WorldWideScience

Sample records for bacterial artifical chromosomes

  1. Cloning of Bovine herpesvirus type 1 and type 5 as infectious bacterial artifical chromosomes

    OpenAIRE

    Ackermann Mathias; Fraefel Cornel; Gabev Evgeni; Tobler Kurt

    2009-01-01

    Abstract Background Bovine herpesviruses type 1 (BoHV1) and type 5 (BoHV5) are two closely related pathogens of cattle. The identity of the two viruses on the amino acid level averages 82%. Despite their high antigenetic similarities the two pathogens induce distinctive clinical signs. BoHV1 causes respiratory and genital tract infections while BoHV5 leads to severe encephalitis in calves. Findings The viral genomes of BoHV1 and BoHV5 were cloned as infectious bacterial artificial chromosomes...

  2. Cloning of Bovine herpesvirus type 1 and type 5 as infectious bacterial artifical chromosomes

    Directory of Open Access Journals (Sweden)

    Ackermann Mathias

    2009-10-01

    Full Text Available Abstract Background Bovine herpesviruses type 1 (BoHV1 and type 5 (BoHV5 are two closely related pathogens of cattle. The identity of the two viruses on the amino acid level averages 82%. Despite their high antigenetic similarities the two pathogens induce distinctive clinical signs. BoHV1 causes respiratory and genital tract infections while BoHV5 leads to severe encephalitis in calves. Findings The viral genomes of BoHV1 and BoHV5 were cloned as infectious bacterial artificial chromosomes (BACs. First, recombinant viruses carrying the genetic elements for propagation in bacteria were generated. Second, DNA from these recombinant viruses were transferred into prokaryotic cells. Third, DNA from these bacteria were transferred into eukaryotic cells. Progeny viruses from BAC transfections showed similar kinetics as their corresponding wild types. Conclusion The two viral genomes of BoHV1 and BoHV5 cloned as BACs are accessible to the tools of bacterial genetics. The ability to easily manipulate the viral genomes on a molecular level in future experiments will lead to a better understanding of the difference in pathogenesis induced by these two closely related bovine herpesviruses.

  3. Organization of the bacterial chromosome.

    OpenAIRE

    Krawiec, S.; Riley, M

    1990-01-01

    Recent progress in studies on the bacterial chromosome is summarized. Although the greatest amount of information comes from studies on Escherichia coli, reports on studies of many other bacteria are also included. A compilation of the sizes of chromosomal DNAs as determined by pulsed-field electrophoresis is given, as well as a discussion of factors that affect gene dosage, including redundancy of chromosomes on the one hand and inactivation of chromosomes on the other hand. The distinction ...

  4. Bacterial chromosome organization and segregation.

    Science.gov (United States)

    Badrinarayanan, Anjana; Le, Tung B K; Laub, Michael T

    2015-01-01

    If fully stretched out, a typical bacterial chromosome would be nearly 1 mm long, approximately 1,000 times the length of a cell. Not only must cells massively compact their genetic material, but they must also organize their DNA in a manner that is compatible with a range of cellular processes, including DNA replication, DNA repair, homologous recombination, and horizontal gene transfer. Recent work, driven in part by technological advances, has begun to reveal the general principles of chromosome organization in bacteria. Here, drawing on studies of many different organisms, we review the emerging picture of how bacterial chromosomes are structured at multiple length scales, highlighting the functions of various DNA-binding proteins and the impact of physical forces. Additionally, we discuss the spatial dynamics of chromosomes, particularly during their segregation to daughter cells. Although there has been tremendous progress, we also highlight gaps that remain in understanding chromosome organization and segregation. PMID:26566111

  5. Identification of bacterial cells by chromosomal painting.

    OpenAIRE

    Lanoil, B. D.; Giovannoni, S J

    1997-01-01

    Chromosomal painting is a technique for the microscopic localization of genetic material. It has been applied at the subcellular level to identify regions of eukaryotic chromosomes. Here we describe the development of bacterial chromosomal painting (BCP), a related technology for the identification of bacterial cells. Purified genomic DNAs from six bacterial strains were labeled by nick translation with the fluorochrome Fluor-X, Cy3, or Cy5. The average size of the labeled fragments was ca. 5...

  6. Bacterial Artificial Chromosome Mutagenesis Using Recombineering

    OpenAIRE

    Kumaran Narayanan; Qingwen Chen

    2011-01-01

    Gene expression from bacterial artificial chromosome (BAC) clones has been demonstrated to facilitate physiologically relevant levels compared to viral and nonviral cDNA vectors. BACs are large enough to transfer intact genes in their native chromosomal setting together with flanking regulatory elements to provide all the signals for correct spatiotemporal gene expression. Until recently, the use of BACs for functional studies has been limited because their large size has inherently presented...

  7. Bacterial Artificial Chromosome Mutagenesis Using Recombineering

    Directory of Open Access Journals (Sweden)

    Kumaran Narayanan

    2011-01-01

    Full Text Available Gene expression from bacterial artificial chromosome (BAC clones has been demonstrated to facilitate physiologically relevant levels compared to viral and nonviral cDNA vectors. BACs are large enough to transfer intact genes in their native chromosomal setting together with flanking regulatory elements to provide all the signals for correct spatiotemporal gene expression. Until recently, the use of BACs for functional studies has been limited because their large size has inherently presented a major obstacle for introducing modifications using conventional genetic engineering strategies. The development of in vivo homologous recombination strategies based on recombineering in E. coli has helped resolve this problem by enabling facile engineering of high molecular weight BAC DNA without dependence on suitably placed restriction enzymes or cloning steps. These techniques have considerably expanded the possibilities for studying functional genetics using BACs in vitro and in vivo.

  8. [Cashmere goat bacterial artificial chromosome recombination and cell transfection system].

    Science.gov (United States)

    Huang, Tian; Cao, Zhongyang; Yang, Yaohui; Cao, Gengsheng

    2016-03-01

    The Cashmere goat is mainly used to produce cashmere, which is very popular for its delicate fiber, luscious softness and natural excellent warm property. Keratin associated protein (KAP) and bone morphogenetic protein (BMP) of the Cashmere goat play an important role in the proliferation and development of cashmere fiber follicle cells. Bacterial artificial chromosome containing kap6.3, kap8.1 and bmp4 genes were used to increase the production and quality of Cashmere. First, we constructed bacterial artificial chromosomes by homology recombination. Then Tol2 transposon was inserted into bacterial artificial chromosomes that were then transfected into Cashmere goat fibroblasts by Amaxa Nucleofector technology according to the manufacture's instructions. We successfully constructed the BAC-Tol2 vectors containing target genes. Each vector contained egfp report gene with UBC promoter, Neomycin resistant gene for cell screening and two loxp elements for resistance removing after transfected into cells. The bacterial artificial chromosome-Tol2 vectors showed a high efficiency of transfection that can reach 1% to 6% with a highest efficiency of 10%. We also obtained Cashmere goat fibroblasts integrated exogenous genes (kap6.3, kap8.1 and bmp4) preparing for the clone of Cashmere goat in the future. Our research demonstrates that the insertion of Tol2 transposons into bacterial artificial chromosomes improves the transfection efficiency and accuracy of bacterial artificial chromosome error-free recombination. PMID:27349114

  9. Sex Chromosome Evolution in Amniotes: Applications for Bacterial Artificial Chromosome Libraries

    OpenAIRE

    Janes, Daniel E.; Nicole Valenzuela; Tariq Ezaz; Chris Amemiya; Edwards, Scott V.

    2011-01-01

    Variability among sex chromosome pairs in amniotes denotes a dynamic history. Since amniotes diverged from a common ancestor, their sex chromosome pairs and, more broadly, sex-determining mechanisms have changed reversibly and frequently. These changes have been studied and characterized through the use of many tools and experimental approaches but perhaps most effectively through applications for bacterial artificial chromosome (BAC) libraries. Individual BAC clones carry 100–200 kb of seque...

  10. Sex Chromosome Evolution in Amniotes: Applications for Bacterial Artificial Chromosome Libraries

    Science.gov (United States)

    Janes, Daniel E.; Valenzuela, Nicole; Ezaz, Tariq; Amemiya, Chris; Edwards, Scott V.

    2011-01-01

    Variability among sex chromosome pairs in amniotes denotes a dynamic history. Since amniotes diverged from a common ancestor, their sex chromosome pairs and, more broadly, sex-determining mechanisms have changed reversibly and frequently. These changes have been studied and characterized through the use of many tools and experimental approaches but perhaps most effectively through applications for bacterial artificial chromosome (BAC) libraries. Individual BAC clones carry 100–200 kb of sequence from one individual of a target species that can be isolated by screening, mapped onto karyotypes, and sequenced. With these techniques, researchers have identified differences and similarities in sex chromosome content and organization across amniotes and have addressed hypotheses regarding the frequency and direction of past changes. Here, we review studies of sex chromosome evolution in amniotes and the ways in which the field of research has been affected by the advent of BAC libraries. PMID:20981143

  11. Integrative bacterial artificial chromosomes for DNA integration into the Bacillus subtilis chromosome.

    Science.gov (United States)

    Juhas, Mario; Ajioka, James W

    2016-06-01

    Bacillus subtilis is a well-characterized model bacterium frequently used for a number of biotechnology and synthetic biology applications. Novel strategies combining the advantages of B. subtilis with the DNA assembly and editing tools of Escherichia coli are crucial for B. subtilis engineering efforts. We combined Gibson Assembly and λ red recombineering in E. coli with RecA-mediated homologous recombination in B. subtilis for bacterial artificial chromosome-mediated DNA integration into the well-characterized amyE target locus of the B. subtilis chromosome. The engineered integrative bacterial artificial chromosome iBAC(cav) can accept any DNA fragment for integration into B. subtilis chromosome and allows rapid selection of transformants by B. subtilis-specific antibiotic resistance and the yellow fluorescent protein (mVenus) expression. We used the developed iBAC(cav)-mediated system to integrate 10kb DNA fragment from E. coli K12 MG1655 into B. subtilis chromosome. iBAC(cav)-mediated chromosomal integration approach will facilitate rational design of synthetic biology applications in B. subtilis. PMID:27033694

  12. Replisome Assembly at Bacterial Chromosomes and Iteron Plasmids.

    Science.gov (United States)

    Wegrzyn, Katarzyna E; Gross, Marta; Uciechowska, Urszula; Konieczny, Igor

    2016-01-01

    The proper initiation and occurrence of DNA synthesis depends on the formation and rearrangements of nucleoprotein complexes within the origin of DNA replication. In this review article, we present the current knowledge on the molecular mechanism of replication complex assembly at the origin of bacterial chromosome and plasmid replicon containing direct repeats (iterons) within the origin sequence. We describe recent findings on chromosomal and plasmid replication initiators, DnaA and Rep proteins, respectively, and their sequence-specific interactions with double- and single-stranded DNA. Also, we discuss the current understanding of the activities of DnaA and Rep proteins required for replisome assembly that is fundamental to the duplication and stability of genetic information in bacterial cells. PMID:27563644

  13. Horizontal transfer of DNA methylation patterns into bacterial chromosomes.

    Science.gov (United States)

    Shin, Jung-Eun; Lin, Chris; Lim, Han N

    2016-05-19

    Horizontal gene transfer (HGT) is the non-inherited acquisition of novel DNA sequences. HGT is common and important in bacteria because it enables the rapid generation of new phenotypes such as antibiotic resistance. Here we show that in vivo and in vitro DNA methylation patterns can be horizontally transferred into bacterial chromosomes to program cell phenotypes. The experiments were performed using a synthetic system in Escherichia coli where different DNA methylation patterns within the cis-regulatory sequence of the agn43 gene turn on or off a fluorescent reporter (CFP). With this system we demonstrated that DNA methylation patterns not only accompany the horizontal transfer of genes into the bacterial cytoplasm but can be transferred into chromosomes by: (i) bacteriophage P1 transduction; and (ii) transformation of extracellular synthetic DNA. We also modified the experimental system by replacing CFP with the SgrS small RNA, which regulates glucose and methyl α-D-glucoside uptake, and showed that horizontally acquired DNA methylation patterns can increase or decrease cell fitness. That is, horizontally acquired DNA methylation patterns can result in the selection for and against cells that have HGT. Findings from these proof-of-concept experiments have applications in synthetic biology and potentially broad implications for bacterial adaptation and evolution. PMID:27084942

  14. Construction and Characterization of Three Wheat Bacterial Artificial Chromosome Libraries

    Directory of Open Access Journals (Sweden)

    Wenjin Cao

    2014-11-01

    Full Text Available We have constructed three bacterial artificial chromosome (BAC libraries of wheat cultivar Triticum aestivum Wangshuibai, germplasms T. monococcum TA2026 and TA2033. A total of 1,233,792,170,880 and 263,040 clones were picked and arrayed in 384-well plates. On the basis of genome sizes of 16.8 Gb for hexaploid wheat and 5.6 Gb for diploid wheat, the three libraries represented 9.05-, 2.60-, and 3.71-fold coverage of the haploid genomes, respectively. An improved descending pooling system for BAC libraries screening was established. This improved strategy can save 80% of the time and 68% of polymerase chain reaction (PCR with the same successful rate as the universal 6D pooling strategy.

  15. Application of artifical wetland in treating mine wasterwater

    International Nuclear Information System (INIS)

    The system of treating mine wastewater by artifical wetland is presented. The mechanism and effect of this technique are discussed, and some examples are given for explaining that artifical wetland is an effective way to treat mine wastewater. (authors)

  16. High-resolution mapping of the spatial organization of a bacterial chromosome.

    Science.gov (United States)

    Le, Tung B K; Imakaev, Maxim V; Mirny, Leonid A; Laub, Michael T

    2013-11-01

    Chromosomes must be highly compacted and organized within cells, but how this is achieved in vivo remains poorly understood. We report the use of chromosome conformation capture coupled with deep sequencing (Hi-C) to map the structure of bacterial chromosomes. Analysis of Hi-C data and polymer modeling indicates that the Caulobacter crescentus chromosome consists of multiple, largely independent spatial domains that are probably composed of supercoiled plectonemes arrayed into a bottle brush-like fiber. These domains are stable throughout the cell cycle and are reestablished concomitantly with DNA replication. We provide evidence that domain boundaries are established by highly expressed genes and the formation of plectoneme-free regions, whereas the histone-like protein HU and SMC (structural maintenance of chromosomes) promote short-range compaction and the colinearity of chromosomal arms, respectively. Collectively, our results reveal general principles for the organization and structure of chromosomes in vivo. PMID:24158908

  17. Filament depolymerization can pull a chromosome during bacterial mitosis

    Science.gov (United States)

    Banigan, Edward; Gelbart, Michael; Gitai, Zemer; Liu, Andrea; Wingreen, Ned

    2011-03-01

    Chromosome segregation is fundamental to all cells, but the force-generating mechanisms underlying chromosome translocation in bacteria remain mysterious. Caulobacter crescentus utilizes a depolymerization-driven process in which a ParA protein structure elongates from the new cell pole and binds to a ParB-decorated chromosome, and then retracts via disassembly, thus pulling the chromosome across the cell. This poses the question of how a depolymerizing structure can robustly pull the chromosome that is disassembling it. We perform Brownian dynamics simulations with a simple and physically consistent model of the ParABS system. The simulations suggest that the mechanism of translocation is ``self-diffusiophoretic'': by disassembling ParA, ParB generates a ParA concentration gradient so that the concentration of ParA is higher in front of the chromosome than behind it. Since the chromosome is attracted to ParA via ParB, it moves up the ParA gradient and across the cell. We find that translocation is controlled by the product of an effective relaxation time for the chromosome and the rate of ParA disassembly. Our results provide a physical explanation of the mechanism of depolymerization-driven translocation and suggest physical explanations for recent experimental observations.

  18. Filament depolymerization can explain chromosome pulling during bacterial mitosis.

    Directory of Open Access Journals (Sweden)

    Edward J Banigan

    2011-09-01

    Full Text Available Chromosome segregation is fundamental to all cells, but the force-generating mechanisms underlying chromosome translocation in bacteria remain mysterious. Caulobacter crescentus utilizes a depolymerization-driven process in which a ParA protein structure elongates from the new cell pole, binds to a ParB-decorated chromosome, and then retracts via disassembly, pulling the chromosome across the cell. This poses the question of how a depolymerizing structure can robustly pull the chromosome that disassembles it. We perform Brownian dynamics simulations with a simple, physically consistent model of the ParABS system. The simulations suggest that the mechanism of translocation is "self-diffusiophoretic": by disassembling ParA, ParB generates a ParA concentration gradient so that the ParA concentration is higher in front of the chromosome than behind it. Since the chromosome is attracted to ParA via ParB, it moves up the ParA gradient and across the cell. We find that translocation is most robust when ParB binds side-on to ParA filaments. In this case, robust translocation occurs over a wide parameter range and is controlled by a single dimensionless quantity: the product of the rate of ParA disassembly and a characteristic relaxation time of the chromosome. This time scale measures the time it takes for the chromosome to recover its average shape after it is has been pulled. Our results suggest explanations for observed phenomena such as segregation failure, filament-length-dependent translocation velocity, and chromosomal compaction.

  19. The development and characterisation of a bacterial artificial chromosome library for Fragaria vesca

    OpenAIRE

    Abbott Albert G; Monfort Amparo; Muñoz-Torres Monica C; Sargent Daniel J; Girona Elena; Bonet Julio; Arús Pere; Simpson David W; Davik Jahn

    2009-01-01

    Abstract Background The cultivated strawberry Fragaria ×ananassa is one of the most economically-important soft-fruit species. Few structural genomic resources have been reported for Fragaria and there exists an urgent need for the development of physical mapping resources for the genus. The first stage in the development of a physical map for Fragaria is the construction and characterisation of a high molecular weight bacterial artificial chromosome (BAC) library. Methods A BAC library, cons...

  20. Generalized Gap Model for Bacterial Artificial Chromosome Clone Fingerprint Mapping and Shotgun Sequencing

    OpenAIRE

    Wendl, Michael C; Robert H Waterston

    2002-01-01

    We develop an extension to the Lander-Waterman theory for characterizing gaps in bacterial artificial chromosome fingerprint mapping and shotgun sequencing projects. It supports a larger set of descriptive statistics and is applicable to a wider range of project parameters. We show that previous assertions regarding inconsistency of the Lander-Waterman theory at higher coverages are incorrect and that another well-known but ostensibly different model is in fact the same. The apparent paradox ...

  1. Complete Genomes of Classical Swine Fever Virus Cloned into Bacterial Artificial Chromosomes

    OpenAIRE

    Rasmussen, Thomas Bruun; Reimann, I; Uttenthal, Åse; De Beer, M.

    2011-01-01

    Complete genome amplification of viral RNA provides a new tool for the generation of modified pestiviruses. We have used our full-genome amplification strategy for generation of amplicons representing complete genomes of classical swine fever virus. The amplicons were cloned directly into a stable single-copy bacterial artificial chromosome (BAC) generating full-length pestivirus DNAs from which infectious RNA transcripts could be also derived. Our strategy allows construction of stable infec...

  2. Bacterial Artificial Chromosome Clones of Viruses Comprising the Towne Cytomegalovirus Vaccine

    OpenAIRE

    Xiaohong Cui; Adler, Stuart P.; Davison, Andrew J.; Larry Smith; EL-Sayed E. Habib; McVoy, Michael A.

    2012-01-01

    Bacterial artificial chromosome (BAC) clones have proven invaluable for genetic manipulation of herpesvirus genomes. BAC cloning can also be useful for capturing representative genomes that comprise a viral stock or mixture. The Towne live attenuated cytomegalovirus vaccine was developed in the 1970s by serial passage in cultured fibroblasts. Although its safety, immunogenicity, and efficacy have been evaluated in nearly a thousand human subjects, the vaccine itself has been little studied. I...

  3. Generating Transgenic Mice from Bacterial Artificial Chromosomes: Transgenesis Efficiency, Integration and Expression Outcomes

    OpenAIRE

    Van Keuren, Margaret L.; Gavrilina, Galina B.; Filipiak, Wanda E.; Zeidler, Michael G.; Saunders, Thomas L.

    2009-01-01

    Transgenic mice are widely used in biomedical research to study gene expression, developmental biology, and gene therapy models. Bacterial artificial chromosome (BAC) transgenes direct gene expression at physiological levels with the same developmental timing and expression patterns as endogenous genes in transgenic animal models. We generated 707 transgenic founders from 86 BAC transgenes purified by three different methods. Transgenesis efficiency was the same for all BAC DNA purification m...

  4. Quantitative analysis of mutation and selection pressures on base composition skews in bacterial chromosomes

    Directory of Open Access Journals (Sweden)

    Chen Carton W

    2007-08-01

    Full Text Available Abstract Background Most bacterial chromosomes exhibit asymmetry of base composition with respect to leading vs. lagging strands (GC and AT skews. These skews reflect mainly those in protein coding sequences, which are driven by asymmetric mutation pressures during replication and transcription (notably asymmetric cytosine deamination plus subsequent selection for preferred structures, signals, amino acid or codons. The transcription-associated effects but not the replication-associated effects contribute to the overall skews through the uneven distribution of the coding sequences on the leading and lagging strands. Results Analysis of 185 representative bacterial chromosomes showed diverse and characteristic patterns of skews among different clades. The base composition skews in the coding sequences were used to derive quantitatively the effect of replication-driven mutation plus subsequent selection ('replication-associated pressure', RAP, and the effect of transcription-driven mutation plus subsequent selection at translation level ('transcription-associate pressure', TAP. While different clades exhibit distinct patterns of RAP and TAP, RAP is absent or nearly absent in some bacteria, but TAP is present in all. The selection pressure at the translation level is evident in all bacteria based on the analysis of the skews at the three codon positions. Contribution of asymmetric cytosine deamination was found to be weak to TAP in most phyla, and strong to RAP in all the Proteobacteria but weak in most of the Firmicutes. This possibly reflects the differences in their chromosomal replication machineries. A strong negative correlation between TAP and G+C content and between TAP and chromosomal size were also revealed. Conclusion The study reveals the diverse mutation and selection forces associated with replication and transcription in various groups of bacteria that shape the distinct patterns of base composition skews in the chromosomes during

  5. Rates of gyrase supercoiling and transcription elongation control supercoil density in a bacterial chromosome.

    Directory of Open Access Journals (Sweden)

    Nikolay Rovinskiy

    Full Text Available Gyrase catalyzes negative supercoiling of DNA in an ATP-dependent reaction that helps condense bacterial chromosomes into a compact interwound "nucleoid." The supercoil density (σ of prokaryotic DNA occurs in two forms. Diffusible supercoil density (σ(D moves freely around the chromosome in 10 kb domains, and constrained supercoil density (σ(C results from binding abundant proteins that bend, loop, or unwind DNA at many sites. Diffusible and constrained supercoils contribute roughly equally to the total in vivo negative supercoil density of WT cells, so σ = σ(C+σ(D. Unexpectedly, Escherichia coli chromosomes have a 15% higher level of σ compared to Salmonella enterica. To decipher critical mechanisms that can change diffusible supercoil density of chromosomes, we analyzed strains of Salmonella using a 9 kb "supercoil sensor" inserted at ten positions around the genome. The sensor contains a complete Lac operon flanked by directly repeated resolvase binding sites, and the sensor can monitor both supercoil density and transcription elongation rates in WT and mutant strains. RNA transcription caused (- supercoiling to increase upstream and decrease downstream of highly expressed genes. Excess upstream supercoiling was relaxed by Topo I, and gyrase replenished downstream supercoil losses to maintain an equilibrium state. Strains with TS gyrase mutations growing at permissive temperature exhibited significant supercoil losses varying from 30% of WT levels to a total loss of σ(D at most chromosome locations. Supercoil losses were influenced by transcription because addition of rifampicin (Rif caused supercoil density to rebound throughout the chromosome. Gyrase mutants that caused dramatic supercoil losses also reduced the transcription elongation rates throughout the genome. The observed link between RNA polymerase elongation speed and gyrase turnover suggests that bacteria with fast growth rates may generate higher supercoil densities

  6. Cloning the simian varicella virus genome in E. coli as an infectious bacterial artificial chromosome

    OpenAIRE

    Gray, Wayne L.; Zhou, Fuchun; Noffke, Juliane; Tischer, B Karsten

    2011-01-01

    Simian varicella virus (SVV) is closely related to human varicella-zoster virus and causes varicella and zoster-like disease in nonhuman primates. In this study, a mini-F replicon was inserted into a SVV cosmid and infectious SVV was generated by co-transfection of Vero cells with overlapping SVV cosmids. The entire SVV genome, cloned as a bacterial artificial chromosome (BAC), was stably propagated upon serial passage in E. coli. Transfection of pSVV-BAC DNA into Vero cells yielded infectiou...

  7. Construction and characterization of bacterial artificial chromosomes (BACs) containing herpes simplex virus full-length genomes.

    Science.gov (United States)

    Nagel, Claus-Henning; Pohlmann, Anja; Sodeik, Beate

    2014-01-01

    Bacterial artificial chromosomes (BACs) are suitable vectors not only to maintain the large genomes of herpesviruses in Escherichia coli but also to enable the traceless introduction of any mutation using modern tools of bacterial genetics. To clone a herpes simplex virus genome, a BAC replication origin is first introduced into the viral genome by homologous recombination in eukaryotic host cells. As part of their nuclear replication cycle, genomes of herpesviruses circularize and these replication intermediates are then used to transform bacteria. After cloning, the integrity of the recombinant viral genomes is confirmed by restriction length polymorphism analysis and sequencing. The BACs may then be used to design virus mutants. Upon transfection into eukaryotic cells new herpesvirus strains harboring the desired mutations can be recovered and used for experiments in cultured cells as well as in animal infection models. PMID:24671676

  8. Construction and characterization of a bacterial artificial chromosome library of the maize inbred line Qi319

    Directory of Open Access Journals (Sweden)

    Chun Hua Mu

    2016-03-01

    Full Text Available Zea mays L. has been the most cultivated crop and the crop with the largest yield in China since 2012. We constructed a bacterial artificial chromosome (BAC library for the maize inbred line Qi319, which may be used as a key source for disease-resistant maize breeding in China. The BAC contains 270,720 clones, with an average insert size of 90 kb. The coverage of the library is about 10.43 genome equivalents when considering a haploid genome size of 2300 Mb, providing a 99.99% likelihood of isolating any maize gene or sequence in the library. An average of 12 clones were obtained by polymerase chain reaction screening by using primer pairs linked to the genes for resistance to maize southern rust and rough dwarf. The results indicate that the library can satisfy the requirements for recovering specific sequences. The library is available to researchers to whom it may be of interest.

  9. A Plasmid Set for Efficient Bacterial Artificial Chromosome (BAC) Transgenesis in Zebrafish.

    Science.gov (United States)

    Fuentes, Fernando; Reynolds, Eric; Lewellis, Stephen W; Venkiteswaran, Gayatri; Knaut, Holger

    2016-01-01

    Transgenesis of large DNA constructs is essential for gene function analysis. Recently, Tol2 transposase-mediated transgenesis has emerged as a powerful tool to insert bacterial artificial chromosome (BAC) DNA constructs into the genome of zebrafish. For efficient transgenesis, the genomic DNA piece in the BAC construct needs to be flanked by Tol2 transposon sites, and the constructs should contain a transgenesis marker for easy identification of transgenic animals. We report a set of plasmids that contain targeting cassettes that allow the insertion of Tol2 sites and different transgenesis markers into BACs. Using BACs containing these targeting cassettes, we show that transgenesis is as efficient as iTol2, that preselecting for expression of the transgenesis marker increases the transgenesis rate, and that BAC transgenics faithfully recapitulate the endogenous gene expression patterns and allow for the estimation of the endogenous gene expression levels. PMID:26818072

  10. Construction of bacterial artificial chromosome libraries for Zhikong Scallop Chlamys farreri

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yang; ZHANG Xiaojun; Chantel F.SCHEURING; ZHANG Hongbin; LI Fuhua; XIANG Jianhai

    2008-01-01

    Two Large-insert genomic bacterial artificial chromosome (BAC) libraries of Zhikong scallop Chlamys farreri were constructed to promote our genetic and genomic research.High-quality megabase-sized DNA was isolated from the adductor muscle of the scallop and partially digested by BamH I and Mbo I,respectively.The BamH I library consisted of 53760 clones while the Mbo I library consisted of 7680 clones.Approximately 96% of the clones in BamH I library contained nuclear DNA inserts in average size of 100 kb,providing a coverage of 5.3 haploid genome equivalents.Similarly,the Mbo I library with an average insert of 145 kb and no insert-empty clones,thus providing a genome coverage of 1.1 haploid genome equivalents.

  11. DNA immunization with a herpes simplex virus 2 bacterial artificial chromosome

    International Nuclear Information System (INIS)

    Construction of a herpes simplex virus 2 (HSV-2) bacterial artificial chromosome (BAC) is described. BAC vector sequences were inserted into the thymidine kinase gene of HSV-2 by homologous recombination. DNA from cells infected with the resulting recombinant virus was transformed into E. coli, and colonies containing the HSV-2 BAC (HSV2-BAC) were isolated and analyzed for the expected genotype. HSV2-BAC DNA was infectious when transfected back into mammalian cells and the resulting virus was thymidine kinase negative. When used to immunize mice, the HSV2-BAC DNA elicited a strong HSV-2 specific antibody response that was equal to or greater than live virus immunization. Further, HSV2-BAC immunization was protective when animals were challenged with a lethal dose of virus. The utility of the HSV2-BAC for construction of recombinant virus genomes was demonstrated by elimination of the HSV-2 glycoprotein D (gD) gene. A recombinant HSV-2 BAC with the gD gene deleted was isolated and shown to be incapable of producing infectious virus following transfection unless an HSV gD gene was expressed in a complementing cell line. Immunization of mice with the HSV2 gD-BAC also elicited an HSV-2 specific antibody response and was protective. The results demonstrate the feasibility of DNA immunization with HSV-2 bacterial artificial chromosomes for replicating and nonreplicating candidate HSV-2 vaccines, as well as the utility of BAC technology for construction and maintenance of novel HSV-2 vaccines. The results further suggest that such technology will be a powerful tool for dissecting the immune response to HSV-2

  12. Cloning of a very virulent plus, 686 strain of Marek’s disease virus as a bacterial artificial chromosome

    Science.gov (United States)

    Bacterial artificial chromosome (BAC) vectors were first developed to facilitate propagation and manipulation of large DNA fragments. This technology was later used to clone full-length genomes of large DNA viruses to study viral gene function. Marek’s disease virus (MDV) is a highly oncogenic herpe...

