of silver nitrate or sodium chloride followed by a rinse step. X-ray diffraction (XRD) patterns indicated the existence of AgCl nanoparticles in the BC and scanning electron microscopy (SEM) images showed that the AgCl nanoparticles well dispersed on the surface of BC and penetrated into the BC network. The AgCl nanoparticle-impregnated BC membranes exhibited high hydrophilic ability and strong antimicrobial activity against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive). The preparative procedure is facile and versatile, and provides a simple route to manufacturing of useful antimicrobial membranes, which would be a good alternative for antimicrobial wound dressing.

  11. Eggshell and Bacterial Cellulose Composite Membrane as Absorbent Material in Active Packaging

    OpenAIRE

    Ummartyotin, S.; Pisitsak, P.; Pechyen, C.

    2016-01-01

    Bacterial cellulose and eggshell composite was successfully developed. Eggshell was mixed with bacterial cellulose suspension and it was casted as a composite film. CaCO3 derived from eggshell was compared with its commercial availability. It can be noted that good dispersion of eggshell particle was prepared. Eggshell particle was irregular in shape with a variation in size. It existed in bacterial cellulose network. Characterization on composite was focused on thermal and mechanical propert...

  12. Bacterial Cellulose Membranes Used as Artificial Substitutes for Dural Defection in Rabbits

    Directory of Open Access Journals (Sweden)

    Chen Xu

    2014-06-01

    Full Text Available To improve the efficacy and safety of dural repair in neurosurgical procedures, a new dural material derived from bacterial cellulose (BC was evaluated in a rabbit model with dural defects. We prepared artificial dura mater using bacterial cellulose which was incubated and fermented from Acetobacter xylinum. The dural defects of the rabbit model were repaired with BC membranes. All surgeries were performed under sodium pentobarbital anesthesia, and all efforts were made to minimize suffering. All animals were humanely euthanized by intravenous injection of phenobarbitone, at each time point, after the operation. Then, the histocompatibility and inflammatory effects of BC were examined by histological examination, real-time fluorescent quantitative polymerase chain reaction (PCR and Western Blot. BC membranes evenly covered the surface of brain without adhesion. There were seldom inflammatory cells surrounding the membrane during the early postoperative period. The expression of inflammatory cytokines IL-1β, IL-6 and TNF-α as well as iNOS and COX-2 were lower in the BC group compared to the control group at 7, 14 and 21 days after implantation. BC can repair dural defects in rabbit and has a decreased inflammatory response compared to traditional materials. However, the long-term effects need to be validated in larger animals.

  13. Freestanding bacterial cellulose-graphene oxide composite membranes with high mechanical strength for selective ion permeation.

    Science.gov (United States)

    Fang, Qile; Zhou, Xufeng; Deng, Wei; Zheng, Zhi; Liu, Zhaoping

    2016-01-01

    Graphene oxide (GO) based membranes have been widely applied in molecular separation based on the size exclusion effect of the nanochannels formed by stacked GO sheets. However, it's still a challenge to prepare a freestanding GO-based membrane with high mechanical strength and structural stability which is prerequisite for separation application in aqueous solution. Here, a freestanding composite membrane based on bacterial cellulose (BC) and GO is designed and prepared. BC network provides a porous skeleton to spread GO sheets and uniformly incorporates into the GO layers, which endows the BC + GO composite membrane with well water-stability, excellent tensile strength, as well as improved toughness, guaranteeing its separation applicability in water environment. The resulting BC + GO membrane exhibits obviously discrepant permeation properties for different inorganic/organic ions with different size, and in particular, it can quickly separate ions in nano-scale from angstrom-scale. Therefore, this novel composite membrane is considered to be a promising candidate in the applications of water purification, food industry, biomedicine, and pharmaceutical and fuel separation. PMID:27615451

  14. Flexible conductive polypyrrole nanocomposite membranes based on bacterial cellulose with amphiphobicity.

    Science.gov (United States)

    Tang, Lian; Han, Jinlu; Jiang, Zhenlin; Chen, Shiyan; Wang, Huaping

    2015-03-01

    Flexible conductive polypyrrole nanocomposite membranes based on bacterial cellulose (BC) with amphiphobicity have been successfully prepared through in situ chemical synthesis and then infiltrated with polysiloxane solution. The results suggested that polypyrrole (PPy) nanoparticles deposited on the surface of BC formed a continuous core-shell structure by taking along the BC template. After modification with polysiloxane, the surface characteristics of the conductive BC membranes changed from highly hydrophilic to hydrophobic. The AFM images revealed that the roughness of samples after polysiloxane treatment increased along with the increase of pyrrole concentration. The contact angles (CAs) data revealed that the highest water contact angle and highest oil contact angle are 160.3° and 136.7°, respectively. The conductivity of the amphiphobic membranes with excellent flexibility reached 0.32 S/cm and demonstrated a good electromagnetic shielding effectiveness with an SE of 15 dB which could be applied in electromagnetic shielding materials with self-cleaning properties. It opened a new field of potential applications of BC materials. PMID:25498630

  15. Enriched glucose and dextrin mannitol-based media modulates fibroblast behavior on bacterial cellulose membranes

    International Nuclear Information System (INIS)

    Bacterial cellulose (BC) produced by Gluconacetobacter hansenii is a suitable biopolymer for biomedical applications. In order to modulate the properties of BC and expand its use as substrate for tissue engineering mainly in the form of biomembranes, glucose or dextrin were added into a BC fermentation mannitol-based medium (BCGl and BCDe, respectively) under static culture conditions. SEM images showed effects on fiber density and porosity on both sides of the BC membranes. Both enriched media decreased the BET surface area, water holding capacity, and rehydration rate. Fourier transform infrared (attenuated total reflectance mode) spectroscopy (FTIR-ATR) analysis revealed no change in the chemical structure of BC. L929 fibroblast cells were seeded on all BC-based membranes and evaluated in aspects of cell adhesion, proliferation and morphology. BCG1 membranes showed the highest biological performance and hold promise for the use in tissue engineering applications. - Highlights: • Glucose and dextrin were used to modify culture media for BC production. • Microarchitecture of BC was different depending on the enriching agent. • Fibroblasts adhered on the surface of BC modified microarchitectures. • Fibroblasts adhered on glucose modified BC exhibited healthy cell morphology

  16. Enriched glucose and dextrin mannitol-based media modulates fibroblast behavior on bacterial cellulose membranes

    Energy Technology Data Exchange (ETDEWEB)

    Stumpf, Taisa R.; Pértile, Renata A.N. [Integrated Technologies Laboratory, Department of Chemical and Food Engineering (Brazil); Rambo, Carlos R., E-mail: rambo@intelab.ufsc.br [Department of Electrical Engineering, Federal University of Santa Catarina, Florianópolis 88040-900 (Brazil); Porto, Luismar M. [Integrated Technologies Laboratory, Department of Chemical and Food Engineering (Brazil)

    2013-12-01

    Bacterial cellulose (BC) produced by Gluconacetobacter hansenii is a suitable biopolymer for biomedical applications. In order to modulate the properties of BC and expand its use as substrate for tissue engineering mainly in the form of biomembranes, glucose or dextrin were added into a BC fermentation mannitol-based medium (BCGl and BCDe, respectively) under static culture conditions. SEM images showed effects on fiber density and porosity on both sides of the BC membranes. Both enriched media decreased the BET surface area, water holding capacity, and rehydration rate. Fourier transform infrared (attenuated total reflectance mode) spectroscopy (FTIR-ATR) analysis revealed no change in the chemical structure of BC. L929 fibroblast cells were seeded on all BC-based membranes and evaluated in aspects of cell adhesion, proliferation and morphology. BCG1 membranes showed the highest biological performance and hold promise for the use in tissue engineering applications. - Highlights: • Glucose and dextrin were used to modify culture media for BC production. • Microarchitecture of BC was different depending on the enriching agent. • Fibroblasts adhered on the surface of BC modified microarchitectures. • Fibroblasts adhered on glucose modified BC exhibited healthy cell morphology.

  17. Metallization of bacterial cellulose for electrical and electronic device manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Barbara R.; O' Neill, Hugh M.; Jansen, Valerie Malyvanh; Woodward, Jonathan

    2006-01-17

    The employment of metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The fuel cell includes an electrolyte membrane comprising a membrane support structure comprising bacterial cellulose, an anode disposed on one side of the electrolyte membrane, and a cathode disposed on an opposite side of the electrolyte membrane. At least one of the anode and the cathode comprises an electrode support structure comprising bacterial cellulose, and a catalyst disposed in or on the electrode support structure.

  18. In situ deposition of platinum nanoparticles on bacterial cellulose membranes and evaluation of PEM fuel cell performance

    International Nuclear Information System (INIS)

    In situ deposition of platinum (Pt) nanoparticles on bacterial cellulose membranes (BC) for a fuel cell application was studied. The platinum/bacterial cellulose (Pt/BC) membranes under different experimental conditions were characterized by using SEM (scanning electron microscopy), TEM (transmission electron microscopy), EDS (energy dispersive spectroscopy), XRD (X-ray diffractometry) and TG (thermo-gravimetric analysis) techniques. TEM images and XRD patterns both lead to the observation of spherical metallic platinum nanoparticles with mean diameter of 3-4 nm well impregnated into the BC fibrils. TG curves revealed these Pt/BC composite materials had the high thermal stability. The electrosorption of hydrogen was investigated by CV (cyclic voltammetry). It was found that Pt/BC catalysts have high electrocatalytic activity in the hydrogen oxidation reaction. The single cell performance of Pt/BC was tested at 20 deg. C, 30 deg. C, and 40 deg. C under non-humidified conditions. Preliminary tests on a single cell indicate that renewable BC is a good prospect to be explored as membrane in fuel cell field [B.R. Evans, H.M. O'Neill, V.P. Malyvanh, I. Lee, J. Woodward, Biosens. Bioelectron. 18 (2003) 917].

  19. In situ deposition of platinum nanoparticles on bacterial cellulose membranes and evaluation of PEM fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jiazhi [School of Chemistry and Chemical Engineering, Nan Jing University of Science and Technology, Nanjing 210094 (China); Sun Dongping [School of Chemistry and Chemical Engineering, Nan Jing University of Science and Technology, Nanjing 210094 (China)], E-mail: dongpingsun@163.com; Li Jun; Yang Xujie; Yu Junwei; Hao Qingli [School of Chemistry and Chemical Engineering, Nan Jing University of Science and Technology, Nanjing 210094 (China); Liu Wenming [Eco-materials and Renewable Energy Research Center, Department of Materials Science and Engineering and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Liu Jianguo [Eco-materials and Renewable Energy Research Center, Department of Materials Science and Engineering and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China)], E-mail: jianguoliu@nju.edu.cn; Zou Zhigang; Gu Jun [Eco-materials and Renewable Energy Research Center, Department of Materials Science and Engineering and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China)

    2009-11-01

    In situ deposition of platinum (Pt) nanoparticles on bacterial cellulose membranes (BC) for a fuel cell application was studied. The platinum/bacterial cellulose (Pt/BC) membranes under different experimental conditions were characterized by using SEM (scanning electron microscopy), TEM (transmission electron microscopy), EDS (energy dispersive spectroscopy), XRD (X-ray diffractometry) and TG (thermo-gravimetric analysis) techniques. TEM images and XRD patterns both lead to the observation of spherical metallic platinum nanoparticles with mean diameter of 3-4 nm well impregnated into the BC fibrils. TG curves revealed these Pt/BC composite materials had the high thermal stability. The electrosorption of hydrogen was investigated by CV (cyclic voltammetry). It was found that Pt/BC catalysts have high electrocatalytic activity in the hydrogen oxidation reaction. The single cell performance of Pt/BC was tested at 20 deg. C, 30 deg. C, and 40 deg. C under non-humidified conditions. Preliminary tests on a single cell indicate that renewable BC is a good prospect to be explored as membrane in fuel cell field [B.R. Evans, H.M. O'Neill, V.P. Malyvanh, I. Lee, J. Woodward, Biosens. Bioelectron. 18 (2003) 917].

  20. Bacterial cellulose membrane produced by Acetobacter sp. A10 for burn wound dressing applications.

    Science.gov (United States)

    Kwak, Moon Hwa; Kim, Ji Eun; Go, Jun; Koh, Eun Kyoung; Song, Sung Hwa; Son, Hong Joo; Kim, Hye Sung; Yun, Young Hyun; Jung, Young Jin; Hwang, Dae Youn

    2015-05-20

    Bacteria cellulose membranes (BCM) are used for wound dressings, bone grafts, tissue engineering, artificial vessels, and dental implants because of their high tensile strength, crystallinity and water holding ability. In this study, the effects of BCM application for 15 days on healing of burn wounds were investigated based on evaluation of skin regeneration and angiogenesis in burn injury skin of Sprague-Dawley (SD) rats. BCM showed a randomly organized fibrils network, 12.13 MPa tensile strength, 12.53% strain, 17.63% crystallinity, 90.2% gel fraction and 112.14 g × m(2)/h highest water vapor transmission rate (WVTR) although their swelling ratio was enhanced to 350% within 24h. In SD rats with burned skin, the skin severity score was lower in the BCM treated group than the gauze (GZ) group at all time points, while the epidermis and dermis thickness and number of blood vessels was greater in the BCM treated group. Furthermore, a significant decrease in the number of infiltrated mast cells and in vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1) expression was observed in the BCM treated group at day 10 and 15. Moreover, a significant high level in collagen expression was observed in the BCM treated group at day 5 compared with GZ treated group, while low level was detected in the same group at day 10 and 15. However, the level of metabolic enzymes representing liver and kidney toxicity in the serum of BCM treated rats was maintained at levels consistent with GZ treated rats. Overall, BCM may accelerate the process of wound healing in burn injury skin of SD rats through regulation of angiogenesis and connective tissue formation as well as not induce any specific toxicity against the liver and kidney. PMID:25817683

  1. PROPERTIES OF BACTERIAL CELLULOSE AND ITS INFLUENCE ON THE PHYSICAL PROPERTIES OF PAPER

    OpenAIRE

    Wen-Hua Gao; Ke-Fu Chen; Ren-Dang Yang; Fei Yang; Wen-Jia Han

    2011-01-01

    Bacterial cellulose is a promising source of biodegradable polymers having high purity. The time required to disperse bacterial cellulose wet membranes was studied, along with evaluation by infrared spectroscopy and thermal analysis of the dispersed bacterial fiber and tests of the physical properties of the sheet. The results showed that bacterial cellulose wet membrane can be dispersed well, forming fibers when the dispersing time was 3 minutes at a suitable concentration. FT-IR results sho...

  2. Drag Reduction of Bacterial Cellulose Suspensions

    OpenAIRE

    Ogata, Satoshi; Numakawa, Tetsuya; Kubo, Takuya

    2010-01-01

    Drag reduction due to bacterial cellulose suspensions with small environmental loading was investigated. Experiments were carried out by measuring the pressure drop in pipe flow. It was found that bacterial cellulose suspensions give rise to drag reduction in the turbulent flow range. We observed a maximum drag reduction ratio of 11% and found that it increased with the concentration of the bacterial cellulose suspension. However, the drag reduction effect decreased in the presence of mechani...

  3. Drag Reduction of Bacterial Cellulose Suspensions

    OpenAIRE

    Satoshi Ogata; Tetsuya Numakawa; Takuya Kubo

    2011-01-01

    Drag reduction due to bacterial cellulose suspensions with small environmental loading was investigated. Experiments were carried out by measuring the pressure drop in pipe flow. It was found that bacterial cellulose suspensions give rise to drag reduction in the turbulent flow range. We observed a maximum drag reduction ratio of 11% and found that it increased with the concentration of the bacterial cellulose suspension. However, the drag reduction effect decreased in the presence of mechani...

  4. Bacterial Cellulose-Hydroxyapatite Nanocomposites for Bone Regeneration

    OpenAIRE

    Saska, S.; H.S. Barud; Gaspar, A. M. M.; Marchetto, R.; Ribeiro, S. J. L.; Y. Messaddeq

    2011-01-01

    The aim of this study was to develop and to evaluate the biological properties of bacterial cellulose-hydroxyapatite (BC-HA) nanocomposite membranes for bone regeneration. Nanocomposites were prepared from bacterial cellulose membranes sequentially incubated in solutions of CaCl2 followed by Na2HPO4. BC-HA membranes were evaluated in noncritical bone defects in rat tibiae at 1, 4, and 16 weeks. Thermogravimetric analyses showed that the amount of the mineral phase was 40%–50% of the total wei...

  5. CHARACTERIZATION OF REGENERATED CELLULOSE MEMBRANES HYDROLYZED FROM CELLULOSE ACETATE

    Institute of Scientific and Technical Information of China (English)

    Yun Chen; Xiao-peng Xiong; Guang Yang; Li-na Zhang; Sen-lin Lei; Hui Lianga

    2002-01-01

    A series of cellulose acetate membranes were prepared by using formamide as additive, and then were hydrolyzedin 4 wt% aqueous NaOH solution for 8 h to obtain regenerated cellulose membranes. The dependence of degree ofsubstitution, structure, porous properties, solubility and thermal stability on hydrolysis time was studied by chemical titration,Fourier transform infrared spectroscopy, scanning electron microscopy, wide-angle X-ray diffraction, and differentialscanning calorimetry, respectively. The results indicated that the pore size of the regenerated cellulose membranes wasslightly smaller than that of cellulose acetate membrane, while solvent-resistance, crystallinity and thermostability weresignificantly improved. This work provides a simple way to prepare the porous cellulose membranes, which not only kept thegood pore characteristics of cellulose acetate membranes, but also possessed solvent-resistance, high crystallinity andthermostability. Therefore, the application range of cellulose acetate membranes can be expanded.

  6. Production of bacterial cellulose from alternate feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    D. N. Thompson; M. A. Hamilton

    2000-05-07

    Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low- and high-solids potato effluents (LS and HS), cheese whey permeate (CW), and sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did 10821, and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, while LS was unsuitable for production by 10821. However, 23770 produced 17% more cellulose from LS than from glucose, indicating unamended LS could serve as a feedstock for bacterial cellulose.

  7. Production of Bacterial Cellulose from Alternate Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David Neil; Hamilton, Melinda Ann

    2000-05-01

    Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low- and high-solids potato effluents (LS & HS), cheese whey permeate (CW), and sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did 10821, and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, while LS was unsuitable for production by 10821. However, 23770 produced 17% more cellulose from LS than from glucose, indicating unamended LS could serve as a feedstock for bacterial cellulose.

  8. Biocompatibility of Bacterial Cellulose Based Biomaterials

    OpenAIRE

    Omar P. Troncoso; Solene Commeaux; Torres, Fernando G.

    2012-01-01

    Some bacteria can synthesize cellulose when they are cultivated under adequate conditions. These bacteria produce a mat of cellulose on the top of the culture medium, which is formed by a three-dimensional coherent network of pure cellulose nanofibers. Bacterial cellulose (BC) has been widely used in different fields, such as the paper industry, electronics and tissue engineering due to its remarkable mechanical properties, conformability and porosity. Nanocomposites based on BC have received...

  9. Silver nanoparticle/bacterial cellulose gel membranes for antibacterial wound dressing: investigation in vitro and in vivo

    International Nuclear Information System (INIS)

    Bacterial cellulose (BC) has attracted increasing attention as a novel wound dressing material, but its antimicrobial activity, which is one of the critical skin-barrier functions in wound healing, is not sufficient for use in practical applications. To overcome such a deficiency, silver nanoparticles were generated and self-assembled on the surface of BC nanofibers, forming a stable and evenly distributed Ag nanoparticle coated BC nanofiber (AgNP-BC). The performance of AgNP-BC was systematically studied in terms of antibacterial activities, cytocompatibility and effects on wound healing. The results showed that AgNP-BC exhibited significant antibacterial activity against Staphylococcus aureus. Moreover, AgNP-BC allowed attachment, and growth of rat fibroblasts with low cytotoxicity emerged. Based on these advantages, AgNP-BC samples were applied in a second-degree rat wound model. Wound flora showed a significant reduction during the healing. The fresh epidermal and dermis thicknesses with AgNP-BC samples were 111 and 855 µm respectively, higher than 74 and 619 µm for BC groups and 57 and 473 µm for untreated control wounds. The results demonstrated that AgNP-BC could reduce inflammation and promote scald wound healing. (paper)

  10. Preparation of succinylated cellulose membranes for functionalization purposes.

    Science.gov (United States)

    Ribeiro-Viana, Renato M; Faria-Tischer, Paula C S; Tischer, Cesar A

    2016-09-01

    The anhydroglucose chains of cellulose possess hydroxyls that facilitate different chemical modification strategies to expand on, or provide new applications for membranes produced by the bacteria Gluconacetobacter xylinus. Conjugation with biomolecules such as proteins, especially by the amine groups, is of great value and interest for the production of biomaterial derivatives from bacterial cellulose. To assist in these modifications, cellulose was succinylated in order to prevent steric hindrance and to create an attachment point for conjugation. Bacterial cellulose membranes were first treated in dichloromethane and reacted with succinic anhydride through a series of conditions. The membrane structure remained intact after these first processes and the product was confirmed by Infra-Red spectroscopy and solid state nuclear magnetic resonance and characterized by X-ray diffraction, thermogravimetry and atomic force microscopy. Hydrolyzed collagen was used as a model protein of interest to be conjugated to these membranes, which furnished a biomaterial functionalized over its surface. PMID:27185111

  11. Synthesis and characterization of cellulose derivatives obtained from bacterial cellulose

    International Nuclear Information System (INIS)

    The chemical modification of cellulose leads to production of derivatives with different properties from those observed for the original cellulose, for example, increased solubility in more traditional solvents. In this work we synthesized four derivatives of cellulose: microcrystalline cellulose, cellulose acetate, methylcellulose and carboxymethylcellulose using bacterial cellulose as a source. These were characterized in terms of chemical and structural changes by examining the degree of substitution (DS), infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy - NMR 13C. The molecular weight and degree of polymerization were evaluated by viscometry. The characterization of the morphology of materials and thermal properties were performed with the techniques of X-ray diffraction, electron microscopy images, differential scanning calorimetry (DSC) and thermogravimetric analysis. (author)

  12. Nanopores Structure in Electrospun Bacterial Cellulose

    OpenAIRE

    Pierre Basmaji; Gabriel Molina de Olyveira; Ligia Maria Manzine Costa; Lauro Xavier Filho

    2011-01-01

    Bacterial cellulose (BC) has established to be a remarkably versatile biomaterial and can be used in wide variety of applied scientific endeavours, especially for medical devices, lately, bacterial cellulose mats are used in the treatment of skin conditions such as burns and ulcers, because of the morphology of fibrous biopolymers serving as a support for cell proliferation, its pores allow gas exchange between the organism and the environment. Moreover, the nanostructure and morphological si...

  13. Methacrylate hydrogels reinforced with bacterial cellulose

    Czech Academy of Sciences Publication Activity Database

    Hobzová, Radka; Dušková-Smrčková, Miroslava; Michálek, Jiří; Karpushkin, Evgeny; Gatenholm, P.

    2012-01-01

    Roč. 61, č. 7 (2012), s. 1193-1201. ISSN 0959-8103 R&D Projects: GA AV ČR KJB400500902 Institutional research plan: CEZ:AV0Z40500505 Keywords : bacterial cellulose * methacrylate hydrogel * composite Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.125, year: 2012

  14. Improved Fixation of Cellulose-Acetate Reverse-Osmosis Membrane for Scanning Electron Microscopy

    OpenAIRE

    Kutz, S. M.; Bentley, D L; Sinclair, N A

    1985-01-01

    Fixation of cellulose-acetate membranes with either glutaraldehyde-osmium tetroxide or glutaraldehyde-ruthenium tetroxide resulted in extensive electron beam damage. Beam damage was eliminated and the bacterial surface structure was preserved, however, when cellulose-acetate membranes were fixed with glutaraldehyderuthenium tetroxide and treated successively with thiocarbohydrazide and osmium tetroxide.

  15. Formation of asymmetric cellulose acetate membranes

    NARCIS (Netherlands)

    Bokhorst, H.; Altena, F.W.; Smolders, C.A.

    1981-01-01

    Cellulose acetate membranes were prepared from casting solutions containing dioxane as a solvent and varying concentrations (up to 6%) of maleic acid as an additive. Coagulation took place in water at different temperatures. The effect of these variables on membrane structure and membrane properties

  16. PROPERTIES OF BACTERIAL CELLULOSE AND ITS INFLUENCE ON THE PHYSICAL PROPERTIES OF PAPER

    Directory of Open Access Journals (Sweden)

    Wen-Hua Gao

    2011-02-01

    Full Text Available Bacterial cellulose is a promising source of biodegradable polymers having high purity. The time required to disperse bacterial cellulose wet membranes was studied, along with evaluation by infrared spectroscopy and thermal analysis of the dispersed bacterial fiber and tests of the physical properties of the sheet. The results showed that bacterial cellulose wet membrane can be dispersed well, forming fibers when the dispersing time was 3 minutes at a suitable concentration. FT-IR results showed that the composition of bacterial fiber is similar to that of bleached softwood fibers. Thus, the morphology, thermal performance, and the length of bacterial fibers are significantly different. The sheets’ physical properties show that with the increasing dosage of bacterial fibers (relative to softwood fiber, the properties of tensile index, tear index, burst index, and stiffness greatly improve, while the porosity and the relative water absorption decrease.

  17. Simulations of Cellulose Translocation in the Bacterial Cellulose Synthase Suggest a Regulatory Mechanism for the Dimeric Structure of Cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Knott, Brandon C.; Crowley, Michael F.; Himmel, Michael E.; Zimmer, Jochen; Beckham, Gregg T.

    2016-05-01

    The processive cycle of the bacterial cellulose synthase (Bcs) includes the addition of a single glucose moiety to the end of a growing cellulose chain followed by the translocation of the nascent chain across the plasma membrane. The mechanism of this translocation and its precise location within the processive cycle are not well understood. In particular, the molecular details of how a polymer (cellulose) whose basic structural unit is a dimer (cellobiose) can be constructed by adding one monomer (glucose) at a time are yet to be elucidated. Here, we have utilized molecular dynamics simulations and free energy calculations to the shed light on these questions. We find that translocation forward by one glucose unit is quite favorable energetically, giving a free energy stabilization of greater than 10 kcal mol-1. In addition, there is only a small barrier to translocation, implying that translocation is not rate limiting within the Bcs processive cycle (given experimental rates for cellulose synthesis in vitro). Perhaps most significantly, our results also indicate that steric constraints at the transmembrane tunnel entrance regulate the dimeric structure of cellulose. Namely, when a glucose molecule is added to the cellulose chain in the same orientation as the acceptor glucose, the terminal glucose freely rotates upon forward motion, thus suggesting a regulatory mechanism for the dimeric structure of cellulose. We characterize both the conserved and non-conserved enzyme-polysaccharide interactions that drive translocation, and find that 20 of the 25 residues that strongly interact with the translocating cellulose chain in the simulations are well conserved, mostly with polar or aromatic side chains. Our results also allow for a dynamical analysis of the role of the so-called 'finger helix' in cellulose translocation that has been observed structurally. Taken together, these findings aid in the elucidation of the translocation steps of the Bcs

  18. PRODUCTION AND CHARACTERIZATION OF ECONOMICAL BACTERIAL CELLULOSE

    Directory of Open Access Journals (Sweden)

    Houssni El-Saied

    2008-11-01

    Full Text Available The present study investigates the economical production of bacterial cellulose (BC by Gluconacetobacter subsp. Xylinus (ATCC 10245 in 250 ml Erlenmeyer flasks cultivated under static conditions. The fermentation media used contained food industrial by-product liquors, such as black strap molasses solution and corn steep liquor (CSL, which represents some of the most economical carbon and nitrogen sources. However, because of the presence of undesirable components in molasses (such as coloring substances, heavy metals, and other compounds that may act as inhibitors, and in order to eliminate them, crude molasses has been treated with an acid, as an attempt to increase BC productivity. The amount of BC produced using these carbon and nitrogen sources was determined and compared to that produced using previously reported fermentation media. The characterizations of the bacterial cellulose (BC pellicles obtained using either conventional or by-product media were studied by thermal and spectral techniques and compared to those of plant-derived cellulose such as cotton linter, viscose pulp, and microcrystalline cellulose.

  19. Biocompatibility of Bacterial Cellulose Based Biomaterials

    Directory of Open Access Journals (Sweden)

    Omar P. Troncoso

    2012-12-01

    Full Text Available Some bacteria can synthesize cellulose when they are cultivated under adequate conditions. These bacteria produce a mat of cellulose on the top of the culture medium, which is formed by a three-dimensional coherent network of pure cellulose nanofibers. Bacterial cellulose (BC has been widely used in different fields, such as the paper industry, electronics and tissue engineering due to its remarkable mechanical properties, conformability and porosity. Nanocomposites based on BC have received much attention, because of the possibility of combining the good properties of BC with other materials for specific applications. BC nanocomposites can be processed either in a static or an agitated medium. The fabrication of BC nanocomposites in static media can be carried out while keeping the original mat structure obtained after the synthesis to form the final nanocomposite or by altering the culture media with other components. The present article reviews the issue of biocompatibility of BC and BC nanocomposites. Biomedical aspects, such as surface modification for improving cell adhesion, in vitro and in vivo studies are given along with details concerning the physics of network formation and the changes that occur in the cellulose networks due to the presence of a second phase. The relevance of biocompatibility studies for the development of BC-based materials in bone, skin and cardiovascular tissue engineering is also discussed.

  20. POLYETHERSULFONE COMPOSITE MEMBRANE BLENDED WITH CELLULOSE FIBRILS

    Directory of Open Access Journals (Sweden)

    Ping Qu

    2010-09-01

    Full Text Available Polyethersulfone (PES is a common material used for ultrafiltration (UF membranes, which has good chemical resistance, high mechanical properties, and wide temperature tolerances. The hydrophobic property of the PES membrane seriously limits its application. Cellulose fibrils are composed of micro-sized and nano-sized elements, which have high hydrophilicity, strength, and biodegradation. A composite membrane was prepared by the phase inversion induced by an immersion process. The characteristics of the composite membrane were investigated with Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD, thermogravimetric analysis (TGA, and atomic force microscopy (AFM. The pure water flux of the composite membrane increased dramatically with the increase of cellulose firbils. Mean pore size and porosity were significantly increased. Both mechanical properties and hydrophilicity were enhanced due to the addition of the cellulose firbils.

  1. PRODUCTION AND CHARACTERIZATION OF ECONOMICAL BACTERIAL CELLULOSE

    OpenAIRE

    Houssni El-Saied; Ahmed I. El-Diwany; Altaf H. Bast; Nagwa A. Atwa; Dina E. El-Ghwas

    2008-01-01

    The present study investigates the economical production of bacterial cellulose (BC) by Gluconacetobacter subsp. Xylinus (ATCC 10245) in 250 ml Erlenmeyer flasks cultivated under static conditions. The fermentation media used contained food industrial by-product liquors, such as black strap molasses solution and corn steep liquor (CSL), which represents some of the most economical carbon and nitrogen sources. However, because of the presence of undesirable components in molasses (such as colo...

  2. Cellulose multilayer Membranes manufacture with Ionic liquid

    KAUST Repository

    Livazovic, S.

    2015-05-09

    Membrane processes are considered energy-efficient for water desalination and treatment. However most membranes are based on polymers prepared from fossil petrochemical sources. The development of multilayer membranes for nanofiltration and ultrafiltration, with thin selective layers of naturally available cellulose has been hampered by the availability of non-aggressive solvents. We propose the manufacture of cellulose membranes based on two approaches: (i) silylation, coating from solutions in tetrahydrofuran, followed by solvent evaporation and cellulose regeneration by acid treatment; (ii) casting from solution in 1-ethyl-3-methylimidazolum acetate ([C2mim]OAc), an ionic liquid, followed by phase inversion in water. By these methods porous supports could be easily coated with semi-crystalline cellulose. The membranes were hydrophilic with contact angles as low as 22.0°, molecular weight cut-off as low as 3000 g mol-1 with corresponding water permeance of 13.8 Lm−2 h−1 bar−1. Self-standing cellulose membranes were also manufactured without porous substrate, using only ionic liquid as green solvent. This membrane was insoluble in water, tetrahydrofuran, hexane, N,N-dimethylformamide, 1-methyl-2-pyrrolidinone and N,N-dimethylacetamide.

  3. Mechanism of activation of bacterial cellulose synthase by cyclic-di-GMP

    OpenAIRE

    Morgan, Jacob L.W.; McNamara, Joshua T.; Zimmer, Jochen

    2014-01-01

    The bacterial signaling molecule cyclic-di-GMP stimulates the synthesis of bacterial cellulose, frequently found in biofilms. Bacterial cellulose is synthesized and translocated across the inner membrane by a complex of the cellulose synthase BcsA and BcsB subunits. Here we present crystal structures of the cyclic-di-GMP-activated BcsA–B complex. The structures reveal that cyclic-di-GMP releases an auto-inhibited state of the enzyme by breaking a salt bridge which otherwise tethers a conserve...

  4. High Performance Regenerated Cellulose Membranes from Trimethylsilyl Cellulose

    KAUST Repository

    Ali, Ola

    2013-05-01

    Regenerated cellulose (RC) membranes are extensively used in medical and pharmaceutical separation processes due to their biocompatibility, low fouling tendency and solvent resistant properties. They typically possess ultrafiltration and microfiltration separation characteristics, but recently, there have been attempts to widen their pool of applications in nanofiltration processes. In this work, a novel method for preparing high performance composite RC membranes was developed. These membranes reveal molecular weight cut-offs (MWCO) of less than 250 daltons, which possibly put them ahead of all commercial RC membranes and in competition with high performance nanofiltration membranes. The membranes were prepared by acidic hydrolysis of dip-coated trimethylsilyl cellulose (TMSC) films. TMSC, with a degree of silylation (DS) of 2.8, was prepared from microcrystalline cellulose by reaction with hexamethyldisilazane under the homogeneous conditions of LiCl/DMAC solvent system. Effects of parameters, such as coating solution concentration and drying rates, were investigated. It was concluded that higher TMSC concentrations as well as higher solvent evaporation rates favor better MWCOs, mainly due to increase in the selective layer thickness. Successful cross-linking of prepared membranes with glyoxal solutions, in the presence of boric acid as a catalyst, resulted in MWCOs less than 250 daltons. The suitability of this crosslinking reaction for large scale productions was already proven in the manufacturing of durable-press fabrics. For us, the inexpensive raw materials as well as the low reaction times and temperatures were of interest. Moreover, the non-toxic nature of glyoxal is a key advantage in medical and pharmaceutical applications. The membranes prepared in this work are strong candidates for separation of small organic solutes from organic solvents streams in pharmaceutical industries. Their hydrophilicity, compared to typical nanofiltration membranes, offer

  5. Bacterial Cellulose-Hydroxyapatite Nanocomposites for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    S. Saska

    2011-01-01

    Full Text Available The aim of this study was to develop and to evaluate the biological properties of bacterial cellulose-hydroxyapatite (BC-HA nanocomposite membranes for bone regeneration. Nanocomposites were prepared from bacterial cellulose membranes sequentially incubated in solutions of CaCl2 followed by Na2HPO4. BC-HA membranes were evaluated in noncritical bone defects in rat tibiae at 1, 4, and 16 weeks. Thermogravimetric analyses showed that the amount of the mineral phase was 40%–50% of the total weight. Spectroscopy, electronic microscopy/energy dispersive X-ray analyses, and X-ray diffraction showed formation of HA crystals on BC nanofibres. Low crystallinity HA crystals presented Ca/P a molar ratio of 1.5 (calcium-deficient HA, similar to physiological bone. Fourier transformed infrared spectroscopy analysis showed bands assigned to phosphate and carbonate ions. In vivo tests showed no inflammatory reaction after 1 week. After 4 weeks, defects were observed to be completely filled in by new bone tissue. The BC-HA membranes were effective for bone regeneration.

  6. Observing cellulose biosynthesis and membrane translocation in crystallo.

    Science.gov (United States)

    Morgan, Jacob L W; McNamara, Joshua T; Fischer, Michael; Rich, Jamie; Chen, Hong-Ming; Withers, Stephen G; Zimmer, Jochen

    2016-03-17

    Many biopolymers, including polysaccharides, must be translocated across at least one membrane to reach their site of biological function. Cellulose is a linear glucose polymer synthesized and secreted by a membrane-integrated cellulose synthase. Here, in crystallo enzymology with the catalytically active bacterial cellulose synthase BcsA-BcsB complex reveals structural snapshots of a complete cellulose biosynthesis cycle, from substrate binding to polymer translocation. Substrate- and product-bound structures of BcsA provide the basis for substrate recognition and demonstrate the stepwise elongation of cellulose. Furthermore, the structural snapshots show that BcsA translocates cellulose via a ratcheting mechanism involving a 'finger helix' that contacts the polymer's terminal glucose. Cooperating with BcsA's gating loop, the finger helix moves 'up' and 'down' in response to substrate binding and polymer elongation, respectively, thereby pushing the elongated polymer into BcsA's transmembrane channel. This mechanism is validated experimentally by tethering BcsA's finger helix, which inhibits polymer translocation but not elongation. PMID:26958837

  7. The effect of deuteration on the structure of bacterial cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Bali, Garima [Georgia Institute of Technology; Foston, Marcus [Georgia Institute of Technology; O' Neill, Hugh Michael [ORNL; Evans, Barbara R [ORNL; He, Junhong [ORNL; Ragauskas, Arthur [Georgia Institute of Technology

    2013-01-01

    ABSTRACT In vivo generated deuterated bacterial cellulose, cultivated from 100% deuterated glycerol in D2O medium, was analyzed for deuterium incorporation by ionic liquid dissolution and 2H and 1H nuclear magnetic resonance (NMR). A solution NMR method of the dissolved cellulose was used to determine that this bacterial cellulose had 85 % deuterium incorporation. Acetylation and 1H and 2H NMR of deuterated bacterial cellulose indicated near equal deuteration at all sites of the glucopyranosyl ring except C-6 which was partly deuterated. Despite the high level of deuterium incorporation there were no significant differences in the molecular and morphological properties were observed for the deuterated and protio bacterial cellulose samples. The highly deuterated bacterial cellulose presented here can be used as a model substrate for studying cellulose biopolymer properties via future small angle neutron scattering (SANS) studies.

  8. Role of bacterial cellulose fibrils in Agrobacterium tumefaciens infection.

    OpenAIRE

    Matthysse, A G

    1983-01-01

    During the attachment of Agrobacterium tumefaciens to carrot tissue culture cells, the bacteria synthesize cellulose fibrils. We examined the role of these cellulose fibrils in the attachment process by determining the properties of bacterial mutants unable to synthesize cellulose. Such cellulose-minus bacteria attached to the carrot cell surface, but, in contrast to the parent strain, with which larger clusters of bacteria were seen on the plant cell, cellulose-minus mutant bacteria were att...

  9. Process of treating cellulosic membrane and alkaline with membrane separator

    Science.gov (United States)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1970-01-01

    The improvement of water-soluble cellulose ether membranes for use as separators in concentrated alkaline battery cells is discussed. The process of contacting membranes with an aqueous alkali solution of concentration less than that of the alkali solution to be used in the battery but above that at which the membrane is soluble is described.

  10. Metallization of bacterial cellulose for electrical and electronic device manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Barbara R [Oak Ridge, TN; O' Neill, Hugh M [Knoxville, TN; Jansen, Valerie Malyvanh [Memphis, TN; Woodward, Jonathan [Knoxville, TN

    2010-09-28

    A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.

  11. Metallization of bacterial cellulose for electrical and electronic device manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Barbara R. (Oak Ridge, TN); O' Neill, Hugh M. (Knoxville, TN); Jansen, Valerie Malyvanh (Memphis, TN); Woodward, Jonathan (Knoxville, TN)

    2011-06-07

    A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.

  12. Preparation of membranes from cellulose obtained of sugarcane bagasse

    International Nuclear Information System (INIS)

    In this work, cellulose obtained from sugarcane bagasse to produce both cellulose and acetylated cellulose to prepare asymmetric membranes. Membranes was procedure used a mixture of materials of DMAc/ LiCl systemic in different conditions. Cellulose and acetylated cellulose were characterized by thermogravimetric (TG), Xray diffraction (XRD) and scanning Electron Microscopy (SEM). Observed less stability thermal of acetylated cellulose when compared of cellulose. All membranes procedure were asymmetric, characterized by presence of a dense skin and porous support can be observed. SEM showed that the morphology of the superficial of membranes depends on the method preparation. (author)

  13. Enhancing biocompatibility of some cation selective electrodes using heparin modified bacterial cellulose.

    Science.gov (United States)

    Badr, Ibrahim H A; Abdel-Sattar, R; Keshk, Sherif M A S

    2015-12-10

    Bacterial cellulose (BC) and heparin-modified bacterial cellulose (HBC) were utilized to enhance the biocompatibility of highly thrombogenic PVC-based potassium and calcium membrane electrodes. Three types of membrane electrodes were prepared: (1) conventional PVC electrode (control), (2) PVC-based electrode sandwiched with bacterial cellulose membrane (BC-PVC), and (3) PVC-based electrode sandwiched with heparin-modified bacterial cellulose membrane (HBC-PVC). The potentiometric response characteristics of the modified potassium and calcium membrane electrodes (BC-PVC and HBC-PVC) were compared with those of the control PVC-based potassium and calcium selective electrode, respectively. Response characteristics of the modified membrane electrodes were comparable to the control PVC membrane electrode. The platelet adhesion investigations indicated that (BC) and (HBC) layers are less thrombogenic compared to PVC. Therefore, use of BC or HBC would enable the enhancement of the biocompatibility of PVC-based membrane electrodes for potassium and calcium while practically maintaining the overall electrochemical performance of the PVC sensing film. PMID:26428173

  14. Characterization of Bacterial Cellulose by Gluconacetobacter hansenii CGMCC 3917.

    Science.gov (United States)

    Feng, Xianchao; Ullah, Niamat; Wang, Xuejiao; Sun, Xuchun; Li, Chenyi; Bai, Yun; Chen, Lin; Li, Zhixi

    2015-10-01

    In this study, comprehensive characterization and drying methods on properties of bacterial cellulose were analyzed. Bacterial cellulose was prepared by Gluconacetobacter hansenii CGMCC 3917, which was mutated by high hydrostatic pressure (HHP) treatment. Bacterial cellulose is mainly comprised of cellulose Iα with high crystallinity and purity. High-water holding and absorption capacity were examined by reticulated structure. Thermogravimetric analysis showed high thermal stability. High tensile strength and Young's modulus indicated its mechanical properties. The rheological analysis showed that bacterial cellulose had good consistency and viscosity. These results indicated that bacterial cellulose is a potential food additive and also could be used for a food packaging material. The high textural stability during freeze-thaw cycles makes bacterial cellulose an effective additive for frozen food products. In addition, the properties of bacterial cellulose can be affected by drying methods. Our results suggest that the bacterial cellulose produced from HHP-mutant strain has an effective characterization, which can be used for a wide range of applications in food industry. PMID:26352877

  15. High performance cellulose nanocomposites: comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulose

    OpenAIRE

    Lee, K. Y.; Tammelin, T.; Schulfter, K.; Kiiskinen, H.; Samela, J.; Bismarck, A.

    2012-01-01

    This work investigates the surface and bulk properties of nanofibrillated cellulose (NFC) and bacterial cellulose (BC), as well as their reinforcing ability in polymer nanocomposites. BC possesses higher critical surface tension of 57 mN m(-1) compared to NFC (41 mN m(-1)). The thermal degradation temperature in both nitrogen and air atmosphere of BC was also found to be higher than that of NFC. These results are in good agreement with the higher crystallinity of BC as determined by XRD, meas...

  16. Bacterial cellulose production from the litchi extract by Gluconacetobacter xylinus.

    Science.gov (United States)

    Yang, Xiao-Yan; Huang, Chao; Guo, Hai-Jun; Xiong, Lian; Luo, Jun; Wang, Bo; Lin, Xiao-Qing; Chen, Xue-Fang; Chen, Xin-De

    2016-01-01

    Although litchi has both nutrient and edible value, the extremely short preservation time limited its further market promotion. To explore processed litchi products with longer preservation time, litchi extract was selected as an alternative feedstock for production of bacterial cellulose (BC). After 2 weeks of static fermentation, 2.53 g/L of the BC membrane was obtained. The trace elements including magnesium (Mg) and sodium (Na) in the litchi extract were partly absorbed in the BC membrane, but no potassium (K) element was detected in it, curiously. Scanning electron microscope (SEM) photographs exhibited an ultrafine network nanostructure for the BC produced in the litchi extract. Analysis of the fourier-transform infrared spectroscopy (FTIR) confirmed the pellicles to be a cellulosic material. Interestingly, X-ray diffraction (XRD) results showed the BC membrane obtained from litchi extract had higher crystallinity of 94.0% than that from HS medium. Overall, the work showed the potential of producing high value-added polymer from litchi resources. PMID:25181328

  17. Engineering microporosity in bacterial cellulose scaffolds.

    Science.gov (United States)

    Bäckdahl, Henrik; Esguerra, Maricris; Delbro, Dick; Risberg, Bo; Gatenholm, Paul

    2008-08-01

    The scaffold is an essential component in tissue engineering. A novel method to prepare three-dimensional (3D) nanofibril network scaffolds with controlled microporosity has been developed. By placing paraffin wax and starch particles of various sizes in a growing culture of Acetobacter xylinum, bacterial cellulose scaffolds of different morphologies and interconnectivity were prepared. Paraffin particles were incorporated throughout the scaffold, while starch particles were found only in the outermost area of the resulting scaffold. The porogens were successfully removed after culture with bacteria and no residues were detected with electron spectroscopy for chemical analysis (ESCA) or Fourier transform infra-red spectroscopy (FT-IR). Resulting scaffolds were seeded with smooth muscle cells (SMCs) and investigated using histology and organ bath techniques. SMC were selected as the cell type since the main purpose of the resulting scaffolds is for tissue engineered blood vessels. SMCs attached to and proliferated on and partly into the scaffolds. PMID:18615821

  18. Early observation of bacterial cellulose membrane for repair of dural defects in rabbits%细菌纤维素膜修复兔硬脑膜缺损的早期观察

    Institute of Scientific and Technical Information of China (English)

    徐晨; 陈世文; 田恒力; 王敢; 郭衍; 袁陆涛

    2013-01-01

    right dural defects were repaired with bacteria cellulose membrane, the left dural defects were repaired with artificial dura matter, and the tissues on the repaired sites were collected on day 7, 14 and 21 after operation for determination of expression of interleukin-1β (IL-1β) , interleukin-6 ( IL-6) and tumor necrosis factor-a (TNF-α) mRNA by RT-PCR. Results All rabbits survived without the presence of wound infection. On the patched side of group A, bacteria cellulose membrane evenly covered the surface of brain without adhesion and visible inflammatory cells, fibrous connective tissues proliferated on the outer side of bacteria cellulose membrane, fibroblasts uniformly distributed in the inner side, and new blood vessels appeared. On the unpatched side of group A, the brain was directly connected with subcutaneous tissues. In group B, RT-PCR revealed that the expression of IL-1 β and IL-6 mRNA in bacteria cellulose membrane was significantly lower than that in artificial dura matter at each time point, while the expression of TNF-α mRNA of both sides was similar. Conclusion Bacterial cellulose membrane may avoid the adhesion to the brain tissues and has slighter early inflammatory response in repair of dural defects. Bacterial cellulose membrane may be used as the ideal substitute material for dura matter.

  19. Novel transparent nanocomposite films based on chitosan and bacterial cellulose

    OpenAIRE

    Fernandes, Susana C. M.; Oliveira, Lúcia; Freire, Carmen S. R.; Silvestre, Armando J. D.; Neto, Carlos Pascoal; Gandini, Alessandro; Desbriéres, Jacques

    2009-01-01

    New nanocomposite films based on different chitosan matrices (two chitosans with different DPs and one water soluble derivative) and bacterial cellulose were prepared by a fully green procedure by casting a water based suspension of chitosan and bacterial cellulose nanofibrils. The films were characterized by several techniques, namely SEM, AFM, X-ray diffraction, TGA, tensile assays and visible spectroscopy. They were highly transparent, flexible and displayed better mechanical properties th...

  20. Synthesis of flexible magnetic nanohybrid based on bacterial cellulose under ultrasonic irradiation

    International Nuclear Information System (INIS)

    Flexible magnetic membrane based on bacterial cellulose (BC) was successfully prepared by in-situ synthesis of the Fe3O4 nanoparticles under different conditions and its properties were characterized. The results demonstrated that the Fe3O4 nanoparticles coated with PEG were well homogeneously dispersed in the BC matrix under ultrasonic irradiation with the saturation magnetization of 40.58 emu/g. Besides that, the membranes exhibited the striking flexibility and mechanical properties. This study provided a green and facile method to inhibit magnetic nanoparticle aggregation without compromising the mechanical properties of the nanocomposites. Magnetically responsive BC membrane would have potential applications in electronic actuators, information storage, electromagnetic shielding coating and anti-counterfeit. - Highlights: ► Flexible magnetic film is prepared by in situ synthesis on bacterial cellulose. ► Ultrasound and PEG are used together to inhibit the nanoparticle aggregation. ► The magnetic membrane demonstrates the great superparamagnetic behavior

  1. Chain scission and anti fungal effect of electron beam on cellulose membrane

    International Nuclear Information System (INIS)

    Two types of bacterial cellulose (BC) membranes were produced under a modified H and S medium using sucrose as a carbon source, with (CCB) and without (SHB) coconut juice supplement. Both membranes showed similar crystallinity of 69.24 and 71.55%. After being irradiated with E-beams under oxygen limited and ambient condition, the results from water contact angle showed that only the irradiated membrane CCB was increased from 30 to 40 degrees, and irradiation under oxygen ambient condition provided the greatest value. Comparing with the control membranes, smaller water flux was the cases after electron beam irradiation which indicated a reduction of membrane pore area. However, the results from molecular weight cut off (MWCO) revealed that chain scission was greater for membrane SHB and its cut off was increased from 28,000 Da to more than 35,000 Da. FTIR analysis revealed some changes in membrane functional groups, corresponding with the above results. These changes initiated new property of cellulose membranes, an anti-fungal food wrap. - Highlights: ► Electron beam irradiation increased membrane hydrophobicity and molecular weight cut off. ► The irradiation caused chain scissoring and anti fungal property of cellulose membrane. ► FT-IR studies revealed changes in functional groups causing a decrease in membrane moisture. ► Anti fungal test of cellulose membrane showed the same shelf life as polyethylene sheet.

  2. Investigation of Bacterial Cellulose Biosynthesis Mechanism in Gluconoacetobacter hansenii

    OpenAIRE

    Mohite, Bhavna V.; Patil, Satish V

    2014-01-01

    The present study explores the mechanism of cellulose biosynthesis in Gluconoacetobacter hansenii. The cellulose synthase enzyme was purified as membrane fraction and solubilized by treatment with 0.1% digitonin. The enzyme was separated by native-gel electrophoresis and β -D-glucan analysis was carried out using in vitro gel assay. The cellulose synthase has glycoprotein nature and composed two polypeptide subunits of 93 KDa and 85 KDa. The confirmation of β -1,4-glucan (cellulose) was perfo...

  3. Preparation of cellulose II and IIII films by allomorphic conversion of bacterial cellulose I pellicles

    International Nuclear Information System (INIS)

    The structural changes resulting from the conversion of native cellulose I (Cel I) into allomorphs II (Cel II) and IIII (Cel IIII) have usually been studied using powder samples from plant or algal cellulose. In this work, the conversion of Cel I into Cel II and Cel IIII was performed on bacterial cellulose films without any mechanical disruption. The surface texture of the films was observed by atomic force microscopy (AFM) and the morphology of the constituting cellulose ribbons, by transmission electron microscopy (TEM). The structural changes were characterized using solid-state NMR spectroscopy as well as X-ray and electron diffraction. The allomorphic change into Cel II and Cel IIII resulted in films with different crystallinity, roughness and hydrophobic/hydrophilicity surface and the films remained intact during all process of allomorphic conversion. - Highlights: • Description of a method to modify the allomorphic structure of bacterial cellulose films • Preparation of films with specific morphologies and hydrophobic/hydrophilic surface characters • First report on cellulose III films from bacterial cellulose under swelling conditions • Detailed characterization of cellulose II and III films with complementary techniques • Development of films with specific properties as potential support for cells, enzymes, and drugs

  4. Cellulose-Based Membranes for Solutes Fractionation

    Science.gov (United States)

    Anokhina, T. S.; Yushkin, A. A.; Volkov, V. V.; Antonov, S. V.; Volkov, A. V.

    This work was focused on investigation of industrial cellophane film as a membrane material for solvent nanofiltration. The effect of conditioning of cellophane membranes by stepwise changing of composition of ethanol-water binary mixtures (from ethanol to water and from water to ethanol) was studied. It was shown that such treatment leads to an increase of ethanol permeability more than two orders of magnitude over initial untreated film samples. Treated cellophane membranes possess the ethanol permeability coefficient comparable with the values for highly permeability glassy polymers. Investigation of cellophane swelling in water ethanol solutions allowed to conclude that during the treatment formation of porous in the film takes place due to increase of inter chain distances. Observed high ethanol permeability connected with the fact that formed porous structure remains after the replacement of water with ethanol. Also it was shown that rejection coefficients of a number of dyes (MW 350) were in good agreement with the degree of hydrophobicity/hydrophilicity and ability of the solvent to form hydrogen bonding with the solute molecules. It was demonstrated that cellulose-based membranes can be complimentary for other type of the membranes in fractionation of multi-components solutions.

  5. Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions.

    Science.gov (United States)

    Römling, Ute; Galperin, Michael Y

    2015-09-01

    Recent studies of bacterial cellulose biosynthesis, including structural characterization of a functional cellulose synthase complex, provided the first mechanistic insight into this fascinating process. In most studied bacteria, just two subunits, BcsA and BcsB, are necessary and sufficient for the formation of the polysaccharide chain in vitro. Other subunits - which differ among various taxa - affect the enzymatic activity and product yield in vivo by modulating (i) the expression of the biosynthesis apparatus, (ii) the export of the nascent β-D-glucan polymer to the cell surface, and (iii) the organization of cellulose fibers into a higher-order structure. These auxiliary subunits play key roles in determining the quantity and structure of resulting biofilms, which is particularly important for the interactions of bacteria with higher organisms - leading to rhizosphere colonization and modulating the virulence of cellulose-producing bacterial pathogens inside and outside of host cells. We review the organization of four principal types of cellulose synthase operon found in various bacterial genomes, identify additional bcs genes that encode components of the cellulose biosynthesis and secretion machinery, and propose a unified nomenclature for these genes and subunits. We also discuss the role of cellulose as a key component of biofilms and in the choice between acute infection and persistence in the host. PMID:26077867

  6. Bacterial cellulose biosynthesis: diversity of operons, subunits, products and functions

    Science.gov (United States)

    Römling, Ute; Galperin, Michael Y.

    2015-01-01

    Summary Recent studies of bacterial cellulose biosynthesis, including structural characterization of a functional cellulose synthase complex, provided the first mechanistic insight into this fascinating process. In most studied bacteria, just two subunits, BcsA and BcsB, are necessary and sufficient for the formation of the polysaccharide chain in vitro. Other subunits – which differ among various taxa – affect the enzymatic activity and product yield in vivo by modulating expression of biosynthesis apparatus, export of the nascent β-D-glucan polymer to the cell surface, and the organization of cellulose fibers into a higher-order structure. These auxiliary subunits play key roles in determining the quantity and structure of the resulting biofilm, which is particularly important for interactions of bacteria with higher organisms that lead to rhizosphere colonization and modulate virulence of cellulose-producing bacterial pathogens inside and outside of host cells. Here we review the organization of four principal types of cellulose synthase operons found in various bacterial genomes, identify additional bcs genes that encode likely components of the cellulose biosynthesis and secretion machinery, and propose a unified nomenclature for these genes and subunits. We also discuss the role of cellulose as a key component of biofilms formed by a variety of free-living and pathogenic bacteria and, for the latter, in the choice between acute infection and persistence in the host. PMID:26077867

  7. In-situ glyoxalization during biosynthesis of bacterial cellulose.

    Science.gov (United States)

    Castro, Cristina; Cordeiro, Nereida; Faria, Marisa; Zuluaga, Robin; Putaux, Jean-Luc; Filpponen, Ilari; Velez, Lina; Rojas, Orlando J; Gañán, Piedad

    2015-08-01

    A novel method to synthesize highly crosslinked bacterial cellulose (BC) is reported. The glyoxalization is started in-situ, in the culture medium during biosynthesis of cellulose by Gluconacetobacter medellensis bacteria. Strong crosslinked networks were formed in the contact areas between extruded cellulose ribbons by reaction with the glyoxal precursors. The crystalline structure of cellulose was preserved while the acidic component of the surface energy was reduced. As a consequence, its predominant acidic character and the relative contribution of the dispersive component increased, endowing the BC network with a higher hydrophobicity. This route for in-situ crosslinking is expected to facilitate other modifications upon biosynthesis of cellulose ribbons by microorganisms and to engineer the strength and surface energy of their networks. PMID:25933519

  8. CARS and SHG microscopy for the characterization of bacterial cellulose

    Science.gov (United States)

    Enejder, Annika; Brackmann, Christian; Bodin, Aase; Åkeson, Madeleine; Gatenholm, Paul

    2009-02-01

    We have developed a protocol employing dual-mode non-linear microscopy for the monitoring of the biosynthesis of bacterial cellulose at a single-fiber level, with the fundamental aim to achieve a product with material properties similar to those of human blood vessels. Grown in a tubular geometry it could then be used as a natural and biocompatible source of replacement tissue in conjunction with cardiovascular surgery. The bacteria (Acetobacter xylinum) were selectively visualized based on the CH2 vibration of its organic macromolecular contents by the Coherent Anti-Stokes Raman Scattering (CARS) process and, simultaneously, the non-centrosymmetrically ordered, birefringent cellulose fibers were depicted by the Second Harmonic Generation (SHG) process. This dual-channel detection approach allows the monitoring of cellulose-fiber formation in vivo and to determine the influence of e.g. different growth conditions on fiber thickness and orientation, their assembling into higher-order structures and overall network density. The bacterial and fiber distributions were monitored in a simple microscope cultivation chamber, as well as in samples harvested during the actual fermentation process of tubular cellulose grafts. The CARS and SHG co-localization images reveal that highest bacterial population densities can be observed in the surface regions of the cellulose tissue, where the primary growth presumably takes place. The cellulose network morphology was also compared with that of human arteries and veins, from which we conclude that the cellulose matrix is comparatively homogeneous in contrast to the wavy band-like supra-formations of collagen in the native tissue. This prompts for sophisticated fermentation methods by which tunnels and pores of appropriate sizes and shapes can be introduced in the cellulose network in a controllable way. With this protocol we hope to contribute to the fundamental knowledge required for optimal production of bioengineered cellulose

  9. Production of bacterial cellulose and enzyme from waste fiber sludge

    OpenAIRE

    Cavka, Adnan; Guo, Xiang; Tang, Shui-Jia; Winestrand, Sandra; Jönsson, Leif J.; Hong, Feng

    2013-01-01

    Background: Bacterial cellulose (BC) is a highly crystalline and mechanically stable nanopolymer, which has excellent potential as a material in many novel applications, especially if it can be produced in large amounts from an inexpensive feedstock. Waste fiber sludge, a residue with little or no value, originates from pulp mills and lignocellulosic biorefineries. A high cellulose and low lignin content contributes to making the fiber sludge suitable for bioconversion, even without a thermoc...

  10. Bacterial cellulose biosynthesis: diversity of operons, subunits, products and functions

    OpenAIRE

    Römling, Ute; Galperin, Michael Y

    2015-01-01

    Recent studies of bacterial cellulose biosynthesis, including structural characterization of a functional cellulose synthase complex, provided the first mechanistic insight into this fascinating process. In most studied bacteria, just two subunits, BcsA and BcsB, are necessary and sufficient for the formation of the polysaccharide chain in vitro. Other subunits – which differ among various taxa – affect the enzymatic activity and product yield in vivo by modulating expression of biosynthesis ...

  11. Reinforcement of bacterial cellulose aerogels with biocompatible polymers

    OpenAIRE

    Pircher, N.; Veigel, S.; Aigner, N; Nedelec, J. M.; Rosenau, T.; Liebner, F.

    2014-01-01

    Bacterial cellulose (BC) aerogels, which are fragile, ultra-lightweight, open-porous and transversally isotropic materials, have been reinforced with the biocompatible polymers polylactic acid (PLA), polycaprolactone (PCL), cellulose acetate (CA), and poly(methyl methacrylate) (PMMA), respectively, at varying BC/polymer ratios. Supercritical carbon dioxide anti-solvent precipitation and simultaneous extraction of the anti-solvent using scCO2 have been used as core techniques for incorporating...

  12. Effect of γ irradiation on poly(vinyl alcohol) and bacterial cellulose composites used as packaging materials

    Science.gov (United States)

    Stoica-Guzun, Anicuta; Stroescu, Marta; Jipa, Iuliana; Dobre, Loredana; Zaharescu, Traian

    2013-03-01

    The aim of this paper is to present the influence of bacterial cellulose microfibrils and γ-radiation dose on poly(vinyl alcohol) (PVA)-bacterial cellulose (BC) composites. Two composite materials were obtained: the first one from PVA aqueous solution 4% and 5% wet bacterial cellulose and the second from the same PVA solution and 10% wet bacterial cellulose. In terms of PVA/dry BC ratios (w/w) for these films the ratios are 1/0.025 and 1/0.050. The obtained composite materials were characterized by infrared spectroscopy with Fourier transform (FT-IR) and UV-vis spectroscopy in order to evaluate the irradiation effect on their stability. The swelling behavior of the polymeric composites was also studied. The composite materials were compared with a film of pure PVA and a dry BC membrane.

  13. Regenerated bacterial cellulose microfluidic column for glycoproteins separation.

    Science.gov (United States)

    Chen, Chuntao; Zhu, Chunlin; Huang, Yang; Nie, Ying; Yang, Jiazhi; Shen, Ruiqi; Sun, Dongping

    2016-02-10

    To analysis and separate glycoproteins, a simple strategy to prepare regenerated bacterial cellulose (RBC) column with concanavalin A (Con A) lectin immobilized in microfluidic system was applied. RBC was filled into microchannel to fabricate RBC microcolumn after bacterial cellulose dissolved in NaOH-sulfourea water solution. Lectin Con A was covalently connected onto RBC matrix surface via Schiff-base formation. Lysozyme (non-glycoprotein) and transferrin (glycoprotein) were successfully separated based on their different affinities toward the immobilized Con A. Overall, the RBC microfluidic system presents great potential application in affinity chromatography of glycoproteins analysis, and this research represents a significant step to prepare bacterial cellulose (BC) as column packing material in microfluidic system. What is more, troublesome operations for lectin affinity chromatography were simplified by integrating the microfluidic chip onto a HPLC (High Performance Liquid Chromatography) system. PMID:26686130

  14. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain

    OpenAIRE

    Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Abbott, James; Micklem, Chris N.; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S.; Kitney, Richard; Reeve, Benjamin

    2016-01-01

    Bacterial cellulose is a remarkable material that is malleable, biocompatible, and over 10-times stronger than plant-based cellulose. It is currently used to create materials for tissue engineering, medicine, defense, electronics, acoustics, and fabrics. We describe here a bacterial strain that is readily amenable to genetic engineering and produces high quantities of bacterial cellulose in low-cost media. To reprogram this organism for biotechnology applications, we created a set of genetic ...

  15. Production and Characterization of a New Bacterial Cellulose/Poly(Vinyl Alcohol) Nanocomposite

    OpenAIRE

    Miguel Gama; Fernando Dourado; João Pedro Silva; Alexandre F. Leitão

    2013-01-01

    Bacterial cellulose (BC) is characterized for its high water holding capacity, high crystallinity, an ultrafine fiber network and high tensile strength. This work demonstrates the production of a new interpenetrated polymer network nanocomposite obtained through the incorporation of poly(vinyl alcohol) (PVA) on the BC matrix and evaluates the effect of oven drying on the morphological, mechanical and mass transfer properties of the composite membranes. Both the addition of PVA and oven drying...

  16. Resolution of Dialyzer Membrane-Associated Thrombocytopenia with Use of Cellulose Triacetate Membrane: A Case Report

    OpenAIRE

    Feyisayo Olafiranye; Win Kyaw; Oladipupo Olafiranye

    2011-01-01

    Blood and dialyzer membrane interaction can cause significant thrombocytopenia through the activation of complement system. The extent of this interaction determines the biocompatibility of the membrane. Although the newer synthetic membranes have been shown to have better biocompatibility profile than the cellulose-based membranes, little is known about the difference in biocompatibility between synthetic membrane and modified cellulose membrane. Herein, we report a case of a patient on hemo...

  17. Ultrafiltration and Nanofiltration Multilayer Membranes Based on Cellulose

    KAUST Repository

    Livazovic, Sara

    2016-06-09

    Membrane processes are considered energy-efficient for water desalination and treatment. However most membranes are based on polymers prepared from fossil petrochemical sources. The development of multilayer membranes for nanofiltration and ultrafiltration, with thin selective layers of naturally available cellulose, has been hampered by the availability of non-aggressive solvents. We propose the manufacture of cellulose membranes based on two approaches: (i) silylation, coating from solutions in tetrahydrofuran, followed by solvent evaporation and cellulose regeneration by acid treatment; (ii) casting from solution in 1-ethyl-3-methylimidazolum acetate ([C2mim]OAc), an ionic liquid, followed by phase inversion in water. In the search for less harsh, greener membrane manufacture, the combination of cellulose and ionic liquid is of high interest. Due to the abundance of OH groups and hydrophilicity, cellulose-based membranes have high permeability and low fouling tendency. Membrane fouling is one of the biggest challenges in membrane industry and technology. Accumulation and deposition of foulants onto the surface reduce membrane efficiency and requires harsh chemical cleaning, therefore increasing the cost of maintenance and replacement. In this work the resistance of cellulose 5 membranes towards model organic foulants such as Suwanee River Humic Acid (SRHA) and crude oil have been investigated. Cellulose membrane was tested in this work for oil-water (o/w) separation and exhibited practically 100 % oil rejection with good flux recovery ratio and membrane resistivity. The influence of anionic, cationic and ionic surfactant as well as pH and crude oil concentration on oil separation was investigated, giving a valuable insight in experimental and operational planning.

  18. All-biomaterial supercapacitor derived from bacterial cellulose.

    Science.gov (United States)

    Wang, Xiangjun; Kong, Debin; Zhang, Yunbo; Wang, Bin; Li, Xianglong; Qiu, Tengfei; Song, Qi; Ning, Jing; Song, Yan; Zhi, Linjie

    2016-04-28

    An all-biomaterial originated film supercapacitor has been successfully fabricated for the first time based on a unique three-dimensional bacterial cellulose (BC) derived electrode and a novel BC-based gel electrolyte. The obtained supercapacitor displays an excellent specific capacitance of 289 mF cm(-2) and an improved solution resistance of 7 Ω. PMID:27093428

  19. Cellulose microfibril deposition: coordinated activity at the plant plasma membrane

    NARCIS (Netherlands)

    Lindeboom, J.J.; Mulder, B.; Vos, J.W.; Ketelaar, M.J.; Emons, A.M.C.

    2008-01-01

    Plant cell wall production is a membrane-bound process. Cell walls are composed of cellulose microfibrils, embedded inside a matrix of other polysaccharides and glycoproteins. The cell wall matrix is extruded into the existing cell wall by exocytosis. This same process also inserts the cellulose syn

  20. Aqueous alkali metal hydroxide insoluble cellulose ether membrane

    Science.gov (United States)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1969-01-01

    A membrane that is insoluble in an aqueous alkali metal hydroxide medium is described. The membrane is a resin which is a water-soluble C2-C4 hydroxyalkyl cellulose ether polymer and an insolubilizing agent for controlled water sorption, a dialytic and electrodialytic membrane. It is particularly useful as a separator between electrodes or plates in an alkaline storage battery.

