WorldWideScience

Sample records for bacterial biofilm formation

  1. Effects of different osmolarities on bacterial biofilm formation

    OpenAIRE

    2014-01-01

    Biofilm formation depends on several factors. The influence of different osmolarities on bacterial biofilm formation was studied. Two strains (Enterobacter sp. and Stenotrophomonas sp.) exhibited the most remarkable alterations. Biofilm formation is an important trait and its use has been associated to the protection of organisms against environmental stresses.

  2. Inactivation of Efflux Pumps Abolishes Bacterial Biofilm Formation

    DEFF Research Database (Denmark)

    Kvist, Malin; Hancock, Viktoria; Klemm, Per

    2008-01-01

    Bacterial biofilms cause numerous problems in health care and industry; notably, biofilms are associated with a large number of infections. Biofilm-dwelling bacteria are particularly resistant to antibiotics, making it hard to eradicate biofilm-associated infections. Bacteria rely on efflux pumps...... to get rid of toxic substances. We discovered that efflux pumps are highly active in bacterial biofilms, thus making efflux pumps attractive targets for antibiofilm measures. A number of efflux pump inhibitors (EPIs) are known. EPIs were shown to reduce biofilm formation, and in combination they could...... abolish biofilm formation completely. Also, EPIs were able to block the antibiotic tolerance of biofilms. The results of this feasibility study might pave the way for new treatments for biofilm-related infections and may be exploited for prevention of biofilms in general....

  3. Bacterial Extracellular Polysaccharides Involved in Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Elena P. Ivanova

    2009-07-01

    Full Text Available Extracellular polymeric substances (EPS produced by microorganisms are a complex mixture of biopolymers primarily consisting of polysaccharides, as well as proteins, nucleic acids, lipids and humic substances. EPS make up the intercellular space of microbial aggregates and form the structure and architecture of the biofilm matrix. The key functions of EPS comprise the mediation of the initial attachment of cells to different substrata and protection against environmental stress and dehydration. The aim of this review is to present a summary of the current status of the research into the role of EPS in bacterial attachment followed by biofilm formation. The latter has a profound impact on an array of biomedical, biotechnology and industrial fields including pharmaceutical and surgical applications, food engineering, bioremediation and biohydrometallurgy. The diverse structural variations of EPS produced by bacteria of different taxonomic lineages, together with examples of biotechnological applications, are discussed. Finally, a range of novel techniques that can be used in studies involving biofilm-specific polysaccharides is discussed.

  4. A bacterial volatile signal for biofilm formation

    Science.gov (United States)

    Chen, Yun; Gozzi, Kevin; Chai, Yunrong

    2015-01-01

    Bacteria constantly monitor the environment they reside in and respond to potential changes in the environment through a variety of signal sensing and transduction mechanisms in a timely fashion. Those signaling mechanisms often involve application of small, diffusible chemical molecules. Volatiles are a group of small air-transmittable chemicals that are produced universally by all kingdoms of organisms. Past studies have shown that volatiles can function as cell-cell communication signals not only within species, but also cross-species. However, little is known about how the volatile-mediated signaling mechanism works. In our recent study (Chen, et al. mBio (2015), 6: e00392-15), we demonstrated that the soil bacterium Bacillus subtilis uses acetic acid as a volatile signal to coordinate the timing of biofilm formation within physically separated cells in the community. We also showed that the bacterium possesses an intertwined gene network to produce, secrete, sense, and respond to acetic acid, in stimulating biofilm formation. Interestingly, many of those genes are highly conserved in other bacterial species, raising the possibility that acetic acid may act as a volatile signal for cross-species communication.

  5. A bacterial volatile signal for biofilm formation

    Directory of Open Access Journals (Sweden)

    Yun Chen

    2015-09-01

    Full Text Available Bacteria constantly monitor the environment they reside in and respond to potential changes in the environment through a variety of signal sensing and transduction mechanisms in a timely fashion. Those signaling mechanisms often involve application of small, diffusible chemical molecules. Volatiles are a group of small air-transmittable chemicals that are produced universally by all kingdoms of organisms. Past studies have shown that volatiles can function as cell-cell communication signals not only within species, but also cross-species. However, little is known about how the volatile-mediated signaling mechanism works. In our recent study (Chen, et al. mBio (2015, 6: e00392-15, we demonstrated that the soil bacterium Bacillus subtilis uses acetic acid as a volatile signal to coordinate the timing of biofilm formation within physically separated cells in the community. We also showed that the bacterium possesses an intertwined gene network to produce, secrete, sense, and respond to acetic acid, in stimulating biofilm formation. Interestingly, many of those genes are highly conserved in other bacterial species, raising the possibility that acetic acid may act as a volatile signal for cross-species communication.

  6. Etiology of bacterial vaginosis and polymicrobial biofilm formation.

    Science.gov (United States)

    Jung, Hyun-Sul; Ehlers, Marthie M; Lombaard, Hennie; Redelinghuys, Mathys J; Kock, Marleen M

    2017-03-30

    Microorganisms in nature rarely exist in a planktonic form, but in the form of biofilms. Biofilms have been identified as the cause of many chronic and persistent infections and have been implicated in the etiology of bacterial vaginosis (BV). Bacterial vaginosis is the most common form of vaginal infection in women of reproductive age. Similar to other biofilm infections, BV biofilms protect the BV-related bacteria against antibiotics and cause recurrent BV. In this review, an overview of BV-related bacteria, conceptual models and the stages involved in the polymicrobial BV biofilm formation will be discussed.

  7. Blocking of bacterial biofilm formation by a fish protein coating

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; Klemm, Per

    2008-01-01

    Bacterial biofilm formation on inert surfaces is a significant health and economic problem in a wide range of environmental, industrial, and medical areas. Bacterial adhesion is generally a prerequisite for this colonization process and, thus, represents an attractive target for the development...... of biofilm-preventive measures. We have previously found that the preconditioning of several different inert materials with an aqueous fish muscle extract, composed primarily of fish muscle alpha-tropomyosin, significantly discourages bacterial attachment and adhesion to these surfaces. Here......, this proteinaceous coating is characterized with regards to its biofilm-reducing properties by using a range of urinary tract infectious isolates with various pathogenic and adhesive properties. The antiadhesive coating significantly reduced or delayed biofilm formation by all these isolates under every condition...

  8. Patterned biofilm formation reveals a mechanism for structural heterogeneity in bacterial biofilms.

    Science.gov (United States)

    Gu, Huan; Hou, Shuyu; Yongyat, Chanokpon; De Tore, Suzanne; Ren, Dacheng

    2013-09-03

    Bacterial biofilms are ubiquitous and are the major cause of chronic infections in humans and persistent biofouling in industry. Despite the significance of bacterial biofilms, the mechanism of biofilm formation and associated drug tolerance is still not fully understood. A major challenge in biofilm research is the intrinsic heterogeneity in the biofilm structure, which leads to temporal and spatial variation in cell density and gene expression. To understand and control such structural heterogeneity, surfaces with patterned functional alkanthiols were used in this study to obtain Escherichia coli cell clusters with systematically varied cluster size and distance between clusters. The results from quantitative imaging analysis revealed an interesting phenomenon in which multicellular connections can be formed between cell clusters depending on the size of interacting clusters and the distance between them. In addition, significant differences in patterned biofilm formation were observed between wild-type E. coli RP437 and some of its isogenic mutants, indicating that certain cellular and genetic factors are involved in interactions among cell clusters. In particular, autoinducer-2-mediated quorum sensing was found to be important. Collectively, these results provide missing information that links cell-to-cell signaling and interaction among cell clusters to the structural organization of bacterial biofilms.

  9. Bacterial biofilm formation, pathogenicity, diagnostics and control: An overview

    Directory of Open Access Journals (Sweden)

    Sawhney Rajesh

    2009-07-01

    Full Text Available Bacterial biofilms are complex, mono- or poly-microbialn communities adhering to biotic or abiotic surfaces. This adaptation has been implicated as a survival strategy. The formation of biofilms is mediated by mechanical, biochemical and genetical factors. The biofilms enhance the virulence of the pathogen and have their potential role in various infections, such as dental caries, cystic fibrosis, osteonecrosis, urinary tract infection and eye infections. A number of diagnostic techniques, viz., bright-field microscopy, epifluorescence microscopy, scanning electron microscopy, confocal laser scanning microscopy and amplicon length heterogeneity polymerase chain reaction, have been employed for detection of these communities. Researchers have worked on applications of catheter lock solutions, a fish protein coating, acid shock treatment, susceptibility to bacteriophages, etc., for biofilm control. However, we need to rearrange our strategies to have thorough insight and concentrate on priority basis to develop new accurate, precise and rapid diagnostic protocols for detection and evaluation of biofilm. Above all, the strict compliance to these techniques is required for accurate diagnosis and control.

  10. Candidate Targets for New Anti-Virulence Drugs: Selected Cases of Bacterial Adhesion and Biofilm Formation

    DEFF Research Database (Denmark)

    Klemm, Per; Hancock, Viktoria; Kvist, Malin;

    2007-01-01

    formation are highly attractive targets for new drugs. Specific adhesion provides bacteria with target selection and prevents removal by hydrodynamic flow forces. Bacterial adhesion is of paramount importance for bacterial pathogenesis. Adhesion is also the first step in biofilm formation. Biofilm formation...

  11. In vitro model of bacterial biofilm formation on polyvinyl chloride biomaterial.

    Science.gov (United States)

    Zhao, Guang-qiang; Ye, Lian-hua; Huang, Yun-chao; Yang, Da-kuan; Li, Li; Xu, Geng; Lei, Yu-jie

    2011-11-01

    The aim of the study was to establish an in vitro model of Staphylococcus epidermidis biofilms on polyvinyl chloride (PVC) material, and to investigate bacterial biofilm formation and its structure using the combined approach of confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM). Staphylococcus epidermidis bacteria (stain RP62A) were incubated with PVC pieces in Tris buffered saline to form biofilms. Biofilm formation was examined at 6, 12, 18, 24, 30, and 48 h. Thicknesses of these biofilms and the number, and percentage of viable cells in biofilms were measured. CT scan images of biofilms were obtained using CLSM and environmental SEM. The results of this study showed that Staphylococcus epidermidis biofilm is a highly organized multi-cellular structure. The biofilm is constituted of large number of viable and dead bacterial cells. Bacterial biofilm formation on the surface of PVC material was found to be a dynamic process with maximal thickness being attained at 12-18 h. These biofilms became mature by 24 h. There was significant difference in the percentage of viable cells along with interior, middle, and outer layers of biofilms (P < 0.05). Staphylococcus epidermidis biofilm is sophisticated in structure and the combination method involving CLSM and SEM was ideal for investigation of biofilms on PVC material.

  12. Direct Electrical Current Reduces Bacterial and Yeast Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Maria Ruiz-Ruigomez

    2016-01-01

    Full Text Available New strategies are needed for prevention of biofilm formation. We have previously shown that 24 hr of 2,000 µA of direct current (DC reduces Staphylococcus epidermidis biofilm formation in vitro. Herein, we examined the effect of a lower amount of DC exposure on S. epidermidis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Propionibacterium acnes, and Candida albicans biofilm formation. 12 hr of 500 µA DC decreased S. epidermidis, S. aureus, E. coli, and P. aeruginosa biofilm formation on Teflon discs by 2, 1, 1, and 2 log10 cfu/cm2, respectively (p<0.05. Reductions in S. epidermidis, S. aureus, and E. coli biofilm formation were observed with as few as 12 hr of 200 µA DC (2, 2 and 0.4 log10 cfu/cm2, resp.; a 1 log10 cfu/cm2 reduction in P. aeruginosa biofilm formation was observed at 36 hr. 24 hr of 500 µA DC decreased C. albicans biofilm formation on Teflon discs by 2 log10 cfu/cm2. No reduction in P. acnes biofilm formation was observed. 1 and 2 log10 cfu/cm2 reductions in E. coli and S. epidermidis biofilm formation on titanium discs, respectively, were observed with 12 hr of exposure to 500 µA. Electrical current is a potential strategy to reduce biofilm formation on medical biomaterials.

  13. Wild Mushroom Extracts as Inhibitors of Bacterial Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Maria José Alves

    2014-08-01

    Full Text Available Microorganisms can colonize a wide variety of medical devices, putting patients in risk for local and systemic infectious complications, including local-site infections, catheter-related bloodstream infections, and endocarditis. These microorganisms are able to grow adhered to almost every surface, forming architecturally complex communities termed biofilms. The use of natural products has been extremely successful in the discovery of new medicine, and mushrooms could be a source of natural antimicrobials. The present study reports the capacity of wild mushroom extracts to inhibit in vitro biofilm formation by multi-resistant bacteria. Four Gram-negative bacteria biofilm producers (Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, and Acinetobacter baumannii isolated from urine were used to verify the activity of Russula delica, Fistulina hepatica, Mycena rosea, Leucopaxilus giganteus, and Lepista nuda extracts. The results obtained showed that all tested mushroom extracts presented some extent of inhibition of biofilm production. Pseudomonas aeruginosa was the microorganism with the highest capacity of biofilm production, being also the most susceptible to the extracts inhibition capacity (equal or higher than 50%. Among the five tested extracts against E. coli, Leucopaxillus giganteus (47.8% and Mycenas rosea (44.8% presented the highest inhibition of biofilm formation. The extracts exhibiting the highest inhibitory effect upon P. mirabilis biofilm formation were Sarcodon imbricatus (45.4% and Russula delica (53.1%. Acinetobacter baumannii was the microorganism with the lowest susceptibility to mushroom extracts inhibitory effect on biofilm production (highest inhibition—almost 29%, by Russula delica extract. This is a pioneer study since, as far as we know, there are no reports on the inhibition of biofilm production by the studied mushroom extracts and in particular against multi-resistant clinical isolates; nevertheless, other

  14. An iron detection system determines bacterial swarming initiation and biofilm formation

    NARCIS (Netherlands)

    Lin, Chuan-Sheng; Tsai, Yu-Huan; Chang, Chih-Jung; Tseng, Shun-Fu; Wu, Tsung-Ru; Lu, Chia-Chen; Wu, Ting-Shu; Lu, Jang-Jih; Horng, Jim-Tong; Martel, Jan; Ojcius, David M.; Lai, Hsin-Chih; Young, John D.; Andrews, S. C.; Robinson, A. K.; Rodriguez-Quinones, F.; Touati, D.; Yeom, J.; Imlay, J. A.; Park, W.; Marx, J. J.; Braun, V.; Hantke, K.; Cornelis, P.; Wei, Q.; Vinckx, T.; Troxell, B.; Hassan, H. M.; Verstraeten, N.; Lewis, K.; Hall-Stoodley, L.; Costerton, J. W.; Stoodley, P.; Kearns, D. B.; Losick, R.; Butler, M. T.; Wang, Q.; Harshey, R. M.; Lai, S.; Tremblay, J.; Deziel, E.; Overhage, J.; Bains, M.; Brazas, M. D.; Hancock, R. E.; Partridge, J. D.; Kim, W.; Surette, M. G.; Givskov, M.; Rather, P. N.; Houdt, R. Van; Michiels, C. W.; Mukherjee, S.; Inoue, T.; Frye, J. G.; McClelland, M.; McCarter, L.; Silverman, M.; Matilla, M. A.; Wu, Y.; Outten, F. W.; Singh, P. K.; Parsek, M. R.; Greenberg, E. P.; Welsh, M. J.; Banin, E.; Vasil, M. L.; Wosten, M. M.; Kox, L. F.; Chamnongpol, S.; Soncini, F. C.; Groisman, E. A.; Laub, M. T.; Goulian, M.; Krell, T.; Lai, H. C.; Lin, C. S.; Soo, P. C.; Tsai, Y. H.; Wei, J. R.; Wyckoff, E. E.; Mey, A. R.; Leimbach, A.; Fisher, C. F.; Payne, S. M.; Livak, K. J.; Schmittgen, T. D.; Clarke, M. B.; Hughes, D. T.; Zhu, C.; Boedeker, E. C.; Sperandio, V.; Stintzi, A.; Clarke-Pearson, M. F.; Brady, S. F.; Drake, E. J.; Gulick, A. M.; Qaisar, U.; Rowland, M. A.; Deeds, E. J.; Garcia, C. A.; Alcaraz, E. S.; Franco, M. A.; Rossi, B. N. Passerini de; Mehi, O.; Skaar, E. P.; Visaggio, D.; Nishino, K.; Dietz, P.; Gerlach, G.; Beier, D.; Bustin, S. A.; Schwyn, B.; Neilands, J. B.

    2016-01-01

    Iron availability affects swarming and biofilm formation in various bacterial species. However, how bacteria sense iron and coordinate swarming and biofilm formation remains unclear. Using Serratia marcescens as a model organism, we identify here a stage-specific iron-regulatory machinery comprising

  15. Formation and post-formation dynamics of bacterial biofilm streamers as highly viscous liquid jets

    CERN Document Server

    Das, Siddhartha

    2013-01-01

    It has been recently reported that in presence of low Reynolds number (Re<<1) transport, preformed bacterial biofilms, several hours after their formation, may degenerate in form of filamentous structures, known as streamers. In this letter, we explain that such streamers form as the highly viscous liquid states of the intrinsically viscoelastic biofilms. Such "viscous liquid" state can be hypothesized by noting that the time of appearance of the streamers is substantially larger than the viscoelastic relaxation time scale of the biofilms, and this appearance is explained by the inability of a viscous liquid to withstand an external shear. Further, by identifying the post formation dynamics of the streamers as that of a viscous liquid jet in a surrounding flow field, we can interpret several unexplained issues associated with the post-formation dynamics of streamers, such as the clogging of the flow passage or the exponential time growth of streamer dimensions.

  16. BACTERIAL BIOFILM FORMATION UNDER MICROGRAVITY CONDITIONS. (R825503)

    Science.gov (United States)

    Although biofilm formation is widely documented on Earth, it has not been demonstrated in the absence of gravity. To explore this possibility, Pseudomonas aeruginosa, suspended in sterile buffer, was flown in a commercial payload on space shuttle flight STS-95. During earth or...

  17. Disturbance of the bacterial cell wall specifically interferes with biofilm formation.

    Science.gov (United States)

    Bucher, Tabitha; Oppenheimer-Shaanan, Yaara; Savidor, Alon; Bloom-Ackermann, Zohar; Kolodkin-Gal, Ilana

    2015-12-01

    In nature, bacteria communicate via chemical cues and establish complex communities referred to as biofilms, wherein cells are held together by an extracellular matrix. Much research is focusing on small molecules that manipulate and prevent biofilm assembly by modifying cellular signalling pathways. However, the bacterial cell envelope, presenting the interface between bacterial cells and their surroundings, is largely overlooked. In our study, we identified specific targets within the biosynthesis pathways of the different cell wall components (peptidoglycan, wall teichoic acids and teichuronic acids) hampering biofilm formation and the anchoring of the extracellular matrix with a minimal effect on planktonic growth. In addition, we provide convincing evidence that biofilm hampering by transglycosylation inhibitors and D-Leucine triggers a highly specific response without changing the overall protein levels within the biofilm cells or the overall levels of the extracellular matrix components. The presented results emphasize the central role of the Gram-positive cell wall in biofilm development, resistance and sustainment.

  18. Assessment of biofilm formation in device-associated clinical bacterial isolates in a tertiary level hospital

    Directory of Open Access Journals (Sweden)

    Summaiya A Mulla

    2011-01-01

    Full Text Available Background: Biofilm formation is a developmental process with intercellular signals that regulate growth. Biofilms contaminate catheters, ventilators, and medical implants; they act as a source of disease for humans, animals, and plants. Aim: In this study we have done quantitative assessment of biofilm formation in device-associated clinical bacterial isolates in response to various concentrations of glucose in tryptic soya broth and with different incubation time. Materials and Methods: The study was carried out on 100 positive bacteriological cultures of medical devices, which were inserted in hospitalized patients. The bacterial isolates were processed as per microtitre plate method with tryptic soya broth alone and with varying concentrations of glucose and were observed in response to time. Results: Majority of catheter cultures were positive. Out of the total 100 bacterial isolates tested, 88 of them were biofilm formers. Incubation period of 16-20 h was found to be optimum for biofilm development. Conclusions: Availability of nutrition in the form of glucose enhances the biofilm formation by bacteria. Biofilm formation depends on adherence of bacteria to various surfaces. Time and availability of glucose are important factors for assessment of biofilm progress.

  19. Bacterial Lysis through Interference with Peptidoglycan Synthesis Increases Biofilm Formation by Nontypeable Haemophilus influenzae

    Science.gov (United States)

    Puig, Carmen; Merlos, Alexandra; Viñas, Miguel; de Jonge, Marien I.; Liñares, Josefina; Ardanuy, Carmen

    2017-01-01

    ABSTRACT Nontypeable Haemophilus influenzae (NTHi) is an opportunistic pathogen that mainly causes otitis media in children and community-acquired pneumonia or exacerbations of chronic obstructive pulmonary disease in adults. A large variety of studies suggest that biofilm formation by NTHi may be an important step in the pathogenesis of this bacterium. However, the underlying mechanisms involved in this process are poorly elucidated. In this study, we used a transposon mutant library to identify bacterial genes involved in biofilm formation. The growth and biofilm formation of 4,172 transposon mutants were determined, and the involvement of the identified genes in biofilm formation was validated in in vitro experiments. Here, we present experimental data showing that increased bacterial lysis, through interference with peptidoglycan synthesis, results in elevated levels of extracellular DNA, which increased biofilm formation. Interestingly, similar results were obtained with subinhibitory concentrations of β-lactam antibiotics, known to interfere with peptidoglycan synthesis, but such an effect does not appear with other classes of antibiotics. These results indicate that treatment with β-lactam antibiotics, especially for β-lactam-resistant NTHi isolates, might increase resistance to antibiotics by increasing biofilm formation. IMPORTANCE Most, if not all, bacteria form a biofilm, a multicellular structure that protects them from antimicrobial actions of the host immune system and affords resistance to antibiotics. The latter is especially disturbing with the increase in multiresistant bacterial clones worldwide. Bacterial biofilm formation is a multistep process that starts with surface adhesion, after which attached bacteria divide and give rise to biomass. The actual steps required for Haemophilus influenzae biofilm formation are largely not known. We show that interference with peptidoglycan biosynthesis increases biofilm formation because of the release

  20. A three-step method for analysing bacterial biofilm formation under continuous medium flow.

    Science.gov (United States)

    Schmutzler, Karolin; Schmid, Andreas; Buehler, Katja

    2015-07-01

    For the investigation and comparison of microbial biofilms, a variety of analytical methods have been established, all focusing on different growth stages and application areas of biofilms. In this study, a novel quantitative assay for analysing biofilm maturation under the influence of continuous flow conditions was developed using the interesting biocatalyst Pseudomonas taiwanensis VLB120. In contrast to other tubular-based assay systems, this novel assay format delivers three readouts using a single setup in a total assay time of 40 h. It combines morphotype analysis of biofilm colonies with the direct quantification of biofilm biomass and pellicle formation on an air/liquid interphase. Applying the Tube-Assay, the impact of the second messenger cyclic diguanylate on biofilm formation of P. taiwanensis VLB120 was investigated. To this end, 41 deletions of genes encoding for protein homologues to diguanylate cyclase and phosphodiesterase were generated in the genome of P. taiwanensis VLB120. Subsequently, the biofilm formation of the resulting mutants was analysed using the Tube-Assay. In more than 60 % of the mutants, a significantly altered biofilm formation as compared to the parent strain was detected. Furthermore, the potential of the proposed Tube-Assay was validated by investigating the biofilms of several other bacterial species.

  1. Biofilm Formation Mechanisms of Pseudomonas aeruginosa Predicted via Genome-Scale Kinetic Models of Bacterial Metabolism.

    Science.gov (United States)

    Vital-Lopez, Francisco G; Reifman, Jaques; Wallqvist, Anders

    2015-10-01

    A hallmark of Pseudomonas aeruginosa is its ability to establish biofilm-based infections that are difficult to eradicate. Biofilms are less susceptible to host inflammatory and immune responses and have higher antibiotic tolerance than free-living planktonic cells. Developing treatments against biofilms requires an understanding of bacterial biofilm-specific physiological traits. Research efforts have started to elucidate the intricate mechanisms underlying biofilm development. However, many aspects of these mechanisms are still poorly understood. Here, we addressed questions regarding biofilm metabolism using a genome-scale kinetic model of the P. aeruginosa metabolic network and gene expression profiles. Specifically, we computed metabolite concentration differences between known mutants with altered biofilm formation and the wild-type strain to predict drug targets against P. aeruginosa biofilms. We also simulated the altered metabolism driven by gene expression changes between biofilm and stationary growth-phase planktonic cultures. Our analysis suggests that the synthesis of important biofilm-related molecules, such as the quorum-sensing molecule Pseudomonas quinolone signal and the exopolysaccharide Psl, is regulated not only through the expression of genes in their own synthesis pathway, but also through the biofilm-specific expression of genes in pathways competing for precursors to these molecules. Finally, we investigated why mutants defective in anthranilate degradation have an impaired ability to form biofilms. Alternative to a previous hypothesis that this biofilm reduction is caused by a decrease in energy production, we proposed that the dysregulation of the synthesis of secondary metabolites derived from anthranilate and chorismate is what impaired the biofilms of these mutants. Notably, these insights generated through our kinetic model-based approach are not accessible from previous constraint-based model analyses of P. aeruginosa biofilm

  2. Effect of UV-photofunctionalization on oral bacterial attachment and biofilm formation to titanium implant material.

    Science.gov (United States)

    de Avila, Erica Dorigatti; Lima, Bruno P; Sekiya, Takeo; Torii, Yasuyoshi; Ogawa, Takahiro; Shi, Wenyuan; Lux, Renate

    2015-10-01

    Bacterial biofilm infections remain prevalent reasons for implant failure. Dental implant placement occurs in the oral environment, which harbors a plethora of biofilm-forming bacteria. Due to its trans-mucosal placement, part of the implant structure is exposed to oral cavity and there is no effective measure to prevent bacterial attachment to implant materials. Here, we demonstrated that UV treatment of titanium immediately prior to use (photofunctionalization) affects the ability of human polymicrobial oral biofilm communities to colonize in the presence of salivary and blood components. UV-treatment of machined titanium transformed the surface from hydrophobic to superhydrophilic. UV-treated surfaces exhibited a significant reduction in bacterial attachment as well as subsequent biofilm formation compared to untreated ones, even though overall bacterial viability was not affected. The function of reducing bacterial colonization was maintained on UV-treated titanium that had been stored in a liquid environment before use. Denaturing gradient gel-electrophoresis (DGGE) and DNA sequencing analyses revealed that while bacterial community profiles appeared different between UV-treated and untreated titanium in the initial attachment phase, this difference vanished as biofilm formation progressed. Our findings confirm that UV-photofunctionalization of titanium has a strong potential to improve outcome of implant placement by creating and maintaining antimicrobial surfaces.

  3. Influence of calcium in extracellular DNA mediated bacterial aggregation and biofilm formation.

    Directory of Open Access Journals (Sweden)

    Theerthankar Das

    Full Text Available Calcium (Ca(2+ has an important structural role in guaranteeing the integrity of the outer lipopolysaccharide layer and cell walls of bacterial cells. Extracellular DNA (eDNA being part of the slimy matrix produced by bacteria promotes biofilm formation through enhanced structural integrity of the matrix. Here, the concurrent role of Ca(2+ and eDNA in mediating bacterial aggregation and biofilm formation was studied for the first time using a variety of bacterial strains and the thermodynamics of DNA to Ca(2+ binding. It was found that the eDNA concentrations under both planktonic and biofilm growth conditions were different among bacterial strains. Whilst Ca(2+ had no influence on eDNA release, presence of eDNA by itself favours bacterial aggregation via attractive acid-base interactions in addition, its binding with Ca(2+ at biologically relevant concentrations was shown further increase in bacterial aggregation via cationic bridging. Negative Gibbs free energy (ΔG values in iTC data confirmed that the interaction between DNA and Ca(2+ is thermodynamically favourable and that the binding process is spontaneous and exothermic owing to its highly negative enthalpy. Removal of eDNA through DNase I treatment revealed that Ca(2+ alone did not enhance cell aggregation and biofilm formation. This discovery signifies the importance of eDNA and concludes that existence of eDNA on bacterial cell surfaces is a key facilitator in binding of Ca(2+ to eDNA thereby mediating bacterial aggregation and biofilm formation.

  4. Enhanced Biofilm Formation and Increased Resistance to Antimicrobial Agents and Bacterial Invasion Are Caused by Synergistic Interactions in Multispecies Biofilms

    DEFF Research Database (Denmark)

    Burmølle, Mette; Webb, J.S.; Rao, D.

    2006-01-01

    Most biofilms in their natural environments are likely to consist of consortia of species that influence each other in synergistic and antagonistic manners. However, few reports specifically address interactions within multispecies biofilms. In this study, 17 epiphytic bacterial strains, isolated...... specific interactions. In summary, our data strongly indicate that synergistic effects promote biofilm biomass and resistance of the biofilm to antimicrobial agents and bacterial invasion in multispecies biofilms....

  5. Disinfection byproduct formation from chlorination of pure bacterial cells and pipeline biofilms.

    Science.gov (United States)

    Wang, Jun-Jian; Liu, Xin; Ng, Tsz Wai; Xiao, Jie-Wen; Chow, Alex T; Wong, Po Keung

    2013-05-15

    Disinfection byproduct (DBP) formation is commonly attributed to the reaction between natural organic matters and disinfectants, yet few have considered the contribution from disinfecting bacterial materials - the essential process of water disinfection. Here, we explored the DBP formation from chlorination and chloramination of Escherichia coli and found that most selected DBPs were detectable, including trihalomethanes, haloacetonitriles, chloral hydrate, chloropicrin, and 1,1,1-trichloro-2-propanone. A positive correlation (P = 0.08-0.09) between DBP formation and the log reduction of E. coli implied that breaking down of bacterial cells released precursors for DBP formation. As Pseudomonas aeruginosa is a dominant bacterial species in pipeline biofilms, the DBP formation potentials (DBPFPs) from its planktonic cells and biofilms were characterized. Planktonic cells formed 7-11 times greater trihalomethanes per carbon of those from biofilms but significantly lower (P disinfection of bacterial planktonic cells in source water and ex situ reaction between biofilms and residual chlorine in pipeline networks as hitherto unknown DBP sources in drinking water.

  6. Characterization of Bacterial Etiologic Agents of Biofilm Formation in Medical Devices in Critical Care Setup

    Directory of Open Access Journals (Sweden)

    Sangita Revdiwala

    2012-01-01

    Full Text Available Background. Biofilms contaminate catheters, ventilators, and medical implants; they act as a source of disease for humans, animals, and plants. Aim. Critical care units of any healthcare institute follow various interventional strategies with use of medical devices for the management of critical cases. Bacteria contaminate medical devices and form biofilms. Material and Methods. The study was carried out on 100 positive bacteriological cultures of medical devices which were inserted in hospitalized patients. The bacterial isolates were processed as per microtitre plate. All the isolates were subjected to antibiotic susceptibility testing by VITEK 2 compact automated systems. Results. Out of the total 100 bacterial isolates tested, 88 of them were biofilm formers. A 16–20-hour incubation period was found to be optimum for biofilm development. 85% isolates were multidrug resistants and different mechanisms of bacterial drug resistance like ESBL, carbapenemase, and MRSA were found among isolates. Conclusion. Availability of nutrition in the form of glucose enhances the biofilm formation by bacteria. Time and availability of glucose are important factors for assessment of biofilm progress. It is an alarm for those who are associated with invasive procedures and indwelling medical devices especially in patients with low immunity.

  7. Influence of Biofilm Formation by Gardnerella vaginalis and Other Anaerobes on Bacterial Vaginosis.

    Science.gov (United States)

    Machado, António; Cerca, Nuno

    2015-12-15

    Bacterial vaginosis (BV) is the worldwide leading vaginal disorder among women of reproductive age. BV is characterized by the replacement of beneficial lactobacilli and the augmentation of anaerobic bacteria. Gardnerella vaginalis is a predominant bacterial species, but BV is also associated with other numerous anaerobes, such as Atopobium vaginae, Mobiluncus mulieris, Prevotella bivia, Fusobacterium nucleatum, and Peptoniphilus species. Currently, the role of G. vaginalis in the etiology of BV remains a matter of controversy. However, it is known that, in patients with BV, a biofilm is usually formed on the vaginal epithelium and that G. vaginalis is typically the predominant species. So, the current paradigm is that the establishment of a biofilm plays a key role in the pathogenesis of BV. This review provides background on the influence of biofilm formation by G. vaginalis and other anaerobes, from the time of their initial adhesion until biofilm formation, in the polymicrobial etiology of BV and discusses the commensal and synergic interactions established between them to understand the phenotypic shift of G. vaginalis biofilm formation to BV establishment.

  8. Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress

    Directory of Open Access Journals (Sweden)

    Aisha Waheed Qurashi

    2012-09-01

    Full Text Available To compensate for stress imposed by salinity, biofilm formation and exopolysaccharide production are significant strategies of salt tolerant bacteria to assist metabolism. We hypothesized that two previously isolated salt-tolerant strains Halomonas variabilis (HT1 and Planococcus rifietoensis (RT4 have an ability to improve plant growth, These strains can form biofilm and accumulate exopolysacharides at increasing salt stress. These results showed that bacteria might be involved in developing microbial communities under salt stress and helpful in colonizing of bacterial strains to plant roots and soil particles. Eventually, it can add to the plant growth and soil structure. We investigated the comparative effect of exopolysacharide and biofilm formation in two bacterial strains Halomonas variabilis (HT1 and Planococcus rifietoensis (RT4 in response to varying salt stress. We found that biofilm formation and exopolysaccharide accumulation increased at higher salinity. To check the effect of bacterial inoculation on the plant (Cicer arietinum Var. CM-98 growth and soil aggregation, pot experiment was conducted by growing seedlings under salt stress. Inoculation of both strains increased plant growth at elevated salt stress. Weight of soil aggregates attached with roots and present in soil were added at higher salt concentrations compared to untreated controls. Soil aggregation was higher at plant roots under salinity. These results suggest the feasibility of using above strains in improving plant growth and soil fertility under salinity.

  9. Culturable bacterial diversity from a feed water of a reverse osmosis system, evaluation of biofilm formation and biocontrol using phages.

    Science.gov (United States)

    Belgini, D R B; Dias, R S; Siqueira, V M; Valadares, L A B; Albanese, J M; Souza, R S; Torres, A P R; Sousa, M P; Silva, C C; De Paula, S O; Oliveira, V M

    2014-10-01

    Biofilm formation on reverse osmosis (RO) systems represents a drawback in the application of this technology by different industries, including oil refineries. In RO systems the feed water maybe a source of microbial contamination and thus contributes for the formation of biofilm and consequent biofouling. In this study the planktonic culturable bacterial community was characterized from a feed water of a RO system and their capacities were evaluated to form biofilm in vitro. Bacterial motility and biofilm control were also analysed using phages. As results, diverse Protobacteria, Actinobacteria and Bacteroidetes were identified. Alphaproteobacteria was the predominant group and Brevundimonas, Pseudomonas and Mycobacterium the most abundant genera. Among the 30 isolates, 11 showed at least one type of motility and 11 were classified as good biofilm formers. Additionally, the influence of non-specific bacteriophage in the bacterial biofilms formed in vitro was investigated by action of phages enzymes or phage infection. The vB_AspP-UFV1 (Podoviridae) interfered in biofilm formation of most tested bacteria and may represent a good alternative in biofilm control. These findings provide important information about the bacterial community from the feed water of a RO system that may be used for the development of strategies for biofilm prevention and control in such systems.

  10. Streptomyces lunalinharesii 235 prevents the formation of a sulfate-reducing bacterial biofilm.

    Science.gov (United States)

    Rosa, Juliana Pacheco da; Tibúrcio, Samyra Raquel Gonçalves; Marques, Joana Montezano; Seldin, Lucy; Coelho, Rosalie Reed Rodrigues

    2016-01-01

    Streptomyces lunalinharesii strain 235 produces an antimicrobial substance that is active against sulfate reducing bacteria, the major bacterial group responsible for biofilm formation and biocorrosion in petroleum reservoirs. The use of this antimicrobial substance for sulfate reducing bacteria control is therefore a promising alternative to chemical biocides. In this study the antimicrobial substance did not interfere with the biofilm stability, but the sulfate reducing bacteria biofilm formation was six-fold smaller in carbon steel coupons treated with the antimicrobial substance when compared to the untreated control. A reduction in the most probable number counts of planktonic cells of sulfate reducing bacteria was observed after treatments with the sub-minimal inhibitory concentration, minimal inhibitory concentration, and supra-minimal inhibitory concentration of the antimicrobial substance. Additionally, when the treated coupons were analyzed by scanning electron microscopy, the biofilm formation was found to be substantially reduced when the supra-minimal inhibitory concentration of the antimicrobial substance was used. The coupons used for the biofilm formation had a small weight loss after antimicrobial substance treatment, but corrosion damage was not observed by scanning electron microscopy. The absence of the dsrA gene fragment in the scraped cell suspension after treatment with the supra-minimal inhibitory concentration of the antimicrobial substance suggests that Desulfovibrio alaskensis was not able to adhere to the coupons. This is the first report on an antimicrobial substance produced by Streptomyces active against sulfate reducing bacteria biofilm formation. The application of antimicrobial substance as a potential biocide for sulfate reducing bacteria growth control could be of great interest to the petroleum industry.

  11. Streptomyces lunalinharesii 235 prevents the formation of a sulfate-reducing bacterial biofilm

    Directory of Open Access Journals (Sweden)

    Juliana Pacheco da Rosa

    Full Text Available ABSTRACT Streptomyces lunalinharesii strain 235 produces an antimicrobial substance that is active against sulfate reducing bacteria, the major bacterial group responsible for biofilm formation and biocorrosion in petroleum reservoirs. The use of this antimicrobial substance for sulfate reducing bacteria control is therefore a promising alternative to chemical biocides. In this study the antimicrobial substance did not interfere with the biofilm stability, but the sulfate reducing bacteria biofilm formation was six-fold smaller in carbon steel coupons treated with the antimicrobial substance when compared to the untreated control. A reduction in the most probable number counts of planktonic cells of sulfate reducing bacteria was observed after treatments with the sub-minimal inhibitory concentration, minimal inhibitory concentration, and supra-minimal inhibitory concentration of the antimicrobial substance. Additionally, when the treated coupons were analyzed by scanning electron microscopy, the biofilm formation was found to be substantially reduced when the supra-minimal inhibitory concentration of the antimicrobial substance was used. The coupons used for the biofilm formation had a small weight loss after antimicrobial substance treatment, but corrosion damage was not observed by scanning electron microscopy. The absence of the dsrA gene fragment in the scraped cell suspension after treatment with the supra-minimal inhibitory concentration of the antimicrobial substance suggests that Desulfovibrio alaskensis was not able to adhere to the coupons. This is the first report on an antimicrobial substance produced by Streptomyces active against sulfate reducing bacteria biofilm formation. The application of antimicrobial substance as a potential biocide for sulfate reducing bacteria growth control could be of great interest to the petroleum industry.

  12. Studying bacterial hydrophobicity and biofilm formation at liquid-liquid interfaces through interfacial rheology and pendant drop tensiometry.

    Science.gov (United States)

    Rühs, P A; Böcker, L; Inglis, R F; Fischer, P

    2014-05-01

    Bacterial adsorption to interfaces is a key factor in biofilm formation. One major limitation to understanding biofilm formation and development is the accurate measurement of bacterial cell adhesion to hydrophobic interfaces. With this study, bacterial attachment and biofilm growth over time at water-oil interface was monitored through interfacial rheology and tensiometry. Five model bacteria (Pseudomonas putida KT2442, Pseudomonas putida W2, Salmonella typhimurium, Escherichia coli, and Bacillus subtilis) were allowed to adsorb at the water-oil interface either in their non-growing or growing state. We found that we were able to observe the initial kinetics of bacterial attachment and the transient biofilm formation at the water-oil interface through interfacial rheology and tensiometry. Electrophoretic mobility measurements and bacterial adhesion to hydrocarbons (BATH) tests were performed to characterize the selected bacteria. To validate interfacial rheology and tensiometry measurements, we monitored biofilm formation utilizing both confocal laser scanning microscopy and light microscopy. Using this combination of techniques, we were able to observe the elasticity and tension development over time, from the first bacterial attachment up to biofilm formation.

  13. The natural antimicrobial carvacrol inhibits quorum sensing in Chromobacterium violaceum and reduces bacterial biofilm formation at sub-lethal concentrations.

    Science.gov (United States)

    Burt, Sara A; Ojo-Fakunle, Victoria T A; Woertman, Jenifer; Veldhuizen, Edwin J A

    2014-01-01

    The formation of biofilm by bacteria confers resistance to biocides and presents problems in medical and veterinary clinical settings. Here we report the effect of carvacrol, one of the major antimicrobial components of oregano oil, on the formation of biofilms and its activity on existing biofilms. Assays were carried out in polystyrene microplates to observe (a) the effect of 0-0.8 mM carvacrol on the formation of biofilms by selected bacterial pathogens over 24 h and (b) the effect of 0-8 mM carvacrol on the stability of pre-formed biofilms. Carvacrol was able to inhibit the formation of biofilms of Chromobacterium violaceum ATCC 12472, Salmonella enterica subsp. Typhimurium DT104, and Staphylococcus aureus 0074, while it showed no effect on formation of Pseudomonas aeruginosa (field isolate) biofilms. This inhibitory effect of carvacrol was observed at sub-lethal concentrations (biofilm formation. In contrast, carvacrol had (up to 8 mM) very little or no activity against existing biofilms of the bacteria described, showing that formation of the biofilm also confers protection against this compound. Since quorum sensing is an essential part of biofilm formation, the effect of carvacrol on quorum sensing of C. violaceum was also studied. Sub-MIC concentrations of carvacrol reduced expression of cviI (a gene coding for the N-acyl-L-homoserine lactone synthase), production of violacein (pigmentation) and chitinase activity (both regulated by quorum sensing) at concentrations coinciding with carvacrol's inhibiting effect on biofilm formation. These results indicate that carvacrol's activity in inhibition of biofilm formation may be related to the disruption of quorum sensing.

  14. Prevention of Bacterial Biofilms Formation on Urinary Catheter by Selected Plant Extracts.

    Science.gov (United States)

    Adesina, T D; Nwinyi, O C; Olugbuyiro, J A O

    2015-02-01

    In this study, we investigated the feasibility of using Psidium guajava, Mangifera indica and Ocimum gratissimum leaf extracts in preventing Escherichia coli biofilm formation. The plants extractions were done with methanol under cold extraction. The various concentrations 5.0, 10.0 and 20.0 mg mL(-1) were used to coat 63 catheters under mild heat from water bath. Biofilm formation on the catheter was induced using cultures of E. coli. Biofilm formation was evaluated using aerobic plate count and turbidity at 600 nm. From the obtained results, Psidium guajava, Mangifera indica and Ocimum gratissimum delayed the onset of biofilm formation for a week. Ocimum gratissimum coated catheter had the highest inhibitory effect at 5.0, 10.0 and 20.0 mg mL(-1) with bacterial count ranging from 2.2 x 10(5)-7.0 x 10(4) and 5.7 x 10(5)-3.7 x10(5) for 120 and 128 h, respectively. The Psidium guajava coated catheter had the lowest inhibitory effect at 5.0, 10.0 and 20.0 mg mL(-1), with bacterial count ranging between 4.3 x 10(5)-1.9 x 10(3) and 7.7 x 10(5)-3.8 x 10(5) for 120 and 128 h, respectively. Despite the antimicrobial activities, the differences in the activity of these plant extracts were statistically not significant (p < 0.05).

  15. Quantitative characterization of the influence of the nanoscale morphology of nanostructured surfaces on bacterial adhesion and biofilm formation.

    Directory of Open Access Journals (Sweden)

    Ajay Vikram Singh

    Full Text Available Bacterial infection of implants and prosthetic devices is one of the most common causes of implant failure. The nanostructured surface of biocompatible materials strongly influences the adhesion and proliferation of mammalian cells on solid substrates. The observation of this phenomenon has led to an increased effort to develop new strategies to prevent bacterial adhesion and biofilm formation, primarily through nanoengineering the topology of the materials used in implantable devices. While several studies have demonstrated the influence of nanoscale surface morphology on prokaryotic cell attachment, none have provided a quantitative understanding of this phenomenon. Using supersonic cluster beam deposition, we produced nanostructured titania thin films with controlled and reproducible nanoscale morphology respectively. We characterized the surface morphology; composition and wettability by means of atomic force microscopy, X-ray photoemission spectroscopy and contact angle measurements. We studied how protein adsorption is influenced by the physico-chemical surface parameters. Lastly, we characterized Escherichia coli and Staphylococcus aureus adhesion on nanostructured titania surfaces. Our results show that the increase in surface pore aspect ratio and volume, related to the increase of surface roughness, improves protein adsorption, which in turn downplays bacterial adhesion and biofilm formation. As roughness increases up to about 20 nm, bacterial adhesion and biofilm formation are enhanced; the further increase of roughness causes a significant decrease of bacterial adhesion and inhibits biofilm formation. We interpret the observed trend in bacterial adhesion as the combined effect of passivation and flattening effects induced by morphology-dependent protein adsorption. Our findings demonstrate that bacterial adhesion and biofilm formation on nanostructured titanium oxide surfaces are significantly influenced by nanoscale morphological

  16. The contribution of cell-cell signaling and motility to bacterial biofilm formation

    DEFF Research Database (Denmark)

    Shrout, Joshua D; Tolker-Nielsen, Tim; Givskov, Michael;

    2011-01-01

    Many bacteria grow attached to a surface as biofilms. Several factors dictate biofilm formation, including responses by the colonizing bacteria to their environment. Here we review how bacteria use cell-cell signaling (also called quorum sensing) and motility during biofilm formation. Specificall...

  17. A multivariate approach to correlate bacterial surface properties to biofilm formation by lipopolysaccharide mutants of Pseudomonas aeruginosa.

    Science.gov (United States)

    Ruhal, Rohit; Antti, Henrik; Rzhepishevska, Olena; Boulanger, Nicolas; Barbero, David R; Wai, Sun Nyunt; Uhlin, Bernt Eric; Ramstedt, Madeleine

    2015-03-01

    Bacterial biofilms are involved in various medical infections and for this reason it is of great importance to better understand the process of biofilm formation in order to eradicate or mitigate it. It is a very complex process and a large range of variables have been suggested to influence biofilm formation. However, their internal importance is still not well understood. In the present study, a range of surface properties of Pseudomonas aeruginosa lipopolysaccharide mutants were studied in relation to biofilm formation measured in different kinds of multi-well plates and growth conditions in order to better understand the complexity of biofilm formation. Multivariate analysis was used to simultaneously evaluate the role of a range of physiochemical parameters under different conditions. Our results suggest the presence of serum inhibited biofilm formation due to changes in twitching motility. From the multivariate analysis it was observed that the most important parameters, positively correlated to biofilm formation on two types of plates, were high hydrophobicity, near neutral zeta potential and motility. Negative correlation was observed with cell aggregation, as well as formation of outer membrane vesicles and exopolysaccharides. This work shows that the complexity of biofilm formation can be better understood using a multivariate approach that can interpret and rank the importance of different factors being present simultaneously under several different environmental conditions, enabling a better understanding of this complex process.

  18. Inhibited Bacterial Adhesion and Biofilm Formation on Quaternized Chitosan-Loaded Titania Nanotubes with Various Diameters

    Directory of Open Access Journals (Sweden)

    Wen-tao Lin

    2016-03-01

    Full Text Available Titania nanotube-based local drug delivery is an attractive strategy for combating implant-associated infection. In our previous study, we demonstrated that the gentamicin-loaded nanotubes could dramatically inhibit bacterial adhesion and biofilm formation on implant surfaces. Considering the overuse of antibiotics may lead to the evolution of antibiotic-resistant bacteria, we synthesized a new quaternized chitosan derivative (hydroxypropyltrimethyl ammonium chloride chitosan, HACC with a 27% degree of substitution (DS; referred to as 27% HACC that had a strong antibacterial activity and simultaneously good biocompatibility with osteogenic cells. Titania nanotubes with various diameters (80, 120, 160, and 200 nm and 200 nm length were loaded with 2 mg of HACC using a lyophilization method and vacuum drying. Two standard strain, methicillin-resistant Staphylococcus aureus (American Type Culture Collection 43300 and Staphylococcus epidermidis (American Type Culture Collection 35984, and two clinical isolates, S. aureus 376 and S. epidermidis 389, were selected to investigate the bacterial adhesion at 6 h and biofilm formation at 24, 48, and 72 h on the HACC-loaded nanotubes (NT-H using the spread plate method, confocal laser scanning microscopy (CLSM, and scanning electron microscopy (SEM. Smooth titanium (Smooth Ti was also investigated and compared. We found that NT-H could significantly inhibit bacterial adhesion and biofilm formation on its surface compared with Smooth Ti, and the NT-H with 160 nm and 200 nm diameters had stronger antibacterial activity because of the extended HACC release time of NT-H with larger diameters. Therefore, NT-H can significantly improve the antibacterial ability of orthopedic implants and provide a promising strategy to prevent implant-associated infections.

  19. Interactions between Lactobacillus crispatus and Bacterial Vaginosis (BV)-Associated Bacterial Species in Initial Attachment and Biofilm Formation

    Science.gov (United States)

    Machado, António; Jefferson, Kimberly Kay; Cerca, Nuno

    2013-01-01

    Certain anaerobic bacterial species tend to predominate the vaginal flora during bacterial vaginosis (BV), with Gardnerella vaginalis being the most common. However, the exact role of G. vaginalis in BV has not yet been determined. The main goal of this study was to test the hypothesis that G. vaginalis is an early colonizer, paving the way for intermediate (e.g., Fusobacterium nucleatum) and late colonizers (e.g., Prevotella bivia). Theoretically, in order to function as an early colonizer, species would need to be able to adhere to vaginal epithelium, even in the presence of vaginal lactobacilli. Therefore, we quantified adherence of G. vaginalis and other BV-associated bacteria to an inert surface pre-coated with Lactobacillus crispatus using a new Peptide Nucleic Acid (PNA) Fluorescence In Situ Hybridization (FISH) methodology. We found that G. vaginalis had the greatest capacity to adhere in the presence of L. crispatus. Theoretically, an early colonizer would contribute to the adherence and/or growth of additional species, so we next quantified the effect of G. vaginalis biofilms on the adherence and growth of other BV-associated species by quantitative Polymerase Chain Reaction (qPCR) technique. Interestingly, G. vaginalis derived a growth benefit from the addition of a second species, regardless of the species. Conversely, G. vaginalis biofilms enhanced the growth of P. bivia, and to a minor extent of F. nucleatum. These results contribute to our understanding of BV biofilm formation and the progression of the disorder. PMID:23739678

  20. Bacterial adhesion and biofilm formation on surfaces of variable roughness and hydrophobicity

    DEFF Research Database (Denmark)

    Tang, Lone; Pillai, Saju; Iversen, Anders

    adhesion. Sol-gel technology and the recent availability of organic modified silicas have lead to development of hybrid organic/inorganic glass ceramic coatings with specialised surface properties. In this study we investigate bacterial adhesion and the subsequent biofilm formation on stainless steel (SS......) and compare it to two nanostructured sol-gel coatings with variable hydrophobicity. Test surfaces were characterised with respect to surface roughness by atomic force microscopy, surface hydrophobicity by contact angle (CA) measurements, protein adsorption by quartz crystal microbalance analyses....... The bacterial communities were identified by clone libraries and fluorescence in situ hybridization. We initially compared surfaces of relatively similar hydrophobicity (CA=60-79º) but different roughness. The roughness (Ra) was 300nm for SS type 2B, 6nm for electro polished SS, and 0.2 nm for sol-gel...

  1. Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles.

    Science.gov (United States)

    Huang, Qiaoyun; Wu, Huayong; Cai, Peng; Fein, Jeremy B; Chen, Wenli

    2015-11-20

    Bacterial adhesion onto mineral surfaces and subsequent biofilm formation play key roles in aggregate stability, mineral weathering, and the fate of contaminants in soils. However, the mechanisms of bacteria-mineral interactions are not fully understood. Atomic force microscopy (AFM) was used to determine the adhesion forces between bacteria and goethite in water and to gain insight into the nanoscale surface morphology of the bacteria-mineral aggregates and biofilms formed on clay-sized minerals. This study yields direct evidence of a range of different association mechanisms between bacteria and minerals. All strains studied adhered predominantly to the edge surfaces of kaolinite rather than to the basal surfaces. Bacteria rarely formed aggregates with montmorillonite, but were more tightly adsorbed onto goethite surfaces. This study reports the first measured interaction force between bacteria and a clay surface, and the approach curves exhibited jump-in events with attractive forces of 97 ± 34 pN between E. coli and goethite. Bond strengthening between them occurred within 4 s to the maximum adhesion forces and energies of -3.0 ± 0.4 nN and -330 ± 43 aJ (10(-18) J), respectively. Under the conditions studied, bacteria tended to form more extensive biofilms on minerals under low rather than high nutrient conditions.

  2. Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles

    Science.gov (United States)

    Huang, Qiaoyun; Wu, Huayong; Cai, Peng; Fein, Jeremy B.; Chen, Wenli

    2015-11-01

    Bacterial adhesion onto mineral surfaces and subsequent biofilm formation play key roles in aggregate stability, mineral weathering, and the fate of contaminants in soils. However, the mechanisms of bacteria-mineral interactions are not fully understood. Atomic force microscopy (AFM) was used to determine the adhesion forces between bacteria and goethite in water and to gain insight into the nanoscale surface morphology of the bacteria-mineral aggregates and biofilms formed on clay-sized minerals. This study yields direct evidence of a range of different association mechanisms between bacteria and minerals. All strains studied adhered predominantly to the edge surfaces of kaolinite rather than to the basal surfaces. Bacteria rarely formed aggregates with montmorillonite, but were more tightly adsorbed onto goethite surfaces. This study reports the first measured interaction force between bacteria and a clay surface, and the approach curves exhibited jump-in events with attractive forces of 97 ± 34 pN between E. coli and goethite. Bond strengthening between them occurred within 4 s to the maximum adhesion forces and energies of -3.0 ± 0.4 nN and -330 ± 43 aJ (10-18 J), respectively. Under the conditions studied, bacteria tended to form more extensive biofilms on minerals under low rather than high nutrient conditions.

  3. Bacterial growth and biofilm formation in household-stored groundwater collected from public wells.

    Science.gov (United States)

    Burkowska-But, Aleksandra; Kalwasińska, Agnieszka; Swiontek Brzezinska, Maria

    2015-06-01

    The research was aimed at assessing changes in the number of bacteria and evaluating biofilm formation in groundwater collected from public wells, both aspects directly related to the methods of household storage. In the research, water collected from Cretaceous aquifer wells in Toruń (Poland) was stored in a refrigerator and at room temperature. Microbiological parameters of the water were measured immediately after the water collection, and then after 3 and 7 days of storage under specified conditions. The microbiological examination involved determining the number of heterotrophic bacteria capable of growth at 22 and 37 °C, the number of spore-forming bacteria, and the total number of bacteria on membrane filters. The storage may affect water quality to such an extent that the water, which initially met the microbiological criteria for water intended for human consumption, may pose a health risk. The repeated use of the same containers for water storage results in biofilm formation containing live and metabolically active bacterial cells.

  4. N-acetyl-L-cysteine affects growth, extracellular polysaccharide production, and bacterial biofilm formation on solid surfaces.

    Science.gov (United States)

    Olofsson, Ann-Cathrin; Hermansson, Malte; Elwing, Hans

    2003-08-01

    N-Acetyl-L-cysteine (NAC) is used in medical treatment of patients with chronic bronchitis. The positive effects of NAC treatment have primarily been attributed to the mucus-dissolving properties of NAC, as well as its ability to decrease biofilm formation, which reduces bacterial infections. Our results suggest that NAC also may be an interesting candidate for use as an agent to reduce and prevent biofilm formation on stainless steel surfaces in environments typical of paper mill plants. Using 10 different bacterial strains isolated from a paper mill, we found that the mode of action of NAC is chemical, as well as biological, in the case of bacterial adhesion to stainless steel surfaces. The initial adhesion of bacteria is dependent on the wettability of the substratum. NAC was shown to bind to stainless steel, increasing the wettability of the surface. Moreover, NAC decreased bacterial adhesion and even detached bacteria that were adhering to stainless steel surfaces. Growth of various bacteria, as monocultures or in a multispecies community, was inhibited at different concentrations of NAC. We also found that there was no detectable degradation of extracellular polysaccharides (EPS) by NAC, indicating that NAC reduced the production of EPS, in most bacteria tested, even at concentrations at which growth was not affected. Altogether, the presence of NAC changes the texture of the biofilm formed and makes NAC an interesting candidate for use as a general inhibitor of formation of bacterial biofilms on stainless steel surfaces.

  5. Biofilm formation and ethanol inhibition by bacterial contaminants of biofuel fermentation

    Science.gov (United States)

    Bacterial contaminants can inhibit ethanol production in biofuel fermentations, and even result in stuck fermentations. Contaminants may persist in production facilities by forming recalcitrant biofilms. A two-year longitudinal study was conducted of bacterial contaminants from a Midwestern dry grin...

  6. Autoinducer-2-like activity on vegetable produce and its potential involvement in bacterial biofilm formation on tomatoes.

    Science.gov (United States)

    Lu, Lingeng; Hume, Michael E; Pillai, Suresh D

    2005-01-01

    Quorum sensing employing autoinducer molecules is a strategy used by bacterial populations to coordinately modulate their response to environmental stresses and host defense mechanisms. The objectives of this study were to determine the levels of autoinducer-2 (AI-2)-like activity on selected vegetable produce and determine whether AI-2-like molecules can promote E. coli O157:H7 biofilm formation on tomatoes. Twelve different fruit and vegetable produce samples were screened for AI-2-like activity using autoinducer sensing V. harveyi biosensor strains. All samples except strawberries showed AI-2 activity albeit at varying levels, with eggplant having the highest levels. Tomatoes, when stored at 4 degrees C for 9 days, showed increasing levels of heterotrophic bacterial populations as compared to AI-2-like activity levels, which fluctuated. Rinses from Roma tomato surfaces that were stored at refrigeration temperature for up to 9 days caused a significant increase (1.8-3.6-fold as compared to the negative controls) in biofilm formation by luxS mutant (non AI-2 producing) generic E. coli and E. coli O157:H7 strains using a micro-titer plate-based biofilm assay. These results suggest that AI-2-like activity, which is present on the surfaces of tomatoes, has the potential to enhance the production of bacterial biofilms.

  7. The roles of epithelial cell contact, respiratory bacterial interactions and phosphorylcholine in promoting biofilm formation by Streptococcus pneumoniae and nontypeable Haemophilus influenzae.

    Science.gov (United States)

    Krishnamurthy, Ajay; Kyd, Jennelle

    2014-08-01

    Streptococcus pneumoniae and nontypeable Haemophilus influenzae (NTHi) often share a common niche within the nasopharynx, both associated with infections such as bronchitis and otitis media. This study investigated how the association between NTHi and S. pneumoniae and the host affects their propensity to form biofilms. We investigated a selection of bacterial strain and serotype combinations on biofilm formation, and the effect of contact with respiratory epithelial cells. Measurement of biofilm showed that co-infection with NTHi and S. pneumoniae increased biofilm formation following contact with epithelial cells compared to no contact demonstrating the role of epithelial cells in biofilm formation. Additionally, the influence of phosphorylcholine (ChoP) on biofilm production was investigated using the licD mutant strain of NTHi 2019 and found that ChoP had a role in mixed biofilm formation but was not the only requirement. The study highlights the complex interactions between microbes and the host epithelium during biofilm production, suggesting the importance of understanding why certain strains and serotypes differentially influence biofilm formation. A key contributor to increased biofilm formation was the upregulation of biofilm formation by epithelial cell factors.

  8. Anhydride-functional silane immobilized onto titanium surfaces induces osteoblast cell differentiation and reduces bacterial adhesion and biofilm formation

    Energy Technology Data Exchange (ETDEWEB)

    Godoy-Gallardo, Maria, E-mail: maria.godoy.gallardo@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Guillem-Marti, Jordi, E-mail: jordi.guillem.marti@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Sevilla, Pablo, E-mail: psevilla@euss.es [Department of Mechanics, Escola Universitària Salesiana de Sarrià (EUSS), C/ Passeig de Sant Bosco, 42, 08017 Barcelona (Spain); Manero, José M., E-mail: jose.maria.manero@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Gil, Francisco J., E-mail: francesc.xavier.gil@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); and others

    2016-02-01

    Bacterial infection in dental implants along with osseointegration failure usually leads to loss of the device. Bioactive molecules with antibacterial properties can be attached to titanium surfaces with anchoring molecules such as silanes, preventing biofilm formation and improving osseointegration. Properties of silanes as molecular binders have been thoroughly studied, but research on the biological effects of these coatings is scarce. The aim of the present study was to determine the in vitro cell response and antibacterial effects of triethoxysilypropyl succinic anhydride (TESPSA) silane anchored on titanium surfaces. X-ray photoelectron spectroscopy confirmed a successful silanization. The silanized surfaces showed no cytotoxic effects. Gene expression analyses of Sarcoma Osteogenic (SaOS-2) osteoblast-like cells cultured on TESPSA silanized surfaces reported a remarkable increase of biochemical markers related to induction of osteoblastic cell differentiation. A manifest decrease of bacterial adhesion and biofilm formation at early stages was observed on treated substrates, while favoring cell adhesion and spreading in bacteria–cell co-cultures. Surfaces treated with TESPSA could enhance a biological sealing on implant surfaces against bacteria colonization of underlying tissues. Furthermore, it can be an effective anchoring platform of biomolecules on titanium surfaces with improved osteoblastic differentiation and antibacterial properties. - Highlights: • TESPSA silane induces osteoblast differentiation. • TESPSA reduces bacterial adhesion and biofilm formation. • TESPSA is a promising anchoring platform of biomolecules onto titanium.

  9. Sfp-type PPTase inactivation promotes bacterial biofilm formation and ability to enhance wheat drought tolerance

    Directory of Open Access Journals (Sweden)

    Salme eTimmusk

    2015-05-01

    Full Text Available Paenibacillus polymyxa is a common soil bacterium with broad range of practical applications. An important group of secondary metabolites in P. polymyxa are nonribosomal peptide and polyketide derived metabolites (NRP/PK. Modular nonribosomal peptide synthetases catalyse main steps in the biosynthesis of the complex secondary metabolites. Here we report on the inactivation of an A26 sfp-type phosphopantetheinyl transferase. The inactivation of the gene resulted in loss of NRP/PK production. In contrast to the former Bacillus spp. model the mutant strain compared to wild type showed greatly enhanced biofilm formation ability. Its biofilm promotion is directly mediated by NRP/PK, as exogenous addition of the wild type metabolite extracts restores its biofilm formation level. Wheat inoculation with bacteria that had lost their sfp-type PPTase gene resulted in two times higher plant survival and about three times increased biomass under severe drought stress compared to wild type.

  10. The effect of phosphate based glasses on the formation and viability of oral bacterial biofilms

    Science.gov (United States)

    Mulligan, April Miranda

    This study considered the antibacterial activity of a series of soluble phosphate-based glasses (based on the Na2O-CaO-P2O5 glass system) doped with increasing amounts of copper or silver against oral bacterial biofilms. Initially, a variety of phosphate-based glass compositions were produced. The dissolution rate of these glasses was determined, and the information obtained was used to decide which glass compositions would be investigated in future experiments for their antibacterial properties. Selected glass compositions were investigated for their antibacterial activity against Streptococcus sanguis biofilms and oral microcosm biofilms. These biofilms were produced on phosphate-based glass discs using a Constant Depth Film Fermenter (CDFF), which allows the conditions found in the oral cavity to be closely mimicked. Following disc removal from the CDFF, various analytical procedures were carried out. Under conditions designed to mimic the supragingival environment of the oral cavity, fewer viable cells of Streptococcus sanguis were detected on both copper and silver-containing glass discs than on control discs, during the initial stages of the experiments, the greatest reduction occurring on the silver-containing glasses. An increase in viable cell number was observed as the experiments continued. Under the same conditions, copper-containing glasses failed to reduce the viability of microcosm biofilms. Viable cell number was initially reduced on the silver-containing glasses, but by the end of the experiments the viability of microcosm biofilms was significantly similar to those observed on the controls. Attempts to determine the efficacy of silver-containing glasses at reducing the viability of microcosm biofilms, under conditions designed to mimic the subgingival environment of the oral cavity, were subsequently made. Viable cells were not detected on any type of disc, including the control discs. Various reasons for this were postulated. In conclusion, the

  11. Environmental factors that shape biofilm formation.

    Science.gov (United States)

    Toyofuku, Masanori; Inaba, Tomohiro; Kiyokawa, Tatsunori; Obana, Nozomu; Yawata, Yutaka; Nomura, Nobuhiko

    2015-01-01

    Cells respond to the environment and alter gene expression. Recent studies have revealed the social aspects of bacterial life, such as biofilm formation. Biofilm formation is largely affected by the environment, and the mechanisms by which the gene expression of individual cells affects biofilm development have attracted interest. Environmental factors determine the cell's decision to form or leave a biofilm. In addition, the biofilm structure largely depends on the environment, implying that biofilms are shaped to adapt to local conditions. Second messengers such as cAMP and c-di-GMP are key factors that link environmental factors with gene regulation. Cell-to-cell communication is also an important factor in shaping the biofilm. In this short review, we will introduce the basics of biofilm formation and further discuss environmental factors that shape biofilm formation. Finally, the state-of-the-art tools that allow us investigate biofilms under various conditions are discussed.

  12. Mixed biofilm formation by Shiga toxin-producing Escherichia coli and Salmonella enterica serovar Typhimurium enhanced bacterial resistance to sanitization due to extracellular polymeric substances.

    Science.gov (United States)

    Wang, Rong; Kalchayanand, Norasak; Schmidt, John W; Harhay, Dayna M

    2013-09-01

    Shiga toxin-producing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium are important foodborne pathogens capable of forming single-species biofilms or coexisting in multispecies biofilm communities. Bacterial biofilm cells are usually more resistant to sanitization than their planktonic counterparts, so these foodborne pathogens in biofilms pose a serious food safety concern. We investigated how the coexistence of E. coli O157:H7 and Salmonella Typhimurium strains would affect bacterial planktonic growth competition and mixed biofilm composition. Furthermore, we also investigated how mixed biofilm formation would affect bacterial resistance to common sanitizers. Salmonella Typhimurium strains were able to outcompete E. coli strains in the planktonic growth phase; however, mixed biofilm development was highly dependent upon companion strain properties in terms of the expression of bacterial extracellular polymeric substances (EPS), including curli fimbriae and exopolysaccharide cellulose. The EPS-producing strains with higher biofilm-forming abilities were able to establish themselves in mixed biofilms more efficiently. In comparison to single-strain biofilms, Salmonella or E. coli strains with negative EPS expression obtained significantly enhanced resistance to sanitization by forming mixed biofilms with an EPS-producing companion strain of the other species. These observations indicate that the bacterial EPS components not only enhance the sanitizer resistance of the EPS-producing strains but also render protections to their companion strains, regardless of species, in mixed biofilms. Our study highlights the potential risk of cross-contamination by multispecies biofilms in food safety and the need for increased attention to proper sanitization practices in food processing facilities.

  13. Antibacterial activity of Thymoquinone, an active principle of Nigella sativa and its potency to prevent bacterial biofilm formation

    Directory of Open Access Journals (Sweden)

    Bakhrouf Amina

    2011-04-01

    Full Text Available Abstract Background Thymoquinone is an active principle of Nigella sativa seed known as "Habbah Al-Sauda" in Arabic countries and "Sinouj" in Tunisia. Bacterial biofilms tend to exhibit significant tolerance to antimicrobials drugs during infections. Methods The antibacterial activity of Thymoquinone (TQ and its biofilm inhibition potencies were investigated on 11 human pathogenic bacteria. The growth and development of the biofilm were assessed using the crystal violet (CV and the 2, 3-bis [2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide (XTT reduction assay. Results TQ exhibited a significant bactericidal activity against the majority of the tested bacteria (MICs values ranged from 8 to 32 μg/ml especially Gram positive cocci (Staphylococcus aureus ATCC 25923 and Staphylococcus epidermidis CIP 106510. Crystal violet assay demonstrated that the minimum biofilm inhibition concentration (BIC50 was reached with 22 and 60 μg/ml for Staphylococcus aureus ATCC 25923 and Staphylococcus epidermidis CIP 106510 respectively. In addition our data revealed that cells oxidative activity was influenced by TQ supplementation. In the same way, TQ prevented cell adhesion to glass slides surface. Conclusion The ability of TQ to prevent biofilm formation warrants further investigation to explore its use as bioactive substances with antibiofilm potential.

  14. 'Should I stay or should I go?' Bacterial attachment vs biofilm formation on surface-modified membranes.

    Science.gov (United States)

    Bernstein, Roy; Freger, Viatcheslav; Lee, Jin-Hyung; Kim, Yong-Guy; Lee, Jintae; Herzberg, Moshe

    2014-01-01

    A number of techniques are used for testing the anti-biofouling activity of surfaces, yet the correlation between different results is often questionable. In this report, the correlation between initial bacterial deposition (fast tests, reported previously) and biofilm growth (much slower tests) was analyzed on a pristine and a surface-modified reverse osmosis membrane ESPA-1. The membrane was modified with grafted hydrophilic polymers bearing negatively charged, positively charged and zwitter-ionic moieties. Using three different bacterial strains it was found that there was no general correlation between the initial bacterial deposition rates and biofilm growth on surfaces, the reasons being different for each modified surface. For the negatively charged surface the slowest deposition due to the charge repulsion was eventually succeeded by the largest biofilm growth, probably due to secretion of extracellular polymeric substances (EPS) that mediated a strong attachment. For the positively charged surface, short-term charge attraction by quaternary amine groups led to the fastest deposition, but could be eventually overridden by their antimicrobial activity, resulting in non-consistent results where in some cases a lower biofilm formation rate was observed. The results indicate that initial deposition rates have to be used and interpreted with great care, when used for assessing the anti-biofouling activity of surfaces. However, for a weakly interacting 'low-fouling' zwitter-ionic surface, the positive correlation between initial cell deposition and biofilm growth, especially under flow, suggests that for this type of coating initial deposition tests may be fairly indicative of anti-biofouling potential.

  15. The clinical impact of bacterial biofilms

    DEFF Research Database (Denmark)

    Høiby, Niels; Ciofu, Oana; Johansen, Helle Krogh

    2011-01-01

    . Bacterial biofilms are resistant to antibiotics, disinfectant chemicals and to phagocytosis and other components of the innate and adaptive inflammatory defense system of the body. It is known, for example, that persistence of staphylococcal infections related to foreign bodies is due to biofilm formation...... and increased doubling times. These more or less dormant cells are therefore responsible for some of the tolerance to antibiotics. Biofilm growth is associated with an increased level of mutations. Bacteria in biofilms communicate by means of molecules, which activates certain genes responsible for production...