  13. Chromosome Painting In Silico in a Bacterial Species Reveals Fine Population Structure

    Science.gov (United States)

    Yahara, Koji; Furuta, Yoshikazu; Oshima, Kenshiro; Yoshida, Masaru; Azuma, Takeshi; Hattori, Masahira; Uchiyama, Ikuo; Kobayashi, Ichizo

    2013-01-01

    Identifying population structure forms an important basis for genetic and evolutionary studies. Most current methods to identify population structure have limitations in analyzing haplotypes and recombination across the genome. Recently, a method of chromosome painting in silico has been developed to overcome these shortcomings and has been applied to multiple human genome sequences. This method detects the genome-wide transfer of DNA sequence chunks through homologous recombination. Here, we apply it to the frequently recombining bacterial species Helicobacter pylori that has infected Homo sapiens since their birth in Africa and shows wide phylogeographic divergence. Multiple complete genome sequences were analyzed including sequences from Okinawa, Japan, that we recently sequenced. The newer method revealed a finer population structure than revealed by a previous method that examines only MLST housekeeping genes or a phylogenetic network analysis of the core genome. Novel subgroups were found in Europe, Amerind, and East Asia groups. Examination of genetic flux showed some singleton strains to be hybrids of subgroups and revealed evident signs of population admixture in Africa, Europe, and parts of Asia. We expect this approach to further our understanding of intraspecific bacterial evolution by revealing population structure at a finer scale. PMID:23505045

  14. Construction of an infectious clone of canine herpesvirus genome as a bacterial artificial chromosome.

    Science.gov (United States)

    Arii, Jun; Hushur, Orkash; Kato, Kentaro; Kawaguchi, Yasushi; Tohya, Yukinobu; Akashi, Hiroomi

    2006-04-01

    Canine herpesvirus (CHV) is an attractive candidate not only for use as a recombinant vaccine to protect dogs from a variety of canine pathogens but also as a viral vector for gene therapy in domestic animals. However, developments in this area have been impeded by the complicated techniques used for eukaryotic homologous recombination. To overcome these problems, we used bacterial artificial chromosomes (BACs) to generate infectious BACs. Our findings may be summarized as follows: (i) the CHV genome (pCHV/BAC), in which a BAC flanked by loxP sites was inserted into the thymidine kinase gene, was maintained in Escherichia coli; (ii) transfection of pCHV/BAC into A-72 cells resulted in the production of infectious virus; (iii) the BAC vector sequence was almost perfectly excisable from the genome of the reconstituted virus CHV/BAC by co-infection with CHV/BAC and a recombinant adenovirus that expressed the Cre recombinase; and (iv) a recombinant virus in which the glycoprotein C gene was deleted was generated by lambda recombination followed by Flp recombination, which resulted in a reduction in viral titer compared with that of the wild-type virus. The infectious clone pCHV/BAC is useful for the modification of the CHV genome using bacterial genetics, and CHV/BAC should have multiple applications in the rapid generation of genetically engineered CHV recombinants and the development of CHV vectors for vaccination and gene therapy in domestic animals. PMID:16515874

  15. Global features of sequences of bacterial chromosomes, plasmids and phages revealed by analysis of oligonucleotide usage patterns

    Directory of Open Access Journals (Sweden)

    Tümmler Burkhard

    2004-07-01

    Full Text Available Abstract Background Oligonucleotide frequencies were shown to be conserved signatures for bacterial genomes, however, the underlying constraints have yet not been resolved in detail. In this paper we analyzed oligonucleotide usage (OU biases in a comprehensive collection of 155 completely sequenced bacterial chromosomes, 316 plasmids and 104 phages. Results Two global features were analyzed: pattern skew (PS and variance of OU deviations normalized by mononucleotide content of the sequence (OUV. OUV reflects the strength of OU biases and taxonomic signals. PS denotes asymmetry of OU in direct and reverse DNA strands. A trend towards minimal PS was observed for almost all complete sequences of bacterial chromosomes and plasmids, however, PS was substantially higher in separate genomic loci and several types of plasmids and phages characterized by long stretches of non-coding DNA and/or asymmetric gene distribution on the two DNA strands. Five of the 155 bacterial chromosomes have anomalously high PS, of which the chromosomes of Xylella fastidiosa 9a5c and Prochlorococcus marinus MIT9313 exhibit extreme PS values suggesting an intermediate unstable state of these two genomes. Conclusions Strand symmetry as indicated by minimal PS is a universally conserved feature of complete bacterial genomes that results from the matching mutual compensation of local OU biases on both replichors while OUV is more a taxon specific feature. Local events such as inversions or the incorporation of genome islands are balanced by global changes in genome organization to minimize PS that may represent one of the leading evolutionary forces driving bacterial genome diversification.

  16. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands.

    Directory of Open Access Journals (Sweden)

    Reuben B Vercoe

    2013-04-01

    Full Text Available In prokaryotes, clustered regularly interspaced short palindromic repeats (CRISPRs and their associated (Cas proteins constitute a defence system against bacteriophages and plasmids. CRISPR/Cas systems acquire short spacer sequences from foreign genetic elements and incorporate these into their CRISPR arrays, generating a memory of past invaders. Defence is provided by short non-coding RNAs that guide Cas proteins to cleave complementary nucleic acids. While most spacers are acquired from phages and plasmids, there are examples of spacers that match genes elsewhere in the host bacterial chromosome. In Pectobacterium atrosepticum the type I-F CRISPR/Cas system has acquired a self-complementary spacer that perfectly matches a protospacer target in a horizontally acquired island (HAI2 involved in plant pathogenicity. Given the paucity of experimental data about CRISPR/Cas-mediated chromosomal targeting, we examined this process by developing a tightly controlled system. Chromosomal targeting was highly toxic via targeting of DNA and resulted in growth inhibition and cellular filamentation. The toxic phenotype was avoided by mutations in the cas operon, the CRISPR repeats, the protospacer target, and protospacer-adjacent motif (PAM beside the target. Indeed, the natural self-targeting spacer was non-toxic due to a single nucleotide mutation adjacent to the target in the PAM sequence. Furthermore, we show that chromosomal targeting can result in large-scale genomic alterations, including the remodelling or deletion of entire pre-existing pathogenicity islands. These features can be engineered for the targeted deletion of large regions of bacterial chromosomes. In conclusion, in DNA-targeting CRISPR/Cas systems, chromosomal interference is deleterious by causing DNA damage and providing a strong selective pressure for genome alterations, which may have consequences for bacterial evolution and pathogenicity.

  17. A bacterial artificial chromosome library for Biomphalaria glabrata, intermediate snail host of Schistosoma mansoni

    Directory of Open Access Journals (Sweden)

    Coen M Adema

    2006-10-01

    Full Text Available To provide a novel resource for analysis of the genome of Biomphalaria glabrata, members of the international Biomphalaria glabrata Genome Initiative (biology.unm.edu/biomphalaria-genome.html, working with the Arizona Genomics Institute (AGI and supported by the National Human Genome Research Institute (NHGRI, produced a high quality bacterial artificial chromosome (BAC library. The BB02 strain B. glabrata, a field isolate (Belo Horizonte, Minas Gerais, Brasil that is susceptible to several strains of Schistosoma mansoni, was selfed for two generations to reduce haplotype diversity in the offspring. High molecular weight DNA was isolated from ovotestes of 40 snails, partially digested with HindIII, and ligated into pAGIBAC1 vector. The resulting B. glabrata BAC library (BG_BBa consists of 61824 clones (136.3 kb average insert size and provides 9.05 × coverage of the 931 Mb genome. Probing with single/low copy number genes from B. glabrata and fingerprinting of selected BAC clones indicated that the BAC library sufficiently represents the gene complement. BAC end sequence data (514 reads, 299860 nt indicated that the genome of B. glabrata contains ~ 63% AT, and disclosed several novel genes, transposable elements, and groups of high frequency sequence elements. This BG_BBa BAC library, available from AGI at cost to the research community, gains in relevance because BB02 strain B. glabrata is targeted whole genome sequencing by NHGRI.

  18. Multiplex sequencing of bacterial artificial chromosomes for assembling complex plant genomes.

    Science.gov (United States)

    Beier, Sebastian; Himmelbach, Axel; Schmutzer, Thomas; Felder, Marius; Taudien, Stefan; Mayer, Klaus F X; Platzer, Matthias; Stein, Nils; Scholz, Uwe; Mascher, Martin

    2016-07-01

    Hierarchical shotgun sequencing remains the method of choice for assembling high-quality reference sequences of complex plant genomes. The efficient exploitation of current high-throughput technologies and powerful computational facilities for large-insert clone sequencing necessitates the sequencing and assembly of a large number of clones in parallel. We developed a multiplexed pipeline for shotgun sequencing and assembling individual bacterial artificial chromosomes (BACs) using the Illumina sequencing platform. We illustrate our approach by sequencing 668 barley BACs (Hordeum vulgare L.) in a single Illumina HiSeq 2000 lane. Using a newly designed parallelized computational pipeline, we obtained sequence assemblies of individual BACs that consist, on average, of eight sequence scaffolds and represent >98% of the genomic inserts. Our BAC assemblies are clearly superior to a whole-genome shotgun assembly regarding contiguity, completeness and the representation of the gene space. Our methods may be employed to rapidly obtain high-quality assemblies of a large number of clones to assemble map-based reference sequences of plant and animal species with complex genomes by sequencing along a minimum tiling path. PMID:26801048

  19. Construction and Characterization of an Infectious Murine Gammaherpesivrus-68 Bacterial Artificial Chromosome

    Directory of Open Access Journals (Sweden)

    Ting-Ting Wu

    2011-01-01

    Full Text Available Here we describe the cloning of a sequenced WUMS isolate of murine gammaherpesvirus-68 (MHV-68, γHV-68, also known as MuHV-4 as a bacterial artificial chromosome (BAC. We engineered the insertion of the BAC sequence flanked by loxP sites into the left end of the viral genome before the M1 open reading frame. The infectious viruses were reconstituted following transfection of the MHV-68 BAC DNA into cells. The MHV-68 BAC-derived virus replicated indistinguishably from the wild-type virus in cultured cells. Excision of the BAC insert was efficiently achieved by coexpressing the Cre recombinase. Although the BAC insertion did not significantly affect acute productive infection in the lung, it severely compromised the ability of MHV-68 to establish splenic latency. Removal of the BAC sequence restored the wild-type level of latency. Site-specific mutagenesis was carried out by RecA-mediated recombination to demonstrate that this infectious BAC clone can be used for genetic studies of MHV-68.

  20. Visualization of lymphatic vessels by Prox1-promoter directed GFP reporter in a bacterial artificial chromosome-based transgenic mouse

    OpenAIRE

    Choi, Inho; Chung, Hee Kyoung; Ramu, Swapnika; Lee, Ha Neul; Kim, Kyu Eui; Lee, Sunju; Yoo, Jaehyuk; Choi, Dongwon; Lee, Yong Suk; Aguilar, Berenice; Hong, Young-Kwon

    2011-01-01

    Although the blood vessel-specific fluorescent transgenic mouse has been an excellent tool to study vasculogenesis and angiogenesis, a lymphatic-specific fluorescent mouse model has not been established to date. Here we report a transgenic animal model that expresses the green fluorescent protein under the promoter of Prox1, a master control gene in lymphatic development. Generated using an approximately 200-kb-long bacterial artificial chromosome harboring the entire Prox1 gene, this Prox1-g...

  1. Highly Efficient Modification of Bacterial Artificial Chromosomes (BACs) Using Novel Shuttle Vectors Containing the R6Kγ Origin of Replication

    OpenAIRE

    Gong, Shiaoching; Yang, Xiangdong William; Li, Chenjian; Heintz, Nathaniel

    2002-01-01

    Bacterial artificial chromosome (BAC) mediated transgenesis has proven to be a highly reliable way to obtain accurate transgene expression for in vivo studies of gene expression and function. A rate-limiting step in use of this technology to characterize large numbers of genes has been the process with which BACs can be modified by homologous recombination in Escherichia coli. We report here a highly efficient method for modifying BACs by using a novel set of shuttle vectors that contain the ...

  2. Incorporation of a lambda phage recombination system and EGFP detection to simplify mutagenesis of Herpes simplex virus bacterial artificial chromosomes

    OpenAIRE

    Weir Jerry P; Schmeisser Falko

    2007-01-01

    Abstract Background Targeted mutagenesis of the herpesvirus genomes has been facilitated by the use of bacterial artificial chromosome (BAC) technology. Such modified genomes have potential uses in understanding viral pathogenesis, gene identification and characterization, and the development of new viral vectors and vaccines. We have previously described the construction of a herpes simplex virus 2 (HSV-2) BAC and the use of an allele replacement strategy to construct HSV-2 recombinants. Whi...

  3. Complete Genome Sequence of Cell Culture-Attenuated Guinea Pig Cytomegalovirus Cloned as an Infectious Bacterial Artificial Chromosome

    OpenAIRE

    Yang, Dongmei; Alam, Zohaib; Cui, Xiaohong; Chen, Michael; Sherrod, Carly J.; McVoy, Michael A.; Schleiss, Mark R.; Dittmer, Dirk P

    2014-01-01

    The complete genome sequence of attenuated guinea pig cytomegalovirus cloned as bacterial artificial chromosome N13R10 was determined. Comparison to pathogenic salivary gland-derived virus revealed 13 differences, 1 of which disrupted overlapping open reading frames encoding GP129 and GP130. Attenuation of N13R10 may arise from an inability to express GP129 and/or GP130.

  4. Use of Recombination-Mediated Genetic Engineering for Construction of Rescue Human Cytomegalovirus Bacterial Artificial Chromosome Clones

    OpenAIRE

    Kalpana Dulal; Benjamin Silver; Hua Zhu

    2012-01-01

    Bacterial artificial chromosome (BAC) technology has contributed immensely to manipulation of larger genomes in many organisms including large DNA viruses like human cytomegalovirus (HCMV). The HCMV BAC clone propagated and maintained inside E. coli allows for accurate recombinant virus generation. Using this system, we have generated a panel of HCMV deletion mutants and their rescue clones. In this paper, we describe the construction of HCMV BAC mutants using a homologous recombination syste...

  5. Cloning human herpes virus 6A genome into bacterial artificial chromosomes and study of DNA replication intermediates

    OpenAIRE

    Borenstein, Ronen; Frenkel, Niza

    2009-01-01

    Cloning of large viral genomes into bacterial artificial chromosomes (BACs) facilitates analyses of viral functions and molecular mutagenesis. Previous derivations of viral BACs involved laborious recombinations within infected cells. We describe a single-step production of viral BACs by direct cloning of unit length genomes, derived from circular or head-to-tail concatemeric DNA replication intermediates. The BAC cloning is independent of intracellular recombinations and DNA packaging constr...

  6. Quality control of the sheep bacterial artificial chromosome library, CHORI-243

    Directory of Open Access Journals (Sweden)

    Kirkness Ewen F

    2010-12-01

    Full Text Available Abstract Background The sheep CHORI-243 bacterial artificial chromosome (BAC library is being used in the construction of the virtual sheep genome, the sequencing and construction of the actual sheep genome assembly and as a source of DNA for regions of the genome of biological interest. The objective of our study is to assess the integrity of the clones and plates which make up the CHORI-243 library using the virtual sheep genome. Findings A series of analyses were undertaken based on the mapping the sheep BAC-end sequences (BESs to the virtual sheep genome. Overall, very few plate specific biases were identified, with only three of the 528 plates in the library significantly affected. The analysis of the number of tail-to-tail (concordant BACs on the plates identified a number of plates with lower than average numbers of such BACs. For plates 198 and 213 a partial swap of the BESs determined with one of the two primers appear to have occurred. A third plate, 341, also with a significant deficit in tail-to-tail BACs, appeared to contain a substantial number of sequences determined from contaminating eubacterial 16 S rRNA DNA. Additionally a small number of eubacterial 16 S rRNA DNA sequences were present on two other plates, 111 and 338, in the library. Conclusions The comparative genomic approach can be used to assess BAC library integrity in the absence of fingerprinting. The sequences of the sheep CHORI-243 library BACs have high integrity, especially with the corrections detailed above. The library represents a high quality resource for use by the sheep genomics community.

  7. Rapid construction of a Bacterial Artificial Chromosomal (BAC) expression vector using designer DNA fragments.

    Science.gov (United States)

    Chen, Chao; Zhao, Xinqing; Jin, Yingyu; Zhao, Zongbao Kent; Suh, Joo-Won

    2014-11-01

    Bacterial artificial chromosomal (BAC) vectors are increasingly being used in cloning large DNA fragments containing complex biosynthetic pathways to facilitate heterologous production of microbial metabolites for drug development. To express inserted genes using Streptomyces species as the production hosts, an integration expression cassette is required to be inserted into the BAC vector, which includes genetic elements encoding a phage-specific attachment site, an integrase, an origin of transfer, a selection marker and a promoter. Due to the large sizes of DNA inserted into the BAC vectors, it is normally inefficient and time-consuming to assemble these fragments by routine PCR amplifications and restriction-ligations. Here we present a rapid method to insert fragments to construct BAC-based expression vectors. A DNA fragment of about 130 bp was designed, which contains upstream and downstream homologous sequences of both BAC vector and pIB139 plasmid carrying the whole integration expression cassette. In-Fusion cloning was performed using the designer DNA fragment to modify pIB139, followed by λ-RED-mediated recombination to obtain the BAC-based expression vector. We demonstrated the effectiveness of this method by rapid construction of a BAC-based expression vector with an insert of about 120 kb that contains the entire gene cluster for biosynthesis of immunosuppressant FK506. The empty BAC-based expression vector constructed in this study can be conveniently used for construction of BAC libraries using either microbial pure culture or environmental DNA, and the selected BAC clones can be directly used for heterologous expression. Alternatively, if a BAC library has already been constructed using a commercial BAC vector, the selected BAC vectors can be manipulated using the method described here to get the BAC-based expression vectors with desired gene clusters for heterologous expression. The rapid construction of a BAC-based expression vector facilitates

  8. The development and characterisation of a bacterial artificial chromosome library for Fragaria vesca

    Directory of Open Access Journals (Sweden)

    Abbott Albert G

    2009-09-01

    Full Text Available Abstract Background The cultivated strawberry Fragaria ×ananassa is one of the most economically-important soft-fruit species. Few structural genomic resources have been reported for Fragaria and there exists an urgent need for the development of physical mapping resources for the genus. The first stage in the development of a physical map for Fragaria is the construction and characterisation of a high molecular weight bacterial artificial chromosome (BAC library. Methods A BAC library, consisting of 18,432 clones was constructed from Fragaria vesca f. semperflorens accession 'Ali Baba'. BAC DNA from individual library clones was pooled to create a PCR-based screening assay for the library, whereby individual clones could be identified with just 34 PCR reactions. These pools were used to screen the BAC library and anchor individual clones to the diploid Fragaria reference map (FV×FN. Findings Clones from the BAC library developed contained an average insert size of 85 kb, representing over seven genome equivalents. The pools and superpools developed were used to identify a set of BAC clones containing 70 molecular markers previously mapped to the diploid Fragaria FV×FN reference map. The number of positive colonies identified for each marker suggests the library represents between 4× and 10× coverage of the diploid Fragaria genome, which is in accordance with the estimate of library coverage based on average insert size. Conclusion This BAC library will be used for the construction of a physical map for F. vesca and the superpools will permit physical anchoring of molecular markers using PCR.

  9. Bacterial Artificial Chromosomes: A Functional Genomics Tool for the Study of Positive-strand RNA Viruses.

    Science.gov (United States)

    Yun, Sang-Im; Song, Byung-Hak; Kim, Jin-Kyoung; Lee, Young-Min

    2015-01-01

    Reverse genetics, an approach to rescue infectious virus entirely from a cloned cDNA, has revolutionized the field of positive-strand RNA viruses, whose genomes have the same polarity as cellular mRNA. The cDNA-based reverse genetics system is a seminal method that enables direct manipulation of the viral genomic RNA, thereby generating recombinant viruses for molecular and genetic studies of both viral RNA elements and gene products in viral replication and pathogenesis. It also provides a valuable platform that allows the development of genetically defined vaccines and viral vectors for the delivery of foreign genes. For many positive-strand RNA viruses such as Japanese encephalitis virus (JEV), however, the cloned cDNAs are unstable, posing a major obstacle to the construction and propagation of the functional cDNA. Here, the present report describes the strategic considerations in creating and amplifying a genetically stable full-length infectious JEV cDNA as a bacterial artificial chromosome (BAC) using the following general experimental procedures: viral RNA isolation, cDNA synthesis, cDNA subcloning and modification, assembly of a full-length cDNA, cDNA linearization, in vitro RNA synthesis, and virus recovery. This protocol provides a general methodology applicable to cloning full-length cDNA for a range of positive-strand RNA viruses, particularly those with a genome of >10 kb in length, into a BAC vector, from which infectious RNAs can be transcribed in vitro with a bacteriophage RNA polymerase. PMID:26780115

  10. Recovery of infectious virus from full-length cowpox virus (CPXV) DNA cloned as a bacterial artificial chromosome (BAC)

    OpenAIRE

    Roth Swaantje J; Höper Dirk; Beer Martin; Feineis Silke; Tischer B Karsten; Osterrieder Nikolaus

    2011-01-01

    Abstract Transmission from pet rats and cats to humans as well as severe infection in felids and other animal species have recently drawn increasing attention to cowpox virus (CPXV). We report the cloning of the entire genome of cowpox virus strain Brighton Red (BR) as a bacterial artificial chromosome (BAC) in Escherichia coli and the recovery of infectious virus from cloned DNA. Generation of a full-length CPXV DNA clone was achieved by first introducing a mini-F vector, which allows mainte...

  11. Repetitive genome elements in a European corn borer, Ostrinia nubilalis, bacterial artificial chromosome library were indicated by bacterial artificial chromosome end sequencing and development of sequence tag site markers: implications for lepidopteran genomic research.

    Science.gov (United States)

    Coates, Brad S; Sumerford, Douglas V; Hellmich, Richard L; Lewis, Leslie C

    2009-01-01

    The European corn borer, Ostrinia nubilalis, is a serious pest of food, fiber, and biofuel crops in Europe, North America, and Asia and a model system for insect olfaction and speciation. A bacterial artificial chromosome library constructed for O. nubilalis contains 36 864 clones with an estimated average insert size of >or=120 kb and genome coverage of 8.8-fold. Screening OnB1 clones comprising approximately 2.76 genome equivalents determined the physical position of 24 sequence tag site markers, including markers linked to ecologically important and Bacillus thuringiensis toxin resistance traits. OnB1 bacterial artificial chromosome end sequence reads (GenBank dbGSS accessions ET217010 to ET217273) showed homology to annotated genes or expressed sequence tags and identified repetitive genome elements, O. nubilalis miniature subterminal inverted repeat transposable elements (OnMITE01 and OnMITE02), and ezi-like long interspersed nuclear elements. Mobility of OnMITE01 was demonstrated by the presence or absence in O. nubilalis of introns at two different loci. A (GTCT)n tetranucleotide repeat at the 5' ends of OnMITE01 and OnMITE02 are evidence for transposon-mediated movement of lepidopteran microsatellite loci. The number of repetitive elements in lepidopteran genomes will affect genome assembly and marker development. Single-locus sequence tag site markers described here have downstream application for integration within linkage maps and comparative genomic studies. PMID:19132072

  12. Identification and Preliminary Analysis of Several Centromere-associated Bacterial Artificial Chromosome Clones from a Diploid Wheat Library

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Although the centromeres of some plants have been investigated previously, our knowledge of the wheat centromere is still very limited. To understand the structure and function of the wheat centromere, we used two centromeric repeats (RCS1 and CCS1-5ab) to obtain some centromere-associated bacterial artificial chromosome (BAC) clones in 32 RCS1-related BAC clones that had been screened out from a diploid wheat (Triticum boeoticum Boiss.; 2n=2x=14) BAC library. Southern hybridization results indicated that, of the 32 candidates,there were 28 RCS1-positive clones. Based on gel blot patterns, the frequency of RCS1 was approximately one copy every 69.4 kb in these 28 RCS1-positive BAC clones. More bands were detected when the same filter was probed with CCS1-5ab. Furthermore, the CCS1 bands covered all the bands detected by RCS1, which suggests that some CCS1 repeats were distributed together with RCS1. The frequency of CCS1 families was once every 35.8 kb, nearly twice that of RCS1. Fluorescence in situ hybridization (FISH) analysis indicated that the five BAC clones containing RCS1 and CCS1 sequences all detected signals at the centromeric regions in hexaploid wheat, but the signal intensities on the A-genome chromosomes were stronger than those on the B- and/or D-genome chromosomes. The FISH analysis among nine Triticeae cereals indicated that there were A-genomespecific (or rich) sequences dispersing on chromosome arms in the BAC clone TbBAC5. In addition, at the interphase cells, the centromeres of diploid species usually clustered at one pole and formed a ring-like allocation in the period before metaphase.

  13. Construction of an Americn mink Bacterial Artificial Chromosome (BAC) library and sequencing candidate genes important for the fur industry

    DEFF Research Database (Denmark)

    Anistoroaei, Razvan Marian; Hallers, Boudewijn ten; Nefedov, Michael;

    2011-01-01

    consisting of 18,432 clones spotted in duplicate, have been produced for hybridization screening and are publicly available. Overgo probes derived from expressed sequence tags (ESTs), representing 21 candidate genes for traits important for the mink industry, were used to screen the BAC library......BACKGROUND: Bacterial artificial chromosome (BAC) libraries continue to be invaluable tools for the genomic analysis of complex organisms. Complemented by the newly and fast growing deep sequencing technologies, they provide an excellent source of information in genomics projects. RESULTS: Here, we...... report the construction and characterization of the CHORI-231 BAC library constructed from a Danish-farmed, male American mink (Neovison vison). The library contains approximately 165,888 clones with an average insert size of 170 kb, representing approximately 10-fold coverage. High-density filters, each...

  14. Use of Recombination-Mediated Genetic Engineering for Construction of Rescue Human Cytomegalovirus Bacterial Artificial Chromosome Clones

    Directory of Open Access Journals (Sweden)

    Kalpana Dulal

    2012-01-01

    Full Text Available Bacterial artificial chromosome (BAC technology has contributed immensely to manipulation of larger genomes in many organisms including large DNA viruses like human cytomegalovirus (HCMV. The HCMV BAC clone propagated and maintained inside E. coli allows for accurate recombinant virus generation. Using this system, we have generated a panel of HCMV deletion mutants and their rescue clones. In this paper, we describe the construction of HCMV BAC mutants using a homologous recombination system. A gene capture method, or gap repair cloning, to seize large fragments of DNA from the virus BAC in order to generate rescue viruses, is described in detail. Construction of rescue clones using gap repair cloning is highly efficient and provides a novel use of the homologous recombination-based method in E. coli for molecular cloning, known colloquially as recombineering, when rescuing large BAC deletions. This method of excising large fragments of DNA provides important prospects for in vitro homologous recombination for genetic cloning.

  15. Construction and Preliminary Characterization Analysis of Wuzhishan Miniature Pig Bacterial Artificial Chromosome Library with Approximately 8-Fold Genome Equivalent Coverage

    Directory of Open Access Journals (Sweden)

    Changqing Liu

    2013-01-01

    Full Text Available Bacterial artificial chromosome (BAC libraries have been invaluable tools for the genome-wide genetic dissection of complex organisms. Here, we report the construction and characterization of a high-redundancy BAC library from a very valuable pig breed in China, Wuzhishan miniature pig (Sus scrofa, using its blood cells and fibroblasts, respectively. The library contains approximately 153,600 clones ordered in 40 superpools of 10 × 384-deep well microplates. The average insert size of BAC clones was estimated to be 152.3 kb, representing approximately 7.68 genome equivalents of the porcine haploid genome and a 99.93% statistical probability of obtaining at least one clone containing a unique DNA sequence in the library. 19 pairs of microsatellite marker primers covering porcine chromosomes were used for screening the BAC library, which showed that each of these markers was positive in the library; the positive clone number was 2 to 9, and the average number was 7.89, which was consistent with 7.68-fold coverage of the porcine genome. And there were no significant differences of genomic BAC library from blood cells and fibroblast cells. Therefore, we identified 19 microsatellite markers that could potentially be used as genetic markers. As a result, this BAC library will serve as a valuable resource for gene identification, physical mapping, and comparative genomics and large-scale genome sequencing in the porcine.

  16. Using Mahalanobis distance to compare genomic signatures between bacterial plasmids and chromosomes

    OpenAIRE

    Suzuki, Haruo; Sota, Masahiro; Brown, Celeste J.; Top, Eva M.

    2008-01-01

    Plasmids are ubiquitous mobile elements that serve as a pool of many host beneficial traits such as antibiotic resistance in bacterial communities. To understand the importance of plasmids in horizontal gene transfer, we need to gain insight into the ‘evolutionary history’ of these plasmids, i.e. the range of hosts in which they have evolved. Since extensive data support the proposal that foreign DNA acquires the host's nucleotide composition during long-term residence, comparison of nucleoti...

  17. Recovery of infectious virus from full-length cowpox virus (CPXV DNA cloned as a bacterial artificial chromosome (BAC

    Directory of Open Access Journals (Sweden)

    Roth Swaantje J

    2011-01-01

    Full Text Available Abstract Transmission from pet rats and cats to humans as well as severe infection in felids and other animal species have recently drawn increasing attention to cowpox virus (CPXV. We report the cloning of the entire genome of cowpox virus strain Brighton Red (BR as a bacterial artificial chromosome (BAC in Escherichia coli and the recovery of infectious virus from cloned DNA. Generation of a full-length CPXV DNA clone was achieved by first introducing a mini-F vector, which allows maintenance of large circular DNA in E. coli, into the thymidine kinase locus of CPXV by homologous recombination. Circular replication intermediates were then electroporated into E. coli DH10B cells. Upon successful establishment of the infectious BR clone, we modified the full-length clone such that recombination-mediated excision of bacterial sequences can occur upon transfection in eukaryotic cells. This self-excision of the bacterial replicon is made possible by a sequence duplication within mini-F sequences and allows recovery of recombinant virus progeny without remaining marker or vector sequences. The in vitro growth properties of viruses derived from both BAC clones were determined and found to be virtually indistinguishable from those of parental, wild-type BR. Finally, the complete genomic sequence of the infectious clone was determined and the cloned viral genome was shown to be identical to that of the parental virus. In summary, the generated infectious clone will greatly facilitate studies on individual genes and pathogenesis of CPXV. Moreover, the vector potential of CPXV can now be more systematically explored using this newly generated tool.

  18. Intestine Bacterial Composition of the Chromosomal forms of genus Nannospalax and Comparison of Some Rodent Species

    OpenAIRE

    Coşkun, Yüksel; El-Namee, Ausama; KAYA, Alaettin

    2013-01-01

    In this study, five selected different rodent species, Meriones tristrami (karyotype 2n=72 from Mardin/Turkey), Nannospalax ehrenbergi (karyotype 2n=52 from Diyarbakır/Turkey and Mosul/Iraq), Nannospalax nehringi (karyotype 2n = 60 from Sivas/Turkey), Rattus rattus (karyotype 2n=42 from Diyarbakır/Turkey), Sciurus anomalus (karyotype 2n=40 from Bingöl/Turkey) were studied in respect to bacterial species.The results showed the presence of two types of bacteria Pantoea agglomerans and Serratia ...