  1. Bacterial cellulose-kaolin nanocomposites for application as biomedical wound healing materials

    Science.gov (United States)

    Wanna, Dwi; Alam, Catharina; Toivola, Diana M.; Alam, Parvez

    2013-12-01

    This short communication provides preliminary experimental details on the structure-property relationships of novel biomedical kaolin-bacterial cellulose nanocomposites. Bacterial cellulose is an effective binding agent for kaolin particles forming reticulated structures at kaolin-cellulose interfaces and entanglements when the cellulose fraction is sufficiently high. The mechanical performance of these materials hence improves with an increased fraction of bacterial cellulose, though this also causes the rate of blood clotting to decrease. These composites have combined potential as both short-term (kaolin) and long-term (bacterial cellulose) wound healing materials.

  2. Biodegradation evaluation of bacterial cellulose, vegetable cellulose and poly (3-hydroxybutyrate in soil

    Directory of Open Access Journals (Sweden)

    Suellen Brasil Schröpfer

    2015-04-01

    Full Text Available In recent years, the inappropriate disposal of polymeric materials has increased due to industrial development and increase of population consumption. This problem may be minimized by using biodegradable polymers, such as bacterial cellulose and poly(hydroxybutyrate, from renewable resources. This work was aimed at monitoring and evaluating degradation of bacterial cellulose, vegetable cellulose and poly(3-hydroxybutyrate using Thermogravimetric Analysis and Scanning Electron Microscopy. Controlled mass polymer samples were buried in pots containing soil. Samples were removed in 30 day intervals up to 180 days. The results show that the mass of the polymer increased in the first month when in contact with the soil but then it was degraded as evidenced by mass loss and changes on the sample surface.

  3. Chromosphores in cellulosics, XI: isoloation and identification of residual chromophores from bacterial cellulose

    Science.gov (United States)

    In the present work, bacterial cellulose (BC) was analyzed for its chromophore content with the chromophore release and identification (CRI) method. In aged BC, seven chromophores were unambiguously identified, despite their very low (ppb) presence. The compounds contain 2-hydroxy-[1,4]benzoquinone,...

  4. Effect of Gamma Irradiation on Microbial Cellulose Membrane For Application In Guided Bone Regeneration (GBR)

    International Nuclear Information System (INIS)

    The synthesis and effect of gamma irradiation on characteristics of microbial cellulose membrane have been evaluated. Microbial cellulose gel (nata de coco) was produce using bacteria Acetobacter xylinum incubated in bacterial growth medium containing coconut water as a micro nutrient source. Microbial cellulose membrane was prepared using mould compression at 120°C for 5 minutes. The membranes were irradiated using gamma rays with doses of 25 and 50 kGy respectively at dose rate of 10 kGy/h. Several parameters such as water absorption, surface morphology, thermal and mechanical properties of un-irradiated and irradiated membranes were analyzed. The results showed that optimum production of microbial cellulose by A. Xylinum is 10 to 12 days at incubation temperature of 30°C and pH 4. Chemically treatments of MC membrane by NaOH and NaOCl solution were effective to remove the bacteria contaminant, bacterial cells embedded in the polymer net and endotoxin which occurred during cellulose production as well as produced membrane with more white colour. Water absorption properties of MC membranes showed maximum value at immersion temperature of 25°C, 37°C and 50°C were 110, 137 and 140 %, respectively. Water absorption of MC membrane decreases by increasing irradiation dose. Microscopic photograph of MC membrane showed that the membrane was consisted of interconnected nano to micro porous structures with diameter ranging from 0.05 to 0.5 μm. Thermal properties of MC showed that decomposition temperature of un-irradiated and irradiated MC membrane at dose of 25 and 50 kGy were 328°C, 328°C and 295°C, respectively. Tensile strength of un-irradiated MC membrane in dry state was 102 MPa. Irradiation at 25 and 50 kGy reduced tensile strength to become 85 and 51 MPa respectively. The decrease of thermal property and mechanical strength of MC membrane by irradiation is due to decomposition of polymeric cellulose to the lower molecular weight. This degradation hopefully

  5. Magnetically responsive bacterial cellulose: Synthesis and magnetic studies

    Science.gov (United States)

    Vitta, Satish; Drillon, Marc; Derory, A.

    2010-09-01

    Bacterial cellulose with its porous network structure was used as a support to precipitate Ni nanoparticles by room temperature chemical reduction of Ni-chloride hexahydrate. The room temperature reduction in an aqueous environment results in the formation of crystalline Ni nanoparticles of size 10 to 60 nm inside the bacterial cellulose along with Ni(OH)2. The nanocrystals have an equiaxed shape and are found both as individual particles as well as small aggregates depending on the porous network structure of cellulose matrix. The bacterial cellulose does not undergo any change and retains its crystal structure even after chemical reduction reaction. The Ni loaded bacterial cellulose is found to be ferromagnetic at room temperature with a saturation magnetization of 2.81 emu g-1 which increases by an order of magnitude to 21.8 emu g-1 at 1.8 K. The coercive field also increases by two orders of magnitude from 28 G at 300 K to 2900 G at 1.8 K. The zero field cooled magnetization however exhibits a superparamagnetic behavior with a peak at 20 K, the blocking temperature and this behavior is observed even in ac magnetization. The magnetization decrease with increasing temperature up to 400 K, when extrapolated to high temperatures using a power law indicates a Curie transition at 500 K, much lower than the Curie temperature of bulk Ni. The fraction of isolated superparamagnetic nanoparticles present in the composite was estimated from the saturation magnetization and is found to be ˜88%. These results clearly highlight the presence of two separate magnetic phases, superparamagnetic, and ferromagnetic, and the role of various magnetic interactions in the collective magnetic behavior of Ni nanoparticles in the composite structure.

  6. Immobilization of Glucose Oxidase on Cellulose/Cellulose Acetate Membrane and its Detection by Scanning Electrochemical Microscope (SECM)

    Institute of Scientific and Technical Information of China (English)

    Jin Sheng ZHAO; Zhen Yu YANG; Yi He ZHANG; Zheng Yu YANG

    2004-01-01

    Cellulose/cellulose acetate membranes were prepared and functionalized by introducing amino group on it, and then immobilized the glucose oxidase (Gox) on the functionalizd membrane. SECM was applied for the detection of enzyme activity immobilized on the membrane. Immobilized biomolecules on such membranes was combined with analysis apparatus and can be used in bioassays.

  7. All-biomaterial supercapacitor derived from bacterial cellulose

    Science.gov (United States)

    Wang, Xiangjun; Kong, Debin; Zhang, Yunbo; Wang, Bin; Li, Xianglong; Qiu, Tengfei; Song, Qi; Ning, Jing; Song, Yan; Zhi, Linjie

    2016-04-01

    An all-biomaterial originated film supercapacitor has been successfully fabricated for the first time based on a unique three-dimensional bacterial cellulose (BC) derived electrode and a novel BC-based gel electrolyte. The obtained supercapacitor displays an excellent specific capacitance of 289 mF cm-2 and an improved solution resistance of 7 Ω.An all-biomaterial originated film supercapacitor has been successfully fabricated for the first time based on a unique three-dimensional bacterial cellulose (BC) derived electrode and a novel BC-based gel electrolyte. The obtained supercapacitor displays an excellent specific capacitance of 289 mF cm-2 and an improved solution resistance of 7 Ω. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01485b

  8. Development of self-assembled bacterial cellulose-starch nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Grande, Cristian J. [Faculty of Mechanical Engineering, Catholic University of Peru (PUCP), Lima 32 (Peru); Torres, Fernando G., E-mail: fgtorres@pucp.edu.pe [Faculty of Mechanical Engineering, Catholic University of Peru (PUCP), Lima 32 (Peru); Gomez, Clara M., E-mail: Clara.Gomez@uv.es [Departament de Quimica Fisica and Institut de Ciencia dels Materials, Dr Moliner 50, Universitat de Valencia, E-46100 Burjassot, Valencia (Spain); Troncoso, Omar P. [Faculty of Mechanical Engineering, Catholic University of Peru (PUCP), Lima 32 (Peru); Canet-Ferrer, Josep; Martinez-Pastor, Juan [Unit of Optoelectronic Materials and Devices of the University of Valencia, P.O. Box 22085, 46071 Valencia (Spain)

    2009-05-05

    A bioinspired bottom-up process was developed to produce self-assembled nanocomposites of cellulose synthesized by Acetobacter bacteria and native starch. This process takes advantage of the way some bacteria extrude cellulose nanofibres and of the transport process that occurs during the gelatinization of starch. Potato and corn starch were added into the culture medium and partially gelatinized in order to allow the cellulose nanofibrils to grow in the presence of a starch phase. The bacterial cellulose (BC)-starch gels were hot pressed into sheets that had a BC volume fraction higher than 90%. During this step starch was forced to further penetrate the BC network. The self-assembled BC-starch nanocomposites showed a coherent morphology that was assessed by Atomic Force Microscopy (AFM) and Environmental Scanning Electron Microscopy (ESEM). The nanocomposites structure was studied using X-ray diffraction and ATR-FTIR spectroscopy. The degree of crystallinity of the final nanocomposites was used to estimate the volume fraction of BC. The aim of this paper is to explore a new methodology that could be used to produce nanomaterials by introducing a different phase into a cellulose nanofibre network during its assembly.

  9. Development of self-assembled bacterial cellulose-starch nanocomposites

    International Nuclear Information System (INIS)

    A bioinspired bottom-up process was developed to produce self-assembled nanocomposites of cellulose synthesized by Acetobacter bacteria and native starch. This process takes advantage of the way some bacteria extrude cellulose nanofibres and of the transport process that occurs during the gelatinization of starch. Potato and corn starch were added into the culture medium and partially gelatinized in order to allow the cellulose nanofibrils to grow in the presence of a starch phase. The bacterial cellulose (BC)-starch gels were hot pressed into sheets that had a BC volume fraction higher than 90%. During this step starch was forced to further penetrate the BC network. The self-assembled BC-starch nanocomposites showed a coherent morphology that was assessed by Atomic Force Microscopy (AFM) and Environmental Scanning Electron Microscopy (ESEM). The nanocomposites structure was studied using X-ray diffraction and ATR-FTIR spectroscopy. The degree of crystallinity of the final nanocomposites was used to estimate the volume fraction of BC. The aim of this paper is to explore a new methodology that could be used to produce nanomaterials by introducing a different phase into a cellulose nanofibre network during its assembly.

  10. Bacterial cellulose: fabrication, characterization and biocompatibility studies

    OpenAIRE

    Zeng, Muling

    2014-01-01

    En marzo de 2011, apliqué a una beca del CSC (Consejo de Becas de China), en cooperación con la Universitat Autònoma de Barcelona (UAB). Después de medio año, conseguí la beca y comencé mi tesis doctoral bajo la supervisión de la Dra. Anna Roig y la Dra. Anna Laromaine. Mi proyecto asignada era en celulosa bacteriana: su síntesis, caracterización y estudios de biocompatibilidad. La celulosa bacteriana es un polisacárido de fuentes renovables, y puede ser producida por algunos tipos de bacteri...

  11. Bacterial Cellulose Supported Gold Nanoparticles with Excellent Catalytic Properties.

    Science.gov (United States)

    Chen, Meiyan; Kang, Hongliang; Gong, Yumei; Guo, Jing; Zhang, Hong; Liu, Ruigang

    2015-10-01

    Amidoxime surface functionalized bacterial cellulose (AOBC) has been successfully prepared by a simple two-step method without obviously changing the morphology of bacterial cellulose. AOBC has been used as the reducing agent and carrier for the synthesis of gold nanoparticles (AuNPs) that distributed homogeneously on bacterial cellulose surface. Higher content in amidoxime groups in AOBC is beneficial for the synthesis of AuNPs with smaller and more uniform size. The AuNPs/AOBC nanohybrids have excellent catalytic activity for reduction of 4-nitrophenol (4-NP) by using NaBH4. It was found that catalytic activity of AuNPs/AOBC first increases with increasing NaBH4 concentration and temperature, and then leveled off at NaBH4 concentration above 238 mM and temperature above 50 °C. Moreover, AuNPs with smaller size have higher catalytic activity. The highest apparent turnover frequency of AuNPs/AOBC is 1190 h(-1). The high catalytic activity is due to the high affinity of 4-NP with AuNPs/AOBC and the reduced product 4-aminophenol has good solubility in water in the presence of AuNPs/AOBC. The catalytic stability of the AuNPs/AOBC was estimated by filling a fluid column contained AuNPs/AOBC and used for continuously catalysis of the reduction of 4-NP by using NaBH4. The column works well without detection of 4-NP in the eluent after running for more than two months, and it is still running. This work provides an excellent catalyst based on bacterial cellulose stabilized AuNPs and has promising applications in industry. PMID:26357993

  12. Application of Bacterial Cellulose (BC) in Natural Facial Scrub

    OpenAIRE

    Norhasliza Hasan; Dayang Radiah Awang Biak; Suryani Kamarudin

    2012-01-01

    A new facial scrub containing only natural ingredients and powdered bacterial cellulose (BC) was formulated. The other ingredients used in the formulation include powdered glutinous rice, aloe vera extract, ascorbic acid (Vitamin C) powder and olive oil. The rheological behaviours of the formulated and commercial facial scrubs were tested using plate and plate rheometer. Both formulated and commercial facial scrubs shows shear thinning  behaviour (non-Newtonian liquid). The formulated facial ...

  13. Hemocompatibility study of a bacterial cellulose/polyvinyl alcohol nanocomposite

    OpenAIRE

    Alexandre F. Leitão; Gupta, Swati; Silva, João P; Reviakine, I.; Gama, F. M.

    2013-01-01

    Cardiovascular disease is among the leading causes of death in the world. Grafts are usually used to treat these diseases by redirecting blood flow around occluded vessels. We previously showed bacterial cellulose (BC) is a suitable artificial alternative to commonly used autologous grafts. We found that the addition of polyvinyl alcohol (PVA) improves the mechanical properties of BC. For cardiovascular applications, hemocompatibility needs to be characterized. Here, we c...

  14. Biocompatible Bacterial Cellulose-Poly(2-hydroxyethyl methacrylate) Nanocomposite Films

    OpenAIRE

    Figueiredo, Andrea G. P. R.; Ana R. P. Figueiredo; Ana Alonso-Varona; Fernandes, Susana C. M.; Teodoro Palomares; Eva Rubio-Azpeitia; Ana Barros-Timmons; Silvestre, Armando J. D.; Carlos Pascoal Neto,; Freire, Carmen S. R.

    2013-01-01

    A series of bacterial cellulose-poly(2-hydroxyethyl methacrylate) nanocomposite films was prepared by in situ radical polymerization of 2-hydroxyethyl methacrylate (HEMA), using variable amounts of poly(ethylene glycol) diacrylate (PEGDA) as cross-linker. Thin films were obtained, and their physical, chemical, thermal, and mechanical properties were evaluated. The films showed improved translucency compared to BC and enhanced thermal stability and mechanical performance when compared to poly(...

  15. Bacterial cellulose-lactoferrin as an antimicrobial edible packaging

    OpenAIRE

    Padrão, Jorge; Gonçalves, S.; Silva, João P.; Sencadas, Vítor João Gomes Silva; Lanceros-Méndez, S.; A. C. Pinheiro; Vicente, A.A.; Rodrigues, L. R.; Dourado, Fernando

    2016-01-01

    Bacterial cellulose (BC) films from two distinct sources (obtained by static culture with Gluconacetobacter xylinus ATCC 53582 (BC1) and from a commercial source (BC2)) were modified by bovine lactoferrin (bLF) adsorption. The functionalized films (BC+bLF) were assessed as edible antimicrobial packaging, for use in direct contact with highly perishable foods, specifically fresh sausage as a model of meat products. BC+bLF films and sausage casings were characterized regarding their water vapou...

  16. FRACTIONATION OF HYDROLYZED MICROCRYSTALLINE CELLULOSE BY ULTRAFILTRATION MEMBRANE

    OpenAIRE

    NGUYEN HUYNH THAO THY; RAJESH NITHYANANDAM

    2016-01-01

    Bioethanol process using cellulosic materials have been emerging an interesting field with a high potential of replacing petroleum-based fuel, as a future alternative. This work emphasised on improvement of enzymatic hydrolysis of alkaline NaOH-pretreated cellulose by applying an ultrafiltration membrane 10 kDa cutoff in order to minimise sugar inhibition on enzymes, reuse enzyme in hydrolysis and recover sugar for the subsequent fermentation. An improvement in the methodology of the enzymati...

  17. Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum.

    Science.gov (United States)

    Li, Zheng; Wang, Lifen; Hua, Jiachuan; Jia, Shiru; Zhang, Jianfei; Liu, Hao

    2015-04-20

    The work is aimed to investigate the suitability of waste water of candied jujube-processing industry for the production of bacterial cellulose (BC) by Gluconacetobacter xylinum CGMCC No.2955 and to study the structure properties of bacterial cellulose membranes. After acid pretreatment, the glucose of hydrolysate was higher than that of waste water of candied jujube. The volumetric yield of bacterial cellulose in hydrolysate was 2.25 g/L, which was 1.5-folds of that in waste water of candied jujube. The structures indicated that the fiber size distribution was 3-14 nm in those media with an average diameter being around 5.9 nm. The crystallinity index of BC from pretreatment medium was lower than that of without pretreatment medium and BCs from various media had similar chemical binding. Ammonium citrate was a key factor for improving production yield and the crystallinity index of BC. PMID:25662694

  18. Synthesis of flexible magnetic nanohybrid based on bacterial cellulose under ultrasonic irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yi; Yang, Jingxuan; Zheng, Weili; Wang, Xiao; Xiang, Cao; Tang, Lian; Zhang, Wen; Chen, Shiyan; Wang, Huaping, E-mail: wanghp@dhu.edu.cn

    2013-05-01

    Flexible magnetic membrane based on bacterial cellulose (BC) was successfully prepared by in-situ synthesis of the Fe{sub 3}O{sub 4} nanoparticles under different conditions and its properties were characterized. The results demonstrated that the Fe{sub 3}O{sub 4} nanoparticles coated with PEG were well homogeneously dispersed in the BC matrix under ultrasonic irradiation with the saturation magnetization of 40.58 emu/g. Besides that, the membranes exhibited the striking flexibility and mechanical properties. This study provided a green and facile method to inhibit magnetic nanoparticle aggregation without compromising the mechanical properties of the nanocomposites. Magnetically responsive BC membrane would have potential applications in electronic actuators, information storage, electromagnetic shielding coating and anti-counterfeit. - Highlights: ► Flexible magnetic film is prepared by in situ synthesis on bacterial cellulose. ► Ultrasound and PEG are used together to inhibit the nanoparticle aggregation. ► The magnetic membrane demonstrates the great superparamagnetic behavior.

  19. In Vitro Studies of Bacterial Cellulose and Magnetic Nanoparticles Smart Nanocomposites for Efficient Chronic Wounds Healing

    Science.gov (United States)

    Bunea, Mihaela-Cristina; Stanescu, Paul; Casarica, Angela; Iovu, Horia; Zaharia, Catalin

    2015-01-01

    The quality of life of patients with chronic wounds can be extremely poor and, therefore, over the past decades, great efforts have been made to develop efficient strategies to improve the healing process and the social impact associated with these conditions. Cell based therapy, as a modern tissue engineering strategy, involves the design of 3D cell-scaffold bioconstructs obtained by preseeding drug loaded scaffolds with undifferentiated cells in order to achieve in situ functional de novo tissue. This paper reports on the development of bionanocomposites based on bacterial cellulose and magnetic nanoparticles (magnetite) for efficient chronic wounds healing. Composites were obtained directly in the cellulose bacterial culture medium by dispersing various amounts of magnetite nanoparticles during the biosynthesis process. After purification and drying, the membranes were characterized by Raman spectroscopy and X-ray diffraction to reveal the presence of magnetite within the bacterial cellulose matrix. Morphological investigation was employed through SEM and TEM analyses on bionanocomposites. The biocompatibility of these innovative materials was studied in relation to human adipose derived stem cells in terms of cellular morphology, viability, and proliferation as well as scaffolds cytotoxic potential. PMID:26106420

  20. Bacterial Cellulose (BC) as a Functional Nanocomposite Biomaterial

    Science.gov (United States)

    Nandgaonkar, Avinav Ghanashyam

    Cellulosic is the most abundant biopolymer in the landscape and can be found in many different organisms. It has been already seen use in the medical field, for example cotton for wound dressings and sutures. Although cellulose is naturally occurring and has found a number of applications inside and outside of the medical field, it is not typically produced in its pure state. A lengthy process is required to separate the lignin, hemicelluloses and other molecules from the cellulose in most renewables (wood, agricultural fibers such as cotton, monocots, grasses, etc.). Although bacterial cellulose has a similar chemical structure to plant cellulose, it is easier to process because of the absence of lignin and hemicelluloses which require a lot of energy and chemicals for removal. Bacterial cellulose (BC) is produced from various species of bacteria such as Gluconacetobacter xylinus. Due to its high water uptake, it has the tendency to form gels. It displays high tensile strength, biocompatibility, and purity compared to wood cellulose. It has found applications in fields such as paper, paper products, audio components (e.g., speaker diaphragms), flexible electronics, supercapacitors, electronics, and soft tissue engineering. In my dissertation, we have functionalized and studied BC-based materials for three specific applications: cartilage tissue engineering, bioelectronics, and dye degradation. In our first study, we prepared a highly organized porous material based on BC by unidirectional freezing followed by a freeze-drying process. Chitosan was added to impart additional properties to the resulting BC-based scaffolds that were evaluated in terms of their morphological, chemical, and physical properties for cartilage tissue engineering. The properties of the resulting scaffold were tailored by adjusting the concentration of chitosan over 1, 1.5, and 2 % (by wt-%). The scaffolds containing chitosan showed excellent shape recovery and structural stability after

  1. Investigation on artificial blood vessels prepared from bacterial cellulose

    International Nuclear Information System (INIS)

    BC (bacterial cellulose) exhibits quite distinctive properties than plant cellulose. The outstanding properties make BC a promising material for preparation of artificial blood vessel. By taking advantage of the high oxygen permeability of PDMS (polydimethylsiloxane) as a tubular template material, a series of BC tubes with a length of 100 mm, a thickness of 1 mm and an outer diameter of 4 or 6 mm were biosynthesized with the help of Gluconacetobacter xylinum. Through characterization by SEM (scanning electron microscope), tensile testing and thermal analysis, it is demonstrated that BC tubes are good enough for artificial blood vessel with elaborated nano-fiber architecture, qualified mechanical properties and high thermal stability. In addition, measurement of biocompatibility also shows that BC tubes are greatly adaptable to the in vivo environment. The results indicate that BC tubes have great potential for being utilized as tubular scaffold materials in the field of tissue engineering. - Highlights: • Bacterial cellulose (BC) can be made into tubular shape through PDMS mold. • BC represents a fine nanofiber network. • The mechanical and thermal properties of BC mimic the situation of real vessel. • BC exhibits attractive biocompatible properties as a substitution of vessel

  2. Investigation on artificial blood vessels prepared from bacterial cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Zang, Shanshan; Zhang, Ran; Chen, Hua; Lu, Yudong; Zhou, Jianhai [Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Chang, Xiao; Qiu, Guixing; Wu, Zhihong [Department of Orthopaedics, Peking Union Medical College Hospital, Beijing 100730 (China); Yang, Guang, E-mail: yang_sunny@yahoo.com [Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2015-01-01

    BC (bacterial cellulose) exhibits quite distinctive properties than plant cellulose. The outstanding properties make BC a promising material for preparation of artificial blood vessel. By taking advantage of the high oxygen permeability of PDMS (polydimethylsiloxane) as a tubular template material, a series of BC tubes with a length of 100 mm, a thickness of 1 mm and an outer diameter of 4 or 6 mm were biosynthesized with the help of Gluconacetobacter xylinum. Through characterization by SEM (scanning electron microscope), tensile testing and thermal analysis, it is demonstrated that BC tubes are good enough for artificial blood vessel with elaborated nano-fiber architecture, qualified mechanical properties and high thermal stability. In addition, measurement of biocompatibility also shows that BC tubes are greatly adaptable to the in vivo environment. The results indicate that BC tubes have great potential for being utilized as tubular scaffold materials in the field of tissue engineering. - Highlights: • Bacterial cellulose (BC) can be made into tubular shape through PDMS mold. • BC represents a fine nanofiber network. • The mechanical and thermal properties of BC mimic the situation of real vessel. • BC exhibits attractive biocompatible properties as a substitution of vessel.

  3. Preparation and characterization of novel wound dressing based on silver nanoparticle-impregnated bacterial cellulose and bacterial cellulose-aloe vera

    International Nuclear Information System (INIS)

    Ideal wound dressings stimulate wound healing, control unpleasant odors, and provide antimicrobial action in wounds. However, most traditional wound dressings such as gauze and biological dressings exhibit exudate leaking which increases the risk of infection and delayed wound healing of tissues. This study aims to develop and characterize a bio-composite of bacterial cellulose and aloe vera having the ideal features of a wound dressing from Acetobacter xylinum-activated culture medium supplemented with various aloe vera concentrations from )-50% (v/v) and the film which exhibits the most uniform results is used for the incorporation of silver nanoparticle as an antibacterial agent. The biopolymer composites of bacterial cellulose and aloe vera were developed by adding 0-50% aloe vera (v/v) in the A. xylinum-activated coconut water medium during biosynthesis in static cultivation for 10 days. The films obtained after drying the membranes were named as bacterial cellulose-aloe vera (BC-A) films. The moisture content of films reached 99% which indicates that the films may be suitable for providing a moist environment to facilitate wound healing fast. With the addition of aloe vera up to 30% (v/v) during BC synthesis, it resulted in a significant improvement in the water absorption capacity of the films showing a WAC ration of 36.46 (r.s.d.= 12.17%, n=3) compared to the unmodified film having a ratio of 9.03 (r.s.d.= 13.95%, n=3). However, the addition of aloe vera at a concentration greater than 30% (v/v) resulted in a decrease in pellicle formation which can be observed from the very weak properties of the films. The BC-A (30%) displayed significantly improved in comparison to the unmodified BC film. Also, it is capable of absorbing high amount of water than its weight and can act as a potential wound dressing which reduces irritation and inflammation. (author)

  4. Bacterial Cellulose Production by Gluconacetobacter sp. RKY5 in a Rotary Biofilm Contactor

    Science.gov (United States)

    Kim, Yong-Jun; Kim, Jin-Nam; Wee, Young-Jung; Park, Don-Hee; Ryu, Hwa-Won

    A rotary biofilm contactor (RBC) inoculated with Gluconacetobacter sp. RKY5 was used as a bioreactor for improved bacterial cellulose production. The optimal number of disk for bacterial cellulose production was found to be eight, at which bacterial cellulose and cell concentrations were 5.52 and 4.98 g/L. When the aeration rate was maintained at 1.25 vvm, bacterial cellulose and cell concentrations were maximized (5.67 and 5.25 g/L, respectively). The optimal rotation speed of impeller in RBC was 15 rpm. When the culture pH in RBC was not controlled during fermentation, the maximal amount of bacterial cellulose (5.53 g/L) and cells (4.91 g/L) was obtained. Under the optimized culture conditions, bacterial cellulose and cell concentrations in RBC reached to 6.17 and 5.58 g/L, respectively.

  5. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain

    Science.gov (United States)

    Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Micklem, Chris N.; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S.; Kitney, Richard; Reeve, Benjamin; Ellis, Tom

    2016-01-01

    Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae. Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology. PMID:27247386

  6. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain.

    Science.gov (United States)

    Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Abbott, James; Micklem, Chris N; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S; Kitney, Richard; Reeve, Benjamin; Ellis, Tom

    2016-06-14

    Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology. PMID:27247386

  7. Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose.

    Science.gov (United States)

    Charreau, Hernan; Foresti, Maria L; Vazquez, Analia

    2013-01-01

    Cellulose nanoparticles (i.e. cellulose elements having at least one dimension in the 1-100 nm range) have received increasing attention during the last decade. This is not only evident in academic articles, but it is also manifested by the increasing number of nanocellulose patents that are published every year. In the current review, nanocellulose patents are reviewed using specific software which provides valuable information on the annual number of patents that have been published throughout the years, main patent owners, most prolific inventors, and patents on the field that have received more citations. Patent statistics on rod-like cellulose nanoparticles extracted from plants by acid hydrolysis (nanocrystals), mechanical treatment leading to microfibrillated cellulose (MFC), and microbially produced nanofibrils (bacterial cellulose, BC) are analyzed in detail. The aim of the current review is to provide researchers with patent information which may help them in visualizing the evolution of nanocellulose technology, both as a whole and also divided among the different nanosized particles that are currently the subject of outstanding scientific attention. Then, patents are not only analyzed by their content, but also by global statistics which will reveal the moment at which different cellulose nanoparticles technologies achieved a breakthrough, the relative interest received by different nanocellulose particles throughout the years, the companies that have been most interested in this technology, the most prolific inventors, and the patents that have had more influence in further developments. It is expected that the results showing the explosion that nanocellulose technology is experiencing in current days will still bring more research on the topic and contribute to the expansion of nanocellulosics applications. PMID:22747719

  8. Investigation on artificial blood vessels prepared from bacterial cellulose.

    Science.gov (United States)

    Zang, Shanshan; Zhang, Ran; Chen, Hua; Lu, Yudong; Zhou, Jianhai; Chang, Xiao; Qiu, Guixing; Wu, Zhihong; Yang, Guang

    2015-01-01

    BC (bacterial cellulose) exhibits quite distinctive properties than plant cellulose. The outstanding properties make BC a promising material for preparation of artificial blood vessel. By taking advantage of the high oxygen permeability of PDMS (polydimethylsiloxane) as a tubular template material, a series of BC tubes with a length of 100 mm, a thickness of 1mm and an outer diameter of 4 or 6mm were biosynthesized with the help of Gluconacetobacter xylinum. Through characterization by SEM (scanning electron microscope), tensile testing and thermal analysis, it is demonstrated that BC tubes are good enough for artificial blood vessel with elaborated nano-fiber architecture, qualified mechanical properties and high thermal stability. In addition, measurement of biocompatibility also shows that BC tubes are greatly adaptable to the in vivo environment. The results indicate that BC tubes have great potential for being utilized as tubular scaffold materials in the field of tissue engineering. PMID:25491966

  9. Drug release kinetics from carboxymethylcellulose-bacterial cellulose composite films.

    Science.gov (United States)

    Juncu, Gheorghe; Stoica-Guzun, Anicuta; Stroescu, Marta; Isopencu, Gabriela; Jinga, Sorin Ion

    2016-08-30

    Composite films of sodium carboxymethyl cellulose and bacterial cellulose (NaCMC-BC) cross-linked with citric acid (CA) were prepared by solution casting method. Ibuprofen sodium salt (IbuNa) has been used to study the mechanism of drug release from composite films. Surface morphology was investigated by scanning electron microscopy (SEM) and proved that the BC content influences the aspect of the films. Fourier transformed infrared spectroscopy (FTIR) revealed specific peaks in IR spectra of composite films which sustain that NaCMC was cross-linked with CA. Starting from swelling observations, the release kinetic of IbuNa was described using a model which neglects the volume expansion due to polymer swelling and which considers non-linear diffusion coefficients for drug and solvent. The IbuNa release is also influenced by BC content, the drug release rate was decreasing with the increase of BC content. PMID:26688041

  10. Bacterial Cellulose From Rice Waste Water With Addition Chitosan, Glycerol, And Silver Nanoparticle

    OpenAIRE

    Eli Rohaeti; Endang WLFX; Anna Rakhmawati

    2016-01-01

    This study aimed to prepare silver nanoparticles chemically, deposite silver nanoparticles on bacterial cellulose-chitosan-glycerol composite based rice waste water, as well as test the antibacterial activity of bacterial cellulose and its composite. Preparation of silver nanoparticles was conducted by chemical reduction of silver nitrate solution, as well as trisodium citrate as the reductor. Bacterial cellulose from rice waste water is fermented by the bacteria Acetobacter xylinum for 7 day...

  11. Manufacturing of robust natural fiber preforms utilizing bacterial cellulose as binder.

    Science.gov (United States)

    Lee, Koon-Yang; Shamsuddin, Siti Rosminah; Fortea-Verdejo, Marta; Bismarck, Alexander

    2014-01-01

    A novel method of manufacturing rigid and robust natural fiber preforms is presented here. This method is based on a papermaking process, whereby loose and short sisal fibers are dispersed into a water suspension containing bacterial cellulose. The fiber and nanocellulose suspension is then filtered (using vacuum or gravity) and the wet filter cake pressed to squeeze out any excess water, followed by a drying step. This will result in the hornification of the bacterial cellulose network, holding the loose natural fibers together. Our method is specially suited for the manufacturing of rigid and robust preforms of hydrophilic fibers. The porous and hydrophilic nature of such fibers results in significant water uptake, drawing in the bacterial cellulose dispersed in the suspension. The bacterial cellulose will then be filtered against the surface of these fibers, forming a bacterial cellulose coating. When the loose fiber-bacterial cellulose suspension is filtered and dried, the adjacent bacterial cellulose forms a network and hornified to hold the otherwise loose fibers together. The introduction of bacterial cellulose into the preform resulted in a significant increase of the mechanical properties of the fiber preforms. This can be attributed to the high stiffness and strength of the bacterial cellulose network. With this preform, renewable high performance hierarchical composites can also be manufactured by using conventional composite production methods, such as resin film infusion (RFI) or resin transfer molding (RTM). Here, we also describe the manufacturing of renewable hierarchical composites using double bag vacuum assisted resin infusion. PMID:24893649

  12. Manufacturing Of Robust Natural Fiber Preforms Utilizing Bacterial Cellulose as Binder

    Science.gov (United States)

    Lee, Koon-Yang; Shamsuddin, Siti Rosminah; Fortea-Verdejo, Marta; Bismarck, Alexander

    2014-01-01

    A novel method of manufacturing rigid and robust natural fiber preforms is presented here. This method is based on a papermaking process, whereby loose and short sisal fibers are dispersed into a water suspension containing bacterial cellulose. The fiber and nanocellulose suspension is then filtered (using vacuum or gravity) and the wet filter cake pressed to squeeze out any excess water, followed by a drying step. This will result in the hornification of the bacterial cellulose network, holding the loose natural fibers together. Our method is specially suited for the manufacturing of rigid and robust preforms of hydrophilic fibers. The porous and hydrophilic nature of such fibers results in significant water uptake, drawing in the bacterial cellulose dispersed in the suspension. The bacterial cellulose will then be filtered against the surface of these fibers, forming a bacterial cellulose coating. When the loose fiber-bacterial cellulose suspension is filtered and dried, the adjacent bacterial cellulose forms a network and hornified to hold the otherwise loose fibers together. The introduction of bacterial cellulose into the preform resulted in a significant increase of the mechanical properties of the fiber preforms. This can be attributed to the high stiffness and strength of the bacterial cellulose network. With this preform, renewable high performance hierarchical composites can also be manufactured by using conventional composite production methods, such as resin film infusion (RFI) or resin transfer molding (RTM). Here, we also describe the manufacturing of renewable hierarchical composites using double bag vacuum assisted resin infusion. PMID:24893649

  13. Bacterial Cellulose From Rice Waste Water With Addition Chitosan, Glycerol, And Silver Nanoparticle

    Directory of Open Access Journals (Sweden)

    Eli Rohaeti

    2016-05-01

    Full Text Available This study aimed to prepare silver nanoparticles chemically, deposite silver nanoparticles on bacterial cellulose-chitosan-glycerol composite based rice waste water, as well as test the antibacterial activity of bacterial cellulose and its composite. Preparation of silver nanoparticles was conducted by chemical reduction of silver nitrate solution, as well as trisodium citrate as the reductor. Bacterial cellulose from rice waste water is fermented by the bacteria Acetobacter xylinum for 7 days. The dried bacterial cellulose was composited with chitosan and glycerol by immersion method on 2% of chitosan solution and 0.5% of glycerol solution. UV-Vis spectroscopy is used to determine the formation of silvernanoparticles and Particle Size Analyzer to test the size and particle size distribution. Characterization was conducted to bacterial cellulose and its composite included functional groups by FTIR, the mechanical properties by Tensile Tester, crystallinity by XRD, surface photograph by SEM, and antibacterial test against S. aureus and E. coli by the shake flask turbidimetry method. Silver nanoparticle characterization indicated that silver nanoparticles are formed at a wavelength of 421.80 nm, yellow, diameter particle size of 61.8 nm. SEM images showed that the surface of bacterial cellulose had deposited silver nanoparticles and antibacterial test showed an inhibitory effect of bacterial cellulose, bacterial cellulose-chitosan composite, and bacterial cellulose-chitosan-glycerol composite which are deposited silver nanoparticles against the growth of S. aureus and E. coli bacteria.

  14. 细菌纤维素膜作为生物支架构建组织工程角膜上皮的可行性研究%Feasibility of bacterial cellulose membrane as biological scaffold for construction of tissue engineering corneal epithelium

    Institute of Scientific and Technical Information of China (English)

    曹静洁; 张琛; 赵少贞; 万怡灶; 胡达

    2016-01-01

    Background Corneal transplantation is a primary method for the treatment of serious corneal diseases, but its application is limited because of the shortage of corneal donor.The study on tissue engineering corneal epithelium provides a new approach to corneal transplantation, and the biological scaffold materials for tissue engineering corneal epithelium is an issue of increasing concern.Bacterial cellulose membrane has been used in medical field,but its application in tissue engineering corneal epithelium deserves more researching.Objective This study was to evaluate the biocompatibility of bacterial cellulose membrane as a biological scaffold of tissue engineering corneal epithelium.Methods Corneal epithelium was isolated from 1 month-old New Zealand White rabbit.Corneal epithelial cells were cultured using explant method and identified by detecting the CK-3 expression using immunofluorescence technique.The second generation ceils were inoculated on bacterial cellulose membrane and culture plate, respectively, and the growth status of the cells were examined and compared under the optical microscope.The cell activity/toxicity test was performed by LIVE/DEAD cell staining kit at the third day after inoculation to evaluate the survival rate.The ultrastructure of the cell surface was examined under the scanning electron microscope.The study was performed in accordance with the ARVO Statement.Results Rabbit corneal epithelial cells grew well 1 week after primarily cultured with a cobblestone-like appearance and positive response for CK3 antibody.The cells on the bacterial cellulose membrane presented a round shape and regular arrangement and showed the green fluorescence for LIVE/DEAD test,with the survival rate 100%.Abundant leafy protrusion, microvilli and intercellular junction were seen under the scanning electron microscope.In addition, mitosis phase of cells and many filopodia between the cells and bacterial cellulose membrane were also exhibited

  15. Time Dependent Influence of Rotating Magnetic Field on Bacterial Cellulose

    OpenAIRE

    Karol Fijałkowski; Rafał Rakoczy; Anna Żywicka; Radosław Drozd; Beata Zielińska; Karolina Wenelska; Krzysztof Cendrowski; Dorota Peitler; Marian Kordas; Maciej Konopacki; Ewa Mijowska

    2016-01-01

    The aim of the study was to assess the influence of rotating magnetic field (RMF) on the morphology, physicochemical properties, and the water holding capacity of bacterial cellulose (BC) synthetized by Gluconacetobacter xylinus. The cultures of G. xylinus were exposed to RMF of frequency that equals 50 Hz and magnetic induction 34 mT for 3, 5, and 7 days during cultivation at 28°C in the customized RMF exposure system. It was revealed that BC exposed for 3 days to RMF exhibited the highest w...

  16. Chain scission and anti fungal effect of electron beam on cellulose membrane

    Science.gov (United States)

    Wanichapichart, Pikul; Taweepreeda, Wirach; Nawae, Safitree; Choomgan, Pastraporn; Yasenchak, Dan

    2012-08-01

    Two types of bacterial cellulose (BC) membranes were produced under a modified H&S medium using sucrose as a carbon source, with (CCB) and without (SHB) coconut juice supplement. Both membranes showed similar crystallinity of 69.24 and 71.55%. After being irradiated with E-beams under oxygen limited and ambient condition, the results from water contact angle showed that only the irradiated membrane CCB was increased from 30 to 40 degrees, and irradiation under oxygen ambient condition provided the greatest value. Comparing with the control membranes, smaller water flux was the cases after electron beam irradiation which indicated a reduction of membrane pore area. However, the results from molecular weight cut off (MWCO) revealed that chain scission was greater for membrane SHB and its cut off was increased from 28,000 Da to more than 35,000 Da. FTIR analysis revealed some changes in membrane functional groups, corresponding with the above results. These changes initiated new property of cellulose membranes, an anti-fungal food wrap.

  17. Microwave-assisted preparation of cellulose membranes and their properties

    Czech Academy of Sciences Publication Activity Database

    Lenfeld, Jiří; Beneš, Milan J.; Hradil, Jiří; Šlouf, Miroslav; Plichta, Zdeněk

    Loughborough : Loughborough University, 2003 - (Binner, J.), s. 445-448 [International Conference on Microwave and High Frequency Heating /9./. Loughborough (GB), 01.09.2003-05.09.2003] R&D Projects: GA ČR GA203/02/1244 Institutional research plan: CEZ:AV0Z4050913 Keywords : cellulose membranes * viscose Subject RIV: CD - Macromolecular Chemistry

  18. More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites.

    Science.gov (United States)

    Lee, Koon-Yang; Buldum, Gizem; Mantalaris, Athanasios; Bismarck, Alexander

    2014-01-01

    Bacterial cellulose (BC) nanofibers are one of the stiffest organic materials produced by nature. It consists of pure cellulose without the impurities that are commonly found in plant-based cellulose. This review discusses the metabolic pathways of cellulose-producing bacteria and the genetic pathways of Acetobacter xylinum. The fermentative production of BC and the bioprocess parameters for the cultivation of bacteria are also discussed. The influence of the composition of the culture medium, pH, temperature, and oxygen content on the morphology and yield of BC are reviewed. In addition, the progress made to date on the genetic modification of bacteria to increase the yield of BC and the large-scale production of BC using various bioreactors, namely static and agitated cultures, stirred tank, airlift, aerosol, rotary, and membrane reactors, is reviewed. The challenges in commercial scale production of BC are thoroughly discussed and the efficiency of various bioreactors is compared. In terms of the application of BC, particular emphasis is placed on the utilization of BC in advanced fiber composites to manufacture the next generation truly green, sustainable and renewable hierarchical composites. PMID:23897676

  19. Physicochemical and in vitro biocompatibility of films combining reconstituted bacterial cellulose with arabinogalactan and xyloglucan.

    Science.gov (United States)

    Lucyszyn, Neoli; Ono, Lucy; Lubambo, Adriana Freire; Woehl, Marco A; Sens, Camila V; de Souza, Clayton F; Sierakowski, Maria Rita

    2016-10-20

    Reconstituted cellulose films were generated using residual bacterial cellulose membranes mechanically defibrillated (RBC fibrils) recycled following wound dressing production via a dry-cast process. Arabinogalactan (AG) extracted from Pereskia aculeata leaves and/or a xyloglucan (GHXG) from Guibourtia hymenifolia seeds were incorporating into the RBC at various compositions, and new films were created using the same process. Biocomposite properties were evaluated by scanning electron microscopy, contact angle (CA), and X-ray diffraction measurements. The attachment and proliferation of murine L929 fibroblasts on RBC and RBC/Hydrocolloids (HD) were also evaluated. RBC films with 20-30% GHXG replacement improved film stability and the inclusion of HD increased microfiber aggregation and reduced porous regions. Changes in the hydrophilic characteristics were also observed and owing to the adhesion effect the inclusion of HD on RBC led to a statistically significant effect of the mechanical properties of films. The RBC/AG films supported L929 adhesion similar to that observed for commercial bacterial cellulose, indicating their potential use for biomedical applications. PMID:27474637

  20. Physical and mechanical properties of modified bacterial cellulose composite films

    Science.gov (United States)

    Indrarti, Lucia; Indriyati, Syampurwadi, Anung; Pujiastuti, Sri

    2016-02-01

    To open wide range application opportunities of Bacterial Cellulose (BC) such as for agricultural purposes and edible film, BC slurries were blended with Glycerol (Gly), Sorbitol (Sor) and Carboxymethyl Cellulose (CMC). The physical and mechanical properties of BC composites were investigated to gain a better understanding of the relationship between BC and the additive types. Addition of glycerol, sorbitol and CMC influenced the water solubility of BC composite films. FTIR analysis showed the characteristic bands of cellulose. Addition of CMC, glycerol, and sorbitol slightly changed the FTIR spectrum of the composites. Tensile test showed that CMC not only acted as cross-linking agent where the tensile strength doubled up to 180 MPa, but also acted as plasticizer with the elongation at break increased more than 100% compared to that of BC film. On the other hand, glycerol and sorbitol acted as plasticizers that decreased the tensile strength and increased the elongation. Addition of CMC can improve film transparency, which is quite important in consumer acceptance of edible films in food industry.

  1. Reinforcement of bacterial cellulose aerogels with biocompatible polymers.

    Science.gov (United States)

    Pircher, N; Veigel, S; Aigner, N; Nedelec, J M; Rosenau, T; Liebner, F

    2014-10-13

    Bacterial cellulose (BC) aerogels, which are fragile, ultra-lightweight, open-porous and transversally isotropic materials, have been reinforced with the biocompatible polymers polylactic acid (PLA), polycaprolactone (PCL), cellulose acetate (CA), and poly(methyl methacrylate) (PMMA), respectively, at varying BC/polymer ratios. Supercritical carbon dioxide anti-solvent precipitation and simultaneous extraction of the anti-solvent using scCO2 have been used as core techniques for incorporating the secondary polymer into the BC matrix and to convert the formed composite organogels into aerogels. Uniaxial compression tests revealed a considerable enhancement of the mechanical properties as compared to BC aerogels. Nitrogen sorption experiments at 77K and scanning electron micrographs confirmed the preservation (or even enhancement) of the surface-area-to-volume ratio for most of the samples. The formation of an open-porous, interpenetrating network of the second polymer has been demonstrated by treatment of BC/PMMA hybrid aerogels with EMIM acetate, which exclusively extracted cellulose, leaving behind self-supporting organogels. PMID:25037381

  2. Preparation of cellulose II and III{sub I} films by allomorphic conversion of bacterial cellulose I pellicles

    Energy Technology Data Exchange (ETDEWEB)

    Faria-Tischer, Paula C.S., E-mail: paula.tischer@pq.cnpq.br [BioPol, Departamento de Química, UFPR, Cx. Postal 19081, 81531-980 Curitiba, PR (Brazil); Université Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV), F-38000 Grenoble (France); CNRS, CERMAV, F-38000 Grenoble (France); UMR 5628 (LMGP), CNRS and Grenoble Institute of Technology, 3 Parvis Louis Néel, F-38016 Grenoble Cedex 1 (France); Tischer, Cesar A. [BioPol, Departamento de Química, UFPR, Cx. Postal 19081, 81531-980 Curitiba, PR (Brazil); Université Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV), F-38000 Grenoble (France); CNRS, CERMAV, F-38000 Grenoble (France); CIME Nanotech, 3 Parvis Louis Néel, F-38016 Grenoble Cedex 1 (France); Heux, Laurent [Université Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV), F-38000 Grenoble (France); CNRS, CERMAV, F-38000 Grenoble (France); Le Denmat, Simon; Picart, Catherine [UMR 5628 (LMGP), CNRS and Grenoble Institute of Technology, 3 Parvis Louis Néel, F-38016 Grenoble Cedex 1 (France); Sierakowski, Maria-R. [BioPol, Departamento de Química, UFPR, Cx. Postal 19081, 81531-980 Curitiba, PR (Brazil); and others

    2015-06-01

    The structural changes resulting from the conversion of native cellulose I (Cel I) into allomorphs II (Cel II) and III{sub I} (Cel III{sub I}) have usually been studied using powder samples from plant or algal cellulose. In this work, the conversion of Cel I into Cel II and Cel III{sub I} was performed on bacterial cellulose films without any mechanical disruption. The surface texture of the films was observed by atomic force microscopy (AFM) and the morphology of the constituting cellulose ribbons, by transmission electron microscopy (TEM). The structural changes were characterized using solid-state NMR spectroscopy as well as X-ray and electron diffraction. The allomorphic change into Cel II and Cel III{sub I} resulted in films with different crystallinity, roughness and hydrophobic/hydrophilicity surface and the films remained intact during all process of allomorphic conversion. - Highlights: • Description of a method to modify the allomorphic structure of bacterial cellulose films • Preparation of films with specific morphologies and hydrophobic/hydrophilic surface characters • First report on cellulose III films from bacterial cellulose under swelling conditions • Detailed characterization of cellulose II and III films with complementary techniques • Development of films with specific properties as potential support for cells, enzymes, and drugs.

  3. Preliminary Research on Cr(Ⅵ) Removal by Bacterial Cellulose

    Institute of Scientific and Technical Information of China (English)

    LU Min; XU Ying; GUAN Xiaohui; WEI Dezhou

    2012-01-01

    The bacterial cellulose prepared by ourselves was used in the adsorption of Cr(Ⅵ).The effects of performance parameters such as adsorption time,pH,the adsorbent dosage on Cr(Ⅵ) were investigated.Results showed that pH was a very important parameter to the adsorbed efficiency.Removal rate of Cr(Ⅵ)approached to 15% under the condition of pH 1.5,adsorbent dosage 1.0 g-L-1 and co(initial concentration of Cr)50 mg·L-1.The saturated monolayer adsorption quantity was 5.13 mg/g dry BC.The adsorption rate could be well fitted by pseudo-second rate model,adsorption isotherm could be described by Langmuir model,and they have good linear.Typical single-molecule layer adsorption of bacterial cellulose for Cr(Ⅵ) could be descripted and electrostatic force was one of the main sorption mechanisms.HCl can desorb the Cr(Ⅵ) from the adsorbent effectively.

  4. Modification of bacterial cellulose through exposure to the rotating magnetic field.

    Science.gov (United States)

    Fijałkowski, Karol; Żywicka, Anna; Drozd, Radosław; Niemczyk, Agata; Junka, Adam Feliks; Peitler, Dorota; Kordas, Marian; Konopacki, Maciej; Szymczyk, Patrycja; Fray, Mirosława El; Rakoczy, Rafał

    2015-11-20

    The aim of the study was to assess the influence of rotating magnetic field (RMF) on production rate and quality parameters of bacterial cellulose synthetized by Glucanacetobacter xylinus. Bacterial cultures were exposed to RMF (frequency f=50Hz, magnetic induction B=34mT) for 72h at 28°C. The study revealed that cellulose obtained under RMF influence displayed higher water absorption, lower density and less interassociated microfibrils comparing to unexposed control. The application of RMF significantly increased the amount of obtained wet cellulose pellicles but decreased the weight and thickness of dry cellulose. Summarizing, the exposure of cellulose-synthesizing G. xylinus to RMF alters cellulose biogenesis and may offer a new biotechnological tool to control this process. As RMF-modified cellulose displays better absorbing properties comparing to non-modified cellulose, our finding, if developed, may find application in the production of dressings for highly exudative wounds. PMID:26344254

  5. Genome sequence and plasmid transformation of the model high-yield bacterial cellulose producer Gluconacetobacter hansenii ATCC 53582

    OpenAIRE

    Michael Florea; Benjamin Reeve; James Abbott; Freemont, Paul S.; Tom Ellis

    2016-01-01

    Bacterial cellulose is a strong, highly pure form of cellulose that is used in a range of applications in industry, consumer goods and medicine. Gluconacetobacter hansenii ATCC 53582 is one of the highest reported bacterial cellulose producing strains and has been used as a model organism in numerous studies of bacterial cellulose production and studies aiming to increased cellulose productivity. Here we present a high-quality draft genome sequence for G. hansenii ATCC 53582 and find that in ...

  6. More Than Meets the Eye in Bacterial Cellulose: Biosynthesis, Bioprocessing, and Applications in Advanced Fiber Composites.

    OpenAIRE

    Lee, K Y; Buldum, G.; Mantalaris, A.; Bismarck, A.

    2014-01-01

    Bacterial cellulose (BC) nanofibers are one of the stiffest organic materials produced by nature. It consists of pure cellulose without the impurities that are commonly found in plant-based cellulose. This review discusses the metabolic pathways of cellulose-producing bacteria and the genetic pathways of Acetobacter xylinum. The fermentative production of BC and the bioprocess parameters for the cultivation of bacteria are also discussed. The influence of the composition of the culture medium...

  7. Synthesis of Multifunctional Cellulose Nanocrystals for Lectin Recognition and Bacterial Imaging

    OpenAIRE

    Zhou, Juan; Butchosa, Núria; Jayawardena, H. Surangi N.; Park, JaeHyeung; Zhou, Qi; Yan, Mingdi; Ramström, Olof

    2015-01-01

    Multifunctional cellulose nanocrystals have been synthesized and applied as a new type of glyconanomaterial in lectin binding and bacterial imaging. The cellulose nanocrystals were prepared by TEMPO-mediated oxidation and acidic hydrolysis, followed by functionalization with a quinolone fluorophore and carbohydrate ligands. The cellulose nanocrystals were subsequently applied in interaction studies with carbohydrate-binding proteins and in bacterial imaging. The results show that the function...

  8. Chitosan blended bacterial cellulose as a smart material for biomedical application

    Science.gov (United States)

    Cai, Zhijiang; Jin, Hyoung-Joon; Kim, Jaehwan

    2009-03-01

    Bacterial cellulose and chitosan blends have been successfully prepared by immersing wet bacterial cellulose pellicle in chitosan solution followed by freeze-drying. By changing chitosan concentration and immersion time, the chitosan content in the blends is ranged from 12% to 45%. The products look like a foam structure. SEM images show that chitosan molecules can penetrate into bacterial cellulose forming multilayer structure. The foam has very well interconnected porous network structure and large aspect surface. By incorporation of chitosan in bacterial cellulose, XRD patterns indicate that crystalline structure does not change but crystallinity decreases from 82% to 61% with chitosan content increasing from 12% to 45%. According to TGA results, the thermal stability has been improved. At the same time, the mechanical properties of bacterial cellulose and chitosan blends are good enough for potential biomedical application such as tissue engineering scaffold and would dressing material.

  9. Outer Membrane Proteins of Fibrobacter succinogenes with Potential Roles in Adhesion to Cellulose and in Cellulose Digestion▿

    OpenAIRE

    Jun, Hyun-Sik; Qi, Meng; Gong, Joshua; Egbosimba, Emmanuel E.; Forsberg, Cecil W.

    2007-01-01

    Comparative analysis of binding of intact glucose-grown Fibrobacter succinogenes strain S85 cells and adhesion-defective mutants AD1 and AD4 to crystalline and acid-swollen (amorphous) cellulose showed that strain S85 bound efficiently to both forms of cellulose while mutant Ad1 bound to acid-swollen cellulose, but not to crystalline cellulose, and mutant Ad4 did not bind to either. One- and two-dimensional electrophoresis (2-DE) of outer membrane cellulose binding proteins and of outer membr...

  10. Mechanical and structural property analysis of bacterial cellulose composites.

    Science.gov (United States)

    Dayal, Manmeet Singh; Catchmark, Jeffrey M

    2016-06-25

    Bacterial cellulose (BC) exhibits unique properties including high mechanical strength and high crystallinity. Improvement in the mechanical properties of BC is sought for many applications ranging from food to structural composites to biomedical materials. In this study, different additives including carboxymethyl cellulose (CMC), pectin, gelatin, cornstarch, and corn steep liquor were included in the fermentation media to alter the BC produced. Three different concentrations (1%, 3% and 5%) were chosen for each of the additives, with no additive (0%) as the control. The produced BC was then analyzed to determine tensile and compression modulus. Amongst the tested additives, BC produced in media containing 3% (w/v) pectin had the maximum compressive modulus (142kPa), and BC produced in media containing 1% (w/v) gelatin exhibited the maximum tensile modulus (21MPa). Structural characteristics of BC and BC-additive composites were compared using X-Ray diffraction (XRD). The crystal size and crystallinity of BC was reduced when grown in the presence of CMC and gelatin while pectin only decreased the crystallite size. This suggested that CMC and gelatin may be incorporated into the BC fibril structure. The field emission scanning electron microscopy (FESEM) images showed the increased micro-fibril aggregation in BC pellicles grown in the presence of additives to the culture media. PMID:27083837

  11. Time-dependent rheological behaviour of bacterial cellulose hydrogel.

    Science.gov (United States)

    Gao, Xing; Shi, Zhijun; Kuśmierczyk, Piotr; Liu, Changqing; Yang, Guang; Sevostianov, Igor; Silberschmidt, Vadim V

    2016-01-01

    This work focuses on time-dependent rheological behaviour of bacterial cellulose (BC) hydrogel. Due to its ideal biocompatibility, BC hydrogel could be employed in biomedical applications. Considering the complexity of loading conditions in human body environment, time-dependent behaviour under relevant conditions should be understood. BC specimens are produced by Gluconacetobacter xylinus ATCC 53582 at static-culture conditions. Time-dependent behaviour of specimens at several stress levels is experimentally determined by uniaxial tensile creep tests. We use fraction-exponential operators to model the rheological behaviour. Such a representation allows combination of good accuracy in analytical description of viscoelastic behaviour of real materials and simplicity in solving boundary value problems. The obtained material parameters allow us to identify time-dependent behaviour of BC hydrogel at high stress level with sufficient accuracy. PMID:26478298

  12. Structural modification of bacterial cellulose fibrils under ultrasonic irradiation.

    Science.gov (United States)

    Paximada, Paraskevi; Dimitrakopoulou, Eleni Alkmini; Tsouko, Erminda; Koutinas, Apostolos A; Fasseas, C; Mandala, Ioanna G

    2016-10-01

    Ιn the present study we investigated ultrasounds as a pretreatment process for bacterial cellulose (BC) aqueous suspensions. BC suspensions (0.1-1% wt) subjected to an ultrasonic treatment for different time intervals. Untreated BC presented an extensively entangled fibril network. When a sonication time of 1min was applied BC fibrils appeared less bundled and dropped in width from 110nm to 60nm. For a longer treatment (3-5min) the width of the fibrils increased again to 100nm attributed to an entanglement of their structure. The water holding capacity (WHC) and ζ-potnential of the suspensions was proportional to the sonication time. Their viscosity and stability were also affected; an increase could be seen at short treatments, while a decrease was obvious at longer ones. Concluding, a long ultrasonic irradiation led to similar BC characteristics as the untreated, but a short treatment may be a pre-handling method for improving BC properties. PMID:27312607

  13. Progress in bacterial cellulose matrices for biotechnological applications.

    Science.gov (United States)

    Cacicedo, Maximiliano L; Castro, M Cristina; Servetas, Ioannis; Bosnea, Loulouda; Boura, Konstantina; Tsafrakidou, Panagiota; Dima, Agapi; Terpou, Antonia; Koutinas, Athanasios; Castro, Guillermo R

    2016-08-01

    Bacterial cellulose (BC) is an extracellular polymer produced by many microorganisms. The Komagataeibacter genus is the best producer using semi-synthetic media and agricultural wastes. The main advantages of BC are the nanoporous structure, high water content and free hydroxyl groups. Modification of BC can be made by two strategies: in-situ, during the BC production, and ex-situ after BC purification. In bioprocesses, multilayer BC nanocomposites can contain biocatalysts designed to be suitable for outside to inside cell activities. These nanocomposites biocatalysts can (i) increase productivity in bioreactors and bioprocessing, (ii) provide cell activities does not possess without DNA cloning and (iii) provide novel nano-carriers for cell inside activity and bioprocessing. In nanomedicine, BC matrices containing therapeutic molecules can be used for pathologies like skin burns, and implantable therapeutic devices. In nanoelectronics, semiconductors BC-based using salts and synthetic polymers brings novel films showing excellent optical and photochemical properties. PMID:26927233

  14. Bacterial Cellulose Production from Industrial Waste and by-Product Streams

    OpenAIRE

    Erminda Tsouko; Constantina Kourmentza; Dimitrios Ladakis; Nikolaos Kopsahelis; Ioanna Mandala; Seraphim Papanikolaou; Fotis Paloukis; Vitor Alves; Apostolis Koutinas

    2015-01-01

    The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen) 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L)...

  15. Structural basis for entropy-driven cellulose binding by a type-A cellulose-binding module (CBM) and bacterial expansin

    OpenAIRE

    Georgelis, Nikolaos; Yennawar, Neela H.; Cosgrove, Daniel J.

    2012-01-01

    Components of modular cellulases, type-A cellulose-binding modules (CBMs) bind to crystalline cellulose and enhance enzyme effectiveness, but structural details of the interaction are uncertain. We analyzed cellulose binding by EXLX1, a bacterial expansin with ability to loosen plant cell walls and whose domain D2 has type-A CBM characteristics. EXLX1 strongly binds to crystalline cellulose via D2, whereas its affinity for soluble cellooligosaccharides is weak. Calorimetry indicated cellulose...

  16. Cellulose as Sustainable Materials for Separation Membranes

    Science.gov (United States)

    Chu, Benjamin

    2013-03-01

    Polysaccharides, while complex, form one of the most abundant sustainable resources on earth. We want to take advantage of fundamental advances in materials understanding across length and time scales to investigate the interrelationships between structure, morphology, processing, properties, performance, and cost to meet the specific challenges arising from separation membranes for water purification. Non-woven fiber mats have unique properties, such as interconnected pores, a very large surface-to-volume ratio, and a high capacity for surface modifications. The breakthrough concept of combining fibrous mats composed of different fiber diameters for fabricating scaffolds as a unique platform for water purification is presented. Further, we take advantage of recent advances in chemical modifications, structural studies using synchrotron X-rays, and physical scale-up transformations to drastically improve filtration membrane development. Support of this work by the NSF, ONR, NIH and Stony Brook Univ. is gratefully acknowledged. The Chu/Hsiao group on water purification includes Profs. B.S.Hsiao and C.Burger, Drs. H-Y.Ma, D-F.Fang, R.Wang, and grad students: X.Wang, Z. Wang, Y.Su, R. Yang

  17. Electro-active hybrid actuators based on freeze-dried bacterial cellulose and PEDOT:PSS

    International Nuclear Information System (INIS)

    We report a high-performance electro-active hybrid actuator based on freeze-dried bacterial cellulose and conducting polymer electrodes. The freeze-dried bacterial cellulose, which has a sponge form, can absorb a much greater amount of ionic liquid, which is a prerequisite for dry-type and high-performance electro-active polymers. In addition, the poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) conducting layers are deposited on the top and bottom surfaces of the freeze-dried bacterial cellulose using a simple dipping and drying method. The results show that the freeze-dried bacterial cellulose actuator with conducting polymer electrodes has a much larger tip displacement under electrical stimuli than pure bacterial cellulose actuators with metallic electrodes. The large bending displacement of the freeze-dried bacterial cellulose actuator under low input voltage is due to the synergistic effects of the ion migration of the dissociated ionic liquids inside the bacterial cellulose and the electrochemical doping processes of the PEDOT:PSS electrode layers. (paper)

  18. Electro-active hybrid actuators based on freeze-dried bacterial cellulose and PEDOT:PSS

    Science.gov (United States)

    Kim, Si-Seup; Jeon, Jin-Han; Kee, Chang-Doo; Oh, Il-Kwon

    2013-08-01

    We report a high-performance electro-active hybrid actuator based on freeze-dried bacterial cellulose and conducting polymer electrodes. The freeze-dried bacterial cellulose, which has a sponge form, can absorb a much greater amount of ionic liquid, which is a prerequisite for dry-type and high-performance electro-active polymers. In addition, the poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) conducting layers are deposited on the top and bottom surfaces of the freeze-dried bacterial cellulose using a simple dipping and drying method. The results show that the freeze-dried bacterial cellulose actuator with conducting polymer electrodes has a much larger tip displacement under electrical stimuli than pure bacterial cellulose actuators with metallic electrodes. The large bending displacement of the freeze-dried bacterial cellulose actuator under low input voltage is due to the synergistic effects of the ion migration of the dissociated ionic liquids inside the bacterial cellulose and the electrochemical doping processes of the PEDOT:PSS electrode layers.

  19. Preparation of Esterified Bacterial Cellulose for Improved Mechanical Properties and the Microstructure of Isotactic Polypropylene/Bacterial Cellulose Composites

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2016-04-01

    Full Text Available Bacterial cellulose (BC has great potential to be used as a new filler to reinforce isotactic polypropylene (iPP due to its high crystallinity, biodegradability, and efficient mechanical properties. In this study, esterification was used to modify BC, which improved the surface compatibility of the iPP and BC. The results indicated that the cellulose octoate (CO changed the surface properties from hydrophilic to lipophilic. Compared to the pure iPP, the tensile strength, charpy notched impact strength, and tensile modulus of the iPP/BC composites increased by 9.9%, 7.77%, and 15.64%, respectively. However, the addition of CO reinforced the iPP/CO composites. The tensile strength, charpy notched impact strength, and tensile modulus of the iPP/CO composites increased by 14.23%, 14.08%, and 17.82% compared to the pure iPP. However, the elongation at break of both the composites is decreased. The SEM photographs and particle size distribution of the composites showed improvements when the change of polarity of the BC surface, interface compatibility, and dispersion of iPP improved.

  20. Preparation and characterization of bacterial cellulose nano crystals; Preparacao e caracterizacao de nanocristais de celulose bacteriana

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Daniele B. dos; Lima, Lais R. de; Barud, Hernane S.; Messaddeq, Younes; Ribeiro, Sidney J.L. [Universidade Estadual Paulista Julio de Mesquita Filho. Unesp, Instituto de Quimica, Araraquara, SP (Brazil)

    2011-07-01

    In this work we described the preparation of bacterial cellulose nano crystals (BCNC) by hydrolysis of bacterial cellulose with concentrated sulfuric acid. The influence of hydrolysis time in the nano crystals formation was evaluated and the materials characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TG) and X-ray diffraction analysis. The SEM images showed the whiskers formation and its reveal that the morphology and size of BCNC not changes significantly with hydrolysis time. The X-rays diffractogram analysis showed an increase on BCNC crystallinity as compared with pure bacterial cellulose. The TG curves revealed a decreasing on thermal stability of BCNC samples with increase of the hydrolysis time. (author)

  1. Impact of hemicelluloses and pectin on sphere-like bacterial cellulose assembly

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Jin; Catchmark, Jeffrey M

    It has been shown previously that certain strains of the bacterium Gluconacetobacter xylinus produce a spherical form of cellulose where the cellulose was formed in a layered fashion. The spherical cellulose was used as a model system to study cellulose–hemicellulose and cellulose–pectin composite formation. Cultures were produced in the presence of 0.5% (w/v) xyloglucan, xylan, arabinogalactan and pectin under agitating conditions. Cellulose samples with xyloglucan and pectin had different macro structures compared to other culture conditions. The micro structures showed that these two samples formed dense cellulose layers and had fewer cellulose fiber connections between layers. Cellulose samples with xylan and xyloglucan were found to contain more Iβ cellulose as found in higher plants, and exhibited decreases in crystallinity and crystalline sizes according to X-ray diffraction patterns. IR spectroscopy confirmed the changes in crystal allomorph. Cellulose was also grown in cultures containing different blends of both xyloglucan and pectin. Results show that xyloglucan had the dominant impact on the assembly of cellulose, suggesting that xyloglucan and pectin may interact with cellulose at different points in the assembly process, or in different regions. Bacterial cellulose and biomass yields indicated that xyloglucan and pectin could also stimulate the growth of cellulose.

  2. Sensing the Structural Differences in Cellulose from Apple and Bacterial Cell Wall Materials by Raman and FT-IR Spectroscopy

    OpenAIRE

    Artur Zdunek; Monika Szymańska-Chargot; Justyna Cybulska

    2011-01-01

    Raman and Fourier Transform Infrared (FT-IR) spectroscopy was used for assessment of structural differences of celluloses of various origins. Investigated celluloses were: bacterial celluloses cultured in presence of pectin and/or xyloglucan, as well as commercial celluloses and cellulose extracted from apple parenchyma. FT-IR spectra were used to estimate of the Iβ content, whereas Raman spectra were used to evaluate the degree of crystallinity of the cellulose. The crystallinity index (XC R...

