WorldWideScience

Sample records for bacterial biofilm cleanout

  1. A study of the efficacy of bacterial biofilm cleanout for gastrointestinal endoscopes

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM:To compare the influence and clearance effect of enzymatic and non-enzymatic detergents against Escherichia coli (E. coli) biofilm on the inner surface of gastroscopes.METHODS:Teflon tubes were incubated in a mixture of different detergents and E. coli culture (106 CFU/mL) for 72 h at 15℃,and biofilms on the inner surface of the teflon tubes were analyzed by bacterial count and scanning electron microscopy. To evaluate the clear-ance effect of detergents,after biofilms were formed on the inner surface o...

  2. Electrical spiking in bacterial biofilms

    OpenAIRE

    Masi, Elisa; Ciszak, Marzena; Santopolo, Luisa; Frascella, Arcangela; Giovannetti, Luciana; Marchi, Emmanuela; Viti, Carlo; Mancuso, Stefano

    2015-01-01

    In nature, biofilms are the most common form of bacterial growth. In biofilms, bacteria display coordinated behaviour to perform specific functions. Here, we investigated electrical signalling as a possible driver in biofilm sociobiology. Using a multi-electrode array system that enables high spatio-temporal resolution, we studied the electrical activity in two biofilm-forming strains and one non-biofilm-forming strain. The action potential rates monitored during biofilm-forming bacterial gro...

  3. Bacterial biofilms. Bacteria Quorum sensing in biofilms

    Directory of Open Access Journals (Sweden)

    E. S. Vorobey

    2012-03-01

    Full Text Available Data on biofilms, their structure and properties, peculiarities of formation and interaction between microorganisms in the film are presented. Information on discovery and study of biofilms, importance of biofilms in the medical and clinical microbiology are offered. The data allow to interpret biofilm as a form of existence of human normal microflora. For the exchange of information within the biofilm between the individual cells of the same or different species bacteria use the signal molecules of the Quorum sensing system. Coordination of bacterial cells activity in the biofilms gives them significant advantages: in the biofilms bacteria are protected from the influence of the host protective factors and the antibacterial drugs.

  4. Studying bacterial multispecies biofilms

    DEFF Research Database (Denmark)

    Røder, Henriette Lyng; Sørensen, Søren Johannes; Burmølle, Mette

    2016-01-01

    The high prevalence and significance of multispecies biofilms have now been demonstrated in various bacterial habitats with medical, industrial, and ecological relevance. It is highly evident that several species of bacteria coexist and interact in biofilms, which highlights the need for evaluating...... the approaches used to study these complex communities. This review focuses on the establishment of multispecies biofilms in vitro, interspecies interactions in microhabitats, and how to select communities for evaluation. Studies have used different experimental approaches; here we evaluate the...... benefits and drawbacks of varying the degree of complexity. This review aims to facilitate multispecies biofilm research in order to expand the current limited knowledge on interspecies interactions. Recent technological advances have enabled total diversity analysis of highly complex and diverse microbial...

  5. Antibiotic resistance of bacterial biofilms

    DEFF Research Database (Denmark)

    Hoiby, N.; Bjarnsholt, T.; Givskov, M.;

    2010-01-01

    A biofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and DNA. Bacterial biofilms cause chronic infections because they show increased tolerance to antibiotics and disinfectant chemicals as well as resisting phagocytosis...... to antibiotics. Biofilm growth is associated with an increased level of mutations as well as with quorum-sensing-regulated mechanisms. Conventional resistance mechanisms such as chromosomal beta-lactamase, upregulated efflux pumps and mutations in antibiotic target molecules in bacteria also contribute...... to the survival of biofilms. Biofilms can be prevented by early aggressive antibiotic prophylaxis or therapy and they can be treated by chronic suppressive therapy. A promising strategy may be the use of enzymes that can dissolve the biofilm matrix (e.g. DNase and alginate lyase) as well as quorum...

  6. Microfluidic Approaches to Bacterial Biofilm Formation

    OpenAIRE

    Hee-Deung Park; Junghyun Kim; Seok Chung

    2012-01-01

    Bacterial biofilms—aggregations of bacterial cells and extracellular polymeric substrates (EPS)—are an important subject of research in the fields of biology and medical science. Under aquatic conditions, bacterial cells form biofilms as a mechanism for improving survival and dispersion. In this review, we discuss bacterial biofilm development as a structurally and dynamically complex biological system and propose microfluidic approaches for the study of bacterial biofilms. Biofilms develop t...

  7. Bacterial interactions in dental biofilm.

    Science.gov (United States)

    Huang, Ruijie; Li, Mingyun; Gregory, Richard L

    2011-01-01

    Biofilms are masses of microorganisms that bind to and multiply on a solid surface, typically with a fluid bathing the microbes. The microorganisms that are not attached but are free floating in an aqueous environment are termed planktonic cells. Traditionally, microbiology research has addressed results from planktonic bacterial cells. However, many recent studies have indicated that biofilms are the preferred form of growth of most microbes and particularly those of a pathogenic nature. Biofilms on animal hosts have significantly increased resistance to various antimicrobials compared to planktonic cells. These microbial communities form microcolonies that interact with each other using very sophisticated communication methods (i.e., quorum-sensing). The development of unique microbiological tools to detect and assess the various biofilms around us is a tremendously important focus of research in many laboratories. In the present review, we discuss the major biofilm mechanisms and the interactions among oral bacteria. PMID:21778817

  8. Bacterial biofilms: prokaryotic adventures in multicellularity

    DEFF Research Database (Denmark)

    Webb, J.S.; Givskov, Michael Christian; Kjelleberg, S.

    2003-01-01

    The development of bacterial biofilms includes both the initial social behavior of undifferentiated cells, as well as cell death and differentiation in the mature biofilm, and displays several striking similarities with higher organisms. Recent advances in the field provide new insight into...... differentiation and cell death events in bacterial biofilm development and propose that biofilms have an unexpected level of multicellularity....

  9. Small molecule control of bacterial biofilms

    OpenAIRE

    Worthington, Roberta J.; Richards, Justin J.; Melander, Christian

    2012-01-01

    Bacterial biofilms are defined as a surface attached community of bacteria embedded in a matrix of extracellular polymeric substances that they have produced. When in the biofilm state, bacteria are more resistant to antibiotics and the host immune response than are their planktonic counterparts. Biofilms are increasingly recognized as being significant in human disease, accounting for 80% of bacterial infections in the body and diseases associated with bacterial biofilms include: lung infect...

  10. Bacterial biofilms. Bacteria Quorum sensing in biofilms

    OpenAIRE

    E. S. Vorobey; O. S. Voronkova; A. I. Vinnikov

    2012-01-01

    Data on biofilms, their structure and properties, peculiarities of formation and interaction between microorganisms in the film are presented. Information on discovery and study of biofilms, importance of biofilms in the medical and clinical microbiology are offered. The data allow to interpret biofilm as a form of existence of human normal microflora. For the exchange of information within the biofilm between the individual cells of the same or different species bacteria use the signal molec...

  11. Modern Technologies of Bacterial Biofilm Study

    Directory of Open Access Journals (Sweden)

    Chebotar I.V.

    2013-03-01

    Full Text Available The aim of the investigation was to estimate the availability of new biomedical technologies to identify bacterial biofilms and evaluate them on a staphylococcal biofilm model. Materials and Methods. We studied staphylococcal biofilms by mass spectrometry, laser scanning (confocal microscopy, scanning electron microscopy, enzymatic and oxidative destruction of extracellular biofilm matrix. Results. We demonstrated the capabilities of new biomedical technologies in identification of generic specificity of biofilm-forming staphylococcus, and in detection of the necessary characteristics of staphylococcal biofilm. Mass spectrometry enabled to identify the type of biofilm-forming staphylococcus (Staphylococcus aureus. Microscopic study using laser scanning confocal microscopic technique revealed 3-demensional organization typical of S. aureus biofilms. Scanning electron microscopy enabled to visualize the structures of extracellular S. aureus biofilm matrix. The extracellular matrix of the test biofilm was found to be formed of DNA-protein complexes.

  12. Biofilms: an emergent form of bacterial life.

    Science.gov (United States)

    Flemming, Hans-Curt; Wingender, Jost; Szewzyk, Ulrich; Steinberg, Peter; Rice, Scott A; Kjelleberg, Staffan

    2016-08-11

    Bacterial biofilms are formed by communities that are embedded in a self-produced matrix of extracellular polymeric substances (EPS). Importantly, bacteria in biofilms exhibit a set of 'emergent properties' that differ substantially from free-living bacterial cells. In this Review, we consider the fundamental role of the biofilm matrix in establishing the emergent properties of biofilms, describing how the characteristic features of biofilms - such as social cooperation, resource capture and enhanced survival of exposure to antimicrobials - all rely on the structural and functional properties of the matrix. Finally, we highlight the value of an ecological perspective in the study of the emergent properties of biofilms, which enables an appreciation of the ecological success of biofilms as habitat formers and, more generally, as a bacterial lifestyle. PMID:27510863

  13. Bacterial adhesion and biofilms on surfaces

    Institute of Scientific and Technical Information of China (English)

    Trevor Roger Garrett; Manmohan Bhakoo; Zhibing Zhang

    2008-01-01

    Bacterial adhesion has become a significant problem in industry and in the domicile,and much research has been done for deeper understanding of the processes involved.A generic biological model of bacterial adhesion and population growth called the bacterial biofilm growth cycle,has been described and modified many times.The biofilm growth cycle encompasses bacterial adhesion at all levels,starting with the initial physical attraction of bacteria to a substrate,and ending with the eventual liberation of cell dusters from the biofilm matrix.When describing bacterial adhesion one is simply describing one or more stages of biofilm development,neglecting the fact that the population may not reach maturity.This article provides an overview of bacterial adhesion.cites examples of how bac-terial adhesion affects industry and summarises methods and instrumentation used to improve our understanding of the adhesive prop-erties of bacteria.

  14. Enzymatic removal and disinfection of bacterial biofilms

    DEFF Research Database (Denmark)

    Johansen, Charlotte; Falholt, Per; Gram, Lone

    1997-01-01

    -coated hydroxyapatite. The activity of enzymes against bacterial cells in biofilm was measured by fluorescence microscopy and an indirect conductance test in which evolution of carbon dioxide was measured. Glucose oxidase combined with lactoperoxidase was bactericidal against biofilm bacteria but did not remove the...... biofilm from the substrata. A complex mixture of polysaccharide-hydrolyzing enzymes was able to remove bacterial biofilm from steel and polypropylene substrata but did not have a significant bactericidal activity. Combining oxidoreductases with polysaccharide-hydrolyzing enzymes resulted in bactericidal...

  15. Biofilm Cohesive Strength as a Basis for Biofilm Recalcitrance: Are Bacterial Biofilms Overdesigned?

    OpenAIRE

    Srijan Aggarwal; Philip S. Stewart; Hozalski, Raymond M.

    2016-01-01

    Bacterial biofilms are highly resistant to common antibacterial treatments, and several physiological explanations have been offered to explain the recalcitrant nature of bacterial biofilms. Herein, a biophysical aspect of biofilm recalcitrance is being reported on. While engineering structures are often overdesigned with a factor of safety (FOS) usually under 10, experimental measurements of biofilm cohesive strength suggest that the FOS is on the order of thousands. In other words, bacteria...

  16. Enzymatic removal and disinfection of bacterial biofilms

    DEFF Research Database (Denmark)

    Johansen, Charlotte; Falholt, Per; Gram, Lone

    1997-01-01

    Model biofilms of Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas fluorescens, and Pseudomonas aeruginosa were made on steel and polypropylene substrata. Plaque-resembling biofilms of Streptococcus mutans, Actinomyces, viscosus, and Fusobacterium nucleatum were made on saliva......-coated hydroxyapatite. The activity of enzymes against bacterial cells in biofilm was measured by fluorescence microscopy and an indirect conductance test in which evolution of carbon dioxide was measured. Glucose oxidase combined with lactoperoxidase was bactericidal against biofilm bacteria but did not remove the...... biofilm from the substrata. A complex mixture of polysaccharide-hydrolyzing enzymes was able to remove bacterial biofilm from steel and polypropylene substrata but did not have a significant bactericidal activity. Combining oxidoreductases with polysaccharide-hydrolyzing enzymes resulted in bactericidal...

  17. The 'Swiss cheese' instability of bacterial biofilms

    CERN Document Server

    Jang, Hongchul; Stocker, Roman

    2012-01-01

    We demonstrate a novel pattern that results in bacterial biofilms as a result of the competition between hydrodynamic forces and adhesion forces. After the passage of an air plug, the break up of the residual thin liquid film scrapes and rearranges bacteria on the surface, such that a Swiss cheese pattern of holes is left in the residual biofilm.

  18. The clinical impact of bacterial biofilms

    DEFF Research Database (Denmark)

    Høiby, Niels; Ciofu, Oana; Johansen, Helle Krogh;

    2011-01-01

    . Bacterial biofilms are resistant to antibiotics, disinfectant chemicals and to phagocytosis and other components of the innate and adaptive inflammatory defense system of the body. It is known, for example, that persistence of staphylococcal infections related to foreign bodies is due to biofilm formation...

  19. Studying Bacterial Multispecies Biofilms: Where to Start?

    Science.gov (United States)

    Røder, Henriette L; Sørensen, Søren J; Burmølle, Mette

    2016-06-01

    The high prevalence and significance of multispecies biofilms have now been demonstrated in various bacterial habitats with medical, industrial, and ecological relevance. It is highly evident that several species of bacteria coexist and interact in biofilms, which highlights the need for evaluating the approaches used to study these complex communities. This review focuses on the establishment of multispecies biofilms in vitro, interspecies interactions in microhabitats, and how to select communities for evaluation. Studies have used different experimental approaches; here we evaluate the benefits and drawbacks of varying the degree of complexity. This review aims to facilitate multispecies biofilm research in order to expand the current limited knowledge on interspecies interactions. PMID:27004827

  20. Bursting the bubble on bacterial biofilms

    DEFF Research Database (Denmark)

    Crusz, Shanika A; Popat, Roman; Rybtke, Morten Theil;

    2012-01-01

    The flow cell biofilm system is an important and widely used tool for the in vitro cultivation and evaluation of bacterial biofilms under hydrodynamic conditions of flow. This paper provides an introduction to the background and use of such systems, accompanied by a detailed guide to the assembly...... of the apparatus including the description of new modifications which enhance its performance. As such, this is an essential guide for the novice biofilm researcher as well as providing valuable trouble-shooting techniques for even the most experienced laboratories. The adoption of a common and...... reliable methodology amongst researchers would enable findings to be shared and replicated amongst the biofilm research community, with the overall aim of advancing understanding and management of these complex and widespread bacterial communities....

  1. Strategy of control for bacterial biofilm processes

    Directory of Open Access Journals (Sweden)

    A. N. Mayansky

    2014-09-01

    Full Text Available Main directions of the modern search of the antibiofilm preparations aimed at adhesive bacterial reactions, control of QS-systems, influence over bis-(3’-5’-cyclic dimeric guanosine monophosphate (cdi-GMP, and secretory bacterial processes are analysed. Approaches for biofilm dispersal and increasing the sensitivity of biofilm bacteria to antimicrobial drugs are discussed. It is underlined that the majority of inhibitor molecules were studied in vitro or in infected mice experiments. It is prognosed that in future there will appear medical preparations which will help for fighting bacterial biofilms preventing their development and spreading in the host organism.

  2. Inactivation of Efflux Pumps Abolishes Bacterial Biofilm Formation▿

    OpenAIRE

    Kvist, Malin; Hancock, Viktoria; Klemm, Per

    2008-01-01

    Bacterial biofilms cause numerous problems in health care and industry; notably, biofilms are associated with a large number of infections. Biofilm-dwelling bacteria are particularly resistant to antibiotics, making it hard to eradicate biofilm-associated infections. Bacteria rely on efflux pumps to get rid of toxic substances. We discovered that efflux pumps are highly active in bacterial biofilms, thus making efflux pumps attractive targets for antibiofilm measures. A number of efflux pump ...

  3. Host Defence against Bacterial Biofilms: “Mission Impossible”?

    OpenAIRE

    Gertrud Maria Hänsch

    2012-01-01

    Bacteria living as biofilms have been recognised as the ultimate cause of persistent and destructive inflammatory processes. Biofilm formation is a well-organised, genetically-driven process, which is well characterised for numerous bacteria species. In contrast, the host response to bacterial biofilms is less well analysed, and there is the general believe that bacteria in biofilms escape recognition or eradication by the immune defence. In this review the host response to bacterial biofilms...

  4. Modeling and simulation of bacterial biofilms

    OpenAIRE

    Rodríguez Espeso, David

    2013-01-01

    The present thesis focus its efforts on developing a mathematical and experimental modelization of bacterial biofilms: bacterial colonies embedded into a polysaccharid matrix with a high resistance against removal processes, which result in a recurrent source of problems in other disciplines (medicine, engineering, etc). The behaviour of these organisms is highly dependant of the physical system in which they are present. So different case studies are faced here to show their complexity. Firs...

  5. Inactivation of Efflux Pumps Abolishes Bacterial Biofilm Formation

    DEFF Research Database (Denmark)

    Kvist, Malin; Hancock, Viktoria; Klemm, Per

    2008-01-01

    Bacterial biofilms cause numerous problems in health care and industry; notably, biofilms are associated with a large number of infections. Biofilm-dwelling bacteria are particularly resistant to antibiotics, making it hard to eradicate biofilm-associated infections. Bacteria rely on efflux pumps...... to get rid of toxic substances. We discovered that efflux pumps are highly active in bacterial biofilms, thus making efflux pumps attractive targets for antibiofilm measures. A number of efflux pump inhibitors (EPIs) are known. EPIs were shown to reduce biofilm formation, and in combination they...... could abolish biofilm formation completely. Also, EPIs were able to block the antibiotic tolerance of biofilms. The results of this feasibility study might pave the way for new treatments for biofilm-related infections and may be exploited for prevention of biofilms in general....

  6. Zinc sorption by a bacterial biofilm.

    Science.gov (United States)

    Toner, Brandy; Manceau, Alain; Marcus, Matthew A; Millet, Dylan B; Sposito, Garrison

    2005-11-01

    Microbial biofilms are present in soils, sediments, and natural waters. They contain bioorganic metal-complexing functional groups and are thought to play an important role in metal cycling in natural and contaminated environments. In this study, the metal-complexing functional groups present within a suspension of bacterial cell aggregates embedded in extracellular polymeric substances (EPS) were identified in Zn adsorption experiments conducted at pH 6.9 with the freshwater and soil bacterium Pseudomonas putida. The adsorption data were fit with the van Bemmelen-Freundlich model. The molecular speciation of Zn within the biofilm was examined with Zn K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. The Zn EXAFS data were analyzed by shell-by-shell fitting and linear least-squares fitting with reference spectra. Zinc sorption to the biofilm was attributed to predominantly Zn--phosphoryl (85 +/- 10 mol %) complexes, with a smaller contribution to sorption from carboxyl-type complexes (23 +/- 10 mol %). The results of this study spectroscopically confirm the importance of phosphoryl functional groups in Zn sorption by a bacterial biofilm at neutral pH. PMID:16294865

  7. Dinosaurian soft tissues interpreted as bacterial biofilms.

    Directory of Open Access Journals (Sweden)

    Thomas G Kaye

    Full Text Available A scanning electron microscope survey was initiated to determine if the previously reported findings of "dinosaurian soft tissues" could be identified in situ within the bones. The results obtained allowed a reinterpretation of the formation and preservation of several types of these "tissues" and their content. Mineralized and non-mineralized coatings were found extensively in the porous trabecular bone of a variety of dinosaur and mammal species across time. They represent bacterial biofilms common throughout nature. Biofilms form endocasts and once dissolved out of the bone, mimic real blood vessels and osteocytes. Bridged trails observed in biofilms indicate that a previously viscous film was populated with swimming bacteria. Carbon dating of the film points to its relatively modern origin. A comparison of infrared spectra of modern biofilms with modern collagen and fossil bone coatings suggests that modern biofilms share a closer molecular make-up than modern collagen to the coatings from fossil bones. Blood cell size iron-oxygen spheres found in the vessels were identified as an oxidized form of formerly pyritic framboids. Our observations appeal to a more conservative explanation for the structures found preserved in fossil bone.

  8. Bacterial species dominance within a binary culture biofilm.

    OpenAIRE

    Banks, M.K.; Bryers, J.D.

    1991-01-01

    Studies with two species of bacteria, Pseudomonas putida and Hyphomicrobium sp. strain ZV620, were carried out to evaluate the overall net rate of accumulation of biofilm, the biofilm species composition, and individual species shear-related removal rates. Bacterial cells of either or both species were deposited onto glass or biofilm surfaces to initiate multispecies biofilms. Subsequent biofilm development was carried out under known conditions of nutrient concentration and laminar flow. Est...

  9. Nanoindentation of Pseudomonas aeruginosa bacterial biofilm using atomic force microscopy

    Science.gov (United States)

    Baniasadi, Mahmoud; Xu, Zhe; Gandee, Leah; Du, Yingjie; Lu, Hongbing; Zimmern, Philippe; Minary-Jolandan, Majid

    2014-12-01

    Bacterial biofilms are a source of many chronic infections. Biofilms and their inherent resistance to antibiotics are attributable to a range of health issues including affecting prosthetic implants, hospital-acquired infections, and wound infection. Mechanical properties of biofilm, in particular, at micro- and nano-scales, are governed by microstructures and porosity of the biofilm, which in turn may contribute to their inherent antibiotic resistance. We utilize atomic force microscopy (AFM)-based nanoindentation and finite element simulation to investigate the nanoscale mechanical properties of Pseudomonas aeruginosa bacterial biofilm. This biofilm was derived from human samples and represents a medically relevant model.

  10. Nanoindentation of Pseudomonas aeruginosa bacterial biofilm using atomic force microscopy

    International Nuclear Information System (INIS)

    Bacterial biofilms are a source of many chronic infections. Biofilms and their inherent resistance to antibiotics are attributable to a range of health issues including affecting prosthetic implants, hospital-acquired infections, and wound infection. Mechanical properties of biofilm, in particular, at micro- and nano-scales, are governed by microstructures and porosity of the biofilm, which in turn may contribute to their inherent antibiotic resistance. We utilize atomic force microscopy (AFM)-based nanoindentation and finite element simulation to investigate the nanoscale mechanical properties of Pseudomonas aeruginosa bacterial biofilm. This biofilm was derived from human samples and represents a medically relevant model. (paper)

  11. Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide

    OpenAIRE

    Valle, Jaione; Da Re, Sandra; Henry, Nelly; Fontaine, Thierry; Balestrino, Damien; Latour-Lambert, Patricia; Ghigo, Jean-Marc

    2006-01-01

    The development of surface-attached biofilm bacterial communities is considered an important source of nosocomial infections. Recently, bacterial interference via signaling molecules and surface active compounds was shown to antagonize biofilm formation, suggesting that nonantibiotic molecules produced during competitive interactions between bacteria could be used for biofilm reduction. Hence, a better understanding of commensal/pathogen interactions within bacterial community could lead to a...

  12. Current Trends in Development of Liposomes for Targeting Bacterial Biofilms

    OpenAIRE

    Zora Rukavina; Željka Vanić

    2016-01-01

    Biofilm targeting represents a great challenge for effective antimicrobial therapy. Increased biofilm resistance, even with the elevated concentrations of very potent antimicrobial agents, often leads to failed therapeutic outcome. Application of biocompatible nanomicrobials, particularly liposomally-associated nanomicrobials, presents a promising approach for improved drug delivery to bacterial cells and biofilms. Versatile manipulations of liposomal physicochemical properties, such as the b...

  13. Epithelial Interleukin-8 Responses to Oral Bacterial Biofilms

    OpenAIRE

    Peyyala, R.; Kirakodu, S.; Novak, K.F.; Ebersole, J L

    2011-01-01

    An in vitro model of bacterial biofilms on rigid gas-permeable contact lenses (RGPLs) was developed to challenge oral epithelial cells. This novel model provided seminal data on oral biofilm-host cell interactions, and with selected bacteria, the biofilms were more effective than their planktonic counterparts at stimulating host cell responses.

  14. Effects of different osmolarities on bacterial biofilm formation

    OpenAIRE

    Vanessa Nessner Kavamura; Itamar Soares de Melo

    2014-01-01

    Biofilm formation depends on several factors. The influence of different osmolarities on bacterial biofilm formation was studied. Two strains (Enterobacter sp. and Stenotrophomonas sp.) exhibited the most remarkable alterations. Biofilm formation is an important trait and its use has been associated to the protection of organisms against environmental stresses.

  15. Bacterial Biofilm: Its Composition, Formation and Role in Human Infections

    OpenAIRE

    Muhsin Jama; Ufaq Tasneem; Tahir Hussain; Saadia Andleeb

    2015-01-01

    Biofilm is an association of micro-organisms in which microbial cells adhere to each other on a living or non-living surfaces within a self-produced matrix of extracellular polymeric substance. Bacterial biofilm is infectious in nature and can results in nosocomial infections. According to National Institutes of Health (NIH) about about 65% of all microbial infections, and 80% of all chronic infections are associated with biofilms. Biofilm formation is a multi-step process starting with attac...

  16. Bacterial Extracellular Polysaccharides Involved in Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Elena P. Ivanova

    2009-07-01

    Full Text Available Extracellular polymeric substances (EPS produced by microorganisms are a complex mixture of biopolymers primarily consisting of polysaccharides, as well as proteins, nucleic acids, lipids and humic substances. EPS make up the intercellular space of microbial aggregates and form the structure and architecture of the biofilm matrix. The key functions of EPS comprise the mediation of the initial attachment of cells to different substrata and protection against environmental stress and dehydration. The aim of this review is to present a summary of the current status of the research into the role of EPS in bacterial attachment followed by biofilm formation. The latter has a profound impact on an array of biomedical, biotechnology and industrial fields including pharmaceutical and surgical applications, food engineering, bioremediation and biohydrometallurgy. The diverse structural variations of EPS produced by bacteria of different taxonomic lineages, together with examples of biotechnological applications, are discussed. Finally, a range of novel techniques that can be used in studies involving biofilm-specific polysaccharides is discussed.

  17. Biologically-Inspired Strategies for Combating Bacterial Biofilms

    OpenAIRE

    Blackledge, Meghan S.; Worthington, Roberta J.; Melander, Christian

    2013-01-01

    Infections caused by bacterial biofilms are a significant global health problem, causing considerable patient morbidity and mortality and contributing to the economic burden of infectious disease. This review describes diverse strategies to combat bacterial biofilms, focusing firstly on small molecule interference with bacterial communication and signaling pathways, including quorum sensing and two-component signal transduction systems. Secondly we discuss enzymatic approaches to the degradat...

  18. Strategies for combating bacterial biofilm infections

    OpenAIRE

    Wu,Hong; Moser, Claus; Wang, Heng-Zhuang; Høiby, Niels; Zhi-jun SONG

    2014-01-01

    Formation of biofilm is a survival strategy for bacteria and fungi to adapt to their living environment, especially in the hostile environment. Under the protection of biofilm, microbial cells in biofilm become tolerant and resistant to antibiotics and the immune responses, which increases the difficulties for the clinical treatment of biofilm infections. Clinical and laboratory investigations demonstrated a perspicuous correlation between biofilm infection and medical foreign bodies or indwe...

  19. Shaping the Growth Behaviour of Bacterial Aggregates in Biofilms

    CERN Document Server

    Melaugh, Gavin; Kragh, Kasper Nørskov; Irie, Yasuhiko; Roberts, Aled; Bjarnsholt, Thomas; Diggle, Steve P; Gordon, Vernita; Allen, Rosalind J

    2015-01-01

    Bacterial biofilms are usually assumed to originate from individual cells deposited on a surface. However, many biofilm-forming bacteria tend to aggregate in the planktonic phase meaning it is possible that many natural and infectious biofilms originate wholly or partially from pre-formed cell aggregates. Here, we use agent-based computer simulations to investigate the role of pre-formed aggregates in biofilm development. Focusing on the role of aggregate shape, we find that the degree of spreading of an aggregate on a surface can play a key role in determining its eventual fate during biofilm development. Specifically, initially spread aggregates perform better when competition with surrounding bacterial cells is low, while initially rounded aggregates perform better when competition is high. These contrasting outcomes are governed by a trade-off between aggregate surface area and height. Our results provide new insight into biofilm formation and development, and reveal new factors that may be at play in the...

  20. Current Trends in Development of Liposomes for Targeting Bacterial Biofilms.

    Science.gov (United States)

    Rukavina, Zora; Vanić, Željka

    2016-01-01

    Biofilm targeting represents a great challenge for effective antimicrobial therapy. Increased biofilm resistance, even with the elevated concentrations of very potent antimicrobial agents, often leads to failed therapeutic outcome. Application of biocompatible nanomicrobials, particularly liposomally-associated nanomicrobials, presents a promising approach for improved drug delivery to bacterial cells and biofilms. Versatile manipulations of liposomal physicochemical properties, such as the bilayer composition, membrane fluidity, size, surface charge and coating, enable development of liposomes with desired pharmacokinetic and pharmacodynamic profiles. This review attempts to provide an unbiased overview of investigations of liposomes destined to treat bacterial biofilms. Different strategies including the recent advancements in liposomal design aiming at eradication of existing biofilms and prevention of biofilm formation, as well as respective limitations, are discussed in more details. PMID:27231933

  1. Destruction of Bacterial Biofilms Using Gas Discharge Plasma

    Science.gov (United States)

    Abramzon, Nina

    2005-03-01

    Biofilms are bacterial communities embedded in an exopolysaccharidic matrix with a complex architectural structure. Bacteria in biofilms show different properties from those in free life thus, conventional methods of killing bacteria are often ineffective with biofilms. The use of plasmas potentially offers an alternative to conventional sterilization methods since plasmas contain a mixture of charged particles, chemically reactive species, and UV radiation. 4 and 7 day-old biofilms were produced using two bacterial species: Rhizobium gallicum and Chromobacterium violaceum. Gas discharge plasma was produced by using an AtomfloTM reactor (Surfx Technologies) and bacterial biofilms were exposed to it for different periods of time. Our results show that a 10-minute plasma treatment was able to kill 100% of the cells in most cases. Optical emission spectroscopy was used to study plasma composition which is then correlated with the effectiveness of killing. These results indicate the potentiality of plasma as an alternative sterilization method. Supported by CSuperb.

  2. Seasonal dynamics of bacterial biofilms on the kelp Laminaria hyperborea

    OpenAIRE

    Bengtsson, Mia M.; Sjøtun, Kjersti; Øvreås, Lise

    2010-01-01

    Seasonal variations of the cell density and bacterial community composition in biofilms growing on the surface of the kelp Laminaria hyperborea from 2 sites on the southwestern coast of Norway were investigated using total cell enumeration and denaturing gradient gel electrophoresis (DGGE) fingerprinting. The major taxonomical groups of bacteria inhabiting the biofilms were identified by DGGE band sequence classification. The microbial cell density of the biofilm appeared to be ...

  3. Dispersal of Biofilms by Secreted, Matrix Degrading, Bacterial DNase

    OpenAIRE

    Nijland, Reindert; Hall, Michael J; Burgess, J. Grant

    2010-01-01

    Microbial biofilms are composed of a hydrated matrix of biopolymers including polypeptides, polysaccharides and nucleic acids and act as a protective barrier and microenvironment for the inhabiting microbes. While studying marine biofilms, we observed that supernatant produced by a marine isolate of Bacillus licheniformis was capable of dispersing bacterial biofilms. We investigated the source of this activity and identified the active compound as an extracellular DNase (NucB). We have shown ...

  4. Bursting the bubble on bacterial biofilms: a flow cell methodology

    OpenAIRE

    Shanika A. Crusz; Popat, Roman; Rybtke, Morten Theil; Cámara, Miguel; Givskov, Michael; Tolker-Nielsen, Tim; Diggle, Stephen P.; Williams, Paul

    2012-01-01

    The flow cell biofilm system is an important and widely used tool for the in vitro cultivation and evaluation of bacterial biofilms under hydrodynamic conditions of flow. This paper provides an introduction to the background and use of such systems, accompanied by a detailed guide to the assembly of the apparatus including the description of new modifications which enhance its performance. As such, this is an essential guide for the novice biofilm researcher as well as providing valuable trou...

  5. The ``Swiss cheese'' instability of bacterial biofilms

    Science.gov (United States)

    Jang, Hongchul; Rusconi, Roberto; Stocker, Roman

    2012-11-01

    Bacteria often adhere to surfaces, where they develop polymer-encased communities (biofilms) that display dramatic resistance to antibiotic treatment. A better understanding of cell detachment from biofilms may lead to novel strategies for biofilm disruption. Here we describe a new detachment mode, whereby a biofilm develops a nearly regular array of ~50-100 μm holes. Using surface-treated microfluidic devices, we create biofilms of controlled shape and size. After the passage of an air plug, the break-up of the residual thin liquid film scrapes and rearranges bacteria on the surface, such that a ``Swiss cheese'' pattern is left in the residual biofilm. Fluorescent staining of the polymeric matrix (EPS) reveals that resistance to cell dislodgement correlates with local biofilm age, early settlers having had more time to hunker down. Because few survivors suffice to regrow a biofilm, these results point at the importance of considering microscale heterogeneity in assessing the effectiveness of biofilm removal strategies.

  6. Strategies for combating bacterial biofilm infections

    Institute of Scientific and Technical Information of China (English)

    Hong Wu; Claus Moser; Heng-Zhuang Wang; Niels Hiby; Zhi-Jun Song

    2015-01-01

    Formation of biofilm is a survival strategy for bacteria and fungi to adapt to their living environment, especially in the hostile environment. Under the protection of biofilm, microbial cells in biofilm become tolerant and resistant to antibiotics and the immune responses, which increases the difficulties for the clinical treatment of biofilm infections. Clinical and laboratory investigations demonstrated a perspicuous correlation between biofilm infection and medical foreign bodies or indwelling devices. Clinical observations and experimental studies indicated clearly that antibiotic treatment alone is in most cases insufficient to eradicate biofilm infections. Therefore, to effectively treat biofilm infections with currently available antibiotics and evaluate the outcomes become important and urgent for clinicians. The review summarizes the latest progress in treatment of clinical biofilm infections and scientific investigations, discusses the diagnosis and treatment of different biofilm infections and introduces the promising laboratory progress, which may contribute to prevention or cure of biofilm infections. We conclude that, an efficient treatment of biofilm infections needs a well-established multidisciplinary collaboration, which includes removal of the infected foreign bodies, selection of biofilm-active, sensitive and well-penetrating antibiotics, systemic or topical antibiotic administration in high dosage and combinations, and administration of anti-quorum sensing or biofilm dispersal agents.

  7. Strategies for combating bacterial biofilm infections

    DEFF Research Database (Denmark)

    Wu, Hong; Moser, Claus Ernst; Wang, Heng-Zhuang;

    2015-01-01

    Formation of biofilm is a survival strategy for bacteria and fungi to adapt to their living environment, especially in the hostile environment. Under the protection of biofilm, microbial cells in biofilm become tolerant and resistant to antibiotics and the immune responses, which increases the...

  8. Bacterial metabolism in biofilm consortia: Consequences for potential ennoblement

    Energy Technology Data Exchange (ETDEWEB)

    Chandrasekaran, P.; Dexter, S.C. [Univ. of Delaware, Lewes, DE (United States). Graduate College of Marine Studies

    1994-12-31

    Platinum metal coupons were used in studying the mechanism of ennoblement in the presence of mature seawater biofilms. Presence of a bacterial consortia, rather than any single organism is determined to be necessary for ennoblement. Millimolar concentrations of iron and manganese were measured in biofilms formed over platinum. EDAX and ICP techniques were used for measuring the chemistry of particles in a biofilm. Utilization of various electron acceptors like oxygen, iron, manganese, etc. are thought to be important for ennoblement to take place over platinum. Heavy metal accumulation is hypothesized to favor the low pH mechanism of ennoblement due to heavy metal hydrolysis. Monoculture biofilms cannot support ennoblement on platinum.

  9. An electrochemical impedance model for integrated bacterial biofilms

    International Nuclear Information System (INIS)

    Bacterial cells attachment onto solid surfaces and the following growth into mature microbial biofilms may result in highly antibiotic resistant biofilms. Such biofilms may be incidentally formed on tissues or implanted devices, or intentionally formed by directed deposition of microbial sensors on whole-cell bio-chip surface. A new method for electrical characterization of the later on-chip microbial biofilm buildup is presented in this paper. Measurement of impedance vs. frequency in the range of 100 mHz to 400 kHz of Escherichia coli cells attachment to indium-tin-oxide-coated electrodes was carried out while using optical microscopy estimating the electrode area coverage. We show that impedance spectroscopy measurements can be interpreted by a simple electrical equivalent model characterizing both attachment and growth of the biofilm. The correlation of extracted equivalent electrical lumped components with the visual biofilm parameters and their dependence on the attachment and growth phases is confirmed.

  10. On growth and flow: bacterial biofilms in porous media

    Science.gov (United States)

    Durham, William; Leombruni, Alberto; Tranzer, Olivier; Stocker, Roman

    2011-11-01

    Bacterial biofilms often occur in porous media, where they play pivotal roles in medicine, industry and the environment. Though flow is ubiquitous in porous media, its effects on biofilm growth have been largely ignored. Using patterned microfluidic devices that simulate unconsolidated soil, we find that the structure of Escherichia coli biofilms undergoes a self-organization mediated by the interaction of growth and flow. Intriguingly, we find that biofilm productivity peaks at intermediate flow rates, when the biofilm is irrigated by a minimum number of preferential flow channels. At larger and smaller flow rates, fluid flows more uniformly through the matrix, but productivity drops due to removal by shear and reduced nutrient transport, respectively. These dynamics are correctly predicted by a simple network model. The observed tradeoff between growth and flow may have important consequences on biofilm-mediated processes such as biochemical cycling, antibiotic resistance and water filtration.

  11. Blocking of bacterial biofilm formation by a fish protein coating

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; Klemm, Per

    2008-01-01

    proteinaceous coating is characterized with regards to its biofilm-reducing properties by using a range of urinary tract infectious isolates with various pathogenic and adhesive properties. The antiadhesive coating significantly reduced or delayed biofilm formation by all these isolates under every condition......Bacterial biofilm formation on inert surfaces is a significant health and economic problem in a wide range of environmental, industrial, and medical areas. Bacterial adhesion is generally a prerequisite for this colonization process and, thus, represents an attractive target for the development of...... biofilm-preventive measures. We have previously found that the preconditioning of several different inert materials with an aqueous fish muscle extract, composed primarily of fish muscle alpha-tropomyosin, significantly discourages bacterial attachment and adhesion to these surfaces. Here, this...

  12. Bacterial Biofilm: Its Composition, Formation and Role in Human Infections

    Directory of Open Access Journals (Sweden)

    Muhsin Jama

    2015-07-01

    Full Text Available Biofilm is an association of micro-organisms in which microbial cells adhere to each other on a living or non-living surfaces within a self-produced matrix of extracellular polymeric substance. Bacterial biofilm is infectious in nature and can results in nosocomial infections. According to National Institutes of Health (NIH about about 65% of all microbial infections, and 80% of all chronic infections are associated with biofilms. Biofilm formation is a multi-step process starting with attachment to a surface then formation of micro-colony that leads to the formation of three dimensional structure and finally ending with maturation followed by detachment. During biofilm formation many species of bacteria are able to communicate with one an-other through specific mechanism called quorum sensing. It is a system of stimulus to co-ordinate different gene expression. Bacterial biofilm is less accessible to antibiotics and human immune system and thus poses a big threat to public health because of its involvement in variety of infectious diseases. A greater understanding of bacterial biofilm is required for the de-velopment of novel, effective control strategies thus resulting improvement in patient management.

  13. Bacterial biofilms in patients with indwelling urinary catheters.

    Science.gov (United States)

    Stickler, David J

    2008-11-01

    Bacteria have a basic survival strategy: to colonize surfaces and grow as biofilm communities embedded in a gel-like polysaccharide matrix. The catheterized urinary tract provides ideal conditions for the development of enormous biofilm populations. Many bacterial species colonize indwelling catheters as biofilms, inducing complications in patients' care. The most troublesome complications are the crystalline biofilms that can occlude the catheter lumen and trigger episodes of pyelonephritis and septicemia. The crystalline biofilms result from infection by urease-producing bacteria, particularly Proteus mirabilis. Urease raises the urinary pH and drives the formation of calcium phosphate and magnesium phosphate crystals in the biofilm. All types of catheter are vulnerable to encrustation by these biofilms, and clinical prevention strategies are clearly needed, as bacteria growing in the biofilm mode are resistant to antibiotics. Evidence indicates that treatment of symptomatic, catheter-associated urinary tract infection is more effective if biofilm-laden catheters are changed before antibiotic treatment is initiated. Infection with P. mirabilis exposes the many faults of currently available catheters, and plenty of scope exists for improvement in both their design and production; manufacturers should take up the challenge to improve patient outcomes. PMID:18852707

  14. Enhanced Biofilm Formation and Increased Resistance to Antimicrobial Agents and Bacterial Invasion Are Caused by Synergistic Interactions in Multispecies Biofilms

    DEFF Research Database (Denmark)

    Burmølle, Mette; Webb, J.S.; Rao, D.;

    2006-01-01

    Most biofilms in their natural environments are likely to consist of consortia of species that influence each other in synergistic and antagonistic manners. However, few reports specifically address interactions within multispecies biofilms. In this study, 17 epiphytic bacterial strains, isolated...... specific interactions. In summary, our data strongly indicate that synergistic effects promote biofilm biomass and resistance of the biofilm to antimicrobial agents and bacterial invasion in multispecies biofilms.......Most biofilms in their natural environments are likely to consist of consortia of species that influence each other in synergistic and antagonistic manners. However, few reports specifically address interactions within multispecies biofilms. In this study, 17 epiphytic bacterial strains, isolated......-species biofilms resisted invasion to a greater extent than did the biofilms formed by the single species. Replacement of each strain by its cell-free culture supernatant suggested that synergy was dependent both on species-specific physical interactions between cells and on extracellular secreted factors or less...

  15. The role of bacterial biofilms in chronic infections

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas

    2013-01-01

    research into bacterial pathogenesis has focused on acute infections, but these diseases have now been supplemented by a new category of chronic infections caused by bacteria growing in slime-enclosed aggregates known as biofilms. Biofilm infections, such as pneumonia in cystic fibrosis patients, chronic...... treatment depends on accurate and fast diagnosis. However, in cases where the bacteria succeed in forming a biofilm within the human host, the infection often turns out to be untreatable and will develop into a chronic state. The important hallmarks of chronic biofilm-based infections are extreme resistance...... to antibiotics and many other conventional antimicrobial agents, and an extreme capacity for evading the host defences. In this thesis, I will assemble the current knowledge on biofilms with an emphasis on chronic infections, guidelines for diagnosis and treatment of these infections, before relating...

  16. Common β-lactamases inhibit bacterial biofilm formation

    OpenAIRE

    Gallant, Claude V.; Daniels, Craig; Leung, Jacqueline M.; Ghosh, Anindya S.; Young, Kevin D; Kotra, Lakshmi P.; Burrows, Lori L.

    2005-01-01

    β-Lactamases, which evolved from bacterial penicillin-binding proteins (PBPs) involved in peptidoglycan (PG) synthesis, confer resistance to β-lactam antibiotics. While investigating the genetic basis of biofilm development by Pseudomonas aeruginosa, we noted that plasmid vectors encoding the common β-lactamase marker TEM-1 caused defects in twitching motility (mediated by type IV pili), adherence and biofilm formation without affecting growth rates. Similarly, strains of Escherichia coli car...

  17. Fate of deposited cells in an aerobic binary bacterial biofilm

    International Nuclear Information System (INIS)

    A biofilm is a matrix of microbial cells and their extracellular products that is associated with a solid surface. Previous studies on biofilm development have employed only dissolved compounds as growth limiting substrates, without the influence of microbial species invading from the bulk liquid. The goal of this research project was to quantify the kinetics of processes governing suspended biomass turnover in biofilm systems, and the accompanying effects of suspended cell deposition on biofilm population dynamics. Experiments were conducted with two species of bacteria, Pseudomonas putida ATCC 11172 grown on glucose, and Hyphomicrobium ZV620 grown on methanol. Cryptic growth and particulate hydrolysis studies were evaluated, using combinations of these two bacteria, by measuring the uptake of radiolabelled cell lysis products, under batch conditions. Biofilms studies were performed to investigate bacterial deposition, continual biofilm removal by shear induced erosion, and biofilm ecology. Biofilms were developed in a flow cell reactor, under laminar flow conditions. Bacterial species were differentiated by radioactively labelling each species with their carbon substrate. A mathematical model was developed to predict the biofilm ecology of mixed cultures. The equations developed predict biofilm accumulation, as well as substrate and oxygen consumption. Results indicate that cryptic growth will occur for bacteria growing on their own species soluble lysis products and in some cases, bacteria growing on the soluble lysis products of other species. Particulate hydrolysis only occurred for Pseudomonas putida growing on Pseudomonas putida lysis products, but the lack of particulate hydrolysis occurring in the other studies may have been due to the short experimental period

  18. Correlative Imaging of Structural and Elemental Composition of Bacterial Biofilms

    International Nuclear Information System (INIS)

    Synchrotron-based phase contrast tomography (holotomography) and scanning hard X-ray fluorescence microscopy (SXFM) are combined to characterize the three-dimensional (3D) structural and corresponding elemental distribution of bacterial biofilms of Pseudomonas aeruginosa. Samples were fixed without contrast agents or microtomal sectioning. Within an intact microbial community single bacteria are clearly resolved, and their morphology can be directly visualized together with the elemental content. Such 3D set of complementary information at cellular level is essential for gaining a deeper understanding of biofilm evolution aiming to develop potential strategies on biofilm growth control and prevention

  19. Correlative Imaging of Structural and Elemental Composition of Bacterial Biofilms

    Science.gov (United States)

    Yang, Y.; Heine, R.; Xu, F.; Suhonen, H.; Helfen, L.; Rosenhahn, A.; Gorniak, T.; Kirchen, S.; Schwartz, T.; Baumbach, T.

    2013-10-01

    Synchrotron-based phase contrast tomography (holotomography) and scanning hard X-ray fluorescence microscopy (SXFM) are combined to characterize the three-dimensional (3D) structural and corresponding elemental distribution of bacterial biofilms of Pseudomonas aeruginosa. Samples were fixed without contrast agents or microtomal sectioning. Within an intact microbial community single bacteria are clearly resolved, and their morphology can be directly visualized together with the elemental content. Such 3D set of complementary information at cellular level is essential for gaining a deeper understanding of biofilm evolution aiming to develop potential strategies on biofilm growth control and prevention.

  20. Shaping the Growth Behaviour of Biofilms Initiated from Bacterial Aggregates.

    Science.gov (United States)

    Melaugh, Gavin; Hutchison, Jaime; Kragh, Kasper Nørskov; Irie, Yasuhiko; Roberts, Aled; Bjarnsholt, Thomas; Diggle, Stephen P; Gordon, Vernita D; Allen, Rosalind J

    2016-01-01

    Bacterial biofilms are usually assumed to originate from individual cells deposited on a surface. However, many biofilm-forming bacteria tend to aggregate in the planktonic phase so that it is possible that many natural and infectious biofilms originate wholly or partially from pre-formed cell aggregates. Here, we use agent-based computer simulations to investigate the role of pre-formed aggregates in biofilm development. Focusing on the initial shape the aggregate forms on the surface, we find that the degree of spreading of an aggregate on a surface can play an important role in determining its eventual fate during biofilm development. Specifically, initially spread aggregates perform better when competition with surrounding unaggregated bacterial cells is low, while initially rounded aggregates perform better when competition with surrounding unaggregated cells is high. These contrasting outcomes are governed by a trade-off between aggregate surface area and height. Our results provide new insight into biofilm formation and development, and reveal new factors that may be at play in the social evolution of biofilm communities. PMID:26934187

  1. Spatiotemporal evolution of bacterial biofilm colonies

    Science.gov (United States)

    Wilking, James; Koehler, Stephan; Sinha, Naveen; Seminara, Agnese; Brenner, Michael; Weitz, David

    2014-03-01

    Many bacteria on earth live in surface-attached communities known as biofilms. Gene expression in a biofilm is typically varied, resulting in a variety of phenotypes within a single film. These phenotypes play a critical role in biofilm physiology and development. We use time-resolved, wide-field fluorescence microscopy to image triple-labeled fluorescent Bacillus Subtilis colonies grown on agar to determine in a non-invasive fashion the evolving phenotypes. We infer their transition rates from the resulting spatiotemporal maps of gene expression. Moreover, we correlate these transition rates with local measurements of nutrient concentration to determine the influence of extracellular signals on gene expression.

  2. Removal of pathogenic bacterial biofilms by combinations of oxidizing compounds.

    Science.gov (United States)

    Olmedo, Gabriela María; Grillo-Puertas, Mariana; Cerioni, Luciana; Rapisarda, Viviana Andrea; Volentini, Sabrina Inés

    2015-05-01

    Bacterial biofilms are commonly formed on medical devices and food processing surfaces. The antimicrobials used have limited efficacy against the biofilms; therefore, new strategies to prevent and remove these structures are needed. Here, the effectiveness of brief oxidative treatments, based on the combination of sodium hypochlorite (NaClO) and hydrogen peroxide (H2O2) in the presence of copper sulfate (CuSO4), were evaluated against bacterial laboratory strains and clinical isolates, both in planktonic and biofilm states. Simultaneous application of oxidants synergistically inactivated planktonic cells and prevented biofilm formation of laboratory Escherichia coli, Salmonella enterica serovar Typhimurium, Klebsiella pneumoniae, and Staphylococcus aureus strains, as well as clinical isolates of Salmonella enterica subsp. enterica, Klebsiella oxytoca, and uropathogenic E. coli. In addition, preformed biofilms of E. coli C, Salmonella Typhimurium, K. pneumoniae, and Salmonella enterica exposed to treatments were removed by applying 12 mg/L NaClO, 0.1 mmol/L CuSO4, and 350 mmol/L H2O2 for 5 min. Klebsiella oxytoca and Staphylococcus aureus required a 5-fold increase in NaClO concentration, and the E. coli clinical isolate remained unremovable unless treatments were applied on biofilms formed within 24 h instead of 48 h. The application of treatments that last a few minutes using oxidizing compounds at low concentrations represents an interesting disinfection strategy against pathogens associated with medical and industrial settings. PMID:25864510

  3. Nanoparticle-Stabilized Capsules for the Treatment of Bacterial Biofilms.

    Science.gov (United States)

    Duncan, Bradley; Li, Xiaoning; Landis, Ryan F; Kim, Sung Tae; Gupta, Akash; Wang, Li-Sheng; Ramanathan, Rajesh; Tang, Rui; Boerth, Jeffrey A; Rotello, Vincent M

    2015-08-25

    Bacterial biofilms are widely associated with persistent infections. High resistance to conventional antibiotics and prevalent virulence makes eliminating these bacterial communities challenging therapeutic targets. We describe here the fabrication of a nanoparticle-stabilized capsule with a multicomponent core for the treatment of biofilms. The peppermint oil and cinnamaldehyde combination that comprises the core of the capsules act as potent antimicrobial agents. An in situ reaction at the oil/water interface between the nanoparticles and cinnamaldehyde structurally augments the capsules to efficiently deliver the essential oil payloads, effectively eradicating biofilms of clinically isolated pathogenic bacteria strains. In contrast to their antimicrobial action, the capsules selectively promoted fibroblast proliferation in a mixed bacteria/mammalian cell system making them promising for wound healing applications. PMID:26083534

  4. Molecular basis of in-vivo biofilm formation by bacterial pathogens

    OpenAIRE

    Joo, Hwang-Soo; Otto, Michael

    2012-01-01

    Bacterial biofilms are involved in a multitude of serious chronic infections. In recent years, modeling biofilm infection in vitro led to the identification of microbial determinants governing biofilm development. However, we lack information as to whether biofilm formation mechanisms identified in vitro have relevance for biofilm-associated infection. Here, we discuss the molecular basis of biofilm formation using staphylococci and Pseudomonas aeruginosa to illustrate key points, as their bi...

  5. The pathophysiological role of bacterial biofilms in chronic sinusitis.

    Science.gov (United States)

    Dlugaszewska, Jolanta; Leszczynska, Malgorzata; Lenkowski, Marcin; Tatarska, Agnieszka; Pastusiak, Tomasz; Szyfter, Witold

    2016-08-01

    Chronic rhinosinusitis (CRS) is a very common disorder that remains poorly understood from a pathogenic standpoint. Recent research on the pathogenesis of CRS has been focused on the potential role of biofilms in this chronic infection. The aim of this study was to assess the sinuses' microflora and biofilm formation on the sino-nasal mucosa in patients with CRS. Paranasal sinus mucosa specimens were harvested at the time of functional endoscopic sinus surgery (FESS). Classical microbiology techniques for the isolation and identification of sinus mucosa microbial flora were used. Scanning electron microscopy (SEM) was used to detect biofilm on the surface of mucosa. A microtiter plate assay for in vitro biofilm formation was employed, divided into three aliquots. One part was assessed for bacterial presence, utilizing an API manual system and the Vitek(®) 2 Compact system. The two remaining aliquots were tested by in vitro conventional microbiological assay with the use of the Infinite M200 (Tecan) microtiter plate reader, and also by scanning electron microscopy (SEM). A microbiological examination of mucosal specimens had taken during FESS operation revealed the presence of various types of bacteria in 29 out of 30 tested samples. Out of 62 different strains isolated from patients with CRS, 23 strains of coagulase-negative Staphylococcus epidermidis and 6 strains of Escherichia coli were the most frequently isolated microorganisms, accounting for 37.1 and 9.7 %, respectively. Among the 62 isolated strains, 58 were used to assess biofilm formation. From the total of 58 isolates, 8.6 % were strong biofilm producers, 20.7 % were moderate, and 70.7 % of isolates were considered to be non- or weak biofilm producers. SEM of the 30 nasal concha mucosal samples taken from patients with CRS revealed biofilm in 23 specimens. A marked destruction of the epithelium was observed, with variation in degrees of severity, from disarrayed cilia to complete absence of cilia

  6. Bacterial biofilms with emphasis on coagulase-negative staphylococci

    Directory of Open Access Journals (Sweden)

    A Oliveira

    2008-01-01

    Full Text Available In addition to their capacity to attach to surfaces, various groups of microorganisms also produce an extracellular polymeric substance known as "slime". This slime forms a thin layer around cells known as biofilm. Thus, biofilm structure comprises bacterial cells and an extracellular polymeric substance. It also presents a defined architecture, providing the microorganisms with an excellent protective environment and favoring the exchange of genetic material between cells as well as intercellular communication. The ability to produce biofilm is observed in a large group of bacteria, including coagulase-negative staphylococci (CNS which are the predominant microorganisms of normal skin flora and have been implicated as the causative agents of hospital infections. Bacteremia caused by these agents is common in immunodepressed persons, in patients with cancer, in adult and neonatal intensive care units (ICU and in patients using catheters or other prosthetic devices. The pathogenicity of CNS infections is probably related to the production of slime, which adheres preferentially to plastic and smooth surfaces, forming a biofilm that protects against attacks from the immune system and against antibiotic treatment, a fact hindering the eradication of these infections. The main objective of the present review was to describe basic and genetic aspects of biofilm formation and methods for its detection, with emphasis on biofilm creation by CNS and its relationship with diseases caused by these microorganisms which are becoming increasingly more frequent in the hospital environment.

  7. Connecting the dots between bacterial biofilms and ice cream.

    Science.gov (United States)

    Stanley-Wall, Nicola R; MacPhee, Cait E

    2015-01-01

    Emerging research is revealing a diverse array of interfacially-active proteins that are involved in varied biological process from foaming horse sweat to bacterial raincoat formation. We describe an interdisciplinary approach to study the molecular and biophysical mechanisms controlling the activity of an unusual bacterial protein called BslA. This protein is needed for biofilm formation and forms a protective layer or raincoat over the bacterial community, but also has a multitude of potential applications in multiphase formulations. Here we document our journey from fundamental research to an examination of the applications for this surface-active protein in ice cream. PMID:26685107

  8. Connecting the dots between bacterial biofilms and ice cream

    Science.gov (United States)

    Stanley-Wall, Nicola R.; MacPhee, Cait E.

    2015-12-01

    Emerging research is revealing a diverse array of interfacially-active proteins that are involved in varied biological process from foaming horse sweat to bacterial raincoat formation. We describe an interdisciplinary approach to study the molecular and biophysical mechanisms controlling the activity of an unusual bacterial protein called BslA. This protein is needed for biofilm formation and forms a protective layer or raincoat over the bacterial community, but also has a multitude of potential applications in multiphase formulations. Here we document our journey from fundamental research to an examination of the applications for this surface-active protein in ice cream.

  9. Susceptibility of metallic magnesium implants to bacterial biofilm infections.

    Science.gov (United States)

    Rahim, Muhammad Imran; Rohde, Manfred; Rais, Bushra; Seitz, Jan-Marten; Mueller, Peter P

    2016-06-01

    Magnesium alloys have promising mechanical and biological properties as biodegradable medical implant materials for temporary applications during bone healing or as vascular stents. Whereas conventional implants are prone to colonization by treatment resistant microbial biofilms in which bacteria are embedded in a protective matrix, magnesium alloys have been reported to act antibacterial in vitro. To permit a basic assessment of antibacterial properties of implant materials in vivo an economic but robust animal model was established. Subcutaneous magnesium implants were inoculated with bacteria in a mouse model. Contrary to the expectations, bacterial activity was enhanced and prolonged in the presence of magnesium implants. Systemic antibiotic treatments were remarkably ineffective, which is a typical property of bacterial biofilms. Biofilm formation was further supported by electron microscopic analyses that revealed highly dense bacterial populations and evidence for the presence of extracellular matrix material. Bacterial agglomerates could be detected not only on the implant surface but also at a limited distance in the peri-implant tissue. Therefore, precautions may be necessary to minimize risks of metallic magnesium-containing implants in prospective clinical applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1489-1499, 2016. PMID:26860452

  10. Functional recovery of biofilm bacterial communities after copper exposure

    International Nuclear Information System (INIS)

    Potential of bacterial communities in biofilms to recover after copper exposure was investigated. Biofilms grown outdoor in shallow water on glass dishes were exposed in the laboratory to 0.6, 2.1, 6.8 μmol/l copper amended surface water and a reference and subsequently to un-amended surface water. Transitions of bacterial communities were characterised with denaturing gradient gel electrophoresis (DGGE) and community-level physiological profiles (CLPP). Exposure to 6.8 μmol/l copper provoked distinct changes in DGGE profiles of bacterial consortia, which did not reverse upon copper depuration. Exposure to 2.1 and 6.8 μmol/l copper was found to induce marked changes in CLPP of bacterial communities that proved to be reversible during copper depuration. Furthermore, copper exposure induced the development of copper-tolerance, which was partially lost during depuration. It is concluded that bacterial communities exposed to copper contaminated water for a period of 26 days are capable to restore their metabolic attributes after introduction of unpolluted water in aquaria for 28 days. - Genetically different bacterial communities can have similar functions and tolerance to copper

  11. Bacterial biofilm formation, pathogenicity, diagnostics and control: An overview

    Directory of Open Access Journals (Sweden)

    Sawhney Rajesh

    2009-07-01

    Full Text Available Bacterial biofilms are complex, mono- or poly-microbialn communities adhering to biotic or abiotic surfaces. This adaptation has been implicated as a survival strategy. The formation of biofilms is mediated by mechanical, biochemical and genetical factors. The biofilms enhance the virulence of the pathogen and have their potential role in various infections, such as dental caries, cystic fibrosis, osteonecrosis, urinary tract infection and eye infections. A number of diagnostic techniques, viz., bright-field microscopy, epifluorescence microscopy, scanning electron microscopy, confocal laser scanning microscopy and amplicon length heterogeneity polymerase chain reaction, have been employed for detection of these communities. Researchers have worked on applications of catheter lock solutions, a fish protein coating, acid shock treatment, susceptibility to bacteriophages, etc., for biofilm control. However, we need to rearrange our strategies to have thorough insight and concentrate on priority basis to develop new accurate, precise and rapid diagnostic protocols for detection and evaluation of biofilm. Above all, the strict compliance to these techniques is required for accurate diagnosis and control.

  12. Physical solutions to the public goods dilemma in bacterial biofilms

    Science.gov (United States)

    Drescher, Knut; Nadell, Carey; Stone, Howard; Wingreen, Ned; Bassler, Bonnie

    2013-11-01

    Bacteria frequently live in densely populated surface-bound communities, termed biofilms. Biofilm-dwelling cells rely on secretion of extracellular substances to construct their communities and to capture nutrients from the environment. Some secreted factors behave as cooperative public goods: they can be exploited by non-producing cells. The means by which public good producing bacteria avert exploitation in biofilm environments are largely unknown. Using experiments with Vibrio cholerae, which secretes extracellular enzymes to digest its primary food source, the solid polymer chitin, we show that the public goods dilemma may be solved by two dramatically different, physical mechanisms: cells can produce thick biofilms that confine the goods to producers, or fluid flow can remove soluble products of chitin digestion, denying access to non-producers. Both processes limit the distance over which enzyme-secreting cells provide a benefit to neighbors, resulting in preferential benefit to nearby clonemates. Our results demonstrate how bacterial physiology and environmental conditions can interact with social phenotypes to influence the evolutionary dynamics of cooperation within biofilms.

  13. The role of bacterial biofilm in persistent infections and control strategies

    OpenAIRE

    Chen, Li; Wen, Yu-Mei

    2011-01-01

    Bacterial biofilms can be viewed as a specific type of persistent bacterial infection. After initial invasion, microbes can attach to living and non-living surfaces, such as prosthetics and indwelling medical devices, and form a biofilm composed of extracellular polysaccharides, proteins, and other components. In hosts, biofilm formation may trigger drug resistance and inflammation, resulting in persistent infections. The clinical aspects of biofilm formation and leading strategies for biofil...

  14. Diversity and functions of bacterial community in drinking water biofilms revealed by high-throughput sequencing

    OpenAIRE

    Chao, Yuanqing; Mao, Yanping; Wang, Zhiping,; Tong ZHANG

    2015-01-01

    The development of biofilms in drinking water (DW) systems may cause various problems to water quality. To investigate the community structure of biofilms on different pipe materials and the global/specific metabolic functions of DW biofilms, PCR-based 454 pyrosequencing data for 16S rRNA genes and Illumina metagenomic data were generated and analysed. Considerable differences in bacterial diversity and taxonomic structure were identified between biofilms formed on stainless steel and biofilm...

  15. Modeling of the Bacillus subtilis Bacterial Biofilm Growing on an Agar Substrate

    OpenAIRE

    Wang, Xiaoling; Wang, Guoqing; Hao, Mudong

    2015-01-01

    Bacterial biofilms are organized communities composed of millions of microorganisms that accumulate on almost any kinds of surfaces. In this paper, a biofilm growth model on an agar substrate is developed based on mass conservation principles, Fick's first law, and Monod's kinetic reaction, by considering nutrient diffusion between biofilm and agar substrate. Our results show biofilm growth evolution characteristics such as biofilm thickness, active biomass, and nutrient concentration in the ...

  16. Bacterial Lysine Decarboxylase Influences Human Dental Biofilm Lysine Content, Biofilm Accumulation and Sub-Clinical Gingival Inflammation

    Science.gov (United States)

    Lohinai, Z.; Keremi, B.; Szoko, E.; Tabi, T.; Szabo, C.; Tulassay, Z.; Levine, M.

    2012-01-01

    Background Dental biofilms contain a protein that inhibits mammalian cell growth, possibly lysine decarboxylase from Eikenella corrodens. This enzyme decarboxylates lysine, an essential amino acid for dentally attached cell turnover in gingival sulci. Lysine depletion may stop this turnover, impairing the barrier to bacterial compounds. The aims of this study were to determine biofilm lysine and cadaverine contents before oral hygiene restriction (OHR), and their association with plaque index (PI) and gingival crevicular fluid (GCF) after OHR for a week. Methods Laser-induced fluorescence after capillary electrophoresis was used to determine lysine and cadaverine contents in dental biofilm, tongue biofilm and saliva before OHR and in dental biofilm after OHR. Results Before OHR, lysine and cadaverine contents of dental biofilm were similar and 10-fold greater than in saliva or tongue biofilm. After a week of OHR, the biofilm content of cadaverine increased and that of lysine decreased, consistent with greater biofilm lysine decarboxylase activity. Regression indicated that PI and GCF exudation were positively related to biofilm lysine post-OHR, unless biofilm lysine exceeded the minimal blood plasma content in which case PI was further increased but GCF exudation was reduced. Conclusions After OHR, lysine decarboxylase activity seems to determine biofilm lysine content and biofilm accumulation. When biofilm lysine exceeds minimal blood plasma content after OHR, less GCF appeared despite more biofilm. Lysine appears important for biofilm accumulation and the epithelial barrier to bacterial proinflammatory agents. Clinical Relevance Inhibiting lysine decarboxylase may retard the increased GCF exudation required for microbial development and gingivitis. PMID:22141361

  17. Quorum-sensing and cheating in bacterial biofilms

    OpenAIRE

    Popat, Roman; Shanika A. Crusz; Messina, Marco; Willams, Paul; West, Stuart A.; Diggle, Stephen P.

    2012-01-01

    The idea from human societies that self-interest can lead to a breakdown of cooperation at the group level is sometimes termed the public goods dilemma. We tested this idea in the opportunistic bacterial pathogen, Pseudomonas aeruginosa, by examining the influence of putative cheats that do not cooperate via cell-to-cell signalling (quorum-sensing, QS). We found that: (i) QS cheating occurs in biofilm populations owing to exploitation of QS-regulated public goods; (ii) the thickness and densi...