  19. Analysis of herpesvirus host specificity determinants using herpesvirus genomes as bacterial artificial chromosomes.

    Science.gov (United States)

    Arii, Jun; Kato, Kentaro; Kawaguchi, Yasushi; Tohya, Yukinobu; Akashi, Hiroomi

    2009-08-01

    Almost all mammalian alphaherpesviruses can grow in cells derived from several types of animals in vitro. However, FHV-1 can only infect feline cell lines. For this reason, FHV-1 should be a good model to investigate species barriers to herpesviruses in vivo. To apply bacterial mutagenesis of FHV-1, we cloned the FHV-1 genome as a BAC. Using lambda and flp recombinations, we introduced a monomeric red fluorescence protein into the C-terminus of glycoprotein D. Although GFP in the constructed recombinant FHV-1, a transfectant of the bacmid of FHV-1 that possessed the GFP, acted in non-feline cell lines, the virus could not enter non-feline cell lines, demonstrating that the host specificity of FHV-1 was restricted in an early step of infection. The host range of canine herpesvirus is limited to dogs in vitro and in vivo; it cannot enter non-canine cell lines as a result of infection but the GFP is active by transfection, revealing the same result that the restriction step is at an early stage of infection. These results suggest the possibility of breaking species barriers of FHV-1 and CHV by modifying the gene(s) that act at the early stage of infection. PMID:19659927

  20. Viral Bacterial Artificial Chromosomes: Generation, Mutagenesis, and Removal of Mini-F Sequences

    Directory of Open Access Journals (Sweden)

    B. Karsten Tischer

    2012-01-01

    Full Text Available Maintenance and manipulation of large DNA and RNA virus genomes had presented an obstacle for virological research. BAC vectors provided a solution to both problems as they can harbor large DNA sequences and can efficiently be modified using well-established mutagenesis techniques in Escherichia coli. Numerous DNA virus genomes of herpesvirus and pox virus were cloned into mini-F vectors. In addition, several reverse genetic systems for RNA viruses such as members of Coronaviridae and Flaviviridae could be established based on BAC constructs. Transfection into susceptible eukaryotic cells of virus DNA cloned as a BAC allows reconstitution of recombinant viruses. In this paper, we provide an overview on the strategies that can be used for the generation of virus BAC vectors and also on systems that are currently available for various virus species. Furthermore, we address common mutagenesis techniques that allow modification of BACs from single-nucleotide substitutions to deletion of viral genes or insertion of foreign sequences. Finally, we review the reconstitution of viruses from BAC vectors and the removal of the bacterial sequences from the virus genome during this process.

  1. Incorporation of a lambda phage recombination system and EGFP detection to simplify mutagenesis of Herpes simplex virus bacterial artificial chromosomes

    Directory of Open Access Journals (Sweden)

    Weir Jerry P

    2007-05-01

    Full Text Available Abstract Background Targeted mutagenesis of the herpesvirus genomes has been facilitated by the use of bacterial artificial chromosome (BAC technology. Such modified genomes have potential uses in understanding viral pathogenesis, gene identification and characterization, and the development of new viral vectors and vaccines. We have previously described the construction of a herpes simplex virus 2 (HSV-2 BAC and the use of an allele replacement strategy to construct HSV-2 recombinants. While the BAC mutagenesis procedure is a powerful method to generate HSV-2 recombinants, particularly in the absence of selective marker in eukaryotic culture, the mutagenesis procedure is still difficult and cumbersome. Results Here we describe the incorporation of a phage lambda recombination system into an allele replacement vector. This strategy enables any DNA fragment containing the phage attL recombination sites to be efficiently inserted into the attR sites of the allele replacement vector using phage lambda clonase. We also describe how the incorporation of EGFP into the allele replacement vector can facilitate the selection of the desired cross-over recombinant BACs when the allele replacement reaction is a viral gene deletion. Finally, we incorporate the lambda phage recombination sites directly into an HSV-2 BAC vector for direct recombination of gene cassettes using the phage lambda clonase-driven recombination reaction. Conclusion Together, these improvements to the techniques of HSV BAC mutagenesis will facilitate the construction of recombinant herpes simplex viruses and viral vectors.

  2. Construction and characterization of a bacterial artificial chromosome library of thermo-sensitive genic male-sterile rice 5460S

    Institute of Scientific and Technical Information of China (English)

    邱芳; 金德敏; 伏健民; 张超良; 谢纬武; 王斌; 杨仁崔; 张洪斌

    1999-01-01

    In order to develop a detailed physical map of the thermo-sensitive genie male-sterile (TGMS) gene-encompassing region and finally clone the TGMS gene, a high-quality rice bacterial artificial chromosome (BAC) library from TGMS rice 5460S was constructed. The method of constructing BAC library was examined and optimized. The 5460S library consists of 19 584 BAC clones with an average insert size of 110 kb, which represents about 5 times rice haploid genome equivalents. Rice inserts of up to 140 kb and 250 kb were isolated and appeared stable after 100 generations of serial growth. Hybridization of BAC clones with mitochondrial and chloroplastic genes as probes demonstrated that this library has no organellar contamination. The 5460S library was screened with 3 molecular markers linked to tmsl gene as probes and at least 1 BAC clone was identified with each probe. The insert ends of positive clones were successfully isolated using thermal asymmetric interlaced PCR (TAIL-PCR) technique.

  3. Construction of a bacterial artificial chromosome library from the spikemoss Selaginella moellendorffii: a new resource for plant comparative genomics

    Directory of Open Access Journals (Sweden)

    Chapple Clint

    2005-06-01

    Full Text Available Abstract Background The lycophytes are an ancient lineage of vascular plants that diverged from the seed plant lineage about 400 Myr ago. Although the lycophytes occupy an important phylogenetic position for understanding the evolution of plants and their genomes, no genomic resources exist for this group of plants. Results Here we describe the construction of a large-insert bacterial artificial chromosome (BAC library from the lycophyte Selaginella moellendorffii. Based on cell flow cytometry, this species has the smallest genome size among the different lycophytes tested, including Huperzia lucidula, Diphaiastrum digita, Isoetes engelmanii and S. kraussiana. The arrayed BAC library consists of 9126 clones; the average insert size is estimated to be 122 kb. Inserts of chloroplast origin account for 2.3% of the clones. The BAC library contains an estimated ten genome-equivalents based on DNA hybridizations using five single-copy and two duplicated S. moellendorffii genes as probes. Conclusion The S. moellenforffii BAC library, the first to be constructed from a lycophyte, will be useful to the scientific community as a resource for comparative plant genomics and evolution.

  4. Visualization of lymphatic vessels by Prox1-promoter directed GFP reporter in a bacterial artificial chromosome-based transgenic mouse

    Science.gov (United States)

    Choi, Inho; Chung, Hee Kyoung; Ramu, Swapnika; Lee, Ha Neul; Kim, Kyu Eui; Lee, Sunju; Yoo, Jaehyuk; Choi, Dongwon; Lee, Yong Suk; Aguilar, Berenice

    2011-01-01

    Although the blood vessel-specific fluorescent transgenic mouse has been an excellent tool to study vasculogenesis and angiogenesis, a lymphatic-specific fluorescent mouse model has not been established to date. Here we report a transgenic animal model that expresses the green fluorescent protein under the promoter of Prox1, a master control gene in lymphatic development. Generated using an approximately 200-kb-long bacterial artificial chromosome harboring the entire Prox1 gene, this Prox1-green fluorescent protein mouse was found to faithfully recapitulate the expression pattern of the Prox1 gene in lymphatic endothelial cells and other Prox1-expressing organs, and enabled us to conveniently visualize detailed structure and morphology of lymphatic vessels and networks throughout development. Our data demonstrate that this novel transgenic mouse can be extremely useful for detection, imaging, and isolation of lymphatic vessels and monitoring wound-associated lymphangiogenesis. Together, this Prox1-green fluorescent protein transgenic mouse will be a great tool for the lymphatic research. PMID:20962325

  5. Functional characterization of Kaposi's sarcoma-associated herpesvirus small capsid protein by bacterial artificial chromosome-based mutagenesis

    International Nuclear Information System (INIS)

    A systematic investigation of interactions amongst KSHV capsid proteins was undertaken in this study to comprehend lesser known KSHV capsid assembly mechanisms. Interestingly the interaction patterns of the KSHV small capsid protein, ORF65 suggested its plausible role in viral capsid assembly pathways. Towards further understanding this, ORF65-null recombinant mutants (BAC-Δ65 and BAC-stop65) employing a bacterial artificial chromosome (BAC) system were generated. No significant difference was found in both overall viral gene expression and lytic DNA replication between stable monolayers of 293T-BAC36 (wild-type) and 293T-BAC-ORF65-null upon induction with 12-O-tetradecanoylphorbol-13-acetate, though the latter released 30-fold fewer virions to the medium than 293T-BAC36 cells. Sedimentation profiles of capsid proteins of ORF65-null recombinant mutants were non-reflective of their organization into the KSHV capsids and were also undetectable in cytoplasmic extracts compared to noticeable levels in nuclear extracts. These observations collectively suggested the pivotal role of ORF65 in the KSHV capsid assembly processes.

  6. A Self-Excisable Infectious Bacterial Artificial Chromosome Clone of Varicella-Zoster Virus Allows Analysis of the Essential Tegument Protein Encoded by ORF9▿

    OpenAIRE

    Tischer, B. Karsten; Kaufer, Benedikt B; Sommer, Marvin; Wussow, Felix; Ann M Arvin; Osterrieder, Nikolaus

    2007-01-01

    In order to facilitate the generation of mutant viruses of varicella-zoster virus (VZV), the agent causing varicella (chicken pox) and herpes zoster (shingles), we generated a full-length infectious bacterial artificial chromosome (BAC) clone of the P-Oka strain. First, mini-F sequences were inserted into a preexisting VZV cosmid, and the SuperCos replicon was removed. Subsequently, mini-F-containing recombinant virus was generated from overlapping cosmid clones, and full-length VZV DNA recov...

  7. Autoexcision of Bacterial Artificial Chromosome Facilitated by Terminal Repeat-Mediated Homologous Recombination: a Novel Approach for Generating Traceless Genetic Mutants of Herpesviruses ▿

    OpenAIRE

    Zhou, Fuchun; Li, Qiuhua; Wong, Scott W.; Gao, Shou-jiang

    2010-01-01

    Infectious bacterial artificial chromosomes (BACs) of herpesviruses are powerful tools for genetic manipulation. However, the presence of BAC vector sequence in the viral genomes often causes genetic and phenotypic alterations. While the excision of the BAC vector cassette can be achieved by homologous recombination between extra duplicate viral sequences or loxP site-mediated recombination, these methods either are inefficient or leave a loxP site mark in the viral genome. Here we describe t...

  8. Cloning of the Full-Length Rhesus Cytomegalovirus Genome as an Infectious and Self-Excisable Bacterial Artificial Chromosome for Analysis of Viral Pathogenesis

    OpenAIRE

    Chang, W. L. William; Peter A Barry

    2003-01-01

    Rigorous investigation of many functions encoded by cytomegaloviruses (CMVs) requires analysis in the context of virus-host interactions. To facilitate the construction of rhesus CMV (RhCMV) mutants for in vivo studies, a bacterial artificial chromosome (BAC) containing an enhanced green fluorescent protein (EGFP) cassette was engineered into the intergenic region between unique short 1 (US1) and US2 of the full-length viral genome by Cre/lox-mediated recombination. Infectious virions were re...

  9. Construction of a bacterial artificial chromosome library from the spikemoss Selaginella moellendorffii: a new resource for plant comparative genomics

    OpenAIRE

    Chapple Clint; Carlson John; Arumuganathan K; Mueller Christopher; Kudrna Dave; Weng Jing-Ke; Kim Hye Ran; Sisneros Nicholas; Luo Meizhong; Tanurdzic Milos; Wang Wenming; de Pamphilis Claude; Mandoli Dina; Tomkins Jeff; Wing Rod A

    2005-01-01

    Abstract Background The lycophytes are an ancient lineage of vascular plants that diverged from the seed plant lineage about 400 Myr ago. Although the lycophytes occupy an important phylogenetic position for understanding the evolution of plants and their genomes, no genomic resources exist for this group of plants. Results Here we describe the construction of a large-insert bacterial artificial chromosome (BAC) library from the lycophyte Selaginella moellendorffii. Based on cell flow cytomet...

  10. A high-throughput strategy for screening of bacterial artificial chromosome libraries and anchoring of clones on a genetic map constructed with single nucleotide polymorphisms

    OpenAIRE

    Deal Karin R; Ma Yaqin; Xu Kenong; Luo Ming-Cheng; Nicolet Charles M; Dvorak Jan

    2009-01-01

    Abstract Background Current techniques of screening bacterial artificial chromosome (BAC) libraries for molecular markers during the construction of physical maps are slow, laborious and often assign multiple BAC contigs to a single locus on a genetic map. These limitations are the principal impediment in the construction of physical maps of large eukaryotic genomes. It is hypothesized that this impediment can be overcome by screening multidimensional pools of BAC clones using the highly para...

  11. Production of High-Titer Epstein-Barr Virus Recombinants Derived from Akata Cells by Using a Bacterial Artificial Chromosome System

    OpenAIRE

    Kanda, Teru; Yajima, Misako; Ahsan, Nazmul; Tanaka, Mika; Takada, Kenzo

    2004-01-01

    An Epstein-Barr virus (EBV) genome in Burkitt's lymphoma-derived cell line Akata was cloned into a bacterial artificial chromosome (BAC) vector. The BAC clone, designated AK-BAC, was rapidly and precisely modified by means of efficient homologous recombination in Escherichia coli. This system was used to produce recombinant EBVs with transgenes. An expression cassette of green fluorescent protein (GFP) was inserted into AK-BAC, and the resultant BAC clone, AK-BAC-GFP, was transfected into Aka...

  12. A high-throughput strategy for screening of bacterial artificial chromosome libraries and anchoring of clones on a genetic map constructed with single nucleotide polymorphisms

    OpenAIRE

    Luo, Ming-Cheng; Xu, Kenong; Ma, Yaqin; Karin R Deal; Nicolet, Charles M.; Dvorak, Jan

    2009-01-01

    Background Current techniques of screening bacterial artificial chromosome (BAC) libraries for molecular markers during the construction of physical maps are slow, laborious and often assign multiple BAC contigs to a single locus on a genetic map. These limitations are the principal impediment in the construction of physical maps of large eukaryotic genomes. It is hypothesized that this impediment can be overcome by screening multidimensional pools of BAC clones using the highly parallel Illu...

  13. Human Bacterial Artificial Chromosome (BAC) Transgenesis Fully Rescues Noradrenergic Function in Dopamine β-Hydroxylase Knockout Mice

    Science.gov (United States)

    Cubells, Joseph F.; Schroeder, Jason P.; Barrie, Elizabeth S.; Manvich, Daniel F.; Sadee, Wolfgang; Berg, Tiina; Mercer, Kristina; Stowe, Taylor A.; Liles, L. Cameron; Squires, Katherine E.; Mezher, Andrew; Curtin, Patrick; Perdomo, Dannie L.; Szot, Patricia; Weinshenker, David

    2016-01-01

    Dopamine β-hydroxylase (DBH) converts dopamine (DA) to norepinephrine (NE) in noradrenergic/adrenergic cells. DBH deficiency prevents NE production and causes sympathetic failure, hypotension and ptosis in humans and mice; DBH knockout (Dbh -/-) mice reveal other NE deficiency phenotypes including embryonic lethality, delayed growth, and behavioral defects. Furthermore, a single nucleotide polymorphism (SNP) in the human DBH gene promoter (-970C>T; rs1611115) is associated with variation in serum DBH activity and with several neurological- and neuropsychiatric-related disorders, although its impact on DBH expression is controversial. Phenotypes associated with DBH deficiency are typically treated with L-3,4-dihydroxyphenylserine (DOPS), which can be converted to NE by aromatic acid decarboxylase (AADC) in the absence of DBH. In this study, we generated transgenic mice carrying a human bacterial artificial chromosome (BAC) encompassing the DBH coding locus as well as ~45 kb of upstream and ~107 kb of downstream sequence to address two issues. First, we characterized the neuroanatomical, neurochemical, physiological, and behavioral transgenic rescue of DBH deficiency by crossing the BAC onto a Dbh -/- background. Second, we compared human DBH mRNA abundance between transgenic lines carrying either a “C” or a “T” at position -970. The BAC transgene drove human DBH mRNA expression in a pattern indistinguishable from the endogenous gene, restored normal catecholamine levels to the peripheral organs and brain of Dbh -/- mice, and fully rescued embryonic lethality, delayed growth, ptosis, reduced exploratory activity, and seizure susceptibility. In some cases, transgenic rescue was superior to DOPS. However, allelic variation at the rs1611115 SNP had no impact on mRNA levels in any tissue. These results indicate that the human BAC contains all of the genetic information required for tissue-specific, functional expression of DBH and can rescue all measured Dbh

  14. Construction and Identification of Bacterial Artificial Chromosome Library for 0-613-2R in Upland Cotton

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A bacterial artificial chromosome (BAC) library containing a large genomic DNA insert is an important tool for genome physical mapping, map-based cloning, and genome sequencing. To isolate genes via a map-based cloning strategy and to perform physical mapping of the cotton genome, a high-quality BAC library containing large cotton DNA inserts is needed. We have developed a BAC library of the restoring line 0-613-2R for isolating the fertility restorer (Rf1) gene and genomic research in cotton (Gossypium hirsutum L.). The BAC library contains 97 825 clones stored in 255 pieces of a 384-well microtiter plate. Random samples of BACs digested with the Notl enzyme indicated that the average insert size is approximately 130 kb, with a range of 80-275 kb,and 95.7% of the BAC clones in the library have an average insert size larger than 100 kb. Based on a cotton genome size of 2 250 Mb, library coverage is 5.7 x haploid genome equivalents. Four clones were selected randomly from the library to determine the stability of the BAC clones. There were no different fingerprints for 0 and 100 generations of each clone digested with Notl and Hindlll enzymes. Thus, the stability of a single BAC clone can be sustained at least for 100 generations. Eight simple sequence repeat (SSR) markers flanking the Rf1 gene were chosen to screen the BAC library by pool using PCR method and 25 positive clones were identified with 3.1 positive clones per SSR marker.

  15. Construction of a nurse shark (Ginglymostoma cirratum bacterial artificial chromosome (BAC library and a preliminary genome survey

    Directory of Open Access Journals (Sweden)

    Inoko Hidetoshi

    2006-05-01

    Full Text Available Abstract Background Sharks are members of the taxonomic class Chondrichthyes, the oldest living jawed vertebrates. Genomic studies of this group, in comparison to representative species in other vertebrate taxa, will allow us to theorize about the fundamental genetic, developmental, and functional characteristics in the common ancestor of all jawed vertebrates. Aims In order to obtain mapping and sequencing data for comparative genomics, we constructed a bacterial artificial chromosome (BAC library for the nurse shark, Ginglymostoma cirratum. Results The BAC library consists of 313,344 clones with an average insert size of 144 kb, covering ~4.5 × 1010 bp and thus providing an 11-fold coverage of the haploid genome. BAC end sequence analyses revealed, in addition to LINEs and SINEs commonly found in other animal and plant genomes, two new groups of nurse shark-specific repetitive elements, NSRE1 and NSRE2 that seem to be major components of the nurse shark genome. Screening the library with single-copy or multi-copy gene probes showed 6–28 primary positive clones per probe of which 50–90% were true positives, demonstrating that the BAC library is representative of the different regions of the nurse shark genome. Furthermore, some BAC clones contained multiple genes, making physical mapping feasible. Conclusion We have constructed a deep-coverage, high-quality, large insert, and publicly available BAC library for a cartilaginous fish. It will be very useful to the scientific community interested in shark genomic structure, comparative genomics, and functional studies. We found two new groups of repetitive elements specific to the nurse shark genome, which may contribute to the architecture and evolution of the nurse shark genome.

  16. Human Bacterial Artificial Chromosome (BAC) Transgenesis Fully Rescues Noradrenergic Function in Dopamine β-Hydroxylase Knockout Mice.

    Science.gov (United States)

    Cubells, Joseph F; Schroeder, Jason P; Barrie, Elizabeth S; Manvich, Daniel F; Sadee, Wolfgang; Berg, Tiina; Mercer, Kristina; Stowe, Taylor A; Liles, L Cameron; Squires, Katherine E; Mezher, Andrew; Curtin, Patrick; Perdomo, Dannie L; Szot, Patricia; Weinshenker, David

    2016-01-01

    Dopamine β-hydroxylase (DBH) converts dopamine (DA) to norepinephrine (NE) in noradrenergic/adrenergic cells. DBH deficiency prevents NE production and causes sympathetic failure, hypotension and ptosis in humans and mice; DBH knockout (Dbh -/-) mice reveal other NE deficiency phenotypes including embryonic lethality, delayed growth, and behavioral defects. Furthermore, a single nucleotide polymorphism (SNP) in the human DBH gene promoter (-970C>T; rs1611115) is associated with variation in serum DBH activity and with several neurological- and neuropsychiatric-related disorders, although its impact on DBH expression is controversial. Phenotypes associated with DBH deficiency are typically treated with L-3,4-dihydroxyphenylserine (DOPS), which can be converted to NE by aromatic acid decarboxylase (AADC) in the absence of DBH. In this study, we generated transgenic mice carrying a human bacterial artificial chromosome (BAC) encompassing the DBH coding locus as well as ~45 kb of upstream and ~107 kb of downstream sequence to address two issues. First, we characterized the neuroanatomical, neurochemical, physiological, and behavioral transgenic rescue of DBH deficiency by crossing the BAC onto a Dbh -/- background. Second, we compared human DBH mRNA abundance between transgenic lines carrying either a "C" or a "T" at position -970. The BAC transgene drove human DBH mRNA expression in a pattern indistinguishable from the endogenous gene, restored normal catecholamine levels to the peripheral organs and brain of Dbh -/- mice, and fully rescued embryonic lethality, delayed growth, ptosis, reduced exploratory activity, and seizure susceptibility. In some cases, transgenic rescue was superior to DOPS. However, allelic variation at the rs1611115 SNP had no impact on mRNA levels in any tissue. These results indicate that the human BAC contains all of the genetic information required for tissue-specific, functional expression of DBH and can rescue all measured Dbh deficiency

  17. Periodontal Dressing-containing Green Tea Epigallocathechin gallate Increases Fibroblasts Number in Gingival Artifical Wound Model

    OpenAIRE

    Ardisa U. Pradita; Agung P. Dhartono; Catur A. Ramadhany; Ali Taqwim

    2014-01-01

    Green tea leaf (Camellia sinensis) is one of herbal plants that is used for traditional medicine. Epigallocatechin gallate (EGCG) in green tea is the most potential polyphenol component and has the strongest biological activity. It is known that EGCG has potential effect on wound healing. Objective: This study aimed to determine the effect of adding green tea EGCG into periodontal dressing on the number of fibroblasts after gingival artificial wound in animal model. Methods: Gingival artific...

  18. Construction of an American mink Bacterial Artificial Chromosome (BAC library and sequencing candidate genes important for the fur industry

    Directory of Open Access Journals (Sweden)

    Christensen Knud

    2011-07-01

    Full Text Available Abstract Background Bacterial artificial chromosome (BAC libraries continue to be invaluable tools for the genomic analysis of complex organisms. Complemented by the newly and fast growing deep sequencing technologies, they provide an excellent source of information in genomics projects. Results Here, we report the construction and characterization of the CHORI-231 BAC library constructed from a Danish-farmed, male American mink (Neovison vison. The library contains approximately 165,888 clones with an average insert size of 170 kb, representing approximately 10-fold coverage. High-density filters, each consisting of 18,432 clones spotted in duplicate, have been produced for hybridization screening and are publicly available. Overgo probes derived from expressed sequence tags (ESTs, representing 21 candidate genes for traits important for the mink industry, were used to screen the BAC library. These included candidate genes for coat coloring, hair growth and length, coarseness, and some receptors potentially involved in viral diseases in mink. The extensive screening yielded positive results for 19 of these genes. Thirty-five clones corresponding to 19 genes were sequenced using 454 Roche, and large contigs (184 kb in average were assembled. Knowing the complete sequences of these candidate genes will enable confirmation of the association with a phenotype and the finding of causative mutations for the targeted phenotypes. Additionally, 1577 BAC clones were end sequenced; 2505 BAC end sequences (80% of BACs were obtained. An excess of 2 Mb has been analyzed, thus giving a snapshot of the mink genome. Conclusions The availability of the CHORI-321 American mink BAC library will aid in identification of genes and genomic regions of interest. We have demonstrated how the library can be used to identify specific genes of interest, develop genetic markers, and for BAC end sequencing and deep sequencing of selected clones. To our knowledge, this is the

  19. A BACTERIAL ARTIFICIAL CHROMOSOME CONTIG SPANNING THE MAJOR DOMESTICATION LOCUS Q IN WHEAT AND IDENTIFICATION OF A CANDIDATE GENE

    Science.gov (United States)

    The Q locus played a major role in the domestication of wheat because it confers the free-threshing character and influences many other agronomically important traits. We constructed a physical contig spanning the Q locus using a Triticum monococcum BAC library. Four chromosome walking steps were ...

  20. Construction of an Excisable Bacterial Artificial Chromosome Containing a Full-Length Infectious Clone of Herpes Simplex Virus Type 1: Viruses Reconstituted from the Clone Exhibit Wild-Type Properties In Vitro and In Vivo

    OpenAIRE

    Tanaka, Michiko; Kagawa, Hiroyuki; Yamanashi, Yuji; Sata, Tetsutaro; Kawaguchi, Yasushi

    2003-01-01

    In recent years, several laboratories have reported on the cloning of herpes simplex virus type 1 (HSV-1) genomes as bacterial artificial chromosomes (BACs) in Escherichia coli and on procedures to manipulate these genomes by using the bacterial recombination machinery. However, the HSV-BACs reported so far are either replication incompetent or infectious, with a deletion of one or more viral genes due to the BAC vector insertion. For use as a multipurpose clone in research on HSV-1, we attem...

  1. The Selection and Use of Sorghum (Sorghum propinquum Bacterial Artificial Chromosomes as Cytogenetic FISH Probes for Maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Debbie M. Figueroa

    2011-01-01

    Full Text Available The integration of genetic and physical maps of maize is progressing rapidly, but the cytogenetic maps lag behind, with the exception of the pachytene fluorescence in situ hybridization (FISH maps of maize chromosome 9. We sought to produce integrated FISH maps of other maize chromosomes using Core Bin Marker loci. Because these 1 Kb restriction fragment length polymorphism (RFLP probes are below the FISH detection limit, we used BACs from sorghum, a small-genome relative of maize, as surrogate clones for FISH mapping. We sequenced 151 maize RFLP probes and compared in silico BAC selection methods to that of library filter hybridization and found the latter to be the best. BAC library screening, clone verification, and single-clone selection criteria are presented along with an example of transgenomic BAC FISH mapping. This strategy has been used to facilitate the integration of RFLP and FISH maps in other large-genome species.

  2. The selection and use of sorghum (Sorghum propinquum) bacterial artificial chromosomes as cytogenetic FISH probes for maize (Zea mays L.).

    Science.gov (United States)

    Figueroa, Debbie M; Davis, James D; Strobel, Cornelia; Conejo, Maria S; Beckham, Katherine D; Ring, Brian C; Bass, Hank W

    2011-01-01

    The integration of genetic and physical maps of maize is progressing rapidly, but the cytogenetic maps lag behind, with the exception of the pachytene fluorescence in situ hybridization (FISH) maps of maize chromosome 9. We sought to produce integrated FISH maps of other maize chromosomes using Core Bin Marker loci. Because these 1 Kb restriction fragment length polymorphism (RFLP) probes are below the FISH detection limit, we used BACs from sorghum, a small-genome relative of maize, as surrogate clones for FISH mapping. We sequenced 151 maize RFLP probes and compared in silico BAC selection methods to that of library filter hybridization and found the latter to be the best. BAC library screening, clone verification, and single-clone selection criteria are presented along with an example of transgenomic BAC FISH mapping. This strategy has been used to facilitate the integration of RFLP and FISH maps in other large-genome species. PMID:21234422

  3. Efficient generation of recombinant RNA viruses using targeted recombination-mediated mutagenesis of bacterial artificial chromosomes containing full-length cDNA

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Risager, Peter Christian; Fahnøe, Ulrik;

    2013-01-01

    Background Infectious cDNA clones are a prerequisite for directed genetic manipulation of RNA viruses. Here, a strategy to facilitate manipulation and rescue of classical swine fever viruses (CSFVs) from full-length cDNAs present within bacterial artificial chromosomes (BACs) is described. This...... strategy allows manipulation of viral cDNA by targeted recombination-mediated mutagenesis within bacteria. Results A new CSFV-BAC (pBeloR26) derived from the Riems vaccine strain has been constructed and subsequently modified in the E2 coding sequence, using the targeted recombination strategy to enable...... rescue of chimeric pestiviruses (vR26_E2gif and vR26_TAV) with potential as new marker vaccine candidates. Sequencing of the BACs revealed a high genetic stability during passages within bacteria. The complete genome sequences of rescued viruses, after extensive passages in mammalian cells showed that...

  4. 棉花细菌人工染色体文库构建方法探讨%Studies on Construction Method of Cotton Bacterial Artificial Chromosome Library

    Institute of Scientific and Technical Information of China (English)

    高海燕; 王省芬; 刘方; 彭仁海; 张艳; 马峙英; 王坤波

    2013-01-01

    细菌人工染色体(Bacterial artificial chromosome,BAC)文库是开展基因组测序、基因图位克隆、分子标记、物理作图等研究的重要基因组资源.本文在构建了二倍体野生棉阿非利加棉(Gossypium herbaceum var.africanum)BAC文库的基础上,就棉花细菌人工染色体基因组文库构建过程中高分子量基因组DNA的提取、部分酶切片段选择、DNA的回收、连接转化以及BAC文库的保存等过程中一些细节和注意事项进行了比较详细的分析比较,希望能为棉花BAC文库的构建提供一些可供借鉴的经验.%Bacterial artificial chromosome (BAC) library is an important genome resources to such research as genome sequencing, map-based cloning, molecular markers, and physical mapping. On the base of the construction of BAC library for Gossypi-um herbaceum var. africanum, this paper presents an exhaustive analysis on details and notices of the BAC library construction process. It includes extraction of high molecular weight (HMW) nuclear DNA, determination of the optimized enzyme for partial digestion of HMW DNA, two rounds of size fractionation, recovery of large fragments DNA, ligation and transformation of large fragments of DNA and storage of BAC library. Thus being able to supply an experience for constructing high efficiency cotton BAC library.

  5. Nucleotide-Induced Conformational Changes in Escherichia coli DnaA Protein Are Required for Bacterial ORC to Pre-RC Conversion at the Chromosomal Origin.

    Science.gov (United States)

    Saxena, Rahul; Vasudevan, Sona; Patil, Digvijay; Ashoura, Norah; Grimwade, Julia E; Crooke, Elliott

    2015-01-01

    DnaA oligomerizes when bound to origins of chromosomal replication. Structural analysis of a truncated form of DnaA from Aquifex aeolicus has provided insight into crucial conformational differences within the AAA+ domain that are specific to the ATP- versus ADP- bound form of DnaA. In this study molecular docking of ATP and ADP onto Escherichia coli DnaA, modeled on the crystal structure of Aquifex aeolicus DnaA, reveals changes in the orientation of amino acid residues within or near the vicinity of the nucleotide-binding pocket. Upon limited proteolysis with trypsin or chymotrypsin ADP-DnaA, but not ATP-DnaA generated relatively stable proteolytic fragments of various sizes. Examined sites of limited protease susceptibility that differ between ATP-DnaA and ADP-DnaA largely reside in the amino terminal half of DnaA. The concentration of adenine nucleotide needed to induce conformational changes, as detected by these protease susceptibilities of DnaA, coincides with the conversion of an inactive bacterial origin recognition complex (bORC) to a replication efficient pre-replication complex (pre-RC) at the E. coli chromosomal origin of replication (oriC). PMID:26610483

  6. Nucleotide-Induced Conformational Changes in Escherichia coli DnaA Protein Are Required for Bacterial ORC to Pre-RC Conversion at the Chromosomal Origin

    Directory of Open Access Journals (Sweden)

    Rahul Saxena

    2015-11-01

    Full Text Available DnaA oligomerizes when bound to origins of chromosomal replication. Structural analysis of a truncated form of DnaA from Aquifex aeolicus has provided insight into crucial conformational differences within the AAA+ domain that are specific to the ATP- versus ADP- bound form of DnaA. In this study molecular docking of ATP and ADP onto Escherichia coli DnaA, modeled on the crystal structure of Aquifex aeolicus DnaA, reveals changes in the orientation of amino acid residues within or near the vicinity of the nucleotide-binding pocket. Upon limited proteolysis with trypsin or chymotrypsin ADP-DnaA, but not ATP-DnaA generated relatively stable proteolytic fragments of various sizes. Examined sites of limited protease susceptibility that differ between ATP-DnaA and ADP-DnaA largely reside in the amino terminal half of DnaA. The concentration of adenine nucleotide needed to induce conformational changes, as detected by these protease susceptibilities of DnaA, coincides with the conversion of an inactive bacterial origin recognition complex (bORC to a replication efficient pre-replication complex (pre-RC at the E. coli chromosomal origin of replication (oriC.