  3. Understanding the Dispersion and Assembly of Bacterial Cellulose in Organic Solvents.

    Science.gov (United States)

    Ferguson, Auren; Khan, Umar; Walsh, Melissa; Lee, Koon-Yang; Bismarck, Alexander; Shaffer, Milo S P; Coleman, Jonathan N; Bergin, Shane D

    2016-05-01

    The constituent nanofibrils of bacterial cellulose are of interest to many researchers because of their purity and excellent mechanical properties. Mechanisms to disrupt the network structure of bacterial cellulose (BC) to isolate bacterial cellulose nanofibrils (BCN) are limited. This work focuses on liquid-phase dispersions of BCN in a range of organic solvents. It builds on work to disperse similarly intractable nanomaterials, such as single-walled carbon nanotubes, where optimum dispersion is seen for solvents whose surface energies are close to the surface energy of the nanomaterial; bacterial cellulose is shown to disperse in a similar fashion. Inverse gas chromatography was used to determine the surface energy of bacterial cellulose, under relevant conditions, by quantifying the surface heterogeneity of the material as a function of coverage. Films of pure BCN were prepared from dispersions in a range of solvents; the extent of BCN exfoliation is shown to have a strong effect on the mechanical properties of BC films and to fit models based on the volumetric density of nanofibril junctions. Such control offers new routes to producing robust cellulose films of bacterial cellulose nanofibrils. PMID:27007744

  4. Improving the affinity of fibroblasts for bacterial cellulose using carbohydrate-binding modules fused to RGD

    OpenAIRE

    Andrade, Fábia K; Moreira, Susana Margarida Gomes; Domingues, Lucília; Gama, F. M.

    2010-01-01

    The attachment of cells to biomedical materials can be improved by using adhesion sequences, such as Arg-Gly-Asp (RGD), found in several extracellular matrix proteins. In this work, bifunctional recombinant proteins, with a Cellulose-Binding Module (CBM), from the cellulosome of Clostridium thermocellum and cell binding sequences - RGD, GRGDY - were cloned and expressed in E.coli. These RGD-containing cellulose binding proteins were purified and used to coat bacterial cellulose fibres. Its ef...

  5. Genome sequence and plasmid transformation of the model high-yield bacterial cellulose producer Gluconacetobacter hansenii ATCC 53582

    Science.gov (United States)

    Florea, Michael; Reeve, Benjamin; Abbott, James; Freemont, Paul S.; Ellis, Tom

    2016-03-01

    Bacterial cellulose is a strong, highly pure form of cellulose that is used in a range of applications in industry, consumer goods and medicine. Gluconacetobacter hansenii ATCC 53582 is one of the highest reported bacterial cellulose producing strains and has been used as a model organism in numerous studies of bacterial cellulose production and studies aiming to increased cellulose productivity. Here we present a high-quality draft genome sequence for G. hansenii ATCC 53582 and find that in addition to the previously described cellulose synthase operon, ATCC 53582 contains two additional cellulose synthase operons and several previously undescribed genes associated with cellulose production. In parallel, we also develop optimized protocols and identify plasmid backbones suitable for transformation of ATCC 53582, albeit with low efficiencies. Together, these results provide important information for further studies into cellulose synthesis and for future studies aiming to genetically engineer G. hansenii ATCC 53582 for increased cellulose productivity.

  6. Bacterial Cellulose Production from Industrial Waste and by-Product Streams

    Science.gov (United States)

    Tsouko, Erminda; Kourmentza, Constantina; Ladakis, Dimitrios; Kopsahelis, Nikolaos; Mandala, Ioanna; Papanikolaou, Seraphim; Paloukis, Fotis; Alves, Vitor; Koutinas, Apostolis

    2015-01-01

    The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen) 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L) and commercial sucrose (4.9 g/L) were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L) were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102–138 g·water/g·dry bacterial cellulose, viscosities of 4.7–9.3 dL/g, degree of polymerization of 1889.1–2672.8, stress at break of 72.3–139.5 MPa and Young’s modulus of 0.97–1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients. PMID:26140376

  7. Bacterial Cellulose Production from Industrial Waste and by-Product Streams

    Directory of Open Access Journals (Sweden)

    Erminda Tsouko

    2015-07-01

    Full Text Available The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L and commercial sucrose (4.9 g/L were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102–138 g·water/g·dry bacterial cellulose, viscosities of 4.7–9.3 dL/g, degree of polymerization of 1889.1–2672.8, stress at break of 72.3–139.5 MPa and Young’s modulus of 0.97–1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients.

  8. Sensing the Structural Differences in Cellulose from Apple and Bacterial Cell Wall Materials by Raman and FT-IR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Artur Zdunek

    2011-05-01

    Full Text Available Raman and Fourier Transform Infrared (FT-IR spectroscopy was used for assessment of structural differences of celluloses of various origins. Investigated celluloses were: bacterial celluloses cultured in presence of pectin and/or xyloglucan, as well as commercial celluloses and cellulose extracted from apple parenchyma. FT-IR spectra were used to estimate of the Iβ content, whereas Raman spectra were used to evaluate the degree of crystallinity of the cellulose. The crystallinity index (XCRAMAN% varied from −25% for apple cellulose to 53% for microcrystalline commercial cellulose. Considering bacterial cellulose, addition of xyloglucan has an impact on the percentage content of cellulose Iβ. However, addition of only xyloglucan or only pectins to pure bacterial cellulose both resulted in a slight decrease of crystallinity. However, culturing bacterial cellulose in the presence of mixtures of xyloglucan and pectins results in an increase of crystallinity. The results confirmed that the higher degree of crystallinity, the broader the peak around 913 cm−1. Among all bacterial celluloses the bacterial cellulose cultured in presence of xyloglucan and pectin (BCPX has the most similar structure to those observed in natural primary cell walls.

  9. Preparation and antibacterial activity of silver nanoparticles impregnated in bacterial cellulose

    Directory of Open Access Journals (Sweden)

    Luiz C. S. Maria

    2010-01-01

    Full Text Available A simple method was developed to load a large amount of silver nanoparticles into bacterial cellulose (BC produced by Gluconacetobacter xylinus in a controlled manner. Due to the high electron-rich oxygen density in the BC macromolecules and the large surface area of the BC nanoporous structure as an effective nanoreactor, the in situ direct metallization technique was successfully used to synthesize Ag nanoparticles with an average diameter of 30 nm and a loading content of at least 5 wt. (%, approximately. This novel procedure provides an easy and economical way to manufacture Ag nanoparticles supported on a porous membrane for various biomedical applications. These composite fibers showed nearly 100% antibacterial activity (elimination of microorganisms against Escherichia coli because of the presence of the silver nanoparticles.

  10. Effects of reaction conditions on cellulose structures synthesized in vitro by bacterial cellulose synthases.

    Science.gov (United States)

    Penttilä, Paavo A; Sugiyama, Junji; Imai, Tomoya

    2016-01-20

    Cellulose was synthesized by cellulose synthases extracted from the Komagataeibacter xylinus (formerly known as Gluconacetobacter xylinus). The effects of temperature and centrifugation of the reaction solution on the synthesis products were investigated. Cellulose with number-average degree of polymerization (DPn) roughly in the range 60-80 and cellulose II crystal structure was produced under all conditions. The amount of cellulose varied with temperature and centrifugation, and the centrifugation at 2000 × g also slightly reduced the DPn. Cellulose production was maximal around the temperature 35 °C and without centrifugation. At higher temperatures and during centrifugation at 2000 × g the proteins started to denature, causing differences also in the morphology of the cellulosic aggregates, as seen with electron microscopy. These observations serve as a basis for discussions about the factors affecting the structure formation and chain length of in vitro synthesized cellulose. PMID:26572398

  11. Manufacturing Of Robust Natural Fiber Preforms Utilizing Bacterial Cellulose as Binder

    OpenAIRE

    Lee, K-Y; Shamsuddin, S. R.; Fortea-Verdejo, M.; Bismarck, A.

    2014-01-01

    A novel method of manufacturing rigid and robust natural fiber preforms is presented here. This method is based on a papermaking process, whereby loose and short sisal fibers are dispersed into a water suspension containing bacterial cellulose. The fiber and nanocellulose suspension is then filtered (using vacuum or gravity) and the wet filter cake pressed to squeeze out any excess water, followed by a drying step. This will result in the hornification of the bacterial cellulose network, hold...

  12. Antibacterial Properties of Novel Bacterial Cellulose Nanofiber Containing Silver Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    杨加志; 刘晓丽; 黄立勇; 孙东平

    2013-01-01

    In this work, we describe a novel facile method to prepare long one-dimensional hybrid nanofibers by using hydrated bacterial cellulose nanofibers (BCF) as a template. Silver (Ag) nanoparticles with an average di-ameter of 1.5 nm were well dispersed on BCF via a simple in situ chemical-reduction between AgNO3 and NaBH4 at a relatively low temperature. A growth mechanism is proposed that Ag nanoparticles are uniformly anchored onto BCF by coordination with BC-containing hydroxyl groups. The bare BCF and as-prepared Ag/BCF hybrid nanofibers were characterized by several techniques including transmission electron microscopy, X-ray diffraction, thermogra-vimetric analyses, and ultraviolet-visible (UV-Vis) absorption spectra. The antibacterial properties of Ag/BCF hybrid nanofibers against Escherichia coli (E. coli, Gram-negative) and Staphylococcu saureus (S. saureus, Gram-positive) bacteria were evaluated by using modified Kirby Bauer method and colony forming count method. The results show that Ag nanoparticles are well dispersed on BCF surface via in situ chemical-reduction. The Ag/BCF hybrid nanofiber presents strong antibacterial property and thus offers its candidature for use as functional antimicrobial agents.

  13. Electrically conductive nano graphite-filled bacterial cellulose composites.

    Science.gov (United States)

    Erbas Kiziltas, Esra; Kiziltas, Alper; Rhodes, Kevin; Emanetoglu, Nuri W; Blumentritt, Melanie; Gardner, Douglas J

    2016-01-20

    A unique three dimensional (3D) porous structured bacterial cellulose (BC) can act as a supporting material to deposit the nanofillers in order to create advanced BC-based functional nanomaterials for various technological applications. In this study, novel nanocomposites comprised of BC with exfoliated graphite nanoplatelets (xGnP) incorporated into the BC matrix were prepared using a simple particle impregnation strategy to enhance the thermal properties and electrical conductivity of the BC. The flake-shaped xGnP particles were well dispersed and formed a continuous network throughout the BC matrix. The temperature at 10% weight loss, thermal stability and residual ash content of the nanocomposites increased at higher xGnP loadings. The electrical conductivity of the composites increased with increasing xGnP loading (attaining values 0.75 S/cm with the addition of 2 wt.% of xGnP). The enhanced conductive and thermal properties of the BC-xGnP nanocomposites will broaden applications (biosensors, tissue engineering, etc.) of BC and xGnP. PMID:26572457

  14. Application of Bacterial Cellulose (BC in Natural Facial Scrub

    Directory of Open Access Journals (Sweden)

    Norhasliza Hasan

    2012-01-01

    Full Text Available A new facial scrub containing only natural ingredients and powdered bacterial cellulose (BC was formulated. The other ingredients used in the formulation include powdered glutinous rice, aloe vera extract, ascorbic acid (Vitamin C powder and olive oil. The rheological behaviours of the formulated and commercial facial scrubs were tested using plate and plate rheometer. Both formulated and commercial facial scrubs shows shear thinning  behaviour (non-Newtonian liquid. The formulated facial scrub sample had a higher viscosity at low shear rates compared to the commercial facial scrub (459.7 Pa.s against 359.2 Pa.s at 10s-1, but had a nearly similar viscosity at high shear rates (197.2 Pa.s against 192 Pa.s at 25s-1. By adding preservative, the shelf life of the scrub was two times longer than that without preservatives. The  tested sample dried out after 10 minutes at room temperature (~30°C.

  15. Time Dependent Influence of Rotating Magnetic Field on Bacterial Cellulose

    Directory of Open Access Journals (Sweden)

    Karol Fijałkowski

    2016-01-01

    Full Text Available The aim of the study was to assess the influence of rotating magnetic field (RMF on the morphology, physicochemical properties, and the water holding capacity of bacterial cellulose (BC synthetized by Gluconacetobacter xylinus. The cultures of G. xylinus were exposed to RMF of frequency that equals 50 Hz and magnetic induction 34 mT for 3, 5, and 7 days during cultivation at 28°C in the customized RMF exposure system. It was revealed that BC exposed for 3 days to RMF exhibited the highest water retention capacity as compared to the samples exposed for 5 and 7 days. The observation was confirmed for both the control and RMF exposed BC. It was proved that the BC exposed samples showed up to 26% higher water retention capacity as compared to the control samples. These samples also required the highest temperature to release the water molecules. Such findings agreed with the observation via SEM examination which revealed that the structure of BC synthesized for 7 days was more compacted than the sample exposed to RMF for 3 days. Furthermore, the analysis of 2D correlation of Fourier transform infrared spectra demonstrated the impact of RMF exposure on the dynamics of BC microfibers crystallinity formation.

  16. Volatile organic compounds adsorption onto neat and hybrid bacterial cellulose

    Science.gov (United States)

    Ion, Violeta Alexandra; Pârvulescu, Oana Cristina; Dobre, Tănase

    2015-04-01

    Adsorption dynamics of VOCs (volatile organic compounds) vapour from air streams onto fixed bed adsorbent were measured and simulated under various operation conditions. Isopropanol (IPA) and n-hexane (HEX) were selected as representatives of polar and nonpolar VOCs, whereas bacterial cellulose (BC) and BC incorporated with magnetite nanoparticles (M/BC), were tested as adsorbents. An experimental study emphasizing the influence of air superficial velocity (0.7 cm/s and 1.7 cm/s), operation temperature (30 °C and 40 °C), adsorbate and adsorbent type, on fixed bed saturation curves was conducted. Optimal adsorption performances evaluated in terms of saturation adsorption capacity were obtained for the adsorption of polar compound (IPA) onto M/BC composite (0.805 g/g) and of nonpolar compound (HEX) onto neat BC (0.795 g/g), respectively, at high values of air velocity and operation temperature. A mathematical model including mass balance of VOC species, whose parameters were fitted based on experimental data, was developed in order to predict the fixed bed saturation curves. A 23 statistical model indicating a significant increase in adsorption performances with process temperature was validated under the experimental conditions.

  17. Through-thickness stress relaxation in bacterial cellulose hydrogel.

    Science.gov (United States)

    Gao, Xing; Kuśmierczyk, Piotr; Shi, Zhijun; Liu, Changqing; Yang, Guang; Sevostianov, Igor; Silberschmidt, Vadim V

    2016-06-01

    Biological hydrogels, e.g. bacterial cellulose (BC) hydrogel, attracted increasing interest in recent decades since they show a good potential for biomedical engineering as replacements of real tissues thanks mainly to their good biocompatibility and fibrous structure. To select potential candidates for such applications, a comprehensive understanding of their performance under application-relevant conditions is needed. Most hydrogels demonstrate time-dependent behaviour due to the contribution of their liquid phase and reorientation of fibres in a process of their deformation. To quantify such time-dependent behaviour is crucial due to their exposure to complicated loading conditions in body environment. Some hydrogel-based biomaterials with a multi-layered fibrous structure demonstrate a promise as artificial skin and blood vessels. To characterise and model time-dependent behaviour of these multi-layered hydrogels along their through-thickness direction is thereby of vital importance. Hence, a holistic study combining mechanical testing and micro-morphological observations of BC hydrogel with analytical modelling of its relaxation behaviour based on fraction-exponential operators was performed. The results show a good potential to use a fraction-exponential model to describe such behaviour of multi-layered hydrogels, especially at stages of stress decay at low forces and of stress equilibrium at high forces. PMID:26749210

  18. Preparation of bacterial cellulose based hydrogels and their viscoelastic behavior

    Science.gov (United States)

    Shah, Rushita; Vyroubal, Radek; Fei, Haojei; Saha, Nabanita; Kitano, Takeshi; Saha, Petr

    2015-04-01

    Bacterial cellulose (BC) based hydrogels have been prepared in blended with carboxymethylcellulose and polyvinyl pyrrolidone by using heat treatment. The properties of BC-CMC and BC-PVP hydrogels were compared with pure BC, CMC and PVP hydrogels. These hydrogels were investigated by measuring their structural, morphological and viscoelastic properties. Through the morphological images, alignment of the porous flake like structures could be seen clearly within the inter-polymeric network of the hydrogels. Also, the detail structure analysis of the polymers blended during the hydrogel formation confirms their interactions with each other were studied. Further, the viscoelastic behavior of all the hydrogels in terms of elastic and viscous property was studied. It is observed that at 1% strain, including CMC and PVP hydrogels, all the BC based hydrogels exhibited the linear trend throughout. Also the elastic nature of the material remains high compared to viscous nature. Moreover, the changes could be noticed in case of blended polymer based hydrogels. The values of complex viscosity (η*) decreases with increase in angular frequency within the range of ω = 0.1-100 rad.s-1.

  19. BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis

    OpenAIRE

    Omadjela, Okako; Narahari, Adishesh; Strumillo, Joanna; Mélida, Hugo; Mazur, Olga; Bulone, Vincent; Zimmer, Jochen

    2013-01-01

    Cellulose is the most abundant biopolymer on Earth, primarily formed by vascular plants, but also by some bacteria. Bacterial extracellular polysaccharides, such as cellulose and alginate, are an important component of biofilms, which are multicellular, usually sessile, aggregates of bacteria. Biofilms exhibit a greater resistance to antimicrobial treatments compared with isolated bacteria and thus are a particular concern to human health. Cellulose synthases synthesize cellulose by polymeriz...

  20. Effect of Surface Attachment on Synthesis of Bacterial Cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Barbara R [ORNL; O' Neill, Hugh Michael [ORNL

    2005-01-01

    Gluconacetobacter spp. synthesize a pure form of hydrophilic cellulose that has several industrial specialty applications. Literature reports have concentrated on intensive investigation of static and agitated culture in liquid media containing high nutrient concentrations optimized for maximal cellulose production rates. The behavior of these bacteria on semisolid and solid surfaces has not been specifically addressed. The species Gluconacetobacter hansenii was examined for cellulose synthesis and colony morphology on a range of solid supports, including cotton linters, and on media thickened with agar, methyl cellulose, or gellan. The concentration and chemical structure of the thickening agent were found to be directly related to the formation of contiguous cellulose pellicules. Viability of the bacteria following freezer storage was improved when the bacteria were frozen in their cellulose pellicules.

  1. FRACTIONATION OF HYDROLYZED MICROCRYSTALLINE CELLULOSE BY ULTRAFILTRATION MEMBRANE

    Directory of Open Access Journals (Sweden)

    NGUYEN HUYNH THAO THY

    2016-01-01

    Full Text Available Bioethanol process using cellulosic materials have been emerging an interesting field with a high potential of replacing petroleum-based fuel, as a future alternative. This work emphasised on improvement of enzymatic hydrolysis of alkaline NaOH-pretreated cellulose by applying an ultrafiltration membrane 10 kDa cutoff in order to minimise sugar inhibition on enzymes, reuse enzyme in hydrolysis and recover sugar for the subsequent fermentation. An improvement in the methodology of the enzymatic hydrolysis with ultrafiltration was made that the membrane was installed at the end of a tube connecting with a peristaltic pump to continuously remove glucose from hydrolysis reaction hence sugar was unable to inhibit enzyme activity and enzyme was retained inside the reactor for the reusing purpose. The combination of NaOH 1M alkaline pretreatment, enzymatic hydrolysis of cellulose with the optimum 3% enzyme dosage, ultrafiltration 10 kDa cutoff was evaluated to obtain the highest sugar concentration at 9 mg/ml after 6 hour hydrolysis. In comparison between hydrolysis with ultrafiltration and hydrolysis without ultrafiltration, the sugar concentration in hydrolysis with ultrafiltration was very much higher than that in hydrolysis without ultrafiltration in all enzyme dosages (1.5%, 3%, 6%. The hydrolysis with filtration produced a time profile in six hours with continuously significant increase in the sugar concentration. Only a small reduction initially for 1.5% dosage and no reduction in sugar concentration in 3% and 6% dosages. Hence the effect of product inhibition in hydrolysis was minimised as a result. In addition, a direct relationship between sugar concentration inside hydrolysis reactor, enzyme dosage and rate of sugar removal was observed during the hydrolysis process. Higher enzyme dosage in hydrolysis required a higher rate of sugar removal sufficiently to avoid inhibition in hydrolysis reaction.

  2. The feasibility of using irreversible electroporation to introduce pores in bacterial cellulose scaffolds for tissue engineering.

    Science.gov (United States)

    Baah-Dwomoh, Adwoa; Rolong, Andrea; Gatenholm, Paul; Davalos, Rafael V

    2015-06-01

    This work investigates the feasibility of the use of irreversible electroporation (IRE) in the biofabrication of 3D cellulose nanofibril networks via the bacterial strain Gluconacetobacter xylinus. IRE uses electrical pulses to increase membrane permeability by altering the transmembrane potential; past a threshold, damage to the cell becomes too great and leads to cell death. We hypothesized that using IRE to kill the bacteria at specific locations and particular times, we could introduce conduits in the overall scaffold by preventing cellulose biosynthesis locally. Through mathematical modeling and experimental techniques, electrical effects were investigated and the parameters for IRE of G. xylinus were determined. We found that for a specific set of parameters, an applied electric field of 8 to 12.5 kV/cm, producing a local field of 3 kV/cm, was sufficient to kill most of the bacteria and create a localized pore. However, an applied electric field of 17.5 kV/cm was required to kill all. Results suggest that IRE may be an effective tool to create scaffolds with appropriate porosity for orthopedic applications. Ideally, these engineered scaffolds could be used to successfully treat osteochondral defects. PMID:25690311

  3. Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites

    Science.gov (United States)

    Nakagaito, A. N.; Iwamoto, S.; Yano, H.

    2005-01-01

    High-strength composites were produced using bacterial cellulose (BC) sheets impregnated with phenolic resin and compressed at 100 MPa. By utilizing this unique material synthesized by bacteria, it was possible to improve the mechanical properties over the previously reported high-strength composites based on fibrillated kraft pulp of plant origin. BC-based composites were stronger, and in particular the Young’s modulus was significantly higher, attaining 28 GPa versus 19 GPa of fibrillated pulp composites. The superior modulus value was attributed to the uniform, continuous, and straight nano-scalar network of cellulosic elements oriented in-plane via the compression of BC pellicles.

  4. Box-Behnken experimental design for chromium(VI) ions removal by bacterial cellulose-magnetite composites.

    Science.gov (United States)

    Stoica-Guzun, Anicuta; Stroescu, Marta; Jinga, Sorin Ion; Mihalache, Nicoleta; Botez, Adriana; Matei, Cristian; Berger, Daniela; Damian, Celina Maria; Ionita, Valentin

    2016-10-01

    In this study bacterial cellulose-magnetite composites were synthesised for the removal of chromium(VI) from aqueous solutions. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis and X-ray Photoelectron Spectroscopy (XPS) were used to characterize the bacterial cellulose-magnetite composites and to reveal the uniform dispersion of nanomagnetite in the BC matrix. Magnetic properties were also measured to confirm the magnetite immobilization on bacterial cellulose membrane. The effects of initial Cr(VI) concentration, solution pH and solid/liquid ratio upon chromium removal were examined using the statistical Box-Behnken Design. Because of the possibility of magnetite dissolution during chromium(VI) adsorption, the degree of iron leaching was also analysed in the same conditions as Cr(VI) adsorption. From the factors affecting chromium(VI) adsorption the most important was solution pH. The highest Cr(VI) removal efficiency was observed at pH 4, accompanied by the lowest iron leaching in the solution. The adsorption experiments also indicated that the adsorption process of chromium(VI) is well described by Freundlich adsorption model. Our results proved that the BC-magnetite composites could be used for an efficient removal of chromium(VI) from diluted solutions with a minimum magnetite dissolution during operation. PMID:27343705

  5. Production and Characterization of a New Bacterial Cellulose/Poly(Vinyl Alcohol Nanocomposite

    Directory of Open Access Journals (Sweden)

    Miguel Gama

    2013-05-01

    Full Text Available Bacterial cellulose (BC is characterized for its high water holding capacity, high crystallinity, an ultrafine fiber network and high tensile strength. This work demonstrates the production of a new interpenetrated polymer network nanocomposite obtained through the incorporation of poly(vinyl alcohol (PVA on the BC matrix and evaluates the effect of oven drying on the morphological, mechanical and mass transfer properties of the composite membranes. Both the addition of PVA and oven drying induce the appearance of larger pores (circa 1–3 µm in average diameter in dried BC/PVA membranes. Both types of treatments also affect the permeability of the composite, as assessed by the diffusion coefficients of polyethylene glycol (PEG molecules (900, 8,000, 35,000 and 100,000 Da across the membranes. Finally, the Young’s modulus of dry pristine BC decreases following PVA incorporation, resulting in a change from 3.5 GPa to 1 GPa and a five-fold loss in tensile strength.

  6. Translocation of DNA across bacterial membranes

    OpenAIRE

    Dreiseikelmann, Brigitte

    1994-01-01

    DNA translocation across bacterial membranes occurs during the biological processes of infection by bacteriophages, conjugative DNA transfer of plasmids, T-DNA transfer, and genetic transformation. The mechanism of DNA translocation in these systems is not fully understood, but during the last few years extensive data about genes and gene products involved in the translocation processes have accumulated. One reason for the increasing interest in this topic is the discussion about horizontal g...

  7. Identification of Cellulose-Responsive Bacterial and Fungal Communities in Geographically and Edaphically Different Soils by Using Stable Isotope Probing

    OpenAIRE

    Eichorst, Stephanie A.; Kuske, Cheryl R.

    2012-01-01

    Many bacteria and fungi are known to degrade cellulose in culture, but their combined response to cellulose in different soils is unknown. Replicate soil microcosms amended with [13C]cellulose were used to identify bacterial and fungal communities responsive to cellulose in five geographically and edaphically different soils. The diversity and composition of the cellulose-responsive communities were assessed by DNA-stable isotope probing combined with Sanger sequencing of small-subunit and la...

  8. Comparison Study ofHydrogels Properties Synthesized with Micro- andNano- Size Bacterial Cellulose Particles Extracted from Nata de coco

    OpenAIRE

    Johari, N.S.; Ahmad, I.; Halib, N.

    2012-01-01

    The effect of different size of bacterial cellulose particles used in the production of hydrogel was investigated. Bacterial cellulose was extracted from nata de coco, a local dessert origin from the Philippines. Micro size particle was prepared by conventional grinding of dried sheet of bacterial cellulose whereas cellulose nanoparticle was prepared by acid hydrolysis treatment. Both were then used in hydrogels formulation with acrylic acid (in ratio of 70% of bacterial cellulose dispersi...

  9. Production of bacterial cellulose with controlled deuterium-hydrogen substitution for neutron scattering studies.

    Science.gov (United States)

    O'Neill, Hugh; Shah, Riddhi; Evans, Barbara R; He, Junhong; Pingali, Sai Venkatesh; Chundawat, Shishir P S; Jones, A Daniel; Langan, Paul; Davison, Brian H; Urban, Volker

    2015-01-01

    Isotopic enrichment of biomacromolecules is a widely used technique that enables the investigation of the structural and dynamic properties to provide information not accessible with natural abundance isotopic composition. This study reports an approach for deuterium incorporation into bacterial cellulose. A media formulation for growth of Acetobacter xylinus subsp. sucrofermentans and Gluconacetobacter hansenii was formulated that supports cellulose production in deuterium (D) oxide. The level of D incorporation can be varied by altering the ratio of deuterated and protiated glycerol used during cell growth in the D2O-based growth medium. Spectroscopic analysis and mass spectrometry show that the level of deuterium incorporation is high (>90%) for the perdeuterated form of bacterial cellulose. The small-angle neutron scattering profiles of the cellulose with different amounts of D incorporation are all similar indicating that there are no structural changes in the cellulose due to substitution of deuterium for hydrogen. In addition, by varying the amount of deuterated glycerol in the media it was possible to vary the scattering length density of the deuterated cellulose. The ability to control deuterium content of cellulose extends the range of experiments using techniques such as neutron scattering to reveal information about the structure and dynamics of cellulose, and its interactions with other biomacromolecules as well as synthetic polymers used for development of composite materials. PMID:26577730

  10. Evaluation of the permeability of modified cellulose acetate propionate membranes for use in biosensors based on hydrogen peroxide detection

    OpenAIRE

    Guiomar, A. Jorge; Stephen D. Evans; Guthrie, James

    2001-01-01

    Phase inversion cellulose acetate propionate membranes showed lowpermeability to hydrogen peroxide aqueous solutions. Their permeability wasincreased by alkaline hydrolysis of the ester linking units. However, thepermeability remained lower than that of an unsubstituted cellulose membrane.The inclusion of hydroxypropyl cellulose in the membrane formulation, followedby an alkaline hydrolysis step, increased permeability to hydrogen peroxideaqueous solutions to 29% of that of an unsubstituted c...

  11. Cellulose acetate electrospun nanofibrous membrane: fabrication, characterization, drug loading and antibacterial properties

    Indian Academy of Sciences (India)

    NAZNIN SULTANA; ANISAH ZAINAL

    2016-04-01

    Cellulose-based materials are one of the most commonly used materials for biomedical applications, which normally applied as carriers for pharmaceuticals and drug-releasing scaffolds. In this study, cellulose acetate (CA) was used to fabricate the nanofibrous membrane using the electrospinning technique. CA solutions at different concentrations were prepared by dissolving the polymer in a mixture of acetic acid/acetone solvents with the ratio of 3:1. The field emission scanning electron microscope results showed that electrospinning of 10% (w/v) CA produced nanofibres with many beads. When the CA concentration was increased to 14% (w/v), bead-free nanofibres were produced. The contact angle measurement results confirmed the hydrophilic properties of nanofibres. In order to prevent common bacterial infections, a model drug, Tetracycline · HCL was incorporated into the CA nanofibres. The drug-loaded CA nanofibres showed antibacterial activity against Gram-positive and Gram-negative bacteria.CA nanofibres had high water uptake properties. The CA nanofibrous membrane was non-toxic to human skin fibroblast cells. Thus the CA nanofibres with 14% (w/v) concentration exerted suitable properties for wound healingapplication.

  12. Impregnation of silver sulfadiazine into bacterial cellulose for antimicrobial and biocompatible wound dressing

    International Nuclear Information System (INIS)

    Silver sulfadiazine (SSD) is a useful antimicrobial agent for wound treatment. However, recent findings indicate that conventional SSD cream has several drawbacks for use in treatments. Bacterial cellulose (BC) is a promising material for wound dressing due to its outstanding properties of holding water, strength and degradability. Unfortunately, BC itself exhibits no antimicrobial activity. A combination of SSD and BC is envisaged to form a new class of wound dressing with both antimicrobial activity and biocompatibility, which has not been reported to date. To achieve antimicrobial activity, SSD particles were impregnated into BC by immersing BC into SSD suspension after ultrasonication, namely SSD–BC. Parameters influencing SSD–BC impregnation were systematically studied. Optimized conditions of sonication time for no less than 90 min and the proper pH value between 6.6 and 9.0 were suggested. The absorption of SSD onto the BC nanofibrous network was revealed by XRD and SEM analyses. The SSD–BC membranes exhibited significant antimicrobial activities against Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus evaluated by the disc diffusion method. In addition, the favorable biocompatibility of SSD–BC was verified by MTT colorimetry, epidermal cell counting method and optical microscopy. The results demonstrate the potential of SSD–BC membranes as a new class of antimicrobial and biocompatible wound dressing. (paper)

  13. Progressive structural changes of Avicel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis

    Science.gov (United States)

    Kafle, Kabindra; Shin, Heenae; Lee, Christopher M.; Park, Sunkyu; Kim, Seong H.

    2015-10-01

    A comprehensive picture of structural changes of cellulosic biomass during enzymatic hydrolysis is essential for a better understanding of enzymatic actions and development of more efficient enzymes. In this study, a suite of analytical techniques including sum frequency generation (SFG) spectroscopy, infrared (IR) spectroscopy, x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) were employed for lignin-free model biomass samples—Avicel, bleached softwood, and bacterial cellulose—to find correlations between the decrease in hydrolysis rate over time and the structural or chemical changes of biomass during the hydrolysis reaction. The results showed that the decrease in hydrolysis rate over time appears to correlate with the irreversible deposition of non-cellulosic species (either reaction side products or denatured enzymes, or both) on the cellulosic substrate surface. The crystallinity, degree of polymerization, and meso-scale packing of cellulose do not seem to positively correlate with the decrease in hydrolysis rate observed for all three substrates tested in this study. It was also found that the cellulose Iα component of the bacterial cellulose is preferentially hydrolyzed by the enzyme than the cellulose Iβ component.

  14. Isolation of bacterial cellulose nanocrystalline from pineapple peel waste: Optimization of acid concentration in the hydrolysis method

    Science.gov (United States)

    Anwar, Budiman; Rosyid, Nurul Huda; Effendi, Devi Bentia; Nandiyanto, Asep Bayu Dani; Mudzakir, Ahmad; Hidayat, Topik

    2016-02-01

    Isolation of needle-shaped bacterial cellulose nanocrystalline with a diameter of 16-64 nm, a fiber length of 258-806 nm, and a degree of crystallinity of 64% from pineapple peel waste using an acid hydrolysis process was investigated. Experimental showed that selective concentration of acid played important roles in isolating the bacterial cellulose nanocrystalline from the cellulose source. To achieve the successful isolation of bacterial cellulose nanocrystalline, various acid concentrations were tested. To confirm the effect of acid concentration on the successful isolation process, the reaction conditions were fixed at a temperature of 50°C, a hydrolysis time of 30 minutes, and a bacterial cellulose-to-acid ratio of 1:50. Pineapple peel waste was used as a model for a cellulose source because to the best of our knowledge, there is no report on the use of this raw material for producing bacterial cellulose nanocrystalline. In fact, this material can be used as an alternative for ecofriendly and cost-free cellulose sources. Therefore, understanding in how to isolate bacterial cellulose nanocrystalline from pineapple peel waste has the potential for large-scale production of inexpensive cellulose nanocrystalline.

  15. Bacterial Cellulose Production by Acetobacter xylinum Strains from Agricultural Waste Products

    Science.gov (United States)

    Kongruang, Sasithorn

    Bacterial cellulose is a biopolysaccharide produced from the bacteria, Acetobacter xylinum. Static batch fermentations for bacterial cellulose production were studied in coconut and pineapple juices under 30 °C in 5-1 fermenters by using three Acetobacter strains: A. xylinum TISTR 998, A. xylinum TISTR 975, and A. xylinum TISTR 893. Experiments were carried out to compare bacterial cellulose yields along with growth kinetic analysis. Results showed that A. xylinum TISTR 998 produced a bacterial cellulose yield of 553.33 g/l, while A. xylinum TISTR 893 produced 453.33 g/l and A. xylinum TISTR 975 produced 243.33 g/l. In pineapple juice, the yields for A. xylinum TISTR 893, 975, and 998 were 576.66, 546.66, and 520 g/l, respectively. The strain TISTR 998 showed the highest productivity when using coconut juice. Morphological properties of cellulose pellicles, in terms of texture and color, were also measured, and the textures were not significantly different among treatments.

  16. Crosslinked cellulose thin film composite nanofiltration membranes with zero salt rejection

    KAUST Repository

    Puspasari, Tiara

    2015-05-14

    We report a new synthetic route of fabricating regenerated cellulose nanofiltration membranes. The membranes are composite membranes with a thin selective layer of cellulose, which was prepared by regeneration of trimethylsilyl cellulose (a hydrophobic cellulose derivative) film followed by crosslinking. Filtration experiments using mixtures of sugar and sodium chloride showed that solutes above 300 Da were highly rejected whereas practically no rejection was observed for NaCl. This is a big advantage for a complete desalination as the existing commercial nanofiltration membranes typically exhibit NaCl rejection in the range of 30–60%. Membranes with zero NaCl rejection are required for recovery and purification applications in food, chemical and pharmaceutical industry.

  17. Surface-structured bacterial cellulose with guided assembly-based biolithography (GAB).

    Science.gov (United States)

    Bottan, Simone; Robotti, Francesco; Jayathissa, Prageeth; Hegglin, Alicia; Bahamonde, Nicolas; Heredia-Guerrero, José A; Bayer, Ilker S; Scarpellini, Alice; Merker, Hannes; Lindenblatt, Nicole; Poulikakos, Dimos; Ferrari, Aldo

    2015-01-27

    A powerful replica molding methodology to transfer on-demand functional topographies to the surface of bacterial cellulose nanofiber textures is presented. With this method, termed guided assembly-based biolithography (GAB), a surface-structured polydimethylsiloxane (PDMS) mold is introduced at the gas-liquid interface of an Acetobacter xylinum culture. Upon bacterial fermentation, the generated bacterial cellulose nanofibers are assembled in a three-dimensional network reproducing the geometric shape imposed by the mold. Additionally, GAB yields directional alignment of individual nanofibers and memory of the transferred geometrical features upon dehydration and rehydration of the substrates. Scanning electron and atomic force microscopy are used to establish the good fidelity of this facile and affordable method. Interaction of surface-structured bacterial cellulose substrates with human fibroblasts and keratinocytes illustrates the efficient control of cellular activities which are fundamental in skin wound healing and tissue regeneration. The deployment of surface-structured bacterial cellulose substrates in model animals as skin wound dressing or body implant further proves the high durability and low inflammatory response to the material over a period of 21 days, demonstrating beneficial effects of surface structure on skin regeneration. PMID:25525956

  18. Development of wet-dry reversible reverse osmosis membrane with high performance from cellulose acetate and cellulose triactate blend

    NARCIS (Netherlands)

    Vasarhelyi, K.; Ronner, J.A.; Mulder, M.H.V.; Smolders, C.A.

    1987-01-01

    Wet-dry reversible membrane were prepared bt a two-step coagulation procedure. A cast film containing a blend of cellulose triacetate as polymers, dioxane and acetone as solvents and maleic acid and methanol as additives was immersed consecutively in two aqueous coagulation baths, the first bath bei

  19. Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments.

    NARCIS (Netherlands)

    Gutierrez, R.; Lindeboom, J.J.; Paredez, A.R.; Emons, A.M.C.; Ehrhardt, D.W.

    2009-01-01

    Plant cell morphogenesis relies on the organization and function of two polymer arrays separated by the plasma membrane: the cortical microtubule cytoskeleton and cellulose microfibrils in the cell wall. Studies using in vivo markers confirmed that one function of the cortical microtubule array is t

  20. Transparent bionanocomposites with improved properties prepared from acetylated bacterial cellulose and poly(lactic acid) through a simple approach

    OpenAIRE

    Tomé, Liliana C.; Ricardo J. B. Pinto; Trovatti, Eliane; Freire, Carmen S. R.; Silvestre, Armando J. D.; Neto, Carlos Pascoal; Gandini, Alessandro

    2011-01-01

    The preparation and characterization of biocomposite materials with improved properties based on poly(lactic acid) (PLA) and bacterial cellulose, and, for comparative purposes, vegetal cellulose fibers, both in their pristine form or after acetylation, is reported. The composite materials were obtained through the simple and green mechanical compounding of a PLA matrix and bacterial cellulose nanofibrils (or vegetable fibers), and were characterized by TGA, DSC, tensile assays, DMA, SEM and w...

  1. Characterization of the bacterial cellulose dissolved on dimethylacetamide/lithium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Glaucia de Marco [Universidade do Vale do Itajai (PMCF/UNIVALI), Itajai, SC (Brazil). Programa de Mestrado em Ciencias Farmaceuticas; Sierakowski, Maria Rita; Faria-Tischer, Paula C.S.; Tischer, Cesar A., E-mail: cesar.tischer@pq.cnpq.b [Universidade Federal do Parana (BIOPOL/UFPR), Curitiba, PR (Brazil). Lab. de Biopolimeros

    2009-07-01

    The main barrier to the use of cellulose is his insolubility on water or organic solvents, but derivates can be obtained with the use of ionic solvents. Bacterial cellulose, is mainly produced by the bacterium Acetobacter xylinum, and is identical to the plant, but free of lignin and hemi cellulose, and with several unique physical-chemical properties. Cellulose produced in a 4 % glucose medium with static condition was dissoluted on heated DMAc/LiCl (120 '0 C, 150 '0 C or 170 '0 C). The product of dissolved cellulose was observed with 13 C-NMR and the effect on crystalline state was seen with x-ray crystallography. The crystalline structure was lost in the dissolution, becoming an amorphous structure, as well as Avicel. The process of dissolution of the bacterial cellulose is basics for the analysis of these water insoluble polymer, facilitating the analysis of these composites, by 13 C-NMR spectroscopy, size exclusion chromatography and light scattering techniques. (author)

  2. Characterization of the bacterial cellulose dissolved on dimethylacetamide/lithium chloride

    International Nuclear Information System (INIS)

    The main barrier to the use of cellulose is his insolubility on water or organic solvents, but derivates can be obtained with the use of ionic solvents. Bacterial cellulose, is mainly produced by the bacterium Acetobacter xylinum, and is identical to the plant, but free of lignin and hemi cellulose, and with several unique physical-chemical properties. Cellulose produced in a 4 % glucose medium with static condition was dissoluted on heated DMAc/LiCl (120 '0 C, 150 '0 C or 170 '0 C). The product of dissolved cellulose was observed with 13 C-NMR and the effect on crystalline state was seen with x-ray crystallography. The crystalline structure was lost in the dissolution, becoming an amorphous structure, as well as Avicel. The process of dissolution of the bacterial cellulose is basics for the analysis of these water insoluble polymer, facilitating the analysis of these composites, by 13 C-NMR spectroscopy, size exclusion chromatography and light scattering techniques. (author)

  3. Primary study of ethyl cellulose nanofiber for oxygen-enrichment membrane

    Directory of Open Access Journals (Sweden)

    Shen Jing

    2016-01-01

    Full Text Available Ethyl cellulose is widely used for oxygen-enrichment membrane, however, its nanofiber membrane was rarely developed though it behaves more excellent performance. This paper gives a preliminary study to produce oxygen-enrichment membrane by bubbfil spinning.

  4. Effect of Cultivation Time and Medium Condition in Production of Bacterial Cellulose Nanofiber for Urease Immobilization

    OpenAIRE

    M. Pesaran; Gh. Amoabediny; F. Yazdian

    2015-01-01

    A new nanoporous biomatrix originated from bacterial resources has been chosen for urease immobilization. Urease has been immobilized on synthesized bacterial cellulose nanofiber since this enzyme has a key role in nitrogen metabolism. Gluconacetobacter xylinum ATCC 10245 has been cultivated for synthesis of a nanofiber with the diameter of 30–70 nm. Different cultivation processes in the aspect of time and cultivation medium conditions were chosen to study the performance of immobilized enzy...

  5. Ultrathin cellulose nanosheet membranes for superfast separation of oil-in-water nanoemulsions

    Science.gov (United States)

    Zhou, Ke; Zhang, Qiu Gen; Li, Hong Mei; Guo, Nan Nan; Zhu, Ai Mei; Liu, Qing Lin

    2014-08-01

    Oily wastewater is generated in diverse industrial processes, and its treatment has become crucial due to increasing environmental concerns. Herein, novel ultrathin nanoporous membranes of cellulose nanosheets have been fabricated for separation of oil-in-water nanoemulsions. The fabrication approach is facile and environmentally friendly, in which cellulose nanosheets are prepared by freeze-extraction of a very dilute cellulose solution. The as-prepared membranes have a cellulose nanosheet layer with a cut-off of 10-12 nm and a controllable thickness of 80-220 nm. They allow ultrafast water permeation and exhibit excellent size-selective separation properties. A 112 nm-thick membrane has a water flux of 1620 l m-2 h-1 bar-1 and a ferritin rejection of 92.5%. These membranes have been applied to remove oil from its aqueous nanoemulsions successfully, and they show an ultrafast and effective separation of oil-in-water nanoemulsions. The newly developed ultrathin cellulose membranes have a wide application in oily wastewater treatment, separation and purification of nanomaterials.Oily wastewater is generated in diverse industrial processes, and its treatment has become crucial due to increasing environmental concerns. Herein, novel ultrathin nanoporous membranes of cellulose nanosheets have been fabricated for separation of oil-in-water nanoemulsions. The fabrication approach is facile and environmentally friendly, in which cellulose nanosheets are prepared by freeze-extraction of a very dilute cellulose solution. The as-prepared membranes have a cellulose nanosheet layer with a cut-off of 10-12 nm and a controllable thickness of 80-220 nm. They allow ultrafast water permeation and exhibit excellent size-selective separation properties. A 112 nm-thick membrane has a water flux of 1620 l m-2 h-1 bar-1 and a ferritin rejection of 92.5%. These membranes have been applied to remove oil from its aqueous nanoemulsions successfully, and they show an ultrafast and effective

  6. Chromophores in cellulosics, XI: isolation and identification of residual chromophores from bacterial cellulose

    Science.gov (United States)

    Cotton or linen fabrics and paper, as well as other items composed chiefly of cellulose, tend to change to a yellow or brown color as they age. The change in color is usually accompanied by increased brittleness and loss of strength, as well. A cause of these phenomena is thought to be the formation...

  7. Bacterial production of free fatty acids from freshwater macroalgal cellulose

    OpenAIRE

    Hoovers, Spencer W.; Marner, Wesley D.; Brownson, Amy K.; Lennen, Rebecca M; Wittkopp, Tyler M.; Yoshitani, Jun; Zulkifly, Shahrizim; Linda E Graham; Chaston, Sheena D.; McMahon, Katherine D.; Pfleger, Brian F.

    2011-01-01

    The predominant strategy for using algae to produce biofuels relies on the overproduction of lipids in microalgae with subsequent conversion to biodiesel (methyl-esters) or green diesel (alkanes). Conditions that both optimize algal growth and lipid accumulation rarely overlap, and differences in growth rates can lead to wild species outcompeting the desired lipid-rich strains. Here, we demonstrate an alternative strategy in which cellulose contained in the cell walls of multicellular algae i...

  8. Microwave absorption properties of cobalt ferrite-modified carbonized bacterial cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yong, E-mail: renyong@swust.edu.cn; Li, Shirong, E-mail: 373134886@qq.com; Dai, Bo, E-mail: bodai31@vip.sina.com; Huang, Xiaohu, E-mail: 2367771792@qq.com

    2014-08-30

    Highlights: • We carbonized bacterial cellulose into carbonized bacterial cellulose with novel three-dimensional conductive networks. • We produced a novel magnetic nanocomposite of carbonized bacterial cellulose (CBC) modified by CoFe{sub 2}O{sub 4} nanoparticles. • The CoFe{sub 2}O{sub 4} nanoparticles formed on the surface of the nanofibrils were much smaller and uniformly dispersed. • CBC/CoFe{sub 2}O{sub 4} nanocomposites possess better microwave absorption properties than pure CoFe{sub 2}O{sub 4} nanoparticles because of the introduction of CBC. - Abstract: A novel magnetic nanocomposite of carbonized bacterial cellulose (CBC) modified by CoFe{sub 2}O{sub 4} nanocrystals with different contents were synthesized successfully using an effective solvothermal method. Scanning electron microscopy and transmission electron microscopy revealed that the CBC fibers were intertwined and networks were loaded with well-distributed CoFe{sub 2}O{sub 4} nanoparticles. With a CBC/CoFe{sub 2}O{sub 4} ratio of 10 wt%, the optimal reflection loss (RL) of −45 dB at 8.6 GHz with a thickness of 2.0 mm because of the enhanced interfacial polarization related to the developed ε″. This novel electromagnetic nanocomposite material is believed to have potential applications in terms of microwave-absorbing performance.

  9. Immobilization of gelatin on bacterial cellulose nanofibers surface via crosslinking technique

    International Nuclear Information System (INIS)

    Bacterial cellulose is considered to be a potential material for tissue engineering. However, the absence of enough activity restricts its practical application as tissue engineering scaffold. This paper describes the synthesis of a novel bacterial cellulose/gelatin composite via crosslinking by procyanidin (PA). The morphology of the bacterial cellulose/gelatin composite was observed by field emission scanning electron microscopy (FE-SEM) and transmission electronic microscope (TEM). The composites were further characterized by fourier transformed infrared spectroscopy (FTIR) and X-ray diffraction (XRD). It was found that the 0.25 wt.% Gel solution was the appropriate concentration for the BC/Gel composite. Furthermore, the proliferation, infiltration and adhesion of NIH3T3 cells on the BC/Gel-025 composite were evaluated. The results showed that the composite had better bioactivity than pure bacterial cellulose, and the composite supported cell growth. - Highlights: ► Herein, procyanidin is an effective and bioactive reagent for gelatin materials. ► The 0.25% Gel solution is appropriate for the BC/Gel composite. ► It is proved that the BC/Gel composite is a new choice for the biomaterials.

  10. Microwave absorption properties of cobalt ferrite-modified carbonized bacterial cellulose

    International Nuclear Information System (INIS)

    Highlights: • We carbonized bacterial cellulose into carbonized bacterial cellulose with novel three-dimensional conductive networks. • We produced a novel magnetic nanocomposite of carbonized bacterial cellulose (CBC) modified by CoFe2O4 nanoparticles. • The CoFe2O4 nanoparticles formed on the surface of the nanofibrils were much smaller and uniformly dispersed. • CBC/CoFe2O4 nanocomposites possess better microwave absorption properties than pure CoFe2O4 nanoparticles because of the introduction of CBC. - Abstract: A novel magnetic nanocomposite of carbonized bacterial cellulose (CBC) modified by CoFe2O4 nanocrystals with different contents were synthesized successfully using an effective solvothermal method. Scanning electron microscopy and transmission electron microscopy revealed that the CBC fibers were intertwined and networks were loaded with well-distributed CoFe2O4 nanoparticles. With a CBC/CoFe2O4 ratio of 10 wt%, the optimal reflection loss (RL) of −45 dB at 8.6 GHz with a thickness of 2.0 mm because of the enhanced interfacial polarization related to the developed ε″. This novel electromagnetic nanocomposite material is believed to have potential applications in terms of microwave-absorbing performance

  11. Bacterial cellulose based hydrogel (BC-g-AA) and preliminary result of swelling behavior

    International Nuclear Information System (INIS)

    In this study, hydrogel based on Bacterial cellulose (BC) or local known as Nata de Coco, which grafted with monomer: Acrylic acid (AA) is synthesis by using gamma radiation technique. These hydrogel (BC-g-AA) has unique characteristic whereby responsive to pH buffer solution

  12. A route to uniaxially oriented ribbons of bacterial cellulose nanocrystals based on isomalt spun sacrificial template

    OpenAIRE

    Bizot, Herve; Cathala, Bernard

    2014-01-01

    We have carried out orientation of bacterial cellulose nanocrystals (BCNC) by implementing a process based on mechanical shearing BCNC dispersed in a viscous temporary isomalt glass. After the orientation, the isomalt matrix was selectively solubilized to afford uniaxially highly oriented BCNC ribbons as demonstrated by SEM and X-Ray studies. The 2D WAXS determined Herman's order parameter reached 0.85.

  13. Bacterial cellulose based hydrogel (BC-g-AA) and preliminary result of swelling behavior

    Energy Technology Data Exchange (ETDEWEB)

    Hakam, Adil; Lazim, Azwan Mat [UKM-MIMOS Laboratory, School of Chemical Sciences and Food Technology, National University of Malaysia (UKM) (Malaysia); Abdul Rahman, I. Irman [Laboratory of Gamma Radiation Instrument, Science Nuclear Program, School of Applied Physics, National University of Malaysia (UKM) (Malaysia)

    2013-11-27

    In this study, hydrogel based on Bacterial cellulose (BC) or local known as Nata de Coco, which grafted with monomer: Acrylic acid (AA) is synthesis by using gamma radiation technique. These hydrogel (BC-g-AA) has unique characteristic whereby responsive to pH buffer solution.

  14. Bacterial cellulose based hydrogel (BC-g-AA) and preliminary result of swelling behavior

    Science.gov (United States)

    Hakam, Adil; Lazim, Azwan Mat; Abdul Rahman, I. Irman

    2013-11-01

    In this study, hydrogel based on Bacterial cellulose (BC) or local known as Nata de Coco, which grafted with monomer: Acrylic acid (AA) is synthesis by using gamma radiation technique. These hydrogel (BC-g-AA) has unique characteristic whereby responsive to pH buffer solution.

  15. Effect of bacterial cellulose addition on physical properties of WPI emulsions. Comparison with common thickeners

    NARCIS (Netherlands)

    Paximada, P.; Koutinas, A.A.; Scholten, E.; Mandala, I.

    2016-01-01

    In this work, we investigated the role of bacterial cellulose (BC) as a cheaper alternative thickener in o/w emulsions properties compared to xanthan gum (XG) and locust bean gum (LBG) which are highly priced. Emulsions were prepared at pH 3.8 using whey protein isolate (WPI) (2–5% wt) and BC in var

  16. Immobilization of gelatin on bacterial cellulose nanofibers surface via crosslinking technique

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.; Wan, Y.Z.; Luo, H.L.; Gao, C.; Huang, Y., E-mail: bacteria.cellulose@gmail.com

    2012-04-01

    Bacterial cellulose is considered to be a potential material for tissue engineering. However, the absence of enough activity restricts its practical application as tissue engineering scaffold. This paper describes the synthesis of a novel bacterial cellulose/gelatin composite via crosslinking by procyanidin (PA). The morphology of the bacterial cellulose/gelatin composite was observed by field emission scanning electron microscopy (FE-SEM) and transmission electronic microscope (TEM). The composites were further characterized by fourier transformed infrared spectroscopy (FTIR) and X-ray diffraction (XRD). It was found that the 0.25 wt.% Gel solution was the appropriate concentration for the BC/Gel composite. Furthermore, the proliferation, infiltration and adhesion of NIH3T3 cells on the BC/Gel-025 composite were evaluated. The results showed that the composite had better bioactivity than pure bacterial cellulose, and the composite supported cell growth. - Highlights: Black-Right-Pointing-Pointer Herein, procyanidin is an effective and bioactive reagent for gelatin materials. Black-Right-Pointing-Pointer The 0.25% Gel solution is appropriate for the BC/Gel composite. Black-Right-Pointing-Pointer It is proved that the BC/Gel composite is a new choice for the biomaterials.

  17. Surface modification of cellulose acetate membrane using thermal annealing to enhance produced water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kusworo, T. D., E-mail: tdkusworo@che.undip.ac.id; Aryanti, N., E-mail: nita.aryanti@gmail.com; Firdaus, M. M. H.; Sukmawati, H. [Chemical Engineering, Faculty of Engineering, Diponegoro University Prof. Soedarto Street, Tembalang, Semarang, 50239, Phone/Fax : (024)7460058 (Indonesia)

    2015-12-29

    This study is performed primarily to investigate the effect of surface modification of cellulose acetate using thermal annealing on the enhancement of membrane performance for produced water treatment. In this study, Cellulose Acetate membranes were casted using dry/wet phase inversion technique. The effect of additive and post-treatment using thermal annealing on the membrane surface were examined for produced water treatment. Therma annealing was subjected to membrane surface at 60 and 70 °C for 5, 10 and 15 second, respectively. Membrane characterizations were done using membrane flux and rejection with produced water as a feed, Scanning Electron Microscopy (SEM) and Fourier Transform Infra Red (FTIR) analysis. Experimental results showed that asymmetric cellulose acetate membrane can be made by dry/wet phase inversion technique. The results from the Scanning Electron Microscopy (FESEM) analysis was also confirmed that polyethylene glycol as additivie in dope solution and thermal annealing was affected the morphology and membrane performance for produced water treatment, respectively. Scanning electron microscopy micrographs showed that the selective layer and the substructure of membrane became denser and more compact after the thermal annealing processes. Therefore, membrane rejection was significantly increased while the flux was slighty decreased, respectively. The best membrane performance is obtained on the composition of 18 wt % cellulose acetate, poly ethylene glycol 5 wt% with thermal annealing at 70° C for 15 second.

  18. Surface modification of cellulose acetate membrane using thermal annealing to enhance produced water treatment

    Science.gov (United States)

    Kusworo, T. D.; Aryanti, N.; Firdaus, M. M. H.; Sukmawati, H.

    2015-12-01

    This study is performed primarily to investigate the effect of surface modification of cellulose acetate using thermal annealing on the enhancement of membrane performance for produced water treatment. In this study, Cellulose Acetate membranes were casted using dry/wet phase inversion technique. The effect of additive and post-treatment using thermal annealing on the membrane surface were examined for produced water treatment. Therma annealing was subjected to membrane surface at 60 and 70 °C for 5, 10 and 15 second, respectively. Membrane characterizations were done using membrane flux and rejection with produced water as a feed, Scanning Electron Microscopy (SEM) and Fourier Transform Infra Red (FTIR) analysis. Experimental results showed that asymmetric cellulose acetate membrane can be made by dry/wet phase inversion technique. The results from the Scanning Electron Microscopy (FESEM) analysis was also confirmed that polyethylene glycol as additivie in dope solution and thermal annealing was affected the morphology and membrane performance for produced water treatment, respectively. Scanning electron microscopy micrographs showed that the selective layer and the substructure of membrane became denser and more compact after the thermal annealing processes. Therefore, membrane rejection was significantly increased while the flux was slighty decreased, respectively. The best membrane performance is obtained on the composition of 18 wt % cellulose acetate, poly ethylene glycol 5 wt% with thermal annealing at 70° C for 15 second.

  19. Surface modification of cellulose acetate membrane using thermal annealing to enhance produced water treatment

    International Nuclear Information System (INIS)

    This study is performed primarily to investigate the effect of surface modification of cellulose acetate using thermal annealing on the enhancement of membrane performance for produced water treatment. In this study, Cellulose Acetate membranes were casted using dry/wet phase inversion technique. The effect of additive and post-treatment using thermal annealing on the membrane surface were examined for produced water treatment. Therma annealing was subjected to membrane surface at 60 and 70 °C for 5, 10 and 15 second, respectively. Membrane characterizations were done using membrane flux and rejection with produced water as a feed, Scanning Electron Microscopy (SEM) and Fourier Transform Infra Red (FTIR) analysis. Experimental results showed that asymmetric cellulose acetate membrane can be made by dry/wet phase inversion technique. The results from the Scanning Electron Microscopy (FESEM) analysis was also confirmed that polyethylene glycol as additivie in dope solution and thermal annealing was affected the morphology and membrane performance for produced water treatment, respectively. Scanning electron microscopy micrographs showed that the selective layer and the substructure of membrane became denser and more compact after the thermal annealing processes. Therefore, membrane rejection was significantly increased while the flux was slighty decreased, respectively. The best membrane performance is obtained on the composition of 18 wt % cellulose acetate, poly ethylene glycol 5 wt% with thermal annealing at 70° C for 15 second

  20. Cellulose triacetate doped with ionic liquids for membrane gas separation

    Science.gov (United States)

    Lam, Benjamin Fatt Soon

    The doping of cellulose triacetate (CTA) with imidazolium based ionic liquids (ILs) is investigated in order to reduce the polymer crystallinity and enhance the affinity with CO2, thus increasing CO2 permeability and CO2/light gas selectivity. CTA membranes doped with [emim] BF4 or [emim] DCA were prepared, and the effect of the ILs loading on properties, such as crystallinity, density, degradation temperature, glass transition temperature, and gas transport properties, has been determined. In general, doping with IL reduces the crystallinity in CTA, increasing gas solubility, diffusivity and permeability. The ILs doping also increases CO 2/CH4 solubility selectivity and CO2/N2 permeability selectivity, due to the affinity of these ILs with CO2, instead of light gases such as CH4 and N2. This study provides a mechanistic understanding of interaction of ILs and CTA, and demonstrates an effective route in manipulating the morphology and gas transport properties of semi crystalline polymers by doping with ILs.

  1. Preparation and characterization of regenerated cellulose membranes from natural cotton fiber

    Directory of Open Access Journals (Sweden)

    Yanjuan CAO

    2015-06-01

    Full Text Available A series of organic solutions with different cellulose concentrations are prepared by dissolving natural cotton fibers in lithium chloride/dimethyl acetamide (LiCl/DMAC solvent system after the activation of cotton fibers. Under different coagulating bath, the regenerated cellulose membranes are formed in two kinds of coagulation baths, and two coating methods including high-speed spin technique (KW-4A spin coating machine and low-speed scraping (AFA-Ⅱ Film Applicator are selected in this paper. The macromolecular structure, mechanical properties, crystallinity, thermal stability and wetting property of the regenerated cellulose membrane are characterized by Scanning Electron Microscope(SEM, Fourier Transform Infrared Spectroscopy (FT-IR,X-ray diffraction (XRD, Thermogravimetric analysis (TG and contacting angle tester. The effects of mass fraction, coagulation bath type, membrane forming process on the regenerated membrane properties are investigated. Experimental results show that the performance of regenerated cellulose membrane is relatively excellent under the condition of using the KW-4A high-speed spin method, water coagulation bath, and when mass fraction of cellulose is 3.5%. The crystallinity of the regenerated cellulose membrane changes a lot compared with natural cotton fibers. The variation trend of thermal stability is similar with that of cotton fiber. But thermal stability is reduced to some degree, while the wetting ability is improved obviously.

  2. Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis

    Directory of Open Access Journals (Sweden)

    Demirci Ali

    2009-07-01

    Full Text Available Abstract Bacterial cellulose has been used in the food industry for applications such as low-calorie desserts, salads, and fabricated foods. It has also been used in the paper manufacturing industry to enhance paper strength, the electronics industry in acoustic diaphragms for audio speakers, the pharmaceutical industry as filtration membranes, and in the medical field as wound dressing and artificial skin material. In this study, different types of plastic composite support (PCS were implemented separately within a fermentation medium in order to enhance bacterial cellulose (BC production by Acetobacter xylinum. The optimal composition of nutritious compounds in PCS was chosen based on the amount of BC produced. The selected PCS was implemented within a bioreactor to examine the effects on BC production in a batch fermentation. The produced BC was analyzed using X-ray diffraction (XRD, field emission scanning electron microscopy (FESEM, thermogravimetric analysis (TGA, and dynamic mechanical analysis (DMA. Among thirteen types of PCS, the type SFYR+ was selected as solid support for BC production by A. xylinum in a batch biofilm reactor due to its high nitrogen content, moderate nitrogen leaching rate, and sufficient biomass attached on PCS. The PCS biofilm reactor yielded BC production (7.05 g/L that was 2.5-fold greater than the control (2.82 g/L. The XRD results indicated that the PCS-grown BC exhibited higher crystallinity (93% and similar crystal size (5.2 nm to the control. FESEM results showed the attachment of A. xylinum on PCS, producing an interweaving BC product. TGA results demonstrated that PCS-grown BC had about 95% water retention ability, which was lower than BC produced within suspended-cell reactor. PCS-grown BC also exhibited higher Tmax compared to the control. Finally, DMA results showed that BC from the PCS biofilm reactor increased its mechanical property values, i.e., stress at break and Young's modulus when compared to

  3. The effect of acid hydrolysis pretreatment on crystallinity and solubility of kenaf cellulose membrane

    International Nuclear Information System (INIS)

    Cellulose was extracted from kenaf core pulp (KCP) by series of bleaching steps in the sequence (DEED) where D and E are referred as acid and alkali treatment. The bleached kenaf pulp (BKCP) is then pretreated with acid hydrolysis at room temperature for 1 and 3 h respectively. The pretreated cellulose is dissolved in lithium hydroxide/urea (LiOH/urea) and cellulose solution produced was immersed in distilled water bath. BKCP without treatment was also conducted for comparison purpose. The effects of acid hydrolysis pretreatment on solubility and crystallinity are investigated. Higher solubility of cellulose solution is achieved for treated samples. Cellulose II formation and crystallinity index of the cellulose membrane were determined by X-ray diffraction (XRD)

  4. The effect of acid hydrolysis pretreatment on crystallinity and solubility of kenaf cellulose membrane

    Energy Technology Data Exchange (ETDEWEB)

    Saidi, Anis Syuhada Mohd; Zakaria, Sarani; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Padzil, Farah Nadia Mohammad [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2015-09-25

    Cellulose was extracted from kenaf core pulp (KCP) by series of bleaching steps in the sequence (DEED) where D and E are referred as acid and alkali treatment. The bleached kenaf pulp (BKCP) is then pretreated with acid hydrolysis at room temperature for 1 and 3 h respectively. The pretreated cellulose is dissolved in lithium hydroxide/urea (LiOH/urea) and cellulose solution produced was immersed in distilled water bath. BKCP without treatment was also conducted for comparison purpose. The effects of acid hydrolysis pretreatment on solubility and crystallinity are investigated. Higher solubility of cellulose solution is achieved for treated samples. Cellulose II formation and crystallinity index of the cellulose membrane were determined by X-ray diffraction (XRD)

  5. The effect of acid hydrolysis pretreatment on crystallinity and solubility of kenaf cellulose membrane

    Science.gov (United States)

    Saidi, Anis Syuhada Mohd; Zakaria, Sarani; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Padzil, Farah Nadia Mohammad

    2015-09-01

    Cellulose was extracted from kenaf core pulp (KCP) by series of bleaching steps in the sequence (DEED) where D and E are referred as acid and alkali treatment. The bleached kenaf pulp (BKCP) is then pretreated with acid hydrolysis at room temperature for 1 and 3 h respectively. The pretreated cellulose is dissolved in lithium hydroxide/urea (LiOH/urea) and cellulose solution produced was immersed in distilled water bath. BKCP without treatment was also conducted for comparison purpose. The effects of acid hydrolysis pretreatment on solubility and crystallinity are investigated. Higher solubility of cellulose solution is achieved for treated samples. Cellulose II formation and crystallinity index of the cellulose membrane were determined by X-ray diffraction (XRD).

  6. Characterisation of bacterial cellulose partly acetylated by dimethylacetamide/lithium chloride

    International Nuclear Information System (INIS)

    Cellulose is a water-insoluble polysaccharide used at an industrial scale for the manufacture of paper and films or in the dust form, natural, hydrolysed or derivatised. The cellulose produced by G. hansenii (former A. xylinum) has a structure identical to that of plants, but is free of lignin and hemicellulose, with several unique physical-chemical properties. The main barrier to the use of cellulose is its insolubility in water and most organic solvents, but soluble derivatives can be obtained with the use of ionic solvents. Bacterial cellulose, produced in a static, 4% glucose medium, was dissolved in hot DMAc/LiCl (120, 150 or 170 deg. C). The solution was analysed by 13C NMR, and the effect of the dissolution on the crystalline state was shown by X-ray crystallography. The crystalline structure was lost upon dissolution, becoming amorphous; this was also observed for Avicel plant cellulose. The soluble cellulose was partly acetylated in acetic anhydride with acetic anhydride-cellulose ratios of 1:50, 1:6 and 1:12 (w/v). The resulting cellulose acetates were examined by infrared spectroscopy, and the best result was 43% (w/v). The degree of acetylation was determined via 1H NMR spectroscopy by comparing the area of the glucose ring at 2.60-5.20 ppm and that of the methyl proton of the acetate group at 1.80-2.20 ppm. The 13C NMR spectra showed acetylation at C6 >> C2 > C3 at 60-80 ppm, with C1 signals at ∼ 100-104 ppm. The derivatisation of bacterial cellulose in DMAc/LiCl/acetic anhydride (1:4:50, v/v/v) gave rise to 87% substitution. The process of dissolution of the bacterial cellulose is essential for the analysis of the insoluble polymer in water, facilitating analysis and characterisation of these composites by 13C NMR spectroscopy, size exclusion chromatography and light scattering techniques.