  16. Evidence of extensive diversity in bacterial adherence mechanisms that exploit unanticipated stainless steel surface structural complexity for biofilm formation.

    Science.gov (United States)

    Davis, Elisabeth M; Li, Dongyang; Shahrooei, Mohammad; Yu, Bin; Muruve, Daniel; Irvin, Randall T

    2013-04-01

    Three protease-resistant bioorganic 304 stainless steel surfaces were created through the reaction of synthetic peptides consisting of the D-enantiomeric isomer (D-K122-4), the retro-inverso D-enantiomeric isomer (RI-K122-4), and a combination of the two peptides (D+RI) of the Pseudomonas aeruginosa PilA receptor binding domain with steel surfaces. The peptides used to produce the new materials differ only in handedness of their three-dimensional structure, but they reacted with the steel to yield materials that differed in their surface electron work function (EWF) while displaying an identical chemical composition and equivalent surface adhesive force properties. These surfaces allowed for an assessment of the relative role of surface EWF in initial biofilm formation. We examined the ability of various bacteria (selected strains of Listeria monocytogenes, L. innocua, Staphylococcus aureus and S. epidermidis) to initiate biofilm formation. The D-K1224 generated surface displayed the lowest EWF (classically associated with greater molecular interactions and more extensive biofilm formation) but was observed to be least effectively colonized by bacteria (>50% decrease in bacterial adherence of all strains). The highest surface EWF with the lowest surface free energy (RI-K122-4 generated) was more extensively colonized by bacteria, with the binding of some strains being equivalent to unmodified steel. The D+RI generated surface was least effective in minimizing biofilm formation, where some strains displayed enhanced bacterial colonization. Fluorescent microscopy revealed that the D and RI peptides displayed similar but clearly different binding patterns, suggesting that the peptides recognized different sites on the steel, and that differential binding of the peptides to the steel surfaces influences the binding of different bacterial strains and species. We have demonstrated that stainless steel surfaces can be easily modified by peptides to generate surfaces with

  17. The natural antimicrobial carvacrol inhibits quorum sensing in Chromobacterium violaceum and reduces bacterial biofilm formation at sub-lethal concentrations

    NARCIS (Netherlands)

    Burt, Sara A; Ojo-Fakunle, Victoria T A; Woertman, Jenifer; Veldhuizen, Edwin J A

    2014-01-01

    The formation of biofilm by bacteria confers resistance to biocides and presents problems in medical and veterinary clinical settings. Here we report the effect of carvacrol, one of the major antimicrobial components of oregano oil, on the formation of biofilms and its activity on existing biofilms.

  18. The Role of Antimicrobial Peptides in Preventing Multidrug-Resistant Bacterial Infections and Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Kyung-Soo Hahm

    2011-09-01

    Full Text Available Over the last decade, decreasing effectiveness of conventional antimicrobial-drugs has caused serious problems due to the rapid emergence of multidrug-resistant pathogens. Furthermore, biofilms, which are microbial communities that cause serious chronic infections and dental plaque, form environments that enhance antimicrobial resistance. As a result, there is a continuous search to overcome or control such problems, which has resulted in antimicrobial peptides being considered as an alternative to conventional drugs. Antimicrobial peptides are ancient host defense effector molecules in living organisms. These peptides have been identified in diverse organisms and synthetically developed by using peptidomimic techniques. This review was conducted to demonstrate the mode of action by which antimicrobial peptides combat multidrug-resistant bacteria and prevent biofilm formation and to introduce clinical uses of these compounds for chronic disease, medical devices, and oral health. In addition, combinations of antimicrobial peptides and conventional drugs were considered due to their synergetic effects and low cost for therapeutic treatment.

  19. Adsorption to metal oxides of the Pseudomonas aeruginosa siderophore pyoverdine and implications for bacterial biofilm formation on metals.

    Science.gov (United States)

    Upritchard, Hamish G; Yang, Jing; Bremer, Philip J; Lamont, Iain L; McQuillan, A James

    2007-06-19

    The initiation of biofilm formation is poorly understood, and in particular, the contribution of chemical bond formation between bacterial cells and metal surfaces has received little attention. We have previously used in situ infrared spectroscopy to show, during the initial stages of Pseudomonas aeruginosa biofilm formation, the formation of coordinate covalent bonds between titanium dioxide particle films and pyoverdine, a mixed catecholate and hydroxamate siderophore. Here we show using infrared spectroscopy that pyoverdine can also form covalent bonds with particle films of Fe2O3, CrOOH, and AlOOH. Adsorption to the metal oxides through the catechol-like 2,3-diamino-6,7-dihydroxyquinoline part of pyoverdine was most evident in the infrared spectrum of the adsorbed pyoverdine molecule. Weaker infrared absorption bands that are consistent with the hydroxamic acids of pyoverdine binding covalently to TiO2, Fe2O3, and AlOOH surfaces were also observed. The adsorption of pyoverdine to TiO2 and Fe2O3 surfaces showed a pH dependence that is indicative of the dominance of the catechol-like ligand of pyoverdine. Infrared absorption bands were also evident for pyoverdine associated with the cells of P. aeruginosa on TiO2 and Fe2O3 surfaces and were notably absent for genetically modified cells unable to synthesize or bind pyoverdine at the cell surface. These studies confirm the generality of pyoverdine-metal bond formation and suggest a wider involvement of siderophores in bacterial biofilm initiation on metals.

  20. A positive correlation between bacterial autoaggregation and biofilm formation in native Sinorhizobium meliloti isolates from Argentina.

    Science.gov (United States)

    Sorroche, Fernando G; Spesia, Mariana B; Zorreguieta, Angeles; Giordano, Walter

    2012-06-01

    Sinorhizobium meliloti is a symbiotic nitrogen-fixing bacterium that elicits nodule formation on roots of alfalfa plants. S. meliloti produces two exopolysaccharides (EPSs), termed EPS I and EPS II, that are both able to promote symbiosis. EPS I and EPS II are secreted in two major fractions that reflect differing degrees of subunit polymerization, designated high- and low-molecular-weight fractions. We reported previously that EPSs are crucial for autoaggregation and biofilm formation in S. meliloti reference strains and isogenic mutants. However, the previous observations were obtained by use of "domesticated" laboratory strains, with mutations resulting from successive passages under unnatural conditions, as has been documented for reference strain Rm1021. In the present study, we analyzed the autoaggregation and biofilm formation abilities of native S. meliloti strains isolated from root nodules of alfalfa plants grown in four regions of Argentina. 16S rRNA gene analysis of all the native isolates revealed a high degree of identity with reference S. meliloti strains. PCR analysis of the expR gene of all the isolates showed that, as in the case of reference strain Rm8530, this gene is not interrupted by an insertion sequence (IS) element. A positive correlation was found between autoaggregation and biofilm formation abilities in these rhizobia, indicating that both processes depend on the same physical adhesive forces. Extracellular complementation experiments using mutants of the native strains showed that autoaggregation was dependent on EPS II production. Our results indicate that a functional EPS II synthetic pathway and its proper regulation are essential for cell-cell interactions and surface attachment of S. meliloti.

  1. Influence of exudates of the kelp Laminaria digitata on biofilm formation of associated and exogenous bacterial epiphytes.

    Science.gov (United States)

    Salaün, Stéphanie; La Barre, Stéphane; Dos Santos-Goncalvez, Marina; Potin, Philippe; Haras, Dominique; Bazire, Alexis

    2012-08-01

    Wild populations of brown marine algae (Phaeophyta) provide extensive surfaces to bacteria and epiphytic eukaryotes for colonization. On one hand, various strategies allow kelps prevent frond surface fouling which would retard growth by reducing photosynthesis and increasing pathogenesis. On the other hand, production and release of organic exudates of high energy value, sometimes in association with more or less selective control of settlement of epiphytic strains, allow bacteria to establish surface consortia not leading to macrofouling. Here, we present the analysis of adhesion and biofilm formation of bacterial isolates from the kelp Laminaria digitata and of characterized and referenced marine isolates. When they were grown in flow cell under standard nutrient regimes, all used bacteria, except one, were able to adhere on glass and then develop as biofilms, with different architecture. Then, we evaluated the effect of extracts from undisturbed young Laminaria thalli and from young thalli subjected to oxidative stress elicitation; this latter condition induced the production of defense molecules. We observed increasing or decreasing adhesion depending on the referenced strains, but no effects were observed against strains isolated from L. digitata. Such effects were less observed on biofilms. Our results suggested that L. digitata is able to modulate its bacterial colonization. Finally, mannitol, a regular surface active component of Laminaria exudates was tested individually, and it showed a pronounced increased on one biofilm strain. Results of these experiments are original and can be usefully linked to what we already know on the oxidative halogen metabolism peculiar to Laminaria. Hopefully, we will be able to understand more about the unique relationship that bacteria have been sharing with Laminaria for an estimated one billion years.

  2. Bacterial biofilm formation versus mammalian cell growth on titanium-based mono- and bi-functional coating

    Directory of Open Access Journals (Sweden)

    G Subbiahdoss

    2010-05-01

    Full Text Available Biomaterials-associated-infections (BAI are serious complications in modern medicine. Although non-adhesive coatings, like polymer-brush coatings, have been shown to prevent bacterial adhesion, they do not support cell growth. Bi-functional coatings are supposed to prevent biofilm formation while supporting tissue integration. Here, bacterial and cellular responses to poly(ethylene glycol (PEG brush-coatings on titanium oxide presenting the integrin-active peptide RGD (arginine-glycine-aspartic acid (bioactive “PEG-RGD” were compared to mono-functional PEG brush-coatings (biopassive “PEG” and bare titanium oxide (TiO2 surfaces under flow. Staphylococcus epidermidis ATCC 35983 was deposited on the surfaces under a shear rate of 11 s-1 for 2 h followed by seeding of U2OS osteoblasts. Subsequently, both S. epidermidis and U2OS cells were grown simultaneously on the surfaces for 48 h under low shear (0.14 s-1. After 2 h, staphylococcal adhesion was reduced to 3.6±1.8 × 103 and 6.0±3.9 × 103 cm-2 on PEG and PEG-RGD coatings respectively, compared to 1.3±0.4 × 105 cm-2 for the TiO2 surface. When allowed to grow for 48 h, biofilms formed on all surfaces. However, biofilms detached from the PEG and PEG-RGD coatings when exposed to an elevated shear (5.6 s-1 U2OS cells neither adhered nor spread on PEG brush-coatings, regardless of the presence of biofilm. In contrast, in the presence of biofilm, U2OS cells adhered and spread on PEG-RGD coatings with a significantly higher surface coverage than on bare TiO2. The detachment of biofilm and the high cell surface coverage revealed the potential significance of PEG-RGD coatings in the context of the “race for the surface” between bacteria and mammalian cells.

  3. Meningococcal biofilm formation

    DEFF Research Database (Denmark)

    Lappann, M.; Haagensen, Janus Anders Juul; Claus, H.

    2006-01-01

    We show that in a standardized in vitro flow system unencapsulated variants of genetically diverse lineages of Neisseria meningitidis formed biofilms, that could be maintained for more than 96 h. Biofilm cells were resistant to penicillin, but not to rifampin or ciprofloxacin. For some strains......, microcolony formation within biofilms was observed. Microcolony formation in strain MC58 depended on a functional copy of the pilE gene encoding the pilus subunit pilin, and was associated with twitching of cells. Nevertheless, unpiliated pilE mutants formed biofilms showing that attachment and accumulation......X alleles was identified among genetically diverse meningococcal strains. PilX alleles differed in their propensity to support autoaggregation of cells in suspension, but not in their ability to support microcolony formation within biofilms in the continuous flow system....

  4. Studying bacterial multispecies biofilms

    DEFF Research Database (Denmark)

    Røder, Henriette Lyng; Sørensen, Søren Johannes; Burmølle, Mette

    2016-01-01

    and drawbacks of varying the degree of complexity. This review aims to facilitate multispecies biofilm research in order to expand the current limited knowledge on interspecies interactions. Recent technological advances have enabled total diversity analysis of highly complex and diverse microbial communities...... at the microscale of complex communities, including biofilms.Studies of multispecies biofilms and the interactions shaping these are conducted in traditional approaches used for single-species biofilms with some adjustments; but a crucial point for consideration is which strains to combine and where these should...

  5. Silver-Palladium Surfaces Inhibit Biofilm Formation

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Schroll, Casper; Hilbert, Lisbeth Rischel

    2009-01-01

    Undesired biofilm formation is a major concern in many areas. In the present study, we investigated biofilm-inhibiting properties of a silver-palladium surface that kills bacteria by generating microelectric fields and electrochemical redox processes. For evaluation of the biofilm inhibition...... efficacy and study of the biofilm inhibition mechanism, the silver-sensitive Escherichia coli J53 and the silver-resistant E. coli J53[pMG101] strains were used as model organisms, and batch and flow chamber setups were used as model systems. In the case of the silver-sensitive strain, the silver......-palladium surfaces killed the bacteria and prevented biofilm formation under conditions of low or high bacterial load. In the case of the silver-resistant strain, the silver-palladium surfaces killed surface-associated bacteria and prevented biofilm formation under conditions of low bacterial load, whereas under...

  6. Bacterial interactions in dental biofilm.

    Science.gov (United States)

    Huang, Ruijie; Li, Mingyun; Gregory, Richard L

    2011-01-01

    Biofilms are masses of microorganisms that bind to and multiply on a solid surface, typically with a fluid bathing the microbes. The microorganisms that are not attached but are free floating in an aqueous environment are termed planktonic cells. Traditionally, microbiology research has addressed results from planktonic bacterial cells. However, many recent studies have indicated that biofilms are the preferred form of growth of most microbes and particularly those of a pathogenic nature. Biofilms on animal hosts have significantly increased resistance to various antimicrobials compared to planktonic cells. These microbial communities form microcolonies that interact with each other using very sophisticated communication methods (i.e., quorum-sensing). The development of unique microbiological tools to detect and assess the various biofilms around us is a tremendously important focus of research in many laboratories. In the present review, we discuss the major biofilm mechanisms and the interactions among oral bacteria.

  7. Bacterial biofilms: prokaryotic adventures in multicellularity

    DEFF Research Database (Denmark)

    Webb, J.S.; Givskov, Michael Christian; Kjelleberg, S.

    2003-01-01

    The development of bacterial biofilms includes both the initial social behavior of undifferentiated cells, as well as cell death and differentiation in the mature biofilm, and displays several striking similarities with higher organisms. Recent advances in the field provide new insight...... into differentiation and cell death events in bacterial biofilm development and propose that biofilms have an unexpected level of multicellularity....

  8. Role of multicellular aggregates in biofilm formation

    DEFF Research Database (Denmark)

    Kragh, Kasper N.; Hutchison, Jaime B.; Melaugh, Gavin;

    2016-01-01

    response, may add to this ecological benefit. Our findings suggest that current models of biofilm formation should be reconsidered to incorporate the role of aggregates in biofilm initiation.IMPORTANCE During the past decades, there has been a consensus around the model of development of a biofilm......In traditional models of in vitro biofilm development, individual bacterial cells seed a surface, multiply, and mature into multicellular, three-dimensional structures. Much research has been devoted to elucidating the mechanisms governing the initial attachment of single cells to surfaces. However......, in natural environments and during infection, bacterial cells tend to clump as multicellular aggregates, and biofilms can also slough off aggregates as a part of the dispersal process. This makes it likely that biofilms are often seeded by aggregates and single cells, yet how these aggregates impact biofilm...

  9. Preparation of Polyester-Based Metal-Cross Linked Polymeric Composites as Novel Materials Resistant to Bacterial Adhesion and Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Mutasem O. Taha

    2011-01-01

    Full Text Available Bacterial biofilms constitute an extremely resistant form of bacterial colonization with dire health and economical implications. Towards achieving polymeric composites capable of resisting bacterial adhesion and biofilm formation, we prepared five 2,6-pyridinedicarboxylate-based polyesters employing five different diol monomers. The resulting polyesters were complexed with copper (II or silver (I. The new polymers were characterized by proton and carbon nuclear magnetic resonance spectroscopy, inherent viscosity, infrared spectroscopy, differential scanning calorimetry and thermogravimetric analysis. The corresponding metal complexes were characterized by differential scanning calorimery and infrared spectroscopy. The amounts of complexed copper and silver were determined by atomic absorption spectrophotometry. Finally, the resulting composites were tested for their antibacterial potential and were found to effectively resist bacterial attachment and growth.

  10. Antibiotic resistance of bacterial biofilms

    DEFF Research Database (Denmark)

    Hoiby, N.; Bjarnsholt, T.; Givskov, M.

    2010-01-01

    and other components of the body's defence system. The persistence of, for example, staphylococcal infections related to foreign bodies is due to biofilm formation. Likewise, chronic Pseudomonas aeruginosa lung infection in cystic fibrosis patients is caused by biofilm-growing mucoid strains...... to antibiotics. Biofilm growth is associated with an increased level of mutations as well as with quorum-sensing-regulated mechanisms. Conventional resistance mechanisms such as chromosomal beta-lactamase, upregulated efflux pumps and mutations in antibiotic target molecules in bacteria also contribute...

  11. Biofilm formation on abiotic surfaces

    DEFF Research Database (Denmark)

    Tang, Lone

    2011-01-01

    Bacteria can attach to any surface in contact with water and proliferate into complex communities enclosed in an adhesive matrix, these communities are called biofilms. The matrix makes the biofilm difficult to remove by physical means, and bacteria in biofilm can survive treatment with many...... to changing the surface hydrophobicity. The influence of surface topography in the biomolecule of great importance for bacterial adhesion...

  12. Determination of the biofilm formation capacity of bacterial pathogens associated with otorhinolaryngologic diseases in the Malaysian population.

    Science.gov (United States)

    Khosravi, Yalda; Ling, Lina Chooi; Loke, Mun Fai; Shailendra, Sivalingam; Prepageran, Narayanan; Vadivelu, Jamuna

    2014-05-01

    This study aims to assess the association between microbial composition, biofilm formation and chronic otorhinolaryngologic disorders in Malaysia. A total of 45 patients with chronic rhinosinusitis, chronic tonsillitis and chronic suppurative otitis media and 15 asymptomatic control patients were studied. Swab samples were obtained from these subjects. Samples were studied by conventional microbiological culturing, PCR-based microbial detection and Confocal Laser Scanning Microscopy (CLSM). Haemophilus influenzae, Staphylococcus aureus, Streptococcus pneumoniae, coagulase-negative staphylococci (CoNS) and other Streptococcus species were detected in subjects of both patient and control groups. Biofilm was observed in approximately half of the smear prepared from swab samples obtained from subjects of the patient group. Most of these were polymicrobial biofilms. S. aureus biofilm was most prevalent among nasal samples while H. influenzae biofilm was more common among ear and throat samples. Results from this study supported the hypothesis that chronic otorhinolaryngologic diseases may be biofilm related. Due to the presence of unculturable bacteria in biofilms present in specimens from ear, nose and throat, the use of molecular methods in combination with conventional microbiological culturing has demonstrated an improvement in the detection of bacteria from such specimens in this study.

  13. Biofilm formation in a hot water system

    DEFF Research Database (Denmark)

    Bagh, L.K.; Albrechtsen, Hans-Jørgen; Arvin, Erik

    2002-01-01

    The biofilm formation rate was measured in situ in a hot water system in an apartment building by specially designed sampling equipment, and the net growth of the suspended bacteria was measured by incubation of water samples with the indigeneous bacteria. The biofilm formation rate reached......, in the sludge, or in the water from the distribution system was negligible. This indicated that bacterial growth took place on the inner surfaces in the hot water system and biofilm formation and detachment of bacteria could account for most of the suspended bacteria actually measured in hot water. Therefore...

  14. Bacteriophages as Weapons Against Bacterial Biofilms in the Food Industry.

    Science.gov (United States)

    Gutiérrez, Diana; Rodríguez-Rubio, Lorena; Martínez, Beatriz; Rodríguez, Ana; García, Pilar

    2016-01-01

    Microbiological contamination in the food industry is often attributed to the presence of biofilms in processing plants. Bacterial biofilms are complex communities of bacteria attached to a surface and surrounded by an extracellular polymeric material. Their extreme resistance to cleaning and disinfecting processes is related to a unique organization, which implies a differential bacterial growth and gene expression inside the biofilm. The impact of biofilms on health, and the economic consequences, has promoted the development of different approaches to control or remove biofilm formation. Recently, successful results in phage therapy have boosted new research in bacteriophages and phage lytic proteins for biofilm eradication. In this regard, this review examines the environmental factors that determine biofilm development in food-processing equipment. In addition, future perspectives for the use of bacteriophage-derived tools as disinfectants are discussed.

  15. Biofilm Cohesive Strength as a Basis for Biofilm Recalcitrance: Are Bacterial Biofilms Overdesigned?

    Science.gov (United States)

    Aggarwal, Srijan; Stewart, Philip S; Hozalski, Raymond M

    2015-01-01

    Bacterial biofilms are highly resistant to common antibacterial treatments, and several physiological explanations have been offered to explain the recalcitrant nature of bacterial biofilms. Herein, a biophysical aspect of biofilm recalcitrance is being reported on. While engineering structures are often overdesigned with a factor of safety (FOS) usually under 10, experimental measurements of biofilm cohesive strength suggest that the FOS is on the order of thousands. In other words, bacterial biofilms appear to be designed to withstand extreme forces rather than typical or average loads. In scenarios requiring the removal or control of unwanted biofilms, this emphasizes the importance of considering strategies for structurally weakening the biofilms in conjunction with bacterial inactivation.

  16. A study on the ability of quaternary ammonium groups attached to a polyurethane foam wound dressing to inhibit bacterial attachment and biofilm formation.

    Science.gov (United States)

    Tran, Phat L; Hamood, Abdul N; de Souza, Anselm; Schultz, Gregory; Liesenfeld, Bernd; Mehta, Dilip; Reid, Ted W

    2015-01-01

    Bacterial infection of acute and chronic wounds impedes wound healing significantly. Part of this impediment is the ability of bacterial pathogens to grow in wound dressings. In this study, we examined the effectiveness of a polyurethane (PU) foam wound dressings coated with poly diallyl-dimethylammonium chloride (pDADMAC-PU) to inhibit the growth and biofilm development by three main wound pathogens, Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii, within the wound dressing. pDADMAC-PU inhibited the growth of all three pathogens. Time-kill curves were conducted both with and without serum to determine the killing kinetic of pDADMAC-PU. pDADMAC-PU killed S. aureus, A. baumannii, and P. aeruginosa. The effect of pDADMAC-PU on biofilm development was analyzed quantitatively and qualitatively. Quantitative analysis, colony-forming unit assay, revealed that pDADMAC-PU dressing produced more than eight log reduction in biofilm formation by each pathogen. Visualization of the biofilms by either confocal laser scanning microscopy or scanning electron microscopy confirmed these findings. In addition, it was found that the pDADMAC-PU-treated foam totally inhibited migration of bacteria through the foam for all three bacterial strains. These results suggest that pDADMAC-PU is an effective wound dressing that inhibits the growth of wound pathogens both within the wound and in the wound dressing.

  17. The influence of biofilm formation by Gardnerella vaginalis and other anaerobes on bacterial vaginosis

    OpenAIRE

    Machado, António; Cerca, Nuno

    2015-01-01

    Bacterial vaginosis (BV) is the worldwide leading vaginal disorder in women of reproductive age. BV is characterized by the replacement of beneficial lactobacilli and the augmentation of anaerobic bacteria. Gardnerella vaginalis is a predominant bacterial species, however, BV is also associated with other numerous anaerobes, such as Atopobium vaginae, Mobiluncus mulieris, Prevotella bivia, Fusobacterium nucleatum and Peptoniphilus sp.. Currently, the role of G. vaginalis in the etiology of BV...

  18. Defensive remodeling: How bacterial surface properties and biofilm formation promote resistance to antimicrobial peptides.

    Science.gov (United States)

    Nuri, Reut; Shprung, Tal; Shai, Yechiel

    2015-11-01

    Multidrug resistance bacteria are a major concern worldwide. These pathogens cannot be treated with conventional antibiotics and thus alternative therapeutic agents are needed. Antimicrobial peptides (AMPs) are considered to be good candidates for this purpose. Most AMPs are short and positively charged amphipathic peptides, which are found in all known forms of life. AMPs are known to kill bacteria by binding to the negatively charged bacterial surface, and in most cases cause membrane disruption. Resistance toward AMPs can be developed, by modification of bacterial surface molecules, secretion of protective material and up-regulation or elimination of specific proteins. Because of the general mechanisms of attachment and action of AMPs, bacterial resistance to AMPs often involves biophysical and biochemical changes such as surface rigidity, cell wall thickness, surface charge, as well as membrane and cell wall modification. Here we focus on the biophysical, surface and surrounding changes that bacteria undergo in acquiring resistance to AMPs. In addition we discuss the question of whether bacterial resistance to administered AMPs might compromise our innate immunity to endogenous AMPs. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.

  19. Metabolism links bacterial biofilms and colon carcinogenesis.

    Science.gov (United States)

    Johnson, Caroline H; Dejea, Christine M; Edler, David; Hoang, Linh T; Santidrian, Antonio F; Felding, Brunhilde H; Ivanisevic, Julijana; Cho, Kevin; Wick, Elizabeth C; Hechenbleikner, Elizabeth M; Uritboonthai, Winnie; Goetz, Laura; Casero, Robert A; Pardoll, Drew M; White, James R; Patti, Gary J; Sears, Cynthia L; Siuzdak, Gary

    2015-06-02

    Bacterial biofilms in the colon alter the host tissue microenvironment. A role for biofilms in colon cancer metabolism has been suggested but to date has not been evaluated. Using metabolomics, we investigated the metabolic influence that microbial biofilms have on colon tissues and the related occurrence of cancer. Patient-matched colon cancers and histologically normal tissues, with or without biofilms, were examined. We show the upregulation of polyamine metabolites in tissues from cancer hosts with significant enhancement of N(1), N(12)-diacetylspermine in both biofilm-positive cancer and normal tissues. Antibiotic treatment, which cleared biofilms, decreased N(1), N(12)-diacetylspermine levels to those seen in biofilm-negative tissues, indicating that host cancer and bacterial biofilm structures contribute to the polyamine metabolite pool. These results show that colonic mucosal biofilms alter the cancer metabolome to produce a regulator of cellular proliferation and colon cancer growth potentially affecting cancer development and progression.

  20. Metabolism links bacterial biofilms and colon carcinogenesis

    Science.gov (United States)

    Johnson, Caroline H.; Dejea, Christine M.; Edler, David; Hoang, Linh T.; Santidrian, Antonio F.; Felding, Brunhilde H.; Cho, Kevin; Wick, Elizabeth C.; Hechenbleikner, Elizabeth M.; Uritboonthai, Winnie; Goetz, Laura; Casero, Robert A.; Pardoll, Drew M.; White, James R.; Patti, Gary J.; Sears, Cynthia L.; Siuzdak, Gary

    2015-01-01

    SUMMARY Bacterial biofilms in the colon alter the host tissue microenvironment. A role for biofilms in colon cancer metabolism has been suggested but to date has not been evaluated. Using metabolomics, we investigated the metabolic influence that microbial biofilms have on colon tissues and the related occurrence of cancer. Patient-matched colon cancers and histologically normal tissues, with or without biofilms, were examined. We show the upregulation of polyamine metabolites in tissues from cancer hosts with significant enhancement of N1, N12-diacetylspermine in both biofilm positive cancer and normal tissues. Antibiotic treatment, which cleared biofilms, decreased N1, N12-diacetylspermine levels to those seen in biofilm negative tissues, indicating that host cancer and bacterial biofilm structures contribute to the polyamine metabolite pool. These results show that colonic mucosal biofilms alter the cancer metabolome, to produce a regulator of cellular proliferation and colon cancer growth potentially affecting cancer development and progression. PMID:25959674

  1. In Situ Confocal Raman Microscopy of Hydrated Early Stages of Bacterial Biofilm Formation on Various Surfaces in a Flow Cell.

    Science.gov (United States)

    Smith-Palmer, Truis; Lin, Sicheng; Oguejiofor, Ikenna; Leng, Tianyang; Pustam, Amanda; Yang, Jin; Graham, Lori L; Wyeth, Russell C; Bishop, Cory D; DeMont, M Edwin; Pink, David

    2016-02-01

    Bacterial biofilms are precursors to biofouling by other microorganisms. Understanding their initiation may allow us to design better ways to inhibit them, and thus to inhibit subsequent biofouling. In this study, the ability of confocal Raman microscopy to follow the initiation of biofouling by a marine bacterium, Pseudoalteromonas sp. NCIMB 2021 (NCIMB 2021), in a flow cell, using optical and confocal Raman microscopy, was investigated. The base of the flow cell comprised a cover glass. The cell was inoculated and the bacteria attached to, and grew on, the cover glass. Bright field images and Raman spectra were collected directly from the hydrated biofilms over several days. Although macroscopically the laser had no effect on the biofilm, within the first 24 h cells migrated away from the position of the laser beam. In the absence of flow, a buildup of extracellular substances occurred at the base of the biofilm. When different coatings were applied to cover glasses before they were assembled into the flow cells, the growth rate, structure, and composition of the resulting biofilm was affected. In particular, the ratio of Resonance Raman peaks from cytochrome c (CC) in the extracellular polymeric substances, to the Raman phenylalanine (Phe) peak from protein in the bacteria, depended on both the nature of the surface and the age of the biofilm. The ratios were highest for 24 h colonies on a hydrophobic surface. Absorption of a surfactant with an ethyleneoxy chain into the hydrophobic coating created a surface similar to that given with a simple PEG coating, where bacteria grew in colonies away from the surface rather than along the surface, and CC:Phe ratios were initially low but increased at least fivefold in the first 48 h.

  2. Shaping the Growth Behaviour of Bacterial Aggregates in Biofilms

    CERN Document Server

    Melaugh, Gavin; Kragh, Kasper Nørskov; Irie, Yasuhiko; Roberts, Aled; Bjarnsholt, Thomas; Diggle, Steve P; Gordon, Vernita; Allen, Rosalind J

    2015-01-01

    Bacterial biofilms are usually assumed to originate from individual cells deposited on a surface. However, many biofilm-forming bacteria tend to aggregate in the planktonic phase meaning it is possible that many natural and infectious biofilms originate wholly or partially from pre-formed cell aggregates. Here, we use agent-based computer simulations to investigate the role of pre-formed aggregates in biofilm development. Focusing on the role of aggregate shape, we find that the degree of spreading of an aggregate on a surface can play a key role in determining its eventual fate during biofilm development. Specifically, initially spread aggregates perform better when competition with surrounding bacterial cells is low, while initially rounded aggregates perform better when competition is high. These contrasting outcomes are governed by a trade-off between aggregate surface area and height. Our results provide new insight into biofilm formation and development, and reveal new factors that may be at play in the...

  3. Mixed biofilm formation by Shiga toxin-producing Escherichia coli and Salmonella enterica serovar typhimurium enhanced bacterial resistance to sanitization due to extracellular polymeric substances

    Science.gov (United States)

    Shiga toxin–producing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium are important foodborne pathogens capable of forming single-species biofilms or coexisting in multispecies biofilm communities. Bacterial biofilm cells are usually more resistant to sanitization than their pla...

  4. Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens.

    Science.gov (United States)

    Rivardo, F; Turner, R J; Allegrone, G; Ceri, H; Martinotti, M G

    2009-06-01

    In this work, two biosurfactant-producing strains, Bacillus subtilis and Bacillus licheniformis, have been characterized. Both strains were able to grow at high salinity conditions and produce biosurfactants up to 10% NaCl. Both extracted-enriched biosurfactants showed good surface tension reduction of water, from 72 to 26-30 mN/m, low critical micelle concentration, and high resistance to pH and salinity. The potential of the two lipopeptide biosurfactants at inhibiting biofilm adhesion of pathogenic bacteria was demonstrated by using the MBEC device. The two biosurfactants showed interesting specific anti-adhesion activity being able to inhibit selectively biofilm formation of two pathogenic strains. In particular, Escherichia coli CFT073 and Staphylococcus aureus ATCC 29213 biofilm formation was decreased of 97% and 90%, respectively. The V9T14 biosurfactant active on the Gram-negative strain was ineffective against the Gram-positive and the opposite for the V19T21. This activity was observed either by coating the polystyrene surface or by adding the biosurfactant to the inoculum. Two fractions from each purified biosurfactant, obtained by flash chromatography, fractions (I) and (II), showed that fraction (II), belonging to fengycin-like family, was responsible for the anti-adhesion activity against biofilm of both strains.

  5. Crenarchaeal biofilm formation under extreme conditions.

    Directory of Open Access Journals (Sweden)

    Andrea Koerdt

    Full Text Available BACKGROUND: Biofilm formation has been studied in much detail for a variety of bacterial species, as it plays a major role in the pathogenicity of bacteria. However, only limited information is available for the development of archaeal communities that are frequently found in many natural environments. METHODOLOGY: We have analyzed biofilm formation in three closely related hyperthermophilic crenarchaeotes: Sulfolobus acidocaldarius, S. solfataricus and S. tokodaii. We established a microtitre plate assay adapted to high temperatures to determine how pH and temperature influence biofilm formation in these organisms. Biofilm analysis by confocal laser scanning microscopy demonstrated that the three strains form very different communities ranging from simple carpet-like structures in S. solfataricus to high density tower-like structures in S. acidocaldarius in static systems. Lectin staining indicated that all three strains produced extracellular polysaccharides containing glucose, galactose, mannose and N-acetylglucosamine once biofilm formation was initiated. While flagella mutants had no phenotype in two days old static biofilms of S. solfataricus, a UV-induced pili deletion mutant showed decreased attachment of cells. CONCLUSION: The study gives first insights into formation and development of crenarchaeal biofilms in extreme environments.

  6. Bacterial adhesion and biofilms on surfaces

    Institute of Scientific and Technical Information of China (English)

    Trevor Roger Garrett; Manmohan Bhakoo; Zhibing Zhang

    2008-01-01

    Bacterial adhesion has become a significant problem in industry and in the domicile,and much research has been done for deeper understanding of the processes involved.A generic biological model of bacterial adhesion and population growth called the bacterial biofilm growth cycle,has been described and modified many times.The biofilm growth cycle encompasses bacterial adhesion at all levels,starting with the initial physical attraction of bacteria to a substrate,and ending with the eventual liberation of cell dusters from the biofilm matrix.When describing bacterial adhesion one is simply describing one or more stages of biofilm development,neglecting the fact that the population may not reach maturity.This article provides an overview of bacterial adhesion.cites examples of how bac-terial adhesion affects industry and summarises methods and instrumentation used to improve our understanding of the adhesive prop-erties of bacteria.

  7. Spaceflight promotes biofilm formation by Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Wooseong Kim

    Full Text Available Understanding the effects of spaceflight on microbial communities is crucial for the success of long-term, manned space missions. Surface-associated bacterial communities, known as biofilms, were abundant on the Mir space station and continue to be a challenge on the International Space Station. The health and safety hazards linked to the development of biofilms are of particular concern due to the suppression of immune function observed during spaceflight. While planktonic cultures of microbes have indicated that spaceflight can lead to increases in growth and virulence, the effects of spaceflight on biofilm development and physiology remain unclear. To address this issue, Pseudomonas aeruginosa was cultured during two Space Shuttle Atlantis missions: STS-132 and STS-135, and the biofilms formed during spaceflight were characterized. Spaceflight was observed to increase the number of viable cells, biofilm biomass, and thickness relative to normal gravity controls. Moreover, the biofilms formed during spaceflight exhibited a column-and-canopy structure that has not been observed on Earth. The increase in the amount of biofilms and the formation of the novel architecture during spaceflight were observed to be independent of carbon source and phosphate concentrations in the media. However, flagella-driven motility was shown to be essential for the formation of this biofilm architecture during spaceflight. These findings represent the first evidence that spaceflight affects community-level behaviors of bacteria and highlight the importance of understanding how both harmful and beneficial human-microbe interactions may be altered during spaceflight.

  8. Lactobacilli : Important in biofilm formation on voice prostheses

    NARCIS (Netherlands)

    Buijssen, Kevin J. D. A.; Harmsen, Hermie J. M.; van der Mei, Henny C.; Busscher, Henk J.; van der Laan, Bernard F. A. M.

    2007-01-01

    OBJECTIVE: We sought to identify bacterial strains responsible for biofilm formation on silicone rubber voice prostheses. STUDY DESIGN: We conducted an analysis of the bacterial population in biofilms on used silicone rubber voice prostheses by using new microbiological methods. METHODS: Two microbi

  9. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells

    Science.gov (United States)

    Sanyasi, Sridhar; Majhi, Rakesh Kumar; Kumar, Satish; Mishra, Mitali; Ghosh, Arnab; Suar, Mrutyunjay; Satyam, Parlapalli Venkata; Mohapatra, Harapriya; Goswami, Chandan; Goswami, Luna

    2016-04-01

    Development of effective anti-microbial therapeutics has been hindered by the emergence of bacterial strains with multi-drug resistance and biofilm formation capabilities. In this article, we report an efficient green synthesis of silver nanoparticle (AgNP) by in situ reduction and capping with a semi-synthetic polysaccharide-based biopolymer (carboxymethyl tamarind polysaccharide). The CMT-capped AgNPs were characterized by UV, DLS, FE-SEM, EDX and HR-TEM. These AgNPs have average particle size of ~20–40 nm, and show long time stability, indicated by their unchanged SPR and Zeta-potential values. These AgNPs inhibit growth and biofilm formation of both Gram positive (B. subtilis) and Gram negative (E. coli and Salmonella typhimurium) bacterial strains even at concentrations much lower than the minimum inhibitory concentration (MIC) breakpoints of antibiotics, but show reduced or no cytotoxicity against mammalian cells. These AgNPs alter expression and positioning of bacterial cytoskeletal proteins FtsZ and FtsA. CMT-capped AgNPs can effectively block growth of several clinical isolates and MDR strains representing different genera and resistant towards multiple antibiotics belonging to different classes. We propose that the CMT-capped AgNPs can have potential bio-medical application against multi-drug-resistant microbes with minimal cytotoxicity towards mammalian cells.

  10. High prevalence of biofilm synergy among bacterial soil isolates in cocultures indicates bacterial interspecific cooperation

    DEFF Research Database (Denmark)

    Ren, Dawei; Madsen, Jonas Stenløkke; Sørensen, Søren Johannes;

    2015-01-01

    of single-species biofilms, indicating that all the individual strains benefit from inclusion in the multispecies community. Our results show a high prevalence of synergy in biofilm formation in multispecies consortia isolated from a natural bacterial habitat and suggest that interspecific cooperation...

  11. Regulation of Acinetobacter baumannii biofilm formation.

    Science.gov (United States)

    Gaddy, Jennifer A; Actis, Luis A

    2009-04-01

    Acinetobacter baumannii is a Gram-negative opportunistic nosocomial pathogen. This microorganism survives in hospital environments despite unfavorable conditions such as desiccation, nutrient starvation and antimicrobial treatments. It is hypothesized that its ability to persist in these environments, as well as its virulence, is a result of its capacity to form biofilms. A. baumannii forms biofilms on abiotic surfaces such as polystyrene and glass as well as biotic surfaces such as epithelial cells and fungal filaments. Pili assembly and production of the Bap surface-adhesion protein play a role in biofilm initiation and maturation after initial attachment to abiotic surfaces. Furthermore, the adhesion and biofilm phenotypes of some clinical isolates seem to be related to the presence of broad-spectrum antibiotic resistance. The regulation of the formation and development of these biofilms is as diverse as the surfaces on which this bacterium persists and as the cellular components that participate in this programmed multistep process. The regulatory processes associated with biofilm formation include sensing of bacterial cell density, the presence of different nutrients and the concentration of free cations available to bacterial cells. Some of these extracellular signals may be sensed by two-component regulatory systems such as BfmRS. This transcriptional regulatory system activates the expression of the usher-chaperone assembly system responsible for the production of pili, needed for cell attachment and biofilm formation on polystyrene surfaces. However, such a system is not required for biofilm formation on abiotic surfaces when cells are cultured in chemically defined media. Interestingly, the BfmRS system also controls cell morphology under particular culture conditions.

  12. MicroBQs: a centralized database for use in studying bacterial biofilms and quorum sensing

    Science.gov (United States)

    Biofilm formation in many bacterial species may be negatively or positively regulated by cell-to-cell signaling systems referred to as quorum sensing (QS). To assist in understanding research related to biofilms, QS, and the role of QS in biofilm formation, a comprehensive, centralized database, kn...

  13. The 'Swiss cheese' instability of bacterial biofilms

    CERN Document Server

    Jang, Hongchul; Stocker, Roman

    2012-01-01

    We demonstrate a novel pattern that results in bacterial biofilms as a result of the competition between hydrodynamic forces and adhesion forces. After the passage of an air plug, the break up of the residual thin liquid film scrapes and rearranges bacteria on the surface, such that a Swiss cheese pattern of holes is left in the residual biofilm.

  14. [Mechanism and risk factors of oral biofilm formation].

    Science.gov (United States)

    Pasich, Ewa; Walczewska, Maria; Pasich, Adam; Marcinkiewicz, Janusz

    2013-08-02

    Recent microbiological investigations completely changed our understanding of the role of biofilm in the formation of the mucosal immune barrier and in pathogenesis of chronic inflammation of bacterial etiology. It is now clear that formation of bacterial biofilm on dental surfaces is characteristic for existence of oral microbial communities. It has also been proved that uncontrolled biofilms on dental tissues, as well as on different biomaterials (e.g. orthodontic appliances), are the main cause of dental diseases such as dental caries and periodontitis. The aim of this paper is to explain mechanisms and consequences of orthodontic biofilm formation. We will discuss current opinions on the influence of different biomaterials employed for orthodontic treatment in biofilm formation and new strategies employed in prevention and elimination of oral biofilm ("dental plaque").

  15. Strategies for combating bacterial biofilm infections

    DEFF Research Database (Denmark)

    Wu, Hong; Moser, Claus Ernst; Wang, Heng-Zhuang

    2015-01-01

    Formation of biofilm is a survival strategy for bacteria and fungi to adapt to their living environment, especially in the hostile environment. Under the protection of biofilm, microbial cells in biofilm become tolerant and resistant to antibiotics and the immune responses, which increases...... the difficulties for the clinical treatment of biofilm infections. Clinical and laboratory investigations demonstrated a perspicuous correlation between biofilm infection and medical foreign bodies or indwelling devices. Clinical observations and experimental studies indicated clearly that antibiotic treatment...... alone is in most cases insufficient to eradicate biofilm infections. Therefore, to effectively treat biofilm infections with currently available antibiotics and evaluate the outcomes become important and urgent for clinicians. The review summarizes the latest progress in treatment of clinical biofilm...

  16. Strategies for combating bacterial biofilm infections

    Institute of Scientific and Technical Information of China (English)

    Hong Wu; Claus Moser; Heng-Zhuang Wang; Niels Hiby; Zhi-Jun Song

    2015-01-01

    Formation of biofilm is a survival strategy for bacteria and fungi to adapt to their living environment, especially in the hostile environment. Under the protection of biofilm, microbial cells in biofilm become tolerant and resistant to antibiotics and the immune responses, which increases the difficulties for the clinical treatment of biofilm infections. Clinical and laboratory investigations demonstrated a perspicuous correlation between biofilm infection and medical foreign bodies or indwelling devices. Clinical observations and experimental studies indicated clearly that antibiotic treatment alone is in most cases insufficient to eradicate biofilm infections. Therefore, to effectively treat biofilm infections with currently available antibiotics and evaluate the outcomes become important and urgent for clinicians. The review summarizes the latest progress in treatment of clinical biofilm infections and scientific investigations, discusses the diagnosis and treatment of different biofilm infections and introduces the promising laboratory progress, which may contribute to prevention or cure of biofilm infections. We conclude that, an efficient treatment of biofilm infections needs a well-established multidisciplinary collaboration, which includes removal of the infected foreign bodies, selection of biofilm-active, sensitive and well-penetrating antibiotics, systemic or topical antibiotic administration in high dosage and combinations, and administration of anti-quorum sensing or biofilm dispersal agents.

  17. Involvement of NADH Oxidase in Biofilm Formation in Streptococcus sanguinis.

    Directory of Open Access Journals (Sweden)

    Xiuchun Ge

    Full Text Available Biofilms play important roles in microbial communities and are related to infectious diseases. Here, we report direct evidence that a bacterial nox gene encoding NADH oxidase is involved in biofilm formation. A dramatic reduction in biofilm formation was observed in a Streptococcus sanguinis nox mutant under anaerobic conditions without any decrease in growth. The membrane fluidity of the mutant bacterial cells was found to be decreased and the fatty acid composition altered, with increased palmitic acid and decreased stearic acid and vaccenic acid. Extracellular DNA of the mutant was reduced in abundance and bacterial competence was suppressed. Gene expression analysis in the mutant identified two genes with altered expression, gtfP and Idh, which were found to be related to biofilm formation through examination of their deletion mutants. NADH oxidase-related metabolic pathways were analyzed, further clarifying the function of this enzyme in biofilm formation.

  18. Biofilm Formation Characteristics of Pseudomonas lundensis Isolated from Meat.

    Science.gov (United States)

    Liu, Yong-Ji; Xie, Jing; Zhao, Li-Jun; Qian, Yun-Fang; Zhao, Yong; Liu, Xiao

    2015-12-01

    Biofilms formations of spoilage and pathogenic bacteria on food or food contact surfaces have attracted increasing attention. These events may lead to a higher risk of food spoilage and foodborne disease transmission. While Pseudomonas lundensis is one of the most important bacteria that cause spoilage in chilled meat, its capability for biofilm formation has been seldom reported. Here, we investigated biofilm formation characteristics of P. lundensis mainly by using crystal violet staining, and confocal laser scanning microscopy (CLSM). The swarming and swimming motility, biofilm formation in different temperatures (30, 10, and 4 °C) and the protease activity of the target strain were also assessed. The results showed that P. lundensis showed a typical surface-associated motility and was quite capable of forming biofilms in different temperatures (30, 10, and 4 °C). The strain began to adhere to the contact surfaces and form biofilms early in the 4 to 6 h. The biofilms began to be formed in massive amounts after 12 h at 30 °C, and the extracellular polysaccharides increased as the biofilm structure developed. Compared with at 30 °C, more biofilms were formed at 4 and 10 °C even by a low bacterial density. The protease activity in the biofilm was significantly correlated with the biofilm formation. Moreover, the protease activity in biofilm was significantly higher than that of the corresponding planktonic cultures after cultured 12 h at 30 °C.

  19. Emergent pattern formation in an interstitial biofilm

    CERN Document Server

    Zachreson, Cameron; Whitchurch, Cynthia; Toth, Milos

    2016-01-01

    Collective behavior of bacterial colonies plays critical roles in adaptability, survivability, biofilm expansion and infection. We employ an individual-based model of an interstitial biofilm to study emergent pattern formation based on the assumptions that rod-shaped bacteria furrow through a viscous environment, and excrete extracellular polymeric substances which bias their rate of motion. Because the bacteria furrow through their environment, the substratum stiffness is a key control parameter behind the formation of distinct morphological patterns. By systematically varying this property (which we quantify with a stiffness coefficient {\\gamma}), we show that subtle changes in the substratum stiffness can give rise to a stable state characterized by a high degree of local order and long-range pattern formation. The ordered state exhibits characteristics typically associated with bacterial fitness advantages, even though it is induced by changes in environmental conditions rather than changes in biological ...

  20. Frequency of biofilm formation in toothbrushes and wash basin junks

    Directory of Open Access Journals (Sweden)

    Abdulazeez A Abubakar

    2013-01-01

    Full Text Available Background: Biofilms are known to be resistant to several antibiotics once they are allowed to form on any surface. Aim: To investigate the biofilm forming ability of some bacterial isolates in toothbrushes and wash basin junks. Materials and Methods: A total of 606 students of Federal University of Technology, Yola were provided with new toothbrushes, which were collected after 1 month of usage and screened for biofilm formation. Another 620 swabs were collected from the wash basins of Federal Medical Centre, Specialist Hospital, Federal University of Technology, and students′ hostels in Yola and from some residence in Jimeta, Yola Metropolis; they were all screened for biofilm formation. Results: A total of 38.3% biofilm formation rate was recorded. Three types of bacterial isolates were identified in the biofilms of toothbrushes and wash basin junks, namely Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa at the prevalence rate of 48.0%, 29.1%, and 22.6%, respectively. Overall, 83.3% of the toothbrush biofilm were identified from female students, while 16.7% were from their male counterparts. Statistically, the frequency of biofilm formation showed a significant difference by gender (X 2 = 10.242, P 0.05. Conclusion: This study identified three microorganisms namely S. aureus, E. coli, and P. aeruginosa that were involved in wash basin junk biofilm formation. The findings also showed that occurrence of biofilm in females′ toothbrushes were significantly higher than in males′ (X 2 = 10.242, P < 0.05.

  1. Physics of biofilms: the initial stages of biofilm formation and dynamics

    Science.gov (United States)

    Lambert, Guillaume; Bergman, Andrew; Zhang, Qiucen; Bortz, David; Austin, Robert

    2014-04-01

    One of the physiological responses of bacteria to external stress is to assemble into a biofilm. The formation of a biofilm greatly increases a bacterial population's resistance to a hostile environment by shielding cells, for example, from antibiotics. In this paper, we describe the conditions necessary for the emergence of biofilms in natural environments and relate them to the emergence of biofilm formation inside microfluidic devices. We show that competing species of Escherichia coli bacteria form biofilms to spatially segregate themselves in response to starvation stress, and use in situ methods to characterize the physical properties of the biofilms. Finally, we develop a microfluidic platform to study the inter-species interactions and show how biofilm-mediated genetic interactions can improve a species’ resistance to external stress.

  2. Organo-selenium-containing dental sealant inhibits bacterial biofilm.

    Science.gov (United States)

    Tran, P; Hamood, A; Mosley, T; Gray, T; Jarvis, C; Webster, D; Amaechi, B; Enos, T; Reid, T

    2013-05-01

    Oral bacteria, including Streptococcus mutans and Streptococcus salivarius, contribute to tooth decay and plaque formation; therefore, it is essential to develop strategies to prevent dental caries and plaque formation. We recently showed that organo-selenium compounds covalently attached to different biomaterials inhibited bacterial biofilms. Our current study investigates the efficacy of an organo-selenium dental sealant (SeLECT-Defense(TM) sealant) in inhibiting S. mutans and S. salivarius biofilm formation in vitro. The organo-selenium was synthesized and covalently attached to dental sealant material via standard polymer chemistry. By colony-forming unit (CFU) assay and confocal microscopy, SeLECT-Defense(TM) sealant was found to completely inhibit the development of S. mutans and S. salivarius biofilms. To assess the durability of the anti-biofilm effect, we soaked the SeLECT-Defense(TM) sealant in PBS for 2 mos at 37°C and found that the biofilm-inhibitory effect was not diminished after soaking. To determine if organo-selenium inhibits bacterial growth under the sealant, we placed SeLECT-Defense sealant over a lawn of S. mutans. In contrast to a control sealant, SeLECT-Defense(TM) sealant completely inhibited the growth of S. mutans. These results suggest that the inhibitory effect of SeLECT-Defense(TM) sealant against S. mutans and S. salivarius biofilms is very effective and durable.

  3. Ginger extract inhibits biofilm formation by Pseudomonas aeruginosa PA14.

    Science.gov (United States)

    Kim, Han-Shin; Park, Hee-Deung

    2013-01-01

    Bacterial biofilm formation can cause serious problems in clinical and industrial settings, which drives the development or screening of biofilm inhibitors. Some biofilm inhibitors have been screened from natural products or modified from natural compounds. Ginger has been used as a medicinal herb to treat infectious diseases for thousands of years, which leads to the hypothesis that it may contain chemicals inhibiting biofilm formation. To test this hypothesis, we evaluated ginger's ability to inhibit Pseudomonas aeruginosa PA14 biofilm formation. A static biofilm assay demonstrated that biofilm development was reduced by 39-56% when ginger extract was added to the culture. In addition, various phenotypes were altered after ginger addition of PA14. Ginger extract decreased production of extracellular polymeric substances. This finding was confirmed by chemical analysis and confocal laser scanning microscopy. Furthermore, ginger extract formed noticeably less rugose colonies on agar plates containing Congo red and facilitated swarming motility on soft agar plates. The inhibition of biofilm formation and the altered phenotypes appear to be linked to a reduced level of a second messenger, bis-(3'-5')-cyclic dimeric guanosine monophosphate. Importantly, ginger extract inhibited biofilm formation in both Gram-positive and Gram-negative bacteria. Also, surface biofilm cells formed with ginger extract detached more easily with surfactant than did those without ginger extract. Taken together, these findings provide a foundation for the possible discovery of a broad spectrum biofilm inhibitor.

  4. Subinhibitory concentrations of azithromycin decrease nontypeable Haemophilus influenzae biofilm formation and Diminish established biofilms.

    Science.gov (United States)

    Starner, Timothy D; Shrout, Joshua D; Parsek, Matthew R; Appelbaum, Peter C; Kim, GunHee

    2008-01-01

    Nontypeable Haemophilus influenzae (NTHi) commonly causes otitis media, chronic bronchitis in emphysema, and early airway infections in cystic fibrosis. Long-term, low-dose azithromycin has been shown to improve clinical outcomes in chronic lung diseases, although the mechanism of action remains unclear. The inhibition of bacterial biofilms by azithromycin has been postulated to be one mechanism mediating these effects. We hypothesized that subinhibitory concentrations of azithromycin would affect NTHi biofilm formation. Laboratory strains of NTHi expressing green fluorescent protein and azithromycin-resistant clinical isolates were grown in flow-cell and static-culture biofilm models. Using a range of concentrations of azithromycin and gentamicin, we measured the degree to which these antibiotics inhibited biofilm formation and persistence. Large biofilms formed over 2 to 4 days in a flow cell, displaying complex structures, including towers and channels. Subinhibitory concentrations of azithromycin significantly decreased biomass and maximal thickness in both forming and established NTHi biofilms. In contrast, subinhibitory concentrations of gentamicin had no effect on biofilm formation. Furthermore, established NTHi biofilms became resistant to gentamicin at concentrations far above the MIC. Biofilm formation of highly resistant clinical NTHi isolates (azithromycin MIC of > 64 microg/ml) was similarly decreased at subinhibitory azithromycin concentrations. Clinically obtainable azithromycin concentrations inhibited biofilms in all but the most highly resistant isolates. These data show that subinhibitory concentrations of azithromycin have antibiofilm properties, provide mechanistic insights, and supply an additional rationale for the use of azithromycin in chronic biofilm infections involving H. influenzae.

  5. Tobacco smoking affects bacterial acquisition and colonization in oral biofilms.

    Science.gov (United States)

    Kumar, Purnima S; Matthews, Chad R; Joshi, Vinayak; de Jager, Marko; Aspiras, Marcelo

    2011-11-01

    Recent evidence suggests that smoking affects the composition of the disease-associated subgingival biofilm, yet little is known about its effects during the formation of this biofilm. The present investigation was undertaken to examine the contributions of smoking to the composition and proinflammatory characteristics of the biofilm during de novo plaque formation. Marginal and subgingival plaque and gingival crevicular fluid samples were collected from 15 current smokers and from 15 individuals who had never smoked (nonsmokers) following 1, 2, 4, and 7 days of undisturbed plaque formation. 16S rRNA gene cloning and sequencing were used for bacterial identification, and multiplex bead-based flow cytometry was used to quantify the levels of 27 immune mediators. Smokers demonstrated a highly diverse, relatively unstable initial colonization of both marginal and subgingival biofilms, with lower niche saturation than that seen in nonsmokers. Periodontal pathogens belonging to the genera Fusobacterium, Cardiobacterium, Synergistes, and Selenomonas, as well as respiratory pathogens belonging to the genera Haemophilus and Pseudomonas, colonized the early biofilms of smokers and continued to persist over the observation period, suggesting that smoking favors early acquisition and colonization of pathogens in oral biofilms. Smokers also demonstrated an early proinflammatory response to this colonization, which persisted over 7 days. Further, a positive correlation between proinflammatory cytokine levels and commensal bacteria was observed in smokers but not in nonsmokers. Taken together, the data suggest that smoking influences both the composition of the nascent biofilm and the host response to this colonization.

  6. Bursting the bubble on bacterial biofilms

    DEFF Research Database (Denmark)

    Crusz, Shanika A; Popat, Roman; Rybtke, Morten Theil;

    2012-01-01

    The flow cell biofilm system is an important and widely used tool for the in vitro cultivation and evaluation of bacterial biofilms under hydrodynamic conditions of flow. This paper provides an introduction to the background and use of such systems, accompanied by a detailed guide to the assembly...... of the apparatus including the description of new modifications which enhance its performance. As such, this is an essential guide for the novice biofilm researcher as well as providing valuable trouble-shooting techniques for even the most experienced laboratories. The adoption of a common and reliable...... methodology amongst researchers would enable findings to be shared and replicated amongst the biofilm research community, with the overall aim of advancing understanding and management of these complex and widespread bacterial communities....

  7. Hydrodynamics of catheter biofilm formation

    CERN Document Server

    Sotolongo-Costa, Oscar; Rodriguez-Perez, Daniel; Martinez-Escobar, Sergio; Fernandez-Barbero, Antonio

    2009-01-01

    A hydrodynamic model is proposed to describe one of the most critical problems in intensive medical care units: the formation of biofilms inside central venous catheters. The incorporation of approximate solutions for the flow-limited diffusion equation leads to the conclusion that biofilms grow on the internal catheter wall due to the counter-stream diffusion of blood through a very thin layer close to the wall. This biological deposition is the first necessary step for the subsequent bacteria colonization.

  8. Emergent pattern formation in an interstitial biofilm

    Science.gov (United States)

    Zachreson, Cameron; Wolff, Christian; Whitchurch, Cynthia B.; Toth, Milos

    2017-01-01

    Collective behavior of bacterial colonies plays critical roles in adaptability, survivability, biofilm expansion and infection. We employ an individual-based model of an interstitial biofilm to study emergent pattern formation based on the assumptions that rod-shaped bacteria furrow through a viscous environment and excrete extracellular polymeric substances which bias their rate of motion. Because the bacteria furrow through their environment, the substratum stiffness is a key control parameter behind the formation of distinct morphological patterns. By systematically varying this property (which we quantify with a stiffness coefficient γ ), we show that subtle changes in the substratum stiffness can give rise to a stable state characterized by a high degree of local order and long-range pattern formation. The ordered state exhibits characteristics typically associated with bacterial fitness advantages, even though it is induced by changes in environmental conditions rather than changes in biological parameters. Our findings are applicable to a broad range of biofilms and provide insights into the relationship between bacterial movement and their environment, and basic mechanisms behind self-organization of biophysical systems.

  9. Biofilm formation on dental restorative and implant materials.

    Science.gov (United States)

    Busscher, H J; Rinastiti, M; Siswomihardjo, W; van der Mei, H C

    2010-07-01

    Biomaterials for the restoration of oral function are prone to biofilm formation, affecting oral health. Oral bacteria adhere to hydrophobic and hydrophilic surfaces, but due to fluctuating shear, little biofilm accumulates on hydrophobic surfaces in vivo. More biofilm accumulates on rough than on smooth surfaces. Oral biofilms mostly consist of multiple bacterial strains, but Candida species are found on acrylic dentures. Biofilms on gold and amalgam in vivo are thick and fully covering, but barely viable. Biofilms on ceramics are thin and highly viable. Biofilms on composites and glass-ionomer cements cause surface deterioration, which enhances biofilm formation again. Residual monomer release from composites influences biofilm growth in vitro, but effects in vivo are less pronounced, probably due to the large volume of saliva into which compounds are released and its continuous refreshment. Similarly, conflicting results have been reported on effects of fluoride release from glass-ionomer cements. Finally, biomaterial-associated infection of implants and devices elsewhere in the body is compared with oral biofilm formation. Biomaterial modifications to discourage biofilm formation on implants and devices are critically discussed for possible applications in dentistry. It is concluded that, for dental applications, antimicrobial coatings killing bacteria upon contact are more promising than antimicrobial-releasing coatings.

  10. Connecting the dots between bacterial biofilms and ice cream

    Science.gov (United States)

    Stanley-Wall, Nicola R.; MacPhee, Cait E.

    2015-12-01

    Emerging research is revealing a diverse array of interfacially-active proteins that are involved in varied biological process from foaming horse sweat to bacterial raincoat formation. We describe an interdisciplinary approach to study the molecular and biophysical mechanisms controlling the activity of an unusual bacterial protein called BslA. This protein is needed for biofilm formation and forms a protective layer or raincoat over the bacterial community, but also has a multitude of potential applications in multiphase formulations. Here we document our journey from fundamental research to an examination of the applications for this surface-active protein in ice cream.

  11. Inhibition of Pseudomonas aeruginosa biofilm formation on wound dressings.

    Science.gov (United States)

    Brandenburg, Kenneth S; Calderon, Diego F; Kierski, Patricia R; Brown, Amanda L; Shah, Nihar M; Abbott, Nicholas L; Schurr, Michael J; Murphy, Christopher J; McAnulty, Jonathan F; Czuprynski, Charles J

    2015-01-01

    Chronic nonhealing skin wounds often contain bacterial biofilms that prevent normal wound healing and closure and present challenges to the use of conventional wound dressings. We investigated inhibition of Pseudomonas aeruginosa biofilm formation, a common pathogen of chronic skin wounds, on a commercially available biological wound dressing. Building on prior reports, we examined whether the amino acid tryptophan would inhibit P. aeruginosa biofilm formation on the three-dimensional surface of the biological dressing. Bacterial biomass and biofilm polysaccharides were quantified using crystal violet staining or an enzyme linked lectin, respectively. Bacterial cells and biofilm matrix adherent to the wound dressing were visualized through scanning electron microscopy. D-/L-tryptophan inhibited P. aeruginosa biofilm formation on the wound dressing in a dose dependent manner and was not directly cytotoxic to immortalized human keratinocytes although there was some reduction in cellular metabolism or enzymatic activity. More importantly, D-/L-tryptophan did not impair wound healing in a splinted skin wound murine model. Furthermore, wound closure was improved when D-/L-tryptophan treated wound dressing with P. aeruginosa biofilms were compared with untreated dressings. These findings indicate that tryptophan may prove useful for integration into wound dressings to inhibit biofilm formation and promote wound healing.

  12. Bovine milk osteopontin - Targeting bacterial adhesion for biofilm control

    DEFF Research Database (Denmark)

    Kristensen, Mathilde Frost; Meyer, Rikke Louise; Schlafer, Sebastian

    2016-01-01

    Self-performed mechanical tooth cleaning does usually not result in complete biofilm removal, due to the complex oral anatomy and the strong adhesion of the biofilm to the tooth. Therefore, different supportive measures are employed, most of which aim at the chemical eradication of bacteria...... in dental biofilms. As their bactericidal action impacts the entire oral microflora, agents that inhibit biofilm formation without killing bacteria, such as the bovine milk protein osteopontin, have gained increasing attention. Here, we investigate the adhesion of 8 bacterial species associated with dental...... caries to salivary-coated flow-cells in the presence or absence of osteopontin or the control protein caseinoglycomacropeptide (0.32 mM/L). After 1h of flow (9.45 mm/min) at 35 °C, adhering bacteria were quantified by digital image analysis in a total of 692 bright-field images. Experiments were...

  13. Biofilm Formation of Pasteurella Multocida on Bentonite Clay

    Directory of Open Access Journals (Sweden)

    Ramachandranpillai Rajagopal

    2013-06-01

    Full Text Available Background and objectives: Biofilms are structural communities of bacterial cells enshrined in a self produced polymeric matrix. The studies on biofilm formation of Pasteurella multocida have become imperative since it is a respiratory pathogen and its biofilm mode could possibly be one of its virulence factors for survival inside a host. The present study describes a biofilm assay for P. multocida on inert hydrophilic material called bentonite clay.Materials and methods: The potential of the organism to form in vitro biofilm was assessed by growing the organism under nutrient restriction along with the inert substrate bentonite clay, which will provide a surface for attachment. For quantification of biofilm, plate count by the spread plate method was employed. Capsule production of the attached bacteria was demonstrated by light microscopic examination following Maneval staining and capsular polysaccharide estimation was done using standard procedures.Results and Conclusion: The biofilm formation peaked on the third day of incubation (1.54 ×106 cfu/g of bentonite clay while the planktonic cells were found to be at a maximum on day one post inoculation (8.10 ×108 cfu/ml of the broth. Maneval staining of late logarithmic phase biofilm cultures revealed large aggregates of bacterial cells, bacteria appearing as chains or as a meshwork. The capsular polysaccharide estimation of biofilm cells revealed a 3.25 times increase over the planktonic bacteria. The biofilm cells cultured on solid media also produced some exclusive colony morphotypes

  14. Removal of pathogenic bacterial biofilms by combinations of oxidizing compounds.

    Science.gov (United States)

    Olmedo, Gabriela María; Grillo-Puertas, Mariana; Cerioni, Luciana; Rapisarda, Viviana Andrea; Volentini, Sabrina Inés

    2015-05-01

    Bacterial biofilms are commonly formed on medical devices and food processing surfaces. The antimicrobials used have limited efficacy against the biofilms; therefore, new strategies to prevent and remove these structures are needed. Here, the effectiveness of brief oxidative treatments, based on the combination of sodium hypochlorite (NaClO) and hydrogen peroxide (H2O2) in the presence of copper sulfate (CuSO4), were evaluated against bacterial laboratory strains and clinical isolates, both in planktonic and biofilm states. Simultaneous application of oxidants synergistically inactivated planktonic cells and prevented biofilm formation of laboratory Escherichia coli, Salmonella enterica serovar Typhimurium, Klebsiella pneumoniae, and Staphylococcus aureus strains, as well as clinical isolates of Salmonella enterica subsp. enterica, Klebsiella oxytoca, and uropathogenic E. coli. In addition, preformed biofilms of E. coli C, Salmonella Typhimurium, K. pneumoniae, and Salmonella enterica exposed to treatments were removed by applying 12 mg/L NaClO, 0.1 mmol/L CuSO4, and 350 mmol/L H2O2 for 5 min. Klebsiella oxytoca and Staphylococcus aureus required a 5-fold increase in NaClO concentration, and the E. coli clinical isolate remained unremovable unless treatments were applied on biofilms formed within 24 h instead of 48 h. The application of treatments that last a few minutes using oxidizing compounds at low concentrations represents an interesting disinfection strategy against pathogens associated with medical and industrial settings.

  15. Functional Relationship between Sucrose and a Cariogenic Biofilm Formation.

    Directory of Open Access Journals (Sweden)

    Jian-Na Cai

    Full Text Available Sucrose is an important dietary factor in cariogenic biofilm formation and subsequent initiation of dental caries. This study investigated the functional relationships between sucrose concentration and Streptococcus mutans adherence and biofilm formation. Changes in morphological characteristics of the biofilms with increasing sucrose concentration were also evaluated. S. mutans biofilms were formed on saliva-coated hydroxyapatite discs in culture medium containing 0, 0.05, 0.1, 0.5, 1, 2, 5, 10, 20, or 40% (w/v sucrose. The adherence (in 4-hour biofilms and biofilm composition (in 46-hour biofilms of the biofilms were analyzed using microbiological, biochemical, laser scanning confocal fluorescence microscopic, and scanning electron microscopic methods. To determine the relationships, 2nd order polynomial curve fitting was performed. In this study, the influence of sucrose on bacterial adhesion, biofilm composition (dry weight, bacterial counts, and water-insoluble extracellular polysaccharide (EPS content, and acidogenicity followed a 2nd order polynomial curve with concentration dependence, and the maximum effective concentrations (MECs of sucrose ranged from 0.45 to 2.4%. The bacterial and EPS bio-volume and thickness in the biofilms also gradually increased and then decreased as sucrose concentration increased. Furthermore, the size and shape of the micro-colonies of the biofilms depended on the sucrose concentration. Around the MECs, the micro-colonies were bigger and more homogeneous than those at 0 and 40%, and were surrounded by enough EPSs to support their structure. These results suggest that the relationship between sucrose concentration and cariogenic biofilm formation in the oral cavity could be described by a functional relationship.

  16. Kinetics of biofilm formation by drinking water isolated Penicillium expansum.

    Science.gov (United States)

    Simões, Lúcia Chaves; Simões, Manuel; Lima, Nelson

    2015-01-01

    Current knowledge on drinking water (DW) biofilms has been obtained mainly from studies on bacterial biofilms. Very few reports on filamentous fungi (ff) biofilms are available, although they can contribute to the reduction in DW quality. This study aimed to assess the dynamics of biofilm formation by Penicillium expansum using microtiter plates under static conditions, mimicking water flow behaviour in stagnant regions of drinking water distribution systems. Biofilms were analysed in terms of biomass (crystal violet staining), metabolic activity (resazurin, fluorescein diacetate and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide [MTT]) and morphology (epifluorescence [calcofluor white M2R, FUN-1, FDA and acridine orange] and bright-field microscopies). Biofilm development over time showed the typical sigmoidal curve with noticeable different phases in biofilm formation (induction, exponential, stationary, and sloughing off). The methods used to assess metabolic activity provided similar results. The microscope analysis allowed identification of the involvement of conidia in initial adhesion (4 h), germlings (8 h), initial monolayers (12 h), a monolayer of intertwined hyphae (24 h), mycelial development, hyphal layering and bundling, and development of the mature biofilms (≥48 h). P. expansum grows as a complex, multicellular biofilm in 48 h. The metabolic activity and biomass of the fungal biofilms were shown to increase over time and a correlation between metabolism, biofilm mass and hyphal development was found.

  17. Decrease of Pseudomonas aeruginosa biofilm formation by food waste materials.

    Science.gov (United States)

    Maderova, Zdenka; Horska, Katerina; Kim, Sang-Ryoung; Lee, Chung-Hak; Pospiskova, Kristyna; Safarikova, Mirka; Safarik, Ivo

    2016-01-01

    The formation of bacterial biofilm on various surfaces has significant negative economic effects. The aim of this study was to find a simple procedure to decrease the Pseudomonas aeruginosa biofilm formation in a water environment by using different food waste biological materials as signal molecule adsorbents. The selected biomaterials did not reduce the cell growth but affected biofilm formation. Promising biomaterials were magnetically modified in order to simplify manipulation and facilitate their magnetic separation. The best biocomposite, magnetically modified spent grain, exhibited substantial adsorption of signal molecules and decreased the biofilm formation. These results suggest that selected food waste materials and their magnetically responsive derivatives could be applied to solve biofilm problems in water environment.