  18. Ultrashort Pulse Laser Ablation for Depth Profiling of Bacterial Biofilms

    OpenAIRE

    Milasinovic, Slobodan; Liu, Yaoming; Gasper, Gerald L.; Zhao, Youbo; Johnston, Joanna L.; Gordon, Robert J.; Hanley, Luke

    2010-01-01

    Sample ablation by pulsed lasers is one option for removing material from a sample surface for in situ depth profiling during imaging mass spectrometry, but ablation is often limited by laser-induced damage of the remaining material. A preliminary evaluation was performed of sub-100 fs, 800 nm pulsed laser ablation for depth profiling of bacterial biofilms grown on glass by the drip flow method. Electron and optical microscopy were combined with laser desorption vacuum ultraviolet postionizat...

  19. Interactions between Biocide Cationic Agents and Bacterial Biofilms

    OpenAIRE

    Campanac, C.; Pineau, L.; Payard, A.; Baziard-Mouysset, G.; Roques, C.

    2002-01-01

    The resistance of bacterial biofilms to physical and chemical agents is attributed in the literature to various interconnected processes. The limitation of mass transfer alters the growth rate, and physiological changes in the bacteria in the film also appear. The present work describes an approach to determination of the mechanisms involved in the resistance of bacteria to quaternary ammonium compounds (benzalkonium chloride) according to the C-chain lengths of those compounds. For Pseudomon...

  20. Characterization of Bacterial Biofilms for Wastewater Treatment

    OpenAIRE

    Andersson, Sofia

    2009-01-01

    Research performed at the Division of Environmental Microbiology has over the last years resulted in the isolation of possible bacterial key-organisms with efficient nutrient removal properties (Comamonas denitrificans, Brachymonas denitrificans, Aeromonas hydrophila). Effective use of these organisms for enhanced nutrient removal in wastewater treatment applications requires the strains to be retained, to proliferate and to maintain biological activity within theprocess. This can be achieved...

  1. Solutions to the public goods dilemma in bacterial biofilms

    Science.gov (United States)

    Drescher, Knut; Nadell, Carey D.; Stone, Howard A.; Wingreen, Ned S.; Bassler, Bonnie L.

    2014-03-01

    Bacteria frequently live in densely populated surface-bound communities, termed biofilms. Biofilm-dwelling cells rely on secretion of extracellular substances to construct their communities and to capture nutrients from the environment. Some secreted factors behave as cooperative public goods: they can be exploited by non-producing cells. The means by which public-good-producing bacteria avert exploitation in biofilm environments are largely unknown. Using experiments with Vibrio cholerae, which secretes extracellular enzymes to digest its primary food source, the solid polymer chitin, we show that the public goods dilemma may be solved by two very different mechanisms: cells can produce thick biofilms that confine the goods to producers, or fluid flow can remove soluble products of chitin digestion, denying access to non-producers. Both processes are unified by limiting the distance over which enzyme-secreting cells provide benefits to neighbors, resulting in preferential benefit to nearby clonemates and allowing kin selection to favor public good production. Our results demonstrate new mechanisms by which the physical conditions of natural habitats can interact with bacterial physiology to promote the evolution of cooperation.

  2. Bacterial Vaginosis Biofilms: Challenges to Current Therapies and Emerging Solutions.

    Science.gov (United States)

    Machado, Daniela; Castro, Joana; Palmeira-de-Oliveira, Ana; Martinez-de-Oliveira, José; Cerca, Nuno

    2015-01-01

    Bacterial vaginosis (BV) is the most common genital tract infection in women during their reproductive years and it has been associated with serious health complications, such as preterm delivery and acquisition or transmission of several sexually transmitted agents. BV is characterized by a reduction of beneficial lactobacilli and a significant increase in number of anaerobic bacteria, including Gardnerella vaginalis, Atopobium vaginae, Mobiluncus spp., Bacteroides spp. and Prevotella spp.. Being polymicrobial in nature, BV etiology remains unclear. However, it is certain that BV involves the presence of a thick vaginal multi-species biofilm, where G. vaginalis is the predominant species. Similar to what happens in many other biofilm-related infections, standard antibiotics, like metronidazole, are unable to fully eradicate the vaginal biofilm, which can explain the high recurrence rates of BV. Furthermore, antibiotic therapy can also cause a negative impact on the healthy vaginal microflora. These issues sparked the interest in developing alternative therapeutic strategies. This review provides a quick synopsis of the currently approved and available antibiotics for BV treatment while presenting an overview of novel strategies that are being explored for the treatment of this disorder, with special focus on natural compounds that are able to overcome biofilm-associated antibiotic resistance. PMID:26834706

  3. Effects of Eutrophication, Seasonality and Macrofouling on the Diversity of Bacterial Biofilms in Equatorial Coral Reefs

    OpenAIRE

    Sawall, Yvonne; Richter, Claudio; Ramette, Alban

    2012-01-01

    Biofilms play an important role as a settlement cue for invertebrate larvae and significantly contribute to the nutrient turnover in aquatic ecosystems. Nevertheless, little is known about how biofilm community structure generally responds to environmental changes. This study aimed to identify patterns of bacterial dynamics in coral reef biofilms in response to associated macrofouling community structure, microhabitat (exposed vs. sheltered), seasonality, and eutrophication. Settl...

  4. Influence of the Diversity of Bacterial Isolates from Drinking Water on Resistance of Biofilms to Disinfection ▿

    OpenAIRE

    Simões, Lúcia C; Simões, M; Vieira, M. J.

    2010-01-01

    Single- and multispecies biofilms formed by six drinking water-isolated bacterial species were used to assess their susceptibilities to sodium hypochlorite (SHC). In general, multispecies biofilms were more resistant to inactivation and removal than single biofilms. Total biofilm inactivation was achieved only for Acinetobacter calcoaceticus single-species biofilms and for those multispecies biofilms without A. calcoaceticus. Biofilms with all bacteria had the highest resistance t...

  5. Ratiometric Imaging of Extracellular pH in Bacterial Biofilms with C-SNARF-4

    OpenAIRE

    Schlafer, Sebastian; Garcia, Javier E.; Greve, Matilde; Merete K Raarup; Nyvad, Bente; Dige, Irene

    2014-01-01

    pH in the extracellular matrix of bacterial biofilms is of central importance for microbial metabolism. Biofilms possess a complex three-dimensional architecture characterized by chemically different microenvironments in close proximity. For decades, pH measurements in biofilms have been limited to monitoring bulk pH with electrodes. Although pH microelectrodes with a better spatial resolution have been developed, they do not permit the monitoring of horizontal pH gradients in biofilms in rea...

  6. Combined eukaryotic and bacterial community fingerprinting of natural freshwater biofilms using automated ribosomal intergenic spacer analysis

    OpenAIRE

    2010-01-01

    Biofilms are complex communities playing an important role in aquatic ecosystems. Automated ribosomal intergenic spacer analysis (ARISA) has been used successfully to explore biofilm bacterial diversity. However, a gap remains to be filled as regards its application to biofilm eukaryotic populations. The aim of this study is to use ARISA to detect eukaryotic population shifts in biofilm. We designed a new set of primers to focus specifically on the ITS1-5.8S-ITS2 region of diatoms and tested ...

  7. A Communal Bacterial Adhesin Anchors Biofilm and Bystander Cells to Surfaces

    OpenAIRE

    Absalon, Cedric; Van Dellen, Katrina; Paula I. Watnick

    2011-01-01

    Author Summary The bacterial multilayer biofilm consists of matrix-enclosed cells attached to each other to form large aggregates. The base of these aggregates may be attached to a living or non-living surface. The biofilm matrix most often contains at least one exopolysaccharide component and may also contain protein and DNA. While much is known about the exopolysaccharide component of the Gram-negative biofilm matrix, little is known about the function of biofilm matrix proteins. We hypothe...

  8. Quantification, Distribution, and Possible Source of Bacterial Biofilm in Mouse Automated Watering Systems

    OpenAIRE

    Meier, Thomas R.; Maute, Carrie J; Cadillac, Joan M.; Lee, Ji Young; Righter, Daniel J; Hugunin, Kelly MS; Deininger, Rolf A; Dysko, Robert C

    2008-01-01

    The use of automated watering systems for providing drinking water to rodents has become commonplace in the research setting. Little is known regarding bacterial biofilm growth within the water piping attached to the racks (manifolds). The purposes of this project were to determine whether the mouse oral flora contributed to the aerobic bacterial component of the rack biofilm, quantify bacterial growth in rack manifolds over 6 mo, assess our rack sanitation practices, and quantify bacterial b...

  9. Assessment of bacterial and structural dynamics in aerobic granular biofilms

    Directory of Open Access Journals (Sweden)

    David G. Weissbrodt

    2013-07-01

    Full Text Available Aerobic granular sludge is based on self-granulated flocs forming mobile biofilms with a gel-like consistence. Bacterial and structural dynamics from flocs to granules were followed in anaerobic-aerobic sequencing batch reactors fed with synthetic wastewater, namely a bubble column (BC-SBR operated under wash-out conditions for fast granulation, and two stirred-tank enrichments of Accumulibacter (PAO-SBR and Competibacter (GAO-SBR operated at steady-state. In the BC-SBR, granules formed within two weeks by swelling of Zoogloea colonies around flocs, developing subsequently smooth zoogloeal biofilms. However, Zoogloea predominance (37-79% led to deteriorated nutrient removal during the first months of reactor operation. Upon maturation, improved nitrification (80-100%, nitrogen removal (43-83%, and high but unstable dephosphatation (75-100% were obtained. Proliferation of dense clusters of nitrifiers, Accumulibacter, and Competibacter from granule cores outwards resulted in heterogeneous bioaggregates, inside which only low abundance Zoogloea (<5% were detected in biofilm interstices. The presence of different extracellular glycoconjugates detected by fluorescence lectin-binding analysis showed the complex nature of the intracellular matrix of these granules. In the PAO-SBR, granulation occurred within two months with abundant and active Accumulibacter populations (56±10% that were selected under full anaerobic uptake of volatile fatty acids and that aggregated as dense clusters within heterogeneous granules. Flocs self-granulated in the GAO-SBR after 480 days during a period of over-aeration caused by biofilm growth on the oxygen sensor. Granules were dominated by heterogeneous clusters of Competibacter (37±11%. Zoogloea were never abundant in biomass of both PAO- and GAO-SBRs. This study showed that Zoogloea, Accumulibacter, and Competibacter affiliates can form granules, and that the granulation mechanisms rely on the dominant population

  10. Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Klausen, Mikkel; Aaes-Jorgensen, A.; Molin, Søren; Tolker-Nielsen, Tim

    2003-01-01

    Detailed knowledge of the developmental process from single cells scattered on a surface to complex multicellular biofilm structures is essential in order to create strategies to control biofilm development. In order to study bacterial migration patterns during Pseudomonas aeruginosa biofilm...... development, we have performed an investigation with time-lapse confocal laser scanning microscopy of biofilms formed by various combinations of colour-coded P. aeruginosa wild type and motility mutants. We show that mushroom-shaped multicellular structures in P. aeruginosa biofilms can form in a sequential...... process involving a non-motile bacterial subpopulation and a migrating bacterial subpopulation. The non-motile bacteria form the mushroom stalks by growth in certain foci of the biofilm. The migrating bacteria form the mushroom caps by climbing the stalks and aggregating on the tops in a process which is...

  11. Influence of flow on the structure of bacterial biofilms.

    OpenAIRE

    Stoodley, Paul; Boyle, John D.; Lappin-Scott, Hilary M.

    2000-01-01

    Bacteria attached to surfaces in biofilms are responsible for the contamination of industrial processes and many types of microbial infections and disease. Once established, biofilms are notoriously difficult to eradicate. A more complete understanding of how biofilms form and behave is crucial if we are to predict, and ultimately control, biofilm processes. A major breakthrough in biofilm research came in the early 1990’s when confocal scanning laser microscopy (CSLM) showed that biofilms fo...

  12. Biofilms bacterianos e infección Bacterial biofilms and infection

    Directory of Open Access Journals (Sweden)

    I. Lasa

    2005-08-01

    describe el papel que juegan los biofilms en infecciones humanas persistentes.In developed countries we tend to think of heart disease and the numerous forms of cancer as the main causes of mortality, but on a global scale infectious diseases come close, or may even be ahead: 14.9 million deaths in 2002 compared to cardiovascular diseases (16.9 million deaths and cancer (7.1 million deaths (WHO report 2004. The infectious agents responsible for human mortality have evolved as medical techniques and hygienic measures have changed. Modern-day acute infectious diseases caused by specialized bacterial pathogens such as diphtheria, tetanus, cholera, plague, which represented the main causes of death at the beginning of XX century, have been effectively controlled with antibiotics and vaccines. In their place, more than half of the infectious diseases that affect mildly immunocompromised patients involve bacterial species that are commensal with the human body; these can produce chronic infections, are resistant to antimicrobial agents and there is no effective vaccine against them. Examples of these infections are the otitis media, native valve endocarditis, chronic urinary infections, bacterial prostatitis, osteomyelitis and all the infections related to medical devices. Direct analysis of the surface of medical devices or of tissues that have been foci of chronic infections shows the presence of large numbers of bacteria surrounded by an exopolysaccharide matrix, which has been named the "biofilm". Inside the biofilm, bacteria grow protected from the action of the antibodies, phagocytic cells and antimicrobial treatments. In this article, we describe the role of bacterial biofilms in human persistent infections.

  13. Minimal selective concentrations of tetracycline in complex aquatic bacterial biofilms.

    Science.gov (United States)

    Lundström, Sara V; Östman, Marcus; Bengtsson-Palme, Johan; Rutgersson, Carolin; Thoudal, Malin; Sircar, Triranta; Blanck, Hans; Eriksson, K Martin; Tysklind, Mats; Flach, Carl-Fredrik; Larsson, D G Joakim

    2016-05-15

    Selection pressure generated by antibiotics released into the environment could enrich for antibiotic resistance genes and antibiotic resistant bacteria, thereby increasing the risk for transmission to humans and animals. Tetracyclines comprise an antibiotic class of great importance to both human and animal health. Accordingly, residues of tetracycline are commonly detected in aquatic environments. To assess if tetracycline pollution in aquatic environments promotes development of resistance, we determined minimal selective concentrations (MSCs) in biofilms of complex aquatic bacterial communities using both phenotypic and genotypic assays. Tetracycline significantly increased the relative abundance of resistant bacteria at 10μg/L, while specific tet genes (tetA and tetG) increased significantly at the lowest concentration tested (1μg/L). Taxonomic composition of the biofilm communities was altered with increasing tetracycline concentrations. Metagenomic analysis revealed a concurrent increase of several tet genes and a range of other genes providing resistance to different classes of antibiotics (e.g. cmlA, floR, sul1, and mphA), indicating potential for co-selection. Consequently, MSCs for the tet genes of ≤1μg/L suggests that current exposure levels in e.g. sewage treatment plants could be sufficient to promote resistance. The methodology used here to assess MSCs could be applied in risk assessment of other antibiotics as well. PMID:26938321

  14. Bacterial biofilms investigated by atomic force microscopy and electrochemistry

    DEFF Research Database (Denmark)

    Hu, Yifan

    Streptococcus mutans (dental caries). AFM was used to investigate the adhesion force on single live cell surfaces. Four different strains of Staphylococcus epidermidis in liquid aqueous environments were adressed. These strains were selected because of their special surface proteins related with the initial...... attachment on the surface. High-resolution AFM imaging showed no detectable differences among the four strains. Adhesion maps using hydrophobically modified tips compared with bare hydrophilic silicon nitride tips also showed small differences only. This indicates that hydrophobic effects are not the primary...... driving forces towards adhesion. Two chemical inhibitor compounds were found to have strong effects on the adhesion between the bare tips and the bacteria. Secondly, AFM and electrochemistry were combined to study bacterial biofilm formation on Au(111)-surfaces, to determine the surface charge and growth...

  15. Bovine milk osteopontin - Targeting bacterial adhesion for biofilm control

    DEFF Research Database (Denmark)

    Kristensen, Mathilde Frost; Meyer, Rikke Louise; Schlafer, Sebastian

    performed in technical and biological duplicates. Bifidobacterium dentium, Rothia dentocariosa and Streptococcus mutans did not adhere to the flow cell, irrespective of the presence of osteopontin. Osteopontin reduced the adhesion of Actinomyces naeslundii, Actinomyces viscosus, Lactobacillus paracasei...... subsp. paracasei, Streptococcus mitis and Streptococcus oralis with 74.0%, 62.4%, 90.0%, 89.6% and 81.5%, respectively, compared to protein-free saliva. All reductions were statistically significant (p<0.05) and significantly stronger than the reductions observed for caseinoglycomacropeptide (p<0.......05). ), as determined by two-sample t-tests. The broad range anti-adhesive effect of osteopontin on dental bacterial strains might explain the reduced biofilm formation observed and be exploited in vivo for increased caries control....

  16. Disturbance of the bacterial cell wall specifically interferes with biofilm formation.

    Science.gov (United States)

    Bucher, Tabitha; Oppenheimer-Shaanan, Yaara; Savidor, Alon; Bloom-Ackermann, Zohar; Kolodkin-Gal, Ilana

    2015-12-01

    In nature, bacteria communicate via chemical cues and establish complex communities referred to as biofilms, wherein cells are held together by an extracellular matrix. Much research is focusing on small molecules that manipulate and prevent biofilm assembly by modifying cellular signalling pathways. However, the bacterial cell envelope, presenting the interface between bacterial cells and their surroundings, is largely overlooked. In our study, we identified specific targets within the biosynthesis pathways of the different cell wall components (peptidoglycan, wall teichoic acids and teichuronic acids) hampering biofilm formation and the anchoring of the extracellular matrix with a minimal effect on planktonic growth. In addition, we provide convincing evidence that biofilm hampering by transglycosylation inhibitors and D-Leucine triggers a highly specific response without changing the overall protein levels within the biofilm cells or the overall levels of the extracellular matrix components. The presented results emphasize the central role of the Gram-positive cell wall in biofilm development, resistance and sustainment. PMID:26472159

  17. [Synergism of the combination of enzymes or surfactants and a phenolic disinfectant on a bacterial biofilm].

    Science.gov (United States)

    Jacquelin, L F; Le Magrex, E; Brisset, L; Carquin, J; Berthet, A; Choisy, C

    1994-05-01

    Disrupting bacterial biofilms is necessary for a wide application domains such as reusable medical devices, or systems of pipes for water or fluids in cosmetics, food and chemicals industry. Bacterial cells embedded in a biofilm are less susceptible to disinfectants than suspended cells. This property is referable to the structure of the biofilm itself. The gangue of exopolymers and the thickness of a 5-day-old biofilm of Escherichia coli (more than 200 layers of bacteria), contribute to this decrease of susceptibility. The present work deals with the release of an Escherichia coli biofilm by the sequential action of enzymes and a phenolic disinfectant on the one hand, and by the sequential or simultaneous action of surfactants and the previous disinfectant on the other hand. The decrease of bacteria count per mm2 and the Scanning Electron Microscope observations exhibited a synergic action in every case. Nevertheless, Escherichia coli biofilms quickly reconstructed even after exposition to the previous treatment. PMID:7824307

  18. Anti-Biofilm Performance of Three Natural Products against Initial Bacterial Attachment

    Directory of Open Access Journals (Sweden)

    Keith R. Stokes

    2013-11-01

    Full Text Available Marine bacteria contribute significantly towards the fouling consortium, both directly (modern foul release coatings fail to prevent “slime” attachment and indirectly (biofilms often excrete chemical cues that attract macrofouling settlement. This study assessed the natural product anti-biofilm performance of an extract of the seaweed, Chondrus crispus, and two isolated compounds from terrestrial sources, (+-usnic acid and juglone, against two marine biofilm forming bacteria, Cobetia marina and Marinobacter hydrocarbonoclasticus. Bioassays were developed using quantitative imaging and fluorescent labelling to test the natural products over a range of concentrations against initial bacterial attachment. All natural products affected bacterial attachment; however, juglone demonstrated the best anti-biofilm performance against both bacterial species at a concentration range between 5–20 ppm. In addition, for the first time, a dose-dependent inhibition (hormetic response was observed for natural products against marine biofilm forming bacteria.

  19. Assessment of biofilm formation in device-associated clinical bacterial isolates in a tertiary level hospital

    OpenAIRE

    Summaiya A Mulla; Sangita Revdiwala

    2011-01-01

    Background: Biofilm formation is a developmental process with intercellular signals that regulate growth. Biofilms contaminate catheters, ventilators, and medical implants; they act as a source of disease for humans, animals, and plants. Aim: In this study we have done quantitative assessment of biofilm formation in device-associated clinical bacterial isolates in response to various concentrations of glucose in tryptic soya broth and with different incubation time. Materials and Methods: The...

  20. Bacterial adhesion forces with substratum surfaces and the susceptibility of biofilms to antibiotics

    NARCIS (Netherlands)

    Muszanska, L.H.; Nejadnik, M.R.; Chen, Y.; Heuvel, van den E.R.; Busscher, H.J.; Mei, van der H.C.; Norde, W.

    2012-01-01

    Biofilms causing biomaterial-associated infection resist antibiotic treatment and usually necessitate the replacement of infected implants. Here we relate bacterial adhesion forces and the antibiotic susceptibility of biofilms on uncoated and polymer brush-coated silicone rubber. Nine strains of Sta

  1. Developed Fungal-Bacterial Biofilms as A Novel Tool for Bioremoval of Hexavelant Chromium from Wastewater

    DEFF Research Database (Denmark)

    Herath, Lasantha; Rajapaksha, R. M. A. U.; Vithanage, M.;

    2014-01-01

    Remediation measures for hexavalent Chromium [Cr(VI)] are required for a safe environment. As a recent development in microbiology, bacterial biofilms are being studied as effective bioremediation agents. When bacteria are in fungal surface-attached biofilm mode, they are called fungal...

  2. Ability of chitosan gels to disrupt bacterial biofilms and their applications in the treatment of bacterial vaginosis.

    Science.gov (United States)

    Kandimalla, Karunya K; Borden, Emma; Omtri, Rajesh S; Boyapati, Siva Prasad; Smith, Michael; Lebby, Kimberly; Mulpuru, Maanavi; Gadde, Mounika

    2013-07-01

    Recurrence of bacterial vaginosis is attributed to the inability of various formulations to disrupt bacterial biofilms. A negatively charged polysaccharide matrix coats the bacterial communities in the biofilm and restricts the penetration of antibiotics. Therefore, bacteria in the deeper segments of the biofilm persist and perpetuate the infection. In this study, we have tested the efficacy of two bioadhesive polymers, cationic chitosan and anionic polycarbophil, to disrupt Pseudomonas aeruginosa biofilms grown in the Center for Disease Control bioreactor as well as on the 96-well plates. The biofilms were treated with various concentrations of polycarbophil and chitosan at pH 4 or 6. Biofilm integrity following various treatments was evaluated by crystal violet stain and laser confocal microscopy employing Syto9 (live-cell stain) and propidium iodide (dead-cell stain). These studies demonstrated that chitosan gel disrupts the P. aeruginosa biofilm more effectively than does polycarbophil; and this effect is independent of the pH and charge densities on either polymers. PMID:23695992

  3. A 3.8 b.y. History of Bacterial Biofilms and Their Significance in the Search for Extraterrestrial Life

    Science.gov (United States)

    Westall, Frances; Steele, Andrew; Toporski, Jan; Walsh, Maud; Allen, Carlton; Guidry, Sean; McKay, David; Gibson, Everett; Chafetz, Henry

    2000-01-01

    Bacterial biofilms are almost ubiquitous in terrestrial environments, many similar to past or present Martian environments. Together with ToF-SIMS analysis of the in situ organics, fossil biofilms constitute reliable biomarkers.

  4. New In Vitro Model To Study the Effect of Human Simulated Antibiotic Concentrations on Bacterial Biofilms

    OpenAIRE

    Haagensen, Janus A. J.; Verotta, Davide; Huang, Liusheng; Spormann, Alfred; Yang, Katherine

    2015-01-01

    A new in vitro pharmacokinetic/pharmacodynamic simulator for bacterial biofilms utilizing flow cell technology and confocal laser scanning microscopy is described. The device has the ability to simulate the changing antibiotic concentrations in humans associated with intravenous dosing on bacterial biofilms grown under continuous culture conditions. The free drug concentrations of a single 2-g meropenem intravenous bolus dose and first-order elimination utilizing a half-life of 0.895 h (elimi...

  5. Biofilm Formation Mechanisms of Pseudomonas aeruginosa Predicted via Genome-Scale Kinetic Models of Bacterial Metabolism.

    Science.gov (United States)

    Vital-Lopez, Francisco G; Reifman, Jaques; Wallqvist, Anders

    2015-10-01

    A hallmark of Pseudomonas aeruginosa is its ability to establish biofilm-based infections that are difficult to eradicate. Biofilms are less susceptible to host inflammatory and immune responses and have higher antibiotic tolerance than free-living planktonic cells. Developing treatments against biofilms requires an understanding of bacterial biofilm-specific physiological traits. Research efforts have started to elucidate the intricate mechanisms underlying biofilm development. However, many aspects of these mechanisms are still poorly understood. Here, we addressed questions regarding biofilm metabolism using a genome-scale kinetic model of the P. aeruginosa metabolic network and gene expression profiles. Specifically, we computed metabolite concentration differences between known mutants with altered biofilm formation and the wild-type strain to predict drug targets against P. aeruginosa biofilms. We also simulated the altered metabolism driven by gene expression changes between biofilm and stationary growth-phase planktonic cultures. Our analysis suggests that the synthesis of important biofilm-related molecules, such as the quorum-sensing molecule Pseudomonas quinolone signal and the exopolysaccharide Psl, is regulated not only through the expression of genes in their own synthesis pathway, but also through the biofilm-specific expression of genes in pathways competing for precursors to these molecules. Finally, we investigated why mutants defective in anthranilate degradation have an impaired ability to form biofilms. Alternative to a previous hypothesis that this biofilm reduction is caused by a decrease in energy production, we proposed that the dysregulation of the synthesis of secondary metabolites derived from anthranilate and chorismate is what impaired the biofilms of these mutants. Notably, these insights generated through our kinetic model-based approach are not accessible from previous constraint-based model analyses of P. aeruginosa biofilm

  6. Functional bacterial amyloid increases Pseudomonas biofilm hydrophobicity and stiffness

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Vad, Brian Stougaard; Dueholm, Morten Simonsen;

    2015-01-01

    and increases biofilm stiffness 20-fold. Deletion of any one of the individual members of in the fap operon (except the putative chaperone FapA) abolishes this ability to increase biofilm stiffness and correlates with the loss of amyloid. We conclude that amyloid makes major contributions to biofilm...

  7. Assessment of biofilm formation in device-associated clinical bacterial isolates in a tertiary level hospital

    Directory of Open Access Journals (Sweden)

    Summaiya A Mulla

    2011-01-01

    Full Text Available Background: Biofilm formation is a developmental process with intercellular signals that regulate growth. Biofilms contaminate catheters, ventilators, and medical implants; they act as a source of disease for humans, animals, and plants. Aim: In this study we have done quantitative assessment of biofilm formation in device-associated clinical bacterial isolates in response to various concentrations of glucose in tryptic soya broth and with different incubation time. Materials and Methods: The study was carried out on 100 positive bacteriological cultures of medical devices, which were inserted in hospitalized patients. The bacterial isolates were processed as per microtitre plate method with tryptic soya broth alone and with varying concentrations of glucose and were observed in response to time. Results: Majority of catheter cultures were positive. Out of the total 100 bacterial isolates tested, 88 of them were biofilm formers. Incubation period of 16-20 h was found to be optimum for biofilm development. Conclusions: Availability of nutrition in the form of glucose enhances the biofilm formation by bacteria. Biofilm formation depends on adherence of bacteria to various surfaces. Time and availability of glucose are important factors for assessment of biofilm progress.

  8. Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Klausen, Mikkel; Aaes-Jorgensen, A.; Molin, Søren;

    2003-01-01

    development, we have performed an investigation with time-lapse confocal laser scanning microscopy of biofilms formed by various combinations of colour-coded P. aeruginosa wild type and motility mutants. We show that mushroom-shaped multicellular structures in P. aeruginosa biofilms can form in a sequential...... process involving a non-motile bacterial subpopulation and a migrating bacterial subpopulation. The non-motile bacteria form the mushroom stalks by growth in certain foci of the biofilm. The migrating bacteria form the mushroom caps by climbing the stalks and aggregating on the tops in a process which...

  9. Confocal Raman microscopy for identification of bacterial species in biofilms

    Science.gov (United States)

    Beier, Brooke D.; Quivey, Robert G.; Berger, Andrew J.

    2011-03-01

    Implemented through a confocal microscope, Raman spectroscopy has been used to distinguish between biofilm samples of two common oral bacteria species, Streptococcus sanguinis and mutans, which are associated with healthy and cariogenic plaque, respectively. Biofilms of these species are studied as a model of dental plaque. A prediction model has been calibrated and validated using pure biofilms. This model has been used to identify the species of transferred and dehydrated samples (much like a plaque scraping) as well as hydrated biofilms in situ. Preliminary results of confocal Raman mapping of species in an intact two-species biofilm will be shown.

  10. Pulse-based non-thermal plasma (NTP) disrupts the structural characteristics of bacterial biofilms.

    Science.gov (United States)

    Ferrell, James R; Shen, Fan; Grey, Scott F; Woolverton, Christopher J

    2013-01-01

    Bacterial biofilms were constructed in vitro with two pathogenic strains of Pseudomonas aeruginosa and Staphylococcus aureus using a modified, novel sequential bioreactor system. The structure and stability of bacterial biofilms were evaluated following exposure to non-thermal plasma (NTP) discharge. Mathematical software was used to determine structural changes as biofilms grew over the course of 7 days. Statistical modeling was also performed to assess the ability of NTP to affect the development of the biofilms over different periods of time. Several structural characteristics were significantly affected by NTP discharge whereas others were unaffected. Changes in the three-dimensional structure of the biofilm following introduction of NTP was not limited to one period of development. The mechanism for this phenomenon is not understood but is likely to be a dual, synergistic effect due to the composition of the reactive species and other plasma-associated molecules isolated previously in the NTP discharge used in this study. PMID:23682750

  11. Identification of different bacterial species in biofilms using confocal Raman microscopy

    Science.gov (United States)

    Beier, Brooke D.; Quivey, Robert G.; Berger, Andrew J.

    2010-11-01

    Confocal Raman microspectroscopy is used to discriminate between different species of bacteria grown in biofilms. Tests are performed using two bacterial species, Streptococcus sanguinis and Streptococcus mutans, which are major components of oral plaque and of particular interest due to their association with healthy and cariogenic plaque, respectively. Dehydrated biofilms of these species are studied as a simplified model of dental plaque. A prediction model based on principal component analysis and logistic regression is calibrated using pure biofilms of each species and validated on pure biofilms grown months later, achieving 96% accuracy in prospective classification. When biofilms of the two species are partially mixed together, Raman-based identifications are achieved within ~2 μm of the boundaries between species with 97% accuracy. This combination of spatial resolution and predication accuracy should be suitable for forming images of species distributions within intact two-species biofilms.

  12. Photodynamic therapy for inactivating endodontic bacterial biofilms and effect of tissue inhibitors on antibacterial efficacy

    Science.gov (United States)

    Shrestha, Annie; Kishen, Anil

    Complex nature of bacterial cell membrane and structure of biofilm has challenged the efficacy of antimicrobial photodynamic therapy (APDT) to achieve effective disinfection of infected root canals. In addition, tissue-inhibitors present inside the root canals are known to affect APDT activity. This study was aimed to assess the effect of APDT on bacterial biofilms and evaluate the effect of tissue-inhibitors on the APDT. Rose-bengal (RB) and methylene-blue (MB) were tested on Enterococcus faecalis (gram-positive) and Pseudomonas aeruginosa (gram-negative) biofilms. In vitro 7- day old biofilms were sensitized with RB and MB, and photodynamically activated with 20-60 J/cm2. Photosensitizers were pre-treated with different tissue-inhibitors (dentin, dentin-matrix, pulp tissue, bacterial lipopolysaccharides (LPS), and bovine serum albumin (BSA)) and tested for antibacterial effect of APDT. Microbiological culture based analysis was used to analyze the cell viability, while Laser Scanning Confocal Microscopy (LSCM) was used to examine the structure of biofilm. Photoactivation resulted in significant reduction of bacterial biofilms with RB and MB. The structure of biofilm under LSCM was found to be disrupted with reduced biofilm thickness. Complete biofilm elimination could not be achieved with both tested photosensitizers. APDT effect using MB and RB was inhibited in a decreasing order by dentin-matrix, BSA, pulp, dentin and LPS (Pbacterial biofilms resisted complete elimination after APDT and the tissue inhibitors existing within the root canal reduced the antibacterial activity at varying degrees. Further research is required to enhance the antibacterial efficacy of APDT in an endodontic environment.

  13. Diversity and functions of bacterial community in drinking water biofilms revealed by high-throughput sequencing

    Science.gov (United States)

    Chao, Yuanqing; Mao, Yanping; Wang, Zhiping; Zhang, Tong

    2015-06-01

    The development of biofilms in drinking water (DW) systems may cause various problems to water quality. To investigate the community structure of biofilms on different pipe materials and the global/specific metabolic functions of DW biofilms, PCR-based 454 pyrosequencing data for 16S rRNA genes and Illumina metagenomic data were generated and analysed. Considerable differences in bacterial diversity and taxonomic structure were identified between biofilms formed on stainless steel and biofilms formed on plastics, indicating that the metallic materials facilitate the formation of higher diversity biofilms. Moreover, variations in several dominant genera were observed during biofilm formation. Based on PCA analysis, the global functions in the DW biofilms were similar to other DW metagenomes. Beyond the global functions, the occurrences and abundances of specific protective genes involved in the glutathione metabolism, the SoxRS system, the OxyR system, RpoS regulated genes, and the production/degradation of extracellular polymeric substances were also evaluated. A near-complete and low-contamination draft genome was constructed from the metagenome of the DW biofilm, based on the coverage and tetranucleotide frequencies, and identified as a Bradyrhizobiaceae-like bacterium according to a phylogenetic analysis. Our findings provide new insight into DW biofilms, especially in terms of their metabolic functions.

  14. Volumetric measurements of bacterial cells and extracellular polymeric substance glycoconjugates in biofilms.

    Science.gov (United States)

    Staudt, C; Horn, H; Hempel, D C; Neu, T R

    2004-12-01

    In this study an enrichment culture developed from activated sludge was used to investigate the architecture of fully hydrated multispecies biofilms. The assessment of biofilm structure and volume was carried out using confocal laser scanning microscopy (CLSM). Bacterial cell distribution was determined with the nucleic acid-specific stain SYTO 60, whereas glycoconjugates of extracellular polymeric substances (EPS) were stained with the Alexa-488-labeled lectin of Aleuria aurantia. Digital image analysis was employed for visualization and quantification of three-dimensional CLSM data sets. The specific volumes of the polymeric and cellular biofilm constituents were quantified. In addition, gravimetric measurements were done to determine dry mass and thickness of the biofilms. The data recorded by the CLSM technique and the gravimetric data were then compared. It was shown that the biofilm thicknesses determined with both methods agree well for slow-growing heterotrophic and chemoautotrophic biofilms. In addition, for slow-growing biofilms, the volumes and masses calculated from CLSM and the biomass calculated from gravimetric measurements were also comparable. For fast-growing heterotrophic biofilms cultivated with high glucose concentrations the data sets fit to a lesser degree, but still showed the same common trend. Compared with traditional gravimetric measurements, CLSM allowed differential recording of multiple biofilm parameters with subsequent three-dimensional visualization and quantification. The quantitative three-dimensional results recorded by CLSM are an important basis for understanding, controlling, exploiting, and modeling of biofilms. PMID:15470707

  15. The dynamics of biofilm bacterial communities is driven by flow wax and wane in a temporary stream

    OpenAIRE

    Timoner Amer, Xisca; Borrego i Moré, Carles; Acuña i Salazar, Vicenç; Sabater, Sergi

    2014-01-01

    Biofilm communities are exposed to long periods of desiccation in temporary streams. We investigated how water flow intermittency affected the bacterial community structure colonizing three different streambed compartments in a Mediterranean stream. Massive parallel sequencing revealed different bacterial communities in biofilms from sand sediments and cobbles. Bacterial communities were similar (62% of shared operational taxonomic units) in the epipsammic and hyporheic biofilms, and more div...

  16. Raman microspectroscopy for species identification and mapping within bacterial biofilms

    OpenAIRE

    Beier, Brooke D; Quivey, Robert G.; Berger, Andrew J.

    2012-01-01

    A new method of mapping multiple species of oral bacteria in intact biofilms has been developed, using the optical technique of confocal Raman microscopy. A species classification algorithm, developed on dried biofilms, was used to analyze spectra of hydrated biofilms containing two microbial species central to dental health: Streptococcus sanguinis and Streptococcus mutans. The algorithm transferred successfully to the hydrated environment, correctly identifying the species of origin of sing...

  17. Biofilm growth alters regulation of conjugation by a bacterial pheromone

    OpenAIRE

    Cook, Laura; Barnes, Aaron; Dunny, Gary; Chatterjee, Anushree; Hu, Wei-Shou; Yarwood, Jeremy

    2011-01-01

    Conjugation is an important mode of horizontal gene transfer in bacteria, enhancing the spread of antibiotic resistance. In clinical settings, biofilms are likely locations for antibiotic resistance transfer events involving nosocomial pathogens such as Enterococcus faecalis. Here we demonstrate that growth in biofilms alters the induction of conjugation by a sex pheromone in E. faecalis. Mathematical modeling suggested that a higher plasmid copy number in biofilm cells would enhance a switch...

  18. A trait-based approach to bacterial biofilms in soil.

    Science.gov (United States)

    Lennon, Jay T; Lehmkuhl, Brent K

    2016-09-01

    A trait-based approach focuses on attributes of taxa that influence the structure and function of communities. Biofilm production is a common trait among microorganisms in a wide range of environmental, engineered, and host-associated ecosystems. Here, we used Pseudomonas aeruginosa to link biofilm production to moisture availability, a common stressor for microorganisms in soil. First, we demonstrate that biofilm production is a response trait that influences the desiccation phenotype by increasing survivorship, shifting the niche space, and reducing the minimum water potential needed to sustain a net-positive growth rate (Ψ*). Although the allocation of resources to biofilms is thought to be costly, we found no evidence for a trade-off between fitness and biofilm production along a soil moisture gradient. Second, we demonstrated that biofilm production is an effect trait. Specifically, biofilm production increased water retention in soils that were exposed to a series of drying and rewetting cycles. Although this form of niche construction should affect species interactions, we found no evidence that the benefits of biofilm production were extended to another co-occurring soil bacterium. Together, our results support the view that biofilm production is an important trait that may contribute to the distribution, abundance, and functioning of microorganisms in soils. PMID:27104876

  19. Biofilm formation and ethanol inhibition by bacterial contaminants of biofuel fermentation

    Science.gov (United States)

    Bacterial contaminants can inhibit ethanol production in biofuel fermentations, and even result in stuck fermentations. Contaminants may persist in production facilities by forming recalcitrant biofilms. A two-year longitudinal study was conducted of bacterial contaminants from a Midwestern dry grin...

  20. Presence of a polymicrobial endometrial biofilm in patients with bacterial vaginosis.

    Directory of Open Access Journals (Sweden)

    Alexander Swidsinski

    Full Text Available OBJECTIVE: To assess whether the bacterial vaginosis biofilm extends into the upper female genital tract. STUDY DESIGN: Endometrial samples obtained during curettage and fallopian tube samples obtained during salpingectomy were collected. Endometrial and fallopian tube samples were analyzed for the presence of bacteria with fluorescence-in-situ-hybridisation (FISH analysis with probes targeting bacterial vaginosis-associated and other bacteria. RESULTS: A structured polymicrobial Gardnerella vaginalis biofilm could be detected in part of the endometrial and fallopian tube specimens. Women with bacterial vaginosis had a 50.0% (95% CI 24.0-76.0 risk of presenting with an endometrial Gardnerella vaginalis biofilm. Pregnancy (AOR  = 41.5, 95% CI 5.0-341.9, p<0.001 and the presence of bacterial vaginosis (AOR  = 23.2, 95% CI 2.6-205.9, p<0.001 were highly predictive of the presence of uterine or fallopian bacterial colonisation when compared to non-pregnant women without bacterial vaginosis. CONCLUSION: Bacterial vaginosis is frequently associated with the presence of a structured polymicrobial Gardnerella vaginalis biofilm attached to the endometrium. This may have major implications for our understanding of the pathogenesis of adverse pregnancy outcome in association with bacterial vaginosis.

  1. Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination.

    Directory of Open Access Journals (Sweden)

    Sourabh Dwivedi

    Full Text Available The formation of bacterial biofilm is a major challenge in clinical applications. The main aim of this study is to describe the synthesis, characterization and biocidal potential of zinc oxide nanoparticles (NPs against bacterial strain Pseudomonas aeruginosa. These nanoparticles were synthesized via soft chemical solution process in a very short time and their structural properties have been investigated in detail by using X-ray diffraction and transmission electron microscopy measurements. In this work, the potential of synthesized ZnO-NPs (∼ 10-15 nm has been assessed in-vitro inhibition of bacteria and the formation of their biofilms was observed using the tissue culture plate assays. The crystal violet staining on biofilm formation and its optical density revealed the effect on biofilm inhibition. The NPs at a concentration of 100 µg/mL significantly inhibited the growth of bacteria and biofilm formation. The biofilm inhibition by ZnO-NPs was also confirmed via bio-transmission electron microscopy (Bio-TEM. The Bio-TEM analysis of ZnO-NPs treated bacteria confirmed the deformation and damage of cells. The bacterial growth in presence of NPs concluded the bactericidal ability of NPs in a concentration dependent manner. It has been speculated that the antibacterial activity of NPs as a surface coating material, could be a feasible approach for controlling the pathogens. Additionally, the obtained bacterial solution data is also in agreement with the results from statistical analytical methods.

  2. Imaging of bacterial multicellular behaviour in biofilms in liquid by atmospheric scanning electron microscopy.

    Science.gov (United States)

    Sugimoto, Shinya; Okuda, Ken-Ichi; Miyakawa, Reina; Sato, Mari; Arita-Morioka, Ken-Ichi; Chiba, Akio; Yamanaka, Kunitoshi; Ogura, Teru; Mizunoe, Yoshimitsu; Sato, Chikara

    2016-01-01

    Biofilms are complex communities of microbes that attach to biotic or abiotic surfaces causing chronic infectious diseases. Within a biofilm, microbes are embedded in a self-produced soft extracellular matrix (ECM), which protects them from the host immune system and antibiotics. The nanoscale visualisation of delicate biofilms in liquid is challenging. Here, we develop atmospheric scanning electron microscopy (ASEM) to visualise Gram-positive and -negative bacterial biofilms immersed in aqueous solution. Biofilms cultured on electron-transparent film were directly imaged from below using the inverted SEM, allowing the formation of the region near the substrate to be studied at high resolution. We visualised intercellular nanostructures and the exocytosis of membrane vesicles, and linked the latter to the trafficking of cargos, including cytoplasmic proteins and the toxins hemolysin and coagulase. A thick dendritic nanotube network was observed between microbes, suggesting multicellular communication in biofilms. A universal immuno-labelling system was developed for biofilms and tested on various examples, including S. aureus biofilms. In the ECM, fine DNA and protein networks were visualised and the precise distribution of protein complexes was determined (e.g., straight curli, flagella, and excreted cytoplasmic molecular chaperones). Our observations provide structural insights into bacteria-substratum interactions, biofilm development and the internal microbe community. PMID:27180609

  3. Bacterial biofilm mechanical properties persist upon antibiotic treatment and survive cell death

    International Nuclear Information System (INIS)

    Bacteria living on surfaces form heterogeneous three-dimensional consortia known as biofilms, where they exhibit many specific properties one of which is an increased tolerance to antibiotics. Biofilms are maintained by a polymeric network and display physical properties similar to that of complex fluids. In this work, we address the question of the impact of antibiotic treatment on the physical properties of biofilms based on recently developed tools enabling the in situ mapping of biofilm local mechanical properties at the micron scale. This approach takes into account the material heterogeneity and reveals the spatial distribution of all the small changes that may occur in the structure. With an Escherichia coli biofilm, we demonstrate using in situ fluorescent labeling that the two antibiotics ofloxacin and ticarcillin—targeting DNA replication and membrane assembly, respectively—induced no detectable alteration of the biofilm mechanical properties while they killed the vast majority of the cells. In parallel, we show that a proteolytic enzyme that cleaves extracellular proteins into short peptides, but does not alter bacterial viability in the biofilm, clearly affects the mechanical properties of the biofilm structure, inducing a significant increase of the material compliance. We conclude that conventional biofilm control strategy relying on the use of biocides targeting cells is missing a key target since biofilm structural integrity is preserved. This is expected to efficiently promote biofilm resilience, especially in the presence of persister cells. In contrast, the targeting of polymer network cross-links—among which extracellular proteins emerge as major players—offers a promising route for the development of rational multi-target strategies to fight against biofilms. (paper)

  4. Impact of biofilm on bacterial transport and deposition in porous media.

    Science.gov (United States)

    Bozorg, Ali; Gates, Ian D; Sen, Arindom

    2015-12-01

    Laboratory scale experiments were conducted to obtain insights into factors that influence bacterial transport and deposition in porous media. According to colloidal filtration theory, the removal efficiency of a filter medium is characterized by two main factors: collision efficiency and sticking efficiency. In the case of bacterial transport in porous media, bacteria attached to a solid surface can establish a thin layer of biofilm by excreting extracellular polymeric substances which can significantly influence both of these factors in a porous medium, and thus, affect the overall removal efficiency of the filter medium. However, such polymeric interactions in bacterial adhesion are not well understood and a method to calculate polymeric interactions is not yet available. Here, to determine how the migration of bacteria flowing within a porous medium is affected by the presence of surface-associated extracellular polymeric substances previously produced and deposited by the same bacterial species, a commonly used colloidal filtration model was applied to study transport and deposition of Pseudomonas fluorescens in small-scale columns packed with clean and biofilm coated glass beads. Bacterial recoveries were monitored in column effluents and used to quantify biofilm interactions and sticking efficiencies of the biofilm coated packed-beds. The results indicated that, under identical hydraulic conditions, the sticking efficiencies in packed-beds were improved consistently by 36% when covered by biofilm. PMID:26583740

  5. Impact of biofilm on bacterial transport and deposition in porous media

    Science.gov (United States)

    Bozorg, Ali; Gates, Ian D.; Sen, Arindom

    2015-12-01

    Laboratory scale experiments were conducted to obtain insights into factors that influence bacterial transport and deposition in porous media. According to colloidal filtration theory, the removal efficiency of a filter medium is characterized by two main factors: collision efficiency and sticking efficiency. In the case of bacterial transport in porous media, bacteria attached to a solid surface can establish a thin layer of biofilm by excreting extracellular polymeric substances which can significantly influence both of these factors in a porous medium, and thus, affect the overall removal efficiency of the filter medium. However, such polymeric interactions in bacterial adhesion are not well understood and a method to calculate polymeric interactions is not yet available. Here, to determine how the migration of bacteria flowing within a porous medium is affected by the presence of surface-associated extracellular polymeric substances previously produced and deposited by the same bacterial species, a commonly used colloidal filtration model was applied to study transport and deposition of Pseudomonas fluorescens in small-scale columns packed with clean and biofilm coated glass beads. Bacterial recoveries were monitored in column effluents and used to quantify biofilm interactions and sticking efficiencies of the biofilm coated packed-beds. The results indicated that, under identical hydraulic conditions, the sticking efficiencies in packed-beds were improved consistently by 36% when covered by biofilm.

  6. Direct Electrical Current Reduces Bacterial and Yeast Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Maria Ruiz-Ruigomez

    2016-01-01

    Full Text Available New strategies are needed for prevention of biofilm formation. We have previously shown that 24 hr of 2,000 µA of direct current (DC reduces Staphylococcus epidermidis biofilm formation in vitro. Herein, we examined the effect of a lower amount of DC exposure on S. epidermidis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Propionibacterium acnes, and Candida albicans biofilm formation. 12 hr of 500 µA DC decreased S. epidermidis, S. aureus, E. coli, and P. aeruginosa biofilm formation on Teflon discs by 2, 1, 1, and 2 log10 cfu/cm2, respectively (p<0.05. Reductions in S. epidermidis, S. aureus, and E. coli biofilm formation were observed with as few as 12 hr of 200 µA DC (2, 2 and 0.4 log10 cfu/cm2, resp.; a 1 log10 cfu/cm2 reduction in P. aeruginosa biofilm formation was observed at 36 hr. 24 hr of 500 µA DC decreased C. albicans biofilm formation on Teflon discs by 2 log10 cfu/cm2. No reduction in P. acnes biofilm formation was observed. 1 and 2 log10 cfu/cm2 reductions in E. coli and S. epidermidis biofilm formation on titanium discs, respectively, were observed with 12 hr of exposure to 500 µA. Electrical current is a potential strategy to reduce biofilm formation on medical biomaterials.

  7. Bacterial adhesion and biofilm formation on surfaces of variable roughness and hydrophobicity

    DEFF Research Database (Denmark)

    Tang, Lone; Pillai, Saju; Iversen, Anders;

    L.Biofilm formation on surfaces in food production and processing can deteriorate the quality of food products and be a hazard to consumers. The food industry currently uses a number of approaches to either remove biofilm or prevent its formation. Due to the inherent resilience of bacteria...... in biofilm, a particularly attractive approach is the modification of surfaces with the aim to impede the first step in biofilm formation, namely bacterial adhesion. Surface properties such as hydrophobicity, roughness and predisposition for fouling by protein are recognised as important in bacterial......) and compare it to two nanostructured sol-gel coatings with variable hydrophobicity. Test surfaces were characterised with respect to surface roughness by atomic force microscopy, surface hydrophobicity by contact angle (CA) measurements, protein adsorption by quartz crystal microbalance analyses...

  8. Selective labelling and eradication of antibiotic-tolerant bacterial populations in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Chua, Song Lin; Yam, Joey Kuok Hoong; Hao, Piliang;

    2016-01-01

    acids (pulsed-SILAC), to quantify newly expressed proteins in colistin-tolerant subpopulations of Pseudomonas aeruginosa biofilms (colistin is a 'last-resort' antibiotic against multidrug-resistant Gram-negative pathogens). Migration is essential for the formation of colistin-tolerant biofilm...... subpopulations, with colistin-tolerant cells using type IV pili to migrate onto the top of the colistin-killed biofilm. The colistin-tolerant cells employ quorum sensing (QS) to initiate the formation of new colistin-tolerant subpopulations, highlighting multicellular behaviour in antibiotic tolerance...... development. The macrolide erythromycin, which has been previously shown to inhibit the motility and QS of P. aeruginosa, boosts biofilm eradication by colistin. Our work provides insights on the mechanisms underlying the formation of antibiotic-tolerant populations in bacterial biofilms and indicates...

  9. Effects of temperature on the morphological, polymeric, and mechanical properties of Staphylococcus epidermidis bacterial biofilms.

    Science.gov (United States)

    Pavlovsky, Leonid; Sturtevant, Rachael A; Younger, John G; Solomon, Michael J

    2015-02-17

    Changes in temperature were found to affect the morphology, cell viability, and mechanical properties of Staphylococcus epidermidis bacterial biofilms. S. epidermidis biofilms are commonly associated with hospital-acquired medical device infections. We observed the effect of heat treatment on three physical properties of the biofilms: the bacterial cell morphology and viability, the polymeric properties of the extracellular polymeric substance (EPS), and the rheological properties of the bulk biofilm. After application of a 1 h heat treatment at 45 °C, cell reproduction had ceased, and at 60 °C, cell viability was significantly reduced. Size exclusion chromatography was used to fractionate the extracellular polymeric substance (EPS) based on size. Chemical analysis of each fraction showed that the relative concentrations of the polysaccharide, protein, and DNA components of the EPS were unchanged by the heat treatment at 45 and 60 °C. The results suggest that the EPS molecular constituents are not significantly degraded by the temperature treatment. However, some aggregation on the scale of 100 nm was found by dynamic light scattering at 60 °C. Finally, relative to control biofilms maintained at 37 °C, we observed an order of magnitude reduction in the biofilm yield stress after 60 °C temperature treatment. No such difference was found for treatment at 45 °C. From these results, we conclude that the yield stress of bacterial biofilms is temperature-sensitive and that this sensitivity is correlated with cell viability. The observed significant decrease in yield stress with temperature suggests a means to weaken the mechanical integrity of S. epidermidis biofilms with applications in areas such as the treatment of biofilm-infected medical devices. PMID:25602470

  10. Distinctive colonization of Bacillus sp. bacteria and the influence of the bacterial biofilm on electrochemical behaviors of aluminum coatings.

    Science.gov (United States)

    Abdoli, Leila; Suo, Xinkun; Li, Hua

    2016-09-01

    Formation of biofilm is usually essential for the development of biofouling and crucially impacts the corrosion of marine structures. Here we report the attachment behaviors of Bacillus sp. bacteria and subsequent formation of bacterial biofilm on stainless steel and thermal sprayed aluminum coatings in artificial seawater. The colonized bacteria accelerate the corrosion of the steel plates, and markedly enhance the anti-corrosion performances of the Al coatings in early growth stage of the bacterial biofilm. After 7days incubation, the biofilm formed on the steel is heterogeneous while exhibits homogeneous feature on the Al coating. Atomic force microscopy examination discloses inception of formation of local pitting on steel plates associated with significantly roughened surface. Electrochemical testing suggests that the impact of the bacterial biofilm on the corrosion behaviors of marine structures is not decided by the biofilm alone, it is instead attributed to synergistic influence by both the biofilm and physicochemical characteristics of the substratum materials. PMID:27289310

  11. Effects of Benzalkonium Chloride on Planktonic Growth and Biofilm Formation by Animal Bacterial Pathogens

    OpenAIRE

    Ebrahimi, Azizollah; Hemati, Majid; Shabanpour, Ziba; Habibian Dehkordi, Saeed; BAHADORAN, Shahab; Lotfalian, Sharareh; Khubani, Shahin

    2015-01-01

    Background: Resistance toward quaternary ammonium compounds (QACs) is widespread among a diverse range of microorganisms and is facilitated by several mechanisms such as biofilm formation. Objectives: In this study, the effects of benzalkonium chloride on planktonic growth and biofilm formation by some field isolates of animal bacterial pathogens were investigated. Materials and Methods: Forty clinical isolates of Escherichia coli, Salmonella serotypes, Staphylococcus aureus and Streptococcus...

  12. Using bacterial bioluminescence to evaluate the impact of biofilm on porous media hydraulic properties.

    Science.gov (United States)

    Bozorg, Ali; Gates, Ian D; Sen, Arindom

    2015-02-01

    Biofilm formation in natural and engineered porous systems can significantly impact hydrodynamics by reducing porosity and permeability. To better understand and characterize how biofilms influence hydrodynamic properties in porous systems, the genetically engineered bioluminescent bacterial strain Pseudomonas fluorescens HK44 was used to quantify microbial population characteristics and biofilm properties in a translucent porous medium. Power law relationships were found to exist between bacterial bioluminescence and cell density, fraction of void space occupied by biofilm (i.e. biofilm saturation), and hydraulic conductivity. The simultaneous evaluation of biofilm saturation and porous medium hydraulic conductivity in real time using a non-destructive approach enabled the construction of relative hydraulic conductivity curves. Such information can facilitate simulation studies related to biological activity in porous structures, and support the development of new models to describe the dynamic behavior of biofilm and fluid flow in porous media. The bioluminescence based approach described here will allow for improved understanding and control of industrially relevant processes such as biofiltration and bioremediation. PMID:25479429

  13. Wild Mushroom Extracts as Inhibitors of Bacterial Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Maria José Alves

    2014-08-01

    Full Text Available Microorganisms can colonize a wide variety of medical devices, putting patients in risk for local and systemic infectious complications, including local-site infections, catheter-related bloodstream infections, and endocarditis. These microorganisms are able to grow adhered to almost every surface, forming architecturally complex communities termed biofilms. The use of natural products has been extremely successful in the discovery of new medicine, and mushrooms could be a source of natural antimicrobials. The present study reports the capacity of wild mushroom extracts to inhibit in vitro biofilm formation by multi-resistant bacteria. Four Gram-negative bacteria biofilm producers (Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, and Acinetobacter baumannii isolated from urine were used to verify the activity of Russula delica, Fistulina hepatica, Mycena rosea, Leucopaxilus giganteus, and Lepista nuda extracts. The results obtained showed that all tested mushroom extracts presented some extent of inhibition of biofilm production. Pseudomonas aeruginosa was the microorganism with the highest capacity of biofilm production, being also the most susceptible to the extracts inhibition capacity (equal or higher than 50%. Among the five tested extracts against E. coli, Leucopaxillus giganteus (47.8% and Mycenas rosea (44.8% presented the highest inhibition of biofilm formation. The extracts exhibiting the highest inhibitory effect upon P. mirabilis biofilm formation were Sarcodon imbricatus (45.4% and Russula delica (53.1%. Acinetobacter baumannii was the microorganism with the lowest susceptibility to mushroom extracts inhibitory effect on biofilm production (highest inhibition—almost 29%, by Russula delica extract. This is a pioneer study since, as far as we know, there are no reports on the inhibition of biofilm production by the studied mushroom extracts and in particular against multi-resistant clinical isolates; nevertheless, other

  14. Identification of individual biofilm-forming bacterial cells using Raman tweezers

    Science.gov (United States)

    Samek, Ota; Bernatová, Silvie; Ježek, Jan; Šiler, Martin; Šerý, Mojmir; Krzyžánek, Vladislav; Hrubanová, Kamila; Zemánek, Pavel; Holá, Veronika; Růžička, Filip

    2015-05-01

    A method for in vitro identification of individual bacterial cells is presented. The method is based on a combination of optical tweezers for spatial trapping of individual bacterial cells and Raman microspectroscopy for acquisition of spectral "Raman fingerprints" obtained from the trapped cell. Here, Raman spectra were taken from the biofilm-forming cells without the influence of an extracellular matrix and were compared with biofilm-negative cells. Results of principal component analyses of Raman spectra enabled us to distinguish between the two strains of Staphylococcus epidermidis. Thus, we propose that Raman tweezers can become the technique of choice for a clearer understanding of the processes involved in bacterial biofilms which constitute a highly privileged way of life for bacteria, protected from the external environment.

  15. Terrestrial Runoff Controls the Bacterial Community Composition of Biofilms along a Water Quality Gradient in the Great Barrier Reef

    OpenAIRE

    Witt, Verena; Wild, Christian; Uthicke, Sven

    2012-01-01

    16S rRNA gene molecular analysis elucidated the spatiotemporal distribution of bacterial biofilm communities along a water quality gradient. Multivariate statistics indicated that terrestrial runoff, in particular dissolved organic carbon and chlorophyll a concentrations, induced shifts of specific bacterial communities between locations and seasons, suggesting microbial biofilms could be suitable bioindicators for water quality.

  16. Chlorhexidine Digluconate Effects on Planktonic Growth and Biofilm Formation in Some Field Isolates of Animal Bacterial Pathogens

    OpenAIRE

    Ebrahimi, Azizollah; Hemati, Majid; Habibian Dehkordi, Saeed; Bahadoran, Shahab; Khoshnood, Sheida; Khubani, Shahin; Dokht Faraj, Mahdi; Hakimi Alni, Reza

    2014-01-01

    Background: To study chlorhexidine digluconate disinfectant effects on planktonic growth and biofilm formation in some bacterial field isolates from animals. Objectives: The current study investigated chlorhexidine digluconate effects on planktonic growth and biofilm formation in some field isolates of veterinary bacterial pathogens. Materials and Methods: Forty clinical isolates of Escherichia coli, Salmonella serotypes, Staphylococcus. aureus and Streptococcus agalactiae (10 isolates for ea...

  17. Distribution of bacterial growth activity in flow-chamber biofilms

    DEFF Research Database (Denmark)

    Sternberg, Claus; Christensen, Bjarke B.; Johansen, Tove; Nielsen, Alex Toftgaard; Andersen, Jens Bo; Givskov, Michael Christian; Molin, Søren

    1999-01-01

    community. With the use of these reporter tools, it is demonstrated that individual cells of a toluene-degrading P. putida strain growing in a benzyl alcohol-supplemented biofilm have different levels of growth activity which develop as the biofilm gets older. Cells that eventually grow very slowly or not......In microbial communities such as those found in biofilms, individual organisms most often display heterogeneous behavior with respect to their metabolic activity, growth status, gene expression pattern, etc. In that context, a novel reporter system for monitoring of cellular growth activity has...... at all may be stimulated to restart growth if provided with a more easily metabolizable carbon source. Thus, the dynamics of biofilm growth activity has been tracked to the level of individual cells, cell clusters, and microcolonies....

  18. Nanoparticle-Encapsulated Chlorhexidine against Oral Bacterial Biofilms

    OpenAIRE

    Seneviratne, Chaminda Jayampath; Leung, Ken Cham-Fai; Wong, Chi-Hin; Lee, Siu-Fung; Li, Xuan; Leung, Ping Chung; LAU, CLARA BIK SAN; Wat, Elaine; Jin, Lijian

    2014-01-01

    Background Chlorhexidine (CHX) is a widely used antimicrobial agent in dentistry. Herein, we report the synthesis of a novel mesoporous silica nanoparticle-encapsulated pure CHX (Nano-CHX), and its mechanical profile and antimicrobial properties against oral biofilms. Methodology/Principal Findings The release of CHX from the Nano-CHX was characterized by UV/visible absorption spectroscopy. The antimicrobial properties of Nano-CHX were evaluated in both planktonic and biofilm modes of represe...

  19. Evaluation of leguminous lectins activities against bacterial biofilm formation

    OpenAIRE

    Carneiro, Victor Alves; Cavalcante, Theodora Thays Arruda; Teixeira, Edson Holanda; Cavada, Benildo Sousa; Oliveira, Rosário; Henriques, Mariana; Pereira, Maria Olívia

    2010-01-01

    Biofilms are composed by microbial cells that are irreversibly associated with a surface and enclosed in a matrix of polymeric material. Lectins are sugar binding proteins of non immune origin that agglutinate cells and ⁄ or precipitate glycoconjugate molecules. Due to their capacity to bind and recognize specific carbohydrates, lectins can be a potent tool in biofilm studies. The search for potential phytochemicals as anti-biofilm agents has become an active area of research, and these protei...

  20. Microbiology of equine wounds and evidence of bacterial biofilms

    OpenAIRE

    Westgate, S.J.; Percival, S. L.; Knottenbelt, D.C.; Clegg, P. D.; Cochrane, C.A.

    2011-01-01

    Abstract Horse wounds have a high risk of becoming infected due to their environment. Infected wounds harbour diverse populations of microorganisms, however in some cases these microorganisms can be difficult to identify and fail to respond to antibiotic treatment, resulting in chronic non-healing wounds. In human wounds this has been attributed to the ability of bacteria to survive in a biofilm phenotypic state. Biofilms are known to delay wound healing, principally due to their r...

  1. Importance of Candida-bacterial polymicrobial biofilms in disease

    OpenAIRE

    Harriott, Melphine M.; Noverr, Mairi C.

    2011-01-01

    Candida albicans is the most prevalent human fungal pathogen, with an ability to inhabit diverse host niches and cause disease in both immunocompetent and immunocompromised individuals. C. albicans also readily forms biofilms on indwelling medical devices and mucosal tissues, which serve as an infectious reservoir that is difficult to eradicate, and can lead to lethal systemic infections. Biofilm formation occurs within a complex milieu of host factors and other members of the human microbiot...

  2. Disassembling bacterial extracellular matrix with DNase-coated nanoparticles to enhance antibiotic delivery in biofilm infections.

    Science.gov (United States)

    Baelo, Aida; Levato, Riccardo; Julián, Esther; Crespo, Anna; Astola, José; Gavaldà, Joan; Engel, Elisabeth; Mateos-Timoneda, Miguel Angel; Torrents, Eduard

    2015-07-10

    Infections caused by biofilm-forming bacteria are a major threat to hospitalized patients and the main cause of chronic obstructive pulmonary disease and cystic fibrosis. There is an urgent necessity for novel therapeutic approaches, since current antibiotic delivery fails to eliminate biofilm-protected bacteria. In this study, ciprofloxacin-loaded poly(lactic-co-glycolic acid) nanoparticles, which were functionalized with DNase I, were fabricated using a green-solvent based method and their antibiofilm activity was assessed against Pseudomonas aeruginosa biofilms. Such nanoparticles constitute a paradigm shift in biofilm treatment, since, besides releasing ciprofloxacin in a controlled fashion, they are able to target and disassemble the biofilm by degrading the extracellular DNA that stabilize the biofilm matrix. These carriers were compared with free-soluble ciprofloxacin, and ciprofloxacin encapsulated in untreated and poly(lysine)-coated nanoparticles. DNase I-activated nanoparticles were not only able to prevent biofilm formation from planktonic bacteria, but they also successfully reduced established biofilm mass, size and living cell density, as observed in a dynamic environment in a flow cell biofilm assay. Moreover, repeated administration over three days of DNase I-coated nanoparticles encapsulating ciprofloxacin was able to reduce by 95% and then eradicate more than 99.8% of established biofilm, outperforming all the other nanoparticle formulations and the free-drug tested in this study. These promising results, together with minimal cytotoxicity as tested on J774 macrophages, allow obtaining novel antimicrobial nanoparticles, as well as provide clues to design the next generation of drug delivery devices to treat persistent bacterial infections. PMID:25913364

  3. Control of bacterial biofilm growth on surfaces by nanostructural mechanics and geometry

    Science.gov (United States)

    Epstein, A. K.; Hochbaum, A. I.; Kim, Philseok; Aizenberg, J.