  7. Characterisation of bacterial cellulose partly acetylated by dimethylacetamide/lithium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Lima, G. de Marco [PMCF-Mestrado em Ciencias Farmaceuticas, UNIVALI, ZIP 88302-202, Itajai-SC (Brazil); Sierakowski, M.-R.; Faria-Tischer, P.C.S. [BIOPOL-Biopolymers Lab. PO Box 19081, ZIP 81531-990, Curitiba-PR (Brazil); Tischer, C.A., E-mail: cesar.tischer@pq.cnpq.br [BIOPOL-Biopolymers Lab. PO Box 19081, ZIP 81531-990, Curitiba-PR (Brazil)

    2011-03-12

    Cellulose is a water-insoluble polysaccharide used at an industrial scale for the manufacture of paper and films or in the dust form, natural, hydrolysed or derivatised. The cellulose produced by G. hansenii (former A. xylinum) has a structure identical to that of plants, but is free of lignin and hemicellulose, with several unique physical-chemical properties. The main barrier to the use of cellulose is its insolubility in water and most organic solvents, but soluble derivatives can be obtained with the use of ionic solvents. Bacterial cellulose, produced in a static, 4% glucose medium, was dissolved in hot DMAc/LiCl (120, 150 or 170 deg. C). The solution was analysed by {sup 13}C NMR, and the effect of the dissolution on the crystalline state was shown by X-ray crystallography. The crystalline structure was lost upon dissolution, becoming amorphous; this was also observed for Avicel plant cellulose. The soluble cellulose was partly acetylated in acetic anhydride with acetic anhydride-cellulose ratios of 1:50, 1:6 and 1:12 (w/v). The resulting cellulose acetates were examined by infrared spectroscopy, and the best result was 43% (w/v). The degree of acetylation was determined via {sup 1}H NMR spectroscopy by comparing the area of the glucose ring at 2.60-5.20 ppm and that of the methyl proton of the acetate group at 1.80-2.20 ppm. The {sup 13}C NMR spectra showed acetylation at C6 >> C2 > C3 at 60-80 ppm, with C1 signals at {approx} 100-104 ppm. The derivatisation of bacterial cellulose in DMAc/LiCl/acetic anhydride (1:4:50, v/v/v) gave rise to 87% substitution. The process of dissolution of the bacterial cellulose is essential for the analysis of the insoluble polymer in water, facilitating analysis and characterisation of these composites by {sup 13}C NMR spectroscopy, size exclusion chromatography and light scattering techniques.

  8. Cellulose

    Science.gov (United States)

    Cellulose properties and structure are reviewed, with a primary focus on crystal structure and polymorphy. This focus highlights the conversion from cellulose I to cellulose II, which converts the molecules to being all parallel to each other in the crystal to being antiparallel. This has been co...

  9. Synthesis and characterization of cellulose derivatives obtained from bacterial cellulose; Sintese e caracterizacao de derivados celulosicos obtidos a partir da celulose bacteriana

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Rafael L. de; Barud, Hernane; Ribeiro, Sidney J.L.; Messaddeq, Younes, E-mail: rafael.tu@gmail.com [Instituto de Quimica - Universidade Estadual Paulista Julio de Mesquita Filho - UNESP, Araraquara, SP (Brazil)

    2011-07-01

    The chemical modification of cellulose leads to production of derivatives with different properties from those observed for the original cellulose, for example, increased solubility in more traditional solvents. In this work we synthesized four derivatives of cellulose: microcrystalline cellulose, cellulose acetate, methylcellulose and carboxymethylcellulose using bacterial cellulose as a source. These were characterized in terms of chemical and structural changes by examining the degree of substitution (DS), infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy - NMR {sup 13}C. The molecular weight and degree of polymerization were evaluated by viscometry. The characterization of the morphology of materials and thermal properties were performed with the techniques of X-ray diffraction, electron microscopy images, differential scanning calorimetry (DSC) and thermogravimetric analysis. (author)

  10. Physicochemical characterization of novel Schiff bases derived from developed bacterial cellulose 2,3-dialdehyde.

    Science.gov (United States)

    Keshk, Sherif M A S; Ramadan, Ahmed M; Bondock, Samir

    2015-08-20

    The synthesis of two novel Schiff's bases (cellulose-2,3-bis-[(4-methylene-amino)-benzene-sulfonamide] (5) & cellulose-2,3-bis-[(4-methylene-amino)-N-(thiazol-2-yl)-benzenesulfonamide] (6) via condensation reactions of periodate oxidized developed bacterial cellulose ODBC (2) with sulfa drugs [sulfanilamide (3) & sulfathiazole (4)] was reported. The physicochemical characterization of the condensation products was performed using FTIR, (1)H NMR, (13)C NMR spectral analyses, X-ray diffraction and DTA. The ODBC exhibited the highest degree of oxidation based on the aldehyde group number percentage (82.9%), which confirms the highest reactivity of developed bacterial cellulose [DBC (1)]. The X-ray diffractograms indicated an increase in the interplanar distance of the cellulose Schiff base (6) compared to ODBC (2) due to sulfathiazole (4) inclusion between ODBC (2) sheets corresponding to the 1 1 0 plane. In addition, the aldehyde content of Schiff base (6) was (20.8%) much lower than that of Schiff base (5) (41.5%). These results confirmed the high affinity of sulfathiazole (4) to the ODBC (2) chain, and the substantial changes in the original properties of ODBC were due to these chemical modifications rather than the sulfanilamide (3). PMID:25965481

  11. Cellulose acetate-based molecularly imprinted polymeric membrane for separation of vanillin and o-vanillin

    OpenAIRE

    Chunjing Zhang; Shian Zhong; Zhengpeng Yang

    2008-01-01

    Cellulose acetate-based molecularly imprinted polymeric membranes were prepared using vanillin as template molecule. The microscopic structure of the resultant polymeric membranes was characterized by SEM and FTIR spectroscopy, and the selective binding properties and separation capacity of the membranes for vanillin and o-vanillin were tested with binding experiments and separate experiments, respectively. The results showed that the vanillin-imprinted polymeric membranes displayed higher bi...

  12. In vitro chondrogenesis with lysozyme susceptible bacterial cellulose as a scaffold.

    Science.gov (United States)

    Yadav, Vikas; Sun, Lin; Panilaitis, Bruce; Kaplan, David L

    2015-12-01

    A current focus of tissue engineering is the use of adult human mesenchymal stem cells (hMSCs) as an alternative to autologous chondrocytes for cartilage repair. Several natural and synthetic polymers (including cellulose) have been explored as a biomaterial scaffold for cartilage tissue engineering. While bacterial cellulose (BC) has been used in tissue engineering, its lack of degradability in vivo and high crystallinity restricts widespread applications in the field. Recently we reported the formation of a novel bacterial cellulose that is lysozyme-susceptible and -degradable in vivo from metabolically engineered Gluconacetobacter xylinus. Here we report the use of this modified bacterial cellulose (MBC) for cartilage tissue engineering using hMSCs. MBC's glucosaminoglycan-like chemistry, combined with in vivo degradability, suggested opportunities to exploit this novel polymer in cartilage tissue engineering. We have observed that, like BC, MBC scaffolds support cell attachment and proliferation. Chondrogenesis of hMSCs in the MBC scaffolds was demonstrated by real-time RT-PCR analysis for cartilage-specific extracellular matrix (ECM) markers (collagen type II, aggrecan and SOX9) as well as histological and immunohistochemical evaluations of cartilage-specific ECM markers. Further, the attachment, proliferation, and differentiation of hMSCs in MBC showed unique characteristics. For example, after 4 weeks of cultivation, the spatial cell arrangement and collagen type-II and ACAN distribution resembled those in native articular cartilage tissue, suggesting promise for these novel in vivo degradable scaffolds for chondrogenesis. PMID:23315887

  13. Hopanoids as functional analogues of cholesterol in bacterial membranes.

    Science.gov (United States)

    Sáenz, James P; Grosser, Daniel; Bradley, Alexander S; Lagny, Thibaut J; Lavrynenko, Oksana; Broda, Martyna; Simons, Kai

    2015-09-22

    The functionality of cellular membranes relies on the molecular order imparted by lipids. In eukaryotes, sterols such as cholesterol modulate membrane order, yet they are not typically found in prokaryotes. The structurally similar bacterial hopanoids exhibit similar ordering properties as sterols in vitro, but their exact physiological role in living bacteria is relatively uncharted. We present evidence that hopanoids interact with glycolipids in bacterial outer membranes to form a highly ordered bilayer in a manner analogous to the interaction of sterols with sphingolipids in eukaryotic plasma membranes. Furthermore, multidrug transport is impaired in a hopanoid-deficient mutant of the gram-negative Methylobacterium extorquens, which introduces a link between membrane order and an energy-dependent, membrane-associated function in prokaryotes. Thus, we reveal a convergence in the architecture of bacterial and eukaryotic membranes and implicate the biosynthetic pathways of hopanoids and other order-modulating lipids as potential targets to fight pathogenic multidrug resistance. PMID:26351677

  14. Fabrication of flexible self-standing all-cellulose nanofibrous composite membranes for virus removal.

    Science.gov (United States)

    Huang, Weijuan; Wang, Yixiang; Chen, Chao; Law, John Lok Man; Houghton, Michael; Chen, Lingyun

    2016-06-01

    All-cellulose nanocomposite membranes with excellent performance were successfully fabricated as novel filtration system to remove nanoparticles and virus from aqueous medium. These membranes were composed of two combined layers: an electrospun cellulose nanofabric layer treated by hot-pressing to provide mechanical support and a coating of regenerated cellulose gel with tiny inter-connected pores as barrier. Hot-pressing did not affect the fiber shape of electrospun nanofabrics, but significantly improved their mechanical properties due to increased hydrogen bonds. The regenerated cellulose gel formed a porous coating that tightly attached to electrospun nanofabrics, and its pore size varied depending on cellulose source, solution concentration, and drying process. By assembling these two layers together, the nanocomposite membranes showed the notable retention of negatively charged 100nm latex beads (99.30%). Moreover, the electronegative nature of cellulose membranes imparted the rejection ratio of 100% and (98.68±0.71)% against positively charged 50nm latex beads and Hepatitis C Virus, respectively. PMID:27083338

  15. Interaction of multiple biomimetic antimicrobial polymers with model bacterial membranes

    International Nuclear Information System (INIS)

    Using atomistic molecular dynamics simulations, interaction of multiple synthetic random copolymers based on methacrylates on prototypical bacterial membranes is investigated. The simulations show that the cationic polymers form a micellar aggregate in water phase and the aggregate, when interacting with the bacterial membrane, induces clustering of oppositely charged anionic lipid molecules to form clusters and enhances ordering of lipid chains. The model bacterial membrane, consequently, develops lateral inhomogeneity in membrane thickness profile compared to polymer-free system. The individual polymers in the aggregate are released into the bacterial membrane in a phased manner and the simulations suggest that the most probable location of the partitioned polymers is near the 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) clusters. The partitioned polymers preferentially adopt facially amphiphilic conformations at lipid-water interface, despite lacking intrinsic secondary structures such as α-helix or β-sheet found in naturally occurring antimicrobial peptides

  16. Interaction of multiple biomimetic antimicrobial polymers with model bacterial membranes

    Energy Technology Data Exchange (ETDEWEB)

    Baul, Upayan, E-mail: upayanb@imsc.res.in; Vemparala, Satyavani, E-mail: vani@imsc.res.in [The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113 (India); Kuroda, Kenichi, E-mail: kkuroda@umich.edu [Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109 (United States)

    2014-08-28

    Using atomistic molecular dynamics simulations, interaction of multiple synthetic random copolymers based on methacrylates on prototypical bacterial membranes is investigated. The simulations show that the cationic polymers form a micellar aggregate in water phase and the aggregate, when interacting with the bacterial membrane, induces clustering of oppositely charged anionic lipid molecules to form clusters and enhances ordering of lipid chains. The model bacterial membrane, consequently, develops lateral inhomogeneity in membrane thickness profile compared to polymer-free system. The individual polymers in the aggregate are released into the bacterial membrane in a phased manner and the simulations suggest that the most probable location of the partitioned polymers is near the 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) clusters. The partitioned polymers preferentially adopt facially amphiphilic conformations at lipid-water interface, despite lacking intrinsic secondary structures such as α-helix or β-sheet found in naturally occurring antimicrobial peptides.

  17. S-Acylation of the cellulose synthase complex is essential for its plasma membrane localization.

    Science.gov (United States)

    Kumar, Manoj; Wightman, Raymond; Atanassov, Ivan; Gupta, Anjali; Hurst, Charlotte H; Hemsley, Piers A; Turner, Simon

    2016-07-01

    Plant cellulose microfibrils are synthesized by a process that propels the cellulose synthase complex (CSC) through the plane of the plasma membrane. How interactions between membranes and the CSC are regulated is currently unknown. Here, we demonstrate that all catalytic subunits of the CSC, known as cellulose synthase A (CESA) proteins, are S-acylated. Analysis of Arabidopsis CESA7 reveals four cysteines in variable region 2 (VR2) and two cysteines at the carboxy terminus (CT) as S-acylation sites. Mutating both the VR2 and CT cysteines permits CSC assembly and trafficking to the Golgi but prevents localization to the plasma membrane. Estimates suggest that a single CSC contains more than 100 S-acyl groups, which greatly increase the hydrophobic nature of the CSC and likely influence its immediate membrane environment. PMID:27387950

  18. Present status and applications of bacterial cellulose-based materials for skin tissue repair.

    Science.gov (United States)

    Fu, Lina; Zhang, Jin; Yang, Guang

    2013-02-15

    Bacterial cellulose (BC, also known as microbial cellulose, MC) is a promising natural polymer which is biosynthesized by certain bacteria. This review focused on BC-based materials which can be utilized for skin tissue repair. Firstly, it is illustrated that BC has unique structural and mechanical properties as compared with higher plant cellulose, and is thus expected to become a commodity material. Secondly, we summarized the basic properties and different types of BC, including self-assembled, oriented BC, and multiform BC. Thirdly, composites prepared by using BC in conjunction with other polymers are explored, and the research on BC for application in skin tissue engineering is addressed. Finally, experimental results and clinical treatments assessing the performance of wound healing materials based on BC were examined. With its superior mechanical properties, as well as its excellent biocompatibility, BC was shown to have great potential for biomedical application and very high clinical value for skin tissue repair. PMID:23399174

  19. Cellulose membrane as a biomaterial: from hydrolysis to depolymerization with electron beam.

    Science.gov (United States)

    Eo, Mi Young; Fan, Huan; Cho, Yun Ju; Kim, Soung Min; Lee, Suk Keun

    2016-01-01

    The cellulose membrane (CM) is a major component of plant cell walls and is both a chemically and mechanically stable synthetic polymer with many applications for use in tissue engineering. However, due to its dissolution difficulty, there are no known physiologically relevant or pharmaceutically clinical applications for this polymer. Thus, research is underway on controlled and adjusted forms of cellulose depolymerization. To advance the study of applying CM for tissue engineering, we have suggested new possibilities for electron beam (E-beam) treatment of CM. Treatment of CM with an E-beam can modify physical, chemical, molecular and biological properties, so it can be studied continuously to improve its usefulness and to enhance value. We review clinical applications of CM, cellulose binding domains, cellulose crosslinking proteins, conventional hydrolysis of cellulose, and depolymerization with radiation and focus our experiences with depolymerization of E-beam irradiated CM in this article. PMID:27418974

  20. Celluloses filled ENR/PVC membranes for palm oil mill effluent (POME) treatment

    Science.gov (United States)

    Shamsuddin, Mohd Razali; Abdullah, Ibrahim; Othaman, Rizafizah

    2013-11-01

    Membranes from composite materials have been used especially in water treatment applications. In this paper the composite membranes of celluloses filled ENR/PVC were successfully prepared for POME treatment application. The preparation of the membrane involves solution blending, casting, phase inversion and drying methods. Two types of fillers, cellulose (Cell) and cellulose grafting polymethyl methacrylate (Cell-g-PMMA) were added into ENR/PVC matrix in various compositions (1, 5, 10, 15 and 20 wt%) to determine the effect of the filler to the performance of the membrane. The membranes were characterized by using FTIR and SEM. Membrane properties in terms of porosity and water flux were examined using mathematical calculation. FTIR spectrum shows the existence of stretching vibration from the functional group of ester carbonyl, -C=O at peak 1725 cm-1 that belongs to Cell-g-PMMA filler in ENR/PVC/Cell-g-PMMA membrane which makes the membranes slightly hydrophobic. SEM micrographs exhibit that pores were formed on both ENR/PVC/Cell and ENR/PVC/Cell-g-PMMA membranes. Water flux test indicates that ENR/PVC/Cell-20% was the highest because the addition of Cell increases the hydrophilicity of the membrane. In POME treatment, ENR/PVC/Cell-20% and ENR/PVC/Cell-g-PMMA-10% showed the highest decolorization.

  1. Influence of coagulation bath on morphology of cellulose membranes prepared by NMMO method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To control the morphology of cellulose membranes used for separation,they were prepared by the NMMO method using water,methanol,ethanol and their binary solution as coagulation baths.Morphologies of the surface and cross section of dry membranes were observed.The pore structure parameters of wet membranes were determined.By comparison,the process and mechanism of pore formation in dry membranes were suggested,and the relativity of cellulose crystal size to average pore diameter in wet membranes and their influences were discussed.The results show that the morphology of dry membranes is clearly varied with coagulation baths,while the porosity of wet membranes is almost constant.Porous structures can appear in the compact region of dry membranes due to swelling from water.These pores have a virtual effect on the average pore diameter of wet membranes.By changing the composition of coagulation baths,the microstructure of cellulose membranes in a dry or wet environment can be adjusted separately.

  2. Improving bacterial cellulose for blood vessel replacement: functionalization with a chimeric protein containing a cellulose-binding module and an adhesion peptide

    OpenAIRE

    Andrade, Fábia K.; Costa, Raquel; Domingues, Lucília; Soares, Raquel; Gama, F. M.

    2010-01-01

    Chimeric proteins containing a cellulose-binding module (CBM) and an adhesion peptide (RGD or GRGDY) were produced and used to improve the adhesion of human microvascular endothelial cells (HMEC) to bacterial cellulose (BC). The effect of these proteins on the HMEC–BC interaction was studied. The results obtained demonstrated that recombinant proteins containing adhesion sequences were able to significantly increase the attachment of HMEC to BC surfaces, especially the RGD sequenc...

  3. Complete Genome Sequence of Gluconacetobacter hansenii Strain NQ5 (ATCC 53582), an Efficient Producer of Bacterial Cellulose.

    Science.gov (United States)

    Pfeffer, Sarah; Mehta, Kalpa; Brown, R Malcolm

    2016-01-01

    This study reports the release of the complete nucleotide sequence of Gluconacetobacter hansenii strain NQ5 (ATCC 53582). This strain was isolated by R. Malcolm Brown, Jr. in a sugar mill in North Queensland, Australia, and is an efficient producer of bacterial cellulose. The elucidation of the genome will contribute to the study of the molecular mechanisms necessary for cellulose biosynthesis. PMID:27516505

  4. Facile synthesis of ZnO nanoparticles based on bacterial cellulose

    International Nuclear Information System (INIS)

    ZnO nanoparticles with a pure wurtzite structure have been successfully synthesized through decomposing bacterial cellulose infiltrated with zinc acetate aqueous solution at high temperature. The effects of the concentration of zinc acetate aqueous solution, the calcination temperature, and the templates on the average particle size and morphology of the ZnO nanoparticles were investigated. The prepared ZnO nanoparticles were characterized by FESEM, XRD, FTIR and TG-DTA. The results suggest that bacterial cellulose plays an important role in preventing the ZnO nanoparticles from aggregating under optimized conditions. The calcination temperature has great effects on the morphologies of ZnO nanoparticles. When calcinating at 600 deg. C and using BC as the template with 1 wt.% zinc acetate aqueous solution, well-dispersed and regular ZnO nanoparticles with a narrow size distribution of 20-50 nm and high photocatalytic activity were obtained.

  5. Facile synthesis of ZnO nanoparticles based on bacterial cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Hu Weili [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Renmin North Rd. 2999, Songjiang, Shanghai 201620 (China); Chen Shiyan, E-mail: chensy@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Renmin North Rd. 2999, Songjiang, Shanghai 201620 (China); Zhou Bihui [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Renmin North Rd. 2999, Songjiang, Shanghai 201620 (China); Wang Huaping, E-mail: wanghp@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Renmin North Rd. 2999, Songjiang, Shanghai 201620 (China)

    2010-06-15

    ZnO nanoparticles with a pure wurtzite structure have been successfully synthesized through decomposing bacterial cellulose infiltrated with zinc acetate aqueous solution at high temperature. The effects of the concentration of zinc acetate aqueous solution, the calcination temperature, and the templates on the average particle size and morphology of the ZnO nanoparticles were investigated. The prepared ZnO nanoparticles were characterized by FESEM, XRD, FTIR and TG-DTA. The results suggest that bacterial cellulose plays an important role in preventing the ZnO nanoparticles from aggregating under optimized conditions. The calcination temperature has great effects on the morphologies of ZnO nanoparticles. When calcinating at 600 deg. C and using BC as the template with 1 wt.% zinc acetate aqueous solution, well-dispersed and regular ZnO nanoparticles with a narrow size distribution of 20-50 nm and high photocatalytic activity were obtained.

  6. A multipurpose natural and renewable polymer in medical applications: Bacterial cellulose.

    Science.gov (United States)

    de Oliveira Barud, Hélida Gomes; da Silva, Robson Rosa; da Silva Barud, Hernane; Tercjak, Agnieszka; Gutierrez, Junkal; Lustri, Wilton Rogério; de Oliveira, Osmir Batista; Ribeiro, Sidney J L

    2016-11-20

    Bacterial cellulose (BC) produced by some bacteria, among them Gluconacetobacter xylinum, which secrets an abundant 3D networks fibrils, represents an interesting emerging biocompatible nanomaterial. Since its discovery BC has shown tremendous potential in a wide range of biomedical applications, such as artificial skin, artificial blood vessels and microvessels, wound dressing, among others. BC can be easily manipulated to improve its properties and/or functionalities resulting in several BC based nanocomposites. As example BC/collagen, BC/gelatin, BC/Fibroin, BC/Chitosan, etc. Thus, the aim of this review is to discuss about the applicability in biomedicine by demonstrating a variety of forms of this biopolymer highlighting in detail some qualities of bacterial cellulose. Therefore, various biomedical applications ranging from implants and scaffolds, carriers for drug delivery, wound-dressing materials, etc. that were reported until date will be presented. PMID:27561512

  7. Synthesis and characterization of polyurethane-cellulose acetate blend membrane for chromium (VI) removal.

    Science.gov (United States)

    Riaz, Tabinda; Ahmad, Adnan; Saleemi, Sidra; Adrees, Muhammad; Jamshed, Fahad; Hai, Abdul Moqeet; Jamil, Tahir

    2016-11-20

    Blended membranes of polyurethane and cellulose acetate were prepared, characterized and investigated for their performance. Various ratios of cellulose acetate were employed to prepare four different blend membranes. The characteristics of both pure and blend membranes were investigated and results were compared to distinguish their properties. Functional group analysis was carried out by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) of pure and blend samples. Contact angle measurement and water content were evaluated to determine the membrane hydrophilicity. Moreover, the membrane morphology was studied by scanning electron microscopy (SEM). The membrane permeation properties and ability to reject chromium (VI) ions were tested at various pH and pressure by utilizing different salt concentrations. PMID:27561531

  8. Cellulose Acetate 398-10 Asymmetric Membrane Capsules for Osmotically Regulated Delivery of Acyclovir

    OpenAIRE

    Alka Sonkar; Anil Kumar; Kamla Pathak

    2016-01-01

    The study was aimed at developing cellulose acetate asymmetric membrane capsules (AMCs) of acyclovir for its controlled delivery at the absorption site. The AMCs were prepared by phase inversion technique using wet process. A 23 full factorial design assessed the effect of independent variables (level(s) of polymer, pore former, and osmogen) on the cumulative drug release from AMCs. The buoyant optimized formulation F7 (low level of cellulose acetate; high levels of both glycerol and sodium l...

  9. A novel small-caliber bacterial cellulose vascular prosthesis: production, characterization, and preliminary in vivo testing

    OpenAIRE

    Alexandre F. Leitão; Miguel A Faria; Faustino, Augusto M. R.; Moreira, Ricardo; Mela, Petra; Loureiro, Luís; Silva, Ivone; Gama, F. M.

    2016-01-01

    Vascular grafts are used to bypass damaged or diseased blood vessels. Bacterial cellulose (BC) has been studied for use as an off-the-shelf graft. Herein, we present a novel, cost-effective, method for the production of small caliber BC grafts with minimal processing or requirements. The morphology of the graft wall produced a tensile strength above that of native vessels, performing similarly to the current commercial alternatives. As a result of the production method, the luminal surface of...

  10. Progressive structural changes of Avicel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis

    OpenAIRE

    Kabindra Kafle; Heenae Shin; Lee, Christopher M; Sunkyu Park; Kim, Seong H.

    2015-01-01

    A comprehensive picture of structural changes of cellulosic biomass during enzymatic hydrolysis is essential for a better understanding of enzymatic actions and development of more efficient enzymes. In this study, a suite of analytical techniques including sum frequency generation (SFG) spectroscopy, infrared (IR) spectroscopy, x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) were employed for lignin-free model biomass samples—Avicel, bleached softwood, and bacterial cellu...

  11. BACTERIAL CELLULOSE REINFORCED THERMOPLASTIC COMPOSITES: PRELIMINARY EVALUATION OF FABRICATION AND PERFORMANCE

    OpenAIRE

    Ruijun Gu; Bohuslav V. Kokta; Katrin Frankenfeld; Kerstin Schlufter

    2010-01-01

    Mechanical properties of polyethylene (PE) composites were evaluated as a function of the addition of bacterial cellulose (BC). It was found that BC could improve the mechanical properties of the composites with or without the combination of traditional wood fiber. The improvements were affected by post-treatment. It was confirmed that BC had a significant influence on impact strength. The pellicle form of BC was able to achieve superior impact strength compared to the fluffy form of BC, but ...

  12. Biosynthesis of Bacterial Cellulose/Carboxylic Multi-Walled Carbon Nanotubes for Enzymatic Biofuel Cell Application

    OpenAIRE

    Pengfei Lv; Quan Feng; Qingqing Wang; Guohui Li; Dawei Li; Qufu Wei

    2016-01-01

    Novel nanocomposites comprised of bacterial cellulose (BC) with carboxylic multi-walled carbon nanotubes (c-MWCNTs) incorporated into the BC matrix were prepared through a simple method of biosynthesis. The biocathode and bioanode for the enzyme biological fuel cell (EBFC) were prepared using BC/c-MWCNTs composite injected by laccase (Lac) and glucose oxidase (GOD) with the aid of glutaraldehyde (GA) crosslinking. Biosynthesis of BC/c-MWCNTs composite was characterized by digital photos, scan...

  13. Cellulose Nanofibrils and Mechanism of their Mineralization in Biomimetic Synthesis of Hydroxyapatite/Native Bacterial Cellulose Nanocomposites: Molecular Dynamics Simulations.

    Science.gov (United States)

    Lukasheva, N V; Tolmachev, D A

    2016-01-12

    Molecular dynamics (MD) simulation of a nanofibril of native bacterial cellulose (BC) in solutions of mineral ions is presented. The supersaturated calcium-phosphate (CP) solution with the ionic composition of hydroxyapatite and CaCl2 solutions with the concentrations below, equal to, and above the solubility limits are simulated. The influence of solvation models (TIP3P and TIP4P-ew water models) on structural characteristics of the simulated nanofibril and on the crystal nucleation process is assessed. The structural characteristics of cellulose nanofibrils (in particular, of the surface layer) are found to be nearly independent of the solvation models used in the simulation and on the presence of ions in the solutions. It is shown that ionic clusters are formed in the solution rather than on the fibril surface. The cluster sizes are slightly different for the two water models. The effect of the ion-ion interaction parameters on the results is discussed. The main conclusion is that the activity of hydroxyl groups on the BC fibril surface is not high enough to cause adsorption of Ca(2+) ions from the solution. Therefore, the nucleation of CP crystals takes place initially in solution, and then the crystallites formed can be adsorbed on BC nanofibril surfaces. PMID:26652774

  14. Swelling of Bacterial Cellulose-Acrylic Acid Hydrogels: Sensitivity Towards External Stimuli

    International Nuclear Information System (INIS)

    This study evaluated various environmental factors affecting the swelling degree of bacterial cellulose-acrylic acid hydrogels. Aqueous bacterial cellulose-acrylic acid (4:1) mixtures were prepared and subjected to electron beam irradiation at 30 and 50 kGy. Swelling rate under influenced of pH, temperature and ionic strength was investigated from 1 to 24 hours. Swelling degree of hydrogels was dependent on irradiation dose: those synthesized at 50 kGy exhibited significant higher swelling degree (p<0.0001) in methanol (619 %) compared to water (510 %) at room temperature after 24 hours. External ionic strength affected swelling, for example elevation in sodium chloride concentration decreased swelling degree. Hydrogels were also sensitive to pH: swelling increased with increasing pH and was optimal at pH 7. Swelling also increased with increasing temperature from 25 to 50 degree Celsius. In conclusion, the ability of electron irradiated bacterial cellulose-acrylic acid hydrogels to respond to various external environment make it a material to be developed as an active delivery system for drugs, proteins and hormones. (author)

  15. Biocompatible, Free-Standing Film Composed of Bacterial Cellulose Nanofibers-Graphene Composite.

    Science.gov (United States)

    Jin, Lin; Zeng, Zhiping; Kuddannaya, Shreyas; Wu, Dingcai; Zhang, Yilei; Wang, Zhenling

    2016-01-13

    In recent years, graphene films have been used in a series of wide applications in the biomedical area, because of several advantageous characteristics. Currently, these films are derived from graphene oxide (GO) via chemical or physical reduction methods, which results in a significant decrease in surface hydrophilicity, although the electrical property could be greatly improved, because of the reduction process. Hence, the comprehensive performance of the graphene films showed practical limitations in the biomedical field, because of incompatibility of highly hydrophobic surfaces to support cell adhesion and growth. In this work, we present a novel fabrication of bacterial cellulose nanofibers/reduced graphene oxide (BC-RGO) film, using a bacterial reduction method. Thus-prepared BC-RGO films maintained excellent hydrophilicity, while electrical properties were improved by bacterial reduction of GO films in culture. Human marrow mesenchymal stem cells (hMSCs) cultured on these surfaces showed improved cellular response with higher cell proliferation on the BC-RGO film, compared to free-standing reduced graphene oxide film without the nanoscale fibrous structure. Furthermore, the cellular adhesion and proliferation were even comparable to that on the tissue culture plate, indicating that the bacterial cellulose nanofibers play a critically contructive role in supporting cellular activities. The novel fabrication method greatly enhanced the biochemical activity of the cells on the surface, which could aid in realizing several potential applications of graphene film in biomedical area, such as tissue engineering, bacterial devices, etc. PMID:26670811

  16. Preparation of membranes from cellulose obtained of sugarcane bagasse; Preparacao de membranas a partir de celulose obtida do bagaco de cana-de-acucar

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Paulo Henrique Fernandes; Cioffi, Maria Odila Hilario; Voorwald, Herman Jacobus Cornelis, E-mail: fernandes_eng@yahoo.com.b [UNESP, Guaratingueta, SP (Brazil). Fac. de Engenharia; Pinho, Maria Noberta de [Instituto Superior Tecnico de Lisboa (IST) (Portugal), Dept. de Engenharia; Silva, Maria Lucia Caetano Pinto da [Universidade de Sao Paulo (EEL/USP), Lorena, SP (Brazil). Escola de Engenharia

    2010-07-01

    In this work, cellulose obtained from sugarcane bagasse to produce both cellulose and acetylated cellulose to prepare asymmetric membranes. Membranes was procedure used a mixture of materials of DMAc/ LiCl systemic in different conditions. Cellulose and acetylated cellulose were characterized by thermogravimetric (TG), Xray diffraction (XRD) and scanning Electron Microscopy (SEM). Observed less stability thermal of acetylated cellulose when compared of cellulose. All membranes procedure were asymmetric, characterized by presence of a dense skin and porous support can be observed. SEM showed that the morphology of the superficial of membranes depends on the method preparation. (author)

  17. Pembuatan Membran Selulosa Bakteri Coating Kitosan - Kolagen Untuk Aplikasi Gtr ( Guide Tissue Regeneration ) Sebagai Pembalut Luka Pada Mencit (Mus Musculus)Secara In Vivo

    OpenAIRE

    Humaira, Nadia Maulida

    2015-01-01

    Bacterial cellulose produced from the fermentation process used in the development of Acetobacter xylinum to increase efficiency of bacterial cellulose one of them in the biomedical field , is membrane . This study aimed to determine the effect concentration of chitosan-collagen, see optimum characterization of bacterial cellulose membrane coating of chitosan-collagen that can be used in the application as wound dressings in mice by In Vivo. Preparation of the bacterial cellulose membrane usi...

  18. A Molecularly Complete Planar Bacterial Outer Membrane Platform.

    Science.gov (United States)

    Hsia, Chih-Yun; Chen, Linxiao; Singh, Rohit R; DeLisa, Matthew P; Daniel, Susan

    2016-01-01

    The bacterial outer membrane (OM) is a barrier containing membrane proteins and liposaccharides that fulfill crucial functions for Gram-negative bacteria. With the advent of drug-resistant bacteria, it is necessary to understand the functional role of this membrane and its constituents to enable novel drug designs. Here we report a simple method to form an OM-like supported bilayer (OM-SB), which incorporates native lipids and membrane proteins of gram-negative bacteria from outer membrane vesicles (OMVs). We characterize the formation of OM-SBs using quartz crystal microbalance with dissipation (QCM-D) and fluorescence microscopy. We show that the orientation of proteins in the OM-SB matches the native bacterial membrane, preserving the characteristic asymmetry of these membranes. As a demonstration of the utility of the OM-SB platform, we quantitatively measure antibiotic interactions between OM-SBs and polymyxin B, a cationic peptide used to treat Gram-negative infections. This data enriches understanding of the antibacterial mechanism of polymyxin B, including disruption kinetics and changes in membrane mechanical properties. Combining OM-SBs with microfluidics will enable higher throughput screening of antibiotics. With a broader view, we envision that a molecularly complete membrane-scaffold could be useful for cell-free applications employing engineered membrane proteins in bacterial membranes for myriad technological purposes. PMID:27600663

  19. Characterization of cellulose membranes modified with luminescent silicon quantum dots nanoparticles.

    Science.gov (United States)

    Campos, B B; Gelde, L; Algarra, M; Esteves da Silva, J C G; Vázquez, M I; Benavente, J

    2016-10-20

    A highly hydrophilic planar membrane fabricated with regenerated cellulose (RC-4 membrane), a biocompatible polymer, was modified by inclusion of water-soluble silicon quantum dot nanoparticles (SiQDs). Both bare SiQDs and SiQDs coated with a PAMAM-OH dendrimer were employed in order to obtain luminescent and thermally stable membrane systems (RC-4/SiQDs and RC-4/SiQDs-PAMAM-OH membranes). Original and SiQDs-modified membranes were characterized by fluorescence spectroscopy (steady and confocal), derivative thermogravimetric analysis and impedance spectroscopy measurements. According to these results, both SiQDs-regenerated cellulose composite membranes present luminescent character as well as higher thermal resistance and conductivity than the original sample, although the dendrimer coverage of the SiQDs might partially shield such effects. Moreover, the permanence of SiQDs nanoparticles in the structure of the cellulosic support in aqueous environments and their effect on diffusive transport were determined by water uptake as well as by membrane potential measurements at different concentrations of a model electrolyte (KCl). These results demonstrate the possible use of these stable nano-engineered membranes, which are based on SiQDs nanoparticles, in electrochemical devices under flow conditions. PMID:27474642

  20. Evaluation of Fungal Laccase Immobilized on Natural Nanostructured Bacterial Cellulose

    Science.gov (United States)

    Chen, Lin; Zou, Min; Hong, Feng F.

    2015-01-01

    The aim of this work was to assess the possibility of using native bacterial nanocellulose (BC) as a carrier for laccase immobilization. BC was synthesized by Gluconacetobacter xylinus, which was statically cultivated in a mannitol-based medium and was freeze-dried to form BC sponge after purification. For the first time, fungal laccase from Trametes versicolor was immobilized on the native nanofibril network-structured BC sponge through physical adsorption and cross-linking with glutaraldehyde. The properties including morphologic and structural features of the BC as well as the immobilized enzyme were thoroughly investigated. It was found that enzyme immobilized by cross-linking exhibited broader pH operation range of high catalytic activity as well as higher running stability compared to free and adsorbed enzyme. Using ABTS as substrate, the optimum pH value was 3.5 for the adsorption-immobilized laccase and 4.0 for the crosslinking-immobilized laccase. The immobilized enzyme retained 69% of the original activity after being recycled seven times. Novel applications of the BC-immobilized enzyme tentatively include active packaging, construction of biosensors, and establishment of bioreactors. PMID:26617585

  1. Evaluation of fungal laccase immobilized on natural nanostructured bacterial cellulose

    Directory of Open Access Journals (Sweden)

    Lin eChen

    2015-11-01

    Full Text Available The aim of this work was to assess the possibility of using native bacterial nanocellulose (BC as a carrier for laccase immobilization. BC was synthesized by Gluconacetobacter xylinus, which was statically cultivated in a mannitol-based medium and was freeze-dried to form BC sponge after purification. For the first time, fungal laccase from Trametes versicolor was immobilized on the native nanofibril network-structured BC sponge through physical adsorption and cross-linking with glutaraldehyde. The properties including morphologic and structural features of the BC as well as the immobilized enzyme were thoroughly investigated. It was found that enzyme immobilized by cross-linking exhibited broader pH operation range of high catalytic activity as well as higher running stability compared to free and adsorbed enzyme. Using ABTS as substrate, the optimum pH value was 3.5 for the adsorption-immobilized laccase and 4.0 for the crosslinking-immobilized laccase. The immobilized enzyme retained 69% of the original activity after being recycled 7 times. Novel applications of the BC-immobilized enzyme tentatively include active packaging, construction of biosensors, and establishment of bioreactors.

  2. Evaluation of Fungal Laccase Immobilized on Natural Nanostructured Bacterial Cellulose.

    Science.gov (United States)

    Chen, Lin; Zou, Min; Hong, Feng F

    2015-01-01

    The aim of this work was to assess the possibility of using native bacterial nanocellulose (BC) as a carrier for laccase immobilization. BC was synthesized by Gluconacetobacter xylinus, which was statically cultivated in a mannitol-based medium and was freeze-dried to form BC sponge after purification. For the first time, fungal laccase from Trametes versicolor was immobilized on the native nanofibril network-structured BC sponge through physical adsorption and cross-linking with glutaraldehyde. The properties including morphologic and structural features of the BC as well as the immobilized enzyme were thoroughly investigated. It was found that enzyme immobilized by cross-linking exhibited broader pH operation range of high catalytic activity as well as higher running stability compared to free and adsorbed enzyme. Using ABTS as substrate, the optimum pH value was 3.5 for the adsorption-immobilized laccase and 4.0 for the crosslinking-immobilized laccase. The immobilized enzyme retained 69% of the original activity after being recycled seven times. Novel applications of the BC-immobilized enzyme tentatively include active packaging, construction of biosensors, and establishment of bioreactors. PMID:26617585

  3. Separation of isomeric xylenes by pervaporation through cellulose ester membranes

    NARCIS (Netherlands)

    Mulder, M.H.V.; Kruitz, F.; Smolders, C.A.

    1982-01-01

    The interaction between the isomeric xylenes and different cellulose esters was investigated using solubility parameter considerations and through measurements of swelling values. p]Hansen's three-dimensional solubility parameters δd, δp, δh of all the components have been calculated. These values h

  4. Integration of bacterial expansin-like proteins into cellulosome promotes the cellulose degradation.

    Science.gov (United States)

    Chen, Chao; Cui, Zhenling; Song, Xiangfei; Liu, Ya-Jun; Cui, Qiu; Feng, Yingang

    2016-03-01

    Cellulosomes are multi-enzyme complexes assembled by cellulases and hemicellulases through dockerin-cohesin interactions, which are the most efficient system for the degradation of lignocellulosic resources in nature. Recent genomic analysis of a cellulosome-producing anaerobe Clostridium clariflavum DSM 19732 revealed that two expansin-like proteins, Clocl_1298 and Clocl_1862, contain a dockerin module, which suggests that they are components of the cellulosome. Bacterial expansin-like proteins do not have hydrolytic activities, but can facilitate the degradation of cellulosic biomass via synergistic effects with cellulases. In this study, the synergistic effect of the expansin-like proteins with both native and designer cellulosomes was investigated. The free expansin-like proteins, including expansin-like domains of Clocl_1298 and Clocl_1862, as well as a well-studied bacterial expansin-like protein BsEXLX1 from Bacillus subtilis, promoted the cellulose degradation by native cellulosomes, indicating the cellulosomal expansin-like proteins have the synergistic function. When they were integrated into a trivalent designer cellulosome, the synergistic effect was further amplified. The sequence and structure analyses indicated that these cellulosomal expansin-like proteins share the conserved functional mechanism with other bacterial expansin-like proteins. These results indicated that non-catalytic expansin-like proteins in the cellulosome can enhance the activity of the cellulosome in lignocellulose degradation. The involvement of functional expansin-like proteins in the cellulosome also implies new physiological functions of bacterial expansin-like proteins and cellulosomes. PMID:26521249

  5. In vitro and in vivo investigation of bacterial cellulose dressing containing uniform silver sulfadiazine nanoparticles for burn wound healing

    Institute of Scientific and Technical Information of China (English)

    Xiaoxiao Wen; Yudong Zheng; Jian Wu; Lina Yue; Cai Wang; Jiabin Lua; Zhigu Wu; Kaisheng Wang

    2015-01-01

    Silver sulfadiazine (SSD) particles in homogeneous dispersion state were prepared by an ultrasonic method and then nano-and microparticles were separated using centrifugation. SSD particles with narrow size distribution were impregnated with bacterial cellulose (BC) to produce BC–SSD composite membrane used as burn wound dressing. A scanning electron microscope (SEM) was used to examine the surface morphology of BC–SSD membranes. The incorporation of SSD in BC–SSD was confirmed by X-ray diffraction (XRD). Antimicrobial tests in vitro indicated that BC–SSD showed excellent antibacterial activity against Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli. The effects of BC–SSD on burn wound healing were assessed by rat models. The comparative study confirmed that the wound treated with BC–SSD showed high healing rate. The bacteria count in BC–SSD group was far less than control group. Histological analysis showed that epithelialization progressed better in wound treated with BC–SSD. These values demonstrated that the BC–SSD composite membrane could be a promising wound dressing for burn.

  6. In vitro and in vivo investigation of bacterial cellulose dressing containing uniform silver sulfadiazine nanoparticles for burn wound healing

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Wen

    2015-06-01

    Full Text Available Silver sulfadiazine (SSD particles in homogeneous dispersion state were prepared by an ultrasonic method and then nano- and microparticles were separated using centrifugation. SSD particles with narrow size distribution were impregnated with bacterial cellulose (BC to produce BC–SSD composite membrane used as burn wound dressing. A scanning electron microscope (SEM was used to examine the surface morphology of BC–SSD membranes. The incorporation of SSD in BC–SSD was confirmed by X-ray diffraction (XRD. Antimicrobial tests in vitro indicated that BC–SSD showed excellent antibacterial activity against Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli. The effects of BC–SSD on burn wound healing were assessed by rat models. The comparative study confirmed that the wound treated with BC–SSD showed high healing rate. The bacteria count in BC–SSD group was far less than control group. Histological analysis showed that epithelialization progressed better in wound treated with BC–SSD. These values demonstrated that the BC–SSD composite membrane could be a promising wound dressing for burn.

  7. Production and characterization of nanospheres of bacterial cellulose from Acetobacter xylinum from processed rice bark

    International Nuclear Information System (INIS)

    Bacterial cellulose (BC), biosynthesized by Acetobacter xylinum, was produced in a medium consisting of rice bark pre-treated with an enzymatic pool. Rice bark was evaluated as a carbon source by complete enzymatic hydrolysis and monosaccharide composition (GC-MS of derived alditol acetates). It was treated enzymatically and then enriched with glucose up to 4% (w/v). The BC produced by static and aerated processes was purified by immersion in 0.1 M NaOH, was characterized by FT-IR, X-ray diffraction and the biosynthetic nanostructures were evaluated by Scanning Electronic (SEM), Transmission Electronic (TEM) and Atomic Force Microscopy (AFM). The BC films arising from static fermentation with rice bark/glucose and glucose are tightly intertwined, partially crystalline, being type II cellulose produced with rice bark/glucose, and type I to the produced in a glucose medium. The nanostructurated biopolymer obtained from the rice bark/glucose medium, produced in a reactor with air flux had micro- and nanospheres linked to nanofibers of cellulose. These results indicate that the bark components, namely lignins, hemicelluloses or mineral contents, interact with the cellulose forming micro- and nanostructures with potential use to incorporate drugs

  8. Production and characterization of nanospheres of bacterial cellulose from Acetobacter xylinum from processed rice bark

    Energy Technology Data Exchange (ETDEWEB)

    Goelzer, F.D.E. [Group of Industrial Microbiology, UNIVALI-Universidade do Vale do Itajai, R. Uruguai, 458, 88302-202, Itajai, Santa Catarina (Brazil); Faria-Tischer, P.C.S. [Group of Industrial Microbiology, UNIVALI-Universidade do Vale do Itajai, R. Uruguai, 458, 88302-202, Itajai, Santa Catarina (Brazil); Laboratory of Biopolymers, UFPR-Universidade Federal do Parana, CxP 19081, 81531-990, Curitiba, Parana (Brazil); Vitorino, J.C. [Group of Industrial Microbiology, UNIVALI-Universidade do Vale do Itajai, R. Uruguai, 458, 88302-202, Itajai, Santa Catarina (Brazil); Sierakowski, Maria-R. [Laboratory of Biopolymers, UFPR-Universidade Federal do Parana, CxP 19081, 81531-990, Curitiba, Parana (Brazil); Tischer, C.A. [Group of Industrial Microbiology, UNIVALI-Universidade do Vale do Itajai, R. Uruguai, 458, 88302-202, Itajai, Santa Catarina (Brazil)], E-mail: cesarat@uol.com.br

    2009-03-01

    Bacterial cellulose (BC), biosynthesized by Acetobacter xylinum, was produced in a medium consisting of rice bark pre-treated with an enzymatic pool. Rice bark was evaluated as a carbon source by complete enzymatic hydrolysis and monosaccharide composition (GC-MS of derived alditol acetates). It was treated enzymatically and then enriched with glucose up to 4% (w/v). The BC produced by static and aerated processes was purified by immersion in 0.1 M NaOH, was characterized by FT-IR, X-ray diffraction and the biosynthetic nanostructures were evaluated by Scanning Electronic (SEM), Transmission Electronic (TEM) and Atomic Force Microscopy (AFM). The BC films arising from static fermentation with rice bark/glucose and glucose are tightly intertwined, partially crystalline, being type II cellulose produced with rice bark/glucose, and type I to the produced in a glucose medium. The nanostructurated biopolymer obtained from the rice bark/glucose medium, produced in a reactor with air flux had micro- and nanospheres linked to nanofibers of cellulose. These results indicate that the bark components, namely lignins, hemicelluloses or mineral contents, interact with the cellulose forming micro- and nanostructures with potential use to incorporate drugs.

  9. Effective Young's modulus of bacterial and microfibrillated cellulose fibrils in fibrous networks.

    Science.gov (United States)

    Tanpichai, Supachok; Quero, Franck; Nogi, Masaya; Yano, Hiroyuki; Young, Robert J; Lindström, Tom; Sampson, William W; Eichhorn, Stephen J

    2012-05-14

    The deformation micromechanics of bacterial cellulose (BC) and microfibrillated cellulose (MFC) networks have been investigated using Raman spectroscopy. The Raman spectra of both BC and MFC networks exhibit a band initially located at ≈ 1095 cm(-1). We have used the intensity of this band as a function of rotation angle of the specimens to study the cellulose fibril orientation in BC and MFC networks. We have also used the change in this peak's wavenumber position with applied tensile deformation to probe the stress-transfer behavior of these cellulosic materials. The intensity of this Raman band did not change significantly with rotation angle, indicating an in-plane 2D network of fibrils with uniform random orientation; conversely, a highly oriented flax fiber exhibited a marked change in intensity with rotation angle. Experimental data and theoretical analysis shows that the Raman band shift rate arising from deformation of networks under tension is dependent on the angles between the axis of fibrils, the strain axis, the incident laser polarization direction, and the back scattered polarization configurations. From this analysis, the effective moduli of single fibrils of BC and MFC in the networks were estimated to be in the ranges of 79-88 and 29-36 GPa, respectively. It is shown also that for the model to fit the data it is necessary to use a negative Poisson's ratio for MFC networks and BC networks. Discussion of this in-plane "auxetic" behavior is given. PMID:22423896

  10. Apo- and Cellopentaose-bound Structures of the Bacterial Cellulose Synthase Subunit BcsZ

    Energy Technology Data Exchange (ETDEWEB)

    Mazur, Olga; Zimmer, Jochen (UV)

    2012-10-25

    Cellulose, a very abundant extracellular polysaccharide, is synthesized in a finely tuned process that involves the activity of glycosyl-transferases and hydrolases. The cellulose microfibril consists of bundles of linear {beta}-1,4-glucan chains that are synthesized inside the cell; however, the mechanism by which these polymers traverse the cell membrane is currently unknown. In Gram-negative bacteria, the cellulose synthase complex forms a trans-envelope complex consisting of at least four subunits. Although three of these subunits account for the synthesis and translocation of the polysaccharide, the fourth subunit, BcsZ, is a periplasmic protein with endo-{beta}-1,4-glucanase activity. BcsZ belongs to family eight of glycosyl-hydrolases, and its activity is required for optimal synthesis and membrane translocation of cellulose. In this study we report two crystal structures of BcsZ from Escherichia coli. One structure shows the wild-type enzyme in its apo form, and the second structure is for a catalytically inactive mutant of BcsZ in complex with the substrate cellopentaose. The structures demonstrate that BcsZ adopts an ({alpha}/{alpha}){sub 6}-barrel fold and that it binds four glucan moieties of cellopentaose via highly conserved residues exclusively on the nonreducing side of its catalytic center. Thus, the BcsZ-cellopentaose structure most likely represents a posthydrolysis state in which the newly formed nonreducing end has already left the substrate binding pocket while the enzyme remains attached to the truncated polysaccharide chain. We further show that BcsZ efficiently degrades {beta}-1,4-glucans in in vitro cellulase assays with carboxymethyl-cellulose as substrate.

  11. Biosynthesis of bacterial cellulose in the presence of different nanoparticles to create novel hybrid materials.

    Science.gov (United States)

    Erbas Kiziltas, Esra; Kiziltas, Alper; Blumentritt, Melanie; Gardner, Douglas J

    2015-09-20

    The unique micro-nano porous three-dimensional network of bacterial cellulose (BC) can facilitate the incorporation of nanoparticles (NPs) into the BC matrix to create advanced BC-based functional nanomaterials for diverse applications. In this study, novel nanomaterials comprised of bacterial cellulose (BC) synthesized in the presence of different NPs (cellulose nanofibrils (CNF), exfoliated graphite nanoplatelets (xGnP), and nanoclay (NC)) were prepared using an in situ approach. NPs at 0.5 wt.% loading were added into the BC culture medium and their effect on the resulting nanocomposite structure was studied by field emission scanning electron microscopy (FE-SEM), X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). All BC-based nanomaterials produced, exhibited good dispersion of the NPs within the BC matrix and the NPs were found embedded among the voids and microfibrils. The thermal stability and residual mass of BC-xGnP and BC-NC nanomaterials was significantly increased compared with the neat BC. CNF incorporation into the BC matrix did not change the thermal stability and residual mass of the BC matrix. This study also provides novel insights into the properties of the hybrid materials, and shows the approach used to make these materials which results in increased performance for chosen applications. PMID:26050900

  12. Surface modification of polyester to produce a bacterial cellulose-based vascular prosthetic device

    Science.gov (United States)

    Charpentier, Paul A.; Maguire, Anne; Wan, Wan-kei

    2006-07-01

    The surface of medical grade polyesters was modified to impart hydrophilic character for attachment to bacterial synthesized cellulose to produce a vascular prosthetic device. The polyesters were treated with UV/ozone, air plasma, and nitrogen plasma for various lengths of time. The unmodified and modified surfaces were analyzed by X-ray photoelectron spectroscopy (XPS) and advancing contact angle measurements. The surfaces were then coated with bacterial produced cellulose to study adhesion properties through tensile testing (peel testing). UV/ozone and plasma treatment XPS results indicated an increase in the oxygen concentration in the form of C sbnd O(H) on the treated polyester surfaces. The treatment time to reach steady state in the case of air and nitrogen plasmas took the order of seconds, while 7 min and longer were required for UV/ozone treatment. Peel strength tests to measure adhesion of modified polyester to cellulose reached their maximum values when the C sbnd O(H) concentrations were at the highest level. It was also at this level that the contact angle measurements showed no further decrease.

  13. Effect of Water Soluble Polymer on Structure and Mechanical Properties of Bacterial Cellulose Composites

    Science.gov (United States)

    Yudianti, Rike; Indrarti, Lucia

    Bacterial Cellulose (BC) sheet has a remarkably high elastic modulus and crystallinity inhibiting its processing. Short fibers of homogenized BC are utilized in Bacterial Cellulose Composites (BCC) formation. Water Soluble Polymers (WSP) (Carboxymethyl Cellulose (CMC) and glycerol) present in homogenized BC fiber have significant effects on mechanical properties and structure. Increasing CMC concentrations from 0 to 0.75% causes crystallinity index reduction from 81 to 61, 76 to 53 and 70 to 50% when treated glycerol concentrations of 0, 0.25 and 0.5%, respectively. Increasing CMC concentrations from 0 to 0.75% enhances elastic modulus from 2907.5 to 6245, 180.4 to 1581.3 and 30.5 to 212.5 Gpa greatly under glycerol concentrations of 0, 0.25 and 0.5%, respectively. Increasing tensile strengths from 64.8 to 167.7, 52.7 to 78.2 and 17.5 to 41.3 MPa and elongation reduction from 4.9 to 2.5, 14.5 to 9.2 and 29.6 to 23% occurs at glycerol concentrations of 0, 0.25 and 0.5%, respectively when CMC concentrations increased from 0 to 0.75%. Conversely, effects of glycerol treatment on tensile strength, elastic modulus and elongation are also presented in this study. Combination of CMC and glycerol treatment into homogenized BC is quite possible to modify BC characteristic as good processing BC.

  14. Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications

    International Nuclear Information System (INIS)

    This study describes the design and synthesis of bacterial cellulose/hydroxyapatite nanocomposites for bone healing applications using a biomimetic approach. Bacterial cellulose (BC) with various surface morphologies (pellicles and tubes) was negatively charged by the adsorption of carboxymethyl cellulose (CMC) to initiate nucleation of calcium-deficient hydroxyapatite (cdHAp). The cdHAp was grown in vitro via dynamic simulated body fluid (SBF) treatments over a one week period. Characterization of the mineralized samples was done with X-ray Photoelectron Spectroscopy (XPS) and Field Emission Scanning Electron Microscopy (FESEM) with Energy Dispersive Spectroscopy (EDS). The amount of cdHAp observed varied among different samples. XPS demonstrated that the atomic presence of calcium and phosphorus ranged from 0.44 at.% to 7.71 at.% Ca and 0.27 at.% to 11.18 at.% P. The Ca/P overall ratio ranged from 1.22 to 1.92. FESEM images showed that the cdHAp crystal size increased with increasing nanocellulose fibril density. To determine the viability of the scaffolds in vitro, the morphology and differentiation of osteoprogenitor cells was analyzed using fluorescence microscopy and alkaline phosphatase gene expression. The presence of cdHAp crystals on BC surfaces resulted in increased cell attachment.

  15. Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Kristen A., E-mail: kazimmer@vt.edu [Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24060 (United States); School of Biomedical Engineering Sciences, Virginia Tech, Blacksburg, VA 24060 (United States); LeBlanc, Jill M.; Sheets, Kevin T.; Fox, Robert W. [Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24060 (United States); Gatenholm, Paul [Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24060 (United States); School of Biomedical Engineering Sciences, Virginia Tech, Blacksburg, VA 24060 (United States)

    2011-01-01

    This study describes the design and synthesis of bacterial cellulose/hydroxyapatite nanocomposites for bone healing applications using a biomimetic approach. Bacterial cellulose (BC) with various surface morphologies (pellicles and tubes) was negatively charged by the adsorption of carboxymethyl cellulose (CMC) to initiate nucleation of calcium-deficient hydroxyapatite (cdHAp). The cdHAp was grown in vitro via dynamic simulated body fluid (SBF) treatments over a one week period. Characterization of the mineralized samples was done with X-ray Photoelectron Spectroscopy (XPS) and Field Emission Scanning Electron Microscopy (FESEM) with Energy Dispersive Spectroscopy (EDS). The amount of cdHAp observed varied among different samples. XPS demonstrated that the atomic presence of calcium and phosphorus ranged from 0.44 at.% to 7.71 at.% Ca and 0.27 at.% to 11.18 at.% P. The Ca/P overall ratio ranged from 1.22 to 1.92. FESEM images showed that the cdHAp crystal size increased with increasing nanocellulose fibril density. To determine the viability of the scaffolds in vitro, the morphology and differentiation of osteoprogenitor cells was analyzed using fluorescence microscopy and alkaline phosphatase gene expression. The presence of cdHAp crystals on BC surfaces resulted in increased cell attachment.

  16. Production and characterization of bacterial cellulose by Leifsonia sp. CBNU-EW3 isolated from the earthworm, Eisenia fetida

    Science.gov (United States)

    A total of five bacterial strains were isolated from earthworm, Eisenia fetida and examined for bacterial cellulose (BC) production in Hestrin–Schramm medium (HS). Among the five strains tested, CBNU-EW3 exhibited excellent BC production and was identified as Leifsonia sp. by 16S rDNA sequence analy...

  17. Performance of cellulose acetate butyrate membranes in hyperfiltration of sodium chloride and urea feed solution

    Science.gov (United States)

    Wydeven, T.; Leban, M.

    1973-01-01

    Cellulose acetate butyrate (CAB) membranes are shown to give high salt and urea rejection with water flux of about 3 gallons/sq ft per day at 600 psig. Membranes prepared from a formulation containing glyoxal show a significant increase in flux and decrease in salt and urea rejection with drying time. Zero drying time gives maximum urea and salt rejection and is therefore most suitable for hyperfiltration of sodium chloride and urea feed solution.

  18. Transport of Carbonate Ions by Novel Cellulose Fiber Supported Solid Membrane

    Directory of Open Access Journals (Sweden)

    A. G. Gaikwad

    2012-06-01

    Full Text Available Transport of carbonate ions was explored through fiber supported solid membrane. A novel fiber supported solid membrane was prepared by chemical modification of cellulose fiber with citric acid, 2′2-bipyridine and magnesium carbonate. The factors affecting the permeability of carbonate ions such as immobilization of citric acid-magnesium metal ion -2′2-bipyridine complex (0 to 2.5 mmol/g range over cellulose fiber, carbon-ate ion concentration in source phase and NaOH concentration in receiving phase were investigated. Ki-netic of carbonate, sulfate, and nitrate ions was investigated through fiber supported solid membrane. Transport of carbonate ions with/without bubbling of CO2 (0 to 10 ml/min in source phase was explored from source to receiving phase. The novel idea is to explore the adsorptive transport of CO2 from source to receiving phase through cellulose fiber containing magnesium metal ion organic framework. Copyright © 2012 BCREC UNDIP. All rights reserved.Received: 25th November 2011; Revised: 17th December 2011; Accepted: 19th December 2011[How to Cite: A.G. Gaikwad. (2012. Transport of Carbonate Ions by Novel Cellulose Fiber Supported Solid Membrane. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (1: 49– 57.  doi:10.9767/bcrec.7.1.1225.49-57][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.1.1225.49-57 ] | View in 

  19. Bacterial Cellulose Production by Fruit Juice Fermentation%果汁发酵生产细菌纤维素

    Institute of Scientific and Technical Information of China (English)

    张俊娜; 甘峰; 李志西; 林德慧; 潘凯旋

    2012-01-01

    为提高果汁发酵生产细菌纤维素的产量,开发特色纤维素功能性食品,以葡糖醋杆菌CGMCC 3917为实验菌种,以苹果汁和梨汁为发酵培养基生产细菌纤维素(BC),研究果汁用量和酵母膏添加量对细菌纤维素产量的影响,比较分析两种果汁生产的细菌纤维素在产量、结构和性质方面的差别。结果表明:梨汁发酵生产的细菌纤维素产量明显高于苹果汁,可达46.343g/100mL;其BC干膜复水率显著高于苹果汁,BC干膜的总糖含量稍高于苹果汁。两种果汁发酵生产的细菌纤维素在湿膜持水量及干膜的纤维素含量、蛋白质含量、脂肪含量以及微观结构上没有明显差异。%To improve bacterial cellulose (BC) production and to develop specific cellulose functional food products, BC was prepared from the fermentation of apple juice or pear juice by Gluconoacetobacter hanseni CGMCC 3917. The influence of fruit juice dilution and amount of added yeast extract on BC yield was evaluated. Meanwhile, further studies were done to investigate the influence of fruit juice type on BC production, structure and properties. The results showed that pear juice provided more production of BC than apple juice, reaching 46.343 g/100 mL. Moreover, dried BC membranes from pear juice showed a significantly higher rehydration rate, and a slightly higher total sugar content than those from apple juice. There were no pronounced differences in water content of wet BC membranes and cellulose, protein and fat contents and microstructure of dry BC membranes between both fruit juices.

  20. Effect of Cultivation Time and Medium Condition in Production of Bacterial Cellulose Nanofiber for Urease Immobilization

    Directory of Open Access Journals (Sweden)

    M. Pesaran

    2015-01-01

    Full Text Available A new nanoporous biomatrix originated from bacterial resources has been chosen for urease immobilization. Urease has been immobilized on synthesized bacterial cellulose nanofiber since this enzyme has a key role in nitrogen metabolism. Gluconacetobacter xylinum ATCC 10245 has been cultivated for synthesis of a nanofiber with the diameter of 30–70 nm. Different cultivation processes in the aspect of time and cultivation medium conditions were chosen to study the performance of immobilized enzyme on four types of bacterial cellulose nanofibers (BCNs. Urease immobilization into the nanofiber has been done in two steps: enzyme adsorption and glutaraldehyde cross-linking. The results showed that the immobilized enzymes were relatively active and highly stable compared to the control samples of free enzymes. Optimum pH was obtained 6.5 and 7 for different synthesized BCNs, while the optimum temperature for immobilized urease was 50°C. Finding of the current experiment illustrated that the immobilized enzyme in optimum condition lost its initial activity by 41% after 15 weeks.

  1. Novel carboxymethyl cellulose based nanocomposite membrane: Synthesis, characterization and application in water treatment.

    Science.gov (United States)

    Saber-Samandari, Samaneh; Saber-Samandari, Saeed; Heydaripour, Samira; Abdouss, Majid

    2016-01-15

    Significant efforts have been made to develop composite membranes with high adsorption efficiencies for water treatment. In this study, a carboxymethyl cellulose-graft-poly(acrylic acid) membrane was synthesized in the presence of silica gel, which was used as an inorganic support. Then, different amounts of bentonite were introduced to the carboxymethyl cellulose (CMC) grafted networks as a multifunctional crosslinker, and nanocomposite membranes were prepared. The nanocomposite membranes were characterized using Fourier transform infrared spectroscopy, and scanning electron microscopy, which revealed their compositions and surface morphologies. The novel synthesized nanocomposite membranes were utilized as adsorbents for the removal of crystal violet (CV) and cadmium (Cd (II)) ions, which were selected as representatives of a dye and a heavy metal, respectively. We explored the effects of various parameters, such as time, pH, temperature, initial concentration of adsorbate solution and amount of adsorbent, on membrane adsorption capacity. Furthermore, the kinetic, adsorption isotherm models and thermodynamic were employed for the description of adsorption processes. The maximum adsorption capacities of membranes for CV and Cd (II) ions were found to be 546 and 781 mg g(-1), respectively. The adsorption of adsorbate ions by all types of nanocomposite membranes followed pseudo-second-order kinetic model and was best fit with the Freundlich adsorption isotherm. The results indicated that the synthesized nanocomposite membrane is an efficient adsorbent for the removal of cationic dye and metal contaminants from aqueous solution during water treatment. PMID:26560638

  2. Bioprosthetic mesh of bacterial cellulose for treatment of abdominal muscle aponeurotic defect in rat model.

    Science.gov (United States)

    Silveira, Raquel Kelner; Coelho, Antônio Roberto Barros; Pinto, Flávia Cristina Morone; de Albuquerque, Amanda Vasconcelos; de Melo Filho, Djalma Agripino; de Andrade Aguiar, José Lamartine

    2016-08-01

    The use of meshes for treatment of hernias continues to draw attention of surgeons and the industry in the search of an ideal prosthesis. The purpose of this work is to use meshes manufactured from bacterial cellulose, evaluate their organic tissue interaction and compare with an expanded polytetrafluorethylene (ePTFE's) prosthesis used to repair acute defect of muscle aponeurotic induced in rats. Forty-five male Wistar rats were classified using the following criteria: (1) surgical repair of acute muscle aponeurotic defect with perforated bacterial cellulose film (PBC; n = 18); (2) compact bacterial cellulose film (CBC; n = 12) and (3) ePTFE; (n = 15). After postoperative period, rectangles (2 × 3 cm) including prosthesis, muscles and peritoneum were collected for biomechanical, histological and stereological analysis. In all cases, the maximum acceptable error probability for rejecting the null hypothesis was 5 %. Between PBC and CBC samples, the variables of strain (P = 0.011) and elasticity (P = 0.035) were statistically different. The same was found between CBC and ePTFE (elasticity, P = 0.000; strain, P = 0.009). PBC differed from CBC for giant cells (P = 0.001) and new blood vessels (P = 0.000). In conclusion, there was biological integration and biomechanical elasticity of PBC; therefore, we think this option should be considered as a new alternative biomaterial for use as a bio prosthesis. PMID:27379627

  3. Novel cellulose reinforcement for polymer electrolyte membranes with outstanding mechanical properties

    International Nuclear Information System (INIS)

    Highlights: ► UV-cured methacrylic-based composite gel-polymer electrolyte membranes for rechargeable lithium batteries. ► Excellent mechanical stability by reinforcement with classical cellulose handsheets. ► Fast and environmentally friendly preparation process, green and low cost cellulose reinforcement. ► Good electrochemical behaviour, stable cyclability and long-term performances in real battery configuration. - Abstract: Methacrylic-based thermo-set gel-polymer electrolytes obtained by an easy and reliable free radical photo-polymerisation process demonstrate good behaviour in terms of ionic conductivity, interfacial stability with the Li-metal electrode and cyclability in lithium cells. Though the obtained membranes are flexible, self standing and easy to handle, there is room for improving mechanical strength. In this respect, a novel approach is adopted in this work, in which a cellulose hand-sheet (paper), specifically designed for the specific application, is used as a composite reinforcing agent. To enhance its compatibility with the polymer matrix, cellulose is modified by UV-grafting of poly(ethylene glycol) methyl ether methacrylate on it. Excellent mechanical properties are obtained and good overall electrochemical performances are maintained; highlighting that such specific approach would make these hybrid organic, green, cellulose-based composite polymer electrolyte systems a strong contender in the field of thin and flexible Li-based power sources.

  4. Nisin based stabilization of novel fruit and vegetable functional juices containing bacterial cellulose at ambient temperature

    OpenAIRE

    Jagannath, A.; Kumar, Manoranjan; Raju, P. S.; Batra, H. V.

    2014-01-01

    The current study reports the preparation and stabilization of novel functional drinks based on fruit and vegetable juices incorporating bacterial cellulose from Acetobacter xylinum. Pineapple, musk melon, carrot, tomato, beet root and a blend juice containing 20 % each of carrot and tomato juice with 60 % beet root juice has been studied. These juices have been stabilized over a storage period of 90 days at 28 °C, by the use of nisin and maintaining a low pH circumventing the need for any ch...