  7. A GFP-based bacterial biosensor with chromosomally integrated sensing cassette for quantitative detection of Hg(II) in environment

    Institute of Scientific and Technical Information of China (English)

    Himanshu Priyadarshi; Absar Alam; Gireesh-Babu P; Rekha Das; Pankaj Kishore; Shivendra Kumar; Aparna Chaudhari

    2012-01-01

    A mercury biosensor was constructed by integrating biosensor genetic elements into E.coli JM109 chromosome in a single copy number,using the attP/attB recombination mechanism of λ phage.The genetic elements used include a regulatory protein gene (merR) along with operator/promoter (O/P) derived from the mercury resistance operon from pDU1358 plasmid of Serratia marcescens.The expression of reporter gene gfp is also controlled by merR/O/P.Integration of the construct into the chromosome was done to increase the stability and precision of the biosensor.This biosensor could detect Hg(Ⅱ) ions in the concentration range of 100-1700 mnol/L,and manifest the result as the expression of GFP.The GFP expression was significantly different (P ≤ 0.05) for each concentration of inducing Hg(Ⅱ) ions in the detection range,which reduces the chances of misinterpretation of results.A model using regression method was also derived for the quantification of the concentration of Hg(Ⅱ) in water samples.

  8. Artifical Pancreas

    Science.gov (United States)

    Fei, Jiangfeng

    2013-03-01

    In 2006, JDRF launched the Artificial Pancreas Project (APP) to accelerate the development of a commercially-viable artificial pancreas system to closely mimic the biological function of the pancreas individuals with insulin-dependent diabetes, particularly type 1 diabetes. By automating detection of blood sugar levels and delivery of insulin in response to those levels, an artificial pancreas has the potential to transform the lives of people with type 1 diabetes. The 6-step APP development pathway serves as JDRF's APP strategic funding plan and defines the priorities of product research and development. Each step in the plan represents incremental advances in automation beginning with devices that shut off insulin delivery to prevent episodes of low blood sugar and progressing ultimately to a fully automated ``closed loop'' system that maintains blood glucose at a target level without the need to bolus for meals or adjust for exercise.

  9. Rapid and efficient introduction of a foreign gene into bacterial artificial chromosome-cloned varicella vaccine by Tn7-mediated site-specific transposition

    International Nuclear Information System (INIS)

    Using a rapid and reliable system based on Tn7-mediated site-specific transposition, we have successfully constructed a recombinant Oka varicella vaccine (vOka) expressing the mumps virus (MuV) fusion protein (F). The backbone of the vector was our previously reported vOka-BAC (bacterial artificial chromosome) genome. We inserted the transposon Tn7 attachment sequence, LacZα-mini-attTn7, into the region between ORF12 and ORF13 to generate a vOka-BAC-Tn genome. The MuV-F expressing cassette was transposed into the vOka-BAC genome at the mini-attTn7 transposition site. MuV-F protein was expressed in recombinant virus, rvOka-F infected cells. In addition, the MuV-F protein was cleaved in the rvOka-F infected cells as in MuV-infected cells. The growth of rvOka-F was similar to that of the original recombinant vOka without the F gene. Thus, we show that Tn7-mediated transposition is an efficient method for introducing a foreign gene expression cassette into the vOka-BAC genome as a live virus vector.

  10. HIV gene expression from intact proviruses positioned in bacterial artificial chromosomes at integration sites previously identified in latently infected T cells

    International Nuclear Information System (INIS)

    HIV integration predominantly occurs in introns of transcriptionally active genes. To study the impact of the integration site on HIV gene expression, a complete HIV-1 provirus (with GFP as a fusion with Nef) was inserted into bacterial artificial chromosomes (BACs) at three sites previously identified in latent T cells of patients: topoisomerase II (Top2A), DNA methyltransferase 1 (DNMT1), or basic leucine transcription factor 2 (BACH2). Transfection of BAC-HIV into 293 T cells resulted in a fourfold difference in production of infectious HIV-1. Cell lines were established that contained BAC-Top2A, BAC-DNMT1, or BAC-BACH2, but only BAC-DNMT1 spontaneously produced virus, albeit at a low level. Stimulation with TNF-α resulted in virus production from four of five BAC-Top2A and all BAC-DNMT1 cell lines, but not from the BAC-BACH2 lines. The results of these studies highlight differences between integration sites identified in latent T cells to support virus production and reactivation from latency.

  11. Assessment of genetic correlation between bacterial cold water disease resistance and spleen index in a domesticated population of rainbow trout: identification of QTL on chromosome Omy19.

    Directory of Open Access Journals (Sweden)

    Gregory D Wiens

    Full Text Available Selective breeding of animals for increased disease resistance is an effective strategy to reduce mortality in aquaculture. However, implementation of selective breeding programs is limited by an incomplete understanding of host resistance traits. We previously reported results of a rainbow trout selection program that demonstrated increased survival following challenge with Flavobacterium psychrophilum, the causative agent of bacterial cold water disease (BCWD. Mechanistic study of disease resistance identified a positive phenotypic correlation between post-challenge survival and spleen somatic-index (SI. Herein, we investigated the hypothesis of a genetic correlation between the two traits influenced by colocalizing QTL. We evaluated the inheritance and calculated the genetic correlation in five year-classes of odd- and even-year breeding lines. A total of 322 pedigreed families (n = 25,369 fish were measured for disease resistance, and 251 families (n = 5,645 fish were evaluated for SI. Spleen index was moderately heritable in both even-year (h(2  = 0.56±0.18 and odd-year (h(2  = 0.60±0.15 lines. A significant genetic correlation between SI and BCWD resistance was observed in the even-year line (rg  = 0.45±0.20, P = 0.03 but not in the odd-year line (rg  = 0.16±0.12, P = 0.19. Complex segregation analyses of the even-year line provided evidence of genes with major effect on SI, and a genome scan of a single family, 2008132, detected three significant QTL on chromosomes Omy19, 16 and 5, in addition to ten suggestive QTL. A separate chromosome scan for disease resistance in family 2008132 identified a significant BCWD QTL on Omy19 that was associated with time to death and percent survival. In family 2008132, Omy19 microsatellite alleles that associated with higher disease resistance also associated with increased spleen size raising the hypothesis that closely linked QTL contribute to the correlation between

  12. Cloning of the Koi Herpesvirus Genome as an Infectious Bacterial Artificial Chromosome Demonstrates That Disruption of the Thymidine Kinase Locus Induces Partial Attenuation in Cyprinus carpio koi▿

    Science.gov (United States)

    Costes, B.; Fournier, G.; Michel, B.; Delforge, C.; Raj, V. Stalin; Dewals, B.; Gillet, L.; Drion, P.; Body, A.; Schynts, F.; Lieffrig, F.; Vanderplasschen, A.

    2008-01-01

    Koi herpesvirus (KHV) is the causative agent of a lethal disease in koi and common carp. In the present study, we describe the cloning of the KHV genome as a stable and infectious bacterial artificial chromosome (BAC) clone that can be used to produce KHV recombinant strains. This goal was achieved by the insertion of a loxP-flanked BAC cassette into the thymidine kinase (TK) locus. This insertion led to a BAC plasmid that was stably maintained in bacteria and was able to regenerate virions when permissive cells were transfected with the plasmid. Reconstituted virions free of the BAC cassette but carrying a disrupted TK locus (the FL BAC-excised strain) were produced by the transfection of Cre recombinase-expressing cells with the BAC. Similarly, virions with a wild-type revertant TK sequence (the FL BAC revertant strain) were produced by the cotransfection of cells with the BAC and a DNA fragment encoding the wild-type TK sequence. Reconstituted recombinant viruses were compared to the wild-type parental virus in vitro and in vivo. The FL BAC revertant strain and the FL BAC-excised strain replicated comparably to the parental FL strain. The FL BAC revertant strain induced KHV infection in koi carp that was indistinguishable from that induced by the parental strain, while the FL BAC-excised strain exhibited a partially attenuated phenotype. Finally, the usefulness of the KHV BAC for recombination studies was demonstrated by the production of an ORF16-deleted strain by using prokaryotic recombination technology. The availability of the KHV BAC is an important advance that will allow the study of viral genes involved in KHV pathogenesis, as well as the production of attenuated recombinant candidate vaccines. PMID:18337580

  13. Periodontal Dressing-containing Green Tea Epigallocathechin gallate Increases Fibroblasts Number in Gingival Artifical Wound Model

    Directory of Open Access Journals (Sweden)

    Ardisa U. Pradita

    2014-04-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Green tea leaf (Camellia sinensis is one of herbal plants that is used for traditional medicine. Epigallocatechin gallate (EGCG in green tea is the most potential polyphenol component and has the strongest biological activity. It is known that EGCG has potential effect on wound healing. Objective: This study aimed to determine the effect of adding green tea EGCG into periodontal dressing on the number of fibroblasts after gingival artificial wound in animal model. Methods: Gingival artifical wound model was performed using 2mm punch biopsy on 24 rabbits (Oryctolagus cuniculus. The animals were divided into two groups. Periodontal dressing with EGCG and without EGCG was applied to the experimental and control group, respectively. Decapitation period was scheduled at day 3, 5, and 7 after treatment. Histological analysis to count the number of fibroblasts was performed. Results: Number of fibroblasts was significantly increased in time over the experimental group treated with EGCG periodontal dressing compared to control (p<0.05. Conclusion: EGCG periodontal dressing could increase the number of fibroblast, therefore having role in wound healing after periodontal surgery in animal model.DOI: 10.14693/jdi.v20i3.197

  14. A bacterial artificial chromosome library for the Australian saltwater crocodile (Crocodylus porosus) and its utilization in gene isolation and genome characterization

    Science.gov (United States)

    2009-01-01

    Background Crocodilians (Order Crocodylia) are an ancient vertebrate group of tremendous ecological, social, and evolutionary importance. They are the only extant reptilian members of Archosauria, a monophyletic group that also includes birds, dinosaurs, and pterosaurs. Consequently, crocodilian genomes represent a gateway through which the molecular evolution of avian lineages can be explored. To facilitate comparative genomics within Crocodylia and between crocodilians and other archosaurs, we have constructed a bacterial artificial chromosome (BAC) library for the Australian saltwater crocodile, Crocodylus porosus. This is the first BAC library for a crocodile and only the second BAC resource for a crocodilian. Results The C. porosus BAC library consists of 101,760 individually archived clones stored in 384-well microtiter plates. NotI digestion of random clones indicates an average insert size of 102 kb. Based on a genome size estimate of 2778 Mb, the library affords 3.7 fold (3.7×) coverage of the C. porosus genome. To investigate the utility of the library in studying sequence distribution, probes derived from CR1a and CR1b, two crocodilian CR1-like retrotransposon subfamilies, were hybridized to C. porosus macroarrays. The results indicate that there are a minimum of 20,000 CR1a/b elements in C. porosus and that their distribution throughout the genome is decidedly non-random. To demonstrate the utility of the library in gene isolation, we probed the C. porosus macroarrays with an overgo designed from a C-mos (oocyte maturation factor) partial cDNA. A BAC containing C-mos was identified and the C-mos locus was sequenced. Nucleotide and amino acid sequence alignment of the C. porosus C-mos coding sequence with avian and reptilian C-mos orthologs reveals greater sequence similarity between C. porosus and birds (specifically chicken and zebra finch) than between C. porosus and squamates (green anole). Conclusion We have demonstrated the utility of the

  15. Cloning of the Epstein-Barr Virus-Related Rhesus Lymphocryptovirus as a Bacterial Artificial Chromosome: a Loss-of-Function Mutation of the rhBARF1 Immune Evasion Gene ▿ †

    OpenAIRE

    Ohashi, Makoto; Orlova, Nina; Quink, Carol; Wang, Fred

    2010-01-01

    Rhesus macaques are naturally infected with a gammaherpesvirus which is in the same lymphocryptovirus (LCV) genus as and closely related to Epstein-Barr virus (EBV). The rhesus macaque LCV (rhLCV) contains a repertoire of genes identical to that of EBV, and experimental rhLCV infection of naive rhesus macaques accurately models acute and persistent EBV infection of humans. We cloned the LCL8664 rhLCV strain as a bacterial artificial chromosome to create recombinant rhLCV for investigation in ...

  16. Convenient and reversible site-specific targeting of exogenous DNA into a bacterial chromosome by use of the FLP recombinase: the FLIRT system.

    OpenAIRE

    Huang, L C; Wood, E. A.; Cox, M M

    1997-01-01

    We have created a system that utilizes the FLP recombinase of yeast to introduce exogenous cloned DNA reversibly at defined locations in the Escherichia coli chromosome. Recombination target (FRT) sites can be introduced permanently at random locations in the chromosome on a modified Tn5 transposon, now designed so that the inserted FRT can be detected and its location mapped with base pair resolution. FLP recombinase is provided as needed through the regulated expression of its gene on a pla...

  17. Construction of a bacterial artificial chromosome (BAC) library of Lycopersicon esculentum cv. Stevens and its application to physically map the Sw-5 locus

    NARCIS (Netherlands)

    Spassova, MI; Prins, M; Stevens, MR; Hille, J; Goldbach, RW; Spassova, Mariana I.; Stevens, Mikel R.; Goldbach, Rob W.

    1999-01-01

    The Sw-5 gene is a dominantly inherited resistance gene in tomato and functional against a number of tospovirus species. The gene has been mapped on chromosome 9, tightly linked to RFLP markers CT220 and SCAR421. To analyse the Sw-5 locus, a BAC genomic library was constructed of tomato cv. Stevens,

  18. Diagnosis and Prognostication of Ductal Adenocarcinomas of the Pancreas Based on Genome-Wide DNA Methylation Profiling by Bacterial Artificial Chromosome Array-Based Methylated CpG Island Amplification

    Directory of Open Access Journals (Sweden)

    Masahiro Gotoh

    2011-01-01

    Full Text Available To establish diagnostic criteria for ductal adenocarcinomas of the pancreas (PCs, bacterial artificial chromosome (BAC array-based methylated CpG island amplification was performed using 139 tissue samples. Twelve BAC clones, for which DNA methylation status was able to discriminate cancerous tissue (T from noncancerous pancreatic tissue in the learning cohort with a specificity of 100%, were identified. Using criteria that combined the 12 BAC clones, T-samples were diagnosed as cancers with 100% sensitivity and specificity in both the learning and validation cohorts. DNA methylation status on 11 of the BAC clones, which was able to discriminate patients showing early relapse from those with no relapse in the learning cohort with 100% specificity, was correlated with the recurrence-free and overall survival rates in the validation cohort and was an independent prognostic factor by multivariate analysis. Genome-wide DNA methylation profiling may provide optimal diagnostic markers and prognostic indicators for patients with PCs.

  19. Nucleotide-Induced Conformational Changes in Escherichia coli DnaA Protein Are Required for Bacterial ORC to Pre-RC Conversion at the Chromosomal Origin

    OpenAIRE

    Rahul Saxena; Sona Vasudevan; Digvijay Patil; Norah Ashoura; Grimwade, Julia E.; Elliott Crooke

    2015-01-01

    DnaA oligomerizes when bound to origins of chromosomal replication. Structural analysis of a truncated form of DnaA from Aquifex aeolicus has provided insight into crucial conformational differences within the AAA+ domain that are specific to the ATP- versus ADP- bound form of DnaA. In this study molecular docking of ATP and ADP onto Escherichia coli DnaA, modeled on the crystal structure of Aquifex aeolicus DnaA, reveals changes in the orientation of amino acid residues within or near the vi...

  20. Structural studies of lambda transducing bacteriophage carrying bacterial deoxyribonucleic acid from the metBJLF region of the Escherichia coli chromosome.

    OpenAIRE

    Krueger, J H; Johnson, J. R.; Greene, R C; Dresser, M

    1981-01-01

    The structures of several lambda dmet and related lambda darg transducing phage were studied by restriction fragment mapping and electron microscopic measurements of homoduplexes and heteroduplexes. A new transducing phage (lambda dmet141), in which metF is the only functional gene of the cluster, was isolated. In contrast, lambda dmet117, which expresses the entire metBJLF cluster, has only 3 kilobases more bacterial deoxyribonucleic acid (DNA) than lambda dmet141. An EcoRI restriction fragm...

  1. A genomic island present along the bacterial chromosome of the Parachlamydiaceae UWE25, an obligate amoebal endosymbiont, encodes a potentially functional F-like conjugative DNA transfer system

    Directory of Open Access Journals (Sweden)

    Guy Lionel

    2004-12-01

    Full Text Available Abstract Background The genome of Protochlamydia amoebophila UWE25, a Parachlamydia-related endosymbiont of free-living amoebae, was recently published, providing the opportunity to search for genomic islands (GIs. Results On the residual cumulative G+C content curve, a G+C-rich 19-kb region was observed. This sequence is part of a 100-kb chromosome region, containing 100 highly co-oriented ORFs, flanked by two 17-bp direct repeats. Two identical gly-tRNA genes in tandem are present at the proximal end of this genetic element. Several mobility genes encoding transposases and bacteriophage-related proteins are located within this chromosome region. Thus, this region largely fulfills the criteria of GIs. The G+C content analysis shows that several modules compose this GI. Surprisingly, one of them encodes all genes essential for F-like conjugative DNA transfer (traF, traG, traH, traN, traU, traW, and trbC, involved in sex pilus retraction and mating pair stabilization, strongly suggesting that, similarly to the other F-like operons, the parachlamydial tra unit is devoted to DNA transfer. A close relatedness of this tra unit to F-like tra operons involved in conjugative transfer is confirmed by phylogenetic analyses performed on concatenated genes and gene order conservation. These analyses and that of gly-tRNA distribution in 140 GIs suggest a proteobacterial origin of the parachlamydial tra unit. Conclusions A GI of the UWE25 chromosome encodes a potentially functional F-like DNA conjugative system. This is the first hint of a putative conjugative system in chlamydiae. Conjugation most probably occurs within free-living amoebae, that may contain hundreds of Parachlamydia bacteria tightly packed in vacuoles. Such a conjugative system might be involved in DNA transfer between internalized bacteria. Since this system is absent from the sequenced genomes of Chlamydiaceae, we hypothesize that it was acquired after the divergence between

  2. Plasmid and chromosome segregation in prokaryotes

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Bugge Jensen, Rasmus; Gerdes, Kenn

    2000-01-01

    Recent major advances in the understanding of prokaryotic DNA segregation have been achieved by using fluorescence microscopy to visualize the localization of cellular components. Plasmids and bacterial chromosomes are partitioned in a highly dynamic fashion, suggesting the presence of a mitotic......-like apparatus in prokaryotes. The identification of chromosomal homologues of the well-characterized plasmid partitioning genes indicates that there could be a general mechanism of bacterial DNA partitioning. Udgivelsesdato: July 1...

  3. Chromosomal aberration

    International Nuclear Information System (INIS)

    Chromosomal aberrations are classified into two types, chromosome-type and chromatid-type. Chromosom-type aberrations include terminal deletion, dicentric, ring and interstitial deletion, and chromatid-type aberrations include achromatic lesion, chromatid deletion, isochromatid deletion and chromatid exchange. Clastogens which induce chromosomal aberration are divided into ''S-dependent'' agents and ''S-independent''. It might mean whether they can induce double strand breaks independent of the S phase or not. Double strand breaks may be the ultimate lesions to induce chromosomal aberrations. Caffeine added even in the G2 phase appeared to modify the frequency of chromatid aberrations induced by X-rays and mitomycin C. Those might suggest that the G2 phase involves in the chromatid aberration formation. The double strand breaks might be repaired by ''G2 repair system'', the error of which might yield breakage types of chromatid aberrations and the by-pass of which might yield chromatid exchanges. Chromosome-type aberrations might be formed in the G1 phase. (author)

  4. Synthetic chromosomes.

    Science.gov (United States)

    Schindler, Daniel; Waldminghaus, Torsten

    2015-11-01

    What a living organism looks like and how it works and what are its components-all this is encoded on DNA, the genetic blueprint. Consequently, the way to change an organism is to change its genetic information. Since the first pieces of recombinant DNA have been used to transform cells in the 1970s, this approach has been enormously extended. Bigger and bigger parts of the genetic information have been exchanged or added over the years. Now we are at a point where the construction of entire chromosomes becomes a reachable goal and first examples appear. This development leads to fundamental new questions, for example, about what is possible and desirable to build or what construction rules one needs to follow when building synthetic chromosomes. Here we review the recent progress in the field, discuss current challenges and speculate on the appearance of future synthetic chromosomes. PMID:26111960

  5. Isolation and characterization of bovine herpesvirus 4 (BoHV-4 from a cow affected by post partum metritis and cloning of the genome as a bacterial artificial chromosome

    Directory of Open Access Journals (Sweden)

    Cavirani Sandro

    2009-08-01

    Full Text Available Abstract Background Bovine herpesvirus 4 (BoHV-4 is a gammaherpesvirus with a Worldwide distribution in cattle and is often isolated from the uterus of animals with postpartum metritis or pelvic inflammatory disease. Virus strain adaptation to an organ, tissue or cell type is an important issue for the pathogenesis of disease. To explore the mechanistic role of viral strain variation for uterine disease, the present study aimed to develop a tool enabling precise genetic discrimination between strains of BoHV-4 and to easily manipulate the viral genome. Methods A strain of BoHV-4 was isolated from the uterus of a persistently infected cow and designated BoHV-4-U. The authenticity of the isolate was confirmed by RFLP-PCR and sequencing using the TK and IE2 loci as genetic marker regions for the BoHV-4 genome. The isolated genome was cloned as a Bacterial Artificial Chromosome (BAC and manipulated through recombineering technology Results The BoHV-4-U genome was successfully cloned as a BAC, and the stability of the pBAC-BoHV-4-U clone was confirmed over twenty passages, with viral growth similar to the wild type virus. The feasibility of using BoHV-4-U for mutagenesis was demonstrated using the BAC recombineering system. Conclusion The analysis of genome strain variation is a key method for investigating genes associated with disease. A resource for dissection of the interactions between BoHV-4 and host endometrial cells was generated by cloning the genome of BoHV-4 as a BAC.

  6. Bacterial gastroenteritis

    Science.gov (United States)

    Infectious diarrhea - bacterial gastroenteritis; Acute gastroenteritis; Gastroenteritis - bacterial ... Bacterial gastroenteritis can affect 1 person or a group of people who all ate the same food. It is ...

  7. Bacterial mitotic machineries

    DEFF Research Database (Denmark)

    Gerdes, Kenn; Møller-Jensen, Jakob; Ebersbach, Gitte; Kruse, Torben; Nordström, Kurt

    2004-01-01

    Here, we review recent progress that yields fundamental new insight into the molecular mechanisms behind plasmid and chromosome segregation in prokaryotic cells. In particular, we describe how prokaryotic actin homologs form mitotic machineries that segregate DNA before cell division. Thus, the P......M protein of plasmid R1 forms F actin-like filaments that separate and move plasmid DNA from mid-cell to the cell poles. Evidence from three different laboratories indicate that the morphogenetic MreB protein may be involved in segregation of the bacterial chromosome....

  8. Chromosome Microarray.

    Science.gov (United States)

    Anderson, Sharon

    2016-01-01

    Over the last half century, knowledge about genetics, genetic testing, and its complexity has flourished. Completion of the Human Genome Project provided a foundation upon which the accuracy of genetics, genomics, and integration of bioinformatics knowledge and testing has grown exponentially. What is lagging, however, are efforts to reach and engage nurses about this rapidly changing field. The purpose of this article is to familiarize nurses with several frequently ordered genetic tests including chromosomes and fluorescence in situ hybridization followed by a comprehensive review of chromosome microarray. It shares the complexity of microarray including how testing is performed and results analyzed. A case report demonstrates how this technology is applied in clinical practice and reveals benefits and limitations of this scientific and bioinformatics genetic technology. Clinical implications for maternal-child nurses across practice levels are discussed. PMID:27276104

  9. Genome Update: alignment of bacterial chromosomes

    DEFF Research Database (Denmark)

    Ussery, David; Jensen, Mette; Poulsen, Tine Rugh;

    2004-01-01

    There are four new microbial genomes listed in this month's Genome Update, three belonging to Gram-positive bacteria and one belonging to an archaeon that lives at pH 0; all of these genomes are listed in Table 1⇓. The method of genome comparison this month is that of genome alignment and......, as an example, an alignment of seven Staphylococcus aureus genomes and one Staphylococcus epidermidis genome is presented....

  10. 大白菜细菌人工染色体文库的构建及鉴定%Construction and Characterization of a Bacterial Artificial Chromosome Library from Chinese Cabbage

    Institute of Scientific and Technical Information of China (English)

    冯大领; 石学萍; 杨煜; 王彦华; 轩淑欣; 赵建军; 申书兴

    2011-01-01

    以我国优良的大白菜自交系'85-1'为材料,利用 pIndigoBAC-5 为载体,通过对高分子量DNA 的制备、大片段 DNA 的选择、连接转化条件等几个方面的优化,构建了大白菜细菌人工染色体文库.该文库由 57 600个克隆组成,平均大小为98.4 kb,空载率为1.5%;覆盖大白菜基因组 10.3 倍;挑取 6 个克隆培养5 d 后,经HindⅢ完全酶切检测,其指纹图谱稳定一致.大白菜细菌人工染色体文库的构建为重要功能基因的克隆和定位及比较基因组研究奠定了基础.%A bacterial artificial chromosome library of Brassica campestris L. ssp. pekinensis ( Lour.)Olsson (Chinese cabbage) was constructed from inbred line‘ 85-1’ with the vector pIndigoBAC-5. The key processes of the construction, such as preparation of high molecular weight DNA, selection of digested fragments, condition of ligation and transformation, were studied. The library consists of 57 600 clones in which the average insert size is about 98.4 kb and the empty clones are about 1.5%. The library represents an equivalent of 10.3 fold size of Chinese cabbage genome. Six clones randomly picked from this library show no HindⅢ fingerprint changes after 5 days' successive culture, which indicates that the clones in the library are stable. The library will lay the foundation for gene clone, location and comparative genomics research of Brassica.

  11. Classics of Artifical Wetland

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    By the construcfion of frraced fields over the past cenfuries,the Hani people created wetland in the ailao Mountains,an area where there originally was no such land ,which greatly improved the local ecosystem.

  12. Association Between Pachytene Chromosomes and Linkage Groups in Carrot

    Science.gov (United States)

    The genome of carrot (Daucus carota L.) consists of ~ 480 Mb/1C organized in 9 chromosome pairs. The importance of carrots in human nutrition is triggering the development of genomic resources, including carrot linkage maps, a bacterial artificial chromosome (BAC) clone library and BAC end sequence...

  13. A high-resolution physical map integrating an anchored chromosome with the BAC physical maps of wheat chromosome 6B

    OpenAIRE

    Kobayashi, F; Wu, J. Z.; Kanamori, H; Tanaka, T.; Katagiri, S.; Karasawa, W.; Kaneko, S.; Watanabe, S; Sakaguchi, T; Šafář, J. (Jan); Šimková, H. (Hana); Mukai, Y.; M. Hamada; Saito, M; Hayakawa, K

    2015-01-01

    Background: A complete genome sequence is an essential tool for the genetic improvement of wheat. Because the wheat genome is large, highly repetitive and complex due to its allohexaploid nature, the International Wheat Genome Sequencing Consortium (IWGSC) chose a strategy that involves constructing bacterial artificial chromosome (BAC)-based physical maps of individual chromosomes and performing BAC-by-BAC sequencing. Here, we report the construction of a physical map of chromosome 6B with t...

  14. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants

    OpenAIRE

    Paula Blanco; Sara Hernando-Amado; Jose Antonio Reales-Calderon; Fernando Corona; Felipe Lira; Manuel Alcalde-Rico; Alejandra Bernardini; Maria Blanca Sanchez; Jose Luis Martinez

    2016-01-01

    Bacterial multidrug efflux pumps are antibiotic resistance determinants present in all microorganisms. With few exceptions, they are chromosomally encoded and present a conserved organization both at the genetic and at the protein levels. In addition, most, if not all, strains of a given bacterial species present the same chromosomally-encoded efflux pumps. Altogether this indicates that multidrug efflux pumps are ancient elements encoded in bacterial genomes long before the recent use of ant...

  15. Mitotic chromosome structure

    International Nuclear Information System (INIS)

    Mounting evidence is compiling linking the physical organizational structure of chromosomes and the nuclear structure to biological function. At the base of the physical organizational structure of both is the concept of loop formation. This implies that physical proximity within chromosomes is provided for otherwise distal genomic regions and thus hierarchically organizing the chromosomes. Together with entropy many experimental observations can be explained with these two concepts. Among the observations that can be explained are the measured physical extent of the chromosomes, their shape, mechanical behavior, the segregation into territories (chromosomal and territories within chromosomes), the results from chromosome conformation capture experiments, as well as linking gene expression to structural organization.

  16. Fetal chromosome analysis: screening for chromosome disease?

    DEFF Research Database (Denmark)

    Philip, J; Tabor, Ann; Bang, J;

    1983-01-01

    A + B). Pregnant women 35 years of age, women who previously had a chromosomally abnormal child, families with translocation carriers or other heritable chromosomal disease, families where the father was 50 years or more and women in families with a history of Down's syndrome (group A), were...... unbalanced chromosome abnormality in group A (women with elevated risk) is significantly higher than in group B + C (women without elevated risk) (relative risk 2.4). Women with a known familial translocation and women 40 years or more have a relative risk of 5.7 of having an unbalanced chromosome......The aim of the study was to investigate the rationale of the current indications for fetal chromosome analysis. 5372 women had 5423 amniocentesis performed, this group constituting a consecutive sample at the chromosome laboratory, Rigshospitalet, Copenhagen from March 1973 to September 1980 (Group...

  17. Chromosome painting in plants.

    NARCIS (Netherlands)

    Schubert, I.; Fransz, P.F.; Fuchs, J.; Jong, de J.H.