    2011-12-01

    Surface-associated communities of bacteria, called biofilms, pervade natural and anthropogenic environments. Mature biofilms are resistant to a wide range of antimicrobial treatments and therefore pose persistent pathogenic threats. The use of surface chemistry to inhibit biofilm growth has been found to only transiently affect initial attachment. In this work, we investigate the tunable effects of physical surface properties, including high-aspect-ratio (HAR) surface nanostructure arrays recently reported to induce long-range spontaneous spatial patterning of bacteria on the surface. The functional parameters and length scale regimes that control such artificial patterning for the rod-shaped pathogenic species Pseudomonas aeruginosa are elucidated through a combinatorial approach. We further report a crossover regime of biofilm growth on a HAR nanostructured surface versus the nanostructure effective stiffness. When the 'softness' of the hair-like nanoarray is increased beyond a threshold value, biofilm growth is inhibited as compared to a flat control surface. This result is consistent with the mechanoselective adhesion of bacteria to surfaces. Therefore by combining nanoarray-induced bacterial patterning and modulating the effective stiffness of the nanoarray—thus mimicking an extremely compliant flat surface—bacterial mechanoselective adhesion can be exploited to control and inhibit biofilm growth.

  4. Control of bacterial biofilm growth on surfaces by nanostructural mechanics and geometry

    International Nuclear Information System (INIS)

    Surface-associated communities of bacteria, called biofilms, pervade natural and anthropogenic environments. Mature biofilms are resistant to a wide range of antimicrobial treatments and therefore pose persistent pathogenic threats. The use of surface chemistry to inhibit biofilm growth has been found to only transiently affect initial attachment. In this work, we investigate the tunable effects of physical surface properties, including high-aspect-ratio (HAR) surface nanostructure arrays recently reported to induce long-range spontaneous spatial patterning of bacteria on the surface. The functional parameters and length scale regimes that control such artificial patterning for the rod-shaped pathogenic species Pseudomonas aeruginosa are elucidated through a combinatorial approach. We further report a crossover regime of biofilm growth on a HAR nanostructured surface versus the nanostructure effective stiffness. When the 'softness' of the hair-like nanoarray is increased beyond a threshold value, biofilm growth is inhibited as compared to a flat control surface. This result is consistent with the mechanoselective adhesion of bacteria to surfaces. Therefore by combining nanoarray-induced bacterial patterning and modulating the effective stiffness of the nanoarray—thus mimicking an extremely compliant flat surface—bacterial mechanoselective adhesion can be exploited to control and inhibit biofilm growth.

  5. Modeling bacterial attachment to surfaces as an early stage of biofilm development.

    Science.gov (United States)

    El Moustaid, Fadoua; Eladdadi, Amina; Uys, Lafras

    2013-06-01

    Biofilms are present in all natural, medical and industrial surroundings where bacteria live. Biofilm formation is a key factor in the growth and transport of both beneficial and harmful bacteria. While much is known about the later stages of biofilm formation, less is known about its initiation which is an important first step in the biofilm formation. In this paper, we develop a non-linear system of partial differential equations of Keller-Segel type model in one-dimensional space, which couples the dynamics of bacterial movement to that of the sensing molecules. In this case, bacteria perform a biased random walk towards the sensing molecules. We derive the boundary conditions of the adhesion of bacteria to a surface using zero-Dirichlet boundary conditions, while the equation describing sensing molecules at the interface needed particular conditions to be set. The numerical results show the profile of bacteria within the space and the time evolution of the density within the free-space and on the surface. Testing different parameter values indicate that significant amount of sensing molecules present on the surface leads to a faster bacterial movement toward the surface which is the first step of biofilm initiation. Our work gives rise to results that agree with the biological description of the early stages of biofilm formation. PMID:23906151

  6. Effect of bacterial interference on biofilm development by Legionella pneumophila.

    Science.gov (United States)

    Guerrieri, Elisa; Bondi, Moreno; Sabia, Carla; de Niederhäusern, Simona; Borella, Paola; Messi, Patrizia

    2008-12-01

    In the ecology of Legionella pneumophila a crucial role may be played by its relationship with the natural flora; thus we investigated the interactions between Legionella and other aquatic bacteria, particularly within biofilms. Among 80 aquatic bacteria screened for the production of bacteriocin-like substances (BLSs), 66.2% of them were active against L. pneumophila. The possible effect of some of these aquatic bacteria on the development and stability of L. pneumophila biofilms was studied. Pseudomonas fluorescens, the best BLS producer, showed the greatest negative effect on biofilm formation and strongly enhanced the detachment of Legionella. Pseudomonas aeruginosa, Burkholderia cepacia, Pseudomonas putida, Aeromonas hydrophila, and Stenotrophomonas maltophilia, although producing BLSs at different levels, were less active in the biofilm experiments. Acinetobacter lwoffii did not produce any antagonistic compound and was the only one able to strongly enhance L. pneumophila biofilm. Our results highlight that BLS production may contribute to determining the fate of L. pneumophila within ecological niches. The interactions observed in this study are important features of L. pneumophila ecology, which knowledge may lead to more effective measures to control the persistence of the germ in the environment. PMID:18769851

  7. Gardnerella vaginalis outcompetes 29 other bacterial species isolated from patients with bacterial vaginosis, using in an in vitro biofilm formation model.

    Science.gov (United States)

    Alves, Patrícia; Castro, Joana; Sousa, Cármen; Cereija, Tatiana B; Cerca, Nuno

    2014-08-15

    Despite the worldwide prevalence of bacterial vaginosis (BV), its etiology is still unknown. Although BV has been associated with the presence of biofilm, the ability of BV-associated bacteria to form biofilms is still largely unknown. Here, we isolated 30 BV-associated species and characterized their virulence, using an in vitro biofilm formation model. Our data suggests that Gardnerella vaginalis had the highest virulence potential, as defined by higher initial adhesion and cytotoxicity of epithelial cells, as well as the greater propensity to form a biofilm. Interestingly, we also demonstrated that most of the BV-associated bacteria had a tendency to grow as biofilms. PMID:24596283

  8. Spatially Heterogeneous Biofilm Simulations using an Immersed Boundary Method with Lagrangian Nodes Defined by Bacterial Locations

    CERN Document Server

    Hammond, Jason F; Younger, John G; Solomon, Michael J; Bortz, David M

    2013-01-01

    In this work we consider how surface-adherent bacterial biofilm communities respond in flowing systems. We simulate the fluid-structure interaction and separation process using the immersed boundary method. In these simulations we model and simulate different density and viscosity values of the biofilm than that of the surrounding fluid. The simulation also includes breakable springs connecting the bacteria in the biofilm. This allows the inclusion of erosion and detachment into the simulation. We use the incompressible Navier-Stokes (N-S) equations to describe the motion of the flowing fluid. We discretize the fluid equations using finite differences and use a geometric multigrid method to solve the resulting equations at each time step. The use of multigrid is necessary because of the dramatically different densities and viscosities between the biofilm and the surrounding fluid. We investigate and simulate the model in both two and three dimensions. Our method differs from previous attempts of using IBM for...

  9. Surface-Mediated Release of a Small-Molecule Modulator of Bacterial Biofilm Formation: A Non-Bactericidal Approach to Inhibiting Biofilm Formation in Pseudomonas aeruginosa

    OpenAIRE

    Broderick, Adam H.; Breitbach, Anthony S.; Frei, Reto; Blackwell, Helen E.; Lynn, David M.

    2013-01-01

    We report an approach to preventing bacterial biofilm formation that is based on the surface-mediated release of 5,6-dimethyl-2-aminobenzimidazole (DMABI), a potent and non-bactericidal small-molecule inhibitor of bacterial biofilm growth. Our results demonstrate that DMABI can be encapsulated in thin films of a model biocompatible polymer [poly(lactide-co-glycolide), PLG] and be released in quantities that inhibit the formation of Pseudomonas aeruginosa biofilms by up to 75–90% on surfaces t...

  10. Photodynamic therapy with water-soluble phtalocyanines against bacterial biofilms in teeth root canals

    Science.gov (United States)

    Gergova, Raina; Georgieva, Tzvetelina; Angelov, Ivan; Mantareva, Vanya; Valkanov, Serjoga; Mitov, Ivan; Dimitrov, Slavcho

    2012-06-01

    The study presents the PDT with metal phthalocyanines on biofilms grown in root canals of ten representatives of the Gram-positive and the Gram-negative bacterial species and a fungus Candida albicans which cause aqute teeth infections in root canals.. The extracted human single-root teeth infected for 48 h with microorganisms in conditions to form biofilms of the above pathogens were PDT treated. The stage of biofilm formation and PDT effect of the samples of the teeth were determined by the scaning electron microscopy and with standard microbial tests. The PDT treating procedure included 10 min incubation with the respected phthalocyanine and irradiated with 660 nm Diode laser for 10 min. The most strongly antibacterial activity was achieved with zinc(II) phthalocyanine (ZnPc) against Enterococcus faecalis, Staphylococcus aureus and Moraxella catarrhalis. The other Gram-negative bacteria and Candida albicans were 10-100 times more resistant than the Gram-positive species. The Gram-negative Moraxella catarrhalis and Acinetobacter baumannii were more sensitive than the enterobacteria, but eradication of Pseudomonas aeruginosa in biofilm was insignificant. The influence of the stage of biofilm formation and the initial conditions (bacterial density, photosensitizer concentration and energy fluence of radiation) to the obtained level of inactivation of biofilms was investigated. The PDT with ZnPc photosensitizers show a powerful antimicrobial activity against the most frequent pathogens in endodontic infections and this method for inactivation of pathogens may be used with sucsses for treatment of the bacterial biofilms in the root canals.

  11. Prosthesis infections after orthopedic joint replacement: the possible role of bacterial biofilms

    Directory of Open Access Journals (Sweden)

    Zhijun Song

    2013-06-01

    Full Text Available Prosthesis-related infection is a serious complication for patients after orthopedic joint replacement, which is currently difficult to treat with antibiotic therapy. Consequently, in most cases, removal of the infected prosthesis is the only solution to cure the infection. It is, therefore, important to understand the comprehensive interaction between the microbiological situation and the host immune responses that lead to prosthesis infections. Evidence indicates that prosthesis infections are actually biofilm-correlated infections that are highly resistant to antibiotic treatment and the host immune responses. The authors reviewed the related literature in the context of their clinical experience, and discussed the possible etiology and mechanism leading to the infections, especially problems related to bacterial biofilm, and prophylaxis and treatment of infection, including both microbiological and surgical measures. Recent progress in research into bacterial biofilm and possible future treatment options of prosthesis-related infections are discussed.

  12. Presence of a polymicrobial endometrial biofilm in patients with bacterial vaginosis

    OpenAIRE

    Swidsinski, Alexander; Verstraelen, Hans; Loening-Baucke, Vera; Swidsinski, Sonja; Mendling, Werner; Halwani, Zaher

    2013-01-01

    Objective: To assess whether the bacterial vaginosis biofilm extends into the upper female genital tract. Study Design: Endometrial samples obtained during curettage and fallopian tube samples obtained during salpingectomy were collected. Endometrial and fallopian tube samples were analyzed for the presence of bacteria with fluorescence-in-situ-hybridisation (FISH) analysis with probes targeting bacterial vaginosis-associated and other bacteria. Results: A structured polymicrobial Gar...

  13. In vitro anti-biofilm and anti-bacterial activity of Junceella juncea for its biomedical application

    Institute of Scientific and Technical Information of China (English)

    P Kumar; S Senthamil Selvi; M Govindaraju

    2012-01-01

    Objective: To investigate the anti-biofilm and anti-bacterial activity of Junceella juncea (J. juncea) against biofilm forming pathogenic strains. Methods: Gorgonians were extracted with methanol and analysed with fourier transform infrared spectroscopy. Biofilm forming pathogens were identified by Congo red agar supplemented with sucrose. A quantitative spectrophotometric method was used to monitor in vitro biofilm reduction by microtitre plate assay. Anti-bacterial activity of methanolic gorgonian extract (MGE) was carried out by disc diffusion method followed by calculating the percentage of increase with crude methanol (CM). Results: The presence of active functional group was exemplified by FT-IR spectroscopy. Dry, black, crystalline colonies confirm the production of extracellular polymeric substances responsible for biofilm formation in Congo red agar. MGE exhibited potential anti-biofilm activity against all tested bacterial strains. The anti-bacterial activity of methanolic extract was comparably higher in Salmonella typhii followed by Escherichia coli, Vibrio cholerae and Shigella flexneri. The overall percentage of increase was higher by 50.2%to CM. Conclusions:To conclude, anti-biofilm and anti-bacterial efficacy of J. juncea is impressive over biofilm producing pathogens and are good source for novel anti-bacterial compounds.

  14. Desquamated epithelial cells covered with a polymicrobial biofilm typical for bacterial vaginosis are present in randomly selected cryopreserved donor semen.

    Science.gov (United States)

    Swidsinski, Alexander; Dörffel, Yvonne; Loening-Baucke, Vera; Mendling, Werner; Verstraelen, Hans; Dieterle, Stefan; Schilling, Johannes

    2010-08-01

    We tested whether the bacterial biofilm typical for bacterial vaginosis (BV) can be found on desquamated epithelial cells in cryopreserved donor semen. Bacteria were detected with FISH. Bacterial biofilm, covering the epithelial layer in vaginal biopsies of 20 women with BV, was evaluated on desquamated epithelial cells found in the urine of these same women and their male partners (N=20) and compared with the bacterial biofilm found on desquamated epithelial cells in randomly selected cryopreserved semen samples (N=20). Urine from 20 healthy women of laboratory and clinic personnel and urine from their partners were used as controls. Desquamated epithelial cells covered with a polymicrobial Gardnerella biofilm were identified in urine samples from all women with BV and 13 of their male partners and in none of the female controls and their partners. Gardnerella biofilm, typical for BV, was found in the semen of three of the 20 donors. Donor semen might be a vector for BV. PMID:20497224

  15. Establishment and Early Succession of Bacterial Communities in Monochloramine-Treated Drinking Water Biofilms

    Science.gov (United States)

    Monochloramine is increasingly used as a drinking water disinfectant because it forms lower levels of regulated disinfection by-products. While its use has been shown to increase nitrifying bacteria, little is known about the bacterial succession within biofilms in monochloramin...

  16. Candidate Targets for New Anti-Virulence Drugs: Selected Cases of Bacterial Adhesion and Biofilm Formation

    DEFF Research Database (Denmark)

    Klemm, Per; Hancock, Viktoria; Kvist, Malin;

    2007-01-01

    Management of bacterial infections is becoming increasingly difficult due to the rising frequency of strains that are resistant to many current antibiotics. New types of antibiotics are, therefore, urgently needed. Virulence factors or virulence-associated phenotypes such as adhesins and biofilm...

  17. Caffeinated soft drinks reduce bacterial prevalence in voice prosthetic biofilms

    NARCIS (Netherlands)

    Free, RH; Elving, GJ; Van der Mei, HC; Van Weissenbruch, R; Albers, FWJ; Busscher, HJ

    2000-01-01

    Laryngectomized patients use indwelling silicone rubber voice prostheses, placed in a surgically created fistula in between the trachea and the esophagus, for voice and speech rehabilitation. At the esophageal side, these voice prostheses rapidly become colonized by a thick biofilm consisting of a v

  18. BACTERIAL BIOFILM FORMATION UNDER MICROGRAVITY CONDITIONS. (R825503)

    Science.gov (United States)

    Although biofilm formation is widely documented on Earth, it has not been demonstrated in the absence of gravity. To explore this possibility, Pseudomonas aeruginosa, suspended in sterile buffer, was flown in a commercial payload on space shuttle flight STS-95. During earth or...

  19. STABILITY AND CHANGE IN ESTUARINE BIOFILM BACTERIAL COMMUNITY DIVERSITY

    Science.gov (United States)

    Biofilms develop on all surfaces in aquatic environments and are defined as matrix-enclosed microbial populations adherent to each other and/or surfaces (1, 31). A substantial part of the microbial activity in nature is associated with surfaces (12). Surface association (biofou...

  20. Influence of Biofilm Formation by Gardnerella vaginalis and Other Anaerobes on Bacterial Vaginosis.

    Science.gov (United States)

    Machado, António; Cerca, Nuno

    2015-12-15

    Bacterial vaginosis (BV) is the worldwide leading vaginal disorder among women of reproductive age. BV is characterized by the replacement of beneficial lactobacilli and the augmentation of anaerobic bacteria. Gardnerella vaginalis is a predominant bacterial species, but BV is also associated with other numerous anaerobes, such as Atopobium vaginae, Mobiluncus mulieris, Prevotella bivia, Fusobacterium nucleatum, and Peptoniphilus species. Currently, the role of G. vaginalis in the etiology of BV remains a matter of controversy. However, it is known that, in patients with BV, a biofilm is usually formed on the vaginal epithelium and that G. vaginalis is typically the predominant species. So, the current paradigm is that the establishment of a biofilm plays a key role in the pathogenesis of BV. This review provides background on the influence of biofilm formation by G. vaginalis and other anaerobes, from the time of their initial adhesion until biofilm formation, in the polymicrobial etiology of BV and discusses the commensal and synergic interactions established between them to understand the phenotypic shift of G. vaginalis biofilm formation to BV establishment. PMID:26080369

  1. Bacterial Cellulose Production by Gluconacetobacter sp. RKY5 in a Rotary Biofilm Contactor

    Science.gov (United States)

    Kim, Yong-Jun; Kim, Jin-Nam; Wee, Young-Jung; Park, Don-Hee; Ryu, Hwa-Won

    A rotary biofilm contactor (RBC) inoculated with Gluconacetobacter sp. RKY5 was used as a bioreactor for improved bacterial cellulose production. The optimal number of disk for bacterial cellulose production was found to be eight, at which bacterial cellulose and cell concentrations were 5.52 and 4.98 g/L. When the aeration rate was maintained at 1.25 vvm, bacterial cellulose and cell concentrations were maximized (5.67 and 5.25 g/L, respectively). The optimal rotation speed of impeller in RBC was 15 rpm. When the culture pH in RBC was not controlled during fermentation, the maximal amount of bacterial cellulose (5.53 g/L) and cells (4.91 g/L) was obtained. Under the optimized culture conditions, bacterial cellulose and cell concentrations in RBC reached to 6.17 and 5.58 g/L, respectively.

  2. Characterisation of bacterial/yeast biofilms by scanning electron microscopy

    Czech Academy of Sciences Publication Activity Database

    Hrubanová, Kamila; Růžička, F.; Nebesářová, J.; Klingauf, J.; Samek, Ota; Krzyžánek, Vladislav

    Manchester: The Royal Microscopical Society, 2012, s. 671-672. ISBN 978-0-9502463-5-2. [EMC 2012. European Microscopy Congress /15./. Manchester (US), 16.09.2012-21.09.2012] R&D Projects: GA MŠk EE.2.3.20.0103; GA ČR GAP205/11/1687 Institutional support: RVO:68081731 Keywords : biofilm * SEM * cryo-SEM Subject RIV: BH - Optics, Masers, Lasers

  3. The Effect of Antimicrobial Peptides on Bacterial Biofilms

    OpenAIRE

    Jacobsen, Andreas Skovgård

    2013-01-01

    The ongoing development of antibiotic resistant infections is a major obstacle in ensuring the future health and wellbeing. Even today, many people die from infections, which are caused by hospital-acquired multidrug resistant bacteria. This development predicts an imminent inadequacy of applicable antibiotics. Biofilms are bacteria that stick together, forming a community, which is embedded within a self-produced matrix. In urinary tract infections, this way of life is very common. The forma...

  4. Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress

    Directory of Open Access Journals (Sweden)

    Aisha Waheed Qurashi

    2012-09-01

    Full Text Available To compensate for stress imposed by salinity, biofilm formation and exopolysaccharide production are significant strategies of salt tolerant bacteria to assist metabolism. We hypothesized that two previously isolated salt-tolerant strains Halomonas variabilis (HT1 and Planococcus rifietoensis (RT4 have an ability to improve plant growth, These strains can form biofilm and accumulate exopolysacharides at increasing salt stress. These results showed that bacteria might be involved in developing microbial communities under salt stress and helpful in colonizing of bacterial strains to plant roots and soil particles. Eventually, it can add to the plant growth and soil structure. We investigated the comparative effect of exopolysacharide and biofilm formation in two bacterial strains Halomonas variabilis (HT1 and Planococcus rifietoensis (RT4 in response to varying salt stress. We found that biofilm formation and exopolysaccharide accumulation increased at higher salinity. To check the effect of bacterial inoculation on the plant (Cicer arietinum Var. CM-98 growth and soil aggregation, pot experiment was conducted by growing seedlings under salt stress. Inoculation of both strains increased plant growth at elevated salt stress. Weight of soil aggregates attached with roots and present in soil were added at higher salt concentrations compared to untreated controls. Soil aggregation was higher at plant roots under salinity. These results suggest the feasibility of using above strains in improving plant growth and soil fertility under salinity.

  5. Bacterial Adhesion Forces with Substratum Surfaces and the Susceptibility of Biofilms to Antibiotics

    OpenAIRE

    Muszanska, Agnieszka K.; Nejadnik, M. Reza; Chen, Yun; van den Heuvel, Edwin R; Busscher, Henk J.; van der Mei, Henny C; Norde, Willem

    2012-01-01

    Biofilms causing biomaterial-associated infection resist antibiotic treatment and usually necessitate the replacement of infected implants. Here we relate bacterial adhesion forces and the antibiotic susceptibility of biofilms on uncoated and polymer brush-coated silicone rubber. Nine strains of Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa adhered more weakly to brush-coated silicone rubber (−0.05 ± 0.03 to −0.51 ± 0.62 nN) than to uncoated silicone rubber (−1...

  6. Spatially resolved characterization of biogenic manganese oxideproduction within a bacterial biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Toner, Brandy; Fakra, Sirine; Villalobos, Mario; Warwick, Tony; Sposito, Garrison

    2004-10-01

    Pseudomonas putida strain MnB1, a biofilm forming bacteria, was used as a model for the study of bacterial Mn oxidation in freshwater and soil environments. The oxidation of Mn{sub (aq)}{sup +2} by P. putida was characterized by spatially and temporally resolving the oxidation state of Mn in the presence of a bacterial biofilm using scanning transmission x-ray microscopy (STXM) combined with near edge x-ray absorption fine structure (NEXAFS) spectroscopy at the Mn-L{sub 2,3} absorption edges. Subsamples were collected from growth flasks containing 0.1 mM and 1 mM total Mn at 16, 24, 36 and 48 hours after inoculation. Immediately after collection, the unprocessed hydrated subsamples were imaged at 40 nm resolution. Manganese NEXAFS spectra were extracted from x-ray energy sequences of STXM images (stacks) and fit with linear combinations of well characterized reference spectra to obtain quantitative relative abundances of Mn(II), Mn(III) and Mn(IV). Careful consideration was given to uncertainty in the normalization of the reference spectra, choice of reference compounds, and chemical changes due to radiation damage. The STXM results confirm that Mn{sub (aq)}{sup +2} was removed from solution by P. putida and was concentrated as Mn(III) and Mn(IV) immediately adjacent to the bacterial cells. The Mn precipitates were completely enveloped by bacterial biofilm material. The distribution of Mn oxidation states was spatially heterogeneous within and between the clusters of bacterial cells. Scanning transmission x-ray microscopy is a promising tool to advance the study of hydrated interfaces between minerals and bacteria, particularly in cases where the structure of bacterial biofilms needs to be maintained.

  7. Enhanced Biofilm Formation and Increased Resistance to Antimicrobial Agents and Bacterial Invasion Are Caused by Synergistic Interactions in Multispecies Biofilms†

    OpenAIRE

    Burmølle, Mette; Webb, Jeremy S; Rao, Dhana; Hansen, Lars H.; Sørensen, Søren J.; Kjelleberg, Staffan

    2006-01-01

    Most biofilms in their natural environments are likely to consist of consortia of species that influence each other in synergistic and antagonistic manners. However, few reports specifically address interactions within multispecies biofilms. In this study, 17 epiphytic bacterial strains, isolated from the surface of the marine alga Ulva australis, were screened for synergistic interactions within biofilms when present together in different combinations. Four isolates, Microbacterium phyllosph...

  8. Gardnerella vaginalis outcompetes 29 other bacterial species isolated from BV patients in an in vitro biofilm formation model

    OpenAIRE

    Alves, P.; Castro, J.; Sousa, Cármen; Cereija, Tatiana Barros Reis; Cerca, Nuno

    2014-01-01

    Despite the worldwide prevalence of bacterial vaginosis (BV), its etiology is still unknown. Although BV has been associated with the presence of biofilm, the ability of BV-associated bacteria to form biofilms is still largely unknown. Here, we isolated 30 BV-associated species and characterized their virulence, using an in vitro biofilm formation model. Our data suggests that Gardnerella vaginalis had the highest virulence potential, as defined by higher initial adhesion and cytotoxicity of ...

  9. 40 CFR 262.213 - Laboratory clean-outs.

    Science.gov (United States)

    2010-07-01

    ... product (listed in 40 CFR part 261, subpart D or exhibiting one or more characteristics in 40 CFR part 261... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Laboratory clean-outs. 262.213 Section....213 Laboratory clean-outs. (a) One time per 12 month period for each laboratory, an eligible...

  10. Bottom-up and top-down solid-state NMR approaches for bacterial biofilm matrix composition

    Science.gov (United States)

    Cegelski, Lynette

    2015-04-01

    The genomics and proteomics revolutions have been enormously successful in providing crucial "parts lists" for biological systems. Yet, formidable challenges exist in generating complete descriptions of how the parts function and assemble into macromolecular complexes and whole-cell assemblies. Bacterial biofilms are complex multicellular bacterial communities protected by a slime-like extracellular matrix that confers protection to environmental stress and enhances resistance to antibiotics and host defenses. As a non-crystalline, insoluble, heterogeneous assembly, the biofilm extracellular matrix poses a challenge to compositional analysis by conventional methods. In this perspective, bottom-up and top-down solid-state NMR approaches are described for defining chemical composition in complex macrosystems. The "sum-of-the-parts" bottom-up approach was introduced to examine the amyloid-integrated biofilms formed by Escherichia coli and permitted the first determination of the composition of the intact extracellular matrix from a bacterial biofilm. An alternative top-down approach was developed to define composition in Vibrio cholerae biofilms and relied on an extensive panel of NMR measurements to tease out specific carbon pools from a single sample of the intact extracellular matrix. These two approaches are widely applicable to other heterogeneous assemblies. For bacterial biofilms, quantitative parameters of matrix composition are needed to understand how biofilms are assembled, to improve the development of biofilm inhibitors, and to dissect inhibitor modes of action. Solid-state NMR approaches will also be invaluable in obtaining parameters of matrix architecture.

  11. Biofilms

    OpenAIRE

    López, Daniel; Vlamakis, Hera; Kolter, Roberto

    2010-01-01

    The ability to form biofilms is a universal attribute of bacteria. Biofilms are multicellular communities held together by a self-produced extracellular matrix. The mechanisms that different bacteria employ to form biofilms vary, frequently depending on environmental conditions and specific strain attributes. In this review, we emphasize four well-studied model systems to give an overview of how several organisms form biofilms: Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and ...

  12. The Role of Bacterial Biofilms in Chronic Infections

    OpenAIRE

    Do, Danh Cong

    2014-01-01

    Biofilm is the virulence factor that is responsible for chronic infection in diseases such as Cystic Fibrosis (CF) and chronic wounds. In this thesis, we examine the role of AlgX, a required protein for alginate biosynthesis in P. aeruginosa. We show that the absence of AlgX resulted in the loss of mucoidy and in silico studies demonstrated that AlgX binds alginate. Alanine mutations demonstrated that K396, T398, W400, and R406 are important for alginate binding. Alginate rescue assays confir...

  13. Distribution of bacterial growth activity in flow-chamber biofilms

    DEFF Research Database (Denmark)

    Sternberg, Claus; Christensen, Bjarke B.; Johansen, Tove;

    1999-01-01

    In microbial communities such as those found in biofilms, individual organisms most often display heterogeneous behavior with respect to their metabolic activity, growth status, gene expression pattern, etc. In that context, a novel reporter system for monitoring of cellular growth activity has...... growth activity in organisms outside the group of enteric bacteria. Construction of fusions to genes encoding unstable Gfp proteins opened up the possibility of the monitoring of rates of rRNA synthesis and, in this way, allowing on-line determination of the distribution of growth activity in a complex...

  14. Formation and post-formation dynamics of bacterial biofilm streamers as highly viscous liquid jets

    CERN Document Server

    Das, Siddhartha

    2013-01-01

    It has been recently reported that in presence of low Reynolds number (Re<<1) transport, preformed bacterial biofilms, several hours after their formation, may degenerate in form of filamentous structures, known as streamers. In this letter, we explain that such streamers form as the highly viscous liquid states of the intrinsically viscoelastic biofilms. Such "viscous liquid" state can be hypothesized by noting that the time of appearance of the streamers is substantially larger than the viscoelastic relaxation time scale of the biofilms, and this appearance is explained by the inability of a viscous liquid to withstand an external shear. Further, by identifying the post formation dynamics of the streamers as that of a viscous liquid jet in a surrounding flow field, we can interpret several unexplained issues associated with the post-formation dynamics of streamers, such as the clogging of the flow passage or the exponential time growth of streamer dimensions.

  15. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms.

    Science.gov (United States)

    Turnbull, Lynne; Toyofuku, Masanori; Hynen, Amelia L; Kurosawa, Masaharu; Pessi, Gabriella; Petty, Nicola K; Osvath, Sarah R; Cárcamo-Oyarce, Gerardo; Gloag, Erin S; Shimoni, Raz; Omasits, Ulrich; Ito, Satoshi; Yap, Xinhui; Monahan, Leigh G; Cavaliere, Rosalia; Ahrens, Christian H; Charles, Ian G; Nomura, Nobuhiko; Eberl, Leo; Whitchurch, Cynthia B

    2016-01-01

    Many bacteria produce extracellular and surface-associated components such as membrane vesicles (MVs), extracellular DNA and moonlighting cytosolic proteins for which the biogenesis and export pathways are not fully understood. Here we show that the explosive cell lysis of a sub-population of cells accounts for the liberation of cytosolic content in Pseudomonas aeruginosa biofilms. Super-resolution microscopy reveals that explosive cell lysis also produces shattered membrane fragments that rapidly form MVs. A prophage endolysin encoded within the R- and F-pyocin gene cluster is essential for explosive cell lysis. Endolysin-deficient mutants are defective in MV production and biofilm development, consistent with a crucial role in the biogenesis of MVs and liberation of extracellular DNA and other biofilm matrix components. Our findings reveal that explosive cell lysis, mediated through the activity of a cryptic prophage endolysin, acts as a mechanism for the production of bacterial MVs. PMID:27075392

  16. Three common metal contaminants of urban runoff (Zn, Cu and Pb) accumulate in freshwater biofilm and modify embedded bacterial communities

    International Nuclear Information System (INIS)

    We investigated the absorption rates of zinc, copper and lead in freshwater biofilm and assessed whether biofilm bacterial populations are affected by exposure to environmentally relevant concentrations of these metals in flow chamber microcosms. Metals were rapidly accumulated by the biofilm and then retained for at least 14 days after transfer to uncontaminated water. Changes in bacterial populations were assessed by Automated Ribosomal Intergenic Spacer Analysis (ARISA) and 16S rRNA gene clone libraries. Significant differences in bacterial community structure occurred within only three days of exposure to metals and remained detectable at least 14 days after transfer to uncontaminated water. The rapid uptake of stormwater-associated metals and their retention in the biofilm highlight the potential role of biofilms in the transfer of metals to organisms at higher trophic levels. The sensitivity of stream biofilm bacterial populations to metal exposure supports their use as an indicator of stream ecological health. - The rapid accumulation of metals in biofilms and their impact on bacterial communities provide new insights into how these contaminants affect freshwater ecosystems.

  17. Development of polyvinyl chloride biofilms for succession of selected marine bacterial populations.

    Science.gov (United States)

    Balasubramanian, V; Palanichamy, S; Subramanian, G; Rajaram, R

    2012-01-01

    Present investigation was made to bring out the pattern of biofilm formation by heterotrophic bacteria on nontoxic material, polyvinyl chloride (PVC) sheet fitted wooden rack that was immersed in seawater and the study was conducted in Tuticorin coast. Samplings were made over a period of 7 days with the following time period intervals: 30 min, 1, 2, 4, 24, 48, 72, 96, 120 and 144 hr. Bacterial enumeration was made by spread plate method on nutrient agar medium and characterization of bacterial isolates up to generic level was done. Gram-negative bacteria like Pseudomonas sp., Enterobacter sp., Aeromonas sp., Cytophaga sp. and Flavobacterium sp. were found to be the pioneer in colonizing the surface within 30 min and seven genera were represented in the biofilm. Among them two genera were found belonging to Gram-positive groups which included Micrococcus and Bacillus sp. The early stage biofilm i.e. up to 24th hr was wholly constituted by Gram-negative groups. However, the population density of Pseudomonas sp. was found to be higher (315 CFU) when compared to other Gram-negative forms. Occurrence of Gram-positive group was noted only at 48th hr old biofilm (28 to 150 CFU). The period between 48 and 96th hr was the transition where both the Gram-negative and Gram-positive groups co- existed. After 96th hr, the biofilm was found constituted only by Gram-positive groups. The isolates of early stage biofilm were found to produce allelopathic substance like bacteriocin. PMID:23033644

  18. Bacterial biofilm formation and treatment in soft tissue fillers

    DEFF Research Database (Denmark)

    Alhede, Morten; Er, Ozge; Eickhardt, Steffen;

    2014-01-01

    fraction these. We developed a novel mouse model and evaluated hyaluronic acid gel, calcium hydroxyl apatite microspheres and polyacrylamide hydrogel for their potential for sustaining bacterial infections and their possible treatments. We were able to culture Pseudomonas aeruginosa, Staphylococcus...

  19. Peptide IDR-1018: modulating the immune system and targeting bacterial biofilms to treat antibiotic-resistant bacterial infections.

    Science.gov (United States)

    Mansour, Sarah C; de la Fuente-Núñez, César; Hancock, Robert E W

    2015-05-01

    Host defense (antimicrobial) peptides, produced by all complex organisms, typically contain an abundance of positively charged and hydrophobic amino acid residues. A small synthetic peptide termed innate defense regulator (IDR-)1018 was derived by substantial modification of the bovine neutrophil host defense peptide bactenecin. Here, we review its intriguing properties that include anti-infective, anti-inflammatory, wound healing, and anti-biofilm activities. It was initially developed as an immune modulator with an ability to selectively enhance chemokine production and polarize cellular differentiation while suppressing/balancing the pro-inflammatory response. In this regard, it has demonstrated in vivo activity in murine models including enhancement of wound healing and an ability to protect against Staphylococcus aureus, multidrug resistant Mycobacterium tuberculosis, herpes virus, and inflammatory disorders, including cerebral malaria and neuronal damage in a pre-term birth model. More recently, IDR-1018 was shown, in a broad-spectrum fashion, to selectively target bacterial biofilms, which are adaptively resistant to many antibiotics and represent the most common growth state of bacteria in human infections. Furthermore, IDR-1018 demonstrated synergy with conventional antibiotics to both prevent biofilm formation and treat pre-existing biofilms. These data are consistent with a strong potential as an adjunctive therapy against antibiotic-resistant infections. PMID:25358509

  20. Assessment of bacterial community structure in nitrifying biofilm under inorganic carbon-sufficient and -limited conditions.

    Science.gov (United States)

    Bae, Hyokwan; Chung, Yun-Chul; Yang, Heejeong; Lee, Changsoo; Aryapratama, Rio; Yoo, Young J; Lee, Seockheon

    2015-01-01

    In this work, nitrification and changes in the composition of the total bacterial community under inorganic carbon (IC)-limited conditions, in a nitrifying moving bed biofilm reactor, was investigated. A culture-independent analysis of cloning and sequencing based on the 16S rRNA gene was applied to quantify the bacterial diversity and to determine bacterial taxonomic assignment. IC concentrations had significant effects on the stability of ammonia-oxidation as indicated by the reduction of the nitrogen conversion rate with high NH4(+)-N loadings. The predominance of Nitrosomonas europaea was maintained in spite of changes in the IC concentration. In contrast, heterotrophic bacterial species contributed to a high bacterial diversity, and to a dynamic shift in the bacterial community structure, under IC-limited conditions. In this study, individual functions of heterotrophic bacteria were estimated based on taxonomic information. Possible key roles of coexisting heterotrophic bacteria are the assimilation of organic compounds of extracellular polymeric substances produced by nitrifiers, and biofilm formation by providing a filamentous structure and aggregation properties. PMID:25560266

  1. Interactions between Lactobacillus crispatus and bacterial vaginosis (BV)-associated bacterial species in initial attachment and biofilm formation.

    Science.gov (United States)

    Machado, António; Jefferson, Kimberly Kay; Cerca, Nuno

    2013-01-01

    Certain anaerobic bacterial species tend to predominate the vaginal flora during bacterial vaginosis (BV), with Gardnerella vaginalis being the most common. However, the exact role of G. vaginalis in BV has not yet been determined. The main goal of this study was to test the hypothesis that G. vaginalis is an early colonizer, paving the way for intermediate (e.g., Fusobacterium nucleatum) and late colonizers (e.g., Prevotella bivia). Theoretically, in order to function as an early colonizer, species would need to be able to adhere to vaginal epithelium, even in the presence of vaginal lactobacilli. Therefore, we quantified adherence of G. vaginalis and other BV-associated bacteria to an inert surface pre-coated with Lactobacillus crispatus using a new Peptide Nucleic Acid (PNA) Fluorescence In Situ Hybridization (FISH) methodology. We found that G. vaginalis had the greatest capacity to adhere in the presence of L. crispatus. Theoretically, an early colonizer would contribute to the adherence and/or growth of additional species, so we next quantified the effect of G. vaginalis biofilms on the adherence and growth of other BV-associated species by quantitative Polymerase Chain Reaction (qPCR) technique. Interestingly, G. vaginalis derived a growth benefit from the addition of a second species, regardless of the species. Conversely, G. vaginalis biofilms enhanced the growth of P. bivia, and to a minor extent of F. nucleatum. These results contribute to our understanding of BV biofilm formation and the progression of the disorder. PMID:23739678

  2. Interactions between Lactobacillus crispatus and Bacterial Vaginosis (BV-Associated Bacterial Species in Initial Attachment and Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Kimberly Kay Jefferson

    2013-06-01

    Full Text Available Certain anaerobic bacterial species tend to predominate the vaginal flora during bacterial vaginosis (BV, with Gardnerella vaginalis being the most common. However, the exact role of G. vaginalis in BV has not yet been determined. The main goal of this study was to test the hypothesis that G. vaginalis is an early colonizer, paving the way for intermediate (e.g., Fusobacterium nucleatum and late colonizers (e.g., Prevotella bivia. Theoretically, in order to function as an early colonizer, species would need to be able to adhere to vaginal epithelium, even in the presence of vaginal lactobacilli. Therefore, we quantified adherence of G. vaginalis and other BV-associated bacteria to an inert surface pre-coated with Lactobacillus crispatus using a new Peptide Nucleic Acid (PNA Fluorescence In Situ Hybridization (FISH methodology. We found that G. vaginalis had the greatest capacity to adhere in the presence of L. crispatus. Theoretically, an early colonizer would contribute to the adherence and/or growth of additional species, so we next quantified the effect of G. vaginalis biofilms on the adherence and growth of other BV-associated species by quantitative Polymerase Chain Reaction (qPCR technique. Interestingly, G. vaginalis derived a growth benefit from the addition of a second species, regardless of the species. Conversely, G. vaginalis biofilms enhanced the growth of P. bivia, and to a minor extent of F. nucleatum. These results contribute to our understanding of BV biofilm formation and the progression of the disorder.

  3. Observations on the development of the crystalline bacterial biofilms that encrust and block Foley catheters.

    Science.gov (United States)

    Stickler, D J; Morgan, S D

    2008-08-01

    The care of many patients undergoing long-term bladder catheterisation is complicated when the flow of urine through the catheter is blocked by encrustation. The problem results from infection by urease-producing bacteria, especially Proteus mirabilis, and the subsequent formation of crystalline biofilms on the catheter. The aim of this study was to discover how P. mirabilis initiates the development of these crystalline biofilms. The early stages in the formation of the biofilms were observed on a range of Foley catheters in a laboratory model of the catheterised bladder. Scanning electron micrographs revealed that when all-silicone, silicone-coated latex, hydrogel-coated latex, hydrogel/silver-coated latex and nitrofurazone silicone catheters were inserted into bladder models containing P. mirabilis and alkaline urine, their surfaces were rapidly coated with a microcrystalline foundation layer. X-ray microanalysis showed that this material was composed of calcium phosphate. Bacterial colonisation of the foundation layer followed and by 18h the catheters were encrusted by densely populated crystalline P. mirabilis biofilms. These observations have important implications for the development of encrustation-resistant catheters. In the case of silver catheters for example, bacterial cells can attach to the crystalline foundation layer and continue to grow, protected from contact with the underlying silver. If antimicrobials are to be incorporated into catheters to prevent encrustation, it is important that they diffuse into the urine and prevent the rise in pH that triggers crystal formation. PMID:18550219

  4. Antibiotic Discovery: Combatting Bacterial Resistance in Cells and in Biofilm Communities

    Directory of Open Access Journals (Sweden)

    Anahit Penesyan

    2015-03-01

    Full Text Available Bacterial resistance is a rapidly escalating threat to public health as our arsenal of effective antibiotics dwindles. Therefore, there is an urgent need for new antibiotics. Drug discovery has historically focused on bacteria growing in planktonic cultures. Many antibiotics were originally developed to target individual bacterial cells, being assessed in vitro against microorganisms in a planktonic mode of life. However, towards the end of the 20th century it became clear that many bacteria live as complex communities called biofilms in their natural habitat, and this includes habitats within a human host. The biofilm mode of life provides advantages to microorganisms, such as enhanced resistance towards environmental stresses, including antibiotic challenge. The community level resistance provided by biofilms is distinct from resistance mechanisms that operate at a cellular level, and cannot be overlooked in the development of novel strategies to combat infectious diseases. The review compares mechanisms of antibiotic resistance at cellular and community levels in the light of past and present antibiotic discovery efforts. Future perspectives on novel strategies for treatment of biofilm-related infectious diseases are explored.

  5. Does bacterial communication play a role for the effect of triclosan, Corsodyl and Listerine on biofilm formation and growth of Streptococcus mutans?

    OpenAIRE

    2011-01-01

    Biofilm and biofilm formation Bacteria colonize biological and inert surfaces in the form of matrixencapsulated communities referred to as biofilms (1). These microbial biofilms are a highly distinct form of microbial life compared with the planktonic, or freely floating, form of microbial life that has been exhaustively studied for the last century (2). Bacterial biofilms account for the majority of chronic diseases, including gingivitis, endocarditis and nosocomial infections (1). Mic...

  6. Spring constants and adhesive properties of native bacterial biofilm cells measured by atomic force microscopy.

    Science.gov (United States)

    Volle, C B; Ferguson, M A; Aidala, K E; Spain, E M; Núñez, M E

    2008-11-15

    Bacterial biofilms were imaged by atomic force microscopy (AFM), and their elasticity and adhesion to the AFM tip were determined from a series of tip extension and retraction cycles. Though the five bacterial strains studied included both Gram-negative and -positive bacteria and both environmental and laboratory strains, all formed simple biofilms on glass surfaces. Cellular spring constants, determined from the extension portion of the force cycle, varied between 0.16+/-0.01 and 0.41+/-0.01 N/m, where larger spring constants were measured for Gram-positive cells than for Gram-negative cells. The nonlinear regime in the extension curve depended upon the biomolecules on the cell surface: the extension curves for the smooth Gram-negative bacterial strains with the longest lipopolysaccharides on their surface had a larger nonlinear region than the rough bacterial strain with shorter lipopolysaccharides on the surface. Adhesive forces between the retracting silicon nitride tip and the cells varied between cell types in terms of the force components, the distance components, and the number of adhesion events. The Gram-negative cells' adhesion to the tip showed the longest distance components, sometimes more than 1 microm, whereas the shortest distance adhesion events were measured between the two Gram-positive cell types and the tip. Fixation of free-swimming planktonic cells by NHS and EDC perturbed both the elasticity and the adhesive properties of the cells. Here we consider the biochemical meaning of the measured physical properties of simple biofilms and implications to the colonization of surfaces in the first stages of biofilm formation. PMID:18815013

  7. Monitoring of Multilayered Bacterial Biofilm Morphology by Cryo-SEM for Raman Spectroscopy Measurements

    Czech Academy of Sciences Publication Activity Database

    Hrubanová, Kamila; Bernatová, Silvie; Samek, Ota; Šerý, Mojmír; Zemánek, Pavel; Nebesářová, Jana; Růžička, F.; Krzyžánek, Vladislav

    2015-01-01

    Roč. 21, S3 (2015), s. 187-188. ISSN 1431-9276 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01; GA ČR(CZ) GA14-20012S Institutional support: RVO:68081731 ; RVO:60077344 Keywords : multilayered bacterial biofilm * morphology by Cryo-SEM * Raman spectroscopy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.877, year: 2014

  8. Individual growth detection of bacterial species in an in vitro oral polymicrobial biofilm model.

    Science.gov (United States)

    Tabenski, L; Maisch, T; Santarelli, F; Hiller, K-A; Schmalz, G

    2014-11-01

    Most in vitro studies on the antibacterial effects of antiseptics have used planktonic bacteria in monocultures. However, this study design does not reflect the in vivo situation in oral cavities harboring different bacterial species that live in symbiotic relationships in biofilms. The aim of this study was to establish a simple in vitro polymicrobial model consisting of only three bacterial strains of different phases of oral biofilm formation to simulate in vivo oral conditions. Therefore, we studied the biofilm formation of Actinomyces naeslundii (An), Fusobacterium nucleatum (Fn), and Enterococcus faecalis (Ef) on 96-well tissue culture plates under static anaerobic conditions using artificial saliva according to the method established by Pratten et al. that was supplemented with 1 g l(-1) sucrose. Growth was separately determined for each bacterial strain after incubation periods of up to 72 h by means of quantitative real-time polymerase chain reaction and live/dead staining. Presence of an extracellular polymeric substance (EPS) was visualized by Concanavalin A staining. Increasing incubation times of up to 72 h showed adhesion and propagation of the bacterial strains with artificial saliva formulation. An and Ef had significantly higher growth rates than Fn. Live/dead staining showed a median of 49.9 % (range 46.0-53.0 %) of living bacteria after 72 h of incubation, and 3D fluorescence microscopy showed a three-dimensional structure containing EPS. An in vitro oral polymicrobial biofilm model was established to better simulate oral conditions and had the advantage of providing the well-controlled experimental conditions of in vitro testing. PMID:25119373

  9. Structural Basis for Translocation of a Biofilm-supporting Exopolysaccharide across the Bacterial Outer Membrane.

    Science.gov (United States)

    Wang, Yan; Andole Pannuri, Archana; Ni, Dongchun; Zhou, Haizhen; Cao, Xiou; Lu, Xiaomei; Romeo, Tony; Huang, Yihua

    2016-05-01

    The partially de-N-acetylated poly-β-1,6-N-acetyl-d-glucosamine (dPNAG) polymer serves as an intercellular biofilm adhesin that plays an essential role for the development and maintenance of integrity of biofilms of diverse bacterial species. Translocation of dPNAG across the bacterial outer membrane is mediated by a tetratricopeptide repeat-containing outer membrane protein, PgaA. To understand the molecular basis of dPNAG translocation, we determined the crystal structure of the C-terminal transmembrane domain of PgaA (residues 513-807). The structure reveals that PgaA forms a 16-strand transmembrane β-barrel, closed by four loops on the extracellular surface. Half of the interior surface of the barrel that lies parallel to the translocation pathway is electronegative, suggesting that the corresponding negatively charged residues may assist the secretion of the positively charged dPNAG polymer. In vivo complementation assays in a pgaA deletion bacterial strain showed that a cluster of negatively charged residues proximal to the periplasm is necessary for biofilm formation. Biochemical analyses further revealed that the tetratricopeptide repeat domain of PgaA binds directly to the N-deacetylase PgaB and is critical for biofilm formation. Our studies support a model in which the positively charged PgaB-bound dPNAG polymer is delivered to PgaA through the PgaA-PgaB interaction and is further targeted to the β-barrel lumen of PgaA potentially via a charge complementarity mechanism, thus priming the translocation of dPNAG across the bacterial outer membrane. PMID:26957546

  10. Antibacterial synergy of curcumin with antibiotics against biofilm producing clinical bacterial isolates

    Science.gov (United States)

    Kali, Arunava; Bhuvaneshwar, Devaraj; Charles, Pravin M. V.; Seetha, Kunigal Srinivasaiah

    2016-01-01

    Introduction: The role of natural bioactive substances in treating infections has been rediscovered as bacterial resistance become common to most of the antibiotics. Curcumin is a bioactive substance from turmeric. Owing to antimicrobial properties, its prospect as an antibacterial agent is currently under focus. Materials and Methods: We have evaluated the in vitro synergy of curcumin with antibiotics against sixty biofilm producing bacterial isolates. Congo red agar method was used to identify the biofilm producing isolates. Curcumin minimum inhibitory concentration (MIC) was determined by agar dilution method. Its antibiotic synergy was identified by the increase in disc diffusion zone size on Mueller-Hinton agar with 32 mg/L curcumin. Results: The mean MICs of curcumin against Gram-positive and Gram-negative isolates were 126.9 mg/L and 117.4 mg/L, respectively. Maximum synergy was observed with ciprofloxacin among Gram-positive and amikacin, gentamicin, and cefepime among Gram-negative isolates. Conclusions: Curcumin per se as well as in combination with other antibiotics has a demonstrable antibacterial action against biofilm producing bacterial isolates. It may have a beneficial role in supplementing antibiotic therapy. PMID:27330262

  11. Comparative pyrosequencing analysis of bacterial community change in biofilm formed on seawater reverse osmosis membrane.

    Science.gov (United States)

    Kim, In S; Lee, Jinwook; Kima, Sung-Jo; Yu, Hye-Weon; Jang, Am

    2014-01-01

    The change in bacterial community structure induced by bacterial competition and succession was investigated during seawater reverse osmosis (SWRO) in order to elucidate a possible link between the bacterial consortium on SWRO membranes and biofouling. To date, there has been no definitive characterization of the microbial diversity in SWRO in terms of distinguishing time-dependent changes in the richness or abundance of bacterial species. For bacterial succession within biofilms on the membrane surface, SWRO using a cross-flow filtration membrane test unit was operated for 5 and 100h, respectively. As results of the pyrosequencing analysis, bacterial communities differed considerably among seawater and the 5 and 100 h samples. From a total of 33,876 pyrosequences (using a 95% sequence similarity), there were less than 1% of shared species, confirming the influence of the operational time factor and lack of similarity of these communities. During SWRO operation, the abundance of Pseudomonas stutzeri BBSPN3 (GU594474) belonging to gamma-Proteobacteria suggest that biofouling of SWRO membrane might be driven by the dominant influence of a specific species. In addition, among the bacterial competition of five bacterial species (Pseudomonas aeruginosa, Bacillus sp., Rhodobacter sp., Flavobacterium sp., and Mycobacterium sp.) competing for bacterial colonization on the SWRO membrane surfaces, it was exhibited that Bacillus sp. was the most dominant. The dominant influences ofPseudomonas sp. and Bacillus sp. on biofouling during actual SWRO is decisive depending on higher removal efficiency of the seawater pretreatment. PMID:24600849

  12. Synergistic Antibacterial Effects of Nanoparticles Encapsulated with Scutellaria baicalensis and Pure Chlorhexidine on Oral Bacterial Biofilms

    Directory of Open Access Journals (Sweden)

    Ken Cham-Fai Leung

    2016-04-01

    Full Text Available Scutellaria baicalensis (SB is a traditional Chinese medicine for treating infectious and inflammatory diseases. Our recent study shows potent antibacterial effects of nanoparticle-encapsulated chlorhexidine (Nano-CHX. Herein, we explored the synergistic effects of the nanoparticle-encapsulated SB (Nano-SB and Nano-CHX on oral bacterial biofilms. Loading efficiency of Nano-SB was determined by thermogravimetric analysis, and its releasing profile was assessed by high-performance liquid chromatographyusing baicalin (a flavonoid compound of SB as the marker. The mucosal diffusion assay on Nano-SB was undertaken in a porcine model. The antibacterial effects of the mixed nanoparticles (Nano-MIX of Nano-SB and Nano-CHX at 9:1 (w/w ratio were analyzed in both planktonic and biofilm modes of representative oral bacteria. The Nano-MIX was effective on the mono-species biofilms of Streptococcus (S. mutans, S. sobrinus, Fusobacterium (F. nucleatum, and Aggregatibacter (A. actinomycetemcomitans (MIC 50 μg/mL at 24 h, and exhibited an enhanced effect against the multi-species biofilms such as S. mutans, F. nucleatum, A. actinomycetemcomitans, and Porphyromonas (P. gingivalis (MIC 12.5 μg/mL at 24 h that was supported by the findings of both scanning electron microscopy (SEM and confocal scanning laser microscopy (CLSM. This study shows enhanced synergistic antibacterial effects of the Nano-MIX on common oral bacterial biofilms, which could be potentially developed as a novel antimicrobial agent for clinical oral/periodontal care.

  13. Bacterial Vaginosis Biofilms: Challenges to Current Therapies and Emerging Solutions

    OpenAIRE

    Machado, Daniela; Castro, Joana; Palmeira-de-Oliveira, Ana; Martinez-de-Oliveira, José; Cerca, Nuno

    2016-01-01

    Bacterial vaginosis (BV) is the most common genital tract infection in women during their reproductive years and it has been associated with serious health complications, such as preterm delivery and acquisition or transmission of several sexually transmitted agents. BV is characterized by a reduction of beneficial lactobacilli and a significant increase in number of anaerobic bacteria, including Gardnerella vaginalis, Atopobium vaginae, Mobiluncus spp., Bacteroides spp. and Prevotella spp.. ...

  14. Formation and post-formation dynamics of bacterial biofilm streamers as highly viscous liquid jets

    Science.gov (United States)

    Das, Siddhartha; Kumar, Aloke

    2014-11-01

    It has been recently reported that in presence of low Reynolds number (Re bacterial biofilms, several hours after their formation, may degenerate in form of filamentous structures, known as streamers. In this work, we explain that such streamers form as the highly viscous liquid states of the intrinsically viscoelastic biofilms. Such ``viscous liquid'' state can be hypothesized by noting that the time of appearance of the streamers is substantially larger than the viscoelastic relaxation time scale of the biofilms, and this appearance is explained by the inability of a viscous liquid to withstand external shear. Further, by identifying the post formation dynamics of the streamers as that of a viscous liquid jet in a surrounding flow field, we can interpret several unexplained issues associated with the post-formation dynamics of streamers, such as the clogging of the flow passage or the exponential time growth of streamer dimensions. Overall our manuscript provides a biophysical basis for understanding the evolution of biofilm streamers in creeping flows.

  15. Bacterial use of biofilms cross-linked by gamma irradiation

    International Nuclear Information System (INIS)

    Gamma-irradiation was used to produce sterile free-standing biodegradable caseinate films. The effect of irradiation doses (i.e. number of cross-links) on the bacterial use of these films using a strain of Pseudomonas aeruginosa was investigated. Results showed that the main difference in overall utilisation for both films (4 or 64 kGy) was observed in terms of period of utilisation which was delayed 8 days for the film containing the highest number of cross-links (64 kGy)

  16. Laser Desorption Postionization Mass Spectrometry of Antibiotic-Treated Bacterial Biofilms using Tunable Vacuum Ultraviolet Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gasper, Gerald L; Takahashi, Lynelle K; Zhou, Jia; Ahmed, Musahid; Moore, Jerry F; Hanley, Luke

    2010-08-04

    Laser desorption postionization mass spectrometry (LDPI-MS) with 8.0 ? 12.5 eV vacuum ultraviolet synchrotron radiation is used to single photon ionize antibiotics andextracellular neutrals that are laser desorbed both neat and from intact bacterial biofilms. Neat antibiotics are optimally detected using 10.5 eV LDPI-MS, but can be ionized using 8.0 eV radiation, in agreement with prior work using 7.87 eV LDPI-MS. Tunable vacuum ultraviolet radiation also postionizes laser desorbed neutrals of antibiotics and extracellular material from within intact bacterial biofilms. Different extracellular material is observed by LDPI-MS in response to rifampicin or trimethoprim antibiotic treatment. Once again, 10.5 eV LDPI-MS displays the optimum trade-off between improved sensitivity and minimum fragmentation. Higher energy photons at 12.5 eV produce significant parent ion signal, but fragment intensity and other low mass ions are also enhanced. No matrix is added to enhance desorption, which is performed at peak power densities insufficient to directly produce ions, thus allowing observation of true VUV postionization mass spectra of antibiotic treated biofilms.

  17. Why are Foley catheters so vulnerable to encrustation and blockage by crystalline bacterial biofilm?

    Science.gov (United States)

    Stickler, David; Young, Robert; Jones, Gwennan; Sabbuba, Nora; Morris, Nicola

    2003-10-01

    Many patients undergoing long-term bladder catheterisation experience blockage and encrustation of their catheters. The problem stems from infection by urease producing bacteria, particularly Proteus mirabilis. Bacterial biofilms colonise the catheters, the activity of urease raises the pH and induces the deposition of calcium and magnesium phosphate crystals. In this study, a laboratory model of the catheterised bladder has been used to examine the early stages in the formation of the crystalline biofilms. The results show that initial cell adhesion is to the irregular surfaces surrounding the catheter eye-holes. Microcolonies form in depressions in these surfaces and spread to cover the entire surface of the rims around the eye-holes. Crystals then form around the bacterial populations and the biofilm starts to move down the lumenal surfaces of the catheters. The encrustation develops most extensively and generally blocks the catheter at or just below the eye-hole. There is a need to improve catheter design and manufacturing procedures for the eye-holes if the problems associated with the current devices are to be reduced. PMID:14574534

  18. Mixed biofilm formation by Shiga toxin-producing Escherichia coli and Salmonella enterica serovar typhimurium enhanced bacterial resistance to sanitization due to extracellular polymeric substances

    Science.gov (United States)

    Shiga toxin–producing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium are important foodborne pathogens capable of forming single-species biofilms or coexisting in multispecies biofilm communities. Bacterial biofilm cells are usually more resistant to sanitization than their pla...

  19. Cold Plasma Inactivation of Bacterial Biofilms and Reduction of Quorum Sensing Regulated Virulence Factors.

    Directory of Open Access Journals (Sweden)

    Dana Ziuzina

    Full Text Available The main objectives of this work were to investigate the effect of atmospheric cold plasma (ACP against a range of microbial biofilms commonly implicated in foodborne and healthcare associated human infections and against P. aeruginosa quorum sensing (QS-regulated virulence factors, such as pyocyanin, elastase (Las B and biofilm formation capacity post-ACP treatment. The effect of processing factors, namely treatment time and mode of plasma exposure on antimicrobial activity of ACP were also examined. Antibiofilm activity was assessed for E. coli, L. monocytogenes and S. aureus in terms of reduction of culturability and retention of metabolic activity using colony count and XTT assays, respectively. All samples were treated 'inpack' using sealed polypropylene containers with a high voltage dielectric barrier discharge ACP generated at 80 kV for 0, 60, 120 and 300 s and a post treatment storage time of 24 h. According to colony counts, ACP treatment for 60 s reduced populations of E. coli to undetectable levels, whereas 300 s was necessary to significantly reduce populations of L. monocytogenes and S. aureus biofilms. The results obtained from XTT assay indicated possible induction of viable but non culturable state of bacteria. With respect to P. aeruginosa QS-related virulence factors, the production of pyocyanin was significantly inhibited after short treatment times, but reduction of elastase was notable only after 300 s and no reduction in actual biofilm formation was achieved post-ACP treatment. Importantly, reduction of virulence factors was associated with reduction of the cytotoxic effects of the bacterial supernatant on CHO-K1 cells, regardless of mode and duration of treatment. The results of this study point to ACP technology as an effective strategy for inactivation of established biofilms and may play an important role in attenuation of virulence of pathogenic bacteria. Further investigation is warranted to propose direct evidence

  20. Cold Plasma Inactivation of Bacterial Biofilms and Reduction of Quorum Sensing Regulated Virulence Factors

    Science.gov (United States)

    Ziuzina, Dana; Boehm, Daniela; Patil, Sonal; Cullen, P. J.; Bourke, Paula

    2015-01-01

    The main objectives of this work were to investigate the effect of atmospheric cold plasma (ACP) against a range of microbial biofilms commonly implicated in foodborne and healthcare associated human infections and against P. aeruginosa quorum sensing (QS)-regulated virulence factors, such as pyocyanin, elastase (Las B) and biofilm formation capacity post-ACP treatment. The effect of processing factors, namely treatment time and mode of plasma exposure on antimicrobial activity of ACP were also examined. Antibiofilm activity was assessed for E. coli, L. monocytogenes and S. aureus in terms of reduction of culturability and retention of metabolic activity using colony count and XTT assays, respectively. All samples were treated ‘inpack’ using sealed polypropylene containers with a high voltage dielectric barrier discharge ACP generated at 80 kV for 0, 60, 120 and 300 s and a post treatment storage time of 24 h. According to colony counts, ACP treatment for 60 s reduced populations of E. coli to undetectable levels, whereas 300 s was necessary to significantly reduce populations of L. monocytogenes and S. aureus biofilms. The results obtained from XTT assay indicated possible induction of viable but non culturable state of bacteria. With respect to P. aeruginosa QS-related virulence factors, the production of pyocyanin was significantly inhibited after short treatment times, but reduction of elastase was notable only after 300 s and no reduction in actual biofilm formation was achieved post-ACP treatment. Importantly, reduction of virulence factors was associated with reduction of the cytotoxic effects of the bacterial supernatant on CHO-K1 cells, regardless of mode and duration of treatment. The results of this study point to ACP technology as an effective strategy for inactivation of established biofilms and may play an important role in attenuation of virulence of pathogenic bacteria. Further investigation is warranted to propose direct evidence for the

  1. Preferential Feeding by the Ciliates Chilodonella and Tetrahymena spp. and Effects of These Protozoa on Bacterial Biofilm Structure and Composition▿

    OpenAIRE

    Dopheide, Andrew; Lear, Gavin; Stott, Rebecca; Lewis, Gillian

    2011-01-01

    Protozoa are important components of microbial food webs, but protozoan feeding preferences and their effects in the context of bacterial biofilms are not well understood. The feeding interactions of two contrasting ciliates, the free-swimming filter feeder Tetrahymena sp. and the surface-associated predator Chilodonella sp., were investigated using biofilm-forming bacteria genetically modified to express fluorescent proteins. According to microscopy, both ciliates readily consumed cells from...

  2. Inhibited Bacterial Adhesion and Biofilm Formation on Quaternized Chitosan-Loaded Titania Nanotubes with Various Diameters

    Directory of Open Access Journals (Sweden)

    Wen-tao Lin

    2016-03-01

    Full Text Available Titania nanotube-based local drug delivery is an attractive strategy for combating implant-associated infection. In our previous study, we demonstrated that the gentamicin-loaded nanotubes could dramatically inhibit bacterial adhesion and biofilm formation on implant surfaces. Considering the overuse of antibiotics may lead to the evolution of antibiotic-resistant bacteria, we synthesized a new quaternized chitosan derivative (hydroxypropyltrimethyl ammonium chloride chitosan, HACC with a 27% degree of substitution (DS; referred to as 27% HACC that had a strong antibacterial activity and simultaneously good biocompatibility with osteogenic cells. Titania nanotubes with various diameters (80, 120, 160, and 200 nm and 200 nm length were loaded with 2 mg of HACC using a lyophilization method and vacuum drying. Two standard strain, methicillin-resistant Staphylococcus aureus (American Type Culture Collection 43300 and Staphylococcus epidermidis (American Type Culture Collection 35984, and two clinical isolates, S. aureus 376 and S. epidermidis 389, were selected to investigate the bacterial adhesion at 6 h and biofilm formation at 24, 48, and 72 h on the HACC-loaded nanotubes (NT-H using the spread plate method, confocal laser scanning microscopy (CLSM, and scanning electron microscopy (SEM. Smooth titanium (Smooth Ti was also investigated and compared. We found that NT-H could significantly inhibit bacterial adhesion and biofilm formation on its surface compared with Smooth Ti, and the NT-H with 160 nm and 200 nm diameters had stronger antibacterial activity because of the extended HACC release time of NT-H with larger diameters. Therefore, NT-H can significantly improve the antibacterial ability of orthopedic implants and provide a promising strategy to prevent implant-associated infections.

  3. Serrulatane Diterpenoid from Eremophila neglecta Exhibits Bacterial Biofilm Dispersion and Inhibits Release of Pro-inflammatory Cytokines from Activated Macrophages.