  5. BACTERIAL CELLULOSE REINFORCED THERMOPLASTIC COMPOSITES: PRELIMINARY EVALUATION OF FABRICATION AND PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Ruijun Gu

    2010-08-01

    Full Text Available Mechanical properties of polyethylene (PE composites were evaluated as a function of the addition of bacterial cellulose (BC. It was found that BC could improve the mechanical properties of the composites with or without the combination of traditional wood fiber. The improvements were affected by post-treatment. It was confirmed that BC had a significant influence on impact strength. The pellicle form of BC was able to achieve superior impact strength compared to the fluffy form of BC, but had similar effects on the tensile strength in comparison to the composites with fluffy BC.

  6. Self-sterilized composite membranes of cellulose acetate/polyethylene glycol for water desalination.

    Science.gov (United States)

    Ahmad, Adnan; Jamshed, Fahad; Riaz, Tabinda; Gul, Sabad-E-; Waheed, Sidra; Sabir, Aneela; AlAnezi, Adnan Alhathal; Adrees, Muhammad; Jamil, Tahir

    2016-09-20

    Cellulose acetate/Polyethylene glycol-600 composite membranes were fabricated by two step phase inversion procedure and modified by in-situ reduction of silver nitrate. FTIR spectra demonstrated the existence of functional groups for bonding of silver with oxygen at 370cm(-1), 535cm(-1). The XRD diffractogram indicates characteristic peaks at 2θ values of 38.10°, 44.30°, 64.40°, and 77.30° which confirm the successful incorporation of silver within matrix of composite membranes. The morphology of composite membranes with appearances of spongy voids was exemplified from the scanning electron microscope. The atomic force microscopy was used to determine the increase in the surface roughness of the membranes. The increase in hydrophilicity, measured through contact angle, is rendered to the embedment of silver. The modification of membranes increased the flux from 0.80 to 0.95L/hr.m(2). The resulting membranes have outstanding ability to fight against gram negative Escherichia Coli and Bacillus Sabtilus. The novel cellulose acetate/polyethylene glycol membranes customized with silver have paved the path for evolution of axenic membranes. PMID:27261744

  7. Characterization of cellulose acetate micropore membrane immobilized acylase I

    Institute of Scientific and Technical Information of China (English)

    郭永胜; 王杰; 宋锡谨

    2004-01-01

    This paper describes an innovative method for the immobilization of acylase I, which was entrapped into the CA-CTA micropore membrane. The most suitable casting solutions proportion for immobilizing the enzyme was ob tained through orthogonal experiment. Properties of the enzyme membrane were investigated and compared with those of free enzyme and blank membrane. The thermal stability and pH stability of the enzyme inside the membrane were changed by immobilization. The optimum pH was found to be 6.0, which changes 1.0 unit compared with that of free acylase I. The optimum temperature was found to be about 90 ℃C, which is higher than that of free acylase I (60 ℃). Experimental results showed that immobilization had effects on the kinetic parameters of acylase I.

  8. Characterization of cellulose acetate micropore membrane immobilized acylase I

    Institute of Scientific and Technical Information of China (English)

    郭永胜; 王杰; 宋锡谨

    2004-01-01

    This paper describes an innovative method for the immobilization of acylase I, which was entrapped into the CA-CTA micropore membrane. The most suitable casting solutions proportion for immobilizing the enzyme was obtained through orthogonal experiment. Properties of the enzyme membrane were investigated and compared with those of free enzyme and blank membrane. The thermal stability and pH stability of the enzyme inside the membrane were changed by immobilization. The optimum pH was found to be 6.0, which changes 1.0 unit compared with that of free acylase I. The optimum temperature was found to be about 90℃, which is higher than that of free acylase I (60℃). Experimental results showed that immobilization had effects on the kinetic parameters of acylase I.

  9. Filtering absorption and visual detection of methylene blue by nitrated cellulose acetate membrane

    Energy Technology Data Exchange (ETDEWEB)

    He, Shengbin; Fang, He; Xu, Xiaoping [College of Chemistry, Fuzhou University, Fuzhou (China)

    2016-04-15

    Wastewater-containing industrial dyes are quite harmful since most dyes are stable and toxic to humans. Detection and removing of those dyes from wastewater is necessary to ensure water supply safety. In present work, a nitrated cellulose acetate (NCA) microfiltration membrane was developed for specific absorption and visible detection of methylene blue (MB). The NCA microfiltration membrane overcomes the defect of high driven pressure in nanofiltration or ultrafiltration process. By absorption effect, the NCA membrane also overcomes the defect of low retention rate of traditional microfiltration membrane to dyes. The residual MB can be removed quickly and thoroughly by microfiltration absorption. The microfiltration membrane can also be used for visual detection of MB by concentrating the MB on membrane. The limit of detection is as low as 0.001 mg/L. The detection method is simple and free of large-scale instrument, and can be used as a portable device for spot detection of dye-contaminated water.

  10. Applicability of bacterial cellulose as an alternative to paper points in endodontic treatment.

    Science.gov (United States)

    Yoshino, Aya; Tabuchi, Mari; Uo, Motohiro; Tatsumi, Hiroto; Hideshima, Katsumi; Kondo, Seiji; Sekine, Joji

    2013-04-01

    Dental root canal treatment is required when dental caries progress to infection of the dental pulp. A major goal of this treatment is to provide complete decontamination of the dental root canal system. However, the morphology of dental root canal systems is complex, and many human dental roots have inaccessible areas. In addition, dental reinfection is fairly common. In conventional treatment, a cotton pellet and paper point made from plant cellulose is used to dry and sterilize the dental root canal. Such sterilization requires a treatment material with high absorbency to remove any residue, the ability to improve the efficacy of intracanal medication and high biocompatibility. Bacterial cellulose (BC) is produced by certain strains of bacteria. In this study, we developed BC in a pointed form and evaluated its applicability as a novel material for dental canal treatment with regard to solution absorption, expansion, tensile strength, drug release and biocompatibility. We found that BC has excellent material and biological characteristics compared with conventional materials, such as paper points (plant cellulose). BC showed noticeably higher absorption and expansion than paper points, and maintained a high tensile strength even when wet. The cumulative release of a model drug was significantly greater from BC than from paper points, and BC showed greater compatibility than paper points. Taken together, BC has great potential for use in dental root canal treatment. PMID:23268234

  11. Surface hydrophobic modification of cellulose membranes by plasma-assisted deposition of hydrocarbon films

    Directory of Open Access Journals (Sweden)

    Mudtorlep Nisoa

    2010-03-01

    Full Text Available Surface modification by plasma polymerization is an efficient method to change the surface properties of a membrane. Desirable functionality such as hydrophobicity or hydrophilicity can be obtained, depending on plasma chemistry of gas precursors and discharge conditions. In this work, RF magnetron plasma is produced using acetylene and nitrogen as precursor gases. Variations of RF power, particle flux, deposited time and pressure of the precursor gases have been made to observe coating effects on the cellulose membranes. When appropriated conditions are used, a thin brownish film of hydrocarbon was formed on the membrane, and the water contact angle increased from 35 to 130 degrees.

  12. Impact of bacterial endotoxin on the structure of DMPC membranes.

    Science.gov (United States)

    Nagel, Michael; Brauckmann, Stephan; Moegle-Hofacker, Franzeska; Effenberger-Neidnicht, Katharina; Hartmann, Matthias; de Groot, Herbert; Mayer, Christian

    2015-10-01

    Bacterial lipopolysaccharides are believed to have a toxic effect on human cell membranes. In this study, the influence of a lipopolysaccharide (LPS) from Escherichia coli on the structure, the dynamics and the mechanical strength of phospholipid membranes are monitored by nuclear magnetic resonance spectroscopy (NMR) and by atomic force microscopy (AFM). Model membranes are formed from 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and are either prepared as multilamellar bulk samples or multilamellar vesicles. Field gradient NMR data directly prove the rapid integration of LPS into DMPC membranes. Solid state NMR experiments primarily detect decreasing molecular order parameters with increasing LPS content. This is accompanied by a mechanical softening of the membrane bilayers as is shown by AFM indentation measurements. Altogether, the data prove that lipopolysaccharide molecules quickly insert into phospholipid bilayers, increase membrane fluctuation amplitudes and significantly weaken their mechanical stiffness. PMID:26071197

  13. Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds

    International Nuclear Information System (INIS)

    Bacterial cellulose (BC) is suitable for applications as scaffolds in tissue engineering due to its unique properties. However, BC is not enzymatically degradable in vivo and this has become an essential limiting factor in its potential applications. In this work, BC was modified by periodate oxidation to give rise to a biodegradable 2,3-dialdehyde bacterial cellulose (DABC). After characterization by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, thin-film X-ray diffractometry (XRD) and X-ray photoelectron spectroscopy (XPS), we demonstrated that the modified DABC nano-network was able to degrade into porous scaffold with micro-sized pores in water, phosphate buffered saline (PBS) and the simulated body fluid (SBF). The degradation process began from the oxidized amorphous part of the network and concurrently hydroxyapatite formed on the scaffold surface during the process in SBF. Our data also demonstrated that the tensile mechanical properties of the DABC nano-network were suitable for its use in tissue engineering scaffolds.

  14. Acetylated bacterial cellulose coated with urinary bladder matrix as a substrate for retinal pigment epithelium.

    Science.gov (United States)

    Gonçalves, Sara; Rodrigues, Inês Patrício; Padrão, Jorge; Silva, João Pedro; Sencadas, Vitor; Lanceros-Mendez, Senentxu; Girão, Henrique; Gama, Francisco M; Dourado, Fernando; Rodrigues, Lígia R

    2016-03-01

    This work evaluated the effect of acetylated bacterial cellulose (ABC) substrates coated with urinary bladder matrix (UBM) on the behavior of retinal pigment epithelium (RPE), as assessed by cell adhesion, proliferation and development of cell polarity exhibiting transepithelial resistance and polygonal shaped-cells with microvilli. Acetylation of bacterial cellulose (BC) generated a moderate hydrophobic surface (around 65°) while the adsorption of UBM onto these acetylated substrates did not affect significantly the surface hydrophobicity. The ABS substrates coated with UBM enabled the development of a cell phenotype closer to that of native RPE cells. These cells were able to express proteins essential for their cytoskeletal organization and metabolic function (ZO-1 and RPE65), while showing a polygonal shaped morphology with microvilli and a monolayer configuration. The coated ABC substrates were also characterized, exhibiting low swelling effect (between 1.5-2.0 swelling/mm(3)), high mechanical strength (2048MPa) and non-pyrogenicity (2.12EU/L). Therefore, the ABC substrates coated with UBM exhibit interesting features as potential cell carriers in RPE transplantation that ought to be further explored. PMID:26689643

  15. Structural modification and characterization of bacterial cellulose-alginate composite scaffolds for tissue engineering.

    Science.gov (United States)

    Kirdponpattara, Suchata; Khamkeaw, Arnon; Sanchavanakit, Neeracha; Pavasant, Prasit; Phisalaphong, Muenduen

    2015-11-01

    A novel bacterial cellulose-alginate composite scaffold (N-BCA) was fabricated by freeze drying and subsequent crosslinking with Ca(2+). The N-BCA then underwent a second freeze drying step to remove water without altering the physical structure. A stable structure of N-BCA with open and highly interconnected pores in the range of 90-160 μm was constructed. The N-BCA was stable in both water and PBS. The swelling ability of N-BCA in water was approximately 50 times its weight, which was about 6.5 times that of the freeze dried bacterial cellulose pellicles. N-BCA demonstrated no cytotoxicity against L929 mouse fibroblast cells. For long-term culture, N-BCA supported attachment, spreading, and proliferation of human gingival fibroblast (GF) on the surface. However, under static conditions, the cell migration and growth inside the scaffold were limited. Because of its biocompatibility and open macroporous structure, N-BCA could potentially be used as a scaffold for tissue engineering. PMID:26256335

  16. Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Li Jian; Wan Yizao [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Li Lianfeng [Technical Institute of Physics and Chemistry of CAS, Beijing 100080 (China); Liang Hui [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Wang Jiehua, E-mail: jiehuaw_tju@yahoo.com [School of Agriculture and Bioengineering, Tianjin University, Tianjin 300072 (China)

    2009-06-01

    Bacterial cellulose (BC) is suitable for applications as scaffolds in tissue engineering due to its unique properties. However, BC is not enzymatically degradable in vivo and this has become an essential limiting factor in its potential applications. In this work, BC was modified by periodate oxidation to give rise to a biodegradable 2,3-dialdehyde bacterial cellulose (DABC). After characterization by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, thin-film X-ray diffractometry (XRD) and X-ray photoelectron spectroscopy (XPS), we demonstrated that the modified DABC nano-network was able to degrade into porous scaffold with micro-sized pores in water, phosphate buffered saline (PBS) and the simulated body fluid (SBF). The degradation process began from the oxidized amorphous part of the network and concurrently hydroxyapatite formed on the scaffold surface during the process in SBF. Our data also demonstrated that the tensile mechanical properties of the DABC nano-network were suitable for its use in tissue engineering scaffolds.

  17. Effect of Organic Acids on Bacterial Cellulose Produced by Acetobacter xylinum

    Directory of Open Access Journals (Sweden)

    Hongmei Lu

    2016-03-01

    Full Text Available Based on the difference of bacterial cellulose production from rice saccharificate medium and chemical medium under static cultivation, effect of organic acids in the process of bacterial cellulose produced by A. xylinum was studied. The results showed that the kinds and contents of organic acids were different in both culture medium, in which accumulated oxalic acid and tartaric acid inhibited A. xylinum producing BC in chemical medium, while pyruvic acid, malic acid, lactic acid, acetic acid, citric acid and succinic acid, as ethanol, promoted A. xylinum to produce BC. Compared to the blank BC production 1.48 g/L, the optimum addition concentrations of pyruvic acid, malic acid, lactic acid, acetic acid, citric acid, succinic acid, and ethanol in chemical medium were 0.15%, 0.1%, 0.3%, 0.4%, 0.1%, 0.2% , 4% and the BC productions were 2.49 g/L, 2.83 g/L, 2.12 g/L, 2.54 g/L, 2.27 g/L, 1.88 g/L , 2.63 g/L, respectively. The co-existence of above organic acids and ethanol increased BC production even further.

  18. Interparticle interactions mediated superspin glass to superferromagnetic transition in Ni-bacterial cellulose aerogel nanocomposites

    Science.gov (United States)

    Thiruvengadam, V.; Vitta, Satish

    2016-06-01

    The interparticle interactions in the magnetic nanocomposites play a dominant role in controlling phase transitions: superparamagnetic to superspin glass and to superferromagnetic. These interactions can be tuned by controlling the size and number density of nanoparticles. The aerogel composites, 0.3Ni-BC and 0.7Ni-BC, consisting of Ni nanoparticles distributed in the bacterial cellulose have been used as a model system to study these interactions. Contrary to conventional approach, size of Ni-nanoparticles is not controlled and allowed to form naturally in bacterial cellulose template. The uncontrolled growth of Ni results in the formation of nanoparticles with 3 different size distributions - 100 nm particles in voids formed by reticulate structure. At room temperature, the composites exhibit a weakly ferromagnetic behaviour with a coercivity of 40 Oe, which increases to 160 Oe at 10 K. The transition from weakly ferromagnetic state to superferromagnetic state at low temperatures is mediated by the superspin glass state at intermediate temperatures via the interparticle interactions aided by nanoparticles present along the length of fibres. A temperature dependent microstructural model has been developed to understand the magnetic behaviour of nanocomposite aerogels.

  19. Enhanced starch hydrolysis using α-amylase immobilized on cellulose ultrafiltration affinity membrane.

    Science.gov (United States)

    Konovalova, Viktoriia; Guzikevich, Kateryna; Burban, Anatoliy; Kujawski, Wojciech; Jarzynka, Karolina; Kujawa, Joanna

    2016-11-01

    In order to prepare ultrafiltration membranes possessing biocatalytic properties, α-amylase has been immobilized on cellulose membranes. Enzyme immobilization was based on a covalent bonding between chitosan and a surface of cellulose membrane, followed by an attachment of Cibacron Blue F3G-A dye as affinity ligand. Various factors affecting the immobilization process, such as enzyme concentration, pH of modifying solution, zeta-potential of membrane surface, and stability of immobilized enzyme were studied. The applicability of immobilized α-amylase has been investigated in ultrafiltration processes. The immobilization of α-amylase on membrane surface allows to increase the value of mass transfer coefficient and to decrease the concentration polarization effect during ultrafiltration of starch solutions. The enzyme layer on the membrane surface prevents a rapid increase of starch concentration due to the amylase hydrolysis of starch in the boundary layer. The presented affinity immobilization technique allows also for the regeneration of membranes from inactivated enzyme. PMID:27516322

  20. Effect of coagulant bath on the gas permeation properties of cellulose acetate asymmetric membrane

    Science.gov (United States)

    Mohamed, F.; Hasbullah, H.; Jami'an, W. N. R.; Salleh, W. N. H. W.; Ibrahim, N.; Ali, R. R.

    2016-06-01

    Membrane based gas separation process technology has been recognized as one of the most efficient and advanced unit operation for gas separation. One of the problems in membrane gas separation is membrane performance. This paper explores the application of cellulose acetate (CA) membrane for natural gas purification and separation by improving its permeability and selectivity. The main interest in this research is to study the effect of quench medium on the gas separation performance towards its physical characteristics and gas separation performance of CA membrane. Cellulose acetate polymer was dissolved in n- methyl-2-pyrrolidone solvent and casted onto a glass plate using a pneumatically controlled casting system with fixed shear rate and solvent evaporation times. The parameter varied was the non-solvent used as quench medium during membrane post treatment that were methanol and n-hexane. The different quench media as post treatment affected the O2 and N2 gas permeation and O2/N2 selectivity as well as the tensile strength of the flat sheet asymmetric membrane. Combination of methanol and n-hexane as quench media gave the best result than the other steps. This solvent exchange step influenced the morphology by producing thin skin layer and thus gives better gas separation performance than other steps

  1. Fruit peels support higher yield and superior quality bacterial cellulose production.

    Science.gov (United States)

    Kumbhar, Jyoti Vasant; Rajwade, Jyutika Milind; Paknikar, Kishore Madhukar

    2015-08-01

    Fruit peels, also known as rinds or skins, are wastes readily available in large quantities. Here, we have used pineapple (PA) and watermelon (WM) peels as substrates in the culture media (containing 5 % sucrose and 0.7 % ammonium sulfate) for production of bacterial cellulose (BC). The bacterial culture used in the study, Komagataeibacter hansenii produced BC under static conditions as a pellicle at the air-liquid interface in standard Hestrin and Schramm (HS) medium. The yield obtained was ~3.0 g/100 ml (on a wet weight basis). The cellulosic nature of the pellicle was confirmed by CO2, H2O, N2, and SO2 (CHNS) analysis and Fourier transform infrared (FT-IR) spectroscopy. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) of the pellicle revealed the presence of flat twisted ribbonlike fibrils (70-130 nm wide). X-ray diffraction analysis proved its crystalline nature (matching cellulose I) with a crystallinity index of 67 %. When K. hansenii was grown in PA and WM media, BC yields were threefolds or fourfolds higher than those obtained in HS medium. Interestingly, textural characterization tests (viz., SEM, crystallinity index, resilience, hardness, adhesiveness, cohesiveness, springiness, shear energy and stress, and energy required for puncturing the pellicle) proved that the quality of BC produced in PA and WM media was superior to the BC produced in HS medium. These findings demonstrate the utility of the newly designed media for getting higher yields and better quality of BC, which could make fermentative production of BC more attractive on a commercial scale. PMID:25957154

  2. Determination of sterilization dose of cellulose microbial membrane by electron beam irradiation using ISO 11137

    International Nuclear Information System (INIS)

    The calculation of sterilization dose of cellulose microbial by electron beam irradiation has been done based on International Organization for Standardization (ISO) 11137. Cellulose microbial pellicle was prepared by static fermentation of A. xylinum in a medium containing coconut water as a micro nutrient source. The pellicle was then hand pressed at ambient temperature in order to get membrane with thickness of 0.03 ± 0.01 mm. Sterilization dose of electron beam was determined based on ISO 11137 through three steps: calculation of bioburden, determination of verification dose and sterilization dose based on Table 2. The results showed that the average bioburden of batch 1, 2 and 3 were 67.4; 92.6; 91 cfu, respectively and overall average bioburden was 83.7 cfu. The batch average bioburden was smaller than twice of overall average bioburden, so overall average of bioburden was used to determine the verification dose. Based on ISO 11137, the verification dose was at 7.8 kGy. The results of sterility test on 100 pieces of membranes after irradiated at verification dose, showed that only one membrane had positive bacteria growth. From these results, it can be concluded that sterilization dose of cellulose microbial membrane irradiated by electron beam with the SAL of 10-6 was 21 kGy. (author)

  3. Electrospinning of silver nanoparticles loaded highly porous cellulose acetate nanofibrous membrane for treatment of dye wastewater

    Science.gov (United States)

    Wang, Ke; Ma, Qian; Wang, Shu-Dong; Liu, Hua; Zhang, Sheng-Zhong; Bao, Wei; Zhang, Ke-Qin; Ling, Liang-Zhong

    2016-01-01

    In this paper, silver nanoparticles (NPs) were reduced form silver nitrate. Morphology and distribution of the synthesized silver NPs were characterized. In order to obtain cellulose acetate (CA), nanofibrous membrane with high effective adsorption performance to carry silver NPs for treatment of dye wastewater, different solvent systems were used to fabricate CA nanofibrous membranes with different morphologies and porous structures via electrospinning. Morphologies and structures of the obtained CA nanofibrous membranes were compared by scanning electron microscopy (SEM), which showed that CA nanofibrous membrane obtained from acetone/dichloromethane (1/2, v/v) was with the highly porous structure. SEM, energy-dispersive spectrometry and Fourier transform infrared spectrometry showed that the silver NPs were effectively incorporated in the CA nanofibrous membrane and the addition of silver NPs did not damage the porous structure of the CA nanofibrous membrane. Adsorption of dye solution (rhodamine B aqueous solution) revealed that the highly porous CA nanofibrous membrane exhibited effective adsorption performance and the addition of silver NPs did not affect the adsorption of the dye. Antibacterial property of the CA nanofibrous membrane showed that the silver-loaded highly porous CA nanofibrous membrane had remarkable antibacterial property when compared to the CA nanofibrous membrane without silver NPs. The silver-loaded highly porous CA nanofibrous membrane could be considered as an ideal candidate for treatment of the dye wastewater.

  4. Bacterial Outer Membrane Vesicles and Vaccine Applications

    OpenAIRE

    Acevedo, Reinaldo; Fernández, Sonsire; Zayas, Caridad; Acosta, Armando; Sarmiento, Maria Elena; Valerie A. Ferro; Rosenqvist, Einar; Campa, Concepcion; Cardoso, Daniel; Garcia, Luis; Perez, Jose Luis

    2014-01-01

    Vaccines based on outer membrane vesicles (OMV) were developed more than 20 years ago against Neisseria meningitidis serogroup B. These nano-sized structures exhibit remarkable potential for immunomodulation of immune responses and delivery of meningococcal antigens or unrelated antigens incorporated into the vesicle structure. This paper reviews different applications in OMV Research and Development (R&D) and provides examples of OMV developed and evaluated at the Finlay Institute in Cuba. A...

  5. BACTERIAL OUTER MEMBRANE VESICLES AND VACCINE APPLICATIONS

    OpenAIRE

    Reinaldo eAcevedo; Sonsire eFernandez; Caridad eZayas; Armando eAcosta; Maria Elena Sarmiento; Valerie A. Ferro; Einar eRosenqvist; Concepcion eCampa; Daniel eCardoso; Luis eGarcia; Jose Luis Perez

    2014-01-01

    Vaccines based on outer membrane vesicles (OMV) were developed more than 20 years ago against Neisseria meningitidis serogroup B. These nano-sized structures exhibit remarkable potential for immunomodulation of immune responses and delivery of self meningococcal antigens or unrelated antigens incorporated into the vesicle structure. This paper reviews different applications in OMV Research and Development (R&D) and provides examples of OMV developed and evaluated at the Finlay Institute in Cu...

  6. Structural Aspects of Bacterial Outer Membrane Protein Assembly.

    Science.gov (United States)

    Calmettes, Charles; Judd, Andrew; Moraes, Trevor F

    2015-01-01

    The outer membrane of Gram-negative bacteria is predominantly populated by β-Barrel proteins and lipid anchored proteins that serve a variety of biological functions. The proper folding and assembly of these proteins is essential for bacterial viability and often plays a critical role in virulence and pathogenesis. The β-barrel assembly machinery (Bam) complex is responsible for the proper assembly of β-barrels into the outer membrane of Gram-negative bacteria, whereas the localization of lipoproteins (Lol) system is required for proper targeting of lipoproteins to the outer membrane. PMID:26621472

  7. Mechanism of bacterial membrane poration by Antimicrobial Peptides

    Science.gov (United States)

    Arora, Ankita; Mishra, Abhijit

    2015-03-01

    Bacterial resistance to conventional antibiotics is a major health concern. Antimicrobial peptides (AMPs), an important component of mammalian immune system, are thought to utilize non-specific interactions to target common features on the outer membranes of pathogens; hence development of resistance to such AMPs may be less pronounced. Most AMPs are amphiphilic and cationic in nature. Most AMPs form pores in the bacterial membranes causing them to lyse, however, the exact mechanism is unknown. Here, we study the AMP CHRG01 (KSSTRGRKSSRRKK), derived from human β defensin 3 (hBD3) with all Cysteine residues substituted with Serine. Circular Dichorism studies indicate that CHRG01 shows helicity and there is change in helicity as it interacts with the lipid membrane. The AMP was effective against different species of bacteria. Leakage of cellular components from bacterial cells observed by SEM and AFM indicates AMP action by pore formation. Confocal microscopy studies on giant vesicles incubated with AMP confirm poration. The effect of this AMP on model bacterial membranes is characterized using Small Angle X-ray scattering and Fluorescence spectroscopy to elucidate the mechanism behind antimicrobial activity.

  8. Transmembrane transport of peptidoglycan precursors across model and bacterial membranes

    NARCIS (Netherlands)

    van Dam, V.; Sijbrandi, R.; Kol, M.A.; Swiezewska, E.; de Kruijff, B.; Breukink, E.J.

    2007-01-01

    Translocation of the peptidoglycan precursor Lipid II across the cytoplasmic membrane is a key step in bacterial cell wall synthesis, but hardly understood. Using NBD-labelled Lipid II, we showed by fluorescence and TLC assays that Lipid II transport does not occur spontaneously and is not induced b

  9. Bacterial nanocellulose/Nafion composite membranes for low temperature polymer electrolyte fuel cells

    Science.gov (United States)

    Jiang, Gao-peng; Zhang, Jing; Qiao, Jin-li; Jiang, Yong-ming; Zarrin, Hadis; Chen, Zhongwei; Hong, Feng

    2015-01-01

    Novel nanocomposite membranes aimed for both proton-exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) are presented in this work. The membranes are based on blending bacterial nanocellulose pulp and Nafion (abbreviated as BxNy, where x and y indicates the mass ratio of bacterial cellulose to Nafion). The structure and properties of BxNy membranes are characterized by FTIR, SEM, TG, DMA and EIS, along with water uptake, swelling behavior and methanol permeability tests. It is found that the BxNy composite membranes with reinforced concrete-like structure show excellent mechanical and thermal stability regardless of annealing. The water uptake plus area and volume swelling ratios are all decreased compared to Nafion membranes. The proton conductivities of pristine and annealed B1N9 are 0.071 and 0.056 S cm-1, respectively, at 30 °C and 100% humidity. Specifically, annealed B1N1 exhibited the lowest methanol permeability of 7.21 × 10-7 cm2 s-1. Through the selectivity analysis, pristine and annealed B1N7 are selected to assemble the MEAs. The performances of annealed B1N7 in PEMFC and DMFC show the maximum power densities of 106 and 3.2 mW cm-2, respectively, which are much higher than those of pristine B1N7 at 25 °C. The performances of the pristine and annealed B1N7 reach a level as high as 21.1 and 20.4 mW cm-2 at 80 °C in DMFC, respectively.

  10. Development of Cellulose/PVDF-HFP Composite Membranes for Advanced Battery Separators

    Science.gov (United States)

    Castillo, Alejandro; Agubra, Victor; Alcoutlabi, Mataz; Mao, Yuanbing

    Improvements in battery technology are necessary as Li-ion batteries transition from consumer electronic to vehicular and industrial uses. An important bottle-neck in battery efficiency and safety is the quality of the separators, which prevent electric short-circuits between cathode and anode, while allowing an easy flow of ions between them. In this study, cellulose acetate was dissolved in a mixed solvent with poly(vinylpyrrolidone) (PVP), and the mixture was forcespun in a peudo paper making process to yield nanofibrillated nonwoven mats. The mats were soaked in NaOH/Ethanol to strip PVP and regenerate cellulose from its acetate precursor. The cellulose mats were then dipped in poly(vinylidenefluoride-co-hexafluoropropylene) (PVDF-HFP) to yield the cellulose/PVDF-HFP composte membranes. These membranes were characterized chemically through FTIR spectroscopy and solvent-stability tests, thermally through DSC, physically by stress/strain measurements along with weight-based electrolyte uptake, and electrically by AC-impedance spectroscopy combined with capacitative cycling.

  11. Cellulose Acetate 398-10 Asymmetric Membrane Capsules for Osmotically Regulated Delivery of Acyclovir

    Directory of Open Access Journals (Sweden)

    Alka Sonkar

    2016-01-01

    Full Text Available The study was aimed at developing cellulose acetate asymmetric membrane capsules (AMCs of acyclovir for its controlled delivery at the absorption site. The AMCs were prepared by phase inversion technique using wet process. A 23 full factorial design assessed the effect of independent variables (level(s of polymer, pore former, and osmogen on the cumulative drug release from AMCs. The buoyant optimized formulation F7 (low level of cellulose acetate; high levels of both glycerol and sodium lauryl sulphate displayed maximum drug release of 97.88±0.77% in 8 h that was independent of variation in agitational intensity and intentional defect on the cellulose acetate AMC. The in vitro data best fitted zero-order kinetics (r2=0.9898. SEM micrograph of the transverse section confirmed the asymmetric nature of the cellulose acetate capsular membrane. Statistical analysis by Design Expert software indicated no interaction between the independent variables confirming the efficiency of the design in estimating the effects of variables on drug release. The optimized formulation F7 (desirability = 0.871 displayed sustenance of drug release over the drug packed in AMC in pure state proving the superiority of osmotically active formulation. Conclusively the AMCs have potential for controlled release of acyclovir at its absorption site.

  12. Synthesis of polymer electrolyte membranes from cellulose acetate/poly(ethylene oxide)/LiClO{sub 4} for lithium ion battery application

    Energy Technology Data Exchange (ETDEWEB)

    Nurhadini,, E-mail: nur-chem@yahoo.co.id; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Division, Faculty of Mathematics and Natural Sciences, Institiut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132 (Indonesia)

    2015-09-30

    This study was conducted to determine the effect of cellulose acetate on poly(ethylene oxide)-LiClO{sub 4} membranes as the polymer electrolyte. Cellulose acetate is used as an additive to increase ionic conductivity and mechanical property of polymer electrolyte membranes. The increase the percentage of cellulose acetate in membranes do not directly effect on the ionic conductivity, and the highest ionic conductivity of membranes about 5,7 × 10{sup −4} S/cm was observed in SA/PEO/LiClO{sub 4} membrane with cellulose ratio of 10-25% (w/w). Cellulose acetate in membranes increases mechanical strength of polymer electrolyte membranes. Based on TGA analysis, this polymer electrolyte thermally is stable until 270 °C. The polymer electrolyte membrane prepared by blending the cellulose acetate, poly(ethylene oxide), and lithium chlorate could be potentially used as a polymer electrolyte for lithium ion battery application.

  13. Synthesis of polymer electrolyte membranes from cellulose acetate/poly(ethylene oxide)/LiClO4 for lithium ion battery application

    Science.gov (United States)

    Nurhadini, Arcana, I. Made

    2015-09-01

    This study was conducted to determine the effect of cellulose acetate on poly(ethylene oxide)-LiClO4 membranes as the polymer electrolyte. Cellulose acetate is used as an additive to increase ionic conductivity and mechanical property of polymer electrolyte membranes. The increase the percentage of cellulose acetate in membranes do not directly effect on the ionic conductivity, and the highest ionic conductivity of membranes about 5,7 × 10-4 S/cm was observed in SA/PEO/LiClO4 membrane with cellulose ratio of 10-25% (w/w). Cellulose acetate in membranes increases mechanical strength of polymer electrolyte membranes. Based on TGA analysis, this polymer electrolyte thermally is stable until 270 °C. The polymer electrolyte membrane prepared by blending the cellulose acetate, poly(ethylene oxide), and lithium chlorate could be potentially used as a polymer electrolyte for lithium ion battery application.

  14. Synthesis of polymer electrolyte membranes from cellulose acetate/poly(ethylene oxide)/LiClO4 for lithium ion battery application

    International Nuclear Information System (INIS)

    This study was conducted to determine the effect of cellulose acetate on poly(ethylene oxide)-LiClO4 membranes as the polymer electrolyte. Cellulose acetate is used as an additive to increase ionic conductivity and mechanical property of polymer electrolyte membranes. The increase the percentage of cellulose acetate in membranes do not directly effect on the ionic conductivity, and the highest ionic conductivity of membranes about 5,7 × 10−4 S/cm was observed in SA/PEO/LiClO4 membrane with cellulose ratio of 10-25% (w/w). Cellulose acetate in membranes increases mechanical strength of polymer electrolyte membranes. Based on TGA analysis, this polymer electrolyte thermally is stable until 270 °C. The polymer electrolyte membrane prepared by blending the cellulose acetate, poly(ethylene oxide), and lithium chlorate could be potentially used as a polymer electrolyte for lithium ion battery application

  15. Modulation of population density and size of silver nanoparticles embedded in bacterial cellulose via ammonia exposure: visual detection of volatile compounds in a piece of plasmonic nanopaper

    Science.gov (United States)

    Heli, B.; Morales-Narváez, E.; Golmohammadi, H.; Ajji, A.; Merkoçi, A.

    2016-04-01

    The localized surface plasmon resonance exhibited by noble metal nanoparticles can be sensitively tuned by varying their size and interparticle distances. We report that corrosive vapour (ammonia) exposure dramatically reduces the population density of silver nanoparticles (AgNPs) embedded within bacterial cellulose, leading to a larger distance between the remaining nanoparticles and a decrease in the UV-Vis absorbance associated with the AgNP plasmonic properties. We also found that the size distribution of AgNPs embedded in bacterial cellulose undergoes a reduction in the presence of volatile compounds released during food spoilage, modulating the studied nanoplasmonic properties. In fact, such a plasmonic nanopaper exhibits a change in colour from amber to light amber upon the explored corrosive vapour exposure and from amber to a grey or taupe colour upon fish or meat spoilage exposure. These phenomena are proposed as a simple visual detection of volatile compounds in a flexible, transparent, permeable and stable single-use nanoplasmonic membrane, which opens the way to innovative approaches and capabilities in gas sensing and smart packaging.The localized surface plasmon resonance exhibited by noble metal nanoparticles can be sensitively tuned by varying their size and interparticle distances. We report that corrosive vapour (ammonia) exposure dramatically reduces the population density of silver nanoparticles (AgNPs) embedded within bacterial cellulose, leading to a larger distance between the remaining nanoparticles and a decrease in the UV-Vis absorbance associated with the AgNP plasmonic properties. We also found that the size distribution of AgNPs embedded in bacterial cellulose undergoes a reduction in the presence of volatile compounds released during food spoilage, modulating the studied nanoplasmonic properties. In fact, such a plasmonic nanopaper exhibits a change in colour from amber to light amber upon the explored corrosive vapour exposure and

  16. In vivo and in vitro evaluation of an Acetobacter xylinum synthesized microbial cellulose membrane intended for guided tissue repair

    Directory of Open Access Journals (Sweden)

    de Lima-Neto João

    2009-03-01

    Full Text Available Abstract Background Barrier materials as cellulose membranes are used for guided tissue repair. However, it is essential that the surrounding tissues accept the device. The present study histologically evaluated tissue reaction to a microbial cellulose membrane after subcutaneous implantation in mice. Furthermore, the interaction between mesenchymal stem cells and the biomaterial was studied in vitro to evaluate its ability to act as cellular scaffold for tissue engineering. Methods Twenty-five Swiss Albino mice were used. A 10 × 10 mm cellulose membrane obtained through biosynthesis using Acetobacter xylinum bacteria was implanted into the lumbar subcutaneous tissue of each mouse. The mice were euthanatized at seven, 15, 30, 60, and 90 days, and the membrane and surrounding tissues were collected and examined by histology. Results A mild inflammatory response without foreign body reaction was observed until 30 days post-surgery around the implanted membrane. Polarized microscopy revealed that the membrane remained intact at all evaluation points. Scanning electron microscopy of the cellulose membrane surface showed absence of pores. The in vitro evaluation of the interaction between cells and biomaterial was performed through viability staining analysis of the cells over the biomaterial, which showed that 95% of the mesenchymal stem cells aggregating to the cellulose membrane were alive and that 5% were necrotic. Scanning electron microscopy showed mesenchymal stem cells with normal morphology and attached to the cellulose membrane surface. Conclusion The microbial cellulose membrane evaluated was found to be nonresorbable, induced a mild inflammatory response and may prove useful as a scaffold for mesenchymal stem cells.

  17. Separation of macromolecular proteins and removal of humic acid by cellulose acetate modified UF membranes.

    Science.gov (United States)

    Kanagaraj, P; Nagendran, A; Rana, D; Matsuura, T

    2016-08-01

    Surface modifying macromolecules (SMMs) were synthesized with various polyurethane pre polymers end-capped with different groups and blended into the casting solution of cellulose acetate (CA) to prepare surface modified ultra-filtration (UF) membranes for water filtration applications. The surface modification of the CA membranes was confirmed by the FTIR and static contact angle (SCA) measurements. The membranes so prepared had the typical characteristics of UF membranes as confirmed by scanning electron microscopy (SEM). Membrane properties were studied in terms of membrane compaction, percentage water content (%WC), pure water flux (PWF), membrane hydraulic resistance (Rm), molecular weight cut-off (MWCO), average pore size and porosity. The result showed that PWF, %WC, MWCO and pore size increased whereas the Rm decreased by the addition of SMMs. The significant effect of SMMs on the fouling by humic acid (HA) was also observed. It was found that the cSMM-3 membrane, in which SMM was synthesized with diethylene glycol (DEG) and hydroxyl benzene sulfonate (HBS) was blended, had the highest flux recovery ratio FRR (84.6%), as well as the lowest irreversible fouling (15.4%), confirming their improved antifouling properties. Thus, the SMM modified CA membranes had proven, to play an important role in the water treatment by UF. PMID:27118046

  18. Fabrication and performance of PET mesh enhanced cellulose acetate membranes for forward osmosis.

    Science.gov (United States)

    Li, Guoliang; Wang, Jun; Hou, Deyin; Bai, Yu; Liu, Huijuan

    2016-07-01

    Polyethylene terephthalate mesh (PET) enhanced cellulose acetate membranes were fabricated via a phase inversion process. The membrane fabrication parameters that may affect the membrane performance were systematically evaluated including the concentration and temperature of the casting polymer solution and the temperature and time of the evaporation, coagulation and annealing processes. The water permeability and reverse salt flux were measured in forward osmosis (FO) mode for determination of the optimal membrane fabrication conditions. The optimal FO membrane shows a typical asymmetric sandwich structure with a mean thickness of about 148.2μm. The performance of the optimal FO membrane was tested using 0.2mol/L NaCl as the feed solution and 1.5mol/L glucose as the draw solution. The membrane displayed a water flux of 3.47L/(m(2)·hr) and salt rejection of 95.48% in FO mode. While in pressure retarded osmosis (PRO) mode, the water flux was 4.74L/(m(2)·hr) and salt rejection 96.03%. The high ratio of water flux in FO mode to that in PRO mode indicates that the fabricated membrane has a lower degree of internal concentration polarization than comparable membranes. PMID:27372114

  19. Effect of evaporation time on cellulose acetate membrane for gas separation

    Science.gov (United States)

    Jami'an, W. N. R.; Hasbullah, H.; Mohamed, F.; Yusof, N.; Ibrahim, N.; Ali, R. R.

    2016-06-01

    Throughout this decades, membrane technology has been the desirable option among the others gas separation technologies. However, few issues have been raised regarding the membrane gas separation application including the trade-off between its permeability and selectivity and also its effects towards environment. Therefore, for this research, a biopolymer membrane for gas separation application will be developed with reasonably high on both permeability and selectivity. The main objective of this research is to study the effect of solvent evaporation time on the flat sheet asymmetric membrane morphology and gas separation performance. The membranes were produced by a simple dry/wet phase inversion technique using a pneumatically controlled casting system. The dope solution for the membrane casting was prepared by dissolving the cellulose acetate (CA) polymer in N-Methyl-2-pyrrolidone (NMP) and the solvent evaporation time was varied. Permeability and selectivity of the membrane was performed by using pure gases of carbon dioxide, CO2 and methane, CH4. The increase in solvent evaporation time had improved the membrane morphologies as the porosity of the membrane surface decrease and formation of a more mature skin layer. The gas permeation tests determined that increasing in solvent evaporation time had increased the selectivity of CO2/CH4 but reduce the permeability of both gases

  20. Effect of silica particle size in cellulose membrane for desalination process

    Science.gov (United States)

    Nurkhamidah, Siti; Rahmawati, Yeni; Taufany, Fadlilatul; Merta, I. Made Pendi Adi; Putra, Deffry Danius Dwi; Woo, Eamor M.

    2015-12-01

    Development of desalination technologies is very important for fulfilling future water demand. The objective of this research is to synthesis membrane for desalination process from cellulose acetate (CA) by blending with polyethylene glycol (PEG) and silica resulting CA/PEG/Silica composite membrane. In this study, the synthesis and characterization of composite membrane is attempt where membrane performance is investigated for reverse osmosis desalination of saline water. CA/PEG membrane with ratio 80/20 (wt%) was modified with three different particle sizes of silica: 0.007, 0.02, and 60 µm. Composite membranes were characterized for their hydrophilicity, functional groups and permeation properties. The experiment results show that hydrophilicity of CA/PEG membrane increases after the addition of silica as shown by the decreasing of contact angle and the increasing of silanol group. Hydrophilicity of composite membrane increases with the decreasing of particle size of silica. The best performance membrane is obtained by using silica with particle size of 0.02 µm.

  1. Metal nanoparticles/ionic liquid/cellulose: polymeric membrane for hydrogenation reactions

    Directory of Open Access Journals (Sweden)

    Marcos Alexandre Gelesky

    2014-01-01

    Full Text Available Rhodium and platinum nanoparticles were supported in polymeric membranes with 10, 20 and 40 µm thickness. The polymeric membranes were prepared combining cellulose acetate and the ionic liquid (IL 1-n-butyl-3-methylimidazolium bis(trifluoromethane sulfonylimide (BMI.(NTf2. The presence of metal nanoparticles induced an increase in the polymeric membrane surface areas. The increase of the IL content resulted in an improvement of elasticity and decrease in tenacity and toughness, whereas the stress at break was not affected. The presence of IL probably causes an increase in the separation between the cellulose molecules that result in a higher flexibility and processability of the polymeric membrane. The CA/IL/M(0 combinations exhibit an excellent synergistic effect that enhances the activity and durability of the catalyst for the hydrogenation of cyclohexene. The CA/IL/M(0 polymeric membrane displays higher catalytic activity (up to 7.353 h-1 for the 20 mm of CA/IL/Pt(0 and stability than the nanoparticles dispersed only in the IL.

  2. Recent advances in cellulose and chitosan based membranes for water purification: A concise review.

    Science.gov (United States)

    Thakur, Vijay Kumar; Voicu, Stefan Ioan

    2016-08-01

    Recently membrane technology has emerged as a new promising and pervasive technology due to its innate advantages over traditional technologies such as adsorption, distillation and extraction. In this article, some of the recent advances in developing polymeric composite membrane materials for water purification from natural polysaccharide based polymers namely cellulose derivatives and chitosan are concisely reviewed. The impact of human social, demographic and industrial evolution along with expansion through environment has significantly affected the quality of water by pollution with large quantities of pesticides, minerals, drugs or other residues. At the forefront of decontamination and purification techniques, we found the membrane materials from polymers as a potential alternative. In an attempt to reduce the number of technical polymers widely used in the preparation of membranes, many researchers have reported new solutions for desalination or retention of organic yeasts, based on bio renewable polymers like cellulose derivatives and chitosan. These realizations are presented and discussed in terms of the most important parameters of membrane separation especially water flux and retention in this article. PMID:27112861

  3. Draft Genome Sequence of Clostridium straminisolvens Strain JCM 21531T, Isolated from a Cellulose-Degrading Bacterial Community

    OpenAIRE

    Yuki, Masahiro; Oshima, Kenshiro; Suda, Wataru; Sakamoto, Mitsuo; Kitamura, Keiko; Iida, Toshiya; Hattori, Masahira; Ohkuma, Moriya

    2014-01-01

    Here, we report the draft genome sequence of a fibrolytic bacterium, Clostridium straminisolvens JCM 21531T, isolated from a cellulose-degrading bacterial community. The genome information of this strain will be useful for studies on the degradation enzymes and functional interactions with other members in the community.

  4. Two Novel Vaginal Microbicides (Polystyrene Sulfonate and Cellulose Sulfate) Inhibit Gardnerella vaginalis and Anaerobes Commonly Associated with Bacterial Vaginosis

    OpenAIRE

    Simoes, Jose A.; Citron, Diane M.; Aroutcheva, Alla; Anderson, Robert A.; Chany II, Calvin J.; Waller, Donald P.; Faro, Sebastian; Lourens J. D. Zaneveld

    2002-01-01

    This is the first report demonstrating the in vitro inhibitory activity of two novel microbicides (cellulose sulfate and polystyrene sulfonate) against bacterial vaginosis (BV)-associated bacteria. Vaginal application of these microbicides not only may reduce the risk of acquisition of human immunodeficiency virus and other sexually transmitted infection-causing organisms but may also decrease the incidence of BV.

  5. Research and Application of Bacterial Cellulose%细菌纤维素的研究及其应用

    Institute of Scientific and Technical Information of China (English)

    贾士儒; 刘淼; 薄涛

    2013-01-01

    As a novel nanomaterial ,bacterial cellulose ( BC ) has attracted more attention due to its high quality in mechanical strength ,biocompatibility and biodegradability .This paper introduces the domestic and international researches on the metabolism and biosynthesis mechanism of bacterial cellulose . Meanwhile ,the applications of bacterial cellulose in food ,paper making and biomedical materials etc .were presented.Finally, the furture research trends and application prospects of bacterial cellulose were discussed .%细菌纤维素作为新型纳米材料,具有极好的物理特性、生物相容性和生物可降解性等。本文介绍了国内外目前对细菌纤维素代谢及生物合成机制的研究现状,及细菌纤维素在食品、造纸和医学等领域的应用。并展望了细菌纤维素未来的研究趋势与应用前景。

  6. Surfactant-free emulsions stabilized by tempo-oxidized bacterial cellulose.

    Science.gov (United States)

    Jia, Yuanyuan; Zhai, Xiaoli; Fu, Wei; Liu, Yang; Li, Fei; Zhong, Cheng

    2016-10-20

    In order to seek a safe, biodegradable, and sustainable solid stabilizer for food, topical and pharmaceutical emulsions, individualized cellulose nanofibers were prepared by oxidizing bacterial cellulose (BC) in a Tempo-mediated system; their ability to stabilize oil/water interface was investigated. Significant amounts of C6 carboxylate groups were selectively formed on each cellulose microfibril surface, so that the hydrophilicity was strengthened, leading to lower contact angles. Meanwhile, both the length and width of fibrils were decreased significantly, by partial cleavage of numerous numbers of inter- and intra-fibrillar hydrogen bonds. Tempo-oxidized BC (TOBC) was more effective than BC in stabilizing oil-water interface, attributing to the much smaller size. Fibril dosage and oxidation degree exerted a great influence on the stability and particle size distribution of emulsion samples. When the fibril dosage was 0.7wt.%, the sample was so stable that it did not experience creaming and coalescence over 8 months. The 2-TOBC coated droplets showed the greatest stability, although both the zeta potential and the electric repulsion were the largest for the 10-TOBC analogue, which was manipulated by the wettability of fibrils. In addition, the stability of samples was analyzed from the viewpoint of particle size distribution. Consequently, fibril size and wettability are two counterbalanced factors influencing the stability of TOBC-stabilized emulsions; a combination of suitable wettability and size imparts TOBC-stabilized emulsion high stability. As a kind of biomass-based particle stabilizer, TOBC showed great potential applications in food, topical and pharmaceutical formulations. PMID:27474639

  7. Cellulose Microfibril Formation by Surface-Tethered Cellulose Synthase Enzymes.

    Science.gov (United States)

    Basu, Snehasish; Omadjela, Okako; Gaddes, David; Tadigadapa, Srinivas; Zimmer, Jochen; Catchmark, Jeffrey M

    2016-02-23

    Cellulose microfibrils are pseudocrystalline arrays of cellulose chains that are synthesized by cellulose synthases. The enzymes are organized into large membrane-embedded complexes in which each enzyme likely synthesizes and secretes a β-(1→4) glucan. The relationship between the organization of the enzymes in these complexes and cellulose crystallization has not been explored. To better understand this relationship, we used atomic force microscopy to visualize cellulose microfibril formation from nickel-film-immobilized bacterial cellulose synthase enzymes (BcsA-Bs), which in standard solution only form amorphous cellulose from monomeric BcsA-B complexes. Fourier transform infrared spectroscopy and X-ray diffraction techniques show that surface-tethered BcsA-Bs synthesize highly crystalline cellulose II in the presence of UDP-Glc, the allosteric activator cyclic-di-GMP, as well as magnesium. The cellulose II cross section/diameter and the crystal size and crystallinity depend on the surface density of tethered enzymes as well as the overall concentration of substrates. Our results provide the correlation between cellulose microfibril formation and the spatial organization of cellulose synthases. PMID:26799780

  8. Optimization of bacterial cellulose production by Gluconacetobacter xylinus using carob and haricot bean.

    Science.gov (United States)

    Bilgi, Eyup; Bayir, Ece; Sendemir-Urkmez, Aylin; Hames, E Esin

    2016-09-01

    Bacterial cellulose (BC) can be used in medical, biomedical, electronic, food, and paper industries because of its unique properties distinguishing it from plant cellulose. BC production was statistically optimized by Gluconacetobacter xylinus strain using carob and haricot bean (CHb) medium. Eight parameters were evaluated by Plackett-Burman Design and significant three parameters were optimized by Central Composite Design. Optimal conditions for production of BC in static culture were found as: 2.5g/L carbon source, 2.75g/L protein source, 9.3% inoculum ratio, 1.15g/L citric acid, 2.7g/L Na2HPO4, 30°C incubation temperature, 5.5 initial pH, and 9days of incubation. This study reveals that BC production can be carried out using carob and haricot bean extracts as carbon and nitrogen sources, and CHb medium has higher buffering capacity compared to Hestrin and Schramm media. Model obtained from this study is used to predict and optimize BC production yield using CHb medium. PMID:26906562

  9. Bacterial cellulose may provide the microbial-life biosignature in the rock records

    Science.gov (United States)

    Zaets, I.; Podolich, O.; Kukharenko, O.; Reshetnyak, G.; Shpylova, S.; Sosnin, M.; Khirunenko, L.; Kozyrovska, N.; de Vera, J.-P.

    2014-03-01

    Bacterial cellulose (BC) is a matrix for a biofilm formation, which is critical for survival and persistence of microbes in harsh environments. BC could play a significant role in the formation of microbial mats in pristine ecosystems on Earth. The prime objective of this study was to measure to what extent spectral and other characteristics of BC were changed under the performance of BC interaction with the earthly rock - anorthosite - via microorganisms. The spectral analyses (Fourier Transform Infrared FT-IR, spectroscopy, and atomic absorption spectroscopy) showed unprecedented accumulation of chemical elements in the BC-based biofilm. The absorption capacity of IR by BC was shielded a little by mineral crust formed by microorganisms on the BC-based biofilm surface, especially clearly seen in the range of 1200-900 cm-1 in FT-IR spectra. Confocal scanning laser microscopy analysis revealed that elements bioleached from anorthosite created surface coats on the BC nanofibril web. At the same time, the vibrational spectra bands showed the presence of the characteristic region of anomeric carbons (960-730 cm-1), wherein a band at 897 cm-1 confirmed the presence of β-1, 4-linkages, which may serve as the cellulose fingerprint region. Results show that BC may be a biosignature for search signs of living organisms in rock records.

  10. Bacterial outer membrane vesicles and vaccine applications.

    Science.gov (United States)

    Acevedo, Reinaldo; Fernández, Sonsire; Zayas, Caridad; Acosta, Armando; Sarmiento, Maria Elena; Ferro, Valerie A; Rosenqvist, Einar; Campa, Concepcion; Cardoso, Daniel; Garcia, Luis; Perez, Jose Luis

    2014-01-01

    Vaccines based on outer membrane vesicles (OMV) were developed more than 20 years ago against Neisseria meningitidis serogroup B. These nano-sized structures exhibit remarkable potential for immunomodulation of immune responses and delivery of meningococcal antigens or unrelated antigens incorporated into the vesicle structure. This paper reviews different applications in OMV Research and Development (R&D) and provides examples of OMV developed and evaluated at the Finlay Institute in Cuba. A Good Manufacturing Practice (GMP) process was developed at the Finlay Institute to produce OMV from N. meningitidis serogroup B (dOMVB) using detergent extraction. Subsequently, OMV from N. meningitidis, serogroup A (dOMVA), serogroup W (dOMVW), and serogroup X (dOMVX) were obtained using this process. More recently, the extraction process has also been applied effectively for obtaining OMV on a research scale from Vibrio cholerae (dOMVC), Bordetella pertussis (dOMVBP), Mycobacterium smegmatis (dOMVSM), and BCG (dOMVBCG). The immunogenicity of the OMV has been evaluated for specific antibody induction, and together with functional bactericidal and challenge assays in mice has shown their protective potential. dOMVB has been evaluated with non-neisserial antigens, including with a herpes virus type 2 glycoprotein, ovalbumin, and allergens. In conclusion, OMV are proving to be more versatile than first conceived and remain an important technology for development of vaccine candidates. PMID:24715891

  11. BACTERIAL OUTER MEMBRANE VESICLES AND VACCINE APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Reinaldo eAcevedo

    2014-03-01

    Full Text Available Vaccines based on outer membrane vesicles (OMV were developed more than 20 years ago against Neisseria meningitidis serogroup B. These nano-sized structures exhibit remarkable potential for immunomodulation of immune responses and delivery of self meningococcal antigens or unrelated antigens incorporated into the vesicle structure. This paper reviews different applications in OMV Research and Development (R&D and provides examples of OMV developed and evaluated at the Finlay Institute in Cuba. A Good Manufacturing Practice (GMP process was developed at the Finlay Institute to produce OMV from N. meningitidis serogroup B (dOMVB using detergent extraction. Subsequently, OMV from N. meningitidis, serogroup A (dOMVA, serogroup W (dOMVW and serogroup X (dOMVX were obtained using this process. More recently, the extraction process has also been applied effectively for obtaining OMV on a research scale from Vibrio cholerae (dOMVC, Bordetella pertussis (dOMVBP, Mycobacterium smegmatis (dOMVSM and BCG (dOMVBCG. The immunogenicity of the OMV have been evaluated for specific antibody induction, and together with functional bactericidal and challenge assays in mice have shown their protective potential. dOMVB has been evaluated with non-self neisserial antigens, including with a herpes virus type 2 glycoprotein, ovalbumin and allergens. In conclusion, OMV are proving to be more versatile than first conceived and remain an important technology for development of vaccine candidates.

  12. Properties and application of bacterial cellulose%细菌纤维素特性及其应用

    Institute of Scientific and Technical Information of China (English)

    吕鸿皓; 夏秀芳; 党苗苗; 费楠; 王英男; 吴磊

    2015-01-01

    细菌纤维素(Bacterial Cellulose, BC),是由细菌产生的胞外产物,因由细菌产生,故其命名为细菌纤维素。细菌纤维素因其具有高持水性、高结晶度、超细纳米纤维网络、高弹性模量和抗拉强度等独特的性质,而被广泛地应用在食品及医学中。本文综述了细菌纤维素在食品、新型伤口敷料、人体组织材料、人工角膜和心脏瓣膜、药物结合或释放以及医用产品开发新兴领域的应用和发展前景。细菌纤维素生产出的产品不仅口感美味,而且作为健康食品,可降低人体胆固醇而拥有保健价值。医学方面期望细菌纤维素能够依据其独特的性质在更广泛的领域得到长足发展。相信在不久的将来,日益完善的生产技术能让细菌纤维素更好地为人类服务。%Bacterial Cellulose (BC for short), is a product produced by bacteria extracellularly, so named Bacterial Cellulose. Bacterial Cellulose is widely used in food and medicine because of its unique properties, such as high water holding capacity, high crystallinity, nanofibre-network structure, high elastic modulus and tensile strength. This article briefly summarizes the recent developments and applications of bacterial cellulose in the food, emerging field of novel wound dressing, human tissue materials, artificial cornea and heart valves, the drug combination or release, and medical products. Products of BC is not only delicious, but also as a health food, have lower cholesterol levels and health care value. Medicine of bacterial cellulose is expected in the broader field to get a long-term development according to its unique properties. In the near future, the increasingly perfect production technology can make bacterial cellulose serve humans better.

  13. Improvement of antimicrobial activity of graphene oxide/bacterial cellulose nanocomposites through the electrostatic modification.

    Science.gov (United States)

    Yang, Xiao-Ning; Xue, Dong-Dong; Li, Jia-Ying; Liu, Miao; Jia, Shi-Ru; Chu, Li-Qiang; Wahid, Fazli; Zhang, Yu-Ming; Zhong, Cheng

    2016-01-20

    Graphene oxide (GO) has an attracting and ever-growing interest in various research fields for its fascinating nanostructures. In this study, bacterial cellulose (BC) was used as a matrix to synthesize GO-based materials by a mechanical mixing method. The modification of GO with PEI significantly improved the bonding force between GO nanofillers and BC matrix. The morphology of the nanocomposites had a significant effect on the mechanical properties, hydrophilic properties as well as the antibacterial activity. After the modification, the GO-PEI/BC showed a strong antimicrobial effect on Saccharomyces cerevisiae due to the effective direct contacts between the nanofillers of the composites and the cell surfaces. This study demonstrates that the morphology of the nanocomposites has a great effect on physiochemical properties and the interactions between the microorganism and the nanocomposites. PMID:26572458

  14. Bacterial cellulose as a material for wound treatment: Properties and modifications. A review.

    Science.gov (United States)

    Sulaeva, Irina; Henniges, Ute; Rosenau, Thomas; Potthast, Antje

    2015-12-01

    Advanced approaches to wound healing have attracted much attention in the last decades due to the use of novel types of dressings that provide a moist environment and take an active part in wound protection and tissue regeneration processes. The materials for novel wound dressings should have a set of features that will contribute to efficient skin recovery. The use of bacterial cellulose (BC) is attractive for advanced wound management because of the favorable characteristics of BC, such as its biocompatibility, non-toxicity, mechanical stability, and high moisture content. Numerous approaches can be taken to modify BC to address the shortcomings of the native material and to optimize its biocompatibility, water uptake and release, and antimicrobial activity. This review highlights possible pathways for functionalization of BC, affecting all levels of its structural organization. The focus is on post-production treatment of BC, although selected studies concerning in situ modifications during the biosynthesis process are also emphasized. PMID:26253857

  15. Novel Pd-Cu/bacterial cellulose nanofibers: Preparation and excellent performance in catalytic denitrification

    Science.gov (United States)

    Sun, Dongping; Yang, Jiazhi; Li, Jun; Yu, Junwei; Xu, Xiaofeng; Yang, Xuejie

    2010-01-01

    In this work, we describe a novel facile method to prepare long one-dimensional hybrid nanofibers by using hydrated bacterial cellulose nanofibers (BCF) as template. Palladium-copper nanoparticles were prepared in BCF by immersing BCF in a mixture solution of PdCl 2 and CuCl 2 in water and followed reduction of absorbed metallic ion inside of BCF to the metallic Pd-Cu nanoparticles using potassium borohydride. The bare BCF and the composites were characterized by a range of analytical techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The results reveal that the Pd-Cu nanoparticles were homogeneously precipitated on the BCF surface. The Pd-Cu/BCF was used as a catalyst for water denitrification, which showed that it has high catalytic activity.

  16. Novel Pd-Cu/bacterial cellulose nanofibers: Preparation and excellent performance in catalytic denitrification

    Energy Technology Data Exchange (ETDEWEB)

    Sun Dongping, E-mail: dongpingsun@163.com [Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, Nanjing University of Science and Technology, Nanjing 210094 (China); Yang Jiazhi; Li Jun; Yu Junwei; Xu Xiaofeng; Yang Xuejie [Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2010-01-15

    In this work, we describe a novel facile method to prepare long one-dimensional hybrid nanofibers by using hydrated bacterial cellulose nanofibers (BCF) as template. Palladium-copper nanoparticles were prepared in BCF by immersing BCF in a mixture solution of PdCl{sub 2} and CuCl{sub 2} in water and followed reduction of absorbed metallic ion inside of BCF to the metallic Pd-Cu nanoparticles using potassium borohydride. The bare BCF and the composites were characterized by a range of analytical techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The results reveal that the Pd-Cu nanoparticles were homogeneously precipitated on the BCF surface. The Pd-Cu/BCF was used as a catalyst for water denitrification, which showed that it has high catalytic activity.

  17. Rapid Synthesis of Superabsorbent Smart-Swelling Bacterial Cellulose/Acrylamide-Based Hydrogels for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Manisha Pandey

    2013-01-01

    Full Text Available This study evaluated the effect of solubilized and dispersed bacterial cellulose (BC on the physicochemical characteristics and drug release profile of hydrogels synthesized using biopolymers. Superabsorbent hydrogels were synthesized by graft polymerization of acrylamide on BC solubilized in an NaOH/urea solvent system and on dispersed BC by using N,N′-methylenebisacrylamide as a crosslinker under microwave irradiation. Fourier transform infrared spectroscopy analysis of the resulting hydrogels confirmed the grafting, and an X-ray diffraction pattern showed a decrease in the crystallinity of BC after the grafting process. The hydrogels exhibited pH and ionic responsive swelling behavior, with hydrogels prepared using solubilized BC (SH having higher swelling ratios. Furthermore, compared to the hydrogels synthesized using dispersed BC, the hydrogels synthesized using solubilized BC showed higher porosity, drug loading efficiency, and release. These results suggest the superiority of the hydrogels prepared using solubilized BC and that they should be explored further for oral drug delivery.

  18. A slow-release system of bacterial cellulose gel and nanoparticles for hydrophobic active ingredients.

    Science.gov (United States)

    Numata, Yukari; Mazzarino, Leticia; Borsali, Redouane

    2015-01-01

    A combination of bacterial cellulose (BC) gel and amphiphilic block copolymer nanoparticles was investigated as a drug delivery system (DDS) for hydrophobic active ingredients. Poly(ethylene oxide)-b-poly(caprolactone) (PEO-b-PCL) and retinol were used as the block copolymer and hydrophobic active ingredient, respectively. The BC gel was capable of incorporating copolymer nanoparticles and releasing them in an acetic acid-sodium acetate buffer solution (pH 5.2) at 37 °C. The percentage of released copolymer reached a maximum value of approximately 60% after 6h and remained constant after 24h. The percentage of retinol released from the copolymer-containing BC gel reached a maximum value at 4h. These results show that the combination of BC gel and nanoparticles is a slow-release system that may be useful in the cosmetic and biomedical fields for skin treatment and preparation. PMID:25840273

  19. A Novel Small-Caliber Bacterial Cellulose Vascular Prosthesis: Production, Characterization, and Preliminary In Vivo Testing.

    Science.gov (United States)

    Leitão, Alexandre F; Faria, Miguel A; Faustino, Augusto M R; Moreira, Ricardo; Mela, Petra; Loureiro, Luís; Silva, Ivone; Gama, Miguel

    2016-01-01

    Vascular grafts are used to bypass damaged or diseased blood vessels. Bacterial cellulose (BC) has been studied for use as an off-the-shelf graft. Herein, we present a novel, cost-effective, method for the production of small caliber BC grafts with minimal processing or requirements. The morphology of the graft wall produced a tensile strength above that of native vessels, performing similarly to the current commercial alternatives. As a result of the production method, the luminal surface of the graft presents similar topography to that of native vessels. We have also studied the in vivo behavior of these BC graft in order to further demonstrate their viability. In these preliminary studies, 1 month patency was achieved, with the presence of neo-vessels and endothelial cells on the luminal surface of the graft. PMID:26388180

  20. In-situ biopreparation of biocompatible bacterial cellulose/graphene oxide composites pellets

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenkun, E-mail: zhuwenkun@swust.edu.cn [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Li, Wei [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); He, Yi; Duan, Tao [Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010 (China)

    2015-05-30

    Highlights: • The in situ vibration method was used to synthetize BC/GO composite. • The cytotoxicity assays of BC/GO showed a better biocompatibility. • It is first time to use BC/GO composite for drug delivery. - Abstract: In the present work, a composite material formed by bacterial cellulose (BC) and graphene oxide (GO) was synthesized and characterized. GO was added in the bacteria culture media and then the bacteria was inoculated. The BC/GO pellets composite was prepared into the bacteria culture media and vibrated in Erlenmeyer flask. Characterization of the BC/GO composite showed GO nanosheets embedded in the nanofibers network of BC. The experiments in this study demonstrated BC and GO effectively interacted by hydrogen bonding. Moreover, the cytotoxicity assays showed the material had a better biocompatibility than the counterparts and promoted the cell proliferation excellently. The biocompatibility of BC/GO has the potential to be used for drug delivery.

  1. Novel Pd-Cu/bacterial cellulose nanofibers: Preparation and excellent performance in catalytic denitrification

    International Nuclear Information System (INIS)

    In this work, we describe a novel facile method to prepare long one-dimensional hybrid nanofibers by using hydrated bacterial cellulose nanofibers (BCF) as template. Palladium-copper nanoparticles were prepared in BCF by immersing BCF in a mixture solution of PdCl2 and CuCl2 in water and followed reduction of absorbed metallic ion inside of BCF to the metallic Pd-Cu nanoparticles using potassium borohydride. The bare BCF and the composites were characterized by a range of analytical techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The results reveal that the Pd-Cu nanoparticles were homogeneously precipitated on the BCF surface. The Pd-Cu/BCF was used as a catalyst for water denitrification, which showed that it has high catalytic activity.

  2. Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites.