  18. Characterization of Mannheimia haemolytica biofilm formation in vitro.

    Science.gov (United States)

    Boukahil, Ismail; Czuprynski, Charles J

    2015-01-30

    Mannheimia haemolytica is the primary bacterial agent in the bovine respiratory disease complex. It is thought that M. haemolytica colonizes the tonsillar crypts of cattle as a commensal and subsequently descends into the lungs to cause disease. Many bacterial species persist in the host as biofilms. There is limited information about the ability of M. haemolytica to form biofilms. The aim of this study was to develop an in vitro model for M. haemolytica biofilm formation. We found that M. haemolytica required at least 36 h to form robust biofilms on plastic in vitro when incubated in RPMI-1640 tissue culture medium at 37 °C, with maximal biofilm formation being evident at 48 h. Biofilm formation was inhibited by adding the monosaccharides d(+) galactose and d(+) mannose to the growth medium. Addition of antibodies to the M. haemolytica surface protein OmpA also reduced biofilm formation. Upon evaluating the macromolecules within the biofilm extracellular polymeric substance we found it contained 9.7 μg/cm(2) of protein, 0.81 μg/cm(2) of total carbohydrate, and 0.47 μg/cm(2) of extracellular DNA. Furthermore, proteinase K treatment significantly decreased biofilms (P<0.05) while α-amylase and micrococcal nuclease decreased biofilms to a lesser extent. M. haemolytica biofilm cells were more resistant than planktonic cells to the antibiotics florfenicol, gentamicin, and tulathromycin. These results provide evidence that M. haemolytica can form biofilms, which could contribute to its ability to persist as a commensal in the bovine upper respiratory tract.

  19. Metal-on-metal bearings in total hip arthroplasties : Influence of cobalt chromium ions on bacterial growth and biofilm formation

    NARCIS (Netherlands)

    Hosman, Anton H.; van der Mei, Henny C.; Bulstra, Sjoerd K.; Busscher, Henk J.; Neut, Danielle

    2009-01-01

    Metal-on-metal (MOM) bearings involving cobalt-chromium (Co-Cr) alloys in total hip arthroplasties are becoming more and more popular due to their low wear. Consequences of corrosion products of Co-Cr alloys are for the most part unclear, and the influence of cobalt and chromium ions on biofilm form

  20. Formation of biofilms under phage predation: considerations concerning a biofilm increase.

    Science.gov (United States)

    Hosseinidoust, Zeinab; Tufenkji, Nathalie; van de Ven, Theo G M

    2013-01-01

    Bacteriophages are emerging as strong candidates for combating bacterial biofilms. However, reports indicating that host populations can, in some cases, respond to phage predation by an increase in biofilm formation are of concern. This study investigates whether phage predation can enhance the formation of biofilm and if so, if this phenomenon is governed by the emergence of phage-resistance or by non-evolutionary mechanisms (eg spatial refuge). Single-species biofilms of three bacterial pathogens (Pseudomonas aeruginosa, Salmonella enterica serotype Typhimurium, and Staphylococcus aureus) were pretreated and post-treated with species-specific phages. Some of the phage treatments resulted in an increase in the levels of biofilm of their host. It is proposed that the phenotypic change brought about by acquiring phage resistance is the main reason for the increase in the level of biofilm of P. aeruginosa. For biofilms of S. aureus and S. enterica Typhimurium, although resistance was detected, increased formation of biofilm appeared to be a result of non-evolutionary mechanisms.

  1. Nanoscale Plasma Coating Inhibits Formation of Staphylococcus aureus Biofilm.

    Science.gov (United States)

    Xu, Yuanxi; Jones, John E; Yu, Haiqing; Yu, Qingsong; Christensen, Gordon D; Chen, Meng; Sun, Hongmin

    2015-12-01

    Staphylococcus aureus commonly infects medical implants or devices, with devastating consequences for the patient. The infection begins with bacterial attachment to the device, followed by bacterial multiplication over the surface of the device, generating an adherent sheet of bacteria known as a biofilm. Biofilms resist antimicrobial therapy and promote persistent infection, making management difficult to futile. Infections might be prevented by engineering the surface of the device to discourage bacterial attachment and multiplication; however, progress in this area has been limited. We have developed a novel nanoscale plasma coating technology to inhibit the formation of Staphylococcus aureus biofilms. We used monomeric trimethylsilane (TMS) and oxygen to coat the surfaces of silicone rubber, a material often used in the fabrication of implantable medical devices. By quantitative and qualitative analysis, the TMS/O2 coating significantly decreased the in vitro formation of S. aureus biofilms; it also significantly decreased in vivo biofilm formation in a mouse model of foreign-body infection. Further analysis demonstrated TMS/O2 coating significantly changed the protein adsorption, which could lead to reduced bacterial adhesion and biofilm formation. These results suggest that TMS/O2 coating can be used to effectively prevent medical implant-related infections.

  2. Prevention of biofilm formation and removal of existing biofilms by extracellular DNases of Campylobacter jejuni.

    Science.gov (United States)

    Brown, Helen L; Reuter, Mark; Hanman, Kate; Betts, Roy P; van Vliet, Arnoud H M

    2015-01-01

    The fastidious nature of the foodborne bacterial pathogen Campylobacter jejuni contrasts with its ability to survive in the food chain. The formation of biofilms, or the integration into existing biofilms by C. jejuni, is thought to contribute to food chain survival. As extracellular DNA (eDNA) has previously been proposed to play a role in C. jejuni biofilms, we have investigated the role of extracellular DNases (eDNases) produced by C. jejuni in biofilm formation. A search of 2791 C. jejuni genomes highlighted that almost half of C. jejuni genomes contains at least one eDNase gene, but only a minority of isolates contains two or three of these eDNase genes, such as C. jejuni strain RM1221 which contains the cje0256, cje0566 and cje1441 eDNase genes. Strain RM1221 did not form biofilms, whereas the eDNase-negative strains NCTC 11168 and 81116 did. Incubation of pre-formed biofilms of NCTC 11168 with live C. jejuni RM1221 or with spent medium from a RM1221 culture resulted in removal of the biofilm. Inactivation of the cje1441 eDNase gene in strain RM1221 restored biofilm formation, and made the mutant unable to degrade biofilms of strain NCTC 11168. Finally, C. jejuni strain RM1221 was able to degrade genomic DNA from C. jejuni NCTC 11168, 81116 and RM1221, whereas strain NCTC 11168 and the RM1221 cje1441 mutant were unable to do so. This was mirrored by an absence of eDNA in overnight cultures of C. jejuni RM1221. This suggests that the activity of eDNases in C. jejuni affects biofilm formation and is not conducive to a biofilm lifestyle. These eDNases do however have a potential role in controlling biofilm formation by C. jejuni strains in food chain relevant environments.

  3. Sugar fatty acid esters inhibit biofilm formation by food-borne pathogenic bacteria

    OpenAIRE

    Furukawa, Soichi; Akiyoshi, Yuko; O’Toole, George A; Ogihara, Hirokazu; Morinaga, Yasushi

    2010-01-01

    Effects of food additives on biofilm formation by food-borne pathogenic bacteria were investigated. Thirty-three potential food additives and 3 related compounds were added to the culture medium at concentrations from 0.001 to 0.1% (w/w), followed by inoculation and cultivation of five biofilm-forming bacterial strains for the evaluation of biofilm formation. Among the tested food additives, 21 showed inhibitory effects of biofilm formation by Staphylococcus aureus and Escherichia coli, and i...

  4. The evolution of quorum sensing in bacterial biofilms.

    Science.gov (United States)

    Nadell, Carey D; Xavier, Joao B; Levin, Simon A; Foster, Kevin R

    2008-01-01

    Bacteria have fascinating and diverse social lives. They display coordinated group behaviors regulated by quorum-sensing systems that detect the density of other bacteria around them. A key example of such group behavior is biofilm formation, in which communities of cells attach to a surface and envelope themselves in secreted polymers. Curiously, after reaching high cell density, some bacterial species activate polymer secretion, whereas others terminate polymer secretion. Here, we investigate this striking variation in the first evolutionary model of quorum sensing in biofilms. We use detailed individual-based simulations to investigate evolutionary competitions between strains that differ in their polymer production and quorum-sensing phenotypes. The benefit of activating polymer secretion at high cell density is relatively straightforward: secretion starts upon biofilm formation, allowing strains to push their lineages into nutrient-rich areas and suffocate neighboring cells. But why use quorum sensing to terminate polymer secretion at high cell density? We find that deactivating polymer production in biofilms can yield an advantage by redirecting resources into growth, but that this advantage occurs only in a limited time window. We predict, therefore, that down-regulation of polymer secretion at high cell density will evolve when it can coincide with dispersal events, but it will be disfavored in long-lived (chronic) biofilms with sustained competition among strains. Our model suggests that the observed variation in quorum-sensing behavior can be linked to the differing requirements of bacteria in chronic versus acute biofilm infections. This is well illustrated by the case of Vibrio cholerae, which competes within biofilms by polymer secretion, terminates polymer secretion at high cell density, and induces an acute disease course that ends with mass dispersal from the host. More generally, this work shows that the balance of competition within and among

  5. Dynamic approaches of mixed species biofilm formation using modern technologies.

    Science.gov (United States)

    Doiron, Kim; Linossier, Isabelle; Fay, Fabienne; Yong, Julius; Abd Wahid, Effendy; Hadjiev, Dimitre; Bourgougnon, Nathalie

    2012-07-01

    Bacteria and diatoms exist in sessile communities and develop as biofilm on all surfaces in aqueous environments. The interaction between these microorganisms in biofilm was investigated with a bacterial genus Pseudoalteromonas sp. (strain 3J6) and two benthic diatoms Amphora coffeaeformis and Cylindrotheca closterium. Each biofilm was grown for 22 days. Images from the confocal microscopy show a difference of adhesion between Pseudoalteromonas 3J6 and diatoms. Indeed, a stronger adhesion is found with C. closterium suggesting cohabitation between Pseudoalteromonas 3J6 and C. closterium compared at an adaptation for bacteria and A. coffeaeformis. The cellular attachment and the growth evolution in biofilm formation depend on each species of diatoms in the biofilm. Behaviour of microalgae in presence of bacteria demonstrates the complexity of the marine biofilm.

  6. A semi-quantitative approach to assess biofilm formation using wrinkled colony development.

    Science.gov (United States)

    Ray, Valerie A; Morris, Andrew R; Visick, Karen L

    2012-06-07

    Biofilms, or surface-attached communities of cells encapsulated in an extracellular matrix, represent a common lifestyle for many bacteria. Within a biofilm, bacterial cells often exhibit altered physiology, including enhanced resistance to antibiotics and other environmental stresses. Additionally, biofilms can play important roles in host-microbe interactions. Biofilms develop when bacteria transition from individual, planktonic cells to form complex, multi-cellular communities. In the laboratory, biofilms are studied by assessing the development of specific biofilm phenotypes. A common biofilm phenotype involves the formation of wrinkled or rugose bacterial colonies on solid agar media. Wrinkled colony formation provides a particularly simple and useful means to identify and characterize bacterial strains exhibiting altered biofilm phenotypes, and to investigate environmental conditions that impact biofilm formation. Wrinkled colony formation serves as an indicator of biofilm formation in a variety of bacteria, including both Gram-positive bacteria, such as Bacillus subtilis, and Gram-negative bacteria, such as Vibrio cholerae, Vibrio parahaemolyticus, Pseudomonas aeruginosa, and Vibrio fischeri. The marine bacterium V. fischeri has become a model for biofilm formation due to the critical role of biofilms during host colonization: biofilms produced by V. fischeri promote its colonization of the Hawaiian bobtail squid Euprymna scolopes. Importantly, biofilm phenotypes observed in vitro correlate with the ability of V. fischeri cells to effectively colonize host animals: strains impaired for biofilm formation in vitro possess a colonization defect, while strains exhibiting increased biofilm phenotypes are enhanced for colonization. V. fischeri therefore provides a simple model system to assess the mechanisms by which bacteria regulate biofilm formation and how biofilms impact host colonization. In this report, we describe a semi-quantitative method to assess

  7. Hacking into bacterial biofilms: a new therapeutic challenge.

    Science.gov (United States)

    Bordi, Christophe; de Bentzmann, Sophie

    2011-06-13

    Microbiologists have extensively worked during the past decade on a particular phase of the bacterial cell cycle known as biofilm, in which single-celled individuals gather together to form a sedentary but dynamic community within a complex structure, displaying spatial and functional heterogeneity. In response to the perception of environmental signals by sensing systems, appropriate responses are triggered, leading to biofilm formation. This process involves various molecular systems that enable bacteria to identify appropriate surfaces on which to anchor themselves, to stick to those surfaces and to each other, to construct multicellular communities several hundreds of micrometers thick, and to detach from the community. The biofilm microbial community is a unique, highly competitive, and crowded environment facilitating microevolutionary processes and horizontal gene transfer between distantly related microorganisms. It is governed by social rules, based on the production and use of "public" goods, with actors and recipients. Biofilms constitute a unique shield against external aggressions, including drug treatment and immune reactions. Biofilm-associated infections in humans have therefore generated major problems for the diagnosis and treatment of diseases. Improvements in our understanding of biofilms have led to innovative research designed to interfere with this process.

  8. Calcium-Phosphate-Osteopontin Particles Reduce Biofilm Formation and pH Drops in in situ-Grown Dental Biofilms

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Ibsen, Casper Jon Steenberg; Birkedal, Henrik;

    2016-01-01

    This two-period crossover study investigated the effect of calcium-phosphate-osteopontin particles on biofilm formation and pH in 48-h biofilms grown in situ. Bovine milk osteopontin is a highly phosphorylated glycoprotein that has been shown to interfere with bacterial adhesion to salivary......-coated surfaces. Calcium-phosphate-osteopontin particles have been shown to reduce biofilm formation and pH drops in a 5-species laboratory model of dental biofilm without affecting bacterial viability. Here, smooth surface biofilms from 10 individuals were treated ex vivo 6 times/day for 30 min with either...... calcium-phosphate-osteopontin particles or sterile saline. After growth, the amount of biofilm formed was determined by confocal microscopy, and pH drops upon exposure to glucose were monitored using confocal-microscopy-based pH ratiometry. A total of 160 biofilms were analysed. No adverse effects...

  9. Bap: a family of surface proteins involved in biofilm formation.

    Science.gov (United States)

    Lasa, Iñigo; Penadés, José R

    2006-03-01

    A group of surface proteins sharing several structural and functional features is emerging as an important element in the biofilm formation process of diverse bacterial species. The first member of this group of proteins was identified in a Staphylococcus aureus mastitis isolate and was named Bap (biofilm-associated protein). As common structural features, Bap-related proteins: (i) are present on the bacterial surface; (ii) show a high molecular weight; (iii) contain a core domain of tandem repeats; (iv) confer upon bacteria the capacity to form a biofilm; (v) play a relevant role in bacterial infectious processes; and (vi) can occasionally be contained in mobile elements. This review summarizes recent studies that have identified and assigned roles to Bap-related proteins in biofilm biology and virulence.

  10. Early succession of bacterial biofilms in paper machines.

    Science.gov (United States)

    Tiirola, Marja; Lahtinen, Tomi; Vuento, Matti; Oker-Blom, Christian

    2009-07-01

    Formation of biofilms causes severe problems in paper machines, and hence financial costs. It would be preferable to prevent attachment of the primary-colonizing bacteria than to control the growth of secondary communities, which are sheltered by exopolysaccharide slime layers. We have therefore investigated the early succession of paper-machine biofilms by incubating stainless-steel test coupons in the process water-flow lines in two paper machines operating in slightly alkaline conditions in temperatures (45 and 49 degrees C) supporting thermophilic microbes. Microbial succession was profiled using length heterogeneity analysis of PCR-amplified 16S rRNA genes (LH-PCR) and linking the sequence data of the created 16S rRNA gene libraries to the dominant LH-PCR peaks. Although the bacterial fingerprints obtained from the attached surface communities varied slightly in different samples, the biomarker signals of the dominating primary-colonizing bacterial groups remained high over time in each paper machine. Most of the 16S rRNA gene copies in the early biofilms were assigned to the genera Rhodobacter, Tepidimonas, and Cloacibacterium. The dominance of these sequence types decreased in the developing biofilms. Finally, as phylogenetically identical primary-colonizers were detected in the two different paper mills, the machines evidently had similar environmental conditions for bacterial growth and potentially a common source of contamination.

  11. Biofilm formation as a function of adhesin, growth medium, substratum and strain type

    DEFF Research Database (Denmark)

    Hancock, Viktoria; Witsø, Ingun Lund; Klemm, Per

    2011-01-01

    Biofilm formation is involved in the majority of bacterial infections. Comparing six Escherichia coli and Klebsiella pneumoniae isolates revealed significant differences in biofilm formation depending on the growth medium. Fimbriae are known to be involved in biofilm formation, and type 1, F1C...... and P fimbriae were seen to influence biofilm formation significantly different depending on strain background, growth media and aeration as well as surface material. Altogether, this report clearly demonstrates that biofilm formation of a given strain is highly dependent on experimental design...... and that specific mechanisms involved in biofilm formation such as fimbrial expression only play a role under certain environmental conditions. This study underscores the importance of careful selection of experimental conditions when investigating bacterial biofilm formation and to take great precaution/care when...

  12. SURFACE FINISHES ON STAINLESS STEEL REDUCE BACTERIAL ATTACHMENT AND EARLY BIOFILM FORMATION: SCANNING ELECTRON AND ATOMIC FORCE MICROSCOPY STUDY

    Science.gov (United States)

    Three common finishing treatments of stainless steel that are used for equipment during poultry processing were tested for resistance to bacterial contamination. Methods were developed to measure attached bacteria and to identify factors that make surface finishes susceptible or ...

  13. Effects of patterned topography on biofilm formation

    Science.gov (United States)

    Vasudevan, Ravikumar

    2011-12-01

    Bacterial biofilms are a population of bacteria attached to each other and irreversibly to a surface, enclosed in a matrix of self-secreted polymers, among others polysaccharides, proteins, DNA. Biofilms cause persisting infections associated with implanted medical devices and hospital acquired (nosocomial) infections. Catheter-associated urinary tract infections (CAUTIs) are the most common type of nosocomial infections accounting for up to 40% of all hospital acquired infections. Several different strategies, including use of antibacterial agents and genetic cues, quorum sensing, have been adopted for inhibiting biofilm formation relevant to CAUTI surfaces. Each of these methods pertains to certain types of bacteria, processes and has shortcomings. Based on eukaryotic cell topography interaction studies and Ulva linza spore studies, topographical surfaces were suggested as a benign control method for biofilm formation. However, topographies tested so far have not included a systematic variation of size across basic topography shapes. In this study patterned topography was systematically varied in size and shape according to two approaches 1) confinement and 2) wetting. For the confinement approach, using scanning electron microscopy and confocal microscopy, orienting effects of tested topography based on staphylococcus aureus (s. aureus) (SH1000) and enterobacter cloacae (e. cloacae) (ATCC 700258) bacterial models were identified on features of up to 10 times the size of the bacterium. Psuedomonas aeruginosa (p. aeruginosa) (PAO1) did not show any orientational effects, under the test conditions. Another important factor in medical biofilms is the identification and quantification of phenotypic state which has not been discussed in the literature concerning bacteria topography characterizations. This was done based on antibiotic susceptibility evaluation and also based on gene expression analysis. Although orientational effects occur, phenotypically no difference

  14. Mannheimia haemolytica biofilm formation on bovine respiratory epithelial cells.

    Science.gov (United States)

    Boukahil, Ismail; Czuprynski, Charles J

    2016-12-25

    Mannheimia haemolytica is the most important bacterial agent associated with the bovine respiratory disease complex (BRDC), which causes worldwide economic losses to the cattle industry. M. haemolytica cells initially colonize the tonsillar crypts in the upper respiratory tract of cattle, from where they can subsequently descend into the lungs to cause disease. Many bacteria exist as biofilms inside their hosts. We hypothesize that M. haemolytica colonization of cattle during its commensal state may include biofilm formation. To begin to assess this possibility, we developed an in vitro system to study biofilm formation directly on bovine respiratory epithelial cells. Using fixed primary bovine bronchial epithelial cells, we observed M. haemolytica biofilm formation after a 48h incubation period at 37°C. Addition of mucin, the main component of mucus present in the upper respiratory tract, decreased M. haemolytica biofilm formation on bovine epithelial cells. We investigated the effects of prior viral infection of the epithelial cells on subsequent biofilm formation by M. haemolytica and found negligible effects. Utilization of this model system will provide new insights into the potential role of biofilm formation by M. haemolytica in the pathogenesis of BRDC.

  15. 群体感应抑制剂对海洋生态功能菌生物膜形成的影响%The influence of quorum sensing inhibitors against marine functional bacterial biofilm formation

    Institute of Scientific and Technical Information of China (English)

    翟有朋; 董昆明; 周惠茹; 姜芸; 丁碧婷; 缪莉

    2013-01-01

    [目的]研究天然群体感应抑制剂(Quorum sensing inhibitors,QSI)分子对海洋生态功能菌生物膜形成的影响.[方法]以对污损生物幼虫附着具有诱导作用的海洋细菌为目标菌,通过在其生物膜的形成过程中添加天然群体感应抑制剂,研究其对目标菌成膜细菌数和浮游细菌数、生物膜形态以及生物膜表面胞外多糖含量的影响.[结果]呋喃酮和吡啶在50 mg/L时,对8株目标菌的成膜有显著的抑制作用,抑制率在80%左右,吲哚、青霉烷酸和香豆素在较高浓度800 mg/L才有比较好的抑制活性.生长抑制实验结果显示,同等浓度下,QSI分子对目标菌成膜的抑制活性明显高于其对浮游细菌生长的抑制活性.结果表明,QSI分子主要通过干扰目标菌群体感应系统以抑制生物膜的形成.[结论]研究证实QSI分子在海洋菌生物膜形成过程中具有一定的调控作用.通过添加QSI可能能够间接抑制由生物膜诱导的污损生物附着,从而以新的角度研制新型抗污损物质.%[Objective] To study the influence of natural quorum sensing inhibitors (QSI)against marine functional bacterial biofilm formation.[Methods] Some marine bacterial strains,which could induce the larval settlement of fouling organism,were regarded as target bacteria.Through adding natural quorum sensing inhibitors into the target bacterial cultures during their biofilm formation process,the influence of QSI on the biofilm and planktonic bacteria quantity,biofilm morphology as well as the surface extracellular polysaccharide were studied.[Results] Furanone and pyridine significantly inhibited the biofilm formation of all target bacterial strains at the concentration of 50 mg/L,with the inhibition rate of about 80%.However,indole,penicillanic acid and coumarin exhibited good inhibitory activity only at higher concentrations of 800 mg/L.The results of growth inhibition experiment showed that the inhibitory activity of QSI

  16. Biofilm formation in Acinetobacter baumannii.

    Science.gov (United States)

    Longo, Francesca; Vuotto, Claudia; Donelli, Gianfranco

    2014-04-01

    Acinetobacter baumannii has received much attention in recent years because of its increasing involvement in a number of severe infections and outbreaks occurring in clinical settings, and presumably related to its ability to survive and persist in hospital environments. The treatment of infections caused by A. baumannii nosocomial strains has become increasingly problematic, due to their intrinsic and/or acquired resistance to multiple classes of antibiotics. Furthermore, the demonstrated ability of nosocomial strains to grow as biofilm is believed to play a significant role in their persistence and antibiotic resistance. This review summarises current knowledge on A. baumannii biofilm formation and its clinical significance, as well as the related genetic determinants and the regulation of this process.

  17. Biofilm bacterial communities in urban drinking water distribution systems transporting waters with different purification strategies.

    Science.gov (United States)

    Wu, Huiting; Zhang, Jingxu; Mi, Zilong; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-02-01

    Biofilm formation in drinking water distribution systems (DWDS) has many adverse consequences. Knowledge of microbial community structure of DWDS biofilm can aid in the design of an effective control strategy. However, biofilm bacterial community in real DWDS and the impact of drinking water purification strategy remain unclear. The present study investigated the composition and diversity of biofilm bacterial community in real DWDSs transporting waters with different purification strategies (conventional treatment and integrated treatment). High-throughput Illumina MiSeq sequencing analysis illustrated a large shift in the diversity and structure of biofilm bacterial community in real DWDS. Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Nitrospirae, and Cyanobacteria were the major components of biofilm bacterial community. Proteobacteria (mainly Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria) predominated in each DWDS biofilm, but the compositions of the dominant proteobacterial classes and genera and their proportions varied among biofilm samples. Drinking water purification strategy could shape DWDS biofilm bacterial community. Moreover, Pearson's correlation analysis indicated that Actinobacteria was positively correlated with the levels of total alkalinity and dissolved organic carbon in tap water, while Firmicutes had a significant positive correlation with nitrite nitrogen.

  18. Pattern formation in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Parsek, Matthew R.; Tolker-Nielsen, Tim

    2008-01-01

    Bacteria are capable of forming elaborate multicellular communities called biofilms. Pattern formation in biofilms depends on cell proliferation and cellular migration in response to the available nutrients and other external cues, as well as on self-generated intercellular signal molecules...... and the production of an extracellular matrix that serves as a structural 'scaffolding' for the biofilm cells. Pattern formation in biofilms allows cells to position themselves favorably within nutrient gradients and enables buildup and maintenance of physiologically distinct subpopulations, which facilitates...... survival of one or more subpopulations upon environmental insult, and therefore plays an important role in the innate tolerance displayed by biofilms toward adverse conditions....

  19. Prophage spontaneous activation promotes DNA release enhancing biofilm formation in Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Margarida Carrolo

    Full Text Available Streptococcus pneumoniae (pneumococcus is able to form biofilms in vivo and previous studies propose that pneumococcal biofilms play a relevant role both in colonization and infection. Additionally, pneumococci recovered from human infections are characterized by a high prevalence of lysogenic bacteriophages (phages residing quiescently in their host chromosome. We investigated a possible link between lysogeny and biofilm formation. Considering that extracellular DNA (eDNA is a key factor in the biofilm matrix, we reasoned that prophage spontaneous activation with the consequent bacterial host lysis could provide a source of eDNA, enhancing pneumococcal biofilm development. Monitoring biofilm growth of lysogenic and non-lysogenic pneumococcal strains indicated that phage-infected bacteria are more proficient at forming biofilms, that is their biofilms are characterized by a higher biomass and cell viability. The presence of phage particles throughout the lysogenic strains biofilm development implicated prophage spontaneous induction in this effect. Analysis of lysogens deficient for phage lysin and the bacterial major autolysin revealed that the absence of either lytic activity impaired biofilm development and the addition of DNA restored the ability of mutant strains to form robust biofilms. These findings establish that limited phage-mediated host lysis of a fraction of the bacterial population, due to spontaneous phage induction, constitutes an important source of eDNA for the S. pneumoniae biofilm matrix and that this localized release of eDNA favors biofilm formation by the remaining bacterial population.

  20. Epithelial interleukin-8 responses to oral bacterial biofilms.

    Science.gov (United States)

    Peyyala, R; Kirakodu, S; Novak, K F; Ebersole, J L

    2011-10-01

    An in vitro model of bacterial biofilms on rigid gas-permeable contact lenses (RGPLs) was developed to challenge oral epithelial cells. This novel model provided seminal data on oral biofilm-host cell interactions, and with selected bacteria, the biofilms were more effective than their planktonic counterparts at stimulating host cell responses.

  1. Effect of proteases on biofilm formation of the plastic-degrading actinomycete Rhodococcus ruber C208.

    Science.gov (United States)

    Gilan, Irit; Sivan, Alex

    2013-05-01

    In most habitats, the vast majority of microbial populations form biofilms on solid surfaces, whether natural or artificial. These biofilms provide either increased physical support and/or a source of nutrients. Further modifications and development of biofilms are regulated by signal molecules secreted by the cells. Because synthetic polymers are not soluble in aqueous solutions, biofilm-producing bacteria may biodegrade such materials more efficiently than planktonic strains. Bacterial biofilms comprise bacterial cells embedded in self-secreted extracellular polymeric substances (EPS). Revealing the roles of each component of the EPS will enable further insight into biofilm development and the EPS structure-function relationship. A strain of Rhodococcus ruber (C208) displayed high hydrophobicity and formed a dense biofilm on the surface of polyethylene films while utilizing the polyolefin as carbon and energy sources. This study investigated the effects of several proteases on C208 biofilm formation and stability. The proteolysis of C208 biofilm gave conflicting results. Trypsin significantly reduced biofilm formation, and the resultant biofilm appeared monolayered. In contrast, proteinase K enhanced biofilm formation, which was robust and multilayered. Presumably, proteinase K degraded self-secreted proteases or quorum-sensing peptides, which may be involved in biofilm detachment processes, leading to a multilayered, nondispersed biofilm.

  2. Dual-species biofilms formation by Escherichia coli O157:H7 and environmental bacteria isolated from fresh-cut processing plants

    Science.gov (United States)

    Biofilm formation is a mechanism adapted by many microorganisms that enhances the survival in stressful environments. In food processing facilities, bacterial strains with strong biofilm forming capacities are more likely to survive the daily cleaning and disinfection. Foodborne bacterial pathogens,...

  3. Role of multicellular aggregates in biofilm formation

    DEFF Research Database (Denmark)

    Kragh, Kasper N.; Hutchison, Jaime B.; Melaugh, Gavin

    2016-01-01

    In traditional models of in vitro biofilm development, individual bacterial cells seed a surface, multiply, and mature into multicellular, three-dimensional structures. Much research has been devoted to elucidating the mechanisms governing the initial attachment of single cells to surfaces. However......, in natural environments and during infection, bacterial cells tend to clump as multicellular aggregates, and biofilms can also slough off aggregates as a part of the dispersal process. This makes it likely that biofilms are often seeded by aggregates and single cells, yet how these aggregates impact biofilm...... initiation and development is not known. Here we use a combination of experimental and computational approaches to determine the relative fitness of single cells and preformed aggregates during early development of Pseudomonas aeruginosa biofilms. We find that the relative fitness of aggregates depends...

  4. Capillary isoelectric focusing--useful tool for detection of the biofilm formation in Staphylococcus epidermidis.

    Science.gov (United States)

    Ruzicka, Filip; Horka, Marie; Hola, Veronika; Votava, Miroslav

    2007-03-01

    The biofilm formation is an important factor of S. epidermidis virulence. Biofilm-positive strains might be clinically more important than biofilm-negative ones. Unlike biofilm-negative staphylococci, biofilm-positive staphylococci are surrounded with an extracellular polysaccharide substance. The presence of this substance on the surface can affect physico-chemical properties of the bacterial cell, including surface charge. 73 S. epidermidis strains were examined for the presence of ica operon, for the ability to form biofilm by Christensen test tube method and for the production of slime by Congo red agar method. Isoelectric points (pI) of these strains were determined by means of Capillary Isoelectric Focusing. The biofilm negative strains focused near pI value 2.3, while the pI values of the biofilm positive strains were near 2.6. Isoelectric point is a useful criterion for the differentiation between biofilm-positive and biofilm-negative S. epidermidis strains.

  5. Effect of residual sanitizers on Salmonella enterica biofilm formation

    Science.gov (United States)

    Introduction: Salmonella enterica are a diverse group of bacteria that represent a serious risk to public health. Bacterial attachment on food and contact surfaces can lead to biofilm formation, and once in this state, bacteria are more resistant to sanitization and may serve as a continuous contam...

  6. Hormone-dependent bacterial growth, persistence and biofilm formation--a pilot study investigating human follicular fluid collected during IVF cycles.

    Directory of Open Access Journals (Sweden)

    Elise S Pelzer

    Full Text Available Human follicular fluid, considered sterile, is aspirated as part of an in vitro fertilization (IVF cycle. However, it is easily contaminated by the trans-vaginal collection route and little information exists in its potential to support the growth of microorganisms. The objectives of this study were to determine whether human follicular fluid can support bacterial growth over time, whether the steroid hormones estradiol and progesterone (present at high levels within follicular fluid contribute to the in vitro growth of bacterial species, and whether species isolated from follicular fluid form biofilms. We found that bacteria in follicular fluid could persist for at least 28 weeks in vitro and that the steroid hormones stimulated the growth of some bacterial species, specifically Lactobacillus spp., Bifidobacterium spp. Streptococcus spp. and E. coli. Several species, Lactobacillus spp., Propionibacterium spp., and Streptococcus spp., formed biofilms when incubated in native follicular fluids in vitro (18/24, 75%. We conclude that bacteria aspirated along with follicular fluid during IVF cycles demonstrate a persistent pattern of growth. This discovery is important since it can offer a new avenue for investigation in infertile couples.

  7. Cellular chain formation in Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; Klemm, Per

    2009-01-01

    In this study we report on a novel structural phenotype in Escherichia coli biofilms: cellular chain formation. Biofilm chaining in E. coli K-12 was found to occur primarily by clonal expansion, but was not due to filamentous growth. Rather, chain formation was the result of intercellular...

  8. Selective labelling and eradication of antibiotic-tolerant bacterial populations in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Chua, Song Lin; Yam, Joey Kuok Hoong; Hao, Piliang;

    2016-01-01

    Drug resistance and tolerance greatly diminish the therapeutic potential of antibiotics against pathogens. Antibiotic tolerance by bacterial biofilms often leads to persistent infections, but its mechanisms are unclear. Here we use a proteomics approach, pulsed stable isotope labelling with amino...... acids (pulsed-SILAC), to quantify newly expressed proteins in colistin-tolerant subpopulations of Pseudomonas aeruginosa biofilms (colistin is a 'last-resort' antibiotic against multidrug-resistant Gram-negative pathogens). Migration is essential for the formation of colistin-tolerant biofilm...... development. The macrolide erythromycin, which has been previously shown to inhibit the motility and QS of P. aeruginosa, boosts biofilm eradication by colistin. Our work provides insights on the mechanisms underlying the formation of antibiotic-tolerant populations in bacterial biofilms and indicates...

  9. Rapid identification of bacterial biofilms and biofilm wound models using a multichannel nanosensor.

    Science.gov (United States)

    Li, Xiaoning; Kong, Hao; Mout, Rubul; Saha, Krishnendu; Moyano, Daniel F; Robinson, Sandra M; Rana, Subinoy; Zhang, Xinrong; Riley, Margaret A; Rotello, Vincent M

    2014-12-23

    Identification of infectious bacteria responsible for biofilm-associated infections is challenging due to the complex and heterogeneous biofilm matrix. To address this issue and minimize the impact of heterogeneity on biofilm identification, we developed a gold nanoparticle (AuNP)-based multichannel sensor to detect and identify biofilms based on their physicochemical properties. Our results showed that the sensor can discriminate six bacterial biofilms including two composed of uropathogenic bacteria. The capability of the sensor was further demonstrated through discrimination of biofilms in a mixed bacteria/mammalian cell in vitro wound model.

  10. Detection of bacterial biofilms in different types of chronic otitis media.

    Science.gov (United States)

    Gu, Xingzhi; Keyoumu, Youlidusi; Long, Li; Zhang, Hua

    2014-11-01

    Biofilms are organized bacterial communities that may be homogeneous or heterogeneous. They play a significant role in the pathogenesis of chronic nasal sinusitis, chronic tonsillitis, cholesteatomas, and device-related infections. Despite this, few studies have been done that examine the presence of bacterial biofilms in tissues from patients with different types of COM or middle ear cholesteatomas. In the current study, we examined the presence of biofilms in surgical tissue specimens from humans with chronic ear infections using scanning electron microscopy (SEM). We hypothesize that bacterial biofilms present differently in patients with different types of chronic otitis media. Our results provide new insights regarding treatment of chronic otitis media. A prospective study was conducted in which middle ear tissues were obtained from 38 patients who underwent tympanoplasty and/or tympanomastoid surgery due to chronic ear infections. A total of 50 middle and mastoid tissue samples were processed for SEM analysis. In addition, 38 middle ear secretion specimens were obtained for routine bacterial culture analysis. Bacterial biofilms were present in 85 % (11 of 13) of patients with middle ear cholesteatoma, 92 % (12/13) of patients with chronic otitis suppurative media (CSOM), and 16 % of patients (2/12) with tympanic membrane perforation (TMP). Fungal biofilms were found in two cases of cholesteatoma. The positive coincidence rate between bacterial biofilms visualized by SEM and bacteria detected by culture was 82 %. Our findings suggest that bacterial biofilms are very common in CSOM and middle ear cholesteatomas. Positive bacterial cultures imply the presence of biofilm formation in CSOM and cholesteatomas. As such, our results provide new insights regarding treatment of chronic otitis media.

  11. Streptococcus suis Serotype 2 Biofilms Inhibit the Formation of Neutrophil Extracellular Traps

    Science.gov (United States)

    Ma, Fang; Yi, Li; Yu, Ningwei; Wang, Guangyu; Ma, Zhe; Lin, Huixing; Fan, Hongjie

    2017-01-01

    Invasive infections caused by Streptococcus suis serotype 2 (SS2) has emerged as a clinical problem in recent years. Neutrophil extracellular traps (NETs) are an important mechanism for the trapping and killing of pathogens that are resistant to phagocytosis. Biofilm formation can protect bacteria from being killed by phagocytes. Until now, there have only been a few studies that focused on the interactions between bacterial biofilms and NETs. SS2 in both a biofilm state and a planktonic cell state were incubated with phagocytes and NETs, and bacterial survival was assessed. DNase I and cytochalasin B were used to degrade NET DNA or suppress phagocytosis, respectively. Extracellular DNA was stained with impermeable fluorescent dye to quantify NET formation. Biofilm formation increased up to 6-fold in the presence of neutrophils, and biofilms were identified in murine tissue. Both planktonic and biofilm cells induced neutrophils chemotaxis to the infection site, with neutrophils increasing by 85.1 and 73.8%, respectively. The bacteria in biofilms were not phagocytized. The bactericidal efficacy of NETs on the biofilms and planktonic cells were equal; however, the biofilm extracellular matrix can inhibit NET release. Although biofilms inhibit NETs release, NETs appear to be an important mechanism to eliminate SS2 biofilms. This knowledge advances the understanding of biofilms and may aid in the development of treatments for persistent infections with a biofilm component. PMID:28373968

  12. Aspartate inhibits Staphylococcus aureus biofilm formation.

    Science.gov (United States)

    Yang, Hang; Wang, Mengyue; Yu, Junping; Wei, Hongping

    2015-04-01

    Biofilm formation renders Staphylococcus aureus highly resistant to conventional antibiotics and host defenses. Four D-amino acids (D-Leu, D-Met, D-Trp and D-Tyr) have been reported to be able to inhibit biofilm formation and disassemble established S. aureus biofilms. We report here for the first time that both D- and L-isoforms of aspartate (Asp) inhibited S. aureus biofilm formation on tissue culture plates. Similar biofilm inhibition effects were also observed against other staphylococcal strains, including S. saprophyticus, S. equorum, S. chromogenes and S. haemolyticus. It was found that Asp at high concentrations (>10 mM) inhibited the growth of planktonic N315 cells, but at subinhibitory concentrations decreased the cellular metabolic activity without influencing cell growth. The decreased cellular metabolic activity might be the reason for the production of less protein and DNA in the matrix of the biofilms formed in the presence of Asp. However, varied inhibition efficacies of Asp were observed for biofilms formed by clinical staphylococcal isolates. There might be mechanisms other than decreasing the metabolic activity, e.g. the biofilm phenotypes, affecting biofilm formation in the presence of Asp.

  13. Calcium-Phosphate-Osteopontin Particles Reduce Biofilm Formation and pH Drops in in situ Grown Dental Biofilms.

    Science.gov (United States)

    Schlafer, Sebastian; Ibsen, Casper J S; Birkedal, Henrik; Nyvad, Bente

    2017-01-01

    This 2-period crossover study investigated the effect of calcium-phosphate-osteopontin particles on biofilm formation and pH in 48-h biofilms grown in situ. Bovine milk osteopontin is a highly phosphorylated glycoprotein that has been shown to interfere with bacterial adhesion to salivary-coated surfaces. Calcium-phosphate-osteopontin particles have been shown to reduce biofilm formation and pH drops in a 5-species laboratory model of dental biofilm without affecting bacterial viability. Here, smooth surface biofilms from 10 individuals were treated ex vivo 6 times/day for 30 min with either calcium-phosphate-osteopontin particles or sterile saline. After growth, the amount of biofilm formed was determined by confocal microscopy, and pH drops upon exposure to glucose were monitored using confocal-microscopy-based pH ratiometry. A total of 160 biofilms were analysed. No adverse effects of repeated ex vivo treatment with calcium-phosphate-osteopontin particles were observed. Particle treatment resulted in a 32% lower amount of biofilm formed (p Biofilm pH was significantly higher upon particle treatment, both shortly after the addition of glucose and after 30 min of incubation with glucose (p biofilms as well as the remineralizing potential of the particles.

  14. In-situ quantification of the interfacial rheological response of bacterial biofilms to environmental stimuli.

    Directory of Open Access Journals (Sweden)

    Patrick A Rühs

    Full Text Available Understanding the numerous factors that can affect biofilm formation and stability remain poorly understood. One of the major limitations is the accurate measurement of biofilm stability and cohesiveness in real-time when exposed to changing environmental conditions. Here we present a novel method to measure biofilm strength: interfacial rheology. By culturing a range of bacterial biofilms on an air-liquid interface we were able to measure their viscoelastic growth profile during and after biofilm formation and subsequently alter growth conditions by adding surfactants or changing the nutrient composition of the growth medium. We found that different bacterial species had unique viscoelastic growth profiles, which was also highly dependent on the growth media used. We also found that we could reduce biofilm formation by the addition of surfactants or changing the pH, thereby altering the viscoelastic properties of the biofilm. Using this technique we were able to monitor changes in viscosity, elasticity and surface tension online, under constant and varying environmental conditions, thereby providing a complementary method to better understand the dynamics of both biofilm formation and dispersal.

  15. Efficient suppression of biofilm formation by a nucleic acid aptamer.

    Science.gov (United States)

    Ning, Yi; Cheng, Lijuan; Ling, Min; Feng, Xinru; Chen, Lingli; Wu, Minxi; Deng, Le

    2015-08-01

    Biofilms are microbial communities that are attached to a solid surface using extracellular polymeric substances. Motility and initial attachment mediated by flagella are required for biofilm formation. Therefore, blocking the motility of flagella is a potential strategy to inhibit biofilm formation. In this study, single-stranded DNA aptamers specific to the Salmonella choleraesuis were selected after 14 cycles of the systematic evolution of ligands by exponential enrichment. Among the selected aptamers, the aptamer 3 showed the highest affinity for S. choleraesuis with a dissociation constant (Kd) of 41 ± 2 nM. Aptamer 3, conjugated with magnetic beads, was then used to capture its binding target on the bacteria. After mass spectrometry and specific binding analysis, the flagellin was identified as the target captured by aptamer 3. Furthermore, inhibition experiments, inverted microscopy and atomic force microscopy demonstrated that aptamer 3 was able to control the biofilm formation and promote the inhibitory effect of an antibiotic on bacterial biofilms. Single-stranded DNA aptamers therefore have great potential as inhibitors of biofilm formation.

  16. Inhibition of Biofilm Formation Using Novel Nanostructured Surfaces Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Biofilms are ubiquitous in the environment. Few surfaces resist biofilm formation, most promote it. Biofilm formation poses problems in water systems as they can...

  17. Interspecies interactions result in enhanced biofilm formation by co-cultures of bacteria isolated from a food processing environment

    DEFF Research Database (Denmark)

    Røder, Henriette Lyng; Raghupathi, Prem Krishnan; Herschend, Jakob

    2015-01-01

    examined for multispecies biofilm formation. Eight strains from each sampling site were chosen and all possible combinations of four member co-cultures were tested for enhanced biofilm formation at 15°C and 24°C. In approximately 20% of the multispecies consortia grown at 15°C, the biofilm formation......Bacterial attachment and biofilm formation can lead to poor hygienic conditions in food processing environments. Furthermore, interactions between different bacteria may induce or promote biofilm formation. In this study, we isolated and identified a total of 687 bacterial strains from seven...... different locations in a meat processing environment and evaluated their biofilm formation capability. A diverse group of bacteria was isolated and most were classified as poor biofilm producers in a Calgary biofilm device assay. Isolates from two sampling sites, the wall and the meat chopper, were further...

  18. Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination.

    Directory of Open Access Journals (Sweden)

    Sourabh Dwivedi

    Full Text Available The formation of bacterial biofilm is a major challenge in clinical applications. The main aim of this study is to describe the synthesis, characterization and biocidal potential of zinc oxide nanoparticles (NPs against bacterial strain Pseudomonas aeruginosa. These nanoparticles were synthesized via soft chemical solution process in a very short time and their structural properties have been investigated in detail by using X-ray diffraction and transmission electron microscopy measurements. In this work, the potential of synthesized ZnO-NPs (∼ 10-15 nm has been assessed in-vitro inhibition of bacteria and the formation of their biofilms was observed using the tissue culture plate assays. The crystal violet staining on biofilm formation and its optical density revealed the effect on biofilm inhibition. The NPs at a concentration of 100 µg/mL significantly inhibited the growth of bacteria and biofilm formation. The biofilm inhibition by ZnO-NPs was also confirmed via bio-transmission electron microscopy (Bio-TEM. The Bio-TEM analysis of ZnO-NPs treated bacteria confirmed the deformation and damage of cells. The bacterial growth in presence of NPs concluded the bactericidal ability of NPs in a concentration dependent manner. It has been speculated that the antibacterial activity of NPs as a surface coating material, could be a feasible approach for controlling the pathogens. Additionally, the obtained bacterial solution data is also in agreement with the results from statistical analytical methods.

  19. Biofilm formation and antibiotic resistance in Salmonella Typhimurium are affected by different ribonucleases.

    Science.gov (United States)

    Saramago, Margarida; Domingues, Susana; Viegas, Sandra Cristina; Arraiano, Cecília Maria

    2014-01-01

    Biofilm formation and antibiotic resistance are important determinants for bacterial pathogenicity. Ribonucleases control RNA degradation and there is increasing evidence that they have an important role in virulence mechanisms. In this report, we show that ribonucleases affect susceptibility against ribosome-targeting antibiotics and biofilm formation in Salmonella.

  20. Biofilm formation and persistence on abiotic surfaces in the context of food and medical environments.

    Science.gov (United States)

    Abdallah, Marwan; Benoliel, Corinne; Drider, Djamel; Dhulster, Pascal; Chihib, Nour-Eddine

    2014-07-01

    The biofilm formation on abiotic surfaces in food and medical sectors constitutes a great public health concerns. In fact, biofilms present a persistent source for pathogens, such as Pseudomonas aeruginosa and Staphylococcus aureus, which lead to severe infections such as foodborne and nosocomial infections. Such biofilms are also a source of material deterioration and failure. The environmental conditions, commonly met in food and medical area, seem also to enhance the biofilm formation and their resistance to disinfectant agents. In this regard, this review highlights the effect of environmental conditions on bacterial adhesion and biofilm formation on abiotic surfaces in the context of food and medical environment. It also describes the current and emergent strategies used to study the biofilm formation and its eradication. The mechanisms of biofilm resistance to commercialized disinfectants are also discussed, since this phenomenon remains unclear to date.

  1. Streptococcus pyogenes biofilmsformation, biology,and clinical relevance

    Directory of Open Access Journals (Sweden)

    Tomas eFiedler

    2015-02-01

    Full Text Available Streptococcus pyogenes (group A streptococci, GAS is an exclusive human bacterial pathogen. The virulence potential of this species is tremendous. Interactions with humans range from asymptomatic carriage over mild and superficial infections of skin and mucosal membranes up to systemic purulent toxic-invasive disease manifestations. Particularly the latter are a severe threat for predisposed patients and lead to significant death tolls worldwide. This places GAS among the most important Gram-positive bacterial pathogens. Many recent reviews have highlighted the GAS repertoire of virulence factors, regulators and regulatory circuits/networks that enable GAS to colonize the host and to deal with all levels of the host immune defense. This covers in vitro and in vivo studies, including animal infection studies based on mice and more relevant, macaque monkeys. It is now appreciated that GAS, like many other bacterial species, do not necessarily exclusively live in a planktonic lifestyle. GAS is capable of microcolony and biofilm formation on host cells and tissues. We are now beginning to understand that this feature significantly contributes to GAS pathogenesis. In this review we will discuss the current knowledge on GAS biofilm formation, the biofilm-phenotype associated virulence factors, regulatory aspects of biofilm formation, the clinical relevance, and finally contemporary treatment regimens and future treatment options.

  2. Impact of early colonizers on in vitro subgingival biofilm formation.

    Directory of Open Access Journals (Sweden)

    Thomas W Ammann

    Full Text Available The aim of this study was to investigate the impact of early colonizing species on the structure and the composition of the bacterial community developing in a subgingival 10-species biofilm model system. The model included Streptococcus oralis, Streptococcus anginosus, Actinomycesoris, Fusobacterium nucleatum subsp. nucleatum, Veillonella dispar, Campylobacter rectus, Prevotella intermedia, Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola. Based on literature, we considered Streptococcus oralis, Streptococcus anginosus, and Actinomyces oris as early colonizers and examined their role in the biofilms by either a delayed addition to the consortium, or by not inoculating at all the biofilms with these species. We quantitatively evaluated the resulting biofilms by real-time quantitative PCR and further compared the structures using confocal laser scanning microscopy following fluorescence in situ hybridisation. The absence of the early colonizers did not hinder biofilm formation. The biofilms reached the same total counts and developed to normal thickness. However, quantitative shifts in the abundances of individual species were observed. In the absence of streptococci, the overall biofilm structure appeared looser and more dispersed. Moreover, besides a significant increase of P. intermedia and a decrease of P. gingivalis , P. intermedia appeared to form filamented long chains that resembled streptococci. A. oris, although growing to significantly higher abundance in absence of streptococci, did not have a visible impact on the biofilms. Hence, in the absence of the early colonizers, there is a pronounced effect on P. intermedia and P. gingivalis that may cause distinct shifts in the structure of the biofilm. Streptococci possibly facilitate the establishment of P. gingivalis into subgingival biofilms, while in their absence P. intermedia became more dominant and forms elongated chains.

  3. The role of bacterial biofilms in chronic infections

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas

    2013-01-01

    treatment depends on accurate and fast diagnosis. However, in cases where the bacteria succeed in forming a biofilm within the human host, the infection often turns out to be untreatable and will develop into a chronic state. The important hallmarks of chronic biofilm-based infections are extreme resistance...... to antibiotics and many other conventional antimicrobial agents, and an extreme capacity for evading the host defences. In this thesis, I will assemble the current knowledge on biofilms with an emphasis on chronic infections, guidelines for diagnosis and treatment of these infections, before relating this to my...... previous research into the area of biofilms. I will present evidence to support a view that the biofilm lifestyle dominates chronic bacterial infections, where bacterial aggregation is the default mode, and that subsequent biofilm development progresses by adaptation to nutritional and environmental...

  4. The Biofilm Lifestyle Involves an Increase in Bacterial Membrane Saturated Fatty Acids.

    Science.gov (United States)

    Dubois-Brissonnet, Florence; Trotier, Elsa; Briandet, Romain

    2016-01-01

    Biofilm formation on contact surfaces contributes to persistence of foodborne pathogens all along the food and feed chain. The specific physiological features of bacterial cells embedded in biofilms contribute to their high tolerance to environmental stresses, including the action of antimicrobial compounds. As membrane lipid adaptation is a vital facet of bacterial response when cells are submitted to harsh or unstable conditions, we focused here on membrane fatty acid composition of biofilm cells as compared to their free-growing counterparts. Pathogenic bacteria (Staphylococcus aureus, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella Typhimurium) were cultivated in planktonic or biofilm states and membrane fatty acid analyses were performed on whole cells in both conditions. The percentage of saturated fatty acids increases in biofilm cells in all cases, with a concomitant decrease of branched-chain fatty acids for Gram-positive bacteria, or with a decrease in the sum of other fatty acids for Gram-negative bacteria. We propose that increased membrane saturation in biofilm cells is an adaptive stress response that allows bacteria to limit exchanges, save energy, and survive. Reprogramming of membrane fluidity in biofilm cells might explain specific biofilm behavior including bacterial recalcitrance to biocide action.

  5. Chitosan-propolis nanoparticle formulation demonstrates anti-bacterial activity against Enterococcus faecalis biofilms

    Science.gov (United States)

    Ong, Teik Hwa; Chitra, Ebenezer; Ramamurthy, Srinivasan; Siddalingam, Rajinikanth Paruvathanahalli; Yuen, Kah Hay; Ambu, Stephen Periathamby

    2017-01-01

    Propolis obtained from bee hives is a natural substance with antimicrobial properties. It is limited by its insolubility in aqueous solutions; hence ethanol and ethyl acetate extracts of Malaysian propolis were prepared. Both the extracts displayed antimicrobial and anti-biofilm properties against Enterococcus faecalis, a common bacterium associated with hospital-acquired infections. High performance liquid chromatography (HPLC) analysis of propolis revealed the presence of flavonoids like kaempferol and pinocembrin. This study investigated the role of propolis developed into nanoparticles with chitosan for its antimicrobial and anti-biofilm properties against E. faecalis. Bacteria that grow in a slimy layer of biofilm are resistant to penetration by antibacterial agents. The use of nanoparticles in medicine has received attention recently due to better bioavailability, enhanced penetrative capacity and improved efficacy. A chitosan-propolis nanoformulation was chosen based on ideal physicochemical properties such as particle size, zeta potential, polydispersity index, encapsulation efficiency and the rate of release of the active ingredients. This formulation inhibited E. faecalis biofilm formation and reduced the number of bacteria in the biofilm by ~90% at 200 μg/ml concentration. When tested on pre-formed biofilms, the formulation reduced bacterial number in the biofilm by ~40% and ~75% at 200 and 300 μg/ml, respectively. The formulation not only reduced bacterial numbers, but also physically disrupted the biofilm structure as observed by scanning electron microscopy. Treatment of biofilms with chitosan-propolis nanoparticles altered the expression of biofilm-associated genes in E. faecalis. The results of this study revealed that chitosan-propolis nanoformulation can be deemed as a potential anti-biofilm agent in resisting infections involving biofilm formation like chronic wounds and surgical site infections. PMID:28362873

  6. Biocidal effect of cathodic protection on bacterial viability in biofilm attached to carbon steel.

    Science.gov (United States)

    Miyanaga, Kazuhiko; Terashi, Ryosuke; Kawai, Hirofumi; Unno, Hajime; Tanji, Yasunori

    2007-07-01

    Biofilm formed on carbon steel by various species of bacterial cells causes serious problems such as corrosion of steel, choking of flow in the pipe, deterioration of the heat-transfer efficiency, and so on. Cathodic protection is known to be a reliable method for protecting carbon steel from corrosion. However, the initial attachment of bacteria to the surface and the effects of cathodic protection on bacterial viability in the biofilm have not been clarified. In this study, cathodic protection was applied to an artificial biofilm containing Pseudomonas aeruginosa (PAO1), a biofilm constituent, on carbon steel. The aims of this study were to evaluate the inhibition effect of cathodic protection on biofilm formation and to reveal the inhibition mechanisms. The viability of PAO1 in artificial biofilm of 5 mm thickness on cathodically protected steel decreased to 1% of the initial cell concentration. Analysis of pH distribution in the artificial biofilm by pH microelectrode revealed that pH in proximity to carbon steel increased to approximately 11 after cathodic protection for 5 h. Moreover, 99% of region in the artificial biofilm was under the pH conditions of over nine. A simulation of pH profile was shown to correspond to experimental values. These results indicate cells in the artificial biofilm were killed or damaged by cathodic protection due to pH increase.

  7. Destruction of Bacterial Biofilms Using Gas Discharge Plasma

    Science.gov (United States)

    Abramzon, Nina

    2005-03-01

    Biofilms are bacterial communities embedded in an exopolysaccharidic matrix with a complex architectural structure. Bacteria in biofilms show different properties from those in free life thus, conventional methods of killing bacteria are often ineffective with biofilms. The use of plasmas potentially offers an alternative to conventional sterilization methods since plasmas contain a mixture of charged particles, chemically reactive species, and UV radiation. 4 and 7 day-old biofilms were produced using two bacterial species: Rhizobium gallicum and Chromobacterium violaceum. Gas discharge plasma was produced by using an AtomfloTM reactor (Surfx Technologies) and bacterial biofilms were exposed to it for different periods of time. Our results show that a 10-minute plasma treatment was able to kill 100% of the cells in most cases. Optical emission spectroscopy was used to study plasma composition which is then correlated with the effectiveness of killing. These results indicate the potentiality of plasma as an alternative sterilization method. Supported by CSuperb.

  8. The ``Swiss cheese'' instability of bacterial biofilms

    Science.gov (United States)

    Jang, Hongchul; Rusconi, Roberto; Stocker, Roman

    2012-11-01

    Bacteria often adhere to surfaces, where they develop polymer-encased communities (biofilms) that display dramatic resistance to antibiotic treatment. A better understanding of cell detachment from biofilms may lead to novel strategies for biofilm disruption. Here we describe a new detachment mode, whereby a biofilm develops a nearly regular array of ~50-100 μm holes. Using surface-treated microfluidic devices, we create biofilms of controlled shape and size. After the passage of an air plug, the break-up of the residual thin liquid film scrapes and rearranges bacteria on the surface, such that a ``Swiss cheese'' pattern is left in the residual biofilm. Fluorescent staining of the polymeric matrix (EPS) reveals that resistance to cell dislodgement correlates with local biofilm age, early settlers having had more time to hunker down. Because few survivors suffice to regrow a biofilm, these results point at the importance of considering microscale heterogeneity in assessing the effectiveness of biofilm removal strategies.

  9. Listeria monocytogenes survival of UV-C radiation is enhanced by presence of sodium chloride, organic food material and by bacterial biofilm formation

    DEFF Research Database (Denmark)

    Bernbom, Nete; Vogel, Birte Fonnesbech; Gram, Lone

    2011-01-01

    a biofilm for 7days before exposure. It is not known if this enhanced survival is due to physiological changes in the attached bacterial cells, a physical protection of the cells in the food matrix or a combination. In conclusion, we demonstrate that UV-C light is a useful extra bacteriocidal step......The bactericidal effect on food processing surfaces of ceiling-mounted UV-C light (wavelength 254nm) was determined in a fish smoke house after the routine cleaning and disinfection procedure. The total aerobic counts were reduced during UV-C light exposure (48h) and the number of Listeria...... monocytogenes positive samples went from 30 (of 68) before exposure to 8 (of 68). We therefore in a laboratory model determined the L. monocytogenes reduction kinetics by UV-C light with the purpose of evaluating the influence of food production environmental variables, such as presence of NaCl, organic...

  10. New insights on molecular regulation of biofilm formation in plant-associated bacteria

    Institute of Scientific and Technical Information of China (English)

    Luisa F. Castiblanco; George W. Sundin

    2016-01-01

    Biofilms are complex bacterial assemblages with a defined three-dimensional architecture, attached to solid surfaces, and surrounded by a self-produced matrix generally composed of exopolysaccharides, proteins, lipids and extrac-ellular DNA. Biofilm formation has evolved as an adaptive strategy of bacteria to cope with harsh environmental conditions as well as to establish antagonistic or beneficial interactions with their host. Plant-associated bacteria attach and form biofilms on different tissues including leaves, stems, vasculature, seeds and roots. In this review, we examine the formation of biofilms from the plant-associated bacterial perspective and detail the recently-described mechanisms of genetic regulation used by these organisms to orchestrate biofilm formation on plant surfaces. In addition, we describe plant host signals that bacterial pathogens recognize to activate the transition from a planktonic lifestyle to multi-cellular behavior.

  11. Functional recovery of biofilm bacterial communities after copper exposure.

    NARCIS (Netherlands)

    Boivin, Marie-Elène Y; Massieux, Boris; Breure, Anton M; Greve, Gerdit D; Rutgers, Michiel; Admiraal, Wim

    2006-01-01

    Potential of bacterial communities in biofilms to recover after copper exposure was investigated. Biofilms grown outdoor in shallow water on glass dishes were exposed in the laboratory to 0.6, 2.1, 6.8 micromol/l copper amended surface water and a reference and subsequently to un-amended surface wat

  12. Deacetylation of Fungal Exopolysaccharide Mediates Adhesion and Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Mark J. Lee

    2016-04-01

    Full Text Available The mold Aspergillus fumigatus causes invasive infection in immunocompromised patients. Recently, galactosaminogalactan (GAG, an exopolysaccharide composed of galactose and N-acetylgalactosamine (GalNAc, was identified as a virulence factor required for biofilm formation. The molecular mechanisms underlying GAG biosynthesis and GAG-mediated biofilm formation were unknown. We identified a cluster of five coregulated genes that were dysregulated in GAG-deficient mutants and whose gene products share functional similarity with proteins that mediate the synthesis of the bacterial biofilm exopolysaccharide poly-(β1-6-N-acetyl-d-glucosamine (PNAG. Bioinformatic analyses suggested that the GAG cluster gene agd3 encodes a protein containing a deacetylase domain. Because deacetylation of N-acetylglucosamine residues is critical for the function of PNAG, we investigated the role of GAG deacetylation in fungal biofilm formation. Agd3 was found to mediate deacetylation of GalNAc residues within GAG and render the polysaccharide polycationic. As with PNAG, deacetylation is required for the adherence of GAG to hyphae and for biofilm formation. Growth of the Δagd3 mutant in the presence of culture supernatants of the GAG-deficient Δuge3 mutant rescued the biofilm defect of the Δagd3 mutant and restored the adhesive properties of GAG, suggesting that deacetylation is an extracellular process. The GAG biosynthetic gene cluster is present in the genomes of members of the Pezizomycotina subphylum of the Ascomycota including a number of plant-pathogenic fungi and a single basidiomycete species, Trichosporon asahii, likely a result of recent horizontal gene transfer. The current study demonstrates that the production of cationic, deacetylated exopolysaccharides is a strategy used by both fungi and bacteria for biofilm formation.

  13. Morphomechanics of bacterial biofilms undergoing anisotropic differential growth

    Science.gov (United States)

    Zhang, Cheng; Li, Bo; Huang, Xiao; Ni, Yong; Feng, Xi-Qiao

    2016-10-01

    Growing bacterial biofilms exhibit a number of surface morphologies, e.g., concentric wrinkles, radial ridges, and labyrinthine networks, depending on their physiological status and nutrient access. We explore the mechanisms underlying the emergence of these greatly different morphologies. Ginzburg-Landau kinetic method and Fourier spectral method are integrated to simulate the morphological evolution of bacterial biofilms. It is shown that the morphological instability of biofilms is triggered by the stresses induced by anisotropic and heterogeneous bacterial expansion, and involves the competition between membrane energy and bending energy. Local interfacial delamination further enriches the morphologies of biofilms. Phase diagrams are established to reveal how the anisotropy and spatial heterogeneity of growth modulate the surface patterns. The mechanics of three-dimensional microbial morphogenesis may also underpin self-organization in other development systems and provide a potential strategy for engineering microscopic structures from bacterial aggregates.

  14. Capsular polysaccharide of Group B Streptococcus mediates biofilm formation in the presence of human plasma.

    Science.gov (United States)

    Xia, Fan Di; Mallet, Adeline; Caliot, Elise; Gao, Cherry; Trieu-Cuot, Patrick; Dramsi, Shaynoor

    2015-01-01

    Group B Streptococcus (GBS) is an asymptomatic colonizer of human mucosal surfaces that is responsible for sepsis and meningitis in neonates. Bacterial persistence and pathogenesis often involves biofilm formation. We previously showed that biofilm formation in medium supplemented with glucose is mediated by the PI-2a pilus. Here, biofilm formation was tested in cell culture medium supplemented with human plasma. GBS strains were able to form biofilms in these conditions unlike Group A Streptococcus (GAS) or Staphylococcus aureus. Analysis of mutants impaired for various surface components revealed that the GBS capsule is a key component in this process.

  15. Bacterial dynamics in a microphytobenthic biofilm: A tidal mesocosm approach

    Science.gov (United States)

    Agogué, Hélène; Mallet, Clarisse; Orvain, Francis; De Crignis, Margot; Mornet, Françoise; Dupuy, Christine

    2014-09-01

    In intertidal mudflats, during low tide exposure, microphytobenthos (MPB) migrate vertically through the surface sediment and form, with the heterotrophic bacteria, a transient biofilm. Inside this biofilm, multiple interactions exist between MPB and bacteria. These micro-organisms secrete a wide range of extracellular polymeric substances (EPS), which are major components of the biofilm matrix. In this study, we used a tidal mesocosm experiment in order to decipher the interactions of the MPB-EPS-bacteria complex within the biofilm. We tried to determine if the EPS could control bacterial activities and/or production and/or richness according to the age of the biofilm and to the immersion/emersion period. The dynamics of biomasses of MPB and prokaryotes, the bacterial production, the hydrolysis of predominating organic constituents in the dissolved organic carbon (DOC) pool (i.e., carbohydrates and polypeptides), and the bacterial structure were studied in relation to the different EPS fractions (carbohydrates and proteins: colloidal and bound) dynamics during 8 days. Our experiment had emphasized the influence of the environmental conditions (light, immersion/emersion) on the interactions within the biofilm and also on the effects on biofilm aging. Bacterial production was always inhibited by the bound EPS-carbohydrate, especially during low tide. Our results suggest that the concentration and composition of EPS had a major role in the bacterial/MPB interactions: these interactions can be either positive or negative in order to regulate the productive phases of MPB and bacteria.

  16. Enzymatic removal and disinfection of bacterial biofilms

    DEFF Research Database (Denmark)

    Johansen, Charlotte; Falholt, Per; Gram, Lone

    1997-01-01

    Model biofilms of Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas fluorescens, and Pseudomonas aeruginosa were made on steel and polypropylene substrata. Plaque-resembling biofilms of Streptococcus mutans, Actinomyces, viscosus, and Fusobacterium nucleatum were made on saliva...

  17. Characterization of Biofilm Formation in [Pasteurella] pneumotropica and [Actinobacillus] muris Isolates of Mouse Origin.

    Science.gov (United States)

    Sager, Martin; Benten, W Peter M; Engelhardt, Eva; Gougoula, Christina; Benga, Laurentiu

    2015-01-01

    [Pasteurella] pneumotropica biotypes Jawetz and Heyl and [Actinobacillus] muris are the most prevalent Pasteurellaceae species isolated from laboratory mouse. However, mechanisms contributing to their high prevalence such as the ability to form biofilms have not been studied yet. In the present investigation we analyze if these bacterial species can produce biofilms in vitro and investigate whether proteins, extracellular DNA and polysaccharides are involved in the biofilm formation and structure by inhibition and dispersal assays using proteinase K, DNase I and sodium periodate. Finally, the capacity of the biofilms to confer resistance to antibiotics is examined. We demonstrate that both [P.] pneumotropica biotypes but not [A.] muris are able to form robust biofilms in vitro, a phenotype which is widely spread among the field isolates. The biofilm inhibition and dispersal assays by proteinase and DNase lead to a strong inhibition in biofilm formation when added at the initiation of the biofilm formation and dispersed pre-formed [P.] pneumotropica biofilms, revealing thus that proteins and extracellular DNA are essential in biofilm formation and structure. Sodium periodate inhibited the bacterial growth when added at the beginning of the biofilm formation assay, making difficult the assessment of the role of β-1,6-linked polysaccharides in the biofilm formation, and had a biofilm stimulating effect when added on pre-established mature biofilms of [P.] pneumotropica biotype Heyl and a majority of [P.] pneumotropica biotype Jawetz strains, suggesting that the presence of β-1,6-linked polysaccharides on the bacterial surface might attenuate the biofilm production. Conversely, no effect or a decrease in the biofilm quantity was observed by biofilm dispersal using sodium periodate on further biotype Jawetz isolates, suggesting that polysaccharides might be incorporated in the biofilm structure. We additionally show that [P.] pneumotropica cells enclosed in biofilms

  18. Efficacy of a marine bacterial nuclease against biofilm forming microorganisms isolated from chronic rhinosinusitis.

    Directory of Open Access Journals (Sweden)

    Robert C Shields

    Full Text Available BACKGROUND: The persistent colonization of paranasal sinus mucosa by microbial biofilms is a major factor in the pathogenesis of chronic rhinosinusitis (CRS. Control of microorganisms within biofilms is hampered by the presence of viscous extracellular polymers of host or microbial origin, including nucleic acids. The aim of this study was to investigate the role of extracellular DNA in biofilm formation by bacteria associated with CRS. METHODS/PRINCIPAL FINDINGS: Obstructive mucin was collected from patients during functional endoscopic sinus surgery. Examination of the mucous by transmission electron microscopy revealed an acellular matrix punctuated occasionally with host cells in varying states of degradation. Bacteria were observed in biofilms on mucosal biopsies, and between two and six different species were isolated from each of 20 different patient samples. In total, 16 different bacterial genera were isolated, of which the most commonly identified organisms were coagulase-negative staphylococci, Staphylococcus aureus and α-haemolytic streptococci. Twenty-four fresh clinical isolates were selected for investigation of biofilm formation in vitro using a microplate model system. Biofilms formed by 14 strains, including all 9 extracellular nuclease-producing bacteria, were significantly disrupted by treatment with a novel bacterial deoxyribonuclease, NucB, isolated from a marine strain of Bacillus licheniformis. Extracellular biofilm matrix was observed in untreated samples but not in those treated with NucB and extracellular DNA was purified from in vitro biofilms. CONCLUSION/SIGNIFICANCE: Our data demonstrate that bacteria associated with CRS form robust biofilms which can be reduced by treatment with matrix-degrading enzymes such as NucB. The dispersal of bacterial biofilms with NucB may offer an additional therapeutic target for CRS sufferers.

  19. IMPACTS OF BIOFILM FORMATION ON CELLULOSE FERMENTATION

    Energy Technology Data Exchange (ETDEWEB)

    Leschine, Susan

    2009-10-31

    This project addressed four major areas of investigation: i) characterization of formation of Cellulomonas uda biofilms on cellulose; ii) characterization of Clostridium phytofermentans biofilm development; colonization of cellulose and its regulation; iii) characterization of Thermobifida fusca biofilm development; colonization of cellulose and its regulation; and iii) description of the architecture of mature C. uda, C. phytofermentans, and T. fusca biofilms. This research is aimed at advancing understanding of biofilm formation and other complex processes involved in the degradation of the abundant cellulosic biomass, and the biology of the microbes involved. Information obtained from these studies is invaluable in the development of practical applications, such as the single-step bioconversion of cellulose-containing residues to fuels and other bioproducts. Our results have clearly shown that cellulose-decomposing microbes rapidly colonize cellulose and form complex structures typical of biofilms. Furthermore, our observations suggest that, as cells multiply on nutritive surfaces during biofilms formation, dramatic cell morphological changes occur. We speculated that morphological changes, which involve a transition from rod-shaped cells to more rounded forms, might be more apparent in a filamentous microbe. In order to test this hypothesis, we included in our research a study of biofilm formation by T. fusca, a thermophilic cellulolytic actinomycete commonly found in compost. The cellulase system of T. fusca has been extensively detailed through the work of David Wilson and colleagues at Cornell, and also, genome sequence of a T. fusca strain has been determine by the DOE Joint Genome Institute. Thus, T. fusca is an excellent subject for studies of biofilm development and its potential impacts on cellulose degradation. We also completed a study of the chitinase system of C. uda. This work provided essential background information for understanding how C. uda

  20. Iron and Acinetobacter baumannii Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Valentina Gentile

    2014-08-01

    Full Text Available Acinetobacter baumannii is an emerging nosocomial pathogen, responsible for infection outbreaks worldwide. The pathogenicity of this bacterium is mainly due to its multidrug-resistance and ability to form biofilm on abiotic surfaces, which facilitate long-term persistence in the hospital setting. Given the crucial role of iron in A. baumannii nutrition and pathogenicity, iron metabolism has been considered as a possible target for chelation-based antibacterial chemotherapy. In this study, we investigated the effect of iron restriction on A. baumannii growth and biofilm formation using different iron chelators and culture conditions. We report substantial inter-strain variability and growth medium-dependence for biofilm formation by A. baumannii isolates from veterinary and clinical sources. Neither planktonic nor biofilm growth of A. baumannii was affected by exogenous chelators. Biofilm formation was either stimulated by iron or not responsive to iron in the majority of isolates tested, indicating that iron starvation is not sensed as an overall biofilm-inducing stimulus by A. baumannii. The impressive iron withholding capacity of this bacterium should be taken into account for future development of chelation-based antimicrobial and anti-biofilm therapies.