    Science.gov (United States)

    Mon, Htwe H; Christo, Susan N; Ndi, Chi P; Jasieniak, Marek; Rickard, Heather; Hayball, John D; Griesser, Hans J; Semple, Susan J

    2015-12-24

    The purpose of this study was to assess the biofilm-removing efficacy and inflammatory activity of a serrulatane diterpenoid, 8-hydroxyserrulat-14-en-19-oic acid (1), isolated from the Australian medicinal plant Eremophila neglecta. Biofilm breakup activity of compound 1 on established Staphylococcus epidermidis and Staphylococcus aureus biofilms was compared to the antiseptic chlorhexidine and antibiotic levofloxacin. In a time-course study, 1 was deposited onto polypropylene mesh to mimic a wound dressing and tested for biofilm removal. The ex-vivo cytotoxicity and effect on lipopolysaccharide-induced pro-inflammatory cytokine release were studied in mouse primary bone-marrow-derived macrophage (BMDM) cells. Compound 1 was effective in dispersing 12 h pre-established biofilms with a 7 log10 reduction of viable bacterial cell counts, but was less active against 24 h biofilms (approximately 2 log10 reduction). Compound-loaded mesh showed dosage-dependent biofilm-removing capability. In addition, compound 1 displayed a significant inhibitory effect on tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) secretion from BMDM cells, but interleukin-1 beta (IL-1β) secretion was not significant. The compound was not cytotoxic to BMDM cells at concentrations effective in removing biofilm and lowering cytokine release. These findings highlight the potential of this serrulatane diterpenoid to be further developed for applications in wound management. PMID:26636180

  4. Pyrosequencing Reveals a Core Community of Anodic Bacterial Biofilms in Bioelectrochemical Systems from China.

    Science.gov (United States)

    Xiao, Yong; Zheng, Yue; Wu, Song; Zhang, En-Hua; Chen, Zheng; Liang, Peng; Huang, Xia; Yang, Zhao-Hui; Ng, I-Son; Chen, Bor-Yann; Zhao, Feng

    2015-01-01

    Bioelectrochemical systems (BESs) are promising technologies for energy and product recovery coupled with wastewater treatment, and the core microbial community in electrochemically active biofilm in BESs remains controversy. In the present study, 7 anodic communities from 6 bioelectrochemical systems in 4 labs in southeast, north and south-central of China are explored by 454 pyrosequencing. A total of 251,225 effective sequences are obtained for 7 electrochemically active biofilm samples at 3% cutoff level. While Alpha-, Beta-, and Gamma-proteobacteria are the most abundant classes (averaging 16.0-17.7%), Bacteroidia and Clostridia are the two sub-dominant and commonly shared classes. Six commonly shared genera i.e., Azospira, Azospirillum, Acinetobacter, Bacteroides, Geobacter, Pseudomonas, and Rhodopseudomonas dominate the electrochemically active communities and are defined as core genera. A total of 25 OTUs with average relative abundance >0.5% were selected and designated as core OTUs, and some species relating to these OTUs have been reported electrochemically active. Furthermore, cyclic voltammetry and chronoamperometry tests show that two strains from Acinetobacter guillouiae and Stappia indica, bacteria relate to two core OTUs, are electrochemically active. Using randomly selected bioelectrochemical systems, the study has presented extremely diverse bacterial communities in anodic biofilms, though, we still can suggest some potentially microbes for investigating the electrochemical mechanisms in bioelectrochemical systems. PMID:26733958

  5. Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles

    Science.gov (United States)

    Huang, Qiaoyun; Wu, Huayong; Cai, Peng; Fein, Jeremy B.; Chen, Wenli

    2015-11-01

    Bacterial adhesion onto mineral surfaces and subsequent biofilm formation play key roles in aggregate stability, mineral weathering, and the fate of contaminants in soils. However, the mechanisms of bacteria-mineral interactions are not fully understood. Atomic force microscopy (AFM) was used to determine the adhesion forces between bacteria and goethite in water and to gain insight into the nanoscale surface morphology of the bacteria-mineral aggregates and biofilms formed on clay-sized minerals. This study yields direct evidence of a range of different association mechanisms between bacteria and minerals. All strains studied adhered predominantly to the edge surfaces of kaolinite rather than to the basal surfaces. Bacteria rarely formed aggregates with montmorillonite, but were more tightly adsorbed onto goethite surfaces. This study reports the first measured interaction force between bacteria and a clay surface, and the approach curves exhibited jump-in events with attractive forces of 97 ± 34 pN between E. coli and goethite. Bond strengthening between them occurred within 4 s to the maximum adhesion forces and energies of -3.0 ± 0.4 nN and -330 ± 43 aJ (10-18 J), respectively. Under the conditions studied, bacteria tended to form more extensive biofilms on minerals under low rather than high nutrient conditions.

  6. N-acetyl-L-cysteine affects growth, extracellular polysaccharide production, and bacterial biofilm formation on solid surfaces.

    Science.gov (United States)

    Olofsson, Ann-Cathrin; Hermansson, Malte; Elwing, Hans

    2003-08-01

    N-Acetyl-L-cysteine (NAC) is used in medical treatment of patients with chronic bronchitis. The positive effects of NAC treatment have primarily been attributed to the mucus-dissolving properties of NAC, as well as its ability to decrease biofilm formation, which reduces bacterial infections. Our results suggest that NAC also may be an interesting candidate for use as an agent to reduce and prevent biofilm formation on stainless steel surfaces in environments typical of paper mill plants. Using 10 different bacterial strains isolated from a paper mill, we found that the mode of action of NAC is chemical, as well as biological, in the case of bacterial adhesion to stainless steel surfaces. The initial adhesion of bacteria is dependent on the wettability of the substratum. NAC was shown to bind to stainless steel, increasing the wettability of the surface. Moreover, NAC decreased bacterial adhesion and even detached bacteria that were adhering to stainless steel surfaces. Growth of various bacteria, as monocultures or in a multispecies community, was inhibited at different concentrations of NAC. We also found that there was no detectable degradation of extracellular polysaccharides (EPS) by NAC, indicating that NAC reduced the production of EPS, in most bacteria tested, even at concentrations at which growth was not affected. Altogether, the presence of NAC changes the texture of the biofilm formed and makes NAC an interesting candidate for use as a general inhibitor of formation of bacterial biofilms on stainless steel surfaces. PMID:12902275

  7. Three-Dimensional Stratification of Bacterial Biofilm Populations in a Moving Bed Biofilm Reactor for Nitritation-Anammox

    Directory of Open Access Journals (Sweden)

    Robert Almstrand

    2014-01-01

    Full Text Available Moving bed biofilm reactors (MBBRs are increasingly used for nitrogen removal with nitritation-anaerobic ammonium oxidation (anammox processes in wastewater treatment. Carriers provide protected surfaces where ammonia oxidizing bacteria (AOB and anammox bacteria form complex biofilms. However, the knowledge about the organization of microbial communities in MBBR biofilms is sparse. We used new cryosectioning and imaging methods for fluorescence in situ hybridization (FISH to study the structure of biofilms retrieved from carriers in a nitritation-anammox MBBR. The dimensions of the carrier compartments and the biofilm cryosections after FISH showed good correlation, indicating little disturbance of biofilm samples by the treatment. FISH showed that Nitrosomonas europaea/eutropha-related cells dominated the AOB and Candidatus Brocadia fulgida-related cells dominated the anammox guild. New carriers were initially colonized by AOB, followed by anammox bacteria proliferating in the deeper biofilm layers, probably in anaerobic microhabitats created by AOB activity. Mature biofilms showed a pronounced three-dimensional stratification where AOB dominated closer to the biofilm-water interface, whereas anammox were dominant deeper into the carrier space and towards the walls. Our results suggest that current mathematical models may be oversimplifying these three-dimensional systems and unless the multidimensionality of these systems is considered, models may result in suboptimal design of MBBR carriers.

  8. Proteinaceous determinants of surface colonization in bacteria: Bacterial adhesion and biofilm formation from a protein secretion perspective

    Directory of Open Access Journals (Sweden)

    MickaelDesvaux

    2013-10-01

    Full Text Available Bacterial colonization of biotic or abiotic surfaces results from two quite distinct physiological processes, namely bacterial adhesion and biofilm formation. Broadly speaking, a biofilm is defined as the sessile development of microbial cells. Biofilm formation arises following bacterial adhesion but not all single bacterial cells adhering reversibly or irreversibly engage inexorably into a sessile mode of growth. Among molecular determinants promoting bacterial colonization, surface proteins are the most functionally diverse active components. To be present on the bacterial cell surface, though, a protein must be secreted in the first place. Considering the close association of secreted proteins with their cognate secretion systems, the secretome (which refers both to the secretion systems and their protein substrates is a key concept to apprehend the protein secretion and related physiological functions. The protein secretion systems are here considered in light of the differences in the cell-envelope architecture between diderm-LPS (archetypal Gram-negative, monoderm (archetypal Gram-positive and diderm-mycolate (archetypal acid-fast bacteria. Besides, their cognate secreted proteins engaged in the bacterial colonization process are regarded from single protein to supramolecular protein structure as well as the non-classical protein secretion. This state-of-the-art on the complement of the secretome (the secretion systems and their cognate effectors involved in the surface colonization process in diderm-LPS and monoderm bacteria paves the way for future research directions in the field.

  9. Antibiotic penetration and bacterial killing in a Pseudomonas aeruginosa biofilm model

    DEFF Research Database (Denmark)

    Cao, Bao; Christophersen, Lars; Thomsen, Kim;

    2015-01-01

    OBJECTIVES: Treating biofilm infections successfully is a challenge. We hypothesized that biofilms may be considered as independent compartments with particular pharmacokinetics. We therefore studied the pharmacokinetics and pharmacodynamics of tobramycin in a seaweed alginate-embedded biofilm mo...

  10. Synergistic effect using vermiculite as media with a bacterial biofilm of Arthrobacter sp. for biodegradation of di-(2-ethylhexyl) phthalate.

    Science.gov (United States)

    Wen, Zhi-Dan; Wu, Wei-Min; Ren, Nan-Qi; Gao, Da-Wen

    2016-03-01

    Vermiculite is one of matrix material used for constructed wetland (CW) for the treatment of municipal wastewater. Arthrobacter sp. strain C21 (CGMCC No. 7671), isolated from a constructed wetland receiving municipal wastewater, forms biofilm on the surface of vermiculite. Di-(2-ethylhexyl) phthalate (DEHP), a typical phthalate pollutant in environment, can be degraded by the biofilm of strain C21 formed on vermiculite. Results of laboratory studies indicated that DEHP was removed from aqueous phase via biodegradation, adsorption by vermiculite, and adsorption by biofilm biomass. Synergistic effect of these three reactions enhanced the overall DEHP removal efficiency. During a batch incubation test with vermiculite and the cell suspension, bacterial adhesion to the media surface occurred within 5h and the phthalate esters (PEs) removal was due to both biodegradation and vermiculite adsorption. As the biofilm developed on surface of vermiculite (5-36 h), biodegradation became the predominance for PEs removal. As mature biofilm was formed (36-54 h), the adsorption of PEs by biofilm biomass became a main driving force for the removal of PEs from aqueous phase. The content of extracellular polymers (EPS) of the biofilm and DEHP removal performance showed a significant positive correlation (rp>0.86). PMID:26547620

  11. Biofilm

    Czech Academy of Sciences Publication Activity Database

    Kvíderová, Jana

    Berlin: Springer, 2015 - (Amils, R.; Gargaud, M.; Cernicharo Quintanilla, J.; James Claves, H.; Irvine, W.; Pinti, D.; Viso, M.), s. 1-3 ISBN 978-3-642-27833-4 Institutional support: RVO:67985939 Keywords : biofilm * microbial mat * astrobiology Subject RIV: EF - Botanics

  12. A unique self-organization of bacterial sub-communities creates iridescence in Cellulophaga lytica colony biofilms

    Science.gov (United States)

    Kientz, Betty; Luke, Stephen; Vukusic, Peter; Péteri, Renaud; Beaudry, Cyrille; Renault, Tristan; Simon, David; Mignot, Tâm; Rosenfeld, Eric

    2016-01-01

    Iridescent color appearances are widespread in nature. They arise from the interaction of light with micron- and submicron-sized physical structures spatially arranged with periodic geometry and are usually associated with bright angle-dependent hues. Iridescence has been reported for many animals and marine organisms. However, iridescence has not been well studied in bacteria. Recently, we reported a brilliant “pointillistic” iridescence in colony biofilms of marine Flavobacteria that exhibit gliding motility. The mechanism of their iridescence is unknown. Here, using a multi-disciplinary approach, we show that the cause of iridescence is a unique periodicity of the cell population in the colony biofilm. Cells are arranged together to form hexagonal photonic crystals. Our model highlights a novel pattern of self-organization in a bacterial biofilm. ”Pointillistic” bacterial iridescence can be considered a new light-dependent phenomenon for the field of microbiology.

  13. Jamming bacterial communications: new strategies to combat bacterial infections and the development of biofilms

    DEFF Research Database (Denmark)

    Givskov, Michael Christian; Hentzer, Morten

    more and more resistant to antibiotics, and infections caused by resistant bacteria are on a dramatic increase. It has recently become apparent that the bacterial lifestyle also contributes significantly to this problem. The traditional way of culturing bacteria as planktonic, liquid cultures imprinted...

  14. On the determining role of network structure titania in silicone against bacterial colonization: Mechanism and disruption of biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Depan, D.; Misra, R.D.K., E-mail: dmisra@louisiana.edu

    2014-01-01

    Silicone-based biomedical devices are prone to microbial adhesion, which is the primary cause of concern in the functioning of the artificial device. Silicone exhibiting long-term and effective antibacterial ability is highly desirable to prevent implant related infections. In this regard, nanophase titania was incorporated in silicone as an integral part of the silicone network structure through cross-link mechanism, with the objective to reduce bacterial adhesion to a minimum. The bacterial adhesion was studied using crystal violet assay, while the mechanism of inhibition of biofilm formation was studied via electron microscopy. The incorporation of nanophase titania in silicone dramatically reduced the viability of Staphylococcus aureus (S. aureus) and the capability to adhere on the surface of hybrid silicone by ∼ 93% in relation to stand alone silicone. The conclusion of dramatic reduction in the viability of S. aureus is corroborated by different experimental approaches including biofilm inhibition assay, zone of inhibition, and through a novel experiment that involved incubation of biofilm with titania nanoparticles. It is proposed that the mechanism of disruption of bacterial film in the presence of titania involves puncturing of the bacterial cell membrane. - Highlights: • Network structure titania in silicone imparts antimicrobial activity. • Ability to microbial adhesion is significantly reduced. • Antimicrobial mechanism involves rupture of biofilm.

  15. On the determining role of network structure titania in silicone against bacterial colonization: Mechanism and disruption of biofilm

    International Nuclear Information System (INIS)

    Silicone-based biomedical devices are prone to microbial adhesion, which is the primary cause of concern in the functioning of the artificial device. Silicone exhibiting long-term and effective antibacterial ability is highly desirable to prevent implant related infections. In this regard, nanophase titania was incorporated in silicone as an integral part of the silicone network structure through cross-link mechanism, with the objective to reduce bacterial adhesion to a minimum. The bacterial adhesion was studied using crystal violet assay, while the mechanism of inhibition of biofilm formation was studied via electron microscopy. The incorporation of nanophase titania in silicone dramatically reduced the viability of Staphylococcus aureus (S. aureus) and the capability to adhere on the surface of hybrid silicone by ∼ 93% in relation to stand alone silicone. The conclusion of dramatic reduction in the viability of S. aureus is corroborated by different experimental approaches including biofilm inhibition assay, zone of inhibition, and through a novel experiment that involved incubation of biofilm with titania nanoparticles. It is proposed that the mechanism of disruption of bacterial film in the presence of titania involves puncturing of the bacterial cell membrane. - Highlights: • Network structure titania in silicone imparts antimicrobial activity. • Ability to microbial adhesion is significantly reduced. • Antimicrobial mechanism involves rupture of biofilm

  16. A survey of biofilms on wastewater aeration diffusers suggests bacterial community composition and function vary by substrate type and time.

    Science.gov (United States)

    Noble, Peter A; Park, Hee-Deung; Olson, Betty H; Asvapathanagul, Pitiporn; Hunter, M Colby; Garrido-Baserba, Manel; Lee, Sang-Hoon; Rosso, Diego

    2016-07-01

    Aeration diffusers in wastewater treatment plants generate air bubbles that promote mixing, distribution of dissolved oxygen, and microbial processing of dissolved and suspended matter in bulk solution. Biofouling of diffusers represents a significant problem to wastewater treatment plants because biofilms decrease oxygen transfer efficiency and increase backpressure on the blower. To better understand biofouling, we conducted a pilot study to survey the bacterial community composition and function of biofilms on different diffuser substrates and compare them to those in the bulk solution. DNA was extracted from the surface of ethylene-propylene-diene monomer (EPDM), polyurethane, and silicone diffusers operated for 15 months in a municipal treatment plant and sampled at 3 and 9 months. The bacterial community composition and function of the biofilms and bulk solution were determined by amplifying the 16S rRNA genes and pyrosequencing the amplicons and raw metagenomic DNA. The ordination plots and dendrograms of the 16S rRNA and functional genes showed that while the bacterial community composition and function of the bulk solution was independent of sampling time, the composition and function of the biofilms differed by diffuser type and testing time. For the EPDM and silicone diffusers, the biofilm communities were more similar in composition to the bulk solution at 3 months than 9 months. In contrast, the bacteria on the polyurethane diffusers were more dissimilar to the bulk solution at 3 months than 9 months. Taken together, the survey showed that the community composition and function of bacterial biofilms depend on the diffuser substrate and testing time, which warrants further elucidation. PMID:27294381

  17. Novel Approaches to Manipulating Bacterial Pathogen Biofilms: Whole-Systems Design Philosophy and Steering Microbial Evolution.

    Science.gov (United States)

    Penn, Alexandra S

    2016-01-01

    Understanding and manipulating bacterial biofilms is crucial in medicine, ecology and agriculture and has potential applications in bioproduction, bioremediation and bioenergy. Biofilms often resist standard therapies and the need to develop new means of intervention provides an opportunity to fundamentally rethink our strategies. Conventional approaches to working with biological systems are, for the most part, "brute force", attempting to effect control in an input and effort intensive manner and are often insufficient when dealing with the inherent non-linearity and complexity of living systems. Biological systems, by their very nature, are dynamic, adaptive and resilient and require management tools that interact with dynamic processes rather than inert artefacts. I present an overview of a novel engineering philosophy which aims to exploit rather than fight those properties, and hence provide a more efficient and robust alternative. Based on a combination of evolutionary theory and whole-systems design, its essence is what I will call systems aikido; the basic principle of aikido being to interact with the momentum of an attacker and redirect it with minimal energy expenditure, using the opponent's energy rather than one's own. In more conventional terms, this translates to a philosophy of equilibrium engineering, manipulating systems' own self-organisation and evolution so that the evolutionarily or dynamically stable state corresponds to a function which we require. I illustrate these ideas with a description of a proposed manipulation of environmental conditions to alter the stability of co-operation in the context of Pseudomonas aeruginosa biofilm infection of the cystic fibrosis lung. PMID:27193553

  18. Bacterial growth and biofilm formation in household-stored groundwater collected from public wells.

    Science.gov (United States)

    Burkowska-But, Aleksandra; Kalwasińska, Agnieszka; Swiontek Brzezinska, Maria

    2015-06-01

    The research was aimed at assessing changes in the number of bacteria and evaluating biofilm formation in groundwater collected from public wells, both aspects directly related to the methods of household storage. In the research, water collected from Cretaceous aquifer wells in Toruń (Poland) was stored in a refrigerator and at room temperature. Microbiological parameters of the water were measured immediately after the water collection, and then after 3 and 7 days of storage under specified conditions. The microbiological examination involved determining the number of heterotrophic bacteria capable of growth at 22 and 37 °C, the number of spore-forming bacteria, and the total number of bacteria on membrane filters. The storage may affect water quality to such an extent that the water, which initially met the microbiological criteria for water intended for human consumption, may pose a health risk. The repeated use of the same containers for water storage results in biofilm formation containing live and metabolically active bacterial cells. PMID:26042968

  19. Anti-bacterial and anti-biofilm activity of probiotic bacteria against oral pathogens.

    Science.gov (United States)

    Ben Taheur, Fadia; Kouidhi, Bochra; Fdhila, Kais; Elabed, Hamouda; Ben Slama, Rihab; Mahdouani, Kacem; Bakhrouf, Amina; Chaieb, Kamel

    2016-08-01

    In this study, three lactic acid bacteria (LAB), isolated from barley, traditional dried meat and fermented olive were characterized and tested for their anti-bacterial and anti-biofilm activities against oral bacteria. Our results revealed that the tested LAB were γ-hemolytic and were susceptible to four antibiotics. All the strains were resistant to low pH, bile salt, pepsin and pancreatin. Furthermore, FB2 displayed a high aut-oaggregative phenotype (99.54%) while FF2 exhibited the best co-aggregation rate. Concerning the microbial adhesion to solvent, FB2 was the most hydrophobic strain (data obtained with chloroform and n-hexadecane). In addition Pediococcus pentosaceus FB2 and Lactobacillus brevis FF2 displayed a significant inhibitory effect against Streptococcus salivarius B468 (MIC = 10%). Moreover the selected strains were able to inhibit biofilm formation of Bacillus cereus ATCC14579 (MBIC50 = 28.16%) and S. salivarius B468 (MBIC50 = 42.28%). The selected LAB could be considered as candidate probiotics for further application in functional food and mainly in the prevention of oral diseases. PMID:27317856

  20. Foreign Body Infection Models to Study Host-Pathogen Response and Antimicrobial Tolerance of Bacterial Biofilm

    Directory of Open Access Journals (Sweden)

    Justyna Nowakowska

    2014-08-01

    Full Text Available The number of implanted medical devices is steadily increasing and has become an effective intervention improving life quality, but still carries the risk of infection. These infections are mainly caused by biofilm-forming staphylococci that are difficult to treat due to the decreased susceptibility to both antibiotics and host defense mechanisms. To understand the particular pathogenesis and treatment tolerance of implant-associated infection (IAI animal models that closely resemble human disease are needed. Applications of the tissue cage and catheter abscess foreign body infection models in the mouse will be discussed herein. Both models allow the investigation of biofilm and virulence of various bacterial species and a comprehensive insight into the host response at the same time. They have also been proven to serve as very suitable tools to study the anti-adhesive and anti-infective efficacy of different biomaterial coatings. The tissue cage model can additionally be used to determine pharmacokinetics, efficacy and cytotoxicity of antimicrobial compounds as the tissue cage fluid can be aspirated repeatedly without the need to sacrifice the animal. Moreover, with the advance in innovative imaging systems in rodents, these models may offer new diagnostic measures of infection. In summary, animal foreign body infection models are important tools in the development of new antimicrobials against IAI and can help to elucidate the complex interactions between bacteria, the host immune system, and prosthetic materials.

  1. New Perspectives on the Use of Phytochemicals as an Emergent Strategy to Control Bacterial Infections Including Biofilms

    Directory of Open Access Journals (Sweden)

    Anabela Borges

    2016-07-01

    Full Text Available The majority of current infectious diseases are almost untreatable by conventional antibiotic therapy given the advent of multidrug-resistant bacteria. The degree of severity and the persistence of infections are worsened when microorganisms form biofilms. Therefore, efforts are being applied to develop new drugs not as vulnerable as the current ones to bacterial resistance mechanisms, and also able to target bacteria in biofilms. Natural products, especially those obtained from plants, have proven to be outstanding compounds with unique properties, making them perfect candidates for these much-needed therapeutics. This review presents the current knowledge on the potentialities of plant products as antibiotic adjuvants to restore the therapeutic activity of drugs. Further, the difficulties associated with the use of the existing antibiotics in the treatment of biofilm-related infections are described. To counteract the biofilm resistance problems, innovative strategies are suggested based on literature data. Among the proposed strategies, the use of phytochemicals to inhibit or eradicate biofilms is highlighted. An overview on the use of phytochemicals to interfere with bacterial quorum sensing (QS signaling pathways and underlying phenotypes is provided. The use of phytochemicals as chelating agents and efflux pump inhibitors is also reviewed.

  2. Continuous monitoring of bacterial biofilm growth using uncoated Thickness-Shear Mode resonators

    International Nuclear Information System (INIS)

    Quartz Crystal Microbalances (QCM) were used to nondestructively monitor in real time the microbial growth of the bacteria Staphylococcus epidermidis (S. epidermidis) in a liquid broth. QCM, sometimes referred to as Thickness-Shear Mode (TSM) resonators, are highly sensitive sensors not only able to measure very small mass, but also non-gravimetric contributions of viscoelastic media. These devices can be used as biosensors for bacterial detection and are employed in many applications including their use in the food industry, water and environment monitoring, pharmaceutical sciences and clinical diagnosis. In this work, three strains of S. epidermidis (which differ in the ability to produce biofilm) have been continuously monitored using an array of piezoelectric TSM resonators, at 37 °C in a selective culturing media. Microbial growth was followed by measuring the changes in the crystal resonant frequency and bandwidth at several harmonics. It was shown that microbial growth can be monitored in real time using multichannel and multiparametric QCM sensors.

  3. Continuous monitoring of bacterial biofilm growth using uncoated Thickness-Shear Mode resonators

    Science.gov (United States)

    Castro, P.; Resa, P.; Durán, C.; Maestre, J. R.; Mateo, M.; Elvira, L.

    2012-12-01

    Quartz Crystal Microbalances (QCM) were used to nondestructively monitor in real time the microbial growth of the bacteria Staphylococcus epidermidis (S. epidermidis) in a liquid broth. QCM, sometimes referred to as Thickness-Shear Mode (TSM) resonators, are highly sensitive sensors not only able to measure very small mass, but also non-gravimetric contributions of viscoelastic media. These devices can be used as biosensors for bacterial detection and are employed in many applications including their use in the food industry, water and environment monitoring, pharmaceutical sciences and clinical diagnosis. In this work, three strains of S. epidermidis (which differ in the ability to produce biofilm) have been continuously monitored using an array of piezoelectric TSM resonators, at 37 °C in a selective culturing media. Microbial growth was followed by measuring the changes in the crystal resonant frequency and bandwidth at several harmonics. It was shown that microbial growth can be monitored in real time using multichannel and multiparametric QCM sensors.

  4. Jamming bacterial communications: new strategies to combat bacterial infections and the development of biofilms

    DEFF Research Database (Denmark)

    Givskov, Michael Christian; Hentzer, Morten

    2006-01-01

    more and more resistant to antibiotics, and infections caused by resistant bacteria are on a dramatic increase. It has recently become apparent that the bacterial lifestyle also contributes significantly to this problem. The traditional way of culturing bacteria as planktonic, liquid cultures imprinted...... medicine, agriculture and fish farming, treatment scenarios are based on antimicrobial compounds such as antibiotics, with toxic and growth-inhibitory properties. Control of growth by eradication of bacteria is one of the most important scientific achievements. Unfortunately, bacteria have become gradually...

  5. Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo.

    Science.gov (United States)

    Gao, Lizeng; Liu, Yuan; Kim, Dongyeop; Li, Yong; Hwang, Geelsu; Naha, Pratap C; Cormode, David P; Koo, Hyun

    2016-09-01

    Dental biofilms (known as plaque) are notoriously difficult to remove or treat because the bacteria can be enmeshed in a protective extracellular matrix. It can also create highly acidic microenvironments that cause acid-dissolution of enamel-apatite on teeth, leading to the onset of dental caries. Current antimicrobial agents are incapable of disrupting the matrix and thereby fail to efficiently kill the microbes within plaque-biofilms. Here, we report a novel strategy to control plaque-biofilms using catalytic nanoparticles (CAT-NP) with peroxidase-like activity that trigger extracellular matrix degradation and cause bacterial death within acidic niches of caries-causing biofilm. CAT-NP containing biocompatible Fe3O4 were developed to catalyze H2O2 to generate free-radicals in situ that simultaneously degrade the biofilm matrix and rapidly kill the embedded bacteria with exceptional efficacy (>5-log reduction of cell-viability). Moreover, it displays an additional property of reducing apatite demineralization in acidic conditions. Using 1-min topical daily treatments akin to a clinical situation, we demonstrate that CAT-NP in combination with H2O2 effectively suppress the onset and severity of dental caries while sparing normal tissues in vivo. Our results reveal the potential to exploit nanocatalysts with enzyme-like activity as a potent alternative approach for treatment of a prevalent biofilm-associated oral disease. PMID:27294544

  6. Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis

    Directory of Open Access Journals (Sweden)

    Demirci Ali

    2009-07-01

    Full Text Available Abstract Bacterial cellulose has been used in the food industry for applications such as low-calorie desserts, salads, and fabricated foods. It has also been used in the paper manufacturing industry to enhance paper strength, the electronics industry in acoustic diaphragms for audio speakers, the pharmaceutical industry as filtration membranes, and in the medical field as wound dressing and artificial skin material. In this study, different types of plastic composite support (PCS were implemented separately within a fermentation medium in order to enhance bacterial cellulose (BC production by Acetobacter xylinum. The optimal composition of nutritious compounds in PCS was chosen based on the amount of BC produced. The selected PCS was implemented within a bioreactor to examine the effects on BC production in a batch fermentation. The produced BC was analyzed using X-ray diffraction (XRD, field emission scanning electron microscopy (FESEM, thermogravimetric analysis (TGA, and dynamic mechanical analysis (DMA. Among thirteen types of PCS, the type SFYR+ was selected as solid support for BC production by A. xylinum in a batch biofilm reactor due to its high nitrogen content, moderate nitrogen leaching rate, and sufficient biomass attached on PCS. The PCS biofilm reactor yielded BC production (7.05 g/L that was 2.5-fold greater than the control (2.82 g/L. The XRD results indicated that the PCS-grown BC exhibited higher crystallinity (93% and similar crystal size (5.2 nm to the control. FESEM results showed the attachment of A. xylinum on PCS, producing an interweaving BC product. TGA results demonstrated that PCS-grown BC had about 95% water retention ability, which was lower than BC produced within suspended-cell reactor. PCS-grown BC also exhibited higher Tmax compared to the control. Finally, DMA results showed that BC from the PCS biofilm reactor increased its mechanical property values, i.e., stress at break and Young's modulus when compared to

  7. Evidence of Bacterial Biofilms among Infected and Hypertrophied Tonsils in Correlation with the Microbiology, Histopathology, and Clinical Symptoms of Tonsillar Diseases

    OpenAIRE

    Saad Musbah Alasil; Rahmat Omar; Salmah Ismail; Mohd Yasim Yusof; Ghulam N. Dhabaan; Mahmood Ameen Abdulla

    2013-01-01

    Diseases of the tonsils are becoming more resistant to antibiotics due to the persistence of bacteria through the formation of biofilms. Therefore, understanding the microbiology and pathophysiology of such diseases represent an important step in the management of biofilm-related infections. We have isolated the microorganisms, evaluated their antimicrobial susceptibility, and detected the presence of bacterial biofilms in tonsillar specimens in correlation with the clinical manifestations of...

  8. Effect of Punica granatum L. Flower Water Extract on Five Common Oral Bacteria and Bacterial Biofilm Formation on Orthodontic Wire.

    Directory of Open Access Journals (Sweden)

    Elahe Vahid Dastjerdi

    2014-12-01

    Full Text Available Use of herbal extracts and essences as natural antibacterial compounds has become increasingly popular for the control of oral infectious diseases. Therefore, finding natural antimicrobial products with the lowest side effects seems necessary. The present study sought to assess the effect of Punica granatum L. water extract on five oral bacteria and bacterial biofilm formation on orthodontic wire.Antibacterial property of P. granatum L. water extract was primarily evaluated in brain heart infusion agar medium using well-plate method. The minimum inhibitory concentration and minimum bactericidal concentration were determined by macro-dilution method. The inhibitory effect on orthodontic wire bacterial biofilm formation was evaluated using viable cell count in biofilm medium. At the final phase, samples were fixed and analyzed by Scanning Electron Microscopy.The growth inhibition zone diameter was proportional to the extract concentration. The water extract demonstrated the maximum antibacterial effect on Streptococcus sanguinis ATCC 10556 with a minimum inhibitory concentration of 6.25 mg/ml and maximum bactericidal effect on S. sanguinis ATCC 10556 and S. sobrinus ATCC 27607 with minimum bactericidal concentration of 25 mg/ml. The water extract decreased bacterial biofilm formation by S. sanguinis, S. sobrinus, S. salivarius, S. mutans ATCC 35608 and E. faecalis CIP 55142 by 93.7-100%, 40.6-99.9%, 85.2-86.5%, 66.4-84.4% and 35.5-56.3% respectively.Punica granatum L. water extract had significant antibacterial properties against 5 oral bacteria and prevented orthodontic wire bacterial biofilm formation. However, further investigations are required to generalize these results to the clinical setting.

  9. Bacterial diversity of floor drain biofilms and drain waters in a Listeria monocytogenes contaminated food processing environment.

    Science.gov (United States)

    Dzieciol, Monika; Schornsteiner, Elisa; Muhterem-Uyar, Meryem; Stessl, Beatrix; Wagner, Martin; Schmitz-Esser, Stephan

    2016-04-16

    Sanitation protocols are applied on a daily basis in food processing facilities to prevent the risk of cross-contamination with spoilage organisms. Floor drain water serves along with product-associated samples (slicer dust, brine or cheese smear) as an important hygiene indicator in monitoring Listeria monocytogenes in food processing facilities. Microbial communities of floor drains are representative for each processing area and are influenced to a large degree by food residues, liquid effluents and washing water. The microbial communities of drain water are steadily changing, whereas drain biofilms provide more stable niches. Bacterial communities of four floor drains were characterized using 16S rRNA gene pyrosequencing to better understand the composition and exchange of drain water and drain biofilm communities. Furthermore, the L. monocytogenes contamination status of each floor drain was determined by applying cultivation-independent real-time PCR quantification and cultivation-dependent detection according to ISO11290-1. Pyrosequencing of 16S rRNA genes of drain water and drain biofilm bacterial communities yielded 50,611 reads, which were clustered into 641 operational taxonomic units (OTUs), affiliated to 16 phyla dominated by Proteobacteria, Firmicutes and Bacteroidetes. The most abundant OTUs represented either product- (Lactococcus lactis) or fermentation- and food spoilage-associated phylotypes (Pseudomonas mucidolens, Pseudomonas fragi, Leuconostoc citreum, and Acetobacter tropicalis). The microbial communities in DW and DB samples were distinct in each sample type and throughout the whole processing plant, indicating the presence of indigenous specific microbial communities in each processing compartment. The microbiota of drain biofilms was largely different from the microbiota of the drain water. A sampling approach based on drain water alone may thus only provide reliable information on planktonic bacterial cells but might not allow conclusions

  10. Wound biofilms: lessons learned from oral biofilms

    OpenAIRE

    Mancl, Kimberly A.; Kirsner, Robert S.; Ajdic, Dragana

    2013-01-01

    Biofilms play an important role in the development and pathogenesis of many chronic infections. Oral biofilms, more commonly known as dental plaque,are a primary cause of oral diseases including caries, gingivitis and periodontitis. Oral biofilms are commonly studied as model biofilm systems as they are easily accessible, thus biofilm research in oral diseases is advanced with details of biofilm formation and bacterial interactions being well-elucidated. In contrast, wound research has relati...

  11. Polyphasic analysis of an Azoarcus-Leptothrix-dominated bacterial biofilm developed on stainless steel surface in a gasoline-contaminated hypoxic groundwater.

    Science.gov (United States)

    Benedek, Tibor; Táncsics, András; Szabó, István; Farkas, Milán; Szoboszlay, Sándor; Fábián, Krisztina; Maróti, Gergely; Kriszt, Balázs

    2016-05-01

    Pump and treat systems are widely used for hydrocarbon-contaminated groundwater remediation. Although biofouling (formation of clogging biofilms on pump surfaces) is a common problem in these systems, scarce information is available regarding the phylogenetic and functional complexity of such biofilms. Extensive information about the taxa and species as well as metabolic potential of a bacterial biofilm developed on the stainless steel surface of a pump submerged in a gasoline-contaminated hypoxic groundwater is presented. Results shed light on a complex network of interconnected hydrocarbon-degrading chemoorganotrophic and chemolitotrophic bacteria. It was found that besides the well-known hydrocarbon-degrading aerobic/facultative anaerobic biofilm-forming organisms (e.g., Azoarcus, Leptothrix, Acidovorax, Thauera, Pseudomonas, etc.), representatives of Fe(2+)-and Mn(2+)-oxidizing (Thiobacillus, Sideroxydans, Gallionella, Rhodopseudomonas, etc.) as well as of Fe(3+)- and Mn(4+)-respiring (Rhodoferax, Geobacter, Magnetospirillum, Sulfurimonas, etc.) bacteria were present in the biofilm. The predominance of β-Proteobacteria within the biofilm bacterial community in phylogenetic and functional point of view was revealed. Investigation of meta-cleavage dioxygenase and benzylsuccinate synthase (bssA) genes indicated that within the biofilm, Azoarcus, Leptothrix, Zoogloea, and Thauera species are most probably involved in intrinsic biodegradation of aromatic hydrocarbons. Polyphasic analysis of the biofilm shed light on the fact that subsurface microbial accretions might be reservoirs of novel putatively hydrocarbon-degrading bacterial species. Moreover, clogging biofilms besides their detrimental effects might supplement the efficiency of pump and treat systems. PMID:26825521

  12. Biofilm formation, bacterial adhesion and host response on polymeric implants-issues and prevention

    International Nuclear Information System (INIS)

    Several polymeric materials find application in biomedical implants and devices due to their superior physicochemical properties. The main requirement for these polymers is that they should be biocompatible, which means they prevent bacterial adhesion and are blood compatible. Many parameters contribute to the degree of biocompatibility. This paper discusses the mechanism of the formation of biofilms and lists the factors that influence the bacterial adhesion and haemocompatibility. Polymer surfaces are also modified to enhance adsorption of host cells. The physical, chemical and biological techniques are meant to modify the surface of the biomaterial but at the same time retain the key properties. The various polymer treatment processes have advantages and disadvantages and a few techniques have been proved to be both highly effective at treatment and found suitable for various in vivo environments. The current research focus pertaining to smart materials, biodegradable polymers, combinatorial chemistry, computational modelling and newer analytical techniques to understand polymer-cell interaction holds promise in designing better, cost effective and biocompatible polymers

  13. ALTERNATIVE FOR PHENOL BIODEGRADATION IN OIL CONTAMINATED WASTEWATERS USING AN ADAPTED BACTERIAL BIOFILM LAYER

    Directory of Open Access Journals (Sweden)

    Maria Kopytko

    2008-12-01

    Full Text Available The project studied the biodegradation potential of phenols in an industrial wastewater from an oil field in the province of Santander, Colombia. An elevated potential was established, according to three important factors: the great abundance of microorganisms found in the wastewater and sludge samples collected, the bacterial adaptation to high phenol concentrations (10 mg/l and the elevated elimination efficiencies (up to 86% obtained in the laboratory tests. The laboratory scale treatment system, which consisted of fixed-bed bioreactors with adapted bacterial biofilm, was optimized using a 22 factorial experimental design. The selected variables, studied in their maximum and minimum level were: HRT (hydraulic retention time and the presence or absence of GAC (granular activated carbon layer. The response variable was phenol concentration. The optimum treatment conditions for low and high phenol concentrations (2.14 y 9.30 mg/l, were obtained with the presence of GAC and 18 hours of HRT. The best result for the intermediate phenol concentration (6.13 mg/l was obtained with a 24 hour HRT and the presence of GAC. Nevertheless, the presence of the GAC layer was not significantly important in terms of phenol removal. Moreover, the increase of HRT from 18 to 24 hours, showed no significant improvement in phenol removal.

  14. Toxicity of a polymer-graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells

    Science.gov (United States)

    Mejías Carpio, Isis E.; Santos, Catherine M.; Wei, Xin; Rodrigues, Debora F.

    2012-07-01

    It is critical to develop highly effective antimicrobial agents that are not harmful to humans and do not present adverse effects on the environment. Although antimicrobial studies of graphene-based nanomaterials are still quite limited, some researchers have paid particular attention to such nanocomposites as promising candidates for the next generation of antimicrobial agents. The polyvinyl-N-carbazole (PVK)-graphene oxide (GO) nanocomposite (PVK-GO), which contains only 3 wt% of GO well-dispersed in a 97 wt% PVK matrix, presents excellent antibacterial properties without significant cytotoxicity to mammalian cells. The high polymer content in this nanocomposite makes future large-scale material manufacturing possible in a high-yield process of adiabatic bulk polymerization. In this study, the toxicity of PVK-GO was assessed with planktonic microbial cells, biofilms, and NIH 3T3 fibroblast cells. The antibacterial effects were evaluated against two Gram-negative bacteria: Escherichia coli and Cupriavidus metallidurans; and two Gram-positive bacteria: Bacillus subtilis and Rhodococcus opacus. The results show that the PVK-GO nanocomposite presents higher antimicrobial effects than the pristine GO. The effectiveness of the PVK-GO in solution was demonstrated as the nanocomposite ``encapsulated'' the bacterial cells, which led to reduced microbial metabolic activity and cell death. The fact that the PVK-GO did not present significant cytotoxicity to fibroblast cells offers a great opportunity for potential applications in important biomedical and industrial fields.It is critical to develop highly effective antimicrobial agents that are not harmful to humans and do not present adverse effects on the environment. Although antimicrobial studies of graphene-based nanomaterials are still quite limited, some researchers have paid particular attention to such nanocomposites as promising candidates for the next generation of antimicrobial agents. The polyvinyl

  15. The pneumococcal serine-rich repeat protein is an intra-species bacterial adhesin that promotes bacterial aggregation in vivo and in biofilms.

    Directory of Open Access Journals (Sweden)

    Carlos J Sanchez

    Full Text Available The Pneumococcal serine-rich repeat protein (PsrP is a pathogenicity island encoded adhesin that has been positively correlated with the ability of Streptococcus pneumoniae to cause invasive disease. Previous studies have shown that PsrP mediates bacterial attachment to Keratin 10 (K10 on the surface of lung cells through amino acids 273-341 located in the Basic Region (BR domain. In this study we determined that the BR domain of PsrP also mediates an intra-species interaction that promotes the formation of large bacterial aggregates in the nasopharynx and lungs of infected mice as well as in continuous flow-through models of mature biofilms. Using numerous methods, including complementation of mutants with BR domain deficient constructs, fluorescent microscopy with Cy3-labeled recombinant (rBR, Far Western blotting of bacterial lysates, co-immunoprecipitation with rBR, and growth of biofilms in the presence of antibodies and competitive peptides, we determined that the BR domain, in particular amino acids 122-166 of PsrP, promoted bacterial aggregation and that antibodies against the BR domain were neutralizing. Using similar methodologies, we also determined that SraP and GspB, the Serine-rich repeat proteins (SRRPs of Staphylococcus aureus and Streptococcus gordonii, respectively, also promoted bacterial aggregation and that their Non-repeat domains bound to their respective SRRPs. This is the first report to show the presence of biofilm-like structures in the lungs of animals infected with S. pneumoniae and show that SRRPs have dual roles as host and bacterial adhesins. These studies suggest that recombinant Non-repeat domains of SRRPs (i.e. BR for S. pneumoniae may be useful as vaccine antigens to protect against Gram-positive bacteria that cause infection.

  16. Penetration barrier contributes to bacterial biofilm-associated resistance against only select antibiotics, and exhibits genus-, strain- and antibiotic-specific differences.

    Science.gov (United States)

    Singh, Rachna; Sahore, Simmi; Kaur, Preetinder; Rani, Alka; Ray, Pallab

    2016-08-01

    Bacterial biofilms are implicated in a wide range of implant-based and chronic infections. These infections are often associated with adverse therapeutic outcomes, owing to the decreased antibiotic susceptibility of biofilms compared with their planktonic counterparts. This altered biofilm susceptibility has been attributed to multiple factors, including a reduced antibiotic penetration. Although several studies have addressed the role of penetration barrier in biofilm-associated drug resistance, it remains inconclusive. This study was done to elucidate antibiotic penetration through biofilms formed by Staphylococcus aureus, S. epidermidis, Escherichia coli and Klebsiella pneumoniae, using an agar disk diffusion assay. Penetration capacity of six antimicrobial drugs from different classes (β-lactams, aminoglycosides, tetracyclines, phenicols, fluoroquinolones and glycopeptides) through biofilms formed by standard strains and clinical isolates from catheter-related bloodstream infections (CRBSI) was elucidated by measuring their growth-inhibition zones in lawn cultures on Mueller-Hinton agar, following diffusion of an antibiotic from an overlying disk through their biofilm to the agar medium. Penetration of only select antimicrobials (vancomycin and chloramphenicol) was hindered through biofilms. There was considerable variation in biofilm-permeating capacity depending upon the genus, strain/CRBSI isolate and antibiotic tested. Furthermore, antibiotics failed to kill the biofilm cells independent of penetration, indicating that other factors contributed substantially to biofilm resistance. PMID:27402781

  17. Antibacterial activity of Thymoquinone, an active principle of Nigella sativa and its potency to prevent bacterial biofilm formation

    Directory of Open Access Journals (Sweden)

    Bakhrouf Amina

    2011-04-01

    Full Text Available Abstract Background Thymoquinone is an active principle of Nigella sativa seed known as "Habbah Al-Sauda" in Arabic countries and "Sinouj" in Tunisia. Bacterial biofilms tend to exhibit significant tolerance to antimicrobials drugs during infections. Methods The antibacterial activity of Thymoquinone (TQ and its biofilm inhibition potencies were investigated on 11 human pathogenic bacteria. The growth and development of the biofilm were assessed using the crystal violet (CV and the 2, 3-bis [2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide (XTT reduction assay. Results TQ exhibited a significant bactericidal activity against the majority of the tested bacteria (MICs values ranged from 8 to 32 μg/ml especially Gram positive cocci (Staphylococcus aureus ATCC 25923 and Staphylococcus epidermidis CIP 106510. Crystal violet assay demonstrated that the minimum biofilm inhibition concentration (BIC50 was reached with 22 and 60 μg/ml for Staphylococcus aureus ATCC 25923 and Staphylococcus epidermidis CIP 106510 respectively. In addition our data revealed that cells oxidative activity was influenced by TQ supplementation. In the same way, TQ prevented cell adhesion to glass slides surface. Conclusion The ability of TQ to prevent biofilm formation warrants further investigation to explore its use as bioactive substances with antibiofilm potential.

  18. Water-limiting conditions alter the structure and biofilm-forming ability of bacterial multispecies communities in the alfalfa rhizosphere.

    Directory of Open Access Journals (Sweden)

    Pablo Bogino

    Full Text Available Biofilms are microbial communities that adhere to biotic or abiotic surfaces and are enclosed in a protective matrix of extracellular compounds. An important advantage of the biofilm lifestyle for soil bacteria (rhizobacteria is protection against water deprivation (desiccation or osmotic effect. The rhizosphere is a crucial microhabitat for ecological, interactive, and agricultural production processes. The composition and functions of bacterial biofilms in soil microniches are poorly understood. We studied multibacterial communities established as biofilm-like structures in the rhizosphere of Medicago sativa (alfalfa exposed to 3 experimental conditions of water limitation. The whole biofilm-forming ability (WBFA for rhizospheric communities exposed to desiccation was higher than that of communities exposed to saline or nonstressful conditions. A culture-dependent ribotyping analysis indicated that communities exposed to desiccation or saline conditions were more diverse than those under the nonstressful condition. 16S rRNA gene sequencing of selected strains showed that the rhizospheric communities consisted primarily of members of the Actinobacteria and α- and γ-Proteobacteria, regardless of the water-limiting condition. Our findings contribute to improved understanding of the effects of environmental stress factors on plant-bacteria interaction processes and have potential application to agricultural management practices.

  19. The roles of bacterial biofilm and oxidizing enzymes in the biodegradation of plastic by the bacterium Rhodococcus ruber (C208)

    Science.gov (United States)

    Sivan, A.; Gilan, I.; Santo, M.

    2011-12-01

    Synthetic polymers such as polyethylene are amongst the most durable plastic materials and, therefore are resistant to natural biodegradation resulting in their accumulation in the environment posing a global hazard. We have carried out a two-step enrichment procedure aimed at the isolation of polyethylene-degrading bacteria from soil. The initial enrichment was carried out in soil and the second, in a liquid mineral medium supplemented with linear low-density polyethylene (LDPE; MW 191,000) as the sole carbon source. UV-photooxidation may enhance biodegradation by the formation of carbonyl residues that can be utilized by microorganisms. This screening gave rise to several bacterial strains that were capable of degrading polyethylene. One of these strains (C208), identified as the actinomycete Rhodococcus ruber, colonized the polyethylene producing a biofilm which eventually lead to the degradation of the polyethylene. Adherence and colonization of planktonic C208 cells to the polyethylene surface occurred within minutes from exposure to the polyolefin. This resulted in formation of an initial biofilm that differentiated into cell-aggregation-forming microcolonies. Further organization yielded three-dimensional sessile structures as the mature biofilm. The ratio between the population densities, of the biofilm and planktonic, was about 60:1, indicating a high preference for the biofilm mode of growth. Analysis of the extra-cellular polymeric substances (EPS) in the biofilm of C208 revealed that the polysaccharides level was up to 2.5 folds higher than that of the protein. Surprisingly, the EPS also contained DNA that is actively excreted from live bacterial cells. This is supported by the reduction in biofilm content (but not in viability) following addition, of DNase 1 and RNAse A. The biofilm showed a high viability even after 60 days of incubation in a carbon free medium. This durability of the biofilm, can be attributed to biodegradation of polyethylene. A

  20. Effect of Punica granatum L. Flower Water Extract on Five Common Oral Bacteria and Bacterial Biofilm Formation on Orthodontic Wire

    OpenAIRE

    Elahe Vahid Dastjerdi; Zahra Abdolazimi; Marzieh Ghazanfarian; Parisa Amdjadi; Mohammad Kamalinejad; Arash Mahboubi

    2014-01-01

    Background: Use of herbal extracts and essences as natural antibacterial compounds has become increasingly popular for the control of oral infectious diseases. Therefore, finding natural antimicrobial products with the lowest side effects seems necessary. The present study sought to assess the effect of Punica granatum L. water extract on five oral bacteria and bacterial biofilm formation on orthodontic wire. Methods: Antibacterial property of P. granatum L. water extract was primarily evalua...

  1. Preparation of Silver- and Zinc-Doped Mullite-Based Ceramics Showing Anti-Bacterial Biofilm Properties

    OpenAIRE

    Suhair Saleh; Mutasem O. Taha; Haddadin, Randa N.; Duá Marzooqa; Hamdallah Hodali

    2011-01-01

    Zinc- and silver-doped mullite ceramic discs were prepared and tested as potentially resistant materials against bacterial adhesion and biofilm formation. Elemental analysis and X-ray diffraction studies showed that zinc ions were incorporated in the structural framework of the mullite, while silver ions remained outside the mullite crystal lattice, which allowed their slow (0.02 ppm/24 hours) leaching into the surrounding aqueous environment. In agreement with this behavior, silver-doped mul...

  2. Metagenome Survey of a Multispecies and Alga-Associated Biofilm Revealed Key Elements of Bacterial-Algal Interactions in Photobioreactors

    OpenAIRE

    Krohn-Molt, Ines; Wemheuer, Bernd; Alawi, Malik; Poehlein, Anja; Güllert, Simon; Schmeisser, Christel; Pommerening-Röser, Andreas; Grundhoff, Adam; Daniel, Rolf; Hanelt, Dieter; Wolfgang R Streit

    2013-01-01

    Photobioreactors (PBRs) are very attractive for sunlight-driven production of biofuels and capturing of anthropogenic CO2. One major problem associated with PBRs however, is that the bacteria usually associated with microalgae in nonaxenic cultures can lead to biofouling and thereby affect algal productivity. Here, we report on a phylogenetic, metagenome, and functional analysis of a mixed-species bacterial biofilm associated with the microalgae Chlorella vulgaris and Scenedesmus obliquus in ...

  3. Polysaccharide Capsule and Sialic Acid-Mediated Regulation Promote Biofilm-Like Intracellular Bacterial Communities during Cystitis ▿

    OpenAIRE

    Anderson, Gregory G.; Goller, Carlos C.; Justice, Sheryl; Hultgren, Scott J.; Seed, Patrick C.

    2010-01-01

    Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections (UTIs). A murine UTI model has revealed an infection cascade whereby UPEC undergoes cycles of invasion of the bladder epithelium, intracellular proliferation in polysaccharide-containing biofilm-like masses called intracellular bacterial communities (IBC), and then dispersal into the bladder lumen to initiate further rounds of epithelial colonization and invasion. We predicted that the UPEC K1 polysaccharid...

  4. Preparation of Silver- and Zinc-Doped Mullite-Based Ceramics Showing Anti-Bacterial Biofilm Properties

    Directory of Open Access Journals (Sweden)

    Suhair Saleh

    2011-03-01

    Full Text Available Zinc- and silver-doped mullite ceramic discs were prepared and tested as potentially resistant materials against bacterial adhesion and biofilm formation. Elemental analysis and X-ray diffraction studies showed that zinc ions were incorporated in the structural framework of the mullite, while silver ions remained outside the mullite crystal lattice, which allowed their slow (0.02 ppm/24 hours leaching into the surrounding aqueous environment. In agreement with this behavior, silver-doped mullite showed potent resistance against surface attachment of Pseudomonas aeruginosa, while on the other hand, zinc-doped mullite failed to stop bacterial attachment.

  5. A morphological study of the changes in the ultrastructure of a bacterial biofilm disrupted by an ac corona discharge in air

    Science.gov (United States)

    Stepanova, Olga; Rybalchenko, Oksana; Astafiev, Alexander; Orlova, Olga; Kudryavtsev, Anatoly; Kapustina, Valentina

    2016-08-01

    The morphology of bacterial cells and biofilms subjected to a low frequency (˜105 Hz) ac (˜10-1 A) corona discharge was investigated using electron microscopy. A low-frequency ac corona discharge in air is shown to have a bactericidal and bacteriostatic effect on Escherichia coli M17 culture at both the cellular and population levels. Corona exposure inhibits the formation of a microbial community and results in the destruction of formed biofilms. This paper presents data on changes in the ultrastructure of cells and biofilms after corona treatment. Our results suggest that the E. coli M17 cells inside biofilms are affected with results similar to sub-lethal and lethal thermal exposure. Some of the biological aspects of colony and biofilm cells death are evaluated. Morphological changes in the ultrastructure of the biofilms under corona treatment are described. Our results indicate that the heating effect is the main factor responsible for the corona-induced inactivation of bacteria.

  6. Biofilm Infections

    DEFF Research Database (Denmark)

    A still increasing interest and emphasis on the sessile bacterial lifestyle biofilms has been seen since it was realized that the vast majority of the total microbial biomass exists as biofilms. Aggregation of bacteria was first described by Leeuwenhoek in 1677, but only recently recognized as...... being important in chronic infection. In 1993 the American Society for Microbiology (ASM) recognized that the biofilm mode of growth was relevant to microbiology. This book covers both the evidence for biofilms in many chronic bacterial infections as well as the problems facing these infections such as...... diagnostics, pathogenesis, treatment regimes and in vitro and in vivo models for studying biofilms. This is the first scientific book on biofilm infections, chapters written by the world leading scientist and clinicians. The intended audience of this book is scientists, teachers at university level as well as...

  7. Biofilm Infections

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Jensen, Peter Østrup; Moser, Claus Ernst; Høiby, Niels

    being important in chronic infection. In 1993 the American Society for Microbiology (ASM) recognized that the biofilm mode of growth was relevant to microbiology. This book covers both the evidence for biofilms in many chronic bacterial infections as well as the problems facing these infections such as......A still increasing interest and emphasis on the sessile bacterial lifestyle biofilms has been seen since it was realized that the vast majority of the total microbial biomass exists as biofilms. Aggregation of bacteria was first described by Leeuwenhoek in 1677, but only recently recognized as...... diagnostics, pathogenesis, treatment regimes and in vitro and in vivo models for studying biofilms. This is the first scientific book on biofilm infections, chapters written by the world leading scientist and clinicians. The intended audience of this book is scientists, teachers at university level as well as...

  8. In Situ Confocal Raman Microscopy of Hydrated Early Stages of Bacterial Biofilm Formation on Various Surfaces in a Flow Cell.

    Science.gov (United States)

    Smith-Palmer, Truis; Lin, Sicheng; Oguejiofor, Ikenna; Leng, Tianyang; Pustam, Amanda; Yang, Jin; Graham, Lori L; Wyeth, Russell C; Bishop, Cory D; DeMont, M Edwin; Pink, David

    2016-02-01

    Bacterial biofilms are precursors to biofouling by other microorganisms. Understanding their initiation may allow us to design better ways to inhibit them, and thus to inhibit subsequent biofouling. In this study, the ability of confocal Raman microscopy to follow the initiation of biofouling by a marine bacterium, Pseudoalteromonas sp. NCIMB 2021 (NCIMB 2021), in a flow cell, using optical and confocal Raman microscopy, was investigated. The base of the flow cell comprised a cover glass. The cell was inoculated and the bacteria attached to, and grew on, the cover glass. Bright field images and Raman spectra were collected directly from the hydrated biofilms over several days. Although macroscopically the laser had no effect on the biofilm, within the first 24 h cells migrated away from the position of the laser beam. In the absence of flow, a buildup of extracellular substances occurred at the base of the biofilm. When different coatings were applied to cover glasses before they were assembled into the flow cells, the growth rate, structure, and composition of the resulting biofilm was affected. In particular, the ratio of Resonance Raman peaks from cytochrome c (CC) in the extracellular polymeric substances, to the Raman phenylalanine (Phe) peak from protein in the bacteria, depended on both the nature of the surface and the age of the biofilm. The ratios were highest for 24 h colonies on a hydrophobic surface. Absorption of a surfactant with an ethyleneoxy chain into the hydrophobic coating created a surface similar to that given with a simple PEG coating, where bacteria grew in colonies away from the surface rather than along the surface, and CC:Phe ratios were initially low but increased at least fivefold in the first 48 h. PMID:26903564

  9. Development of bacterial biofilms on artificial corals in comparison to surface-associated microbes of hard corals.

    Directory of Open Access Journals (Sweden)

    Michael John Sweet

    Full Text Available Numerous studies have demonstrated the differences in bacterial communities associated with corals versus those in their surrounding environment. However, these environmental samples often represent vastly different microbial micro-environments with few studies having looked at the settlement and growth of bacteria on surfaces similar to corals. As a result, it is difficult to determine which bacteria are associated specifically with coral tissue surfaces. In this study, early stages of passive settlement from the water column to artificial coral surfaces (formation of a biofilm were assessed. Changes in bacterial diversity (16S rRNA gene, were studied on artificially created resin nubbins that were modelled from the skeleton of the reef building coral Acropora muricata. These models were dip-coated in sterile agar, mounted in situ on the reef and followed over time to monitor bacterial community succession. The bacterial community forming the biofilms remained significantly different (R = 0.864 p<0.05 from that of the water column and from the surface mucus layer (SML of the coral at all times from 30 min to 96 h. The water column was dominated by members of the α-proteobacteria, the developed community on the biofilms dominated by γ-proteobacteria, whereas that within the SML was composed of a more diverse array of groups. Bacterial communities present within the SML do not appear to arise from passive settlement from the water column, but instead appear to have become established through a selection process. This selection process was shown to be dependent on some aspects of the physico-chemical structure of the settlement surface, since agar-coated slides showed distinct communities to coral-shaped surfaces. However, no significant differences were found between different surface coatings, including plain agar and agar enhanced with coral mucus exudates. Therefore future work should consider physico-chemical surface properties as

  10. Concentric coiled tubing application for sand cleanout in horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Falk, K.; Fraser, B. [Nowsco Well Services Ltd., Calgary, AB (Canada)

    1998-10-01

    Concentric tubing technology which has opened up a new area of well service capabilities is discussed. One of these techniques involves incorporating concentric tubing equipment with a patented jet pump tool (Sand-Vac{sup S}M) for the purpose of cleaning well sand out of low pressure horizontal wells. Various issues relating to well cleanout using this technology are described, with brief summaries of five case histories. 5 refs., 6 figs.

  11. Beneficial biofilms

    Directory of Open Access Journals (Sweden)

    Sara R Robertson

    2015-10-01

    Full Text Available Surface-adherent biofilm growth is a common trait of bacteria and other microorganisms in nature. Within biofilms, organisms are present in high density and are enmeshed in an organic matrix containing polysaccharides and other molecules. The close proximity of organisms within biofilms facilitates microbial interactions and signaling, including many metabolic processes in which consortia rather than individual organisms participate. Biofilm growth also enables microorganisms to withstand chemical and biological stresses. Here, we review some current literature and document representative beneficial aspects of biofilms using examples from wastewater treatment, microbial fuel cells, biological repair (biocementation of stonework, and biofilm protection against Candida albicans infections. Finally, we address a chemical ecology strategy whereby desired microbial succession and beneficial biofilm formation can be encouraged via manipulation of culture conditions and bacterial signaling.

  12. Dispersed cells represent a distinct stage in the transition from bacterial biofilm to planktonic lifestyles

    DEFF Research Database (Denmark)

    Chua, Song Lin; Liu, Yang; Yam, Joey Kuok Hoong;

    2014-01-01

    Bacteria assume distinct lifestyles during the planktonic and biofilm modes of growth. Increased levels of the intracellular messenger c-di-GMP determine the transition from planktonic to biofilm growth, while a reduction causes biofilm dispersal. It is generally assumed that cells dispersed from...... biofilms immediately go into the planktonic growth phase. Here we use single-nucleotide resolution transcriptomic analysis to show that the physiology of dispersed cells from Pseudomonas aeruginosa biofilms is highly different from those of planktonic and biofilm cells. In dispersed cells, the expression...... of the small regulatory RNAs RsmY and RsmZ is downregulated, whereas secretion genes are induced. Dispersed cells are highly virulent against macrophages and Caenorhabditis elegans compared with planktonic cells. In addition, they are highly sensitive towards iron stress, and the combination of a...

  13. BslA is a self-assembling bacterial hydrophobin that coats the Bacillus subtilis biofilm

    OpenAIRE

    Hobley, Laura; Ostrowski, Adam; Rao, Francesco V.; Bromley, Keith M.; Porter, Michael; Prescott, Alan R.; MacPhee, Cait E.; van Aalten, Daan M F; Nicola R. Stanley-Wall

    2013-01-01

    Biofilms represent the predominant mode of microbial growth in the natural environment. Bacillus subtilis is a ubiquitous Gram-positive soil bacterium that functions as an effective plant growth-promoting agent. The biofilm matrix is composed of an exopolysaccharide and an amyloid fiber-forming protein, TasA, and assembles with the aid of a small secreted protein, BslA. Here we show that natively synthesized and secreted BslA forms surface layers around the biofilm. Biophysical analysis demon...

  14. ANALYSIS OF CHROMATE UPTAKE IN BACTERIAL BIOFILMS DEVELOPED ON ABIOTIC SUPPORT

    OpenAIRE

    Aditi Bhattacharya

    2014-01-01

    Microorganisms also practice community living and form biofilms developed on preferred surfaces. The sessile and planktonic organisms show differences in hydrophobicity as determined by the BATH index. The saccharides of the EPS produced was determined using the phenol-sulphuric acid method and Rhamnolipids using the Orcinol method. Dye released from stained biofilms is also indicative of the density of the biofilm. Motility was reduced on formation of cell aggregates in m...

  15. Bacterial Biofilms and Catheters: A Key to Understanding Bacterial Strategies in Catheter-Associated Urinary Tract Infection

    OpenAIRE

    Nickel, J. Curtis; Costerton, J. William

    1992-01-01

    Despite major technological improvements in catheter drainage systems, the indwelling Foley catheter remains the most common cause of nosocomial infection in medical practice. By approaching this common complicated urinary tract infection from the perspective of the biofilm strategy bacteria appear to use to overcome obstacles to produce bacteriuria, one appreciates a new understanding of these infections. An adherent biofilm of bacteria in their secretory products ascends the luminal and ext...

  16. Evidence of Bacterial Biofilms among Infected and Hypertrophied Tonsils in Correlation with the Microbiology, Histopathology, and Clinical Symptoms of Tonsillar Diseases.