    Science.gov (United States)

    Ullah, Hanif; Wahid, Fazli; Santos, Hélder A; Khan, Taous

    2016-10-01

    Bacterial cellulose (BC) synthesized by certain species of bacteria, is a fascinating biopolymer with unique physical and mechanical properties. BC's applications range from traditional dessert, gelling, stabilizing and thickening agent in the food industry to advanced high-tech applications, such as immobilization of enzymes, bacteria and fungi, tissue engineering, heart valve prosthesis, artificial blood vessels, bone, cartilage, cornea and skin, and dental root treatment. Various BC-composites have been designed and investigated in order to enhance its biological applicability. This review focuses on the application of BC-based composites for microbial control, wound dressing, cardiovascular, ophthalmic, skeletal, and endodontics systems. Moreover, applications in controlled drug delivery, biosensors/bioanalysis, immobilization of enzymes and cells, stem cell therapy and skin tissue repair are also highlighted. This review will provide new insights for academia and industry to further assess the BC-based composites in terms of practical applications and future commercialization for biomedical and pharmaceutical purposes. PMID:27312644

  3. In-situ biopreparation of biocompatible bacterial cellulose/graphene oxide composites pellets

    International Nuclear Information System (INIS)

    Highlights: • The in situ vibration method was used to synthetize BC/GO composite. • The cytotoxicity assays of BC/GO showed a better biocompatibility. • It is first time to use BC/GO composite for drug delivery. - Abstract: In the present work, a composite material formed by bacterial cellulose (BC) and graphene oxide (GO) was synthesized and characterized. GO was added in the bacteria culture media and then the bacteria was inoculated. The BC/GO pellets composite was prepared into the bacteria culture media and vibrated in Erlenmeyer flask. Characterization of the BC/GO composite showed GO nanosheets embedded in the nanofibers network of BC. The experiments in this study demonstrated BC and GO effectively interacted by hydrogen bonding. Moreover, the cytotoxicity assays showed the material had a better biocompatibility than the counterparts and promoted the cell proliferation excellently. The biocompatibility of BC/GO has the potential to be used for drug delivery

  4. Characterization of purified bacterial cellulose focused on its use on paper restoration.

    Science.gov (United States)

    Santos, Sara M; Carbajo, José M; Quintana, Ester; Ibarra, David; Gomez, Nuria; Ladero, Miguel; Eugenio, M Eugenia; Villar, Juan C

    2015-02-13

    Bacterial cellulose (BC) synthesized by Gluconacetobacter sucrofermentans CECT 7291 seems to be a good option for the restoration of degraded paper. In this work BC layers are cultivated and purified by two different methods: an alkaline treatment when the culture media contains ethanol and a thermal treatment if the media is free from ethanol. The main goal of these tests was the characterization of BC layers measured in terms of tear and burst indexes, optical properties, SEM, X-ray diffraction, FTIR, degree of polymerization, static and dynamic contact angles, and mercury intrusion porosimetry. The BC layers were also evaluated in the same terms after an aging treatment. Results showed that BC has got high crystallinity index, low internal porosity, good mechanical properties and high stability over time, especially when purified by the alkaline treatment. These features make BC an adequate candidate for degraded paper reinforcement. PMID:25458287

  5. Fabrication of bacterial cellulose-ZnO composite via solution plasma process for antibacterial applications.

    Science.gov (United States)

    Janpetch, Nattakammala; Saito, Nagahiro; Rujiravanit, Ratana

    2016-09-01

    Zinc oxide (ZnO) was successfully synthesized by applying a solution plasma, a plasma discharge in a liquid phase, without the addition of a reducing agent and simultaneously deposited into a bacterial cellulose pellicle that functioned as a template. By the reasons of its nano-sized structure as well as favorable porous configuration, the BC pellicle has been proved to be a splendid upholding template for the coordination of ZnO. In addition, the ZnO-deposited BC composites demonstrated strong antibacterial activity without a photocatalytic reaction against both Staphylococcus aureus and Escherichia coli. Hence, the ZnO-deposited BC composites can be used as an antibacterial material in wound dressing and water disinfection applications. PMID:27185147

  6. Microwave absorption properties of cobalt ferrite-modified carbonized bacterial cellulose

    Science.gov (United States)

    Ren, Yong; Li, Shirong; Dai, Bo; Huang, Xiaohu

    2014-08-01

    A novel magnetic nanocomposite of carbonized bacterial cellulose (CBC) modified by CoFe2O4 nanocrystals with different contents were synthesized successfully using an effective solvothermal method. Scanning electron microscopy and transmission electron microscopy revealed that the CBC fibers were intertwined and networks were loaded with well-distributed CoFe2O4 nanoparticles. With a CBC/CoFe2O4 ratio of 10 wt%, the optimal reflection loss (RL) of -45 dB at 8.6 GHz with a thickness of 2.0 mm because of the enhanced interfacial polarization related to the developed ɛ″. This novel electromagnetic nanocomposite material is believed to have potential applications in terms of microwave-absorbing performance.

  7. Removing Cd2+ by Composite Adsorbent Nano-Fe3O4/Bacterial Cellulose

    Institute of Scientific and Technical Information of China (English)

    LU Min; GUAN Xiao-hui; WEI De-zhou

    2011-01-01

    A new composite adsorbent,nano-Fe3O4/bacterial cellulose(BC),was prepared through blending method.The process of adsorbing Cd2+ including its isotherm and kinetics measured was studied.The results show that the adsorption efficiency is improved because of huge surface area and surface coordination of nano-Fe3O4 particles.Its adsorption capacity is 27.97 mg/g and the maximum of Cd2+ removal is 74%.The adsorption kinetics can be described by pseudo-second rate model and the adsorption equilibrium by Langmuir type.The superparamagnetism of nano-Fe3O4 particles can help to solve the difficult separation of single BC adsorbent and lead to the quick separation of composite adsorbent from the liquid if a magnetic field was applied.Cd2+ can be desorbed effectively by EDTA and HCl from the composite adsorbent,which can make it be reused.

  8. In-situ biopreparation of biocompatible bacterial cellulose/graphene oxide composites pellets

    Science.gov (United States)

    Zhu, Wenkun; Li, Wei; He, Yi; Duan, Tao

    2015-05-01

    In the present work, a composite material formed by bacterial cellulose (BC) and graphene oxide (GO) was synthesized and characterized. GO was added in the bacteria culture media and then the bacteria was inoculated. The BC/GO pellets composite was prepared into the bacteria culture media and vibrated in Erlenmeyer flask. Characterization of the BC/GO composite showed GO nanosheets embedded in the nanofibers network of BC. The experiments in this study demonstrated BC and GO effectively interacted by hydrogen bonding. Moreover, the cytotoxicity assays showed the material had a better biocompatibility than the counterparts and promoted the cell proliferation excellently. The biocompatibility of BC/GO has the potential to be used for drug delivery.

  9. Novel Cu@SiO2/bacterial cellulose nanofibers: Preparation and excellent performance in antibacterial activity.

    Science.gov (United States)

    Ma, Bo; Huang, Yang; Zhu, Chunlin; Chen, Chuntao; Chen, Xiao; Fan, Mengmeng; Sun, Dongping

    2016-05-01

    The antibacterial composite based on bacterial cellulose (BC) was successfully prepared by in-situ synthesis of SiO2 coated Cu nanoparticles (Cu@SiO2/BC) and its properties were characterized. Its chemical structures and morphologies were evaluated by Fourier transformation infrared spectrum (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results demonstrated that the SiO2 coated Cu particles were well homogeneously precipitated on the surface of BC. The Cu@SiO2/BC was more resistant to oxidation than the Cu nanoparticles impregnated into BC (Cu/BC) and then Cu@SiO2/BC could prolong the antimicrobial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). PMID:26952469

  10. Development of silver sulfadiazine loaded bacterial cellulose/sodium alginate composite films with enhanced antibacterial property.

    Science.gov (United States)

    Shao, Wei; Liu, Hui; Liu, Xiufeng; Wang, Shuxia; Wu, Jimin; Zhang, Rui; Min, Huihua; Huang, Min

    2015-11-01

    Sodium alginate (SA) and bacterial cellulose (BC) are widely used in many applications such as scaffolds and wound dressings due to its biocompatibility. Silver sulfadiazine (AgSD) is a topical antibacterial agents used as a topical cream on burns. In the study, novel BC/SA-AgSD composites were prepared and characterized by SEM, FTIR and TG analyses. These results indicate AgSD successfully impregnated into BC/SA matrix. The swelling behaviors in different pH were studied and the results showed pH-responsive swelling behaviors. The antibacterial performances of BC/SA-AgSD composites were evaluated with Escherichia coli, Staphylococcus aureus and Candida albicans. Moreover, the cytotoxicity of BC/SA-AgSD composites was performed on HEK 293 cells. The experimental results showed BC/SA-AgSD composites have excellent antibacterial activities and good biocompatibility, thus confirming its utility as potential wound dressings. PMID:26256359

  11. Cellulose Acetate Membrane with Improved Perm-selectivity through Modification Dope Composition and Solvent Evaporation for Water Softening

    OpenAIRE

    T. D. Kusworo; Budiyono, A.I. Wibowo; G.D. Harjanto; A.D. Yudisthira; F.B. Iswanto

    2014-01-01

    Membrane technology has been developed because applicated on several fields. Hence, in this study carried the production of cellulose acetate nano-filtration membranes for water softening. The main objective of this study was determined the effect of solvent evaporation time and the effect of adding PEG to the morphology and perm-selectivity of asymmetry membrane for water treatment. Membranes prepared by dry/wet phase inversion method with variation of solvent evaporation time of 10-15 sec a...

  12. Uranium removal from water using cellulose triacetate membranes added with activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Villalobos-Rodriguez, R. [Centro de Investigacion en Materiales Avanzados, Miguel de Cervantes 120, Compl. Ind. Chihuahua, CP 31109, Chihuahua, Chih. (Mexico); Montero-Cabrera, M.E., E-mail: elena.montero@cimav.edu.mx [Centro de Investigacion en Materiales Avanzados, Miguel de Cervantes 120, Compl. Ind. Chihuahua, CP 31109, Chihuahua, Chih. (Mexico); Esparza-Ponce, H.E.; Herrera-Peraza, E.F. [Centro de Investigacion en Materiales Avanzados, Miguel de Cervantes 120, Compl. Ind. Chihuahua, CP 31109, Chihuahua, Chih. (Mexico); Ballinas-Casarrubias, M.L. [Facultad de Ciencias Quimicas, Universidad Autonoma de Chihuahua, Nuevo Campus s/n, Chihuahua, Chih. (Mexico)

    2012-05-15

    Ultrafiltration removal of uranium from water, with composite activated carbon cellulose triacetate membranes (AC-CTA), was investigated. The filtrate was provided by uraninite dissolution with pH=6-8. Removal efficiencies were calculated measuring solutions' radioactivities. Membranes were mainly characterized by microscopy analysis, revealing iron after permeation. Uranyl removal was 35{+-}7%. Chemical speciation indicates the presence of (UO{sub 2}){sub 2}CO{sub 3}(OH){sub 3}{sup -}, UO{sub 2}CO{sub 3}, UO{sub 2}(CO{sub 3}){sub 2}{sup 2-} and Fe{sub 2}O{sub 3}(s) as main compounds in the dissolution, suggesting co-adsorption of uranium and iron by the AC during filtration, as the leading rejection path. - Highlights: Black-Right-Pointing-Pointer Cellulose triacetate (CTA) and activated carbon (AC) composite membranes were suitable for uranium removal. Black-Right-Pointing-Pointer Up to 35% of uranium from low concentrated solutions was rejected by ultrafiltration. Black-Right-Pointing-Pointer Rejection is performed by a hybrid mechanism regulated by AC adsorption. Black-Right-Pointing-Pointer Uranium and iron speciation and predominance determines the adsorption in the membrane.

  13. Uranium removal from water using cellulose triacetate membranes added with activated carbon

    International Nuclear Information System (INIS)

    Ultrafiltration removal of uranium from water, with composite activated carbon cellulose triacetate membranes (AC-CTA), was investigated. The filtrate was provided by uraninite dissolution with pH=6–8. Removal efficiencies were calculated measuring solutions' radioactivities. Membranes were mainly characterized by microscopy analysis, revealing iron after permeation. Uranyl removal was 35±7%. Chemical speciation indicates the presence of (UO2)2CO3(OH)3−, UO2CO3, UO2(CO3)22− and Fe2O3(s) as main compounds in the dissolution, suggesting co-adsorption of uranium and iron by the AC during filtration, as the leading rejection path. - Highlights: ► Cellulose triacetate (CTA) and activated carbon (AC) composite membranes were suitable for uranium removal. ► Up to 35% of uranium from low concentrated solutions was rejected by ultrafiltration. ► Rejection is performed by a hybrid mechanism regulated by AC adsorption. ► Uranium and iron speciation and predominance determines the adsorption in the membrane.

  14. Membrane fatty acids as markers of bacterial antibiotic-producers

    Czech Academy of Sciences Publication Activity Database

    Elhottová, Dana; Petrásek, Jiří; Krištůfek, Václav; Jágr, Michal; Chroňáková, Alica; Petříček, Miroslav

    Cairns : International Society for Microbial Ecology, 2008. [International Symposium on Microbial Ecology ISME 12. Microbial Diversity - Sustaining the Blue Planet /12./. 17.08.2008-22.08.2008, Cairns] R&D Projects: GA AV ČR IAA600660607; GA MŠk 2B06154 Institutional research plan: CEZ:AV0Z60660521; CEZ:AV0Z50200510 Keywords : membrane fatty acids * bacterial antibiotic -producers * microorganisms Subject RIV: EH - Ecology, Behaviour

  15. High-speed water sterilization using silver-containing cellulose membranes

    International Nuclear Information System (INIS)

    The removal of bacteria and other pathogenic micro-organisms from drinking water is usually carried out by boiling; however, when this is not a feasible option, a combination of treatment based on filtration and disinfection is recommended. In this work, we produced cellulose filters grafted with silver nanoparticles (AgNPs) and silver nanowires (AgNWs) by covalent attachment of separately prepared Ag nanostructures on thiol- and amine-modified commercially available cellulosic filters. Results obtained from scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), and energy-dispersive X-ray spectroscopy (EDS) all revealed that such modified cellulose membranes contained large amounts of homogeneously dispersed AgNPs, whereas X-ray photoelectron spectroscopy (XPS) analysis demonstrated that the aforementioned nanostructures were immobilized on the membrane with a strong and stable covalent bond between the thiol or amine groups and the surface of the Ag nanofillers. This durable and robust covalent attachment facilitated outstanding suppression of the uncontrolled release of the nanostructures from the membranes, even under strong ultrasonication. Those membranes also demonstrated high permeance and antimicrobial activity in excess of 99.9% growth inhibition against Escherichia coli, which was used as a model of gram-negative coliform bacteria. Bacteria percolated throughout the tortuous silver-loaded filters, thus increasing the chances of contact between the Ag nanostructures (wires or nanoparticles) and the passing bacteria. Thus, we anticipate that these filters, with their high antibacterial activity and robustness, can be produced in a cost-effective manner and that they would be capable of producing affordable, clean, and safe drinking water in a short period of time without producing an uncontrolled silver release into the percolated water. (paper)

  16. High-speed water sterilization using silver-containing cellulose membranes

    Science.gov (United States)

    Sinclair, Terica; Zieba, Maciej; Irusta, Silvia; Sebastián, Víctor; Arruebo, Manuel

    2014-08-01

    The removal of bacteria and other pathogenic micro-organisms from drinking water is usually carried out by boiling; however, when this is not a feasible option, a combination of treatment based on filtration and disinfection is recommended. In this work, we produced cellulose filters grafted with silver nanoparticles (AgNPs) and silver nanowires (AgNWs) by covalent attachment of separately prepared Ag nanostructures on thiol- and amine-modified commercially available cellulosic filters. Results obtained from scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), and energy-dispersive X-ray spectroscopy (EDS) all revealed that such modified cellulose membranes contained large amounts of homogeneously dispersed AgNPs, whereas X-ray photoelectron spectroscopy (XPS) analysis demonstrated that the aforementioned nanostructures were immobilized on the membrane with a strong and stable covalent bond between the thiol or amine groups and the surface of the Ag nanofillers. This durable and robust covalent attachment facilitated outstanding suppression of the uncontrolled release of the nanostructures from the membranes, even under strong ultrasonication. Those membranes also demonstrated high permeance and antimicrobial activity in excess of 99.9% growth inhibition against Escherichia coli, which was used as a model of gram-negative coliform bacteria. Bacteria percolated throughout the tortuous silver-loaded filters, thus increasing the chances of contact between the Ag nanostructures (wires or nanoparticles) and the passing bacteria. Thus, we anticipate that these filters, with their high antibacterial activity and robustness, can be produced in a cost-effective manner and that they would be capable of producing affordable, clean, and safe drinking water in a short period of time without producing an uncontrolled silver release into the percolated water.

  17. Fabrication of antimicrobial bacterial cellulose-Ag/AgCl nanocomposite using bacteria as versatile biofactory

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chuang [Tianjin University, Key Laboratory for Green Technology, School of Chemical Engineering and Technology (China); Yang Dong; Wang Yuangui [Tianjin University, Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology (China); Shi Jiafu; Jiang Zhongyi, E-mail: zhyjiang@tju.edu.cn [Tianjin University, Key Laboratory for Green Technology, School of Chemical Engineering and Technology (China)

    2012-08-15

    In nature, a number of nanocomposites are formed through biomineralization-relevant processes under mild conditions. In the present study, a total 'biologic' route to fabricate nanocomposite is reported. Non-pathogenic bacteria, Gluconacetobacter xylinum, was utilized as a versatile biofactory, which produced biopolymer bacterial cellulose (BC) and induced the formation of Ag/AgCl nanoparticles, yielding BC-Ag/AgCl nanocomposite. Scanning electron microscopy revealed that nanoparticles with average size of 17.4 nm were randomly embedded into the BC network; transmission electron microscopy and X-ray diffraction confirmed that the nanoparticles were mixtures of face-centered cubic silver and silver chloride nanoparticles. Moreover, the content of silver in the BC nanocomposite is around 0.05 wt%, determined by atomic absorption spectrometry and X-ray photoelectron spectroscopy analysis. The entire process of nanocomposite fabrication was conducted at ambient environment without utilizing toxic agents or producing hazardous products, which is not only environmentally friendly but also with less chances to generate harmful products to human bodies as biomedical materials. The resultant nanocomposite displayed the desirable activity in inhibiting bacterial growth of both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli microorganisms on agar plate and in liquid culture, indicating the potential of the material as antimicrobial wound dressing materials. This work demonstrated the feasibility of using microorganism to fabricate nanocomposite, especially for biomedical materials.

  18. Bacterial cellulose-hydroxyapatite composites with osteogenic growth peptide (OGP) or pentapeptide OGP on bone regeneration in critical-size calvarial defect model.

    Science.gov (United States)

    Pigossi, Suzane C; de Oliveira, Guilherme J P L; Finoti, Livia S; Nepomuceno, Rafael; Spolidorio, Luis Carlos; Rossa, C; Ribeiro, Sidney J L; Saska, Sybele; Scarel-Caminaga, Raquel M

    2015-10-01

    This study aimed to evaluate the potential of bacterial cellulose-hydroxyapatite (BC-HA) composites associated with osteogenic growth peptide (OGP) or pentapeptide OGP(10-14) in bone regeneration in critical-size calvarial defects in mice. In this study, the BC-HA, BC-HA-OGP, and BC-HA-OGP(10-14) membranes were analyzed at 3, 7, 15, 30, 60, and 90 days. In each period, the specimens were evaluated by micro-computed tomography (µCT), descriptive histology, gene expression of bone biomarkers by qPCR and VEGFR-2 (vascular endothelial growth factor) quantification by ELISA. Three days post-operative, Runx2, Tnfrsf11b and Bglap bone biomarkers were upregulated mainly by BC-HA OGP and BC-HA OGP(10-14) membranes, suggesting an acceleration of the osteoblast differentiation/activity with the use of these biomaterials. At 60 and 90 days, a high percentage of bone formation was observed by µCT for BC-HA and BC-HA OGP(10-14) membranes. High expression of some bone biomarkers, such as Alpl, Spp1, and Tnfrsf11b, was also observed for the same membranes on days 60 and 90. In conclusion, the BC-HA membrane promoted a better bone formation in critical-size mice calvarial defects. Nevertheless, incorporation of the peptides at the concentration of 10(-9) mol L(-1) did not improve bone regeneration potential in the long-term. PMID:25850694

  19. UV-cured Al2O3-laden cellulose reinforced polymer electrolyte membranes for Li-based batteries

    International Nuclear Information System (INIS)

    A methacrylate based plasticised polymer electrolyte membrane is prepared via a rapid and facile UV curing process, the major concerns of mechanical integrity are overcome by simply using appropriately modified cellulose handsheet laden with nano-sized acidic alumina particles as a reinforcement. The use of the cellulose handsheets greatly enhances the flexibility and mechanical properties of the membrane while the addition of alumina particles helps to maintain satisfactory conductivity values. The reinforced composite electrolyte membrane is also tested in a real lithium cell, exhibiting excellent performance which account for its use in futuristic lithium batteries having low cost, environmentally friendly and easily scalable properties

  20. Electrospun cellulose acetate composites containing supported metal nanoparticles for antifungal membranes.

    Science.gov (United States)

    Quirós, Jennifer; Gonzalo, Soledad; Jalvo, Blanca; Boltes, Karina; Perdigón-Melón, José Antonio; Rosal, Roberto

    2016-09-01

    Electrospun cellulose acetate composites containing silver and copper nanoparticles supported in sepiolite and mesoporous silica were prepared and tested as fungistatic membranes against the fungus Aspergillus niger. The nanoparticles were in the 3-50nm range for sepiolite supported materials and limited by the size of mesopores (5-8nm) in the case of mesoporous silica. Sepiolite and silica were well dispersed within the fibers, with larger aggregates in the micrometer range, and allowed a controlled release of metals to create a fungistatic environment. The effect was assessed using digital image analysis to evaluate fungal growth rate and fluorescence readings using a viability stain. The results showed that silver and copper nanomaterials significantly impaired the growth of fungi when the spores were incubated either in direct contact with particles or included in cellulose acetate composite membranes. The fungistatic effect took place on germinating spores before hyphae growth conidiophore formation. After 24h the cultures were separated from fungistatic materials and showed growth impairment only due to the prior exposure. Growth reduction was important for all the particles and membranes with respect to non-exposed controls. The effect of copper and silver loaded materials was not significantly different from each other with average reductions around 70% for bare particles and 50% for membranes. Copper on sepiolite was particularly efficient with a decrease of metabolic activity of up to 80% with respect to controls. Copper materials induced rapid maturation and conidiation with fungi splitting in sets of subcolonies. Metal-loaded nanomaterials acted as reservoirs for the controlled release of metals. The amount of silver or copper released daily by composite membranes represented roughly 1% of their total load of metals. Supported nanomaterials encapsulated in nanofibers allow formulating active membranes with high antifungal performance at the same time

  1. Development of cellulose-polypyrrole microfiber membranes and assessment of their capability on water softening

    Science.gov (United States)

    Barrera, C.; Arrieta, A.; Escobar, N.; Gañan, P.; Castro, C.

    2013-11-01

    The application of conducting polymer composite for water softening is based on the use of pyrrole's electrochemical properties joined with the flexibility and relatively high surface areas associated with cellulose fibers, to develop a new hybrid material that exhibits the inherent proprieties of both components. This hybrid would allow to promote an ion exchange reaction between the composite membrane and the hard water. The cellulose membranes obtained from banana plant agricultural waste (raquis), were uniform with individual and well separated fibers. The fibers were encapsulated by a continuous coating of polypyrrole by an in situ oxidative chemical polymerization. The amount of polypyrrole deposited on the fiber increased by increasing the monomer concentration, behavior that was identified through the observation of differences on the intensity of the light to dark color shift that coated the fibers after the polymerization. The ion removal capability of the membrane coted with the conducting polymer was tested using an experimental device, finding reductions on the conductivity for hard water within 23 to 66 μs/cm after 6 hours of the assay.

  2. In vitro behaviors of rat mesenchymal stem cells on bacterial celluloses with different moduli

    International Nuclear Information System (INIS)

    Compressive moduli of bacteria-synthesized cellulose (BC) were altered by two drying techniques: ambient-air drying and freeze drying. While no significant differences in dry weight were found, their cross-sectional structures and thickness varied greatly. Freeze dried BCs had loose cross-sectional structures and a thickness of ∼ 4.7 mm, whereas air dried BCs had more compacted cross-sectional structures and a thickness of ∼ 0.1 mm. The compressive moduli of the rehydrated freeze dried and rehydrated air dried BCs were measured to be 21.06 ± 0.22 kPa and 90.09 ± 21.07 kPa, respectively. When rat mesenchymal stem cells (rMSCs) were seeded on these BCs, they maintained a round morphology in the first 3 days of cultivation. More spread-out morphology and considerable proliferation on freeze dried BCs were observed in 7 days, but not on air-dried BCs. The cells were further grown for 3 weeks in the absence and presence of differentiation agents. Without using any differentiation agents, no detectable differentiation was noticed for rMSCs further cultivated on both types of BC. With differentiation inducing agents, chondrogenic differentiation, visualized by histological staining, was observed in some area of the rehydrated freeze dried BCs; while osteogenic differentiation was noticed on the stiffer rehydrated air dried BCs. - Graphical abstract: In the presence of induction agents, rat mesenchymal stem cells (rMSCs) preferentially differentiated into osteocytes on stiffer air dried BC films. - Highlights: • Bacterial cellulose (BC) sheets with different moduli generated by drying differently • Air-dried BC exhibited a modulus similar to that of bone. • Freeze-dried BC showed a modulus in the range of that of muscle. • Air-dried BC promoted the differentiation of rMSCs into osteocytes. • Freeze-dried BC promoted the differentiation of rMSCs into chondrocytes

  3. In vitro behaviors of rat mesenchymal stem cells on bacterial celluloses with different moduli

    Energy Technology Data Exchange (ETDEWEB)

    Taokaew, Siriporn [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330 (Thailand); Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325-3906 (United States); Phisalaphong, Muenduen [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330 (Thailand); Zhang Newby, Bi-min, E-mail: bimin@uakron.edu [Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325-3906 (United States)

    2014-05-01

    Compressive moduli of bacteria-synthesized cellulose (BC) were altered by two drying techniques: ambient-air drying and freeze drying. While no significant differences in dry weight were found, their cross-sectional structures and thickness varied greatly. Freeze dried BCs had loose cross-sectional structures and a thickness of ∼ 4.7 mm, whereas air dried BCs had more compacted cross-sectional structures and a thickness of ∼ 0.1 mm. The compressive moduli of the rehydrated freeze dried and rehydrated air dried BCs were measured to be 21.06 ± 0.22 kPa and 90.09 ± 21.07 kPa, respectively. When rat mesenchymal stem cells (rMSCs) were seeded on these BCs, they maintained a round morphology in the first 3 days of cultivation. More spread-out morphology and considerable proliferation on freeze dried BCs were observed in 7 days, but not on air-dried BCs. The cells were further grown for 3 weeks in the absence and presence of differentiation agents. Without using any differentiation agents, no detectable differentiation was noticed for rMSCs further cultivated on both types of BC. With differentiation inducing agents, chondrogenic differentiation, visualized by histological staining, was observed in some area of the rehydrated freeze dried BCs; while osteogenic differentiation was noticed on the stiffer rehydrated air dried BCs. - Graphical abstract: In the presence of induction agents, rat mesenchymal stem cells (rMSCs) preferentially differentiated into osteocytes on stiffer air dried BC films. - Highlights: • Bacterial cellulose (BC) sheets with different moduli generated by drying differently • Air-dried BC exhibited a modulus similar to that of bone. • Freeze-dried BC showed a modulus in the range of that of muscle. • Air-dried BC promoted the differentiation of rMSCs into osteocytes. • Freeze-dried BC promoted the differentiation of rMSCs into chondrocytes.

  4. The Use of Cellulose Membrane to Eliminate Burst Release from Intravaginal Rings.

    Science.gov (United States)

    Helbling, Ignacio M; Ibarra, Juan C D; Luna, Julio A

    2016-07-01

    Burst release was observed when ethylene vinyl acetate copolymer (EVA) intravaginal rings were tested for progesterone release in our previous work (Helbling et al. Pharm Res. 31(3):795-808, 2014). Burst release is undesirable in controlled delivery devices because release is uncontrollable and higher levels of active pharmaceutical ingredient could lead to the occurrence of adverse effect. The present contribution is about the use of membranes to coat EVA rings to eliminate burst release. Physicochemical state of progesterone in uncoated rings and the solubility and diffusion coefficient in membrane were studied. Hormone delivery from several rings of different sizes was compared. A mathematical model was used to analyze the effects of membrane properties on delivery rate. No chemical interactions were detected between hormone and polymer. Hormone was mainly forming amorphous aggregates inside rings, and migration to membrane was not observed during storage. Diffusion coefficient was smaller in membrane (∼10(-8) cm(2) s(-1)) than in matrix (∼10(-7) cm(2) s(-1)). Zero-order release kinetics were obtained for coated rings, and release rate decreases as the thickness of the coat increases. Cellulose membrane successfully eliminates burst release and controls the delivery from EVA rings. The equations developed can be used to determine the appropriate coat thickness to produce specific release rate. PMID:27097635

  5. Hydrophilicity and antifouling property of membrane materials from cellulose acetate/polyethersulfone in DMAc.

    Science.gov (United States)

    Sun, Zhonghua; Chen, Fushan

    2016-10-01

    In this study, cellulose acetate (CA) was blended with polyethersulfone (PES) to endow the ultrafiltration membrane with the improved hydrophilicity and antifouling property by using N,N-dimethylacetamide (DMAc) as the solvent. The effects of blend composition and evaporation time on the mechanical strength and pure water flux were investigated. It was found that the optimal composition of the casting solution was: 18wt% (PES), 4wt% (Polyvinylpyrrolidone K30), 3wt% (CA) and 20s (Evaporation time). The characteristics of CA-PES blend membranes were investigated through the methods of contact angle goniometer, antifouling property, compatibility, thermo gravimetric analysis and SEM. The results showed that the hydrophilicity and antifouling property of CA-PES ultrafiltration membranes were enhanced in comparison with the pure PES membranes. The CA-PES membranes exhibited semi-compatibility and good thermal stability below 270°C. This study provided a potential industrial application prospect of CA-PES membranes prepared in DMAc. PMID:27211301

  6. Preparation of Cellulosic Membrane Containing Pyrrolidone Moiety Via Radiation Induced Grafting and its Application in Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    A. S. Aly

    2005-01-01

    Full Text Available Radiation induced grafting of vinyl pyrrolidone onto cellulose wood pulp was carried out in heterogeneous and homogenous media using gamma radiation. Cellulose wood pulp was used in different forms; a in a homogenous solution by dissolving the wood pulp in N,N- dimethylacetamide/Lithium chloride (DMAc/LiCl mixture , b in a membrane form, by precipitating the cellulose solution in water and c in a powder form. Factors affecting on the grafting such as radiation dose, monomer concentration, precipitator concentration and thickness of the membrane have been studied. The result showed that at the same dose, the grafting yield was higher with cellulose in soluble form than in the membrane form, whereas cellulose in powder exhibited the lowest graft yield. The grafted membrane was characterized by IR, TGA and SEM. The ability of the grafted membrane to remove dyes (acid and basic dye, heavy metal ions (Co 2+ , Ni 2+ and Cu 2+ and phenols from wastewater was also reported.

  7. Control of polyaniline deposition on microporous cellulose ester membranes by in situ chemical polymerization.

    Science.gov (United States)

    Qaiser, Asif A; Hyland, Margaret M; Patterson, Darrell A

    2009-11-12

    Polyaniline (PANI) can be deposited either on the surface or in the bulk of a microporous membrane by various chemical oxidative polymerization techniques. Each technique has distinctive effects on the PANI site and extent of deposition on the base membrane. In the present study, mixed cellulose ester (ME) membranes with tortuous pore morphology were used as base membranes. The chemical oxidative polymerization techniques employed, included polymerization using an in-house-built two-compartment permeation cell. The resultant composite membranes have been characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR-ATR), and electrical conductivity measurements. The results showed that PANI was layered on the pore walls of the membrane using two-compartment permeation cell. Vapor-phase polymerization yielded a surface layer of PANI with little deposition in the bulk. A distorted PANI surface layer was achieved by solution-phase (dip) polymerization. Moreover, asymmetric PANI deposition within the membrane bulk was evidenced using two-compartment permeation cell. Composite membranes synthesized using two-compartment cell showed highest levels of conductivity (approximately 10(-2) S/cm) as compared to the membranes modified by single-step solution-phase polymerization. FTIR-ATR results indicated the extent of PANI coating and its oxidation state which was identified as doped emeraldine PANI, from all the employed techniques. Asymmetric deposition and extent have been explained in terms of the physical and chemical reaction steps involved in the heterogeneous aniline polymerization reactions in the two-compartment cell technique. PMID:19888765

  8. Ibuprofen-Bacterial Cellulose Preparation and Its in Vitro Release Characteristics%布洛芬--细菌纤维素的制备及其体外释放的特征

    Institute of Scientific and Technical Information of China (English)

    黄芳; 李祖德

    2013-01-01

    Objective To prepare Ibuprofen-Bacterial cellulose and to investigate its in vitro release characteristics. Method Uv spectrophotometry method was used to determine the content of ibuprofen bulk pharmaceutical chemicals.Ibuprofen was dissolved in ethanol and soak into the bacterial cellulose membrane.Uv spectrophotometric method was used to investigate in vitro release characteristics of Ibuprofen-Bacterial. Results In vitro release curve was more fit ing in line with the weibul formula.Ibuprofen-Bacterial cellulose showed a slow-release ef ect. Conclusion Ibuprofen bulk pharmaceutical chemicals can be soaked into the bacterial cellulose membrane and has a slow-release ef ect.The bacterial cellulose membrane is expected to be developed into a new slow-release drug carrier material for ibuprofen.%目的:制备布洛芬--细菌纤维素载药膜,并考察布洛芬--细菌纤维素膜的体外释放特性。方法紫外分光光度法测定布洛芬原料药的含量;将布洛芬溶解于乙醇中,并用浸泡法载入细菌纤维素膜;利用紫外分光光度法,考察布洛芬--细菌纤维素膜的体外释放特性。结果布洛芬--细菌纤维素膜的体外释放曲线拟合,更加符合weibul 函数分布,有一定的缓释作用。结论布洛芬原料药用浸泡法可载入细菌纤维素膜,布洛芬--细菌纤维素膜有一定的缓释作用,有望开发为布洛芬的新型缓释药物载体材料。

  9. Transmembrane transport of peptidoglycan precursors across model and bacterial membranes.

    Science.gov (United States)

    van Dam, Vincent; Sijbrandi, Robert; Kol, Matthijs; Swiezewska, Ewa; de Kruijff, Ben; Breukink, Eefjan

    2007-05-01

    Translocation of the peptidoglycan precursor Lipid II across the cytoplasmic membrane is a key step in bacterial cell wall synthesis, but hardly understood. Using NBD-labelled Lipid II, we showed by fluorescence and TLC assays that Lipid II transport does not occur spontaneously and is not induced by the presence of single spanning helical transmembrane peptides that facilitate transbilayer movement of membrane phospholipids. MurG catalysed synthesis of Lipid II from Lipid I in lipid vesicles also did not result in membrane translocation of Lipid II. These findings demonstrate that a specialized protein machinery is needed for transmembrane movement of Lipid II. In line with this, we could demonstrate Lipid II translocation in isolated Escherichia coli inner membrane vesicles and this transport could be uncoupled from the synthesis of Lipid II at low temperatures. The transport process appeared to be independent from an energy source (ATP or proton motive force). Additionally, our studies indicate that translocation of Lipid II is coupled to transglycosylation activity on the periplasmic side of the inner membrane. PMID:17501931

  10. Long-Term Stability of a Cellulose-Based Glucose Oxidase Membrane

    Directory of Open Access Journals (Sweden)

    Soichi Yabuki

    2014-01-01

    Full Text Available A cellulose-based glucose oxidase membrane was prepared on a glassy carbon (GC electrode. The current response of the electrode to glucose was measured by applying a potential of 1.0 V vs. Ag/AgCl on the base GC and was proportional to the concentration of glucose up to 1 mM. The long-term stability of the electrode was examined by measuring the daily glucose response. Over four months, the response magnitude was maintained and then gradually decreased. After 11 months, though the response magnitude decreased to 50% of the initial value, the linear response range did not change. Therefore, the electrode could be used as a glucose biosensor even after 11 months of use. The entrapment of the enzyme in the cellulose matrix promoted the stability of the enzyme, as revealed by data on the enzyme activity after the enzyme electrode was immersed in urea. Therefore, the cellulose matrix may be used to improve the performance of biosensors, bioreactors and bio-fuel cells.

  11. Immobilization of collagen peptide on dialdehyde bacterial cellulose nanofibers via covalent bonds for tissue engineering and regeneration

    Directory of Open Access Journals (Sweden)

    Wen XX

    2015-07-01

    Full Text Available Xiaoxiao Wen,1 Yudong Zheng,1 Jian Wu,2 Lu-Ning Wang,1 Zhenya Yuan,1 Jiang Peng,3 Haoye Meng3 1School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, People’s Republic of China; 2Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Soochow, People’s Republic of China; 3Institute of Orthopedics, Chinese PLA General Hospital, Beijing, People’s Republic of China Abstract: Bacterial cellulose (BC is an alternative nanostructured biomaterial to be utilized for a wide range of biomedical applications. Because of its low bioactivity, which restricted its practical application, collagen and collagen hydrolysate were usually composited into BC. It is necessary to develop a new method to generate covalent bonds between collagen and cellulose to improve the immobilization of collagen on BC. This study describes a facile dialdehyde BC/collagen peptide nanocomposite. BC was oxidized into dialdehyde bacterial cellulose (DBC by regioselective oxidation, and then composited with collagen peptide (Col-p via covalent bonds to form Schiff’s base type compounds, which was demonstrated by the results of microstructures, contact angle, Col-p content, and peptide-binding ratio. The peptide-binding ratio was further affected by the degree of oxidation, pH value, and zeta potential. In vitro desorption measurement of Col-p suggested a controlled release mechanism of the nanocomposite. Cell tests indicated that the prepared DBC/Col-p composite was bioactive and suitable for cell adhesion and attachment. This work demonstrates that the DBC/Col-p composite is a promising material for tissue engineering and regeneration. Keywords: bacterial cellulose, dialdehyde cellulose, collagen peptide, composite materials, cytoactivity 

  12. Bacterial Outer Membrane Vesicles Induce Plant Immune Responses.

    Science.gov (United States)

    Bahar, Ofir; Mordukhovich, Gideon; Luu, Dee Dee; Schwessinger, Benjamin; Daudi, Arsalan; Jehle, Anna Kristina; Felix, Georg; Ronald, Pamela C

    2016-05-01

    Gram-negative bacteria continuously pinch off portions of their outer membrane, releasing membrane vesicles. These outer membrane vesicles (OMVs) are involved in multiple processes including cell-to-cell communication, biofilm formation, stress tolerance, horizontal gene transfer, and virulence. OMVs are also known modulators of the mammalian immune response. Despite the well-documented role of OMVs in mammalian-bacterial communication, their interaction with plants is not well studied. To examine whether OMVs of plant pathogens modulate the plant immune response, we purified OMVs from four different plant pathogens and used them to treat Arabidopsis thaliana. OMVs rapidly induced a reactive oxygen species burst, medium alkalinization, and defense gene expression in A. thaliana leaf discs, cell cultures, and seedlings, respectively. Western blot analysis revealed that EF-Tu is present in OMVs and that it serves as an elicitor of the plant immune response in this form. Our results further show that the immune coreceptors BAK1 and SOBIR1 mediate OMV perception and response. Taken together, our results demonstrate that plants can detect and respond to OMV-associated molecules by activation of their immune system, revealing a new facet of plant-bacterial interactions. PMID:26926999

  13. Secretion of Bacterial Lipoproteins: Through the Cytoplasmic Membrane, the Periplasm and Beyond

    OpenAIRE

    Zückert, Wolfram R.

    2014-01-01

    Bacterial lipoproteins are peripherally anchored membrane proteins that play a variety of roles in bacterial physiology and virulence in monoderm (single membrane-enveloped, e.g., grampositive) and diderm (double membrane-enveloped, e.g., gram-negative) bacteria. After export of prolipoproteins through the cytoplasmic membrane, which occurs predominantly but not exclusively via the general secretory or Sec pathway, the proteins are lipid-modified at the cytoplasmic membrane in a multistep pro...

  14. Nanoporous layered silicate AMH-3/cellulose acetate nanocomposite membranes for gas separations

    KAUST Repository

    Kim, Wun-gwi

    2013-08-01

    Nanoporous layered silicate/polymer composite membranes are of interest because they can exploit the high aspect ratio of exfoliated selective flakes/layers to enhance molecular sieving and create a highly tortuous transport path for the slower molecules. In this work, we combine membrane synthesis, detailed microstructural characterization, and mixed gas permeation measurements to demonstrate that nanoporous flake/polymer membranes allows significant improvement in gas permeability while maintaining selectivity. We begin with the primary-amine-intercalated porous layered silicate SAMH-3 and show that it can be exfoliated using a high shear rate generated by a high-speed mixer. The exfoliated SAMH-3 flakes were used to form SAMH-3/cellulose acetate (CA) membranes. Their microstructure was analyzed by small angle X-ray scattering (SAXS), revealing a high degree of exfoliation of AMH-3 layers in the CA membrane with a small number of layers (4-8) in the exfoliated flakes. TEM analysis visualized the thickness of the flakes as 15-30nm, and is consistent with the SAXS analysis. The CO2/CH4 gas separation performance of the CA membrane was significantly increased by incorporating only 2-6wt% of SAMH-3 flakes. There was a large increase in CO2 permeability with maintenance of selectivity. This cannot be explained by conventional models of transport in flake-containing membranes, and indicates complex transport paths in the membrane. It is also in contrast to the much higher loadings of isotropic particles required for similar enhancements. The present approach may allow avoidance of particle aggregation and poor interfacial adhesion associated with larger quantities of inorganic fillers. © 2013 Elsevier B.V.

  15. Ion Transport across a Polyelectrolyte-Adsorbed Cellulose Triacetate Membrane in the Multicomponent Ionic Systems.

    Science.gov (United States)

    Murata; Tanioka

    1999-01-15

    The effects of polyelectrolyte adsorption by cellulose triacetate (CTA) membrane on ionic transport are investigated in two systems: the three-ionic-component system and the multicomponent-ionic system. In the three-ionic-component system, the permeabilities of two anions are affected by the competitive ion. Especially in the case of the albumin-adsorbed CTA membrane, there exists much greater specificity for the permeability of SO2-4 than in the case of the lysozyme-adsorbed membrane. On the other hand, in the case of the PAS-H(10L)(polydiallyldimethylammonium chloride)-adsorbed membrane, the permeability coefficient of HPO2-4 increases, though there exists the effect of a competitive ion. In a multicomponent-ionic system, the logarithmic permeability coefficient ratios (rP) of each ion in an adsorbed membrane to that in a nonadsorbed membrane decreased by PAS-H(10L) adsorption for all cations. The rP of bivalent cations decreased more than those of univalent cations because of the rejection from the positively charged adsorbed layer. On the other hand, the permeabilities slightly increase because of the attraction from the PAS-H(10L)-adsorbed layer when competitive anions exist among them. Furthermore, the increase in the HPO2-4 permeability is confirmed by PAS-H(10L)-adsorption on a CTA membrane for a case very similar to the actual anion multicomponent system. These are the most important results in the application for an approach to phosphate extraction from blood across an artificial kidney membrane. Copyright 1999 Academic Press. PMID:9885263

  16. Porous thin film barrier layers from 2,3-dicarboxylic acid cellulose nanofibrils for membrane structures.

    Science.gov (United States)

    Visanko, Miikka; Liimatainen, Henrikki; Sirviö, Juho Antti; Haapala, Antti; Sliz, Rafal; Niinimäki, Jouko; Hormi, Osmo

    2014-02-15

    To fabricate a strong hydrophilic barrier layer for ultrafiltration (UF) membranes, 2,3-dicarboxylic acid cellulose nanofibrils with high anionic surface charge density (1.2 mekv/g at pH 7) and a width of 22 ± 4 nm were used. A simple vacuum filtration method combined with a solvent exchange procedure resulted in a porous layer with a thickness of ∼ 0.85 μm. The fabricated membranes reached high rejection efficiencies (74-80%) when aqueous dextrans up to 35-45 kDa were filtrated to evaluate the molecular weight cut-offs (MWCO). A linear correlation between the barrier layer thickness and the flux rate was observed in all tested cases. Further optimization of the barrier layer thickness can lead to an even more effective structure. PMID:24507322

  17. Molecular target of synthetic antimicrobial oligomer in bacterial membranes

    Science.gov (United States)

    Yang, Lihua; Gordon, Vernita; Som, Abhigyan; Cronan, John; Tew, Gregory; Wong, Gerard

    2008-03-01

    Antimicrobial peptides comprises a key component of innate immunity for a wide range of multicellular organisms. It has been shown that natural antimicrobial peptides and their synthetic analogs have demonstrated broad-spectrum antimicrobial activity via permeating bacterial membranes selectively. Synthetic antimicrobials with tunable structure and toxicological profiles are ideal for investigations of selectivity mechanisms. We investigate interactions and self-assembly using a prototypical family of antimicrobials based on phenylene ethynylene. Results from synchrotron small angle x-ray scattering (SAXS) results and in vitro microbicidal assays on genetically modified `knock-out' bacteria will be presented.

  18. Effect of gamma irradiation on biopolymer composite films of poly(vinyl alcohol) and bacterial cellulose

    International Nuclear Information System (INIS)

    Highlights: ► The paper reports the obtaining of composite materials between PVA and BC. ► The composite films were γ-irradiated at doses up to 50 kGy. ► The films have a good resistance, being suitable as food packaging materials. - Abstract: Composite materials containing in different ratios poly(vinyl alcohol) (PVA), bacterial cellulose (BC) and glycerol (G) as plasticizer were obtained and exposed to different γ radiation doses using an irradiator GAMMATOR provided with 137Cs source. These films successively received up to 50 kGy absorbed doses at a dose rate of 0.4 kGy/h at room temperature. In order to study the chemical and structural changes during γ irradiation, Fourier-transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and UV–Vis spectroscopy were used. Water vapour permeability (WVP), Hunter colour parameters and hardness were also measured for the irradiated samples. Investigation revealed that WVP was not significantly affected by the irradiation. Colour measurements indicated a slight decrease of pure PVA films transparency and it made clear that all samples became more reddish and yellowish after irradiation. The samples hardness was not affected by the irradiation doses used. However, the results showed no drastic structural or chemical changes of the irradiated samples, which prove, in consequence, a good durability. These composite materials could be used as packaging materials for γ irradiated products.

  19. Biotemplated preparation of CdS nanoparticles/bacterial cellulose hybrid nanofibers for photocatalysis application

    International Nuclear Information System (INIS)

    In this work, we describe a novel facile and effective strategy to prepare micrometer-long hybrid nanofibers by deposition of CdS nanoparticles onto the substrate of hydrated bacterial cellulose nanofibers (BCF). Hexagonal phase CdS nanocrystals were achieved via a simple hydrothermal reaction between CdCl2 and thiourea at relatively low temperature. The prepared pristine BCF and the CdS/BCF hybrid nanofibers were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), UV-vis absorption spectroscopy (UV-vis), and X-ray photoelectron spectroscopy (XPS). The results reveal that the CdS nanoparticles were homogeneously deposited on the BCF surface and stabilized via coordination effect. The CdS/BCF hybrid nanofibers demonstrated high-efficiency photocatalysis with 82% methyl orange (MO) degradation after 90 min irradiation and good recyclability. The results indicate that the CdS/BCF hybrid nanofibers are promising candidate as robust visible light responsive photocatalysts.

  20. Bacterial cellulose synthesis mechanism of facultative anaerobe Enterobacter sp. FY-07.

    Science.gov (United States)

    Ji, Kaihua; Wang, Wei; Zeng, Bing; Chen, Sibin; Zhao, Qianqian; Chen, Yueqing; Li, Guoqiang; Ma, Ting

    2016-01-01

    Enterobacter sp. FY-07 can produce bacterial cellulose (BC) under aerobic and anaerobic conditions. Three potential BC synthesis gene clusters (bcsI, bcsII and bcsIII) of Enterobacter sp. FY-07 have been predicted using genome sequencing and comparative genome analysis, in which bcsIII was confirmed as the main contributor to BC synthesis by gene knockout and functional reconstitution methods. Protein homology, gene arrangement and gene constitution analysis indicated that bcsIII had high identity to the bcsI operon of Enterobacter sp. 638; however, its arrangement and composition were same as those of BC synthesizing operon of G. xylinum ATCC53582 except for the flanking sequences. According to the BC biosynthesizing process, oxygen is not directly involved in the reactions of BC synthesis, however, energy is required to activate intermediate metabolites and synthesize the activator, c-di-GMP. Comparative transcriptome and metabolite quantitative analysis demonstrated that under anaerobic conditions genes involved in the TCA cycle were downregulated, however, genes in the nitrate reduction and gluconeogenesis pathways were upregulated, especially, genes in three pyruvate metabolism pathways. These results suggested that Enterobacter sp. FY-07 could produce energy efficiently under anaerobic conditions to meet the requirement of BC biosynthesis. PMID:26911736

  1. Synthesis and characterization of quaternized bacterial cellulose prepared in homogeneous aqueous solution.

    Science.gov (United States)

    Zhang, Hairong; Guo, Haijun; Wang, Bo; Shi, Silan; Xiong, Lian; Chen, Xinde

    2016-01-20

    In this work, bacterial cellulose (BC) was activated by ethylenediamine (EDA) and then dissolved in lithium chloride/N,N-dimethylacetamide (LiCl/DMAc) aqueous solutions. The resulting transparent solution was cast on a glass plate to prepare regenerated BC. Then cationic BC was prepared homogeneously by the reaction between regenerated BC and 3-chloro-2-hydroxypropyl-trimethyl ammonium chloride (CHPTAC) in a NaOH/urea aqueous solution. Structure and properties of the BC and its products were characterized by different techniques such as X-ray diffraction (XRD), Fourier transform spectroscopy (FT-IR), scanning electron microscopy (SEM) and thermo-gravimetric analysis (TGA). The results showed that there was no significant difference between the structures of BC, activated BC and regenerated BC. The effects of different temperature and molar ratio of CHPTAC to anhydroglucose unit (AGU) on the degree of substitution (DS) value were examined. The DS values of cationic BC ranged between 0.21 and 0.51. PMID:26572343

  2. Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration.

    Science.gov (United States)

    Oliveira Barud, H G; Barud, Hernane da S; Cavicchioli, Maurício; do Amaral, Thais Silva; de Oliveira Junior, Osmir Batista; Santos, Diego M; Petersen, Antonio Luis de Oliveira Almeida; Celes, Fabiana; Borges, Valéria Matos; de Oliveira, Camila I; de Oliveira, Pollyanna Francielli; Furtado, Ricardo Andrade; Tavares, Denise Crispim; Ribeiro, Sidney J L

    2015-09-01

    Bacterial cellulose (BC) and silk fibroin (SF) are natural biopolymers successfully applied in tissue engineering and biomedical fields. In this work nanocomposites based on BC and SF were prepared and characterized by scanning electron microscopy (SEM), infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). In addition, the investigation of cytocompatibility was done by MTT, XTT and Trypan Blue dye technique. Cellular adhesion and proliferation were detected additionally. The evaluation of genotoxicity was realized by micronucleus assay. In vitro tests showed that the material is non-cytotoxic or genotoxic. SEM images revealed a greater number of cells attached at the BC/SF:50% scaffold surface than the pure BC one, suggesting that the presence of fibroin improved cell attachment. This could be related to the SF amino acid sequence that acts as cell receptors facilitating cell adhesion and growth. Consequently, BC/SF:50% scaffolds configured an excellent option in bioengineering depicting its potential for tissue regeneration and cultivation of cells on nanocomposites. PMID:26005138

  3. Biotemplated preparation of CdS nanoparticles/bacterial cellulose hybrid nanofibers for photocatalysis application

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jiazhi; Yu, Junwei [Key Laboratory of Soft Chemistry and Functional Materials (Ministry of Education), Nanjing University of Science and Technology, Nanjing 210094 (China); Fan, Jun [School of Environment, Nanjing University, Nanjing 210093 (China); Sun, Dongping, E-mail: dongpingsun@163.com [Key Laboratory of Soft Chemistry and Functional Materials (Ministry of Education), Nanjing University of Science and Technology, Nanjing 210094 (China); Tang, Weihua, E-mail: whtang@mail.njust.edu.cn [Key Laboratory of Soft Chemistry and Functional Materials (Ministry of Education), Nanjing University of Science and Technology, Nanjing 210094 (China); Yang, Xuejie [Key Laboratory of Soft Chemistry and Functional Materials (Ministry of Education), Nanjing University of Science and Technology, Nanjing 210094 (China)

    2011-05-15

    In this work, we describe a novel facile and effective strategy to prepare micrometer-long hybrid nanofibers by deposition of CdS nanoparticles onto the substrate of hydrated bacterial cellulose nanofibers (BCF). Hexagonal phase CdS nanocrystals were achieved via a simple hydrothermal reaction between CdCl{sub 2} and thiourea at relatively low temperature. The prepared pristine BCF and the CdS/BCF hybrid nanofibers were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), UV-vis absorption spectroscopy (UV-vis), and X-ray photoelectron spectroscopy (XPS). The results reveal that the CdS nanoparticles were homogeneously deposited on the BCF surface and stabilized via coordination effect. The CdS/BCF hybrid nanofibers demonstrated high-efficiency photocatalysis with 82% methyl orange (MO) degradation after 90 min irradiation and good recyclability. The results indicate that the CdS/BCF hybrid nanofibers are promising candidate as robust visible light responsive photocatalysts.

  4. Effect of gamma irradiation on biopolymer composite films of poly(vinyl alcohol) and bacterial cellulose

    Science.gov (United States)

    Jipa, Iuliana Mihaela; Stroescu, Marta; Stoica-Guzun, Anicuta; Dobre, Tanase; Jinga, Sorin; Zaharescu, Traian

    2012-05-01

    Composite materials containing in different ratios poly(vinyl alcohol) (PVA), bacterial cellulose (BC) and glycerol (G) as plasticizer were obtained and exposed to different γ radiation doses using an irradiator GAMMATOR provided with 137Cs source. These films successively received up to 50 kGy absorbed doses at a dose rate of 0.4 kGy/h at room temperature. In order to study the chemical and structural changes during γ irradiation, Fourier-transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and UV-Vis spectroscopy were used. Water vapour permeability (WVP), Hunter colour parameters and hardness were also measured for the irradiated samples. Investigation revealed that WVP was not significantly affected by the irradiation. Colour measurements indicated a slight decrease of pure PVA films transparency and it made clear that all samples became more reddish and yellowish after irradiation. The samples hardness was not affected by the irradiation doses used. However, the results showed no drastic structural or chemical changes of the irradiated samples, which prove, in consequence, a good durability. These composite materials could be used as packaging materials for γ irradiated products.

  5. Effect of gamma irradiation on biopolymer composite films of poly(vinyl alcohol) and bacterial cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Jipa, Iuliana Mihaela; Stroescu, Marta [University Politehnica of Bucharest, Department of Chemical Engineering, 313 Splaiul Independentei, Polizu 1-3, 060042 Bucharest (Romania); Stoica-Guzun, Anicuta, E-mail: stoica.anicuta@gmail.com [University Politehnica of Bucharest, Department of Chemical Engineering, 313 Splaiul Independentei, Polizu 1-3, 060042 Bucharest (Romania); Dobre, Tanase; Jinga, Sorin [University Politehnica of Bucharest, Department of Chemical Engineering, 313 Splaiul Independentei, Polizu 1-3, 060042 Bucharest (Romania); Zaharescu, Traian [Advanced Research Institute for Electrical Engineering, 313 Splaiul Unirii, 030138 Bucharest (Romania)

    2012-05-01

    Highlights: Black-Right-Pointing-Pointer The paper reports the obtaining of composite materials between PVA and BC. Black-Right-Pointing-Pointer The composite films were {gamma}-irradiated at doses up to 50 kGy. Black-Right-Pointing-Pointer The films have a good resistance, being suitable as food packaging materials. - Abstract: Composite materials containing in different ratios poly(vinyl alcohol) (PVA), bacterial cellulose (BC) and glycerol (G) as plasticizer were obtained and exposed to different {gamma} radiation doses using an irradiator GAMMATOR provided with {sup 137}Cs source. These films successively received up to 50 kGy absorbed doses at a dose rate of 0.4 kGy/h at room temperature. In order to study the chemical and structural changes during {gamma} irradiation, Fourier-transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and UV-Vis spectroscopy were used. Water vapour permeability (WVP), Hunter colour parameters and hardness were also measured for the irradiated samples. Investigation revealed that WVP was not significantly affected by the irradiation. Colour measurements indicated a slight decrease of pure PVA films transparency and it made clear that all samples became more reddish and yellowish after irradiation. The samples hardness was not affected by the irradiation doses used. However, the results showed no drastic structural or chemical changes of the irradiated samples, which prove, in consequence, a good durability. These composite materials could be used as packaging materials for {gamma} irradiated products.

  6. Fabrication of bacterial cellulose thin films self-assembled from sonochemically prepared nanofibrils and its characterization.

    Science.gov (United States)

    Tsalagkas, Dimitrios; Lagaňa, Rastislav; Poljanšek, Ida; Oven, Primož; Csoka, Levente

    2016-01-01

    Bacterial cellulose (BC) film formation could be a critical issue in nanotechnology applications such as biomedical or smart materials products. In this research, purified pretreated BC was subjected to high intensity ultrasound (HIUS) and was investigated for the development of BC films. The morphological, structural and thermal properties of the obtained films were studied by using FE-SEM, AFM, FT-IR, XRD, TGA and DSC characterizations. Results showed that the most favorable purification treatment was the 0.01 M NaOH at 70°C for 2h under continuous stirring. The most suitable ultrasound operating conditions were found to be, 1cm distance of ultrasonic probe from the bottom of the beaker, submerged in cold water bath cooling around 12 ± 2°C. The power (25 W/cm(2)), time (30 min), BC concentration (0.1%w/w), amplitude (20 μm) and frequency (20 kHz) were maintained constant. PMID:26384892

  7. Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Y.Z. [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)]. E-mail: yzwantju@yahoo.com; Huang, Y. [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Yuan, C.D. [School of Chemical Engineering, Tianjin University, Tianjin 300072 (China); Raman, S. [Department of Community Health and Epidemiology, Queen' s University, Kingston, Ontario, Canada K7L 3N6 (Canada); Zhu, Y. [School of Chemical Engineering, Tianjin University, Tianjin 300072 (China); Jiang, H.J. [Wendeng Hospital of Orthopaedics, Shandong 264400 (China); He, F. [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Gao, C. [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2007-05-16

    Hydroxyapatite (HAp) and bacterial cellulose (BC) are both excellent materials for use in biomaterial areas. The former has outstanding osteoconductivity and bioactivity and the latter is a high-strength nano-fibrous and extensively used biomaterial. In this work, the HAp/BC nanocomposites with a 3-dimensional (3-D) network were synthesized via a biological route by soaking both phosphorylated and unphosphorylated BCs in 1.5 simulated body fluid (SBF). Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) were employed to characterize the HAp/BC nanocomposites. SEM observations demonstrated that HAp crystals were uniformly formed on the phosphorylated BC fibers after soaking in 1.5 SBF whereas little HAp was observed on individual unphosphorylated BC fibers. Our experimental results suggested that the unphosphorylated BC did not induce HAp growth and that phosphorylation effectively triggered HAp formation on BC. Mechanisms were proposed for the explanation of the experimental observations. XRD and FTIR results revealed that the HAp crystals formed on the phosphorylated BC fibers were carbonate-containing with nano-sized crystallites and crystallinities less than 1%. These structural features were close to those of biological apatites.

  8. In situ synthesis of bacterial cellulose/polycaprolactone blends for hot pressing nanocomposite films production.

    Science.gov (United States)

    Figueiredo, Ana R P; Silvestre, Armando J D; Pascoal Neto, Carlos; Freire, Carmen S R

    2015-11-01

    A series of bacterial cellulose (BC)/polycaprolactone (PCL) nanocomposite films were successfully prepared by supplementation of the BC culture medium with variable amounts of PCL powder followed by hot-pressing of the BC/PCL mixtures obtained after incubation. PCL powder was fully incorporated into the BC network during its production and did not change the BC network morphology. The obtained films showed a homogenous distribution of PCL throughout the BC network, as well as good thermal stability (up to 200 °C) and improved mechanical properties, when compared to pristine PCL. In addition, the intrinsic biodegradability and biocompatibility of the nanocellulose fibers and PCL opens the possibility of using this novel nanocomposite in the biomedical field and food packaging. The BC biosynthetic approach combined with the hot-pressing proved successful for the sustainable development of nanocomposites combining hydrophobic thermoplastic matrices and hydrophilic nanocellulose fibers, without the use of harmful organic solvents commonly used to dissolve this type of polymeric matrices. PMID:26256364

  9. Mechanical and thermal properties of bacterial-cellulose-fibre-reinforced Mater-Bi® bionanocomposite

    Directory of Open Access Journals (Sweden)

    Hamonangan Nainggolan

    2013-05-01

    Full Text Available The effects of the addition of fibres of bacterial cellulose (FBC to commercial starch of Mater-Bi® have been investigated. FBC produced by cultivating Acetobacter xylinum for 21 days in glucose-based medium were purified by sodium hydroxide 2.5 wt % and sodium hypochlorite 2.5 wt % overnight, consecutively. To obtain water-free BC nanofibres, the pellicles were freeze dried at a pressure of 130 mbar at a cooling rate of 10 °C min−1. Both Mater-Bi and FBC were blended by using a mini twin-screw extruder at 160 °C for 10 min at a rotor speed of 50 rpm. Tensile tests were performed according to ASTM D638 to measure the Young’s modulus, tensile strength and elongation at break. A field emission scanning electron microscope was used to observe the morphology at an accelerating voltage of 10 kV. The crystallinity (Tc and melting temperature (Tm were measured by DSC. Results showed a significant improvement in mechanical and thermal properties in accordance with the addition of FBC into Mater-Bi. FBC is easily incorporated in Mater-Bi matrix and produces homogeneous Mater-Bi/FBC composite. The crystallinity of the Mater-Bi/FBC composites decrease in relation to the increase in the volume fraction of FBC.

  10. Preparation of Bacterial Cellulose/Inorganic Gel of Bentonite Composite by In Situ Modification.

    Science.gov (United States)

    Wang, Bo; Qi, Gao-Xiang; Huang, Chao; Yang, Xiao-Yan; Zhang, Hai-Rong; Luo, Jun; Chen, Xue-Fang; Xiong, Lian; Chen, Xin-De

    2016-03-01

    To evaluate the possibility of Bacterial cellulose/Inorganic Gel of Bentonite (BC/IGB) composite production using in situ method, the BC/IGB composite was successfully produced by in situ modification of BC in both HS medium and corncob hydrolysate. The results showed that the BC/IGB composite obtained in HS medium (one classical medium for BC production) had a higher water holding capacity, but the water retention capacity of the BC/IGB composite obtained in corncob hydrolysate was better. The performance of BC/IGB composite depended on the environment of in situ modification. Using different media showed significant influence on the sugar utilization and BC yield. In addition, BC/IGB composite produced by in situ method was compared with that produced by ex situ method, and the results shows that water holding capacity of BC/IGB composite obtained through in situ method was better. XRD results showed the crystallinity of BC/IGB composite related little to its performance as water absorbent. Overall, in situ modification is appropriate for further production of BC composite and other clay materials. PMID:26843699

  11. Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications

    International Nuclear Information System (INIS)

    Hydroxyapatite (HAp) and bacterial cellulose (BC) are both excellent materials for use in biomaterial areas. The former has outstanding osteoconductivity and bioactivity and the latter is a high-strength nano-fibrous and extensively used biomaterial. In this work, the HAp/BC nanocomposites with a 3-dimensional (3-D) network were synthesized via a biological route by soaking both phosphorylated and unphosphorylated BCs in 1.5 simulated body fluid (SBF). Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) were employed to characterize the HAp/BC nanocomposites. SEM observations demonstrated that HAp crystals were uniformly formed on the phosphorylated BC fibers after soaking in 1.5 SBF whereas little HAp was observed on individual unphosphorylated BC fibers. Our experimental results suggested that the unphosphorylated BC did not induce HAp growth and that phosphorylation effectively triggered HAp formation on BC. Mechanisms were proposed for the explanation of the experimental observations. XRD and FTIR results revealed that the HAp crystals formed on the phosphorylated BC fibers were carbonate-containing with nano-sized crystallites and crystallinities less than 1%. These structural features were close to those of biological apatites

  12. Using wastewater after lipid fermentation as substrate for bacterial cellulose production by Gluconacetobacter xylinus.

    Science.gov (United States)

    Huang, Chao; Guo, Hai-Jun; Xiong, Lian; Wang, Bo; Shi, Si-Lan; Chen, Xue-Fang; Lin, Xiao-Qing; Wang, Can; Luo, Jun; Chen, Xin-De

    2016-01-20

    In this study, lipid fermentation wastewater (fermentation broth after separation with yeast biomass) with high Chemical Oxygen Demand (COD) value of 25,591 mg/L was used as substrate for bacterial cellulose (BC) production by Gluconacetobacter xylinus for the first time. After 5 days of fermentation, the highest BC yield (0.659 g/L) was obtained. Both monosaccharide and polysaccharides present in lipid fermentation wastewater could be utilized by G. xylinus simultaneously during fermentation. By this bioconversion, 30.0% of COD could be removed after 10 days of fermentation and the remaining wastewater could be used for further BC fermentation. The crystallinity of BC samples in lipid fermentation wastewater increased gradually during fermentation but overall the environment of lipid fermentation wastewater showed small influence on BC structure by comparison with that in traditional HS medium by using FE-SEM, FTIR, and XRD. By this work, the possibility of using lipid fermentation wastewater containing low value carbohydrate polymer (extracellular polysaccharides) for high value carbohydrate polymer (BC) production was proven. PMID:26572346

  13. Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media.