  1. Evaluation of intraspecies interactions in biofilm formation by Methylobacterium species isolated from pink-pigmented household biofilms.

    Science.gov (United States)

    Xu, Fang-Fang; Morohoshi, Tomohiro; Wang, Wen-Zhao; Yamaguchi, Yuka; Liang, Yan; Ikeda, Tsukasa

    2014-01-01

    Concern regarding household biofilms has grown due to their widespread existence and potential to threaten human health by serving as pathogen reservoirs. Previous studies identified Methylobacterium as one of the dominant genera found in household biofilms. In the present study, we examined the mechanisms underlying biofilm formation by using the bacterial consortium found in household pink slime. A clone library analysis revealed that Methylobacterium was the predominant genus in household pink slime. In addition, 16 out of 21 pink-pigmented bacterial isolates were assigned to the genus Methylobacterium. Although all of the Methylobacterium isolates formed low-level biofilms, the amount of the biofilms formed by Methylobacterium sp. P-1M and P-18S was significantly increased by co-culturing with other Methylobacterium strains that belonged to a specific phylogenetic group. The single-species biofilm was easily washed from the glass surface, whereas the dual-species biofilm strongly adhered after washing. A confocal laser scanning microscopy analysis showed that the dual-species biofilms were significantly thicker and tighter than the single-species biofilms.

  2. Histophilus somni biofilm formation in cardiopulmonary tissue of the bovine host following respiratory challenge

    DEFF Research Database (Denmark)

    Sandal, Indra; Shao, Jian Q.; Annadata, Satish

    2009-01-01

    Biofilms form in a variety of host sites following infection with many bacterial species. However, the study of biofilms in a host is hindered due to the lack of protocols for the proper experimental investigation of biofilms in vivo. Histophilus somni is an agent of respiratory and systemic...... diseases in bovines, and readily forms biofilms in vitro. In the present study the capability of H. somni to form biofilms in cardiopulmonary tissue following experimental respiratory infection in the bovine host was examined by light microscopy, transmission electron microscopy, immunoelectron microscopy...... haemagglutinin (FHA), predicted to be involved in attachment. Thus, this investigation demonstrated that H. somni is capable of forming a biofilm in its natural host, that such a biofilm may be capable of harboring other bovine respiratory disease pathogens, and that the genes responsible for biofilm formation...

  3. Emerging frontiers in detection and control of bacterial biofilms.

    Science.gov (United States)

    Tan, Seth Yang-En; Chew, Su Chuen; Tan, Sean Yang-Yi; Givskov, Michael; Yang, Liang

    2014-04-01

    Bacteria form surface-attached biofilm communities in nature. In contrast to free-living cells, bacterial cells within biofilms resist sanitizers and antimicrobials. While building biofilms, cells physiologically adapt to sustain the otherwise lethal impacts of a variety of environmental stress conditions. In this development, the production and embedding of cells in extracellular polymeric substances plays a key role. Biofilm bacteria can cause a range of problems to food processing including reduced heat-cold transfer, clogging water pipelines, food spoilage and they may cause infections among consumers. Recent biofilm investigations with the aim of potential control approaches include a combination of bacterial genetics, systems biology, materials and mechanic engineering and chemical biology.

  4. Abolition of Biofilm Formation in Urinary Tract Escherichia coli and Klebsiella Isolates by Metal Interference through Competition for Fur

    DEFF Research Database (Denmark)

    Hancock, Viktoria; Dahl, Malin; Klemm, Per

    2010-01-01

    by the addition of divalent metal ions, such as Zn(II) and Co(II), which inhibit iron uptake by virtue of their higher-than-iron affinity for the master controller protein of iron uptake, Fur. Reduced biofilm formation of urinary tract-infectious E. coli strains in the presence of Zn(II) was observed......Bacterial biofilms are associated with a large number of persistent and chronic infections. Biofilm-dwelling bacteria are particularly resistant to antibiotics and immune defenses, which makes it hard if not impossible to eradicate biofilm-associated infections. In the urinary tract, free iron...... is strictly limited but is critical for bacterial growth. Biofilm-associated Escherichia coli cells are particularly desperate for iron. An attractive way of inhibiting biofilm formation is to fool the bacterial regulatory system for iron uptake. Here, we demonstrate that biofilm formation can be impaired...

  5. Biofilm formation ability of Salmonella enterica serovar Typhimurium acrAB mutants.

    Science.gov (United States)

    Schlisselberg, Dov B; Kler, Edna; Kisluk, Guy; Shachar, Dina; Yaron, Sima

    2015-10-01

    Recent studies offer contradictory findings about the role of multidrug efflux pumps in bacterial biofilm development. Thus, the aim of this study was to investigate the involvement of the AcrAB efflux pump in biofilm formation by investigating the ability of AcrB and AcrAB null mutants of Salmonella enterica serovar Typhimurium to produce biofilms. Three models were used to compare the ability of S. Typhimurium wild-type and its mutants to form biofilms: formation of biofilm on polystyrene surfaces; production of biofilm (mat model) on the air/liquid interface; and expression of curli and cellulose on Congo red-supplemented agar plates. All three investigated genotypes formed biofilms with similar characteristics. However, upon exposure to chloramphenicol, formation of biofilms on solid surfaces as well as the production of curli were either reduced or were delayed more significantly in both mutants, whilst there was no visible effect on pellicle formation. It can be concluded that when no selective pressure is applied, S. Typhimurium is able to produce biofilms even when the AcrAB efflux pumps are inactivated, implying that the use of efflux pump inhibitors to prevent biofilm formation is not a general solution and that combined treatments might be more efficient. Other factors that affect the ability to produce biofilms depending on efflux pump activity are yet to be identified.

  6. Bacterial diversity and successional patterns during biofilm formation on freshly exposed basalt surfaces at diffuse-flow deep-sea vents.

    Science.gov (United States)

    Gulmann, Lara K; Beaulieu, Stace E; Shank, Timothy M; Ding, Kang; Seyfried, William E; Sievert, Stefan M

    2015-01-01

    Many deep-sea hydrothermal vent systems are regularly impacted by volcanic eruptions, leaving fresh basalt where abundant animal and microbial communities once thrived. After an eruption, microbial biofilms are often the first visible evidence of biotic re-colonization. The present study is the first to investigate microbial colonization of newly exposed basalt surfaces in the context of vent fluid chemistry over an extended period of time (4-293 days) by deploying basalt blocks within an established diffuse-flow vent at the 9°50' N vent field on the East Pacific Rise. Additionally, samples obtained after a recent eruption at the same vent field allowed for comparison between experimental results and those from natural microbial re-colonization. Over 9 months, the community changed from being composed almost exclusively of Epsilonproteobacteria to a more diverse assemblage, corresponding with a potential expansion of metabolic capabilities. The process of biofilm formation appears to generate similar surface-associated communities within and across sites by selecting for a subset of fluid-associated microbes, via species sorting. Furthermore, the high incidence of shared operational taxonomic units over time and across different vent sites suggests that the microbial communities colonizing new surfaces at diffuse-flow vent sites might follow a predictable successional pattern.

  7. An electrochemical impedance model for integrated bacterial biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Yoav, Hadar, E-mail: benyoav@post.tau.ac.il [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University (Israel); Freeman, Amihay [Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University (Israel); Sternheim, Marek [The Center for Nanoscience and Nanotechnology, Tel Aviv University (Israel); Shacham-Diamand, Yosi [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University (Israel)

    2011-09-30

    Bacterial cells attachment onto solid surfaces and the following growth into mature microbial biofilms may result in highly antibiotic resistant biofilms. Such biofilms may be incidentally formed on tissues or implanted devices, or intentionally formed by directed deposition of microbial sensors on whole-cell bio-chip surface. A new method for electrical characterization of the later on-chip microbial biofilm buildup is presented in this paper. Measurement of impedance vs. frequency in the range of 100 mHz to 400 kHz of Escherichia coli cells attachment to indium-tin-oxide-coated electrodes was carried out while using optical microscopy estimating the electrode area coverage. We show that impedance spectroscopy measurements can be interpreted by a simple electrical equivalent model characterizing both attachment and growth of the biofilm. The correlation of extracted equivalent electrical lumped components with the visual biofilm parameters and their dependence on the attachment and growth phases is confirmed.

  8. Biofilm formation and partial biodegradation of polystyrene by the actinomycete Rhodococcus ruber: biodegradation of polystyrene.

    Science.gov (United States)

    Mor, Roi; Sivan, Alex

    2008-11-01

    Polystyrene, which is one of the most utilized thermoplastics, is highly durable and is considered to be non-biodegradable. Hence, polystyrene waste accumulates in the environment posing an increasing ecological threat. In a previous study we have isolated a biofilm-producing strain (C208) of the actinomycete Rhodococcus ruber that degraded polyethylene films. Formation of biofilm, by C208, improved the biodegradation of polyethylene. Consequently, the present study aimed at monitoring the kinetics of biofilm formation by C208 on polystyrene, determining the physiological activity of the biofilm and analyzing its capacity to degrade polystyrene. Quantification of the biofilm biomass was performed using a modified crystal violet (CV) staining or by monitoring the protein content in the biofilm. When cultured on polystyrene flakes, most of the bacterial cells adhered to the polystyrene surface within few hours, forming a biofilm. The growth of the on polystyrene showed a pattern similar to that of a planktonic culture. Furthermore, the respiration rate, of the biofilm, exhibited a pattern similar to that of the biofilm growth. In contrast, the respiration activity of the planktonic population showed a constant decline with time. Addition of mineral oil (0.005% w/v), but not non-ionic surfactants, increased the biofilm biomass. Extended incubation of the biofilm for up to 8 weeks resulted in a small reduction in the polystyrene weight (0.8% of gravimetric weight loss). This study demonstrates the high affinity of C208 to polystyrene which lead to biofilm formation and, presumably, induced partial biodegradation.

  9. New Weapons to Fight Old Enemies: Novel Strategies for the (Bio)control of Bacterial Biofilms in the Food Industry.

    Science.gov (United States)

    Coughlan, Laura M; Cotter, Paul D; Hill, Colin; Alvarez-Ordóñez, Avelino

    2016-01-01

    Biofilms are microbial communities characterized by their adhesion to solid surfaces and the production of a matrix of exopolymeric substances, consisting of polysaccharides, proteins, DNA and lipids, which surround the microorganisms lending structural integrity and a unique biochemical profile to the biofilm. Biofilm formation enhances the ability of the producer/s to persist in a given environment. Pathogenic and spoilage bacterial species capable of forming biofilms are a significant problem for the healthcare and food industries, as their biofilm-forming ability protects them from common cleaning processes and allows them to remain in the environment post-sanitation. In the food industry, persistent bacteria colonize the inside of mixing tanks, vats and tubing, compromising food safety and quality. Strategies to overcome bacterial persistence through inhibition of biofilm formation or removal of mature biofilms are therefore necessary. Current biofilm control strategies employed in the food industry (cleaning and disinfection, material selection and surface preconditioning, plasma treatment, ultrasonication, etc.), although effective to a certain point, fall short of biofilm control. Efforts have been explored, mainly with a view to their application in pharmaceutical and healthcare settings, which focus on targeting molecular determinants regulating biofilm formation. Their application to the food industry would greatly aid efforts to eradicate undesirable bacteria from food processing environments and, ultimately, from food products. These approaches, in contrast to bactericidal approaches, exert less selective pressure which in turn would reduce the likelihood of resistance development. A particularly interesting strategy targets quorum sensing systems, which regulate gene expression in response to fluctuations in cell-population density governing essential cellular processes including biofilm formation. This review article discusses the problems associated

  10. New Weapons to Fight Old Enemies: Novel Strategies for the (Bio)control of Bacterial Biofilms in the Food Industry

    Science.gov (United States)

    Coughlan, Laura M.; Cotter, Paul D.; Hill, Colin; Alvarez-Ordóñez, Avelino

    2016-01-01

    Biofilms are microbial communities characterized by their adhesion to solid surfaces and the production of a matrix of exopolymeric substances, consisting of polysaccharides, proteins, DNA and lipids, which surround the microorganisms lending structural integrity and a unique biochemical profile to the biofilm. Biofilm formation enhances the ability of the producer/s to persist in a given environment. Pathogenic and spoilage bacterial species capable of forming biofilms are a significant problem for the healthcare and food industries, as their biofilm-forming ability protects them from common cleaning processes and allows them to remain in the environment post-sanitation. In the food industry, persistent bacteria colonize the inside of mixing tanks, vats and tubing, compromising food safety and quality. Strategies to overcome bacterial persistence through inhibition of biofilm formation or removal of mature biofilms are therefore necessary. Current biofilm control strategies employed in the food industry (cleaning and disinfection, material selection and surface preconditioning, plasma treatment, ultrasonication, etc.), although effective to a certain point, fall short of biofilm control. Efforts have been explored, mainly with a view to their application in pharmaceutical and healthcare settings, which focus on targeting molecular determinants regulating biofilm formation. Their application to the food industry would greatly aid efforts to eradicate undesirable bacteria from food processing environments and, ultimately, from food products. These approaches, in contrast to bactericidal approaches, exert less selective pressure which in turn would reduce the likelihood of resistance development. A particularly interesting strategy targets quorum sensing systems, which regulate gene expression in response to fluctuations in cell-population density governing essential cellular processes including biofilm formation. This review article discusses the problems associated

  11. New weapons to fight old enemies: novel strategies for the (biocontrol of bacterial biofilms in the food industry

    Directory of Open Access Journals (Sweden)

    Laura Maria Coughlan

    2016-10-01

    Full Text Available Biofilms are microbial communities characterized by their adhesion to solid surfaces and the production of a matrix of exopolymeric substances (EPS, consisting of polysaccharides, proteins, DNA and lipids, which surround the microorganisms lending structural integrity and a unique biochemical profile to the biofilm. Biofilm formation enhances the ability of the producer/s to persist in a given environment. Pathogenic and spoilage bacterial species capable of forming biofilms are a significant problem for the healthcare and food industries, as their biofilm-forming ability protects them from common cleaning processes and allows them to remain in the environment post-sanitation. In the food industry, persistent bacteria colonize the inside of mixing tanks, vats and tubing, compromising food safety and quality. Strategies to overcome bacterial persistence through inhibition of biofilm formation or removal of mature biofilms are therefore necessary. Current biofilm control strategies employed in the food industry (cleaning and disinfection, material selection and surface preconditioning, plasma treatment, ultrasonication, etc., although effective to a certain point, fall short of biofilm control. Efforts have been explored, mainly with a view to their application in pharmaceutical and healthcare settings, which focus on targeting molecular determinants regulating biofilm formation. Their application to the food industry would greatly aid efforts to eradicate undesirable bacteria from food processing environments and, ultimately, from food products. These approaches, in contrast to bactericidal approaches, exert less selective pressure which in turn would reduce the likelihood of resistance development. A particularly interesting strategy targets quorum sensing systems, which regulate gene expression in response to fluctuations in cell-population density governing essential cellular processes including biofilm formation. This review article discusses

  12. Impact of disinfection on drinking water biofilm bacterial community.

    Science.gov (United States)

    Mi, Zilong; Dai, Yu; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-11-01

    Disinfectants are commonly applied to control the growth of microorganisms in drinking water distribution systems. However, the effect of disinfection on drinking water microbial community remains poorly understood. The present study investigated the impacts of different disinfectants (chlorine and chloramine) and dosages on biofilm bacterial community in bench-scale pipe section reactors. Illumina MiSeq sequencing illustrated that disinfection strategy could affect both bacterial diversity and community structure of drinking water biofilm. Proteobacteria tended to predominate in chloraminated drinking water biofilms, while Firmicutes in chlorinated and unchlorinated biofilms. The major proteobacterial groups were influenced by both disinfectant type and dosage. In addition, chloramination had a more profound impact on bacterial community than chlorination.

  13. Azithromycin-Ciprofloxacin-Impregnated Urinary Catheters Avert Bacterial Colonization, Biofilm Formation, and Inflammation in a Murine Model of Foreign-Body-Associated Urinary Tract Infections Caused by Pseudomonas aeruginosa.

    Science.gov (United States)

    Saini, Hina; Vadekeetil, Anitha; Chhibber, Sanjay; Harjai, Kusum

    2017-03-01

    Pseudomonas aeruginosa is a multifaceted pathogen causing a variety of biofilm-mediated infections, including catheter-associated urinary tract infections (CAUTIs). The high prevalence of CAUTIs in hospitals, their clinical manifestations, such as urethritis, cystitis, pyelonephritis, meningitis, urosepsis, and death, and the associated economic challenges underscore the need for management of these infections. Biomaterial modification of urinary catheters with two drugs seems an interesting approach to combat CAUTIs by inhibiting biofilm. Previously, we demonstrated the in vitro efficacy of urinary catheters impregnated with azithromycin (AZM) and ciprofloxacin (CIP) against P. aeruginosa Here, we report how these coated catheters impact the course of CAUTI induced by P. aeruginosa in a murine model. CAUTI was established in female LACA mice with uncoated or AZM-CIP-coated silicone implants in the bladder, followed by transurethral inoculation of 10(8) CFU/ml of biofilm cells of P. aeruginosa PAO1. AZM-CIP-coated implants (i) prevented biofilm formation on the implant's surface (P ≤ 0.01), (ii) restricted bacterial colonization in the bladder and kidney (P < 0.0001), (iii) averted bacteriuria (P < 0.0001), and (iv) exhibited no major histopathological changes for 28 days in comparison to uncoated implants, which showed persistent CAUTI. Antibiotic implants also overcame implant-mediated inflammation, as characterized by trivial levels of inflammatory markers such as malondialdehyde (P < 0.001), myeloperoxidase (P < 0.05), reactive oxygen species (P ≤ 0.001), and reactive nitrogen intermediates (P < 0.01) in comparison to those in uncoated implants. Further, AZM-CIP-coated implants showed immunomodulation by manipulating the release of inflammatory cytokines interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and IL-10 to the benefit of the host. Overall, the study demonstrates long-term in vivo effectiveness of AZM-CIP-impregnated catheters, which may

  14. Imaging of bacterial multicellular behaviour in biofilms in liquid by atmospheric scanning electron microscopy

    Science.gov (United States)

    Sugimoto, Shinya; Okuda, Ken-ichi; Miyakawa, Reina; Sato, Mari; Arita-Morioka, Ken-ichi; Chiba, Akio; Yamanaka, Kunitoshi; Ogura, Teru; Mizunoe, Yoshimitsu; Sato, Chikara

    2016-01-01

    Biofilms are complex communities of microbes that attach to biotic or abiotic surfaces causing chronic infectious diseases. Within a biofilm, microbes are embedded in a self-produced soft extracellular matrix (ECM), which protects them from the host immune system and antibiotics. The nanoscale visualisation of delicate biofilms in liquid is challenging. Here, we develop atmospheric scanning electron microscopy (ASEM) to visualise Gram-positive and -negative bacterial biofilms immersed in aqueous solution. Biofilms cultured on electron-transparent film were directly imaged from below using the inverted SEM, allowing the formation of the region near the substrate to be studied at high resolution. We visualised intercellular nanostructures and the exocytosis of membrane vesicles, and linked the latter to the trafficking of cargos, including cytoplasmic proteins and the toxins hemolysin and coagulase. A thick dendritic nanotube network was observed between microbes, suggesting multicellular communication in biofilms. A universal immuno-labelling system was developed for biofilms and tested on various examples, including S. aureus biofilms. In the ECM, fine DNA and protein networks were visualised and the precise distribution of protein complexes was determined (e.g., straight curli, flagella, and excreted cytoplasmic molecular chaperones). Our observations provide structural insights into bacteria-substratum interactions, biofilm development and the internal microbe community. PMID:27180609

  15. A Subinhibitory Concentration of Clarithromycin Inhibits Mycobacterium avium Biofilm Formation

    OpenAIRE

    2004-01-01

    Mycobacterium avium causes disseminated infection in immunosuppressed individuals and lung infection in patients with chronic lung diseases. M. avium forms biofilm in the environment and possibly in human airways. Antibiotics with activity against the bacterium could inhibit biofilm formation. Clarithromycin inhibits biofilm formation but has no activity against established biofilm.

  16. Chicken juice enhances surface attachment and biofilm formation of Campylobacter jejuni.

    Science.gov (United States)

    Brown, Helen L; Reuter, Mark; Salt, Louise J; Cross, Kathryn L; Betts, Roy P; van Vliet, Arnoud H M

    2014-11-01

    The bacterial pathogen Campylobacter jejuni is primarily transmitted via the consumption of contaminated foodstuffs, especially poultry meat. In food processing environments, C. jejuni is required to survive a multitude of stresses and requires the use of specific survival mechanisms, such as biofilms. An initial step in biofilm formation is bacterial attachment to a surface. Here, we investigated the effects of a chicken meat exudate (chicken juice) on C. jejuni surface attachment and biofilm formation. Supplementation of brucella broth with ≥5% chicken juice resulted in increased biofilm formation on glass, polystyrene, and stainless steel surfaces with four C. jejuni isolates and one C. coli isolate in both microaerobic and aerobic conditions. When incubated with chicken juice, C. jejuni was both able to grow and form biofilms in static cultures in aerobic conditions. Electron microscopy showed that C. jejuni cells were associated with chicken juice particulates attached to the abiotic surface rather than the surface itself. This suggests that chicken juice contributes to C. jejuni biofilm formation by covering and conditioning the abiotic surface and is a source of nutrients. Chicken juice was able to complement the reduction in biofilm formation of an aflagellated mutant of C. jejuni, indicating that chicken juice may support food chain transmission of isolates with lowered motility. We provide here a useful model for studying the interaction of C. jejuni biofilms in food chain-relevant conditions and also show a possible mechanism for C. jejuni cell attachment and biofilm initiation on abiotic surfaces within the food chain.

  17. Dynamics of biofilm formation in a model drinking water distribution system

    DEFF Research Database (Denmark)

    Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen; Arvin, Erik

    2002-01-01

    determinations. The biofilm grew at a rate of 0.030±0.002 day−1 reaching quasi-stationary state at 2.6×106 cells/cm2 after approximately 200 days. The low substrate level in the bulk phase (AOC at approximately 6 g ac-C/l) most likely caused the relatively slow biofilm formation rate observed. During......The dynamics of biofilm formation in non-chlorinated groundwater-based drinking water was studied in a model distribution system. The formation of biofilm was closely monitored for a period of 522 days by total bacterial counts (AODC), heterotrophic plate counts (R2A media), and ATP content...... the maturation of the biofilm, the bacterial community changed properties in terms of cell-specific ATP content and culturability of the bacteria....

  18. Marine Sponge-Derived Streptomyces sp. SBT343 Extract Inhibits Staphylococcal Biofilm Formation

    Science.gov (United States)

    Balasubramanian, Srikkanth; Othman, Eman M.; Kampik, Daniel; Stopper, Helga; Hentschel, Ute; Ziebuhr, Wilma; Oelschlaeger, Tobias A.; Abdelmohsen, Usama R.

    2017-01-01

    Staphylococcus epidermidis and Staphylococcus aureus are opportunistic pathogens that cause nosocomial and chronic biofilm-associated infections. Indwelling medical devices and contact lenses are ideal ecological niches for formation of staphylococcal biofilms. Bacteria within biofilms are known to display reduced susceptibilities to antimicrobials and are protected from the host immune system. High rates of acquired antibiotic resistances in staphylococci and other biofilm-forming bacteria further hamper treatment options and highlight the need for new anti-biofilm strategies. Here, we aimed to evaluate the potential of marine sponge-derived actinomycetes in inhibiting biofilm formation of several strains of S. epidermidis, S. aureus, and Pseudomonas aeruginosa. Results from in vitro biofilm-formation assays, as well as scanning electron and confocal microscopy, revealed that an organic extract derived from the marine sponge-associated bacterium Streptomyces sp. SBT343 significantly inhibited staphylococcal biofilm formation on polystyrene, glass and contact lens surfaces, without affecting bacterial growth. The extract also displayed similar antagonistic effects towards the biofilm formation of other S. epidermidis and S. aureus strains tested but had no inhibitory effects towards Pseudomonas biofilms. Interestingly the extract, at lower effective concentrations, did not exhibit cytotoxic effects on mouse fibroblast, macrophage and human corneal epithelial cell lines. Chemical analysis by High Resolution Fourier Transform Mass Spectrometry (HRMS) of the Streptomyces sp. SBT343 extract proportion revealed its chemical richness and complexity. Preliminary physico-chemical characterization of the extract highlighted the heat-stable and non-proteinaceous nature of the active component(s). The combined data suggest that the Streptomyces sp. SBT343 extract selectively inhibits staphylococcal biofilm formation without interfering with bacterial cell viability. Due to

  19. In vitro anti-biofilm and anti-bacterial activity of Junceella juncea for its biomedical application

    Institute of Scientific and Technical Information of China (English)

    P Kumar; S Senthamil Selvi; M Govindaraju

    2012-01-01

    Objective: To investigate the anti-biofilm and anti-bacterial activity of Junceella juncea (J. juncea) against biofilm forming pathogenic strains. Methods: Gorgonians were extracted with methanol and analysed with fourier transform infrared spectroscopy. Biofilm forming pathogens were identified by Congo red agar supplemented with sucrose. A quantitative spectrophotometric method was used to monitor in vitro biofilm reduction by microtitre plate assay. Anti-bacterial activity of methanolic gorgonian extract (MGE) was carried out by disc diffusion method followed by calculating the percentage of increase with crude methanol (CM). Results: The presence of active functional group was exemplified by FT-IR spectroscopy. Dry, black, crystalline colonies confirm the production of extracellular polymeric substances responsible for biofilm formation in Congo red agar. MGE exhibited potential anti-biofilm activity against all tested bacterial strains. The anti-bacterial activity of methanolic extract was comparably higher in Salmonella typhii followed by Escherichia coli, Vibrio cholerae and Shigella flexneri. The overall percentage of increase was higher by 50.2%to CM. Conclusions:To conclude, anti-biofilm and anti-bacterial efficacy of J. juncea is impressive over biofilm producing pathogens and are good source for novel anti-bacterial compounds.

  20. Biofilm formation of Francisella noatunensis subsp. orientalis

    Science.gov (United States)

    Soto, Esteban; Halliday-Wimmonds, Iona; Francis , Stewart; Kearney, Michael T; Hansen, John D.

    2015-01-01

    Francisella noatunensis subsp. orientalis (Fno) is an emergent fish pathogen in both marine and fresh water environments. The bacterium is suspected to persist in the environment even without the presence of a suitable fish host. In the present study, the influence of different abiotic factors such as salinity and temperature were used to study the biofilm formation of different isolates of Fno including intracellular growth loci C (iglC)and pathogenicity determinant protein A (pdpA) knockout strains. Finally, we compared the susceptibility of planktonic and biofilm to three disinfectants used in the aquaculture and ornamental fish industry, namely Virkon®, bleach and hydrogen peroxide. The data indicates that Fno is capable of producing biofilms within 24 h where both salinity as well as temperature plays a role in the growth and biofilm formation of Fno. Mutations in theiglC or pdpA, both known virulence factors, do not appear to affect the capacity of Fno to produce biofilms, and the minimum inhibitory concentration, and minimum biocidal concentration for the three disinfectants were lower than the minimum biofilm eradication concentration values. This information needs to be taken into account if trying to eradicate the pathogen from aquaculture facilities or aquariums.

  1. Implications of Biofilm Formation on Urological Devices

    Science.gov (United States)

    Cadieux, Peter A.; Wignall, Geoffrey R.; Carriveau, Rupp; Denstedt, John D.

    2008-09-01

    Despite millions of dollars and several decades of research targeted at their prevention and eradication, biofilm-associated infections remain the major cause of urological device failure. Numerous strategies have been aimed at improving device design, biomaterial composition, surface properties and drug delivery, but have been largely circumvented by microbes and their plethora of attachment, host evasion, antimicrobial resistance, and dissemination strategies. This is not entirely surprising since natural biofilm formation has been going on for millions of years and remains a major part of microorganism survival and evolution. Thus, the fact that biofilms develop on and in the biomaterials and tissues of humans is really an extension of this natural tendency and greatly explains why they are so difficult for us to combat. Firstly, biofilm structure and composition inherently provide a protective environment for microorganisms, shielding them from the shear stress of urine flow, immune cell attack and some antimicrobials. Secondly, many biofilm organisms enter a metabolically dormant state that renders them tolerant to those antibiotics and host factors able to penetrate the biofilm matrix. Lastly, the majority of organisms that cause biofilm-associated urinary tract infections originate from our own oral cavity, skin, gastrointestinal and urogenital tracts and therefore have already adapted to many of our host defenses. Ultimately, while biofilms continue to hold an advantage with respect to recurrent infections and biomaterial usage within the urinary tract, significant progress has been made in understanding these dynamic microbial communities and novel approaches offer promise for their prevention and eradication. These include novel device designs, antimicrobials, anti-adhesive coatings, biodegradable polymers and biofilm-disrupting compounds and therapies.

  2. Actinomyces naeslundii in intial dental biofilm formation

    DEFF Research Database (Denmark)

    Dige, Irene; Raarup, Merete Krog; Nyengaard, Jens Randel

    2009-01-01

    Combined use of Confocal Laser Scanning Microscopy (CLSM) and Fluorescent in situ Hybridization (FISH) offers new opportunities for analysing the spatial relationships and temporal changes of specific members of microbial populations in intact dental biofilms. AIMS: The purpose of this study...... was to analyse the patterns of colonization and population dynamics of A. naeslundii compared to Streptococcus spp. and other bacteria during the initial 48 h of biofilm formation. METHODS: Biofilms were collected on standardized glass slabs mounted in intra-oral appliances and worn by 10 individuals for 6, 12......, 24, and 48 h. The biofilms were subsequently labelled with probes against Streptococcus spp. (STR405), A. naeslundii (ACT476), or all bacteria (EUB338) and analysed by CLSM. Quantification of labelled bacteria was done by stereological tools: the unbiased counting frame and the 2D fractionator...

  3. Inhibition of Salmonella enterica biofilm formation using small-molecule adenosine mimetics.

    Science.gov (United States)

    Koopman, Jacob A; Marshall, Joanna M; Bhatiya, Aditi; Eguale, Tadesse; Kwiek, Jesse J; Gunn, John S

    2015-01-01

    Biofilms have been widely implicated in chronic infections and environmental persistence of Salmonella enterica, facilitating enhanced colonization of surfaces and increasing the ability of the bacteria to be transmitted to new hosts. Salmonella enterica serovar Typhi biofilm formation on gallstones from humans and mice enhances gallbladder colonization and bacterial shedding, while Salmonella enterica serovar Typhimurium biofilms facilitate long-term persistence in a number of environments important to food, medical, and farming industries. Salmonella regulates expression of many virulence- and biofilm-related processes using kinase-driven pathways. Kinases play pivotal roles in phosphorylation and energy transfer in cellular processes and possess an ATP-binding pocket required for their functions. Many other cellular proteins also require ATP for their activity. Here we test the hypothesis that pharmacological interference with ATP-requiring enzymes utilizing adenosine mimetic compounds would decrease or inhibit bacterial biofilm formation. Through the screening of a 3,000-member ATP mimetic library, we identified a single compound (compound 7955004) capable of significantly reducing biofilm formation by S. Typhimurium and S. Typhi. The compound was not bactericidal or bacteriostatic toward S. Typhimurium or cytotoxic to mammalian cells. An ATP-Sepharose affinity matrix technique was used to discover potential protein-binding targets of the compound and identified GroEL and DeoD. Compound 7955004 was screened against other known biofilm-forming bacterial species and was found to potently inhibit biofilms of Acinetobacter baumannii as well. The identification of a lead compound with biofilm-inhibiting capabilities toward Salmonella provides a potential new avenue of therapeutic intervention against Salmonella biofilm formation, with applicability to biofilms of other bacterial pathogens.

  4. Biofilm formation on tympanostomy tubes depends on methicillin-resistant Staphylococcus aureus genetic lineage.

    Science.gov (United States)

    Jotić, Ana; Božić, Dragana D; Milovanović, Jovica; Pavlović, Bojan; Ješić, Snežana; Pelemiš, Mijomir; Novaković, Marko; Ćirković, Ivana

    2016-03-01

    Bacterial biofilm formation has been implicated in the high incidence of persistent otorrhoea after tympanostomy tube insertion. The aim of the study was to investigate whether biofilm formation on tympanostomy tubes depends on the genetic profile of methicillin-resistant Staphylococcus aureus (MRSA) strains. Capacity of biofilm formation on fluoroplastic tympanostomy tubes (TTs) was tested on 30 MRSA strains. Identification and methicillin resistance were confirmed by PCR for nuc and mecA genes. Strains were genotypically characterised (SCCmec, agr and spa typing). Biofilm formation was tested in microtiter plate and on TTs. Tested MRSA strains were classified into SCCmec type I (36.7 %), III (23.3 %), IV (26.7 %) and V (13.3 %), agr type I (50 %), II (36.7 %) and III (13.3 %), and 5 clonal complexes (CCs). All tested MRSA strains showed ability to form biofilm on microtiter plate. Capacity of biofilm formation on TTs was as following: 13.3 % of strains belonged to the category of no biofilm producers, 50 % to the category of weak biofilm producers and 36.7 % to moderate biofilm producers. There was a statistically significant difference between CC, SCCmec and agr types and the category of biofilm production on TTs tubes (p biofilm, and CC8 and agrI type with a low amount of biofilm. Biofilm formation by MRSA on TTs is highly dependent on genetic characteristics of the strains. Therefore, MRSA genotyping may aid the determination of the possibility of biofilm-related post-tympanostomy tube otorrhea.

  5. MPC-polymer reduces adherence and biofilm formation by oral bacteria.

    Science.gov (United States)

    Hirota, K; Yumoto, H; Miyamoto, K; Yamamoto, N; Murakami, K; Hoshino, Y; Matsuo, T; Miyake, Y

    2011-07-01

    Oral biofilms such as dental plaque cause dental caries and periodontitis, as well as aspiration pneumonia and infectious endocarditis by translocation. Hence, the suppression of oral biofilm formation is an issue of considerable importance. Mechanical removal, disinfectants, inhibition of polysaccharide formation, and artificial sugar have been used for the reduction of oral biofilm. From the viewpoint of the inhibition of bacterial adherence, we investigated whether aqueous biocompatible 2-methacryloyloxyethyl phosphorylcholine (MPC)-polymer can reduce streptococcal colonization and biofilm formation. We examined the effects of MPC-polymer on streptococcal adherence to saliva-coated hydroxyapatite and oral epithelial cells, and the adherence of Fusobacterium nucleatum to streptococcal biofilm. MPC-polymer application markedly inhibited both the adherence and biofilm formation of Streptococcus mutans on saliva-coated hydroxyapatite and streptococcal adherence to oral epithelial cells, and reduced the adherence of F. nucleatum to streptococcal biofilms. A small-scale clinical trial revealed that mouthrinsing with MPC-polymer inhibited the increase of oral bacterial numbers, especially of S. mutans. These findings suggest that MPC-polymer is a potent inhibitor of bacterial adherence and biofilm development, and may be useful to prevent dental-plaque-related diseases. (UMIN Clinical Trial Registry UMIN000003471).

  6. Modulation of Membrane Influx and Efflux in Escherichia coli Sequence Type 131 Has an Impact on Bacterial Motility, Biofilm Formation, and Virulence in a Caenorhabditis elegans Model

    Science.gov (United States)

    Pantel, Alix; Dunyach-Remy, Catherine; Ngba Essebe, Christelle; Mesureur, Jennifer; Sotto, Albert; Nicolas-Chanoine, Marie-Hélène

    2016-01-01

    Energy-dependent efflux overexpression and altered outer membrane permeability (influx) can promote multidrug resistance (MDR). The present study clarifies the regulatory pathways that control membrane permeability in the pandemic clone Escherichia coli sequence type 131 (ST131) and evaluates the impact of efflux and influx modulations on biofilm formation, motility, and virulence in the Caenorhabditis elegans model. Mutants of two uropathogenic E. coli (UPEC) strains, MECB5 (ST131; H30-Rx) and CFT073 (ST73), as well as a fecal strain, S250 (ST131; H22), were in vitro selected using continuous subculture in subinhibitory concentrations of ertapenem (ETP), chloramphenicol (CMP), and cefoxitin (FOX). Mutations in genes known to control permeability were shown for the two UPEC strains: MECB5-FOX (deletion of 127 bp in marR; deletion of 1 bp and insertion of an IS1 element in acrR) and CFT073-CMP (a 1-bp deletion causing a premature stop in marR). We also demonstrated that efflux phenotypes in the mutants selected with CMP and FOX were related to the AcrAB-TolC pump, but also to other efflux systems. Alteration of membrane permeability, caused by underexpression of the two major porins, OmpF and OmpC, was shown in MECB5-ETP and mutants selected with FOX. Lastly, our findings suggest that efflux pump-overproducing isolates (CMP mutants) pose a serious threat in terms of virulence (significant reduction in worm median survival) and host colonization. Lack of porins (ETP and FOX mutants) led to a high level of antibiotic resistance in an H30-Rx subclone. Nevertheless, this adaptation created a physiological disadvantage (decreased motility and ability to form biofilm) associated with a low potential for virulence. PMID:26926643

  7. In vitro interference of cefotaxime at subinhibitory concentrations on biofilm formation by nontypeable Haemophilus influenzae

    Institute of Scientific and Technical Information of China (English)

    Sudarat Baothong; Sutthirat Sitthisak; Duangkamol Kunthalert

    2016-01-01

    Objective: To investigate the in vitro interference of cefotaxime at subinhibitory con-centrations [sub-minimal inhibitory concentrations (MIC)] on biofilm formation by nontypeable Haemophilus influenzae (NTHi). Methods: The interference of subinhibitory concentrations of cefotaxime on biofilm formation of the clinical strong-biofilm forming isolates of NTHi was evaluated by a microtiter plate biofilm formation assay. The effect of sub-MIC cefotaxime on bacterial cell-surface hydrophobicity was determined using a standard microbial adhesion to n-hexadecane test. Additionally, the effects on bacterial adherence to human fibronectin and expression of bacterial adhesins were also investigated. Results: Subinhibitory concentrations of cefotaxime, both at 0.1× and 0.5× MIC levels, efficiently reduced the NTHi biofilm formation, and this effect was independent of decreasing bacterial viability. Sub-MIC cefotaxime also decreased bacterial cell-surface hydrophobicity and reduced adherence to human fibronectin. Inhibition in the P2 and P6 gene expressions upon exposure to sub-MIC cefotaxime was also noted. Conclusions: Taken together, our results indicate that sub-MIC cefotaxime interferes with the formation of NTHi biofilm, and this effect is feasibly related to the interference with cell-surface hydrophobicity, fibronectin-binding activity as well as alteration of the P2 and P6 gene expression. The findings of the present study therefore provide a rationale for the use of subinhibitory concentrations of cefotaxime for treatment of NTHi-related diseases.

  8. Enhanced biofilm formation and multi‐host transmission evolve from divergent genetic backgrounds in C ampylobacter jejuni

    OpenAIRE

    Pascoe, Ben; Méric, Guillaume; Murray, Susan; Yahara, Koji; Mageiros, Leonardos; Bowen, Ryan; Jones, Nathan H.; Jeeves, Rose E.; Lappin‐Scott, Hilary M.; Asakura, Hiroshi; Sheppard, Samuel K.

    2015-01-01

    Summary Multicellular biofilms are an ancient bacterial adaptation that offers a protective environment for survival in hostile habitats. In microaerophilic organisms such as C ampylobacter, biofilms play a key role in transmission to humans as the bacteria are exposed to atmospheric oxygen concentrations when leaving the reservoir host gut. Genetic determinants of biofilm formation differ between species, but little is known about how strains of the same species achieve the biofilm phenotype...

  9. Mycobacterium avium Possesses Extracellular DNA that Contributes to Biofilm Formation, Structural Integrity, and Tolerance to Antibiotics.

    Science.gov (United States)

    Rose, Sasha J; Babrak, Lmar M; Bermudez, Luiz E

    2015-01-01

    Mycobacterium avium subsp. hominissuis is an opportunistic pathogen that is associated with biofilm-related infections of the respiratory tract and is difficult to treat. In recent years, extracellular DNA (eDNA) has been found to be a major component of bacterial biofilms, including many pathogens involved in biofilm-associated infections. To date, eDNA has not been described as a component of mycobacterial biofilms. In this study, we identified and characterized eDNA in a high biofilm-producing strain of Mycobacterium avium subsp. hominissuis (MAH). In addition, we surveyed for presence of eDNA in various MAH strains and other nontuberculous mycobacteria. Biofilms of MAH A5 (high biofilm-producing strain) and MAH 104 (reference strain) were established at 22°C and 37°C on abiotic surfaces. Acellular biofilm matrix and supernatant from MAH A5 7 day-old biofilms both possess abundant eDNA, however very little eDNA was found in MAH 104 biofilms. A survey of MAH clinical isolates and other clinically relevant nontuberculous mycobacterial species revealed many species and strains that also produce eDNA. RAPD analysis demonstrated that eDNA resembles genomic DNA. Treatment with DNase I reduced the biomass of MAH A5 biofilms when added upon biofilm formation or to an already established biofilm both on abiotic surfaces and on top of human pharyngeal epithelial cells. Furthermore, co-treatment of an established biofilm with DNase 1 and either moxifloxacin or clarithromycin significantly increased the susceptibility of the bacteria within the biofilm to these clinically used antimicrobials. Collectively, our results describe an additional matrix component of mycobacterial biofilms and a potential new target to help treat biofilm-associated nontuberculous mycobacterial infections.

  10. Quorum sensing inhibitors disable bacterial biofilms

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Tolker-Nielsen, Tim; Givskov, Michael

    2011-01-01

    It is now evident that bacteria assume the biofilm mode of growth during chronic infections. The important hallmarks of biofilm infections are development of local inflammations, extreme tolerance to the action of conventional antimicrobial agents and an almost infinite capacity to evade the host...... defence systems in particular innate immunity. In the biofilm mode, bacteria use cell to cell communication termed quorum-sensing (QS) to coordinate expression of virulence, tolerance towards a number of antimicrobial agents and shielding against the host defence system. Chemical biology approaches may...

  11. Listeria monocytogenes survival of UV-C radiation is enhanced by presence of sodium chloride, organic food material and by bacterial biofilm formation.

    Science.gov (United States)

    Bernbom, N; Vogel, B F; Gram, L

    2011-05-14

    The bactericidal effect on food processing surfaces of ceiling-mounted UV-C light (wavelength 254 nm) was determined in a fish smoke house after the routine cleaning and disinfection procedure. The total aerobic counts were reduced during UV-C light exposure (48 h) and the number of Listeria monocytogenes positive samples went from 30 (of 68) before exposure to 8 (of 68). We therefore in a laboratory model determined the L. monocytogenes reduction kinetics by UV-C light with the purpose of evaluating the influence of food production environmental variables, such as presence of NaCl, organic material and the time L. monocytogenes was allowed to adhere to steel before exposure. L. monocytogenes grown and attached in tryptone soy broth (TSB) with glucose were rapidly killed (after 2 min) by UV-C light. However, bacteria grown and adhered in TSB with glucose and 5% NaCl were more resistant and numbers declined with 4-5 log units during exposure of 8-10 min. Bacteria grown in juice prepared from cold-smoked salmon were protected and numbers were reduced with 2-3 log when UV-C light was used immediately after attachment whereas numbers did not change at all if bacteria had been allowed to form a biofilm for 7 days before exposure. It is not known if this enhanced survival is due to physiological changes in the attached bacterial cells, a physical protection of the cells in the food matrix or a combination. In conclusion, we demonstrate that UV-C light is a useful extra bacteriocidal step and that it, as all disinfecting procedures, is hampered by the presence of organic material.

  12. The impacts of a fliD mutation on the biofilm formation of Helicobacter pylori

    Institute of Scientific and Technical Information of China (English)

    Panan Ratthawongjirakul; Vorraruthai Thongkerd; Wanpen Chaicumpa

    2016-01-01

    Objective: To investigate the impact of the fliD gene on the biofilm formation of Hel-icobacter pylori (H. pylori). Methods: H. pylori fliD mutant was constructed using inverse PCR mutagenesis. The mobility of the bacteria and its adhesion ability to human epithelial cells were assessed using a motility assay and a fluorescein isothiocyanate staining adhesion assay, respec-tively. The formation of biofilm was evaluated using a pellicle assay and a crystal violet staining assay. The cyto-architecture of the biofilm was documented with scanning electron microscopy. Results: It was found that there was no significant difference in the levels of bacterial adhesion and the biofilm formation between the wild-type ATCC 43504 and the fliD mutant. Apart from a poor motility, the fliD mutant had a slightly delayed formation of its biofilm and an incomplete cyto-architecture of its biofilm. The bacterial cells residing in the biofilm of the fliD mutant showed a loose accumulation with less apparent cross-linking fibrils. Most of the mutant cells had truncated flagella. Conclusions: This study provides the preliminary evidences that fliD potentially regu-lates biofilm formation and is required for the motility of H. pylori. Further studies need to be performed in order to develop fliD as a novel target for vaccine or antimicrobial agent in future.

  13. Impairment of the bacterial biofilm stability by triclosan.

    Directory of Open Access Journals (Sweden)

    Helen V Lubarsky

    Full Text Available The accumulation of the widely-used antibacterial and antifungal compound triclosan (TCS in freshwaters raises concerns about the impact of this harmful chemical on the biofilms that are the dominant life style of microorganisms in aquatic systems. However, investigations to-date rarely go beyond effects at the cellular, physiological or morphological level. The present paper focuses on bacterial biofilms addressing the possible chemical impairment of their functionality, while also examining their substratum stabilization potential as one example of an important ecosystem service. The development of a bacterial assemblage of natural composition--isolated from sediments of the Eden Estuary (Scotland, UK--on non-cohesive glass beads (<63 µm and exposed to a range of triclosan concentrations (control, 2-100 µg L(-1 was monitored over time by Magnetic Particle Induction (MagPI. In parallel, bacterial cell numbers, division rate, community composition (DGGE and EPS (extracellular polymeric substances: carbohydrates and proteins secretion were determined. While the triclosan exposure did not prevent bacterial settlement, biofilm development was increasingly inhibited by increasing TCS levels. The surface binding capacity (MagPI of the assemblages was positively correlated to the microbial secreted EPS matrix. The EPS concentrations and composition (quantity and quality were closely linked to bacterial growth, which was affected by enhanced TCS exposure. Furthermore, TCS induced significant changes in bacterial community composition as well as a significant decrease in bacterial diversity. The impairment of the stabilization potential of bacterial biofilm under even low, environmentally relevant TCS levels is of concern since the resistance of sediments to erosive forces has large implications for the dynamics of sediments and associated pollutant dispersal. In addition, the surface adhesive capacity of the biofilm acts as a sensitive measure of

  14. Chemically Specific Cellular Imaging of Biofilm Formation

    Energy Technology Data Exchange (ETDEWEB)

    Herberg, J L; Schaldach, C; Horn, J; Gjersing, E; Maxwell, R

    2006-02-09

    This document and the accompanying manuscripts summarize the technical accomplishments for our one-year LDRD-ER effort. Biofilm forming microbes have existed on this planet for billions of years and make up 60% of the biological mass on earth. Such microbes exhibit unique biochemical pathways during biofilm formation and play important roles in human health and the environment. Microbial biofilms have been directly implicated in, for example, product contamination, energy losses, and medical infection that cost the loss of human lives and billions of dollars. In no small part due to the lack of detailed understanding, biofilms unfortunately are resistant to control, inhibition, and destruction, either through treatment with antimicrobials or immunological defense mechanisms of the body. Current biofilm research has concentrated on the study of biofilms in the bulk. This is primarily due to the lack of analytical and physical tools to study biofilms non-destructively, in three dimensions, and on the micron or sub-micron scale. This has hindered the development of a clear understanding of either the early stage mechanisms of biofilm growth or the interactions of biofilms with their environment. Enzymatic studies have deduced a biochemical reaction that results in the oxidation of reduced sulfur species with the concomitant reduction of nitrate, a common groundwater pollutant, to dinitrogen gas by the bacterium, Thiobacillus denitrificans (TD). Because of its unique involvement in biologically relevant environmental pathways, TD is scheduled for genome sequencing in the near future by the DOE's Joint Genome Institute and is of interest to DOE's Genomes to Life Program. As our ecosystem is exposed to more and more nitrate contamination large scale livestock and agricultural practices, a further understanding of biofilm formation by organisms that could alleviate these problems is necessary in order to protect out biosphere. However, in order to study this

  15. Femtosecond Laser Patterning of the Biopolymer Chitosan for Biofilm Formation

    Science.gov (United States)

    Estevam-Alves, Regina; Ferreira, Paulo Henrique Dias; Coatrini, Andrey C.; Oliveira, Osvaldo N.; Fontana, Carla Raquel; Mendonca, Cleber Renato

    2016-01-01

    Controlling microbial growth is crucial for many biomedical, pharmaceutical and food industry applications. In this paper, we used a femtosecond laser to microstructure the surface of chitosan, a biocompatible polymer that has been explored for applications ranging from antimicrobial action to drug delivery. The influence of energy density on the features produced on chitosan was investigated by optical and atomic force microscopies. An increase in the hydrophilic character of the chitosan surface was attained upon laser micromachining. Patterned chitosan films were used to observe Staphylococcus aureus (ATCC 25923) biofilm formation, revealing an increase in the biofilm formation in the structured regions. Our results indicate that fs-laser micromachining is an attractive option to pattern biocompatible surfaces, and to investigate basic aspects of the relationship between surface topography and bacterial adhesion. PMID:27548153

  16. The interconnection between biofilm formation and horizontal gene transfer.

    Science.gov (United States)

    Madsen, Jonas Stenløkke; Burmølle, Mette; Hansen, Lars Hestbjerg; Sørensen, Søren Johannes

    2012-07-01

    Recent research has revealed that horizontal gene transfer and biofilm formation are connected processes. Although published research investigating this interconnectedness is still limited, we will review this subject in order to highlight the potential of these observations because of their believed importance in the understanding of the adaptation and subsequent evolution of social traits in bacteria. Here, we discuss current evidence for such interconnectedness centred on plasmids. Horizontal transfer rates are typically higher in biofilm communities compared with those in planktonic states. Biofilms, furthermore, promote plasmid stability and may enhance the host range of mobile genetic elements that are transferred horizontally. Plasmids, on the other hand, are very well suited to promote the evolution of social traits such as biofilm formation. This, essentially, transpires because plasmids are independent replicons that enhance their own success by promoting inter-bacterial interactions. They typically also carry genes that heighten their hosts' direct fitness. Furthermore, current research shows that the so-called mafia traits encoded on mobile genetic elements can enforce bacteria to maintain stable social interactions. It also indicates that horizontal gene transfer ultimately enhances the relatedness of bacteria carrying the mobile genetic elements of the same origin. The perspective of this review extends to an overall interconnectedness between horizontal gene transfer, mobile genetic elements and social evolution of bacteria.

  17. Sustained prevention of biofilm formation on a novel silicone matrix suitable for medical devices

    DEFF Research Database (Denmark)

    Steffensen, Søren Langer; Merete H., Vestergaard,; Jensen, Minna Grønning;

    2015-01-01

    Bacterial colonization and biofilm formation on medical devices constitute major challenges in clinical long-term use of e.g. catheters due to the risk of (re)infection of patients, which would result in additional use of antibiotics risking bacterial resistance development. The aim of the present...... in the range of 1–20 mg/mL. Devices containing 25% (w/w) hydrogel and loaded with ciprofloxacin displayed a strong antibacterial effect against Staphylococcus aureus bacterial colonization and subsequent biofilm formation on the device material was inhibited for 29 days. In conclusion, the hydrogel...

  18. Subinhibitory Concentrations of Allicin Decrease Uropathogenic Escherichia coli (UPEC) Biofilm Formation, Adhesion Ability, and Swimming Motility.

    Science.gov (United States)

    Yang, Xiaolong; Sha, Kaihui; Xu, Guangya; Tian, Hanwen; Wang, Xiaoying; Chen, Shanze; Wang, Yi; Li, Jingyu; Chen, Junli; Huang, Ning

    2016-06-29

    Uropathogenic Escherichia coli (UPEC) biofilm formation enables the organism to avoid the host immune system, resist antibiotics, and provide a reservoir for persistent infection. Once the biofilm is established, eradication of the infection becomes difficult. Therefore, strategies against UPEC biofilm are urgently required. In this study, we investigated the effect of allicin, isolated from garlic essential oil, on UPEC CFT073 and J96 biofilm formation and dispersal, along with its effect on UPEC adhesion ability and swimming motility. Sub-inhibitory concentrations (sub-MICs) of allicin decreased UPEC biofilm formation and affected its architecture. Allicin was also capable of dispersing biofilm. Furthermore, allicin decreased the bacterial adhesion ability and swimming motility, which are important for biofilm formation. Real-time quantitative polymerase chain reaction (RT-qPCR) revealed that allicin decreased the expression of UPEC type 1 fimbriae adhesin gene fimH. Docking studies suggested that allicin was located within the binding pocket of heptyl α-d-mannopyrannoside in FimH and formed hydrogen bonds with Phe1 and Asn135. In addition, allicin decreased the expression of the two-component regulatory systems (TCSs) cognate response regulator gene uvrY and increased the expression of the RNA binding global regulatory protein gene csrA of UPEC CFT073, which is associated with UPEC biofilm. The findings suggest that sub-MICs of allicin are capable of affecting UPEC biofilm formation and dispersal, and decreasing UPEC adhesion ability and swimming motility.

  19. The role of bacterial biofilms in chronic infections.

    Science.gov (United States)

    Bjarnsholt, Thomas

    2013-05-01

    Acute infections caused by pathogenic bacteria have been studied extensively for well over 100 years. These infections killed millions of people in previous centuries, but they have been combated effectively by the development of modern vaccines, antibiotics and infection control measures. Most research into bacterial pathogenesis has focused on acute infections, but these diseases have now been supplemented by a new category of chronic infections caused by bacteria growing in slime-enclosed aggregates known as biofilms. Biofilm infections, such as pneumonia in cystic fibrosis patients, chronic wounds, chronic otitis media and implant- and catheter-associated infections, affect millions of people in the developed world each year and many deaths occur as a consequence. In general, bacteria have two life forms during growth and proliferation. In one form, the bacteria exist as single, independent cells (planktonic) whereas in the other form, bacteria are organized into sessile aggregates. The latter form is commonly referred to as the biofilm growth phenotype. Acute infections are assumed to involve planktonic bacteria, which are generally treatable with antibiotics, although successful treatment depends on accurate and fast diagnosis. However, in cases where the bacteria succeed in forming a biofilm within the human host, the infection often turns out to be untreatable and will develop into a chronic state. The important hallmarks of chronic biofilm-based infections are extreme resistance to antibiotics and many other conventional antimicrobial agents, and an extreme capacity for evading the host defences. In this thesis, I will assemble the current knowledge on biofilms with an emphasis on chronic infections, guidelines for diagnosis and treatment of these infections, before relating this to my previous research into the area of biofilms. I will present evidence to support a view that the biofilm lifestyle dominates chronic bacterial infections, where bacterial

  20. Interspecific bacterial interactions are reflected in multispecies biofilm spatial organization

    Directory of Open Access Journals (Sweden)

    Wenzheng Liu

    2016-08-01

    Full Text Available Interspecies interactions are essential for the persistence and development of any kind of complex community, and microbial biofilms are no exception. Multispecies biofilms are structured and spatially defined communities that have received much attention due to their omnipresence in natural environments. Species residing in these complex bacterial communities usually interact both intra- and interspecifically. Such interactions are considered to not only be fundamental in shaping overall biomass and the spatial distribution of cells residing in multispecies biofilms, but also to result in coordinated regulation of gene expression in the different species present. These communal interactions often lead to emergent properties in biofilms, such as enhanced tolerance against antibiotics, host immune responses and other stresses, which have been shown to provide benefits to all biofilm members not only the enabling sub-populations. However, the specific molecular mechanisms of cellular processes affecting spatial organization, and vice versa, are poorly understood and very complex to unravel. Therefore, detailed description of the spatial organization of individual bacterial cells in multispecies communities can be an alternative strategy to reveal the nature of interspecies interactions of constituent species. Closing the gap between visual observation and biological processes may become crucial for resolving biofilm related problems, which is of utmost importance to environmental, industrial, and clinical implications. This review briefly presents the state of the art of studying interspecies interactions and spatial organization of multispecies communities, aiming to support theoretical and practical arguments for further advancement of this field.

  1. Fibrinogen-Induced Streptococcus mutans Biofilm Formation and Adherence to Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Telma Blanca Lombardo Bedran

    2013-01-01

    Full Text Available Streptococcus mutans, the predominant bacterial species associated with dental caries, can enter the bloodstream and cause infective endocarditis. The aim of this study was to investigate S. mutans biofilm formation and adherence to endothelial cells induced by human fibrinogen. The putative mechanism by which biofilm formation is induced as well as the impact of fibrinogen on S. mutans resistance to penicillin was also evaluated. Bovine plasma dose dependently induced biofilm formation by S. mutans. Of the various plasma proteins tested, only fibrinogen promoted the formation of biofilm in a dose-dependent manner. Scanning electron microscopy observations revealed the presence of complex aggregates of bacterial cells firmly attached to the polystyrene support. S. mutans in biofilms induced by the presence of fibrinogen was markedly resistant to the bactericidal effect of penicillin. Fibrinogen also significantly increased the adherence of S. mutans to endothelial cells. Neither S. mutans cells nor culture supernatants converted fibrinogen into fibrin. However, fibrinogen is specifically bound to the cell surface of S. mutans and may act as a bridging molecule to mediate biofilm formation. In conclusion, our study identified a new mechanism promoting S. mutans biofilm formation and adherence to endothelial cells which may contribute to infective endocarditis.

  2. Photodynamic therapy with water-soluble phtalocyanines against bacterial biofilms in teeth root canals

    Science.gov (United States)

    Gergova, Raina; Georgieva, Tzvetelina; Angelov, Ivan; Mantareva, Vanya; Valkanov, Serjoga; Mitov, Ivan; Dimitrov, Slavcho

    2012-06-01

    The study presents the PDT with metal phthalocyanines on biofilms grown in root canals of ten representatives of the Gram-positive and the Gram-negative bacterial species and a fungus Candida albicans which cause aqute teeth infections in root canals.. The extracted human single-root teeth infected for 48 h with microorganisms in conditions to form biofilms of the above pathogens were PDT treated. The stage of biofilm formation and PDT effect of the samples of the teeth were determined by the scaning electron microscopy and with standard microbial tests. The PDT treating procedure included 10 min incubation with the respected phthalocyanine and irradiated with 660 nm Diode laser for 10 min. The most strongly antibacterial activity was achieved with zinc(II) phthalocyanine (ZnPc) against Enterococcus faecalis, Staphylococcus aureus and Moraxella catarrhalis. The other Gram-negative bacteria and Candida albicans were 10-100 times more resistant than the Gram-positive species. The Gram-negative Moraxella catarrhalis and Acinetobacter baumannii were more sensitive than the enterobacteria, but eradication of Pseudomonas aeruginosa in biofilm was insignificant. The influence of the stage of biofilm formation and the initial conditions (bacterial density, photosensitizer concentration and energy fluence of radiation) to the obtained level of inactivation of biofilms was investigated. The PDT with ZnPc photosensitizers show a powerful antimicrobial activity against the most frequent pathogens in endodontic infections and this method for inactivation of pathogens may be used with sucsses for treatment of the bacterial biofilms in the root canals.

  3. Mechanisms of post-transcriptional gene regulation in bacterial biofilms

    Directory of Open Access Journals (Sweden)

    Viveka eVadyvaloo

    2014-03-01

    Full Text Available Abstract Biofilms are characterized by a dense multicellular community of microorganisms that can be formed by the attachment of bacteria to an inert surface and to each other. The development of biofilm involves the initial attachment of planktonic bacteria to a surface, followed by replication, cell-to-cell adhesion to form microcolonies, maturation and detachment. Mature biofilms are embedded in a self-produced extracellular polymeric matrix composed primarily of bacterial-derived exopolysaccharides, specialized proteins, adhesins and occasionally DNA. Because the synthesis and assembly of biofilm matrix components is an exceptionally complex process, the transition between its different phases requires the coordinate expression and simultaneous regulation of many genes by complex genetic networks involving all levels of gene regulation. The finely controlled intracellular level of the chemical second messenger molecule, cyclic-di-GMP is central to the post-transcriptional mechanisms governing the switch between the motile planktonic lifestyle and the sessile biofilm forming state in many bacteria. Several other post-transcriptional regulatory mechanisms are known to dictate biofilm development and assembly and these include RNA-binding proteins, small non-coding RNAs, toxin-antitoxin systems, riboswitches and RNases. Post-transcriptional regulation is therefore a powerful molecular mechanism employed by bacteria to rapidly adjust to the changing environment and to fine tune gene expression to the developmental needs of the cell. In this review, we discuss post-transcriptional mechanisms that influence the biofilm developmental cycle in a variety of pathogenic bacteria.

  4. Enhanced biofilm formation and multi-host transmission evolve from divergent genetic backgrounds in Campylobacter jejuni.

    Science.gov (United States)

    Pascoe, Ben; Méric, Guillaume; Murray, Susan; Yahara, Koji; Mageiros, Leonardos; Bowen, Ryan; Jones, Nathan H; Jeeves, Rose E; Lappin-Scott, Hilary M; Asakura, Hiroshi; Sheppard, Samuel K

    2015-11-01

    Multicellular biofilms are an ancient bacterial adaptation that offers a protective environment for survival in hostile habitats. In microaerophilic organisms such as Campylobacter, biofilms play a key role in transmission to humans as the bacteria are exposed to atmospheric oxygen concentrations when leaving the reservoir host gut. Genetic determinants of biofilm formation differ between species, but little is known about how strains of the same species achieve the biofilm phenotype with different genetic backgrounds. Our approach combines genome-wide association studies with traditional microbiology techniques to investigate the genetic basis of biofilm formation in 102 Campylobacter jejuni isolates. We quantified biofilm formation among the isolates and identified hotspots of genetic variation in homologous sequences that correspond to variation in biofilm phenotypes. Thirteen genes demonstrated a statistically robust association including those involved in adhesion, motility, glycosylation, capsule production and oxidative stress. The genes associated with biofilm formation were different in the host generalist ST-21 and ST-45 clonal complexes, which are frequently isolated from multiple host species and clinical samples. This suggests the evolution of enhanced biofilm from different genetic backgrounds and a possible role in colonization of multiple hosts and transmission to humans.

  5. Biofilm formation in long-term central venous catheters in children with cancer

    DEFF Research Database (Denmark)

    Handrup, Mette Møller; Fuursted, Kurt; Funch, Peter;

    2012-01-01

    Taurolidine has demonstrated inhibition of biofilm formation in vitro. The aim of this study was to compare the effect of catheter locking with taurolidine vs heparin in biofilm formation in central venous catheters. Forty-eight children with cancer were randomized to catheter locking by heparin (n...... = 22) or taurolidine (n = 26), respectively. After removal, catheters were examined by standardized scanning electron microscopy to assess quantitative biofilm formation. Biofilm was present if morphologically typical structures and bacterial cells were identified. Quantitative and semi......-quantitative cultures were also performed. Biofilm was identified in 23 of 26 catheters from the taurolidine group and 21 of 22 catheters from the heparin group. A positive culture was made of six of the catheters locked with taurolidine and heparin, respectively (p = 0.78). The rate of catheter-related bloodstream...

  6. Effects of ceftazidime and ciprofloxacin on biofilm formation in Proteus mirabilis rods.

    Science.gov (United States)

    Kwiecińska-Piróg, Joanna; Bogiel, Tomasz; Gospodarek, Eugenia

    2013-10-01

    Proteus mirabilis rods are one of the most commonly isolated species of the Proteus genus from human infections, mainly those from the urinary tract and wounds. They are often related to biofilm structure formation. The bacterial cells of the biofilm are less susceptible to routinely used antimicrobials, making the treatment more difficult. The aim of this study was to evaluate quantitatively the influence of ceftazidime and ciprofloxacin on biofilm formation on the polyvinyl chloride surface by 42 P. mirabilis strains isolated from urine, purulence, wound swab and bedsore samples. It has been shown that ceftazidime and ciprofloxacin at concentrations equal to 1/4, 1/2 and 1 times their MIC values for particular Proteus spp. strains decrease their ability to form biofilms. Moreover, ciprofloxacin at concentrations equal to 1/4, 1/2 and 1 times their MIC values for particular P. mirabilis strains reduces biofilm formation more efficiently than ceftazidime at the corresponding concentration values.

  7. Interspecific bacterial interactions are reflected in multispecies biofilm spatial organization

    DEFF Research Database (Denmark)

    Liu, Wenzheng; Røder, Henriette Lyng; Madsen, Jonas Stenløkke;

    2016-01-01

    Interspecies interactions are essential for the persistence and development of any kind of complex community, and microbial biofilms are no exception. Multispecies biofilms are structured and spatially defined communities that have received much attention due to their omnipresence in natural...... environments. Species residing in these complex bacterial communities usually interact both intra- and interspecifically. Such interactions are considered to not only be fundamental in shaping overall biomass and the spatial distribution of cells residing in multispecies biofilms, but also to result...... not only the enabling sub-populations. However, the specific molecular mechanisms of cellular processes affecting spatial organization, and vice versa, are poorly understood and very complex to unravel. Therefore, detailed description of the spatial organization of individual bacterial cells...

  8. Denitrification-derived nitric oxide modulates biofilm formation in Azospirillum brasilense.

    Science.gov (United States)

    Arruebarrena Di Palma, Andrés; Pereyra, Cintia M; Moreno Ramirez, Lizbeth; Xiqui Vázquez, María L; Baca, Beatriz E; Pereyra, María A; Lamattina, Lorenzo; Creus, Cecilia M

    2013-01-01

    Azospirillum brasilense is a rhizobacterium that provides beneficial effects on plants when they colonize roots. The formation of complex bacterial communities known as biofilms begins with the interaction of planktonic cells with surfaces in response to appropriate signals. Nitric oxide (NO) is a signaling molecule implicated in numerous processes in bacteria, including biofilm formation or dispersion, depending on genera and lifestyle. Azospirillum brasilense Sp245 produces NO by denitrification having a role in root growth promotion. We analyzed the role of endogenously produced NO on biofilm formation in A. brasilense Sp245 and in a periplasmic nitrate reductase mutant (napA::Tn5; Faj164) affected in NO production. Cells were statically grown in media with nitrate or ammonium as nitrogen sources and examined for biofilm formation using crystal violet and by confocal laser microscopy. Both strains formed biofilms, but the mutant produced less than half compared with the wild type in nitrate medium showing impaired nitrite production in this condition. NO measurements in biofilm confirmed lower values in the mutant strain. The addition of a NO donor showed that NO influences biofilm formation in a dose-dependent manner and reverses the mutant phenotype, indicating that Nap positively regulates the formation of biofilm in A. brasilense Sp245.

  9. Influence of Streptococcus mutans on Enterococcus faecalis Biofilm Formation

    NARCIS (Netherlands)

    Deng, Dong Mei; Hoogenkamp, Michel A.; Exterkate, Rob A. M.; Jiang, Lei Meng; van der Sluis, Lucas W. M.; ten Cate, Jacob M.; Crielaard, Wim

    2009-01-01

    Introduction: An important virulence factor of Enterococcus faecalis is its ability to form biofilms. Most studies on biofilm formation have been carried out by using E. faecalis monocultures. Given the polymicrobial nature of root canal infections, it is important to understand biofilm formation of

  10. Influence of Streptococcus mutans on enterococcus faecalis biofilm formation

    NARCIS (Netherlands)

    Deng, D.M.; Hoogenkamp, M.A.; Exterkate, R.A.M.; Jiang, L.M.; van der Sluis, L.W.M.; ten Cate, J.M.; Crielaard, W.

    2009-01-01

    Introduction: An important virulence factor of Enterococcus faecalis is its ability to form biofilms. Most studies on biofilm formation have been carried out by using E. faecalis monocultures. Given the polymicrobial nature of root canal infections, it is important to understand biofilm formation of

  11. Sugar fatty acid esters inhibit biofilm formation by food-borne pathogenic bacteria.

    Science.gov (United States)

    Furukawa, Soichi; Akiyoshi, Yuko; O'Toole, George A; Ogihara, Hirokazu; Morinaga, Yasushi

    2010-03-31

    Effects of food additives on biofilm formation by food-borne pathogenic bacteria were investigated. Thirty-three potential food additives and 3 related compounds were added to the culture medium at concentrations from 0.001 to 0.1% (w/w), followed by inoculation and cultivation of five biofilm-forming bacterial strains for the evaluation of biofilm formation. Among the tested food additives, 21 showed inhibitory effects of biofilm formation by Staphylococcus aureus and Escherichia coli, and in particular, sugar fatty acid esters showed significant anti-biofilm activity. Sugar fatty acid esters with long chain fatty acid residues (C14-16) exerted their inhibitory effect at the concentration of 0.001% (w/w), but bacterial growth was not affected at this low concentration. Activities of the sugar fatty acid esters positively correlated with the increase of the chain length of the fatty acid residues. Sugar fatty acid esters inhibited the initial attachment of the S. aureus cells to the abiotic surface. Sugar fatty acid esters with long chain fatty acid residues (C14-16) also inhibited biofilm formation by Streptococcus mutans and Listeria monocytogenes at 0.01% (w/w), while the inhibition of biofilm formation by Pseudomonas aeruginosa required the addition of a far higher concentration (0.1% (w/w)) of the sugar fatty acid esters.