    Science.gov (United States)

    Alasil, Saad Musbah; Omar, Rahmat; Ismail, Salmah; Yusof, Mohd Yasim; Dhabaan, Ghulam N; Abdulla, Mahmood Ameen

    2013-01-01

    Diseases of the tonsils are becoming more resistant to antibiotics due to the persistence of bacteria through the formation of biofilms. Therefore, understanding the microbiology and pathophysiology of such diseases represent an important step in the management of biofilm-related infections. We have isolated the microorganisms, evaluated their antimicrobial susceptibility, and detected the presence of bacterial biofilms in tonsillar specimens in correlation with the clinical manifestations of tonsillar diseases. Therefore, a total of 140 palatine tonsils were collected from 70 patients undergoing tonsillectomy at University Malaya Medical Centre. The most recovered isolate was Staphylococcus aureus (39.65%) followed by Haemophilus influenzae (18.53%). There was high susceptibility against all selected antibiotics except for cotrimoxazole. Bacterial biofilms were detected in 60% of patients and a significant percentage of patients demonstrated infection manifestation rather than obstruction. In addition, an association between clinical symptoms like snore, apnea, nasal obstruction, and tonsillar hypertrophy was found to be related to the microbiology of tonsils particularly to the presence of biofilms. In conclusion, evidence of biofilms in tonsils in correlation with the demonstrated clinical symptoms explains the recalcitrant nature of tonsillar diseases and highlights the importance of biofilm's early detection and prevention towards better therapeutic management of biofilm-related infections. PMID:24454384

  17. The Relationship of Bacterial Biofilms and Capsular Contracture in Breast Implants.

    Science.gov (United States)

    Ajdic, Dragana; Zoghbi, Yasmina; Gerth, David; Panthaki, Zubin J; Thaller, Seth

    2016-03-01

    Capsular contracture is a common sequelae of implant-based breast augmentation. Despite its prevalence, the etiology of capsular contracture remains controversial. Numerous studies have identified microbial biofilms on various implantable materials, including breast implants. Furthermore, biofilms have been implicated in subclinical infections associated with other surgical implants. In this review, we discuss microbial biofilms as a potential etiology of capsular contracture. The review also outlines the key diagnostic modalities available to identify the possible infectious agents found in biofilm, as well as available preventative and treatment measures. PMID:26843099

  18. Bacterial biofilm shows persistent resistance to liquid wetting and gas penetration

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Alexander K.; Pokroy, Boaz; Seminara, Agnese; Aizenberg, Joanna (Harvard)

    2011-09-28

    Most of the world's bacteria exist in robust, sessile communities known as biofilms, ubiquitously adherent to environmental surfaces from ocean floors to human teeth and notoriously resistant to antimicrobial agents. We report the surprising observation that Bacillus subtilis biofilm colonies and pellicles are extremely nonwetting, greatly surpassing the repellency of Teflon toward water and lower surface tension liquids. The biofilm surface remains nonwetting against up to 80% ethanol as well as other organic solvents and commercial biocides across a large and clinically important concentration range. We show that this property limits the penetration of antimicrobial liquids into the biofilm, severely compromising their efficacy. To highlight the mechanisms of this phenomenon, we performed experiments with mutant biofilms lacking ECM components and with functionalized polymeric replicas of biofilm microstructure. We show that the nonwetting properties are a synergistic result of ECM composition, multiscale roughness, reentrant topography, and possibly yet other factors related to the dynamic nature of the biofilm surface. Finally, we report the impenetrability of the biofilm surface by gases, implying defense capability against vapor-phase antimicrobials as well. These remarkable properties of B. subtilis biofilm, which may have evolved as a protection mechanism against native environmental threats, provide a new direction in both antimicrobial research and bioinspired liquid-repellent surface paradigms.

  19. Biofilm Development

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2015-01-01

    , and not by specific genetic programs. It appears that biofilm formation can occur through multiple pathways and that the spatial structure of the biofilms is species dependent as well as dependent on environmental conditions. Bacterial subpopulations, e.g., motile and nonmotile subpopulations, can develop...

  20. Establishing a role for bacterial cellulose in environmental interactions: lessons learned from diverse biofilm-producing Proteobacteria

    Directory of Open Access Journals (Sweden)

    Richard Vincent Augimeri

    2015-11-01

    Full Text Available Bacterial cellulose (BC serves as a molecular glue to facilitate intra- and inter-domain interactions in nature. Biosynthesis of BC-containing biofilms occurs in a variety of Proteobacteria that inhabit diverse ecological niches. The enzymatic and regulatory systems responsible for the polymerization, exportation and regulation of BC are equally as diverse. Though the magnitude and environmental consequences of BC production are species-specific, the common role of BC containing biofilms is to establish close contact with a preferred host to facilitate efficient host-bacteria interactions. Universally, BC aids in attachment, adherence, and subsequent colonization of a substrate. Bi-directional interactions influence host physiology, bacterial physiology and regulation of BC biosynthesis, primarily through modulation of intracellular bis-(3’→5’-cyclic diguanylate (c-di-GMP levels. Depending on the circumstance, BC producers exhibit a pathogenic or symbiotic relationship with plant, animal or fungal hosts. Rhizobiaceae species colonize plant roots, Pseudomonadaceae inhabit the phyllosphere, Acetobacteriaceae associate with sugar-loving insects and inhabit the carposphere, Enterobacteriaceae use fresh produce as vehicles to infect animal hosts, and Vibrionaceae, particularly Aliivibrio fischeri, colonize the light organ of squid. This review will highlight the diversity of the biosynthesis and regulation of BC in nature by discussing various examples of Proteobacteria that use BC-containing biofilms to facilitate host-bacteria interactions. Through discussion of current data we will establish new directions for the elucidation of BC biosynthesis, regulation and ecophysiological roles.

  1. Establishing a Role for Bacterial Cellulose in Environmental Interactions: Lessons Learned from Diverse Biofilm-Producing Proteobacteria

    Science.gov (United States)

    Augimeri, Richard V.; Varley, Andrew J.; Strap, Janice L.

    2015-01-01

    Bacterial cellulose (BC) serves as a molecular glue to facilitate intra- and inter-domain interactions in nature. Biosynthesis of BC-containing biofilms occurs in a variety of Proteobacteria that inhabit diverse ecological niches. The enzymatic and regulatory systems responsible for the polymerization, exportation, and regulation of BC are equally as diverse. Though the magnitude and environmental consequences of BC production are species-specific, the common role of BC-containing biofilms is to establish close contact with a preferred host to facilitate efficient host–bacteria interactions. Universally, BC aids in attachment, adherence, and subsequent colonization of a substrate. Bi-directional interactions influence host physiology, bacterial physiology, and regulation of BC biosynthesis, primarily through modulation of intracellular bis-(3′→5′)-cyclic diguanylate (c-di-GMP) levels. Depending on the circumstance, BC producers exhibit a pathogenic or symbiotic relationship with plant, animal, or fungal hosts. Rhizobiaceae species colonize plant roots, Pseudomonadaceae inhabit the phyllosphere, Acetobacteriaceae associate with sugar-loving insects and inhabit the carposphere, Enterobacteriaceae use fresh produce as vehicles to infect animal hosts, and Vibrionaceae, particularly Aliivibrio fischeri, colonize the light organ of squid. This review will highlight the diversity of the biosynthesis and regulation of BC in nature by discussing various examples of Proteobacteria that use BC-containing biofilms to facilitate host–bacteria interactions. Through discussion of current data we will establish new directions for the elucidation of BC biosynthesis, its regulation and its ecophysiological roles. PMID:26635751

  2. Bacterial Composition of Biofilms Collected From Two Service Areas in a Metropolitan Drinking Water Distribution System

    Science.gov (United States)

    The development and succession of bacteria were examined by 16S rRNA gene clone libraries generated from various biofilms within a metropolitan water distribution system. Biofilms were obtained from off-line devices using polycarbonate coupons from annular reactors incubated for ...

  3. Matrix polymer species have distinct effects on the mechanics of bacterial biofilms

    Science.gov (United States)

    Kovach, Kristin; Davis-Fields, Megan; Gordon, Vernita

    2015-03-01

    Biofilms are aggregates of microorganisms embedded in a self-produced extracellular polymer matrix. The matrix confers protection to these microorganisms against mechanical and chemical stresses that they may experience in their environment. The bacterium Pseudomonas aeruginosa is widely used as a model biofilm-forming organism because it is an opportunistic human pathogen common in hospital-acquired infections, in chronic wounds, and in cystic fibrosis lung disease. P. aeruginosa strain PA01 forms biofilms that are primarily structured by the extracellular polysaccharides Pel and Psl. Using bulk rheological measurements, we show that these polysaccharides each play a unique role in the mechanical robustness of the biofilm. Psl increases the elastic storage modulus while Pel increases the ductility of the biofilm. Increased expression of either Psl or Pel increases the yield stress by about the same amount. Identifying the mechanism(s) by which these polymers contribute to the mechanical toughness of the biofilm could allow new approaches to effective biofilm clearance, by revealing targets for disruption that would weaken the biofilm.

  4. An In Vitro Study of the Effect of Fluoridated Milk on Oral Bacterial Biofilms

    OpenAIRE

    Pratten, J.; Bedi, R.; Wilson, M

    2000-01-01

    Microcosmic dental plaques were grown in artificial saliva and supplemented with either milk or fluoridated milk. The presence of fluoride in the milk increased the pH of the biofilms and reduced the proportions of streptococci, demonstrating that in this model, fluoridation of milk produces biofilms with reduced cariogenic potential.

  5. Quorum-sensing regulation governs bacterial adhesion, biofilm development, and host colonization in Pantoea stewartii subspecies stewartii.

    Science.gov (United States)

    Koutsoudis, Maria D; Tsaltas, Dimitrios; Minogue, Timothy D; von Bodman, Susanne B

    2006-04-11

    The phytopathogenic bacterium Pantoea stewartii subsp. stewartii synthesizes stewartan exo/capsular polysaccharide (EPS) in a cell density-dependent manner governed by the EsaI/EsaR quorum-sensing (QS) system. This study analyzes biofilm development and host colonization of the WT and QS regulatory mutant strains of P. stewartii. First, we show that the cell density-dependent synthesis of stewartan EPS, governed by the EsaI/EsaR QS system, is required for proper bacterial adhesion and development of spatially defined, 3D biofilms. Second, a nonvirulent mutant lacking the esaI gene adheres strongly to surfaces and develops densely packed, less structurally defined biofilms in vitro. This strain appears to be arrested in a low cell density developmental mode. Exposure of this strain to exogenous N-acyl-homoserine lactone counteracts this adhesion phenotype. Third, QS mutants lacking the EsaR repressor attach poorly to surfaces and form amorphous biofilms heavily enmeshed in excess EPS. Fourth, the WT strain disseminates efficiently within the xylem, primarily in a basipetal direction. In contrast, the two QS mutant strains remain largely localized at the site of infection. Fifth, and most significantly, epifluorescence microscopic imaging of infected leaf tissue and excised xylem vessels reveals that the bacteria colonize the xylem with unexpected specificity, particularly toward the annular rings and spiral secondary wall thickenings of protoxylem, as opposed to indiscriminate growth to fill the xylem lumen. These observations are significant to bacterial plant pathogenesis in general and may reveal targets for disease control. PMID:16585516

  6. Potential mode of protection of silkworm pupae from environmental stress by harboring the bacterial biofilm on the surfaces of silk cocoons.

    Science.gov (United States)

    Halder, Pranab K; Naskar, Deboki; Kumar, Akash; Yao, Juming; Kundu, Subhas C; Ghosh, Anindya S

    2015-02-01

    The silkworm forms cocoon to protect its pupa that survives for months inside the cocoon without being affected by various environmental stresses. To understand the possible mode of pupal survival within the cocoon encasement, we investigate the cause that protects the cocoon. During the end of the spinning process, we have isolated different bacterial species from the cocoon surface. These are identified using molecular techniques and checked for their abilities to form biofilm in vitro. The bacteria are able to form biofilm either individually or in consortia. Of which, Bacillus and Erwinia species are prominent biofilm formers. Interestingly, these bacteria have the ability to form biofilm on the cocoon mimetic surface of the silk protein Sericin Hope that contains only sericin. The origin and the behavior of the bacteria lead us to hypothesize the possible role of biofilm layer on the cocoon surface, which provides protection from adverse environmental conditions. PMID:25292249

  7. Process Performance and Bacterial Community Structure Under Increasing Influent Disturbances in a Membrane-Aerated Biofilm Reactor.

    Science.gov (United States)

    Tian, Hailong; Yan, Yingchun; Chen, Yuewen; Wu, Xiaolei; Li, Baoan

    2016-02-01

    The membrane-aerated biofilm reactor (MABR) is a promising municipal wastewater treatment process. In this study, two cross-flow MABRs were constructed to explore the carbon and nitrogen removal performance and bacterial succession, along with changes of influent loading shock comprising flow velocity, COD, and NH4-N concentrations. Redundancy analysis revealed that the function of high flow velocity was mainly embodied in facilitating contaminants diffusion and biosorption rather than the success of overall bacterial populations (p > 0.05). In contrast, the influent NH4-N concentration contributed most to the variance of reactor efficiency and community structure (p < 0.05). Pyrosequencing results showed that Anaerolineae, and Beta- and Alphaproteobacteria were the dominant groups in biofilms for COD and NH4-N removal. Among the identified genera, Nitrosomonas and Nitrospira were the main nitrifiers, and Hyphomicrobium, Hydrogenophaga, and Rhodobacter were the key denitrifiers. Meanwhile, principal component analysis indicated that bacterial shift in MABR was probably the combination of stochastic and deterministic processes. PMID:26528534

  8. Activation of phagocytic cells by Staphylococcus epidermidis biofilms: effects of extracellular matrix proteins and the bacterial stress protein GroEL on netosis and MRP-14 release.

    Science.gov (United States)

    Dapunt, Ulrike; Gaida, Matthias M; Meyle, Eva; Prior, Birgit; Hänsch, Gertrud M

    2016-07-01

    The recognition and phagocytosis of free-swimming (planktonic) bacteria by polymorphonuclear neutrophils have been investigated in depth. However, less is known about the neutrophil response towards bacterial biofilms. Our previous work demonstrated that neutrophils recognize activating entities within the extracellular polymeric substance (EPS) of biofilms (the bacterial heat shock protein GroEL) and that this process does not require opsonization. Aim of this study was to evaluate the release of DNA by neutrophils in response to biofilms, as well as the release of the inflammatory cytokine MRP-14. Neutrophils were stimulated with Staphylococcus epidermidis biofilms, planktonic bacteria, extracted EPS and GroEL. Release of DNA and of MRP-14 was evaluated. Furthermore, tissue samples from patients suffering from biofilm infections were collected and evaluated by histology. MRP-14 concentration in blood samples was measured. We were able to show that biofilms, the EPS and GroEL induce DNA release. MRP-14 was only released after stimulation with EPS, not GroEL. Histology of tissue samples revealed MRP-14 positive cells in association with neutrophil infiltration and MRP-14 concentration was elevated in blood samples of patients suffering from biofilm infections. Our data demonstrate that neutrophil-activating entities are present in the EPS and that GroEL induces DNA release by neutrophils. PMID:27109773

  9. Evidence of Bacterial Biofilms among Infected and Hypertrophied Tonsils in Correlation with the Microbiology, Histopathology, and Clinical Symptoms of Tonsillar Diseases

    Directory of Open Access Journals (Sweden)

    Saad Musbah Alasil

    2013-01-01

    Full Text Available Diseases of the tonsils are becoming more resistant to antibiotics due to the persistence of bacteria through the formation of biofilms. Therefore, understanding the microbiology and pathophysiology of such diseases represent an important step in the management of biofilm-related infections. We have isolated the microorganisms, evaluated their antimicrobial susceptibility, and detected the presence of bacterial biofilms in tonsillar specimens in correlation with the clinical manifestations of tonsillar diseases. Therefore, a total of 140 palatine tonsils were collected from 70 patients undergoing tonsillectomy at University Malaya Medical Centre. The most recovered isolate was Staphylococcus aureus (39.65% followed by Haemophilus influenzae (18.53%. There was high susceptibility against all selected antibiotics except for cotrimoxazole. Bacterial biofilms were detected in 60% of patients and a significant percentage of patients demonstrated infection manifestation rather than obstruction. In addition, an association between clinical symptoms like snore, apnea, nasal obstruction, and tonsillar hypertrophy was found to be related to the microbiology of tonsils particularly to the presence of biofilms. In conclusion, evidence of biofilms in tonsils in correlation with the demonstrated clinical symptoms explains the recalcitrant nature of tonsillar diseases and highlights the importance of biofilm’s early detection and prevention towards better therapeutic management of biofilm-related infections.

  10. ANALYSIS OF CHROMATE UPTAKE IN BACTERIAL BIOFILMS DEVELOPED ON ABIOTIC SUPPORT

    Directory of Open Access Journals (Sweden)

    Aditi Bhattacharya

    2014-08-01

    Full Text Available Microorganisms also practice community living and form biofilms developed on preferred surfaces. The sessile and planktonic organisms show differences in hydrophobicity as determined by the BATH index. The saccharides of the EPS produced was determined using the phenol-sulphuric acid method and Rhamnolipids using the Orcinol method. Dye released from stained biofilms is also indicative of the density of the biofilm. Motility was reduced on formation of cell aggregates in mature biofilms. The extent of light penetration through the biofilms indicates the extent of stacking, its cohesive or incrusting nature, determined using a light meter. Chromium has wide industrial use and hexavalent chromate is toxic on account of its higher solubility. Among the different processes and approaches being used by microorganisms for chromate remediation, the use of biofilms may be a good alternative for bioremediation of hexavalent chromium to trivalent chromium. Chromate uptake was studied in suspended or free living daughter cells that have originated out of a single mature biofilm. FTIR spectra of loaded and unloaded biomass can be used to determine the functional groups responsible for biosorption of chromium

  11. From in vitro to in vivo Models of Bacterial Biofilm-Related Infections

    Directory of Open Access Journals (Sweden)

    Christophe Beloin

    2013-05-01

    Full Text Available The influence of microorganisms growing as sessile communities in a large number of human infections has been extensively studied and recognized for 30–40 years, therefore warranting intense scientific and medical research. Nonetheless, mimicking the biofilm-life style of bacteria and biofilm-related infections has been an arduous task. Models used to study biofilms range from simple in vitro to complex in vivo models of tissues or device-related infections. These different models have progressively contributed to the current knowledge of biofilm physiology within the host context. While far from a complete understanding of the multiple elements controlling the dynamic interactions between the host and biofilms, we are nowadays witnessing the emergence of promising preventive or curative strategies to fight biofilm-related infections. This review undertakes a comprehensive analysis of the literature from a historic perspective commenting on the contribution of the different models and discussing future venues and new approaches that can be merged with more traditional techniques in order to model biofilm-infections and efficiently fight them.

  12. Quorum-sensing regulation governs bacterial adhesion, biofilm development, and host colonization in Pantoea stewartii subspecies stewartii

    OpenAIRE

    Koutsoudis, Maria D.; Tsaltas, Dimitrios; Minogue, Timothy D.; von Bodman, Susanne B.

    2006-01-01

    The phytopathogenic bacterium Pantoea stewartii subsp. stewartii synthesizes stewartan exo/capsular polysaccharide (EPS) in a cell density-dependent manner governed by the EsaI/EsaR quorum-sensing (QS) system. This study analyzes biofilm development and host colonization of the WT and QS regulatory mutant strains of P. stewartii. First, we show that the cell density-dependent synthesis of stewartan EPS, governed by the EsaI/EsaR QS system, is required for proper bacterial adhesion and develop...

  13. Polymicrobial nature of chronic diabetic foot ulcer biofilm infections determined using bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP.

    Directory of Open Access Journals (Sweden)

    Scot E Dowd

    Full Text Available BACKGROUND: Diabetic extremity ulcers are associated with chronic infections. Such ulcer infections are too often followed by amputation because there is little or no understanding of the ecology of such infections or how to control or eliminate this type of chronic infection. A primary impediment to the healing of chronic wounds is biofilm phenotype infections. Diabetic foot ulcers are the most common, disabling, and costly complications of diabetes. Here we seek to derive a better understanding of the polymicrobial nature of chronic diabetic extremity ulcer infections. METHODS AND FINDINGS: Using a new bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP approach we have evaluated the bacterial diversity of 40 chronic diabetic foot ulcers from different patients. The most prevalent bacterial genus associated with diabetic chronic wounds was Corynebacterium spp. Findings also show that obligate anaerobes including Bacteroides, Peptoniphilus, Fingoldia, Anaerococcus, and Peptostreptococcus spp. are ubiquitous in diabetic ulcers, comprising a significant portion of the wound biofilm communities. Other major components of the bacterial communities included commonly cultured genera such as Streptococcus, Serratia, Staphylococcus and Enterococcus spp. CONCLUSIONS: In this article, we highlight the patterns of population diversity observed in the samples and introduce preliminary evidence to support the concept of functional equivalent pathogroups (FEP. Here we introduce FEP as consortia of genotypically distinct bacteria that symbiotically produce a pathogenic community. According to this hypothesis, individual members of these communities when they occur alone may not cause disease but when they coaggregate or consort together into a FEP the synergistic effect provides the functional equivalence of well-known pathogens, such as Staphylococcus aureus, giving the biofilm community the factors necessary to maintain chronic biofilm infections

  14. Unravelling the Bacterial Vaginosis-Associated Biofilm: A Multiplex Gardnerella vaginalis and Atopobium vaginae Fluorescence In Situ Hybridization Assay Using Peptide Nucleic Acid Probes.

    Directory of Open Access Journals (Sweden)

    Liselotte Hardy

    Full Text Available Bacterial vaginosis (BV, a condition defined by increased vaginal discharge without significant inflammation, is characterized by a change in the bacterial composition of the vagina. Lactobacillus spp., associated with a healthy vaginal microbiome, are outnumbered by BV-associated organisms. These bacteria could form a polymicrobial biofilm which allows them to persist in spite of antibiotic treatment. In this study, we examined the presence of Gardnerella vaginalis and Atopobium vaginae in vaginal biofilms using Peptide Nucleic Acid (PNA probes targeting these bacteria. For this purpose, we developed three new PNA probes for A. vaginae. The most specific A. vaginae probe, AtoITM1, was selected and then used in an assay with two existing probes, Gard162 and BacUni-1, to evaluate multiplex FISH on clinical samples. Using quantitative polymerase chain reaction (qPCR as the gold standard, we demonstrated a sensitivity of 66.7% (95% confidence interval: 54.5% - 77.1% and a specificity of 89.4% (95% confidence interval: 76.1% - 96% of the new AtoITM1 probe. FISH enabled us to show the presence of a polymicrobial biofilm in bacterial vaginosis, in which Atopobium vaginae is part of a Gardnerella vaginalis-dominated biofilm. We showed that the presence of this biofilm is associated with high bacterial loads of A. vaginae and G. vaginalis.

  15. Unravelling the Bacterial Vaginosis-Associated Biofilm: A Multiplex Gardnerella vaginalis and Atopobium vaginae Fluorescence In Situ Hybridization Assay Using Peptide Nucleic Acid Probes.

    Science.gov (United States)

    Hardy, Liselotte; Jespers, Vicky; Dahchour, Nassira; Mwambarangwe, Lambert; Musengamana, Viateur; Vaneechoutte, Mario; Crucitti, Tania

    2015-01-01

    Bacterial vaginosis (BV), a condition defined by increased vaginal discharge without significant inflammation, is characterized by a change in the bacterial composition of the vagina. Lactobacillus spp., associated with a healthy vaginal microbiome, are outnumbered by BV-associated organisms. These bacteria could form a polymicrobial biofilm which allows them to persist in spite of antibiotic treatment. In this study, we examined the presence of Gardnerella vaginalis and Atopobium vaginae in vaginal biofilms using Peptide Nucleic Acid (PNA) probes targeting these bacteria. For this purpose, we developed three new PNA probes for A. vaginae. The most specific A. vaginae probe, AtoITM1, was selected and then used in an assay with two existing probes, Gard162 and BacUni-1, to evaluate multiplex FISH on clinical samples. Using quantitative polymerase chain reaction (qPCR) as the gold standard, we demonstrated a sensitivity of 66.7% (95% confidence interval: 54.5% - 77.1%) and a specificity of 89.4% (95% confidence interval: 76.1% - 96%) of the new AtoITM1 probe. FISH enabled us to show the presence of a polymicrobial biofilm in bacterial vaginosis, in which Atopobium vaginae is part of a Gardnerella vaginalis-dominated biofilm. We showed that the presence of this biofilm is associated with high bacterial loads of A. vaginae and G. vaginalis. PMID:26305575

  16. Methods for dynamic investigations of surface-attached in vitro bacterial and fungal biofilms

    DEFF Research Database (Denmark)

    Sternberg, Claus; Bjarnsholt, Thomas; Shirtliff, Mark

    2014-01-01

    Three dynamic models for the investigation of in vitro biofilm formation are described in this chapter. In the 6-well plate assay presented here, the placing of the plate on a rotating platform provides shear, thereby making the system dynamic with respect to the static microtiter assay.The second...... reported model, especially suitable for harvesting high amounts of cells for transcriptomic or proteomic investigations, is based on numerous glass beads placed in a flask incubated with shaking on a rotating platform, thus increasing the surface area for biofilm formation. Finally, the flow-cell system......, that is the driving model for elucidating the biofilm-forming process in vitro as well as the biofilm tolerance towards antibiotics and host defense components, is illustrated here....

  17. Direct Loading and Tunable Release of Antibiotics from Polyelectrolyte Multilayers To Reduce Bacterial Adhesion and Biofilm Formation.

    Science.gov (United States)

    Wang, Bailiang; Jin, Tingwei; Xu, Qingwen; Liu, Huihua; Ye, Zi; Chen, Hao

    2016-05-18

    Bacteria adhesion on the surface of biomaterials and following biofilm formation are important problems in biomedical applications. The charged antibiotics with small molar mass can hardly deposit alternately with polymers into multilayered films to load the drug. Herein, the (poly(acrylic acid)-gentamicin/poly(ethylenimine))n ((PAA-GS/PEI)n) multilayer film was designed and constructed via a layer-by-layer self-assembly method. Low molar mass GS cations were first combined with polyanion PAA and self-assembled with PEI to form multilayer films showing exponential growth behavior. The GS dosage could be adjusted by changing the layer number of films. Furthermore, the thermal cross-linking method was used to control the release rate of GS in PBS buffer. Owing to the diffusion of GS, a zone of inhibition of about 7.0 mm showed the efficient disinfection activity of the multilayer film. It could also be seen from the biofilm inhibition assay that the multilayer film effectively inhibited bacterial adhesion and biofilm formation. As the drug loading dosage was 160 μg/cm(2), the multilayer films showed very low cytotoxicity against human lens epithelial cells. The present work provides an easy way to load GS into multilayer films which can be applied to surface modification of implants and biomedical devices. PMID:27105066

  18. Phenazine-1-Carboxylic Acid Promotes Bacterial Biofilm Development via Ferrous Iron Acquisition▿†

    OpenAIRE

    Wang, Yun; Wilks, Jessica C.; Danhorn, Thomas; Ramos, Itzel; Croal, Laura; Newman, Dianne K.

    2011-01-01

    The opportunistic pathogen Pseudomonas aeruginosa forms biofilms, which render it more resistant to antimicrobial agents. Levels of iron in excess of what is required for planktonic growth have been shown to promote biofilm formation, and therapies that interfere with ferric iron [Fe(III)] uptake combined with antibiotics may help treat P. aeruginosa infections. However, use of these therapies presumes that iron is in the Fe(III) state in the context of infection. Here we report the ability o...

  19. Self-organization of bacterial biofilms is facilitated by extracellular DNA

    OpenAIRE

    Gloag, Erin S; Turnbull, Lynne; Huang, Alan; Vallotton, Pascal; Wang, Huabin; Nolan, Laura M.; Mililli, Lisa; Hunt, Cameron; Lu, Jing; Osvath, Sarah R.; Monahan, Leigh G.; Cavaliere, Rosalia; Charles, Ian G.; Wand, Matt P; Gee, Michelle L.

    2013-01-01

    Twitching motility-mediated biofilm expansion is a complex, multicellular behavior that enables the active colonization of surfaces by many species of bacteria. In this study we have explored the emergence of intricate network patterns of interconnected trails that form in actively expanding biofilms of Pseudomonas aeruginosa. We have used high-resolution, phase-contrast time-lapse microscopy and developed sophisticated computer vision algorithms to track and analyze individual cell movements...

  20. Bacterial Amyloid and DNA are Important Constituents of Senile Plaques: Further Evidence of the Spirochetal and Biofilm Nature of Senile Plaques

    Science.gov (United States)

    Miklossy, Judith

    2016-01-01

    It has long been known that spirochetes form clumps or micro colonies in vitro and in vivo. Cortical spirochetal colonies in syphilitic dementia were considered as reproductive centers for spirochetes. Historic and recent data demonstrate that senile plaques in Alzheimer’s disease (AD) are made up by spirochetes. Spirochetes, are able to form biofilm in vitro. Senile plaques are also reported to contain elements of biofilm constituents. We expected that AβPP and Aβ (the main components of senile plaques) also occur in pure spirochetal biofilms, and bacterial DNA (an important component of biofilm) is also present in senile plaques. Histochemical, immunohistochemical, and in situ hybridization techniques and the TUNEL assay were used to answer these questions. The results obtained demonstrate that Aβ and DNA, including spirochete-specific DNA, are key components of both pure spirochetal biofilms and senile plaques in AD and confirm the biofilm nature of senile plaques. These results validate validate previous observations that AβPP and/or an AβPP-like amyloidogenic protein are an integral part of spirochetes, and indicate that bacterial and host derived Aβ are both constituents of senile plaques. DNA fragmentation in senile plaques further confirms their bacterial nature and provides biochemical evidence for spirochetal cell death. Spirochetes evade host defenses, locate intracellularly, form more resistant atypical forms and notably biofilms, which contribute to sustain chronic infection and inflammation and explain the slowly progressive course of dementia in AD. To consider co-infecting microorganisms is equally important, as multi-species biofilms result in a higher resistance to treatments and a more severe dementia. PMID:27314530

  1. Crystalline bacterial biofilm formation on urinary catheters by urease-producing urinary tract pathogens: a simple method of control.

    Science.gov (United States)

    Broomfield, Robert J; Morgan, Sheridan D; Khan, Azhar; Stickler, David J

    2009-10-01

    The problem of catheter encrustation stems from infection by urease-producing bacteria. These organisms generate ammonia from urea, elevate the pH of urine and cause crystals of calcium and magnesium phosphates to form in the urine and the biofilm that develops on the catheter. In this study, a laboratory model was used to compare the ability of 12 urease-positive species of urinary tract pathogens to encrust and block catheters. Proteus mirabilis, Proteus vulgaris and Providencia rettgeri were able to raise the urinary pH above 8.3 and produce catheter-blocking crystalline biofilms within 40 h. Morganella morganii and Staphylococcus aureus elevated the pH of urine to 7.4 and 6.9, respectively, and caused some crystal deposition in the biofilms but did not block catheters in the 96 h experimental period. Isolates of Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter cloacae, Serratia marcescens, Pseudomonas aeruginosa and Providencia stuartii were only capable of raising the pH of urine to a maximum of 6.4 and failed to cause crystal deposition in the biofilm. The most effective way to prevent catheter encrustation was shown to be diluting urine and increasing its citrate concentration. This strategy raises the nucleation pH (pH(n)) at which calcium and magnesium phosphates crystallize from urine. Increasing the fluid intake of a healthy volunteer with citrated drinks resulted in urine with a pH(n) of >8.0 in which catheter encrustation was inhibited. It is suggested that this dietary strategy will be an effective means of controlling catheter encrustation, whichever bacterial species is causing the problem. PMID:19556373

  2. Self-organization of bacterial biofilms is facilitated by extracellular DNA.

    Science.gov (United States)

    Gloag, Erin S; Turnbull, Lynne; Huang, Alan; Vallotton, Pascal; Wang, Huabin; Nolan, Laura M; Mililli, Lisa; Hunt, Cameron; Lu, Jing; Osvath, Sarah R; Monahan, Leigh G; Cavaliere, Rosalia; Charles, Ian G; Wand, Matt P; Gee, Michelle L; Prabhakar, Ranganathan; Whitchurch, Cynthia B

    2013-07-01

    Twitching motility-mediated biofilm expansion is a complex, multicellular behavior that enables the active colonization of surfaces by many species of bacteria. In this study we have explored the emergence of intricate network patterns of interconnected trails that form in actively expanding biofilms of Pseudomonas aeruginosa. We have used high-resolution, phase-contrast time-lapse microscopy and developed sophisticated computer vision algorithms to track and analyze individual cell movements during expansion of P. aeruginosa biofilms. We have also used atomic force microscopy to examine the topography of the substrate underneath the expanding biofilm. Our analyses reveal that at the leading edge of the biofilm, highly coherent groups of bacteria migrate across the surface of the semisolid media and in doing so create furrows along which following cells preferentially migrate. This leads to the emergence of a network of trails that guide mass transit toward the leading edges of the biofilm. We have also determined that extracellular DNA (eDNA) facilitates efficient traffic flow throughout the furrow network by maintaining coherent cell alignments, thereby avoiding traffic jams and ensuring an efficient supply of cells to the migrating front. Our analyses reveal that eDNA also coordinates the movements of cells in the leading edge vanguard rafts and is required for the assembly of cells into the "bulldozer" aggregates that forge the interconnecting furrows. Our observations have revealed that large-scale self-organization of cells in actively expanding biofilms of P. aeruginosa occurs through construction of an intricate network of furrows that is facilitated by eDNA. PMID:23798445

  3. A dynamic in vitro model for evaluating antimicrobial activity against bacterial biofilms using a new device and clinical-used catheters.

    Science.gov (United States)

    García, Isabel; Conejo, M del Carmen; Ojeda, Antonio; Rodríguez-Baño, Jesús; Pascual, Alvaro

    2010-12-01

    The activity of daptomycin compared to vancomycin against Staphylococcus epidermidis-biofilms on intravascular catheters has been evaluated using the new Sevilla device that enables to use medical grade-catheters, in an in vitro model that simulates the in vivo conditions. S. epidermidis-biofilms were obtained on polyurethane catheter segments using the Sevilla device linked to a continuous culture system for 24 h. To assess the antimicrobial activity, at this time the continuous culture system was changed to therapeutic antimicrobial concentration solutions for 48 h. At each 24 h interval time, catheter segments were taken out, washed and sonicated. Viable adherent bacteria were determined by agar plating. Data of surviving bacteria numbers attached to the catheter surface obtained with the Sevilla device showed a very good reproducibility. Daptomycin showed a good activity against S. epidermidis-biofilm on polyurethane catheter surface. After 48 h exposure to daptomycin, surviving adherent bacteria were reduced by 4 log compared to the control with no antimicrobial. Using the same model, vancomycin reduced bacterial survival by only 1.3 log. The Sevilla device enables antimicrobial agent activity against bacterial biofilms grown on the external surface of catheters used in clinical practice to be evaluated. The model used replicates as closely as possible the biofilm formed in a highly standardized way. Using this model, daptomycin demonstrates potent in vitro activity against S. epidermidis-biofilm on a polyurethane catheter; this activity was greater than that showed by vancomycin. PMID:20888868

  4. CdTe–TiO2 nanocomposite: an impeder of bacterial growth and biofilm

    International Nuclear Information System (INIS)

    The resurgence of infectious diseases and associated issues related to antibiotic resistance has raised enormous challenges which may possibly be confronted primarily by nanotechnology routes. One key need of critical significance in this context is the development of an agent capable of inhibiting quorum sensing mediated biofilm formation in pathogenic organisms. In this work we examine the possible use of a nanocomposite, CdTe–TiO2, as an impeder of growth and biofilm. In the presence of CdTe–TiO2, scanning electron microscopy (SEM) analysis shows exposed cells without the surrounding matrix. Confocal laser scanning microscopy shows spatially distributed fluorescence, a typical indication of an impeded biofilm, as opposed to the control which shows matrix-covered cells and continuous fluorescence, typical of biofilm formation. Quantitatively, the inhibition of biofilm was ∼57%. CdTe–TiO2 also exhibits good antibacterial properties against Gram positive and Gram negative organisms by virtue of the generation of reactive oxygen species inside the cells, reflected by a ruptured appearance in the SEM analysis. (paper)

  5. CdTe-TiO2 nanocomposite: an impeder of bacterial growth and biofilm

    Science.gov (United States)

    Gholap, Haribhau; Patil, Rajendra; Yadav, Prasad; Banpurkar, Arun; Ogale, Satishchandra; Gade, Wasudeo

    2013-05-01

    The resurgence of infectious diseases and associated issues related to antibiotic resistance has raised enormous challenges which may possibly be confronted primarily by nanotechnology routes. One key need of critical significance in this context is the development of an agent capable of inhibiting quorum sensing mediated biofilm formation in pathogenic organisms. In this work we examine the possible use of a nanocomposite, CdTe-TiO2, as an impeder of growth and biofilm. In the presence of CdTe-TiO2, scanning electron microscopy (SEM) analysis shows exposed cells without the surrounding matrix. Confocal laser scanning microscopy shows spatially distributed fluorescence, a typical indication of an impeded biofilm, as opposed to the control which shows matrix-covered cells and continuous fluorescence, typical of biofilm formation. Quantitatively, the inhibition of biofilm was ˜57%. CdTe-TiO2 also exhibits good antibacterial properties against Gram positive and Gram negative organisms by virtue of the generation of reactive oxygen species inside the cells, reflected by a ruptured appearance in the SEM analysis.

  6. NANOTECHNOLOGICAL SOLUTION FOR IMPROVING THE ANTIBIOTIC EFFICIENCY AGAINST BIOFILMS DEVELOPED BY GRAM-NEGATIVE BACTERIAL STRAINS

    Directory of Open Access Journals (Sweden)

    Keng-Shiang Huang

    2013-03-01

    Full Text Available At present bacteria involved in biofilm associated infections display the highest rates of antibiotic resistance among pathogenic bacteria, which made that treatment options to be limited, and determined the researchers to find out alternative treatments to antibiotics. In the recent years nanomaterials gained much attention in medicine, particularly in the fight to bacteria resistant to antibiotics by acting as drug delivery devices. Magnetic iron oxide nanoparticles (MNPs have raised much interest during the recent years due to their potential applications in medicine. In the present study we synthesized MNPd functionalized with antibiotics for the study of their antimicrobial and anti-biofilm properties against Escherichia coli and Pseudomonas aeruginosa, two Gram-negative bacteria, frequently resistant to antibiotics, involved in biofilm infections in order to investigate their capacity to serve as potential drug delivery systems in the fight to these important opportunist pathogens.

  7. Unravelling the Bacterial Vaginosis-Associated Biofilm: A Multiplex Gardnerella vaginalis and Atopobium vaginae Fluorescence In Situ Hybridization Assay Using Peptide Nucleic Acid Probes

    OpenAIRE

    Hardy, Liselotte; Jespers, Vicky; Dahchour, Nassira; Mwambarangwe, Lambert; Musengamana, Viateur; Vaneechoutte, Mario; Crucitti, Tania

    2015-01-01

    Bacterial vaginosis (BV), a condition defined by increased vaginal discharge without significant inflammation, is characterized by a change in the bacterial composition of the vagina. Lactobacillus spp., associated with a healthy vaginal microbiome, are outnumbered by BV-associated organisms. These bacteria could form a polymicrobial biofilm which allows them to persist in spite of antibiotic treatment. In this study, we examined the presence of Gardnerella vaginalis and Atopobium vaginae in ...

  8. Using an in-vitro biofilm model to assess the virulence potential of bacterial vaginosis or non-bacterial vaginosis Gardnerella vaginalis isolates.

    Science.gov (United States)

    Castro, Joana; Alves, Patrícia; Sousa, Cármen; Cereija, Tatiana; França, Ângela; Jefferson, Kimberly K; Cerca, Nuno

    2015-01-01

    Gardnerella vaginalis is the most common species found in bacterial vaginosis (BV). However, it is also present in a significant proportion of healthy women and G. vaginalis vaginal colonization does not always lead to BV. In an effort to better understand the differences between G. vaginalis isolated from women with a positive (BV) versus a negative (non-BV) diagnosis of BV, we compared the virulence potential of 7 BV and 7 non-BV G. vaginalis isolates and assessed the virulence factors related to biofilm formation, namely: initial adhesion and cytotoxic effect, biofilm accumulation, susceptibility to antibiotics, and transcript levels of the known vaginolysin, and sialidase genes. Furthermore, we also determined the ability of G. vaginalis to displace lactobacilli previously adhered to HeLa cells. Our results showed that non-BV strains were less virulent than BV strains, as suggested by the lower cytotoxicity and initial adhesion to Hela cells. Significant differences in expression of known virulence genes were also detected, further suggesting a higher virulence potential of the BV associated G. vaginalis. Importantly, we demonstrated that BV associated G. vaginalis were able to displace pre-coated vaginal protective lactobacilli and we hypothesize this to be a trigger for BV development. PMID:26113465

  9. Stress responses go three dimensional – the spatial order of physiological differentiation in bacterial macrocolony biofilms

    OpenAIRE

    Serra, Diego O.; Hengge, Regine

    2014-01-01

    In natural habitats, bacteria often occur in multicellular communities characterized by a robust extracellular matrix of proteins, amyloid fibres, exopolysaccharides and extracellular DNA. These biofilms show pronounced stress resistance including a resilience against antibiotics that causes serious medical and technical problems. This review summarizes recent studies that have revealed clear spatial physiological differentiation, complex supracellular architecture and striking morphology in ...

  10. Diversity of Bacterial Biofilm Communities on Sprinklers from Dairy Farm Cooling Systems in Israel.

    Science.gov (United States)

    Shpigel, Nahum Y; Pasternak, Zohar; Factor, Gilad; Gottlieb, Yuval

    2015-01-01

    On dairy farms in hot climates worldwide, cows suffer from heat stress, which is alleviated by the use of water cooling systems. Sprinklers and showerheads are known to support the development of microbial biofilms, which can be a source of infection by pathogenic microorganisms. The aim of this study was to investigate the presence of microbial biofilms in dairy cooling systems, and to analyze their population compositions using culture-independent technique, 16S rRNA gene sequencing. Biofilm samples were collected on eight dairy farms from 40 sprinklers and the microbial constituents were identified by deep sequencing of the 16S rRNA gene. A total of 9,374 operational taxonomic units (OTUs) was obtained from all samples. The mean richness of the samples was 465 ± 268 OTUs which were classified into 26 different phyla; 76% of the reads belonged to only three phyla: Proteobacteria, Actinobacteria and Firmicutes. Although the most prevalent OTUs (Paracoccus, Methyloversatilis, Brevundimonas, Porphyrobacter, Gp4, Mycobacterium, Hyphomicrobium, Corynebacterium and Clostridium) were shared by all farms, each farm formed a unique microbial pattern. Some known potential human and livestock pathogens were found to be closely related to the OTUs found in this study. This work demonstrates the presence of biofilm in dairy cooling systems which may potentially serve as a live source for microbial pathogens. PMID:26407190

  11. Interactions between Lactobacillus crispatus and bacterial vaginosis (BV)-Associated bacterial species in initial attachment and biofilm formation

    OpenAIRE

    Kimberly Kay Jefferson; Nuno Cerca; António Machado

    2013-01-01

    Certain anaerobic bacterial species tend to predominate the vaginal flora during bacterial vaginosis (BV), with Gardnerella vaginalis being the most common. However, the exact role of G. vaginalis in BV has not yet been determined. The main goal of this study was to test the hypothesis that G. vaginalis is an early colonizer, paving the way for intermediate (e.g., Fusobacterium nucleatum) and late colonizers (e.g., Prevotella bivia). Theoretically, in order to function as an early colonizer, ...

  12. Pyrosequencing Reveals Bacterial Communities in Unchlorinated Drinking Water Distribution System: An Integral Study of Bulk Water, Suspended Solids, Loose Deposits, and Pipe Wall Biofilm

    KAUST Repository

    Liu, G.

    2014-05-20

    The current understanding of drinking water distribution system (DWDS) microbiology is limited to pipe wall biofilm and bulk water; the contributions of particle-associated bacteria (from suspended solids and loose deposits) have long been neglected. Analyzing the composition and correlation of bacterial communities from different phases helped us to locate where most of the bacteria are and understand the interactions among these phases. In the present study, the bacteria from four critical phases of an unchlorinated DWDS, including bulk water, pipe wall biofilm, suspended solids, and loose deposits, were quantified and identified by adenosine triphosphate analysis and pyrosequencing, respectively. The results showed that the bulk water bacteria (including the contribution of suspended solids) contributed less than 2% of the total bacteria. The bacteria associated with loose deposits and pipe wall biofilm that accumulated in the DWDS accounted for over 98% of the total bacteria, and the contributions of bacteria in loose deposits and pipe wall biofilm were comparable. Depending on the amount of loose deposits, its contribution can be 7-fold higher than the pipe wall biofilm. Pyrosequencing revealed relatively stable bacterial communities in bulk water, pipe wall biofilm, and suspended solids throughout the distribution system; however, the communities present in loose deposits were dependent on the amount of loose deposits locally. Bacteria within the phases of suspended solids, loose deposits, and pipe wall biofilm were similar in phylogenetic composition. The bulk water bacteria (dominated by Polaromonas spp.) were clearly different from the bacteria from the other three phases (dominated by Sphingomonas spp.). This study highlighted that the integral DWDS ecology should include contributions from all of the four phases, especially the bacteria harbored by loose deposits. The accumulation of loose deposits and the aging process create variable microenvironments

  13. The Role of Antimicrobial Peptides in Preventing Multidrug-Resistant Bacterial Infections and Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Kyung-Soo Hahm

    2011-09-01

    Full Text Available Over the last decade, decreasing effectiveness of conventional antimicrobial-drugs has caused serious problems due to the rapid emergence of multidrug-resistant pathogens. Furthermore, biofilms, which are microbial communities that cause serious chronic infections and dental plaque, form environments that enhance antimicrobial resistance. As a result, there is a continuous search to overcome or control such problems, which has resulted in antimicrobial peptides being considered as an alternative to conventional drugs. Antimicrobial peptides are ancient host defense effector molecules in living organisms. These peptides have been identified in diverse organisms and synthetically developed by using peptidomimic techniques. This review was conducted to demonstrate the mode of action by which antimicrobial peptides combat multidrug-resistant bacteria and prevent biofilm formation and to introduce clinical uses of these compounds for chronic disease, medical devices, and oral health. In addition, combinations of antimicrobial peptides and conventional drugs were considered due to their synergetic effects and low cost for therapeutic treatment.

  14. Comparison of biofilm formation of mixed yeast/bacterial cultures by FIB-SEM tomography

    Czech Academy of Sciences Publication Activity Database

    Hrubanová, Kamila; Nebesářová, J.; Růžička, F.; Dluhoš, J.; Samek, Ota; Krzyžánek, Vladislav

    Vol. 2. Regensburg: University of Regensburg, 2013, s. 424-425. [Microscopy Conference 2013. Regensburg (DE), 25.08.2013-30. 08.2013] R&D Projects: GA MŠk EE.2.3.20.0103; GA ČR GAP205/11/1687 Institutional support: RVO:68081731 Keywords : biofilm * mixed yeast/bacteria cultures * FIB-SEM Subject RIV: BH - Optics, Masers, Lasers

  15. 2-Methoxy-2',4'-dichloro chalcone as an antimicrofoulant against marine bacterial biofilm.

    Science.gov (United States)

    Sivakumar, P M; Prabhawathi, V; Doble, Mukesh

    2010-12-01

    Marine paint mixed with 2-methoxy-2',4'-dichloro chalcone is able to considerably reduce the formation of biofilm by Vibrio natriegens, a marine bacterium, on polycarbonate (PC), polymethylmethacrylate (PMMA) and glass fiber reinforced plastic (GFRP). These polymers have been selected for the study, since they have wide marine applications. Surfaces coated with dichloro chalcone containing marine paint had the lowest number of colony forming units (CFU) (1-5×10(6)), proteins (20-30 μg/cm2) and carbohydrates (5-10 μg/cm2) attached to them after 28 days of exposure to the organism when compared to surfaces coated with CuSO4 mixed paint (20-40×10(6) CFU/ml, proteins of 50-60 μg/cm2 and carbohydrates of 40-50 μg/cm2) or plain marine paint (30-40×10(6) CFU/ml, proteins of 120-150 μg/cm2 and carbohydrates of 40-60 μg/cm2). At the end of the study period, the biofilm on PMMA was 7, 10 and 12 μm thick on chalcone, copper and plain paint coated surfaces, respectively. The first two paints increased the surface roughness but decreased the surface hydrophobicity when compared to the plain paint. Large number of dead cells was found on the chalcone mixed and predominantly live cells were found on plain paint coated surfaces. 15% of dichloro chalcone had leached out of PMMA surface after 28 days. The low amount of biofilm formed in the presence of dichlorochalcone can be associated to its antibacterial and slimicidal activity and also its ability to reduce the hydrophobicity of the surface. This dichlorochalcone appears to be a novel agent for decreasing the formation of marine biofilm. PMID:20708908

  16. Foreign Body Infection Models to Study Host-Pathogen Response and Antimicrobial Tolerance of Bacterial Biofilm

    OpenAIRE

    Justyna Nowakowska; Regine Landmann; Nina Khanna

    2014-01-01

    The number of implanted medical devices is steadily increasing and has become an effective intervention improving life quality, but still carries the risk of infection. These infections are mainly caused by biofilm-forming staphylococci that are difficult to treat due to the decreased susceptibility to both antibiotics and host defense mechanisms. To understand the particular pathogenesis and treatment tolerance of implant-associated infection (IAI) animal models that closely resemble human d...

  17. Bacterial biofilm supported on granular activated carbon and on natural zeolites- an application to wastewater treatment

    OpenAIRE

    Lameiras, Sandra Raquel de Vasconcelos; Quintelas, C.; Tavares, M. T.

    2004-01-01

    The removal of many heavy metals from industrial wastewater is one of the most important environmental problems to be solved today. The retention of this contaminants by a biofilm supported on granular activated carbon or on natural zeolites is one of the promising technologies for the reduction of this problem, because it is cheap and it removes a broad range of substances, heavy metals and organic compounds. This study aims the development of a system of two mini-columns in series ...

  18. Identification of individual biofilm-forming bacterial cells using Raman tweezers

    Czech Academy of Sciences Publication Activity Database

    Samek, Ota; Bernatová, Silvie; Ježek, Jan; Šiler, Martin; Šerý, Mojmír; Krzyžánek, Vladislav; Hrubanová, Kamila; Zemánek, Pavel; Holá, V.; Růžička, F.

    2015-01-01

    Roč. 20, č. 5 (2015), 051038:1-6. ISSN 1083-3668 R&D Projects: GA ČR GAP205/11/1687; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Raman tweezers * Staphylococcus epidermidis * biofilm Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.859, year: 2014

  19. Interaction of legionella pneumophila and helicobacter pylori with bacterial species isolated from drinking water biofilms

    Directory of Open Access Journals (Sweden)

    Azevedo Nuno F

    2011-03-01

    Full Text Available Abstract Background It is well established that Legionella pneumophila is a waterborne pathogen; by contrast, the mode of Helicobacter pylori transmission remains unknown but water seems to play an important role. This work aims to study the influence of five microorganisms isolated from drinking water biofilms on the survival and integration of both of these pathogens into biofilms. Results Firstly, both pathogens were studied for auto- and co-aggregation with the species isolated from drinking water; subsequently the formation of mono and dual-species biofilms by L. pneumophila or H. pylori with the same microorganisms was investigated. Neither auto- nor co-aggregation was observed between the microorganisms tested. For biofilm studies, sessile cells were quantified in terms of total cells by SYTO 9 staining, viable L. pneumophila or H. pylori cells were quantified using 16 S rRNA-specific peptide nucleic acid (PNA probes and cultivable cells by standard culture techniques. Acidovorax sp. and Sphingomonas sp. appeared to have an antagonistic effect on L. pneumophila cultivability but not on the viability (as assessed by rRNA content using the PNA probe, possibly leading to the formation of viable but noncultivable (VBNC cells, whereas Mycobacterium chelonae increased the cultivability of this pathogen. The results obtained for H. pylori showed that M. chelonae and Sphingomonas sp. help this pathogen to maintain cultivability for at least 24 hours. Conclusions It appears that M. chelonae may have an important role in the survival of both pathogens in drinking water. This work also suggests that the presence of some microorganisms can decrease the cultivability of L. pneumophila but not the viability which indicates that the presence of autochthonous microorganisms can lead to misleading results when the safety of water is assessed by cultivable methods alone.

  20. Rapid in situ assessment of physiological activities in bacterial biofilms using fluorescent probes

    Science.gov (United States)

    Yu, F. P.; McFeters, G. A.

    1994-01-01

    Two rapid in situ enumeration methods using fluorescent probes were used to assess the physiological activities of Klebsiella pneumoniae biofilms on stainless steel. Fluorescent dyes, 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) and rhodamine 123 (Rh 123), were chosen to perform this study. CTC is a soluble redox indicator which can be reduced by respiring bacteria to fluorescent CTC-formazan crystals. Rh 123 is incorporated into bacteria with respect to cellular proton motive force. The intracellular accumulation of these fluorescent dyes can be determined using epifluorescence microscopy. The results obtained with these two fluorescent probes in situ were compared to the plate count (PC) and in situ direct viable count (DVC) methods. Viable cell densities within biofilms determined by the three in situ methods were comparable and always showed approximately 2-fold higher values than those obtained with the PC method. As an additional advantage, the results were observed after 2 h, which was shorter than the 4 h incubation time required for the DVC method and 24 h for colony formation. The results indicate that staining with CTC and Rh 123 provides rapid information regarding cell numbers and physiological activities of bacteria within biofilms.

  1. Sfp-type PPTase inactivation promotes bacterial biofilm formation and ability to enhance wheat drought tolerance.

    Science.gov (United States)

    Timmusk, Salme; Kim, Seong-Bin; Nevo, Eviatar; Abd El Daim, Islam; Ek, Bo; Bergquist, Jonas; Behers, Lawrence

    2015-01-01

    Paenibacillus polymyxa is a common soil bacterium with broad range of practical applications. An important group of secondary metabolites in P. polymyxa are non-ribosomal peptide and polyketide derived metabolites (NRPs/PKs). Modular non-ribosomal peptide synthetases catalyze main steps in the biosynthesis of the complex secondary metabolites. Here we report on the inactivation of an A26 Sfp-type 4'-phosphopantetheinyl transferase (Sfp-type PPTase). The inactivation of the gene resulted in loss of NRPs/PKs production. In contrast to the former Bacillus spp. model the mutant strain compared to wild type showed greatly enhanced biofilm formation ability. A26Δsfp biofilm promotion is directly mediated by NRPs/PKs, as exogenous addition of the wild type metabolite extracts restores its biofilm formation level. Wheat inoculation with bacteria that had lost their Sfp-type PPTase gene resulted in two times higher plant survival and about three times increased biomass under severe drought stress compared to wild type. Challenges with P. polymyxa genetic manipulation are discussed. PMID:26052312

  2. Rheology of biofilms

    OpenAIRE

    Winston, M.; Rupp, C.J.; Vinogradov, A.; Towler, B.W.; Adams, H; Stoodley, P

    2003-01-01

    The paper describes an experimental study concerning the mechanical properties of bacterial biofilms formed from the early dental plaque colonizer Streptoccocus mutans and pond water biofilms. Experiments reported in this paper demonstrate that both types of biofilms exhibit mechanical behavior similar to that of rheological fluids. The time-dependent properties of both biofilms have been modeled using the principles of viscoelasticity theory. The Burger model has been found to accurately re...

  3. Bacterial biofilm formation inhibitory activity revealed for plant derived natural compounds.

    Science.gov (United States)

    Artini, M; Papa, R; Barbato, G; Scoarughi, G L; Cellini, A; Morazzoni, P; Bombardelli, E; Selan, L

    2012-01-15

    Use of herbal plant remedies to treat infectious diseases is a common practice in many countries in traditional and alternative medicine. However to date there are only few antimicrobial agents derived from botanics. Based on microbiological screening tests of crude plant extracts we identified four compounds derived from Krameria, Aesculus hippocastanum and Chelidonium majus that showed a potentially interesting antimicrobial activity. In this work we present an in depth characterization of the inhibition activity of these pure compounds on the formation of biofilm of Staphylococcus aureus as well as of Staphylococcus epidermidis strains. We show that two of these compounds possess interesting potential to become active principles of new drugs. PMID:22182580

  4. Studies on the formation of crystalline bacterial biofilms on urethral catheters.

    Science.gov (United States)

    Stickler, D; Morris, N; Moreno, M C; Sabbuba, N

    1998-09-01

    A model of the catheterised bladder was used to test the ability of urease-producing urinary tract pathogens to encrust urethral catheters. Encrustation was assessed by determining the amounts of calcium and magnesium deposited on the catheters and visualised by scanning electron microscopy. Urease-positive Morganella morganii, Klebsiella pneumoniae, and Pseudomonas aeruginosa failed to raise the urinary pH and form crystalline biofilms. In contrast, strains of Proteus mirabilis, Proteus vulgaris, and Providencia rettgeri generated alkaline urine (pH 8.3-8.6) and extensive catheter encrustation within 24 h. PMID:9832268

  5. Interfacial Electrochemical Electron Transfer Processes in Bacterial Biofilm Environments on Au(111)

    DEFF Research Database (Denmark)

    Hu, Yifan; Zhang, Jingdong; Ulstrup, Jens

    2010-01-01

    We have studied Streptococcus mutans (S. mutans) biolilm growth and growth inhibition on Au(111)-surfaces using atomic force microscopy (AFM) and interfacial electrochemistry of a number of redox probe molecules. AFM of the biofilm growth and growth inhibition on both mica and Au(111)-surfaces was...... positively and negatively charged redox probe couples displayed antagonistic inhibition and voltammetric patterns. [Ru(NH3)(6)](3+2+) and the homologous compound [Co(NH3)(6)](3+/2+) were the only probe compounds to effect growth inhibition. On the other hand, cyclic voltammetry (CV) of both [Ru(NH3...

  6. Structure-Activity Relationships of a Diverse Class of Halogenated Phenazines That Targets Persistent, Antibiotic-Tolerant Bacterial Biofilms and Mycobacterium tuberculosis.

    Science.gov (United States)

    Garrison, Aaron T; Abouelhassan, Yasmeen; Norwood, Verrill M; Kallifidas, Dimitris; Bai, Fang; Nguyen, Minh Thu; Rolfe, Melanie; Burch, Gena M; Jin, Shouguang; Luesch, Hendrik; Huigens, Robert W

    2016-04-28

    Persistent bacteria, including persister cells within surface-attached biofilms and slow-growing pathogens lead to chronic infections that are tolerant to antibiotics. Here, we describe the structure-activity relationships of a series of halogenated phenazines (HP) inspired by 2-bromo-1-hydroxyphenazine 1. Using multiple synthetic pathways, we probed diverse substitutions of the HP scaffold in the 2-, 4-, 7-, and 8-positions, providing critical information regarding their antibacterial and bacterial eradication profiles. Halogenated phenazine 14 proved to be the most potent biofilm-eradicating agent (≥99.9% persister cell killing) against MRSA (MBEC antimicrobial peptide mimics that eradicate biofilms through the general lysing of membranes, HPs do not lyse red blood cells. HPs are promising agents that effectively target persistent bacteria while demonstrating negligible toxicity against mammalian cells. PMID:27018907

  7. Spatial Vulnerability: Bacterial Arrangements, Microcolonies, and Biofilms as Responses to Low Rather than High Phage Densities

    OpenAIRE

    Abedon, Stephen T.

    2012-01-01

    The ability of bacteria to survive and propagate can be dramatically reduced upon exposure to lytic bacteriophages. Study of this impact, from a bacterium’s perspective, tends to focus on phage-bacterial interactions that are governed by mass action, such as can be observed within continuous flow or similarly planktonic ecosystems. Alternatively, bacterial molecular properties can be examined, such as specific phage‑resistance adaptations. In this study I address instead how limitations on ba...

  8. The influence of biofilm formation by Gardnerella vaginalis and other anaerobes on bacterial vaginosis

    OpenAIRE

    Machado, António; Cerca, Nuno

    2015-01-01

    Bacterial vaginosis (BV) is the worldwide leading vaginal disorder in women of reproductive age. BV is characterized by the replacement of beneficial lactobacilli and the augmentation of anaerobic bacteria. Gardnerella vaginalis is a predominant bacterial species, however, BV is also associated with other numerous anaerobes, such as Atopobium vaginae, Mobiluncus mulieris, Prevotella bivia, Fusobacterium nucleatum and Peptoniphilus sp.. Currently, the role of G. vaginalis in the etiology of BV...

  9. Bacterial biofilms on gold grains-implications for geomicrobial transformations of gold.

    Science.gov (United States)

    Rea, Maria Angelica; Zammit, Carla M; Reith, Frank

    2016-06-01

    The biogeochemical cycling of gold (Au), i.e. its solubilization, transport and re-precipitation, leading to the (trans)formation of Au grains and nuggets has been demonstrated under a range of environmental conditions. Biogenic (trans)formations of Au grains are driven by (geo)biochemical processes mediated by distinct biofilm consortia living on these grains. This review summarizes the current knowledge concerning the composition and functional capabilities of Au-grain communities, and identifies contributions of key-species involved in Au-cycling. To date, community data are available from grains collected at 10 sites in Australia, New Zealand and South America. The majority of detected operational taxonomic units detected belong to the α-, β- and γ-Proteobacteria and the Actinobacteria. A range of organisms appears to contribute predominantly to biofilm establishment and nutrient cycling, some affect the mobilization of Au via excretion of Au-complexing ligands, e.g. organic acids, thiosulfate and cyanide, while a range of resident Proteobacteria, especially Cupriavidus metallidurans and Delftia acidovorans, have developed Au-specific biochemical responses to deal with Au-toxicity and reductively precipitate mobile Au-complexes. This leads to the biomineralization of secondary Au and drives the environmental cycle of Au. PMID:27098381

  10. Structural stability of Burkholderia cenocepacia biofilms is reliant on eDNA structure and presence of a bacterial nucleic acid binding protein.

    Directory of Open Access Journals (Sweden)

    Laura A Novotny

    Full Text Available Cystic fibrosis (CF is the most common lethal inherited genetic disorder affection Caucasians. Even with medical advances, CF is life-shortening with patients typically surviving only to age 38. Infection of the CF lung by Burkholderia cenocepacia presents exceptional challenges to medical management of these patients as clinically this microbe is resistant to virtually all antibiotics, is highly transmissible and infection of CF patients with this microbe renders them ineligible for lung transplant, often the last lifesaving option. Here we have targeted two abundant components of the B. cenocepacia biofilm for immune intervention: extracellular DNA and DNABII proteins, the latter of which are bacterial nucleic acid binding proteins. Treatment of B. cenocepacia biofilms with antiserum directed at one of these DNABII proteins (integration host factor or IHF resulted in significant disruption of the biofilm. Moreover, when anti-IHF mediated destabilization of a B. cenocepacia biofilm was combined with exposure to traditional antibiotics, B. cenocepacia resident within the biofilm and thereby typically highly resistant to the action of antibiotics, were now rendered susceptible to killing. Pre-incubation of B. cenocepacia with anti-IHF serum prior to exposure to murine CF macrophages, which are normally unable to effectively degrade ingested B. cenocepacia, resulted in a statistically significant increase in killing of phagocytized B. cenocepacia. Collectively, these findings support further development of strategies that target DNABII proteins as a novel approach for treatment of CF patients, particularly those whose lungs are infected with B. cenocepacia.

  11. Architecture and spatial organization in a triple-species bacterial biofilm synergistically degrading the phenylurea herbicide linuron

    DEFF Research Database (Denmark)

    Breugelmans, Philip; Barken, Kim Bundvig; Tolker-Nielsen, Tim;

    2008-01-01

    ,O-dimethylhydroxylamine-degrading Hyphomicrobium sulfonivorans WDL6, were cultivated as mono- or multi-species biofilms in flow cells irrigated with selective or nonselective media, and examined with confocal laser scanning microscopy. In contrast to mono-species biofilms of Variovorax sp. WDL1, the triple-species consortium biofilm degraded...

  12. Silver removal process development for the MEO cleanout

    International Nuclear Information System (INIS)

    The Mediated Electrochemical Oxidation (MEO) system is an aqueous process which treats low-level mixed wastes by oxidizing the organic components of he waste into carbon dioxide and water. As MEO system continues to run, dissolved ash and radionuclides slowly accumulate in the anolyte and must be removed to maintain process efficiency. At such time, all of the anolyte is pumped into a still feed tank, and the silver ions need to be removed before sending the solution to a thin-film evaporator for further concentration. The efficiency of removing silver ions in the solution needs to be high enough such that the residual silver sent to Final Forms would be less than 1% wt. The purpose of this work is to develop an efficient process to remove silver ions during the MEO cleanout and to demonstrate the capability of centrifugation for separating small silver chloride particles from the solution. This development work includes lab scale experiments and bench scale tests. This report summarizes the results

  13. Bacterial Biofilm Morphology on a Failing Implant with an Oxidized Surface: A Scanning Electron Microscope Study.

    Science.gov (United States)

    Simion, Massimo; Kim, David M; Pieroni, Stefano; Nevins, Myron; Cassinelli, Clara

    2016-01-01

    This case report provided a unique opportunity to investigate the extent of microbiota infiltration on the oxidized implant surface that has been compromised by peri-implantitis. Scanning electron microscopic analysis confirmed the etiologic role of the bacteria on the loss of supporting structure and the difficulty in complete removal of bacterial infiltration on the implant surface. This case report emphasizes the need to perform definitive surface decontamination on failing dental implants prior to a regeneration procedure. PMID:27333005

  14. The efficacy of immediate versus delayed antibiotic administration on bacterial growth and biofilm production of selected strains of uropathogenic Escherichia coli and Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Leah Gandee

    2015-02-01

    Full Text Available Purpose The treatment of urinary tract infections (UTI with antibiotics is commonly used, but recurrence and antibiotic resistance have been growing and concerning clinicians. We studied whether the rapid onset of a protective biofilm may be responsible for the lack of effectiveness of antibiotics against selected bacteria. Materials and Methods Two established uropathogenic Escherichia coli strains, UTI89 and CFT073, and two Pseudomonas aeruginosa strains, PA01 and Boston-41501, were studied to establish a reliable biofilm formation process. Bacterial growth (BG was determined by optical density at 600 nm (OD 600 using a spectrophotometer, while biofilm formation (BF using crystal violet staining was measured at OD 550. Next, these bacterial strains were treated with clinically relevant antibiotics, ciprofloxacin HCl (200 ng/mL and 2 μg/mL, nitrofurantoin (20 μg/mL and 40 μg/mL and ampicillin (50 μg/mL at time points of 0 (T0 or after 6 hours of culture (T6. All measurements, including controls (bacteria -1% DMSO, were done in triplicates and repeated three times for consistency. Results The tested antibiotics effectively inhibited both BG and BF when administered at T0 for UPEC strains, but not when the antibiotic administration started 6 hours later. For Pseudomonas strains, only Ciprofloxacin was able to significantly inhibit bacterial growth at T0 but only at the higher concentration of 2 μg/mL for T6. Conclusion When established UPEC and Pseudomonas bacteria were allowed to culture for 6 hours before initialization of treatment, the therapeutic effect of selected antibiotics was greatly suppressed when compared to immediate treatment, probably as a result of the protective nature of the biofilm.