    Science.gov (United States)

    Jozala, Angela Faustino; Pértile, Renata Aparecida Nedel; dos Santos, Carolina Alves; de Carvalho Santos-Ebinuma, Valéria; Seckler, Marcelo Martins; Gama, Francisco Miguel; Pessoa, Adalberto

    2015-02-01

    Bacterial cellulose (BC) is used in different fields as a biological material due to its unique properties. Despite there being many BC applications, there still remain many problems associated with bioprocess technology, such as increasing productivity and decreasing production cost. New technologies that use waste from the food industry as raw materials for culture media promote economic advantages because they reduce environmental pollution and stimulate new research for science sustainability. For this reason, BC production requires optimized conditions to increase its application. The main objective of this study was to evaluate BC production by Gluconacetobacter xylinus using industry waste, namely, rotten fruits and milk whey, as culture media. Furthermore, the structure of BC produced at different conditions was also determined. The culture media employed in this study were composed of rotten fruit collected from the disposal of free markets, milk whey from a local industrial disposal, and their combination, and Hestrin and Schramm media was used as standard culture media. Although all culture media studied produced BC, the highest BC yield-60 mg/mL-was achieved with the rotten fruit culture. Thus, the results showed that rotten fruit can be used for BC production. This culture media can be considered as a profitable alternative to generate high-value products. In addition, it combines environmental concern with sustainable processes that can promote also the reduction of production cost. PMID:25472434

  14. In situ hybridization of carbon nanotubes with bacterial cellulose for three-dimensional hybrid bioscaffolds.

    Science.gov (United States)

    Park, Subeom; Park, Jooyeon; Jo, Insu; Cho, Sung-Pyo; Sung, Dongchul; Ryu, Seungmi; Park, Minsung; Min, Kyung-Ah; Kim, Jangho; Hong, Suklyun; Hong, Byung Hee; Kim, Byung-Soo

    2015-07-01

    Carbon nanotubes (CNTs) have shown great potential in biomedical fields. However, in vivo applications of CNTs for regenerative medicine have been hampered by difficulties associated with the fabrication of three-dimensional (3D) scaffolds of CNTs due to CNTs' nano-scale nature. In this study, we devised a new method for biosynthesis of CNT-based 3D scaffold by in situ hybridizing CNTs with bacterial cellulose (BC), which has a structure ideal for tissue-engineering scaffolds. This was achieved simply by culturing Gluconacetobacter xylinus, BC-synthesizing bacteria, in medium containing CNTs. However, pristine CNTs aggregated in medium, which hampers homogeneous hybridization of CNTs with BC scaffolds, and the binding energy between hydrophobic pristine CNTs and hydrophilic BC was too small for the hybridization to occur. To overcome these problems, an amphiphilic comb-like polymer (APCLP) was adsorbed on CNTs. Unlike CNT-coated BC scaffolds (CNT-BC-Imm) formed by immersing 3D BC scaffolds in CNT solution, the APCLP-adsorbed CNT-BC hybrid scaffold (CNT-BC-Syn) showed homogeneously distributed CNTs throughout the 3D microporous structure of BC. Importantly, in contrast to CNT-BC-Imm scaffolds, CNT-BC-Syn scaffolds showed excellent osteoconductivity and osteoinductivity that led to high bone regeneration efficacy. This strategy may open a new avenue for development of 3D biofunctional scaffolds for regenerative medicine. PMID:25941786

  15. Modified bacterial cellulose scaffolds for localized doxorubicin release in human colorectal HT-29 cells.

    Science.gov (United States)

    Cacicedo, Maximiliano L; León, Ignacio E; Gonzalez, Jimena S; Porto, Luismar M; Alvarez, Vera A; Castro, Guillermo R

    2016-04-01

    Bacterial cellulose (BC) films modified by the in situ method with the addition of alginate (Alg) during the microbial cultivation of Gluconacetobacter hansenii under static conditions increased the loading of doxorubicin by at least three times. Biophysical analysis of BC-Alg films by scanning electron microscopy, thermogravimetry, X-ray diffraction and FTIR showed a highly homogeneous interpenetrated network scaffold without changes in the BC crystalline structure but with an increased amorphous phase. The main molecular interactions determined by FTIR between both biopolymers clearly suggest high compatibility. These results indicate that alginate plays a key role in the biophysical properties of the hybrid BC matrix. BC-Alg scaffold analysis by nitrogen adsorption isotherms revealed by the Brunauer-Emmett-Teller (BET) method an increase in surface area of about 84% and in pore volume of more than 200%. The Barrett-Joyner-Halenda (BJH) model also showed an increase of about 25% in the pore size compared to the BC film. Loading BC-Alg scaffolds with different amounts of doxorubicin decreased the cell viability of HT-29 human colorectal adenocarcinoma cell line compared to the free Dox from around 95-53% after 24h and from 63% to 37% after 48 h. Dox kinetic release from the BC-Alg nanocomposite displayed hyperbolic curves related to the different amounts of drug payload and was stable for at least 14 days. The results of the BC-Alg nanocomposites show a promissory potential for anticancer therapies of solid tumors. PMID:26784658

  16. Production of bacterial cellulose using different carbon sources and culture media.

    Science.gov (United States)

    Mohammadkazemi, Faranak; Azin, Mehrdad; Ashori, Alireza

    2015-03-01

    In this work, the effects of carbon sources and culture media on the production and structural properties of bacterial cellulose (BC) have been studied. BC nanofibers were synthesized using Gluconacetobacter xylinus strain PTCC 1734. Media used were Hestrin-Schramm (H), Yamanaka (Y), and Zhou (Z). Five different carbon sources, namely date syrup, glucose, mannitol, sucrose, and food-grade sucrose were used in these media. All the produced BC pellicles were characterized in terms of dry weight production, biomass yield, thermal stability, crystallinity and morphology by thermogravimetric analysis (TGA), x-ray diffraction (XRD), and field emission scanning electron microscopy (FE-SEM). The obtained results showed that mannitol lead to the highest yield, followed by sucrose. The highest production efficiency of mannitol might be due to the nitrogen source, which plays an important role. The maximum improvement on the thermal stability of the composites was achieved when mannitol was used in H medium. In addition, the crystallinity was higher in BC formed in H medium compared to other media. FE-SEM micrographs illustrated that the BC pellicles, synthesized in the culture media H and Z, were stable, unlike those in medium Y that were unstable. The micrographs of BC produced in media containing mannitol and sucrose provided evidence of the strong interfacial adhesion between the BC fibers without noticeable aggregates. PMID:25498666

  17. Double network bacterial cellulose hydrogel to build a biology-device interface

    Science.gov (United States)

    Shi, Zhijun; Li, Ying; Chen, Xiuli; Han, Hongwei; Yang, Guang

    2013-12-01

    Establishing a biology-device interface might enable the interaction between microelectronics and biotechnology. In this study, electroactive hydrogels have been produced using bacterial cellulose (BC) and conducting polymer (CP) deposited on the BC hydrogel surface to cover the BC fibers. The structures of these composites thus have double networks, one of which is a layer of electroactive hydrogels combined with BC and CP. The electroconductivity provides the composites with capabilities for voltage and current response, and the BC hydrogel layer provides good biocompatibility, biodegradability, bioadhesion and mass transport properties. Such a system might allow selective biological functions such as molecular recognition and specific catalysis and also for probing the detailed genetic and molecular mechanisms of life. A BC-CP composite hydrogel could then lead to a biology-device interface. Cyclic voltammetry and electrochemical impedance spectroscopy (EIS) are used here to study the composite hydrogels' electroactive property. BC-PAni and BC-PPy respond to voltage changes. This provides a mechanism to amplify electrochemical signals for analysis or detection. BC hydrogels were found to be able to support the growth, spreading and migration of human normal skin fibroblasts without causing any cytotoxic effect on the cells in the cell culture. These double network BC-CP hydrogels are biphasic Janus hydrogels which integrate electroactivity with biocompatibility, and might provide a biology-device interface to produce implantable devices for personalized and regenerative medicine.

  18. Switchable photoluminescence liquid crystal coated bacterial cellulose films with conductive response.

    Science.gov (United States)

    Tercjak, Agnieszka; Gutierrez, Junkal; Barud, Hernane S; Ribeiro, Sidney J L

    2016-06-01

    Three different low molecular weight nematic liquid crystals (LCs) were used to impregnate bacterial cellulose (BC) film. This simple fabrication pathway allows to obtain highly transparent BC based films. The coating of BC film with different liquid crystals changed transmittance spectra in ultraviolet-visible region and allows to design UVC and UVB shielding materials. Atomic force microscopy results confirmed that liquid crystals coated BC films maintain highly interconnected three-dimensional network characteristic of BC film and simultaneously, transversal cross-section scanning electron microscopy images indicated penetration of liquid crystals through the three-dimensional network of BC nanofibers. Investigated BC films maintain nematic liquid crystal properties being switchable photoluminiscence as a function of temperature during repeatable heating/cooling cycles. Conductive response of the liquid crystal coated BC films was proved by tunneling atomic force microscopy measurement. Moreover, liquid crystal coated BC films maintain thermal stability and mechanical properties of the BC film. Designed thermoresponsive materials possessed interesting optical and conductive properties opening a novel simple pathway of fabrication liquid crystal coated BC films with tuneable properties. PMID:27083359

  19. Effect of microstructure on anomalous strain-rate-dependent behaviour of bacterial cellulose hydrogel.

    Science.gov (United States)

    Gao, Xing; Shi, Zhijun; Lau, Andrew; Liu, Changqin; Yang, Guang; Silberschmidt, Vadim V

    2016-05-01

    This study is focused on anomalous strain-rate-dependent behaviour of bacterial cellulose (BC) hydrogel that can be strain-rate insensitive, hardening, softening, or strain-rate insensitive in various ranges of strain rate. BC hydrogel consists of randomly distributed nanofibres and a large content of free water; thanks to its ideal biocompatibility, it is suitable for biomedical applications. Motivated by its potential applications in complex loading conditions of body environment, its time-dependent behaviour was studied by means of in-aqua uniaxial tension tests at constant temperature of 37 °C at various strain rates ranging from 0.000 1s(-1) to 0.3s(-1). Experimental results reflect anomalous strain-rate-dependent behaviour that was not documented before. Micro-morphological observations allowed identification of deformation mechanisms at low and high strain rates in relation to microstructural changes. Unlike strain-rate softening behaviours in other materials, reorientation of nanofibres and kinematics of free-water flow dominate the softening behaviour of BC hydrogel at high strain rates. PMID:26952406

  20. Biosynthesis of Bacterial Cellulose/Carboxylic Multi-Walled Carbon Nanotubes for Enzymatic Biofuel Cell Application

    Directory of Open Access Journals (Sweden)

    Pengfei Lv

    2016-03-01

    Full Text Available Novel nanocomposites comprised of bacterial cellulose (BC with carboxylic multi-walled carbon nanotubes (c-MWCNTs incorporated into the BC matrix were prepared through a simple method of biosynthesis. The biocathode and bioanode for the enzyme biological fuel cell (EBFC were prepared using BC/c-MWCNTs composite injected by laccase (Lac and glucose oxidase (GOD with the aid of glutaraldehyde (GA crosslinking. Biosynthesis of BC/c-MWCNTs composite was characterized by digital photos, scanning electron microscope (SEM, and Fourier Transform Infrared (FTIR. The experimental results indicated the successful incorporation of c-MWCNTs into the BC. The electrochemical and biofuel performance were evaluated by cyclic voltammetry (CV and linear sweep voltammetry (LSV. The power density and current density of EBFCs were recorded at 32.98 µW/cm3 and 0.29 mA/cm3, respectively. Additionally, the EBFCs also showed acceptable stability. Preliminary tests on double cells indicated that renewable BC have great potential in the application field of EBFCs.

  1. Morphological, physical, antimicrobial and release properties of ZnO nanoparticles-loaded bacterial cellulose films.

    Science.gov (United States)

    Shahmohammadi Jebel, Fereshteh; Almasi, Hadi

    2016-09-20

    Bacterial cellulose (BC) monolayer and multilayer films, incorporating 5wt.% ZnO nanoparticles (NPs) have been obtained. Ultrasound (US) irradiation (40kHz) was applied during ZnO-BC nanocomposites preparation. X-ray diffraction (XRD) patterns showed that ZnO NPs were crystallized in their pure phase. SEM scanning electron microscopy (SEM) results indicated that US treatment causes to decrease ZnO particle size, forming a stable hybrid nanostructure and evenly distributed ZnO NPs coated BC nanofibers. ZnO NPs enhanced the mechanical properties and diminished water vapor permeability and moisture absorption of BC films. Antibacterial activity of ZnO-BC films against Staphylococcus aureus was more than Escherichia coli. The antibacterial activity was enhanced with the utilization of US irradiation. The ZnO release was influenced by films composition; the multilayer and US treated films being promising in order to achieve controlled release of ZnO. Results suggest that ZnO-BC films may be used as controlled release antimicrobial food active packaging. PMID:27261725

  2. Preparation of Pd/Bacterial Cellulose Hybrid Nanofibers for Dopamine Detection.

    Science.gov (United States)

    Li, Dawei; Ao, Kelong; Wang, Qingqing; Lv, Pengfei; Wei, Qufu

    2016-01-01

    Palladium nanoparticle-bacterial cellulose (PdBC) hybrid nanofibers were synthesized by in-situ chemical reduction method. The obtained PdBC nanofibers were characterized by a series of analytical techniques. The results revealed that Pd nanoparticles were evenly dispersed on the surfaces of BC nanofibers. Then, the as-prepared PdBC nanofibers were mixed with laccase (Lac) and Nafion to obtain mixture suspension, which was further modified on electrode surface to construct novel biosensing platform. Finally, the prepared electrochemical biosensor was employed to detect dopamine. The analysis result was satisfactory, the sensor showed excellent electrocatalysis towards dopamine with high sensitivity (38.4 µA·mM(-1)), low detection limit (1.26 µM), and wide linear range (5-167 µM). Moreover, the biosensor also showed good repeatability, reproducibility, selectivity and stability and was successfully used in the detection of dopamine in human urine, thus providing a promising method for dopamine analysis in clinical application. PMID:27187327

  3. Preparation of Pd/Bacterial Cellulose Hybrid Nanofibers for Dopamine Detection

    Directory of Open Access Journals (Sweden)

    Dawei Li

    2016-05-01

    Full Text Available Palladium nanoparticle-bacterial cellulose (PdBC hybrid nanofibers were synthesized by in-situ chemical reduction method. The obtained PdBC nanofibers were characterized by a series of analytical techniques. The results revealed that Pd nanoparticles were evenly dispersed on the surfaces of BC nanofibers. Then, the as-prepared PdBC nanofibers were mixed with laccase (Lac and Nafion to obtain mixture suspension, which was further modified on electrode surface to construct novel biosensing platform. Finally, the prepared electrochemical biosensor was employed to detect dopamine. The analysis result was satisfactory, the sensor showed excellent electrocatalysis towards dopamine with high sensitivity (38.4 µA·mM−1, low detection limit (1.26 µM, and wide linear range (5–167 µM. Moreover, the biosensor also showed good repeatability, reproducibility, selectivity and stability and was successfully used in the detection of dopamine in human urine, thus providing a promising method for dopamine analysis in clinical application.

  4. Superior hybrid hydrogels of polyacrylamide enhanced by bacterial cellulose nanofiber clusters.

    Science.gov (United States)

    Yuan, Ningxiao; Xu, Lu; Zhang, Lu; Ye, Haowen; Zhao, Jianhao; Liu, Zhong; Rong, Jianhua

    2016-10-01

    Hybrid polyacrylamide/bacterial cellulose nanofiber clusters (PAM/BC) hydrogels with high strength, toughness and recoverability were synthesized by in situ polymerization of acrylamide monomer in BC nanofiber clusters suspension. The hybrid gels exhibited an extremely large elongation at break of 2200%, and a high fracture stress of 1.35MPa. Additionally, the original length of hydrogels could be recovered after releasing the tensile force. Compressive results showed that the PAM/BC hybrid gels could reach a strain of about 99% without break, and was able to completely recover its original shape immediately after releasing the compression force. The compressive stress at 99% reached as high as 30MPa. Nearly no hysteresis in cyclic compressive tests was observed with these hybrid gels. The FT-IR, XRD and TGA analysis showed that hydrogen bonds between the PAM chains and BC nanofiber clusters mainly contributed to the superior mechanical properties of hybrid hydrogels. The cell viability results suggested that PAM/BC hybrid hydrogel was benign for biomedical application. These PAM/BC hydrogels offer a great promise as biomaterials such as bone and cartilage repair materials. PMID:27287117

  5. Electromotive force and impedance studies of cellulose acetate membranes: Evidence for two binding sites for divalent cations and for an alveolar structure of the skin layer

    DEFF Research Database (Denmark)

    Smith Sørensen, T.; Jensen, J.B.; Malmgren-Hansen, B.

    1991-01-01

    The electromotive force (EMF) has been measured for a great number of concentration cells of the type: Ag \\ AgCl \\ >>variableCellulose Acetate Membrane \\ >>fixed...Cellulose Acetate (CA) membranes were mostly dense membranes cast by ourselves. A few were...... asymmetic membranes. The skin layer in asymmetric membranes is assumed to have properties similar to dense membranes. The EMF measurements were interpreted by means of a Donnan-Nernst-Planck (Teorell-Meyer-Sievers) model, which functions quite well due to the low fixed charge in the membrane. The membrane...

  6. Adsorptive removal of phenolic compounds using cellulose acetate phthalate–alumina nanoparticle mixed matrix membrane

    International Nuclear Information System (INIS)

    Highlights: • Composite membrane of cellulose–acetate–phthalate and alumina nanoparticle is cast. • Surface charge of the membrane changes with nanoparticle concentration and pH. • Separation of phenolic compounds occurs due to adsorption. • The removal efficiency is maximum for 20% nanoparticle with 91% removal of catechol. • Transmembrane pressure drop has negligible effect on solute separation. -- Abstract: Mixed matrix membranes (MMMs) were prepared using alumina nanoparticles and cellulose acetate phthalate (CAP) by varying concentration of nanoparticles in the range of 10 to 25 wt%. The membranes were characterized by scanning electron micrograph, porosity, permeability, molecular weight cut off, contact angle, surface zeta potential, mechanical strength. Addition of nanoparticles increased the porosity, permeability of the membrane up to 20 wt% of alumina. pH at point of zero charge of the membrane was 5.4. Zeta potential of the membrane became more negative up to 20 wt% of nanoparticles. Adsorption of phenolic derivatives, catechol, paranitrophenol, phenol, orthochloro phenol, metanitrophenol, by MMMs were investigated. Variation of rejection and permeate flux profiles were studied for different solutes as a function of various operating conditions, namely, solution pH, solute concentration in feed and transmembrane pressure drop. Difference in rejection of phenolic derivatives is consequence of interplay of surface charge and adsorption by alumina. Adsorption isotherm was fitted for different solutes and effects of pH were investigated. Catechol showed the maximum rejection 91% at solution pH 9. Addition of electrolyte reduced the rejection of solutes. Transmembrane pressure drop has insignificant effects on solute rejection. Competitive adsorption reduced the rejection of individual solute

  7. Adsorptive removal of phenolic compounds using cellulose acetate phthalate–alumina nanoparticle mixed matrix membrane

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Raka; De, Sirshendu, E-mail: sde@che.iitkgp.ernet.in

    2014-01-30

    Highlights: • Composite membrane of cellulose–acetate–phthalate and alumina nanoparticle is cast. • Surface charge of the membrane changes with nanoparticle concentration and pH. • Separation of phenolic compounds occurs due to adsorption. • The removal efficiency is maximum for 20% nanoparticle with 91% removal of catechol. • Transmembrane pressure drop has negligible effect on solute separation. -- Abstract: Mixed matrix membranes (MMMs) were prepared using alumina nanoparticles and cellulose acetate phthalate (CAP) by varying concentration of nanoparticles in the range of 10 to 25 wt%. The membranes were characterized by scanning electron micrograph, porosity, permeability, molecular weight cut off, contact angle, surface zeta potential, mechanical strength. Addition of nanoparticles increased the porosity, permeability of the membrane up to 20 wt% of alumina. pH at point of zero charge of the membrane was 5.4. Zeta potential of the membrane became more negative up to 20 wt% of nanoparticles. Adsorption of phenolic derivatives, catechol, paranitrophenol, phenol, orthochloro phenol, metanitrophenol, by MMMs were investigated. Variation of rejection and permeate flux profiles were studied for different solutes as a function of various operating conditions, namely, solution pH, solute concentration in feed and transmembrane pressure drop. Difference in rejection of phenolic derivatives is consequence of interplay of surface charge and adsorption by alumina. Adsorption isotherm was fitted for different solutes and effects of pH were investigated. Catechol showed the maximum rejection 91% at solution pH 9. Addition of electrolyte reduced the rejection of solutes. Transmembrane pressure drop has insignificant effects on solute rejection. Competitive adsorption reduced the rejection of individual solute.

  8. Comparison of biofouling mechanisms between cellulose triacetate (CTA) and thin-film composite (TFC) polyamide forward osmosis membranes in osmotic membrane bioreactors.

    Science.gov (United States)

    Wang, Xinhua; Zhao, Yanxiao; Yuan, Bo; Wang, Zhiwei; Li, Xiufen; Ren, Yueping

    2016-02-01

    There are two types of popular forward osmosis (FO) membrane materials applied for researches on FO process, cellulose triacetate (CTA) and thin film composite (TFC) polyamide. However, performance and fouling mechanisms of commercial TFC FO membrane in osmotic membrane bioreactors (OMBRs) are still unknown. In current study, its biofouling behaviors in OMBRs were investigated and further compared to the CTA FO membrane. The results indicated that β-D-glucopyranose polysaccharides and microorganisms accounted for approximately 77% of total biovolume on the CTA FO membrane while β-D-glucopyranose polysaccharides (biovolume ratio of 81.1%) were the only dominant biofoulants on the TFC FO membrane. The analyses on the biofouling structure implied that a tighter biofouling layer with a larger biovolume was formed on the CTA FO membrane. The differences in biofouling behaviors including biofoulants composition and biofouling structure between CTA and TFC FO membranes were attributed to different membrane surface properties. PMID:26700758

  9. Bacterial Cellulose: A Robust Platform for Design of Three Dimensional Carbon-Based Functional Nanomaterials.

    Science.gov (United States)

    Wu, Zhen-Yu; Liang, Hai-Wei; Chen, Li-Feng; Hu, Bi-Cheng; Yu, Shu-Hong

    2016-01-19

    Three dimensional (3D) carbon nanomaterials exhibit great application potential in environmental protection, electrochemical energy storage and conversion, catalysis, polymer science, and advanced sensors fields. Current methods for preparing 3D carbon nanomaterials, for example, carbonization of organogels, chemical vapor deposition, and self-assembly of nanocarbon building blocks, inevitably involve some drawbacks, such as expensive and toxic precursors, complex equipment and technological requirements, and low production ability. From the viewpoint of practical application, it is highly desirable to develop a simple, cheap, and environmentally friendly way for fabricating 3D carbon nanomaterials in large scale. On the other hand, in order to extend the application scope and improve the performance of 3D carbon nanomaterials, we should explore efficient strategies to prepare diverse functional nanomaterials based on their 3D carbon structure. Recently, many researchers tend to fabricate high-performance 3D carbon-based nanomaterials from biomass, which is low cost, easy to obtain, and nontoxic to humans. Bacterial cellulose (BC), a typical biomass material, has long been used as the raw material of nata-de-coco (an indigenous dessert food of the Philippines). It consists of a polysaccharide with a β-1,4-glycosidic linkage and has a interconnected 3D porous network structure. Interestingly, the network is made up of a random assembly of cellulose nanofibers, which have a high aspect ratio with a diameter of 20-100 nm. As a result, BC has a high specific surface area. Additionally, BC hydrogels can be produced on an industrial scale via a microbial fermentation process at a very low price. Thus, it can be an ideal platform for design of 3D carbon-based functional nanomaterials. Before our work, no systematic work and summary on this topic had been reported. This Account presents the concepts and strategies of our studies on BC in the past few years, that is

  10. Photoproduction of H2 from Cellulose by an Anaerobic Bacterial Coculture

    OpenAIRE

    Odom, James M.; Wall, Judy D.

    1983-01-01

    Cellulomonas sp. strain ATCC 21399 is a facultatively anaerobic, cellulose-degrading microorganism that does not evolve hydrogen but produces organic acids during cellulose fermentation. Rhodopseudomonas capsulata cannot utilize cellulose, but grows photoheterotrophically under anaerobic conditions on organic acids or sugars. This report describes an anaerobic coculture of the Cellulomonas strain with wild-type R. capsulata or a mutant strain lacking uptake hydrogenase, which photoevolves mol...

  11. An Outer Membrane Protein Involved in the Uptake of Glucose Is Essential for Cytophaga hutchinsonii Cellulose Utilization.

    Science.gov (United States)

    Zhou, Hong; Wang, Xia; Yang, Tengteng; Zhang, Weixin; Chen, Guanjun; Liu, Weifeng

    2016-03-01

    Cytophaga hutchinsonii specializes in cellulose digestion by employing a collection of novel cell-associated proteins. Here, we identified a novel gene locus, CHU_1276, that is essential for C. hutchinsonii cellulose utilization. Disruption of CHU_1276 in C. hutchinsonii resulted in complete deficiency in cellulose degradation, as well as compromised assimilation of cellobiose or glucose at a low concentration. Further analysis showed that CHU_1276 was an outer membrane protein that could be induced by cellulose and low concentrations of glucose. Transcriptional profiling revealed that CHU_1276 exerted a profound effect on the genome-wide response to both glucose and Avicel and that the mutant lacking CHU_1276 displayed expression profiles very different from those of the wild-type strain under different culture conditions. Specifically, comparison of their transcriptional responses to cellulose led to the identification of a gene set potentially regulated by CHU_1276. These results suggest that CHU_1276 plays an essential role in cellulose utilization, probably by coordinating the extracellular hydrolysis of cellulose substrate with the intracellular uptake of the hydrolysis product in C. hutchinsonii. PMID:26773084

  12. Electrochemical Characterization of Cellulose Acetate Butyrate-Prmutit Composite Membrane in Aqueous Uni-Uni Valent Electrolyte Solutions

    Directory of Open Access Journals (Sweden)

    A.K. Tiwari

    2015-06-01

    Full Text Available Co-mixed cellulose acetate butyrate and permutit in a definite composition was prepared and coded as MRS-2. The membrane potential was measured with uni-uni valent electrolyte, NaCl solutions using saturated calomel electrodes (SCEs.The effective fixed charge density of the membrane was determined by TMS method and it showed dependence on the porosity, charge on the membrane matrix, charge and size of permeating ions. Other important electrochemical parameters were calculated. Conductance-time data were generated for the kinetic study of the permeating ions in terms of membrane permeability, flow and flux parameters. Donnan membrane equilibrium condition was examined. Membrane adsorbability showed concave dependence with external electrolyte solution and convex type dependence was showed by swelling and conductance parameters. This membrane had no characteristic of anomalous osmosis, indicates that there is no water flooding will take place during membrane operation.

  13. Novel cellulose ester substrates for high performance flat-sheet thin-film composite (TFC) forward osmosis (FO) membranes

    KAUST Repository

    Ong, Rui Chin

    2015-01-01

    A novel hydrophilic cellulose ester with a high intrinsic water permeability and a water partition coefficient was discovered to construct membrane supports for flat-sheet thin film composite (TFC) forward osmosis (FO) membranes for water reuse and seawater desalination with high performance. The performance of TFC-FO membranes prepared from the hydrophilic cellulose ester containing a high degree of OH and a moderate degree of Pr substitutions clearly surpasses those prepared from cellulose esters and other polymers with moderate hydrophilicity. Post-treatments of TFC-FO membranes using sodium dodecyl sulfate (SDS) and glycerol followed by heat treatment further enhance the water flux without compromising the selectivity. Positron annihilation lifetime analyses have confirmed that the SDS/glycerol post-treatment increases the free volume size and fractional free volume of the polyamide selective layer. The newly developed post-treated TFC-FO membranes exhibit a remarkably high water flux up to 90 LMH when the selective layer is oriented towards the draw solution (i.e., PRO mode) using 1. M NaCl as the draw solution and DI water as the feed. For seawater desalination, the membranes display a high water flux up to 35 LMH using a 2. M NaCl draw solution. These water fluxes exceeded the water fluxes achieved by other types of FO membranes reported in literatures. © 2014 Elsevier B.V.

  14. Quantitative structure-activity relationship (QSAR) analysis of surfactants influencing attachment of a Mycobacterium sp. to cellulose acetate and aromatic polyamide reverse osmosis membranes.

    Science.gov (United States)

    Campbell, P; Srinivasan, R; Knoell, T; Phipps, D; Ishida, K; Safarik, J; Cormack, T; Ridgway, H

    1999-09-01

    A series of 23 neutral, anionic, and zwitterionic surfactants were tested at a concentration of 0.1% wt/vol for their influence on attachment of a Mycobacterium sp. to cellulose acetate (CA) and polyamide (PA) reverse osmosis (RO) membranes. Four cell attachment bioassays were used: (1) semiconcurrent addition of surfactant and bacteria to RO coupons (standard assay); (2) surfactant pretreatment of RO membranes (membrane pretreatment assay); (3) surfactant treatment of adsorbed cells (detachment assay); and (4) surfactant pretreatment of mycobacteria (cell pretreatment assay). Seventeen surfactants inhibited attachment to PA membranes, whereas 15 inhibited attachment to CA in standard assays and, in 13 cases, the same surfactant inhibited attachment to both PA and CA. Despite greater cell attachment to PA than CA, surfactants were typically more effective in the former membrane system. More surfactants were effective in impairing cell attachment than in promoting detachment and a number enhanced attachment in membrane pretreatment assays, suggesting surface modification of RO membranes. Cell pretreatment inhibited attachment to CA membranes, suggesting the bacterial surface was also a target for detergent activity. Multivariate regression and cluster analyses indicated that critical micellar concentration (CMC) was positively correlated with Mycobacterium attachment in CA and PA standard assays. Surfactant dipole moment and octanol/water partitioning (LogP) also contributed to detergent activity in the PA system, whereas dipole moment, molecular topology (i.e., connectivity indices), and charge properties influenced activity in the CA system. Influential variables in membrane pretreatment assays included the LogP, topology indices, and charge properties, whereas CMC played a diminished role. Surfactant dipole moment was most influential in CA membrane detachment assays. Increasing system ionic strength by LiBr addition strengthened inhibition of cell attachment to

  15. Green in-situ synthesized silver nanoparticles embedded in bacterial cellulose nanopaper as a bionanocomposite plasmonic sensor.

    Science.gov (United States)

    Pourreza, Nahid; Golmohammadi, Hamed; Naghdi, Tina; Yousefi, Hossein

    2015-12-15

    Herein, we introduce a new strategy for green, in-situ generation of silver nanoparticles using flexible and transparent bacterial cellulose nanopapers. In this method, adsorbed silver ions on bacterial cellulose nanopaper are reduced by the hydroxyl groups of cellulose nanofibers, acting as the reducing agent producing a bionanocomposite "embedded silver nanoparticles in transparent nanopaper" (ESNPs). The fabricated ESNPs were investigated and characterized by field emission scanning electron microscopy (FE-SEM), UV-visible spectroscopy (UV-vis), Fourier-transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and energy-dispersive X-ray spectroscopy (EDX). The important parameters affecting the ESNPs were optimized during the fabrication of specimens. The resulting ESNPs were used as a novel and sensitive probe for the optical sensing of cyanide ion (CN(-)) and 2-mercaptobenzothiazole (MBT) in water samples with satisfactory results. The change in surface plasmon resonance absorption intensity of ESNPs was linearly proportional to the concentration in the range of 0.2-2.5 µg mL(-1) and 2-110 µg mL(-1) with a detection limit of 0.012 µg mL(-1) and 1.37 µg mL(-1) for CN(-) and MBT, respectively. PMID:26159156

  16. Immobilization of collagen peptide on dialdehyde bacterial cellulose nanofibers via covalent bonds for tissue engineering and regeneration

    Science.gov (United States)

    Wen, Xiaoxiao; Zheng, Yudong; Wu, Jian; Wang, Lu-Ning; Yuan, Zhenya; Peng, Jiang; Meng, Haoye

    2015-01-01

    Bacterial cellulose (BC) is an alternative nanostructured biomaterial to be utilized for a wide range of biomedical applications. Because of its low bioactivity, which restricted its practical application, collagen and collagen hydrolysate were usually composited into BC. It is necessary to develop a new method to generate covalent bonds between collagen and cellulose to improve the immobilization of collagen on BC. This study describes a facile dialdehyde BC/collagen peptide nanocomposite. BC was oxidized into dialdehyde bacterial cellulose (DBC) by regioselective oxidation, and then composited with collagen peptide (Col-p) via covalent bonds to form Schiff’s base type compounds, which was demonstrated by the results of microstructures, contact angle, Col-p content, and peptide-binding ratio. The peptide-binding ratio was further affected by the degree of oxidation, pH value, and zeta potential. In vitro desorption measurement of Col-p suggested a controlled release mechanism of the nanocomposite. Cell tests indicated that the prepared DBC/Col-p composite was bioactive and suitable for cell adhesion and attachment. This work demonstrates that the DBC/Col-p composite is a promising material for tissue engineering and regeneration. PMID:26229466

  17. Characterization of TEMPO-oxidized bacterial cellulose scaffolds for tissue engineering applications

    International Nuclear Information System (INIS)

    Introduction of active groups on the surface of bacterial cellulose (BC) nanofibers is one of the promising routes of tailoring the performance of BC scaffolds for tissue engineering. This paper reported the introduction of aldehyde groups to BC nanofibers by 2,2,6,6-tetramethylpyperidine-1-oxy radical (TEMPO)-mediated oxidation and evaluation of the potential of the TEMPO-oxidized BC as tissue engineering scaffolds. Periodate oxidation was also conducted for comparison. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses were carried out to determine the existence of aldehyde groups on BC nanofibers and the crystallinity. In addition, properties relevant to scaffold applications such as morphology, fiber diameter, mechanical properties, and in vitro degradation were characterized. The results indicated that periodate oxidation could introduce free aldehyde to BC nanofibers and the free aldehyde groups on the TEMPO-oxidized BC tended to transfer to acetal groups. It was also found that the advantageous 3D structure of BC scaffolds remained unchanged and that no significant changes in morphology, fiber diameter, tensile structure and in vitro degradation were found after TEMPO-mediated oxidation while significant differences were observed upon periodate oxidation. The present study revealed that TEMPO-oxidation could impart BC scaffolds with new functions while did not degrade their intrinsic advantages. - Highlights: • TEMPO-mediated oxidation on BC scaffold for tissue engineering use was conducted. • TEMPO-mediated oxidation did not degrade the intrinsic advantages of BC scaffold. • TEMPO-mediated oxidation could impart BC scaffold with new functional groups. • Feasibility of TEMPO-oxidized BC as tissue engineering scaffold was confirmed

  18. Metabolic investigation in Gluconacetobacter xylinus and its bacterial cellulose production under a direct current electric field

    Directory of Open Access Journals (Sweden)

    Miao eLiu

    2016-03-01

    Full Text Available The effects of a direct current (DC electric field on the growth and metabolism of Gluconacetobacter xylinus were investigated in static culture. When a DC electric field at 10 mA was applied using platinum electrodes to the culture broth, bacterial cellulose (BC production was promoted in 12 hours (h but was inhibited in the last 12 h as compared to the control (without DC electric field. At the cathode, the presence of the hydrogen generated a strong reductive environment that is beneficial to cell growth. As compared to the control, the activities of glycolysis and tricarboxylic acid cycle, as well as BC productivity were observed to be slightly higher in the first 12 h. However, due to the absence of sufficient oxygen, lactic acid was accumulated from pyruvic acid at 18 h, which was not in favor of BC production. At the anode, DC inhibited cell growth in 6 h when compared to the control. The metabolic activity in G. xylinus was inhibited through the suppression of the tricarboxylic acid cycle and glycolysis. At 18-24 h, cell density was observed to decrease, which might be due to the electrolysis of water that significantly dropped the pH of cultural broth far beyond the optimal range. Meanwhile, metabolites for self-protection were accumulated, for instance proline, glutamic acid, gluconic acid and fatty acids. Notably, the accumulation of gluconic acid and lactic acid made it a really tough acid stress to cells at the anode and finally led to depression of cell growth.

  19. Metabolic Investigation in Gluconacetobacter xylinus and Its Bacterial Cellulose Production under a Direct Current Electric Field.

    Science.gov (United States)

    Liu, Miao; Zhong, Cheng; Zhang, Yu Ming; Xu, Ze Ming; Qiao, Chang Sheng; Jia, Shi Ru

    2016-01-01

    The effects of a direct current (DC) electric field on the growth and metabolism of Gluconacetobacter xylinus were investigated in static culture. When a DC electric field at 10 mA was applied using platinum electrodes to the culture broth, bacterial cellulose (BC) production was promoted in 12 h but was inhibited in the last 12 h as compared to the control (without DC electric field). At the cathode, the presence of the hydrogen generated a strong reductive environment that is beneficial to cell growth. As compared to the control, the activities of glycolysis and tricarboxylic acid cycle, as well as BC productivity were observed to be slightly higher in the first 12 h. However, due to the absence of sufficient oxygen, lactic acid was accumulated from pyruvic acid at 18 h, which was not in favor of BC production. At the anode, DC inhibited cell growth in 6 h when compared to the control. The metabolic activity in G. xylinus was inhibited through the suppression of the tricarboxylic acid cycle and glycolysis. At 18-24 h, cell density was observed to decrease, which might be due to the electrolysis of water that significantly dropped the pH of cultural broth far beyond the optimal range. Meanwhile, metabolites for self-protection were accumulated, for instance proline, glutamic acid, gluconic acid, and fatty acids. Notably, the accumulation of gluconic acid and lactic acid made it a really tough acid stress to cells at the anode and finally led to depression of cell growth. PMID:27014248

  20. Characterization of TEMPO-oxidized bacterial cellulose scaffolds for tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Honglin [School of Materials Science and Engineering, Tianjin University, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Xiong, Guangyao [School of Mechanical and Electrical Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013 (China); Hu, Da [School of Materials Science and Engineering, Tianjin University, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Ren, Kaijing [Department of Joint Surgery, Tianjin Hospital, Tianjin 300211 (China); Yao, Fanglian; Zhu, Yong [School of Chemical Engineering, Tianjin University, Tianjin 300072 (China); Gao, Chuan [School of Materials Science and Engineering, Tianjin University, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Wan, Yizao, E-mail: yzwantju@126.com [School of Materials Science and Engineering, Tianjin University, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China)

    2013-12-16

    Introduction of active groups on the surface of bacterial cellulose (BC) nanofibers is one of the promising routes of tailoring the performance of BC scaffolds for tissue engineering. This paper reported the introduction of aldehyde groups to BC nanofibers by 2,2,6,6-tetramethylpyperidine-1-oxy radical (TEMPO)-mediated oxidation and evaluation of the potential of the TEMPO-oxidized BC as tissue engineering scaffolds. Periodate oxidation was also conducted for comparison. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses were carried out to determine the existence of aldehyde groups on BC nanofibers and the crystallinity. In addition, properties relevant to scaffold applications such as morphology, fiber diameter, mechanical properties, and in vitro degradation were characterized. The results indicated that periodate oxidation could introduce free aldehyde to BC nanofibers and the free aldehyde groups on the TEMPO-oxidized BC tended to transfer to acetal groups. It was also found that the advantageous 3D structure of BC scaffolds remained unchanged and that no significant changes in morphology, fiber diameter, tensile structure and in vitro degradation were found after TEMPO-mediated oxidation while significant differences were observed upon periodate oxidation. The present study revealed that TEMPO-oxidation could impart BC scaffolds with new functions while did not degrade their intrinsic advantages. - Highlights: • TEMPO-mediated oxidation on BC scaffold for tissue engineering use was conducted. • TEMPO-mediated oxidation did not degrade the intrinsic advantages of BC scaffold. • TEMPO-mediated oxidation could impart BC scaffold with new functional groups. • Feasibility of TEMPO-oxidized BC as tissue engineering scaffold was confirmed.

  1. Cellulose nanofibers decorated with magnetic nanoparticles : synthesis, structure and use in magnetized high toughness membranes for a prototype loudspeaker

    OpenAIRE

    Galland, Sylvain; Andersson, Richard; Salajkova, Michaela; Ström, Valter; Olsson, Richard; Berglund, Lars

    2013-01-01

    Magnetic nanoparticles are the functional component for magnetic membranes, but they are difficult to disperse and process into tough membranes. Here, cellulose nanofibers are decorated with magnetic ferrite nanoparticles formed in situ which ensures a uniform particle distribution, thereby avoiding the traditional mixing stage with the potential risk of particle agglomeration. The attachment of the particles to the nanofibrils is achieved via aqueous in situ hydrolysis of metal precursors on...

  2. Cellulose Acetate Membrane with Improved Perm-selectivity through Modification Dope Composition and Solvent Evaporation for Water Softening

    Directory of Open Access Journals (Sweden)

    T.D. Kusworo

    2014-05-01

    Full Text Available Membrane technology has been developed because applicated on several fields. Hence, in this study carried the production of cellulose acetate nano-filtration membranes for water softening. The main objective of this study was determined the effect of solvent evaporation time and the effect of adding PEG to the morphology and perm-selectivity of asymmetry membrane for water treatment. Membranes prepared by dry/wet phase inversion method with variation of solvent evaporation time of 10-15 sec and addition of 2.5-5 wt% PEG in the dope solution. Membrane characterization consists of calculation of membrane flux and rejection with brackish water as a feed, SEM and FTIR analysis. The research concluded that asymmetric cellulose acetate membrane can be made by dry/wet phase inversion method. The results of FTIR analysis showed the larger absorption peaks indicates that the increasing concentrations of PEG addition make the PEG molecular weight and the unit re-CH2-CH2 O-greater. The results of SEM analysis exhibited that all the membranes are formed has an asymmetric structure consisting of a thin fine porous structure selective barrier and sub-structure of the porous layer is thicker. Moreover, the addition of PEG, the larger pore of membrane will be formed. Performance optimum membrane was obtained on the composition of 23 wt% cellulose acetate, polyethylene-glycol 5 wt%, 72 wt% acetone and 1 wt% of distilled water in the solvent evaporation time of 25 sec and temperature coagulant at room temperature. Characterization of the optimum membrane were flux 22.33 L/m2/h/bar, 92% rejection for turbidity, rejection for dissolved solids 85 and 81% rejection for ions Ca2+, with modulus young around 12433 N/cm2, respectively.

  3. Optimization of culture conditions of producing bacterial cellulose utilizing starch wastewater%淀粉废水发酵产细菌纤维素发酵条件的优化

    Institute of Scientific and Technical Information of China (English)

    徐伟; 张妍; 傅徐阳

    2012-01-01

    The culture conditions of Gluconacetobacter xylinus producing bacterial cellulose utilizing corn starch wastewater(adding glucose 20g/L,corn steep liquor 40g/L,ethanol 150mL/L) were investigated through singlefactor and orthogonal tests. The suitable culture conditions were as follows.liquid level was 80mL in 250mL triangle bottle,pH4.0,inoculation volume was 9% (VN),culture temperature was 28℃ ,the the yield of bacterial cellulose reached the peak(4.41g/L) at this time. The bacterial cellulose was verified by FTIR,SEM was used to observe the surface pattern of bacterial cellulose membrane.%以玉米淀粉废水添加葡萄糖20g/L,玉米浆40班,乙醇150mL/L为发酵基质,采用单因素和正交实验设计对葡糖醋杆菌(Gluconacetobacter xylinus)发酵产细菌纤维素条件进行优化。结果表明,最佳发酵条件为:装液量80mL/250mL,pH4.0,接种量9%(V/V),温度28℃;在此条件下得到细菌纤维素产量为4.41g/L。采用傅立叶转换红外光谱FTIR验证产物为细菌纤维素,并由SEM扫描电镜观察纤维素膜表面形貌。

  4. Cellulose nanocrystal-filled poly(acrylic acid) nanocomposite fibrous membranes

    Science.gov (United States)

    Lu, Ping; Hsieh, You-Lo

    2009-10-01

    Nanocomposite fibrous membranes have been fabricated by electrospinning cellulose nanocrystal (CNC)-loaded poly(acrylic acid) (PAA) ethanol mixtures. Incorporating CNC in PAA significantly reduced fiber diameters and improved fiber uniformity. The average diameters of the as-spun nanocomposite fibers were significantly reduced from 349 nm to 162 nm, 141 nm, 90 nm and 69 nm at 5%, 10%, 15% and 20% CNC loading (by weight of a constant 4% PAA solution), respectively. CNC was well dispersed in the fibers as isolated rods oriented along the fiber axis and as spheres in the PAA matrix. The Young modulus and stress of the PAA/CNC nanocomposite fibers were significantly improved with increasing CNC loadings by up to 35-fold and 16-fold, respectively. Heat-induced esterification between the CNC surface hydroxyls and PAA carboxyl groups produced covalent crosslinks at the CNC-PAA interfaces, rendering the nanocomposite fibrous membranes insoluble in water, more thermally stable and far more superior in tensile strength. With 20% CNC, the crosslinked nanocomposite fibrous membrane exhibited a very impressive 77-fold increase in modulus and 58-fold increase in stress.

  5. Cellulose nanocrystal-filled poly(acrylic acid) nanocomposite fibrous membranes

    International Nuclear Information System (INIS)

    Nanocomposite fibrous membranes have been fabricated by electrospinning cellulose nanocrystal (CNC)-loaded poly(acrylic acid) (PAA) ethanol mixtures. Incorporating CNC in PAA significantly reduced fiber diameters and improved fiber uniformity. The average diameters of the as-spun nanocomposite fibers were significantly reduced from 349 nm to 162 nm, 141 nm, 90 nm and 69 nm at 5%, 10%, 15% and 20% CNC loading (by weight of a constant 4% PAA solution), respectively. CNC was well dispersed in the fibers as isolated rods oriented along the fiber axis and as spheres in the PAA matrix. The Young modulus and stress of the PAA/CNC nanocomposite fibers were significantly improved with increasing CNC loadings by up to 35-fold and 16-fold, respectively. Heat-induced esterification between the CNC surface hydroxyls and PAA carboxyl groups produced covalent crosslinks at the CNC-PAA interfaces, rendering the nanocomposite fibrous membranes insoluble in water, more thermally stable and far more superior in tensile strength. With 20% CNC, the crosslinked nanocomposite fibrous membrane exhibited a very impressive 77-fold increase in modulus and 58-fold increase in stress.

  6. 细菌纤维素复合材料的发酵制备研究%Production of Modified Bacterial Cellulose Composite by Fermentation

    Institute of Scientific and Technical Information of China (English)

    李朋; 唐水佳; 杨光; 杨雪霞; 洪枫

    2011-01-01

    The modified bacterial cellulose (BC) was produced during the static fermentation in the presence of water-soluble polymer materials including agar, soluble starch, gelatin and chitosan. The structure and physical properties of the modified bacterial cellulose were investigated by scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and a force test equipment. The results showed that both the mechanical strength and structure were changed by adding agar, soluble starch and gelatin. Chitosan exhibited negative effects on the synthesis of BC membrane due to its inhibition effect to the growth of bacteria. The BC modifications by adding the polymer materials were proved through TGA analysis.%通过在发酵培养基中添加琼脂、可溶性淀粉、明胶、壳聚糖等水溶性高分子物质制备改性细菌纤维素,并采用扫描电镜(SEM)、热重分析(TGA)、万能材料测试机等检测手段对改性细菌纤维素的结构、形态特征及物理性能进行研究。结果发现:琼脂、可溶性淀粉、明胶均在一定程度上对合成的细菌纤维素的强力和结构有一定的影响,而壳聚糖由于本身具有抑菌作用,它的添加抑制了细菌的生长,基本上不能合成纤维素。通过TGA分析证实改性细菌纤维素中添加物的存在。

  7. The Phytohormone Ethylene Enhances Cellulose Production, Regulates CRP/FNRKx Transcription and Causes Differential Gene Expression within the Bacterial Cellulose Synthesis Operon of Komagataeibacter (Gluconacetobacter) xylinus ATCC 53582

    Science.gov (United States)

    Augimeri, Richard V.; Strap, Janice L.

    2015-01-01

    Komagataeibacter (formerly Gluconacetobacter) xylinus ATCC 53582 is a plant-associated model organism for bacterial cellulose (BC) biosynthesis. This bacterium inhabits the carposphere where it interacts with fruit through the bi-directional transfer of phytohormones. The majority of research regarding K. xylinus has been focused on identifying and characterizing structural and regulatory factors that control BC biosynthesis, but its ecophysiology has been generally overlooked. Ethylene is a phytohormone that regulates plant development in a variety of ways, but is most commonly known for its positive role on fruit ripening. In this study, we utilized ethephon (2-chloroethylphosphonic acid) to produce in situ ethylene to investigate the effects of this phytohormone on BC production and the expression of genes known to be involved in K. xylinus BC biosynthesis (bcsA, bcsB, bcsC, bcsD, cmcAx, ccpAx and bglAx). Using pellicle assays and reverse transcription quantitative polymerase chain reaction (RT-qPCR), we demonstrate that ethephon-derived ethylene enhances BC directly in K. xylinus by up-regulating the expression of bcsA and bcsB, and indirectly though the up-regulation of cmcAx, ccpAx, and bglAx. We confirm that IAA directly decreases BC biosynthesis by showing that IAA down-regulates bcsA expression. Similarly, we confirm that ABA indirectly influences BC biosynthesis by showing it does not affect the expression of bcs operon genes. In addition, we are the first to report the ethylene and indole-3-acetic acid (IAA) induced differential expression of genes within the bacterial cellulose synthesis (bcs) operon. Using bioinformatics we have identified a novel phytohormone-regulated CRP/FNRKx transcription factor and provide evidence that it influences BC biosynthesis in K. xylinus. Lastly, utilizing current and previous data, we propose a model for the phytohormone-mediated fruit-bacteria interactions that K. xylinus experiences in nature. PMID:26733991

  8. The phytohormone ethylene enhances bacterial cellulose production, regulates CRP/FNRKx transcription and causes differential gene expression within the cellulose synthesis operon of Komagataeibacter (Gluconacetobacter xylinus ATCC 53582

    Directory of Open Access Journals (Sweden)

    Richard Vincent Augimeri

    2015-12-01

    Full Text Available Komagataeibacter (formerly Gluconacetobacter xylinus ATCC 53582 is a plant-associated model organism for bacterial cellulose (BC biosynthesis. This bacterium inhabits the carposphere where it interacts with fruit through the bi-directional transfer of phytohormones. The majority of research regarding K. xylinus has been focused on identifying and characterizing structural and regulatory factors that control BC biosynthesis, but its ecophysiology has been generally overlooked. Ethylene is a phytohormone that regulates plant development in a variety of ways, but is most commonly known for its positive role on fruit ripening. In this study, we utilized ethephon (2-chloroethylphosphonic acid to produce in situ ethylene to investigate the effects of this phytohormone on BC production and the expression of genes known to be involved in K. xylinus BC biosynthesis (bcsA, bcsB, bcsC, bcsD, cmcAx, ccpAx and bglAx. Using pellicle assays and reverse transcription quantitative polymerase chain reaction (RT-qPCR, we demonstrate that ethephon-derived ethylene enhances BC directly in K. xylinus by up-regulating the expression of bcsA and bcsB, and indirectly though the up-regulation of cmcAx, ccpAx and bglAx. We confirm that IAA directly decreases BC biosynthesis by showing that IAA down-regulates bcsA expression. Similarly, we confirm that ABA indirectly influences BC biosynthesis by showing it does not affect the expression of bcs operon genes. In addition, we are the first to report the ethylene and indole-3-acetic acid (IAA induced differential expression of genes within the bacterial cellulose synthesis (bcs operon. Using bioinformatics we have identified a novel phytohormone-regulated CRP/FNRKx transcription factor and provide evidence that it influences BC biosynthesis in K. xylinus. Lastly, utilizing current and previous data, we propose a model for the phytohormone-mediated fruit-bacteria interactions that K. xylinus experiences in nature.

  9. The Phytohormone Ethylene Enhances Cellulose Production, Regulates CRP/FNRKx Transcription and Causes Differential Gene Expression within the Bacterial Cellulose Synthesis Operon of Komagataeibacter (Gluconacetobacter) xylinus ATCC 53582.

    Science.gov (United States)

    Augimeri, Richard V; Strap, Janice L

    2015-01-01

    Komagataeibacter (formerly Gluconacetobacter) xylinus ATCC 53582 is a plant-associated model organism for bacterial cellulose (BC) biosynthesis. This bacterium inhabits the carposphere where it interacts with fruit through the bi-directional transfer of phytohormones. The majority of research regarding K. xylinus has been focused on identifying and characterizing structural and regulatory factors that control BC biosynthesis, but its ecophysiology has been generally overlooked. Ethylene is a phytohormone that regulates plant development in a variety of ways, but is most commonly known for its positive role on fruit ripening. In this study, we utilized ethephon (2-chloroethylphosphonic acid) to produce in situ ethylene to investigate the effects of this phytohormone on BC production and the expression of genes known to be involved in K. xylinus BC biosynthesis (bcsA, bcsB, bcsC, bcsD, cmcAx, ccpAx and bglAx). Using pellicle assays and reverse transcription quantitative polymerase chain reaction (RT-qPCR), we demonstrate that ethephon-derived ethylene enhances BC directly in K. xylinus by up-regulating the expression of bcsA and bcsB, and indirectly though the up-regulation of cmcAx, ccpAx, and bglAx. We confirm that IAA directly decreases BC biosynthesis by showing that IAA down-regulates bcsA expression. Similarly, we confirm that ABA indirectly influences BC biosynthesis by showing it does not affect the expression of bcs operon genes. In addition, we are the first to report the ethylene and indole-3-acetic acid (IAA) induced differential expression of genes within the bacterial cellulose synthesis (bcs) operon. Using bioinformatics we have identified a novel phytohormone-regulated CRP/FNRKx transcription factor and provide evidence that it influences BC biosynthesis in K. xylinus. Lastly, utilizing current and previous data, we propose a model for the phytohormone-mediated fruit-bacteria interactions that K. xylinus experiences in nature. PMID:26733991

  10. A 99Tcm labeled HYNIC peptide 'tracer' libraries on continuous cellulose membrane supports

    International Nuclear Information System (INIS)

    Objective: The interference of bifunctional ligands with activities of small peptides has long been recognized. To solve the problem, the hydrazine-nicotinamide (HYNIC) conjugated peptide 'tracer' libraries were synthesized on a continuous cellulose membrane support and the 99Tcm labeled heat shock protein 70 (HSP70) binding peptides were identified by screening libraries with HSP70. Methods: Octapeptide libraries were prepared by manual spot synthesis. HYNIC peptides were C terminally attached to cellulose via a (β-Ala)2 spacer. For screening, the cellulose membranes were incubated with human HSP70 (or biotin labeled HSP70) after nonspecific blocking. Alkaline phosphatase labeled streptavidin and Ab against HSP70 were used for the detection of HSP70 binding. Human lung cancer cell lines (A549 and H460) were cultured in RPMI1640 medium supplemented with 10% fetal calf serum and antibiotics. For in vivo test, 2 x l05 cells were subcutaneously transplanted into the chest of female nude mice. Results: Quality control of HYNIC peptide libraries was good as carried out by 99Tcm labeling. Because peptide NLLRLTG had high affinity for HSP70 family members, 99Tcm-HYNIC-NLLRLTG was used as the control. Fifteen HYNIC peptides were found with HSP70 binding property. Among them, eight peptides had higher uptake (percentage activity of injection dose pergram of tissue, %ID/g) values than 99Tcm-HYNIC-NLLRLTG in tumor. 99Tcm-HYNIC-QGVLTGTR had the best distribution in tumors. Six hours after injection, the %ID/g values of 99Tcm HYNIC-QGVLTGTR and 99Tcm-HYNIC-NLLRLTG in tumor were (1.15±0.32)% ID/g and (0.75±0.24)% ID/g respectively. In vivo replace studies and heat shock stress of tumors demonstrated that 99Tcm-HYNIC-QGVLTGTR was the HSP70 binding peptide compound, but not 99Tcm-HYNIC-NLLRLTG. Conclusions: The identification of 99Tcm labeled HSP70 binding peptides from HYNIC conjugated octapeptide libraries facilitated the hypothesis of the 'tracer' libraries. The design and

  11. Establishment of rumen-mimic bacterial consortia: A functional union for bio-hydrogen production from cellulosic bioresource

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jui-Jen [Genomics Research Center, Academia Sinica, Nankang, Taipei 115 (China); Lin, Jia-Jen; Ho, Cheng-Yu.; Chin, Wei-Chih; Huang, Chieh-Chen [Department of Life Sciences, National Chung Hsing University,Taichung (China)

    2010-12-15

    The study aimed to establish stable rumen-mimic bacterial consortia as a functional union for simultaneous saccharification and fermentation from cellulosic bioresource. The consortia was constructed by repeated-batch culture with ruminal microflora and napiergrass at 38 C. The major bacterial composition of batch culture was monitored by 16S rRNA gene-targeted denaturing gradient gel electrophoresis (DGGE). The result showed that a stable consortia constituted by ruminal microflora was formed, and the consortia includes bacterial strains such as Clostridium xylanolyticum, Clostridium papyrosolvens, Clostridium beijerinckii, Ruminococcus sp., Ethanoligenens harbinense, and Desulfovibrio desulfuricans. The Clostridium genus was showed as the dominant population in the system and contributed to the biohydrogen production. During each eight days incubation period, the functional consortia could degrade an average of 27% hemicellulose and 2% cellulose from napiergrass biomass. While the increasing of the reducing sugars and their converting to biohydrogen gas productivity were also observed. The time course profile for cellulytic enzymes showed that the hydrolysis of complex lignocellulosic material may occur through the ordered actions of xylenase and cellulase activities. (author)

  12. Dynamic bacterial communities on reverse-osmosis membranes in a full-scale desalination plant.

    Science.gov (United States)

    Manes, C-L de O; West, N; Rapenne, S; Lebaron, P

    2011-01-01

    To better understand biofouling of seawater reverse osmosis (SWRO) membranes, bacterial diversity was characterized in the intake water, in subsequently pretreated water and on SWRO membranes from a full-scale desalination plant (FSDP) during a 9 month period. 16S rRNA gene fingerprinting and sequencing revealed that bacterial communities in the water samples and on the SWRO membranes were very different. For the different sampling dates, the bacterial diversity of the active and the total bacterial fractions of the water samples remained relatively stable over the sampling period whereas the bacterial community structure on the four SWRO membrane samples was significantly different. The richness and evenness of the SWRO membrane bacterial communities increased with usage time with an increase in the Shannon diversity index of 2.2 to 3.7. In the oldest SWRO membrane (330 days), no single operational taxonomic unit (OTU) dominated and the majority of the OTUs fell into the Alphaproteobacteria or the Planctomycetes. In striking contrast, a Betaproteobacteria OTU affiliated to the genus Ideonella was dominant and exclusively found in the membrane used for the shortest time (10 days). This suggests that bacteria belonging to this genus could be one of the primary colonizers of the SWRO membrane. Knowledge of the dominant bacterial species on SWRO membranes and their dynamics should help guide culture studies for physiological characterization of biofilm forming species. PMID:21108068

  13. Preparation and properties of PEC nanocomposite membranes with carboxymethyl cellulose and modified silica.

    Science.gov (United States)

    Liu, Tao; An, Quan-Fu; Wang, Xue-San; Zhao, Qiang; Zhu, Bao-Ku; Gao, Cong-Jie

    2014-06-15

    Carboxymethyl cellulose (CMC)-modified silica nanocomposites were prepared via in situ incorporation of modified silica during the ionic complexation between CMC and poly(2-methacryloyloxy ethyl trimethylammonium chloride) (PDMC). Ionic bonds were introduced between the poly(2-acrylamido-2-methylproanesulfonic acid) modified silica (SiO2-PAMPS) and the polyelectrolyte complex (PEC) matrix. The PEC nanocomposites (PECNs) and their membranes (PECNMs) were characterized with Fourier transform-infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and tensile testing. PECNM containing 5 wt.% SiO2-PAMPS showed a tensile strength of 68 MPa and elongation at break of 7.1%, which were 1.9 and 2.6 times as high as those of pristine PEC membranes, respectively. Moreover, the pervaporation performance of as-prepared PECNMs was evaluated with dehydration of 10 wt.% aqueous isopropanol mixtures, and the PECNMs exhibited a flux of 2,400 gm(-2)h(-1) with a high separation factor of 4491 at 70°C. PMID:24721095

  14. Fermentation Tecniques and Applications of Bacterial Cellulose: a Review Técnicas de fermentación y aplicaciones de la celulosa bacteriana: una revisión

    OpenAIRE

    Luz Dary Carreño Pineda; Luis Alfonso Caicedo Mesa; Carlos Arturo Martínez Riascos

    2012-01-01

    Bacterial cellulose is a polymer obtained by fermentation with microorganismsfrom Acetobacter, Rhizobium, Agrobacterium and Sarcina genera. Amongthem, Acetobacter xylinum is the most efficient specie. This polymer hasthe same chemical composition of plant cellulose, but its conformation andphysicochemical properties are different, making it attractive for several applications, especially in the areas of food, separation processes, catalysis andhealth, due to its biocompatibility. However, the ma...

  15. Permeation of water as a tool for characterizing the effect of solvent, film thickness and water solubility in cellulose acetate membranes

    OpenAIRE

    Valente, Artur J. M.; Polishchuk, Alexandre Ya.; Burrows, Hugh D.; Lobo, Victor M. M.

    2005-01-01

    Cellulose acetate membranes have been used in many applications; of particular interest are reverse osmosis systems, and as a neutral matrix for incorporation of different polymers (e.g., conducting polymers), inorganic ions (e.g., lanthanides) and organic (e.g., pharmaceutical) compounds. The properties of the new polymers derived from cellulose acetate or blends depend on those of cellulose acetate. This work presents an attempt to find links between thermodynamic and kinetic properties of ...

  16. 密闭法生物合成小口径细菌纤维素管%Biosynthesis of Small Caliber Bacterial Cellulose Tube by Enclosure Method

    Institute of Scientific and Technical Information of China (English)

    陈欢; 胡凌俊; 陈胜杰; 曹献英

    2012-01-01

    [Objective] To explore the feasibility of biosynthesizing small caliber bacterial cellulose tube by using the batch enclosure method to culture Acetobacter xylinum, and characterize the tube. [ Method] I1 sing coconut water as medium and silicone tube as the vector of oxygen permeation, bacterial cellulose tube was cultured in closed vessel. Then the water content and porosity of cultured products were determined, the effects of thermal drying and freeze drying on cultured products were compared, and the cultured products were scanned. [ Result] Small caliber bacterial cellulose tube can be synthesized by using batch closed culture method. Compared thermal drying with freeze drying, the latter was more suitable to tube storage and next research, compact mesh structure of tube wall and layered structure of tube section were observed by using SEM to scan tube wall and cross section. [Conclusion] Small caliber bacterial cellulose tube can be synthesized by using batch closed culture method, and tube wall with nanometer aperture had potential to be used as separation membrane.%[目的]采用间歇式密闭培养法培养木醋杆菌,探讨该方法合成小口径细菌纤维素管的可行性并对管进行表征研究.[方法]以椰子水为培养基、硅胶管为渗氧载体,在密闭罐中培养木醋杆菌,以合成小口径细菌纤维素管,之后测定产物的湿态含水率,孔隙率,比较热干燥与冷冻干燥2种干燥条件的差异,并通过扫描电镜(SEM)观察培养产物的形貌.[结果]密闭式间歇培养法能生物合成小口径细菌纤维素管;通过不同干燥条件的比较发现,相比于热干燥,冷冻干燥更适合于管的储存及后续工作;通过扫描电镜观察合成的管壁及横截面结构,发现该管壁处有较致密的网孔结构,且管断面有明显的层状结构.[结论]小口径细菌纤维素管可通过间歇式密闭法合成,且管的管壁有纳米级孔径,提示其有作为分离膜的潜力.

  17. 细菌纤维素在NMMO·H20中的溶解性能%Dissolution with Bacterial Cellulose in NMMO· H2O

    Institute of Scientific and Technical Information of China (English)

    高秋英; 沈新元; 王哲惟

    2011-01-01

    Dissolution of bacterial cellulose in N-methylmorpholine-N-oxide monohydrate (NMMO·H2O) was researched Structure and properties of regenerated bacterial cellulose film were analysed by using the polarizing microscope (PM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermal gravity (TG), and so on. The results were demonstrated that NMMO·H2O is a kind of good solvent for bacterial cellulose. Physical changes are primary in the whole dissolving process. And the increase of the temperate will lead to the reduction of the polymerization degree. The crystalline form of bacterial cellulose transforms from cellulose I to cellulose II after regeneration from NMMO·H2O, and the heat stability of the regenerated bacterial cellulose is less than that of the original one.%研究了细菌纤维素在N-甲基吗啉-N-氧化物的一水合物(NMMO·H2O)中的溶解性能,通过偏光显微分析(PM)、红外光谱分析(FT-IR)、X射线衍射分析(XRD)、热重分析(TG)等手段,表征了该溶剂体系获得的再生细菌纤维素膜的结构和性能.结果表明,该溶剂体系对细菌纤维素有良好的溶解性能,溶解过程以物理变化为主,溶解温度越高,再生后细菌纤维素的降解程度越大.且溶解后细菌纤维素晶型由纤维素Ⅰ型转变为纤维素Ⅱ型,但其热稳定性低于再生前细菌纤维素.

  18. Research Progress of Biomimetic Material Prepared by Bacterial Cellulose%细菌纤维素制备生物医用材料的研究进展

    Institute of Scientific and Technical Information of China (English)

    蔡锐波; 陈海宏; 陈向标

    2012-01-01

    Bacterial cellulose(BC) is a potential versatile biomaterial. Research progress of medical dressing, vascular prosthesis and artificial skeleton prepared by bacterial cellulose were introduced at home and abroad. In addition, the hot spots and the main development direction of bacterial cellulose composite biomimetic materials were discussed.%细菌纤维素是一种很有潜力的新型生物纤维材料.重点介绍了国内外关于细菌纤维素在制备医用敷料、人造血管及人造骨骼等医用材料方面的研究进展,并指出今后的研究热点及主要发展方向.

  19. Preparation and evaluation of water-in-soybean oil-in-water emulsions by repeated premix membrane emulsification method using cellulose acetate membrane.

    Science.gov (United States)

    Muhamad, Ida Idayu; Quin, Chang Hui; Selvakumaran, Suguna

    2016-04-01

    The purpose of this study was to investigate the preparation of formulated water- in-soybean oil-in-water emulsions by repeated premix membrane emulsification method using a cellulose acetate membrane. The effect of selective membrane emulsification process parameters (concentration of the emulsifiers, number of passes of the emulsions through the membrane and storage temperature) on the properties and stability of the developed emulsions were also investigated. 1, 3, 6, 8-pyrenetetrasulfonic acid tetrasodium salt (PTSA) was used as a hydrophilic model ingredient for the encapsulation of bioactive substances. W/O emulsions with 7 wt% (weight percentage) PGPR displays homogeneous and very fine dispersions, with the median diameter at 0.640 μm. Meanwhile, emulsions prepared by membrane emulsification (fine W/O/W) showed the highest stability at Tween 80 concentrations of 0.5 wt.% (weight percentage). It concluded that at 7 wt.% (weight percentage) PGPR concentration and 0.5 wt.% (weight percentage) Tween 80 concentrations, the most uniform particles with minimum mean size of oil drops (9.926 μm) were obtained after four passes through the membrane. Thus, cellulose acetate membrane can be used for preparing a stable W/O/W emulsions by repeated premix ME due to low cost and relatively easy to handle. PMID:27413211

  20. NMMO prepared cellulose membrane of luffa fiber%NMMO法制备丝瓜络再生纤维膜

    Institute of Scientific and Technical Information of China (English)

    袁波; 王迎; 张剑

    2013-01-01

    NMMO was used to prepare cellulose membrane of luffa fiber and its characters and structure were investigated by SEM,FTIR,XRD and TG.SEM result showed that the luffa membrane has an asymmetrical thin skin layer.The characteristic peak shape of the cellulose membrane was observed by FTIR.X ray diffraction analysis showed that the crystalline modification of cellulose membrane made by NMMO process was cellulose Ⅱ.TG analysis shows that the luffa membrane has good thermal stability and satisfied with application requirement.%采用NMMO工艺制取丝瓜络纤维素膜,并对纤维素膜进行表征.利用扫描电子显微镜(SEM)、红外光谱分析仪(FTIR)、X射线衍射仪(XRD)、热力学分析仪(TG)对丝瓜络纤维膜进行表征.SEM结果显示丝瓜络纤维素膜的厚度非常薄,并且膜的表面非常致密;FTIR光谱图显示丝瓜络纤维素膜的特征峰的形状与丝瓜络纤维的特征峰相似,显示出纤维素特征;XRD曲线图显示丝瓜络纤维素膜的纤维素结晶由纤维素Ⅰ变为纤维素Ⅱ;TG曲线图表明丝瓜络纤维素膜具有良好的热稳定性能,符合应用要求.

  1. Rheological properties of aqueous suspension of bacterial cellulose%细菌纤维素水悬浮液的流变特性

    Institute of Scientific and Technical Information of China (English)

    李瑞; 杜双奎; 李志西; 程正丽; 乔艳霞; 靳玉红

    2014-01-01

    为能更好地指导细菌纤维素作为增稠剂应用于食品工业,进一步了解细菌纤维素水悬浮液的流变学特性,该研究首先用原子力显微镜观察了细菌纤维素水悬浮液中纤维素的形态结构和直径,然后以羧甲基纤维素溶液为对照,分别从静态和动态2方面着手,用物性测定仪和流变仪测定细菌纤维素水悬浮液的稠度、黏性指数、剪切应力、表观黏度,剪切应力和表观黏度与剪切速率的关系等特性指标。分析了稠度、黏性指数、剪切应力、表观黏度与悬浮液中细菌纤维素质量分数的关系,比较了细菌纤维素水悬浮液与羧甲基纤维素溶液的差别,结果显示:细菌纤维素的直径为60~80 nm;细菌纤维素水悬浮液中的纤维素相互缠结,呈现散乱分布的网状结构,纤维素可聚集形成平行或螺旋状的纤维束;细菌纤维素水悬浮液在质量分数为0.4%~1.2%时的稠度和黏性指数远高于相同质量分数的羧甲基纤维素钠溶液,且与质量分数呈显著的正相关关系(P<0.05, R2>0.95);在较低剪切速率0.02~10 s-1下,悬浮液的表观黏度随剪切速率的增加呈缓慢下降的趋势,出现剪切稀化现象;当剪切应力达到屈服应力时悬浮液才发生流动,且剪切应力与剪切速率呈正相关(P<0.05, R2>0.99),流动特性指数为1,细菌纤维素悬浮液为非牛顿流体的宾汉塑性流体。因此细菌纤维素水悬浮液做为增稠剂应用于食品工业时具有宾汉塑性流体的特征。%With the application of bacterial cellulose in industry, the rheological properties of bacterial cellulose suspension, dissolved in heavy metals and organic solvents, have received extensive attention. However, heavy metals and some organic solvents can’t be used in food, drug and cosmetic industry. Therefore, this study was aimed to investigate the rheological properties of bacterial

  2. Nano- and macroscale structural and mechanical properties of in situ synthesized bacterial cellulose/PEO-b-PPO-b-PEO biocomposites.