  12. The type III protein secretion system contributes to Xanthomonas citri subsp. citri biofilm formation

    KAUST Repository

    Zimaro, Tamara

    2014-04-18

    Background: Several bacterial plant pathogens colonize their hosts through the secretion of effector proteins by a Type III protein secretion system (T3SS). The role of T3SS in bacterial pathogenesis is well established but whether this system is involved in multicellular processes, such as bacterial biofilm formation has not been elucidated. Here, the phytopathogen Xanthomonas citri subsp. citri (X. citri) was used as a model to gain further insights about the role of the T3SS in biofilm formation. Results: The capacity of biofilm formation of different X. citri T3SS mutants was compared to the wild type strain and it was observed that this secretion system was necessary for this process. Moreover, the T3SS mutants adhered proficiently to leaf surfaces but were impaired in leaf-associated growth. A proteomic study of biofilm cells showed that the lack of the T3SS causes changes in the expression of proteins involved in metabolic processes, energy generation, exopolysaccharide (EPS) production and bacterial motility as well as outer membrane proteins. Furthermore, EPS production and bacterial motility were also altered in the T3SS mutants. Conclusions: Our results indicate a novel role for T3SS in X. citri in the modulation of biofilm formation. Since this process increases X. citri virulence, this study reveals new functions of T3SS in pathogenesis. 2014 Zimaro et al.; licensee BioMed Central Ltd.

  13. A coverslip-based technique for evaluating Staphylococcus aureus biofilm formation on human plasma

    Directory of Open Access Journals (Sweden)

    Jennifer N Walker

    2012-03-01

    Full Text Available The ability of the opportunistic pathogen, Staphylococcus aureus, to form biofilms is increasingly being viewed as an important contributor to chronic infections. In vitro methods for analyzing S. aureus biofilm formation have focused on bacterial attachment and accumulation on abiotic surfaces, such as in microtiter plate and flow cell assays. Microtiter plates provide a rapid measure of relative biomass levels, while flow cells have limited experimental throughput but are superior for confocal microscopy biofilm visualization. Although these assays have proven effective at identifying mechanisms involved in cell attachment and biofilm accumulation, the significance of these assays in vivo remains unclear. Studies have shown that when medical devices are implanted they are coated with host factors, such as matrix proteins, that facilitate S. aureus attachment and biofilm formation. To address the challenge of integrating existing biofilm assay features with a biotic surface, we have established an in vitro biofilm technique utilizing UV-sterilized coverslips coated with human plasma. The substratum more closely resembles the in vivo state and provides a platform for S. aureus to establish a robust biofilm. Importantly, these coverslips are amenable to confocal microscopy imaging to provide a visual reference of the biofilm growth stage, effectively merging the benefits of the microtiter and flow cell assays. We confirmed the approach using clinical S. aureus isolates and mutants with known biofilm phenotypes. Altogether, this new biofilm assay can be used to assess the function of S. aureus virulence factors associated with biofilm formation and for monitoring the efficacy of biofilm treatment modalities.

  14. Interspecies interactions result in enhanced biofilm formation by co-cultures of bacteria isolated from a food processing environment.

    Science.gov (United States)

    Røder, Henriette L; Raghupathi, Prem K; Herschend, Jakob; Brejnrod, Asker; Knøchel, Susanne; Sørensen, Søren J; Burmølle, Mette

    2015-10-01

    Bacterial attachment and biofilm formation can lead to poor hygienic conditions in food processing environments. Furthermore, interactions between different bacteria may induce or promote biofilm formation. In this study, we isolated and identified a total of 687 bacterial strains from seven different locations in a meat processing environment and evaluated their biofilm formation capability. A diverse group of bacteria was isolated and most were classified as poor biofilm producers in a Calgary biofilm device assay. Isolates from two sampling sites, the wall and the meat chopper, were further examined for multispecies biofilm formation. Eight strains from each sampling site were chosen and all possible combinations of four member co-cultures were tested for enhanced biofilm formation at 15 °C and 24 °C. In approximately 20% of the multispecies consortia grown at 15 °C, the biofilm formation was enhanced when comparing to monospecies biofilms. Two specific isolates (one from each location) were found to be present in synergistic combinations with higher frequencies than the remaining isolates tested. This data provides insights into the ability of co-localized isolates to influence co-culture biofilm production with high relevance for food safety and food production facilities.

  15. Polyspecies biofilm formation on implant surfaces with different surface characteristics

    Directory of Open Access Journals (Sweden)

    Patrick R. SCHMIDLIN

    2013-01-01

    Full Text Available Objective To investigate the microbial adherence and colonization of a polyspecies biofilm on 7 differently processed titanium surfaces. Material and Methods Six-species biofilms were formed anaerobically on 5-mm-diameter sterilized, saliva-preconditioned titanium discs. Material surfaces used were either machined, stained, acid-etched or sandblasted/acid-etched (SLA. Samples of the latter two materials were also provided in a chemically modified form, with increased wettability characteristics. Surface roughness and contact angles of all materials were determined. The discs were then incubated anaerobically for up to 16.5 h. Initial microbial adherence was evaluated after 20 min incubation and further colonization after 2, 4, 8, and 16.5 h using non-selective and selective culture techniques. Results at different time points were compared using ANOVA and Scheffé post hoc analysis. Results The mean differences in microorganisms colonizing after the first 20 min were in a very narrow range (4.5 to 4.8 log CFU. At up to 16.5 h, the modified SLA surface exhibited the highest values for colonization (6.9±0.2 log CFU, p<0.05 but increasing growth was observed on all test surfaces over time. Discrepancies among bacterial strains on the differently crafted titanium surfaces were very similar to those described for total log CFU. F. nucleatum was below the detection limit on all surfaces after 4 h. Conclusion Within the limitations of this in vitro study, surface roughness had a moderate influence on biofilm formation, while wettability did not seem to influence biofilm formation under the experimental conditions described. The modified SLA surface showed the highest trend for bacterial colonization.

  16. Lipid and polymer nanoparticles for drug delivery to bacterial biofilms.

    Science.gov (United States)

    Forier, Katrien; Raemdonck, Koen; De Smedt, Stefaan C; Demeester, Jo; Coenye, Tom; Braeckmans, Kevin

    2014-09-28

    Biofilms are matrix-enclosed communities of bacteria that show increased antibiotic resistance and the capability to evade the immune system. They can cause recalcitrant infections which cannot be cured with classical antibiotic therapy. Drug delivery by lipid or polymer nanoparticles is considered a promising strategy for overcoming biofilm resistance. These particles are able to improve the delivery of antibiotics to the bacterial cells, thereby increasing the efficacy of the treatment. In this review we give an overview of the types of polymer and lipid nanoparticles that have been developed for this purpose. The antimicrobial activity of nanoparticle encapsulated antibiotics compared to the activity of the free antibiotic is discussed in detail. In addition, targeting and triggered drug release strategies to further improve the antimicrobial activity are reviewed. Finally, ample attention is given to advanced microscopy methods that shed light on the behavior of nanoparticles inside biofilms, allowing further optimization of the nanoformulations. Lipid and polymer nanoparticles were found to increase the antimicrobial efficacy in many cases. Strategies such as the use of fusogenic liposomes, targeting of the nanoparticles and triggered release of the antimicrobial agent ensured the delivery of the antimicrobial agent in close proximity of the bacterial cells, maximizing the exposure of the biofilm to the antimicrobial agent. The majority of the discussed papers still present data on the in vitro anti-biofilm activity of nanoformulations, indicating that there is an urgent need for more in vivo studies in this field.

  17. Impact of Plant Extracts and Antibiotics on Biofilm Formation of Clinical Isolates From Otitis Media

    Science.gov (United States)

    Rehman, Saba; Mujtaba Ghauri, Shahbaz; Sabri, Anjum Nasim

    2016-01-01

    Background: Otitis media can lead to severe health consequences, and is the most common reason for antibiotic prescriptions and biofilm-mediated infections. However, the increased pattern of drug resistance in biofilm forming bacteria complicates the treatment of such infections. Objectives: This study was aimed to estimate the biofilm formation potential of the clinical isolates of otitis media, and to evaluate the efficacy of antibiotics and plant extracts as alternative therapeutic agents in biofilm eradication. Materials and Methods: The ear swab samples collected from the otitis media patients visiting the Mayo Hospital in Lahore were processed to isolate the bacteria, which were characterized using morphological, biochemical, and molecular (16S rRNA ribotyping) techniques. Then, the minimum inhibitory concentrations (MICs) of the antibiotics and crude plant extracts were measured against the isolates. The cell surface hydrophobicity and biofilm formation potential were determined, both qualitatively and quantitatively, with and without antibiotics. Finally, the molecular characterization of the biofilm forming proteins was done by amplifying the ica operon. Results: Pseudomonas aeruginosa (KC417303-05), Staphylococcus hemolyticus (KC417306), and Staphylococcus hominis (KC417307) were isolated from the otitis media specimens. Among the crude plant extracts, Acacia arabica showed significant antibacterial characteristics (MIC up to 13 mg/ml), while these isolates exhibited sensitivity towards ciprofloxacin (MIC 0.2 µg/mL). All of the bacterial strains had hydrophobic cellular surfaces that helped in their adherence to abiotic surfaces, leading to strong biofilm formation potential (up to 7 days). Furthermore, the icaC gene encoding polysaccharide intercellular adhesion protein was amplified from S. hemolyticus. Conclusions: The bacterial isolates exhibited strong biofilm formation potential, while the extracts of Acacia arabica significantly inhibited biofilm

  18. Increased biofilm formation ability and accelerated transport of Staphylococcus aureus along a catheter during reciprocal movements.

    Science.gov (United States)

    Haraga, Isao; Abe, Shintaro; Jimi, Shiro; Kiyomi, Fumiaki; Yamaura, Ken

    2017-01-01

    Staphylococcus spp. is a major cause of device-related infections. However, the mechanisms of deep-tissue infection by staphylococci from the skin surface remain unclear. We performed in vitro experiments to determine how staphylococci are transferred from the surface to the deeper layers of agar along the catheter for different strains of Staphylococcus aureus with respect to bacterial concentrations, catheter movements, and biofilm formation. We found that when 5-mm reciprocal movements of the catheter were repeated every 8h, all catheter samples of S. aureus penetrated the typical distance of 50mm from the skin to the epidural space. The number of reciprocal catheter movements and the depth of bacterial growth were correlated. A greater regression coefficient for different strains implied faster bacterial growth. Enhanced biofilm formation by different strains implied larger regression coefficients. Increased biofilm formation ability may accelerate S. aureus transport along a catheter due to physical movements by patients.

  19. Biofilm Formation and Detachment in Gram-Negative Pathogens Is Modulated by Select Bile Acids.

    Directory of Open Access Journals (Sweden)

    Laura M Sanchez

    Full Text Available Biofilms are a ubiquitous feature of microbial community structure in both natural and host environments; they enhance transmission and infectivity of pathogens and provide protection from human defense mechanisms and antibiotics. However, few natural products are known that impact biofilm formation or persistence for either environmental or pathogenic bacteria. Using the combination of a novel natural products library from the fish microbiome and an image-based screen for biofilm inhibition, we describe the identification of taurine-conjugated bile acids as inhibitors of biofilm formation against both Vibrio cholerae and Pseudomonas aeruginosa. Taurocholic acid (1 was isolated from the fermentation broth of the fish microbiome-derived strain of Rhodococcus erythropolis and identified using standard NMR and MS methods. Screening of the twelve predominant human steroidal bile acid components revealed that a subset of these compounds can inhibit biofilm formation, induce detachment of preformed biofilms under static conditions, and that these compounds display distinct structure-activity relationships against V. cholerae and P. aeruginosa. Our findings highlight the significance of distinct bile acid components in the regulation of biofilm formation and dispersion in two different clinically relevant bacterial pathogens, and suggest that the bile acids, which are endogenous mammalian metabolites used to solubilize dietary fats, may also play a role in maintaining host health against bacterial infection.

  20. Biofilm Formation and Detachment in Gram-Negative Pathogens Is Modulated by Select Bile Acids.

    Science.gov (United States)

    Sanchez, Laura M; Cheng, Andrew T; Warner, Christopher J A; Townsley, Loni; Peach, Kelly C; Navarro, Gabriel; Shikuma, Nicholas J; Bray, Walter M; Riener, Romina M; Yildiz, Fitnat H; Linington, Roger G

    2016-01-01

    Biofilms are a ubiquitous feature of microbial community structure in both natural and host environments; they enhance transmission and infectivity of pathogens and provide protection from human defense mechanisms and antibiotics. However, few natural products are known that impact biofilm formation or persistence for either environmental or pathogenic bacteria. Using the combination of a novel natural products library from the fish microbiome and an image-based screen for biofilm inhibition, we describe the identification of taurine-conjugated bile acids as inhibitors of biofilm formation against both Vibrio cholerae and Pseudomonas aeruginosa. Taurocholic acid (1) was isolated from the fermentation broth of the fish microbiome-derived strain of Rhodococcus erythropolis and identified using standard NMR and MS methods. Screening of the twelve predominant human steroidal bile acid components revealed that a subset of these compounds can inhibit biofilm formation, induce detachment of preformed biofilms under static conditions, and that these compounds display distinct structure-activity relationships against V. cholerae and P. aeruginosa. Our findings highlight the significance of distinct bile acid components in the regulation of biofilm formation and dispersion in two different clinically relevant bacterial pathogens, and suggest that the bile acids, which are endogenous mammalian metabolites used to solubilize dietary fats, may also play a role in maintaining host health against bacterial infection.

  1. Esp-independent biofilm formation by Enterococcus faecalis.

    Science.gov (United States)

    Kristich, Christopher J; Li, Yung-Hua; Cvitkovitch, Dennis G; Dunny, Gary M

    2004-01-01

    Enterococcus faecalis is a gram-positive opportunistic pathogen known to form biofilms in vitro. In addition, this organism is often isolated from biofilms on the surfaces of various indwelling medical devices. However, the molecular mechanisms regulating biofilm formation in these clinical isolates are largely unknown. Recent work has suggested that a specific cell surface protein (Esp) of E. faecalis is critical for biofilm formation by this organism. However, in the same study, esp-deficient strains of E. faecalis were found to be capable of biofilm formation. To test the hypothesis that Esp is dispensable for biofilm formation by E. faecalis, we used microtiter plate assays and a chemostat-based biofilm fermentor assay to examine biofilm formation by genetically well-defined, non-Esp-expressing strains. Our results demonstrate that in vitro biofilm formation occurs, not only in the absence of esp, but also in the absence of the entire pathogenicity island that harbors the esp coding sequence. Using scanning electron microscopy to evaluate biofilms of E. faecalis OG1RF grown in the fermentor system, biofilm development was observed to progress through multiple stages, including attachment of individual cells to the substratum, microcolony formation, and maturation into complex multilayered structures apparently containing water channels. Microtiter plate biofilm analyses indicated that biofilm formation or maintenance was modulated by environmental conditions. Furthermore, our results demonstrate that expression of a secreted metalloprotease, GelE, enhances biofilm formation by E. faecalis. In summary, E. faecalis forms complex biofilms by a process that is sensitive to environmental conditions and does not require the Esp surface protein.

  2. Inhibition of Biofilm Formation by T7 Bacteriophages Producing Quorum-Quenching Enzymes

    Science.gov (United States)

    Lamas-Samanamud, Gisella R.

    2014-01-01

    Bacterial growth in biofilms is the major cause of recalcitrant biofouling in industrial processes and of persistent infections in clinical settings. The use of bacteriophage treatment to lyse bacteria in biofilms has attracted growing interest. In particular, many natural or engineered phages produce depolymerases to degrade polysaccharides in the biofilm matrix and allow access to host bacteria. However, the phage-produced depolymerases are highly specific for only the host-derived polysaccharides and may have limited effects on natural multispecies biofilms. In this study, an engineered T7 bacteriophage was constructed to encode a lactonase enzyme with broad-range activity for quenching of quorum sensing, a form of bacterial cell-cell communication via small chemical molecules (acyl homoserine lactones [AHLs]) that is necessary for biofilm formation. Our results demonstrated that the engineered T7 phage expressed the AiiA lactonase to effectively degrade AHLs from many bacteria. Addition of the engineered T7 phage to mixed-species biofilms containing Pseudomonas aeruginosa and Escherichia coli resulted in inhibition of biofilm formation. Such quorum-quenching phages that can lyse host bacteria and express quorum-quenching enzymes to affect diverse bacteria in biofilm communities may become novel antifouling and antibiofilm agents in industrial and clinical settings. PMID:24951790

  3. Role of the luxS gene in initial biofilm formation by Streptococcus mutans.

    Science.gov (United States)

    He, Zhiyan; Liang, Jingping; Tang, Zisheng; Ma, Rui; Peng, Huasong; Huang, Zhengwei

    2015-01-01

    Quorum sensing (QS) is a process by which bacteria communicate with each other by secreting chemical signals called autoinducers (AIs). Among Gram-negative and Gram-positive bacteria, AI-2 synthesized by the LuxS enzyme is widespread. The aim of this study was to evaluate the effect of QS luxS gene on initial biofilm formation by Streptococcus mutans. The bacterial cell surface properties, including cell hydrophobicity (bacterial adherence to hydrocarbons) and aggregation, which are important for initial adherence during biofilm development, were investigated. The biofilm adhesion assay was evaluated by the MTT method. The structures of the 5-hour biofilms were observed by using confocal laser scanning microscopy, and QS-related gene expressions were investigated by real-time PCR. The luxS mutant strain exhibited higher biofilm adherence and aggregation, but lower hydrophobicity than the wild-type strain. The confocal laser scanning microscopy images revealed that the wild-type strain tended to form smaller aggregates with uniform distribution, whereas the luxS mutant strain aggregated into distinct clusters easily discernible in the generated biofilm. Most of the genes examined were downregulated in the biofilms formed by the luxS mutant strain, except the gtfB gene. QS luxS gene can affect the initial biofilm formation by S. mutans.

  4. Inhibitory effects of Lactobacillus fermentum on microbial growth and biofilm formation.

    Science.gov (United States)

    Rybalchenko, Oxana V; Bondarenko, Viktor M; Orlova, Olga G; Markov, Alexander G; Amasheh, S

    2015-10-01

    Beneficial effects of Lactobacilli have been reported, and lactic bacteria are employed for conservation of foods. Therefore, the effects of a Lactobacillus fermentum strain were analyzed regarding inhibitory effects on staphylococci, Candida albicans and enterotoxigenic enterobacteria by transmission electron microscopy (TEM). TEM of bacterial biofilms was performed using cocultures of bacteriocin-producing L. fermentum 97 with different enterotoxigenic strains: Staphylococcus epidermidis expressing the ica gene responsible for biofilm formation, Staphylococcus aureus producing enterotoxin type A, Citrobacter freundii, Enterobacter cloaceae, Klebsiella oxytoca, Proteus mirabilis producing thermolabile and thermostable enterotoxins determined by elt or est genes, and Candida albicans. L. fermentum 97 changed morphological features and suppressed biofilm formation of staphylococci, enterotoxigenic enterobacteria and Candida albicans; a marked transition to resting states, a degradation of the cell walls and cytoplasm, and a disruption of mature bacterial biofilms were observed, the latter indicating efficiency even in the phase of higher cell density.

  5. Wound biofilms: lessons learned from oral biofilms.

    Science.gov (United States)

    Mancl, Kimberly A; Kirsner, Robert S; Ajdic, Dragana

    2013-01-01

    Biofilms play an important role in the development and pathogenesis of many chronic infections. Oral biofilms, more commonly known as dental plaque, are a primary cause of oral diseases including caries, gingivitis, and periodontitis. Oral biofilms are commonly studied as model biofilm systems as they are easily accessible; thus, biofilm research in oral diseases is advanced with details of biofilm formation and bacterial interactions being well elucidated. In contrast, wound research has relatively recently directed attention to the role biofilms have in chronic wounds. This review discusses the biofilms in periodontal disease and chronic wounds with comparisons focusing on biofilm detection, biofilm formation, the immune response to biofilms, bacterial interaction, and quorum sensing. Current treatment modalities used by both fields and future therapies are also discussed.

  6. Evidence for inter- and intraspecies biofilm formation variability among a small group of coagulase-negative staphylococci.

    Science.gov (United States)

    Oliveira, Fernando; Lima, Cláudia Afonso; Brás, Susana; França, Ângela; Cerca, Nuno

    2015-10-01

    Coagulase-negative staphylococci (CoNS) are common bacterial colonizers of the human skin. They are often involved in nosocomial infections due to biofilm formation in indwelling medical devices. While biofilm formation has been extensively studied in Staphylococcus epidermidis, little is known regarding other CoNS species. Here, biofilms from six different CoNS species were characterized in terms of biofilm composition and architecture. Interestingly, the ability to form a thick biofilm was not associated with any particular species, and high variability on biofilm accumulation was found within the same species. Cell viability assays also revealed different proportions of live and dead cells within biofilms formed by different species, although this parameter was particularly similar at the intraspecies level. On the other hand, biofilm disruption assays demonstrated important inter- and intraspecies differences regarding extracellular matrix composition. Lastly, confocal laser scanning microscopy experiments confirmed this variability, highlighting important differences and common features of CoNS biofilms. We hypothesized that the biofilm formation heterogeneity observed was rather associated with biofilm matrix composition than with cells themselves. Additionally, our results indicate that polysaccharides, DNA and proteins are fundamental pieces in the process of CoNS biofilm formation.

  7. The Influence of Prior Modes of Growth, Temperature, Medium, and Substrate Surface on Biofilm Formation by Antibiotic-Resistant Campylobacter jejuni.

    Science.gov (United States)

    Teh, Amy Huei Teen; Lee, Sui Mae; Dykes, Gary A

    2016-12-01

    Campylobacter jejuni is one of the most common causes of bacterial gastrointestinal food-borne infection worldwide. It has been suggested that biofilm formation may play a role in survival of these bacteria in the environment. In this study, the influence of prior modes of growth (planktonic or sessile), temperatures (37 and 42 °C), and nutrient conditions (nutrient broth and Mueller-Hinton broth) on biofilm formation by eight C. jejuni strains with different antibiotic resistance profiles was examined. The ability of these strains to form biofilm on different abiotic surfaces (stainless steel, glass, and polystyrene) as well as factors potentially associated with biofilm formation (bacterial surface hydrophobicity, auto-aggregation, and initial attachment) was also determined. The results showed that cells grown as sessile culture generally have a greater ability to form biofilm (P < 0.05) compared to their planktonic counterparts. Biofilm was also greater (P < 0.05) in lower nutrient media, while growth at different temperatures affects biofilm formation in a strain-dependent manner. The strains were able to attach and form biofilms on different abiotic surfaces, but none of them demonstrated strong, complex, or structured biofilm formation. There were no clear trends between the bacterial surface hydrophobicity, auto-aggregation, attachment, and biofilm formation by the strains. This finding suggests that environmental factors did affect biofilm formation by C. jejuni, and they are more likely to persist in the environment in the form of mixed-species rather than monospecies biofilms.

  8. Cranberry (Vaccinium macrocarpon) oligosaccharides decrease biofilm formation by uropathogenic Escherichia coli

    DEFF Research Database (Denmark)

    Sun, Jiadong; Marais, Jannie P J; Khoo, Christina

    2015-01-01

    . In antimicrobial assays, cranf1b-F2 (at 1.25 mg/mL concentration) reduced biofilm production by the uropathogenic Escherichia coli CFT073 strain by over 50% but did not inhibit bacterial growth. Cranf1b-F2 (ranging from 0.625 - 10 mg/mL) also inhibited biofilm formation of the non-pathogenic E. coli MG1655 strain...

  9. Graft polymerization of styryl bisphosphonate monomer onto polypropylene films for inhibition of biofilm formation.

    Science.gov (United States)

    Steinmetz, Hanna P; Rudnick-Glick, Safra; Natan, Michal; Banin, Ehud; Margel, Shlomo

    2016-11-01

    There has been increased concern during the past few decades over the role bacterial biofilms play in causing a variety of health problems, especially since they exhibit a high degree of resistance to antibiotics and are able to survive in hostile environments. Biofilms consist of bacterial aggregates enveloped by a self-produced matrix attached to the surface. Ca(2+) ions promote the formation of biofilms, and enhance their stability, viscosity, and strength. Bisphosphonates exhibit a high affinity for Ca(2+) ions, and may inhibit the formation of biofilms by acting as sequestering agents for Ca(2+) ions. Although the antibacterial activity of bisphosphonates is well known, research into their anti-biofilm behavior is still in its early stages. In this study, we describe the synthesis of a new thin coating composed of poly(styryl bisphosphonate) grafted onto oxidized polypropylene films for anti-biofilm applications. This grafting process was performed by graft polymerization of styryl bisphosphonate vinylic monomer onto O2 plasma-treated polypropylene films. The surface modification of the polypropylene films was confirmed using surface measurements, including X-ray photoelectron spectroscopy, atomic force microscopy, and water contact angle goniometry. Significant inhibition of biofilm formation was achieved for both Gram-negative and Gram-positive bacteria.

  10. Levorotatory carbohydrates and xylitol subdue Streptococcus mutans and Candida albicans adhesion and biofilm formation.

    Science.gov (United States)

    Brambilla, Eugenio; Ionescu, Andrei C; Cazzaniga, Gloria; Ottobelli, Marco; Samaranayake, Lakshman P

    2016-05-01

    Dietary carbohydrates and polyols affect the microbial colonization of oral surfaces by modulating adhesion and biofilm formation. The aim of this study was to evaluate the influence of a select group of l-carbohydrates and polyols on either Streptococcus mutans or Candida albicans adhesion and biofilm formation in vitro. S. mutans or C. albicans suspensions were inoculated on polystyrene substrata in the presence of Tryptic soy broth containing 5% of the following compounds: d-glucose, d-mannose, l-glucose, l-mannose, d- and l-glucose (raceme), d- and l-mannose (raceme), l-glucose and l-mannose, sorbitol, mannitol, and xylitol. Microbial adhesion (2 h) and biofilm formation (24 h) were evaluated using MTT-test and Scanning Electron Microscopy (SEM). Xylitol and l-carbohydrates induced the lowest adhesion and biofilm formation in both the tested species, while sorbitol and mannitol did not promote C. albicans biofilm formation. Higher adhesion and biofilm formation was noted in both organisms in the presence of d-carbohydrates relative to their l-carbohydrate counterparts. These results elucidate, hitherto undescribed, interactions of the individually tested strains with l- and d-carbohydrates, and how they impact fungal and bacterial colonization. In translational terms, our data raise the possibility of using l-form of carbohydrates and xylitol for dietary control of oral plaque biofilms.

  11. Contribution of the SirA regulon to biofilm formation in Salmonella enterica serovar Typhimurium.

    Science.gov (United States)

    Teplitski, Max; Al-Agely, Ali; Ahmer, Brian M M

    2006-11-01

    Orthologues of the Salmonella enterica serovar Typhimurium (S. typhimurium) BarA/SirA two-component system are important for biofilm formation and virulence in many gamma-Proteobacteria. In S. typhimurium, SirA activates the csrB and csrC carbon storage regulatory RNAs and the virulence gene regulators hilA and hilC. The regulatory RNAs antagonize the activity of the CsrA protein, allowing translation of those same virulence genes, and inhibiting the translation of flagellar genes. In this report, it was determined that SirA and the Csr system also control the fim operon that encodes type 1 fimbriae. sirA orthologues in other bacterial species, and the fim operon of S. typhimurium, are known to play a role in biofilm formation; therefore, all members of the S. typhimurium sirA regulon were tested for in vitro biofilm production. A sirA mutant, a csrB csrC double mutant, and a fimI mutant, were all defective in biofilm formation. Conversely, inactivation of flhDC increased biofilm formation. Therefore, SirA activates csrB, csrC and the fim operon to promote biofilm formation. In turn, csrB and csrC promote the translation of the fim operon, while at the same time inhibiting the translation of flagella, which are inhibitory to biofilm formation.

  12. Biofilm Formation on Dental Restorative and Implant Materials

    NARCIS (Netherlands)

    Busscher, H. J.; Rinastiti, M.; Siswomihardjo, W.; van der Mei, H. C.

    2010-01-01

    Biomaterials for the restoration of oral function are prone to biofilm formation, affecting oral health. Oral bacteria adhere to hydrophobic and hydrophilic surfaces, but due to fluctuating shear, little biofilm accumulates on hydrophobic surfaces in vivo. More biofilm accumulates on rough than on s

  13. Extracellular DNA formation during biofilm development by freshwater bacteria

    DEFF Research Database (Denmark)

    Tang, Lone; Schramm, Andreas; Revsbech, Niels Peter

    2011-01-01

    of eDNA is most important. In this study, we investigated the significance of eDNA during biofilm formation in four freshwater isolates. The aim was to relate the quantity and timing of eDNA production to the isolates’ ability to form biofilms. eDNA and biofilm biomass was quantified over time during...

  14. Antiseptics and microcosm biofilm formation on titanium surfaces

    Directory of Open Access Journals (Sweden)

    Georgia VERARDI

    2016-01-01

    Full Text Available Abstract Oral rehabilitation with osseointegrated implants is a way to restore esthetics and masticatory function in edentulous patients, but bacterial colonization around the implants may lead to mucositis or peri-implantitis and consequent implant loss. Peri-implantitis is the main complication of oral rehabilitation with dental implants and, therefore, it is necessary to take into account the potential effects of antiseptics such as chlorhexidine (CHX, chloramine T (CHT, triclosan (TRI, and essential oils (EO on bacterial adhesion and on biofilm formation. To assess the action of these substances, we used the microcosm technique, in which the oral environment and periodontal conditions are simulated in vitro on titanium discs with different surface treatments (smooth surface - SS, acid-etched smooth surface - AESS, sand-blasted surface - SBS, and sand-blasted and acid-etched surface - SBAES. Roughness measurements yielded the following results: SS: 0.47 µm, AESS: 0.43 µm, SB: 0.79 µm, and SBAES: 0.72 µm. There was statistical difference only between SBS and AESS. There was no statistical difference among antiseptic treatments. However, EO and CHT showed lower bacterial counts compared with the saline solution treatment (control group. Thus, the current gold standard (CHX did not outperform CHT and EO, which were efficient in reducing the biofilm biomass compared with saline solution.

  15. A three-phase in-vitro system for studying Pseudomonas aeruginosa adhesion and biofilm formation upon hydrogel contact lenses

    Directory of Open Access Journals (Sweden)

    Kohlmann Thomas

    2010-11-01

    Full Text Available Abstract Background Pseudomonas aeruginosa is commonly associated with contact lens (CL -related eye infections, for which bacterial adhesion and biofilm formation upon hydrogel CLs is a specific risk factor. Whilst P. aeruginosa has been widely used as a model organism for initial biofilm formation on CLs, in-vitro models that closely reproduce in-vivo conditions have rarely been presented. Results In the current investigation, a novel in-vitro biofilm model for studying the adherence of P. aeruginosa to hydrogel CLs was established. Nutritional and interfacial conditions similar to those in the eye of a CL wearer were created through the involvement of a solid:liquid and a solid:air interface, shear forces and a complex artificial tear fluid. Bioburdens varied depending on the CL material and biofilm maturation occurred after 72 h incubation. Whilst a range of biofilm morphologies were visualised including dispersed and adherent bacterial cells, aggregates and colonies embedded in extracellular polymer substances (EPS, EPS fibres, mushroom-like formations, and crystalline structures, a compact and heterogeneous biofilm morphology predominated on all CL materials. Conclusions In order to better understand the process of biofilm formation on CLs and to test the efficacy of CL care solutions, representative in-vitro biofilm models are required. Here, we present a three-phase biofilm model that simulates the environment in the eye of a CL wearer and thus generates biofilms which resemble those commonly observed in-situ.

  16. Highly Effective Inhibition of Biofilm Formation by the First Metagenome-Derived AI-2 Quenching Enzyme

    Science.gov (United States)

    Weiland-Bräuer, Nancy; Kisch, Martin J.; Pinnow, Nicole; Liese, Andreas; Schmitz, Ruth A.

    2016-01-01

    Bacterial cell–cell communication (quorum sensing, QS) represents a fundamental process crucial for biofilm formation, pathogenicity, and virulence allowing coordinated, concerted actions of bacteria depending on their cell density. With the widespread appearance of antibiotic-resistance of biofilms, there is an increasing need for novel strategies to control harmful biofilms. One attractive and most likely effective approach is to target bacterial communication systems for novel drug design in biotechnological and medical applications. In this study, metagenomic large-insert libraries were constructed and screened for QS interfering activities (quorum quenching, QQ) using recently established reporter strains. Overall, 142 out of 46,400 metagenomic clones were identified to interfere with acyl-homoserine lactones (AHLs), 13 with autoinducer-2 (AI-2). Five cosmid clones with highest simultaneous interfering activities were further analyzed and the respective open reading frames conferring QQ activities identified. Those showed homologies to bacterial oxidoreductases, proteases, amidases and aminotransferases. Evaluating the ability of the respective purified QQ-proteins to prevent biofilm formation of several model systems demonstrated highest inhibitory effects of QQ-2 using the crystal violet biofilm assay. This was confirmed by heterologous expression of the respective QQ proteins in Klebsiella oxytoca M5a1 and monitoring biofilm formation in a continuous flow cell system. Moreover, QQ-2 chemically immobilized to the glass surface of the flow cell effectively inhibited biofilm formation of K. oxytoca as well as clinical K. pneumoniae isolates derived from patients with urinary tract infections. Indications were obtained by molecular and biochemical characterizations that QQ-2 represents an oxidoreductase most likely reducing the signaling molecules AHL and AI-2 to QS-inactive hydroxy-derivatives. Overall, we propose that the identified novel QQ-2 protein

  17. Highly effective inhibition of biofilm formation by the first metagenome-derived AI-2 quenching enzyme

    Directory of Open Access Journals (Sweden)

    Nancy Weiland-Bräuer

    2016-07-01

    Full Text Available Bacterial cell-cell communication (quorum sensing, QS represents a fundamental process crucial for biofilm formation, pathogenicity, and virulence allowing coordinated, concerted actions of bacteria depending on their cell density. With the widespread appearance of antibiotic-resistance of biofilms, there is an increasing need for novel strategies to control harmful biofilms. One attractive and most likely effective approach is to target bacterial communication systems for novel drug design in biotechnological and medical applications. In this study, metagenomic large-insert libraries were constructed and screened for QS interfering activities (quorum quenching, QQ using recently established reporter strains. Overall, 142 out of 46,400 metagenomic clones were identified to interfere with acyl-homoserine lactones (AHLs, 13 with autoinducer-2 (AI-2. Five cosmid clones with highest simultaneous interfering activities were further analyzed and the respective open reading frames conferring QQ activities identified. Those showed homologies to bacterial oxidoreductases, proteases, amidases and aminotransferases. Evaluating the ability of the respective purified QQ-proteins to prevent biofilm formation of several model systems demonstrated highest inhibitory effects of QQ-2 using the crystal violet biofilm assay. This was confirmed by heterologous expression of the respective QQ proteins in Klebsiella oxytoca M5a1 and monitoring biofilm formation in a continuous flow cell system. Moreover, QQ-2 chemically immobilized to the glass surface of the flow cell effectively inhibited biofilm formation of K. oxytoca as well as clinical K. pneumoniae isolates derived from patients with urinary tract infections. Indications were obtained by molecular and biochemical characterizations that QQ-2 represents an oxidoreductase most likely reducing the signaling molecules AHL and AI-2 to QS-inactive hydroxy-derivatives. Overall, we propose that the identified novel QQ-2

  18. Chemically Specific Cellular Imaging of Biofilm Formation

    Energy Technology Data Exchange (ETDEWEB)

    Herberg, J L; Schaldach, C; Horn, J; Gjersing, E; Maxwell, R

    2006-02-09

    This document and the accompanying manuscripts summarize the technical accomplishments for our one-year LDRD-ER effort. Biofilm forming microbes have existed on this planet for billions of years and make up 60% of the biological mass on earth. Such microbes exhibit unique biochemical pathways during biofilm formation and play important roles in human health and the environment. Microbial biofilms have been directly implicated in, for example, product contamination, energy losses, and medical infection that cost the loss of human lives and billions of dollars. In no small part due to the lack of detailed understanding, biofilms unfortunately are resistant to control, inhibition, and destruction, either through treatment with antimicrobials or immunological defense mechanisms of the body. Current biofilm research has concentrated on the study of biofilms in the bulk. This is primarily due to the lack of analytical and physical tools to study biofilms non-destructively, in three dimensions, and on the micron or sub-micron scale. This has hindered the development of a clear understanding of either the early stage mechanisms of biofilm growth or the interactions of biofilms with their environment. Enzymatic studies have deduced a biochemical reaction that results in the oxidation of reduced sulfur species with the concomitant reduction of nitrate, a common groundwater pollutant, to dinitrogen gas by the bacterium, Thiobacillus denitrificans (TD). Because of its unique involvement in biologically relevant environmental pathways, TD is scheduled for genome sequencing in the near future by the DOE's Joint Genome Institute and is of interest to DOE's Genomes to Life Program. As our ecosystem is exposed to more and more nitrate contamination large scale livestock and agricultural practices, a further understanding of biofilm formation by organisms that could alleviate these problems is necessary in order to protect out biosphere. However, in order to study this

  19. Biofilm formation and fibrinogen and fibronectin binding activities by Corynebacterium pseudodiphtheriticum invasive strains.

    Science.gov (United States)

    Souza, Monica Cristina; dos Santos, Louisy Sanches; Sousa, Leonardo Paiva; Faria, Yuri Vieira; Ramos, Juliana Nunes; Sabbadini, Priscila Soares; da Santos, Cíntia Silva; Nagao, Prescilla Emy; Vieira, Verônica Viana; Gomes, Débora Leandro Rama; Hirata Júnior, Raphael; Mattos-Guaraldi, Ana Luiza

    2015-06-01

    Biofilm-related infections are considered a major cause of morbidity and mortality in hospital environments. Biofilms allow microorganisms to exchange genetic material and to become persistent colonizers and/or multiresistant to antibiotics. Corynebacterium pseudodiphtheriticum (CPS), a commensal bacterium that colonizes skin and mucosal sites has become progressively multiresistant and responsible for severe nosocomial infections. However, virulence factors of this emergent pathogen remain unclear. Herein, we report the adhesive properties and biofilm formation on hydrophilic (glass) and hydrophobic (plastic) abiotic surfaces by CPS strains isolated from patients with localized (ATCC10700/Pharyngitis) and systemic (HHC1507/Bacteremia) infections. Adherence to polystyrene attributed to hydrophobic interactions between bacterial cells and this negatively charged surface indicated the involvement of cell surface hydrophobicity in the initial stage of biofilm formation. Attached microorganisms multiplied and formed microcolonies that accumulated as multilayered cell clusters, a step that involved intercellular adhesion and synthesis of extracellular matrix molecules. Further growth led to the formation of dense bacterial aggregates embedded in the exopolymeric matrix surrounded by voids, typical of mature biofilms. Data also showed CPS recognizing human fibrinogen (Fbg) and fibronectin (Fn) and involvement of these sera components in formation of "conditioning films". These findings suggested that biofilm formation may be associated with the expression of different adhesins. CPS may form biofilms in vivo possibly by an adherent biofilm mode of growth in vitro currently demonstrated on hydrophilic and hydrophobic abiotic surfaces. The affinity to Fbg and Fn and the biofilm-forming ability may contribute to the establishment and dissemination of infection caused by CPS.

  20. Physical solutions to the public goods dilemma in bacterial biofilms

    Science.gov (United States)

    Drescher, Knut; Nadell, Carey; Stone, Howard; Wingreen, Ned; Bassler, Bonnie

    2013-11-01

    Bacteria frequently live in densely populated surface-bound communities, termed biofilms. Biofilm-dwelling cells rely on secretion of extracellular substances to construct their communities and to capture nutrients from the environment. Some secreted factors behave as cooperative public goods: they can be exploited by non-producing cells. The means by which public good producing bacteria avert exploitation in biofilm environments are largely unknown. Using experiments with Vibrio cholerae, which secretes extracellular enzymes to digest its primary food source, the solid polymer chitin, we show that the public goods dilemma may be solved by two dramatically different, physical mechanisms: cells can produce thick biofilms that confine the goods to producers, or fluid flow can remove soluble products of chitin digestion, denying access to non-producers. Both processes limit the distance over which enzyme-secreting cells provide a benefit to neighbors, resulting in preferential benefit to nearby clonemates. Our results demonstrate how bacterial physiology and environmental conditions can interact with social phenotypes to influence the evolutionary dynamics of cooperation within biofilms.

  1. Comparing Methods of Separating Bacterial Biofilms on the Surface of Water Transportation Pipes and Equipment of Milking in the Farms

    Directory of Open Access Journals (Sweden)

    setareh nabizadeh

    2016-08-01

    Full Text Available Introduction Bacterial biofilms can be both useful and harmful based on their combination and locations. Biofilm formation occurs as a stepwise process. Their formation in liquid transportation pipes used for milking system and drinking water in animal farms may create some problems and is a potential source of pollution. Speed of biofilm formation depends on many factors including: construction and functional characteristics of bacteria, the composition and culture conditions such as temperature and substratum. In this research the Bacillus subtillis bacteria with special characteristics was selected due to its capability for biofilm creation. Bacillus subtillis bacteria is mobility and a stronger connection than other bacteria levels are created. In the research conducted in the biofilm there are many resources on biofilm formation by Bacillus subtillis bacteria. Bacillus subtillis is saprophytic in the soil, water and air. There is also the ability to form spores of Bacillus subtillis. Materials and Methods Firstly the possibility of creating biofilms on different Plastic (polyvinilchlorid, polypropylene, polyethylengelycole, alluminum and glass surfaces in three temperatures of 4°C, 30°C and 37°C were studied. Two different methods of biofilms separation including separating swap and vortex were tested and their efficienceies were calculated. After biofilm formation on parts of the vortex separation method after washing parts in sterile conditions in a tube containing normal saline for 4 minutes was vortex. The bacterial suspension decreasing dilution series was created. Pour plate in medium using agar plate count agar and was cultured at 30°C for 24-48 hours. Numbers of colonies were counted. The numbers of biofilm cells were calculated. In swap method after biofilm formation on parts using a cotton swap was isolated biofilms. The swap was transferred to tube containing normal saline and the bacterial suspension decreasing dilution

  2. SarA positively controls bap-dependent biofilm formation in Staphylococcus aureus.

    Science.gov (United States)

    Trotonda, María Pilar; Manna, Adhar C; Cheung, Ambrose L; Lasa, Iñigo; Penadés, José R

    2005-08-01

    The biofilm-associated protein Bap is a staphylococcal surface protein involved in biofilm formation. We investigated the influence of the global regulatory locus sarA on bap expression and Bap-dependent biofilm formation in three unrelated Staphylococcus aureus strains. The results showed that Bap-dependent biofilm formation was diminished in the sarA mutants by an agr-independent mechanism. Complementation studies using a sarA clone confirmed that the defect in biofilm formation was due to the sarA mutation. As expected, the diminished capacity to form biofilms in the sarA mutants correlated with the decreased presence of Bap in the bacterial surface. Using transcriptional fusion and Northern analysis data, we demonstrated that the sarA gene product acts as an activator of bap expression. Finally, the bap promoter was characterized and the transcriptional start point was mapped by the rapid amplification of cDNA ends technique. As expected, we showed that purified SarA protein binds specifically to the bap promoter, as determined by gel shift and DNase I footprinting assays. Based on the previous studies of others as well as our work demonstrating the role for SarA in icaADBC and bap expression, we propose that SarA is an essential regulator controlling biofilm formation in S. aureus.

  3. Nickel Promotes Biofilm Formation by Escherichia coli K-12 Strains That Produce Curli▿

    Science.gov (United States)

    Perrin, Claire; Briandet, Romain; Jubelin, Gregory; Lejeune, Philippe; Mandrand-Berthelot, Marie-Andrée; Rodrigue, Agnès; Dorel, Corinne

    2009-01-01

    The survival of bacteria exposed to toxic compounds is a multifactorial phenomenon, involving well-known molecular mechanisms of resistance but also less-well-understood mechanisms of tolerance that need to be clarified. In particular, the contribution of biofilm formation to survival in the presence of toxic compounds, such as nickel, was investigated in this study. We found that a subinhibitory concentration of nickel leads Escherichia coli bacteria to change their lifestyle, developing biofilm structures rather than growing as free-floating cells. Interestingly, whereas nickel and magnesium both alter the global cell surface charge, only nickel promotes biofilm formation in our system. Genetic evidence indicates that biofilm formation induced by nickel is mediated by the transcriptional induction of the adhesive curli-encoding genes. Biofilm formation induced by nickel does not rely on efflux mechanisms using the RcnA pump, as these require a higher concentration of nickel to be activated. Our results demonstrate that the nickel-induced biofilm formation in E. coli is an adaptational process, occurring through a transcriptional effect on genes coding for adherence structures. The biofilm lifestyle is obviously a selective advantage in the presence of nickel, but the means by which it improves bacterial survival needs to be investigated. PMID:19168650

  4. Nickel promotes biofilm formation by Escherichia coli K-12 strains that produce curli.

    Science.gov (United States)

    Perrin, Claire; Briandet, Romain; Jubelin, Gregory; Lejeune, Philippe; Mandrand-Berthelot, Marie-Andrée; Rodrigue, Agnès; Dorel, Corinne

    2009-03-01

    The survival of bacteria exposed to toxic compounds is a multifactorial phenomenon, involving well-known molecular mechanisms of resistance but also less-well-understood mechanisms of tolerance that need to be clarified. In particular, the contribution of biofilm formation to survival in the presence of toxic compounds, such as nickel, was investigated in this study. We found that a subinhibitory concentration of nickel leads Escherichia coli bacteria to change their lifestyle, developing biofilm structures rather than growing as free-floating cells. Interestingly, whereas nickel and magnesium both alter the global cell surface charge, only nickel promotes biofilm formation in our system. Genetic evidence indicates that biofilm formation induced by nickel is mediated by the transcriptional induction of the adhesive curli-encoding genes. Biofilm formation induced by nickel does not rely on efflux mechanisms using the RcnA pump, as these require a higher concentration of nickel to be activated. Our results demonstrate that the nickel-induced biofilm formation in E. coli is an adaptational process, occurring through a transcriptional effect on genes coding for adherence structures. The biofilm lifestyle is obviously a selective advantage in the presence of nickel, but the means by which it improves bacterial survival needs to be investigated.

  5. Inhibitory activity of monoacylglycerols on biofilm formation in Aeromonas hydrophila, Streptococcus mutans, Xanthomonas oryzae, and Yersinia enterocolitica.

    Science.gov (United States)

    Ham, Youngseok; Kim, Tae-Jong

    2016-01-01

    Biofilm provides a bacterial hiding place by forming a physical barrier and causing physiological changes in cells. The elimination of biofilm is the main goal of hygiene. Chemicals that are inhibitory to biofilm formation have been developed for use in food, personal hygiene products, and medical instruments. Monoacylglycerols are recognized as safe and are used in food as emulsifiers. In this study, the inhibitory activity of monoacylglycerols on bacterial biofilm formation was evaluated systematically with four bacterial strains, Aeromonas hydrophila, Streptococcus mutans, Xanthomonas oryzae, and Yersinia enterocolitica. Monoacylglycerols with two specific lengths of fatty acid moiety, monolaurin and monobehenin, were found to have strong inhibitory activity toward bacterial biofilm formation of S. mutans, X. oryzae, and Y. enterocolitica in a strain specific manner. First, this result suggested that biofilm formation was not inhibited by the detergent characteristics of monoacylglycerols. This suggestion was supported by the inhibitory action of monolaurin on biofilm development but not on the initial cell attachment of Y. enterocolitica in flow cytometric observation. Second, it was also suggested that two distinct response mechanisms to monoacylglycerols existed in bacteria. The existence of these two inhibitory response mechanisms was bacterial strain specific.

  6. Biofilm formation of Clostridium perfringens and its exposure to low-dose antimicrobials

    Directory of Open Access Journals (Sweden)

    Audrey eCharlebois

    2014-04-01

    Full Text Available Clostridium perfringens is an opportunistic pathogen that can cause food poisoning in humans and various enterotoxemia in animal species. Very little is known on the biofilm of C. perfringens and its exposure to subminimal inhibitory concentrations of antimicrobials. This study was undertaken to address these issues. Most of the C. perfringens human and animal isolates tested in this study were able to form biofilm (230/277. Porcine clinical isolates formed significantly more biofilm than the porcine commensal isolates. A subgroup of clinical and commensal C. perfringens isolates was randomly selected for further characterization. Biofilm was found to protect C. perfringens bacterial cells from exposure to high concentrations of tested antimicrobials. Exposure to low doses of some of these antimicrobials tended to lead to a diminution of the biofilm formed. However, a few isolates showed an increase in biofilm formation when exposed to low doses of tylosin, bacitracin, virginiamycin and monensin. Six isolates were randomly selected for biofilm analysis using scanning laser confocal microscopy. Of those, four produced more biofilm in presence of low doses of bacitracin whereas biofilms formed without bacitracin were thinner and less elevated. An increase in the area occupied by bacteria in the biofilm following exposure to low doses of bacitracin was also observed in the majority of isolates. Morphology examination revealed flat biofilms with the exception of one isolate that demonstrated a mushroom-like biofilm. Matrix composition analysis showed the presence of proteins, beta 1-4 linked polysaccharides and extracellular DNA, but no poly-beta-1,6-N-acetyl-D-glucosamine (PNAG. This study brings new information on the biofilm produced by C. perfringens and its exposure to low doses of antimicrobials.

  7. SCCmec-associated psm-mec mRNA promotes Staphylococcus epidermidis biofilm formation.

    Science.gov (United States)

    Yang, Yongchang; Zhang, Xuemei; Huang, Wenfang; Yin, Yibing

    2016-10-01

    Biofilm formation is considered the major pathogenic mechanism of Staphylococcus epidermidis-associated nosocomial infections. Reports have shown that SCCmec-associated psm-mec regulated methicillin-resistant Staphylococcus aureus virulence and biofilm formation. However, the role of psm-mec in S. epidermidis remains unclear. To this purpose, we analysed 165 clinical isolates of S. epidermidis to study the distribution, mutation and expression of psm-mec and the relationship between this gene and biofilm formation. Next, we constructed three psm-mec deletion mutants, one psm-mec transgene expression strain (p221) and two psm-mec point mutant strains (pM, pAG) to explore its effects on S. epidermidis biofilm formation. Then, the amount of biofilm formation, extracellular DNA (eDNA) and Triton X-100-induced autolysis of the constructed strains was measured. Results of psm-mec deletion and transgene expression showed that the gene regulated S. epidermidis biofilm formation. Compared with the control strains, the ability to form biofilm, Triton X-100-induced autolysis and the amount of eDNA increased in the p221 strain and the two psm-mec mutants pM and pAG expressed psm-mec mRNA without its protein, whereas no differences were observed among the three constructed strains, illustrating that psm-mec mRNA promoted S. epidermidis biofilm formation through up-regulation of bacterial autolysis and the release of eDNA. Our results reveal that acquisition of psm-mec promotes S. epidermidis biofilm formation.

  8. Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation

    DEFF Research Database (Denmark)

    Stapper, A.P.; Narasimhan, G.; Oman, D.E.

    2004-01-01

    Extracellular polymers can facilitate the non-specific attachment of bacteria to surfaces and hold together developing biofilms. This study was undertaken to qualitatively and quantitatively compare the architecture of biofilms produced by Pseudomonas aeruginosa strain PAO1 and its alginate......-overproducing (mucA22) and alginate-defective (algD) variants in order to discern the role of alginate in biofilm formation. These strains, PAO1, Alg(+) PAOmucA22 and Alg(-) PAOalgD, tagged with green fluorescent protein, were grown in a continuous flow cell system to characterize the developmental cycles...... of their biofilm formation using confocal laser scanning microscopy. Biofilm Image Processing (BIP) and Community Statistics (COMSTAT) software programs were used to provide quantitative measurements of the two-dimensional biofilm images. All three strains formed distinguishable biofilm architectures, indicating...

  9. Bacterial biofilms investigated by atomic force microscopy and electrochemistry

    DEFF Research Database (Denmark)

    Hu, Yifan

    thesis, Atomic Force Microscopy (AFM) and electrochemistry have been applied to investigate three pathogenic medically important bacterial biofilms, i.e. Pseudomonas aeruginosa (cystic fibrosis pneumonia), Staphylococcus epidermidis (contamination of surgical catheters and indwelling equipment...... attachment on the surface. High-resolution AFM imaging showed no detectable differences among the four strains. Adhesion maps using hydrophobically modified tips compared with bare hydrophilic silicon nitride tips also showed small differences only. This indicates that hydrophobic effects are not the primary...

  10. Resveratrol--a potential inhibitor of biofilm formation in Vibrio cholerae.

    Science.gov (United States)

    Augustine, Nimmy; Goel, A K; Sivakumar, K C; Kumar, R Ajay; Thomas, Sabu

    2014-02-15

    Resveratrol, a phytochemical commonly found in the skin of grapes and berries, was tested for its biofilm inhibitory activity against Vibrio cholerae. Biofilm inhibition was assessed using crystal violet assay. MTT assay was performed to check the viability of the treated bacterial cells and the biofilm architecture was analysed using confocal laser scanning microscopy. The possible target of the compound was determined by docking analysis. Results showed that subinhibitory concentrations of the compound could significantly inhibit biofilm formation in V. cholerae in a concentration-dependent manner. AphB was found to be the putative target of resveratrol using docking analysis. The results generated in this study proved that resveratrol is a potent biofilm inhibitor of V. cholerae and can be used as a novel therapeutic agent against cholera. To our knowledge, this is the first report of resveratrol showing antibiofilm activity against V. cholerae.

  11. On-Demand Removal of Bacterial Biofilms via Shape Memory Activation.

    Science.gov (United States)

    Gu, Huan; Lee, Sang Won; Buffington, Shelby Lois; Henderson, James H; Ren, Dacheng

    2016-08-24

    Bacterial biofilms are a major cause of chronic infections and biofouling; however, effective removal of established biofilms remains challenging. Here we report a new strategy for biofilm control using biocompatible shape memory polymers with defined surface topography. These surfaces can both prevent bacterial adhesion and remove established biofilms upon rapid shape change with moderate increase of temperature, thereby offering more prolonged antifouling properties. We demonstrate that this strategy can achieve a total reduction of Pseudomonas aeruginosa biofilms by 99.9% compared to the static flat control. It was also found effective against biofilms of Staphylococcus aureus and an uropathogenic strain of Escherichia coli.

  12. SubMICs of penicillin and erythromycin enhance biofilm formation and hydrophobicity of Corynebacterium diphtheriae strains.

    Science.gov (United States)

    Gomes, D L R; Peixoto, R S; Barbosa, E A B; Napoleão, F; Sabbadini, P S; dos Santos, K R N; Mattos-Guaraldi, A L; Hirata, R

    2013-05-01

    Subinhibitory concentrations (subMICs) of antibiotics may alter bacterial surface properties and change microbial physiology. This study aimed to investigate the effect of a subMIC (⅛ MIC) of penicillin (PEN) and erythromycin (ERY) on bacterial morphology, haemagglutinating activity, cell-surface hydrophobicity (CSH) and biofilm formation on glass and polystyrene surfaces, as well as the distribution of cell-surface acidic anionic residues of Corynebacterium diphtheriae strains (HC01 tox(-) strain; CDC-E8392 and 241 tox(+) strains). All micro-organisms tested were susceptible to PEN and ERY. Growth in the presence of PEN induced bacterial filamentation, whereas subMIC of ERY caused cell-size reduction of strains 241 and CDC-E8392. Adherence to human erythrocytes was reduced after growth in the presence of ERY, while CSH was increased by a subMIC of both antibiotics in bacterial adherence to n-hexadecane assays. Conversely, antibiotic inhibition of biofilm formation was not observed. All strains enhanced biofilm formation on glass after treatment with ERY, while only strain 241 increased glass adherence after cultivation in the presence of PEN. Biofilm production on polystyrene surfaces was improved by ⅛ MIC of ERY. After growth in the presence of both antimicrobial agents, strains 241 and CDC-E8392 exhibited anionic surface charges with focal distribution. In conclusion, subMICs of PEN and ERY modified bacterial surface properties and enhanced not only biofilm formation but also cell-surface hydrophobicity. Antibiotic-induced biofilm formation may contribute to the inconsistent success of antimicrobial therapy for C. diphtheriae infections.

  13. Reducing Staphylococcus aureus biofilm formation on stainless steel 316L using functionalized self-assembled monolayers.

    Science.gov (United States)

    Kruszewski, Kristen M; Nistico, Laura; Longwell, Mark J; Hynes, Matthew J; Maurer, Joshua A; Hall-Stoodley, Luanne; Gawalt, Ellen S

    2013-05-01

    Stainless steel 316L (SS316L) is a common material used in orthopedic implants. Bacterial colonization of the surface and subsequent biofilm development can lead to refractory infection of the implant. Since the greatest risk of infection occurs perioperatively, strategies that reduce bacterial adhesion during this time are important. As a strategy to limit bacterial adhesion and biofilm formation on SS316L, self-assembled monolayers (SAMs) were used to modify the SS316L surface. SAMs with long alkyl chains terminated with hydrophobic (-CH3) or hydrophilic (oligoethylene glycol) tail groups were used to form coatings and in an orthogonal approach, SAMs were used to immobilize gentamicin or vancomycin on SS316L for the first time to form an "active" antimicrobial coating to inhibit early biofilm development. Modified SS316L surfaces were characterized using surface infrared spectroscopy, contact angles, MALDI-TOF mass spectrometry and atomic force microscopy. The ability of SAM-modified SS316L to retard biofilm development by Staphylococcus aureus was functionally tested using confocal scanning laser microscopy with COMSTAT image analysis, scanning electron microscopy and colony forming unit analysis. Neither hydrophobic nor hydrophilic SAMs reduced biofilm development. However, gentamicin-linked and vancomycin-linked SAMs significantly reduced S. aureus biofilm formation for up to 24 and 48 h, respectively.

  14. In vitro biofilm formation by uropathogenic Escherichia coliand their antimicrobial susceptibility pattern

    Institute of Scientific and Technical Information of China (English)

    Poovendran Ponnusamy; Vidhya Natarajan; Murugan Sevanan

    2012-01-01

    Objective:To detect in vitro biofilm formation of uropathogenic Escherichia coli(E. coli)(UPEC) strains isolated from urine specimens and also to determine their antimicrobial susceptibility pattern using 13 commonly used antibiotics.Methods: The present study comprised of166 urine specimens collected from tertiary care hospitals in and around Coimbatore, South India. All the specimens were subjected to gram staining, bacterial culture and theE. coli strains were screened for biofilm formation using Tube Method(TM), Congo Red Agar(CRA) and Tissue Culture Plate method(TCP) respectively. Subsequently, the antimicrobial susceptibility test was performed by Kirby Bauer-disk diffusion method for the biofilm and non-biofilm producingE. colistrains.Results: Of the100 (60.2 %)E. coli strains,72 strains displayed a biofilm positive phenotype under the optimized conditions in the Tube Method and the strains were classified as highly positive(17, 23.6%), moderate positive(19, 26.3 %) and weakly positive(36, 50.0 %), similarly under the optimized conditions on Congo Red agar medium, biofilm positive phenotype strains were classified as highly positive(23, 23 %), moderate positive(37, 37 %)and weakly positive (40, 40%). While inTCP method, the biofilm positive phenotype strains were also classified as highly positive(6, 6 %), moderate positive (80, 80 %)and weakly positive(14, 14 %), it didn’t not correlate well with the tube method for detecting biofilm formation in E. coli. The rates of antibiotic resistance of biofilm producingE. coliwere found to be 100 % for chloramphenicol and amoxyclav (amoxicillin and clavulanic acid),86% for gentamicin and cefotaxime,84% for ceftazidime,83% for cotrimoxazole and piperacillin/tazobactam,75% for tetracycline and70% for amikacin.Conclusions: This study reveals the prevalence and antimicrobial susceptibility pattern of biofilm and non-biofilm producing uropathogenic E. coli strains.

  15. Inhibitory effect of zinc oxide nanoparticles on pseudomonas aeruginosa biofilm formation

    Directory of Open Access Journals (Sweden)

    Mohammad Hassani Sangani

    2015-04-01

    Full Text Available Objective(s: Bacterial biofilm formation causes many persistent and chronic infections. The matrix protects biofilm bacteria from exposure to innate immune defenses and antibiotic treatments. The purpose of this study was to evaluate the biofilm formation of clinical isolates of Pseudomonas aeruginosa and the activity of zinc oxide nanoparticles (ZnO NPs on biofilm. Materials and Methods: After collecting bacteria from clinical samples of hospitalized patients, the ability of organisms were evaluated to create biofilm by tissue culture plate (TCP assay. ZnO NPs were synthesized by sol gel method and the efficacy of different concentrations (50- 350 µg/ml of ZnO NPs was assessed on biofilm formation and also elimination of pre-formed biofilm by using TCP method. Results:The average diameter of synthesized ZnO NPs was 20 nm. The minimum inhibitory concentration of nanoparticles was 150- 158 μg/ml and the minimum bactericidal concentration was higher (325 µg/ml. All 15 clinical isolates of P. aeruginosa were able to produce biofilm. Treating the organisms with nanoparticles at concentrations of 350 μg/ml resulted in more than 94% inhibition in OD reduction%. Molecular analysis showed that the presence of mRNA of pslA gene after treating bacteria with ZnO NPs for 30 minutes. Conclusion: The results showed that ZnO NPs can inhibit the establishment of P. aeruginosa biofilms and have less effective in removing pre-formed biofilm. However the tested nanoparticles exhibited anti-biofilm effect, but mRNA of pslA gene could be still detected in the medium by RT-PCR technique after 30 minutes treatment with ZnO.

  16. Novel application for the prevention and treatment of Staphylococcus aureus biofilm formation

    Science.gov (United States)

    Traba, Christian

    Formation of bacterial biofilms at solid-liquid interfaces creates numerous problems in both industrial and biomedical sciences. In this dissertation, the application of plasma from two very different facets was studied. In part one, the susceptibility of pre-formed Staphylococcus aureus biofilms on biomaterials to different plasmas was investigated. It was found that the distinct chemical/physical properties of plasmas generated from oxygen, nitrogen, and argon all demonstrated very potent but very different anti-biofilm mechanisms of action. An in depth analysis of these results show: 1) different reactive species produced in each plasma demonstrate specific activity, and 2) the commonly associated etching effect could be manipulated and even controlled, depending on experimental conditions and the discharge gas. These studies provide insights into the anti-biofilm mechanisms of plasma as well as the effects of different reactive species on biofilm inactivation. Under experimental parameters, bacterial cells in Staphylococcus aureus biofilms were killed (>99.9%) by plasmas within minutes of exposure and no bacteria nor biofilm re-growth from discharge gas treated biofilms was observed throughout the life-span of the re-growth experiment. The decontamination ability of plasmas for the treatment of biofilm related infections on biomedical materials was confirmed and novel applications involving the use of low power argon and oxygen for the treatment of biofilm contaminated biomaterials and indwelling devices is proposed. The second facet of this dissertation explores the interaction between biofilm forming Staphylococcus aureus bacteria on different antibacterial/anti-biofilm surfaces. The antibiotic-free anti-fouling surfaces constructed in this study were generated from the plasma-assisted graft polymerization technique. These sophisticated surfaces were stable, biocompatible and capable of preventing biofilm formation on biomaterials and medical devices. Under

  17. Nematode-trapping fungi and fungus-associated bacteria interactions: the role of bacterial diketopiperazines and biofilms on Arthrobotrys oligospora surface in hyphal morphogenesis.

    Science.gov (United States)

    Li, Lei; Yang, Min; Luo, Jun; Qu, Qing; Chen, Ying; Liang, Lianming; Zhang, Keqin

    2016-11-01

    In soil, nematode-trapping fungi and bacteria often share microhabitats and interact with each other, but effects of fungus-associated bacteria on its trap formation are underestimated. We have ascertained the presence of Stenotrophomonas and Rhizobium genera associated with A. oligospora GJ-1. After A. oligospora GJ-1 without associated bacteria (cured Arthrobotrys) was co-cultivated with Stenotrophomonas and its supernatant extract, microscopic study of hyphae from co-cultivation indicated that bacterial biofilm formation on hyphae was related to trap formation in fungi and Stenotrophomonas supernatant extract. Four diketopiperazines (DKPs) were purified from Stenotrophomonas supernatant extract that could not induce traps in the cured Arthrobotrys. When cured Arthrobotrys was cultured with Stenotrophomonas and one of DKPs, polar attachment, bacterial biofilms on hyphae and trap formation in fungi were observed. After cured Arthrobotrys with bacterial biofilms was consecutively transferred several times on nutrient poor medium, trap formation disappeared with the disappearance of bacterial biofilms on hyphae. DKPs could facilitate chemotaxis of Stenotrophomonas towards fungal extract which was suggested to contribute to bacterial biofilms on hyphae. Furthermore, when cured Arthrobotrys was cultured with Stenotrophomonas and DKPs in soil, trap formation in fungi and bacterial biofilms on hyphae were also observed, and the fungal activity against nematode was enhanced.

  18. Nanoscale Plasma Coating Inhibits Formation of Staphylococcus aureus Biofilm

    OpenAIRE

    2015-01-01

    Staphylococcus aureus commonly infects medical implants or devices, with devastating consequences for the patient. The infection begins with bacterial attachment to the device, followed by bacterial multiplication over the surface of the device, generating an adherent sheet of bacteria known as a biofilm. Biofilms resist antimicrobial therapy and promote persistent infection, making management difficult to futile. Infections might be prevented by engineering the surface of the device to disco...

  19. Multi-channel microfluidic biosensor platform applied for online monitoring and screening of biofilm formation and activity.

    Science.gov (United States)

    Bruchmann, Julia; Sachsenheimer, Kai; Rapp, Bastian E; Schwartz, Thomas

    2015-01-01

    Bacterial colonization of surfaces and interfaces has a major impact on various areas including biotechnology, medicine, food industries, and water technologies. In most of these areas biofilm development has a strong impact on hygiene situations, product quality, and process efficacies. In consequence, biofilm manipulation and prevention is a fundamental issue to avoid adverse impacts. For such scenario online, non-destructive biofilm monitoring systems become important in many technical and industrial applications. This study reports such a system in form of a microfluidic sensor platform based on the combination of electrical impedance spectroscopy and amperometric current measurement, which allows sensitive online measurement of biofilm formation and activity. A total number of 12 parallel fluidic channels enable real-time online screening of various biofilms formed by different Pseudomonas aeruginosa and Stenotrophomonas maltophilia strains and complex mixed population biofilms. Experiments using disinfectant and antibiofilm reagents demonstrate that the biofilm sensor is able to discriminate between inactivation/killing of bacteria and destabilization of biofilm structures. The impedance and amperometric sensor data demonstrated the high dynamics of biofilms as a consequence of distinct responses to chemical treatment strategies. Gene expression of flagellar and fimbrial genes of biofilms grown inside the microfluidic system supported the detected biofilm growth kinetics. Thus, the presented biosensor platform is a qualified tool for assessing biofilm formation in specific environments and for evaluating the effectiveness of antibiofilm treatment strategies.

  20. An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal

    DEFF Research Database (Denmark)

    Harmsen, Morten; Yang, Liang; Pamp, Sünje Johanna

    2010-01-01

    . aeruginosa biofilms. The second messenger, c-di-GMP, is established as an important regulator of the synthesis of polysaccharide and protein components of the biofilm matrix. Extracellular DNA is shown to be an essential component of the biofilm matrix. It has become apparent that biofilm formation involves......We review the recent advances in the understanding of the Pseudomonas aeruginosa biofilm lifestyle from studies using in vitro laboratory setups such as flow chambers and microtiter trays. Recent work sheds light on the role of nutrients, motility, and quorum sensing in structure formation in P...... interactions between different subpopulations. The molecular mechanisms underlying the tolerance of biofilm bacteria to antimicrobial agents are beginning to be unraveled, and new knowledge has been obtained regarding the environmental cues and regulatory mechanisms involved in biofilm dispersal....

  1. Bacterial community of biofilms developed under different water supply conditions in a distribution system.

    Science.gov (United States)

    Sun, Huifang; Shi, Baoyou; Bai, Yaohui; Wang, Dongsheng

    2014-02-15

    In order to understand the bacterial community characteristics of biofilms developed under different finished water supply histories in drinking water distribution systems (DWDS), biofilm samples on different type of iron corrosion scales in a real DWDS were collected and systematically investigated using 454 pyrosequencing of 16S rRNA gene. The richness and diversity estimators showed that biofilms formed in DWDS transporting finished groundwater (GW) had the lowest level of bacterial diversity. From phylum to genus level, the dominant bacterial groups found in the biofilms under finished surface water (SW) and GW conditions were distinct. Proteobacteria was the dominant group in all biofilm samples (in the range of 40%-97%), but was relatively higher in biofilms with GW. The relative abundance of Firmicutes in biofilms with SW (28%-35%) was significantly higher (psupply condition. Several potential opportunistic pathogens, such as Burkholderia fungorum, Mycobacterium neoaurum, Mycobacterium frederiksbergense were detected in the biofilms.

  2. Staphylococcal biofilm formation on the surface of three different calcium phosphate bone grafts: a qualitative and quantitative in vivo analysis.

    Science.gov (United States)

    Furustrand Tafin, Ulrika; Betrisey, Bertrand; Bohner, Marc; Ilchmann, Thomas; Trampuz, Andrej; Clauss, Martin

    2015-03-01

    Differences in physico-chemical characteristics of bone grafts to fill bone defects have been demonstrated to influence in vitro bacterial biofilm formation. Aim of the study was to investigate in vivo staphylococcal biofilm formation on different calcium phosphate bone substitutes. A foreign-body guinea-pig infection model was used. Teflon cages prefilled with β-tricalcium phosphate, calcium-deficient hydroxyapatite, or dicalcium phosphate (DCP) scaffold were implanted subcutaneously. Scaffolds were infected with 2 × 10(3) colony-forming unit of Staphylococcus aureus (two strains) or S. epidermidis and explanted after 3, 24 or 72 h of biofilm formation. Quantitative and qualitative biofilm analysis was performed by sonication followed by viable counts, and microcalorimetry, respectively. Independently of the material, S. aureus formed increasing amounts of biofilm on the surface of all scaffolds over time as determined by both methods. For S. epidermidis, the biofilm amount decreased over time, and no biofilm was detected by microcalorimetry on the DCP scaffolds after 72 h of infection. However, when using a higher S. epidermidis inoculum, increasing amounts of biofilm were formed on all scaffolds as determined by microcalorimetry. No significant variation in staphylococcal in vivo biofilm formation was observed between the different materials tested. This study highlights the importance of in vivo studies, in addition to in vitro studies, when investigating biofilm formation of bone grafts.