  15. Host Responses to Biofilm.

    Science.gov (United States)

    Watters, C; Fleming, D; Bishop, D; Rumbaugh, K P

    2016-01-01

    From birth to death the human host immune system interacts with bacterial cells. Biofilms are communities of microbes embedded in matrices composed of extracellular polymeric substance (EPS), and have been implicated in both the healthy microbiome and disease states. The immune system recognizes many different bacterial patterns, molecules, and antigens, but these components can be camouflaged in the biofilm mode of growth. Instead, immune cells come into contact with components of the EPS matrix, a diverse, hydrated mixture of extracellular DNA (bacterial and host), proteins, polysaccharides, and lipids. As bacterial cells transition from planktonic to biofilm-associated they produce small molecules, which can increase inflammation, induce cell death, and even cause necrosis. To survive, invading bacteria must overcome the epithelial barrier, host microbiome, complement, and a variety of leukocytes. If bacteria can evade these initial cell populations they have an increased chance at surviving and causing ongoing disease in the host. Planktonic cells are readily cleared, but biofilms reduce the effectiveness of both polymorphonuclear neutrophils and macrophages. In addition, in the presence of these cells, biofilm formation is actively enhanced, and components of host immune cells are assimilated into the EPS matrix. While pathogenic biofilms contribute to states of chronic inflammation, probiotic Lactobacillus biofilms cause a negligible immune response and, in states of inflammation, exhibit robust antiinflammatory properties. These probiotic biofilms colonize and protect the gut and vagina, and have been implicated in improved healing of damaged skin. Overall, biofilms stimulate a unique immune response that we are only beginning to understand. PMID:27571696

  16. Progress of researches on relationship of bacterial biofilm and dental caries%细菌生物膜与龋齿相关性的研究进展

    Institute of Scientific and Technical Information of China (English)

    张欣然; 刘新

    2011-01-01

    Dental plaque biofilm is a combination of micro-organisms deposited on tooth sturface, with concentration of organic substrates with each other, cross-linked to form the ecological structure. Microbial biofilms are interdependent and mutually competitive, constitute a complex micro-ecological relationships. Bacteria in dental plaque biofilm formation is gathered in the tooth surface structures necessary to lead to dental caries. This paper reviews the relationship between the occurrence of bacterial biofilms and dental caries, in order to provide new ideas for the prevention and treatment of dental caries.%牙菌斑是由多种微生物在牙面上沉积,有机基质互相集聚、交联而形成的生物膜结构,生物膜中微生物相互依存、相互竞争,构成了复杂的微生态关系.牙菌斑生物膜的形成是导致龋齿重要过程.本文综述了细菌生物膜与龋齿发生的关系,以期为龋齿的预防与治疗提供新的思路.

  17. Biofilm and Planktonic Bacterial and Fungal Communities Transforming High-Molecular-Weight Polycyclic Aromatic Hydrocarbons.

    Science.gov (United States)

    Folwell, Benjamin D; McGenity, Terry J; Whitby, Corinne

    2016-04-15

    High-molecular-weight polycyclic aromatic hydrocarbons (HMW-PAHs) are natural components of fossil fuels that are carcinogenic and persistent in the environment, particularly in oil sands process-affected water (OSPW). Their hydrophobicity and tendency to adsorb to organic matter result in low bioavailability and high recalcitrance to degradation. Despite the importance of microbes for environmental remediation, little is known about those involved in HMW-PAH transformations. Here, we investigated the transformation of HMW-PAHs using samples of OSPW and compared the bacterial and fungal community compositions attached to hydrophobic filters and in suspension. It was anticipated that the hydrophobic filters with sorbed HMW-PAHs would select for microbes that specialize in adhesion. Over 33 days, more pyrene was removed (75% ± 11.7%) than the five-ring PAHs benzo[a]pyrene (44% ± 13.6%) and benzo[b]fluoranthene (41% ± 12.6%). For both bacteria and fungi, the addition of PAHs led to a shift in community composition, but thereafter the major factor determining the fungal community composition was whether it was in the planktonic phase or attached to filters. In contrast, the major determinant of the bacterial community composition was the nature of the PAH serving as the carbon source. The main bacteria enriched by HMW-PAHs werePseudomonas,Bacillus, andMicrobacteriumspecies. This report demonstrates that OSPW harbors microbial communities with the capacity to transform HMW-PAHs. Furthermore, the provision of suitable surfaces that encourage PAH sorption and microbial adhesion select for different fungal and bacterial species with the potential for HMW-PAH degradation. PMID:26850299

  18. Selection and identification of a bacterial community able to degrade and detoxify m-nitrophenol in continuous biofilm reactors.

    Science.gov (United States)

    González, Ana J; Fortunato, María S; Papalia, Mariana; Radice, Marcela; Gutkind, Gabriel; Magdaleno, Anahí; Gallego, Alfredo; Korol, Sonia E

    2015-12-01

    Nitroaromatics are widely used for industrial purposes and constitute a group of compounds of environmental concern because of their persistence and toxic properties. Biological processes used for decontamination of nitroaromatic-polluted sources have then attracted worldwide attention. In the present investigation m-nitrophenol (MNP) biodegradation was studied in batch and continuous reactors. A bacterial community able to degrade the compound was first selected from a polluted freshwater stream and the isolates were identified by the analysis of the 16S rRNA gene sequence. The bacterial community was then used in biodegradation assays. Batch experiments were conducted in a 2L aerobic microfermentor at 28 °C and with agitation (200 rpm). The influence of abiotic factors in the biodegradation process in batch reactors, such as initial concentration of the compound and initial pH of the medium, was also studied. Continuous degradation of MNP was performed in an aerobic up-flow fixed-bed biofilm reactor. The biodegradation process was evaluated by determining MNP and ammonium concentrations and chemical oxygen demand (COD). Detoxification was assessed by Vibrio fischeri and Pseudokirchneriella subcapitata toxicity tests. Under batch conditions the bacterial community was able to degrade 0.72 mM of MNP in 32 h, with efficiencies higher than 99.9% and 89.0% of MNP and COD removals respectively and with concomitant release of ammonium. When the initial MNP concentration increased to 1.08 and 1.44 mM MNP the biodegradation process was accomplished in 40 and 44 h, respectively. No biodegradation of the compound was observed at higher concentrations. The community was also able to degrade 0.72 mM of the compound at pH 5, 7 and 9. In the continuous process biodegradation efficiency reached 99.5% and 96.8% of MNP and COD removal respectively. The maximum MNP removal rate was 37.9 gm(-3) day(-1). Toxicity was not detected after the biodegradation process. PMID:26283285

  19. Analysis of adherence, biofilm formation and cytotoxicity suggests a greater virulence potential of Gardnerella vaginalis relative to other bacterial-vaginosis-associated anaerobes.

    Science.gov (United States)

    Patterson, Jennifer L; Stull-Lane, Annica; Girerd, Philippe H; Jefferson, Kimberly K

    2010-02-01

    Worldwide, bacterial vaginosis (BV) is the most common vaginal disorder in women of childbearing age. BV is characterized by a dramatic shift in the vaginal microflora, involving a relative decrease in lactobacilli, and a proliferation of anaerobes. In most cases of BV, the predominant bacterial species found is Gardnerella vaginalis. However, pure cultures of G. vaginalis do not always result in BV, and asymptomatic women are sometimes colonized with low numbers of G. vaginalis. Thus, there is controversy about whether G. vaginalis is an opportunistic pathogen and the causative agent of many cases of BV, or whether BV is a polymicrobial condition caused by the collective effects of an altered microbial flora. Recent studies of the biofilm-forming potential and cytotoxic activity of G. vaginalis have renewed interest in the virulence potential of this organism. In an effort to tease apart the aetiology of this disorder, we utilized in vitro assays to compare three virulence properties of G. vaginalis relative to other BV-associated anaerobes. We designed a viable assay to analyse bacterial adherence to vaginal epithelial cells, we compared biofilm-producing capacities, and we assessed cytotoxic activity. Of the BV-associated anaerobes tested, only G. vaginalis demonstrated all three virulence properties combined. This study suggests that G. vaginalis is more virulent than other BV-associated anaerobes, and that many of the bacterial species frequently isolated from BV may be relatively avirulent opportunists that colonize the vagina after G. vaginalis has initiated an infection. PMID:19910411

  20. Environmental Dissolved Organic Matter Governs Biofilm Formation and Subsequent Linuron Degradation Activity of a Linuron-Degrading Bacterial Consortium

    Science.gov (United States)

    Horemans, Benjamin; Breugelmans, Philip; Hofkens, Johan; Smolders, Erik

    2013-01-01

    It was examined whether biofilm growth on dissolved organic matter (DOM) of a three-species consortium whose members synergistically degrade the phenylurea herbicide linuron affected the consortium's integrity and subsequent linuron-degrading functionality. Citrate as a model DOM and three environmental DOM (eDOM) formulations of different quality were used. Biofilms developed with all DOM formulations, and the three species were retained in the biofilm. However, biofilm biomass, species composition, architecture, and colocalization of member strains depended on DOM and its biodegradability. To assess the linuron-degrading functionality, biofilms were subsequently irrigated with linuron at 10 mg liter−1 or 100 μg liter−1. Instant linuron degradation, the time needed to attain maximal linuron degradation, and hence the total amount of linuron removed depended on both the DOM used for growth and the linuron concentration. At 10 mg liter−1, the final linuron degradation efficiency was as high as previously observed without DOM except for biofilms fed with humic acids which did not degrade linuron. At 100 μg liter−1 linuron, DOM-grown biofilms degraded linuron less efficiently than biofilms receiving 10 mg liter−1 linuron. The amount of linuron removed was more correlated with biofilm species composition than with biomass or structure. Based on visual observations, colocalization of consortium members in biofilms after the DOM feed appears essential for instant linuron-degrading activity and might explain the differences in overall linuron degradation. The data show that DOM quality determines biofilm structure and composition of the pesticide-degrading consortium in periods with DOM as the main carbon source and can affect subsequent pesticide-degrading activity, especially at micropollutant concentrations. PMID:23666338

  1. Effect of bacterial biofilm on corrosion of galvanically coupled aluminum and stainless steel alloys under conditions simulating wet storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Galvanic corrosion is a concern during wet storage of spent nuclear fuels when aluminum alloys used as cladding for nuclear fuel rods become coupled to stainless steel alloys used as materials for construction of fuel rod hangers and containment equipment. A larger galvanic current density was observed between coupled UNS A96061 and UNS S30400 electrodes submerged in autoclave-sterilized makeup water. The differences were attributed to the development of a discontinuous bacterial biofilm on the couples submerged in as-received makeup water, which was not evident on the control couples that contained several orders of magnitude lower densities of bacteria. While pitting corrosion was observed on the UNS A96061 electrodes containing high or low densities of bacteria, maximum pit depth on the electrodes with high bacterial densities was twice that measured on electrodes with low bacterial densities

  2. Bacteriophages and Biofilms

    OpenAIRE

    Harper, David R; Helena M. R. T. Parracho; James Walker; Richard Sharp; Gavin Hughes; Maria Werthén; Susan Lehman; Sandra Morales

    2014-01-01

    Biofilms are an extremely common adaptation, allowing bacteria to colonize hostile environments. They present unique problems for antibiotics and biocides, both due to the nature of the extracellular matrix and to the presence within the biofilm of metabolically inactive persister cells. Such chemicals can be highly effective against planktonic bacterial cells, while being essentially ineffective against biofilms. By contrast, bacteriophages seem to have a greater ability to target this commo...

  3. Current understanding of multi-species biofilms

    OpenAIRE

    Yang, Liang; Liu, Yang; Wu,Hong; Høiby, Niels; Molin, Søren; Zhi-jun SONG

    2011-01-01

    Direct observation of a wide range of natural microorganisms has revealed the fact that the majority of microbes persist as surface-attached communities surrounded by matrix materials, called biofilms. Biofilms can be formed by a single bacterial strain. However, most natural biofilms are actually formed by multiple bacterial species. Conventional methods for bacterial cleaning, such as applications of antibiotics and/or disinfectants are often ineffective for biofilm populations due to their...

  4. I. Development of Metal-Mediated SPOT-Synthesis Methods for the Efficient Construction of Small-Molecule Macroarrays. II. Design and Synthesis of Novel Bacterial Biofilm Inhibitors

    Science.gov (United States)

    Frei, Reto

    I. The use of small molecule probes to explore biological phenomena has become a valuable tool in chemical biology. As a result, methods that permit the rapid synthesis and biological evaluation of such compounds are highly sought-after. The small molecule macroarray represents one such approach for the synthesis and identification of novel bioactive agents. Macroarrays are readily constructed via the SPOT-synthesis technique on planar cellulose membranes, yielding spatially addressed libraries of ˜10-1000 unique compounds. We sought to expand the arsenal of chemical reactions compatible with this solid-phase platform, and developed highly efficient SPOT-synthesis protocols for the Mizoroki-Heck, Suzuki-Miyaura, and copper-catalyzed azide-alkyne cycloaddition reaction. We demonstrated that these metal-mediated reactions can be implemented, either individually or sequentially, for the efficient construction of small molecules in high purity on rapid time scales. Utilizing these powerful C-C and C-N bond forming coupling reactions, we constructed a series of macroarrays based on novel stilbene, phenyl-naphthalene, and triazole scaliblds. Subsequent biological testing of the stilbene and phenyl-naphthalene libraries revealed several potent antagonists and agonists, respectively, of the quorum sensing (QS) receptor LuxR in Vibrio fischeri. II. Bacteria living within biofilms are notorious for their resistance to known antibiotic agents, and constitute a major human health threat. Methods to attenuate biofilm growth would have a significant impact on the management of bacterial infections. Despite intense research efforts, small molecules capable of either inhibiting or dispersing biolilms remain scarce. We utilized natural products with purported anti-biofilm or QS inhibitory activity as sources of structural insight to guide the synthesis of novel biofilm modulators with improved activities. These studies revealed 2-aminobenzimidazole derivatives as highly potent

  5. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells

    Science.gov (United States)

    Sanyasi, Sridhar; Majhi, Rakesh Kumar; Kumar, Satish; Mishra, Mitali; Ghosh, Arnab; Suar, Mrutyunjay; Satyam, Parlapalli Venkata; Mohapatra, Harapriya; Goswami, Chandan; Goswami, Luna

    2016-01-01

    Development of effective anti-microbial therapeutics has been hindered by the emergence of bacterial strains with multi-drug resistance and biofilm formation capabilities. In this article, we report an efficient green synthesis of silver nanoparticle (AgNP) by in situ reduction and capping with a semi-synthetic polysaccharide-based biopolymer (carboxymethyl tamarind polysaccharide). The CMT-capped AgNPs were characterized by UV, DLS, FE-SEM, EDX and HR-TEM. These AgNPs have average particle size of ~20–40 nm, and show long time stability, indicated by their unchanged SPR and Zeta-potential values. These AgNPs inhibit growth and biofilm formation of both Gram positive (B. subtilis) and Gram negative (E. coli and Salmonella typhimurium) bacterial strains even at concentrations much lower than the minimum inhibitory concentration (MIC) breakpoints of antibiotics, but show reduced or no cytotoxicity against mammalian cells. These AgNPs alter expression and positioning of bacterial cytoskeletal proteins FtsZ and FtsA. CMT-capped AgNPs can effectively block growth of several clinical isolates and MDR strains representing different genera and resistant towards multiple antibiotics belonging to different classes. We propose that the CMT-capped AgNPs can have potential bio-medical application against multi-drug-resistant microbes with minimal cytotoxicity towards mammalian cells. PMID:27125749

  6. Hormone-dependent bacterial growth, persistence and biofilm formation--a pilot study investigating human follicular fluid collected during IVF cycles.

    Directory of Open Access Journals (Sweden)

    Elise S Pelzer

    Full Text Available Human follicular fluid, considered sterile, is aspirated as part of an in vitro fertilization (IVF cycle. However, it is easily contaminated by the trans-vaginal collection route and little information exists in its potential to support the growth of microorganisms. The objectives of this study were to determine whether human follicular fluid can support bacterial growth over time, whether the steroid hormones estradiol and progesterone (present at high levels within follicular fluid contribute to the in vitro growth of bacterial species, and whether species isolated from follicular fluid form biofilms. We found that bacteria in follicular fluid could persist for at least 28 weeks in vitro and that the steroid hormones stimulated the growth of some bacterial species, specifically Lactobacillus spp., Bifidobacterium spp. Streptococcus spp. and E. coli. Several species, Lactobacillus spp., Propionibacterium spp., and Streptococcus spp., formed biofilms when incubated in native follicular fluids in vitro (18/24, 75%. We conclude that bacteria aspirated along with follicular fluid during IVF cycles demonstrate a persistent pattern of growth. This discovery is important since it can offer a new avenue for investigation in infertile couples.

  7. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells

    Science.gov (United States)

    Sanyasi, Sridhar; Majhi, Rakesh Kumar; Kumar, Satish; Mishra, Mitali; Ghosh, Arnab; Suar, Mrutyunjay; Satyam, Parlapalli Venkata; Mohapatra, Harapriya; Goswami, Chandan; Goswami, Luna

    2016-04-01

    Development of effective anti-microbial therapeutics has been hindered by the emergence of bacterial strains with multi-drug resistance and biofilm formation capabilities. In this article, we report an efficient green synthesis of silver nanoparticle (AgNP) by in situ reduction and capping with a semi-synthetic polysaccharide-based biopolymer (carboxymethyl tamarind polysaccharide). The CMT-capped AgNPs were characterized by UV, DLS, FE-SEM, EDX and HR-TEM. These AgNPs have average particle size of ~20–40 nm, and show long time stability, indicated by their unchanged SPR and Zeta-potential values. These AgNPs inhibit growth and biofilm formation of both Gram positive (B. subtilis) and Gram negative (E. coli and Salmonella typhimurium) bacterial strains even at concentrations much lower than the minimum inhibitory concentration (MIC) breakpoints of antibiotics, but show reduced or no cytotoxicity against mammalian cells. These AgNPs alter expression and positioning of bacterial cytoskeletal proteins FtsZ and FtsA. CMT-capped AgNPs can effectively block growth of several clinical isolates and MDR strains representing different genera and resistant towards multiple antibiotics belonging to different classes. We propose that the CMT-capped AgNPs can have potential bio-medical application against multi-drug-resistant microbes with minimal cytotoxicity towards mammalian cells.

  8. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells.

    Science.gov (United States)

    Sanyasi, Sridhar; Majhi, Rakesh Kumar; Kumar, Satish; Mishra, Mitali; Ghosh, Arnab; Suar, Mrutyunjay; Satyam, Parlapalli Venkata; Mohapatra, Harapriya; Goswami, Chandan; Goswami, Luna

    2016-01-01

    Development of effective anti-microbial therapeutics has been hindered by the emergence of bacterial strains with multi-drug resistance and biofilm formation capabilities. In this article, we report an efficient green synthesis of silver nanoparticle (AgNP) by in situ reduction and capping with a semi-synthetic polysaccharide-based biopolymer (carboxymethyl tamarind polysaccharide). The CMT-capped AgNPs were characterized by UV, DLS, FE-SEM, EDX and HR-TEM. These AgNPs have average particle size of ~20-40 nm, and show long time stability, indicated by their unchanged SPR and Zeta-potential values. These AgNPs inhibit growth and biofilm formation of both Gram positive (B. subtilis) and Gram negative (E. coli and Salmonella typhimurium) bacterial strains even at concentrations much lower than the minimum inhibitory concentration (MIC) breakpoints of antibiotics, but show reduced or no cytotoxicity against mammalian cells. These AgNPs alter expression and positioning of bacterial cytoskeletal proteins FtsZ and FtsA. CMT-capped AgNPs can effectively block growth of several clinical isolates and MDR strains representing different genera and resistant towards multiple antibiotics belonging to different classes. We propose that the CMT-capped AgNPs can have potential bio-medical application against multi-drug-resistant microbes with minimal cytotoxicity towards mammalian cells. PMID:27125749

  9. Synchronized dynamics of bacterial niche-specific functions during biofilm development in a cold seep brine pool

    KAUST Repository

    Zhang, Weipeng

    2015-07-14

    The biology of biofilm in deep-sea environments is barely being explored. Here, biofilms were developed at the brine pool (characterized by limited carbon sources) and the normal bottom water adjacent to Thuwal cold seeps. Comparative metagenomics based on 50 Gb datasets identified polysaccharide degradation, nitrate reduction, and proteolysis as enriched functional categories for brine biofilms. The genomes of two dominant species: a novel deltaproteobacterium and a novel epsilonproteobacterium in the brine biofilms were reconstructed. Despite rather small genome sizes, the deltaproteobacterium possessed enhanced polysaccharide fermentation pathways, whereas the epsilonproteobacterium was a versatile nitrogen reactor possessing nar, nap and nif gene clusters. These metabolic functions, together with specific regulatory and hypersaline-tolerant genes, made the two bacteria unique compared with their close relatives including those from hydrothermal vents. Moreover, these functions were regulated by biofilm development, as both the abundance and the expression level of key functional genes were higher in later-stage biofilms, and co-occurrences between the two dominant bacteria were demonstrated. Collectively, unique mechanisms were revealed: i) polysaccharides fermentation, proteolysis interacted with nitrogen cycling to form a complex chain for energy generation; ii) remarkably, exploiting and organizing niche-specific functions would be an important strategy for biofilm-dependent adaptation to the extreme conditions.

  10. Oral Biofilm Architecture on Natural Teeth

    NARCIS (Netherlands)

    Zijnge, Vincent; van Leeuwen, M. Barbara M.; Degener, John E.; Abbas, Frank; Thurnheer, Thomas; Gmuer, Rudolf; Harmsen, Hermie J. M.; Jonsson, Ing-Marie; Juuti, Jarmo T.; François, Patrice; AlMajidi, Rana; Pietiäinen, Milla; Girard, Myriam; Lindholm, Catharina; Saller, Manfred J.; Driessen, Arnold J.M.; Kuusela, Pentti; Bokarewa, Maria; Schrenzel, Jacques; Kontinen, Vesa P.; Neyrolles, Olivier

    2010-01-01

    Periodontitis and caries are infectious diseases of the oral cavity in which oral biofilms play a causative role. Moreover, oral biofilms are widely studied as model systems for bacterial adhesion, biofilm development, and biofilm resistance to antibiotics, due to their widespread presence and acces

  11. 重视细菌生物被膜导致的细菌耐药及其解决方案%Attention to the antibiotic resistance caused by bacterial biofilm and its solutions

    Institute of Scientific and Technical Information of China (English)

    伍勇; 陈丽华

    2014-01-01

    生物被膜的形成使细菌获得了以多细胞生存的生命形式。与浮游菌相比,生物被膜状态下细菌的耐药性显著增强。细菌生物被膜形成是许多亚急性和慢性感染病理过程的一个关键步骤,在临床上可以形成细菌生物被膜病和生物材料相关感染,已成为临床医疗工作的重点和难点。了解细菌生物被膜的耐药机制是提供解决方案的关键。(中华检验医学杂志,2014,37:725-727)%Biofilm formation makes bacteria adopt a multicellular lifestyle.Compared to planktonic cells, biofilm-grown cells express an increased resistance to antimicrobial agents.Bacterial biofilm formation is a crucial step in the pathogenesis of many subacute and chronic bacterial infections.In clinical setting, biofilm can cause bacterial biofilm disease and biomaterial associated infection.Understanding the mechanisms involved in biofilm-associated antimicrobial resistance is key to the development of new solutions.

  12. A soil-based microbial biofilm exposed to 2,4-D: bacterial community development and establishment of conjugative plasmid pJP4

    DEFF Research Database (Denmark)

    Aspray, T.J.; Hansen, Susse Kirkelund; Burns, R.G.

    2005-01-01

    of the genera Pseudomonas, Burkholderia, Collimonas and Rhodococcus. A 2,4-D degrading donor strain, Pseudomonas putida SM 1443 (pJP4::gfp), was inoculated into flow cell chambers containing 2-day old biofilm communities. Transfer of pJP4::gfp from the donor to the bacterial community was detectable as GFP...... fluorescing cells and images were captured using confocal scanning laser microscopy (GFP fluorescence was repressed in the donor due to the presence of a chromosomally located lacl(q) repressor gene). Approximately 5-10 transconjugant microcolonies, 20-40 mu m in diameter, could be seen to develop in each...

  13. Interactions in multispecies biofilms

    DEFF Research Database (Denmark)

    Burmølle, Mette; Ren, Dawei; Bjarnsholt, Thomas;

    2014-01-01

    The recent focus on complex bacterial communities has led to the recognition of interactions across species boundaries. This is particularly pronounced in multispecies biofilms, where synergistic interactions impact the bacterial distribution and overall biomass produced. Importantly, in a number...... of settings, the interactions in a multispecies biofilm affect its overall function, physiology, or surroundings, by resulting in enhanced resistance, virulence, or degradation of pollutants, which is of significant importance to human health and activities. The underlying mechanisms causing these...

  14. Biofilm dispersion in Pseudomonas aeruginosa.

    Science.gov (United States)

    Kim, Soo-Kyoung; Lee, Joon-Hee

    2016-02-01

    In recent decades, many researchers have written numerous articles about microbial biofilms. Biofilm is a complex community of microorganisms and an example of bacterial group behavior. Biofilm is usually considered a sessile mode of life derived from the attached growth of microbes to surfaces, and most biofilms are embedded in self-produced extracellular matrix composed of extracellular polymeric substances (EPSs), such as polysaccharides, extracellular DNAs (eDNA), and proteins. Dispersal, a mode of biofilm detachment indicates active mechanisms that cause individual cells to separate from the biofilm and return to planktonic life. Since biofilm cells are cemented and surrounded by EPSs, dispersal is not simple to do and many researchers are now paying more attention to this active detachment process. Unlike other modes of biofilm detachment such as erosion or sloughing, which are generally considered passive processes, dispersal occurs as a result of complex spatial differentiation and molecular events in biofilm cells in response to various environmental cues, and there are many biological reasons that force bacterial cells to disperse from the biofilms. In this review, we mainly focus on the spatial differentiation of biofilm that is a prerequisite for dispersal, as well as environmental cues and molecular events related to the biofilm dispersal. More specifically, we discuss the dispersal-related phenomena and mechanisms observed in Pseudomonas aeruginosa, an important opportunistic human pathogen and representative model organism for biofilm study. PMID:26832663

  15. 呼吸机导管内细菌生物被膜抗吞噬作用%Anti-phagocytosis effect of bacterial biofilm in invasive catherter

    Institute of Scientific and Technical Information of China (English)

    王欢; 刘新; 张佩

    2012-01-01

    Objective To investigate the anti-phagocytosis effects of bacterial biofilm in invasive catheter. Methods From July 2010 through December 2011,32 samples of critical ventilator catheter specimens were collected from neonatal intensive care unit( N1CU). The bacteria in inner membrane of the catheter were isolated and selected to simulate the biofilm in the catheter of the NICU under clinic usage. We observed the bio-membrane morphology and interactions between phago-cytic cells and bacterial biofilm,and analyzed the relationship of catheter bio-membrane formation and catheter related infection. Results Totally 14 strains of Acinetobacter baumanii, a strains of Pseudomonas aerugionosa ,6 strains of Staphylococ-cus,and 3 strains of fungus were isolated from the 32 samples. Eight strains of Acinetobacter baumanii could form bacterial biofilm. The bio-membrane was easily formed in invasive ductal by the adherence of bacteria,and scanning electron microscopy could be used for the observation of bacterial bio-membrane formation. The bio-membrane had anti-phagocytosis function. Conclusion The anti-phagocytosis effect of bacterial biofilm is an important factor for refractory infection.%目的 探讨侵入性导管内细菌生物被膜抗吞噬作用.方法 于2010年7月-2011年12月收集新生儿ICU病房危重新生儿病例呼吸机导管标本32份,对导管内壁细菌分离鉴定,选择生物膜模式菌株模拟导管中液体流动状态重建细菌生物被膜,观察细菌生物被膜形态结构及吞噬细胞与细菌生物被膜的相互作用,分析导管细菌生物被膜形成与导管伴生感染的关系.结果 32例导管标本经细菌分离培养和ATB生化鉴定,显示鲍曼不动杆菌14株,铜绿假单胞菌9株,葡萄球菌6株,真菌3株;14例鉴定的鲍曼不动杆菌标本中有8株产生生物被膜菌株;患者侵入性导管容易被细菌粘附形成生物被膜,扫描电镜可用于观察细菌生物被膜形成情况,生物被膜具

  16. Staphylococcus epidermidis in orthopedic device infections: the role of bacterial internalization in human osteoblasts and biofilm formation.

    Directory of Open Access Journals (Sweden)

    Florent Valour

    Full Text Available BACKGROUND: Staphylococcus epidermidis orthopedic device infections are caused by direct inoculation of commensal flora during surgery and remain rare, although S. epidermidis carriage is likely universal. We wondered whether S. epidermidis orthopedic device infection strains might constitute a sub-population of commensal isolates with specific virulence ability. Biofilm formation and invasion of osteoblasts by S. aureus contribute to bone and joint infection recurrence by protecting bacteria from the host-immune system and most antibiotics. We aimed to determine whether S. epidermidis orthopedic device infection isolates could be distinguished from commensal strains by their ability to invade osteoblasts and form biofilms. MATERIALS AND METHODS: Orthopedic device infection S. epidermidis strains (n = 15 were compared to nasal carriage isolates (n = 22. Osteoblast invasion was evaluated in an ex vivo infection model using MG63 osteoblastic cells co-cultured for 2 hours with bacteria. Adhesion of S. epidermidis to osteoblasts was explored by a flow cytometric approach, and internalized bacteria were quantified by plating cell lysates after selective killing of extra-cellular bacteria with gentamicin. Early and mature biofilm formations were evaluated by a crystal violet microtitration plate assay and the Biofilm Ring Test method. RESULTS: No difference was observed between commensal and infective strains in their ability to invade osteoblasts (internalization rate 308+/-631 and 347+/-431 CFU/well, respectively. This low internalization rate correlated with a low ability to adhere to osteoblasts. No difference was observed for biofilm formation between the two groups. CONCLUSION: Osteoblast invasion and biofilm formation levels failed to distinguish S. epidermidis orthopedic device infection strains from commensal isolates. This study provides the first assessment of the interaction between S. epidermidis strains isolated from orthopedic

  17. Comparing vacuum and extreme ultraviolet radiation for postionization of laser desorbed neutrals from bacterial biofilms and organic fullerenes

    International Nuclear Information System (INIS)

    Vacuum and extreme ultraviolet radiation from 8 to 24 eV generated at a synchrotron was used to postionize laser desorbed neutrals of antibiotic-treated biofilms and a modified fullerene using laser desorption postionization mass spectrometry (LDPI-MS). Results show detection of the parent ion, various fragments, and extracellular material from biofilms using LDPI-MS with both vacuum and extreme ultraviolet photons. Parent ions were observed for both cases, but extreme ultraviolet photons (16-24 eV) induced more fragmentation than vacuum ultraviolet (8-14 eV) photons.

  18. Biofilm formation on abiotic surfaces

    DEFF Research Database (Denmark)

    Tang, Lone

    2011-01-01

    Bacteria can attach to any surface in contact with water and proliferate into complex communities enclosed in an adhesive matrix, these communities are called biofilms. The matrix makes the biofilm difficult to remove by physical means, and bacteria in biofilm can survive treatment with many...... antibiotics, disinfectants and cleaning agents. Biofilms are therefore very difficult to eradicate, and an attractive approach to limit biofilm formation is to reduce bacterial adhesion. In this thesis it was shown that lowering the surface roughness had a greater effect on bacterial retention compared to...... changing the surface hydrophobicity. The influence of surface topography in the <100 nanometer range was less clear and its effect on bacterial retention depended on the strain used in the experiment. Extracellular DNA (eDNA) is an the ubiquitous biomolecule of great importance for bacterial adhesion. The...

  19. Phage-mediated dispersal of biofilm and distribution of bacterial virulence genes is induced by quorum sensing.

    Directory of Open Access Journals (Sweden)

    Friederike S Rossmann

    2015-02-01

    Full Text Available The microbiome and the phage meta-genome within the human gut are influenced by antibiotic treatments. Identifying a novel mechanism, here we demonstrate that bacteria use the universal communication molecule AI-2 to induce virulence genes and transfer them via phage release. High concentrations (i.e. 100 μM of AI-2 promote dispersal of bacteria from already established biofilms, and is associated with release of phages capable of infecting other bacteria. Enterococcus faecalis V583ΔABC harbours 7 prophages in its genome, and a mutant deficient in one of these prophages (i.e. prophage 5 showed a greatly reduced dispersal of biofilm. Infection of a probiotic E. faecalis strain without lytic prophages with prophage 5 resulted in increased biofilm formation and also in biofilm dispersal upon induction with AI-2. Infection of the probiotic E. faecalis strain with phage-containing supernatants released through AI-2 from E. faecalis V583ΔABC resulted in a strong increase in pathogenicity of this strain. The polylysogenic probiotic strain was also more virulent in a mouse sepsis model and a rat endocarditis model. Both AI-2 and ciprofloxacin lead to phage release, indicating that conditions in the gastrointestinal tract of hospitalized patients treated with antibiotics might lead to distribution of virulence genes to apathogenic enterococci and possibly also to other commensals or even to beneficial probiotic strains.

  20. Electron microscopy and phase analysis of biofilms of bacterial cultures from hydrogeothermal water; Elektronenmikroskopische und phasenanalytische Untersuchungen an Biofilm von Bakterienkulturen aus geothermisch genutzten Tiefenwaessern

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, M.; Voelsgen, F.; Bochning, S. [URST Umwelt- und Rohstoff-Technologie, Greifswald (Germany); Kasbohm, J. [Greifswald Univ. (Germany). FR Geowissenschaften

    1997-12-01

    In the context of a BMBF-funded project (1994 - 1996), concentrations and behaviour of microorganisms in hydrogeothermal water in Mecklenburg-Vorpommern were investigated. About 50 bacterial strains were isolated and characterized with respect to their cell morphology and relevant physiological properties. A relationship was found between bacterial cells and precipitation products. However, the methods of investigation could not differentiate between biogenic (biochemical) and chemical precipitation products, although the bacterial activity seems to be correlated with the precipitation of organic material. (orig.) [Deutsch] Im Rahmen eines vom BMBF geforderten Projektes (1994 - 1996) wurde das Vorkommen und Verhalten von Mikroorganismen in geothermisch genutzen Tiefenwaessern Mecklenburg-Vorpommerns untersucht. Bisher wurden ca. 50 Bakterienstaemme isoliert und hinsichtlich Zellmorphologie sowie relevanter physiologischer Eigenschaften charakterisiert. Mit den durchgefuehrten Untersuchungen konnte eine unmittelbare Beziehung zwischen Bakterienzellen und Faellungsprodukten nachgewiesen werden. Anhand der verwendeten Untersuchungsmethoden ist jedoch eine eindeutige Differenzierung zwischen biogenen (biochemischen) und rein chemischen Faellungsprodukten nicht moeglich. Offenbar bestehen aber eindeutige Beziehungen zwischen Bakterientaetigkeit und der Ausfaellung organischen Materials. (orig.)

  1. Treatment of seafood processing wastewater using upflow microbial fuel cell for power generation and identification of bacterial community in anodic biofilm.

    Science.gov (United States)

    Jayashree, C; Tamilarasan, K; Rajkumar, M; Arulazhagan, P; Yogalakshmi, K N; Srikanth, M; Banu, J Rajesh

    2016-09-15

    Tubular upflow microbial fuel cell (MFC) utilizing sea food processing wastewater was evaluated for wastewater treatment efficiency and power generation. At an organic loading rate (OLR) of 0.6 g d(-1), the MFC accomplished total and soluble chemical oxygen demand (COD) removal of 83 and 95%, respectively. A maximum power density of 105 mW m(-2) (2.21 W m(-3)) was achieved at an OLR of 2.57 g d(-1). The predominant bacterial communities of anode biofilm were identified as RB1A (LC035455), RB1B (LC035456), RB1C (LC035457) and RB1E (LC035458). All the four strains belonged to genera Stenotrophomonas. The results of the study reaffirms that the seafood processing wastewater can be treated in an upflow MFC for simultaneous power generation and wastewater treatment. PMID:27254294

  2. Investigations of Biofilm-Forming Bacterial Cells by Atomic Force Microscopy Prior to and Following Treatment from Gas Discharge Plasmas

    Science.gov (United States)

    Vandervoort, K. G.; Joaquin, J. C.; Kwan, C.; Bray, J. D.; Torrico, R.; Abramzon, N.; Brelles-Marino, G.

    2007-03-01

    We present investigations of biofilm-forming bacteria before and after treatment from gas discharge plasmas. Gas discharge plasmas represent a way to inactivate bacteria under conditions where conventional disinfection methods are often ineffective. These conditions involve bacteria in biofilm communities, where cooperative interactions between cells make organisms less susceptible to standard killing methods. Rhizobium gallicum and Chromobacterium violaceum were imaged before and after plasma treatment using an atomic force microscope (AFM). In addition, cell wall elasticity was studied by measuring force distance curves as the AFM tip was pressed into the cell surface. Results for cell surface morphology and micromechanical properties for plasma treatments lasting from 5 to 60 minutes were obtained and will be presented.

  3. Artificial biofilms establish the role of matrix interactions in staphylococcal biofilm assembly and disassembly

    OpenAIRE

    Stewart, Elizabeth J.; Mahesh Ganesan; Younger, John G.; Solomon, Michael J.

    2015-01-01

    We demonstrate that the microstructural and mechanical properties of bacterial biofilms can be created through colloidal self-assembly of cells and polymers, and thereby link the complex material properties of biofilms to well understood colloidal and polymeric behaviors. This finding is applied to soften and disassemble staphylococcal biofilms through pH changes. Bacterial biofilms are viscoelastic, structured communities of cells encapsulated in an extracellular polymeric substance (EPS) co...

  4. Comparison of freeze fracture images of mixed bacterial/yeast biofilm in cryo-SEM with high pressure freezing fixation

    Czech Academy of Sciences Publication Activity Database

    Hrubanová, Kamila; Nebesářová, Jana; Růžička, F.; Krzyžánek, Vladislav

    Praha: Czechoslovak Microscopy Society, 2014. ISBN 978-80-260-6720-7. [International Microscopy Congres /18./. Praha (CZ), 07.09.2014-12.09.2014] R&D Projects: GA MŠk ED0017/01/01; GA MŠk(CZ) LO1212; GA TA ČR TE01020118; GA ČR(CZ) GA14-20012S Institutional support: RVO:68081731 ; RVO:60077344 Keywords : biofilm * cryo-SEM * cryo-fixation Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  5. Hazard and Control of Bacterial Biofilm in the Meat Industry%肉制品生产中细菌生物被膜的危害及其控制

    Institute of Scientific and Technical Information of China (English)

    王静慧; 韩剑众; 曲道峰

    2012-01-01

    细菌生物被膜是细菌为适应自然环境有利于生存的一种生命现象,由微生物及其分泌物积聚而形成。形成生物被膜的细菌具有极强的抗药性、抗吞噬及抗趋化作用,对肉制品加工业的危害极大,可使微生物残存增加,普通的清洗和消毒无法达到除菌的效果。本文主要阐述细菌生物被膜的形成过程及特点,重点阐述其对肉制品行业的危害和控制方法。%Bacterial biofilm is a biological phenomenon,in which bacteria adapt themselves to the natural environment for survival purposes.It is formed by the accumulation of microorganisms and their secretion.Biofilm-forming bacteria,which have very strong antibiotic,anti-phagocytic and anti-chemotactic activities,pose a huge hazard for the meat industry.Bacterial biofilm can cause an increase in the residual population of bacteria and residual bacteria cannot be eliminated by ordinary cleaning and disinfection.This paper focuses on the formation and characteristics of bacterial biofilm and its hazards for the meat industry and control measures.

  6. Biofilm in endodontics: A review

    Science.gov (United States)

    Jhajharia, Kapil; Parolia, Abhishek; Shetty, K Vikram; Mehta, Lata Kiran

    2015-01-01

    Endodontic disease is a biofilm-mediated infection, and primary aim in the management of endodontic disease is the elimination of bacterial biofilm from the root canal system. The most common endodontic infection is caused by the surface-associated growth of microorganisms. It is important to apply the biofilm concept to endodontic microbiology to understand the pathogenic potential of the root canal microbiota as well as to form the basis for new approaches for disinfection. It is foremost to understand how the biofilm formed by root canal bacteria resists endodontic treatment measures. Bacterial etiology has been confirmed for common oral diseases such as caries and periodontal and endodontic infections. Bacteria causing these diseases are organized in biofilm structures, which are complex microbial communities composed of a great variety of bacteria with different ecological requirements and pathogenic potential. The biofilm community not only gives bacteria effective protection against the host's defense system but also makes them more resistant to a variety of disinfecting agents used as oral hygiene products or in the treatment of infections. Successful treatment of these diseases depends on biofilm removal as well as effective killing of biofilm bacteria. So, the fundamental to maintain oral health and prevent dental caries, gingivitis, and periodontitis is to control the oral biofilms. From these aspects, the formation of biofilms carries particular clinical significance because not only host defense mechanisms but also therapeutic efforts including chemical and mechanical antimicrobial treatment measures have the most difficult task of dealing with organisms that are gathered in a biofilm. The aim of this article was to review the mechanisms of biofilms’ formation, their roles in pulpal and periapical pathosis, the different types of biofilms, the factors influencing biofilm formation, the mechanisms of their antimicrobial resistance, techniques to

  7. Hydraulic resistance of biofilms

    KAUST Repository

    Dreszer, C.

    2013-02-01

    Biofilms may interfere with membrane performance in at least three ways: (i) increase of the transmembrane pressure drop, (ii) increase of feed channel (feed-concentrate) pressure drop, and (iii) increase of transmembrane passage. Given the relevance of biofouling, it is surprising how few data exist about the hydraulic resistance of biofilms that may affect the transmembrane pressure drop and membrane passage. In this study, biofilms were generated in a lab scale cross flow microfiltration system at two fluxes (20 and 100Lm-2h-1) and constant cross flow (0.1ms-1). As a nutrient source, acetate was added (1.0mgL-1 acetate C) besides a control without nutrient supply. A microfiltration (MF) membrane was chosen because the MF membrane resistance is very low compared to the expected biofilm resistance and, thus, biofilm resistance can be determined accurately. Transmembrane pressure drop was monitored. As biofilm parameters, thickness, total cell number, TOC, and extracellular polymeric substances (EPS) were determined, it was demonstrated that no internal membrane fouling occurred and that the fouling layer actually consisted of a grown biofilm and was not a filter cake of accumulated bacterial cells. At 20Lm-2h-1 flux with a nutrient dosage of 1mgL-1 acetate C, the resistance after 4 days reached a value of 6×1012m-1. At 100Lm-2h-1 flux under the same conditions, the resistance was 5×1013m-1. No correlation of biofilm resistance to biofilm thickness was found; Biofilms with similar thickness could have different resistance depending on the applied flux. The cell number in biofilms was between 4×107 and 5×108 cellscm-2. At this number, bacterial cells make up less than a half percent of the overall biofilm volume and therefore did not hamper the water flow through the biofilm significantly. A flux of 100Lm-2h-1 with nutrient supply caused higher cell numbers, more biomass, and higher biofilm resistance than a flux of 20Lm-2h-1. However, the biofilm thickness

  8. SURFACE FINISHES ON STAINLESS STEEL REDUCE BACTERIAL ATTACHMENT AND EARLY BIOFILM FORMATION: SCANNING ELECTRON AND ATOMIC FORCE MICROSCOPY STUDY

    Science.gov (United States)

    Three common finishing treatments of stainless steel that are used for equipment during poultry processing were tested for resistance to bacterial contamination. Methods were developed to measure attached bacteria and to identify factors that make surface finishes susceptible or ...

  9. Investigating Biofilm Recalcitrance In Pipe Flow Systems

    Science.gov (United States)

    Aggarwal, S.; Stewart, P. S.; Hozalski, R. M.

    2015-12-01

    It is challenging to remove biofilms from pipe walls owing to their recalcitrant nature. Several physiological explanations resulting from the community existence of microbes have been offered to explain the recalcitrant nature of biofilms. Herein a biophysical aspect of biofilm recalcitrance is being reported. While optimal efficiency argument suggests that bacterial biofilms would be just strong enough to withstand the surrounding shear forces, our experimental findings reveal the biofilms to be at least 330 to 55000 times stronger. Additionally, Monte-Carlo simulations for biofilm detachment in drinking water systems were performed, which show that the existing flow velocities are insufficient for significant biofilm removal and warrant alternative detachment strategies. This emphasizes the importance of considering strategies for biofilm weakening (and subsequent detachment) in conjunction with or as an alternative to bacterial inactivation.

  10. Metal-assisted polyatomic SIMS and laser desorption/ionization for enhanced small molecule imaging of bacterial biofilms.

    Science.gov (United States)

    Dunham, Sage J B; Comi, Troy J; Ko, Kyungwon; Li, Bin; Baig, Nameera F; Morales-Soto, Nydia; Shrout, Joshua D; Bohn, Paul W; Sweedler, Jonathan V

    2016-06-01

    Mass spectrometry imaging (MSI) has become an important analytical tool for many sectors of science and medicine. As the application of MSI expands into new areas of inquiry, existing methodologies must be adapted and improved to meet emerging challenges. Particularly salient is the need for small molecule imaging methods that are compatible with complex multicomponent systems, a challenge that is amplified by the effects of analyte migration and matrix interference. With a focus on microbial biofilms from the opportunistic pathogen Pseudomonas aeruginosa, the relative advantages of two established microprobe-based MSI techniques-polyatomic secondary ion mass spectrometry (SIMS) and laser desorption/ionization-are compared, with emphasis on exploring the effect of surface metallization on small molecule imaging. A combination of qualitative image comparison and multivariate statistical analysis demonstrates that sputtering microbial biofilms with a 2.5 nm layer of gold selectively enhances C60-SIMS ionization for several molecular classes including rhamnolipids and 2-alkyl-quinolones. Metallization also leads to the reduction of in-source fragmentation and subsequent ionization of media-specific background polymers, which improves spectral purity and image quality. These findings show that the influence of metallization upon ionization is strongly dependent on both the surface architecture and the analyte class, and further demonstrate that metal-assisted C60-SIMS is a viable method for small molecule imaging of intact molecular ions in complex biological systems. PMID:26945568

  11. Combating biofilms

    DEFF Research Database (Denmark)

    Yang, Liang; Liu, Yang; Wu, Hong;

    2012-01-01

    Biofilms are complex microbial communities consisting of microcolonies embedded in a matrix of self-produced polymer substances. Biofilm cells show much greater resistance to environmental challenges including antimicrobial agents than their free-living counterparts. The biofilm mode of life is...... believed to significantly contribute to successful microbial survival in hostile environments. Conventional treatment, disinfection and cleaning strategies do not proficiently deal with biofilm-related problems, such as persistent infections and contamination of food production facilities. In this review......, strategies to control biofilms are discussed, including those of inhibition of microbial attachment, interference of biofilm structure development and differentiation, killing of biofilm cells and induction of biofilm dispersion....

  12. Biofilm formation and microbial corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, R.; Porcella, D.

    1992-07-01

    Biofilms-colonies of microorganisms growing on surfaces - can greatly accelerate the corrosion rates of metals and alloys in utility water systems. Fundamental EPRI research is showing how mechanisms of biofilm formation, interactions between bacterial species, and metabolic activities control such biofilm properties as corrosive potential This research is identifying methods to control biofilm development and prevent microbially influenced corrosion. The results should also apply to the control of other processes involving biological consortia, including the bioremediation of contaminated groundwater and soil and the biodesulfurization of coal.

  13. 内镜活检管路生物膜生长与有效去除的研究%Study on growth of bacterial biofilms on biopsy channels of gastrointestinal endoscope and effective clearance

    Institute of Scientific and Technical Information of China (English)

    孔金艳; 周晓凡; 胡珍丽; 鲍小倩; 王盈盈; 杨云生

    2014-01-01

    目的:探讨和评价如何有效去除消化内镜活检管路生物膜的方法。方法随机抽取临床胃镜活检管路10条,通过扫描电镜技术检测管路中生物膜生长情况,并建立模拟内镜管路生物膜模型,使用细菌培养法、蛋白定量法和结晶紫染色法去评价不同内镜清洗剂去生物膜清除率。结果有4条胃镜活检管路检出明显生物膜生长现象;清洗试验采用细菌计数法、蛋白质定量法、结晶紫定量法3种方法检测,结果显示,无酶清洗剂组对生物膜清除率分别为99.9%、94.3%和90.7%,而多酶清洗剂组分别为55.2%、40.7%和43.5%,差异有统计学意义( P<0.05),同时电镜结果同3种检测方法结果基本一致。结论临床使用的胃镜活检管路会生长生物膜,去生物膜清洗剂可以有效清除生物膜结构。%OBJECTIVE To explore the measures to effectively remove bacterial biofilms on biopsy channels of gas-trointestinal endoscopes .METHODS Totally 10 biopsy channels of gastrointestinal endoscopes were randomly se-lected ,then the growth of the bacterial biofilms was observed through scanning electron microscopy ,the simulated biofilm model was established ,and the rates of clearance of the bacterial biofilms with different cleaning detergents were observed and evaluated by means of the bacterial culture ,protein quantitative method ,and crystal violet stai-ning method .RESULTS The obvious growth of biofilms presented on 4 biopsy channels of the gastrointestinal en-doscopes ;the cleaning trial was performed with the use of bacterial colony counting method ,protein quantitative method ,and crystal violet staining method ,and the result showed that the clearance rates of biofilms were respec-tively 99 .9% ,94 .3% ,and 90 .7% in the no-enzyme cleaning detergent group and were respectively 55 .2% , 40 .7% ,and 43 .5% in the multiple enzymes cleaning detergent group ,with statistical

  14. Lucilia sericata Chymotrypsin Disrupts Protein Adhesin-Mediated Staphylococcal Biofilm Formation

    OpenAIRE

    Harris, Llinos G.; Nigam, Yamni; Sawyer, James; Mack, Dietrich; Pritchard, David I.

    2013-01-01

    Staphylococcus aureus and Staphylococcus epidermidis biofilms cause chronic infections due to their ability to form biofilms. The excretions/secretions of Lucilia sericata larvae (maggots) have effective activity for debridement and disruption of bacterial biofilms. In this paper, we demonstrate how chymotrypsin derived from maggot excretions/secretions disrupts protein-dependent bacterial biofilm formation mechanisms.

  15. Silver against Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Kirketerp-Møller, K.; Kristiansen, S.;

    2007-01-01

    bacteria in both the planktonic and biofilm modes of growth. The action of silver on mature in vitro biofilms of Pseudomonas aeruginosa, a primary pathogen of chronic infected wounds, was investigated. The results show that silver is very effective against mature biofilms of P. aeruginosa, but that the...... silver concentration is important. A concentration of 5-10 ig/mL silver sulfadiazine eradicated the biofilm whereas a lower concentration (1 ig/mL) had no effect. The bactericidal concentration of silver required to eradicate the bacterial biofilm was 10-100 times higher than that used to eradicate...... planktonic bacteria. These observations strongly indicate that the concentration of silver in currently available wound dressings is much too low for treatment of chronic biofilm wounds. It is suggested that clinicians and manufacturers of the said wound dressings consider whether they are treating wounds...

  16. Biofilms: a developing microscopic community

    Directory of Open Access Journals (Sweden)

    Rivera Sandra Patricia

    2004-09-01

    Full Text Available Biofilms are microbial communities composed by different microbiota embebbed in a special adaptive environment. These communities show different characteristics such as heterogeneity, diversity in microenvironments, capacity to resist antimicrobial therapy and ability to allow bacterial communication. These characteristics convert them in complex organizations that are difficult to eradicate in their own environment. In the man, biofilms are associated to a great number of slow-development infectious processes which greatly difficulties their eradication. In the industry and environment, biofilms are centered in processes known as biofouling and bioremediation. The former is the contamination of a system due to the microbial activity of a biofilm. The latter uses biofilms to improve the conditions of a contaminated system. The study of biofilms is a new and exciting field which is constantly evolving and whose implications in medicine and industry would have important repercussions for the humankind.

  17. Using an in-vitro biofilm model to assess the virulence potential of Bacterial Vaginosis or non-Bacterial Vaginosis Gardnerella vaginalis isolates

    OpenAIRE

    Castro, Joana; Alves, Patrícia; Sousa, Cármen Sofia Vieira; Cereija, Tatiana; França, Ângela Maria Oliveira de Sousa; Jefferson, Kimberly K; Cerca, Nuno

    2015-01-01

    Gardnerella vaginalis is the most common species found in bacterial vaginosis (BV). However, it is also present in a significant proportion of healthy women and G. vaginalis vaginal colonization does not always lead to BV. In an effort to better understand the differences between G. vaginalis isolated from women with a positive (BV) versus a negative (non-BV) diagnosis of BV, we compared the virulence potential of 7 BV and 7 non-BV G. vaginalis isolates and assessed the virulence factors rela...

  18. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    parameters, which influence the transition from a planktonic lifestyle to a sessile lifestyle, have been studied. Protein conditioning film formation was found to influence bacterial adhesion and subsequent biofilm formation considerable, and an aqueous extract of fish muscle tissue was shown to...... tract to the microbial flocs in waste water treatment facilities. Microbial biofilms may however also cause a wide range of industrial and medical problems, and have been implicated in a wide range of persistent infectious diseases, including implantassociated microbial infections. Bacterial adhesion is...... the first committing step in biofilm formation, and has therefore been intensely scrutinized. Much however, still remains elusive. Bacterial adhesion is a highly complex process, which is influenced by a variety of factors. In this thesis, a range of physico-chemical, molecular and environmental...

  19. Listeria monocytogenes survival of UV-C radiation is enhanced by presence of sodium chloride, organic food material and by bacterial biofilm formation

    DEFF Research Database (Denmark)

    Bernbom, Nete; Vogel, Birte Fonnesbech; Gram, Lone

    2011-01-01

    biofilm for 7days before exposure. It is not known if this enhanced survival is due to physiological changes in the attached bacterial cells, a physical protection of the cells in the food matrix or a combination. In conclusion, we demonstrate that UV-C light is a useful extra bacteriocidal step and that......The bactericidal effect on food processing surfaces of ceiling-mounted UV-C light (wavelength 254nm) was determined in a fish smoke house after the routine cleaning and disinfection procedure. The total aerobic counts were reduced during UV-C light exposure (48h) and the number of Listeria...... numbers declined with 4–5log units during exposure of 8–10min. Bacteria grown in juice prepared from cold-smoked salmon were protected and numbers were reduced with 2–3log when UV-C light was used immediately after attachment whereas numbers did not change at all if bacteria had been allowed to form a...

  20. Development of Bacterial Biofilms on Artificial Corals in Comparison to Surface-Associated Microbes of Hard Corals

    OpenAIRE

    Michael John Sweet; Aldo Croquer; John Christopher Bythell

    2011-01-01

    Numerous studies have demonstrated the differences in bacterial communities associated with corals versus those in their surrounding environment. However, these environmental samples often represent vastly different microbial micro-environments with few studies having looked at the settlement and growth of bacteria on surfaces similar to corals. As a result, it is difficult to determine which bacteria are associated specifically with coral tissue surfaces. In this study, early stages of passi...

  1. Can a specific sub-group of biofilm- forming Gardnerella vaginalis strains be the real causative agent of bacterial vaginosis?

    OpenAIRE

    Castro, Joana; Machado, António; Alves, P.; Sousa, Cármen; Cereija, T. B.; França, Ângela; Jefferson, K. K.; Cerca, Nuno

    2013-01-01

    In the past half century, bacterial vaginosis (BV) has been a controversial topic in medical microbiology, and despite the wealth of information on this topic, the etiological agent has not yet been definitively identified [1]. The first advances on BV pointed Gardnerella vaginalis as the infectious causative agent of BV [2] but soon after it was found that G. vaginalis was also present in healthy women [3]. Additionally, G. vaginalis was not able to cause BV consistently. Furthermore, other ...

  2. Susceptibility of Staphylococcus aureus biofilms to reactive discharge gases

    OpenAIRE

    Traba, Christian; Liang, Jun F.

    2011-01-01

    Formation of bacterial biofilms at solid-liquid interfaces creates numerous problems in both industrial and biomedical sciences. In this study, the susceptibility of Staphylococcus aureus biofilms to discharge gas generated from plasma was tested. It was found that despite distinct chemical/physical properties, discharge gases from oxygen, nitrogen, and argon demonstrated very potent and almost the same anti-biofilm activity. The bacterial cells in S. aureus biofilms were killed (>99.9%) by d...

  3. The Challenging World of Biofilm Physiology.

    Science.gov (United States)

    Donné, Joke; Dewilde, Sylvia

    2015-01-01

    Worldwide, infectious diseases are one of the leading causes of death among children. At least 65% of all infections are caused by the biofilm mode of bacterial growth. Bacteria colonise surfaces and grow as multicellular biofilm communities surrounded by a polymeric matrix as a common survival strategy. These sessile communities endow bacteria with high tolerance to antimicrobial agents and hence cause persistent and chronic bacterial infections, such as dental caries, periodontitis, otitis media, cystic fibrosis and pneumonia. The highly complex nature and the rapid adaptability of the biofilm population impede our understanding of the process of biofilm formation, but an important role for oxygen-binding proteins herein is clear. Much research on this bacterial lifestyle is already performed, from genome/proteome analysis to in vivo antibiotic susceptibility testing, but without significant progress in biofilm treatment or eradication. This review will present the multiple challenges of biofilm research and discuss possibilities to cross these barriers in future experimental studies. PMID:26616519

  4. Current understanding of multi-species biofilms

    DEFF Research Database (Denmark)

    Yang, Liang; Liu, Yang; Wu, Hong;

    2011-01-01

    Direct observation of a wide range of natural microorganisms has revealed the fact that the majority of microbes persist as surface-attached communities surrounded by matrix materials, called biofilms. Biofilms can be formed by a single bacterial strain. However, most natural biofilms are actually...... formed by multiple bacterial species. Conventional methods for bacterial cleaning, such as applications of antibiotics and/or disinfectants are often ineffective for biofilm populations due to their special physiology and physical matrix barrier. It has been estimated that billions of dollars are spent...... every year worldwide to deal with damage to equipment, contaminations of products, energy losses, and infections in human beings resulted from microbial biofilms. Microorganisms compete, cooperate, and communicate with each other in multi-species biofilms. Understanding the mechanisms of multi...

  5. The relationship between inhibition of bacterial adhesion to a solid surface by sub-MICs of antibiotics and subsequent development of a biofilm

    OpenAIRE

    Cerca, Nuno; Martins, Silvia; Pier, Gerald B.; Oliveira, Rosário; Azeredo, Joana

    2005-01-01

    Many studies have demonstrated that subminimal inhibitory concentrations (sub-MICs) of antibiotics can inhibit initial microbial adherence to medical device surfaces. It has been suggested that, by inhibiting initial adhesion, biofilm formation might be prevented. However, since initial adherence and subsequent biofilm formation may be two distinct phenomena, conclusions regarding the effects of sub-MIC antibiotics on initial adhesion cannot be extrapolated to biofilm formation. In t...

  6. Interfering with bacterial gossip

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Tolker-Nielsen, Tim; Givskov, Michael

    2011-01-01

    defense. Antibiotics exhibit a rather limited effect on biofilms. Furthermore, antibiotics have an ‘inherent obsolescence’ because they select for development of resistance. Bacterial infections with origin in bacterial biofilms have become a serious threat in developed countries. Pseudomonas aeruginosa......, resistance and QS inhibition as future antimicrobial targets, in particular those that would work to minimize selection pressures for the development of resistant bacteria.......Biofilm resilience poses major challenges to the development of novel antimicrobial agents. Biofilm bacteria can be considered small groups of “Special Forces” capable of infiltrating the host and destroying important components of the cellular defense system with the aim of crippling the host...

  7. Disruption of urogenital biofilms by lactobacilli.

    Science.gov (United States)

    McMillan, Amy; Dell, Melissa; Zellar, Michelle P; Cribby, Sarah; Martz, Sarah; Hong, Emilio; Fu, Jennifer; Abbas, Ahmed; Dang, Thien; Miller, Wayne; Reid, Gregor

    2011-08-01

    The process that changes a relatively sparse vaginal microbiota of healthy women into a dense biofilm of pathogenic and potentially pathogenic bacteria is poorly understood. Likewise, the reverse step whereby an aberrant biofilm is displaced and returns to a healthy lactobacilli dominated microbiota is unclear. In order to study these phenomena, in vitro experiments were performed to examine the structure of biofilms associated with aerobic vaginosis, urinary tract infections, and bacterial vaginosis (BV). Uropathogenic Escherichia coli were able to form relatively thin biofilms within five days (6 μm height), while Atopobium vaginae and Gardnerella vaginalis formed thicker biofilms 12 μm in height within two days. Challenge of E. coli biofilms with lactobacilli did not result in pathogen displacement. However, the resulting thicker lactobacilli infused biofilms, caused significant E. coli killing. E. coli biofilms challenged with secreted products of L. rhamnosus GR-1 caused a marked decrease in cell density, and increased cell death. Similarly challenge of BV biofilms with lactobacilli infiltrated BV biofilms and caused bacterial cell death. Metronidazole produced holes in the biofilm but did not eradicate the organisms. The findings provide some evidence of how lactobacilli probiotics might interfere with an aberrant vaginal microbiota, and strengthen the position that combining probiotics with antimicrobials could better eradicate pathogenic biofilms. PMID:21497071

  8. Effect of the pollution level on the functional bacterial groups aiming at degrading bisphenol A and nonylphenol in natural biofilms of an urban river.

    Science.gov (United States)

    Cai, Wei; Li, Yi; Wang, Peifang; Niu, Lihua; Zhang, Wenlong; Wang, Chao

    2016-08-01

    Bisphenol A (BPA) and 4-nonylphenol (NP) are ubiquitous pollutants with estrogenic activity in aquatic environment and have attracted global concern due to their disruption of endocrine systems. This study investigated the spatial distribution characteristics of the bacterial groups involved in the degradation of BPA and NP within biofilms in an urban river using terminal restriction fragment length polymorphism based on 16S rRNA gene sequences. The effects of the pollution level and water parameters on these groups were also assessed. Hierarchical cluster analysis grouped the sampling sites into three clusters reflecting their varying nutrient pollution levels of relatively slight pollution (SP), moderate pollution (MP), and high pollution (HP) based on water quality data and Environmental Quality Standard for Surface Water of China (GB3838-2002). The BPA and NP concentration in river water ranged from 0.8 to 77.5 and 10.2 to 162.9 ng L(-1), respectively. Comamonadaceae, Pseudomonadaceae, Alcaligenaceae, Bacillaceae, Sphingomonadacea, Burkholderiaceae, and Rhizobiaceae were the dominant bacterial taxa involved in BPA and NP degradation, comprising an average of 9.8, 8.1, 7.6, 6.7, 6.2, 4.1, and 2.8 % of total sequences, respectively. The total abundance of these groups showed a slight upward trend and subsequently rapidly decreased with increasing pollution levels. The average proportion of Comamonadaceae in MP river sections was almost 1.5-2 times than that in SP or HP one. The distribution of functional groups was found related to environmental variables, especially pH, conductivity, ammonium nitrogen (NH3-N), and BPA. The abundance of Comamonadaceae and Rhizobiaceae was both closely related to higher values of pH and conductivity as well as lower concentrations of NP and BPA. Alcaligenaceae and Pseudomonadaceae were associated with higher concentrations of TP and CODMn and inversely correlated with DO concentration. This study might provide effective data on

  9. 324 and 325 Building Hot Cell Cleanout Program: Air lock cover block refurbishment

    International Nuclear Information System (INIS)

    The high-density concrete cover blocks shielding the pipe trench in the hot-cell air lock of the 324 Building Radiochemical Engineering Cells had accumulated fixed radioactivity ranging from 1100 to 22, 000 mrad/hr. A corresponding increase in the radiation exposure to personnel entering the air lock, together with ALARA concerns, led to the removal of the contaminated concrete surface with a hydraulic spaller and the emplacement of a stainless steel covering over a layer of grout. The resultant saving in radiation exposure is estimated to be 7200 mrad for personnel completing burial box runs for the 324 and 325 Building Hot Cell Cleanout Program. Radiation exposure to all staff members entering the air lock is now at least 50% lower. 3 refs., 22 figs., 1 tab

  10. Pseudomonas aeruginosa forms Biofilms in Acute InfectionIndependent of Cell-to-Cell Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Schaber, J. Andy; Triffo, W.J.; Suh, Sang J.; Oliver, Jeffrey W.; Hastert, Mary C.; Griswold, John A.; Auer, Manfred; Hamood, Abdul N.; Rumbaugh, Kendra P.

    2006-09-20

    Biofilms are bacterial communities residing within a polysaccharide matrix that are associated with persistence and antibiotic resistance in chronic infections. We show that the opportunistic pathogen Pseudomonas aeruginosa forms biofilms within 8 hours of infection in thermally-injured mice, demonstrating that biofilms contribute to bacterial colonization in acute infections. P. aeruginosa biofilms were visualized within burned tissue surrounding blood vessels and adipose cells. Although quorum sensing (QS), a bacterial signaling mechanism, coordinates differentiation of biofilms in vitro, wild type and QS-deficient P. aeruginosa formed similar biofilms in vivo. Our findings demonstrate that P. aeruginosa forms biofilms on specific host tissues independent of QS.