    2001-01-01

    The current 'state-of-art' as to chromosome painting in plants is reviewed. We define different situations described as painting so far: i) Genomic in situ hybridisation (GISH) with total genomic DNA to distinguish alien chromosomes on the basis of divergent dispersed repeats, ii) 'Chromosomal in si

  18. Dual-In/Out strategy for genes integration into bacterial chromosome: a novel approach to step-by-step construction of plasmid-less marker-less recombinant E. coli strains with predesigned genome structure

    Directory of Open Access Journals (Sweden)

    Biryukova Irina V

    2008-08-01

    Full Text Available Abstract Background The development of modern producer strains with metabolically engineered pathways poses special problems that often require manipulating many genes and expressing them individually at different levels or under separate regulatory controls. The construction of plasmid-less marker-less strains has many advantages for the further practical exploitation of these bacteria in industry. Such producer strains are usually constructed by sequential chromosome modifications including deletions and integration of genetic material. For these purposes complex methods based on in vitro and in vivo recombination processes have been developed. Results Here, we describe the new scheme of insertion of the foreign DNA for step-by-step construction of plasmid-less marker-less recombinant E. coli strains with chromosome structure designed in advance. This strategy, entitled as Dual-In/Out, based on the initial Red-driven insertion of artificial φ80-attB sites into desired points of the chromosome followed by two site-specific recombination processes: first, the φ80 system is used for integration of the recombinant DNA based on selective marker-carrier conditionally-replicated plasmid with φ80-attP-site, and second, the λ system is used for excision of inserted vector part, including the plasmid ori-replication and the marker, flanked by λ-attL/R-sites. Conclusion The developed Dual-In/Out strategy is a rather straightforward, but convenient combination of previously developed recombination methods: phages site-specific and general Red/ET-mediated. This new approach allows us to detail the design of future recombinant marker-less strains, carrying, in particular, rather large artificial insertions that could be difficult to introduce by usually used PCR-based Recombineering procedure. The developed strategy is simple and could be particularly useful for construction of strains for the biotechnological industry.

  19. Plasmid and chromosome partitioning: surprises from phylogeny

    DEFF Research Database (Denmark)

    Gerdes, Kenn; Møller-Jensen, Jakob; Bugge Jensen, Rasmus

    2000-01-01

    Plasmids encode partitioning genes (par) that are required for faithful plasmid segregation at cell division. Initially, par loci were identified on plasmids, but more recently they were also found on bacterial chromosomes. We present here a phylogenetic analysis of par loci from plasmids...... and chromosomes from prokaryotic organisms. All known plasmid-encoded par loci specify three components: a cis-acting centromere-like site and two trans-acting proteins that form a nucleoprotein complex at the centromere (i.e. the partition complex). The proteins are encoded by two genes in an operon...... that is autoregulated by the par-encoded proteins. In all cases, the upstream gene encodes an ATPase that is essential for partitioning. Recent cytological analyses indicate that the ATPases function as adaptors between a host-encoded component and the partition complex and thereby tether plasmids and chromosomal...

  20. Chimpanzee chromosome 12 is homologous to human chromosome 2q

    Energy Technology Data Exchange (ETDEWEB)

    Sun, N. C.; Sun, C. R.Y.; Ho, T.

    1977-01-01

    Most of the 46 human chromosomes find their counterparts in the 48 chimpanzee chromosomes except for chromosome 2 which has been hypothesized to have been derived from a centric fusion of two chimpanzee acrocentric chromosomes. These two chromosomes correspond to the human chromosomes 2p and 2g. This conclusion is based primarily on chromosome banding techniques, and the somatic cell hybridization technique has also been used. (HLW)

  1. Artifical Microrna Mediated Gene Silencing of Phytophthora infestans Single Effector Avr3a Gene Imparts Moderate Type of Late Blight Resistance in Potato

    Directory of Open Access Journals (Sweden)

    Aditi Thakur

    2015-01-01

    Full Text Available RNAi based “host plant mediated pathogen gene silencing” has emerged as a novel strategy for the efficient control of pathogens infecting various important food crops. Artifical microRNAs (amiRNAs represent a robust and recently developed miRNA based strategy for the effective posttranscriptional gene silencing in plants. Phytophthora infestans RXLR effector Avr3a suppresses hypersensitive cell death in host cells and responsible for virulence. In the present investigation, the effect of artificial microRNAs are studied on the target transcript, Avr3a gene of P. infestans. Five Avr3a amiRNA gene constructs developed targeting five different regions of Avr3a gene of P. infestans and were transformed into two popular Indian potato cultivars i.e., Kufri Khyati and Kufri Pukharaj. Screening analysis study revealed that most of the transgenic lines were susceptible (15 and few lines (4 were found to be moderately or partially resistance. Target effector gene expression level and the pathogen load were determined to identify whether the resistant observed was RNA mediated. Real time PCR analysis showed that there is reduction in pathogen load as well as in transcript level of Avr3a in resistant lines as compared to the non-transgenic control. This revealed that, the invading P. infestans withdraws the dsRNA/amiRNAs from the host cell leading to the silencing of the Avr3a gene expression causing pathogen death and/or loss of virulence. The amiRNA technology developed in this study appears to be potential and promising for durable and long lasting resistance in potato to combat the notorious oomycete, P. infestans.

  2. Chromosome-specific DNA Repeat Probes

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, Adolf; Weier, Jingly Fung; Weier, Heinz-Ulrich G.

    2006-03-16

    In research as well as in clinical applications, fluorescence in situ hybridization (FISH) has gained increasing popularity as a highly sensitive technique to study cytogenetic changes. Today, hundreds of commercially available DNA probes serve the basic needs of the biomedical research community. Widespread applications, however, are often limited by the lack of appropriately labeled, specific nucleic acid probes. We describe two approaches for an expeditious preparation of chromosome-specific DNAs and the subsequent probe labeling with reporter molecules of choice. The described techniques allow the preparation of highly specific DNA repeat probes suitable for enumeration of chromosomes in interphase cell nuclei or tissue sections. In addition, there is no need for chromosome enrichment by flow cytometry and sorting or molecular cloning. Our PCR-based method uses either bacterial artificial chromosomes or human genomic DNA as templates with {alpha}-satellite-specific primers. Here we demonstrate the production of fluorochrome-labeled DNA repeat probes specific for human chromosomes 17 and 18 in just a few days without the need for highly specialized equipment and without the limitation to only a few fluorochrome labels.

  3. Bacterial Vaginosis

    Science.gov (United States)

    ... 586. Related Content STDs during Pregnancy Fact Sheet Pregnancy and HIV, Viral Hepatitis, and STD Prevention Pelvic Inflammatory Disease ( ... Bacterial Vaginosis (BV) Chlamydia Gonorrhea Genital Herpes Hepatitis HIV/AIDS & STDs Human Papillomavirus ... STDs See Also Pregnancy Reproductive ...

  4. Bacterial Meningitis

    Science.gov (United States)

    ... Schedules Preteen & Teen Vaccines Meningococcal Disease Sepsis Bacterial Meningitis Recommend on Facebook Tweet Share Compartir On this ... serious disease. Laboratory Methods for the Diagnosis of Meningitis This manual summarizes laboratory methods used to isolate, ...

  5. Prostatitis - bacterial

    Science.gov (United States)

    Any bacteria that can cause a urinary tract infection can cause acute bacterial prostatitis. Infections spread through sexual contact can cause prostatitis. These include chlamydia and gonorrhea . Sexually transmitted ...

  6. Physical Map and Organization of Chromosome 7 in the Rice Blast Fungus, Magnaporthe grisea

    OpenAIRE

    Zhu, Heng; Blackmon, Barbara P.; Sasinowski, Maciek; Dean, Ralph A.

    1999-01-01

    The rice blast fungus Magnaporthe grisea is a highly destructive plant pathogen and one of the most important for studying various aspects of host-plant interactions. It has been widely adopted as a model organism because it is ideally suited for genetic and biological studies. To facilitate map-based cloning, chromosome walking, and genome organization studies of M. grisea, a complete physical map of chromosome 7 was constructed using a large-insert (130 kb) bacterial artificial chromosome (...

  7. Evolution of Chromosome 6 of Solanum Species Revealed by Comparative Fluorescence in Situ Hybridization Mapping

    Science.gov (United States)

    Comparative genome mapping is an important tool in evolutionary research. Here we demonstrate a comparative fluorescent in situ hybridization (FISH) mapping strategy. A set of 13 bacterial artificial chromosome (BAC) clones derived from potato chromosome 6 was used for FISH mapping in seven differen...

  8. Bacterial Conjunctivitis

    OpenAIRE

    Köhle, Ülkü; Kükner, Şahap

    2003-01-01

    Conjunctivitis is an infection of the conjunctiva, generally characterized by irritation, itching, foreign body sensation, tearing and discharge. Bacterial conjunctivitis may be distinguished from other types of conjunctivitis by the presence of yellow–white mucopurulent discharge. It is the most common form of ocular infection all around the world. Staphylococcus species are the most common bacterial pathogenes, followed by Streptococcus pneumoniae and Haemophilus i...

  9. Plant sex chromosome evolution.

    Science.gov (United States)

    Charlesworth, Deborah

    2013-01-01

    It is now well established that plants have an important place in studies of sex chromosome evolution because of the repeated independent evolution of separate sexes and sex chromosomes. There has been considerable recent progress in studying plant sex chromosomes. In this review, I focus on how these recent studies have helped clarify or answer several important questions about sex chromosome evolution, and I shall also try to clarify some common misconceptions. I also outline future work that will be needed to make further progress, including testing some important ideas by genetic, molecular, and developmental approaches. Systems with different ages can clearly help show the time course of events during changes from an ancestral co-sexual state (hermaphroditism or monoecy), and I will also explain how different questions can be studied in lineages whose dioecy or sex chromosomes evolved at different times in the past. PMID:23125359

  10. Vibrio chromosomes share common history

    OpenAIRE

    Gevers Dirk; Chang Sarah; Chang LeeAnn; Kirkup Benjamin C; Polz Martin F

    2010-01-01

    Abstract Background While most gamma proteobacteria have a single circular chromosome, Vibrionales have two circular chromosomes. Horizontal gene transfer is common among Vibrios, and in light of this genetic mobility, it is an open question to what extent the two chromosomes themselves share a common history since their formation. Results Single copy genes from each chromosome (142 genes from chromosome I and 42 genes from chromosome II) were identified from 19 sequenced Vibrionales genomes ...

  11. Sequential cloning of chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Lacks, S.A.

    1991-12-31

    A method for sequential cloning of chromosomal DNA and chromosomal DNA cloned by this method are disclosed. The method includes the selection of a target organism having a segment of chromosomal DNA to be sequentially cloned. A first DNA segment, having a first restriction enzyme site on either side. homologous to the chromosomal DNA to be sequentially cloned is isolated. A first vector product is formed by ligating the homologous segment into a suitably designed vector. The first vector product is circularly integrated into the target organism`s chromosomal DNA. The resulting integrated chromosomal DNA segment includes the homologous DNA segment at either end of the integrated vector segment. The integrated chromosomal DNA is cleaved with a second restriction enzyme and ligated to form a vector-containing plasmid, which is replicated in a host organism. The replicated plasmid is then cleaved with the first restriction enzyme. Next, a DNA segment containing the vector and a segment of DNA homologous to a distal portion of the previously isolated DNA segment is isolated. This segment is then ligated to form a plasmid which is replicated within a suitable host. This plasmid is then circularly integrated into the target chromosomal DNA. The chromosomal DNA containing the circularly integrated vector is treated with a third, retrorestriction enzyme. The cleaved DNA is ligated to give a plasmid that is used to transform a host permissive for replication of its vector. The sequential cloning process continues by repeated cycles of circular integration and excision. The excision is carried out alternately with the second and third enzymes.

  12. Bacterial carbonatogenesis

    International Nuclear Information System (INIS)

    Several series of experiments in the laboratory as well as in natural conditions teach that the production of carbonate particles by heterotrophic bacteria follows different ways. The 'passive' carbonatogenesis is generated by modifications of the medium that lead to the accumulation of carbonate and bicarbonate ions and to the precipitation of solid particles. The 'active' carbonatogenesis is independent of the metabolic pathways. The carbonate particles are produced by ionic exchanges through the cell membrane following still poorly known mechanisms. Carbonatogenesis appears to be the response of heterotrophic bacterial communities to an enrichment of the milieu in organic matter. The active carbonatogenesis seems to start first. It is followed by the passive one which induces the growth of initially produced particles. The yield of heterotrophic bacterial carbonatogenesis and the amounts of solid carbonates production by bacteria are potentially very high as compared to autotrophic or chemical sedimentation from marine, paralic or continental waters. Furthermore, the bacterial processes are environmentally very ubiquitous; they just require organic matter enrichment. Thus, apart from purely evaporite and autotrophic ones, all Ca and/or Mg carbonates must be considered as from heterotrophic bacterial origin. By the way, the carbon of carbonates comes from primary organic matter. Such considerations ask questions about some interpretations from isotopic data on carbonates. Finally, bacterial heterotrophic carbonatogenesis appears as a fundamental phase in the relationships between atmosphere and lithosphere and in the geo-biological evolution of Earth. (author)

  13. A new chromosome was born: comparative chromosome painting in Boechera.

    Science.gov (United States)

    Koch, Marcus A

    2015-09-01

    Comparative chromosome painting is a powerful tool to study the evolution of chromosomes and genomes. Analyzing karyotype evolution in cruciferous plants highlights the origin of aberrant chromosomes in apomictic Boechera and further establishes the cruciferous plants as important model system for our understanding of plant chromosome and genome evolution. PMID:26228436

  14. Chimpanzee chromosome 13 is homologous to human chromosome 2p

    Energy Technology Data Exchange (ETDEWEB)

    Sun, N. C.; Sun, C. R.Y.; Ho, T.

    1977-01-01

    Similarities between human and chimpanzee chromosomes are shown by chromosome banding techniques and somatic cell hybridization techniques. Cell hybrids were obtained from the chimpanzee lymphocyte LE-7, and the Chinese hamster mutant cell, Gal-2. Experiments showed that the ACPL, MDHs, and Gal-Act genes could be assigned to chimpanzee chromosome 13, and since these genes have been assigned to human chromosme 2p, it is suggested that chimpanzee chromosome 13 is homologous to human chromosome 2p. (HLW)

  15. Chromosome condensation and segmentation

    International Nuclear Information System (INIS)

    Some aspects of chromosome condensation in mammalians -humans especially- were studied by means of cytogenetic techniques of chromosome banding. Two further approaches were adopted: a study of normal condensation as early as prophase, and an analysis of chromosome segmentation induced by physical (temperature and γ-rays) or chemical agents (base analogues, antibiotics, ...) in order to show out the factors liable to affect condensation. Here 'segmentation' means an abnormal chromosome condensation appearing systematically and being reproducible. The study of normal condensation was made possible by the development of a technique based on cell synchronization by thymidine and giving prophasic and prometaphasic cells. Besides, the possibility of inducing R-banding segmentations on these cells by BrdU (5-bromodeoxyuridine) allowed a much finer analysis of karyotypes. Another technique was developed using 5-ACR (5-azacytidine), it allowed to induce a segmentation similar to the one obtained using BrdU and identify heterochromatic areas rich in G-C bases pairs

  16. Chromosomal abnormalities and autism

    Directory of Open Access Journals (Sweden)

    Farida El-Baz

    2016-01-01

    Conclusion: Chromosomal abnormalities were not detected in the studied autistic children, and so the relation between the genetics and autism still needs further work up with different study methods and techniques.

  17. Chromosome numbers in Bromeliaceae

    OpenAIRE

    2000-01-01

    The present study reports chromosome numbers of 17 species of Bromeliaceae, belonging to the genera Encholirium, Bromelia, Orthophytum, Hohenbergia, Billbergia, Neoglaziovia, Aechmea, Cryptanthus and Ananas. Most species present 2n = 50, however, Bromelia laciniosa, Orthophytum burle-marxii and O. maracasense are polyploids with 2n = 150, 2n = 100 and 2n = 150, respectively, while for Cryptanthus bahianus, 2n = 34 + 1-4B. B chromosomes were observed in Bromelia plumieri and Hohenbergia aff. u...

  18. Micromechanics of human mitotic chromosomes

    International Nuclear Information System (INIS)

    Eukaryote cells dramatically reorganize their long chromosomal DNAs to facilitate their physical segregation during mitosis. The internal organization of folded mitotic chromosomes remains a basic mystery of cell biology; its understanding would likely shed light on how chromosomes are separated from one another as well as into chromosome structure between cell divisions. We report biophysical experiments on single mitotic chromosomes from human cells, where we combine micromanipulation, nano-Newton-scale force measurement and biochemical treatments to study chromosome connectivity and topology. Results are in accord with previous experiments on amphibian chromosomes and support the 'chromatin network' model of mitotic chromosome structure. Prospects for studies of chromosome-organizing proteins using siRNA expression knockdowns, as well as for differential studies of chromosomes with and without mutations associated with genetic diseases, are also discussed

  19. Vibrio chromosomes share common history

    Directory of Open Access Journals (Sweden)

    Gevers Dirk

    2010-05-01

    Full Text Available Abstract Background While most gamma proteobacteria have a single circular chromosome, Vibrionales have two circular chromosomes. Horizontal gene transfer is common among Vibrios, and in light of this genetic mobility, it is an open question to what extent the two chromosomes themselves share a common history since their formation. Results Single copy genes from each chromosome (142 genes from chromosome I and 42 genes from chromosome II were identified from 19 sequenced Vibrionales genomes and their phylogenetic comparison suggests consistent phylogenies for each chromosome. Additionally, study of the gene organization and phylogeny of the respective origins of replication confirmed the shared history. Conclusions Thus, while elements within the chromosomes may have experienced significant genetic mobility, the backbones share a common history. This allows conclusions based on multilocus sequence analysis (MLSA for one chromosome to be applied equally to both chromosomes.

  20. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    parameters, which influence the transition from a planktonic lifestyle to a sessile lifestyle, have been studied. Protein conditioning film formation was found to influence bacterial adhesion and subsequent biofilm formation considerable, and an aqueous extract of fish muscle tissue was shown to...... tract to the microbial flocs in waste water treatment facilities. Microbial biofilms may however also cause a wide range of industrial and medical problems, and have been implicated in a wide range of persistent infectious diseases, including implantassociated microbial infections. Bacterial adhesion is...... the first committing step in biofilm formation, and has therefore been intensely scrutinized. Much however, still remains elusive. Bacterial adhesion is a highly complex process, which is influenced by a variety of factors. In this thesis, a range of physico-chemical, molecular and environmental...

  1. Bacterial lipases

    NARCIS (Netherlands)

    Jaeger, Karl-Erich; Ransac, Stéphane; Dijkstra, Bauke W.; Colson, Charles; Heuvel, Margreet van; Misset, Onno

    1994-01-01

    Many different bacterial species produce lipases which hydrolyze esters of glycerol with preferably long-chain fatty acids. They act at the interface generated by a hydrophobic lipid substrate in a hydrophilic aqueous medium. A characteristic property of lipases is called interfacial activation, mea

  2. Bacterial Ecology

    DEFF Research Database (Denmark)

    Fenchel, Tom

    2011-01-01

    Bacterial ecology is concerned with the interactions between bacteria and their biological and nonbiological environments and with the role of bacteria in biogeochemical element cycling. Many fundamental properties of bacteria are consequences of their small size. Thus, they can efficiently exploit...

  3. Beyond the chromosome: the prevalence of unique extra-chromosomal bacteriophages with integrated virulence genes in pathogenic Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Bryan Utter

    Full Text Available In Staphylococcus aureus, the disease impact of chromosomally integrated prophages on virulence is well described. However, the existence of extra-chromosomal prophages, both plasmidial and episomal, remains obscure. Despite the recent explosion in bacterial and bacteriophage genomic sequencing, studies have failed to specifically focus on extra-chromosomal elements. We selectively enriched and sequenced extra-chromosomal DNA from S. aureus isolates using Roche-454 technology and uncovered evidence for the widespread distribution of multiple extra-chromosomal prophages (ExPΦs throughout both antibiotic-sensitive and -resistant strains. We completely sequenced one such element comprised of a 43.8 kbp, circular ExPΦ (designated ФBU01 from a vancomycin-intermediate S. aureus (VISA strain. Assembly and annotation of ФBU01 revealed a number of putative virulence determinants encoded within a bacteriophage immune evasion cluster (IEC. Our identification of several potential ExPΦs and mobile genetic elements (MGEs also revealed numerous putative virulence factors and antibiotic resistance genes. We describe here a previously unidentified level of genetic diversity of stealth extra-chromosomal elements in S. aureus, including phages with a larger presence outside the chromosome that likely play a prominent role in pathogenesis and strain diversity driven by horizontal gene transfer (HGT.

  4. [Bacterial vaginosis].

    Science.gov (United States)

    Romero Herrero, Daniel; Andreu Domingo, Antonia

    2016-07-01

    Bacterial vaginosis (BV) is the main cause of vaginal dysbacteriosis in the women during the reproductive age. It is an entity in which many studies have focused for years and which is still open for discussion topics. This is due to the diversity of microorganisms that cause it and therefore, its difficult treatment. Bacterial vaginosis is probably the result of vaginal colonization by complex bacterial communities, many of them non-cultivable and with interdependent metabolism where anaerobic populations most likely play an important role in its pathogenesis. The main symptoms are an increase of vaginal discharge and the unpleasant smell of it. It can lead to serious consequences for women, such as an increased risk of contracting sexually transmitted infections including human immunodeficiency virus and upper genital tract and pregnancy complications. Gram stain is the gold standard for microbiological diagnosis of BV, but can also be diagnosed using the Amsel clinical criteria. It should not be considered a sexually transmitted disease but it is highly related to sex. Recurrence is the main problem of medical treatment. Apart from BV, there are other dysbacteriosis less characterized like aerobic vaginitis of which further studies are coming slowly but are achieving more attention and consensus among specialists. PMID:27474242

  5. Chromosome numbers in Bromeliaceae

    Directory of Open Access Journals (Sweden)

    Cotias-de-Oliveira Ana Lúcia Pires

    2000-01-01

    Full Text Available The present study reports chromosome numbers of 17 species of Bromeliaceae, belonging to the genera Encholirium, Bromelia, Orthophytum, Hohenbergia, Billbergia, Neoglaziovia, Aechmea, Cryptanthus and Ananas. Most species present 2n = 50, however, Bromelia laciniosa, Orthophytum burle-marxii and O. maracasense are polyploids with 2n = 150, 2n = 100 and 2n = 150, respectively, while for Cryptanthus bahianus, 2n = 34 + 1-4B. B chromosomes were observed in Bromelia plumieri and Hohenbergia aff. utriculosa. The chromosome number of all species was determined for the first time, except for Billbergia chlorosticta and Cryptanthus bahianus. Our data supports the hypothesis of a basic number of x = 25 for the Bromeliaceae family and decreasing aneuploidy in the genus Cryptanthus.

  6. Those amazing dinoflagellate chromosomes

    Institute of Scientific and Technical Information of China (English)

    PETER J RIZZO

    2003-01-01

    Dinoflagellates are a very large and diverse group of eukaryotic algae that play a major role in aquatic food webs of both fresh water and marine habitats. Moreover, the toxic members of this group pose a health threat in the form of red tides. Finally, dinoflagellates are of great evolutionary importance,because of their taxonomic position, and their unusual chromosome structure and composition. While the cytoplasm of dinoflagellates is typically eukaryotic, the nucleus is unique when compared to the nucleus of other eukaryotes. More specifically, while the chromosomes of all other eukaryotes contain histones,dinoflagellate chromosomes lack histones completely. There are no known exceptions to this observation: all dinoflagellates lack histones, and all other eukaryotes contain histones. Nevertheless, dinoflagellates remain a relatively unstudied group of eukaryotes.

  7. Bacterial chromatin: converging views at different scales.

    Science.gov (United States)

    Dame, Remus T; Tark-Dame, Mariliis

    2016-06-01

    Bacterial genomes are functionally organized and compactly folded into a structure referred to as bacterial chromatin or the nucleoid. An important role in genome folding is attributed to Nucleoid-Associated Proteins, also referred to as bacterial chromatin proteins. Although a lot of molecular insight in the mechanisms of operation of these proteins has been generated in the test tube, knowledge on genome organization in the cellular context is still lagging behind severely. Here, we discuss important advances in the understanding of three-dimensional genome organization due to the application of Chromosome Conformation Capture and super-resolution microscopy techniques. We focus on bacterial chromatin proteins whose proposed role in genome organization is supported by these approaches. Moreover, we discuss recent insights into the interrelationship between genome organization and genome activity/stability in bacteria. PMID:26942688

  8. Chromosomal rearrangements in cattle and pigs revealed by chromosome microdissection and chromosome painting

    Directory of Open Access Journals (Sweden)

    Yerle Martine

    2003-11-01

    Full Text Available Abstract A pericentric inversion of chromosome 4 in a boar, as well as a case of (2q-;5p+ translocation mosaicism in a bull were analysed by chromosome painting using probes generated by conventional microdissection. For the porcine inversion, probes specific for p arms and q arms were produced and hybridised simultaneously on metaphases of a heterozygote carrier. In the case of the bovine translocation, two whole chromosome probes (chromosome 5, and derived chromosome 5 were elaborated and hybridised independently on chromosomal preparations of the bull who was a carrier of the mosaic translocation. The impossibility of differentiating chromosomes 2 and der(2 from other chromosomes of the metaphases did not allow the production of painting probes for these chromosomes. For all experiments, the quality of painting was comparable to that usually observed with probes obtained from flow-sorted chromosomes. The results obtained allowed confirmation of the interpretations proposed with G-banding karyotype analyses. In the bovine case, however, the reciprocity of the translocation could not be proven. The results presented in this paper show the usefulness of the microdissection technique for characterising chromosomal rearrangements in species for which commercial probes are not available. They also confirmed that the main limiting factor of the technique is the quality of the chromosomal preparations, which does not allow the identification of target chromosomes or chromosome fragments in all cases.

  9. Horizontal gene transfer and bacterial diversity

    Indian Academy of Sciences (India)

    Chitra Dutta; Archana Pan

    2002-02-01

    Bacterial genomes are extremely dynamic and mosaic in nature. A substantial amount of genetic information is inserted into or deleted from such genomes through the process of horizontal transfer. Through the introduction of novel physiological traits from distantly related organisms, horizontal gene transfer often causes drastic changes in the ecological and pathogenic character of bacterial species and thereby promotes microbial diversification and speciation. This review discusses how the recent influx of complete chromosomal sequences of various microorganisms has allowed for a quantitative assessment of the scope, rate and impact of horizontally transmitted information on microbial evolution.

  10. Ring chromosome 13

    DEFF Research Database (Denmark)

    Brandt, C A; Hertz, Jens Michael; Petersen, M B; Vogel, F; Noer, H; Mikkelsen, M

    1992-01-01

    A stillborn male child with anencephaly and multiple malformations was found to have the karyotype 46,XY,r(13) (p11q21.1). The breakpoint at 13q21.1, determined by high resolution banding, is the most proximal breakpoint ever reported in patients with ring chromosome 13. In situ hybridisation with...

  11. The Y Chromosome

    Science.gov (United States)

    Offner, Susan

    2010-01-01

    The Y chromosome is of great interest to students and can be used to teach about many important biological concepts in addition to sex determination. This paper discusses mutation, recombination, mammalian sex determination, sex determination in general, and the evolution of sex determination in mammals. It includes a student activity that…

  12. Chromosomes, cancer and radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Samouhos, E.

    1983-08-01

    Some specific chromosomal abnormalities are associated with certain cancers. The earliest description of such a specific association is the one of the Philadelphia chromosome and myelogenous leukemia (1960). Other congenital karyotype abnormalities are associated with specific cancers. Examples of these are Down's syndrome with leukemia and Klinefelter's syndrome with male breast cancer. Genetic diseases of increased chromosome breakage, or of defective chromosome repair, are associated with greatly increased cancer incidence. Three such diseases have been recognized: 1) Fanconi's anemia, associated with leukemias and lymphomas, 2) Bloom's syndrome, associated with acute leukemias and lymphosarcoma, and 3) ataxia telangiectasia, associated with Hodgkin's disease, leukemia, and lymphosarcomas. Ten percent of individuals with ataxia telangiectasia will develop one of these neoplasms. Individuals with certain of these syndromes display an unusually high radiosensitivity. Radiation therapy for cancers has been fatal in patients who received as low as 3000 rad. This remarkable radiosensitivity has been quantitated in cell cultures from such cases. Evidence suggests that the apparent sensitivity may reflect subnormal ability to repair radiation damage. The rapid proliferation of information in this field stems from the interdigitation of many disciplines and specialties, including cytogenetics, cell biology, molecular biology, epidemiology, radiobiology, and several others. This paper is intended for clinicians; it presents a structured analytic scheme for correlating and classifying this multidisciplinary information as it becomes available.

  13. Chromosomes, cancer and radiosensitivity

    International Nuclear Information System (INIS)

    Some specific chromosomal abnormalities are associated with certain cancers. The earliest description of such a specific association is the one of the Philadelphia chromosome and myelogenous leukemia (1960). Other congenital karyotype abnormalities are associated with specific cancers. Examples of these are Down's syndrome with leukemia and Klinefelter's syndrome with male breast cancer. Genetic diseases of increased chromosome breakage, or of defective chromosome repair, are associated with greatly increased cancer incidence. Three such diseases have been recognized: 1) Fanconi's anemia, associated with leukemias and lymphomas, 2) Bloom's syndrome, associated with acute leukemias and lymphosarcoma, and 3) ataxia telangiectasia, associated with Hodgkin's disease, leukemia, and lymphosarcomas. Ten percent of individuals with ataxia telangiectasia will develop one of these neoplasms. Individuals with certain of these syndromes display an unusually high radiosensitivity. Radiation therapy for cancers has been fatal in patients who received as low as 3000 rad. This remarkable radiosensitivity has been quantitated in cell cultures from such cases. Evidence suggests that the apparent sensitivity may reflect subnormal ability to repair radiation damage. The rapid proliferation of information in this field stems from the interdigitation of many disciplines and specialties, including cytogenetics, cell biology, molecular biology, epidemiology, radiobiology, and several others. This paper is intended for clinicians; it presents a structured analytic scheme for correlating and classifying this multidisciplinary information as it becomes available

  14. Chromosome Morphology in Kniphofia.

    Directory of Open Access Journals (Sweden)

    J. M. J de Wet

    1960-12-01

    Full Text Available A number of species and varieties of the genus  Kniphofia (Liliaceae were studied cytologically. The somatic chromosome number is  2n = 12 in all the species. This is also true in  Notosceptrum natalense Baker.