  3. Mechanisms and Regulation of Surface Interactions and Biofilm Formation in Agrobacterium

    Directory of Open Access Journals (Sweden)

    Jason E. Heindl

    2014-05-01

    Full Text Available For many pathogenic bacteria surface attachment is a required first step during host interactions. Attachment can proceed to invasion of host tissue or cells or to establishment of a multicellular bacterial community known as a biofilm. The transition from a unicellular, often motile, state to a sessile, multicellular, biofilm-associated state is one of the most important developmental decisions for bacteria. Agrobacterium tumefaciens genetically transforms plant cells by transfer and integration of a segment of plasmid-encoded transferred DNA (T-DNA into the host genome, and has also been a valuable tool for plant geneticists. A. tumefaciens attaches to and forms a complex biofilm on a variety of biotic and abiotic substrates in vitro. Although rarely studied in situ, it is hypothesized that the biofilm state plays an important functional role in the ecology of this organism. Surface attachment, motility, and cell division are coordinated through a complex regulatory network that imparts an unexpected asymmetry to the A. tumefaciens life cycle. In this review we describe the mechanisms by which A. tumefaciens associates with surfaces, and regulation of this process. We focus on the transition between flagellar-based motility and surface attachment, and on the composition, production, and secretion of multiple extracellular components that contribute to the biofilm matrix. Biofilm formation by A. tumefaciens is linked with virulence both mechanistically and through shared regulatory molecules. We detail our current understanding of these and other regulatory schemes, as well as the internal and external (environmental cues mediating development of the biofilm state, including the second messenger cyclic-di-GMP, nutrient levels, and the role of the plant host in influencing attachment and biofilm formation. A. tumefaciens is an important model system contributing to our understanding of developmental transitions, bacterial cell biology, and

  4. Modeling of the Bacillus subtilis Bacterial Biofilm Growing on an Agar Substrate

    Directory of Open Access Journals (Sweden)

    Xiaoling Wang

    2015-01-01

    Full Text Available Bacterial biofilms are organized communities composed of millions of microorganisms that accumulate on almost any kinds of surfaces. In this paper, a biofilm growth model on an agar substrate is developed based on mass conservation principles, Fick’s first law, and Monod’s kinetic reaction, by considering nutrient diffusion between biofilm and agar substrate. Our results show biofilm growth evolution characteristics such as biofilm thickness, active biomass, and nutrient concentration in the agar substrate. We quantitatively obtain biofilm growth dependence on different parameters. We provide an alternative mathematical method to describe other kinds of biofilm growth such as multiple bacterial species biofilm and also biofilm growth on various complex substrates.

  5. Archaeal type IV pili and their involvement in biofilm formation.

    Science.gov (United States)

    Pohlschroder, Mechthild; Esquivel, Rianne N

    2015-01-01

    Type IV pili are ancient proteinaceous structures present on the cell surface of species in nearly all bacterial and archaeal phyla. These filaments, which are required for a diverse array of important cellular processes, are assembled employing a conserved set of core components. While type IV pilins, the structural subunits of pili, share little sequence homology, their signal peptides are structurally conserved allowing for in silico prediction. Recently, in vivo studies in model archaea representing the euryarchaeal and crenarchaeal kingdoms confirmed that several of these pilins are incorporated into type IV adhesion pili. In addition to facilitating surface adhesion, these in vivo studies also showed that several predicted pilins are required for additional functions that are critical to biofilm formation. Examples include the subunits of Sulfolobus acidocaldarius Ups pili, which are induced by exposure to UV light and promote cell aggregation and conjugation, and a subset of the Haloferax volcanii adhesion pilins, which play a critical role in microcolony formation while other pilins inhibit this process. The recent discovery of novel pilin functions such as the ability of haloarchaeal adhesion pilins to regulate swimming motility may point to novel regulatory pathways conserved across prokaryotic domains. In this review, we will discuss recent advances in our understanding of the functional roles played by archaeal type IV adhesion pili and their subunits, with particular emphasis on their involvement in biofilm formation.

  6. An expanded regulatory network temporally controls Candida albicans biofilm formation.

    Science.gov (United States)

    Fox, Emily P; Bui, Catherine K; Nett, Jeniel E; Hartooni, Nairi; Mui, Michael C; Andes, David R; Nobile, Clarissa J; Johnson, Alexander D

    2015-06-01

    Candida albicans biofilms are composed of highly adherent and densely arranged cells with properties distinct from those of free-floating (planktonic) cells. These biofilms are a significant medical problem because they commonly form on implanted medical devices, are drug resistant and are difficult to remove. C. albicans biofilms are not static structures; rather they are dynamic and develop over time. Here we characterize gene expression in biofilms during their development, and by comparing them to multiple planktonic reference states, we identify patterns of gene expression relevant to biofilm formation. In particular, we document time-dependent changes in genes involved in adhesion and metabolism, both of which are at the core of biofilm development. Additionally, we identify three new regulators of biofilm formation, Flo8, Gal4, and Rfx2, which play distinct roles during biofilm development over time. Flo8 is required for biofilm formation at all time points, and Gal4 and Rfx2 are needed for proper biofilm formation at intermediate time points.

  7. Individual growth detection of bacterial species in an in vitro oral polymicrobial biofilm model.

    Science.gov (United States)

    Tabenski, L; Maisch, T; Santarelli, F; Hiller, K-A; Schmalz, G

    2014-11-01

    Most in vitro studies on the antibacterial effects of antiseptics have used planktonic bacteria in monocultures. However, this study design does not reflect the in vivo situation in oral cavities harboring different bacterial species that live in symbiotic relationships in biofilms. The aim of this study was to establish a simple in vitro polymicrobial model consisting of only three bacterial strains of different phases of oral biofilm formation to simulate in vivo oral conditions. Therefore, we studied the biofilm formation of Actinomyces naeslundii (An), Fusobacterium nucleatum (Fn), and Enterococcus faecalis (Ef) on 96-well tissue culture plates under static anaerobic conditions using artificial saliva according to the method established by Pratten et al. that was supplemented with 1 g l(-1) sucrose. Growth was separately determined for each bacterial strain after incubation periods of up to 72 h by means of quantitative real-time polymerase chain reaction and live/dead staining. Presence of an extracellular polymeric substance (EPS) was visualized by Concanavalin A staining. Increasing incubation times of up to 72 h showed adhesion and propagation of the bacterial strains with artificial saliva formulation. An and Ef had significantly higher growth rates than Fn. Live/dead staining showed a median of 49.9 % (range 46.0-53.0 %) of living bacteria after 72 h of incubation, and 3D fluorescence microscopy showed a three-dimensional structure containing EPS. An in vitro oral polymicrobial biofilm model was established to better simulate oral conditions and had the advantage of providing the well-controlled experimental conditions of in vitro testing.

  8. Structural Basis for Translocation of a Biofilm-supporting Exopolysaccharide across the Bacterial Outer Membrane.

    Science.gov (United States)

    Wang, Yan; Andole Pannuri, Archana; Ni, Dongchun; Zhou, Haizhen; Cao, Xiou; Lu, Xiaomei; Romeo, Tony; Huang, Yihua

    2016-05-06

    The partially de-N-acetylated poly-β-1,6-N-acetyl-d-glucosamine (dPNAG) polymer serves as an intercellular biofilm adhesin that plays an essential role for the development and maintenance of integrity of biofilms of diverse bacterial species. Translocation of dPNAG across the bacterial outer membrane is mediated by a tetratricopeptide repeat-containing outer membrane protein, PgaA. To understand the molecular basis of dPNAG translocation, we determined the crystal structure of the C-terminal transmembrane domain of PgaA (residues 513-807). The structure reveals that PgaA forms a 16-strand transmembrane β-barrel, closed by four loops on the extracellular surface. Half of the interior surface of the barrel that lies parallel to the translocation pathway is electronegative, suggesting that the corresponding negatively charged residues may assist the secretion of the positively charged dPNAG polymer. In vivo complementation assays in a pgaA deletion bacterial strain showed that a cluster of negatively charged residues proximal to the periplasm is necessary for biofilm formation. Biochemical analyses further revealed that the tetratricopeptide repeat domain of PgaA binds directly to the N-deacetylase PgaB and is critical for biofilm formation. Our studies support a model in which the positively charged PgaB-bound dPNAG polymer is delivered to PgaA through the PgaA-PgaB interaction and is further targeted to the β-barrel lumen of PgaA potentially via a charge complementarity mechanism, thus priming the translocation of dPNAG across the bacterial outer membrane.

  9. Oral biofilms: a reservoir of transferable, bacterial, antimicrobial resistance.

    Science.gov (United States)

    Roberts, Adam P; Mullany, Peter

    2010-12-01

    Oral microbes are responsible for dental caries and periodontal diseases and have also been implicated in a range of other diseases beyond the oral cavity. These bacteria live primarily as complex, polymicrobial biofilms commonly called dental plaque. Cells growing within a biofilm often exhibit altered phenotypes, such as increased antibiotic resistance. The stable structural properties and close proximity of the bacterial cells within the biofilm appears to be an excellent environment for horizontal gene transfer, which can lead to the spread of antibiotic resistance genes amongst the biofilm inhabitants. This article will present an overview of the different types and amount of resistance to antibiotics that have been found in the human oral microbiota and will discuss the oral inhabitants' role as a reservoir of antimicrobial resistance genes. In addition, data on the genetic support for these resistance genes will be detailed and the evidence for horizontal gene transfer reviewed, demonstrating that the bacteria inhabiting the oral cavity are a reservoir of transferable antibiotic resistance.

  10. Solutions to the public goods dilemma in bacterial biofilms.

    Science.gov (United States)

    Drescher, Knut; Nadell, Carey D; Stone, Howard A; Wingreen, Ned S; Bassler, Bonnie L

    2014-01-06

    Bacteria frequently live in densely populated surface-bound communities, termed biofilms [1-4]. Biofilm-dwelling cells rely on secretion of extracellular substances to construct their communities and to capture nutrients from the environment [5]. Some secreted factors behave as cooperative public goods: they can be exploited by nonproducing cells [6-11]. The means by which public-good-producing bacteria avert exploitation in biofilm environments are largely unknown. Using experiments with Vibrio cholerae, which secretes extracellular enzymes to digest its primary food source, the solid polymer chitin, we show that the public goods dilemma may be solved by two very different mechanisms: cells can produce thick biofilms that confine the goods to producers, or fluid flow can remove soluble products of chitin digestion, denying access to nonproducers. Both processes are unified by limiting the distance over which enzyme-secreting cells provide benefits to neighbors, resulting in preferential benefit to nearby clonemates and allowing kin selection to favor public good production. Our results demonstrate new mechanisms by which the physical conditions of natural habitats can interact with bacterial physiology to promote the evolution of cooperation.

  11. Bacterial vaginosis biofilms: challenges to current therapies and emerging solutions

    Directory of Open Access Journals (Sweden)

    Daniela eMachado

    2016-01-01

    Full Text Available Bacterial vaginosis (BV is the most common genital tract infection in women during their reproductive years and it has been associated with serious health complications, such as preterm delivery and acquisition or transmission of several sexually transmitted agents. BV is characterized by a reduction of beneficial lactobacilli and a significant increase in number of anaerobic bacteria, including Gardnerella vaginalis, Atopobium vaginae, Mobiluncus spp., Bacteroides spp. and Prevotella spp.. Being polymicrobial in nature, BV aetiology remains unclear. However, it is certain that BV involves the presence of a thick vaginal multi-species biofilm, where G. vaginalis is the predominant species. Similar to what happens in many other biofilm-related infections, standard antibiotics, like metronidazole, are unable to fully eradicate the vaginal biofilm, which can explain the high recurrence rates of BV. Furthermore, antibiotic therapy can also cause a negative impact on the healthy vaginal microflora. These issues sparked the interest in developing alternative therapeutic strategies. This review provides a quick synopsis of the currently approved and available antibiotics for BV treatment while presenting an overview of novel strategies that are being explored for the treatment of this disorder, with special focus on natural compounds that are able to overcome biofilm-associated antibiotic resistance.

  12. Solutions to the public goods dilemma in bacterial biofilms

    Science.gov (United States)

    Drescher, Knut; Nadell, Carey D.; Stone, Howard A.; Wingreen, Ned S.; Bassler, Bonnie L.

    2014-03-01

    Bacteria frequently live in densely populated surface-bound communities, termed biofilms. Biofilm-dwelling cells rely on secretion of extracellular substances to construct their communities and to capture nutrients from the environment. Some secreted factors behave as cooperative public goods: they can be exploited by non-producing cells. The means by which public-good-producing bacteria avert exploitation in biofilm environments are largely unknown. Using experiments with Vibrio cholerae, which secretes extracellular enzymes to digest its primary food source, the solid polymer chitin, we show that the public goods dilemma may be solved by two very different mechanisms: cells can produce thick biofilms that confine the goods to producers, or fluid flow can remove soluble products of chitin digestion, denying access to non-producers. Both processes are unified by limiting the distance over which enzyme-secreting cells provide benefits to neighbors, resulting in preferential benefit to nearby clonemates and allowing kin selection to favor public good production. Our results demonstrate new mechanisms by which the physical conditions of natural habitats can interact with bacterial physiology to promote the evolution of cooperation.

  13. Is there a role for quorum sensing signals in bacterial biofilms?

    DEFF Research Database (Denmark)

    Kjelleberg, S.; Molin, Søren

    2002-01-01

    Bacteria form multicellular biofilm communities on most surfaces. Genetic analysis of biofilm formation has led to the proposal that extracellular signals and quorum-sensing regulatory systems are essential for differentiated biofilms. Although such a model fits the concept of density-driven cell...... adaptation during the different stages of biofilm formation. Hence, differentiated biofilms may also be the net result of many independent interactions, rather than being determined by a particular global quorum sensing system....

  14. Assessment of bacterial community structure in nitrifying biofilm under inorganic carbon-sufficient and -limited conditions.

    Science.gov (United States)

    Bae, Hyokwan; Chung, Yun-Chul; Yang, Heejeong; Lee, Changsoo; Aryapratama, Rio; Yoo, Young J; Lee, Seockheon

    2015-01-01

    In this work, nitrification and changes in the composition of the total bacterial community under inorganic carbon (IC)-limited conditions, in a nitrifying moving bed biofilm reactor, was investigated. A culture-independent analysis of cloning and sequencing based on the 16S rRNA gene was applied to quantify the bacterial diversity and to determine bacterial taxonomic assignment. IC concentrations had significant effects on the stability of ammonia-oxidation as indicated by the reduction of the nitrogen conversion rate with high NH4(+)-N loadings. The predominance of Nitrosomonas europaea was maintained in spite of changes in the IC concentration. In contrast, heterotrophic bacterial species contributed to a high bacterial diversity, and to a dynamic shift in the bacterial community structure, under IC-limited conditions. In this study, individual functions of heterotrophic bacteria were estimated based on taxonomic information. Possible key roles of coexisting heterotrophic bacteria are the assimilation of organic compounds of extracellular polymeric substances produced by nitrifiers, and biofilm formation by providing a filamentous structure and aggregation properties.

  15. Residual structure of Streptococcus mutans biofilm following complete disinfection favors secondary bacterial adhesion and biofilm re-development.

    Directory of Open Access Journals (Sweden)

    Tatsuya Ohsumi

    Full Text Available Chemical disinfection of oral biofilms often leaves biofilm structures intact. This study aimed to examine whether the residual structure promotes secondary bacterial adhesion. Streptococcus mutans biofilms generated on resin-composite disks in a rotating disc reactor were disinfected completely with 70% isopropyl alcohol, and were again cultured in the same reactor after resupplying with the same bacterial solution. Specimens were subjected to fluorescence confocal laser scanning microscopy, viable cell counts and PCR-Invader assay in order to observe and quantify secondarily adhered cells. Fluorescence microscopic analysis, particularly after longitudinal cryosectioning, demonstrated stratified patterns of viable cells on the disinfected biofilm structure. Viable cell counts of test specimens were significantly higher than those of controls, and increased according to the amount of residual structure and culture period. Linear regression analysis exhibited a high correlation between viable and total cell counts. It was concluded that disinfected biofilm structures favored secondary bacterial adhesion.

  16. Development of polyvinyl chloride biofilms for succession of selected marine bacterial populations.

    Science.gov (United States)

    Balasubramanian, V; Palanichamy, S; Subramanian, G; Rajaram, R

    2012-01-01

    Present investigation was made to bring out the pattern of biofilm formation by heterotrophic bacteria on nontoxic material, polyvinyl chloride (PVC) sheet fitted wooden rack that was immersed in seawater and the study was conducted in Tuticorin coast. Samplings were made over a period of 7 days with the following time period intervals: 30 min, 1, 2, 4, 24, 48, 72, 96, 120 and 144 hr. Bacterial enumeration was made by spread plate method on nutrient agar medium and characterization of bacterial isolates up to generic level was done. Gram-negative bacteria like Pseudomonas sp., Enterobacter sp., Aeromonas sp., Cytophaga sp. and Flavobacterium sp. were found to be the pioneer in colonizing the surface within 30 min and seven genera were represented in the biofilm. Among them two genera were found belonging to Gram-positive groups which included Micrococcus and Bacillus sp. The early stage biofilm i.e. up to 24th hr was wholly constituted by Gram-negative groups. However, the population density of Pseudomonas sp. was found to be higher (315 CFU) when compared to other Gram-negative forms. Occurrence of Gram-positive group was noted only at 48th hr old biofilm (28 to 150 CFU). The period between 48 and 96th hr was the transition where both the Gram-negative and Gram-positive groups co- existed. After 96th hr, the biofilm was found constituted only by Gram-positive groups. The isolates of early stage biofilm were found to produce allelopathic substance like bacteriocin.

  17. Label-free interdigitated microelectrode based biosensors for bacterial biofilm growth monitoring using Petri dishes.

    Science.gov (United States)

    Paredes, Jacobo; Becerro, Sheila; Arana, Sergio

    2014-05-01

    Impedance microbiology (IM) is a known technique that has been applied during the last decades to detect the presence of microorganisms in real samples in different fields: food industry, healthcare, environment, etc. Bacterial biofilms however have not been so far studied despite the fact that they are the most common microbiological formation and that they present resistance to antimicrobial agents. In situ early detection of bacterial biofilm is still a challenge nowadays that causes huge impact in many different scenarios. The ability to detect biofilm generation early will allow better and more efficient treatments preventing high costs and important problems. In this work a new performance of this technique with interdigitated microelectrode sensors (IDE) is proposed. A specific culturing setup where the sensors have been integrated in Petri Dishes has been developed. From the results it can be highlighted that low frequencies are more sensitive for detection than higher ones. The results achieved record variations of approximately 40% in the equivalent serial resistance after 10h of culture. Electrical models have been successfully simulated to find the electrical behavior of the development of biofilms. Variations in both the capacitance and resistance were recorded during the growth of the microbes.

  18. Molecular analysis of bacterial communities in biofilms of a drinking water clearwell.

    Science.gov (United States)

    Zhang, Minglu; Liu, Wenjun; Nie, Xuebiao; Li, Cuiping; Gu, Junnong; Zhang, Can

    2012-01-01

    Microbial community structures in biofilms of a clearwell in a drinking water supply system in Beijing, China were examined by clone library, terminal restriction fragment length polymorphism (T-RFLP) and 454 pyrosequencing of the amplified 16S rRNA gene. Six biofilm samples (designated R1-R6) collected from six locations (upper and lower sites of the inlet, middle and outlet) of the clearwell revealed similar bacterial patterns by T-RFLP analysis. With respect to the dominant groups, the phylotypes detected by clone library and T-RFLP generally matched each other. A total of 9,543 reads were obtained from samples located at the lower inlet and the lower outlet sites by pyrosequencing. The bacterial diversity of the two samples was compared at phylum and genus levels. Alphaproteobacteria dominated the communities in both samples and the genus of Sphingomonas constituted 75.1%-99.6% of this phylum. A high level of Sphingomonas sp. was first observed in the drinking water biofilms with 0.6-1.0 mg L(-1) of chlorine residual. Disinfectant-resistant microorganisms deserve special attention in drinking water management. This study provides novel insights into the microbial populations in drinking water systems and highlights the important role of Sphingomonas species in biofilm formation.

  19. Detection of Intracellular Adhesion (ica Gene and Biofilm Formation Staphylococcus aureus Isolates from Clinical Blood Cultures

    Directory of Open Access Journals (Sweden)

    Mohsen Mirzaee

    2015-10-01

    Full Text Available Background: In fact the biofilms are composed of bacterial cells living inmulticellular structures such as tissues and organs embedded within a self-produced matrix of extracellular polymeric substance (EPS. Ability to attach and biofilm formation are the most important virulence factors Staphylococcus aureus isolates. The aims of this study were to detect intracellular adhesion (ica locus and its relation to the biofilm formation phenotype in clinical isolates of S. aureus isolated from bloodcultures.Methods: A total of 31 clinical S. aureus isolates were collected from Loghman Hospital of Tehran, Iran. In vitro biofilm formation ability was determined by microliter tissue culture plates. All clinical isolates were examined for determination the ica locus by using PCR method.Results: Twelve (38.7% of the isolates were strong biofilm producers. The results showed that 18(80.6% of the isolates carried icaD gene, whereas the prevalence of icaA, icaB and icaC were 51.6%, 45.1% and 77.4% respectively.Conclusions: S. aureus clinical isolates have different ability to form biofilm. This may be caused by the differences in the expression of biofilm related genes, genetic make-up and physiological conditions.

  20. Organic compounds inhibiting S. epidermidis adhesion and biofilm formation

    DEFF Research Database (Denmark)

    Qin, Zhiqiang; Zhang, Jingdong; Hu, Yifan

    2009-01-01

    . epidermidis infections by preventing or eradicating biofilm formation of the bacterium is therefore a medically important challenge. We report here a study of biofilm formation of S. epidermidis on solid surfaces using a combination of confocal laser scanning (CLSM) and atomic force microscopy (AFM) in both...

  1. Resistance to benzalkonium chloride, peracetic acid and nisin during formation of mature biofilms by Listeria monocytogenes.

    Science.gov (United States)

    Saá Ibusquiza, P; Herrera, J J R; Cabo, M L

    2011-05-01

    Increase of resistance to the application of benzalkonium chloride (BAC), peracetic acid (PA) and nisin during biofilm formation at 25 °C by three strains of Listeria monocytogenes (CECT 911, CECT 4032, CECT 5873 and BAC-adapted CECT 5873) in different scenarios was compared. For this purpose, resistance after 4 and 11-days of biofilm formation was quantified in terms of lethal dose 90% values (LD(90)), determined according with a dose-response logistic mathematical model. Microscopic analyses after 4 and 11-days of L. monocytogenes biofilm formation were also carried out. Results demonstrated a relation between the microscopic structure and the resistance to the assayed biocides in matured biofilms. The worst cases being biofilms formed by the strain 4032 (in both stainless steel and polypropylene), which showed a complex "cloud-type" structure that correlates with the highest resistance of this strain against the three biocides during biofilm maturation. However, that increase in resistance and complexity appeared not to be dependent on initial bacterial adherence, thus indicating mature biofilms rather than planctonic cells or early-stage biofilms must be considered when disinfection protocols have to be optimized. PA seemed to be the most effective of the three disinfectants used for biofilms. We hypothesized both its high oxidizing capacity and low molecular size could suppose an advantage for its penetration inside the biofilm. We also demonstrated that organic material counteract with the biocides, thus indicating the importance of improving cleaning protocols. Finally, by comparing strains 5873 and 5873 adapted to BAC, several adaptative cross-responses between BAC and nisin or peracetic acid were identified.

  2. Biofilm formation by Listeria monocytogenes on stainless steel surface and biotransfer potential

    Directory of Open Access Journals (Sweden)

    Maíra Maciel Mattos de Oliveira

    2010-03-01

    Full Text Available An experimental model was proposed to study biofilm formation by Listeria monocytogenes ATCC 19117 on AISI 304 (#4 stainless steel surface and biotransfer potential during this process. In this model, biofilm formation was conducted on the surface of stainless steel coupons, set on a stainless steel base with 4 divisions, each one supporting 21 coupons. Trypic Soy Broth was used as bacterial growth substrate, with incubation at 37 ºC and stirring of 50 rpm. The number of adhered cells was determined after 3, 48, 96, 144, 192 and 240 hours of biofilm formation and biotransfer potential from 96 hours. Stainless steel coupons were submitted to Scanning Electron Microscopy (SEM after 3, 144 and 240 hours. Based on the number of adhered cells and SEM, it was observed that L. monocytogenes adhered rapidly to the stainless steel surface, with mature biofilm being formed after 240 hours. The biotransfer potential of bacterium to substrate occurred at all the stages analyzed. The rapid capacity of adhesion to surface, combined with biotransfer potential throughout the biofilm formation stages, make L. monocytogenes a potential risk to the food industry. Both the experimental model developed and the methodology used were efficient in the study of biofilm formation by L. monocytogenes on stainless steel surface and biotransfer potential.

  3. Effect of LongZhang Gargle on Biofilm Formation and Acidogenicity of Streptococcus mutans In Vitro.

    Science.gov (United States)

    Yang, Yutao; Liu, Shiyu; He, Yuanli; Chen, Zhu; Li, Mingyun

    2016-01-01

    Streptococcus mutans, with the ability of high-rate acid production and strong biofilm formation, is considered the predominant bacterial species in the pathogenesis of human dental caries. Natural products which may be bioactive against S. mutans have become a hot spot to researches to control dental caries. LongZhang Gargle, completely made from Chinese herbs, was investigated for its effects on acid production and biofilm formation by S. mutans in this study. The results showed an antimicrobial activity of LongZhang Gargle against S. mutans planktonic growth at the minimum inhibitory concentration (MIC) of 16% and minimum bactericidal concentration (MBC) of 32%. Acid production was significantly inhibited at sub-MIC concentrations. Biofilm formation was also significantly disrupted, and 8% was the minimum concentration that resulted in at least 50% inhibition of biofilm formation (MBIC50). A scanning electron microscopy (SEM) showed an effective disruption of LongZhang Gargle on S. mutans biofilm integrity. In addition, a confocal laser scanning microscopy (CLSM) suggested that the extracellular polysaccharides (EPS) synthesis could be inhibited by LongZhang Gargle at a relatively low concentration. These findings suggest that LongZhang Gargle may be a promising natural anticariogenic agent in that it suppresses planktonic growth, acid production, and biofilm formation against S. mutans.

  4. Reducing Staphylococcus aureus biofilm formation on stainless steel 316L using functionalized self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Kruszewski, Kristen M., E-mail: kruszewskik@duq.edu [Duquesne University, Department of Chemistry and Biochemistry, 600 Forbes Avenue, Pittsburgh, PA 15282 (United States); Nistico, Laura, E-mail: lnistico@wpahs.org [Allegheny General Hospital, Center for Genomic Sciences, Allegheny-Singer Research Institute, 320 East North Avenue, 11th floor, South Tower, Pittsburgh, PA 15212 (United States); Longwell, Mark J., E-mail: mlongwel@wpahs.org [Allegheny General Hospital, Center for Genomic Sciences, Allegheny-Singer Research Institute, 320 East North Avenue, 11th floor, South Tower, Pittsburgh, PA 15212 (United States); Hynes, Matthew J., E-mail: mjhynes@go.wustl.edu [Washington University in St. Louis, Department of Chemistry, One Brookings Drive, St. Louis, MO 63130 (United States); Maurer, Joshua A., E-mail: maurer@wustl.edu [Washington University in St. Louis, Department of Chemistry, One Brookings Drive, St. Louis, MO 63130 (United States); Hall-Stoodley, Luanne, E-mail: L.Hall-Stoodley@soton.ac.uk [Southampton Wellcome Trust Clinical Research Facility/NIHR Respiratory BRU, University of Southampton Faculty of Medicine, Southampton General Hospital, Tremona Road, Southampton, Hampshire SO16 6YD (United Kingdom); Gawalt, Ellen S., E-mail: gawalte@duq.edu [Duquesne University, Department of Chemistry and Biochemistry, McGowan Institute for Regenerative Medicine, 600 Forbes Avenue, Pittsburgh, PA 15282 (United States)

    2013-05-01

    Stainless steel 316L (SS316L) is a common material used in orthopedic implants. Bacterial colonization of the surface and subsequent biofilm development can lead to refractory infection of the implant. Since the greatest risk of infection occurs perioperatively, strategies that reduce bacterial adhesion during this time are important. As a strategy to limit bacterial adhesion and biofilm formation on SS316L, self-assembled monolayers (SAMs) were used to modify the SS316L surface. SAMs with long alkyl chains terminated with hydrophobic (− CH{sub 3}) or hydrophilic (oligoethylene glycol) tail groups were used to form coatings and in an orthogonal approach, SAMs were used to immobilize gentamicin or vancomycin on SS316L for the first time to form an “active” antimicrobial coating to inhibit early biofilm development. Modified SS316L surfaces were characterized using surface infrared spectroscopy, contact angles, MALDI-TOF mass spectrometry and atomic force microscopy. The ability of SAM-modified SS316L to retard biofilm development by Staphylococcus aureus was functionally tested using confocal scanning laser microscopy with COMSTAT image analysis, scanning electron microscopy and colony forming unit analysis. Neither hydrophobic nor hydrophilic SAMs reduced biofilm development. However, gentamicin-linked and vancomycin-linked SAMs significantly reduced S. aureus biofilm formation for up to 24 and 48 h, respectively. - Highlights: ► SS316L was modified with glycol terminated SAMs in order to reduce biofilm growth. ► Antibiotics gentamicin and vancomycin were immobilized on SS316L via SAMs. ► Only the antibiotic modifications reduced biofilm development on SS316L.

  5. Alpha-Toxin Promotes Mucosal Biofilm Formation by Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Michele J Anderson

    2012-05-01

    Full Text Available Staphylococcus aureus causes numerous diseases in humans ranging from the mild skin infections to serious, life-threatening, superantigen-mediated Toxic Shock Syndrome (TSS. S. aureus may also be asymptomatically carried in the anterior nares, vagina or on the skin, which serve as reservoirs for infection. Pulsed-field gel electrophoresis clonal type USA200 is the most widely disseminated colonizer and a major cause of TSS. Our prior studies indicated that α-toxin was a major epithelial proinflammatory exotoxin produced by TSS S. aureus USA200 isolates. It also facilitated the penetration of TSS Toxin-1 (TSST-1 across vaginal mucosa. However, the majority of menstrual TSS isolates produce low α-toxin due to a nonsense point mutation at codon 113, designated hly, suggesting mucosal adaptation. The aim of this study was to characterize the differences between TSS USA200 strains [high (hla+ and low (hly+ α-toxin producers] in their abilities to infect and disrupt vaginal mucosal tissue. A mucosal model was developed using ex vivo porcine vaginal mucosa, LIVE/DEAD® staining and confocal microscropy to characterize biofilm formation and tissue viability of TSS USA 200 isolates CDC587 and MN8, which contain the α-toxin pseudogene (hly, MNPE (hla+ and MNPE isogenic hla knockout (hlaKO. All TSS strains grew to similar bacterial densities (1-5 x 108 CFU on the mucosa and were proinflammatory over 3 days. However, MNPE formed biofilms with significant reductions in the mucosal viability whereas neither CDC587, MN8 (hly+, or MNPE hlaKO, formed biofilms and were less cytotoxic. The addition of exogenous, purified α-toxin to MNPE hlaKO restored the biofilm phenotype. Our studies suggest α-toxin affects S. aureus phenotypic growth on vaginal mucosa, by promoting tissue disruption and biofilm formation; and α–toxin mutants (hly are not benign colonizers, but rather form a different type of infection, which we have termed high density pathogenic

  6. Archaeal type IV pili and their involvement in biofilm formation

    Directory of Open Access Journals (Sweden)

    Rianne eEsquivel

    2015-03-01

    Full Text Available Type IV pili are ancient proteinaceous structures present on the cell surface of species in nearly all bacterial and archaeal phyla. These filaments are involved in a diverse array of critical cellular processes. While the core components of the pilus biosynthesis machinery are highly conserved, type IV pilins, the structural subunits of pili, share little sequence homology. However, the conserved structure of the signal peptides of these pilus subunits has allowed the development of prediction programs that accurately detect the processing sites recognized by bacterial and archaeal prepilin peptidases. Using these programs, the genomes of organisms from both prokaryotic domains have been shown to encode a diverse set of putative type IV pilins. Recently, in vivo studies in model archaea representing the euryarchaeal and crenarchaeal kingdoms confirmed that several of these pilins are incorporated into type IV adhesion pili. In addition to facilitating surface adhesion, these in vivo studies also showed that several predicted pilins are required for additional functions that are critical to biofilm formation. Examples include the subunits of Sulfolobus acidocaldarius Ups pili, which are induced by exposure to UV light and promote cell aggregation and conjugation, and a subset of the Haloferax volcanii adhesion pilins, which play a critical role in microcolony formation while other pilins inhibit this process. The recent discovery of novel pilin functions such as the ability of haloarchaeal adhesion pilins to regulate swimming motility rather than being unique to organisms that inhabit high salt environments may point to novel prokaryotic regulatory pathways. In this review, we will discuss recent advances in our understanding of the functional roles played by archaeal type IV adhesion pili and their subunits, with particular emphasis on their involvement in biofilm formation.

  7. Dynamics of biofilm formation during anaerobic digestion of organic waste.

    Science.gov (United States)

    Langer, Susanne; Schropp, Daniel; Bengelsdorf, Frank R; Othman, Maazuza; Kazda, Marian

    2014-10-01

    Biofilm-based reactors are effectively used for wastewater treatment but are not common in biogas production. This study investigated biofilm dynamics on biofilm carriers incubated in batch biogas reactors at high and low organic loading rates for sludge from meat industry dissolved air flotation units. Biofilm formation and dynamics were studied using various microscopic techniques. Resulting micrographs were analysed for total cell numbers, thickness of biofilms, biofilm-covered surface area, and the area covered by extracellular polymeric substances (EPS). Cell numbers within biofilms (10(11) cells ml(-1)) were up to one order of magnitude higher compared to the numbers of cells in the fluid reactor content. Further, biofilm formation and structure mainly correlated with the numbers of microorganisms present in the fluid reactor content and the organic loading. At high organic loading (45 kg VS m(-3)), the thickness of the continuous biofilm layer ranged from 5 to 160 μm with an average of 51 μm and a median of 26 μm. Conversely, at lower organic loading (15 kg VS m(-3)), only microcolonies were detectable. Those microcolonies increased in their frequency of occurrence during ongoing fermentation. Independently from the organic loading rate, biofilms were embedded completely in EPS within seven days. The maturation and maintenance of biofilms changed during the batch fermentation due to decreasing substrate availability. Concomitant, detachment of microorganisms within biofilms was observed simultaneously with the decrease of biogas formation. This study demonstrates that biofilms of high cell densities can enhance digestion of organic waste and have positive effects on biogas production.

  8. Synergistic effect of polyaniline coverage and surface microstructure on the inhibition of Pseudomonas aeruginosa biofilm formation.

    Science.gov (United States)

    Gallarato, L A; Mulko, L E; Dardanelli, M S; Barbero, C A; Acevedo, D F; Yslas, E I

    2017-02-01

    Biofilm Formation is a survival strategy for microorganisms to adapt to their environment. Microbial cells in biofilm become tolerant and resistant to antibiotics and immune responses, increasing the difficulties for the clinical treatment of microbial infections. The surface chemistry and the micro/nano-topography of solid interfaces play a major role in mediating microorganism activity and adhesion. The effect of the surface chemical composition and topography on the adhesion and viability of Pseudomonas aeruginosa was studied. Polymeric (polyethylene terephthalate) surfaces were covered with a conducting polymer (polyaniline, PANI) film by in-situ polymerization and microstructured by Direct Laser Interference Patterning (DLIP). The viability of Pseudomonas aeruginosa on the different surfaces was investigated. The physicochemical properties of the surfaces were characterized by water contact angle measurements, scanning electron microscopy and atomic force microscopy. Bacterial biofilms were imaged by atomic force and scanning electron microscopies. The bacterial viability decreased on PANI compared with the substrate (polyethylene terephthalate) and it decreased even more upon micro-structuring the PANI films. In addition, the biofilm reduction could be improved using polymers with different chemical composition and/or the same polymer with different topographies. Both methods presented diminish the bacterial attachment and biofilm formation. These findings present a high impact related to materials for biomedical engineer applications regarding medical devices, as prostheses or catheters.

  9. Biofilm Formation by Drug Resistant Enterococci Isolates Obtained from Chronic Periodontitis Patients

    Science.gov (United States)

    Mehta, Manjula; Sood, Shaveta; Sharma, Jyoti

    2017-01-01

    Introduction Enterococci are an important cause of opportunistic nosocomial infections and several multidrug resistant strains have emerged. The severity of periodontal diseases is managed by reduction in the pathogenic bacteria. There is a need to assess the prevalence and antibiotic susceptibility of enterococci colonizing the periodontal pocket and correlate its biofilm formation ability because oral biofilms provide a protective environment and are a reservoir of bacterial colonization of the gingival crevice. Aim To investigate possible association between antibiotic susceptibility and biofilm formation in enterococci isolates from chronic periodontitis patients. Materials and Methods This retrospective study was conducted at Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Punjab University, Chandigarh from January 2015 to October 2015. Sterile paper points were inserted in the periodontal pocket of 100 subjects and put in a transport media. Forty -six isolates were identified as enterococci. The isolates were further examined for their ability to form biofilm by microtitre plate assay and antimicrobial susceptibility testing was done by disc diffusion method for clinically relevant antibiotics. Results Significant relationship (p<0.001) was found between biofilm production with antibiotic resistance to Vancomycin, Erythromycin, Ciprofloxacin, Tiecoplanin, Amoxycillin and Gentamycin. Conclusion The study demonstrates a high propensity among the isolates of Enterococci to form biofilm and a significant association of biofilm with multiple drug resistance. PMID:28273964

  10. Genetic adaptation of Streptococcus mutans during biofilm formation on different types of surfaces

    Directory of Open Access Journals (Sweden)

    Aharoni Reuven

    2010-02-01

    Full Text Available Abstract Background Adhesion and successful colonization of bacteria onto solid surfaces play a key role in biofilm formation. The initial adhesion and the colonization of bacteria may differ between the various types of surfaces found in oral cavity. Therefore, it is conceivable that diverse biofilms are developed on those various surfaces. The aim of the study was to investigate the molecular modifications occurring during in vitro biofilm development of Streptococcus mutans UA159 on several different dental surfaces. Results Growth analysis of the immobilized bacterial populations generated on the different surfaces shows that the bacteria constructed a more confluent and thick biofilms on a hydroxyapatite surface compared to the other tested surfaces. Using DNA-microarray technology we identified the differentially expressed genes of S. mutans, reflecting the physiological state of biofilms formed on the different biomaterials tested. Eight selected genes were further analyzed by real time RT-PCR. To further determine the impact of the tested material surfaces on the physiology of the bacteria, we tested the secretion of AI-2 signal by S. mutans embedded on those biofilms. Comparative transcriptome analyses indicated on changes in the S. mutans genome in biofilms formed onto different types of surfaces and enabled us to identify genes most differentially expressed on those surfaces. In addition, the levels of autoinducer-2 in biofilms from the various tested surfaces were different. Conclusions Our results demonstrate that gene expression of S. mutans differs in biofilms formed on tested surfaces, which manifest the physiological state of bacteria influenced by the type of surface material they accumulate onto. Moreover, the stressful circumstances of adjustment to the surface may persist in the bacteria enhancing intercellular signaling and surface dependent biofilm formation.

  11. inhibitory effects of citral, cinnamaldehyde, and tea polyphenols on mixed biofilm formation by foodborne Staphylococcus aureus and Salmonella enteritidis.

    Science.gov (United States)

    Zhang, Hongmei; Zhou, Wenyuan; Zhang, Wenyan; Yang, Anlin; Liu, Yanlan; Jiang, Yan; Huang, Shaosong; Su, Jianyu

    2014-06-01

    Biofilms are significant hazards in the food industry. In this study, we investigated the effects of food additive such as citral, cinnamaldehyde, and tea polyphenols on mixed biofilm formation by foodborne Staphylococcus aureus and Salmonella serotype Enteritidis. The adhesion rates of mixed strains in sub-MIC of additives were determined by a microtiter plate assay and bacterial communication signal autoinducer 2 (AI-2) production via a bioluminescence reporter Vibrio harveyi BB170. The structure of mixed biofilm was analyzed using scanning electron microscopy. The effect of the disinfectants hydrogen peroxide, sodium hypochlorite, and peracetic acid was tested on the mixed biofilm. Our results demonstrated that citral, cinnamaldehyde, and tea polyphenols were able to significantly inhibit mixed biofilm formation, while citral could reduce the synthesis of AI-2. Conversely, we observed a significant increase in AI-2 mediated by cinnamaldehyde. Tea polyphenols at lower concentrations induced AI-2 synthesis; however, AI-2 synthesis was significantly inhibited at higher concentrations (300 m g/ml). Food additives inhibited the adhesion of mixed bacteria on stainless steel chips and increased the sensitivity of the mixed biofilm to disinfectants. In conclusion, citral, cinnamaldehyde, and tea polyphenols had strong inhibitory effects on mixed biofilm formation and also enhanced the effect of disinfectant on mixed biofilm formation. This study provides a scientific basis for the application of natural food additives to control biofilm formation of foodborne bacteria.

  12. A small-molecule norspermidine and norspermidine-hosting polyelectrolyte coatings inhibit biofilm formation by multi-species wastewater culture.

    Science.gov (United States)

    Si, Xiurong; Quan, Xiangchun; Wu, Yachuan

    2015-12-01

    Norspermidine is a potent and non-bactericidal small-molecule inhibitor of biofilm growth. In this study, impacts of norspermidine on biofilm control and existing biofilm dispersal by a mixed culture from wastewater treatment systems were investigated. A surface-mediated releasing approach for prevention of bacterial biofilm formation was established via encapsulating norspermidine into polyelectrolyte multilayer coatings. Results showed that the presence of norspermidine (500-1000 μM) in medium remarkably prevented biofilm formation. Norspermidine was also effective in disassembling pre-formed biofilms. Norspermidine-containing multilayer coatings were successfully fabricated on glass slides via layer-by-layer deposition in polyethylenimine (PEI) and poly(acrylic acid) (PAA) solution. This coating exhibited a high anti-biofilm property against a mixed culture and three pure strains (Bacillus subtilis, Pseudomonas aeruginosa, and Escherichia coli). The loading amount and space distribution of norspermidine in the multilayer coating were key factors influencing its anti-biofilm efficacy. The polymer coating with norspermidine loaded in each bilayer (each-layer-type) exhibited better anti-biofilm efficacy than the bottom-type and the top-type coating, which showed a stable biofilm inhibition rate of about 60 % even after 5-day leaching in aqueous solution. Norspermidine could retard bacterial adhesion and destruct biofilm matrix by reducing exopolysaccharides and extracellular DNA (eDNA) associated with bacteria instead of growth inhibition. Norspermidine and the norspermidine-hosting coatings in this study offer a great potential for the control of biofilms in the settings of water purification and wastewater treatment systems, which shows the advantage of broad spectrum and less risk of evolved bacterial resistance compared to conventional microbicidal agents (e.g., antibiotics).

  13. A comparison of effects of broad-spectrum antibiotics and biosurfactants on established bacterial biofilms.

    Science.gov (United States)

    Quinn, Gerry A; Maloy, Aaron P; Banat, Malik M; Banat, Ibrahim M

    2013-11-01

    Current antibiofilm solutions based on planktonic bacterial physiology have limited efficacy in clinical and occasionally environmental settings. This has prompted a search for suitable alternatives to conventional therapies. This study compares the inhibitory properties of two biological surfactants (rhamnolipids and a plant-derived surfactant) against a selection of broad-spectrum antibiotics (ampicillin, chloramphenicol and kanamycin). Testing was carried out on a range of bacterial physiologies from planktonic and mixed bacterial biofilms. Rhamnolipids (Rhs) have been extensively characterised for their role in the development of biofilms and inhibition of planktonic bacteria. However, there are limited direct comparisons with antimicrobial substances on established biofilms comprising single or mixed bacterial strains. Baseline measurements of inhibitory activity using planktonic bacterial assays established that broad-spectrum antibiotics were 500 times more effective at inhibiting bacterial growth than either Rhs or plant surfactants. Conversely, Rhs and plant biosurfactants reduced biofilm biomass of established single bacterial biofilms by 74-88 and 74-98 %, respectively. Only kanamycin showed activity against biofilms of Bacillus subtilis and Staphylococcus aureus. Broad-spectrum antibiotics were also ineffective against a complex biofilm of marine bacteria; however, Rhs and plant biosurfactants reduced biofilm biomass by 69 and 42 %, respectively. These data suggest that Rhs and plant-derived surfactants may have an important role in the inhibition of complex biofilms.

  14. Formation capability of bacterial biofilm on titanium plate versus necrotic bone Characterization with confocal laser scanning microscope%激光共聚焦显微镜观察钛板和死骨表面细菌生物膜的形成能力

    Institute of Scientific and Technical Information of China (English)

    张志宏; 孙效棠; 冯安平; 王万明

    2012-01-01

    BACKGROUND: Bacteria attachment and biofilm formation at the surface of metal implants and sequestrum are major reasons for chronic infection of musculoskeletal system. OBJECTIVE: To characterize and compare the formation capability of bacterial biofilm on titanium plate and necrotic bone. METHODS: The model of bacterial biofilm was developed with modified stroma culture approach. Ten titanium plate cylinders and ten pieces of necrotic bone were randomly matched. Each pair was placed in one culture flask and immersed in bacteria solution. The biofilm of each group was stained with fluorochrome, observed and photographed using confocal laser scanning microscope. RESULTS AND CONCLUSION: Compared with the necrotic bone, the thickness of bacterial biofilm on the titanium plate was less (P < 0.05) and the percentage of live bacteria in the medium layer and the bottom layer was higher (P < 0.05). Results indicate that the bacterial biofilm tends to more easily develop on the surface of necrotic bone than on the surface of titanium plate.%背景:细菌在金属植入物和死骨表面附着并形成的生物膜是造成骨骼肌肉系统的慢性感染的根本原因.目的:观察并比较细菌在钛板和死骨表面形成细菌生物膜的能力.方法:用改良的基质培养法制备细菌生物膜模型,将10块钛板圆柱和10片死骨随机配对,每一对放置在同一个培养瓶中用其菌液浸泡淹没,在同一个培养环境中培养.用荧光染料对各组细菌生物膜进行染色,激光共聚焦显微镜下观察并采集图像.结果与结论:与死骨相比,钛板表面的细菌生物膜厚度较小(P < 0.05),其细菌生物膜中层和深层的活菌率较高(P < 0.05).说明细菌在死骨形表面成细菌生物膜的能力强于钛板.

  15. Elevated level of the second messenger c-di-GMP in Comamonas testosteroni enhances biofilm formation and biofilm-based biodegradation of 3-chloroaniline.

    Science.gov (United States)

    Wu, Yichao; Ding, Yuanzhao; Cohen, Yehuda; Cao, Bin

    2015-02-01

    The bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) is a ubiquitous second messenger that determines bacterial lifestyle between the planktonic and biofilm modes of life. Although the role of c-di-GMP signaling in biofilm development and dispersal has been extensively studied, how c-di-GMP signaling influences environmental bioprocess activities such as biodegradation remains unexplored. To elucidate the impacts of elevating c-di-GMP level on environmental bioprocesses, we constructed a Comamonas testosteroni strain constitutively expressing a c-di-GMP synthase YedQ from Escherichia coli and examined its capability in biofilm formation and biodegradation of 3-chloroaniline (3-CA). The high c-di-GMP strain exhibited an increased binding to Congo red dye, a decreased motility, and an enhanced biofilm formation capability. In planktonic cultures, the strain with an elevated c-di-GMP concentration and the wild type could degrade 3-CA comparably well. However, under batch growth conditions with a high surface to volume ratio, an elevated c-di-GMP concentration in C. testosteroni significantly increased the contribution of biofilms in 3-CA biodegradation. In continuous submerged biofilm reactors, C. testosteroni with an elevated c-di-GMP level exhibited an enhanced 3-CA biodegradation and a decreased cell detachment rate. Taken together, this study provides a novel strategy to enhance biofilm-based biodegradation of toxic xenobiotic compounds through manipulating bacterial c-di-GMP signaling.

  16. Developed Fungal-Bacterial Biofilms as A Novel Tool for Bioremoval of Hexavelant Chromium from Wastewater

    DEFF Research Database (Denmark)

    Herath, Lasantha; Rajapaksha, R. M. A. U.; Vithanage, M.;

    2014-01-01

    Remediation measures for hexavalent Chromium [Cr(VI)] are required for a safe environment. As a recent development in microbiology, bacterial biofilms are being studied as effective bioremediation agents. When bacteria are in fungal surface-attached biofilm mode, they are called fungal-bacterial ......Remediation measures for hexavalent Chromium [Cr(VI)] are required for a safe environment. As a recent development in microbiology, bacterial biofilms are being studied as effective bioremediation agents. When bacteria are in fungal surface-attached biofilm mode, they are called fungal...

  17. An individual-based model for biofilm formation at liquid surfaces

    Science.gov (United States)

    Ardré, Maxime; Henry, Hervé; Douarche, Carine; Plapp, Mathis

    2015-12-01

    The bacterium Bacillus subtilis frequently forms biofilms at the interface between the culture medium and the air. We present a mathematical model that couples a description of bacteria as individual discrete objects to the standard advection-diffusion equations for the environment. The model takes into account two different bacterial phenotypes. In the motile state, bacteria swim and perform a run-and-tumble motion that is biased toward regions of high oxygen concentration (aerotaxis). In the matrix-producer state they excrete extracellular polymers, which allows them to connect to other bacteria and to form a biofilm. Bacteria are also advected by the fluid, and can trigger bioconvection. Numerical simulations of the model reproduce all the stages of biofilm formation observed in laboratory experiments. Finally, we study the influence of various model parameters on the dynamics and morphology of biofilms.

  18. Effects of Aronia melanocarpa Constituents on Biofilm Formation of Escherichia coli and Bacillus cereus

    Directory of Open Access Journals (Sweden)

    Marie Bräunlich

    2013-12-01

    Full Text Available Many bacteria growing on surfaces form biofilms. Adaptive and genetic changes of the microorganisms in this structure make them resistant to antimicrobial agents. Biofilm-forming organisms on medical devices can pose serious threats to human health. Thus, there is a need for novel prevention and treatment strategies. This study aimed to evaluate the ability of Aronia melanocarpa extracts, subfractions and compounds to prevent biofilm formation and to inhibit bacterial growth of Escherichia coli and Bacillus cereus in vitro. It was found that several aronia substances possessed anti-biofilm activity, however, they were not toxic to the species screened. This non-toxic inhibition may confer a lower potential for resistance development compared to conventional antimicrobials.

  19. The relationship between biofilm formations and capsule in Haemophilus influenzae.

    Science.gov (United States)

    Qin, Liang; Kida, Yutaka; Ishiwada, Naruhiko; Ohkusu, Kiyofumi; Kaji, Chiharu; Sakai, Yoshiro; Watanabe, Kiwao; Furumoto, Akitsugu; Ichinose, Akitoyo; Watanabe, Hiroshi

    2014-03-01

    To evaluate the biofilm formation of non-typeable Haemophilus influenzae (NTHi) and H. influenzae type b (Hib) clinical isolates, we conducted the following study. Serotyping and polymerase chain reaction were performed to identify β-lactamase-negative ampicillin (ABPC)-susceptible (BLNAS), β-lactamase-negative ABPC-resistant (BLNAR), TEM-1 type β-lactamase-producing ABPC-resistant (BLPAR)-NTHi, and Hib. Biofilm formation was investigated by microtiter biofilm assay, as well as visually observation with a scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) in a continuous-flow chamber. As a result, totally 99 strains were investigated, and were classified into 4 groups which were 26 gBLNAS, 22 gBLNAR, 28 gBLPAR-NTHi and 23 Hib strains. The mean OD600 in the microtiter biofilm assay of gBLNAS, gBLNAR, gBLPAR-NTHi, and Hib strains were 0.57, 0.50, 0.34, and 0.08, respectively. NTHi strains were similar in terms of biofilm formations, which were observed by SEM and CLSM. Five Hib strains with the alternated type b cap loci showed significantly increased biofilm production than the other Hib strains. In conclusion, gBLNAS, gBLNAR, and gBLPAR-NTHi strains were more capable to produce biofilms compared to Hib strains. Our data suggested that resistant status may not be a key factor but capsule seemed to play an important role in H. influenzae biofilm formation.

  20. Enhanced biofilm formation and multi‐host transmission evolve from divergent genetic backgrounds in C ampylobacter jejuni

    Science.gov (United States)

    Pascoe, Ben; Méric, Guillaume; Murray, Susan; Yahara, Koji; Mageiros, Leonardos; Bowen, Ryan; Jones, Nathan H.; Jeeves, Rose E.; Lappin‐Scott, Hilary M.; Asakura, Hiroshi

    2015-01-01

    Summary Multicellular biofilms are an ancient bacterial adaptation that offers a protective environment for survival in hostile habitats. In microaerophilic organisms such as C ampylobacter, biofilms play a key role in transmission to humans as the bacteria are exposed to atmospheric oxygen concentrations when leaving the reservoir host gut. Genetic determinants of biofilm formation differ between species, but little is known about how strains of the same species achieve the biofilm phenotype with different genetic backgrounds. Our approach combines genome‐wide association studies with traditional microbiology techniques to investigate the genetic basis of biofilm formation in 102 C ampylobacter jejuni isolates. We quantified biofilm formation among the isolates and identified hotspots of genetic variation in homologous sequences that correspond to variation in biofilm phenotypes. Thirteen genes demonstrated a statistically robust association including those involved in adhesion, motility, glycosylation, capsule production and oxidative stress. The genes associated with biofilm formation were different in the host generalist ST‐21 and ST‐45 clonal complexes, which are frequently isolated from multiple host species and clinical samples. This suggests the evolution of enhanced biofilm from different genetic backgrounds and a possible role in colonization of multiple hosts and transmission to humans. PMID:26373338

  1. Assessment of bacterial and structural dynamics in aerobic granular biofilms

    Directory of Open Access Journals (Sweden)

    David G. Weissbrodt

    2013-07-01

    Full Text Available Aerobic granular sludge is based on self-granulated flocs forming mobile biofilms with a gel-like consistence. Bacterial and structural dynamics from flocs to granules were followed in anaerobic-aerobic sequencing batch reactors fed with synthetic wastewater, namely a bubble column (BC-SBR operated under wash-out conditions for fast granulation, and two stirred-tank enrichments of Accumulibacter (PAO-SBR and Competibacter (GAO-SBR operated at steady-state. In the BC-SBR, granules formed within two weeks by swelling of Zoogloea colonies around flocs, developing subsequently smooth zoogloeal biofilms. However, Zoogloea predominance (37-79% led to deteriorated nutrient removal during the first months of reactor operation. Upon maturation, improved nitrification (80-100%, nitrogen removal (43-83%, and high but unstable dephosphatation (75-100% were obtained. Proliferation of dense clusters of nitrifiers, Accumulibacter, and Competibacter from granule cores outwards resulted in heterogeneous bioaggregates, inside which only low abundance Zoogloea (<5% were detected in biofilm interstices. The presence of different extracellular glycoconjugates detected by fluorescence lectin-binding analysis showed the complex nature of the intracellular matrix of these granules. In the PAO-SBR, granulation occurred within two months with abundant and active Accumulibacter populations (56±10% that were selected under full anaerobic uptake of volatile fatty acids and that aggregated as dense clusters within heterogeneous granules. Flocs self-granulated in the GAO-SBR after 480 days during a period of over-aeration caused by biofilm growth on the oxygen sensor. Granules were dominated by heterogeneous clusters of Competibacter (37±11%. Zoogloea were never abundant in biomass of both PAO- and GAO-SBRs. This study showed that Zoogloea, Accumulibacter, and Competibacter affiliates can form granules, and that the granulation mechanisms rely on the dominant population

  2. Assessment of bacterial and structural dynamics in aerobic granular biofilms

    Science.gov (United States)

    Weissbrodt, David G.; Neu, Thomas R.; Kuhlicke, Ute; Rappaz, Yoan; Holliger, Christof

    2013-01-01

    Aerobic granular sludge (AGS) is based on self-granulated flocs forming mobile biofilms with a gel-like consistence. Bacterial and structural dynamics from flocs to granules were followed in anaerobic-aerobic sequencing batch reactors (SBR) fed with synthetic wastewater, namely a bubble column (BC-SBR) operated under wash-out conditions for fast granulation, and two stirred-tank enrichments of Accumulibacter (PAO-SBR) and Competibacter (GAO-SBR) operated at steady-state. In the BC-SBR, granules formed within 2 weeks by swelling of Zoogloea colonies around flocs, developing subsequently smooth zoogloeal biofilms. However, Zoogloea predominance (37–79%) led to deteriorated nutrient removal during the first months of reactor operation. Upon maturation, improved nitrification (80–100%), nitrogen removal (43–83%), and high but unstable dephosphatation (75–100%) were obtained. Proliferation of dense clusters of nitrifiers, Accumulibacter, and Competibacter from granule cores outwards resulted in heterogeneous bioaggregates, inside which only low abundance Zoogloea (<5%) were detected in biofilm interstices. The presence of different extracellular glycoconjugates detected by fluorescence lectin-binding analysis showed the complex nature of the intracellular matrix of these granules. In the PAO-SBR, granulation occurred within two months with abundant and active Accumulibacter populations (56 ± 10%) that were selected under full anaerobic uptake of volatile fatty acids and that aggregated as dense clusters within heterogeneous granules. Flocs self-granulated in the GAO-SBR after 480 days during a period of over-aeration caused by biofilm growth on the oxygen sensor. Granules were dominated by heterogeneous clusters of Competibacter (37 ± 11%). Zoogloea were never abundant in biomass of both PAO- and GAO-SBRs. This study showed that Zoogloea, Accumulibacter, and Competibacter affiliates can form granules, and that the granulation mechanisms rely on the dominant

  3. Contribution of the Pseudomonas fluorescens MFE01 Type VI Secretion System to Biofilm Formation

    Science.gov (United States)

    Gallique, Mathias; Decoin, Victorien; Barbey, Corinne; Rosay, Thibaut; Feuilloley, Marc G. J.; Orange, Nicole

    2017-01-01

    Type VI secretion systems (T6SSs) are widespread in Gram-negative bacteria, including Pseudomonas. These macromolecular machineries inject toxins directly into prokaryotic or eukaryotic prey cells. Hcp proteins are structural components of the extracellular part of this machinery. We recently reported that MFE01, an avirulent strain of Pseudomonas fluorescens, possesses at least two hcp genes, hcp1 and hcp2, encoding proteins playing important roles in interbacterial interactions. Indeed, P. fluorescens MFE01 can immobilise and kill diverse bacteria of various origins through the action of the Hcp1 or Hcp2 proteins of the T6SS. We show here that another Hcp protein, Hcp3, is involved in killing prey cells during co-culture on solid medium. Even after the mutation of hcp1, hcp2, or hcp3, MFE01 impaired biofilm formation by MFP05, a P. fluorescens strain isolated from human skin. These mutations did not reduce P. fluorescens MFE01 biofilm formation, but the three Hcp proteins were required for the completion of biofilm maturation. Moreover, a mutant with a disruption of one of the unique core component genes, MFE01ΔtssC, was unable to produce its own biofilm or inhibit MFP05 biofilm formation. Finally, MFE01 did not produce detectable N-acyl-homoserine lactones for quorum sensing, a phenomenon reported for many other P. fluorescens strains. Our results suggest a role for the T6SS in communication between bacterial cells, in this strain, under biofilm conditions. PMID:28114423

  4. Specific Involvement of Pilus Type 2a in Biofilm Formation in Group B Streptococcus

    Science.gov (United States)

    Galeotti, Cesira L.; Berti, Francesco; Necchi, Francesca; Reguzzi, Valerio; Ghezzo, Claudia; Telford, John Laird; Grandi, Guido; Maione, Domenico

    2010-01-01

    Streptococcus agalactiae is the primary colonizer of the anogenital mucosa of up to 30% of healthy women and can infect newborns during delivery and cause severe sepsis and meningitis. Persistent colonization usually involves the formation of biofilm and increasing evidences indicate that in pathogenic streptococci biofilm formation is mediated by pili. Recently, we have characterized pili distribution and conservation in 289 GBS clinical isolates and we have shown that GBS has three pilus types, 1, 2a and 2b encoded by three corresponding pilus islands, and that each strain carries one or two islands. Here we have investigated the capacity of these strains to form biofilms. We have found that most of the biofilm-formers carry pilus 2a, and using insertion and deletion mutants we have confirmed that pilus type 2a, but not pilus types 1 and 2b, confers biofilm-forming phenotype. We also show that deletion of the major ancillary protein of type 2a did not impair biofilm formation while the inactivation of the other ancillary protein and of the backbone protein completely abolished this phenotype. Furthermore, antibodies raised against pilus components inhibited bacterial adherence to solid surfaces, offering new strategies to prevent GBS infection by targeting bacteria during their initial attachment to host epithelial cells. PMID:20169161

  5. Specific involvement of pilus type 2a in biofilm formation in group B Streptococcus.

    Directory of Open Access Journals (Sweden)

    Cira Daniela Rinaudo

    Full Text Available Streptococcus agalactiae is the primary colonizer of the anogenital mucosa of up to 30% of healthy women and can infect newborns during delivery and cause severe sepsis and meningitis. Persistent colonization usually involves the formation of biofilm and increasing evidences indicate that in pathogenic streptococci biofilm formation is mediated by pili. Recently, we have characterized pili distribution and conservation in 289 GBS clinical isolates and we have shown that GBS has three pilus types, 1, 2a and 2b encoded by three corresponding pilus islands, and that each strain carries one or two islands. Here we have investigated the capacity of these strains to form biofilms. We have found that most of the biofilm-formers carry pilus 2a, and using insertion and deletion mutants we have confirmed that pilus type 2a, but not pilus types 1 and 2b, confers biofilm-forming phenotype. We also show that deletion of the major ancillary protein of type 2a did not impair biofilm formation while the inactivation of the other ancillary protein and of the backbone protein completely abolished this phenotype. Furthermore, antibodies raised against pilus components inhibited bacterial adherence to solid surfaces, offering new strategies to prevent GBS infection by targeting bacteria during their initial attachment to host epithelial cells.

  6. MstX and a putative potassium channel facilitate biofilm formation in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Matthew E Lundberg

    Full Text Available Biofilms constitute the predominant form of microbial life and a potent reservoir for innate antibiotic resistance in systemic infections. In the spore-forming bacterium Bacillus subtilis, the transition from a planktonic to sessile state is mediated by mutually exclusive regulatory pathways controlling the expression of genes required for flagellum or biofilm formation. Here, we identify mstX and yugO as novel regulators of biofilm formation in B. subtilis. We show that expression of mstX and the downstream putative K+ efflux channel, yugO, is necessary for biofilm development in B. subtilis, and that overexpression of mstX induces biofilm assembly. Transcription of the mstX-yugO operon is under the negative regulation of SinR, a transcription factor that governs the switch between planktonic and sessile states. Furthermore, mstX regulates the activity of Spo0A through a positive autoregulatory loop involving KinC, a histidine kinase that is activated by potassium leakage. The addition of potassium abrogated mstX-mediated biofilm formation. Our findings expand the role of Spo0A and potassium homeostasis in the regulation of bacterial development.

  7. In vivo biofilm formation on stainless steel bonded retainers during different oral health-care regimens

    Institute of Scientific and Technical Information of China (English)

    Marije A Jongsma; Henny C van der Mei; Jelly Atema-Smit; Henk J Busscher; Yijin Ren

    2015-01-01

    Retention wires permanently bonded to the anterior teeth are used after orthodontic treatment to prevent the teeth from relapsing to pre-treatment positions. A disadvantage of bonded retainers is biofilm accumulation on the wires, which produces a higher incidence of gingival recession, increased pocket depth and bleeding on probing. This study compares in vivo biofilm formation on single-strand and multi-strand retention wires with different oral health-care regimens. Two-centimetre wires were placed in brackets that were bonded to the buccal side of the first molars and second premolars in the upper arches of 22 volunteers. Volunteers used a selected toothpaste with or without the additional use of a mouthrinse containing essential oils. Brushing was performed manually. Regimens were maintained for 1 week, after which the wires were removed and the oral biofilm was collected to quantify the number of organisms and their viability, determine the microbial composition and visualize the bacteria by electron microscopy. A 6-week washout period was employed between regimens. Biofilm formation was reduced on single-strand wires compared with multi-strand wires;bacteria were observed to adhere between the strands. The use of antibacterial toothpastes marginally reduced the amount of biofilm on both wire types, but significantly reduced the viability of the biofilm organisms. Additional use of the mouthrinse did not result in significant changes in biofilm amount or viability. However, major shifts in biofilm composition were induced by combining a stannous fluoride-or triclosan-containing toothpaste with the mouthrinse. These shifts can be tentatively attributed to small changes in bacterial cell surface hydrophobicity after the adsorption of the toothpaste components, which stimulate bacterial adhesion to the hydrophobic oil, as illustrated for a Streptococcus mutans strain.

  8. Organic compounds inhibiting S. epidermidis adhesion and biofilm formation

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhiqiang [Department of Systems Biology, Technical University of Denmark, Dk-2800 Kgs. Lyngby (Denmark); Key Laboratory of Medical Molecular Virology of Ministry of Education and Public Health, Institute of Medical Microbiology and Institutes of Biomedical Science, Shanghai Medical School of Fudan University, Yi Xue Yuan Road 138, Shanghai 200032 (China); Division of Infectious Diseases, Department of Medicine, Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425 (United States); Zhang, Jingdong; Hu, Yifan; Chi, Qijin [Department of Chemistry, Building 207, NanoDTU, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Mortensen, Ninell P. [Department of Systems Biology, Technical University of Denmark, Dk-2800 Kgs. Lyngby (Denmark); Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37932 (United States); Qu, Di [Key Laboratory of Medical Molecular Virology of Ministry of Education and Public Health, Institute of Medical Microbiology and Institutes of Biomedical Science, Shanghai Medical School of Fudan University, Yi Xue Yuan Road 138, Shanghai 200032 (China); Molin, Soren [Department of Systems Biology, Technical University of Denmark, Dk-2800 Kgs. Lyngby (Denmark); Ulstrup, Jens, E-mail: ju@kemi.dtu.dk [Department of Chemistry, Building 207, NanoDTU, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2009-07-15

    The formation of biofilms on surfaces of indwelling medical devices is a serious medical problem. Staphylococcus epidermidis is a common pathogen found to colonize implanted devices and as a biofilm is more resistant to the host immune system as well as to antibiotic treatments. Combating S. epidermidis infections by preventing or eradicating biofilm formation of the bacterium is therefore a medically important challenge. We report here a study of biofilm formation of S. epidermidis on solid surfaces using a combination of confocal laser scanning (CLSM) and atomic force microscopy (AFM) in both air and aqueous environments. We have investigated the inhibitory effects of surfaces treated with four organic compounds, two benzoate derivatives denoted as compound 59 and 75 and two carboxamide derivatives denoted as compound 47 and 73, on S. epidermidis adhesion and biofilm formation. All four compounds evoke significant inhibitory effects on the formation of S. epidermidis biofilms with compounds 47 and 73 being most effective. None of the compounds were found to inhibit growth of S. epidermidis in liquid cultures. Bacteria attached to the substrate when exposed to the compounds were not affected indicating that these compounds inhibit initial adhesion. These results suggest a pretreatment for medically implanted surfaces that can prevent the biofilm formation and reduce infection.

  9. Spore formation and toxin production in Clostridium difficile biofilms.

    Science.gov (United States)

    Semenyuk, Ekaterina G; Laning, Michelle L; Foley, Jennifer; Johnston, Pehga F; Knight, Katherine L; Gerding, Dale N; Driks, Adam

    2014-01-01

    The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA), polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection.

  10. Spore formation and toxin production in Clostridium difficile biofilms.

    Directory of Open Access Journals (Sweden)

    Ekaterina G Semenyuk

    Full Text Available The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA, polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection.

  11. Streptococcus pneumoniae biofilm formation and dispersion during colonization and disease.

    Science.gov (United States)

    Chao, Yashuan; Marks, Laura R; Pettigrew, Melinda M; Hakansson, Anders P

    2014-01-01

    Streptococcus pneumoniae (the pneumococcus) is a common colonizer of the human nasopharynx. Despite a low rate of invasive disease, the high prevalence of colonization results in millions of infections and over one million deaths per year, mostly in individuals under the age of 5 and the elderly. Colonizing pneumococci form well-organized biofilm communities in the nasopharyngeal environment, but the specific role of biofilms and their interaction with the host during colonization and disease is not yet clear. Pneumococci in biofilms are highly resistant to antimicrobial agents and this phenotype can be recapitulated when pneumococci are grown on respiratory epithelial cells under conditions found in the nasopharyngeal environment. Pneumococcal biofilms display lower levels of virulence in vivo and provide an optimal environment for increased genetic exchange both in vitro and in vivo, with increased natural transformation seen during co-colonization with multiple strains. Biofilms have also been detected on mucosal surfaces during pneumonia and middle ear infection, although the role of these biofilms in the disease process is debated. Recent studies have shown that changes in the nasopharyngeal environment caused by concomitant virus infection, changes in the microflora, inflammation, or other host assaults trigger active release of pneumococci from biofilms. These dispersed bacteria have distinct phenotypic properties and transcriptional profiles different from both biofilm and broth-grown, planktonic bacteria, resulting in a significantly increased virulence in vivo. In this review we discuss the properties of pneumococcal biofilms, the role of biofilm formation during pneumococcal colonization, including their propensity for increased ability to exchange genetic material, as well as mechanisms involved in transition from asymptomatic biofilm colonization to dissemination and disease of otherwise sterile sites. Greater understanding of pneumococcal biofilm

  12. The anti-biofilm potential of pomegranate (Punica granatum L.) extract against human bacterial and fungal pathogens.

    Science.gov (United States)

    Bakkiyaraj, Dhamodharan; Nandhini, Janarthanam Rathna; Malathy, Balakumar; Pandian, Shunmugiah Karutha

    2013-09-01

    Infectious diseases caused by bacteria and fungi are the major cause of morbidity and mortality across the globe. Multi-drug resistance in these pathogens augments the complexity and severity of the diseases. Various studies have shown the role of biofilms in multi-drug resistance, where the pathogen resides inside a protective coat made of extracellular polymeric substances. Since biofilms directly influence the virulence and pathogenicity of a pathogen, it is optimal to employ a strategy that effectively inhibits the formation of biofilm. Pomegranate is a common food and is also used traditionally to treat various ailments. This study assessed the anti-biofilm activity of a methanolic extract of pomegranate against bacterial and fungal pathogens. Methanolic extract of pomegranate was shown to inhibit the formation of biofilms by Staphylococcus aureus, methicillin resistant S. aureus, Escherichia coli, and Candida albicans. Apart from inhibiting the formation of biofilm, pomegranate extract disrupted pre-formed biofilms and inhibited germ tube formation, a virulence trait, in C. albicans. Characterization of the methanolic extract of pomegranate revealed the presence of ellagic acid (2,3,7,8-tetrahydroxy-chromeno[5,4,3-cde]chromene-5,10-dione) as the major component. Ellagic acid is a bioactive tannin known for its antioxidant, anticancer, and anti-inflammatory properties. Further studies revealed the ability of ellagic acid to inhibit the growth of all species in suspension at higher concentrations (>75 μg ml(-1)) and biofilm formation at lower concentrations (pomegranate for the treatment of human ailments.