  11. Gene Transfer Efficiency in Gonococcal Biofilms: Role of Biofilm Age, Architecture, and Pilin Antigenic Variation

    OpenAIRE

    Kouzel, Nadzeya; Oldewurtel, Enno R.; Maier, Berenike

    2015-01-01

    Extracellular DNA is an important structural component of many bacterial biofilms. It is unknown, however, to which extent external DNA is used to transfer genes by means of transformation. Here, we quantified the acquisition of multidrug resistance and visualized its spread under selective and nonselective conditions in biofilms formed by Neisseria gonorrhoeae. The density and architecture of the biofilms were controlled by microstructuring the substratum for bacterial adhesion. Horizontal t...

  12. Ecology of Anti-Biofilm Agents II: Bacteriophage Exploitation and Biocontrol of Biofilm Bacteria

    OpenAIRE

    Stephen T. Abedon

    2015-01-01

    Bacteriophages are the viruses of bacteria. In the guise of phage therapy they have been used for decades to successfully treat what are probable biofilm-containing chronic bacterial infections. More recently, phage treatment or biocontrol of biofilm bacteria has been brought back to the laboratory for more rigorous assessment as well as towards the use of phages to combat environmental biofilms, ones other than those directly associated with bacterial infections. Considered in a companion ar...

  13. The biofilm matrix destabilizers, EDTA and DNaseI, enhance the susceptibility of nontypeable Hemophilus influenzae biofilms to treatment with ampicillin and ciprofloxacin

    OpenAIRE

    Cavaliere, Rosalia; Ball, Jessica L; Turnbull, Lynne; Whitchurch, Cynthia B.

    2014-01-01

    Nontypeable Hemophilus influenzae (NTHi) is a Gram-negative bacterial pathogen that causes chronic biofilm infections of the ears and airways. The biofilm matrix provides structural integrity to the biofilm and protects biofilm cells from antibiotic exposure by reducing penetration of antimicrobial compounds into the biofilm. Extracellular DNA (eDNA) has been found to be a major matrix component of biofilms formed by many species of Gram-positive and Gram-negative bacteria, including NTHi. In...

  14. Permeabilizing biofilms

    Science.gov (United States)

    Soukos, Nikolaos S.; Lee, Shun; Doukas, Apostolos G.

    2008-02-19

    Methods for permeabilizing biofilms using stress waves are described. The methods involve applying one or more stress waves to a biofilm, e.g., on a surface of a device or food item, or on a tissue surface in a patient, and then inducing stress waves to create transient increases in the permeability of the biofilm. The increased permeability facilitates delivery of compounds, such as antimicrobial or therapeutic agents into and through the biofilm.

  15. The influence of biofilms in the biology of plasmids

    OpenAIRE

    Cook, Laura C.C.; Dunny, Gary M.

    2014-01-01

    The field of plasmid biology has historically focused on bacteria growing in liquid culture. Surface attached communities of bacterial biofilms have recently been understood to be the normal environment of bacteria in the natural world. Thus, studies examining plasmid replication, maintenance, and transfer in biofilms are essential for a true understanding of bacterial plasmid biology. This chapter reviews the current knowledge of the interplay between bacterial biofilms and plasmids, focusin...

  16. Optimization of culture conditions for Gardnerella vaginalis biofilms formation

    OpenAIRE

    Machado, D; Palmeira-de-Oliveira, Ana; Cerca, Nuno

    2015-01-01

    Bacterial vaginosis is the leading vaginal disorder in women in reproductive age. Although bacterial vaginosis is related with presence of a biofilm composed predominantly by Gardnerella vaginalis, there has not been detailed information addressing the environmental conditions influence in the biofilm formation of this bacterial species. Here, we evaluated the influence of some common culture conditions on G. vaginalis biofilm formation, namely inoculum concentration, incubation period, feedi...

  17. 细菌群体感应与细菌生物被膜形成之间的关系%Relationship between bacterial quorum sensing and biofilm formation-A review

    Institute of Scientific and Technical Information of China (English)

    刘琳; 谭小娟; 贾爱群

    2012-01-01

    由于滥用抗生素,人类致病菌的耐药日益成为全球性的公共卫生难题.据统计,细菌感染80%以上与细菌生物被膜有关.近年来,有关细菌群体感应和细菌生物被膜的形成乃至机理已有报道,但就群体感应与细菌生物被膜的关系却报道较少,而揭示二者之间的关系可能会为解决致病菌耐药问题提供一个全新的思路.本文立足群体感应和细菌生物被膜的形成机制,结合本课题组的阶段性研究内容,拟阐明细菌群体感应与生物被膜形成的关系.%Due to the overuse of anti-microbiological drugs, the resistance of pathogenic bacteria is of great attention for the international public health. According to previous reported literatures, over 80% bacterial infection was relative and contained to biofilm. Recently, many literatures have studied the pathogenic mechanism of quorum sensing ( QS) and biofilra, but the relationship between QS and biofilm was hardly published. Revealing the relationship between the two can provide a new strategy for resolving the resistance of pathogenic bacteria. Based on mechanism of QS and biofilm formation and our research progress, the relationship between bacterial QS and biofilm formation is reviewed.

  18. Efficiency of vanilla, patchouli and ylang ylang essential oils stabilized by iron oxide@C14 nanostructures against bacterial adherence and biofilms formed by Staphylococcus aureus and Klebsiella pneumoniae clinical strains.

    Science.gov (United States)

    Bilcu, Maxim; Grumezescu, Alexandru Mihai; Oprea, Alexandra Elena; Popescu, Roxana Cristina; Mogoșanu, George Dan; Hristu, Radu; Stanciu, George A; Mihailescu, Dan Florin; Lazar, Veronica; Bezirtzoglou, Eugenia; Chifiriuc, Mariana Carmen

    2014-01-01

    Biofilms formed by bacterial cells are associated with drastically enhanced resistance against most antimicrobial agents, contributing to the persistence and chronicization of the microbial infections and to therapy failure. The purpose of this study was to combine the unique properties of magnetic nanoparticles with the antimicrobial activity of three essential oils to obtain novel nanobiosystems that could be used as coatings for catheter pieces with an improved resistance to Staphylococcus aureus and Klebsiella pneumoniae clinical strains adherence and biofilm development. The essential oils of ylang ylang, patchouli and vanilla were stabilized by the interaction with iron oxide@C14 nanoparticles to be further used as coating agents for medical surfaces. Iron oxide@C14 was prepared by co-precipitation of Fe+2 and Fe+3 and myristic acid (C14) in basic medium. Vanilla essential oil loaded nanoparticles pelliculised on the catheter samples surface strongly inhibited both the initial adherence of S. aureus cells (quantified at 24 h) and the development of the mature biofilm quantified at 48 h. Patchouli and ylang-ylang essential oils inhibited mostly the initial adherence phase of S. aureus biofilm development. In the case of K. pneumoniae, all tested nanosystems exhibited similar efficiency, being active mostly against the adherence K. pneumoniae cells to the tested catheter specimens. The new nanobiosystems based on vanilla, patchouli and ylang-ylang essential oils could be of a great interest for the biomedical field, opening new directions for the design of film-coated surfaces with anti-adherence and anti-biofilm properties. PMID:25375335

  19. Efficiency of Vanilla, Patchouli and Ylang Ylang Essential Oils Stabilized by Iron Oxide@C14 Nanostructures against Bacterial Adherence and Biofilms Formed by Staphylococcus aureus and Klebsiella pneumoniae Clinical Strains

    Directory of Open Access Journals (Sweden)

    Maxim Bilcu

    2014-11-01

    Full Text Available Biofilms formed by bacterial cells are associated with drastically enhanced resistance against most antimicrobial agents, contributing to the persistence and chronicization of the microbial infections and to therapy failure. The purpose of this study was to combine the unique properties of magnetic nanoparticles with the antimicrobial activity of three essential oils to obtain novel nanobiosystems that could be used as coatings for catheter pieces with an improved resistance to Staphylococcus aureus and Klebsiella pneumoniae clinical strains adherence and biofilm development. The essential oils of ylang ylang, patchouli and vanilla were stabilized by the interaction with iron oxide@C14 nanoparticles to be further used as coating agents for medical surfaces. Iron oxide@C14 was prepared by co-precipitation of Fe+2 and Fe+3 and myristic acid (C14 in basic medium. Vanilla essential oil loaded nanoparticles pelliculised on the catheter samples surface strongly inhibited both the initial adherence of S. aureus cells (quantified at 24 h and the development of the mature biofilm quantified at 48 h. Patchouli and ylang-ylang essential oils inhibited mostly the initial adherence phase of S. aureus biofilm development. In the case of K. pneumoniae, all tested nanosystems exhibited similar efficiency, being active mostly against the adherence K. pneumoniae cells to the tested catheter specimens. The new nanobiosystems based on vanilla, patchouli and ylang-ylang essential oils could be of a great interest for the biomedical field, opening new directions for the design of film-coated surfaces with anti-adherence and anti-biofilm properties.

  20. Impact of Poultry Litter Cake, Cleanout, and Bedding following Chemical Amendments on Soil C and N Mineralization

    Directory of Open Access Journals (Sweden)

    Dexter B. Watts

    2012-01-01

    Full Text Available Poultry litter is a great alternative N source for crop production. However, recent poultry litter management changes, and increased chemical amendment use may impact its N availability. Thus, research was initiated to evaluate the effect that broiler cake and total cleanout litter amended with chemical additives have on C and N mineralization. A 35-day incubation study was carried out on a Hartsells fine sandy loam (fine-loamy, siliceous, subactive, thermic Typic Hapludults soil common to the USA Appalachian Plateau region. Three poultry litter components (broiler cake, total cleanout, and bedding material from a broiler house were evaluated and compared to a soil control. Chemical amendments lime (CaCO3, gypsum (CaSO4, aluminum sulfate (AlSO4, and ferrous sulfate (FeSO4 were added to the poultry litter components to determine their impact on C and N mineralization. Litter component additions increased soil C mineralization in the order of broiler cake > total cleanout > bedding > soil control. Although a greater concentration of organic C was observed in the bedding, broiler cake mineralized the most C, which can be attributed to differences in the C : N ratio between treatments. Chemical amendment in addition to the manured soil also impacted C mineralization, with AlSO4 generally decreasing mineralization. Nitrogen mineralization was also significantly affected by poultry litter component applications. Broiler cake addition increased N availability followed by total cleanout compared to soil control, while the bedding resulted in net N immobilization. Chemical amendments impacted N mineralization primarily in the broiler cake amended soil where all chemical amendments decreased mineralization compared to the no chemical amendment treatment. This short-term study (35-day incubation indicates that N availability to crops may be different depending on the poultry litter component used for fertilization and chemical amendment use which could

  1. Exploiting social evolution in biofilms

    OpenAIRE

    Boyle, Kerry E.; Heilmann, Silja; van Ditmarsch, Dave; Xavier, Joao B.

    2013-01-01

    Bacteria are highly social organisms that communicate via signaling molecules, move collectively over surfaces and make biofilm communities. Nonetheless, our main line of defense against pathogenic bacteria consists of antibiotics – drugs that target individual-level traits of bacterial cells and thus, regrettably, select for resistance against their own action. A possible solution lies in targeting the mechanisms by which bacteria interact with each other within biofilms. The emerging field ...

  2. Osteopontin reduces biofilm formation in a multi-species model of dental biofilm.

    Directory of Open Access Journals (Sweden)

    Sebastian Schlafer

    Full Text Available BACKGROUND: Combating dental biofilm formation is the most effective means for the prevention of caries, one of the most widespread human diseases. Among the chemical supplements to mechanical tooth cleaning procedures, non-bactericidal adjuncts that target the mechanisms of bacterial biofilm formation have gained increasing interest in recent years. Milk proteins, such as lactoferrin, have been shown to interfere with bacterial colonization of saliva-coated surfaces. We here study the effect of bovine milk osteopontin (OPN, a highly phosphorylated whey glycoprotein, on a multispecies in vitro model of dental biofilm. While considerable research effort focuses on the interaction of OPN with mammalian cells, there are no data investigating the influence of OPN on bacterial biofilms. METHODOLOGY/PRINCIPAL FINDINGS: Biofilms consisting of Streptococcus oralis, Actinomyces naeslundii, Streptococcus mitis, Streptococcus downei and Streptococcus sanguinis were grown in a flow cell system that permitted in situ microscopic analysis. Crystal violet staining showed significantly less biofilm formation in the presence of OPN, as compared to biofilms grown without OPN or biofilms grown in the presence of caseinoglycomacropeptide, another phosphorylated milk protein. Confocal microscopy revealed that OPN bound to the surface of bacterial cells and reduced mechanical stability of the biofilms without affecting cell viability. The bacterial composition of the biofilms, determined by fluorescence in situ hybridization, changed considerably in the presence of OPN. In particular, colonization of S. mitis, the best biofilm former in the model, was reduced dramatically. CONCLUSIONS/SIGNIFICANCE: OPN strongly reduces the amount of biofilm formed in a well-defined laboratory model of acidogenic dental biofilm. If a similar effect can be observed in vivo, OPN might serve as a valuable adjunct to mechanical tooth cleaning procedures.

  3. Drug resistance mechanisms of fungal biofilms

    OpenAIRE

    Seneviratne, CJ; Samaranayake, LP

    2011-01-01

    Fungi are ubiquitous in nature and exist in soil, water, plants, and in animals and humans. Similar to bacteria, fungi also form confluent biofilms either singly (mono-species) or with other microbial species (mixed-species). Fungal biofilms are known to be highly resistant to the adverse environmental conditions including antimicrobials and biocide compared to its planktonic (free-floating) counterparts. Although bacterial biofilms have been studied in detail, relatively little is known of f...

  4. Experimental evolution in biofilm populations.

    Science.gov (United States)

    Steenackers, Hans P; Parijs, Ilse; Foster, Kevin R; Vanderleyden, Jozef

    2016-05-01

    Biofilms are a major form of microbial life in which cells form dense surface associated communities that can persist for many generations. The long-life of biofilm communities means that they can be strongly shaped by evolutionary processes. Here, we review the experimental study of evolution in biofilm communities. We first provide an overview of the different experimental models used to study biofilm evolution and their associated advantages and disadvantages. We then illustrate the vast amount of diversification observed during biofilm evolution, and we discuss (i) potential ecological and evolutionary processes behind the observed diversification, (ii) recent insights into the genetics of adaptive diversification, (iii) the striking degree of parallelism between evolution experiments and real-life biofilms and (iv) potential consequences of diversification. In the second part, we discuss the insights provided by evolution experiments in how biofilm growth and structure can promote cooperative phenotypes. Overall, our analysis points to an important role of biofilm diversification and cooperation in bacterial survival and productivity. Deeper understanding of both processes is of key importance to design improved antimicrobial strategies and diagnostic techniques. PMID:26895713

  5. Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms

    OpenAIRE

    Martins, M.; Uppuluri, Priya; Thomas, Derek P.; Cleary, Ian A.; Henriques, Mariana; Lopez-Ribot, José L.; Oliveira, Rosário

    2009-01-01

    DNA has been described as a structural component of the extracellular matrix (ECM) in bacterial biofilms. In Candida albicans, there is a scarce knowledge concerning the contribution of extracellular DNA (eDNA) to biofilm matrix and overall structure. This work examined the presence and quantified the amount of eDNA in C. albicans biofilm ECM and the effect of DNase treatment and the addition of exogenous DNA on C. albicans biofilm development as indicators of a role for eDNA in biofilm devel...

  6. Comparative assessment of antibiotic susceptibility of coagulase-negative staphylococci in biofilm versus planktonic culture as assessed by bacterial enumeration or rapid XTT colorimetry

    OpenAIRE

    Cerca, Nuno; Martins, Silvia; Cerca, Filipe; Jefferson, Kimberly K.; Pier, Gerald B.; Oliveira, Rosário; Azeredo, Joana

    2005-01-01

    Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy Objectives: To quantitatively compare the antibiotic susceptibility of biofilms formed by the coagulasenegative staphylococci (CoNS) Staphylococcus epidermidis and Staphylococcus haemolyticus with the susceptibility of planktonic cultures. Methods: SeveralCoNSstrains were grown planktonically or as biofilms to determine the effect of themode of growth on the level of susceptibility to...

  7. 洗必泰葡萄糖酸盐对感染根管细菌生物膜的实验研究%Evaluation of antimicrobial effect with chlorhexidine digluconate against endodontic bacterial biofilms.

    Institute of Scientific and Technical Information of China (English)

    杜田丰; 马净植; 刘得玺; 曹颖光

    2011-01-01

    Objective:The aim of this study was to evalute the antimicrobial effect with chlorhexidine against endodontic bacterial biofilms in vitro. Method: An aliquot of Enterococcus faecalis suspensions was inoculated in the sterile coverslip incubating anaerobically for 1 week to inform bacterial biofilm. The biofilms were exposed to 0.2 % or 5 %chlorhexidine digluconate (CHX) for 1 min and 5 min, and then analyzed by viability staining and confocal laser scanning microscope (CLSM). Result:Them was a more remarkable (P < 0.05) antimicrobial effect with both agents for 5 min then that for 1 min. 5 % CHX killed more (P < 0.05) biofilm bacteria than 0.2 % CHX by exposure of 1 min,but killed bacteria similar to (P > 0.05) 0.2 % CHX for 5 min. Conclusion: Chlorhexidine digluconate showed a promoted bactericidal activity against endodontic bacteria biofilms attributing to the concentration and the exposure time. In addition,using chlorhexidine digluconate alone could not be obtained a successful irrigating and disinfecting outcome.%目的:探讨洗必泰葡萄糖酸盐作为根管冲洗药物,对粪肠球菌生物膜的灭菌作用.方法:在无菌盖玻片上制备粪肠球菌生物膜,应用 0.2%和 5%洗必泰葡萄糖酸盐冲洗,分别作用 1 min 和 5 min,激光扫描共聚焦显微镜观察灭菌效果.结果:0.2%或 5%洗必泰葡萄糖酸盐的灭菌效果随作用时间的延长而增加(P0.05).结论:洗必泰葡萄糖酸盐具有明显的杀灭粪肠球菌生物膜的作用,其不同浓度和不同作用时间的灭菌效果不同,然而尚不能达到完美的根管冲洗消毒目的.

  8. Cadmium Modulates Biofilm Formation by Staphylococcus epidermidis

    NARCIS (Netherlands)

    Wu, Xueqing; Santos, Regiane R.; Fink-Gremmels, Johanna

    2015-01-01

    The aim of the study was to evaluate the effect of cadmium exposure on Staphylococcus epidermidis (ATCC 35984) biofilm formation. Bacteria were cultured in the absence or presence of different concentrations (0-50 mu M) of cadmium. Biofilm formation and bacterial viability were assessed. Quantitativ

  9. Ratiometric Imaging of Extracellular pH in Dental Biofilms

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Dige, Irene

    2016-01-01

    The pH in bacterial biofilms on teeth is of central importance for dental caries, a disease with a high worldwide prevalence. Nutrients and metabolites are not distributed evenly in dental biofilms. A complex interplay of sorption to and reaction with organic matter in the biofilm reduces the...... diffusion paths of solutes and creates steep gradients of reactive molecules, including organic acids, across the biofilm. Quantitative fluorescent microscopic methods, such as fluorescence life time imaging or pH ratiometry, can be employed to visualize pH in different microenvironments of dental biofilms......) carboxylic acid (C-SNARF-4) is employed to monitor extracellular pH in in vivo grown dental biofilms of unknown species composition. Upon exposure to glucose the dye is up-concentrated inside all bacterial cells in the biofilms; it is thus used both as a universal bacterial stain and as a marker of...

  10. 324 and 325 Building hot cell cleanout program: Decontamination of C-Cell

    International Nuclear Information System (INIS)

    During FY 1989 the decontamination of C-Cell of Hanford's 324 Building was completed as part of the 324 and 325 Building Hot Cell Cleanout Program sponsored by the DOE Nuclear Energy's Surplus Facilities Management Program. The decontamination effort was completed using a series of remote and contact decontamination techniques. Initial radiation readings in C-Cell averaged 50 rad/hr and were reduced remotely to less than 200 mrad/hr using an alkaline foam cleaner followed by a 5000-psi water flush. Contact decontamination was then permissible using ultra high-pressure water, at 36,000 psi, further reducing the average radiation level in the cell to less than 86 mrem/hr. The approach used in decontaminating C-Cell resulted in a savings in radiation exposure of 87% and a cost savings of 39% compared to a hands-on procedure used in A-Cell, 324 Building in 1987. The radiation dose and the costs to achieve a 244-fold reduction in radiation contamination were 1.65 mrem per ft2 and $96 per ft2 of cell surface area. 14 figs., 4 tabs

  11. Role of extracellular DNA in Candida albicans biofilms

    OpenAIRE

    Martins, Margarida; Henriques, Mariana; Lopez-Ribot, José L.; Oliveira, Rosário

    2009-01-01

    DNA has been described as a structural component of the extracellular matrix in bacterial biofilms. However, in Candida albicans there is a scarce knowledge concerning the contribution of extracellular DNA (ecDNA) to biofilm matrix and overall structure. The main objective of this work was to examine the effect of Deoxyribonuclease I (DNase) treatment and the addition of exogenous DNA on C. albicans biofilm as indicators of the role of ecDNA in biofilm structure and developm...

  12. Interaction between biofilms formed by Pseudomonas aeruginosa and clarithromycin.

    OpenAIRE

    Yasuda, H; Ajiki, Y; Koga, T.; Kawada, H; Yokota, T.

    1993-01-01

    Interactions between bacterial biofilms formed by Pseudomonas aeruginosa and clarithromycin, a macrolide having no anti-P. aeruginosa activity, were investigated. P. aeruginosa incubated for 10 days on membrane filters formed biofilms on the surfaces of the filters. The biofilms were characterized by dense colonizations of bacteria and thick membranous structures that covered the colonies. Treatment of the biofilms with a relatively low concentration of clarithromycin for 5 days resulted in a...

  13. Orthopedics and biofilm – what do we know? A review

    OpenAIRE

    Zoubos, Aristides B.; Galanakos, Spyridon P.; Soucacos, Panayotis N.

    2012-01-01

    Summary Bacteria have been found to grow predominantly in biofilms. The initial stage includes the attachment of bacteria to the substratum. Bacterial growth and division then leads to the colonization of the surrounding area and the formation of the biofilm. The environment in a biofilm is not homogeneous; the bacteria in a multispecies biofilm are not randomly distributed, but rather are organized to best meet their needs. Although there is an initial understanding on the mechanisms of biof...

  14. Biofilm induced tolerance towards antimicrobial peptides.

    Directory of Open Access Journals (Sweden)

    Anders Folkesson

    Full Text Available Increased tolerance to antimicrobial agents is thought to be an important feature of microbes growing in biofilms. We address the question of how biofilm organization affects antibiotic susceptibility. We established Escherichia coli biofilms with differential structural organization due to the presence of IncF plasmids expressing altered forms of the transfer pili in two different biofilm model systems. The mature biofilms were subsequently treated with two antibiotics with different molecular targets, the peptide antibiotic colistin and the fluoroquinolone ciprofloxacin. The dynamics of microbial killing were monitored by viable count determination, and confocal laser microscopy. Strains forming structurally organized biofilms show an increased bacterial survival when challenged with colistin, compared to strains forming unstructured biofilms. The increased survival is due to genetically regulated tolerant subpopulation formation and not caused by a general biofilm property. No significant difference in survival was detected when the strains were challenged with ciprofloxacin. Our data show that biofilm formation confers increased colistin tolerance to cells within the biofilm structure, but the protection is conditional being dependent on the structural organization of the biofilm, and the induction of specific tolerance mechanisms.

  15. Generalized Relationship between Numbers of Bacteria and Their Viability in Biofilms

    OpenAIRE

    Sjollema, Jelmer; Rustema-Abbing, Minie; van der Mei, Henny C; Busscher, Henk J.

    2011-01-01

    Bacterial biofilms are confined communities that are encapsulated in protective layers of extracellular polymeric substances. Microscopic evaluation of biofilms of diverse bacterial strains on various substrata reveals that, in general, the percentage of viable bacteria decreases with the total number of bacteria in a biofilm.

  16. Influence of culture conditions on Escherichia coli O157:H7 biofilm formation by atomic force microscopy

    International Nuclear Information System (INIS)

    Biofilms are complex microbial communities that are resistant against attacks by bacteriophages and removal by drugs and chemicals. In this study, biofilms of Escherichia coli O157:H7, a bacterial pathogen, were investigated using atomic force microscopy (AFM) in terms of the dynamic transition of morphology and surface properties of bacterial cells over the development of biofilms. The physical and topographical properties of biofilms are different, depending on nutrient availability. Compared to biofilms formed in a high nutrient medium, biofilms form faster and a higher number of bacterial cells were recovered on glass surface in a low nutrient medium. We demonstrate that AFM can obtain high-resolution images and the elastic information about biofilms. As E. coli biofilm becomes mature, the magnitude of the force between a tip and the surface of the biofilm gets stronger, suggesting that extracellular polymeric substances (EPSs), sticky components of biofilms, accumulate over the surface of cells upon the initial attachment of bacterial cells to surfaces

  17. Targeting quorum sensing in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Jakobsen, Tim Holm; Bjarnsholt, Thomas; Jensen, Peter Østrup;

    2013-01-01

    Bacterial resistance to conventional antibiotics combined with an increasing acknowledgement of the role of biofilms in chronic infections has led to a growing interest in new antimicrobial strategies that target the biofilm mode of growth. In the aggregated biofilm mode, cell-to-cell communication...... alternative antibacterial strategies. Here, we review state of the art research of quorum sensing inhibitors against the opportunistic human pathogen Pseudomonas aeruginosa, which is found in a number of biofilm-associated infections and identified as the predominant organism infecting the lungs of cystic...

  18. Oral microbial biofilm stimulation of epithelial cell responses

    OpenAIRE

    Peyyala, Rebecca; Kirakodu, Sreenatha S.; Novak, Karen F.; Ebersole, Jeffrey L.

    2012-01-01

    Oral bacterial biofilms trigger chronic inflammatory responses in the host that can result in the tissue destructive events of periodontitis. However, the characteristics of the capacity of specific host cell types to respond to these biofilms remain ill-defined. This report describes the use of a novel model of bacterial biofilms to stimulate oral epithelial cells and profile select cytokines and chemokines that contribute to the local inflammatory environment in the periodontium. Monoinfect...

  19. Medical Biofilms

    OpenAIRE

    Bryers, James D.

    2008-01-01

    For more than two decades, Biotechnology and Bioengineering has documented research focused on natural and engineered microbial biofilms within aquatic and subterranean ecosystems, wastewater and waste-gas treatment systems, marine vessels and structures, and industrial bioprocesses. Compared to suspended culture systems, intentionally engineered biofilms are heterogeneous reaction systems that can increase reactor productivity, system stability, and provide inherent cell: product separation....

  20. Salmonella biofilms

    NARCIS (Netherlands)

    Castelijn, G.A.A.

    2013-01-01

    Biofilm formation by Salmonellaspp. is a problem in the food industry, since biofilms may act as a persistent source of product contamination. Therefore the aim of this study was to obtain more insight in the processes involved and the factors contributing to Salmonellabiofilm formation. A collectio

  1. Biofilm accumulation model that predicts antibiotic resistance of Pseudomonas aeruginosa biofilms.

    OpenAIRE

    Stewart, P.S.

    1994-01-01

    A computer model of biofilm dynamics was adapted to incorporate the activity of an antimicrobial agent on bacterial biofilm. The model was used to evaluate the plausibility of two mechanisms of biofilm antibiotic resistance by qualitative comparison with data from a well-characterized experimental system (H. Anwar, J. L. Strap, and J. W. Costerton, Antimicrob. Agents Chemother. 36:1208-1214, 1992). The two mechanisms involved either depletion of the antibiotic by reaction with biomass or phys...

  2. Nanotechnology: Role in dental biofilms

    Directory of Open Access Journals (Sweden)

    Bhardwaj Sonia

    2009-01-01

    Full Text Available Biofilms are surface- adherent populations of microorganisms consisting of cells, water and extracellular matrix material Nanotechnology is promising field of science which can guide our understanding of the role of interspecies interaction in the development of biofilm. Streptococcus mutans with other species of bacteria has been known to form dental biofilm. The correlation between genetically modified bacteria Streptococcus mutans and nanoscale morphology has been assessed using AFMi.e atomic force microscopy. Nanotechnology application includes 16 O/ 18 O reverse proteolytic labeling,use of quantum dots for labeling of bacterial cells, selective removal of cariogenic bacteria while preserving the normal oral flora and silver antimicrobial nanotechnology against pathogens associated with biofilms. The future comprises a mouthwash full of smart nanomachines which can allow the harmless flora of mouth to flourish in a healthy ecosystem

  3. Differential growth of wrinkled biofilms

    CERN Document Server

    Espeso, D R; Einarsson, B

    2015-01-01

    Biofilms are antibiotic-resistant bacterial aggregates that grow on moist surfaces and can trigger hospital-acquired infections. They provide a classical example in biology where the dynamics of cellular communities may be observed and studied. Gene expression regulates cell division and differentiation, which affect the biofilm architecture. Mechanical and chemical processes shape the resulting structure. We gain insight into the interplay between cellular and mechanical processes during biofilm development on air-agar interfaces by means of a hybrid model. Cellular behavior is governed by stochastic rules informed by a cascade of concentration fields for nutrients, waste and autoinducers. Cellular differentiation and death alter the structure and the mechanical properties of the biofilm, which is deformed according to Foppl-Von Karman equations informed by cellular processes and the interaction with the substratum. Stiffness gradients due to growth and swelling produce wrinkle branching. We are able to repr...

  4. Physics of biofilms: the initial stages of biofilm formation and dynamics

    International Nuclear Information System (INIS)

    One of the physiological responses of bacteria to external stress is to assemble into a biofilm. The formation of a biofilm greatly increases a bacterial population's resistance to a hostile environment by shielding cells, for example, from antibiotics. In this paper, we describe the conditions necessary for the emergence of biofilms in natural environments and relate them to the emergence of biofilm formation inside microfluidic devices. We show that competing species of Escherichia coli bacteria form biofilms to spatially segregate themselves in response to starvation stress, and use in situ methods to characterize the physical properties of the biofilms. Finally, we develop a microfluidic platform to study the inter-species interactions and show how biofilm-mediated genetic interactions can improve a species’ resistance to external stress. (paper)

  5. Mesoscale Elucidation of Biofilm Shear Behavior

    CERN Document Server

    Barai, Pallab; Mukherjee, Partha P

    2015-01-01

    Formation of bacterial colonies as biofilm on the surface/interface of various objects has the potential to impact not only human health and disease but also energy and environmental considerations. Biofilms can be regarded as soft materials, and comprehension of their shear response to external forces is a key element to the fundamental understanding. A mesoscale model has been presented in this article based on digitization of a biofilm microstructure. Its response under externally applied shear load is analyzed. Strain stiffening type behavior is readily observed under high strain loads due to the unfolding of chains within soft polymeric substrate. Sustained shear loading of the biofilm network results in strain localization along the diagonal direction. Rupture of the soft polymeric matrix can potentially reduce the intercellular interaction between the bacterial cells. Evolution of stiffness within the biofilm network under shear reveals two regions: a) initial increase in stiffness due to strain stiffe...

  6. The composition and compression of biofilms developed on ultrafiltration membranes determine hydraulic biofilm resistance.

    Science.gov (United States)

    Derlon, Nicolas; Grütter, Alexander; Brandenberger, Fabienne; Sutter, Anja; Kuhlicke, Ute; Neu, Thomas R; Morgenroth, Eberhard

    2016-10-01

    This study aimed at identifying how to improve the level of permeate flux stabilisation during gravity-driven membrane filtration without control of biofilm formation. The focus was therefore on understanding (i) how the different fractions of the biofilms (inorganics particles, bacterial cells, EPS matrix) influence its hydraulic resistance and (ii) how the compression of biofilms impacts its hydraulic resistance, i.e., can water head be increased to increase the level of permeate flux stabilisation. Biofilms were developed on ultrafiltration membranes at 88 and 284 cm water heads with dead-end filtration for around 50 days. A larger water head resulted in a smaller biofilm permeability (150 and 50 L m(-2) h(-1) bar(-1) for biofilms grown at 88 cm and 284 cm water head, respectively). Biofilms were mainly composed of EPS (>90% in volume). The comparison of the hydraulic resistances of biofilms to model fouling layers indicated that most of the hydraulic resistance is due to the EPS matrix. The compressibility of the biofilm was also evaluated by subjecting the biofilms to short-term (few minutes) and long-term variations of transmembrane pressures (TMP). A sudden change of TMP resulted in an instantaneous and reversible change of biofilm hydraulic resistance. A long-term change of TMP induced a slow change in the biofilm hydraulic resistance. Our results demonstrate that the response of biofilms to a TMP change has two components: an immediate variation of resistance (due to compression/relaxation) and a long-term response (linked to biofilm adaptation/growth). Our results provide relevant information about the relationship between the operating conditions in terms of TMP, the biofilm structure and composition and the resulting biofilm hydraulic resistance. These findings have practical implications for a broad range of membrane systems. PMID:27318448

  7. Mechanisms of biofilm resistance to antimicrobial agents.

    Science.gov (United States)

    Mah, T F; O'Toole, G A

    2001-01-01

    Biofilms are communities of microorganisms attached to a surface. It has become clear that biofilm-grown cells express properties distinct from planktonic cells, one of which is an increased resistance to antimicrobial agents. Recent work has indicated that slow growth and/or induction of an rpoS-mediated stress response could contribute to biocide resistance. The physical and/or chemical structure of exopolysaccharides or other aspects of biofilm architecture could also confer resistance by exclusion of biocides from the bacterial community. Finally, biofilm-grown bacteria might develop a biofilm-specific biocide-resistant phenotype. Owing to the heterogeneous nature of the biofilm, it is likely that there are multiple resistance mechanisms at work within a single community. Recent research has begun to shed light on how and why surface-attached microbial communities develop resistance to antimicrobial agents. PMID:11166241

  8. The BR domain of PsrP interacts with extracellular DNA to promote bacterial aggregation; structural insights into pneumococcal biofilm formation

    Science.gov (United States)

    Schulte, Tim; Mikaelsson, Cecilia; Beaussart, Audrey; Kikhney, Alexey; Deshmukh, Maya; Wolniak, Sebastian; Pathak, Anuj; Ebel, Christine; Löfling, Jonas; Fogolari, Federico; Henriques-Normark, Birgitta; Dufrêne, Yves F.; Svergun, Dmitri; Nygren, Per-Åke; Achour, Adnane

    2016-01-01

    The major human pathogen Streptococcus pneumoniae is a leading cause of disease and death worldwide. Pneumococcal biofilm formation within the nasopharynx leads to long-term colonization and persistence within the host. We have previously demonstrated that the capsular surface-associated pneumococcal serine rich repeat protein (PsrP), key factor for biofilm formation, binds to keratin-10 (KRT10) through its microbial surface component recognizing adhesive matrix molecule (MSCRAMM)-related globular binding region domain (BR187–385). Here, we show that BR187–385 also binds to DNA, as demonstrated by electrophoretic mobility shift assays and size exclusion chromatography. Further, heterologous expression of BR187–378 or the longer BR120–378 construct on the surface of a Gram-positive model host bacterium resulted in the formation of cellular aggregates that was significantly enhanced in the presence of DNA. Crystal structure analyses revealed the formation of BR187–385 homo-dimers via an intermolecular β-sheet, resulting in a positively charged concave surface, shaped to accommodate the acidic helical DNA structure. Furthermore, small angle X-ray scattering and circular dichroism studies indicate that the aggregate-enhancing N-terminal region of BR120–166 adopts an extended, non-globular structure. Altogether, our results suggest that PsrP adheres to extracellular DNA in the biofilm matrix and thus promotes pneumococcal biofilm formation. PMID:27582320

  9. Metal concentrations in stream biofilm and sediments and their potential to explain biofilm microbial community structure

    International Nuclear Information System (INIS)

    Concentrations of metals associated with sediments have traditionally been analysed to assess the extent of heavy metal contamination in freshwater environments. Stream biofilms present an alternative medium for this assessment which may be more relevant to the risk incurred by stream ecosystems as they are intensively grazed by aquatic organisms at a higher trophic level. Therefore, we investigated zinc, copper and lead concentrations in biofilms and sediments of 23 stream sites variously impacted by urbanisation. Simultaneously, biofilm bacterial and ciliate protozoan community structure was analysed by Automated Ribosomal Intergenic Spacer Analysis and Terminal Restriction Fragment Length Polymorphism, respectively. Statistical analysis revealed that biofilm associated metals explained a greater proportion of the variations observed in bacterial and ciliate communities than did sediment associated-metals. This study suggests that the analysis of metal concentrations in biofilms provide a good assessment of detrimental effects of metal contaminants on aquatic biota. - Highlights: ► Zn, Cu and Pb concentrations in biofilm and sediments from 23 streams were assessed. ► Bacteria and ciliate protozoa were simultaneously used as biological indicators. ► Zn and Cu were generally enriched in biofilm compared to sediments. ► Metals in biofilm provide a useful assessment of freshwater ecosystem contamination. ► Results highlight the likely ecological importance of biofilm associated metals. - Metal concentrations in stream biofilms provide a good assessment of the effects of trace metal contaminants on freshwater ecosystems.

  10. Dual-species biofilms formation by Escherichia coli O157:H7 and environmental bacteria isolated from fresh-cut processing plants

    Science.gov (United States)

    Biofilm formation is a mechanism adapted by many microorganisms that enhances the survival in stressful environments. In food processing facilities, bacterial strains with strong biofilm forming capacities are more likely to survive the daily cleaning and disinfection. Foodborne bacterial pathogens,...

  11. Nasopharyngeal and Adenoid Colonization by Haemophilus influenzae and Haemophilus parainfluenzae in Children Undergoing Adenoidectomy and the Ability of Bacterial Isolates to Biofilm Production.

    Science.gov (United States)

    Kosikowska, Urszula; Korona-Głowniak, Izabela; Niedzielski, Artur; Malm, Anna

    2015-05-01

    Haemophili are pathogenic or opportunistic bacteria often colonizing the upper respiratory tract mucosa. The prevalence of Haemophilus influenzae (with serotypes distribution), and H. parainfluenzae in the nasopharynx and/or the adenoid core in children with recurrent pharyngotonsillitis undergoing adenoidectomy was assessed. Haemophili isolates were investigated for their ability to biofilm production.Nasopharyngeal swabs and the adenoid core were collected from 164 children who underwent adenoidectomy (2-5 years old). Bacteria were identified by the standard methods. Serotyping of H. influenzae was performed using polyclonal and monoclonal antisera. Biofilm formation was detected spectrophotometrically using 96-well microplates and 0.1% crystal violet.Ninety seven percent (159/164) children who underwent adenoidectomy were colonized by Haemophilus spp. The adenoid core was colonized in 99.4% (158/159) children, whereas the nasopharynx in 47.2% (75/159) children (P parainfluenzae and 14 isolates of other Haemophilus spp. were selected. In 20.1% (32/159) children 2 or 3 phenotypically different isolates of the same species (H. influenzae or H. parainfluenzae) or serotypes (H. influenzae) were identified in 1 child. 67.2% (129/192) isolates of H. influenzae, 56.3% (54/96) isolates of H. parainfluenzae and 85.7% (12/14) isolates of other Haemophilus spp. were positive for biofilm production. Statistically significant differences (P = 0.0029) among H. parainfluenzae biofilm producers and nonproducers in the adenoid core and the nasopharynx were detected.H. influenzae and H. parainfluenzae carriage rate was comparatively higher in the adenoid core than that in the nasopharynx in children undergoing adenoidectomy, suggesting that their involvement in chronic adenoiditis. The growth in the biofilm seems to be an important feature of haemophili colonizing the upper respiratory tract responsible for their persistence. PMID:25950686

  12. Microbial biofilm study by synchrotron X-ray microscopy

    Science.gov (United States)

    Pennafirme, S.; Lima, I.; Bitencourt, J. A.; Crapez, M. A. C.; Lopes, R. T.

    2015-11-01

    Microbial biofilm has already being used to remove metals and other pollutants from wastewater. In this sense, our proposal was to isolate and cultivate bacteria consortia from mangrove's sediment resistant to Zn (II) and Cu (II) at 50 mg L-1 and to observe, through synchrotron X-ray fluorescence microscopy (microXRF), whether the biofilm sequestered the metal. The biofilm area analyzed was 1 mm2 and a 2D map was generated (pixel size 20×20 μm2, counting time 5 s/point). The biofilm formation and retention followed the sequence Zn>Cu. Bacterial consortium zinc resistant formed dense biofilm and retained 63.83% of zinc, while the bacterial consortium copper resistant retained 3.21% of copper, with lower biofilm formation. Dehydrogenase activity of Zn resistant bacterial consortium was not negatively affect by 50 mg ml-1 zinc input, whereas copper resistant bacterial consortium showed a significant decrease on dehydrogenase activity (50 mg mL-1 of Cu input). In conclusion, biofilm may protect bacterial cells, acting as barrier against metal toxicity. The bacterial consortia Zn resistant, composed by Nitratireductor spp. and Pseudomonas spp formed dense biofilm and sequestered metal from water, decreasing the metal bioavailability. These bacterial consortia can be used in bioreactors and in bioremediation programs.

  13. Pseudomonas aeruginosa Forms Biofilms in Acute Infection Independent of Cell-to-Cell Signaling▿ †

    OpenAIRE

    Schaber, J. Andy; Triffo, W.J.; Suh, Sang J.; Oliver, Jeffrey W.; Hastert, Mary C.; Griswold, John A.; Auer, Manfred; Hamood, Abdul N; Rumbaugh, Kendra P.

    2007-01-01

    Biofilms are bacterial communities residing within a polysaccharide matrix that are associated with persistence and antibiotic resistance in chronic infections. We show that the opportunistic pathogen Pseudomonas aeruginosa forms biofilms within 8 h of infection in thermally injured mice, demonstrating that biofilms contribute to bacterial colonization in acute infections as well. Using light, electron, and confocal scanning laser microscopy, P. aeruginosa biofilms were visualized within burn...

  14. Identification and Localization of Extraradicular Biofilm-Forming Bacteria Associated with Refractory Endodontic Pathogens

    OpenAIRE

    Noguchi, Nobuo; Noiri, Yuichiro; Narimatsu, Masahiro; Ebisu, Shigeyuki

    2005-01-01

    Bacterial biofilms have been found to develop on root surfaces outside the apical foramen and be associated with refractory periapical periodontitis. However, it is unknown which bacterial species form extraradicular biofilms. The present study aimed to investigate the identity and localization of bacteria in human extraradicular biofilms. Twenty extraradicular biofilms, used to identify bacteria using a PCR-based 16S rRNA gene assay, and seven root-tips, used to observe immunohistochemical l...

  15. Anti-Staphylococcal Biofilm Effects of Human Cathelicidin Peptides.

    Science.gov (United States)

    Mishra, Biswajit; Golla, Radha M; Lau, Kyle; Lushnikova, Tamara; Wang, Guangshun

    2016-01-14

    Staphylococcus aureus can live together in the form of biofilms to avoid elimination by the host. Thus, a useful strategy to counteract bacterial biofilms is to re-engineer human antimicrobial peptide LL-37 so that it can be used as a remedy for preventing and removing biofilms. This study reports antibiofilm effects of four human cathelicidin LL-37 peptides against community-associated and hospital isolated methicillin-resistant Staphylococcus aureus (MRSA) strains. Although the intact molecule LL-37 inhibited biofilm formation at low concentrations, it did not inhibit bacterial attachment nor disrupt preformed biofilms. However, two 17-residue peptides, GF-17 and 17BIPHE2, inhibited bacterial attachment, biofilm growth, and disrupted established biofilms. An inactive peptide RI-10 was used as a negative control. Our results obtained using the S. aureus mutants in a static biofilm model are consistent with the literature obtained in a flow cell biofilm model. Because 17BIPHE2 is the most effective biofilm disruptor with desired stability to proteases, it is a promising lead for developing new anti-MRSA biofilm agents. PMID:26819677

  16. Anti-Biofilm Compounds Derived from Marine Sponges

    Directory of Open Access Journals (Sweden)

    Christian Melander

    2011-10-01

    Full Text Available Bacterial biofilms are surface-attached communities of microorganisms that are protected by an extracellular matrix of biomolecules. In the biofilm state, bacteria are significantly more resistant to external assault, including attack by antibiotics. In their native environment, bacterial biofilms underpin costly biofouling that wreaks havoc on shipping, utilities, and offshore industry. Within a host environment, they are insensitive to antiseptics and basic host immune responses. It is estimated that up to 80% of all microbial infections are biofilm-based. Biofilm infections of indwelling medical devices are of particular concern, since once the device is colonized, infection is almost impossible to eliminate. Given the prominence of biofilms in infectious diseases, there is a notable effort towards developing small, synthetically available molecules that will modulate bacterial biofilm development and maintenance. Here, we highlight the development of small molecules that inhibit and/or disperse bacterial biofilms specifically through non-microbicidal mechanisms. Importantly, we discuss several sets of compounds derived from marine sponges that we are developing in our labs to address the persistent biofilm problem. We will discuss: discovery/synthesis of natural products and their analogues—including our marine sponge-derived compounds and initial adjuvant activity and toxicological screening of our novel anti-biofilm compounds.

  17. Review of alternative residual contamination guides for the 324 Building B-Cell Cleanout Project. Phase 1

    International Nuclear Information System (INIS)

    This report provides a proposed residual contamination guide (RCG) for the 324 Building B-Cell Cleanout Project, Phase 1, at the Hanford Site. The RCG is expressed as a fraction of the amount of highly dispersible radioactive material that would result in offsite doses equal to the Pacific Northwest Laboratory radiological risk guidelines following the worst credible accident scenario for release of the holdup material. The proposed RCG is 10-1 to 10-2 of the PNL radiological risk guidelines. As part of the development of the RCG, a number of factors were considered. These include the need to provide an appropriate level of flexibility for other activities within the 324 Building that could contribute to the facility's overall radiological risk, uncertainties inherent in safety analyses, and the possible contribution of other 300 Area facilities to overall radiological risk. Because of these factors and the nature of the cleanout project, the RCG is expressed as a range rather than a point value. This report also provides guidance on determining conformance to the RCG, including inspection and measurement techniques, quality assurance requirements, and consideration of uncertainty

  18. The action of Pseudomonas aeruginosa biofilms in intrinsic drug resistance

    Institute of Scientific and Technical Information of China (English)

    XIE Yi; JIA Wen-xiang; ZENG Wei; YANG Wei-qing; CHENG Xi; LI Xue-ru; WANG Lan-lan; KANG Mei; ZHANG Zai-rong

    2005-01-01

    Background There is a growing interest in studying the relationship between intrinsic resistance and biofilms resistance to drugs. However, the relationship still remains unclear in the macroscopic bacterial growth. Our study is to illuminate the change of bacterial drug resistance of gyrA mutant and active efflux pump during the development of Pseudomonas aeruginosa (P. aeruginosa) biofilms. Methods The strains of type Ⅱ topoisomerase gene mutant (gyrA mutant) and multidrug resistance (MDR) efflux pump were clinical isolates and detected by polymerase chain reaction (PCR). The process of bacterial biofilms development was observed by scanning electron microscope. Triparental mating experiments were performed to transfer report gene of green fluorescent protein (GFP) into P. aeruginosa biofilms strains and followed by analysis of bacterial survival rate between intrinsic resistance and biofilms resistance.Results The fluorescent strains with pGFPuv could develop mature biofilms on Teflon surface. Before a period of 72 hours, the survival rate of biofilms bacteria and intrinsic resistance strains in ciprofloxacin solution was significantly different (P0.05). The carbonyl cyanide m-chlorophenylhydrazone and azithromycin could significantly reduce the drug resistance of biofilm strains and efflux pump strains.Conclusions In the development of P. aeruginosa biofilms, the strains of gyrA mutation and MDR efflux could be conferred with new level of drug resistance. When co-cultured mutated strains with biofilm strains, biofilms may play a major role in bacterial resistance. But after 72 hours incubation (a mature biofilms had been developed), there was no clearly difference between the number of mutant strains and biofilm strains.

  19. Screening of Compounds against Gardnerella vaginalis Biofilms.

    Directory of Open Access Journals (Sweden)

    Cornelia Gottschick

    Full Text Available Bacterial vaginosis (BV is a common infection in reproductive age woman and is characterized by dysbiosis of the healthy vaginal flora which is dominated by Lactobacilli, followed by growth of bacteria like Gardnerella vaginalis. The ability of G. vaginalis to form biofilms contributes to the high rates of recurrence that are typical for BV and which unfortunately make repeated antibiotic therapy inevitable. Here we developed a biofilm model for G. vaginalis and screened a large spectrum of compounds for their ability to prevent biofilm formation and to resolve an existing G. vaginalis biofilm. The antibiotics metronidazole and tobramycin were highly effective in preventing biofilm formation, but had no effect on an established biofilm. The application of the amphoteric tenside sodium cocoamphoacetate (SCAA led to disintegration of existing biofilms, reducing biomass by 51% and viability by 61% and it was able to increase the effect of metronidazole by 40% (biomass and 61% (viability. Our data show that attacking the biofilm and the bacterial cells by the combination of an amphoteric tenside with the antibiotic metronidazole might be a useful strategy against BV.

  20. Screening of Compounds against Gardnerella vaginalis Biofilms.

    Science.gov (United States)

    Gottschick, Cornelia; Szafranski, Szymon P; Kunze, Brigitte; Sztajer, Helena; Masur, Clarissa; Abels, Christoph; Wagner-Döbler, Irene

    2016-01-01

    Bacterial vaginosis (BV) is a common infection in reproductive age woman and is characterized by dysbiosis of the healthy vaginal flora which is dominated by Lactobacilli, followed by growth of bacteria like Gardnerella vaginalis. The ability of G. vaginalis to form biofilms contributes to the high rates of recurrence that are typical for BV and which unfortunately make repeated antibiotic therapy inevitable. Here we developed a biofilm model for G. vaginalis and screened a large spectrum of compounds for their ability to prevent biofilm formation and to resolve an existing G. vaginalis biofilm. The antibiotics metronidazole and tobramycin were highly effective in preventing biofilm formation, but had no effect on an established biofilm. The application of the amphoteric tenside sodium cocoamphoacetate (SCAA) led to disintegration of existing biofilms, reducing biomass by 51% and viability by 61% and it was able to increase the effect of metronidazole by 40% (biomass) and 61% (viability). Our data show that attacking the biofilm and the bacterial cells by the combination of an amphoteric tenside with the antibiotic metronidazole might be a useful strategy against BV. PMID:27111438

  1. Screening of Compounds against Gardnerella vaginalis Biofilms

    Science.gov (United States)

    Gottschick, Cornelia; Szafranski, Szymon P.; Kunze, Brigitte; Sztajer, Helena; Masur, Clarissa; Abels, Christoph; Wagner-Döbler, Irene

    2016-01-01

    Bacterial vaginosis (BV) is a common infection in reproductive age woman and is characterized by dysbiosis of the healthy vaginal flora which is dominated by Lactobacilli, followed by growth of bacteria like Gardnerella vaginalis. The ability of G. vaginalis to form biofilms contributes to the high rates of recurrence that are typical for BV and which unfortunately make repeated antibiotic therapy inevitable. Here we developed a biofilm model for G. vaginalis and screened a large spectrum of compounds for their ability to prevent biofilm formation and to resolve an existing G. vaginalis biofilm. The antibiotics metronidazole and tobramycin were highly effective in preventing biofilm formation, but had no effect on an established biofilm. The application of the amphoteric tenside sodium cocoamphoacetate (SCAA) led to disintegration of existing biofilms, reducing biomass by 51% and viability by 61% and it was able to increase the effect of metronidazole by 40% (biomass) and 61% (viability). Our data show that attacking the biofilm and the bacterial cells by the combination of an amphoteric tenside with the antibiotic metronidazole might be a useful strategy against BV. PMID:27111438

  2. DNase inhibits Gardnerella vaginalis biofilms in vitro and in vivo.

    Science.gov (United States)

    Hymes, Saul R; Randis, Tara M; Sun, Thomas Yang; Ratner, Adam J

    2013-05-15

    Bacterial vaginosis is a highly prevalent and poorly understood polymicrobial disorder of the vaginal microbiota, with significant adverse sequelae. Gardnerella vaginalis predominates in bacterial vaginosis. Biofilms of G. vaginalis are present in human infections and are implicated in persistent disease, treatment failure, and transmission. Here we demonstrate that G. vaginalis biofilms contain extracellular DNA, which is essential to their structural integrity. Enzymatic disruption of this DNA specifically inhibits biofilms, acting on both newly forming and established biofilms. DNase liberates bacteria from the biofilm to supernatant fractions and potentiates the activity of metronidazole, an antimicrobial agent used in the treatment of bacterial vaginosis. Using a new murine vaginal colonization model for G. vaginalis, we demonstrate >10-fold inhibition of G. vaginalis colonization by DNase. We conclude that DNase merits investigation as a potential nonantibiotic adjunct to existing bacterial vaginosis therapies in order to decrease the risk of chronic infection, recurrence, and associated morbidities. PMID:23431033

  3. Quality assurance program plan for 324 Building B-Cell safety cleanout project (BCCP)

    International Nuclear Information System (INIS)

    This Quality Assurance Program Plan (QAPP) provides information on how the Quality Assurance Program is implemented for the 324 Building B-Cell Safety Cleanout Project (BCCP). This QAPP is responsive to the Westinghouse Hanford Company Quality Assurance Program and Implementation Plan, WHC-SP-1131, for 10 CFR 830.120, Nuclear Safety Management, Quality Assurance Requirements; and DOE Order 5700.6C, Quality Assurance. This QAPP supersedes PNNL PNL-MA-70 QAP Quality Assurance Plan No. WTC-050 Rev. 2, issue date May 3, 1996. This QAPP has been developed specifically for the BCCP. It applies to those items and tasks which affect the completion of activities identified in the work breakdown structure of the Project Management Plan (PMP). These activities include all aspects of decontaminating B-Cell and project related operations within the 324 Building as it relates to the specific activities of this project. General facility activities (i.e. 324 Building Operations) are covered in the Building 324 QAPP. In addition, this QAPP supports the related quality assurance activities addressed in CM-2-14, Hazardous Material Packaging and Shipping, and HSRCM-1, Hanford Site Radiological Control Manual, The 324 Building is currently transitioning from being a Pacific Northwest National Laboratory (PNNL) managed facility to a B and W Hanford Company (BWHC) managed facility. During this transition process existing, PNNL procedures and documents will be utilized until replaced by BWHC procedures and documents. These documents conform to the requirements found in PNL-MA-70, Quality Assurance Manual and PNL-MA-8 1, Hazardous Materials Shipping Manual. The Quality Assurance Program Index (QAPI) contained in Table 1 provides a matrix which shows how project activities relate to 10 CFR 83 0.120 and 5700.6C criteria. Quality Assurance program requirements will be addressed separate from the requirements specified in this document. Other Hanford Site organizations/companies may be

  4. Chemoinformatics-assisted development of new anti-biofilm compounds

    DEFF Research Database (Denmark)

    Dürig, Anna; Kouskoumvekaki, Irene; Vejborg, Rebecca Munk;

    2010-01-01

    Bacterial biofilms are associated with a large number of infections. Biofilm-dwelling bacteria are particularly resistant to antibiotics, making it hard to eradicate biofilm-associated infections. Here, we use a novel cross-disciplinary approach combining microbiology and chemoinformatics to...... identify new and efficient anti-biofilm drugs. We found that ellagic acid (present in green tea) significantly inhibited biofilm formation of Streptococcus dysgalactiae. Based on ellagic acid, we performed in silico screening of the Chinese Natural Product Database to predict a 2nd-generation list of...

  5. Biofilm Exopolysaccharides of Pathogenic Fungi: Lessons from Bacteria.

    Science.gov (United States)

    Sheppard, Donald C; Howell, P Lynne

    2016-06-10

    Exopolysaccharides play an important structural and functional role in the development and maintenance of microbial biofilms. Although the majority of research to date has focused on the exopolysaccharide systems of biofilm-forming bacteria, recent studies have demonstrated that medically relevant fungi such as Candida albicans and Aspergillus fumigatus also form biofilms during infection. These fungal biofilms share many similarities with those of bacteria, including the presence of secreted exopolysaccharides as core components of the extracellular matrix. This review will highlight our current understanding of fungal biofilm exopolysaccharides, as well as the parallels that can be drawn with those of their bacterial counterparts. PMID:27129222

  6. Interspecies interactions result in enhanced biofilm formation by co-cultures of bacteria isolated from a food processing environment

    DEFF Research Database (Denmark)

    Røder, Henriette Lyng; Raghupathi, Prem Krishnan; Herschend, Jakob;

    2015-01-01

    Bacterial attachment and biofilm formation can lead to poor hygienic conditions in food processing environments. Furthermore, interactions between different bacteria may induce or promote biofilm formation. In this study, we isolated and identified a total of 687 bacterial strains from seven......-culture biofilm production with high relevance for food safety and food production facilities....

  7. Focus on the physics of biofilms

    Science.gov (United States)

    Lecuyer, Sigolene; Stocker, Roman; Rusconi, Roberto

    2015-03-01

    Bacteria are the smallest and most abundant form of life. They have traditionally been considered as primarily planktonic organisms, swimming or floating in a liquid medium, and this view has shaped many of the approaches to microbial processes, including for example the design of most antibiotics. However, over the last few decades it has become clear that many bacteria often adopt a sessile, surface-associated lifestyle, forming complex multicellular communities called biofilms. Bacterial biofilms are found in a vast range of environments and have major consequences on human health and industrial processes, from biofouling of surfaces to the spread of diseases. Although the study of biofilms has been biologists’ territory for a long time, a multitude of phenomena in the formation and development of biofilms hinges on physical processes. We are pleased to present a collection of research papers that discuss some of the latest developments in many of the areas to which physicists can contribute a deeper understanding of biofilms, both experimentally and theoretically. The topics covered range from the influence of physical environmental parameters on cell attachment and subsequent biofilm growth, to the use of local probes and imaging techniques to investigate biofilm structure, to the development of biofilms in complex environments and the modeling of colony morphogenesis. The results presented contribute to addressing some of the major challenges in microbiology today, including the prevention of surface contamination, the optimization of biofilm disruption methods and the effectiveness of antibiotic treatments.

  8. Treatment of Oral Multispecies Biofilms by an Anti-Biofilm Peptide.

    Directory of Open Access Journals (Sweden)

    Zhejun Wang

    Full Text Available Human oral biofilms are multispecies microbial communities that exhibit high resistance to antimicrobial agents. Dental plaque gives rise to highly prevalent and costly biofilm-related oral infections, which lead to caries or other types of oral infections. We investigated the ability of the recently identified anti-biofilm peptide 1018 to induce killing of bacterial cells present within oral multispecies biofilms. At 10 μg/ml (6.5 μM, peptide 1018 was able to significantly (p50% of the biofilm being killed and >35% being dispersed in only 3 minutes. Peptide 1018 may potentially be used by itself or in combination with CHX as a non-toxic and effective anti-biofilm agent for plaque disinfection in clinical dentistry.

  9. Optimization of in vitro model for growth of Gardnerella vaginalis biofilm

    OpenAIRE

    Machado, Daniela Marlene da Silva; Oliveira, A. Palmeira de; Cerca, Nuno

    2015-01-01

    Bacterial vaginosis (BV) is the most common vaginal disorder in women of reproductive age. Despite its high prevalence, BV aetiology remains elusive. Recently, it was described that BV occurrence involves the presence of an adherent biofilm on vaginal epithelium, being Gardnerella vaginalis the predominant bacterial species. Furthermore, this bacterial biofilm persists on the vaginal epithelium after therapy with metronidazole, suggesting that G. vaginalis biofilm plays a key role...

  10. Prophage spontaneous activation promotes DNA release enhancing biofilm formation in Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Margarida Carrolo

    Full Text Available Streptococcus pneumoniae (pneumococcus is able to form biofilms in vivo and previous studies propose that pneumococcal biofilms play a relevant role both in colonization and infection. Additionally, pneumococci recovered from human infections are characterized by a high prevalence of lysogenic bacteriophages (phages residing quiescently in their host chromosome. We investigated a possible link between lysogeny and biofilm formation. Considering that extracellular DNA (eDNA is a key factor in the biofilm matrix, we reasoned that prophage spontaneous activation with the consequent bacterial host lysis could provide a source of eDNA, enhancing pneumococcal biofilm development. Monitoring biofilm growth of lysogenic and non-lysogenic pneumococcal strains indicated that phage-infected bacteria are more proficient at forming biofilms, that is their biofilms are characterized by a higher biomass and cell viability. The presence of phage particles throughout the lysogenic strains biofilm development implicated prophage spontaneous induction in this effect. Analysis of lysogens deficient for phage lysin and the bacterial major autolysin revealed that the absence of either lytic activity impaired biofilm development and the addition of DNA restored the ability of mutant strains to form robust biofilms. These findings establish that limited phage-mediated host lysis of a fraction of the bacterial population, due to spontaneous phage induction, constitutes an important source of eDNA for the S. pneumoniae biofilm matrix and that this localized release of eDNA favors biofilm formation by the remaining bacterial population.

  11. Microbially influenced corrosion: studies on enterobacteria isolated from seawater environment and influence of toxic metals on bacterial biofilm and bio-corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Bermond-Tilly, D.; Pineau, S.; Dupont-Morral, I. [Corrodys, 50 - Equeurdreville (France); Janvier, M.; Grimont, P.A.D. [Institut Pasteur, Unite BBPE, 75 - Paris (France)

    2004-07-01

    Full text of publication follows: The most widely involved bacteria in Microbially Induced Corrosion (MIC usually called bio-corrosion) are sulfate/thiosulfate-reducing bacteria. The sulfate-reducing bacteria (SRB) are major contributors to the anaerobic bio-corrosion of steel. However, corrosion process of pipelines (or off shores platforms) was found to be associated with many other bacteria. These bacteria are able to produce sulfides from the reduction of thiosulfate in anaerobic conditions. By this way, a thiosulfate-reducing non sulfate-reducing bacteria, Dethiosulfovibrio peptidovorans, showed a significant corrosive activity similar to or higher than that recorded for SRB involved in bio-corrosion, (Magot et al., 1997). Furthermore, a bacteria, Citrobacter amalonaticus, which belongs to the family of the Enterobacteriaceae, is involved in severe pitting corrosion process (Angeles Chavez et al., 2002). Recently, some bacteria (Citrobacter freundii, Proteus mirabilis and Klebsiella planticola characterized as belonging to the family of Enterobacteriaceae) were isolated from biofilm developed on carbon steel coupons immersed in natural seawater. The latter bacteria were also associated in severe pitting corrosion process on carbon steel coupons (Bermond-Tilly et al., 2003). Biofilm forms a protective layer, reducing the exposure of the metal surface to the external environment. However, bacteria included in the biofilm could also cause localized corrosion by consuming cathodic hydrogen from the steel or by producing corrosive metabolic end products and by the Extracellular Polymeric Substances (EPS) production. Thus, EPS can also play an important role in the corrosion of the metals (e.g. can complex metal ions). However, sulfate/thiosulfate-reducing bacteria and some Enterobacteria are highly efficient to bioremediation by precipitation of toxic metals from wastewater as metal sulfides. Recently it was shown that toxic metal may be involved in the formation

  12. The Physics of Biofilms -- An Introduction

    CERN Document Server

    Mazza, Marco G

    2016-01-01

    Biofilms are complex, self-organized consortia of microorganisms that produce a functional, protective matrix of biomolecules. Physically, the structure of a biofilm can be described as an entangled polymer network which grows and changes under the effect of gradients of nutrients, cell differentiation, quorum sensing, bacterial motion, and interaction with the environment. Its development is complex, and constantly adapting to environmental stimuli. Here, we review the fundamental physical processes the govern the inception, growth and development of a biofilm. Two important mechanisms guide the initial phase in a biofilm life cycle: (\\emph{i}) the cell motility near or at a solid interface, and (\\emph{ii}) the cellular adhesion. Both processes are crucial for initiating the colony and for ensuring its stability. A mature biofilm behaves as a viscoelastic fluid with a complex, history-dependent dynamics. We discuss progress and challenges in the determination of its physical properties. Experimental and theo...

  13. Analysis of adherence, biofilm formation and cytotoxicity suggests a greater virulence potential of Gardnerella vaginalis relative to other bacterial-vaginosis-associated anaerobes

    OpenAIRE

    PATTERSON, Jennifer L.; Stull-Lane, Annica; GIRERD, Philippe H.; Jefferson, Kimberly K

    2010-01-01

    Worldwide, bacterial vaginosis (BV) is the most common vaginal disorder in women of childbearing age. BV is characterized by a dramatic shift in the vaginal microflora, involving a relative decrease in lactobacilli, and a proliferation of anaerobes. In most cases of BV, the predominant bacterial species found is Gardnerella vaginalis. However, pure cultures of G. vaginalis do not always result in BV, and asymptomatic women are sometimes colonized with low numbers of G. vaginalis. Thus, there ...