  15. Telomere dysfunction and chromosome instability

    Energy Technology Data Exchange (ETDEWEB)

    Murnane, John P., E-mail: jmurnane@radonc.ucsf.edu [Department of Radiation Oncology, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 94143-1331 (United States)

    2012-02-01

    The ends of chromosomes are composed of a short repeat sequence and associated proteins that together form a cap, called a telomere, that keeps the ends from appearing as double-strand breaks (DSBs) and prevents chromosome fusion. The loss of telomeric repeat sequences or deficiencies in telomeric proteins can result in chromosome fusion and lead to chromosome instability. The similarity between chromosome rearrangements resulting from telomere loss and those found in cancer cells implicates telomere loss as an important mechanism for the chromosome instability contributing to human cancer. Telomere loss in cancer cells can occur through gradual shortening due to insufficient telomerase, the protein that maintains telomeres. However, cancer cells often have a high rate of spontaneous telomere loss despite the expression of telomerase, which has been proposed to result from a combination of oncogene-mediated replication stress and a deficiency in DSB repair in telomeric regions. Chromosome fusion in mammalian cells primarily involves nonhomologous end joining (NHEJ), which is the major form of DSB repair. Chromosome fusion initiates chromosome instability involving breakage-fusion-bridge (B/F/B) cycles, in which dicentric chromosomes form bridges and break as the cell attempts to divide, repeating the process in subsequent cell cycles. Fusion between sister chromatids results in large inverted repeats on the end of the chromosome, which amplify further following additional B/F/B cycles. B/F/B cycles continue until the chromosome acquires a new telomere, most often by translocation of the end of another chromosome. The instability is not confined to a chromosome that loses its telomere, because the instability is transferred to the chromosome donating a translocation. Moreover, the amplified regions are unstable and form extrachromosomal DNA that can reintegrate at new locations. Knowledge concerning the factors promoting telomere loss and its consequences is

  16. Roles for Dam methylation in bacterial chromosome replication

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Koch, Birgit; Skovgaard, Ole;

    these by whole genome sequencing. In one case the suppression was due to deletion of two Ts upstream of the ybfF gene. This led to increased SeqA production and presumably prolonged hemimethylation. The increased SeqA level affected replication initiation in two ways not described previously. First...... about one third of the cell cycle. During sequestration at least three mechanisms operate to lower the activity of the initiator protein, DnaA. First, the dnaA promoter, which also contains an excess of GATC sequences, is sequestered for the same period of time as oriC to prevent de novo DnaA synthesis...

  17. Speeding up chromosome evolution in Phaseolus: multiple rearrangements associated with a one-step descending dysploidy.

    Science.gov (United States)

    Fonsêca, Artur; Ferraz, Maria Eduarda; Pedrosa-Harand, Andrea

    2016-06-01

    The genus Phaseolus L. has been subject of extensive cytogenetic studies due to its global economic importance. It is considered karyotypically stable, with most of its ca. 75 species having 2n = 22 chromosomes, and only three species (Phaseolus leptostachyus, Phaseolus macvaughii, and Phaseolus micranthus), which form the Leptostachyus clade, having 2n = 20. To test whether a simple chromosomal fusion was the cause of this descending dysploidy, mitotic chromosomes of P. leptostachyus (2n = 20) were comparatively mapped by fluorescent in situ hybridization (FISH) using bacterial artificial chromosomes (BACs) and ribosomal DNA (rDNA) probes. Our results corroborated the conservation of the 5S and 45S rDNA sites on ancestral chromosomes 10 and 6, respectively. The reduction from x = 11 to x = 10 was the result of the insertion of chromosome 10 into the centromeric region of chromosome 11, supporting a nested chromosome fusion (NCF) as the main cause of this dysploidy. Additionally, the terminal region of the long arm of chromosome 6 was translocated to this larger chromosome. Surprisingly, the NCF was accompanied by several additional translocations and inversions previously unknown for the genus, suggesting that the dysploidy may have been associated to a burst of genome reorganization in this otherwise stable, diploid plant genus. PMID:26490170

  18. Identification of Chromosomes from Multiple Rice Genomes Using a Universal Molecular Cytogenetic Marker System

    Institute of Scientific and Technical Information of China (English)

    Xiaomin Tang; Weidong Bao; Wenli Zhang; Zhukuan Cheng

    2007-01-01

    To develop reliable techniques for chromosome identification is critical for cytogenetic research, especially for genomes with a large number and smaller-sized chromosomes. An efficient approach using bacterial artificial chromosome (BAG) clones as molecular cytological markers has been developed for many organisms. Herein, we present a set of chromosomal arm-specific molecular cytological markers derived from the gene-enriched regions of the sequenced rice genome. All these markers are able to generate very strong signals on the pachytene chromosomes of Oryza satlva L. (AA genome) when used as fluorescence in situ hybridization (FISH) probes. We further probed those markers to the pachytene chromosomes of O. punctata (BB genome) and O. officinalis (CC genome) and also got very strong signals on the relevant pachytene chromosomes. The signal position of each marker on the related chromosomes from the three different rice genomes was pretty much stable, which enabled us to identify different chromosomes among various rice genomes. We also constructed the karyotype for both O. punctata and O. officinalis with the BB and CC genomes, respectively, by analysis of 10 pachytene cells anchored by these chromosomal arm-specific markers.

  19. [Chromosomal organization of the genomes of small-chromosome plants].

    Science.gov (United States)

    Muravenko, O V; Zelenin, A V

    2009-11-01

    An effective approach to study the chromosome organization in genomes of plants with small chromosomes and/or with low-informative C-banding patterns was developed in the course of investigation of the karyotypes of cotton plant, camomile, flax, and pea. To increase the resolving power of chromosome analysis, methods were worked out for revealing early replication patterns on chromosomes and for artificial impairment of mitotic chromosome condensation with the use of a DNA intercalator, 9-aminoacridine (9-AMA). To estimate polymorphism of the patterns of C-banding of small chromosomes on preparations obtained with the use of 9-AMA, it is necessary to choose a length interval that must not exceed three average sizes of metaphase chromosomes without the intercalator. The use of 9-AMA increases the resolution of differential C- and OR-banding and the precision of physical chromosome mapping by the FISH method. Of particular importance in studying small chromosomes is optimization of the computer-aided methods used to obtain and process chromosome images. The complex approach developed for analysis of the chromosome organization in plant genomes was used to study the karyotypes of 24 species of the genus Linum L. It permitted their chromosomes to be identified for the first time, and, in addition, B chromosomes were discovered and studied in the karyotypes of the species of the section Syllinum. By similarity of the karyotypes, the studied flax species were distributed in eight groups in agreement with the clusterization of these species according to the results of RAPD analysis performed in parallel. Systematic positions and phylogenetic relationships of the studied flax species were verified. Out results can serve as an important argument in favour of the proposal to develop a special program for sequencing the genome of cultivated flax (L. usitatissimum L.), which is a major representative of small-chromosome species. PMID:20058798

  20. Genetic and physical mapping of the bovine X chromosome

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Chen Chen; Taylor, J.F.; Sanders, J. O. [Texas A& M Univ., College Station, TX (United States)] [and others

    1996-03-01

    Three hundred eighty reciprocal backcross and F{sub 2} full sib progeny from 33 families produced by embryo transfer from 77 Angus (Bos taurus), Brahman (Bos indicus), and F{sub 1} parents and grandparents were used to construct genetic maps of the bovine X and Y chromosomes. All individuals were scored for 15 microsatellite loci, with an average of 608 informative meioses per locus. The length of the bovine X chromosome genetic map was 118.7 cM (female only) and of the pseudoautosomal region was 13.0 cM (male only). The 15-marker framework map in Kosambi centimorgans is (BM6017-6.1-TGLA89-35.8-TEXAN13-3.4-TGLA128-1.3-BM2713-21.1-BM4604-2.4-BR215-12.9-TGLA68-10.0-BM4321-1.0-HEL14-4.9-TGLA15-2.3-INRA120-12.5-TGLA325-1.6-MAF45-3.2-INRA30), with an average interval of 7.91 cM. Clones containing pseudoautosomal or sex-linked microsatellites were isolated from a bovine bacterial artificial chromosome library and were physically mapped to bovine metaphase chromosomes by fluorescence in situ hybridization to orient the X and Y chromosome maps. BAC57, containing the pseudoautosomal microsatellite INRA30, mapped to the distal end of the long arm of the X chromosome at q42-ter and to the short arm of the Y chromosome at p13-ter. This confirms the published assignment of this region to Yp12-ter, but challenges the published assignment of Xp14-ter and thus reorients the X chromosome physical map. BAC204, containing the X-linked microsatellite BM4604, mapped to the middle of the long arm of the X chromosome at q26-q31. The position of the physically mapped to the middle of the long arm of the X chromosome at q26-q31. The position of the physically mapped markers indicates either a lack of microsatellite markers for a large (30 to 50 cM) region of the short arm of the X chromosome or heterogeneity of recombination along the X chromosome. 46 refs., 2 figs., 3 tabs.

  1. Bacterial hydrodynamics

    CERN Document Server

    Lauga, Eric

    2015-01-01

    Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells yet they represent the bulk of the world's biomass, and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds-number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micron scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically-complex environments. Using hydrodynamics as an organizing framework, we review the biomechanics of bacterial motility and look ahead to future challenges.

  2. Construction of BAC Libraries from Flow-Sorted Chromosomes.

    Science.gov (United States)

    Šafář, Jan; Šimková, Hana; Doležel, Jaroslav

    2016-01-01

    Cloned DNA libraries in bacterial artificial chromosome (BAC) are the most widely used form of large-insert DNA libraries. BAC libraries are typically represented by ordered clones derived from genomic DNA of a particular organism. In the case of large eukaryotic genomes, whole-genome libraries consist of a hundred thousand to a million clones, which make their handling and screening a daunting task. The labor and cost of working with whole-genome libraries can be greatly reduced by constructing a library derived from a smaller part of the genome. Here we describe construction of BAC libraries from mitotic chromosomes purified by flow cytometric sorting. Chromosome-specific BAC libraries facilitate positional gene cloning, physical mapping, and sequencing in complex plant genomes. PMID:27511172

  3. Chromosome 19 International Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Pericak-Vance, M.A. (Duke Univ., Durham, NC (United States). Medical Center); Ropers, H.H. (Univ. Hospital Nijmegen, (The Netherlands). Dept. of Human Genetics); Carrano, A.J. (Lawrence Livermore National Lab., CA (United States))

    1993-01-04

    The Second International Workshop on Human Chromosome 19 was hosted on January 25 and 26, 1992, by the Department of Human Genetics, University Hospital Nijmegen, The Netherlands, at the 'Meerdal Conference Center'. The workshop was supported by a grant from the European Community obtained through HUGO, the Dutch Research Organization (NWO) and the Muscular Dystrophy Association (MDA). Travel support for American participants was provided by the Department of Energy. The goals of this workshop were to produce genetic, physical and integrated maps of chromosome 19, to identify inconsistencies and gaps, and to discuss and exchange resources and techniques available for the completion of these maps. The second day of the meeting was largely devoted to region or disease specific efforts. In particular, the meeting served as a platform for assessing and discussing the recent progress made into the molecular elucidation of myotonic dystrophy.

  4. Bacterial sex in dental plaque

    Directory of Open Access Journals (Sweden)

    Ingar Olsen

    2013-06-01

    Full Text Available Genes are transferred between bacteria in dental plaque by transduction, conjugation, and transformation. Membrane vesicles can also provide a mechanism for horizontal gene transfer. DNA transfer is considered bacterial sex, but the transfer is not parallel to processes that we associate with sex in higher organisms. Several examples of bacterial gene transfer in the oral cavity are given in this review. How frequently this occurs in dental plaque is not clear, but evidence suggests that it affects a number of the major genera present. It has been estimated that new sequences in genomes established through horizontal gene transfer can constitute up to 30% of bacterial genomes. Gene transfer can be both inter- and intrageneric, and it can also affect transient organisms. The transferred DNA can be integrated or recombined in the recipient's chromosome or remain as an extrachromosomal inheritable element. This can make dental plaque a reservoir for antimicrobial resistance genes. The ability to transfer DNA is important for bacteria, making them better adapted to the harsh environment of the human mouth, and promoting their survival, virulence, and pathogenicity.

  5. Genome-wide detection of chromosomal rearrangements, indels, and mutations in circular chromosomes by short read sequencing

    DEFF Research Database (Denmark)

    Skovgaard, Ole; Bak, Mads; Løbner-Olesen, Anders;

    2011-01-01

    Whole-genome sequencing (WGS) with new short-read sequencing technologies has recently been applied for genome-wide identification of mutations. Genomic rearrangements have, however, often remained undetected by WGS, and additional analyses are required for their detection. Here, we have applied a...... combination of WGS and genome copy number analysis, for the identification of mutations that suppress the growth deficiency imposed by excessive initiations from the Escherichia coli origin of replication, oriC. The E. coli chromosome, like the majority of bacterial chromosomes, is circular, and DNA...... inversion, and one was a large chromosomal duplication. The latter two mutations could not be detected solely by WGS, validating the present approach for identification of genomic rearrangements. We further suggest the use of copy number analysis in combination with WGS for validation of newly assembled...

  6. The B chromosomes of the African cichlid fish Haplochromis obliquidens harbour 18S rRNA gene copies

    Directory of Open Access Journals (Sweden)

    Martins Cesar

    2010-01-01

    Full Text Available Abstract Background Diverse plant and animal species have B chromosomes, also known as accessory, extra or supernumerary chromosomes. Despite being widely distributed among different taxa, the genomic nature and genetic behavior of B chromosomes are still poorly understood. Results In this study we describe the occurrence of B chromosomes in the African cichlid fish Haplochromis obliquidens. One or two large B chromosome(s occurring in 39.6% of the analyzed individuals (both male and female were identified. To better characterize the karyotype and assess the nature of the B chromosomes, fluorescence in situ hybridization (FISH was performed using probes for telomeric DNA repeats, 18S and 5S rRNA genes, SATA centromeric satellites, and bacterial artificial chromosomes (BACs enriched in repeated DNA sequences. The B chromosomes are enriched in repeated DNAs, especially non-active 18S rRNA gene-like sequences. Conclusion Our results suggest that the B chromosome could have originated from rDNA bearing subtelo/acrocentric A chromosomes through formation of an isochromosome, or by accumulation of repeated DNAs and rRNA gene-like sequences in a small proto-B chromosome derived from the A complement.

  7. Rescue of end fragments of yeast artificial chromosomes by homologous recombination in yeast.

    OpenAIRE

    Hermanson, G G; Hoekstra, M F; McElligott, D. L.; Evans, G A

    1991-01-01

    Yeast artificial chromosomes (YACs) provide a powerful tool for the isolation and mapping of large regions of mammalian chromosomes. We developed a rapid and efficient method for the isolation of DNA fragments representing the extreme ends of YAC clones by the insertion of a rescue plasmid into the YAC vector by homologous recombination. Two rescue vectors were constructed containing a yeast LYS2 selectable gene, a bacterial origin of replication, an antibiotic resistance gene, a polylinker c...

  8. Genetic and physical mapping of the bovine X chromosome.

    Science.gov (United States)

    Yeh, C C; Taylor, J F; Gallagher, D S; Sanders, J O; Turner, J W; Davis, S K

    1996-03-01

    Three hundred eighty reciprocal backcross and F(2) full sib progeny from 33 families produced by embryo transfer from 77 Angus (Bos taurus), Brahman (Bos indicus), and F1 parents and grandparents were used to construct genetic maps of the bovine X and Y chromosomes. Ml individuals were scored for 15 microsatellite loci, with an average of 608 informative meioses per locus. The length of the bovine X chromosome genetic map was 118.7 cM (female only) and of the pseudoautosomal region was 13.0 cM (male only). The 15-marker framework map in Kosambi centimorgans is [BM6017-6.1 -TGLA89-35.8-TEXAN13-3.4-TGLA128-1.3 -BM2713 -21.1 -BM4604-2.4-BR215 - 12.9-TGLA68-10.0-BM4321 - 1.0-HEL14-4.9-TGLA15-2.3-INRA12O- 12.5-TGLA325- 1.6-MAF45-3.2-INRA3O], with an average interval of 7.91 cM. Clones containing pseudoautosomal or sex-linked microsatellites were isolated from a bovine bacterial artificial chromosome library and were physically mapped to bovine metaphase chromosomes by fluorescence in situ hybridization to orient the X and Y chromosome maps. BAC57, containing the pseudoautosomal microsatellite INRA3O, mapped to the distal end of the long arm of the X chromosome at q42-ter and to the short arm of the Y chromosome at p13-ter. This confirms the published assignment of this region to Ypl2-ter, but challenges the published assignment of Xpl4-ter and thus reorients the X chromosome physical map. BAC2O4, containing the X-linked microsatellite BM4604, mapped to the middle of the long arm of the X chromosome at q26-q31. The position of the physically mapped markers indicates either a lack of microsatellite markers for a large (30 to 50 cM) region of the short arm of the X chromosome or heterogeneity of recombination along the X chromosome. PMID:8833151

  9. Molecular fundamentals of chromosomal mutagenesis

    International Nuclear Information System (INIS)

    Precise quantitative correlation between the yield of chromosome structure damages and the yield of DNA damages is shown when comparing data on molecular and cytogenetic investigations carried out in cultural Mammalia cells. As the chromosome structure damage is to be connected with the damage of its carcass structure, then it is natural that DNA damage in loop regions is not to affect considerably the structure, while DNA damage lying on the loop base and connected with the chromosome carcass is to play a determining role in chromosomal mutagenesis. This DNA constitutes 1-2% from the total quantity of nuclear DNA. If one accepts that damages of these regions of DNA are ''hot'' points of chromosomal mutagenesis, then it becomes clear why 1-2% of preparation damages in a cell are realized in chromosome structural damages

  10. Electochemical detection of chromosome translocation

    DEFF Research Database (Denmark)

    Kwasny, Dorota; Dimaki, Maria; Silahtaroglu, Asli;

    2014-01-01

    Cytogenetics is a study of the cell structure with a main focus on chromosomes content and their structure. Chromosome abnormalities, such as translocations may cause various genetic disorders and heametological malignancies. Chromosome translocations are structural rearrangements of two...... hybridization approach developed for label-free detection of the chromosome translocations. For specific translocation detection it is necessary to determine that the two DNA sequences forming a derivative chromosome are connected, which is achieved by two subsequent hybridization steps. The electrochemical...... impedance spectroscopy was selected as the sensing method on a microfabricated chip with array of 12 electrode sets. Two independent chips (Chip1 and Chip2) were used for targeting the chromosomal fragments involved in the translocation. Each chip was differentially functionalized with DNA probes matching...

  11. Chromosome Evolution in African Cichlid Fish: Contributions from the Physical Mapping of Repeated DNAs

    Science.gov (United States)

    Ferreira, I.A.; Poletto, A.B.; Kocher, T.D.; Mota-Velasco, J.C.; Penman, D.J.; Martins, C.

    2010-01-01

    Cichlid fishes have been the subject of increasing scientific interest because of their rapid adaptive radiation that has led to extensive ecological diversity and because of their enormous importance to tropical and subtropical aquaculture. To further understanding of chromosome evolution among cichlid species, we have comparatively mapped the SATA satellite DNA, the transposable element ROn-1, and repeated sequences in the bacterial artificial chromosome clone BAC-C4E09 on the chromosomes of a range of African species of Cichlidae, using fluorescence in situ hybridization. The SATA satellite DNA was mapped in almost all the centromeres of all tilapiine and haplochromine species studied. The maintenance and centromeric distribution of the SATA satellite DNA in African cichlids suggest that this sequence plays an important role in the organization and function of the centromere in these species. Furthermore, analysis of SATA element distribution clarifies that chromosome fusions occurred independently in Oreochromis and Tilapia genera, and led to the reduced chromosome number detected in O. karongae and T. mariae. The comparative chromosome mapping of the ROn-1 SINE-like element and BAC-C4E09 shows that the repeated sequences have been maintained among tilapiine, haplochromine and hemichromine fishes and has demonstrated the homology of the largest chromosomes among these groups. Furthermore, the mapping of ROn-1 suggested that different chromosomal rearrangements could have occurred in the origin of the largest chromosome pairs of tilapiines and non-tilapiines. PMID:20606399

  12. Intraspecific chromosome variability

    Directory of Open Access Journals (Sweden)

    N Dubinin

    2010-12-01

    Full Text Available (Editorial preface. The publication is presented in order to remind us of one of dramatic pages of the history of genetics. It re-opens for the contemporary reader a comprehensive work marking the priority change from plant cytogenetics to animal cytogenetics led by wide population studies which were conducted on Drosophila polytene chromosomes. The year of the publication (1937 became the point of irretrievable branching between the directions of Old World and New World genetics connected with the problems of chromosome variability and its significance for the evolution of the species. The famous book of T. Dobzhansky (1937 was published by Columbia University in the US under the title “Genetics and the origin of species”, and in the shadow of this American ‘skybuilding’ all other works grew dim. It is remarkable that both Dobzhansky and Dubinin come to similar conclusions about the role of chromosomes in speciation. This is not surprising given that they both might be considered as representatives of the Russian genetic school, by their birth and education. Interestingly, Dobzhansky had never referred to the full paper of Dubinin et al. (1937, though a previous short communication in Nature (1936 was included together with all former papers on the related subject. In full, the volume of the original publication printed in the Biological Journal in Moscow comprised 47 pages, in that number 41 pages of the Russian text accompanied by 16 Figs, a table and reference list, and, above all, 6 pages of the English summary. This final part in English is now reproduced in the authors’ version with the only addition being the reference list in the originally printed form.

  13. Reference-assisted chromosome assembly

    OpenAIRE

    Kim, Jaebum; Larkin, Denis M; Cai, Qingle; Asan,; Zhang, Yongfen; Ge, Ri-Li; Auvil, Loretta; Capitanu, Boris; Zhang, Guojie; Lewin, Harris A.; Ma, Jian

    2013-01-01

    One of the most difficult problems in modern genomics is the assembly of full-length chromosomes using next generation sequencing (NGS) data. To address this problem, we developed “reference-assisted chromosome assembly” (RACA), an algorithm to reliably order and orient sequence scaffolds generated by NGS and assemblers into longer chromosomal fragments using comparative genome information and paired-end reads. Evaluation of results using simulated and real genome assemblies indicates that ou...

  14. A Markovian analysis of bacterial genome sequence constraints

    Directory of Open Access Journals (Sweden)

    Aaron D. Skewes

    2013-08-01

    Full Text Available The arrangement of nucleotides within a bacterial chromosome is influenced by numerous factors. The degeneracy of the third codon within each reading frame allows some flexibility of nucleotide selection; however, the third nucleotide in the triplet of each codon is at least partly determined by the preceding two. This is most evident in organisms with a strong G + C bias, as the degenerate codon must contribute disproportionately to maintaining that bias. Therefore, a correlation exists between the first two nucleotides and the third in all open reading frames. If the arrangement of nucleotides in a bacterial chromosome is represented as a Markov process, we would expect that the correlation would be completely captured by a second-order Markov model and an increase in the order of the model (e.g., third-, fourth-…order would not capture any additional uncertainty in the process. In this manuscript, we present the results of a comprehensive study of the Markov property that exists in the DNA sequences of 906 bacterial chromosomes. All of the 906 bacterial chromosomes studied exhibit a statistically significant Markov property that extends beyond second-order, and therefore cannot be fully explained by codon usage. An unrooted tree containing all 906 bacterial chromosomes based on their transition probability matrices of third-order shares ∼25% similarity to a tree based on sequence homologies of 16S rRNA sequences. This congruence to the 16S rRNA tree is greater than for trees based on lower-order models (e.g., second-order, and higher-order models result in diminishing improvements in congruence. A nucleotide correlation most likely exists within every bacterial chromosome that extends past three nucleotides. This correlation places significant limits on the number of nucleotide sequences that can represent probable bacterial chromosomes. Transition matrix usage is largely conserved by taxa, indicating that this property is likely

  15. A FISH-based chromosome map for the European corn borer yields insights into ancient chromosomal fusions in the silkworm.

    Science.gov (United States)

    Yasukochi, Y; Ohno, M; Shibata, F; Jouraku, A; Nakano, R; Ishikawa, Y; Sahara, K

    2016-01-01

    A significant feature of the genomes of Lepidoptera, butterflies and moths, is the high conservation of chromosome organization. Recent remarkable progress in genome sequencing of Lepidoptera has revealed that syntenic gene order is extensively conserved across phylogenetically distant species. The ancestral karyotype of Lepidoptera is thought to be n=31; however, that of the most well-studied moth, Bombyx mori, is n=28, and diverse studies suggest that three chromosomal fusion events occurred in this lineage. To identify the boundaries between predicted ancient fusions involving B. mori chromosomes 11, 23 and 24, we constructed fluorescence in situ hybridization (FISH)-based chromosome maps of the European corn borer, Ostrinia nubilalis (n=31). We first determined a 511 Mb genomic sequence of the Asian corn borer, O. furnacalis, a congener of O. nubilalis, and isolated bacterial artificial chromosomes and fosmid clones that were expected to localize in candidate regions for the boundaries using these sequences. Combined with FISH and genetic analysis, we narrowed down the candidate regions to 40 kb-1.5 Mb, in strong agreement with a previous estimate based on the genome of a butterfly, Melitaea cinxia. The significant difference in the lengths of the candidate regions where no functional genes were observed may reflect the evolutionary time after fusion events. PMID:26264548

  16. Antibiotic resistance of bacterial biofilms

    DEFF Research Database (Denmark)

    Hoiby, N.; Bjarnsholt, T.; Givskov, M.;

    2010-01-01

    A biofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and DNA. Bacterial biofilms cause chronic infections because they show increased tolerance to antibiotics and disinfectant chemicals as well as resisting phagocytosis...... to antibiotics. Biofilm growth is associated with an increased level of mutations as well as with quorum-sensing-regulated mechanisms. Conventional resistance mechanisms such as chromosomal beta-lactamase, upregulated efflux pumps and mutations in antibiotic target molecules in bacteria also contribute...... to the survival of biofilms. Biofilms can be prevented by early aggressive antibiotic prophylaxis or therapy and they can be treated by chronic suppressive therapy. A promising strategy may be the use of enzymes that can dissolve the biofilm matrix (e.g. DNase and alginate lyase) as well as quorum...

  17. Chromosome Connections: Compelling Clues to Common Ancestry

    Science.gov (United States)

    Flammer, Larry

    2013-01-01

    Students compare banding patterns on hominid chromosomes and see striking evidence of their common ancestry. To test this, human chromosome no. 2 is matched with two shorter chimpanzee chromosomes, leading to the hypothesis that human chromosome 2 resulted from the fusion of the two shorter chromosomes. Students test that hypothesis by looking for…

  18. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants

    Directory of Open Access Journals (Sweden)

    Paula Blanco

    2016-02-01

    Full Text Available Bacterial multidrug efflux pumps are antibiotic resistance determinants present in all microorganisms. With few exceptions, they are chromosomally encoded and present a conserved organization both at the genetic and at the protein levels. In addition, most, if not all, strains of a given bacterial species present the same chromosomally-encoded efflux pumps. Altogether this indicates that multidrug efflux pumps are ancient elements encoded in bacterial genomes long before the recent use of antibiotics for human and animal therapy. In this regard, it is worth mentioning that efflux pumps can extrude a wide range of substrates that include, besides antibiotics, heavy metals, organic pollutants, plant-produced compounds, quorum sensing signals or bacterial metabolites, among others. In the current review, we present information on the different functions that multidrug efflux pumps may have for the bacterial behaviour in different habitats as well as on their regulation by specific signals. Since, in addition to their function in non-clinical ecosystems, multidrug efflux pumps contribute to intrinsic, acquired, and phenotypic resistance of bacterial pathogens, the review also presents information on the search for inhibitors of multidrug efflux pumps, which are currently under development, in the aim of increasing the susceptibility of bacterial pathogens to antibiotics.

  19. X-chromosome workshop.

    Science.gov (United States)

    Paterson, A D

    1998-01-01

    Researchers presented results of ongoing research to the X-chromosome workshop of the Fifth World Congress on Psychiatric Genetics, covering a wide range of disorders: X-linked infantile spasms; a complex phenotype associated with deletions of Xp11; male homosexuality; degree of handedness; bipolar affective disorder; schizophrenia; childhood onset psychosis; and autism. This report summarizes the presentations, as well as reviewing previous studies. The focus of this report is on linkage findings for schizophrenia and bipolar disorder from a number of groups. For schizophrenia, low positive lod scores were obtained for markers DXS991 and DXS993 from two studies, although the sharing of alleles was greatest from brother-brother pairs in one study, and sister-sister in the other. Data from the Irish schizophrenia study was also submitted, with no strong evidence for linkage on the X chromosome. For bipolar disease, following the report of a Finnish family linked to Xq24-q27, the Columbia group reported some positive results for this region from 57 families, however, another group found no evidence for linkage to this region. Of interest, is the clustering of low positive linkage results that point to regions for possible further study. PMID:9686435

  20. Chromosome analysis and sorting

    Czech Academy of Sciences Publication Activity Database

    Doležel, Jaroslav; Kubaláková, Marie; Suchánková, Pavla; Kovářová, Pavlína; Bartoš, Jan; Šimková, Hana

    Weinheim : Wiley-VCH, 2007 - (Doležel, J.; Greilhuber, J.; Suda, J.), s. 373-403 ISBN 978-3-527-31487-4 R&D Projects: GA ČR GA521/04/0607; GA ČR GP521/05/P257; GA ČR GD521/05/H013; GA MŠk(CZ) LC06004 Grant ostatní: Mendelova zemědělská a lesnická univerzita v Brně / Agronomická fakulta(CZ) ME 844 Institutional research plan: CEZ:AV0Z5038910 Source of funding: V - iné verejné zdroje ; V - iné verejné zdroje ; V - iné verejné zdroje ; V - iné verejné zdroje ; V - iné verejné zdroje Keywords : Plant flow cytometry * chromosome sorting * flow cytogenetics Subject RIV: EB - Genetics ; Molecular Biology http://books. google .com/books?id=3cwakORieqUC&pg=PA373&lpg=PA373&dq=Chromosome+analysis+and+sorting&source=web&ots=8IyvJlBQyq&sig=_NlXyQQgBCwpj1pTC9YITvvVZqU

  1. Cohesin in determining chromosome architecture

    Energy Technology Data Exchange (ETDEWEB)

    Haering, Christian H., E-mail: christian.haering@embl.de [Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg (Germany); Jessberger, Rolf, E-mail: rolf.jessberger@tu-dresden.de [Institute of Physiological Chemistry, Dresden University of Technology, Dresden (Germany)

    2012-07-15

    Cells use ring-like structured protein complexes for various tasks in DNA dynamics. The tripartite cohesin ring is particularly suited to determine chromosome architecture, for it is large and dynamic, may acquire different forms, and is involved in several distinct nuclear processes. This review focuses on cohesin's role in structuring chromosomes during mitotic and meiotic cell divisions and during interphase.

  2. Causes of oncogenic chromosomal translocation

    OpenAIRE

    Aplan, Peter D.

    2005-01-01

    Non-random chromosomal translocations are frequently associated with a variety of cancers, especially hematologic malignancies and childhood sarcomas In addition to their diagnostic utility, chromosomal translocations are increasingly being used in the clinic to guide therapeutic decisions. However, the mechanisms which cause these translocations remain poorly understood. Illegit...

  3. Genetics Home Reference: ring chromosome 20 syndrome

    Science.gov (United States)

    ... 3 links) Encyclopedia: Chromosome Encyclopedia: Epilepsy Health Topic: Epilepsy Genetic and Rare Diseases Information Center (1 link) Ring chromosome 20 Additional NIH Resources (2 links) National Human Genome Research Institute: Chromosome Abnormalities National Institute of ...

  4. Genetics Home Reference: ring chromosome 14 syndrome

    Science.gov (United States)

    ... Encyclopedia: Chromosome Health Topic: Developmental Disabilities Health Topic: Epilepsy Genetic and Rare Diseases Information Center (1 link) Ring chromosome 14 Additional NIH Resources (2 links) National Human Genome Research Institute: Chromosome Abnormalities National Institute of ...

  5. ADN et chromosomes

    OpenAIRE

    Hayes, Hélène

    2000-01-01

    Chaque chromosome contient une seule molécule d’ADN. L’ADN déroulé d’un noyau de cellule humaine mesurerait environ 1,8 m : chaque molécule d’ADN est enroulée et compactée en plusieurs étapes, grâce à l’association de différentes protéines, et loge dans le noyau de 6 µm de diamètre. Le degré de condensation de l’ADN est variable selon les régions chromosomiques et les régions les moins condensées sont les plus riches en gènes. L’ADN est composé d’une variété de séquences codantes ou non et ré...