  13. Acceleration of Enterococcus faecalis biofilm formation by aggregation substance expression in an ex vivo model of cardiac valve colonization.

    Directory of Open Access Journals (Sweden)

    Olivia N Chuang-Smith

    Full Text Available Infectious endocarditis involves formation of a microbial biofilm in vivo. Enterococcus faecalis Aggregation Substance (Asc10 protein enhances the severity of experimental endocarditis, where it has been implicated in formation of large vegetations and in microbial persistence during infection. In the current study, we developed an ex vivo porcine heart valve adherence model to study the initial interactions between Asc10(+ and Asc10(-E. faecalis and valve tissue, and to examine formation of E. faecalis biofilms on a relevant tissue surface. Scanning electron microscopy of the infected valve tissue provided evidence for biofilm formation, including growing masses of bacterial cells and the increasing presence of exopolymeric matrix over time; accumulation of adherent biofilm populations on the cardiac valve surfaces during the first 2-4 h of incubation was over 10-fold higher than was observed on abiotic membranes incubated in the same culture medium. Asc10 expression accelerated biofilm formation via aggregation between E. faecalis cells; the results also suggested that in vivo adherence to host tissue and biofilm development by E. faecalis can proceed by Asc10-dependent or Asc10-independent pathways. Mutations in either of two Asc10 subdomains previously implicated in endocarditis virulence reduced levels of adherent bacterial populations in the ex vivo system. Interference with the molecular interactions involved in adherence and initiation of biofilm development in vivo with specific inhibitory compounds could lead to more effective treatment of infectious endocarditis.

  14. Inhibitory activity of Iranian plant extracts on growth and biofilm formation by Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Mansouri, S.

    2013-01-01

    Full Text Available Aims: Pseudomonas aeruginosa is a drug resistance opportunistic bacterium. Biofilm formation is key factor for survivalof P. aeruginosa in various environments. Polysaccharides may be involved in biofilm formation. The purpose of thisstudy was to evaluate antimicrobial and anti-biofilm activities of seven plant extracts with known alpha-glucosidaseinhibitory activities on different strains of P. aeruginosa.Methodology and results: Plants were extracted with methanol by the maceration method. Antimicrobial activities weredetermined by agar dilution and by growth yield as measured by OD560nm of the Luria Bertani broth (LB culture with orwithout extracts. In agar dilution method, extracts of Quercus infectoria inhibited the growth of all, while Myrtuscommunis extract inhibited the growth of 3 out of 8 bacterial strains with minimum inhibitory concentration (MIC of 1000μg/mL. All extracts significantly (p≤0.003 reduced growth rate of the bacteria in comparison with the control withoutextracts in LB broth at sub-MIC concentrations (500 μg/mL. All plant extracts significantly (p≤0.003 reduced biofilmformation compared to the controls. Glycyrrhiza glabra and Q. infectoria had the highest anti-biofilm activities. Nocorrelation between the alpha-glucosidase inhibitory activity with growth or the intensity of biofilm formation was found.Conclusion, significance and impact of study: Extracts of Q. infectoria and M. communis had the most antimicrobial,while Q. infectoria and G. glabra had the highest anti-biofilm activities. All plant extracts had anti-biofilm activities withmarginal effect on growth, suggesting that the mechanisms of these activities are unrelated to static or cidal effects.Further work to understand the relation between antimicrobial and biofilm formation is needed for development of newmeans to fight the infectious caused by this bacterium in future.

  15. Important contribution of the novel locus comEB to extracellular DNA-dependent Staphylococcus lugdunensis biofilm formation.

    Science.gov (United States)

    Rajendran, Nithya Babu; Eikmeier, Julian; Becker, Karsten; Hussain, Muzaffar; Peters, Georg; Heilmann, Christine

    2015-12-01

    The coagulase-negative species Staphylococcus lugdunensis is an emerging cause of serious and potentially life-threatening infections, such as infective endocarditis. The pathogenesis of these infections is characterized by the ability of S. lugdunensis to form biofilms on either biotic or abiotic surfaces. To elucidate the genetic basis of biofilm formation in S. lugdunensis, we performed transposon (Tn917) mutagenesis. One mutant had a significantly reduced biofilm-forming capacity and carried a Tn917 insertion within the competence gene comEB. Site-directed mutagenesis and subsequent complementation with a functional copy of comEB verified the importance of comEB in biofilm formation. In several bacterial species, natural competence stimulates DNA release via lysis-dependent or -independent mechanisms. Extracellular DNA (eDNA) has been demonstrated to be an important structural component of many bacterial biofilms. Therefore, we quantified the eDNA in the biofilms and found diminished eDNA amounts in the comEB mutant biofilm. High-resolution images and three-dimensional data obtained via confocal laser scanning microscopy (CSLM) visualized the impact of the comEB mutation on biofilm integrity. The comEB mutant did not show reduced expression of autolysin genes, decreased autolytic activities, or increased cell viability, suggesting a cell lysis-independent mechanism of DNA release. Furthermore, reduced amounts of eDNA in the comEB mutant biofilms did not result from elevated levels or activity of the S. lugdunensis thermonuclease NucI. In conclusion, we defined here, for the first time, a role for the competence gene comEB in staphylococcal biofilm formation. Our findings indicate that comEB stimulates biofilm formation via a lysis-independent mechanism of DNA release.

  16. Enterococcus faecium WB2000 Inhibits Biofilm Formation by Oral Cariogenic Streptococci

    Directory of Open Access Journals (Sweden)

    Nao Suzuki

    2011-01-01

    Full Text Available This study investigated the inhibitory effect of probiotic Enterococcus faecium WB2000 on biofilm formation by cariogenic streptococci. The ability of E. faecium WB2000 and JCM5804 and Enterococcus faecalis JCM5803 to inhibit biofilm formation by seven laboratory oral streptococcal strains and 13 clinical mutans streptococcal strains was assayed. The Enterococcal strains inhibited biofilm formation in dual cultures with the mutans streptococcal strains Streptococcus mutans Xc and Streptococcus sobrinus JCM5176 (P<0.05, but not with the noncariogenic streptococcal strains. Enterococcus faecium WB2000 inhibited biofilm formation by 90.0% (9/10 of the clinical S. mutans strains and 100% (3/3 of the clinical S. sobrinus strains. After culturing, the pH did not differ between single and dual cultures. The viable counts of floating mutans streptococci were lower in dual cultures with E. faecium WB2000 than in single cultures. Enterococcus faecium WB2000 acted as a probiotic bacterial inhibitor of cariogenic streptococcal biofilm formation.

  17. A new mathematical model of bacterial interactions in two-species oral biofilms

    Science.gov (United States)

    Martin, Bénédicte; Tamanai-Shacoori, Zohreh; Bronsard, Julie; Ginguené, Franck; Meuric, Vincent

    2017-01-01

    Periodontitis are bacterial inflammatory diseases, where the bacterial biofilms present on the tooth-supporting tissues switch from a healthy state towards a pathogenic state. Among bacterial species involved in the disease, Porphyromonas gingivalis has been shown to induce dysbiosis, and to induce virulence of otherwise healthy bacteria like Streptococcus gordonii. During biofilm development, primary colonizers such as S. gordonii first attach to the surface and allow the subsequent adhesion of periodontal pathogens such as P. gingivalis. Interactions between those two bacteria have been extensively studied during the adhesion step of the biofilm. The aim of the study was to understand interactions of both species during the growing phase of the biofilm, for which little knowledge is available, using a mathematical model. This two-species biofilm model was based on a substrate-dependent growth, implemented with damage parameters, and validated thanks to data obtained on experimental biofilms. Three different hypothesis of interactions were proposed and assayed using this model: independence, competition between both bacteria species, or induction of toxicity by one species for the other species. Adequacy between experimental and simulated biofilms were found with the last hypothetic mathematical model. This new mathematical model of two species bacteria biofilms, dependent on different substrates for growing, can be applied to any bacteria species, environmental conditions, or steps of biofilm development. It will be of great interest for exploring bacterial interactions in biofilm conditions. PMID:28253369

  18. New in vitro model to study the effect of human simulated antibiotic concentrations on bacterial biofilms.

    Science.gov (United States)

    Haagensen, Janus A J; Verotta, Davide; Huang, Liusheng; Spormann, Alfred; Yang, Katherine

    2015-07-01

    A new in vitro pharmacokinetic/pharmacodynamic simulator for bacterial biofilms utilizing flow cell technology and confocal laser scanning microscopy is described. The device has the ability to simulate the changing antibiotic concentrations in humans associated with intravenous dosing on bacterial biofilms grown under continuous culture conditions. The free drug concentrations of a single 2-g meropenem intravenous bolus dose and first-order elimination utilizing a half-life of 0.895 h (elimination rate constant, 0.776 h(-1)) were simulated. The antibacterial activity of meropenem against biofilms of Pseudomonas aeruginosa PAO1 and three clinical strains isolated from patients with cystic fibrosis was investigated. Additionally, the effect of meropenem on PAO1 biofilms cultured for 24 h versus that on biofilms cultured for 72 h was examined. Using confocal laser scanning microscopy, rapid biofilm killing was observed in the first hour of the dosing interval for all biofilms. However, for PAO1 biofilms cultured for 72 h, only bacterial subpopulations at the periphery of the biofilm were affected, with subpopulations at the substratum remaining viable, even at the conclusion of the dosing interval. The described model is a novel method to investigate antimicrobial killing of bacterial biofilms using human simulated concentrations.

  19. A new mathematical model of bacterial interactions in two-species oral biofilms.

    Science.gov (United States)

    Martin, Bénédicte; Tamanai-Shacoori, Zohreh; Bronsard, Julie; Ginguené, Franck; Meuric, Vincent; Mahé, Fabrice; Bonnaure-Mallet, Martine

    2017-01-01

    Periodontitis are bacterial inflammatory diseases, where the bacterial biofilms present on the tooth-supporting tissues switch from a healthy state towards a pathogenic state. Among bacterial species involved in the disease, Porphyromonas gingivalis has been shown to induce dysbiosis, and to induce virulence of otherwise healthy bacteria like Streptococcus gordonii. During biofilm development, primary colonizers such as S. gordonii first attach to the surface and allow the subsequent adhesion of periodontal pathogens such as P. gingivalis. Interactions between those two bacteria have been extensively studied during the adhesion step of the biofilm. The aim of the study was to understand interactions of both species during the growing phase of the biofilm, for which little knowledge is available, using a mathematical model. This two-species biofilm model was based on a substrate-dependent growth, implemented with damage parameters, and validated thanks to data obtained on experimental biofilms. Three different hypothesis of interactions were proposed and assayed using this model: independence, competition between both bacteria species, or induction of toxicity by one species for the other species. Adequacy between experimental and simulated biofilms were found with the last hypothetic mathematical model. This new mathematical model of two species bacteria biofilms, dependent on different substrates for growing, can be applied to any bacteria species, environmental conditions, or steps of biofilm development. It will be of great interest for exploring bacterial interactions in biofilm conditions.

  20. D-Galactose as an autoinducer 2 inhibitor to control the biofilm formation of periodontopathogens.

    Science.gov (United States)

    Ryu, Eun-Ju; Sim, Jaehyun; Sim, Jun; Lee, Julian; Choi, Bong-Kyu

    2016-09-01

    Autoinducer 2 (AI-2) is a quorum sensing molecule to which bacteria respond to regulate various phenotypes, including virulence and biofilm formation. AI-2 plays an important role in the formation of a subgingival biofilm composed mostly of Gram-negative anaerobes, by which periodontitis is initiated. The aim of this study was to evaluate D-galactose as an inhibitor of AI-2 activity and thus of the biofilm formation of periodontopathogens. In a search for an AI-2 receptor of Fusobacterium nucleatum, D-galactose binding protein (Gbp, Gene ID FN1165) showed high sequence similarity with the ribose binding protein (RbsB), a known AI-2 receptor of Aggregatibacter actinomycetemcomitans. D-Galactose was evaluated for its inhibitory effect on the AI-2 activity of Vibrio harveyi BB152 and F. nucleatum, the major coaggregation bridge organism, which connects early colonizing commensals and late pathogenic colonizers in dental biofilms. The inhibitory effect of D-galactose on the biofilm formation of periodontopathogens was assessed by crystal violet staining and confocal laser scanning microscopy in the absence or presence of AI-2 and secreted molecules of F. nucleatum. D-Galactose significantly inhibited the AI-2 activity of V. harveyi and F. nucleatum. In addition, D-galactose markedly inhibited the biofilm formation of F. nucleatum, Porphyromonas gingivalis, and Tannerella forsythia induced by the AI-2 of F. nucleatum without affecting bacterial growth. Our results demonstrate that the Gbp may function as an AI-2 receptor and that galactose may be used for prevention of the biofilm formation of periodontopathogens by targeting AI-2 activity.

  1. Cold Plasma Inactivation of Bacterial Biofilms and Reduction of Quorum Sensing Regulated Virulence Factors.

    Directory of Open Access Journals (Sweden)

    Dana Ziuzina

    Full Text Available The main objectives of this work were to investigate the effect of atmospheric cold plasma (ACP against a range of microbial biofilms commonly implicated in foodborne and healthcare associated human infections and against P. aeruginosa quorum sensing (QS-regulated virulence factors, such as pyocyanin, elastase (Las B and biofilm formation capacity post-ACP treatment. The effect of processing factors, namely treatment time and mode of plasma exposure on antimicrobial activity of ACP were also examined. Antibiofilm activity was assessed for E. coli, L. monocytogenes and S. aureus in terms of reduction of culturability and retention of metabolic activity using colony count and XTT assays, respectively. All samples were treated 'inpack' using sealed polypropylene containers with a high voltage dielectric barrier discharge ACP generated at 80 kV for 0, 60, 120 and 300 s and a post treatment storage time of 24 h. According to colony counts, ACP treatment for 60 s reduced populations of E. coli to undetectable levels, whereas 300 s was necessary to significantly reduce populations of L. monocytogenes and S. aureus biofilms. The results obtained from XTT assay indicated possible induction of viable but non culturable state of bacteria. With respect to P. aeruginosa QS-related virulence factors, the production of pyocyanin was significantly inhibited after short treatment times, but reduction of elastase was notable only after 300 s and no reduction in actual biofilm formation was achieved post-ACP treatment. Importantly, reduction of virulence factors was associated with reduction of the cytotoxic effects of the bacterial supernatant on CHO-K1 cells, regardless of mode and duration of treatment. The results of this study point to ACP technology as an effective strategy for inactivation of established biofilms and may play an important role in attenuation of virulence of pathogenic bacteria. Further investigation is warranted to propose direct evidence

  2. Pseudomonas aeruginosa lipopolysaccharide inhibits Candida albicans hyphae formation and alters gene expression during biofilm development.

    Science.gov (United States)

    Bandara, H M H N; K Cheung, B P; Watt, R M; Jin, L J; Samaranayake, L P

    2013-02-01

    Elucidation of bacterial and fungal interactions in multispecies biofilms will have major impacts on understanding the pathophysiology of infections. The objectives of this study were to (i) evaluate the effect of Pseudomonas aeruginosa lipopolysaccharide (LPS) on Candida albicans hyphal development and transcriptional regulation, (ii) investigate protein expression during biofilm formation, and (iii) propose likely molecular mechanisms for these interactions. The effect of LPS on C. albicans biofilms was assessed by XTT-reduction and growth curve assays, light microscopy, scanning electron microscopy (SEM), and confocal laser scanning microscopy (CLSM). Changes in candidal hypha-specific genes (HSGs) and transcription factor EFG1 expression were assessed by real-time polymerase chain reaction and two-dimensional gel electrophoresis, respectively. Proteome changes were examined by mass spectrometry. Both metabolic activities and growth rates of LPS-treated C. albicans biofilms were significantly lower (P GDH1), CaO19.11135(PGK1), CaO19.9877(HNT1) by P. aeruginosa LPS. Our data imply that bacterial LPS inhibit C. albicans biofilm formation and hyphal development. The P. aeruginosa LPS likely target glycolysis-associated mechanisms during candidal filamentation.

  3. Tobacco smoke augments Porphyromonas gingivalis-Streptococcus gordonii biofilm formation.

    Directory of Open Access Journals (Sweden)

    Juhi Bagaitkar

    Full Text Available Smoking is responsible for the majority of periodontitis cases in the US and smokers are more susceptible than non-smokers to infection by the periodontal pathogen Porphyromonas gingivalis. P. gingivalis colonization of the oral cavity is dependent upon its interaction with other plaque bacteria, including Streptococcus gordonii. Microarray analysis suggested that exposure of P. gingivalis to cigarette smoke extract (CSE increased the expression of the major fimbrial antigen (FimA, but not the minor fimbrial antigen (Mfa1. Therefore, we hypothesized that CSE promotes P. gingivalis-S. gordonii biofilm formation in a FimA-dependent manner. FimA total protein and cell surface expression were increased upon exposure to CSE whereas Mfa1 was unaffected. CSE exposure did not induce P. gingivalis auto-aggregation but did promote dual species biofilm formation, monitored by microcolony numbers and depth (both, p<0.05. Interestingly, P. gingivalis biofilms grown in the presence of CSE exhibited a lower pro-inflammatory capacity (TNF-α, IL-6 than control biofilms (both, p<0.01. CSE-exposed P. gingivalis bound more strongly to immobilized rGAPDH, the cognate FimA ligand on S. gordonii, than control biofilms (p<0.001 and did so in a dose-dependent manner. Nevertheless, a peptide representing the Mfa1 binding site on S. gordonii, SspB, completely inhibited dual species biofilm formation. Thus, CSE likely augments P. gingivalis biofilm formation by increasing FimA avidity which, in turn, supports initial interspecies interactions and promotes subsequent high affinity Mfa1-SspB interactions driving biofilm growth. CSE induction of P. gingivalis biofilms of limited pro-inflammatory potential may explain the increased persistence of this pathogen in smokers. These findings may also be relevant to other biofilm-induced infectious diseases and conditions.

  4. Biofilms bacterianos e infección Bacterial biofilms and infection

    Directory of Open Access Journals (Sweden)

    I. Lasa

    2005-08-01

    describe el papel que juegan los biofilms en infecciones humanas persistentes.In developed countries we tend to think of heart disease and the numerous forms of cancer as the main causes of mortality, but on a global scale infectious diseases come close, or may even be ahead: 14.9 million deaths in 2002 compared to cardiovascular diseases (16.9 million deaths and cancer (7.1 million deaths (WHO report 2004. The infectious agents responsible for human mortality have evolved as medical techniques and hygienic measures have changed. Modern-day acute infectious diseases caused by specialized bacterial pathogens such as diphtheria, tetanus, cholera, plague, which represented the main causes of death at the beginning of XX century, have been effectively controlled with antibiotics and vaccines. In their place, more than half of the infectious diseases that affect mildly immunocompromised patients involve bacterial species that are commensal with the human body; these can produce chronic infections, are resistant to antimicrobial agents and there is no effective vaccine against them. Examples of these infections are the otitis media, native valve endocarditis, chronic urinary infections, bacterial prostatitis, osteomyelitis and all the infections related to medical devices. Direct analysis of the surface of medical devices or of tissues that have been foci of chronic infections shows the presence of large numbers of bacteria surrounded by an exopolysaccharide matrix, which has been named the "biofilm". Inside the biofilm, bacteria grow protected from the action of the antibodies, phagocytic cells and antimicrobial treatments. In this article, we describe the role of bacterial biofilms in human persistent infections.

  5. Spatial & Temporal Geophysical Monitoring of Microbial Growth and Biofilm Formation

    Science.gov (United States)

    Previous studies have examined the effect of biogenic gases and biomineralization on the acoustic properties of porous media. In this study, we investigated the spatiotemporal effect of microbial growth and biofilm formation on compressional waves and complex conductivity in sand...

  6. Glycerol metabolism promotes biofilm formation by Pseudomonas aeruginosa.

    Science.gov (United States)

    Scoffield, Jessica; Silo-Suh, Laura

    2016-08-01

    Pseudomonas aeruginosa causes persistent infections in the airways of cystic fibrosis (CF) patients. Airway sputum contains various host-derived nutrients that can be utilized by P. aeruginosa, including phosphotidylcholine, a major component of host cell membranes. Phosphotidylcholine can be degraded by P. aeruginosa to glycerol and fatty acids to increase the availability of glycerol in the CF lung. In this study, we explored the role that glycerol metabolism plays in biofilm formation by P. aeruginosa. We report that glycerol metabolism promotes biofilm formation by both a chronic CF isolate (FRD1) and a wound isolate (PAO1) of P. aeruginosa. Moreover, loss of the GlpR regulator, which represses the expression of genes involved in glycerol metabolism, enhances biofilm formation in FRD1 through the upregulation of Pel polysaccharide. Taken together, our results suggest that glycerol metabolism may be a key factor that contributes to P. aeruginosa persistence by promoting biofilm formation.

  7. Shewanella putrefaciens adhesion and biofilm formation on food processing surfaces

    DEFF Research Database (Denmark)

    Bagge, Dorthe; Hjelm, M.; Johansen, C.

    2001-01-01

    Laboratory model systems were developed for studying Shewanella putrefaciens adhesion and biofilm formation under batch and flow conditions. S. putrefaciens plays a major role in food spoilage and may cause microbially induced corrosion on steel surfaces. S. putrefaciens bacteria suspended...

  8. Molecule Targeting Glucosyltransferase Inhibits Streptococcus mutans Biofilm Formation and Virulence.

    Science.gov (United States)

    Ren, Zhi; Cui, Tao; Zeng, Jumei; Chen, Lulu; Zhang, Wenling; Xu, Xin; Cheng, Lei; Li, Mingyun; Li, Jiyao; Zhou, Xuedong; Li, Yuqing

    2015-10-19

    Dental plaque biofilms are responsible for numerous chronic oral infections and cause a severe health burden. Many of these infections cannot be eliminated, as the bacteria in the biofilms are resistant to the host's immune defenses and antibiotics. There is a critical need to develop new strategies to control biofilm-based infections. Biofilm formation in Streptococcus mutans is promoted by major virulence factors known as glucosyltransferases (Gtfs), which synthesize adhesive extracellular polysaccharides (EPS). The current study was designed to identify novel molecules that target Gtfs, thereby inhibiting S. mutans biofilm formation and having the potential to prevent dental caries. Structure-based virtual screening of approximately 150,000 commercially available compounds against the crystal structure of the glucosyltransferase domain of the GtfC protein from S. mutans resulted in the identification of a quinoxaline derivative, 2-(4-methoxyphenyl)-N-(3-{[2-(4-methoxyphenyl)ethyl]imino}-1,4-dihydro-2-quinoxalinylidene)ethanamine, as a potential Gtf inhibitor. In vitro assays showed that the compound was capable of inhibiting EPS synthesis and biofilm formation in S. mutans by selectively antagonizing Gtfs instead of by killing the bacteria directly. Moreover, the in vivo anti-caries efficacy of the compound was evaluated in a rat model. We found that the compound significantly reduced the incidence and severity of smooth and sulcal-surface caries in vivo with a concomitant reduction in the percentage of S. mutans in the animals' dental plaque (P biofilm formation and the cariogenicity of S. mutans.

  9. Effect of Lactobacillus species on Streptococcus mutans biofilm formation.

    Science.gov (United States)

    Ahmed, Ayaz; Dachang, Wu; Lei, Zhou; Jianjun, Liu; Juanjuan, Qiu; Yi, Xin

    2014-09-01

    Streptococcus mutans is the primary pathogen responsible for initiating dental caries and decay. The presence of sucrose, stimulates S. mutans to produce insoluble glucans to form oral biofilm also known as dental plaque to initiate caries lesion. The GtfB and LuxS genes of S. mutans are responsible for formation and maturation of biofilm. Lactobacillus species as probiotic can reduces the count of S. mutans. In this study effect of different Lactobacillus species against the formation of S. mutans biofilm was observed. Growing biofilm in the presence of sucrose was detected using 96 well microtiter plate crystal violet assay and biofilm formation by S. mutans in the presence of Lactobacillus was detected. Gene expression of biofilm forming genes (GtfB and LuxS) was quantified through Real-time PCR. All strains of Lactobacillus potently reduced the formation of S. mutans biofilm whereas Lactobacillus acidophilus reduced the genetic expression by 60-80%. Therefore, probiotic Lactobacillus species can be used as an alternative instead of antibiotics to decrease the chance of dental caries by reducing the count of S. mutans and their gene expression to maintain good oral health.

  10. Early staphylococcal biofilm formation on solid orthopaedic implant materials: in vitro study.

    Directory of Open Access Journals (Sweden)

    Hironobu Koseki

    Full Text Available Biofilms forming on the surface of biomaterials can cause intractable implant-related infections. Bacterial adherence and early biofilm formation are influenced by the type of biomaterial used and the physical characteristics of implant surface. In this in vitro research, we evaluated the ability of Staphylococcus epidermidis, the main pathogen in implant-related infections, to form biofilms on the surface of the solid orthopaedic biomaterials, oxidized zirconium-niobium alloy, cobalt-chromium-molybdenum alloy (Co-Cr-Mo, titanium alloy (Ti-6Al-4V, commercially pure titanium (cp-Ti and stainless steel. A bacterial suspension of Staphylococcus epidermidis strain RP62A (ATCC35984 was added to the surface of specimens and incubated. The stained biofilms were imaged with a digital optical microscope and the biofilm coverage rate (BCR was calculated. The total amount of biofilm was determined with the crystal violet assay and the number of viable cells in the biofilm was counted using the plate count method. The BCR of all the biomaterials rose in proportion to culture duration. After culturing for 2-4 hours, the BCR was similar for all materials. However, after culturing for 6 hours, the BCR for Co-Cr-Mo alloy was significantly lower than for Ti-6Al-4V, cp-Ti and stainless steel (P0.05. These results suggest that surface properties, such as hydrophobicity or the low surface free energy of Co-Cr-Mo, may have some influence in inhibiting or delaying the two-dimensional expansion of biofilm on surfaces with a similar degree of smoothness.

  11. Detection of Pathogenic Biofilms with Bacterial Amyloid Targeting Fluorescent Probe, CDy11

    DEFF Research Database (Denmark)

    Jun-Young, Kim; Srikanta, Sahu; Yin-Hoe, Yau

    2016-01-01

    Bacterial biofilms are responsible for a wide range of persistent infections. In the clinic, diagnosis of biofilm-associated infections relies heavily on culturing methods, which fail to detect nonculturable bacteria. Identification of novel fluorescent probes for biofilm imaging will greatly...... facilitate diagnosis of pathogenic bacterial infection. Herein, we report a novel fluorescent probe, CDy11 (compound of designation yellow 11), which targets amyloid in the Pseudomonas aeruginosa biofilm matrix through a diversity oriented fluorescent library approach (DOFLA). CDy11 was further demonstrated...... for in vivo imaging of P. aeruginosa in implant and corneal infection mice models....

  12. Biofilm formation by Streptococcus agalactiae: influence of environmental conditions and implicated virulence factors.

    Science.gov (United States)

    Rosini, Roberto; Margarit, Immaculada

    2015-01-01

    Streptococcus agalactiae (Group B Streptococcus, GBS) is an important human pathogen that colonizes the urogenital and/or the lower gastro-intestinal tract of up to 40% of healthy women of reproductive age and is a leading cause of sepsis and meningitis in the neonates. GBS can also infect the elderly and immuno-compromised adults, and is responsible for mastitis in bovines. Like other Gram-positive bacteria, GBS can form biofilm-like three-dimensional structures that could enhance its ability to colonize and persist in the host. Biofilm formation by GBS has been investigated in vitro and appears tightly controlled by environmental conditions. Several adhesins have been shown to play a role in the formation of GBS biofilm-like structures, among which are the protein components of pili protruding outside the bacterial surface. Remarkably, antibodies directed against pilus proteins can prevent the formation of biofilms. The implications of biofilm formation in the context of GBS asymptomatic colonization and dissemination to cause invasive disease remain to be investigated in detail.

  13. Biofilm formation by Streptococcus agalactiae: influence of environmental conditions and implicated virulence factors

    Directory of Open Access Journals (Sweden)

    Imma eMargarit

    2015-02-01

    Full Text Available Streptococcus agalactiae (Group B Streptococcus, GBS is an important human pathogen that colonizes the urogenital and/or the lower gastro-intestinal tract of up to 40% of healthy women of reproductive age and is a leading cause of sepsis and meningitis in the neonates. GBS can also infect the elderly and immuno-compromised adults, and is responsible for mastitis in bovines. Like other Gram-positive bacteria, GBS can form biofilm-like three-dimensional structures that could enhance its ability to colonize and persist in the host. Biofilm formation by GBS has been investigated in vitro and appears tightly controlled by environmental conditions. Several adhesins have been shown to play a role in the formation of GBS biofilm-like structures, among which are the protein components of pili protruding outside the bacterial surface. Remarkably, antibodies directed against pilus proteins can prevent the formation of biofilms. The implications of biofilm formation in the context of GBS asymptomatic colonization and dissemination to cause invasive disease remain to be investigated in detail.

  14. Helicobacter pylori-coccoid forms and biofilm formation

    DEFF Research Database (Denmark)

    Andersen, Leif Percival; Rasmussen, Lone

    2009-01-01

    be detected by PCR in water supplies. There is no substantial evidence for viable H. pylori persisting in water supplies. Epidemiological studies suggest that environmental water is a risk factor for H. pylori infection when compared with tap water, and formation of H. pylori biofilm cannot be excluded....... Helicobacter pylori does not seem to take part in biofilm formation in the oral cavity even though the bacterium may be detected....

  15. Biocorrosion and biofilm formation in a nutrient limited heating system subjected to alternating microaerophilic conditions.

    Science.gov (United States)

    Kjellerup, B V; Kjeldsen, K U; Lopes, F; Abildgaard, L; Ingvorsen, K; Frølund, B; Sowers, K R; Nielsen, P H

    2009-11-01

    Severe biofilm formation and biocorrosion have been observed in heating systems even when the water quality complied with existing standards. The coupling between water chemistry, biofilm formation, species composition, and biocorrosion in a heating system was investigated by adding low concentrations of nutrients and oxygen under continuous and alternating dosing regimes. Molecular analysis of 16S rRNA gene fragments demonstrated that the amendments did not cause changes in the overall bacterial community composition. The combined alternating dosing of nutrients and oxygen caused increased rates of pitting (bio-) corrosion. Detection of bacteria involved in sulfide production and oxidation by retrieval of the functional dsrAB and apsA genes revealed the presence of Gram-positive sulfate- and sulfite-reducers and an unknown sulfur-oxidizer. Therefore, to control biocorrosion, sources of oxygen and nutrients must be limited, since the effect of the alternating operational conditions apparently is more important than the presence of potentially corrosive biofilm bacteria.

  16. Bacterial quorum sensing and biofilm formation

    Science.gov (United States)

    Quorum sensing is a cell density-dependent signaling system by which bacteria can regulate gene expression through the production, secretion, and subsequent detection of extracellular signaling molecules called autoinducers. Bacteria use quorum sensing to regulate various physiological activities, ...

  17. A genomic region involved in the formation of adhesin fibers in Bacillus cereus biofilms

    Directory of Open Access Journals (Sweden)

    Joaquín eCaro-Astorga

    2015-01-01

    Full Text Available Bacillus cereus is a bacterial pathogen that is responsible for many recurrent disease outbreaks due to food contamination. Spores and biofilms are considered the most important reservoirs of B. cereus in contaminated fresh vegetables and fruits. Biofilms are bacterial communities that are difficult to eradicate from biotic and abiotic surfaces because of their stable and extremely strong extracellular matrix. These extracellular matrixes contain exopolysaccharides, proteins, extracellular DNA, and other minor components. Although B. cereus can form biofilms, the bacterial features governing assembly of the protective extracellular matrix are not known. Using the well-studied bacterium B. subtilis as a model, we identified two genomic loci in B. cereus, which encodes two orthologs of the amyloid-like protein TasA of B. subtilis and a SipW signal peptidase. Deletion of this genomic region in B. cereus inhibited biofilm assembly; notably, mutation of the putative signal peptidase SipW caused the same phenotype. However, mutations in tasA or calY did not completely prevent biofilm formation; strains that were mutated for either of these genes formed phenotypically different surface attached biofilms. Electron microscopy studies revealed that TasA polymerizes to form long and abundant fibers on cell surfaces, whereas CalY does not aggregate similarly. Heterologous expression of this amyloid-like cassette in a B. subtilis strain lacking the factors required for the assembly of TasA amyloid-like fibers revealed i the involvement of this B. cereus genomic region in formation of the air-liquid interphase pellicles and ii the intrinsic ability of TasA to form fibers similar to the amyloid-like fibers produced by its B. subtilis ortholog.

  18. Biofilm formation of Achromobacter xylosoxidans on contact lens.

    Science.gov (United States)

    Konstantinović, Neda; Ćirković, Ivana; Đukić, Slobodanka; Marić, Vesna; Božić, Dragana D

    2017-02-20

    Achromobacter spp. may contaminate lenses, lens cases, and contact lens solutions and cause ocular infections. The aim of this study was to investigate the possibility of isolated strain of Achromobacter xylosoxidans to form biofilm on the surface of soft contact lenses (CL), to quantify the production of the formed biofilm, and compare it with the reference strains (Pseudomonas aeruginosa, Staphylococcus aureus, and Haemophilus influenzae). Bacterial strain isolated from one contact lens case was identified as A. xylosoxidans using Vitek2 Automated System. Biofilm forming capacity of isolated strain of A. xylosoxidans and reference strains of P. aeruginosa, S. aureus, and H. influenzae on soft CL were analyzed by commonly used microtitre plate method. Our results showed that isolated strain of A. xylosoxidans was capable to form biofilm on the surface of soft contact lens. A. xylosoxidans was strong biofilm producer while all examined reference strains were moderate biofilm producers. A. xylosoxidans appears to be superior biofilm producer on soft CL compared to reference strains.

  19. Minimal selective concentrations of tetracycline in complex aquatic bacterial biofilms.

    Science.gov (United States)

    Lundström, Sara V; Östman, Marcus; Bengtsson-Palme, Johan; Rutgersson, Carolin; Thoudal, Malin; Sircar, Triranta; Blanck, Hans; Eriksson, K Martin; Tysklind, Mats; Flach, Carl-Fredrik; Larsson, D G Joakim

    2016-05-15

    Selection pressure generated by antibiotics released into the environment could enrich for antibiotic resistance genes and antibiotic resistant bacteria, thereby increasing the risk for transmission to humans and animals. Tetracyclines comprise an antibiotic class of great importance to both human and animal health. Accordingly, residues of tetracycline are commonly detected in aquatic environments. To assess if tetracycline pollution in aquatic environments promotes development of resistance, we determined minimal selective concentrations (MSCs) in biofilms of complex aquatic bacterial communities using both phenotypic and genotypic assays. Tetracycline significantly increased the relative abundance of resistant bacteria at 10 μg/L, while specific tet genes (tetA and tetG) increased significantly at the lowest concentration tested (1 μg/L). Taxonomic composition of the biofilm communities was altered with increasing tetracycline concentrations. Metagenomic analysis revealed a concurrent increase of several tet genes and a range of other genes providing resistance to different classes of antibiotics (e.g. cmlA, floR, sul1, and mphA), indicating potential for co-selection. Consequently, MSCs for the tet genes of ≤ 1 μg/L suggests that current exposure levels in e.g. sewage treatment plants could be sufficient to promote resistance. The methodology used here to assess MSCs could be applied in risk assessment of other antibiotics as well.

  20. Streptococcus thermophilus Biofilm Formation: A Remnant Trait of Ancestral Commensal Life?

    Directory of Open Access Journals (Sweden)

    Benoit Couvigny

    Full Text Available Microorganisms have a long history of use in food production and preservation. Their adaptation to food environments has profoundly modified their features, mainly through genomic flux. Streptococcus thermophilus, one of the most frequent starter culture organisms consumed daily by humans emerged recently from a commensal ancestor. As such, it is a useful model for genomic studies of bacterial domestication processes. Many streptococcal species form biofilms, a key feature of the major lifestyle of these bacteria in nature. However, few descriptions of S. thermophilus biofilms have been reported. An analysis of the ability of a representative collection of natural isolates to form biofilms revealed that S. thermophilus was a poor biofilm producer and that this characteristic was associated with an inability to attach firmly to surfaces. The identification of three biofilm-associated genes in the strain producing the most biofilms shed light on the reasons for the rarity of this trait in this species. These genes encode proteins involved in crucial stages of biofilm formation and are heterogeneously distributed between strains. One of the biofilm genes appears to have been acquired by horizontal transfer. The other two are located in loci presenting features of reductive evolution, and are absent from most of the strains analyzed. Their orthologs in commensal bacteria are involved in adhesion to host cells, suggesting that they are remnants of ancestral functions. The biofilm phenotype appears to be a commensal trait that has been lost during the genetic domestication of S. thermophilus, consistent with its adaptation to the milk environment and the selection of starter strains for dairy fermentations.

  1. Streptococcus thermophilus Biofilm Formation: A Remnant Trait of Ancestral Commensal Life?

    Science.gov (United States)

    Couvigny, Benoit; Thérial, Claire; Gautier, Céline; Renault, Pierre; Briandet, Romain; Guédon, Eric

    2015-01-01

    Microorganisms have a long history of use in food production and preservation. Their adaptation to food environments has profoundly modified their features, mainly through genomic flux. Streptococcus thermophilus, one of the most frequent starter culture organisms consumed daily by humans emerged recently from a commensal ancestor. As such, it is a useful model for genomic studies of bacterial domestication processes. Many streptococcal species form biofilms, a key feature of the major lifestyle of these bacteria in nature. However, few descriptions of S. thermophilus biofilms have been reported. An analysis of the ability of a representative collection of natural isolates to form biofilms revealed that S. thermophilus was a poor biofilm producer and that this characteristic was associated with an inability to attach firmly to surfaces. The identification of three biofilm-associated genes in the strain producing the most biofilms shed light on the reasons for the rarity of this trait in this species. These genes encode proteins involved in crucial stages of biofilm formation and are heterogeneously distributed between strains. One of the biofilm genes appears to have been acquired by horizontal transfer. The other two are located in loci presenting features of reductive evolution, and are absent from most of the strains analyzed. Their orthologs in commensal bacteria are involved in adhesion to host cells, suggesting that they are remnants of ancestral functions. The biofilm phenotype appears to be a commensal trait that has been lost during the genetic domestication of S. thermophilus, consistent with its adaptation to the milk environment and the selection of starter strains for dairy fermentations.

  2. On the determining role of network structure titania in silicone against bacterial colonization: Mechanism and disruption of biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Depan, D.; Misra, R.D.K., E-mail: dmisra@louisiana.edu

    2014-01-01

    Silicone-based biomedical devices are prone to microbial adhesion, which is the primary cause of concern in the functioning of the artificial device. Silicone exhibiting long-term and effective antibacterial ability is highly desirable to prevent implant related infections. In this regard, nanophase titania was incorporated in silicone as an integral part of the silicone network structure through cross-link mechanism, with the objective to reduce bacterial adhesion to a minimum. The bacterial adhesion was studied using crystal violet assay, while the mechanism of inhibition of biofilm formation was studied via electron microscopy. The incorporation of nanophase titania in silicone dramatically reduced the viability of Staphylococcus aureus (S. aureus) and the capability to adhere on the surface of hybrid silicone by ∼ 93% in relation to stand alone silicone. The conclusion of dramatic reduction in the viability of S. aureus is corroborated by different experimental approaches including biofilm inhibition assay, zone of inhibition, and through a novel experiment that involved incubation of biofilm with titania nanoparticles. It is proposed that the mechanism of disruption of bacterial film in the presence of titania involves puncturing of the bacterial cell membrane. - Highlights: • Network structure titania in silicone imparts antimicrobial activity. • Ability to microbial adhesion is significantly reduced. • Antimicrobial mechanism involves rupture of biofilm.

  3. A morphological study of the changes in the ultrastructure of a bacterial biofilm disrupted by an ac corona discharge in air

    Science.gov (United States)

    Stepanova, Olga; Rybalchenko, Oksana; Astafiev, Alexander; Orlova, Olga; Kudryavtsev, Anatoly; Kapustina, Valentina

    2016-08-01

    The morphology of bacterial cells and biofilms subjected to a low frequency (˜105 Hz) ac (˜10-1 A) corona discharge was investigated using electron microscopy. A low-frequency ac corona discharge in air is shown to have a bactericidal and bacteriostatic effect on Escherichia coli M17 culture at both the cellular and population levels. Corona exposure inhibits the formation of a microbial community and results in the destruction of formed biofilms. This paper presents data on changes in the ultrastructure of cells and biofilms after corona treatment. Our results suggest that the E. coli M17 cells inside biofilms are affected with results similar to sub-lethal and lethal thermal exposure. Some of the biological aspects of colony and biofilm cells death are evaluated. Morphological changes in the ultrastructure of the biofilms under corona treatment are described. Our results indicate that the heating effect is the main factor responsible for the corona-induced inactivation of bacteria.

  4. Role of Extracellular DNA during Biofilm Formation by Listeria monocytogenes

    DEFF Research Database (Denmark)

    Harmsen, Morten; Lappann, Martin; Knøchel, S

    2010-01-01

    Listeria monocytogenes is a food-borne pathogen that is capable of living in harsh environments. It is believed to do this by forming biofilms, which are surface-associated multicellular structures encased in a self-produced matrix. In this paper we show that in L. monocytogenes extracellular DNA...... (eDNA) may be the only central component of the biofilm matrix and that it is necessary for both initial attachment and early biofilm formation for 41 L. monocytogenes strains that were tested. DNase I treatment resulted in dispersal of biofilms, not only in microtiter tray assays but also in flow...... cell biofilm assays. However, it was also demonstrated that in a culture without eDNA, neither Listeria genomic DNA nor salmon sperm DNA by itself could restore the capacity to adhere. A search for additional necessary components revealed that peptidoglycan (PG), specifically N-acetylglucosamine (NAG...

  5. Impact of osteitis and biofilm formation and correlation between both in diffuse sinonasal polyposis in

    Directory of Open Access Journals (Sweden)

    Ayman Moustafa Al-Madani

    2016-09-01

    Conclusion: Osteitis and bacterial biofilms underlie the majority of Polypoidal chronic rhinosinusitis and both correlated significantly. Scanning electron microscope is a good tool for detecting bacterial biofilms. Sinus surgery with surgical ventilation, mechanical disruption of biofilms and osteitis is a mandatory therapeutic choice with prolonged treatment with antibiotics and nasal wash.

  6. Beneficial biofilms

    Directory of Open Access Journals (Sweden)

    Sara R Robertson

    2015-10-01

    Full Text Available Surface-adherent biofilm growth is a common trait of bacteria and other microorganisms in nature. Within biofilms, organisms are present in high density and are enmeshed in an organic matrix containing polysaccharides and other molecules. The close proximity of organisms within biofilms facilitates microbial interactions and signaling, including many metabolic processes in which consortia rather than individual organisms participate. Biofilm growth also enables microorganisms to withstand chemical and biological stresses. Here, we review some current literature and document representative beneficial aspects of biofilms using examples from wastewater treatment, microbial fuel cells, biological repair (biocementation of stonework, and biofilm protection against Candida albicans infections. Finally, we address a chemical ecology strategy whereby desired microbial succession and beneficial biofilm formation can be encouraged via manipulation of culture conditions and bacterial signaling.

  7. Effect of brominated furanones on the formation of biofilm by Escherichia coli on polyvinyl chloride materials.

    Science.gov (United States)

    Lianhua, Ye; Yunchao, Huang; Geng, Xu; Youquang, Zhou; Guangqiang, Zhao; Yujie, Lei

    2013-01-01

    To study the influence of brominated furanones on the biofilm (BF) formation by Escherichia coli (E. coli) on polyvinyl chloride (PVC) material, and to provide new ways of surface modification of materials to clinically prevent biomaterial centered infection. Three brominated furanones, dissolved in ethanol, furanone-1(3,4-dibromo-5-hydroxyl-furanone), furanone-2(4-bromo-5-(4-methoxypheny)-3-(methylamino)-furanone), and furanone-3(3,4-dibromo-5,5-dimethoxypheny-2(5H)-furanone) with representative chemical structure, were coated on the surfaces of separate PVC materials (1 × 1 cm), respectively. The surface-modified PVC materials were incubated with E. coli and for controls, 75 % ethanol-treated PVC materials were used. This treatment played as control group. The cultivation incubations were for 6, 12, 18, and 24 h. The thickness of bacterial BF and bacterial community quantity unit area on the PVC materials was determined by confocal laser scanning microscopy (CLSM), and the surface structure of bacterial BF formation was examined by scanning electron microscopy (SEM). The results of CLSM indicated the thickness of bacterial BF and bacterial community quantity unit area on PVC materials treated with furanone-3 were significantly lower than that of control at all time points (P 0.05). The results of SEM indicated that after 6 h incubation, the quantity of bacterial attachment to the surface of PVC material treated with furanone-3 was lower than the control group. By 18 h incubation there was completely formed BF structure on the surface of control PVC material. However, there was no significant BF formation on the surface of PVC material treated with furanone-3. The impact of different brominated furanones on SA biofilm formation on the surface of PVC materials are different, furanone-3 can inhibit E. coli biofilm formation on the surface of PVC material.

  8. Enhancing the formation and shear resistance of nitrifying biofilms on membranes by surface modification.

    Science.gov (United States)

    Lackner, Susanne; Holmberg, Maria; Terada, Akihiko; Kingshott, Peter; Smets, Barth F

    2009-08-01

    Polypropylene (PP) membranes and polyethylene (PE) surfaces were modified to enhance formation and shear resistance of nitrifying biofilms for wastewater treatment applications. A combination of plasma polymerization and wet chemistry was employed to ultimately introduce poly(ethyleneglycol) (PEG) chains with two different functional groups (-PEG-NH(2) and -PEG-CH(3)). Biofilm growth experiments using a mixed nitrifying bacterial culture revealed that the specific combination of PEG chains with amino groups resulted in most biofilm formation on both PP and PE samples. Detachment experiments showed similar trends: biofilms on -PEG-NH(2) modified surfaces were much stronger compared to the other modifications and the unmodified reference surfaces. Electrostatic interactions between the protonated amino group and negatively charged bacteria as well as PEG chain density which can affect the surface structure might be possible explanations of the superiority of the -PEG-NH(2) modification. The success of the-PEG-NH(2) modification was independent of the original surface and might, therefore, be used in wastewater treatment bioreactors to improve reactor performance by making biofilm formation more stable and predictable.

  9. Anaerobic bacteria grow within Candida albicans biofilms and induce biofilm formation in suspension cultures.

    Science.gov (United States)

    Fox, Emily P; Cowley, Elise S; Nobile, Clarissa J; Hartooni, Nairi; Newman, Dianne K; Johnson, Alexander D

    2014-10-20

    The human microbiome contains diverse microorganisms, which share and compete for the same environmental niches. A major microbial growth form in the human body is the biofilm state, where tightly packed bacterial, archaeal, and fungal cells must cooperate and/or compete for resources in order to survive. We examined mixed biofilms composed of the major fungal species of the gut microbiome, Candida albicans, and each of five prevalent bacterial gastrointestinal inhabitants: Bacteroides fragilis, Clostridium perfringens, Escherichia coli, Klebsiella pneumoniae, and Enterococcus faecalis. We observed that biofilms formed by C. albicans provide a hypoxic microenvironment that supports the growth of two anaerobic bacteria, even when cultured in ambient oxic conditions that are normally toxic to the bacteria. We also found that coculture with bacteria in biofilms induces massive gene expression changes in C. albicans, including upregulation of WOR1, which encodes a transcription regulator that controls a phenotypic switch in C. albicans, from the "white" cell type to the "opaque" cell type. Finally, we observed that in suspension cultures, C. perfringens induces aggregation of C. albicans into "mini-biofilms," which allow C. perfringens cells to survive in a normally toxic environment. This work indicates that bacteria and C. albicans interactions modulate the local chemistry of their environment in multiple ways to create niches favorable to their growth and survival.

  10. Positive role of peptidoglycan breaks in lactococcal biofilm formation

    NARCIS (Netherlands)

    Mercier, C; Durrieu, C; Briandet, R; Domakova, E; Tremblay, J; Buist, G; Kulakauskas, S

    2002-01-01

    Bacterial attachment to solid matrices depends on adhesive molecules present on the cell surface. Here we establish a positive correlation between peptidoglycan (PG) breaks, rather than particular molecules, and biofilm-forming capacity in the Gram-positive bacterium Lactococcus lactis. The L. lacti

  11. Aminoglycoside inhibition of Staphylococcus aureus biofilm formation is nutrient dependent.

    Science.gov (United States)

    Henry-Stanley, Michelle J; Hess, Donavon J; Wells, Carol L

    2014-06-01

    Biofilms represent microbial communities, encased in a self-produced matrix or extracellular polymeric substance. Microbial biofilms are likely responsible for a large proportion of clinically significant infections and the multicellular nature of biofilm existence has been repeatedly associated with antibiotic resistance. Classical in vitro antibiotic-susceptibility testing utilizes artificial growth media and planktonic microbes, but this method may not account for the variability inherent in environments subject to biofilm growth in vivo. Experiments were designed to test the hypothesis that nutrient concentration can modulate the antibiotic susceptibility of Staphylococcus aureus biofilms. Developing S. aureus biofilms initiated on surgical sutures, and in selected experiments planktonic cultures, were incubated for 16 h in 66 % tryptic soy broth, 0.2 % glucose (1× TSBg), supplemented with bactericidal concentrations of gentamicin, streptomycin, ampicillin or vancomycin. In parallel experiments, antibiotics were added to growth medium diluted one-third (1/3× TSBg) or concentrated threefold (3× TSBg). Following incubation, viable bacteria were enumerated from planktonic cultures or suture sonicates, and biofilm biomass was assayed using spectrophotometry. Interestingly, bactericidal concentrations of gentamicin (5 µg gentamicin ml(-1)) and streptomycin (32 µg streptomycin ml(-1)) inhibited biofilm formation in samples incubated in 1/3× or 1× TSBg, but not in samples incubated in 3× TSBg. The nutrient dependence of aminoglycoside susceptibility is not only associated with biofilm formation, as planktonic cultures incubated in 3× TSBg in the presence of gentamicin also showed antibiotic resistance. These findings appeared specific for aminoglycosides because biofilm formation was inhibited in all three growth media supplemented with bactericidal concentrations of the cell wall-active antibiotics, ampicillin and vancomycin. Additional experiments

  12. Effects of Combined Treatment with Sansanmycin and Macrolides on Pseudomonas aeruginosa and Formation of Biofilm

    Institute of Scientific and Technical Information of China (English)

    YUE LI; YUN-YING XIE; RU-XIAN CHEN; HONG-ZHANG XU; GUO-JI ZHANG; JIN-ZHE LI; XIAO-MIAN LI

    2009-01-01

    Objective To observe the effects of combined treatment with sansanmycin and macrolides on Pseudomonas aeruginosa and formation of biofilm. Methods Micro-dilution method was used to determine the minimal inhibitory concentrations (MICs) of sansanmycin, gentamycin, carbenicillin, polymyxin B, roxithromycin, piperacillin, and tazobactam. PA1 and PA27853 biofilms were observed under optical microscope after staining and under SEM after treatment with sansanmycin at different dosages and combined treatment with sansanmycin and roxithromycin. Viable bacteria in PA1 and PA27853 biofilms were counted after treatment with sansanmycin at different dosages or combined treatment with sansanmycin and roxithromycin. Results The MIC of sansanmycin was lower than that of gentamycin and polymyxin B, but was higher than that of carbenicillin. Roxithromycin enhanced the penetration of sansanmycin to PA1 and PA27853 strains through biofilms. PA1 and PA27853 biofilms were gradually cleared with the increased dosages of sansanmycin or with the combined sansanmycin and roxithromycin. Conclusion Sub-MIC levels of roxithromycin and sansanmycin substantially inhibit the generation of biofilms and proliferation of bacteria. Therefore, combined antibiotics can be used in treatment of intractable bacterial infection.

  13. Bacteriophage exploitation of bacterial biofilms: phage preference for less mature targets?

    Science.gov (United States)

    Abedon, Stephen T

    2016-02-01

    Robust evidence is somewhat lacking for biofilm susceptibility to bacteriophages in nature, contrasting often substantial laboratory biofilm vulnerability to phages. To help bridge this divide, I review a two-part scenario for 'heterogeneous' phage interaction even with phage-permissive single-species biofilms. First, through various mechanisms, those bacteria which are both more newly formed and located at biofilm surfaces may be particularly vulnerable to phage adsorption, rather than biofilm matrix being homogeneously resistant to phage penetration. Second, though phage infection of older, less metabolically active bacteria may still be virion productive, nevertheless the majority of phage population growth in association with biofilm bacteria could involve infection particularly of those bacteria which are more metabolically active and thereby better able to support larger phage bursts, versus clonally related biofilm bacteria equivalently supporting phage production. To the extent that biofilms are physiologically or structurally heterogeneous, with phages exploiting particularly relatively newly divided biofilm-surface bacteria, then even effective phage predation of natural biofilms could result in less than complete overall biofilm clearance. Phage tendencies toward only partial exploitation of even single-species biofilms could be consistent with observations that chronic bacterial infections in the clinic can require more aggressive or extensive phage therapy to eradicate.

  14. Anti-Biofilm Performance of Three Natural Products against Initial Bacterial Attachment

    Directory of Open Access Journals (Sweden)

    Keith R. Stokes

    2013-11-01

    Full Text Available Marine bacteria contribute significantly towards the fouling consortium, both directly (modern foul release coatings fail to prevent “slime” attachment and indirectly (biofilms often excrete chemical cues that attract macrofouling settlement. This study assessed the natural product anti-biofilm performance of an extract of the seaweed, Chondrus crispus, and two isolated compounds from terrestrial sources, (+-usnic acid and juglone, against two marine biofilm forming bacteria, Cobetia marina and Marinobacter hydrocarbonoclasticus. Bioassays were developed using quantitative imaging and fluorescent labelling to test the natural products over a range of concentrations against initial bacterial attachment. All natural products affected bacterial attachment; however, juglone demonstrated the best anti-biofilm performance against both bacterial species at a concentration range between 5–20 ppm. In addition, for the first time, a dose-dependent inhibition (hormetic response was observed for natural products against marine biofilm forming bacteria.

  15. Activity of Norspermidine on Bacterial Biofilms of Multidrug-Resistant Clinical Isolates Associated with Persistent Extremity Wound Infections.

    Science.gov (United States)

    Cardile, Anthony P; Woodbury, Ronald L; Sanchez, Carlos J; Becerra, Sandra C; Garcia, Rebecca A; Mende, Katrin; Wenke, Joseph C; Akers, Kevin S

    2016-11-19

    Biofilm formation is a major virulence factor for numerous pathogenic bacteria and is cited as a central event in the pathogenesis of chronic human infections, which is in large part due to excessive extracellular matrix secretion and metabolic changes that occur within the biofilm rendering them highly tolerant to antimicrobial treatments. Polyamines, including norspermidine, play central roles in bacterial biofilm development, but have also recently been shown to inhibit biofilm formation in select strains of various pathogenic bacteria. The aim of this study was to evaluate in vitro the biofilm dispersive and inhibitory activities of norspermidine against multidrug-resistant clinical isolates of Acinetobacter baumannii(n = 4), Klebsiella pneumoniae (n = 3), Pseudomonas aeruginosa (n = 5) and Staphylococcus aureus (n = 4) associated with chronic extremity wound infections using the semi-quantitative 96-well plate method and confocal laser microscopy. In addition to the antibiofilm activity, biocompatibility of norspermidine was also evaluated by measuring toxicity in vitro to human cell lines and whole porcine tissue explants using MTT viability assay and histological analysis. Norspermidine (5-20 mM) had variable dispersive and inhibitory activity on biofilms which was dependent on both the strain and species. Of the clinical bacterial species evaluated herein, A. baumannii isolates were the most sensitive to the effect of norspermidine, which was in part due to the inhibitory effects of norspermidine on bacterial motility and expression of genes involved in the production of homoserine lactones and quorum sensing molecules both essential for biofilm formation. Importantly, exposure of cell lines and whole tissues to norspermidine for prolonged periods of time (≥24 h) was observed to reduce viability and alter tissue histology in a time and concentration dependent manner, with 20 mM exposure having the greatest negative effects on both

  16. Ratiometric imaging of extracellular pH in bacterial biofilms with C-SNARF-4.

    Science.gov (United States)

    Schlafer, Sebastian; Garcia, Javier E; Greve, Matilde; Raarup, Merete K; Nyvad, Bente; Dige, Irene

    2015-02-01

    pH in the extracellular matrix of bacterial biofilms is of central importance for microbial metabolism. Biofilms possess a complex three-dimensional architecture characterized by chemically different microenvironments in close proximity. For decades, pH measurements in biofilms have been limited to monitoring bulk pH with electrodes. Although pH microelectrodes with a better spatial resolution have been developed, they do not permit the monitoring of horizontal pH gradients in biofilms in real time. Quantitative fluorescence microscopy can overcome these problems, but none of the hitherto employed methods differentiated accurately between extracellular and intracellular microbial pH and visualized extracellular pH in all areas of the biofilms. Here, we developed a method to reliably monitor extracellular biofilm pH microscopically with the ratiometric pH-sensitive dye C-SNARF-4, choosing dental biofilms as an example. Fluorescent emissions of C-SNARF-4 can be used to calculate extracellular pH irrespective of the dye concentration. We showed that at pH values of biofilm and visualized the entire bacterial biomass in in vivo-grown dental biofilms with unknown species composition. We then employed digital image analysis to remove the bacterial biomass from the microscopic images and adequately calculate extracellular pH values. As a proof of concept, we monitored the extracellular pH drop in in vivo-grown dental biofilms fermenting glucose. The combination of pH ratiometry with C-SNARF-4 and digital image analysis allows the accurate monitoring of extracellular pH in bacterial biofilms in three dimensions in real time and represents a significant improvement to previously employed methods of biofilm pH measurement.

  17. Control of Candida albicans metabolism and biofilm formation by Pseudomonas aeruginosa phenazines.

    Science.gov (United States)

    Morales, Diana K; Grahl, Nora; Okegbe, Chinweike; Dietrich, Lars E P; Jacobs, Nicholas J; Hogan, Deborah A

    2013-01-29

    Candida albicans has developmental programs that govern transitions between yeast and filamentous morphologies and between unattached and biofilm lifestyles. Here, we report that filamentation, intercellular adherence, and biofilm development were inhibited during interactions between Candida albicans and Pseudomonas aeruginosa through the action of P. aeruginosa-produced phenazines. While phenazines are toxic to C. albicans at millimolar concentrations, we found that lower concentrations of any of three different phenazines (pyocyanin, phenazine methosulfate, and phenazine-1-carboxylate) allowed growth but affected the development of C. albicans wrinkled colony biofilms and inhibited the fungal yeast-to-filament transition. Phenazines impaired C. albicans growth on nonfermentable carbon sources and led to increased production of fermentation products (ethanol, glycerol, and acetate) in glucose-containing medium, leading us to propose that phenazines specifically inhibited respiration. Methylene blue, another inhibitor of respiration, also prevented the formation of structured colony biofilms. The inhibition of filamentation and colony wrinkling was not solely due to lowered extracellular pH induced by fermentation. Compared to smooth, unstructured colonies, wrinkled colony biofilms had higher oxygen concentrations within the colony, and wrinkled regions of these colonies had higher levels of respiration. Together, our data suggest that the structure of the fungal biofilm promotes access to oxygen and enhances respiratory metabolism and that the perturbation of respiration by bacterial molecules such as phenazines or compounds with similar activities disrupts these pathways. These findings may suggest new ways to limit fungal biofilms in the context of disease. IMPORTANCE Many of the infections caused by Candida albicans, a major human opportunistic fungal pathogen, involve both morphological transitions and the formation of surface-associated biofilms. Through the

  18. Biofilm formation assessment in Sinorhizobium meliloti reveals interlinked control with surface motility

    OpenAIRE

    Amaya-Gomez, CV; Hirsch, AM; Soto, MJ

    2015-01-01

    Background Swarming motility and biofilm formation are opposite, but related surface-associated behaviors that allow various pathogenic bacteria to colonize and invade their hosts. In Sinorhizobium meliloti, the alfalfa endosymbiont, these bacterial processes and their relevance for host plant colonization are largely unexplored. Our previous work demonstrated distinct swarming abilities in two S. meliloti strains (Rm1021 and GR4) and revealed that both environmental cues (iron concentration)...

  19. Conditioning film and initial biofilm formation on ceramics tiles in the marine environment.

    Science.gov (United States)

    Siboni, Nachshon; Lidor, Michal; Kramarsky-Winter, Esti; Kushmaro, Ariel

    2007-09-01

    The formation of biofilm on surfaces in the marine environment is believed to be an important factor driving colonization and recruitment of some sessile invertebrate communities. The present study follows the process of biofilm buildup on unglazed ceramic tiles deployed into the marine environment in the northern Gulf of Eilat. PCR-DGGE of film eluted from the tile surface indicated the presence of bacteria as early as 2 h after deployment. The makeup of the biofilm bacterial community was dynamic. Bacterial presence was apparent microscopically 6 h after deployment, though a developed biofilm was not observed until 24 h following deployment. Total organic carbon (TOC) data suggest that a conditioning film was built within the first four hours following deployment. During this time period TOC reached the highest level possibly due to adhesion of organics (e.g., sugars, proteins and humic substances) from the water column. We suggest that the primary adhering bacteria, whilst still in the reversible stage of adhesion, utilize the conditioning film as food causing the decrease in TOC. Understanding the dynamics between these primary bacterial settlers is of importance, since they may play a role on the succession of invertebrate species settlement onto artificial surfaces.

  20. Alkaloids modulate motility, biofilm formation and antibiotic susceptibility of uropathogenic Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Devendra H Dusane

    Full Text Available Alkaloid-containing natural compounds have shown promise in the treatment of microbial infections. However, practical application of many of these compounds is pending a mechanistic understanding of their mode of action. We investigated the effect of two alkaloids, piperine (found in black pepper and reserpine (found in Indian snakeroot, on the ability of the uropathogenic bacterium Escherichia coli CFT073 to colonize abiotic surfaces. Sub-inhibitory concentrations of both compounds (0.5 to 10 µg/mL decreased bacterial swarming and swimming motilities and increased biofilm formation. qRT-PCR revealed a decrease in the expression of the flagellar gene (fliC and motility genes (motA and motB along with an increased expression of adhesin genes (fimA, papA, uvrY. Interestingly, piperine increased penetration of the antibiotics ciprofloxacin and azithromycin into E. coli CFT073 biofilms and consequently enhanced the ability of these antibiotics to disperse pre-established biofilms. The findings suggest that these alkaloids can potentially affect bacterial colonization by hampering bacterial motility and may aid in the treatment of infection by increasing antibiotic penetration in biofilms.

  1. Inhibition of biofilm formation and antibacterial properties of a silver nano-coating on human dentine.

    Science.gov (United States)

    Besinis, Alexandros; De Peralta, Tracy; Handy, Richard D

    2014-11-01

    The survival of pathogenic bacteria in the oral cavity depends on their successful adhesion to dental surfaces and their ability to develop into biofilms, known as dental plaque. Bacteria from the dental plaque are responsible for the development of dental caries, gingivitis, periodontitis, stomatitis and peri-implantitis. Certain metal nanoparticles have been suggested for infection control and the management of the oral biofilm. Here, it is shown that application of a silver nano-coating directly on dentine can successfully prevent the biofilm formation on dentine surfaces as well as inhibit bacterial growth in the surrounding media. This silver nano-coating was found to be stable (>98.8%) and to maintain its integrity in biological fluids. Its antibacterial activity was compared to silver nitrate and the widely used clinical antiseptic, chlorhexidine. The bacterial growth and cell viability were quantitatively assessed by measuring the turbidity, proportion of live and dead cells and lactate production. All three bioassays showed that silver nanoparticles and silver nitrate dentine coatings were equally highly bactericidal (>99.5%), while inhibiting bacterial adhesion. However, the latter caused significant dentine discolouration (ΔE* = 50.3). The chlorhexidine coating showed no antibacterial effect. Thus, silver nanoparticles may be a viable alternative to both chlorhexidine and silver nitrate, protecting from dental plaque and secondary caries when applied as a dentine coating, while they may provide the platform for creating anti-biofilm surfaces in medical devices and other biomedical applications.

  2. Salmonella biofilm formation on Aspergillus niger involves cellulose--chitin interactions.

    Directory of Open Access Journals (Sweden)

    Maria T Brandl

    Full Text Available Salmonella cycles between host and nonhost environments, where it can become an active member of complex microbial communities. The role of fungi in the environmental adaptation of enteric pathogens remains relatively unexplored. We have discovered that S. enterica Typhimurium rapidly attaches to and forms biofilms on the hyphae of the common fungus, Aspergillus niger. Several Salmonella enterica serovars displayed a similar interaction, whereas other bacterial species were unable to bind to the fungus. Bacterial attachment to chitin, a major constituent of fungal cell walls, mirrored this specificity. Pre-incubation of S. Typhimurium with N-acetylglucosamine, the monomeric component of chitin, reduced binding to chitin beads by as much as 727-fold and inhibited attachment to A. niger hyphae considerably. A cellulose-deficient mutant of S. Typhimurium failed to attach to chitin beads and to the fungus. Complementation of this mutant with the cellulose operon restored binding to chitin beads to 79% of that of the parental strain and allowed for attachment and biofilm formation on A. niger, indicating that cellulose is involved in bacterial attachment to the fungus via the chitin component of its cell wall. In contrast to cellulose, S. Typhimurium curli fimbriae were not required for attachment and biofilm development on the hyphae but were critical for its stability. Our results suggest that cellulose-chitin interactions are required for the production of mixed Salmonella-A. niger biofilms, and support the hypothesis that encounters with chitinaceous alternate hosts may contribute to the ecological success of human pathogens.

  3. Divergent composition of algal-bacterial biofilms developing under various external factors

    NARCIS (Netherlands)

    Barranguet, C.; Veuger, B.; van Beusekom, S.A.M.; Marvan, P.; Sinke, J.J.; Admiraal, W.

    2005-01-01

    The influence of external factors other than nutrients on biofilm development and composition was studied with a combination of optical (Confocal Laser Scanning Microscopy, PAM fluorometry) and chemical methods (EPS extraction, HPLC, TOC determination). The development of algal-bacterial biofilms wa

  4. Bacterial adhesion forces with substratum surfaces and the susceptibility of biofilms to antibiotics

    NARCIS (Netherlands)

    Muszanska, L.H.; Nejadnik, M.R.; Chen, Y.; Heuvel, van den E.R.; Busscher, H.J.; Mei, van der H.C.; Norde, W.

    2012-01-01

    Biofilms causing biomaterial-associated infection resist antibiotic treatment and usually necessitate the replacement of infected implants. Here we relate bacterial adhesion forces and the antibiotic susceptibility of biofilms on uncoated and polymer brush-coated silicone rubber. Nine strains of Sta

  5. Bacterial Adhesion Forces with Substratum Surfaces and the Susceptibility of Biofilms to Antibiotics

    NARCIS (Netherlands)

    Muszanska, Agnieszka K.; Nejadnik, M. Reza; Chen, Yun; van den Heuvel, Edwin R.; Busscher, Henk J.; van der Mei, Henny C.; Norde, Willem

    2012-01-01

    Biofilms causing biomaterial-associated infection resist antibiotic treatment and usually necessitate the replacement of infected implants. Here we relate bacterial adhesion forces and the antibiotic susceptibility of biofilms on uncoated and polymer brush-coated silicone rubber. Nine strains of Sta

  6. Coexistence facilitates interspecific biofilm formation in complex microbial communities

    DEFF Research Database (Denmark)

    Madsen, Jonas Stenløkke; Røder, Henriette Lyng; Russel, Jakob

    2016-01-01

    Social interactions in which bacteria respond to one another by modifying their phenotype are central determinants of microbial communities. It is known that interspecific interactions influence the biofilm phenotype of bacteria; a phenotype that is central to the fitness of bacteria. However...... correlated with an increase in planktonic cell numbers, thus implying a behavioral response rather than mere growth competition. Our findings suggest that an increase in biofilm formation is a common adaptive response to long-term coexistence....

  7. AI-2 of Aggregatibacter actinomycetemcomitans Inhibits Candida albicans Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Endang W. Bachtiar

    2014-07-01

    Full Text Available Aggregatibacter actinomycetemcomitans, a Gram-negative bacterium, and Candida albicans, a polymorphic fungus, are both commensals of the oral cavity but both are opportunistic pathogens that can cause oral diseases. A. actinomycetemcomitans produces a quorum-sensing molecule called autoinducer-2 (AI-2, synthesized by LuxS, that plays an important role in expression of virulence factors, in intra- but also in interspecies communication. The aim of this study was to investigate the role of AI-2 based signaling in the interactions between C. albicans and A. actinomycetemcomitans. A. actinomycetemcomitans adhered to C. albicans and inhibited biofilm formation by means of a molecule that was secreted during growth. C. albicans biofilm formation increased significantly when co-cultured with A. actinomycetemcomitans luxS, lacking AI-2 production. Addition of wild-type-derived spent medium or synthetic AI-2 to spent medium of the luxS strain, restored inhibition of C. albicans biofilm formation to wild-type levels. Addition of synthetic AI-2 significantly inhibited hypha formation of C. albicans possibly explaining the inhibition of biofilm formation. AI-2 of A. actinomycetemcomitans is synthesized by LuxS, accumulates during growth and inhibits C. albicans hypha- and biofilm formation. Identifying the molecular mechanisms underlying the interaction between bacteria and fungi may provide important insight into the balance within complex oral microbial communities.

  8. Type III Secretion System Translocon Component EseB Forms Filaments on and Mediates Autoaggregation of and Biofilm Formation by Edwardsiella tarda.

    Science.gov (United States)

    Gao, Zhi Peng; Nie, Pin; Lu, Jin Fang; Liu, Lu Yi; Xiao, Tiao Yi; Liu, Wei; Liu, Jia Shou; Xie, Hai Xia

    2015-09-01

    The type III secretion system (T3SS) of Edwardsiella tarda plays an important role in infection by translocating effector proteins into host cells. EseB, a component required for effector translocation, is reported to mediate autoaggregation of E. tarda. In this study, we demonstrate that EseB forms filamentous appendages on the surface of E. tarda and is required for biofilm formation by E. tarda in Dulbecco's modified Eagle's medium (DMEM). Biofilm formation by E. tarda in DMEM does not require FlhB, an essential component for assembling flagella. Dynamic analysis of EseB filament formation, autoaggregation, and biofilm formation shows that the formation of EseB filaments occurs prior to autoaggregation and biofilm formation. The addition of an EseB antibody to E. tarda cultures before bacterial autoaggregation prevents autoaggregation and biofilm formation in a dose-dependent manner, whereas the addition of the EseB antibody to E. tarda cultures in which biofilm is already formed does not destroy the biofilm. Therefore, EseB filament-mediated bacterial cell-cell interaction is a prerequisite for autoaggregation and biofilm formation.