  14. Screening of Compounds against Gardnerella vaginalis Biofilms.

    OpenAIRE

    Gottschick, Cornelia; Szymon P Szafranski; Kunze, Brigitte; Sztajer, Helena; Masur, Clarissa; Abels, Christoph; Wagner-Döbler, Irene

    2016-01-01

    Bacterial vaginosis (BV) is a common infection in reproductive age woman and is characterized by dysbiosis of the healthy vaginal flora which is dominated by Lactobacilli, followed by growth of bacteria like Gardnerella vaginalis. The ability of G. vaginalis to form biofilms contributes to the high rates of recurrence that are typical for BV and which unfortunately make repeated antibiotic therapy inevitable. Here we developed a biofilm model for G. vaginalis and screened a large spectrum of ...

  15. Screening of Compounds against Gardnerella vaginalis Biofilms

    OpenAIRE

    Gottschick, Cornelia; Szymon P Szafranski; Kunze, Brigitte; Sztajer, Helena; Masur, Clarissa; Abels, Christoph; Wagner-Döbler, Irene

    2016-01-01

    Bacterial vaginosis (BV) is a common infection in reproductive age woman and is characterized by dysbiosis of the healthy vaginal flora which is dominated by Lactobacilli, followed by growth of bacteria like Gardnerella vaginalis. The ability of G. vaginalis to form biofilms contributes to the high rates of recurrence that are typical for BV and which unfortunately make repeated antibiotic therapy inevitable. Here we developed a biofilm model for G. vaginalis and screened a large spectrum of ...

  16. Mechanism and risk factors of oral biofilm formation

    Directory of Open Access Journals (Sweden)

    Ewa Pasich

    2013-08-01

    Full Text Available Recent microbiological investigations completely changed our understanding of the role of biofilm in the formation of the mucosal immune barrier and in pathogenesis of chronic inflammation of bacterial etiology. It is now clear that formation of bacterial biofilm on dental surfaces is characteristic for existence of oral microbial communities. It has also been proved that uncontrolled biofilms on dental tissues, as well as on different biomaterials (e.g. orthodontic appliances, are the main cause of dental diseases such as dental caries and periodontitis.The aim of this paper is to explain mechanisms and consequences of orthodontic biofilm formation. We will discuss current opinions on the influence of different biomaterials employed for orthodontic treatment in biofilm formation and new strategies employed in prevention and elimination of oral biofilm (“dental plaque”.

  17. Capillary isoelectric focusing--useful tool for detection of the biofilm formation in Staphylococcus epidermidis.

    Science.gov (United States)

    Ruzicka, Filip; Horka, Marie; Hola, Veronika; Votava, Miroslav

    2007-03-01

    The biofilm formation is an important factor of S. epidermidis virulence. Biofilm-positive strains might be clinically more important than biofilm-negative ones. Unlike biofilm-negative staphylococci, biofilm-positive staphylococci are surrounded with an extracellular polysaccharide substance. The presence of this substance on the surface can affect physico-chemical properties of the bacterial cell, including surface charge. 73 S. epidermidis strains were examined for the presence of ica operon, for the ability to form biofilm by Christensen test tube method and for the production of slime by Congo red agar method. Isoelectric points (pI) of these strains were determined by means of Capillary Isoelectric Focusing. The biofilm negative strains focused near pI value 2.3, while the pI values of the biofilm positive strains were near 2.6. Isoelectric point is a useful criterion for the differentiation between biofilm-positive and biofilm-negative S. epidermidis strains. PMID:17157942

  18. Involvement of NADH Oxidase in Biofilm Formation in Streptococcus sanguinis.

    Directory of Open Access Journals (Sweden)

    Xiuchun Ge

    Full Text Available Biofilms play important roles in microbial communities and are related to infectious diseases. Here, we report direct evidence that a bacterial nox gene encoding NADH oxidase is involved in biofilm formation. A dramatic reduction in biofilm formation was observed in a Streptococcus sanguinis nox mutant under anaerobic conditions without any decrease in growth. The membrane fluidity of the mutant bacterial cells was found to be decreased and the fatty acid composition altered, with increased palmitic acid and decreased stearic acid and vaccenic acid. Extracellular DNA of the mutant was reduced in abundance and bacterial competence was suppressed. Gene expression analysis in the mutant identified two genes with altered expression, gtfP and Idh, which were found to be related to biofilm formation through examination of their deletion mutants. NADH oxidase-related metabolic pathways were analyzed, further clarifying the function of this enzyme in biofilm formation.

  19. Involvement of NADH Oxidase in Biofilm Formation in Streptococcus sanguinis

    Science.gov (United States)

    Ge, Xiuchun; Shi, Xiaoli; Shi, Limei; Liu, Jinlin; Stone, Victoria; Kong, Fanxiang; Kitten, Todd; Xu, Ping

    2016-01-01

    Biofilms play important roles in microbial communities and are related to infectious diseases. Here, we report direct evidence that a bacterial nox gene encoding NADH oxidase is involved in biofilm formation. A dramatic reduction in biofilm formation was observed in a Streptococcus sanguinis nox mutant under anaerobic conditions without any decrease in growth. The membrane fluidity of the mutant bacterial cells was found to be decreased and the fatty acid composition altered, with increased palmitic acid and decreased stearic acid and vaccenic acid. Extracellular DNA of the mutant was reduced in abundance and bacterial competence was suppressed. Gene expression analysis in the mutant identified two genes with altered expression, gtfP and Idh, which were found to be related to biofilm formation through examination of their deletion mutants. NADH oxidase-related metabolic pathways were analyzed, further clarifying the function of this enzyme in biofilm formation. PMID:26950587

  20. Optimization of culture conditions for Gardnerella vaginalis biofilm formation.

    Science.gov (United States)

    Machado, Daniela; Palmeira-de-Oliveira, Ana; Cerca, Nuno

    2015-11-01

    Bacterial vaginosis is the leading vaginal disorder in women in reproductive age. Although bacterial vaginosis is related with presence of a biofilm composed predominantly by Gardnerella vaginalis, there has not been a detailed information addressing the environmental conditions that influence the biofilm formation of this bacterial species. Here, we evaluated the influence of some common culture conditions on G. vaginalis biofilm formation, namely inoculum concentration, incubation period, feeding conditions and culture medium composition. Our results showed that culture conditions strongly influenced G. vaginalis biofilm formation and that biofilm formation was enhanced when starting the culture with a higher inoculum, using a fed-batch system and supplementing the growth medium with maltose. PMID:26381661

  1. Effects of photodynamic therapy on Enterococcus faecalis biofilms

    OpenAIRE

    López-Jiménez, L.; Fusté, E.; Martínez-Garriga, B.; Arnabat-Domínguez, J.; Vinuesa, T.; Viñas, M

    2015-01-01

    Microbial biofilms are involved in almost all infectious pathologies of the oral cavity. This has led to the search for novel therapies specifically aimed at biofilm elimination. In this study, we used atomic force microscopy (AFM) to visualize injuries and to determine surface roughness, as well as confocal laser scanning microscopy (CLSM) to enumerate live and dead bacterial cells, to determine the effects of photodynamic therapy (PDT) on Enterococcus faecalis biofilms. The AFM images showe...

  2. Assembly and development of the Pseudomonas aeruginosa biofilm matrix.

    OpenAIRE

    Luyan Ma; Matthew Conover; Haiping Lu; Parsek, Matthew R.; Kenneth Bayles; Wozniak, Daniel J.

    2009-01-01

    Virtually all cells living in multicellular structures such as tissues and organs are encased in an extracellular matrix. One of the most important features of a biofilm is the extracellular polymeric substance that functions as a matrix, holding bacterial cells together. Yet very little is known about how the matrix forms or how matrix components encase bacteria during biofilm development. Pseudomonas aeruginosa forms environmentally and clinically relevant biofilms and is a paradigm organis...

  3. Protocols to Study the Physiology of Oral Biofilms

    OpenAIRE

    Lemos, José A.; Abranches, Jacqueline; Koo, Hyun; Marquis, Robert E.; Burne, Robert A.

    2010-01-01

    The oral cavity harbors several hundred different bacterial species that colonize both hard (teeth) and soft tissues, forming complex populations known as microbial biofilms. It is widely accepted that the phenotypic characteristics of bacteria grown in biofilms are substantially different from those grown in suspensions. Because biofilms are the natural habitat for the great majority of oral bacteria, including those contributing to oral diseases, a better understanding of the physiology of ...

  4. Ultrastructure of Biofilms Formed by Bacteria from Industrial Processes

    OpenAIRE

    Raulio, Mari

    2010-01-01

    Microorganisms exist predominantly as sessile multispecies communities in natural habitats. Most bacterial species can form these matrix-enclosed microbial communities called biofilms. Biofilms occur in a wide range of environments, on every surface with sufficient moisture and nutrients, also on surfaces in industrial settings and engineered water systems. This unwanted biofilm formation on equipment surfaces is called biofouling. Biofouling can significantly decrease equipment performance a...

  5. 2-Aminopyrimidine as a novel scaffold for biofilm modulation.

    Science.gov (United States)

    Lindsey, Erick A; Worthington, Roberta J; Alcaraz, Cristina; Melander, Christian

    2012-04-01

    An efficient synthetic route to a series of substituted 2-aminopyrimidine (2-AP) derivatives has been developed. Subsequent biofilm screening has allowed comparison between the biological activity of these new derivatives and that of the 2-aminoimidazole class of anti-biofilm compounds. Several derivatives displayed the ability to modulate bacterial biofilm formation, exhibiting greater activity against Gram-positive strains than Gram-negative strains. Additionally some 2-aminopyrmidines were able to suppress MRSA resistance to conventional antibiotics. PMID:22301774

  6. 2-Aminopyrimidine as a Novel Scaffold for Biofilm Modulation

    OpenAIRE

    Lindsey, Erick A; Worthington, Roberta J.; Alcaraz, Cristina; Melander, Christian

    2012-01-01

    An efficient synthetic route to a series of substituted 2-aminopyrimidine (2-AP) derivatives has been developed. Subsequent biofilm screening has allowed comparison between the biological activity of these new derivatives and that of the 2-aminoimidazole class of anti-biofilm compounds. Several derivatives displayed the ability to modulate bacterial biofilm formation, exhibiting greater activity against Gram-positive strains than Gram-negative strains. Additionally some 2-aminopyrmidines were...

  7. Nachweis bakterieller Biofilme im oberen Genitaltrakt der Frau

    OpenAIRE

    Halwani, Zaher

    2014-01-01

    We investigated in 68 women with medically indicated curettage, hysterectomies, missed abortion or a salpingectomy / adnexectomy , the vaginal pH and Nugent - score, and to the epithelial cells of their urine were determined typical biofilms for bacterial vaginosis. The surgically removed tissue (endometrium or tubal mucosa) was also investigated in such biofilms. In 18 urines of 68 women (26.5%) was identified in epithelial cells typical of BV Gardnerella biofilm. In 8 of the ...

  8. Oral microbial biofilm stimulation of epithelial cell responses.

    Science.gov (United States)

    Peyyala, Rebecca; Kirakodu, Sreenatha S; Novak, Karen F; Ebersole, Jeffrey L

    2012-04-01

    Oral bacterial biofilms trigger chronic inflammatory responses in the host that can result in the tissue destructive events of periodontitis. However, the characteristics of the capacity of specific host cell types to respond to these biofilms remain ill-defined. This report describes the use of a novel model of bacterial biofilms to stimulate oral epithelial cells and profile select cytokines and chemokines that contribute to the local inflammatory environment in the periodontium. Monoinfection biofilms were developed with Streptococcus sanguinis, Streptococcus oralis, Streptococcus gordonii, Actinomyces naeslundii, Fusobacterium nucleatum, and Porphyromonas gingivalis on rigid gas-permeable contact lenses. Biofilms, as well as planktonic cultures of these same bacterial species, were incubated under anaerobic conditions with a human oral epithelial cell line, OKF4, for up to 24h. Gro-1α, IL1α, IL-6, IL-8, TGFα, Fractalkine, MIP-1α, and IP-10 were shown to be produced in response to a range of the planktonic or biofilm forms of these species. P. gingivalis biofilms significantly inhibited the production of all of these cytokines and chemokines, except MIP-1α. Generally, the biofilms of all species inhibited Gro-1α, TGFα, and Fractalkine production, while F. nucleatum biofilms stimulated significant increases in IL-1α, IL-6, IL-8, and IP-10. A. naeslundii biofilms induced elevated levels of IL-6, IL-8 and IP-10. The oral streptococcal species in biofilms or planktonic forms were poor stimulants for any of these mediators from the epithelial cells. The results of these studies demonstrate that oral bacteria in biofilms elicit a substantially different profile of responses compared to planktonic bacteria of the same species. Moreover, certain oral species are highly stimulatory when in biofilms and interact with host cell receptors to trigger pathways of responses that appear quite divergent from individual bacteria. PMID:22266273

  9. Differential growth of wrinkled biofilms

    Science.gov (United States)

    Espeso, D. R.; Carpio, A.; Einarsson, B.

    2015-02-01

    Biofilms are antibiotic-resistant bacterial aggregates that grow on moist surfaces and can trigger hospital-acquired infections. They provide a classical example in biology where the dynamics of cellular communities may be observed and studied. Gene expression regulates cell division and differentiation, which affect the biofilm architecture. Mechanical and chemical processes shape the resulting structure. We gain insight into the interplay between cellular and mechanical processes during biofilm development on air-agar interfaces by means of a hybrid model. Cellular behavior is governed by stochastic rules informed by a cascade of concentration fields for nutrients, waste, and autoinducers. Cellular differentiation and death alter the structure and the mechanical properties of the biofilm, which is deformed according to Föppl-Von Kármán equations informed by cellular processes and the interaction with the substratum. Stiffness gradients due to growth and swelling produce wrinkle branching. We are able to reproduce wrinkled structures often formed by biofilms on air-agar interfaces, as well as spatial distributions of differentiated cells commonly observed with B. subtilis.

  10. Adhesive Fiber Stratification in Uropathogenic Escherichia coli Biofilms Unveils Oxygen-Mediated Control of Type 1 Pili

    OpenAIRE

    Kyle A Floyd; Jessica L Moore; Allison R Eberly; James A D Good; Carrie L Shaffer; Himesh Zaver; Fredrik Almqvist; Skaar, Eric P.; Caprioli, Richard M.; Maria Hadjifrangiskou

    2015-01-01

    Bacterial biofilms account for a significant number of hospital-acquired infections and complicate treatment options, because bacteria within biofilms are generally more tolerant to antibiotic treatment. This resilience is attributed to transient bacterial subpopulations that arise in response to variations in the microenvironment surrounding the biofilm. Here, we probed the spatial proteome of surface-associated single-species biofilms formed by uropathogenic Escherichia coli (UPEC), the maj...

  11. Biofilms and their modifications by laser irradiation

    International Nuclear Information System (INIS)

    Biofilms are grown on different materials with various surface morphology and are investigated by light and scanning force microscopy. The growth patterns, coverage and adherence of the biofilm are shown to depend on the type of the substrate and its roughness as well as on the type of micro-organisms. Here we present investigations of Eschericia coli bacterial biofilms grown on the polymer material polyetheretherketone and also on titanium films on glass substrates. A Monte Carlo simulation of the growth process is developed which takes into account the aspect ratio of the micro-organisms and the diffusion of nutrient over the surface to feed them. A pulsed nitrogen laser has been applied to the samples and the interaction of the laser beam with the biofilm and the underlying substrate has been studied. Because of the inhomogeneity of the biofilms the ablated areas are different. With increasing number of laser pulses more biofilm material is removed but there appears also damage of the substrate. The threshold energy fluence for the biofilm ablation is estimated and depends on the sticking power of the bacteria. Ablation rates for the removal of the biofilms are also obtained

  12. Introduction to Biofilms Thematic Minireview Series.

    Science.gov (United States)

    Allewell, Norma M

    2016-06-10

    The biofilms that many bacteria and fungi produce enable them to form communities, adhere tightly to surfaces, evade host immunity, and resist antibiotics. Pathogenic microorganisms that form biofilms are very difficult to eradicate and thus are a frequent source of life-threatening, hospital-acquired infections. This series of five minireviews from the Journal of Biological Chemistry provides a broad overview of our current understanding of biofilms and the challenges that remain. The structure, biosynthesis, and biological function of the biofilms produced by pathogenic fungi are the subject of the first article, by Sheppard and Howell. Gunn, Bakaletz, and Wozniak focus on the biochemistry and structure of bacterial biofilms, how these structures enable bacteria to evade host immunity, and current and developing strategies for overcoming this resistance. The third and fourth articles present two of the best understood cell signaling pathways involved in biofilm formation. Valentini and Filloux focus on cyclic di-GMP, while Kavanaugh and Horswill discuss the quorum-sensing (agr) system and the relationship between quorum sensing and biofilm formation. Mechanisms of antibiotic resistance, particularly the role of efflux pumps and the development of persister cells, are the topics of the final article by Van Acker and Coenye. The advances described in this series guarantee that ongoing interdisciplinary and international efforts will lead to new insights into the basic biology of biofilm formation, as well as new strategies for therapeutic interventions. PMID:27129220

  13. Composition and Susceptibility to Chlorhexidine of Multispecies Biofilms of Oral Bacteria

    OpenAIRE

    Pratten, J.; Barnett, P.; Wilson, M

    1998-01-01

    Using a constant-depth film fermentor, we have grown a six-membered biofilm community with a bacterial composition similar to that found in supragingival dental plaque. Cryosectioning revealed the distribution of bacteria throughout the biofilm. Exposure to 0.2% chlorhexidine for up to 5 min had little effect on biofilm viability.

  14. Biofilm formation as a function of adhesin, growth medium, substratum and strain type

    DEFF Research Database (Denmark)

    Hancock, Viktoria; Witsø, Ingun Lund; Klemm, Per

    2011-01-01

    Biofilm formation is involved in the majority of bacterial infections. Comparing six Escherichia coli and Klebsiella pneumoniae isolates revealed significant differences in biofilm formation depending on the growth medium. Fimbriae are known to be involved in biofilm formation, and type 1, F1C and...

  15. Marine bacteria from the French Atlantic coast displaying high forming-biofilm abilities and different biofilm 3D architectures

    OpenAIRE

    Doghri, Ibtissem; Rodrigues, Sophie; Bazire, Alexis; Dufour, Alain; Akbar, David; Sopena, Valérie; Sablé, Sophie; Lanneluc, Isabelle

    2015-01-01

    Background Few studies have reported the species composition of bacterial communities in marine biofilms formed on natural or on man-made existing structures. In particular, the roles and surface specificities of primary colonizers are largely unknown for most surface types. The aim of this study was to obtain potentially pioneering bacterial strains with high forming-biofilm abilities from two kinds of marine biofilms, collected from two different surfaces of the French Atlantic coast: an in...

  16. Frequency of biofilm formation in toothbrushes and wash basin junks

    Directory of Open Access Journals (Sweden)

    Abdulazeez A Abubakar

    2013-01-01

    Full Text Available Background: Biofilms are known to be resistant to several antibiotics once they are allowed to form on any surface. Aim: To investigate the biofilm forming ability of some bacterial isolates in toothbrushes and wash basin junks. Materials and Methods: A total of 606 students of Federal University of Technology, Yola were provided with new toothbrushes, which were collected after 1 month of usage and screened for biofilm formation. Another 620 swabs were collected from the wash basins of Federal Medical Centre, Specialist Hospital, Federal University of Technology, and students′ hostels in Yola and from some residence in Jimeta, Yola Metropolis; they were all screened for biofilm formation. Results: A total of 38.3% biofilm formation rate was recorded. Three types of bacterial isolates were identified in the biofilms of toothbrushes and wash basin junks, namely Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa at the prevalence rate of 48.0%, 29.1%, and 22.6%, respectively. Overall, 83.3% of the toothbrush biofilm were identified from female students, while 16.7% were from their male counterparts. Statistically, the frequency of biofilm formation showed a significant difference by gender (X 2 = 10.242, P 0.05. Conclusion: This study identified three microorganisms namely S. aureus, E. coli, and P. aeruginosa that were involved in wash basin junk biofilm formation. The findings also showed that occurrence of biofilm in females′ toothbrushes were significantly higher than in males′ (X 2 = 10.242, P < 0.05.

  17. Biofilm Matrix Proteins

    OpenAIRE

    Fong, Jiunn N. C.; Yildiz, Fitnat H.

    2015-01-01

    Proteinaceous components of the biofilm matrix include secreted extracellular proteins, cell surface adhesins and protein subunits of cell appendages such as flagella and pili. Biofilm matrix proteins play diverse roles in biofilm formation and dissolution. They are involved in attaching cells to surfaces, stabilizing the biofilm matrix via interactions with exopolysaccharide and nucleic acid components, developing three-dimensional biofilm architectures, and dissolving biofilm matrix via enz...

  18. Development and validation of a microfluidic reactor for biofilm monitoring via optical methods

    Science.gov (United States)

    Meyer, Mariana T.; Roy, Varnika; Bentley, William E.; Ghodssi, Reza

    2011-05-01

    We present the design, fabrication, and verification of a microfluidic platform for optical monitoring of bacterial biofilms. Biofilm formation characterizes the majority of infections caused by bacteria that are developing increased resistance to traditional antibiotic treatment, necessitating the development of reliable tools not only for study of biofilm growth, but also for in situ examination of the response to applied stimuli. The presented platform was used to continuously and non-invasively observe the dependence of Escherichia coli biofilm formation on bacterial signaling by monitoring the change in biofilm optical density over the growth period. Results were corroborated by measurement of biofilm morphological properties via confocal microscopy, and statistical analysis was applied to verify the repeatability of observed optical and morphological differences in the biofilms formed. The presented platform will be used to characterize biofilm formation and response in drug discovery applications.

  19. Development and validation of a microfluidic reactor for biofilm monitoring via optical methods

    International Nuclear Information System (INIS)

    We present the design, fabrication, and verification of a microfluidic platform for optical monitoring of bacterial biofilms. Biofilm formation characterizes the majority of infections caused by bacteria that are developing increased resistance to traditional antibiotic treatment, necessitating the development of reliable tools not only for study of biofilm growth, but also for in situ examination of the response to applied stimuli. The presented platform was used to continuously and non-invasively observe the dependence of Escherichia coli biofilm formation on bacterial signaling by monitoring the change in biofilm optical density over the growth period. Results were corroborated by measurement of biofilm morphological properties via confocal microscopy, and statistical analysis was applied to verify the repeatability of observed optical and morphological differences in the biofilms formed. The presented platform will be used to characterize biofilm formation and response in drug discovery applications

  20. Laser Microbial Killing and Biofilm Disruption

    Science.gov (United States)

    Krespi, Yosef P.; Kizhner, Victor

    2009-06-01

    Objectives: To analyze the ability of NIR lasers to reduce bacterial load and demonstrate the capability of fiber-based Q-switched Nd:YAG laser disrupting biofilm. Study Design: NIR diode laser was tested in vitro and in vivo using pathogenic microorganisms (S. aureus, S. pneumoniae, P. aeruginosa). In addition biofilms were grown from clinical Pseudomonas isolates and placed in culture plates, screws, tympanostomy tubes and PET sutures. Methods: In the animal experiments acute rhinosinusitis model was created by packing the rabbit nose with bacteria soaked solution. The nasal pack was removed in two days and nose was exposed to laser irradiation. A 940 nm diode laser with fiber diffuser was used. Nasal cultures were obtained before and after the laser treatments. Animals were sacrificed fifteen days following laser treatment and bacteriologic/histologic results analyzed. Q-switched Nd:YAG laser generated shockwave pulses were delivered on biofilm using special probes over culture plates, screws, tubes, and PET sutures for the biofilm experiments. Results: Average of two log bacteria reduction was achieved with NIR laser compared to controls. Histologic studies demonstrated preservation of tissue integrity without significant damage to mucosa. Biofilms were imaged before, during and after treatment using a confocal microscope. During laser-generated shockwave application, biofilm was initially seen to oscillate and eventually break off. Large and small pieces of biofilm were totally and instantly removed from the surface to which they were attached in seconds. Conclusions: Significant bacterial reduction was achieved with NIR laser therapy in this experimental in vitro and animal study. In addition we disrupted Pseudomonas aeruginosa biofilms using Q-switched Nd:YAG laser and special probes generating plasma and shockwave. This new and innovative method of bacteria killing and biofilm disruption without injuring host tissue may have clinical application in the

  1. Impact of Bioreactor Environment and Recovery Method on the Profile of Bacterial Populations from Water Distribution Systems

    OpenAIRE

    Luo, Xia; Jellison, Kristen L.; Huynh, Kevin; Widmer, Giovanni

    2015-01-01

    Multiple rotating annular reactors were seeded with biofilms flushed from water distribution systems to assess (1) whether biofilms grown in bioreactors are representative of biofilms flushed from the water distribution system in terms of bacterial composition and diversity, and (2) whether the biofilm sampling method affects the population profile of the attached bacterial community. Biofilms were grown in bioreactors until thickness stabilized (9 to 11 weeks) and harvested from reactor coup...

  2. Functional Relationship between Sucrose and a Cariogenic Biofilm Formation

    Science.gov (United States)

    Cai, Jian-Na; Jung, Ji-Eun; Dang, Minh-Huy; Kim, Mi-Ah; Yi, Ho-Keun; Jeon, Jae-Gyu

    2016-01-01

    Sucrose is an important dietary factor in cariogenic biofilm formation and subsequent initiation of dental caries. This study investigated the functional relationships between sucrose concentration and Streptococcus mutans adherence and biofilm formation. Changes in morphological characteristics of the biofilms with increasing sucrose concentration were also evaluated. S. mutans biofilms were formed on saliva-coated hydroxyapatite discs in culture medium containing 0, 0.05, 0.1, 0.5, 1, 2, 5, 10, 20, or 40% (w/v) sucrose. The adherence (in 4-hour biofilms) and biofilm composition (in 46-hour biofilms) of the biofilms were analyzed using microbiological, biochemical, laser scanning confocal fluorescence microscopic, and scanning electron microscopic methods. To determine the relationships, 2nd order polynomial curve fitting was performed. In this study, the influence of sucrose on bacterial adhesion, biofilm composition (dry weight, bacterial counts, and water-insoluble extracellular polysaccharide (EPS) content), and acidogenicity followed a 2nd order polynomial curve with concentration dependence, and the maximum effective concentrations (MECs) of sucrose ranged from 0.45 to 2.4%. The bacterial and EPS bio-volume and thickness in the biofilms also gradually increased and then decreased as sucrose concentration increased. Furthermore, the size and shape of the micro-colonies of the biofilms depended on the sucrose concentration. Around the MECs, the micro-colonies were bigger and more homogeneous than those at 0 and 40%, and were surrounded by enough EPSs to support their structure. These results suggest that the relationship between sucrose concentration and cariogenic biofilm formation in the oral cavity could be described by a functional relationship. PMID:27275603

  3. Pseudomonas fluorescens biofilms subjected to phage phiIBB-PF7A

    OpenAIRE

    Neubauer Peter; Sillankorva Sanna; Azeredo Joana

    2008-01-01

    Abstract Background Pseudomonas fluorescens is an important food spoilage organism, usually found in the form of biofilms. Bacterial biofilms are inherently resistant to a variety of antimicrobial agents, therefore alternative methods to biofilm control, such as bacteriophages (phages) have been suggested. Phage behavior on biofilms is still poorly investigated and needs further understanding. Here we describe the application of phage ϕIBB-PF7, a newly isolated phage, to control P. fluorescen...

  4. Inhibitory effect of zinc oxide nanoparticles on pseudomonas aeruginosa biofilm formation

    OpenAIRE

    Mohammad Hassani Sangani; Mahboobeh Nakhaei Moghaddam; Mohammad Mahdi Forghanifard

    2015-01-01

    Objective(s): Bacterial biofilm formation causes many persistent and chronic infections. The matrix protects biofilm bacteria from exposure to innate immune defenses and antibiotic treatments. The purpose of this study was to evaluate the biofilm formation of clinical isolates of Pseudomonas aeruginosa and the activity of zinc oxide nanoparticles (ZnO NPs) on biofilm. Materials and Methods: After collecting bacteria from clinical samples of hospitalized patients, the ability of organisms were...

  5. Inhibitory effects of Tamarix hispida extracts on planktonic form and biofilm formation of six pathogenic bacteria

    OpenAIRE

    Zianab Mohsenipour; Mehdi Hassanshahian

    2015-01-01

     Introduction: Biofilms are communities of microorganisms embedded in a self-produced extracellular polymeric matrix. Bacterial cells are protected from antimicrobial agents in biofilm structure. Biofilms formation cause many problems in industry, medicine and microbial drug resistance; thus it is essential to find new techniques for removing and inhibiting biofilms. This study aimed to examine the antimicrobial effect of Tamarix hispida alcoholic extracts against six path...

  6. DNase Inhibits Gardnerella vaginalis Biofilms In Vitro and In Vivo

    OpenAIRE

    Hymes, Saul R.; Randis, Tara M.; Sun, Thomas Yang; Adam J Ratner

    2013-01-01

    Bacterial vaginosis is a highly prevalent and poorly understood polymicrobial disorder of the vaginal microbiota, with significant adverse sequelae. Gardnerella vaginalis predominates in bacterial vaginosis. Biofilms of G. vaginalis are present in human infections and are implicated in persistent disease, treatment failure, and transmission. Here we demonstrate that G. vaginalis biofilms contain extracellular DNA, which is essential to their structural integrity. Enzymatic disruption of this ...

  7. Biofilm-Exclusion of Uropathogenic Bacteria by Selected Asymptomatic Bacteriuria Escherichia Coli Strains

    DEFF Research Database (Denmark)

    Ferriéres, L.; Hancock, Viktoria; Klemm, Per

    2007-01-01

    Many bacterial infections are associated with biofilm formation. In the urinary tract bacterial biofilms develop on both living surfaces and artificial implants, producing chronic and often intractable infections. Escherichia coli is the most common organism associated with urinary tract infections....... In contrast to uropathogenic E coli (UPEC), which cause symptomatic urinary tract infection, asymptomatic bacteriuria (ABU) strains are associated with essentially symptom-free infections. Here the biofilm-forming capacity on abiotic surfaces of selected E coli ABU strains and UPEC strains in human...... biofilm formation. The results support the notion of bacterial prophylaxis employing selected ABU strains to eliminate UPEC strains and other pathogens in patients prone to recalcitrant infections....

  8. [Structural components and peculiarities of Pseudomonas aeruginosa biofilm organization].

    Science.gov (United States)

    Balko, O B; Avdieieva, L V

    2010-01-01

    Peculiarities of the structural organization of bacterial biofilm during its formation and disintegration have been investigated on the model of Pseudomonas aeruginosa UCM B-900 (ATCC 9027). It was shown, that development of the biofilm in a stationary system on glass was a two-vector process with changes in time and space. P. aeruginosa UCM B-900 biofilm is formed from single cells, passes through the stages of base components, net structure, islands and comes to the end with integration into a complete monolayer. The biofilm degradation repeats the stages of its formation in the reverse sequence. PMID:20812507

  9. Activity of ciprofloxacin and azithromycin on biofilms produced in vitro by Haemophilus influenzae

    Institute of Scientific and Technical Information of China (English)

    WANG Dong; WANG Ying; LIU You-ning

    2009-01-01

    Background It is recognized that Haemophilus influenzae isolated from patients with otitis media forms biofilms both in vitro and in vivo, suggesting that biofilm formation in vivo might play an important role in the pathogenesis and chronicity of otitis media, but the effect of antibiotics on biofilm has not been well studied. We investigated the impact of ciprofloxacin and azithromycin on bacterial biofilms formed by Haemophilus influenzae in vitro in this study.Methods Eleven strains of Haemophilus influenzae were isolated from sputum specimens collected from patients with acute exacerbation of chronic obstructive pulmonary diseases. Formation of bacterial biofilm was examined by crystal violet assay and a scanning electron microscope. Alterations of biofilms were measured under varying concentrations of azithromycin and ciprofloxacin.Results Striking differences were observed among strains with regard to the ability to form biofilm. Typical membrane-like structure formed by bacterial cells and extracellular matrix was detected. Initial biofilm synthesis was inhibited by azithromycin and ciprofloxacin at concentrations higher than two-fold minimal inhibitory concentration.Disruption of mature biofilms could be achieved at relatively higher concentration, and ciprofloxacin displayed more powerful activity.Conclusions Haemophilus influenzae is capable of forming biofilm in vitro. Sufficient dosage might control early formation of biofilms. Ciprofloxacin exerts better effects on breakdown of biofilm than azithromycin at conventional concentration in clinics.

  10. The Effects of Farnesol on Staphylococcus aureus Biofilms and Osteoblasts: An in Vitro Study

    OpenAIRE

    Unnanuntana, Aasis; Bonsignore, Lindsay; Shirtliff, Mark E; Greenfield, Edward M.

    2009-01-01

    Background: Bacterial biofilms play a major role in chronic orthopaedic infections. Recently, farnesol (an antifungal agent) has been shown to express antimicrobial activities against Staphylococcus aureus and Streptococcus mutans. However, the effects of farnesol on the formation of bacterial biofilms on orthopaedic biomaterials and its effects on osteoblasts have not been investigated, to our knowledge, and are therefore the focus of this study.

  11. Growth of Escherichia coli in Model Distribution System Biofilms Exposed to Hypochlorous Acid or Monochloramine

    OpenAIRE

    Williams, Margaret M.; Braun-Howland, Ellen B.

    2003-01-01

    Bacteria indigenous to water distribution systems were used to grow multispecies biofilms within continuous-flow slide chambers. Six flow chambers were also inoculated with an Escherichia coli isolate obtained from potable water. The effect of disinfectants on bacterial populations was determined after exposure of established biofilms to 1 ppm of hypochlorous acid (ClOH) for 67 min or 4 ppm of monochloramine (NH2Cl) for 155 min. To test the ability of bacterial populations to initiate biofilm...

  12. Next Generation Sequencing Analysis of Biofilms from Three Dogs with Postoperative Surgical Site Infection

    OpenAIRE

    König, L. M.; Klopfleisch, R.; Höper, D.; Gruber, A D

    2014-01-01

    The composition of biofilms in chronic wound infections of dogs is unclear. In the present study, histologically identified biofilms attached to sutures in chronically infected wounds of three dogs were examined by next generation sequencing of total DNA extracted from formalin-fixed and paraffin-embedded tissue samples. The analysis identified an inhomogeneous bacterial composition in three tissues containing biofilms. Some of the identified bacterial families such as Staphylococci and Strep...

  13. Pseudomonas aeruginosa uses type III secretion system to kill biofilm-associated amoebae

    DEFF Research Database (Denmark)

    Matz, Carsten; Moreno, Ana Maria; Alhede, Morten;

    2008-01-01

    Bacteria and protozoa coexist in a wide range of biofilm communities of natural, technical and medical importance. Generally, this interaction is characterized by the extensive grazing activity of protozoa on bacterial prey populations. We hypothesized that the close spatial coexistence in biofilms...... findings suggest that conserved virulence pathways and specifically the T3SS play a central role in bacteria- protozoa interactions in biofilms and may be instrumental for the environmental persistence and evolution of opportunistic bacterial pathogens....

  14. Campylobacter jejuni biofilms contain extracellular DNA and are sensitive to DNase I treatment

    OpenAIRE

    Brown, Helen L.; Hanman, Kate; Reuter, Mark; Betts, Roy P.; van Vliet, Arnoud H. M.

    2015-01-01

    Biofilms make an important contribution to survival and transmission of bacterial pathogens in the food chain. The human pathogen Campylobacter jejuni is known to form biofilms in vitro in food chain-relevant conditions, but the exact roles and composition of the extracellular matrix are still not clear. Extracellular DNA has been found in many bacterial biofilms and can be a major component of the extracellular matrix. Here we show that extracellular DNA is also an important component of the...

  15. Optimization of Operation Parameters for Helical Flow Cleanout with Supercritical CO2 in Horizontal Wells Using Back-Propagation Artificial Neural Network.

    Directory of Open Access Journals (Sweden)

    Xianzhi Song

    Full Text Available Sand production and blockage are common during the drilling and production of horizontal oil and gas wells as a result of formation breakdown. The use of high-pressure rotating jets and annular helical flow is an effective way to enhance horizontal wellbore cleanout. In this paper, we propose the idea of using supercritical CO2 (SC-CO2 as washing fluid in water-sensitive formation. SC-CO2 is manifested to be effective in preventing formation damage and enhancing production rate as drilling fluid, which justifies tis potential in wellbore cleanout. In order to investigate the effectiveness of SC-CO2 helical flow cleanout, we perform the numerical study on the annular flow field, which significantly affects sand cleanout efficiency, of SC-CO2 jets in horizontal wellbore. Based on the field data, the geometry model and mathematical models were built. Then a numerical simulation of the annular helical flow field by SC-CO2 jets was accomplished. The influences of several key parameters were investigated, and SC-CO2 jets were compared to conventional water jets. The results show that flow rate, ambient temperature, jet temperature, and nozzle assemblies play the most important roles on wellbore flow field. Once the difference between ambient temperatures and jet temperatures is kept constant, the wellbore velocity distributions will not change. With increasing lateral nozzle size or decreasing rear/forward nozzle size, suspending ability of SC-CO2 flow improves obviously. A back-propagation artificial neural network (BP-ANN was successfully employed to match the operation parameters and SC-CO2 flow velocities. A comprehensive model was achieved to optimize the operation parameters according to two strategies: cost-saving strategy and local optimal strategy. This paper can help to understand the distinct characteristics of SC-CO2 flow. And it is the first time that the BP-ANN is introduced to analyze the flow field during wellbore cleanout in

  16. Optimization of Operation Parameters for Helical Flow Cleanout with Supercritical CO2 in Horizontal Wells Using Back-Propagation Artificial Neural Network.

    Science.gov (United States)

    Song, Xianzhi; Peng, Chi; Li, Gensheng; He, Zhenguo; Wang, Haizhu

    2016-01-01

    Sand production and blockage are common during the drilling and production of horizontal oil and gas wells as a result of formation breakdown. The use of high-pressure rotating jets and annular helical flow is an effective way to enhance horizontal wellbore cleanout. In this paper, we propose the idea of using supercritical CO2 (SC-CO2) as washing fluid in water-sensitive formation. SC-CO2 is manifested to be effective in preventing formation damage and enhancing production rate as drilling fluid, which justifies tis potential in wellbore cleanout. In order to investigate the effectiveness of SC-CO2 helical flow cleanout, we perform the numerical study on the annular flow field, which significantly affects sand cleanout efficiency, of SC-CO2 jets in horizontal wellbore. Based on the field data, the geometry model and mathematical models were built. Then a numerical simulation of the annular helical flow field by SC-CO2 jets was accomplished. The influences of several key parameters were investigated, and SC-CO2 jets were compared to conventional water jets. The results show that flow rate, ambient temperature, jet temperature, and nozzle assemblies play the most important roles on wellbore flow field. Once the difference between ambient temperatures and jet temperatures is kept constant, the wellbore velocity distributions will not change. With increasing lateral nozzle size or decreasing rear/forward nozzle size, suspending ability of SC-CO2 flow improves obviously. A back-propagation artificial neural network (BP-ANN) was successfully employed to match the operation parameters and SC-CO2 flow velocities. A comprehensive model was achieved to optimize the operation parameters according to two strategies: cost-saving strategy and local optimal strategy. This paper can help to understand the distinct characteristics of SC-CO2 flow. And it is the first time that the BP-ANN is introduced to analyze the flow field during wellbore cleanout in horizontal wells. PMID

  17. Extracellular DNA is essential for maintaining Bordetella biofilm integrity on abiotic surfaces and in the upper respiratory tract of mice.

    Directory of Open Access Journals (Sweden)

    Matt S Conover

    Full Text Available Bacteria form complex and highly elaborate surface adherent communities known as biofilms which are held together by a self-produced extracellular matrix. We have previously shown that by adopting a biofilm mode of existence in vivo, the gram negative bacterial pathogens Bordetella bronchiseptica and Bordetella pertussis are able to efficiently colonize and persist in the mammalian respiratory tract. In general, the bacterial biofilm matrix includes polysaccharides, proteins and extracellular DNA (eDNA. In this report, we investigated the function of DNA in Bordetella biofilm development. We show that DNA is a significant component of Bordetella biofilm matrix. Addition of DNase I at the initiation of biofilm growth inhibited biofilm formation. Treatment of pre-established mature biofilms formed under both static and flow conditions with DNase I led to a disruption of the biofilm biomass. We next investigated whether eDNA played a role in biofilms formed in the mouse respiratory tract. DNase I treatment of nasal biofilms caused considerable dissolution of the biofilm biomass. In conclusion, these results suggest that eDNA is a crucial structural matrix component of both in vitro and in vivo formed Bordetella biofilms. This is the first evidence for the ability of DNase I to disrupt bacterial biofilms formed on host organs.

  18. Stenotrophomonas maltophilia biofilm reduction by Bdellovibrio exovorus.

    Science.gov (United States)

    Chanyi, Ryan M; Koval, Susan F; Brooke, Joanna S

    2016-06-01

    Stenotrophomonas maltophilia, a bacterium ubiquitous in the environment, is also an opportunistic, multidrug-resistant human pathogen that colonizes tissues and medical devices via biofilm formation. We investigated the ability of an isolate from sewage of the bacterial predator Bdellovibrio exovorus to disrupt preformed biofilms of 18 strains of S. maltophilia isolated from patients, hospital sink drains and water fountain drains. B. exovorus FFRS-5 preyed on all S. maltophilia strains in liquid co-cultures and was able to significantly disrupt the biofilms of 15 of the S. maltophilia strains tested, decreasing as much as 76.7% of the biofilm mass. The addition of ciprofloxacin and kanamycin in general reduced S. maltophilia biofilms but less than that of B. exovorus alone. Furthermore, when antibiotics and B. exovorus were used together, B. exovorus was still effective in the presence of ciprofloxacin whereas the addition of kanamycin reduced the effectiveness of B. exovorus. Overall, B. exovorus was able to decrease the mass of preformed biofilms of S. maltophilia in the presence of clinically relevant antibiotics demonstrating that the predator may prove to be a beneficial tool to reduce S. maltophilia environmental or clinically associated biofilms. PMID:26929093

  19. Understanding, preventing and eradicating Klebsiella pneumoniae biofilms.

    Science.gov (United States)

    Ribeiro, Suzana Meira; Cardoso, Marlon Henrique; Cândido, Elizabete de Souza; Franco, Octávio Luiz

    2016-04-01

    The ability of pathogenic bacteria to aggregate and form biofilm represents a great problem for public health, since they present extracellular components that encase these micro-organisms, making them more resistant to antibiotics and host immune attack. This may become worse when antibiotic-resistant bacterial strains form biofilms. However, antibiofilm screens with different compounds may reveal potential therapies to prevent/treat biofilm infections. Here, we focused on Klebsiella pneumoniae, an opportunistic bacterium that causes different types of infections, including in the bloodstream, meninges, lungs, urinary system and at surgical sites. We also highlight aspects involved in the formation and maintenance of K. pneumoniae biofilms, as well as resistance and the emergence of new trends to combat this health challenge. PMID:27064296

  20. Biofilm architecture of Phanerozoic cryptic carbonate marine veneers

    Science.gov (United States)

    Riding, Robert

    2002-01-01

    Thin (bacterial biofilm. Morphologic attributes include rounded aggregate nanofabric, internal channels, external towers, mushrooms, and plumes. All can be interpreted as characteristics of attached bacterial communities, i.e., aggregates as microcolonies, originally embedded in a matrix of extracellular polymeric substances; channels as water conduits and/or uncolonized nutrient-poor spaces; external protuberances as localized growths; and plumes as surface streamers. Cryptic habitat favored pristine biofilm preservation by precluding disturbance and overgrowth, and suggests aphotic and anoxic conditions. These examples provide diagnostic morphologic criteria for wider recognition of biofilm in Phanerozoic and older carbonates.

  1. Characterization of Mannheimia haemolytica biofilm formation in vitro.

    Science.gov (United States)

    Boukahil, Ismail; Czuprynski, Charles J

    2015-01-30

    Mannheimia haemolytica is the primary bacterial agent in the bovine respiratory disease complex. It is thought that M. haemolytica colonizes the tonsillar crypts of cattle as a commensal and subsequently descends into the lungs to cause disease. Many bacterial species persist in the host as biofilms. There is limited information about the ability of M. haemolytica to form biofilms. The aim of this study was to develop an in vitro model for M. haemolytica biofilm formation. We found that M. haemolytica required at least 36 h to form robust biofilms on plastic in vitro when incubated in RPMI-1640 tissue culture medium at 37 °C, with maximal biofilm formation being evident at 48 h. Biofilm formation was inhibited by adding the monosaccharides d(+) galactose and d(+) mannose to the growth medium. Addition of antibodies to the M. haemolytica surface protein OmpA also reduced biofilm formation. Upon evaluating the macromolecules within the biofilm extracellular polymeric substance we found it contained 9.7 μg/cm(2) of protein, 0.81 μg/cm(2) of total carbohydrate, and 0.47 μg/cm(2) of extracellular DNA. Furthermore, proteinase K treatment significantly decreased biofilms (Pbovine upper respiratory tract. PMID:25480166

  2. The Biofilm Challenge

    DEFF Research Database (Denmark)

    Alhede, Maria; Alhede, Morten

    2014-01-01

    The concept of biofilms has emerged in the clinical setting during the last decade. Infections involving biofilms have been documented in all parts of the human body, and it is currently believed that the presence of biofilm-forming bacteria is equivalent to chronic infection. A quick Pubmed search...... reveals the significance of biofilms, as evidenced by a dramatic increase in scientific publications on the topic, as well as in publications concerning wounds with biofilms, which reached 600 publications in 2013. Judged from the number of publications, it appears that biofilms play a significant role in...... wounds. However, the impact of biofilms is often debated, because infected wounds were also treated before the concept of biofilms was coined. In this short review, we will address the significance of biofilms and their role in wounds, and discuss the future tasks of the biofilm challenge....

  3. Epithelial cell detachment by Porphyromonas gingivalis biofilm and planktonic cultures.

    Science.gov (United States)

    Huang, Lijia; van Loveren, Cor; Ling, Junqi; Wei, Xi; Crielaard, Wim; Deng, Dong Mei

    2016-04-01

    Porphyromonas gingivalis is present as a biofilm at the sites of periodontal infections. The detachment of gingival epithelial cells induced by P. gingivalis biofilms was examined using planktonic cultures as a comparison. Exponentially grown planktonic cultures or 40-h biofilms were co-incubated with epithelial cells in a 24-well plate for 4 h. Epithelial cell detachment was assessed using imaging. The activity of arginine-gingipain (Rgp) and gene expression profiles of P. gingivalis cultures were examined using a gingipain assay and quantitative PCR, respectively. P. gingivalis biofilms induced significantly higher cell detachment and displayed higher Rgp activity compared to the planktonic cultures. The genes involved in gingipain post-translational modification, but not rgp genes, were significantly up-regulated in P. gingivalis biofilms. The results underline the importance of including biofilms in the study of bacterial and host cell interactions. PMID:26963862

  4. Morphological responses of Legionella pneumophila biofilm to nanoparticle exposure.

    Science.gov (United States)

    Stojak, Amber R; Raftery, Tara; Klaine, Stephen J; McNealy, Tamara L

    2011-12-01

    Legionella pneumophila is a pathogenic bacterium that forms biofilms in natural and anthropogenic habitats. This feature not only facilitates colonization but also limits the effectiveness of biocides. L. pneumophila was exposed to three sizes of citrate-capped gold nanospheres in both planktonic and biofilm stages. TEM micrographs indicated that gold nanoparticles (AuNPs) adsorbed to the bacterial cell surface, were absorbed into the cells, aggregated within the cells, and integrated into the extrapolymeric matrix of the biofilm. Both 4 and 18 nm, but not 50 nm AuNPs caused an alteration of biofilm morphology. Treatment with 20 nm polystyrene spheres did not induce these changes suggesting that the response was a result of the gold and not just the presence of the nanosphere. The morphological changes observed in the biofilm suggest that aquatic ecosystems may be affected by nanoparticle exposure. This may compromise ecosystem functions such as nutrient cycling facilitated by natural biofilms. PMID:21294606

  5. Biophysics of biofilm infection.

    Science.gov (United States)

    Stewart, Philip S

    2014-04-01

    This article examines a likely basis of the tenacity of biofilm infections that has received relatively little attention: the resistance of biofilms to mechanical clearance. One way that a biofilm infection persists is by withstanding the flow of fluid or other mechanical forces that work to wash or sweep microorganisms out of the body. The fundamental criterion for mechanical persistence is that the biofilm failure strength exceeds the external applied stress. Mechanical failure of the biofilm and release of planktonic microbial cells is also important in vivo because it can result in dissemination of infection. The fundamental criterion for detachment and dissemination is that the applied stress exceeds the biofilm failure strength. The apparent contradiction for a biofilm to both persist and disseminate is resolved by recognizing that biofilm material properties are inherently heterogeneous. There are also mechanical aspects to the ways that infectious biofilms evade leukocyte phagocytosis. The possibility of alternative therapies for treating biofilm infections that work by reducing biofilm cohesion could (1) allow prevailing hydrodynamic shear to remove biofilm, (2) increase the efficacy of designed interventions for removing biofilms, (3) enable phagocytic engulfment of softened biofilm aggregates, and (4) improve phagocyte mobility and access to biofilm. PMID:24376149

  6. Esoteric communiqué amid microbes in an oral biofilm

    Directory of Open Access Journals (Sweden)

    Harpreet Singh Grover

    2013-01-01

    Full Text Available Dental biofilms are complex and multispecies ecosystems, and its formation requires coordinated chemical signaling between different micro-organisms present in the oral cavity. During the initial stages of its formation, planktonic bacterial cells directly attach to surfaces of the oral cavity or indirectly bind to other bacterial cells. This binding occurs through co-aggregation, which is critical for the temporary retention of bacteria on dental surfaces as well as bacterial colonization. It is during this colonization that the micro-organisms are able to interact with each other. In general, interspecies interactions involve communication, typically via quorum sensing, and metabolic cooperation or competition. Interactions among species within a biofilm can be antagonistic, such as competition over nutrients and growth inhibition, or synergistic. In this review, we discuss these important interactions among oral bacteria within the dental biofilm communities and novel therapies that could inhibit pathogenic micro-organisms and disrupt biofilm.

  7. Removal of Burkholderia cepacia biofilms with oxidants

    Science.gov (United States)

    Koenig, D. W.; Mishra, S. K.; Pierson, D. L.

    1995-01-01

    Iodine is used to disinfect the water system aboard US space shuttles and is the anticipated biocide for the international space station. Water quality on spacecraft must be maintained at the highest possible levels for the safety of the crew. Furthermore, the treatment process used to maintain the quality of water on research must be robust and operate for long periods with minimal crew intervention. Biofilms are recalcitrant and pose a major threat with regard to chronic contamination of spacecraft water systems. We measured the effectiveness of oxidizing biocides on the removal and regrowth of Burkholderia (Pseudomonas) cepacia biofilms. B. cepacia, isolated from the water distribution system of the space shuttle Discovery, was grown in continuous culture to produce a bacterial contamination source for biofilm formation and removal studies. A 10(7) CFU ml-1 B. cepacia suspension, in distilled water, was used to form biofilms on 3000 micrometers2 glass surfaces. Rates of attachment were measured directly with image analysis and were found to be 7.8, 15.2, and 22.8 attachment events h-1 for flow rates of 20.7, 15.2, and 9.8 ml min-1, respectively. After 18 h of formation, the B. cepacia biofilms were challenged with oxidants (ozone, chlorine, and iodine) and the rates of biofilm removal determined by image analysis. Fifty percent of the biofilm material was removed in the first hour of continous treatment with 24 mg l-1 chlorine or 2 mg l-1 ozone. Iodine (48 mg l-1) did not remove any measurable cellular material after 6 h continuous contact. After this first removal of biofilms by the oxidants, the surface was allowed to refoul and was again treated with the biocide. Iodine was the only compound that was unable to remove cellular debris from either primary or secondary biofilms. Moreover, treating primary biofilms with iodine increased the rate of formation of secondary biofilms, from 4.4 to 5.8 attachment events h-1. All the oxidants tested inactivated the B

  8. Multi-depth valved microfluidics for biofilm segmentation

    Science.gov (United States)

    Meyer, M. T.; Subramanian, S.; Kim, Y. W.; Ben-Yoav, H.; Gnerlich, M.; Gerasopoulos, K.; Bentley, W. E.; Ghodssi, R.

    2015-09-01

    Bacterial biofilms present a societal challenge, as they occur in the majority of infections but are highly resistant to both immune mechanisms and traditional antibiotics. In the pursuit of better understanding biofilm biology for developing new treatments, there is a need for streamlined, controlled platforms for biofilm growth and evaluation. We leverage advantages of microfluidics to develop a system in which biofilms are formed and sectioned, allowing parallel assays on multiple sections of one biofilm. A microfluidic testbed with multiple depth profiles was developed to accommodate biofilm growth and sectioning by hydraulically actuated valves. In realization of the platform, a novel fabrication technique was developed for creating multi-depth microfluidic molds using sequentially patterned photoresist separated and passivated by conformal coatings using atomic layer deposition. Biofilm thickness variation within three separately tested devices was less than 13% of the average thickness in each device, while variation between devices was 23% of the average thickness. In a demonstration of parallel experiments performed on one biofilm within one device, integrated valves were used to trisect the uniform biofilms with one section maintained as a control, and two sections exposed to different concentrations of sodium dodecyl sulfate. The technology presented here for multi-depth microchannel fabrication can be used to create a host of microfluidic devices with diverse architectures. While this work focuses on one application of such a device in biofilm sectioning for parallel experimentation, the tailored architectures enabled by the fabrication technology can be used to create devices that provide new biological information.

  9. Biosorption system produced from biofilms supported on Faujasite (FAU) zeolite, process for obtaining it and its usage for removal of hexavalent chromium (Cr(VI))

    OpenAIRE

    Tavares, M. T.; Neves, Isabel C.

    2008-01-01

    The present invention refers to a biosorption system composed of a bacterial biofilm supported in synthetic zeolites, for usage in various types of industry for the removal of hexavalent chromium, through the retention of metal ions in the biofilm, in solutions with concentrations between 50 and 250 mgCr/L, process for obtaining it and respective usages. This process consists in obtaining a bacterial biofilm of Arthrobacter viscosus, supported on a faujasite (FAU) zeolite. The biofilm promote...

  10. Pseudomonas fluorescens biofilms subjected to phage phiIBB-PF7A

    Directory of Open Access Journals (Sweden)

    Neubauer Peter

    2008-10-01

    Full Text Available Abstract Background Pseudomonas fluorescens is an important food spoilage organism, usually found in the form of biofilms. Bacterial biofilms are inherently resistant to a variety of antimicrobial agents, therefore alternative methods to biofilm control, such as bacteriophages (phages have been suggested. Phage behavior on biofilms is still poorly investigated and needs further understanding. Here we describe the application of phage ϕIBB-PF7, a newly isolated phage, to control P. fluorescens biofilms. The biofilms were formed under static or dynamic conditions and with or without renewal of medium. Results Conditions for biofilm formation influenced the feature of the biofilm and the morphology of P. fluorescens. Biomass removal due to phage activity varied between 63 and 91% depending on the biofilm age and the conditions under which the biofilm had been formed and phages applied. Removal of the biofilm by phage treatment was faster in younger biofilms, but the same number of surviving cells was detected in all tested biofilms, after only 4 h of treatment, even in older biofilms. Under static conditions, a 3 log higher number of phage progeny remained either inside the biofilm matrix or attached to the substratum surface than under dynamic conditions, pointing to the importance of experimental conditions for the efficacy of phage entrapment into the biofilm. Conclusion Phage ϕIBB-PF7A is highly efficient in removing P. fluorescens biofilms within a short time interval. The conditions of biofilm formation and applied during phage infection are critical for the efficacy of the sanitation process. The integration of phages into the biofilm matrix and their entrapment to the surface may be further beneficial factors when phage treatment is considered alone or in addition to chemical biocides in industrial environments where P. fluorescens causes serious spoilage.

  11. Disruption of biofilms from sewage pipes under physical and chemical conditioning

    Institute of Scientific and Technical Information of China (English)

    Charbel Mahfoud; Antoine El Samrani; Rita Mouawad; Walid Hleihel; Rim El Khatib; Bruno S. Lartiges; Naim Ouaini

    2009-01-01

    Biofilms grown inside two sewage collecting pipes located in industrial and residential areas are studied. Bacterial biomass inside three layers of biofilms was evaluated. Biofilm cohesion under different mixing rate and ionic strength was also investigated. Effects of physical and chemical parameters in the biofilms were evaluated by monitoring turbidity, chemical and biochemical oxygen demands. Extracted organic matter from biofilms was partitioned to polar, aromatic and saturated fractions using activated silica column chromatography. Results revealed that bacterial biomass growth depending on biofilm thickness and stratification. The most loaded stratum in bacterial biomass was the sewage-biofilm interface stratum that represented 51% of the total bacterial biomass. Stirring rate and ionic strength of mono and bivalent salts showed a major influence in biofilm disruption. The stirring time enhanced the exchange dynamic and matter capture between biofilm fragments at the critical stirring rate 90 r/min. Sodium chloride showed the dispersing effect on biofilms in suspension, and decreased the BOD5 (biochemical oxygen demand) beyond the physiological salt concentration.

  12. Escherichia coli and Enterococcus faecalis are able to incorporate and enhance a pre-formed Gardnerella vaginalis biofilm.

    Science.gov (United States)

    Castro, Joana; Machado, Daniela; Cerca, Nuno

    2016-04-01

    Gardnerella vaginalis is the most frequent microorganism found in bacterial vaginosis (BV), while Escherichia coli and Enterococcus faecalis are amongst the most frequent pathogens found in urinary tract infections (UTIs). This study aimed to evaluate possible interactions between UTIs pathogens and G. vaginalis using an in vitro dual-species biofilm model. Our results showed that dual-species biofilms reached significantly higher bacterial concentration than monospecies biofilms. Moreover, visualization of dual-populations species in the biofilms, using the epifluorescence microscopy, revealed that all of the urogenital pathogens coexisted with G. vaginalis. In conclusion, our work demonstrates that uropathogens can incorporate into mature BV biofilms. PMID:26782142

  13. Biofilm Fixed Film Systems

    Directory of Open Access Journals (Sweden)

    Dipesh Das

    2011-09-01

    Full Text Available The work reviewed here was published between 2008 and 2010 and describes research that involved aerobic and anoxic biofilm treatment of water pollutants. Biofilm denitrification systems are covered when appropriate. References catalogued here are divided on the basis of fundamental research area or reactor types. Fundamental research into biofilms is presented in two sections, Biofilm Measurement and Characterization and Growth and Modeling. The reactor types covered are: trickling filters, rotating biological contactors, fluidized bed bioreactors, submerged bed biofilm reactors, biological granular activated carbon, membrane bioreactors, and immobilized cell reactors. Innovative reactors, not easily classified, are then presented, followed by a section on biofilms on sand, soil and sediment.

  14. In situ non-destructive measurement of biofilm thickness and topology in an interferometric optical microscope.

    Science.gov (United States)

    Larimer, Curtis; Suter, Jonathan D; Bonheyo, George; Addleman, Raymond Shane

    2016-06-01

    Biofilms are ubiquitous and impact the environment, human health, dental hygiene, and a wide range of industrial processes. Biofilms are difficult to characterize when fully hydrated, especially in a non-destructive manner, because of their soft structure and water-like bulk properties. Herein a method of measuring and monitoring the thickness and topology of live biofilms of using white light interferometry is described. Using this technique, surface morphology, surface roughness, and biofilm thickness were measured over time without while the biofilm continued to grow. The thickness and surface topology of a P. putida biofilm were monitored growing from initial colonization to a mature biofilm. Measured thickness followed expected trends for bacterial growth. Surface roughness also increased over time and was a leading indicator of biofilm growth. PMID:26992071

  15. IN SITU NON-DESTRUCTIVE MEASUREMENT OF BIOFILM THICKNESS AND TOPOLOGY IN AN INTERFEROMETRIC OPTICAL MICROSCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Larimer, Curtis J.; Suter, Jonathan D.; Bonheyo, George T.; Addleman, Raymond S.

    2016-06-01

    Biofilms are ubiquitous and deleteriously impact a wide range of industrial processes, medical and dental health issues, and environmental problems such as transport of invasive species and the fuel efficiency of ocean going vessels. Biofilms are difficult to characterize when fully hydrated, especially in a non-destructive manner, because of their soft structure and water-like bulk properties. Herein we describe a non-destructive high resolution method of measuring and monitoring the thickness and topology of live biofilms of using white light interferometric optical microscopy. Using this technique, surface morphology, surface roughness, and biofilm thickness can be measured non-destructively and with high resolution as a function of time without disruption of the biofilm activity and processes. The thickness and surface topology of a P. putida biofilm were monitored growing from initial colonization to a mature biofilm. Typical bacterial growth curves were observed. Increase in surface roughness was a leading indicator of biofilm growth.

  16. Effects of substrates on biofilm formation observed by atomic force microscopy

    International Nuclear Information System (INIS)

    Formation of biofilm is known to be strongly dependent on substrates including topography, materials, and chemical treatment. In this study, a variety of substrates are tested for understanding biofilm formation. Sheets of aluminum, steel, rubber, and polypropylene have been used to examine their effects on formation of Pseudomonas aeruginosa biofilm. In particular, the morphological variation, transition, and adhesiveness of biofilm were investigated through local measurement by atomic force microscopy (AFM). Mechanism of removing biofilm from adhering to substrate is also analyzed, thus the understanding of the mechanism can be potentially useful to prevent the biofilm formation. The results reveal that formation of biofilm can remain on rough surface regardless of substrates in hot water, which may easily induce extra-polymeric substances detachment from bacterial surface. By probing using AFM, local force-distance characterization of extra-cellular materials extracted from the bacteria can exhibit the progress of the biofilm formation and functional complexities.

  17. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants

    DEFF Research Database (Denmark)

    Klausen, M.; Heydorn, Arne; Ragas, Paula Cornelia; Lambertsen, Lotte Munch; Aaes-Jorgensen, A.; Molin, Søren; Tolker-Nielsen, Tim

    2003-01-01

    for P. aeruginosa initial attachment or biofilm formation, but the cell appendages had roles in biofilm development, as wild type, flagella and type IV pili mutants formed biofilms with different structures. Dynamics and selection during biofilm formation were investigated by tagging the wild type and...... flagella/type IV mutants with Yfp and Cfp and performing time-lapse confocal laser scanning microscopy in mixed colour biofilms. The initial microcolony formation occurred by clonal growth, after which wild-type P. aeruginosa bacteria spread over the substratum by means of twitching motility. The wild......-type biofilms were dynamic compositions with extensive motility, competition and selection occurring during development. Bacterial migration prevented the formation of larger microcolonial structures in the wild-type biofilms. The results are discussed in relation to the current model for P. aeruginosa biofilm...

  18. Ecology of Anti-Biofilm Agents I: Antibiotics versus Bacteriophages

    Directory of Open Access Journals (Sweden)

    Stephen T. Abedon

    2015-09-01

    Full Text Available Bacteriophages, the viruses that infect bacteria, have for decades been successfully used to combat antibiotic-resistant, chronic bacterial infections, many of which are likely biofilm associated. Antibiotics as anti-biofilm agents can, by contrast, be inefficacious against even genetically sensitive targets. Such deficiencies in usefulness may result from antibiotics, as naturally occurring compounds, not serving their producers, in nature, as stand-alone disruptors of mature biofilms. Anti-biofilm effectiveness by phages, by contrast, may result from a combination of inherent abilities to concentrate lytic antibacterial activity intracellularly via bacterial infection and extracellularly via localized population growth. Considered here is the anti-biofilm activity of microorganisms, with a case presented for why, ecologically, bacteriophages can be more efficacious than traditional antibiotics as medically or environmentally applied biofilm-disrupting agents. Four criteria, it can be argued, generally must be met, in combination, for microorganisms to eradicate biofilms: (1 Furnishing of sufficiently effective antibacterial factors, (2 intimate interaction with biofilm bacteria over extended periods, (3 associated ability to concentrate antibacterial factors in or around targets, and, ultimately, (4 a means of physically disrupting or displacing target bacteria. In nature, lytic predators of bacteria likely can meet these criteria whereas antibiotic production, in and of itself, largely may not.

  19. A spider web strategy of type IV pili-mediated migration to build a fibre-like Psl polysaccharide matrix in Pseudomonas aeruginosa biofilms

    OpenAIRE

    Wang, Shiwei; Parsek, Matthew R.; Wozniak, Daniel J; Ma, Luyan Z.

    2013-01-01

    Bacterial motilities participate in biofilm development. However, it is unknown how/if bacterial motility affects formation of the biofilm matrix. Psl polysaccharide is a key biofilm matrix component of Pseudomonas aeruginosa. Here we report that type IV pili (T4P)-mediated bacterial migration leads to the formation of a fibre-like Psl matrix. Deletion of T4P in wild type and flagella-deficient strains results in loss of the Psl-fibres and reduction of biofilm biomass in flow cell biofilms as...

  20. Ratiometric Imaging of Extracellular pH in Dental Biofilms Using C-SNARF-4

    DEFF Research Database (Denmark)

    Dige, Irene; Nyvad, Bente; Bælum, Vibeke; Schlafer, Sebastian

    H-sensitive ratiometric dye and as a bacterial stain. We tested the method on natural 48-h in-situ-grown dental biofilms from two individuals. Four biofilms per person were collected on standardized glass slabs mounted in intra-oral appliances. Digital image analysis was employed to remove the bacterial biomass from the...... fluorescent microscopy can overcome these problems. The aim of this demonstration study was to monitor extracellular biofilm pH microscopically with the ratiometric pH-sensitive dye C-SNARF-4 in in-situ-grown dental biofilms. Methods: Using confocal microscopy, the dye C-SNARF-4 was employed both as p...