  6. X-Chromosome dosage compensation.

    Science.gov (United States)

    Meyer, Barbara J

    2005-01-01

    In mammals, flies, and worms, sex is determined by distinctive regulatory mechanisms that cause males (XO or XY) and females (XX) to differ in their dose of X chromosomes. In each species, an essential X chromosome-wide process called dosage compensation ensures that somatic cells of either sex express equal levels of X-linked gene products. The strategies used to achieve dosage compensation are diverse, but in all cases, specialized complexes are targeted specifically to the X chromosome(s) of only one sex to regulate transcript levels. In C. elegans, this sex-specific targeting of the dosage compensation complex (DCC) is controlled by the same developmental signal that establishes sex, the ratio of X chromosomes to sets of autosomes (X:A signal). Molecular components of this chromosome counting process have been defined. Following a common step of regulation, sex determination and dosage compensation are controlled by distinct genetic pathways. C. elegans dosage compensation is implemented by a protein complex that binds both X chromosomes of hermaphrodites to reduce transcript levels by one-half. The dosage compensation complex resembles the conserved 13S condensin complex required for both mitotic and meiotic chromosome resolution and condensation, implying the recruitment of ancient proteins to the new task of regulating gene expression. Within each C. elegans somatic cell, one of the DCC components also participates in the separate mitotic/meiotic condensin complex. Other DCC components play pivotal roles in regulating the number and distribution of crossovers during meiosis. The strategy by which C. elegans X chromosomes attract the condensin-like DCC is known. Small, well-dispersed X-recognition elements act as entry sites to recruit the dosage compensation complex and to nucleate spreading of the complex to X regions that lack recruitment sites. In this manner, a repressed chromatin state is spread in cis over short or long distances, thus establishing the

  7. Chromatid Painting for Chromosomal Inversion Detection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the continued development of a novel approach to the detection of chromosomal inversions. Transmissible chromosome aberrations (translocations and...

  8. Chromatid Painting for Chromosomal Inversion Detection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a novel approach to the detection of chromosomal inversions. Transmissible chromosome aberrations (translocations and inversions) have profound genetic...

  9. Interactions stabilizing DNA tertiary structure in the Escherichia coli chromosome investigated with ionizing radiation

    International Nuclear Information System (INIS)

    The structure of the bacterial chromosome was investigated after introducing breaks in the DNA with gamma irradiation. It is demonstrated that irradiation of the chromosome in the cell prior to isolation results in partial unfolding of the isolated condensed DNA, while irradiation of the chromosome after it is released from the cell has no demonstrable effect on DNA folding. The results indicate that RNA/DNA interactions which stabilize DNA folds are unstable when breaks are introduced in the DNA prior to isolation of the chromosome. It is suggested that the supercoiled state of the DNA is required for the initial stabilization of some of the critical RNA/DNA interaction in the isolated nucleoid. However, some of these interactions are not affected by irradiation of the cells. Remnant supercoiling in partially relaxed chromosomes containing a limited number of DNA breaks has the same superhelical density as the unirradiated chromosome. This suggests that restraints on rotation of the packaged DNA are formed prior to the physical unwinding which occurs at the sites of the radiation induced DNA breaks. - Analysis of the in vitro irradiated chromosomes shows that there are 100 +- 30 domains of supercoiling per genome equivalent of DNA. The introduction of up to 50 double-strand breaks per nucleoid does not influence rotor speed effects of the sedimentation coefficient of the chromosome. (orig.)

  10. Physical map and organization of chromosome 7 in the rice blast fungus, Magnaporthe grisea.

    Science.gov (United States)

    Zhu, H; Blackmon, B P; Sasinowski, M; Dean, R A

    1999-08-01

    The rice blast fungus Magnaporthe grisea is a highly destructive plant pathogen and one of the most important for studying various aspects of host-plant interactions. It has been widely adopted as a model organism because it is ideally suited for genetic and biological studies. To facilitate map-based cloning, chromosome walking, and genome organization studies of M. grisea, a complete physical map of chromosome 7 was constructed using a large-insert (130 kb) bacterial artificial chromosome (BAC) library. Using 147 chromosome 7-specific single-copy BAC clones and 20 RFLP markers on chromosome 7, 625 BAC clones were identified by hybridization. BAC clones were digested with HindIII, and fragments were size separated on analytical agarose gels to create DNA fingerprints. Hybridization contigs were constructed using a random cost algorithm, whereas fingerprinting contigs were constructed using the software package FPC. Results from both methods were generally in agreement, but numerous anomalies were observed. The combined data produced five robust anchored contigs after gap closure by chromosomal walking. The genetic and physical maps agreed closely. The final physical map was estimated to cover >95% of the 4.2 Mb of chromosome 7. Based on the contig maps, a minimum BAC tile containing 42 BAC clones was created, and organization of repetitive elements and expressed genes of the chromosome was investigated. PMID:10447509

  11. Mitotic chromosome condensation in vertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Vagnarelli, Paola, E-mail: P.Vagnarelli@ed.ac.uk

    2012-07-15

    Work from several laboratories over the past 10-15 years has revealed that, within the interphase nucleus, chromosomes are organized into spatially distinct territories [T. Cremer, C. Cremer, Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet. 2 (2001) 292-301 and T. Cremer, M. Cremer, S. Dietzel, S. Muller, I. Solovei, S. Fakan, Chromosome territories-a functional nuclear landscape, Curr. Opin. Cell Biol. 18 (2006) 307-316]. The overall compaction level and intranuclear location varies as a function of gene density for both entire chromosomes [J.A. Croft, J.M. Bridger, S. Boyle, P. Perry, P. Teague,W.A. Bickmore, Differences in the localization and morphology of chromosomes in the human nucleus, J. Cell Biol. 145 (1999) 1119-1131] and specific chromosomal regions [N.L. Mahy, P.E. Perry, S. Gilchrist, R.A. Baldock, W.A. Bickmore, Spatial organization of active and inactive genes and noncoding DNA within chromosome territories, J. Cell Biol. 157 (2002) 579-589] (Fig. 1A, A'). In prophase, when cyclin B activity reaches a high threshold, chromosome condensation occurs followed by Nuclear Envelope Breakdown (NEB) [1]. At this point vertebrate chromosomes appear as compact structures harboring an attachment point for the spindle microtubules physically recognizable as a primary constriction where the two sister chromatids are held together. The transition from an unshaped interphase chromosome to the highly structured mitotic chromosome (compare Figs. 1A and B) has fascinated researchers for several decades now; however a definite picture of how this process is achieved and regulated is not yet in our hands and it will require more investigation to comprehend the complete process. From a biochemical point of view a vertebrate mitotic chromosomes is composed of DNA, histone proteins (60%) and non-histone proteins (40%) [6]. I will discuss below what is known to date on the contribution of these two different classes

  12. Mitotic chromosome condensation in vertebrates

    International Nuclear Information System (INIS)

    Work from several laboratories over the past 10–15 years has revealed that, within the interphase nucleus, chromosomes are organized into spatially distinct territories [T. Cremer, C. Cremer, Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet. 2 (2001) 292–301 and T. Cremer, M. Cremer, S. Dietzel, S. Muller, I. Solovei, S. Fakan, Chromosome territories—a functional nuclear landscape, Curr. Opin. Cell Biol. 18 (2006) 307–316]. The overall compaction level and intranuclear location varies as a function of gene density for both entire chromosomes [J.A. Croft, J.M. Bridger, S. Boyle, P. Perry, P. Teague,W.A. Bickmore, Differences in the localization and morphology of chromosomes in the human nucleus, J. Cell Biol. 145 (1999) 1119–1131] and specific chromosomal regions [N.L. Mahy, P.E. Perry, S. Gilchrist, R.A. Baldock, W.A. Bickmore, Spatial organization of active and inactive genes and noncoding DNA within chromosome territories, J. Cell Biol. 157 (2002) 579–589] (Fig. 1A, A'). In prophase, when cyclin B activity reaches a high threshold, chromosome condensation occurs followed by Nuclear Envelope Breakdown (NEB) [1]. At this point vertebrate chromosomes appear as compact structures harboring an attachment point for the spindle microtubules physically recognizable as a primary constriction where the two sister chromatids are held together. The transition from an unshaped interphase chromosome to the highly structured mitotic chromosome (compare Figs. 1A and B) has fascinated researchers for several decades now; however a definite picture of how this process is achieved and regulated is not yet in our hands and it will require more investigation to comprehend the complete process. From a biochemical point of view a vertebrate mitotic chromosomes is composed of DNA, histone proteins (60%) and non-histone proteins (40%) [6]. I will discuss below what is known to date on the contribution of these two different

  13. Assignment of genetic linkage maps to diploid Solanum tuberosum pachytene chromosomes by BAC-FISH technology

    NARCIS (Netherlands)

    Tang, X.; Boer, de J.M.; Eck, van H.J.; Bachem, C.W.B.; Visser, R.G.F.; Jong, de J.H.

    2009-01-01

    A cytogenetic map has been developed for diploid potato (Solanum tuberosum), in which the arms of the 12 potato bivalents can be identified in pachytene complements using multicolor fluorescence in situ hybridization (FISH) with a set of 60 genetically anchored bacterial artificial chromosome (BAC)

  14. An integrated linkage, chromosome, and genome map for the yellow fever mosquito Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Vladimir A Timoshevskiy

    Full Text Available BACKGROUND: Aedes aegypti, the yellow fever mosquito, is an efficient vector of arboviruses and a convenient model system for laboratory research. Extensive linkage mapping of morphological and molecular markers localized a number of quantitative trait loci (QTLs related to the mosquito's ability to transmit various pathogens. However, linking the QTLs to Ae. aegypti chromosomes and genomic sequences has been challenging because of the poor quality of polytene chromosomes and the highly fragmented genome assembly for this species. METHODOLOGY/PRINCIPAL FINDINGS: Based on the approach developed in our previous study, we constructed idiograms for mitotic chromosomes of Ae. aegypti based on their banding patterns at early metaphase. These idiograms represent the first cytogenetic map developed for mitotic chromosomes of Ae. aegypti. One hundred bacterial artificial chromosome clones carrying major genetic markers were hybridized to the chromosomes using fluorescent in situ hybridization. As a result, QTLs related to the transmission of the filarioid nematode Brugia malayi, the avian malaria parasite Plasmodium gallinaceum, and the dengue virus, as well as sex determination locus and 183 Mbp of genomic sequences were anchored to the exact positions on Ae. aegypti chromosomes. A linear regression analysis demonstrated a good correlation between positions of the markers on the physical and linkage maps. As a result of the recombination rate variation along the chromosomes, 12 QTLs on the linkage map were combined into five major clusters of QTLs on the chromosome map. CONCLUSION: This study developed an integrated linkage, chromosome, and genome map-iMap-for the yellow fever mosquito. Our discovery of the localization of multiple QTLs in a few major chromosome clusters suggests a possibility that the transmission of various pathogens is controlled by the same genomic loci. Thus, the iMap will facilitate the identification of genomic determinants of

  15. Gametocidal chromosomes enhancing chromosome aberration in common wheat induced by 5-azacytidine.

    Science.gov (United States)

    Su, W-Y; Cong, W-W; Shu, Y-J; Wang, D; Xu, G-H; Guo, C-H

    2013-01-01

    The gametocidal (Gc) chromosome from Aegilops spp induces chromosome mutation, which is introduced into common wheat as a tool of chromosome manipulation for genetic improvement. The Gc chromosome functions similar to a restriction-modification system in bacteria, in which DNA methylation is an important regulator. We treated root tips of wheat carrying Gc chromosomes with the hypomethylation agent 5-azacytidine; chromosome breakage and micronuclei were observed in these root tips. The frequency of aberrations differed in wheat containing different Gc chromosomes, suggesting different functions inducing chromosome breakage. Gc chromosome 3C caused the greatest degree of chromosome aberration, while Gc chromosome 3C(SAT) and 2C caused only slight chromosome aberration. Gc chromosome 3C induced different degrees of chromosome aberration in wheat varieties Triticum aestivum var. Chinese Spring and Norin 26, demonstrating an inhibition function in common wheat. PMID:23884766

  16. Chromosome conservation in squamate reptiles revealed by comparative chromosome painting

    Czech Academy of Sciences Publication Activity Database

    Giovannotti, M.; Pokorná, Martina; Kratochvíl, L.; Caputo, V.; Olmo, E.; Ferguson-Smith, M. A.; Rens, W.

    Manchester : ICCS, 2011. 78-78. [Intarnational Chromosome Conference /18./. 29.08.2011-02.09.2011, Manchester] Institutional research plan: CEZ:AV0Z50450515 Keywords : squamate reptiles Subject RIV: EG - Zoology

  17. Numerous transitions of sex chromosomes in Diptera.

    Directory of Open Access Journals (Sweden)

    Beatriz Vicoso

    2015-04-01

    Full Text Available Many species groups, including mammals and many insects, determine sex using heteromorphic sex chromosomes. Diptera flies, which include the model Drosophila melanogaster, generally have XY sex chromosomes and a conserved karyotype consisting of six chromosomal arms (five large rods and a small dot, but superficially similar karyotypes may conceal the true extent of sex chromosome variation. Here, we use whole-genome analysis in 37 fly species belonging to 22 different families of Diptera and uncover tremendous hidden diversity in sex chromosome karyotypes among flies. We identify over a dozen different sex chromosome configurations, and the small dot chromosome is repeatedly used as the sex chromosome, which presumably reflects the ancestral karyotype of higher Diptera. However, we identify species with undifferentiated sex chromosomes, others in which a different chromosome replaced the dot as a sex chromosome or in which up to three chromosomal elements became incorporated into the sex chromosomes, and others yet with female heterogamety (ZW sex chromosomes. Transcriptome analysis shows that dosage compensation has evolved multiple times in flies, consistently through up-regulation of the single X in males. However, X chromosomes generally show a deficiency of genes with male-biased expression, possibly reflecting sex-specific selective pressures. These species thus provide a rich resource to study sex chromosome biology in a comparative manner and show that similar selective forces have shaped the unique evolution of sex chromosomes in diverse fly taxa.

  18. Bacterial Nail Infection (Paronychia)

    Science.gov (United States)

    ... of nail infection is often caused by a bacterial infection but may also be caused by herpes, a ... to a type of yeast called Candida , or bacterial infection, and this may lead to abnormal nail growth. ...

  19. Familial transmission of a deletion of chromosome 21 derived from a translocation between chromosome 21 and an inverted chromosome 22.

    Science.gov (United States)

    Aviv, H; Lieber, C; Yenamandra, A; Desposito, F

    1997-06-27

    Chromosome analysis of a newborn boy with Down syndrome resulted in the identification of a family with an unusual derivative chromosome 22. The child has 46 chromosomes, including two chromosomes 21, one normal chromosome 22, and a derivative chromosome 22. Giemsa banding and fluorescent in situ hybridization (FISH) studies show that the derivative chromosome is chromosome 22 with evidence of both paracentric and pericentric inversions, joined to the long arm of chromosome 21 from 21q21.2 to qter. The rearrangement results in partial trisomy 21 extending from 21q21.2 to 21q terminus in the patient. The child's mother, brother, maternal aunt, and maternal grandmother are all carriers of the derivative chromosome. All have 45 chromosomes, with one normal chromosome 21, one normal chromosome 22, and the derivative chromosome 22. The rearrangement results in the absence of the short arm, the centromere, and the proximal long arm of chromosome 21 (del 21pter-21q21.2) in carriers. Carriers of the derivative chromosome in this family have normal physical appearance, mild learning disabilities and poor social adjustment. PMID:9182781

  20. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    Management of bacterial infections is becoming increasingly difficult due to the emergence and increasing prevalence of bacterial pathogens that are resistant to available antibiotics. Conventional antibiotics generally kill bacteria by interfering with vital cellular functions, an approach that....... As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will...

  1. Meiosis and chromosome painting of sex chromosome systems in Ceboidea.

    Science.gov (United States)

    Mudry, M D; Rahn, I M; Solari, A J

    2001-06-01

    The identity of the chromosomes involved in the multiple sex system of Alouatta caraya (Aca) and the possible distribution of this system among other Ceboidea were investigated by chromosome painting of mitotic cells from five species and by analysis of meiosis at pachytene in two species. The identity of the autosome #7 (X2) involved in the multiple system of Aca and its breakage points were demonstrated by both meiosis and chromosome painting. These features are identical to those described by Consigliere et al. [1996] in Alouatta seniculus sara (Assa) and Alouatta seniculus arctoidea (Asar). This multiple system was absent in the other four Ceboidea species studied here. However, data from the literature strongly suggest the presence of this multiple in other members of this genus. The presence of this multiple system among several species and subspecies that show high levels of chromosome rearrangements may suggest a special selective value of this multiple. The meiotic features of the sex systems of Aca and Cebus apella paraguayanus (Cap) are strikingly different at pachytene, as the latter system is similar to the sex pair of man and other primates. The relatively large genetic distances between species presently showing this multiple system suggest that its origin is not recent. Other members of the same genus should be investigated at meiosis and by chromosome painting in order to know the extent and distribution of this complex sex-chromosome system. PMID:11376445

  2. Chromosome fragility in Freemartin cattle

    Directory of Open Access Journals (Sweden)

    V. Barbieri

    2010-04-01

    Full Text Available The aim of the present study was to verify chromosome fragility in freemartin cattle using chromosome aberration (CA and sister chromatid exchange (SCE tests. A total of eighteen co-twins were investigated. Fourteen animals were identified as cytogenetically chimeric (2n=60, XX/XY while 4 were classified as normal. Freemartin cattle showed a higher percentage of aneuploid cells (18.64% and highly significant statistical differences (P < 0.001 in mean values of gaps (4.53 ± 2.05, chromatid breaks (0.26 ± 0.51, and significant statistical differences (P < 0.005 in mean values of chromosome breaks (0.12 ± 0.43 when compared to 10 control animals from single births (aneuploid cells, 11.20%; gaps, 2.01 ± 1.42; chromatid breaks, 0.05 ± 0.22; chromosome breaks, 0.02 ± 0.14.

  3. Methods for chromosome-specific staining

    Science.gov (United States)

    Gray, Joe W.; Pinkel, Daniel

    1995-01-01

    Methods and compositions for chromosome-specific staining are provided. Compositions comprise heterogenous mixtures of labeled nucleic acid fragments having substantially complementary base sequences to unique sequence regions of the chromosomal DNA for which their associated staining reagent is specific. Methods include methods for making the chromosome-specific staining compositions of the invention, and methods for applying the staining compositions to chromosomes.

  4. Chromosome Architecture and Genome Organization

    OpenAIRE

    Giorgio Bernardi

    2015-01-01

    How the same DNA sequences can function in the three-dimensional architecture of interphase nucleus, fold in the very compact structure of metaphase chromosomes and go precisely back to the original interphase architecture in the following cell cycle remains an unresolved question to this day. The strategy used to address this issue was to analyze the correlations between chromosome architecture and the compositional patterns of DNA sequences spanning a size range from a few hundreds to a few...

  5. Chromosome evolution in Neotropical butterflies

    OpenAIRE

    Saura, Anssi; Von Schoultz, Barbara; Saura, Anja O.; Brown, Keith S., Jr.

    2013-01-01

    We list the chromosome numbers for 65 species of Neotropical Hesperiidae and 104 species or subspecies of Pieridae. In Hesperiidae the tribe Pyrrhopygini have a modal n = 28, Eudaminae and Pyrgini a modal n = 31, while Hesperiinae have n = around 29. Among Pieridae, Coliadinae have a strong modal n = 31 and among Pierinae Anthocharidini are almost fixed for n = 15 while Pierini vary with n = 26 as the most common chromosome number. Dismorphiinae show wide variation. We discuss these results i...

  6. Physical Model of Segregation of E.coli Chromosomes using Molecular Dynamics

    Science.gov (United States)

    Alnahhas, Faisal; Kharel, Savan

    2016-03-01

    Chromosome segregation is one of the most interesting physical processes during a bacterial cell cycle. We will use molecular dynamics simulations which will help us understand how strongly confined polymer segregates. In the presentation, we will discuss how segregation of initially overlapping circular chromosome occurs during a cell cycle. In particular, we will describe the role played by entropic mechanism in the demixing of overlapping circular polymer confined in a cylindrical boundary. We discuss how our polymer chains modeled as an E-coli chromosome experiences an effective repulsion, which ultimately leads to partition driven by the entropic forces. Also, we will also discuss how the segregation of circular chromosome in cylindrical confinement differs from a spherical confinement. Finally, we will discuss the role played by proteins and supercoiling in during the segregation process.

  7. Numerically abnormal chromosome constitutions in humans

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    Chapter 24, discusses numerically abnormal chromosome constitutions in humans. This involves abnormalities of human chromosome number, including polyploidy (when the number of sets of chromosomes increases) and aneuploidy (when the number of individual normal chromosomes changes). Chapter sections discuss the following chromosomal abnormalities: human triploids, imprinting and uniparental disomy, human tetraploids, hydatidiform moles, anomalies caused by chromosomal imbalance, 13 trisomy (D{sub 1} trisomy, Patau syndrome), 21 trisomy (Down syndrome), 18 trisomy syndrome (Edwards syndrome), other autosomal aneuploidy syndromes, and spontaneous abortions. The chapter concludes with remarks on the nonrandom participation of chromosomes in trisomy. 69 refs., 3 figs., 4 tabs.

  8. Chromosome evolution in Neotropical butterflies.

    Science.gov (United States)

    Saura, Anssi; Von Schoultz, Barbara; Saura, Anja O; Brown, Keith S

    2013-06-01

    We list the chromosome numbers for 65 species of Neotropical Hesperiidae and 104 species or subspecies of Pieridae. In Hesperiidae the tribe Pyrrhopygini have a modal n = 28, Eudaminae and Pyrgini a modal n = 31, while Hesperiinae have n = around 29. Among Pieridae, Coliadinae have a strong modal n = 31 and among Pierinae Anthocharidini are almost fixed for n = 15 while Pierini vary with n = 26 as the most common chromosome number. Dismorphiinae show wide variation. We discuss these results in the context of chromosome numbers of over 1400 Neotropical butterfly species and subspecies derived from about 3000 populations published here and in earlier papers of a series. The overall results show that many Neotropical groups are characterized by karyotype instability with several derived modal numbers or none at all, while almost all taxa of Lepidoptera studied from the other parts of the world have one of n = 29-31 as modal numbers. Possibly chromosome number changes become fixed in the course of speciation driven by biotic interactions. Population subdivision and structuring facilitate karyotype change. Factors that stabilize chromosome numbers include hybridization among species sharing the same number, migration, sexual selection and possibly the distribution of chromosomes within the nucleus. PMID:23865963

  9. Chromosome Architecture and Genome Organization

    Science.gov (United States)

    Bernardi, Giorgio

    2015-01-01

    How the same DNA sequences can function in the three-dimensional architecture of interphase nucleus, fold in the very compact structure of metaphase chromosomes and go precisely back to the original interphase architecture in the following cell cycle remains an unresolved question to this day. The strategy used to address this issue was to analyze the correlations between chromosome architecture and the compositional patterns of DNA sequences spanning a size range from a few hundreds to a few thousands Kilobases. This is a critical range that encompasses isochores, interphase chromatin domains and boundaries, and chromosomal bands. The solution rests on the following key points: 1) the transition from the looped domains and sub-domains of interphase chromatin to the 30-nm fiber loops of early prophase chromosomes goes through the unfolding into an extended chromatin structure (probably a 10-nm “beads-on-a-string” structure); 2) the architectural proteins of interphase chromatin, such as CTCF and cohesin sub-units, are retained in mitosis and are part of the discontinuous protein scaffold of mitotic chromosomes; 3) the conservation of the link between architectural proteins and their binding sites on DNA through the cell cycle explains the “mitotic memory” of interphase architecture and the reversibility of the interphase to mitosis process. The results presented here also lead to a general conclusion which concerns the existence of correlations between the isochore organization of the genome and the architecture of chromosomes from interphase to metaphase. PMID:26619076

  10. Evolution of Sex Chromosomes in Insects

    OpenAIRE

    Kaiser, Vera B; Bachtrog, Doris

    2010-01-01

    Sex chromosomes have many unusual features relative to autosomes. Y (or W) chromosomes lack genetic recombination, are male- (female-) limited, and show an abundance of genetically inert heterochromatic DNA but contain few functional genes. X (or Z) chromosomes also show sex-biased transmission (i.e., X chromosomes show female-biased and Z-chromosomes show male-biased inheritance) and are hemizygous in the heterogametic sex. Their unusual ploidy level and pattern of inheritance imply that sex...

  11. 人工颈椎椎间盘置换与颈前路减压融合术治疗脊髓型颈椎病的疗效分析%Comparison of artifical cervical disc replacement versus anterior discectomy and fusion for the treatment of cervical spondylotic myelopathy

    Institute of Scientific and Technical Information of China (English)

    杨兴; 薛峰; 盛晓文; 彭育沁; 陈兵乾

    2012-01-01

    目的 比较人工颈椎椎间盘置换术与颈前路椎间盘切除减压植骨融合术(anterior cervical discectomy and fusion,ACDF)治疗脊髓型颈椎病的临床疗效.方法 回顾性分析本院收治的人工颈椎椎间盘置换术及ACDF治疗的脊髓型颈椎病病例.测量所有患者颈椎活动度(range of motion,ROM),置换节段及相邻节段的ROM,并行日本骨科学会(Japanese Orthopaedic Association,JOA)评分及Odom分级.结果 所有患者术后JOA评分和Odom功能评定均得到显著改善.置换组术后颈椎ROM、置换节段及其邻近间隙平均ROM无明显改变,差异无统计学意义(P>0.05).ACDF组患者中,术后颈椎ROM显著减小,邻近间隙ROM明显增大,差异有统计学意义(P<0.05).置换组术后邻近节段的ROM明显小于ACDF组,差异有统计学意义(P<0.01).结论人工颈椎椎间盘置换术能保持颈椎ROM,避免邻近节段退变,早、中期疗效满意,远期效果尚有待临床进一步研究.%Objective To compare the clinical outcome of artifical cervical disc replacement versus anterior cervical discectomy and fusion ( ACDF ) in the treatment of cervical spondylotic myelopathy. Methods A total of 50 cases of cervical spondylotic myelopathy treated by artifical cervical disc replacement ( n = 20 ) or ACDF ( n = 30 ) were involved. Among these cases , the range of motion ( ROM ) of the cervical vertebra, the implanted level and the adjacent segment were measured. The Japanese Orthopaedic Association ( JOA ) score and Odom' s grade were record and analyzed. Results All of these patients were followed-up, and JOA score and Odom' s grade of all patients were significantly improved. The ROM of the cervical vertebrae, the implanted levels and the adjacent segments were preserved in artifical cervical disc replacement group ( P >0. 05 ). In the ACDF group, the ROM of the cervical vertebrae decreased, but the adjacent segments of the fusion segment compensatory increased remarkably( P 0

  12. Retrospective dosimetry using chromosome painting

    International Nuclear Information System (INIS)

    Chromosome aberration frequency measured in peripheral lymphocytes of persons exposed to ionizing radiation has been used since 1960s for dose assessment. Suspected overexposure is usually evaluated by the frequency of dicentrics and centric rings using an appropriate in vitro calibration curve. However, these chromosome aberrations are unstable with time after exposure and dose reconstruction may encounter uncertainties when the time between the exposure and the analysis is considerable or even unknown. It appears that translocations persist with time after exposure and may be used as an indication of acute past overexposures. Moreover, they appear to accumulate the cytogenetical information, which correlates with the dose received under fractionated, chronic or even occupational exposure conditions. Translocations may be detected using G-banding, which allows to score the total amount of radiation induced translocations but it is a time consuming method, or by Chromosome Painting, a method base on the Fluorescence in situ Hybridization (FISH) technique, painting only some chromosome pairs with specific whole chromosome probes and then extrapolating the observed translocation frequencies to the full genome. The latter method allows a faster aberration scoring than G-banding and appears to be the most promissory tool for biodosimetry, particularly when it is necessary to assess low doses and consequently to score a large number of metaphases, e.g. radiation workers exposed within dose limits. As with the unstable chromosome aberration, it is necessary an in vitro calibration curve based on the frequency of stable chromosome aberrations to assess doses. Our laboratory performed calibration curves for Co60 γ-rays based on the frequencies of unstable (dicentrics and centric rings detected by conventional Giemsa staining) and stable chromosome aberrations (translocations and inversions, detected by G-banding). In order to minimize the interlaboratory variability, we

  13. The Reduction of Chromosome Number in Meiosis Is Determined by Properties Built into the Chromosomes

    OpenAIRE

    Paliulis, Leocadia V.; Nicklas, R. Bruce

    2000-01-01

    In meiosis I, two chromatids move to each spindle pole. Then, in meiosis II, the two are distributed, one to each future gamete. This requires that meiosis I chromosomes attach to the spindle differently than meiosis II chromosomes and that they regulate chromosome cohesion differently. We investigated whether the information that dictates the division type of the chromosome comes from the whole cell, the spindle, or the chromosome itself. Also, we determined when chromosomes can switch from ...

  14. Chromosome segregation in plant meiosis

    Directory of Open Access Journals (Sweden)

    Linda eZamariola

    2014-06-01

    Full Text Available Faithful chromosome segregation in meiosis is essential for ploidy stability over sexual life cycles. In plants, defective chromosome segregation caused by gene mutations or other factors leads to the formation of unbalanced or unreduced gametes creating aneuploid or polyploid progeny, respectively. Accurate segregation requires the coordinated execution of conserved processes occurring throughout the two meiotic cell divisions. Synapsis and recombination ensure the establishment of chiasmata that hold homologous chromosomes together allowing their correct segregation in the first meiotic division, which is also tightly regulated by cell-cycle dependent release of cohesin and monopolar attachment of sister kinetochores to microtubules. In meiosis II, bi-orientation of sister kinetochores and proper spindle orientation correctly segregate chromosomes in four haploid cells. Checkpoint mechanisms acting at kinetochores control the accuracy of kinetochore-microtubule attachment, thus ensuring the completion of segregation. Here we review the current knowledge on the processes taking place during chromosome segregation in plant meiosis, focusing on the characterization of the molecular factors involved.

  15. Radiation-induced chromosomal instability

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, S. [GSI, Biophysics, Darmstadt (Germany)

    1999-03-01

    Recent studies on radiation-induced chromosomal instability in the progeny of exposed mammalian cells were briefly described as well as other related studies. For the analysis of chromosomal damage in clones, cells were seeded directly after exposure in cell well-dish to form single cell clones and post-irradiation chromosome aberrations were scored. Both exposure to isoeffective doses of X-ray or 270 MeV/u C-ions (13 keV/{mu}m) increased the number of clones with abnormal karyotype and the increase was similar for X-ray and for C-ions. Meanwhile, in the progeny of cells for mass cultures, there was no indication of a delayed expression of chromosomal damage up to 40 population doublings after the exposure. A high number of aberrant cells were only observed directly after exposure to 10.7 MeV/u O-ions, i.e. in the first cycle cells and decreased with subsequent cell divisions. The reason for these differences in the radiation-induced chromosomal instability between clonal isolates and mass culture has not been clarified. Recent studies indicated that genomic instability occurs at a high frequency in the progeny of cells irradiated with both sparsely and densely ionizing radiation. Such genomic instability is thought likely to increase the risk of carcinogenesis, but more data are required for a well understanding of the health risks resulting from radiation-induced delayed instability. (M.N.)