  9. Surface modification of materials to encourage beneficial biofilm formation

    Directory of Open Access Journals (Sweden)

    Amreeta Sarjit

    2015-10-01

    Full Text Available Biofilms are communities of sessile microorganisms that grow and produce extrapolymeric substances on an abiotic or biotic surface. Although biofilms are often associated with negative impacts, the role of beneficial biofilms is wide and include applications in bioremediation, wastewater treatment and microbial fuel cells. Microbial adhesion to a surface, which is highly dependent on the physicochemical properties of the cells and surfaces, is an essential step in biofilm formation. Surface modification therefore represents an important way to modulate microbial attachment and ultimately biofilm formation by microorganisms. In this review different surface modification processes such as organosilane surface modification, plasma treatment, and chemical modification of carbon nanotubes, electro-oxidation and covalent-immobilization with neutral red and methylene blue molecules are outlined. The effectiveness of these modifications and their industrial applications are also discussed. There is inadequate literature on surface modification as a process to enhance beneficial biofilm formation. These methods need to be safe, economically viable, scalable and environmental friendly and their potential to fulfil these criteria for many applications has yet to be determined.

  10. The role of the QseC quorum-sensing sensor kinase in epinephrine-enhanced motility and biofilm formation by Escherichia coli.

    Science.gov (United States)

    Yang, Kun; Meng, Jun; Huang, Yun-chao; Ye, Lian-hua; Li, Guang-jian; Huang, Jie; Chen, Hua-mei

    2014-09-01

    Biofilms play a pivotal role in infections related to devices. Biofilm formation in Escherichia coli is mediated by the quorum-sensing E. coli regulator C (QseC), the histidine sensor kinase that can sense epinephrine (EPI)/norepinephrine (NE). In this study, we evaluate the role of the QseC quorum-sensing sensor kinase in epinephrine-enhanced motility and biofilm formation by E. coli. An E. coli MC1000 qseC mutant was constructed. We investigated the role of the QseC in the formation of biofilms on the surface of medical-grade polyvinyl chloride using the E. coli K-12 MC1000 strain as well as a corresponding qseC mutant. Addition of EPI/NE increased biofilm formation by wild-type K-12 MC1000 but not by the isogenic qseC mutant. Scanning confocal laser microscopy corroborated these results by showing that EPI/NE addition significantly increased biofilm's thickness. As expected, the addition of EPI/NE to the qseC mutant, which lacks the ability to sense the hormones, failed to stimulate biofilm formation. Since EPI/NE addition increased bacterial motility, we proposed that their stimulatory effects on biofilm formation occur by enhancing bacterial motility and altering biofilm architecture. We also found that EPI/NE regulate motility and the biofilm phenotype via QseC, as motility was diminished and biofilm formation was significantly decreased in a qseC deletion mutant. These results indicate that EPI/NE induce E. coli biofilm formation on the surface of polyvinyl chloride through QseC. Cross-talk between E. coli (quorum sensing) and host hormones may explain the pathogen-caused opportunistic infections that occur in patients with prosthetic devices used during hormone level fluctuations in the host.

  11. Effect of Biosynthesized Silver Nanoparticles on Staphylococcus aureus Biofilm Quenching and Prevention of Biofilm Formation

    Institute of Scientific and Technical Information of China (English)

    Pratik R. Chaudhari∗; Shalaka A. Masurkar; Vrishali B. Shidore; Suresh P. Kamble

    2012-01-01

    The development of green experimental processes for the synthesis of nanoparticles is a need in the field of nanotechnology. The synthesis of silver nanoparticles was achieved using Bacillus cereus supernatant and 1 mM silver nitrate. 100 mM glucose was found to quicken the rate of reaction of silver nanoparticles synthesis. UV-visible spectrophotometric analysis was carried out to assess the synthesis of silver nanoparticles. The synthesized silver nanoparticles were further characterized by using Nanoparticle Tracking Analyzer (NTA), Transmission Electron Microscope and Energy Dispersive X-ray spectra. These silver nanoparticles showed enhanced quorum quenching activity against Staphylococcus aureus biofilm and prevention of biofilm formation which can be seen under inverted microscope (40 X). The synergistic effect of silver nanoparticles along with antibiotics in biofilm quenching was found to be effective. In the near future, silver nanoparticles could be used in the treatment of infections caused by highly antibiotic resistant biofilm.

  12. [Advances in the progress of anti-bacterial biofilms properties of acetic acid].

    Science.gov (United States)

    Gao, Xinxin; Jin, Zhenghua; Chen, Xinxin; Yu, Jia'ao

    2016-06-01

    Bacterial biofilms are considered to be the hindrance in the treatment of chronic wound, because of their tolerance toward antibiotics and other antimicrobial agents. They also have strong ability to escape from the host immune attack. Acetic acid, as a kind of organic weak acid, can disturb the biofilms by freely diffusing through the bacterial biofilms and bacterial cell membrane structure. Then the acid dissociates to release the hydrogen ions, leading to the disorder of the acid-base imbalance, change of protein conformation, and the degradation of the DNA within the membranes. This paper reviews the literature on the characteristics and treatment strategies of the bacterial biofilms and the acetic acid intervention on them, so as to demonstrate the roles acetic acid may play in the treatment of chronic wound, and thus provide a convincing treatment strategy for this kind of disease.

  13. Hydrophobic nature and effects of culture conditions on biofilm formation by the cellulolytic actinomycete Thermobifida fusca

    Directory of Open Access Journals (Sweden)

    Almaris N. Alonso

    2015-09-01

    Full Text Available Thermobifida fusca produces a firmly attached biofilm on nutritive and non-nutritive surfaces, such as cellulose, glass, plastic, metal and Teflon®. The ability to bind to surfaces has been suggested as a competitive advantage for microbes in soil environments. Results of previous investigations indicated that a Gram-positive cellulolytic soil bacteria, Cellulomonas uda, a facultative aerobe, specifically adhered to nutritive surfaces forming biofilms, but cells did not colonize non-nutritive surfaces. Cell surface hydrophobicity has been implicated in the interactions between bacteria and the adhesion to surfaces. It was recently described that the cellulolytic actinomycete T. fusca cells hydrophobicity was measured and compared to the cellulolytic soil bacteria C. uda. Also, T. fusca biofilm formation on non-nutritive surface, such as polyvinyl chloride, was examined by testing various culture ingredients to determine a possible trigger mechanism for biofilm formation. Experimental results showed that partitioning of bacterial cells to various hydrocarbons was higher in T. fusca cells than in C. uda. The results of this study suggest that the attachment to multiple surfaces by T. fusca could depend on nutrient availability, pH, salt concentrations, and the higher hydrophobic nature of bacterial cells. Possibly, these characteristics may confer T. fusca a selective advantage to compete and survive among the many environments it thrives.

  14. Ability of chitosan gels to disrupt bacterial biofilms and their applications in the treatment of bacterial vaginosis.

    Science.gov (United States)

    Kandimalla, Karunya K; Borden, Emma; Omtri, Rajesh S; Boyapati, Siva Prasad; Smith, Michael; Lebby, Kimberly; Mulpuru, Maanavi; Gadde, Mounika

    2013-07-01

    Recurrence of bacterial vaginosis is attributed to the inability of various formulations to disrupt bacterial biofilms. A negatively charged polysaccharide matrix coats the bacterial communities in the biofilm and restricts the penetration of antibiotics. Therefore, bacteria in the deeper segments of the biofilm persist and perpetuate the infection. In this study, we have tested the efficacy of two bioadhesive polymers, cationic chitosan and anionic polycarbophil, to disrupt Pseudomonas aeruginosa biofilms grown in the Center for Disease Control bioreactor as well as on the 96-well plates. The biofilms were treated with various concentrations of polycarbophil and chitosan at pH 4 or 6. Biofilm integrity following various treatments was evaluated by crystal violet stain and laser confocal microscopy employing Syto9 (live-cell stain) and propidium iodide (dead-cell stain). These studies demonstrated that chitosan gel disrupts the P. aeruginosa biofilm more effectively than does polycarbophil; and this effect is independent of the pH and charge densities on either polymers.

  15. Extracellular matrix structure governs invasion resistance in bacterial biofilms.

    Science.gov (United States)

    Nadell, Carey D; Drescher, Knut; Wingreen, Ned S; Bassler, Bonnie L

    2015-08-01

    Many bacteria are highly adapted for life in communities, or biofilms. A defining feature of biofilms is the production of extracellular matrix that binds cells together. The biofilm matrix provides numerous fitness benefits, including protection from environmental stresses and enhanced nutrient availability. Here we investigate defense against biofilm invasion using the model bacterium Vibrio cholerae. We demonstrate that immotile cells, including those identical to the biofilm resident strain, are completely excluded from entry into resident biofilms. Motile cells can colonize and grow on the biofilm exterior, but are readily removed by shear forces. Protection from invasion into the biofilm interior is mediated by the secreted protein RbmA, which binds mother-daughter cell pairs to each other and to polysaccharide components of the matrix. RbmA, and the invasion protection it confers, strongly localize to the cell lineages that produce it.

  16. Bacterial floc mediated rapid streamer formation in creeping flows

    CERN Document Server

    Hassanpourfard, Mahtab; Ghosh, Ranajay; Das, Siddhartha; Thundat, Thomas; Liu, Yang; Kumar, Aloke

    2015-01-01

    One of the central puzzles concerning the interaction of low Reynolds number (Re<<1) fluid transport with bacterial biomass is the formation of filamentous structures called streamers. In this manuscript, we report our discovery of a new kind of low Re bacterial streamers, which appear from pre-formed bacterial flocs. In sharp contrast to the biofilm-mediated streamers, these streamers form over extremely small timescales (less than a second). Our experiments, carried out in a microchannel with micropillars rely on fluorescence microscopy techniques to illustrate that floc-mediated streamers form when a freely-moving floc adheres to the micropillar wall and gets rapidly sheared by the background flow. We also show that at their inception the deformation of the flocs is dominated by recoverable large strains indicating significant elasticity. These strains subsequently increase tremendously to produce filamentous streamers. Interestingly, we find that these fully formed streamers are not static structure...

  17. Analysis of the role of the LH92_11085 gene of a biofilm hyper-producing Acinetobacter baumannii strain on biofilm formation and attachment to eukaryotic cells.

    Science.gov (United States)

    Álvarez-Fraga, Laura; Pérez, Astrid; Rumbo-Feal, Soraya; Merino, María; Vallejo, Juan Andrés; Ohneck, Emily J; Edelmann, Richard E; Beceiro, Alejandro; Vázquez-Ucha, Juan C; Valle, Jaione; Actis, Luis A; Bou, Germán; Poza, Margarita

    2016-05-18

    Acinetobacter baumannii is a nosocomial pathogen that has a considerable ability to survive in the hospital environment partly due to its capacity to form biofilms. The first step in the process of establishing an infection is adherence of the bacteria to target cells. Chaperone-usher pili assembly systems are involved in pilus biogenesis pathways that play an important role in adhesion to host cells and tissues as well as medically relevant surfaces. After screening a collection of strains, a biofilm hyper-producing A. baumannii strain (MAR002) was selected to describe potential targets involved in pathogenicity. MAR002 showed a remarkable ability to form biofilm and attach to A549 human alveolar epithelial cells. Analysis of MAR002 using transmission electron microscopy (TEM) showed a significant presence of pili on the bacterial surface. Putative protein-coding genes involved in pili formation were identified based on the newly sequenced genome of MAR002 strain (JRHB01000001/2 or NZ_JRHB01000001/2). As assessed by qRT-PCR, the gene LH92_11085, belonging to the operon LH92_11070-11085, is overexpressed (ca. 25-fold more) in biofilm-associated cells compared to exponential planktonic cells. In the present work we investigate the role of this gene on the MAR002 biofilm phenotype. Scanning electron microscopy (SEM) and biofilm assays showed that inactivation of LH92_11085 gene significantly reduced bacterial attachment to A549 cells and biofilm formation on plastic, respectively. TEM analysis of the LH92_11085 mutant showed the absence of long pili formations normally present in the wild-type. These observations indicate the potential role this LH92_11085 gene could play in the pathobiology of A baumannii.

  18. Feature and significance of bacterial biofilm formation in middle-ear mucosa in the rat model of acute otitis media%细菌生物膜在急性中耳炎大鼠中耳腔的形成特点及意义

    Institute of Scientific and Technical Information of China (English)

    柯朝阳; 杨名保; 龚桃根; 刘明

    2011-01-01

    目的 通过观察细菌生物膜在急性中耳炎大鼠中耳腔的形成特点,分析其与急性中耳炎的关系,并探讨该中耳炎模型用于细菌生物膜研究的可行性.方法 30只健康雄性SD大鼠,采用随机数字表法分为实验组(24只)和对照组(6只).麻醉后将50μl肺炎链球菌悬液[1×108菌落形成单位(colony forming unit,CFU)/ml]经听泡穿刺注入到实验组大鼠双侧中耳腔,等量生理盐水注入到对照组大鼠双侧中耳腔.分别于注射后1、3、5、7、10、14 d各取3只实验组大鼠和1只对照组大鼠的双侧听泡行中耳黏膜扫描电镜观察;另取1只实验组大鼠,显微镜下刮取收集双侧中耳腔表面附着的膜状物,行异硫氰酸荧光素标记的刀豆球蛋白(FITC-ConA)及碘化丙啶(propidium iodide,PI)免疫荧光二重染色,激光扫描共聚焦显微镜观察和革兰染色观察.结果 实验组大鼠在炎性反应早期(1 d、3 d)可见中耳腔大量细菌黏附,定植于局部区域形成微菌落,有吞噬细胞混杂其中,形成初级细菌生物膜;炎性反应中期(5 d、7 d)可见成熟细菌生物膜散在于黏膜表面,形成特征性的"蘑菇状"、"塔状"三维立体结构;炎性反应后期(10 d、14 d)部分细菌生物膜呈现衰退迹象.中耳腔膜状物经FITC-ConA、PI二重荧光染色原位标记及革兰染色观察证实由细菌及多糖基质组成.结论 细菌生物膜在中耳急性感染的早期即已开始形成,并可能成为日后炎性反应反复发作或迁延不愈的原因;本研究建立的大鼠急性中耳炎模型是研究中耳细菌生物膜较为理想的动物模型.%Objective To investigate the relationship between bacterial biofilm and acute otitis media by observing the feature of bacterial biofilm formation in middle-ear mucosa in the rat model of acute otitis media and to study thc possibility of application this rat model in bacterial biofilm research. Methods A total of 30 healthy, male SD rats were

  19. Balancing the organic load and light supply in symbiotic microalgal–bacterial biofilm reactors treating synthetic municipal wastewater

    NARCIS (Netherlands)

    Boelee, N.C.; Temmink, B.G.; Janssen, M.; Buisman, C.J.N.; Wijffels, R.H.

    2014-01-01

    Symbiotic microalgal–bacterial biofilms can be very attractive for municipal wastewater treatment. Microalgae remove nitrogen and phosphorus and simultaneously produce the oxygen that is required for the aerobic, heterotrophic degradation of organic pollutants. For the application of these biofilms

  20. DNase I and proteinase K impair Listeria monocytogenes biofilm formation and induce dispersal of pre-existing biofilms.

    Science.gov (United States)

    Nguyen, Uyen T; Burrows, Lori L

    2014-09-18

    Current sanitation methods in the food industry are not always sufficient for prevention or dispersal of Listeria monocytogenes biofilms. Here, we determined if prevention of adherence or dispersal of existing biofilms could occur if biofilm matrix components were disrupted enzymatically. Addition of DNase during biofilm formation reduced attachment (biofilms with 100μg/ml of DNase for 24h induced incomplete biofilm dispersal, with biofilm remaining compared to control. In contrast, addition of proteinase K completely inhibited biofilm formation, and 72h biofilms-including those grown under stimulatory conditions-were completely dispersed with 100μg/ml proteinase K. Generally-regarded-as-safe proteases bromelain and papain were less effective dispersants than proteinase K. In a time course assay, complete dispersal of L. monocytogenes biofilms from both polystyrene and type 304H food-grade stainless steel occurred within 5min at proteinase K concentrations above 25μg/ml. These data confirm that both DNA and proteins are required for L. monocytogenes biofilm development and maintenance, and that these components of the biofilm matrix can be targeted for effective prevention and removal of biofilms.

  1. Photodynamic therapy for inactivating endodontic bacterial biofilms and effect of tissue inhibitors on antibacterial efficacy

    Science.gov (United States)

    Shrestha, Annie; Kishen, Anil

    Complex nature of bacterial cell membrane and structure of biofilm has challenged the efficacy of antimicrobial photodynamic therapy (APDT) to achieve effective disinfection of infected root canals. In addition, tissue-inhibitors present inside the root canals are known to affect APDT activity. This study was aimed to assess the effect of APDT on bacterial biofilms and evaluate the effect of tissue-inhibitors on the APDT. Rose-bengal (RB) and methylene-blue (MB) were tested on Enterococcus faecalis (gram-positive) and Pseudomonas aeruginosa (gram-negative) biofilms. In vitro 7- day old biofilms were sensitized with RB and MB, and photodynamically activated with 20-60 J/cm2. Photosensitizers were pre-treated with different tissue-inhibitors (dentin, dentin-matrix, pulp tissue, bacterial lipopolysaccharides (LPS), and bovine serum albumin (BSA)) and tested for antibacterial effect of APDT. Microbiological culture based analysis was used to analyze the cell viability, while Laser Scanning Confocal Microscopy (LSCM) was used to examine the structure of biofilm. Photoactivation resulted in significant reduction of bacterial biofilms with RB and MB. The structure of biofilm under LSCM was found to be disrupted with reduced biofilm thickness. Complete biofilm elimination could not be achieved with both tested photosensitizers. APDT effect using MB and RB was inhibited in a decreasing order by dentin-matrix, BSA, pulp, dentin and LPS (P< 0.05). Both strains of bacterial biofilms resisted complete elimination after APDT and the tissue inhibitors existing within the root canal reduced the antibacterial activity at varying degrees. Further research is required to enhance the antibacterial efficacy of APDT in an endodontic environment.

  2. EFFECT OF IATROGENIC STAPHYLOCOCCUS EPIDERMIDIS INTERCELLAR ADHESION OPERON ON FORMATION OF BACTERIAL BIOFILM ON SURFACE OF POLYVINYL CHLORIDE%医源性表皮葡萄球菌胞间黏附素基因操纵子在聚氯乙烯材料表面细菌生物膜形成中的作用研究

    Institute of Scientific and Technical Information of China (English)

    叶联华; 黄云超; 许赓; 杨达宽; 刘馨; 周友全; 郭凤丽

    2011-01-01

    Objective The intercellular adhesion (ica) gene of Staphylococcus epidermidis (SE) is a key factor to bacterial aggregation, to analysis the genotype of iatrogenic SE and to explore the effect of iatrogenic SE ica operon on the formation of bacterial biofilm on the surface of polyvinyl chloride (PVC). Methods Fifty-six clinical isolates of iatrogenic SE were selected, and PCR and gene sequencing were used to detect the genes related with bacterial biofilm formation. The genes contained 16S rRNA, autolysin (atlE), fibrinogen binding protein (fbe), and icaADB. The bacteria suspension of 1 × 105 cfu/mL iatrogenic SE was prepared; according to the test results of target genes, the PVC material and the genotype of icaADB+, atlE+,fbe+ strains were co-cultivated as the ica positive group; the PVC material and the genotype of icaADB, atlE+, fbe+ strains were co-cultivated as the ica negative group. The thickness of biofilm and bacterial community quantity unit area on PVC materials were measured by confocal laser scanning microscope, and the surface structure of biofilm formation was observed by scanning electron microscope (SEM) at 6, 12, 18, 24, and 30 hours. Results The positive rate of 16S rRNA of iatrogenic SE strains was 100% (56/56). The genotype of icaADB+, atlE+, and fbe+ strains accounted for 57.1% (32/56). The genotype of icaADB, atlE+,and fbe+ strains accounted for 37.5% (21/56). The sequencing results showed that the product sequences of 16S rRNA, atlE, fbe,and icaADB were consistent with those in GenBank. With time, no significant bacterial biofilm formed on the surface of PVC in ica operon negative group. But in ica operon positive group, the number of bacterial community was gradually increased, and the volume of bacterial biofilms was gradually increased on the surface of PVC. At 24 hours, mature bacterial biofilm structure formed, and at 30 hours, the volume of bacterial biofilms was tending towards stability. The thickness of biofilm (F=6 714

  3. Staphylokinase Control of Staphylococcus aureus Biofilm Formation and Detachment Through Host Plasminogen Activation.

    Science.gov (United States)

    Kwiecinski, Jakub; Peetermans, Marijke; Liesenborghs, Laurens; Na, Manli; Björnsdottir, Halla; Zhu, Xuefeng; Jacobsson, Gunnar; Johansson, Bengt R; Geoghegan, Joan A; Foster, Timothy J; Josefsson, Elisabet; Bylund, Johan; Verhamme, Peter; Jin, Tao

    2016-01-01

    Staphylococcus aureus biofilms, a leading cause of persistent infections, are highly resistant to immune defenses and antimicrobial therapies. In the present study, we investigated the contribution of fibrin and staphylokinase (Sak) to biofilm formation. In both clinical S. aureus isolates and laboratory strains, high Sak-producing strains formed less biofilm than strains that lacked Sak, suggesting that Sak prevents biofilm formation. In addition, Sak induced detachment of mature biofilms. This effect depended on plasminogen activation by Sak. Host-derived fibrin, the main substrate cleaved by Sak-activated plasminogen, was a major component of biofilm matrix, and dissolution of this fibrin scaffold greatly increased susceptibility of biofilms to antibiotics and neutrophil phagocytosis. Sak also attenuated biofilm-associated catheter infections in mouse models. In conclusion, our results reveal a novel role for Sak-induced plasminogen activation that prevents S. aureus biofilm formation and induces detachment of existing biofilms through proteolytic cleavage of biofilm matrix components.

  4. Lavage with allicin in combination with vancomycin inhibits biofilm formation by Staphylococcus epidermidis in a rabbit model of prosthetic joint infection.

    Directory of Open Access Journals (Sweden)

    Haohan Zhai

    Full Text Available BACKGROUND AND AIM: The present anti-infection strategy for prosthetic joint infections (PJI includes the use of antibiotics and surgical treatments, but the bacterial eradication rates are still low. One of the major challenges is the formation of biofilm causing poor bacterial eradication. Recently it has been reported that allicin (diallyl thiosulphinate, an antibacterial principle of garlic, can inhibit bacteria adherence and prevent biofilm formation in vitro. However, whether allicin could inhibit biofilm formation in vivo is unknown. The aim of this study was to investigate the effects of allicin on biofilm formation, and whether allicin could potentiate the bactericidal effect of vancomycin in a rabbit PJI model. METHODS: A sterile stainless-steel screw with a sterile ultra-high molecular weight polyethylene washer was inserted into the lateral femoral condyle of the right hind knee joint of rabbit, and 1 mL inoculum containing 104 colony-forming units of Staphylococcus epidermidis was inoculated into the knee joint (n = 32. Fourteen days later, rabbits randomly received one of the following 4 treatments using continuous lavages: normal saline, vancomycin (20 mcg/mL, allicin (4 mg/L, or allicin (4 mg/L plus vancomycin (20 mcg/mL. Three days later, the washer surface biofilm formation was examined by scanning electron microscopy (SEM. The bacterial counts within the biofilm of implanted screws were determined by bacterial culture. RESULTS: The lowest number of viable bacterial counts of Staphylococcus epidermidis recovered from the biofilm was in the rabbits treated with allicin plus vancomycin (P<0.01 vs. all other groups. The biofilm formation was significantly reduced or undetectable by SEM in rabbits receiving allicin or allicin plus vancomycin. CONCLUSION: Intra-articular allicincan inhibit biofilm formation and enhance the bactericidal effect of vancomycin on implant surface in vivo. Allicin in combination with vancomycin may be

  5. The flhDC gene affects motility and biofilm formation in Yersinia pseudotuberculosis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The flagella master regulatory gene flhDC of Yersinia pseudotuberculosis serotype Ⅲ (YPⅢ) was mutated by deleting the middle region and replaced by a tetracycline resistant gene, and the subsequent mutant strain named YPⅢ△flhDC was obtained. Swimming assay showed that the swimming motility of the mutant strain was completely abolished. The promoter region of the flagella second-class regulatory gene fliA was fused with the lux box, and was conjugated with the mutant and the parent strains respectively for the first cross. LUCY assay result demonstrated that flhDC regulated the expression of fliA in YPⅢ as reported in E. Coli. Biofilm formation of the mutant strain on abiotic and biotic surfaces was observed and quantified. The results showed that mutation of flhDC decreased biofilm formation on both abiotic and biotic surfaces, and abated the infection on Caenorhabdtis elegans. Our results suggest that mutation of the flagella master regulatory gene flhDC not only abolished the swimming motility, but also affected biofilm formation of YPⅢ on different surfaces. The new function of flhDC identified in this study provides a novel viewpoint for the control of bacterial biofilm formation.

  6. Confocal Raman microscopy for identification of bacterial species in biofilms

    Science.gov (United States)

    Beier, Brooke D.; Quivey, Robert G.; Berger, Andrew J.

    2011-03-01

    Implemented through a confocal microscope, Raman spectroscopy has been used to distinguish between biofilm samples of two common oral bacteria species, Streptococcus sanguinis and mutans, which are associated with healthy and cariogenic plaque, respectively. Biofilms of these species are studied as a model of dental plaque. A prediction model has been calibrated and validated using pure biofilms. This model has been used to identify the species of transferred and dehydrated samples (much like a plaque scraping) as well as hydrated biofilms in situ. Preliminary results of confocal Raman mapping of species in an intact two-species biofilm will be shown.

  7. Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Klausen, Mikkel; Aaes-Jorgensen, A.; Molin, Søren;

    2003-01-01

    development, we have performed an investigation with time-lapse confocal laser scanning microscopy of biofilms formed by various combinations of colour-coded P. aeruginosa wild type and motility mutants. We show that mushroom-shaped multicellular structures in P. aeruginosa biofilms can form in a sequential...... process involving a non-motile bacterial subpopulation and a migrating bacterial subpopulation. The non-motile bacteria form the mushroom stalks by growth in certain foci of the biofilm. The migrating bacteria form the mushroom caps by climbing the stalks and aggregating on the tops in a process which...

  8. Inhibitory effect of Lactobacillus salivarius on Streptococcus mutans biofilm formation.

    Science.gov (United States)

    Wu, C-C; Lin, C-T; Wu, C-Y; Peng, W-S; Lee, M-J; Tsai, Y-C

    2015-02-01

    Dental caries arises from an imbalance of metabolic activities in dental biofilms developed primarily by Streptococcus mutans. This study was conducted to isolate potential oral probiotics with antagonistic activities against S. mutans biofilm formation from Lactobacillus salivarius, frequently found in human saliva. We analysed 64 L. salivarius strains and found that two, K35 and K43, significantly inhibited S. mutans biofilm formation with inhibitory activities more pronounced than those of Lactobacillus rhamnosus GG (LGG), a prototypical probiotic that shows anti-caries activity. Scanning electron microscopy showed that co-culture of S. mutans with K35 or K43 resulted in significantly reduced amounts of attached bacteria and network-like structures, typically comprising exopolysaccharides. Spot assay for S. mutans indicated that K35 and K43 strains possessed a stronger bactericidal activity against S. mutans than LGG. Moreover, quantitative real-time polymerase chain reaction showed that the expression of genes encoding glucosyltransferases, gtfB, gtfC, and gtfD was reduced when S. mutans were co-cultured with K35 or K43. However, LGG activated the expression of gtfB and gtfC, but did not influence the expression of gtfD in the co-culture. A transwell-based biofilm assay indicated that these lactobacilli inhibited S. mutans biofilm formation in a contact-independent manner. In conclusion, we identified two L. salivarius strains with inhibitory activities on the growth and expression of S. mutans virulence genes to reduce its biofilm formation. This is not a general characteristic of the species, so presents a potential strategy for in vivo alteration of plaque biofilm and caries.

  9. Proteolysis produced within biofilms of bacterial isolates from raw milk tankers.

    Science.gov (United States)

    Teh, Koon Hoong; Flint, Steve; Palmer, Jon; Andrewes, Paul; Bremer, Phil; Lindsay, Denise

    2012-06-15

    In this study, six bacterial isolates that produced thermo-resistant enzymes isolated from the internal surfaces of raw milk tankers were evaluated for their ability to produce proteolysis within either single culture biofilms or co-culture biofilms. Biofilms were formed in an in vitro model system that simulated the upper internal surface of a raw milk tanker during a typical summer's day of milk collection in New Zealand. The bacterial isolates were further evaluated for their ability to form biofilms at 25, 30 and 37°C. Mutual and competitive effects were observed in some of the co-culture biofilms, with all isolates being able to form biofilms in either single culture or co-culture at the three temperatures. The proteolysis was also evaluated in both biofilms and corresponding planktonic cultures. The proteolysis per cell decreased as the temperature of incubation (20-37°C) increased. Furthermore, mutualistic interactions in terms of proteolysis were observed when cultures were grown as co-culture biofilms. This is the first study to show that proteolytic enzymes can be produced in biofilms on the internal surfaces of raw milk tankers. This has important implications for the cleaning and the temperature control of raw milk transport tankers.

  10. Genome-wide evaluation of the interplay between Caenorhabditis elegans and Yersinia pseudotuberculosis during in vivo biofilm formation.

    Science.gov (United States)

    Joshua, George W P; Atkinson, Steve; Goldstone, Robert J; Patrick, Hannah L; Stabler, Richard A; Purves, Joanne; Cámara, Miguel; Williams, Paul; Wren, Brendan W

    2015-01-01

    The formation of an incapacitating biofilm on Caenorhabditis elegans by Yersinia pseudotuberculosis represents a tractable model for investigating the genetic basis for host-pathogen interplay during the biofilm-mediated infection of a living surface. Previously we established a role for quorum sensing (QS) and the master motility regulator, FlhDC, in biofilm formation by Y. pseudotuberculosis on C. elegans. To obtain further genome-wide insights, we used transcriptomic analysis to obtain comparative information on C. elegans in the presence and absence of biofilm and on wild-type Y. pseudotuberculosis and Y. pseudotuberculosis QS mutants. Infection of C. elegans with the wild-type Y. pseudotuberculosis resulted in the differential regulation of numerous genes, including a distinct subset of nematode C-lectin (clec) and fatty acid desaturase (fat) genes. Evaluation of the corresponding C. elegans clec-49 and fat-3 deletion mutants showed delayed biofilm formation and abolished biofilm formation, respectively. Transcriptomic analysis of Y. pseudotuberculosis revealed that genes located in both of the histidine utilization (hut) operons were upregulated in both QS and flhDC mutants. In addition, mutation of the regulatory gene hutC resulted in the loss of biofilm, increased expression of flhDC, and enhanced swimming motility. These data are consistent with the existence of a regulatory cascade in which the Hut pathway links QS and flhDC. This work also indicates that biofilm formation by Y. pseudotuberculosis on C. elegans is an interactive process during which the initial attachment/recognition of Yersinia to/by C. elegans is followed by bacterial growth and biofilm formation.

  11. Quercus cerris extracts limit Staphylococcus aureus biofilm formation

    Science.gov (United States)

    Hobby, Gerren H.; Quave, Cassandra L.; Nelson, Katie; Compadre, Cesar M.; Beenken, Karen E.; Smeltzer, Mark S.

    2012-01-01

    Ethnopharmacological relevance Quercus cerris L., Fagaceae has been used in traditional Mediterranean medicine for numerous purposes, including anti-infective therapies for diarrhea and wound care. Aim of the study To evaluate the anti-staphylococcal activity of fractions of ethanolic extracts of Q. cerris leaf and stem/fruit samples in models for biofilm and growth inhibition. Materials and methods Ethanolic extracts of Q. cerris leaves and stems/fruits were prepared, resuspended in water and fractioned by successively partitioning with hexane, ethyl acetate and butanol. The ability of the fractions to inhibit Staphylococcus aureus biofilm formation was tested using static crystal violet staining methods and confocal laser scanning microscopy. Growth studies were conducted to determine if the diminished capacity to form a biofilm was related to growth inhibition. Results The butanol extracts of both the leaf and stem/fruit samples were the most active, and at a dose of 200 μg/ml, the capacity to form a biofilm was limited to a level equivalent to that of the sarA mutant controls. Further examination of the impact of these fractions on S. aureus growth revealed that biofilm inhibition by the leaf butanol fraction was due to its bacteriostatic activity. The stem/fruit butanol fraction, however, showed a limited impact on growth, thus demonstrating that biofilm inhibition in this case is not related to the bacteriostatic activity of the extract. Conclusion Our evaluation of a medicinal plant used in Mediterranean ethnotherapies for infectious disease has demonstrated significant activity in the inhibition of staphylococcal biofilm formation with a mechanism unrelated to staphylococcal growth inhibition. These results contribute towards validation of this botanical remedy and form the groundwork for future studies in the search for novel biofilm inhibiting drugs. PMID:23127649

  12. Formation of Biofilms by Foodborne Pathogens and Development of Laboratory In Vitro Model for the Study of Campylobacter Genus Bacteria Based on These Biofilms.

    Science.gov (United States)

    Efimochkina, N R; Bykova, I B; Markova, Yu M; Korotkevich, Yu V; Stetsenko, V V; Minaeva, L P; Sheveleva, S A

    2017-02-01

    We analyzed the formation of biofilms by 7 strains of Campylobacter genus bacteria and 18 strains of Enterobacteriaceae genus bacteria that were isolated from plant and animal raw materials, from finished products, and swabs from the equipment of the food industry. Biofilm formation on glass plates, slides and coverslips, microtubes made of polymeric materials and Petri dishes, and polystyrene plates of different profiles were analyzed. When studying the process of films formation, different effects on bacterial populations were simulated, including variation of growth factor composition of culture media, technique of creating of anaerobiosis, and biocide treatment (active chlorine solutions in a concentration of 100 mg/dm(3)). The formation of biofilms by the studied cultures was assessed by the formation of extracellular matrix stained with aniline dyes on glass and polystyrene surfaces after incubation; 0.1% crystal violet solution was used as the dye. The presence and density of biomatrix were assessed by staining intensity of the surfaces of contact with broth cultures or by optical density of the stained inoculum on a spectrophotometer. Biofilms were formed by 57% Campylobacter strains and 44% Enterobacteriaceae strains. The intensity of the film formation depended on culturing conditions and protocols, species and genus of studied isolates, and largely on adhesion properties of abiotic surfaces. In 30% of Enterobacteriaceae strains, the biofilm formation capacity tended to increase under the influence of chlorine-containing biocide solutions. Thus, we developed and tested under laboratory conditions a plate version of in vitro chromogenic model for evaluation of biofilm formation capacity of C. jejuni strains and studied stress responses to negative environmental factors.

  13. Identification of different bacterial species in biofilms using confocal Raman microscopy

    Science.gov (United States)

    Beier, Brooke D.; Quivey, Robert G.; Berger, Andrew J.

    2010-11-01

    Confocal Raman microspectroscopy is used to discriminate between different species of bacteria grown in biofilms. Tests are performed using two bacterial species, Streptococcus sanguinis and Streptococcus mutans, which are major components of oral plaque and of particular interest due to their association with healthy and cariogenic plaque, respectively. Dehydrated biofilms of these species are studied as a simplified model of dental plaque. A prediction model based on principal component analysis and logistic regression is calibrated using pure biofilms of each species and validated on pure biofilms grown months later, achieving 96% accuracy in prospective classification. When biofilms of the two species are partially mixed together, Raman-based identifications are achieved within ~2 μm of the boundaries between species with 97% accuracy. This combination of spatial resolution and predication accuracy should be suitable for forming images of species distributions within intact two-species biofilms.

  14. Transpositional inactivation of gadW enhances curli production and biofilm formation in Enterohemorrhagic Escherichia coli O157:H7

    Science.gov (United States)

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 has been shown to produce variants that either express or are repressed in the expression of curli fimbriae promoting bacterial attachment, aggregation, and biofilm formation. The variant expression of curli fimbriae in some instances could result fr...

  15. Comparison of the cytotoxic effect of polystyrene latex nanoparticles on planktonic cells and bacterial biofilms

    Science.gov (United States)

    Nomura, Toshiyuki; Fujisawa, Eri; Itoh, Shikibu; Konishi, Yasuhiro

    2016-06-01

    The cytotoxic effect of positively charged polystyrene latex nanoparticles (PSL NPs) was compared between planktonic bacterial cells and bacterial biofilms using confocal laser scanning microscopy, atomic force microscopy, and a colony counting method. Pseudomonas fluorescens, which is commonly used in biofilm studies, was employed as the model bacteria. We found that the negatively charged bacterial surface of the planktonic cells was almost completely covered with positively charged PSL NPs, leading to cell death, as indicated by the NP concentration being greater than that required to achieve single layer coverage. In addition, the relationship between surface coverage and cell viability of P. fluorescens cells correlated well with the findings in other bacterial cells ( Escherichia coli and Lactococcus lactis). However, most of the bacterial cells that formed the biofilm were viable despite the positively charged PSL NPs being highly toxic to planktonic bacterial cells. This indicated that bacterial cells embedded in the biofilm were protected by self-produced extracellular polymeric substances (EPS) that provide resistance to antibacterial agents. In conclusion, mature biofilms covered with EPS exhibit resistance to NP toxicity as well as antibacterial agents.

  16. Preparation of Silver- and Zinc-Doped Mullite-Based Ceramics Showing Anti-Bacterial Biofilm Properties

    Directory of Open Access Journals (Sweden)

    Suhair Saleh

    2011-03-01

    Full Text Available Zinc- and silver-doped mullite ceramic discs were prepared and tested as potentially resistant materials against bacterial adhesion and biofilm formation. Elemental analysis and X-ray diffraction studies showed that zinc ions were incorporated in the structural framework of the mullite, while silver ions remained outside the mullite crystal lattice, which allowed their slow (0.02 ppm/24 hours leaching into the surrounding aqueous environment. In agreement with this behavior, silver-doped mullite showed potent resistance against surface attachment of Pseudomonas aeruginosa, while on the other hand, zinc-doped mullite failed to stop bacterial attachment.

  17. The interconnection between biofilm formation and horizontal gene transfer

    DEFF Research Database (Denmark)

    Madsen, Jonas Stenløkke; Burmølle, Mette; Hansen, Lars H.

    2012-01-01

    Recent research has revealed that horizontal gene transfer and biofilm formation are connected processes. Although published research investigating this interconnectedness is still limited, we will review this subject in order to highlight the potential of these observations because of their beli......Recent research has revealed that horizontal gene transfer and biofilm formation are connected processes. Although published research investigating this interconnectedness is still limited, we will review this subject in order to highlight the potential of these observations because...... of their believed importance in the understanding of the adaptation and subsequent evolution of social traits in bacteria. Here, we discuss current evidence for such interconnectedness centred on plasmids. Horizontal transfer rates are typically higher in biofilm communities compared with those in planktonic states....... Biofilms, furthermore, promote plasmid stability and may enhance the host range of mobile genetic elements that are transferred horizontally. Plasmids, on the other hand, are very well suited to promote the evolution of social traits such as biofilm formation. This, essentially, transpires because plasmids...

  18. Effect of Lactoferrin on Oral Biofilm Formation

    Science.gov (United States)

    2009-10-01

    and free-floating forms. In the oral cavity, microbial biofilms including dental plaque, are involved in the pathogenesis of caries, periodontitis ...plaque-associated oral infections, including dental caries and periodontitis . One of these candidates is lactoferrin [LF]. Lactoferrin, a...research data was subsequently submitted to Oral Microbiology and Immunology journal for publication. Both the PI and Dr. Kai Leung at the USADTRD

  19. Effect of parenteral nutrition solutions on biofilm formation of coagulase-negative Staphylococci: An experimental study

    Directory of Open Access Journals (Sweden)

    J. Sedef Göçmen

    2012-12-01

    Full Text Available Objectives: In our study we investigated the effects ofparenteral nutrition (PN solutions on Coagulase negativestaphylococci (CoNS biofilm production.Materials and methods: Thirty nine CoNS strains isolatedfrom hemocultures and a reference strain (ATCC 12228Staphylococcus epidermidis were included. Bacterial dilutionswere made in Tryptic Soy Broth (TSB. The experimentalmediums were 1. Glucose, 2. Amino acid, 3. Lipid,4. Glucose+ Amino acid+ lipid, 5. Glucose+ Amino acid, 6.Glucose+ Lipid, 7. Amino acid+ Lipid, and 8. Control (TSB.Biofilm formation was evaluated by “quantitative microdilutionplaque test”. The values greater than cut off valueare considered as positive. Biofilm positivity was dividedinto 3 groups (mild, moderate and intensive and all otherstrains under cutoff value were accepted as negative. Thenumbers of biofilm positive strains derived from 1-7. mediumswere compared with each other, and with the resultsof control.Results: The three-component PN solution and two componentPN solutions containing glucose+ lipid and aminoacid+ lipid were found to increase the biofilm productionactivity of CoNS when compared to the control group.Slime positivity in medium 1 and 2 was lower than controlsignificantly, in medium 4, 6, and 7 slime positivity washigher considerably. The indifferent results were obtainedwithin the mediums 1, 2, 3 and within the mediums 4, 5, 6,and 7.Conclusions: In our study, it was found that, glucose, aminoacid and lipid solutions which were building structuresof PN decreased the biofilm production when used solitary.However use of the compounds increased the biofilmproduction. Therefore, we can conclude that PN solutionsgiven as mixtures in routine practice increase the risk ofcatheter infection. J Clin Exp Invest 2012; 3(4: 505-509Key words: Catheter-related infections, biofilm, parenteralnutrition

  20. Novel multiscale modeling tool applied to Pseudomonas aeruginosa biofilm formation.

    Science.gov (United States)

    Biggs, Matthew B; Papin, Jason A

    2013-01-01

    Multiscale modeling is used to represent biological systems with increasing frequency and success. Multiscale models are often hybrids of different modeling frameworks and programming languages. We present the MATLAB-NetLogo extension (MatNet) as a novel tool for multiscale modeling. We demonstrate the utility of the tool with a multiscale model of Pseudomonas aeruginosa biofilm formation that incorporates both an agent-based model (ABM) and constraint-based metabolic modeling. The hybrid model correctly recapitulates oxygen-limited biofilm metabolic activity and predicts increased growth rate via anaerobic respiration with the addition of nitrate to the growth media. In addition, a genome-wide survey of metabolic mutants and biofilm formation exemplifies the powerful analyses that are enabled by this computational modeling tool.

  1. Novel multiscale modeling tool applied to Pseudomonas aeruginosa biofilm formation.

    Directory of Open Access Journals (Sweden)

    Matthew B Biggs

    Full Text Available Multiscale modeling is used to represent biological systems with increasing frequency and success. Multiscale models are often hybrids of different modeling frameworks and programming languages. We present the MATLAB-NetLogo extension (MatNet as a novel tool for multiscale modeling. We demonstrate the utility of the tool with a multiscale model of Pseudomonas aeruginosa biofilm formation that incorporates both an agent-based model (ABM and constraint-based metabolic modeling. The hybrid model correctly recapitulates oxygen-limited biofilm metabolic activity and predicts increased growth rate via anaerobic respiration with the addition of nitrate to the growth media. In addition, a genome-wide survey of metabolic mutants and biofilm formation exemplifies the powerful analyses that are enabled by this computational modeling tool.

  2. Functional bacterial amyloid increases Pseudomonas biofilm hydrophobicity and stiffness

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Vad, Brian Stougaard; Dueholm, Morten Simonsen

    2015-01-01

    The success of Pseudomonas species as opportunistic pathogens derives in great part from their ability to form stable biofilms that offer protection against chemical and mechanical attack. The extracellular matrix of biofilms contains numerous biomolecules, and it has recently been discovered...... that in Pseudomonas one of the components includes β-sheet rich amyloid fibrils (functional amyloid) produced by the fap operon. However, the role of the functional amyloid within the biofilm has not yet been investigated in detail. Here we investigate how the fap-based amyloid produced by Pseudomonas affects biofilm...

  3. Withania somnifera attenuates acid production, acid tolerance and extra-cellular polysaccharide formation of Streptococcus mutans biofilms.

    Science.gov (United States)

    Pandit, Santosh; Song, Kwang-Yeob; Jeon, Jae-Gyu

    2014-01-01

    Withania somnifera (Ashwagandha) is a plant of the Solanaceae family. It has been widely used as a remedy for a variety of ailments in India and Nepal. The plant has also been used as a controlling agent for dental diseases. The aim of the present study was to evaluate the activity of the methanol extract of W. somnifera against the physiological ability of cariogenic biofilms and to identify the components of the extract. To determine the activity of the extract, assays for sucrose-dependent bacterial adherence, glycolytic acid production, acid tolerance, and extracellular polysaccharide formation were performed using Streptococcus mutans biofilms. The viability change of S. mutans biofilms cells was also determined. A phytochemical analysis of the extract was performed using TLC and LC/MS/MS. The extract showed inhibitory effects on sucrose-dependent bacterial adherence (≥ 100 μg/ml), glycolytic acid production (≥ 300 μg/ml), acid tolerance (≥ 300 μg/ml), and extracellular polysaccharide formation (≥ 300 μg/ml) of S. mutans biofilms. However, the extract did not alter the viability of S. mutans biofilms cells in all concentrations tested. Based on the phytochemical analysis, the activity of the extract may be related to the presence of alkaloids, anthrones, coumarines, anthraquinones, terpenoids, flavonoids, and steroid lactones (withanolide A, withaferin A, withanolide B, withanoside IV, and 12-deoxy withastramonolide). These data indicate that W. somnifera may be a potential agent for restraining the physiological ability of cariogenic biofilms.

  4. Anti-bacterial and Anti-biofilm Evaluation of Thiazolopyrimidinone Derivatives Targeting the Histidine Kinase YycG Protein of Staphylococcus epidermidis

    Science.gov (United States)

    Lv, Zhihui; Zhao, Dan; Chang, Jun; Liu, Huayong; Wang, Xiaofei; Zheng, Jinxin; Huang, Renzheng; Lin, Zhiwei; Shang, Yongpeng; Ye, Lina; Wu, Yang; Han, Shiqing; Qu, Di

    2017-01-01

    Staphylococcus epidermidis is one of the most important opportunistic pathogens in nosocomial infections. The main pathogenicity associated with S. epidermidis involves the formation of biofilms on implanted medical devices, biofilms dramatically decrease the efficacy of conventional antibiotics and the host immune system. This emphasizes the urgent need for designing novel anti-staphylococcal biofilm agents. Based on the findings that compound 5, targeting the histidine kinase domain of S. epidermidis YycG, possessed bactericidal activity against staphylococci, 39 derivatives of compound 5 with intact thiazolopyrimidinone core structures were newly designed, 7 derivatives were further screened to explore their anti-bacterial and anti-biofilm activities. The seven derivatives strongly inhibited the growth of S. epidermidis and Staphylococcus aureus in the minimal inhibitory concentration range of 1.56–6.25 μM. All the derivatives reduced the proportion of viable cells in mature biofilms. They all displayed low cytotoxicity on mammalian cells and were not hemolytic to human erythrocytes. The biofilm inhibition activities of four derivatives (H5-32, H5-33, H5-34, and H5-35) were further investigated under shearing forces, they all led to significant decreases in the biofilm formation of S. epidermidis. These results were suggestive that the seven derivatives of compound 5 have the potential to be developed into agents for eradicating biofilm-associated infections.

  5. Biofilm formation on the surface of ceramic tiles.

    Science.gov (United States)

    Sessa, R; Di Pietro, M; Zamparelli, M; Schiavoni, G; Del Piano, M

    2000-10-01

    The aim of the study was to investigate the formation of biofilm on the surface of ceramic tiles, widely present in public and private buildings, using six parallel flow chambers. Our flow system was conceived and made to compare biofilm results by parallel distributed rectangular tiles. The tiles, divided into two identical A and B sections, were placed within the flow chambers. Biofilm formation was performed after 72 h and was quantified by viable counts of bacteria. Average viable counts ranged from 1.1x10(7) to 7.3x10(7) cfu cm(-2) and from 1.1x10(7) to 5.8x10(7) cfu cm(-2) respectively for biofilm A and B sections. As statistical analysis does not show significant differences, we can conclude that biofilms obtained were so similar to each other that they confirmed the system reproducibility. Our next step will be to use our system to study Legionella pneumophila and to evaluate the efficacy of antibacterial agents.

  6. Presence of a polymicrobial endometrial biofilm in patients with bacterial vaginosis.

    Directory of Open Access Journals (Sweden)

    Alexander Swidsinski

    Full Text Available OBJECTIVE: To assess whether the bacterial vaginosis biofilm extends into the upper female genital tract. STUDY DESIGN: Endometrial samples obtained during curettage and fallopian tube samples obtained during salpingectomy were collected. Endometrial and fallopian tube samples were analyzed for the presence of bacteria with fluorescence-in-situ-hybridisation (FISH analysis with probes targeting bacterial vaginosis-associated and other bacteria. RESULTS: A structured polymicrobial Gardnerella vaginalis biofilm could be detected in part of the endometrial and fallopian tube specimens. Women with bacterial vaginosis had a 50.0% (95% CI 24.0-76.0 risk of presenting with an endometrial Gardnerella vaginalis biofilm. Pregnancy (AOR  = 41.5, 95% CI 5.0-341.9, p<0.001 and the presence of bacterial vaginosis (AOR  = 23.2, 95% CI 2.6-205.9, p<0.001 were highly predictive of the presence of uterine or fallopian bacterial colonisation when compared to non-pregnant women without bacterial vaginosis. CONCLUSION: Bacterial vaginosis is frequently associated with the presence of a structured polymicrobial Gardnerella vaginalis biofilm attached to the endometrium. This may have major implications for our understanding of the pathogenesis of adverse pregnancy outcome in association with bacterial vaginosis.

  7. Biofilm formation and control in a simulated spacecraft water system - Two-year results

    Science.gov (United States)

    Schultz, John R.; Taylor, Robert D.; Flanagan, David T.; Carr, Sandra E.; Bruce, Rebekah J.; Svoboda, Judy V.; Huls, M. H.; Sauer, Richard L.; Pierson, Duane L.

    1991-01-01

    The ability of iodine to maintain microbial water quality in a simulated spacecraft water system is being studied. An iodine level of about 2.0 mg/L is maintained by passing ultrapure influent water through an iodinated ion exchange resin. Six liters are withdrawn daily and the chemical and microbial quality of the water is monitored regularly. Stainless steel coupons used to monitor biofilm formation are being analyzed by culture methods, epifluorescence microscopy, and scanning electron microscopy. Results from the first two years of operation show a single episode of high bacterial colony counts in the iodinated system. This growth was apparently controlled by replacing the iodinated ion exchange resin. Scanning electron microscopy indicates that the iodine has limited but not completely eliminated the formation of biofilm during the first two years of operation. Significant microbial contamination has been present continuously in a parallel noniodinated system since the third week of operation.

  8. The OxyR homologue in Tannerella forsythia regulates expression of oxidative stress responses and biofilm formation.

    Science.gov (United States)

    Honma, Kiyonobu; Mishima, Elina; Inagaki, Satoru; Sharma, Ashu

    2009-06-01

    Tannerella forsythia is an anaerobic periodontal pathogen that encounters constant oxidative stress in the human oral cavity due to exposure to air and reactive oxidative species from coexisting dental plaque bacteria as well as leukocytes. In this study, we sought to characterize a T. forsythia ORF with close similarity to bacterial oxidative stress response sensor protein OxyR. To analyse the role of this OxyR homologue, a gene deletion mutant was constructed and characterized. Aerotolerance, survival after hydrogen peroxide challenge and transcription levels of known bacterial antioxidant genes were then determined. Since an association between oxidative stress and biofilm formation has been observed in bacterial systems, we also investigated the role of the OxyR protein in biofilm development by T. forsythia. Our results showed that aerotolerance, sensitivity to peroxide challenge and the expression of oxidative stress response genes were significantly reduced in the mutant as compared with the wild-type strain. Moreover, the results of biofilm analyses showed that, as compared with the wild-type strain, the oxyR mutant showed significantly less autoaggregation and a reduced ability to form mixed biofilms with Fusobacterium nucleatum. In conclusion, a gene annotated in the T. forsythia genome as an oxyR homologue was characterized. Our studies showed that the oxyR homologue in T. forsythia constitutively activates antioxidant genes involved in resistance to peroxides as well as oxygen stress (aerotolerance). In addition, the oxyR deletion attenuates biofilm formation in T. forsythia.

  9. Biofilms in chronic bacterial prostatitis (NIH-II) and in prostatic calcifications.

    Science.gov (United States)

    Mazzoli, Sandra

    2010-08-01

    The prevalence of inflammatory conditions of the prostate gland is increasing. In Italy, there is a high incidence of prostatitis (13.3%), also accompanied by prostatic calcifications. Cat NIH-II chronic bacterial prostatitis (CBPs) are the most frequent. Their aetiology theoretically involves the whole range of bacterial species that are able to form biofilms and infect prostate cells. The aim of our study was to isolate potential biofilm-producing bacteria from CBP patients, to evaluate their ability to produce in vitro biofilms, and to characterize intraprostatic bacteria and prostatic calcifications using scanning electron microscopy. The 150 clinical bacterial strains isolated from chronic prostatitis NIH-II patients were: 50 Enterococcus faecalis; 50 Staphylococcus spp.; 30 Escherichia coli; 20 gram-negative miscellanea. Quantitative assay of biofilm production and adhesion was performed according to the classic Christensen microwell assay. Isolates were classified as nonproducers, weak, moderate or strong producers. The majority of E. coli, gram-negative bacteria, Staphylococci and Enterococci strains were strong or medium producers: 63-30%, 75-15%, 46-36%, and 58-14%, respectively. Prostatic calcifications consisted of bacteria-like forms similar to the species isolated from biological materials and calcifications of patients. Our study proves, for the first time, that bacterial strains able to produce biofilms consistently are present in CBP. Additionally, prostatic calcifications are biofilm-related.

  10. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization.

    Science.gov (United States)

    Iwase, Tadayuki; Uehara, Yoshio; Shinji, Hitomi; Tajima, Akiko; Seo, Hiromi; Takada, Koji; Agata, Toshihiko; Mizunoe, Yoshimitsu

    2010-05-20

    Commensal bacteria are known to inhibit pathogen colonization; however, complex host-microbe and microbe-microbe interactions have made it difficult to gain a detailed understanding of the mechanisms involved in the inhibition of colonization. Here we show that the serine protease Esp secreted by a subset of Staphylococcus epidermidis, a commensal bacterium, inhibits biofilm formation and nasal colonization by Staphylococcus aureus, a human pathogen. Epidemiological studies have demonstrated that the presence of Esp-secreting S. epidermidis in the nasal cavities of human volunteers correlates with the absence of S. aureus. Purified Esp inhibits biofilm formation and destroys pre-existing S. aureus biofilms. Furthermore, Esp enhances the susceptibility of S. aureus in biofilms to immune system components. In vivo studies have shown that Esp-secreting S. epidermidis eliminates S. aureus nasal colonization. These findings indicate that Esp hinders S. aureus colonization in vivo through a novel mechanism of bacterial interference, which could lead to the development of novel therapeutics to prevent S. aureus colonization and infection.

  11. Biofilm formation on polystyrene in detached vs. planktonic cells of polyhydroxyalkanoate-accumulating Halomonas venusta.

    Science.gov (United States)

    Berlanga, Mercedes; Domènech, Òscar; Guerrero, Ricardo

    2014-12-01

    Biofilm development is characterized by distinct stages of initial attachment, microcolony formation and maturation (sessile cells), and final detachment (dispersal of new, planktonic cells). In this work we examined the influence of polyhydroxyalkanoate (PHA) accumulation on bacterial surface properties and biofilm formation on polystyrene in detached vs. planktonic cells of an environmental strain isolated from microbial mats, Halomonas venusta MAT28. This strain was cultured either in an artificial biofilm in which the cells were immobilized on alginate beads (sessile) or as free-swimming (planktonic) cells. For the two modes of growth, conditions allowing or preventing PHA accumulation were established. Cells detached from alginate beads and their planktonic counterparts were used to study cell surface properties and cellular adhesion on polystyrene. Detached cells showed a slightly higher affinity than planktonic cells for chloroform (Lewis-acid) and a greater hydrophobicity (affinity for hexadecane and hexane). Those surface characteristics of the detached cells may explain their better adhesion on polystyrene compared to planktonic cells. Adhesion to polystyrene was not significantly different between H. venusta cells that had accumulated PHA vs. those that did not. These observations suggest that the surface properties of detached cells clearly differ from those of planktonic cells and that for at least the first 48 h after detachment from alginate beads H. venusta retained the capacity of sessile cells to adhere to polystyrene and to form a biofilm.

  12. The effect of environmental conditions on biofilm formation of Burkholderia pseudomallei clinical isolates.

    Directory of Open Access Journals (Sweden)

    Nur Siti K Ramli

    Full Text Available Burkholderia pseudomallei, a Gram-negative saprophytic bacterium, is the causative agent of the potentially fatal melioidosis disease in humans. In this study, environmental parameters including temperature, nutrient content, pH and the presence of glucose were shown to play a role in in vitro biofilm formation by 28 B. pseudomallei clinical isolates, including four isolates with large colony variants (LCVs and small colony variants (SCVs morphotypes. Enhanced biofilm formation was observed when the isolates were tested in LB medium, at 30 °C, at pH 7.2, and in the presence of as little as 2 mM glucose respectively. It was also shown that all SVCs displayed significantly greater capacity to form biofilms than the corresponding LCVs when cultured in LB at 37 °C. In addition, octanoyl-homoserine lactone (C(8-HSL, a quorum sensing molecule, was identified by mass spectrometry analysis in bacterial isolates referred to as LCV CTH, LCV VIT, SCV TOM, SCV CTH, 1 and 3, and the presence of other AHL's with higher masses; decanoyl-homoserine lactone (C(10-HSL and dodecanoyl-homoserine lactone (C(12-HSL were also found in all tested strain in this study. Last but not least, we had successfully acquired two Bacillus sp. soil isolates, termed KW and SA respectively, which possessed strong AHLs degradation activity. Biofilm formation of B. pseudomallei isolates was significantly decreased after treated with culture supernatants of KW and SA strains, demonstrating that AHLs may play a role in B. pseudomallei biofilm formation.

  13. Streptococcus mutans Can Modulate Biofilm Formation and Attenuate the Virulence of Candida albicans.

    Science.gov (United States)

    Barbosa, Júnia Oliveira; Rossoni, Rodnei Dennis; Vilela, Simone Furgeri Godinho; de Alvarenga, Janaína Araújo; Velloso, Marisol dos Santos; Prata, Márcia Cristina de Azevedo; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos

    2016-01-01

    Streptococcus mutans and Candida albicans are found together in the oral biofilms on dental surfaces, but little is known about the ecological interactions between these species. Here, we studied the effects of S. mutans UA159 on the growth and pathogencity of C. albicans. Initially, the effects of S. mutans on the biofilm formation and morphogenesis of C. albicans were tested in vitro. Next, we investigate the influence of S. mutans on pathogenicity of C. albicans using in vivo host models, in which the experimental candidiasis was induced in G. mellonella larvae and analyzed by survival curves, C. albicans count in hemolymph, and quantification of hyphae in the host tissues. In all the tests, we evaluated the direct effects of S. mutans cells, as well as the indirect effects of the subproducts secreted by this microorganism using a bacterial culture filtrate. The in vitro analysis showed that S. mutans cells favored biofilm formation by C. albicans. However, a reduction in biofilm viable cells and inhibition of hyphal growth was observed when C. albicans was in contact with the S. mutans culture filtrate. In the in vivo study, injection of S. mutans cells or S. mutans culture filtrate into G. mellonella larvae infected with C. albicans increased the survival of these animals. Furthermore, a reduction in hyphal formation was observed in larval tissues when C. albicans was associated with S. mutans culture filtrate. These findings suggest that S. mutans can secrete subproducts capable to inhibit the biofilm formation, morphogenesis and pathogenicity of C. albicans, attenuating the experimental candidiasis in G. mellonella model.

  14. The pneumococcal serine-rich repeat protein is an intra-species bacterial adhesin that promotes bacterial aggregation in vivo and in biofilms.

    Directory of Open Access Journals (Sweden)

    Carlos J Sanchez

    Full Text Available The Pneumococcal serine-rich repeat protein (PsrP is a pathogenicity island encoded adhesin that has been positively correlated with the ability of Streptococcus pneumoniae to cause invasive disease. Previous studies have shown that PsrP mediates bacterial attachment to Keratin 10 (K10 on the surface of lung cells through amino acids 273-341 located in the Basic Region (BR domain. In this study we determined that the BR domain of PsrP also mediates an intra-species interaction that promotes the formation of large bacterial aggregates in the nasopharynx and lungs of infected mice as well as in continuous flow-through models of mature biofilms. Using numerous methods, including complementation of mutants with BR domain deficient constructs, fluorescent microscopy with Cy3-labeled recombinant (rBR, Far Western blotting of bacterial lysates, co-immunoprecipitation with rBR, and growth of biofilms in the presence of antibodies and competitive peptides, we determined that the BR domain, in particular amino acids 122-166 of PsrP, promoted bacterial aggregation and that antibodies against the BR domain were neutralizing. Using similar methodologies, we also determined that SraP and GspB, the Serine-rich repeat proteins (SRRPs of Staphylococcus aureus and Streptococcus gordonii, respectively, also promoted bacterial aggregation and that their Non-repeat domains bound to their respective SRRPs. This is the first report to show the presence of biofilm-like structures in the lungs of animals infected with S. pneumoniae and show that SRRPs have dual roles as host and bacterial adhesins. These studies suggest that recombinant Non-repeat domains of SRRPs (i.e. BR for S. pneumoniae may be useful as vaccine antigens to protect against Gram-positive bacteria that cause infection.

  15. Roles of Extracellular Polysaccharides and Biofilm Formation in Heavy Metal Resistance of Rhizobia

    Directory of Open Access Journals (Sweden)

    Natalia Nocelli

    2016-05-01

    Full Text Available Bacterial surface components and extracellular compounds, particularly flagella, lipopolysaccharides (LPSs, and exopolysaccharides (EPSs, in combination with environmental signals and quorum-sensing signals, play crucial roles in bacterial autoaggregation, biofilm development, survival, and host colonization. The nitrogen-fixing species Sinorhizobium meliloti (S. meliloti produces two symbiosis-promoting EPSs: succinoglycan (or EPS I and galactoglucan (or EPS II. Studies of the S. meliloti/alfalfa symbiosis model system have revealed numerous biological functions of EPSs, including host specificity, participation in early stages of host plant infection, signaling molecule during plant development, and (most importantly protection from environmental stresses. We evaluated functions of EPSs in bacterial resistance to heavy metals and metalloids, which are known to affect various biological processes. Heavy metal resistance, biofilm production, and co-culture were tested in the context of previous studies by our group. A range of mercury (Hg II and arsenic (As III concentrations were applied to S. meliloti wild type strain and to mutant strains defective in EPS I and EPS II. The EPS production mutants were generally most sensitive to the metals. Our findings suggest that EPSs are necessary for the protection of bacteria from either Hg (II or As (III stress. Previous studies have described a pump in S. meliloti that causes efflux of arsenic from cells to surrounding culture medium, thereby protecting them from this type of chemical stress. The presence of heavy metals or metalloids in culture medium had no apparent effect on formation of biofilm, in contrast to previous reports that biofilm formation helps protect various microorganism species from adverse environmental conditions. In co-culture experiments, EPS-producing heavy metal resistant strains exerted a protective effect on AEPS-non-producing, heavy metal-sensitive strains; a phenomenon

  16. Bacterial biofilm in chronic lesions of Hidradenitis Suppurativa

    DEFF Research Database (Denmark)

    Ring, H C; Bay, L; Nilsson, M

    2017-01-01

    BACKGROUND: Chronic non-healing or recurrent inflammatory lesions, reminiscent of infection but recalcitrant to antibiotic therapy generally characterize biofilm driven-diseases. Chronic lesions of Hidradenitis Suppurativa (HS) exhibit several aspects, which are compatible with well-known biofilm...... Acid (PNA) - Fluorescence in situ Hybridization (FISH) in combination with Confocal Laser Scanning Microscopy (CLSM). In addition, corresponding histopathological analysis in hematoxylin and eosin slides were performed. RESULTS: Biofilms were seen in 67% of the samples of chronic lesions and in 75......% of the perilesional samples. The mean diameter of aggregates in lesional skin was significantly greater than in perilesional skin (p=0.01). Biofilms exceeding 50 μm in diameter were found in 42% of lesional samples and only in only 5% of the perilesional samples (p=0.009). The majority of the large biofilms...

  17. Visualizing biofilm formation in endotracheal tubes using endoscopic three-dimensional optical coherence tomography

    Science.gov (United States)

    Heidari, Andrew E.; Moghaddam, Samer; Troung, Kimberly K.; Chou, Lidek; Genberg, Carl; Brenner, Matthew; Chen, Zhongping

    2015-12-01

    Biofilm formation has been linked to ventilator-associated pneumonia, which is a prevalent infection in hospital intensive care units. Currently, there is no rapid diagnostic tool to assess the degree of biofilm formation or cellular biofilm composition. Optical coherence tomography (OCT) is a minimally invasive, nonionizing imaging modality that can be used to provide high-resolution cross-sectional images. Biofilm deposited in critical care patients' endotracheal tubes was analyzed in vitro. This study demonstrates that OCT could potentially be used as a diagnostic tool to analyze and assess the degree of biofilm formation and extent of airway obstruction caused by biofilm in endotracheal tubes.

  18. 金银花水煎液尿道冲洗对导尿管表面细菌生物膜形成的影响%Effect of intraurethral irrigation with honeysuckle water-decoction on formation of bacterial biofilm on the surface of catheter

    Institute of Scientific and Technical Information of China (English)

    吕伯东; 陶婷婷; 张士更; 黄晓军; 钱乐; 马寅锋; 朱铮; 徐土珍

    2008-01-01

    Objective To investigate the effect of intraurethral irrigation with honeysuckle water-decoction on formation of bacterial biofilm on the surface of the catheter. Methods Eighty male patients,who had no history of catheterization and no urinary infection with negative results of urine bacterial culture,were enrolled in the study. All patients were randomly divided into 4 groups with 20 cases in each: group A (patients underwent intraurethral irrigation with honeysuckle water-decoction); group B (intraurethral irrigation with 25% PVP); group C (intraurethral irrigation with normal saline ) and group D (no intraurethral irrigation). The urethral catheters were removed at the 7th day and the bacterial biofilm on the surface of the catheter was examined by scanning electron microscopy (SEM). Results SEM demonstrated uneven- distributed matrixes coated on the surface of the catheter, and bacteria adhered to the matrixes. The average thickness of biofilm in group A, B, C and D was (17.876 ±11.788)μn, (31.090±15. 006)μm,(33.716±11.927)μm, (67.762±23.588)μm, respectively. The average thickness of biofilm in group A, B, C was significantly thinner than that in group D (P0.01). Conclusions Intraurethral irrigation with honeysuckle water-decoction can effectively reduce the formation of bacterial biofilm on the surface of the catheter.%目的 观察用金银花水煎液对导尿管表面细菌生物膜形成的影响.方法 选择80例需留置导尿的男性患者,所有患者导尿前均无泌尿系统感染症状且尿培养阴性.将患者随机分为四组:金银花水煎液尿道冲洗组(A组)、25%聚维酮碘(PVP)尿道冲洗组(B组)、生理盐水尿道冲洗组(c组)和未进行尿道冲洗组(D组),每组20例.四组患者均在7 d后拔除导尿管,通过扫描电镜观察导尿管表面细菌生物膜形成情况,并测量其厚度.结果电镜观察可见导尿管表面有不均匀的基质物覆盖,细菌成片状、团块状或成堆分布.A、B

  19. Effect of Silver Nanoparticles Against the Formation of Biofilm by Pseudomonas aeruginosa an In silico Approach.

    Science.gov (United States)

    Vyshnava, Satyanarayana Swamy; Kanderi, Dileep Kumar; Panjala, Shiva Prasad; Pandian, Kamesh; Bontha, Rajasekhar Reddy; Goukanapalle, Praveen Kumar Reddy; Banaganapalli, Babajan

    2016-10-01

    Studies were undertaken to examine the mechanism of mediation of silver nanoparticles in inhibiting biofilm formation by Pseudomonas aeruginosa through LuxI/LuxR system of signal transduction. This study includes the basic signaling transduction mechanism LasR, QscR, RhlR, and Vfr signaling model systems. The arbitrary homology models built with the I-TASSER server were evaluated and validated with the Qmean web server. Based on the Z-score and the relative square mean distance (RMSD) values, the structures were validated. The interaction results of the nanoparticle with the rigid docking proved the requirement of minimal energy for the inhibition of the protein active site by the silver nanoparticle. This principle docking experiment suggests that the biofilm formation in Gram-negative bacteria can be inhibited by the silver nanoparticles at the signal transduction level. Graphical abstract Systematic outline of present study; Stage one provides the data sampling and generation of pdb systems to conform the structure of bacterial signal sytems like LasR/LasI; RhlR/RhrI; QscR/QscI; VfrR/VfrI. Stage two involves docking of silver nanoparticles with Bacterial signal protein strucutres which are listed in Stage one. The Final Stage involves in understanding the development of appropriate mechanism behind the biofilm inhibition by silver nanoparticles.

  20. The formation of biofilms on superduplex UNS S32750 steel subjected to different surface treatments

    Energy Technology Data Exchange (ETDEWEB)

    Pagnin, Sergio [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Barreiro Junior, Walter Cravo; Bott, Ivani de S. [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil)

    2009-07-01

    Biocorrosion is a phenomenon involving metallic surface deterioration accelerated, or induced, by microorganisms. Such microbiological mechanisms occur when microorganisms are deposited on the surfaces exposed to the carrier fluids. Various factors influence the deposition mechanisms, such as the physical characteristics and chemical composition of the metallic surfaces, both of which can cause significant alterations in the processes that lead to the formation of biofilms. The current study evaluates the formation of biofilms, of a sulphate-reducing strain of bacteria (SRB), on superduplex UNS S32750 stainless steels exposed to synthetic seawater containing this bacterial strain. The experiments were carried out in a dynamic system using a controlled-flow test loop, and the steel surfaces were prepared using different techniques, such as polishing and shot peening, in order to present different physical surface conditions and, consequently, different deposition rates. The levels of organic acids, and of the sulphates consumed and produced, were measured. The morphologies of the biofilms produced were also analysed, by scanning electron microscopy, and surface roughness was measured by atom force microscopy. The level of biocorrosion was determined by counting the pits formed. The results obtained revealed that, despite high bacterial adhesion levels for the various treated surfaces examined, no relevant pitting had occurred, indicating that a corrosive process had not taken place for the testing conditions considered. (author)