    Science.gov (United States)

    Tercjak, Agnieszka; Gutierrez, Junkal; Barud, Hernane S; Domeneguetti, Rafael R; Ribeiro, Sidney J L

    2015-02-25

    Highly transparent biocomposite based on bacterial cellulose (BC) mat modified with poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) block copolymer (EPE) were fabricated in situ during biosynthesis of bacterial cellulose in a static culture from Gluconacetobacter xylinum. The effect of the addition to the culture medium of water-soluble EPE block copolymer on structure, morphology, crystallinity, and final properties of the novel biocomposites was investigated at nano- and macroscale. High compatibility between components was confirmed by ATR-FTIR indicating hydrogen bond formation between the OH group of BC and the PEO block of EPE block copolymer. Structural properties of EPE/BC biocomposites showed a strong effect of EPE block copolymer on the morphology of the BC mats. Thus, the increase of the EPE block copolymer content lead to the generation of spherulites of PEO block, clearly visualized using AFM and MO technique, changing crystallinity of the final EPE/BC biocomposites investigated by XRD. Generally, EPE/BC biocomposites maintain thermal stability and mechanical properties of the BC mat being 1 wt % EPE/BC biocomposite material with the best properties. Biosynthesis of EPE/BC composites open new strategy to the utilization of water-soluble block copolymers in the preparation of BC mat based biocomposites with tunable properties. PMID:25633223

  3. Comparative pyrosequencing analysis of bacterial community change in biofilm formed on seawater reverse osmosis membrane.

    Science.gov (United States)

    Kim, In S; Lee, Jinwook; Kima, Sung-Jo; Yu, Hye-Weon; Jang, Am

    2014-01-01

    The change in bacterial community structure induced by bacterial competition and succession was investigated during seawater reverse osmosis (SWRO) in order to elucidate a possible link between the bacterial consortium on SWRO membranes and biofouling. To date, there has been no definitive characterization of the microbial diversity in SWRO in terms of distinguishing time-dependent changes in the richness or abundance of bacterial species. For bacterial succession within biofilms on the membrane surface, SWRO using a cross-flow filtration membrane test unit was operated for 5 and 100h, respectively. As results of the pyrosequencing analysis, bacterial communities differed considerably among seawater and the 5 and 100 h samples. From a total of 33,876 pyrosequences (using a 95% sequence similarity), there were less than 1% of shared species, confirming the influence of the operational time factor and lack of similarity of these communities. During SWRO operation, the abundance of Pseudomonas stutzeri BBSPN3 (GU594474) belonging to gamma-Proteobacteria suggest that biofouling of SWRO membrane might be driven by the dominant influence of a specific species. In addition, among the bacterial competition of five bacterial species (Pseudomonas aeruginosa, Bacillus sp., Rhodobacter sp., Flavobacterium sp., and Mycobacterium sp.) competing for bacterial colonization on the SWRO membrane surfaces, it was exhibited that Bacillus sp. was the most dominant. The dominant influences ofPseudomonas sp. and Bacillus sp. on biofouling during actual SWRO is decisive depending on higher removal efficiency of the seawater pretreatment. PMID:24600849

  4. Preparation, characterization and thermal studies of polymer inclusion cellulose acetate membrane with calix[4]resorcinarenes as carriers

    Energy Technology Data Exchange (ETDEWEB)

    Benosmane, Nadjib [Laboratoire de Chimie Organique Appliquee (Groupe Heterocycles Associe CRAPC), Faculte de Chimie, Universite des Sciences et de la Technologie Houari Boumediene, BP 32, El-Alia, 16111 Bab-Ezzouar, Alger (Algeria); Guedioura, Bouzid [Division reacteur/Centre de Recherche Nucleaire de Draria, CRND, BP 43 Draria, Alger (Algeria); Hamdi, Safouane Mohammed [Laboratoire de Biochimie-Purpan, Institut Federatif de Biologie, CHU Toulouse 330, avenue de Grande-Bretagne - F-31059 Toulouse Cedex 9 (France); Hamdi, Maamar [Laboratoire de Chimie Organique Appliquee (Groupe Heterocycles Associe CRAPC), Faculte de Chimie, Universite des Sciences et de la Technologie Houari Boumediene, BP 32, El-Alia, 16111 Bab-Ezzouar, Alger (Algeria); Boutemeur, Baya, E-mail: bayakheddis@hotmail.com [Laboratoire de Chimie Organique Appliquee (Groupe Heterocycles Associe CRAPC), Faculte de Chimie, Universite des Sciences et de la Technologie Houari Boumediene, BP 32, El-Alia, 16111 Bab-Ezzouar, Alger (Algeria)

    2010-07-20

    A polymer inclusion membrane (PIM) system with cellulose acetate polymer as support and calix[4]resorcinarenes as carriers has been developed. Special attention was paid to PIM characterization using scanning electron microscopy, Fourier-transform infra-red study, X-ray scattering and thermogravimetric analyses. The efficiency of the membrane transport was optimized as a function of pH, stirring speed, aqueous phases and membrane composition. The results suggested that the transport mechanism is a counter-transport of protons, the mechanism was mainly controlled by the diffusion of the complex formed in the membrane core. Analysis of lead(II) transport through these PIMs was performed. It was found that calix[4]resorcinarenes containing membranes were flexible, resistant and heterogeneous without plasticizer addition.

  5. Preparation, characterization and thermal studies of polymer inclusion cellulose acetate membrane with calix[4]resorcinarenes as carriers

    International Nuclear Information System (INIS)

    A polymer inclusion membrane (PIM) system with cellulose acetate polymer as support and calix[4]resorcinarenes as carriers has been developed. Special attention was paid to PIM characterization using scanning electron microscopy, Fourier-transform infra-red study, X-ray scattering and thermogravimetric analyses. The efficiency of the membrane transport was optimized as a function of pH, stirring speed, aqueous phases and membrane composition. The results suggested that the transport mechanism is a counter-transport of protons, the mechanism was mainly controlled by the diffusion of the complex formed in the membrane core. Analysis of lead(II) transport through these PIMs was performed. It was found that calix[4]resorcinarenes containing membranes were flexible, resistant and heterogeneous without plasticizer addition.

  6. Ultrafiltration performance of PVDF, PES, and cellulose membranes for the treatment of coconut water (Cocos nucifera L.

    Directory of Open Access Journals (Sweden)

    Isabel Cristina do Nascimento Debien

    2013-12-01

    Full Text Available Ultrafiltration (UF inhibits the enzymatic activity which is responsible for color changes of coconut water without the need for heat treatment. In the present study, UF performance in terms of the permeate flux and enzymatic retention of the coconut water was evaluated at laboratory unit (LU and pilot unit (PU. The membranes studied were polyethersulfone 150 kDa (UP150, polyvinylidene fluoride 150 kDa (UV150 and cellulose 30 kDa (UC030. The UP150 membrane showed the best permeate flux. The UC030 membrane showed the lowest flux, but it resulted in 100% enzymatic retention, while the other membranes showed enzymatic retentions between 71 and 85%. The application of the UC030 in the pilot unit (PU resulted in a flux value higher than that obtained in the LU due to the tangential velocity effect. The UC030 membrane has proved adequate for industrial applications.

  7. New biphasic monocomponent composite material obtained by the partial oxypropylation of bacterial cellulose; Novo material composito bifasico monocomponente obtido pela oxipropilacao parcial de celulose bacteriana

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This study aimed to partial oxypropylation of bacterial cellulose (CB), as well as the characterization of pure CB, oxypropylated CB (CBO) and oxypropylated CB after Soxhlet extraction with hexane (CBOE). The oxypropylation reaction was carried out by propylene oxide polymerization, catalyzed by KOH, in the presence of CB The CB samples, before and after modification, were subjected to analysis of scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). It was possible verify that the partial transformation of bacterial cellulose by inserting a layer of thermoplastic polymer on its surface occurred efficiently, obtaining a biphasic monocomponent composite material. (author)

  8. Comparison of a fungal (family I) and bacterial (family II) cellulose-binding domain.

    OpenAIRE

    Tomme, P; Driver, D P; Amandoron, E A; Miller, R. C.; Antony, R.; Warren, J.; Kilburn, D G

    1995-01-01

    A family II cellulose-binding domain (CBD) of an exoglucanase/xylanase (Cex) from the bacterium Cellulomonas fimi was replaced with the family I CBD of cellobiohydrolase I (CbhI) from the fungus Trichoderma reesei. Expression of the hybrid gene in Escherichia coli yielded up to 50 mg of the hybrid protein, CexCBDCbhI, per liter of culture supernatant. The hybrid was purified to homogeneity by affinity chromatography on cellulose. The relative association constants (Kr) for the binding of Cex,...

  9. Predicting bioavailability of PAHs in field-contaminated soils by passive sampling with triolein embedded cellulose acetate membranes

    International Nuclear Information System (INIS)

    Triolein embedded cellulose acetate membrane (TECAM) was used for passive sampling of the fraction of naphthalene, phenanthrene, pyrene and benzo[a]pyrene in 18 field-contaminated soils. The sampling process of PAHs by TECAM fitted well with a first-order kinetics model and PAHs reached 95% of equilibrium in TECAM within 20 h. Concentrations of PAHs in TECAM (CTECAM) correlated well with the concentrations in soils (r2 = 0.693-0.962, p TECAM and the partition coefficient between TECAM and water (KTECAM-w). After lipid normalization nearly 1:1 relationships were observed between PAH concentrations in TECAMs and earthworms exposed to the soils (r2 = 0.591-0.824, n = 18, p < 0.01). These results suggest that TECAM can be a useful tool to predict bioavailability of PAHs in field-contaminated soils. - Triolein embedded cellulose acetate membranes can be a useful tool to predict bioavailability of PAHs in field-contaminated soils

  10. Complete Genome Sequence of a Gluconacetobacter hansenii ATCC 23769 Isolate, AY201, Producer of Bacterial Cellulose and Important Model Organism for the Study of Cellulose Biosynthesis

    Science.gov (United States)

    Mehta, Kalpa

    2016-01-01

    The cellulose producer and model organism used for the study of cellulose biosynthesis, Gluconacetobacter hansenii AY201, is a variant of G. hansenii ATCC 23769. We report here the complete nucleotide sequence of G. hansenii AY201, information which may be utilized to further the research into understanding the genes necessary for cellulose biosynthesis. PMID:27516506

  11. Complete Genome Sequence of a Gluconacetobacter hansenii ATCC 23769 Isolate, AY201, Producer of Bacterial Cellulose and Important Model Organism for the Study of Cellulose Biosynthesis.

    Science.gov (United States)

    Pfeffer, Sarah; Mehta, Kalpa; Brown, R Malcolm

    2016-01-01

    The cellulose producer and model organism used for the study of cellulose biosynthesis, Gluconacetobacter hansenii AY201, is a variant of G. hansenii ATCC 23769. We report here the complete nucleotide sequence of G. hansenii AY201, information which may be utilized to further the research into understanding the genes necessary for cellulose biosynthesis. PMID:27516506

  12. Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers

    Czech Academy of Sciences Publication Activity Database

    Štursová, Martina; Žifčáková, Lucia; Leigh, M. B.; Burgess, R.; Baldrian, Petr

    2012-01-01

    Roč. 80, č. 3 (2012), s. 735-746. ISSN 0168-6496 R&D Projects: GA ČR GA526/08/0751; GA MŠk(CZ) ME10028 Institutional research plan: CEZ:AV0Z50200510 Keywords : cellobiohydrolase * decomposition * cellulose Subject RIV: EE - Microbiology, Virology Impact factor: 3.563, year: 2012

  13. Structural, chemical surface and transport modifications of regenerated cellulose dense membranes due to low-dose {gamma}-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, M.I. [Grupo de Caracterizacion Electrocinetica en Membranas e Interfases, Departamento de Fisica Aplicada I, Facultad de Ciencias, Universidad de Malaga, E-29071 Malaga (Spain); Heredia-Guerrero, J.A., E-mail: jose.alejandro@icmse.csic.es [Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Avda, Americo Vespuccio 49, 41092 Sevilla (Spain); Galan, P. [Grupo de Caracterizacion Electrocinetica en Membranas e Interfases, Departamento de Fisica Aplicada I, Facultad de Ciencias, Universidad de Malaga, E-29071 Malaga (Spain); Benitez, J.J. [Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Avda, Americo Vespuccio 49, 41092 Sevilla (Spain); Benavente, J. [Grupo de Caracterizacion Electrocinetica en Membranas e Interfases, Departamento de Fisica Aplicada I, Facultad de Ciencias, Universidad de Malaga, E-29071 Malaga (Spain)

    2011-04-15

    Research highlights: {yields} Low dose {gamma}-radiation causes slight structural, chemical and morphological changes on regenerated cellulose films. {yields} Induced structural changes increase the fragility of irradiated films. {yields} Structural modifications reduce ion permeability of films. - Abstract: Modifications caused in commercial dense regenerated cellulose (RC) flat membranes by low-dose {gamma}-irradiation (average photons energy of 1.23 MeV) are studied. Slight structural, chemical and morphological surface changes due to irradiation in three films with different RC content were determined by ATR-FTIR, XRD, XPS and AFM. Also, the alteration of their mechanical elasticity has been studied. Modification of membrane performance was determined from solute diffusion coefficient and effective membrane fixed charge concentration obtained from NaCl diffusion measurements. Induced structural changes defining new and effective fracture propagation directions are considered to be responsible for the increase of fragility of irradiated RC membranes. The same structural changes are proposed to explain the reduction of the membrane ion permeability through a mechanism involving either ion pathways elongation and/or blocking.

  14. Structural, chemical surface and transport modifications of regenerated cellulose dense membranes due to low-dose γ-radiation

    International Nuclear Information System (INIS)

    Research highlights: → Low dose γ-radiation causes slight structural, chemical and morphological changes on regenerated cellulose films. → Induced structural changes increase the fragility of irradiated films. → Structural modifications reduce ion permeability of films. - Abstract: Modifications caused in commercial dense regenerated cellulose (RC) flat membranes by low-dose γ-irradiation (average photons energy of 1.23 MeV) are studied. Slight structural, chemical and morphological surface changes due to irradiation in three films with different RC content were determined by ATR-FTIR, XRD, XPS and AFM. Also, the alteration of their mechanical elasticity has been studied. Modification of membrane performance was determined from solute diffusion coefficient and effective membrane fixed charge concentration obtained from NaCl diffusion measurements. Induced structural changes defining new and effective fracture propagation directions are considered to be responsible for the increase of fragility of irradiated RC membranes. The same structural changes are proposed to explain the reduction of the membrane ion permeability through a mechanism involving either ion pathways elongation and/or blocking.

  15. 细菌纤维素纤维的活性染料染色%Reactive dyeing of bacterial cellulose fiber

    Institute of Scientific and Technical Information of China (English)

    郑丽; 张林; 董朝红; 朱平; 张须友; 赵晓霞

    2011-01-01

    Bacterial cellulose is formed by microbial fermentatfon of low-molecutar carbohydrate, which is different from cellulose made from plants.Bacterial cellulose is dyed with reactive dyes and dyeing processes are optimized as follow: dyes 2%(omf) , sodium chloride 60 g/L, pH value 10 and fixing at 60 ℃ for 30 minutes.The Bacterial cellulose features high dye uptake, high dye fixing percentage, high soaping fastness, as wall as little damage to the mechanical properties of cellulose.%区别于植物来源的纤维素,细菌纤维素是小分子碳水化合物经微生物发酵形成的纤维素.采用活性染料对细菌纤维素纤维进行染色,得到染色优化工艺为:染料质量分数2%(omf),氯化钠质量浓度60g/L,pH值10,60℃固色30 min.该纤维的上染率和固色率较高,皂洗牢度较好,纤维的力学性能损伤较小.

  16. A composite membrane based on a biocompatible cellulose as a host of gel polymer electrolyte for lithium ion batteries

    Science.gov (United States)

    Xiao, S. Y.; Yang, Y. Q.; Li, M. X.; Wang, F. X.; Chang, Z.; Wu, Y. P.; Liu, X.

    2014-12-01

    A composite polymer membrane is prepared by coating poly(vinylidene fluoride) (PVDF) on the surface of a membrane based on methyl cellulose (MC) which is environmentally friendly and cheap. Its characteristics are investigated by scanning electron microscopy, FT-IR, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The outer PVDF layers are porous which results in high electrolyte uptake and the lithium ion transference number is much larger than that of the pure MC. Moreover, the cell based on Li//LiFePO4 delivers high discharge capacity and good rate behavior in the range of 4.2-2.5 V when the composite membrane is used as the separator and the host of a gel polymer electrolyte, lithium as the counter and reference electrode, and LiFePO4 as cathode. The obtained results suggest that this unique composite membrane shows great attraction in the lithium ion batteries with high safety and low cost.

  17. Cellulose synthase interacting protein: A new factor in cellulose synthesis

    OpenAIRE

    Gu, Ying; Somerville, Chris

    2010-01-01

    Cellulose is the most abundant biopolymer on earth. The great abundance of cellulose places it at the forefront as a primary source of biomass for renewable biofuels. However, the knowledge of how plant cells make cellulose remains very rudimentary. Cellulose microfibrils are synthesized at the plasma membrane by hexameric protein complexes, also known as cellulose synthase complexes. The only known components of cellulose synthase complexes are cellulose synthase (CESA) proteins until the re...

  18. Basic Characteristics and Application of Bacterial Cellulose%细菌纤维素的基本特性与其应用

    Institute of Scientific and Technical Information of China (English)

    黄莉; 王英男; 夏秀芳; 丁一; 杨明; 王松

    2013-01-01

    细菌纤维素是由微生物发酵合成的天然无毒的纳米材料。能够合成细菌纤维素的微生物共有8种,这8种微生物可通过静态发酵和动态发酵两种方式产生细菌纤维素。因为细菌纤维素具有高纯度、高结晶度、精细的网络结构、生物适应性和可降解性等特性,所以在食品及其包装行业、医药保健品业、以及造纸工业中得到了广泛的应用。%Bacterial cellulose is a kind of natural and nontoxic nanomaterials that is synthetized by micro -bial fermentation .There are eight types of micro-organisms that can produce bacterial cellulose , they can pro-duce bacterial cellulose through two ways that the static the fermentation and dynamic fermentation .Bacterial cellulose with high purity , crystallinity , the fine structure of the network , biocompatibility and biodegradability properties, so it has widely used in the food packaging industry , medicine and health products industry , as well as the paper industry .

  19. Preparation and Characterization of Nitrated Bacterial Cellulose%硝化细菌纤维素的制备及表征

    Institute of Scientific and Technical Information of China (English)

    杨强; 彭碧辉; 梁岗; 罗庆平; 裴重华

    2012-01-01

    Nitrated bacterial cellulose (NBC) was synthesized from bacterial cellulose(BC) by nitric-sulfuric acid method. The results showed that the network structure of BC were not obviously degraded by this method and the stability of nitrated bacterial cellulose reached the standard for A degree of nitrocellulose. The thermal decomposition activation energy calculated by differential scanning calorimetry results is 212. 53 kJ/mol,and the thermal stability of nitrated bacterial cellulose is better than nitrocellulose.%以细菌纤维素为原料,用硝硫混酸法合成出硝化细菌纤维素(NBC).结果表明,采用硝硫混酸法合成硝化细菌纤维素未造成细菌纤维素的网状结构明显断裂降解,且合成出的硝化细菌纤维素安定性能达到A级硝化纤维素标准.用差示扫描量热法对产物进行了表征,并计算出硝化细菌纤维素的热分解活化能为212.53 kJ/mol,表明硝化细菌纤维素热的稳定性优于硝化棉.

  20. Incorporation of poly(glycidylmethacrylate) grafted bacterial cellulose nano-whiskers in poly(lactic acid) nanocomposites: improved barrier and mechanical properties

    Science.gov (United States)

    Poly(glycidyl methacrylate) (PGMA) was grafted onto bacterial cellulose nanowhiskers (BCNW) by means of a redox-initiated free radical copolymerization reaction. The incorporation of PGMA chains decreased the thermal stability and crystallinity of BCNW. The neat and the PGMA-grafted BCNW were subseq...

  1. Comparison of polycarbonate and cellulose acetate membrane filters for isolation of Campylobacter concisus from stool samples

    DEFF Research Database (Denmark)

    Linde Nielsen, Hans; Engberg, Jørgen; Ejlertsen, Tove;

    2013-01-01

    One thousand seven hundred ninety-one diarrheic stool samples were cultivated for Campylobacter spp. We found a high prevalence of Campylobacter concisus with use of a polycarbonate filter (n = 114) compared to a cellulose acetate filter (n = 79) (P ... to the commonly used cellulose acetate filter for detection of C. concisus....

  2. Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus.

    Science.gov (United States)

    Fan, Xin; Gao, Yue; He, Wanying; Hu, Hao; Tian, Ming; Wang, Kexing; Pan, Siyi

    2016-10-20

    Bacterial cellulose (BC) is a high-purity and robust cellulose that is utilised in medicine, consumer goods, and industrial practices. The present study aimed to investigate the suitability of beverage industrial waste for the production of BC by Komagataeibacter xylinus CICC No. 10529 and to study the structural properties of BC films in both citrus peel and pomace enzymolysis (CPPE) and Hestrin-Schramm (HS, Hestrin & Schramm, 1954) media. Under similar experimental conditions, the yield of BC from CPPE medium was 5.7±0.7g/L, which was higher than from HS medium (3.9±0.6g/L). To evaluate the structure of BC, fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and colour evaluation using a chroma meter were utilised. The average diameters of BC, obtained from CPPE and HS mediums, were 50nm and 60nm, respectively. The crystallinity index of BC from the CPPE medium was approximately 63%, which was lower than BC produced from the HS medium (65%). The two varieties of BC showed no significant differences in relation to their colour parameters. Therefore, BC production from CPPE medium had similar properties to BC from HS medium, but it is more environmentally friendly and cheaper to produce. PMID:27474656

  3. 活化细菌纤维素的结构与性能%Structure and properties of activated bacterial cellulose

    Institute of Scientific and Technical Information of China (English)

    王蛟; 王怀芳; 张传杰; 崔莉; 朱平

    2012-01-01

    分别采用乙二胺和NaOH对BC进行活化,以改善BC在离子液体中的溶解性能,通过正交实验优化了其活化工艺,并研究了活化前后BC的红外光谱、结晶结构、结晶度、聚合度和热分解性能,以及在离子液体[BMIM]Cl中的溶解性能。结果表明,乙二胺活化的最佳工艺为浓度14%,温度60℃,时间90min,氢氧化钠活化的最佳工艺为浓度10%,温度40℃,时间480min。活化后BC分子结构中的氢键作用力减弱,结晶结构发生不完全的转变,结晶度和聚合度下降,热稳定性提高,化学试剂的可及度增加,在离子液体中的溶解时间显著缩短。%Ethylenediamine and NaOH were separately used as activators to activate BC in order to improve the solubility property of bacterial cellulose in ionic liquid Cl.The optimum activation conditions with ethylenediamine as activator were: concentration of ethylenediamine was 14wt%,activation temperature was 60℃ and activation time was 90min.And the optimum activation conditions with NaOH as activator were: concentration of NaOH was 10wt%,activation temperature was 40℃ and activation time was 480min.The structures and thermabl stability of bacterial cellulose and activated bacterial cellulose were characterized by FT-IR,XRD and TGA,and their solubility property in ionic liquid Cl was also studied.The results indicate that the hydrogen bond force is weakened,polymerization degree and crystallinity degree are decreased,and the accessibility to chemical solvent is improved in activated bacterial cellulose.The bacterial cellulose activated with ethylenediamine or NaOH as activator dissolved in shorter time in ionic liquid Cl than unactivated bacterial cellulose.Moreover,the dissolution time of bacterial cellulose activated with NaOH as activator is shorter than that activated with ethylenediamine.

  4. Well-constructed cellulose acetate membranes for forward osmosis: Minimized internal concentration polarization with an ultra-thin selective layer

    KAUST Repository

    Zhang, Sui

    2010-09-01

    The design and engineering of membrane structure that produces low salt leakage and minimized internal concentration polarization (ICP) in forward osmosis (FO) processes have been explored in this work. The fundamentals of phase inversion of cellulose acetate (CA) regarding the formation of an ultra-thin selective layer at the bottom interface of polymer and casting substrate were investigated by using substrates with different hydrophilicity. An in-depth understanding of membrane structure and pore size distribution has been elucidated with field emission scanning electronic microscopy (FESEM) and positron annihilation spectroscopy (PAS). A double dense-layer structure is formed when glass plate is used as the casting substrate and water as the coagulant. The thickness of the ultra-thin bottom layer resulted from hydrophilic-hydrophilic interaction is identified to be around 95nm, while a fully porous, open-cell structure is formed in the middle support layer due to spinodal decomposition. Consequently, the membrane shows low salt leakage with mitigated ICP in the FO process for seawater desalination. The structural parameter (St) of the membrane is analyzed by modeling water flux using the theory that considers both external concentration polarization (ECP) and ICP, and the St value of the double dense-layer membrane is much smaller than those reported in literatures. Furthermore, the effects of an intermediate immersion into a solvent/water mixed bath prior to complete immersion in water on membrane formation have been studied. The resultant membranes may have a single dense layer with an even lower St value. A comparison of fouling behavior in a simple FO-membrane bioreactor (MBR) system is evaluated for these two types of membranes. The double dense-layer membrane shows a less fouling propensity. This study may help pave the way to improve the membrane design for new-generation FO membranes. © 2010 Elsevier B.V.

  5. Biointerface by Cell Growth on Graphene Oxide Doped Bacterial Cellulose/Poly(3,4-ethylenedioxythiophene) Nanofibers.

    Science.gov (United States)

    Chen, Chuntao; Zhang, Ting; Zhang, Qi; Chen, Xiao; Zhu, Chunlin; Xu, Yunhua; Yang, Jiazhi; Liu, Jian; Sun, Dongping

    2016-04-27

    Highly biocompatible advanced materials with excellent electroactivity are increasingly meaningful to biointerfaces and the development of biomedicine. Herein, bacterial cellulose/poly(3,4-ethylene dioxythiophene)/graphene oxide (BC/PEDOT/GO) composite nanofibers were synthesized through the in situ interfacial polymerization of PEDOT with the doping of GO. The abundant free carboxyl and hydroxy groups offer the BC/PEDOT/GO film active functional groups for surface modification. We demonstrate the use of this composite nanofiber for the electrical stimulation of PC12 neural cells as this resultant nanofiber scaffold could closely mimic the structure of the native extracellular matrix (ECM) with a promoting cell orientation and differentiation after electrical stimulation of PC12 cells. It is expected that this biocompatible BC/PEDOT/GO material will find potential applications in biological and regenerative medicine. PMID:27054801

  6. Bacterial cellulose-polyaniline nano-biocomposite: A porous media hydrogel bioanode enhancing the performance of microbial fuel cell

    Science.gov (United States)

    Mashkour, Mehrdad; Rahimnejad, Mostafa; Mashkour, Mahdi

    2016-09-01

    Microbial fuel cells (MFCs) are one of the possible renewable energy supplies which microorganisms play an active role in bio-oxidize reactions of a substrate such as glucose. Electrode materials and surface modifications are highly effective tools in enhancing MFCs' Performance. In this study, new composite anodes are fabricated. Bacterial cellulose (BC) is used as continuous phase and polyaniline (PANI) as dispersed one which is synthesized by in situ chemical oxidative polymerization on BC's fibers. With hydrogel nature of BC as a novel feature and polyaniline conductivity there meet the favorable conditions to obtain an active microbial biofilm on anode surface. Maximum power density of 117.76 mW/m2 in current density of 617 mA/m2 is achieved for BC/PANI anode. The amounts demonstrate a considerable enhancement compared with graphite plate (1 mW/m2 and 10 mA/m2).

  7. Membrane Made of Cellulose Acetate with Polyacrylic Acid Reinforced with Carbon Nanotubes and Its Applicability for Chromium Removal

    Directory of Open Access Journals (Sweden)

    J. A. Sánchez-Márquez

    2015-01-01

    Full Text Available Membranes made of carbon nanotubes and cellulose acetate with polyacrylic acid were designed in order to study their properties and their applicability for chromium removal. The membranes were prepared by phase inversion method using cellulose acetate and polyacrylic acid. Carbon nanotubes were added to the membrane during their process of synthesis in proportions of 1% by weight. The pores in the material are formed in layers, giving the effect of depth and forming a network. Both the carbon nanotubes and membranes were characterized by IR, Raman, and SEM spectroscopy. In addition, the concentration of acidic and basic sites and the surface charge in the materials were determined. The concentration of acid sites for oxidized nanotubes was 4.0 meq/g. The removal of Cr(VI was studied as a function of contact time and of initial concentration of Cr(VI. The removal of Cr(VI (~90% mainly occurs in a contact time from 32 to 64 h when the initial concentration of Cr(VI is 1 mg/L.

  8. Bacterial cellulose/TiO2 hybrid nanofibers prepared by the surface hydrolysis method with molecular precision

    Science.gov (United States)

    Sun, Dongping; Yang, Jiazhi; Wang, Xin

    2010-02-01

    Bacterial cellulose (BC) nanofibers were biosynthesized by Acetobacter xylinum NUST5.2, and displayed a remarkable capability for orienting TiO2 nanoparticle arrays. Large quantities of uniform BC nanofibers coated with TiO2 nanoparticles can be easily prepared by surface hydrolysis with molecular precision, resulting in the formation of uniform and well-defined hybrid nanofiber structures. The mechanism of arraying spherical TiO2 nanoparticles on BC nanofibers and forming well-defined, narrow mesopores are discussed in this paper. The BC/TiO2 hybrid nanofibers were used as photocatalyst for methyl orange degradation under UV irradiation, and they showed higher efficiency than that of the commercial photocatalyst P25.Bacterial cellulose (BC) nanofibers were biosynthesized by Acetobacter xylinum NUST5.2, and displayed a remarkable capability for orienting TiO2 nanoparticle arrays. Large quantities of uniform BC nanofibers coated with TiO2 nanoparticles can be easily prepared by surface hydrolysis with molecular precision, resulting in the formation of uniform and well-defined hybrid nanofiber structures. The mechanism of arraying spherical TiO2 nanoparticles on BC nanofibers and forming well-defined, narrow mesopores are discussed in this paper. The BC/TiO2 hybrid nanofibers were used as photocatalyst for methyl orange degradation under UV irradiation, and they showed higher efficiency than that of the commercial photocatalyst P25. Electronic supplementary information (ESI) available: Thermogravimetric analysis curves for BC and BC/TiO2 hybrid nanofibers and XPS spectrum of an N-doped BC/TiO2 nanofiber sample. See DOI: 10.1039/b9nr00158a

  9. Organic fouling of thin-film composite polyamide and cellulose triacetate forward osmosis membranes by oppositely charged macromolecules.

    Science.gov (United States)

    Gu, Yangshuo; Wang, Yi-Ning; Wei, Jing; Tang, Chuyang Y

    2013-04-01

    Fouling of cellulose triacetate (CTA) and thin-film composite (TFC) forward osmosis (FO) membranes by organic macromolecules were studied using oppositely charged lysozyme (LYS) and alginate (ALG) as model foulants. Flux performance and foulant deposition on membranes were systematically investigated for a submerged membrane system. When an initial flux of 25 L/m(2)h was applied, both flux reduction and foulant mass deposition were severe for feed water containing the mixture of LYS and ALG (e.g., 50% LYS and 50% ALG at a total foulant concentration of 100 mg/L). In comparison, fouling was much milder for feed water containing either LYS or ALG alone. Compared to the CTA FO membrane, the TFC FO membrane showed greater fouling propensity under mild FO fouling conditions due to its much rougher surface. Nevertheless, under severe FO fouling conditions, fouling was dominated by foulant-deposited-foulant interaction and membrane surface properties played a less important role. Furthermore, when the feed water contained both LYS and ALG in sufficient amount, the deposited cake layer foulant composition (i.e., the LYS/ALG mass ratio) was not strongly affected by membrane types (CTA versus TFC) nor testing modes (pressure-driven NF mode versus osmosis-driven FO mode). In contrast, solution chemistry such as pH and calcium concentration had remarkable effect on the cake layer composition due to their effects on foulant-foulant interaction. PMID:23384517

  10. Transport of lanthanide ions through cellulose triacetate membranes containing hinokitiol and flavonol as carriers. [beta-isopropyltropolone and 3-hydroxyflavone

    Energy Technology Data Exchange (ETDEWEB)

    Sugiura, Masaaki (National Chemical Lab. for Industry, Ibaraki (Japan))

    Fluxes of trivalent lanthanide ions across cellulose triacetate membranes were determined by using hinokitiol (HIPT) and flavonol (HFL) as carriers. The transport of the lanthanides was coupled to flow of hydrogen ions. The effects added anion and the pH in the source phase, and the plasticizer incorporated in the membrane on the lanthanide flux, were examined. In the case of HIPT, the fluxes for the lanthanides from samarium to lutetium were much higher than those for lanthanum to neodymium. In the transport using HFL, the flux increased with decreasing ionic radius of the lanthanide species. The addition of perchlorate of thiocyanate ions to the source phase resulted in a rise in the lanthanide flux. With decreased in pH difference between the aqueous phases, the fluxes using HIPT decreased gradually while those using HFL decreased rapidly. The flux was affected by the type of plasticizer added to the membrane.

  11. Lipid-linked cell wall precursors regulate membrane association of bacterial actin MreB

    OpenAIRE

    Schirner, Kathrin; Eun, Ye-Jin; Dion, Mike; Luo, Yun; Helmann, John D.; Garner, Ethan C.; Walker, Suzanne

    2014-01-01

    Summary The bacterial actin homolog MreB, which is critical for rod shape determination, forms filaments that rotate around the cell width on the inner surface of the cytoplasmic membrane. What determines filament association with the membranes or with other cell wall elongation proteins is not known. Using specific chemical and genetic perturbations while following MreB filament motion, we find that MreB membrane association is an actively regulated process that depends on the presence of li...

  12. Application of Molecular Techniques to Elucidate the Influence of Cellulosic Waste on the Bacterial Community Structure at a Simulated Low-Level-Radioactive-Waste Site

    International Nuclear Information System (INIS)

    Low-level radioactive waste sites, including those at various U.S. Department of Energy (DOE) sites, frequently contain cellulosic waste in the form of paper towels, cardboard boxes, or wood contaminated with heavy metals and radionuclides such as chromium and uranium. To understand how the soil microbial community is influenced by the presence of cellulosic waste products, multiple soil samples were obtained from a non-radioactive model low-level waste test pit at the Idaho National Laboratory. Samples were analyzed using 16S rDNA clone libraries and 16S rRNA gene microarray (PhyloChip) analyses. Both the clone library and PhyloChip results revealed changes in the bacterial community structure with depth. In all samples, the PhyloChip detected significantly more unique Operational Taxonomic Units (OTUs), and therefore more relative diversity, than the clone libraries. Calculated diversity indices suggest that diversity is lowest in the Fill (F) and Fill Waste (FW) layers and greater in the Wood Waste (WW) and Waste Clay (WC) layers. Principal coordinates analysis and lineage specific analysis determined that Bacteroidetes and Actinobacteria phyla account for most of the significant differences observed between the layers. The decreased diversity in the FW layer and increased members of families containing known cellulose degrading microorganisms suggests the FW layer is an enrichment environment for cellulose degradation. Overall, these results suggest that the presence of the cellulosic material significantly influences the bacterial community structure in a stratified soil system.

  13. Development of Low Cost Membranes (Ta, Nb & Cellulose Acetate) for H2/CO2 Separation in WGS Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Seetala, Naidu [Grambling State Univ., LA (United States); Siriwardane, Upali [Louisiana Tech Univ., Ruston, LA (United States)

    2011-12-15

    The main aim of this work is to synthesize low temperature bimetallic nanocatalysts for Water Gas Shift reaction (WGS) for hydrogen production from CO and steam mixture; and develop low-cost metal (Nb/Ta)/ceramic membranes for H2 separation and Cellulose Acetate membranes for CO2 separation. .

  14. Research on the Application of Bacterial Cellulose in Papermaking%细菌纤维素在造纸工业中的应用

    Institute of Scientific and Technical Information of China (English)

    汤卫华; 贾士儒; 王芃; 殷海松

    2013-01-01

    细菌纤维素是由细菌产生的纯度很高的纳米级纤维素,具有结晶度和纯度高、机械强度大和生物相容性好等特点.在植物纤维中添加细菌纤维素,可改善纸张性能.细菌纤维素可用于制备特种纸和“电子纸”.%Bacterial cellulose (BC) is secreted by Acetobacter xylinum. Compared with plant fiber, it possesses an array of unique properties , including high crystallinity, high water content, biocompatibility, high mechanical strength and an ultra-fine fiber network. Bacterial cellulose can be used for making unusually strong paper, because it consists of extremely small clusters of cellulose microbrils, this property greatly upgrades the strength and durability of the paper when it is added to the paper. There are some issues in large-scale application of bacterial cellulose to be solved, such as the high cost, low yield, mechanical stability and so on.

  15. Establishing a role for bacterial cellulose in environmental interactions: lessons learned from diverse biofilm-producing Proteobacteria

    Directory of Open Access Journals (Sweden)

    Richard Vincent Augimeri

    2015-11-01

    Full Text Available Bacterial cellulose (BC serves as a molecular glue to facilitate intra- and inter-domain interactions in nature. Biosynthesis of BC-containing biofilms occurs in a variety of Proteobacteria that inhabit diverse ecological niches. The enzymatic and regulatory systems responsible for the polymerization, exportation and regulation of BC are equally as diverse. Though the magnitude and environmental consequences of BC production are species-specific, the common role of BC containing biofilms is to establish close contact with a preferred host to facilitate efficient host-bacteria interactions. Universally, BC aids in attachment, adherence, and subsequent colonization of a substrate. Bi-directional interactions influence host physiology, bacterial physiology and regulation of BC biosynthesis, primarily through modulation of intracellular bis-(3’→5’-cyclic diguanylate (c-di-GMP levels. Depending on the circumstance, BC producers exhibit a pathogenic or symbiotic relationship with plant, animal or fungal hosts. Rhizobiaceae species colonize plant roots, Pseudomonadaceae inhabit the phyllosphere, Acetobacteriaceae associate with sugar-loving insects and inhabit the carposphere, Enterobacteriaceae use fresh produce as vehicles to infect animal hosts, and Vibrionaceae, particularly Aliivibrio fischeri, colonize the light organ of squid. This review will highlight the diversity of the biosynthesis and regulation of BC in nature by discussing various examples of Proteobacteria that use BC-containing biofilms to facilitate host-bacteria interactions. Through discussion of current data we will establish new directions for the elucidation of BC biosynthesis, regulation and ecophysiological roles.

  16. Establishing a Role for Bacterial Cellulose in Environmental Interactions: Lessons Learned from Diverse Biofilm-Producing Proteobacteria

    Science.gov (United States)

    Augimeri, Richard V.; Varley, Andrew J.; Strap, Janice L.

    2015-01-01

    Bacterial cellulose (BC) serves as a molecular glue to facilitate intra- and inter-domain interactions in nature. Biosynthesis of BC-containing biofilms occurs in a variety of Proteobacteria that inhabit diverse ecological niches. The enzymatic and regulatory systems responsible for the polymerization, exportation, and regulation of BC are equally as diverse. Though the magnitude and environmental consequences of BC production are species-specific, the common role of BC-containing biofilms is to establish close contact with a preferred host to facilitate efficient host–bacteria interactions. Universally, BC aids in attachment, adherence, and subsequent colonization of a substrate. Bi-directional interactions influence host physiology, bacterial physiology, and regulation of BC biosynthesis, primarily through modulation of intracellular bis-(3′→5′)-cyclic diguanylate (c-di-GMP) levels. Depending on the circumstance, BC producers exhibit a pathogenic or symbiotic relationship with plant, animal, or fungal hosts. Rhizobiaceae species colonize plant roots, Pseudomonadaceae inhabit the phyllosphere, Acetobacteriaceae associate with sugar-loving insects and inhabit the carposphere, Enterobacteriaceae use fresh produce as vehicles to infect animal hosts, and Vibrionaceae, particularly Aliivibrio fischeri, colonize the light organ of squid. This review will highlight the diversity of the biosynthesis and regulation of BC in nature by discussing various examples of Proteobacteria that use BC-containing biofilms to facilitate host–bacteria interactions. Through discussion of current data we will establish new directions for the elucidation of BC biosynthesis, its regulation and its ecophysiological roles. PMID:26635751

  17. Cellulose reinforced nylon-6 nanofibrous membrane: Fabrication strategies, physicochemical characterizations, wicking properties and biomimetic mineralization.

    Science.gov (United States)

    Joshi, Mahesh Kumar; Tiwari, Arjun Prasad; Maharjan, Bikendra; Won, Ko Sung; Kim, Han Joo; Park, Chan Hee; Kim, Cheol Sang

    2016-08-20

    The aim of the present study is to develop a facile, efficient approach to reinforce nylon 6 (N6) nanofibers with cellulose chains as well as to study the effect that cellulose regeneration has on the physicochemical properties of the composite fibers. Here, a cellulose acetate (CA) solution (17wt%) was prepared in formic acid and was blended with N6 solution (20%, prepared in formic acid and acetic acid) in various proportions, and the blended solutions were then electrospun to produce hybrid N6/CA nanofibers. Cellulose was regenerated in-situ in the fiber via alkaline saponification of the CA content of the hybrid fiber, leading to cellulose-reinforced N6 (N6/CL) nanofibers. Electron microscopy studies suggest that the fiber diameter and hence pore size gradually decreases as the mass composition of CA increases in the electrospinning solution. Cellulose regeneration showed noticeable change in the polymorphic behavior of N6, as observed in the XRD and IR spectra. The strong interaction of the hydroxyl group of cellulose with amide group of N6, mainly via hydrogen bonding, has a pronounced effect on the polymorphic behavior of N6. The γ-phase was dominant in pristine N6 and N6/CA fibers while α- phase was dominant in the N6/CL fibers. The surface wettability, wicking properties, and the tensile stress were greatly improved for N6/CL fibers compared to the corresponding N6/CA hybrid fibers. Results of DSC/TGA revealed that N6/CL fibers were more thermally stable than pristine N6 and N6/CA nanofibers. Furthermore, regeneration of cellulose chain improved the ability to nucleate bioactive calcium phosphate crystals in a simulated body fluid solution. PMID:27178914

  18. Neutralized ion beam modification of cellulose membranes for study of ion charge effect on ion-beam-induced DNA transfer

    Energy Technology Data Exchange (ETDEWEB)

    Prakrajang, K., E-mail: k.prakrajang@gmail.com [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sangwijit, K.; Anuntalabhochai, S. [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wanichapichart, P. [Membrane Science and Technology Research Center, Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla 90110 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.th [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2012-02-01

    Low-energy ion beam biotechnology (IBBT) has recently been rapidly developed worldwide. Ion-beam-induced DNA transfer is one of the important applications of IBBT. However, mechanisms involved in this application are not yet well understood. In this study plasma-neutralized ion beam was applied to investigate ion charge effect on induction of DNA transfer. Argon ion beam at 7.5 keV was neutralized by RF-driven plasma in the beam path and then bombarded cellulose membranes which were used as the mimetic plant cell envelope. Electrical properties such as impedance and capacitance of the membranes were measured after the bombardment. An in vitro experiment on plasmid DNA transfer through the cellulose membrane was followed up. The results showed that the ion charge input played an important role in the impedance and capacitance changes which would affect DNA transfer. Generally speaking, neutral particle beam bombardment of biologic cells was more effective in inducing DNA transfer than charged ion beam bombardment.

  19. A simple synthesis method to produce metal oxide loaded carbon paper using bacterial cellulose gel and characterization of its electrochemical behavior in an aqueous electrolyte

    Science.gov (United States)

    Miyajima, Naoya; Jinguji, Ken; Matsumura, Taiyu; Matsubara, Toshihiro; Sakane, Hideto; Akatsu, Takashi; Tanaike, Osamu

    2016-04-01

    A simple synthetic chemical process to produce metal oxide loaded carbon papers was developed using bacterial cellulose gel, which consisted of nanometer-sized fibrous cellulose and water. Metal ions were successfully impregnated into the gel via aqueous solution media before drying and carbonization methods resulting in metal oxide contents that were easy to control through variations in the concentration of aqueous solutions. The papers loaded by molybdenum oxides were characterized as pseudocapacitor electrodes preliminary, and the large redox capacitance of the oxides was followed by a conductive fibrous carbon substrate, suggesting that a binder and carbon black additive-free electrode consisting of metal oxides and carbon paper was formed.

  20. Sorting of bacterial lipoproteins to the outer membrane by the Lol system.

    Science.gov (United States)

    Narita, Shin-ichiro; Tokuda, Hajime

    2010-01-01

    Bacterial lipoproteins comprise a subset of membrane proteins with a lipid-modified cysteine residue at their amino termini through which they are anchored to the membrane. In Gram-negative bacteria, lipoproteins are localized on either the inner or the outer membrane. The Lol system is responsible for the transport of lipoproteins to the outer membrane.The Lol system comprises an inner-membrane ABC transporter LolCDE complex, a periplasmic carrier protein, LolA, and an outer membrane receptor protein, LolB. Lipoproteins are synthesized as precursors in the cytosol and then translocated across the inner membrane by the Sec translocon to the outer leaflet of the inner membrane, where lipoprotein precursors are processed to mature lipoproteins. The LolCDE complex then mediates the release of outer membrane-specific lipoproteins from the inner membrane while the inner membrane-specific lipoproteins possessing Asp at position 2 are not released by LolCDE because it functions as a LolCDE avoidance signal, causing the retention of these lipoproteins in the inner membrane. A water-soluble lipoprotein-LolA complex is formed as a result of the release reaction mediated by LolCDE. This complex traverses the hydrophilic periplasm to reach the outer membrane, where LolB accepts a lipoprotein from LolA and then catalyzes its incorporation into the inner leaflet of the outer membrane. PMID:20419407

  1. Gypsum (CaSO42H2O) scaling on polybenzimidazole and cellulose acetate hollow fiber membranes under forward osmosis

    KAUST Repository

    Chen, Si Cong

    2013-11-08

    We have examined the gypsum (CaSO42H2O) scaling phenomena on membranes with different physicochemical properties in forward osmosis (FO) processes. Three hollow fiber membranes made of (1) cellulose acetate (CA), (2) polybenzimidazole (PBI)/polyethersulfone (PES) and (3) PBI-polyhedral oligomeric silsesquioxane (POSS)/polyacrylonitrile (PAN) were studied. For the first time in FO processes, we have found that surface ionic interactions dominate gypsum scaling on the membrane surface. A 70% flux reduction was observed on negatively charged CA and PBI membrane surfaces, due to strong attractive forces. The PBI membrane surface also showed a slightly positive charge at a low pH value of 3 and exhibited a 30% flux reduction. The atomic force microscopy (AFM) force measurements confirmed a strong repulsive force between gypsum and PBI at a pH value of 3. The newly developed PBI-POSS/PAN membrane had ridge morphology and a contact angle of 51.42 14.85 after the addition of hydrophilic POSS nanoparticles and 3 min thermal treatment at 95 C. Minimal scaling and an only 1.3% flux reduction were observed at a pH value of 3. Such a ridge structure may reduce scaling by not providing a locally flat surface to the crystallite at a pH value of 3; thus, gypsum would be easily washed away from the surface. 2013 by the authors; licensee MDPI, Basel, Switzerland.

  2. STUDY OF COMPOSITE MEMBRANE OF CELLULOSE ACETATE OR POLYVINYL ALCOHOL BLENDED WITH METHYLMETHACRYLATE-ACRYLIC ACID COPOLYMER FOR PERVAPORATION SEPARATION

    Institute of Scientific and Technical Information of China (English)

    Huan-lin Chen; Jun Tan; Mo-e Liu; Chang-luo Zhu

    1999-01-01

    In this paper, methylmethacrylate-acrylic acid MMA-AA hydrophilic and hydrophobic copolymers were prepared by copolymerization for preparing membrane materials. The composite membrane of cellulose acetate (CA) blended with MMA-AA hydrophobic copolymer was used for the separation of methanol from pentane-methanol mixture. When the methanol concentration was only 1 wt%, the permeate flux still maintained at 350 g/m2h and separation factor was as big as 800. The composite membrane of PVA (polyvinyl alcohol) blended with MMA-AA hydrophilic copolymer was used for the separation of ethanolwater mixture. The permeate flux was increased to 975 g/m2h at 74℃ and the separation factor reached 3000at 25℃. The PVA/MMA-AA blended membrane surface modified by ammonia plasma was also investigated for separating ethanol-water mixture. Both permeate flux and separation factor of the membrane was improved. However, there was no obvious difference of plasma treatment time in the interval of 20~40 min.

  3. Biorefinery of bacterial cellulose from rice straw: enhanced enzymatic saccharification by ionic liquid pretreatment%Biorefinery of bacterial cellulose from rice straw: enhanced enzymatic saccharification by ionic liquid pretreatment

    Institute of Scientific and Technical Information of China (English)

    Hong Feng; Han Shifen

    2011-01-01

    The pretreatment of rice straw is often used to enhance the hydrolysis. 1-allyl-3-methylimidazolium chloride ( [ AMIM ] C1) is a kind of low viscous, nontoxic and recyclable ionic liquid. It was used to treat rice straw and improve the enzymatic hydrolysis of rice straw in this study. The factors influencing the pretreatment were as follows: the dosage of rice straw in [ AMIM ] Cl, crush mesh of rice straw, pretreatment temperature and time. After the pretreatment with a 3 % (the weight ratio of rice straw to ionic liquid) rice straw dosage in [AMIM]Cl at 110 ℃ for 1 h, the yield of reducing sugar of regenerated rice straw by 33 U/mL cellulase hydrolysis was 53.3 %, which was two times higher than that of un-treated rice straw (23.7 % ). More researches regarding straw biorefinery to bacterial cellulose are being performed in the lab and prospective results will be published in near future.

  4. Predicting bioavailability of PAHs in field-contaminated soils by passive sampling with triolein embedded cellulose acetate membranes

    Energy Technology Data Exchange (ETDEWEB)

    Tao Yuqiang [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Zhang Shuzhen [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China)], E-mail: szzhang@rcees.ac.cn; Wang Zijian [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Christie, Peter [Queen' s University Belfast, Agricultural and Environmental Science Department, Newforge Lane, Belfast BT9 5PX (United Kingdom)

    2009-02-15

    Triolein embedded cellulose acetate membrane (TECAM) was used for passive sampling of the fraction of naphthalene, phenanthrene, pyrene and benzo[a]pyrene in 18 field-contaminated soils. The sampling process of PAHs by TECAM fitted well with a first-order kinetics model and PAHs reached 95% of equilibrium in TECAM within 20 h. Concentrations of PAHs in TECAM (C{sub TECAM}) correlated well with the concentrations in soils (r{sup 2} = 0.693-0.962, p < 0.001). Furthermore, concentrations of PAHs determined in the soil solution were very close to the values estimated by C{sub TECAM} and the partition coefficient between TECAM and water (K{sub TECAM-w}). After lipid normalization nearly 1:1 relationships were observed between PAH concentrations in TECAMs and earthworms exposed to the soils (r{sup 2} = 0.591-0.824, n = 18, p < 0.01). These results suggest that TECAM can be a useful tool to predict bioavailability of PAHs in field-contaminated soils. - Triolein embedded cellulose acetate membranes can be a useful tool to predict bioavailability of PAHs in field-contaminated soils.

  5. Research Progress on Fermentation Technology and Application of the Bacterial Cellulose%细菌纤维素发酵工艺与应用研究进展

    Institute of Scientific and Technical Information of China (English)

    陆胜民; 贾静静; 杨颖

    2011-01-01

    Bacterial cellulose, produced by some species of bacteria, has excellent properties including high mechanical strength, good water retention ability, and high crystallinity, which is applied widely to industries such as food industry.This paper summarized the structure, techno1ogy of fermentation and the application of bacterial cellulose in food industry.%由部分细菌所产生的纤维素称细菌纤维素,具有机械强度高、吸水性能好、纯度高、结晶度高等优良特性,广泛应用于食品工业等领域.本文对细菌纤维素的结构特性、发酵工艺研究及应用作了综述.

  6. Loss of elongation factor P disrupts bacterial outer membrane integrity

    DEFF Research Database (Denmark)

    Zou, S Betty; Hersch, Steven J; Roy, Hervé;

    2012-01-01

    Elongation factor P (EF-P) is posttranslationally modified at a conserved lysyl residue by the coordinated action of two enzymes, PoxA and YjeK. We have previously established the importance of this modification in Salmonella stress resistance. Here we report that, like poxA and yjeK mutants......, Salmonella strains lacking EF-P display increased susceptibility to hypoosmotic conditions, antibiotics, and detergents and enhanced resistance to the compound S-nitrosoglutathione. The susceptibility phenotypes are largely explained by the enhanced membrane permeability of the efp mutant, which exhibits...... increased uptake of the hydrophobic dye 1-N-phenylnaphthylamine (NPN). Analysis of the membrane proteomes of wild-type and efp mutant Salmonella strains reveals few changes, including the prominent overexpression of a single porin, KdgM, in the efp mutant outer membrane. Removal of KdgM in the efp mutant...

  7. Ice microsphere templating to produce highly porous nanocomposite PLA matrix scaffolds with pores selectively lined by bacterial cellulose nano-whiskers

    OpenAIRE

    Blaker, J. J.; Lee, K-Y; Mantalaris, A.; Bismarck, A.

    2010-01-01

    Abstract The production of 3D scaffolds for tissue engineering with provision of a controlled nano-topography remains a significant challenge. Here we have combined an ice microsphere templating technique with thermally induced phase separation, and by taking advantage of interactions between hydrophilic and hydrophobic phases, lined the pore walls with bacterial cellulose nano-whiskers. The cryogenic technique we have developed not only allows the decoration of the pore walls of 3...

  8. Colorimetric elastase sensor with peptide conjugated cellulose nanocrystals is interfaced to dialysis membranes

    Science.gov (United States)

    Clinical detection of human neutrophil elastase (HNE) as point of care biomarker or in situ colorimetric adjuvant to chronic wound dressings presents potential advantages in the management of chronic wounds. A colorimetric approach to the detection of HNE using cotton cellulose nanocrystals (CCN) i...

  9. A Hemoperfusion Column Based on Activated Carbon Granules Coated with an Ultrathin Membrane of Cellulose Acetate

    NARCIS (Netherlands)

    Tijssen, Johan; Bantjes, Adriaan; Doorn , van Albert W.J.; Feijen, Jan; Dijk, van Boudewijn; Vonk, Carel R.; Dijkhuis, Ido C.

    1979-01-01

    A hemoperfusion system has been developed which makes use of activated carbon encapsulated with cellulose acetate. Studies have revealed that there are no stagnant flow regions in the column, there i? minimal particle release and the coating is 30 Å thick. The relationships between pore size, pore v

  10. Laccase immobilization on bacterial nanocellulose membranes: antimicrobial, kinetic and stability properties

    OpenAIRE

    Sampaio, Liliana M. P.; Padrão, Jorge; Faria, Jorge; Silva, João P.; Silva, Carla J.; Dourado, Fernando; Zille, Andrea

    2016-01-01

    This work studied the physical immobilization of a commercial laccase on bacterial nanocellulose (BNC) aiming to identify the laccase antibacterial properties suitable for wound dressings. Physico-chemical analysis demonstrates that the BNC structure is manly formed by pure crystalline I cellulose. The pH optimum and activation energy of free laccase depends on the substrate employed corresponding to pH 6, 7, 3 and 57, 22, 48 kJ mol1 for 2,6-dimethylphenol (DMP), catechol and 2,2 -azino-bis-(...

  11. Bacterial Subversion of Host Actin Dynamics at the Plasma Membrane

    OpenAIRE

    Carabeo, Rey

    2011-01-01

    Invasion of non-phagocytic cells by a number of bacterial pathogens involves the subversion of the actin cytoskeletal remodelling machinery to produce actin-rich cell surface projections designed to engulf the bacteria. The signalling that occurs to induce these actin-rich structures has considerable overlap amongst a diverse group of bacteria. The molecular organisation within these structures act in concert to internalise the invading pathogen. This dynamic process could be subdivided into ...

  12. Research Status of Nano- functional Material Bacterial Cellulose%纳米功能材料细菌纤维素研究进展

    Institute of Scientific and Technical Information of China (English)

    李小维; 朱艳彬; 范艺苑; 李方

    2012-01-01

    The bacterial cellulose was widely applied to food, medicine, paper- making, textile, and acoustics equipment industry as a novel nano -functional material. Using static fermentation systems and dynamic fermentation systems can obtain bacterial cellulose with different structural characteristics and material properties. The selection of fermentation reactor types and optimization of fermentation condition became the focus of bacterial cellulose development for the industrialized production.%细菌纤维素是生物质纳米功能材料,在食品、医疗、造纸、纺织、声学器材等方面有广泛的应用前景。采用静态和动态发酵方式得到的细菌纤维素具有不同的结构特征和材料性能。改进发酵工艺,开发和优化更为合理的发酵条件和发酵反应器,已成为细菌纤维素从实验室走向工业化生产的研究重点。

  13. Mesostructure anisotropy of bacterial cellulose-polyacrylamide hydrogels as studied by spin-echo small-angle neutron scattering

    CERN Document Server

    Velichko, E V; Chetverikov, Yu O; Duif, C P; Bouwman, W G; Smyslov, R Yu

    2016-01-01

    The submicron- and micron-scale structures of composite hydrogels based on bacterial cellulose (BC) and polyacrylamide were studied by spin-echo small-angle neutron scattering (SESANS). These hydrogels were synthesized via free-radical polymerization of acrylamide carried out in pellicle of BC swollen in the reaction solution. No neutron scattering was observed for the samples swollen in heavy water to the equilibrium state, but a SESANS signal appeared when TbCl$_{3}$ salt was added to the solvent. The SESANS dependences obtained for these samples revealed the anisotropy of mesostructure for the hydrogels under investigation. Density inhomogeneities on the characteristic scale of 11.5 $\\pm$ 0.5 $\\mu$m were detected in one specific orientation of the sample, i.e. with growth plane of BC parallel to plane formed by neutron beam and spin-echo length. The uniaxial anisotropy revealed agrees with the proposed model, which attributes this behavior to the existence of the tunnel-like oriented structures inside BC.

  14. Preparation and dielectric properties of SiC nanowires self-sacrificially templated by carbonated bacterial cellulose

    International Nuclear Information System (INIS)

    Graphical abstract: Display Omitted Highlights: ► A new material – CBC is introduced as a template to prepare SiC nanowires. ► SiC nanowires are synthesized by the infiltration process of reactive vapor Si. ► The highest ε″ of β-SiC nanowires is obtained at 1400 °C. -- Abstract: SiC nanowires were synthesized by the infiltration process of reactive vapor Si in Ar atmosphere at 1350–1450 °C, using carbonated bacterial cellulose (CBC) as carbon template and a reactant. Scanning electron microscopy (SEM), powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), and vector network analyzer were employed to characterize the samples. The diameter of the resulting β-SiC nanowires changes with calcination temperatures, specifically, 35–60 nm for 1350 °C, 40–80 nm for 1400 °C, and 30–60 nm for 1450 °C. The β-SiC nanowires obtained at 1400 °C possess the highest ε″ of complex permittivity.

  15. Development of Chitosan/Bacterial Cellulose Composite Films Containing Nanodiamonds as a Potential Flexible Platform for Wound Dressing

    Directory of Open Access Journals (Sweden)

    Fatemeh Ostadhossein

    2015-09-01

    Full Text Available Chitosan/bacterial cellulose composite films containing diamond nanoparticles (NDs with potential application as wound dressing are introduced. Microstructural studies show that NDs are uniformly dispersed in the matrix, although slight agglomeration at concentrations above 2 wt % is seen. Fourier transform infrared spectroscopy reveals formation of hydrogen bonds between NDs and the polymer matrix. X-ray diffraction analysis indicates reduced crystallinity of the polymer matrix in the presence of NDs. Approximately 3.5-fold increase in the elastic modulus of the composite film is obtained by the addition of 2 wt % NDs. The results of colorimetric analysis show that the composite films are transparent but turn to gray-like and semitransparent at high ND concentrations. Additionally, a decrease in highest occupied molecular orbital (HOMO and lowest unoccupied molecular orbital (LUMO gap is also seen, which results in a red shift and higher absorption intensity towards the visible region. Mitochondrial activity assay using L929 fibroblast cells shows that the nanocomposite films are biocompatible (>90% after 24 h incubation. Multiple lamellapodia and cell-cell interaction are shown. The results suggest that the developed films can potentially be used as a flexible platform for wound dressing.

  16. Preparation and dielectric properties of SiC nanowires self-sacrificially templated by carbonated bacterial cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Lixia; Ma, Yongjun; Dai, Bo [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Zhou, Yong [Eco-materials and Renewable Energy Research Center (ERERC), School of Physics, National Lab of Solid State Microstructure, ERERC, Nanjing University, Nanjing 210093 (China); Liu, Jinsong [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Pei, Chonghua, E-mail: peichonghua@swust.edu.cn [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China)

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► A new material – CBC is introduced as a template to prepare SiC nanowires. ► SiC nanowires are synthesized by the infiltration process of reactive vapor Si. ► The highest ε″ of β-SiC nanowires is obtained at 1400 °C. -- Abstract: SiC nanowires were synthesized by the infiltration process of reactive vapor Si in Ar atmosphere at 1350–1450 °C, using carbonated bacterial cellulose (CBC) as carbon template and a reactant. Scanning electron microscopy (SEM), powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), and vector network analyzer were employed to characterize the samples. The diameter of the resulting β-SiC nanowires changes with calcination temperatures, specifically, 35–60 nm for 1350 °C, 40–80 nm for 1400 °C, and 30–60 nm for 1450 °C. The β-SiC nanowires obtained at 1400 °C possess the highest ε″ of complex permittivity.

  17. Production, characterization and biological features of bacterial cellulose from scum obtained during preparation of sugarcane jaggery (gur).

    Science.gov (United States)

    Khattak, Waleed Ahmad; Khan, Taous; Ul-Islam, Mazhar; Ullah, Muhammad Wajid; Khan, Shaukat; Wahid, Fazli; Park, Joong Kon

    2015-12-01

    Bacterial cellulose (BC) has been given an ample attention due to its high potential for many industrial applications. However, the high cost of production medium has hindered the commercialization of BC. Several efforts have been made to explore cheep, raw and waste sources for BC production. The current study aims at investigating the BC production from a waste source; the scum obtained during preparation of sugarcane jaggery or gur (JS). JS was five-fold diluted with distilled water and used as culturing medium without any additional nutrients. The production of BC was monitored till 10th days of cultivation both at static and shaking culturing conditions. A maximum of 2.51 g/L and 2.13 g/L BC was produced in shaking and static cultures, respectively, after 10 days. The structure features of BC were confirmed through FTIR, XRD and SEM analysis. The chemical structure and physical appearance strongly resembled the BC produced form synthetic media. It was noteworthy that the BC produced from JS showed higher mechanical and thermal properties. The cell adhesion and proliferation capabilities of produced BC were observed that depicted definite animal cell adhesion without any considerable cytotoxicity. Besides providing an economically feasible way for BC production, the high level of physico-mechanical and biological properties insured the importance in medical fields. PMID:26604413

  18. Bacterial cellulose composites: Synthetic strategies and multiple applications in bio-medical and electro-conductive fields.

    Science.gov (United States)

    Ul-Islam, Mazhar; Khan, Shaukat; Ullah, Muhammad Wajid; Park, Joong Kon

    2015-12-01

    Bacterial cellulose (BC), owing to its pure nature and impressive physicochemical properties, including high mechanical strength, crystallinity, porous fibrous structure, and liquid absorbing capabilities, has emerged as an advanced biomaterial. To match the market demand and economic values, BC has been produced through a number of synthetic routes, leading to slightly different structural features and physical appearance. Chemical nature, porous geometry, and 3D fibrous structure of BC make it an ideal material for composites synthesis that successfully overcome certain deficiencies of pure BC. In this review, we have focused various strategies developed for synthesizing BC and BC composites. Reinforcement materials including nanoparticles and polymers have enhanced the antimicrobial, conducting, magnetic, biocompatible, and mechanical properties of BC. Both pure BC and its composites have shown impressive applications in medical fields and in the development of optoelectronic devices. Herein, we have given a special attention to discuss its applications in the medical and electronic fields. In conclusion, BC and BC composites have realistic potential to be used in future development of medical devices, artificial organs and electronic and conducting materials. The contents discussed herein will provide an eye-catching theme to the researchers concerned with practical applications of BC and BC composites. PMID:26395011

  19. The utilization of sugar cane molasses with/without the presence of lignosulfonate for the production of bacterial cellulose.

    Science.gov (United States)

    Keshk, Sherif; Sameshima, Kazuhiko

    2006-09-01

    Production of bacterial cellulose (BC) using sugar cane molasses (MO) with/without the presence of lignosulfonate (MOL) as a sole carbon source in a Hestrin-Schramm medium (HS) was investigated. Six strains of Acetobacter xylinum [American Type Culture Collection 10245 and Institute of Fermentation in Osaka (IFO) 13693, 13772, 13773, 14815, and 15237] were screened for their BC production. The yield of the BC among all the strains from both the MO and MOL media was much higher than that from the HS medium. Acetobacter xylinum IFO 13772 was the best BC producer for all media. Furthermore, physical properties of these BC from the HS, MO, and MOL media were studied using Fourier-transform infrared spectroscopy, X-ray diffractometer, and cross polarization/magic angle spinning 13C nuclear magnetic resonance. There are no significant differences in the crystallinity and the recorded Ialpha fraction among the BC produced from the different media. A remarkable difference was only recorded in terms of viscosity. These results indicate that MO is a better carbon source than glucose for most of the strains investigated. PMID:16450110

  20. Hurdle Effect of Antimicrobial Activity Achieved by Time Differential Releasing of Nisin and Chitosan Hydrolysates from Bacterial Cellulose.

    Science.gov (United States)

    Hsiao, Hui-Ling; Lin, Shih-Bin; Chen, Li-Chen; Chen, Hui-Huang

    2016-05-01

    We investigated the combined antimicrobial effect of nisin and chitosan hydrolysates (CHs) by regulating the antimicrobial reaction order of substances due to differential releasing rate from hydroxypropylmethylcellulose-modified bacterial cellulose (HBC). The minimum inhibitory concentration of nisin against Staphylococcus aureus and that of CHs against Escherichia coli were 6 IU and 200 μg/mL, respectively. Hurdle and additive effects in antimicrobial tests were observed when nisin was used 6 h before CH treatment against S. aureus; similar effects were observed when CH was used before nisin treatment against E. coli. Simultaneously combined treatment of nisin and CHs exhibited the low antimicrobial effect. HBC was then selected as the carrier for the controlled release of nisin and CHs. A 90% inhibition in the growth of S. aureus and E. coli was achieved when 30 IU-nisin-containing HBC and 62.5 μg/mL-CH-containing HBC were used simultaneously. The controlled release of nisin and CHs by using HBC minimized the interaction between nisin and CHs as well as increased the number of microbial targets. PMID:27074534