  16. Dean flow fractionation of chromosomes

    Science.gov (United States)

    Hockin, Matt; Sant, Himanshu J.; Capecchi, Mario; Gale, Bruce K.

    2016-03-01

    Efforts to transfer intact mammalian chromosomes between cells have been attempted for more than 50 years with the consistent result being transfer of sub unit length pieces regardless of method. Inertial microfluidics is a new field that has shown much promise in addressing the fractionation of particles in the 2-20 μm size range (with unknown limits) and separations are based upon particles being carried by curving confined flows (within a spiral shaped, often rectangular flow chamber) and migrating to stable "equilibrium" positions of varying distance from a chamber wall depending on the balance of dean and lift forces. We fabricated spiral channels for inertial microfluidic separations using a standard soft lithography process. The concentration of chromosomes, small contaminant DNA and large cell debris in each outlets were evaluated using microscope (60X) and a flow cytometer. Using Dean Flow Fractionation, we were able to focus 4.5 times more chromosomes in outlet 2 compared to outlet 4 where most of the large debris is found. We recover 16% of the chromosomes in outlet #1- 50% in 2, 23% in 3 and 11% in 4. It should be noted that these estimates of recovery do not capture one piece of information- it actually may be that the chromosomes at each outlet are physically different and work needs to be done to verify this potential.

  17. Chromosomal rearrangement interferes with meiotic X chromosome inactivation

    Czech Academy of Sciences Publication Activity Database

    Homolka, David; Ivánek, Robert; Čapková, Jana; Jansa, Petr; Forejt, Jiří

    2007-01-01

    Roč. 17, č. 10 (2007), s. 1431-1437. ISSN 1088-9051 R&D Projects: GA MŠk(CZ) 1M0520; GA ČR GA301/06/1334; GA ČR GA301/07/1383 Grant ostatní: Howard Hughes Medical Institute(US) HHMI 55000306 Institutional research plan: CEZ:AV0Z50520514 Keywords : chromosomal translocations * meiotic X chromosome inactivation * spermatogenesis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 11.224, year: 2007

  18. Solving the mysteries of the bacterial cell – application of novel techniques in fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Magdalena Donczew

    2011-01-01

    Full Text Available We have reviewed how the development of fluorescent markers, triggered by the discovery of green fluorescence protein and its other color variants leading to the establishment of methods for studies of protein interactions with application of fluorescent proteins, affected the view of bacterial cell organization. Application of the new microscopic methods allowed localization of proteins and chromosomal regions, and observation of their migration in real time. These studies revealed the spatial organization of bacterial cells which includes specific subcellular localization of proteins, the presence of dynamic cytoskeletal structures, orchestrated and active segregation of chromosomes, and spatiotemporal gene regulation.

  19. Vimentin in Bacterial Infections

    DEFF Research Database (Denmark)

    Mak, Tim N; Brüggemann, Holger

    2016-01-01

    -vimentin interactions are presented in this review: the role of vimentin in pathogen-binding on the cell surface and subsequent bacterial invasion and the interaction of cytosolic vimentin and intracellular pathogens with regards to innate immune signaling. Mechanistic insight is presented involving distinct bacterial......Despite well-studied bacterial strategies to target actin to subvert the host cell cytoskeleton, thus promoting bacterial survival, replication, and dissemination, relatively little is known about the bacterial interaction with other components of the host cell cytoskeleton, including intermediate...... filaments (IFs). IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge...

  20. Role of Premature Stop Codons in Bacterial Evolution▿

    OpenAIRE

    Wong, Tit-Yee; Fernandes, Sanjit; Sankhon, Naby; Leong, Patrick P.; Kuo, Jimmy; Liu, Jong-Kang

    2008-01-01

    When the stop codons TGA, TAA, and TAG are found in the second and third reading frames of a protein-encoding gene, they are considered premature stop codons (PSC). Deinococcus radiodurans disproportionately favored TGA more than the other two triplets as a PSC. The TGA triplet was also found more often in noncoding regions and as a stop codon, though the bias was less pronounced. We investigated this phenomenon in 72 bacterial species with widely differing chromosomal GC contents. Although T...

  1. Escape Artists of the X Chromosome.

    Science.gov (United States)

    Balaton, Bradley P; Brown, Carolyn J

    2016-06-01

    Inactivation of one X chromosome in mammalian females achieves dosage compensation between XX females and XY males; however, over 15% of human X-linked genes continue to be expressed from the inactive X chromosome. New genomic methodologies have improved our identification and characterization of these escape genes, revealing the importance of DNA sequence, chromatin structure, and chromosome ultrastructure in regulating expression from an otherwise inactive chromosome. Study of these exceptions to the rule of silencing highlights the interconnectedness of chromatin and chromosome structure in X-chromosome inactivation (XCI). Recent advances also demonstrate the importance of these genes in sexually dimorphic disease risk, particularly cancer. PMID:27103486

  2. Demonstrating Bacterial Flagella.

    Science.gov (United States)

    Porter, John R.; And Others

    1992-01-01

    Describes an effective laboratory method for demonstrating bacterial flagella that utilizes the Proteus mirabilis organism and a special harvesting technique. Includes safety considerations for the laboratory exercise. (MDH)

  3. Adults with Chromosome 18 Abnormalities.

    Science.gov (United States)

    Soileau, Bridgette; Hasi, Minire; Sebold, Courtney; Hill, Annice; O'Donnell, Louise; Hale, Daniel E; Cody, Jannine D

    2015-08-01

    The identification of an underlying chromosome abnormality frequently marks the endpoint of a diagnostic odyssey. However, families are frequently left with more questions than answers as they consider their child's future. In the case of rare chromosome conditions, a lack of longitudinal data often makes it difficult to provide anticipatory guidance to these families. The objective of this study is to describe the lifespan, educational attainment, living situation, and behavioral phenotype of adults with chromosome 18 abnormalities. The Chromosome 18 Clinical Research Center has enrolled 483 individuals with one of the following conditions: 18q-, 18p-, Tetrasomy 18p, and Ring 18. As a part of the ongoing longitudinal study, we collect data on living arrangements, educational level attained, and employment status as well as data on executive functioning and behavioral skills on an annual basis. Within our cohort, 28 of the 483 participants have died, the majority of whom have deletions encompassing the TCF4 gene or who have unbalanced rearrangement involving other chromosomes. Data regarding the cause of and age at death are presented. We also report on the living situation, educational attainment, and behavioral phenotype of the 151 participants over the age of 18. In general, educational level is higher for people with all these conditions than implied by the early literature, including some that received post-high school education. In addition, some individuals are able to live independently, though at this point they represent a minority of patients. Data on executive function and behavioral phenotype are also presented. Taken together, these data provide insight into the long-term outcome for individuals with a chromosome 18 condition. This information is critical in counseling families on the range of potential outcomes for their child. PMID:25403900

  4. Making chromosome abnormalities treatable conditions.

    Science.gov (United States)

    Cody, Jannine DeMars; Hale, Daniel Esten

    2015-09-01

    Individuals affected by the classic chromosome deletion syndromes which were first identified at the beginning of the genetic age, are now positioned to benefit from genomic advances. This issue highlights five of these conditions (4p-, 5p-, 11q-, 18p-, and 18q-). It focuses on the increased in understanding of the molecular underpinnings and envisions how these can be transformed into effective treatments. While it is scientifically exciting to see the phenotypic manifestations of hemizygosity being increasingly understood at the molecular and cellular level, it is even more amazing to consider that we are now on the road to making chromosome abnormalities treatable conditions. PMID:26351122

  5. Gene regulation of plasmid- and chromosome-determined inorganic ion transport in bacteria.

    OpenAIRE

    Silver, S; Walderhaug, M

    1992-01-01

    Regulation of chromosomally determined nutrient cation and anion uptake systems shows important similarities to regulation of plasmid-determined toxic ion resistance systems that mediate the outward transport of deleterious ions. Chromosomally determined transport systems result in accumulation of K+, Mg2+, Fe3+, Mn2+, PO4(3-), SO4(2-), and additional trace nutrients, while bacterial plasmids harbor highly specific resistance systems for AsO2-, AsO4(3-), CrO4(2-), Cd2+, Co2+, Cu2+, Hg2+, Ni2+...

  6. The Mouse Clock Locus: Sequence and Comparative Analysis of 204 Kb from Mouse Chromosome 5

    OpenAIRE

    Wilsbacher, Lisa D.; Sangoram, Ashvin M.; Antoch, Marina P.; Takahashi, Joseph S.

    2000-01-01

    The Clock gene encodes a basic helix-loop-helix (bHLH)–PAS transcription factor that regulates circadian rhythms in mice. We previously cloned Clock in mouse and human using a battery of behavioral and molecular techniques, including shotgun sequencing of two bacterial artificial chromosome (BAC) clones. Here we report the finished sequence of a 204-kb region from mouse chromosome 5. This region contains the complete loci for the Clock and Tpardl (pFT27) genes, as well as the 3′ partial locus...

  7. Using Chromosomes to Teach Evolution: Chromosomal Rearrangements in Speciation Events.

    Science.gov (United States)

    Offner, Susan

    1994-01-01

    Uses diagrams to aid in discussing how the English map of the human chromosomes, published by Offner in 1993, can be used to illustrate some important questions in evolution, as well as give students a glimpse into some of the mechanisms underlying evolutionary change. (ZWH)

  8. Characterization of chromosome structures of Falconinae (Falconidae, Falconiformes, Aves) by chromosome painting and delineation of chromosome rearrangements during their differentiation

    OpenAIRE

    Nishida, Chizuko; Ishijima, Junko; KOSAKA, Ayumi; Tanabe, Hideyuki; Habermann, Felix A.; Griffin, Darren K.; MATSHUDA, Yoichi; 秀之, 田辺

    2008-01-01

    Karyotypes of most bird species are characterized by around 2n = 80 chromosomes, comprising 7–10 pairs of large- and medium-sized macrochromosomes including sex chromosomes and numerous morphologically indistinguishable microchromosomes. The Falconinae of the Falconiformes has a different karyotype from the typical avian karyotype in low chromosome numbers, little size difference between macrochromosomes and a smaller number of microchromosomes. To characterize chromosome structures of Falcon...

  9. Characterization of chromosome structures of Falconinae (Falconidae, Falconiformes, Aves) by chromosome painting and delineation of chromosome rearrangements during their differentiation

    OpenAIRE

    Nishida, Chizuko; Ishijima, Junko; KOSAKA, Ayumi; Tanabe, Hideyuki; Habermann, Felix A.; Griffin, Darren K.; Matsuda, Yoichi

    2008-01-01

    Karyotypes of most bird species are characterized by around 2n = 80 chromosomes, comprising 7Y10 pairs of large- and medium-sized macrochromosomes including sex chromosomes and numerous morphologically indistinguishable microchromosomes. The Falconinae of the Falconiformes has a different karyotype from the typical avian karyotype in low chromosome numbers, little size difference between macrochromosomes and a smaller number of microchromosomes. To characterize chromosome structures of Falcon...

  10. Pulmonary bacterial pathogens in cystic fibrosis patients and antibiotic therapy: a tool for the health workers

    OpenAIRE

    2008-01-01

    Cystic fibrosis is the most common and best known genetic disease involving a defect in transepithelial Cl- transport by mutations in the CF gene on chromosome 7, which codes for the cystic fibrosis transmembrane conductance regulator protein (CFTR). The most serious symptoms are observed in the lungs, augmenting the risk of bacterial infection. The objective of this review was to describe the bacterial pathogens colonizing patients with cystic fibrosis. A systematic search was conducted usin...

  11. Mathematical glimpse on the Y chromosome degeneration

    Science.gov (United States)

    Lobo, M. P.

    2006-04-01

    The Y chromosomes are genetically degenerate and do not recombine with their matching partners X. Non-recombination of XY pairs has been pointed out as the key factor for the degeneration of the Y chromosome. The aim here is to show that there is a mathematical asymmetry in sex chromosomes which leads to the degeneration of Y chromosomes even in the absence of XX and XY recombination. A model for sex-chromosome evolution in a stationary regime is proposed. The consequences of their asymmetry are analyzed and lead us to a couple of conclusions. First, Y chromosome degeneration shows up sqrt{2} more often than X chromosome degeneration. Second, if nature prohibits female mortalities from beeing exactly 50%, then Y chromosome degeneration is inevitable.

  12. Shuffling bacterial metabolomes

    OpenAIRE

    Thomason, Brendan; Read, Timothy D.

    2006-01-01

    Horizontal gene transfer (HGT) has a far more significant role than gene duplication in bacterial evolution. This has recently been illustrated by work demonstrating the importance of HGT in the emergence of bacterial metabolic networks, with horizontally acquired genes being placed in peripheral pathways at the outer branches of the networks.

  13. Vimentin in Bacterial Infections.

    Science.gov (United States)

    Mak, Tim N; Brüggemann, Holger

    2016-01-01

    Despite well-studied bacterial strategies to target actin to subvert the host cell cytoskeleton, thus promoting bacterial survival, replication, and dissemination, relatively little is known about the bacterial interaction with other components of the host cell cytoskeleton, including intermediate filaments (IFs). IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge about the role of IFs in bacterial infections, focusing on the type III IF protein vimentin. Recent studies have revealed the involvement of vimentin in host cell defenses, acting as ligand for several pattern recognition receptors of the innate immune system. Two main aspects of bacteria-vimentin interactions are presented in this review: the role of vimentin in pathogen-binding on the cell surface and subsequent bacterial invasion and the interaction of cytosolic vimentin and intracellular pathogens with regards to innate immune signaling. Mechanistic insight is presented involving distinct bacterial virulence factors that target vimentin to subvert its function in order to change the host cell fate in the course of a bacterial infection. PMID:27096872

  14. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    Management of bacterial infections is becoming increasingly difficult due to the emergence and increasing prevalence of bacterial pathogens that are resistant to available antibiotics. Conventional antibiotics generally kill bacteria by interfering with vital cellular functions, an approach that ...... become valuable weapons for preventing pathogen contamination and fighting infectious diseases in the future....

  15. Vimentin in Bacterial Infections

    Directory of Open Access Journals (Sweden)

    Tim N. Mak

    2016-04-01

    Full Text Available Despite well-studied bacterial strategies to target actin to subvert the host cell cytoskeleton, thus promoting bacterial survival, replication, and dissemination, relatively little is known about the bacterial interaction with other components of the host cell cytoskeleton, including intermediate filaments (IFs. IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge about the role of IFs in bacterial infections, focusing on the type III IF protein vimentin. Recent studies have revealed the involvement of vimentin in host cell defenses, acting as ligand for several pattern recognition receptors of the innate immune system. Two main aspects of bacteria-vimentin interactions are presented in this review: the role of vimentin in pathogen-binding on the cell surface and subsequent bacterial invasion and the interaction of cytosolic vimentin and intracellular pathogens with regards to innate immune signaling. Mechanistic insight is presented involving distinct bacterial virulence factors that target vimentin to subvert its function in order to change the host cell fate in the course of a bacterial infection.

  16. CHROMOSOMAL MULTIPLICITY IN BURKHOLDERIA CEPACIA

    Science.gov (United States)

    We have used CHEF gel electrophoresis to screen preparations of large DNA from different Burkholderia cepacia isolates for the presence of DNA species corresponding to the linearized forms of the three chromosomes of 3.4,2.5, and 0.9 Mb identified in B. cepacia strain 17616. DNA ...

  17. Vibrio chromosome-specific families

    DEFF Research Database (Denmark)

    Lukjancenko, Oksana; Ussery, David

    2014-01-01

    We have compared chromosome-specific genes in a set of 18 finished Vibrio genomes, and, in addition, also calculated the pan- and core-genomes from a data set of more than 250 draft Vibrio genome sequences. These genomes come from 9 known species and 2 unknown species. Within the finished...

  18. Chromosome Territory Modeller and Viewer.

    Science.gov (United States)

    Tkacz, Magdalena A; Chromiński, Kornel; Idziak-Helmcke, Dominika; Robaszkiewicz, Ewa; Hasterok, Robert

    2016-01-01

    This paper presents ChroTeMo, a tool for chromosome territory modelling, accompanied by ChroTeVi-a chromosome territory visualisation software that uses the data obtained by ChroTeMo. These tools have been developed in order to complement the molecular cytogenetic research of interphase nucleus structure in a model grass Brachypodium distachyon. Although the modelling tool has been initially created for one particular species, it has universal application. The proposed version of ChroTeMo allows for generating a model of chromosome territory distribution in any given plant or animal species after setting the initial, species-specific parameters. ChroTeMo has been developed as a fully probabilistic modeller. Due to this feature, the comparison between the experimental data on the structure of a nucleus and the results obtained from ChroTeMo can indicate whether the distribution of chromosomes inside a nucleus is also fully probabilistic or is subjected to certain non-random patterns. The presented tools have been written in Python, so they are multiplatform, portable and easy to read. Moreover, if necessary they can be further developed by users writing their portions of code. The source code, documentation, and wiki, as well as the issue tracker and the list of related articles that use ChroTeMo and ChroTeVi, are accessible in a public repository at Github under GPL 3.0 license. PMID:27505434

  19. Chromosome Territory Modeller and Viewer

    Science.gov (United States)

    Idziak-Helmcke, Dominika; Robaszkiewicz, Ewa; Hasterok, Robert

    2016-01-01

    This paper presents ChroTeMo, a tool for chromosome territory modelling, accompanied by ChroTeVi–a chromosome territory visualisation software that uses the data obtained by ChroTeMo. These tools have been developed in order to complement the molecular cytogenetic research of interphase nucleus structure in a model grass Brachypodium distachyon. Although the modelling tool has been initially created for one particular species, it has universal application. The proposed version of ChroTeMo allows for generating a model of chromosome territory distribution in any given plant or animal species after setting the initial, species-specific parameters. ChroTeMo has been developed as a fully probabilistic modeller. Due to this feature, the comparison between the experimental data on the structure of a nucleus and the results obtained from ChroTeMo can indicate whether the distribution of chromosomes inside a nucleus is also fully probabilistic or is subjected to certain non-random patterns. The presented tools have been written in Python, so they are multiplatform, portable and easy to read. Moreover, if necessary they can be further developed by users writing their portions of code. The source code, documentation, and wiki, as well as the issue tracker and the list of related articles that use ChroTeMo and ChroTeVi, are accessible in a public repository at Github under GPL 3.0 license. PMID:27505434

  20. Multicolor spectral karyotyping of human chromosomes.

    Science.gov (United States)

    Schröck, E; du Manoir, S; Veldman, T; Schoell, B; Wienberg, J; Ferguson-Smith, M A; Ning, Y; Ledbetter, D H; Bar-Am, I; Soenksen, D; Garini, Y; Ried, T

    1996-07-26

    The simultaneous and unequivocal discernment of all human chromosomes in different colors would be of significant clinical and biologic importance. Whole-genome scanning by spectral karyotyping allowed instantaneous visualization of defined emission spectra for each human chromosome after fluorescence in situ hybridization. By means of computer separation (classification) of spectra, spectrally overlapping chromosome-specific DNA probes could be resolved, and all human chromosomes were simultaneously identified. PMID:8662537

  1. CHROMOSOMAL ABNORMALITIES IN PATIENTS WITH SPERM DISORDERS

    OpenAIRE

    L. Y. Pylyp; L. A. Spinenko; V. D. Zukin; N. M. Bilko

    2013-01-01

    Chromosomal abnormalities are among the most common genetic causes of spermatogenic disruptions. Carriers of chromosomal abnormalities are at increased risk of infertility, miscarriage or birth of a child with unbalanced karyotype due to the production of unbalanced gametes. The natural selection against chromosomally abnormal sperm usually prevents fertilization with sperm barring in cases of serious chromosomal abnormalities. However, assisted reproductive technologies in general and intrac...

  2. Evolution of sex chromosomes ZW of Schistosoma mansoni inferred from chromosome paint and BAC mapping analyses.

    Science.gov (United States)

    Hirai, Hirohisa; Hirai, Yuriko; LoVerde, Philip T

    2012-12-01

    Chromosomes of schistosome parasites among digenetic flukes have a unique evolution because they exhibit the sex chromosomes ZW, which are not found in the other groups of flukes that are hermaphrodites. We conducted molecular cytogenetic analyses for investigating the sex chromosome evolution using chromosome paint analysis and BAC clones mapping. To carry this out, we developed a technique for making paint probes of genomic DNA from a single scraped chromosome segment using a chromosome microdissection system, and a FISH mapping technique for BAC clones. Paint probes clearly identified each of the 8 pairs of chromosomes by a different fluorochrome color. Combination analysis of chromosome paint analysis with Z/W probes and chromosome mapping with 93 BAC clones revealed that the W chromosome of Schistosoma mansoni has evolved by at least four inversion events and heterochromatinization. Nine of 93 BAC clones hybridized with both the Z and W chromosomes, but the locations were different between Z and W chromosomes. The homologous regions were estimated to have moved from the original Z chromosome to the differentiated W chromosome by three inversions events that occurred before W heterohcromatinization. An inversion that was observed in the heterochromatic region of the W chromosome likely occurred after W heterochromatinization. These inversions and heterochromatinization are hypothesized to be the key factors that promoted the evolution of the W chromosome of S. mansoni. PMID:22831897

  3. Long-Range Periodic Patterns in Microbial Genomes Indicate Significant Multi-Scale Chromosomal Organization.

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Genome organization can be studied through analysis of chromosome position-dependent patterns in sequence-derived parameters. A comprehensive analysis of such patterns in prokaryotic sequences and genome-scale functional data has yet to be performed. We detected spatial patterns in sequence-derived parameters for 163 chromosomes occurring in 135 bacterial and 16 archaeal organisms using wavelet analysis. Pattern strength was found to correlate with organism-specific features such as genome size, overall GC content, and the occurrence of known motility and chromosomal binding proteins. Given additional functional data for Escherichia coli, we found significant correlations among chromosome position dependent patterns in numerous properties, some of which are consistent with previously experimentally identified chromosome macrodomains. These results demonstrate that the large-scale organization of most sequenced genomes is significantly nonrandom, and, moreover, that this organization is likely linked to genome size, nucleotide composition, and information transfer processes. Constraints on genome evolution and design are thus not solely dependent upon information content, but also upon an intricate multi-parameter, multi-length-scale organization of the chromosome.

  4. Physical mapping, expression analysis and polymorphism survey of resistance gene analogues on chromosome 11 of rice

    Indian Academy of Sciences (India)

    Irfan A Ghazi; Prem S Srivastava; Vivek Dalal; Kishor Gaikwad; Ashok K Singh; Tilak R Sharma; Nagendra K Singh; Trilochan Mohapatra

    2009-06-01

    Rice is the first cereal genome with a finished sequence and a model crop that has important syntenic relationships with other cereal species. The objectives of our study were to identify resistance gene analogue (RGA) sequences from chromosome 11 of rice, understand their expression in other cereals and dicots by in silico analysis, determine their presence on other rice chromosomes, and evaluate the extent of polymorphism and actual expression in a set of rice genotypes. A total of 195 RGAs were predicted and physically localised. Of these, 91.79% expressed in rice, and 51.28% expressed in wheat, which was the highest among other cereals. Among monocots, sugarcane showed the highest (78.92%) expression, while among dicots, RGAs were maximally expressed in Arabidopsis (11.79%). Interestingly, two of the chromosome 11-specific RGAs were found to be expressing in all the organisms studied. Eighty RGAs of chromosome 11 had significant homology with chromosome 12, which was the maximum among all the rice chromosomes. Thirty-one per cent of the RGAs used in polymerase chain reaction (PCR) amplification showed polymorphism in a set of rice genotypes. Actual gene expression analysis revealed post-inoculation induction of one RGA in the rice line IRBB-4 carrying the bacterial blight resistance gene Xa-4. Our results have implications for the development of sequence-based markers and functional validation of specific RGAs in rice.

  5. Chromosome Aberrations by Heavy Ions

    Science.gov (United States)

    Ballarini, Francesca; Ottolenghi, Andrea

    It is well known that mammalian cells exposed to ionizing radiation can show different types of chromosome aberrations (CAs) including dicentrics, translocations, rings, deletions and complex exchanges. Chromosome aberrations are a particularly relevant endpoint in radiobiology, because they play a fundamental role in the pathways leading either to cell death, or to cell conversion to malignancy. In particular, reciprocal translocations involving pairs of specific genes are strongly correlated (and probably also causally-related) with specific tumour types; a typical example is the BCR-ABL translocation for Chronic Myeloid Leukaemia. Furthermore, aberrations can be used for applications in biodosimetry and more generally as biomarkers of exposure and risk, that is the case for cancer patients monitored during Carbon-ion therapy and astronauts exposed to space radiation. Indeed hadron therapy and astronauts' exposure to space radiation represent two of the few scenarios where human beings can be exposed to heavy ions. After a brief introduction on the main general features of chromosome aberrations, in this work we will address key aspects of the current knowledge on chromosome aberration induction, both from an experimental and from a theoretical point of view. More specifically, in vitro data will be summarized and discussed, outlining important issues such as the role of interphase death/mitotic delay and that of complex-exchange scoring. Some available in vivo data on cancer patients and astronauts will be also reported, together with possible interpretation problems. Finally, two of the few available models of chromosome aberration induction by ionizing radiation (including heavy ions) will be described and compared, focusing on the different assumptions adopted by the authors and on how these models can deal with heavy ions.

  6. A case of trisomy of chromosome 15

    OpenAIRE

    Coldwell, S; Fitzgerald, B.; Semmens, J.M.; Ede, R; Bateman, C

    1981-01-01

    We describe a case of trisomy of chromosome 15 in an infant who presented at birth with numerous abnormalities. As far as we are aware this chromosomal abnormality has not been described before. On the basis of this one case there appear to be no features which are specific to this chromosomal abnormality.

  7. Time scale of entropic segregation of flexible polymers in confinement: Implications for chromosome segregation in filamentous bacteria

    OpenAIRE

    Arnold, Axel; Jun, Suckjoon

    2007-01-01

    We report molecular dynamics simulations of the segregation of two overlapping chains in cylindrical confinement. We find that the entropic repulsion between the chains can be sufficiently strong to cause segregation on a time scale that is short compared to the one for diffusion. This result implies that entropic driving forces are sufficiently strong to cause rapid bacterial chromosome segregation.

  8. Chromosomal instability in Streptomyces avermitilis: major deletion in the central region and stable circularized chromosome

    Directory of Open Access Journals (Sweden)

    Wen Ying

    2010-07-01

    Full Text Available Abstract Background The chromosome of Streptomyces has been shown to be unstable, frequently undergoing gross chromosomal rearrangements. However, the mechanisms underlying this phenomenon remain unclear, with previous studies focused on two chromosomal ends as targets for rearrangements. Here we investigated chromosomal instability of Streptomyces avermitilis, an important producer of avermectins, and characterized four gross chromosomal rearrangement events, including a major deletion in the central region. The present findings provide a valuable contribution to the mechanistic study of genetic instability in Streptomyces. Results Thirty randomly-selected "bald" mutants derived from the wild-type strain all contained gross chromosomal rearrangements of various types. One of the bald mutants, SA1-8, had the same linear chromosomal structure as the high avermectin-producing mutant 76-9. Chromosomes of both strains displayed at least three independent chromosomal rearrangements, including chromosomal arm replacement to form new 88-kb terminal inverted repeats (TIRs, and two major deletions. One of the deletions eliminated the 36-kb central region of the chromosome, but surprisingly did not affect viability of the cells. The other deletion (74-kb was internal to the right chromosomal arm. The chromosome of another bald mutant, SA1-6, was circularized with deletions at both ends. No obvious homology was found in all fusion sequences. Generational stability analysis showed that the chromosomal structure of SA1-8 and SA1-6 was stable. Conclusions Various chromosomal rearrangements, including chromosomal arm replacement, interstitial deletions and chromosomal circularization, occurred in S. avermitilis by non-homologous recombination. The finding of an inner deletion involving in the central region of S. avermitilis chromosome suggests that the entire Streptomyces chromosome may be the target for rearrangements, which are not limited, as previously

  9. The origin of human chromosome 2 analyzed by comparative chromosome mapping with a DNA microlibrary

    OpenAIRE

    Wienberg, Johannes; Jauch, Anna; Lüdecke, H J; Senger, G; Horsthemke, B; Claussen, U; Cremer, Thomas; Arnold, N.; Lengauer, Christoph

    1994-01-01

    Fluorescencein situ hybridization (FISH) of microlibraries established from distinct chromosome subregions can test the evolutionary conservation of chromosome bands as well as chromosomal rearrangements that occurred during primate evolution and will help to clarify phylogenetic relationships. We used a DNA library established by microdissection and microcloning from the entire long arm of human chromosome 2 for fluorescencein situ hybridization and comparative mapping of the chromosomes of ...

  10. Temporal genomic evolution of bird sex chromosomes

    DEFF Research Database (Denmark)

    Wang, Zongji; Zhang, Jilin; Yang, Wei;

    2014-01-01

    driving forces of Z chromosome evolution, we analyze here 45 newly available bird genomes and four species' transcriptomes, over their course of recombination loss between the sex chromosomes. RESULTS: We show Z chromosomes in general have a significantly higher substitution rate in introns and synonymous...... evolved very recently. CONCLUSIONS: In conclusion, we uncover that the sequence and expression patterns of Z chromosome genes covary with their ages of becoming Z-linked. In contrast to the mammalian X chromosomes, such patterns are mainly driven by mutational bias and genetic drift in birds, due...... to the opposite sex-biased inheritance of Z vs. X....

  11. Holoprosencephaly due to numeric chromosome abnormalities.

    Science.gov (United States)

    Solomon, Benjamin D; Rosenbaum, Kenneth N; Meck, Jeanne M; Muenke, Maximilian

    2010-02-15

    Holoprosencephaly (HPE) is the most common malformation of the human forebrain. When a clinician identifies a patient with HPE, a routine chromosome analysis is often the first genetic test sent for laboratory analysis in order to assess for a structural or numerical chromosome anomaly. An abnormality of chromosome number is overall the most frequently identified etiology in a patient with HPE. These abnormalities include trisomy 13, trisomy 18, and triploidy, though several others have been reported. Such chromosome number abnormalities are almost universally fatal early in gestation or in infancy. Clinical features of specific chromosome number abnormalities may be recognized by phenotypic manifestations in addition to the HPE. PMID:20104610

  12. Novel insights into mitotic chromosome condensation

    Science.gov (United States)

    Piskadlo, Ewa; Oliveira, Raquel A.

    2016-01-01

    The fidelity of mitosis is essential for life, and successful completion of this process relies on drastic changes in chromosome organization at the onset of nuclear division. The mechanisms that govern chromosome compaction at every cell division cycle are still far from full comprehension, yet recent studies provide novel insights into this problem, challenging classical views on mitotic chromosome assembly. Here, we briefly introduce various models for chromosome assembly and known factors involved in the condensation process (e.g. condensin complexes and topoisomerase II). We will then focus on a few selected studies that have recently brought novel insights into the mysterious way chromosomes are condensed during nuclear division.

  13. Therapeutic Experiment of Compound Shenqin on Sickness Dog of Myocarditis Parvovirus Caused by Artifical Infection%复方参芩对人工感染心肌炎型细小病毒病犬的疗效试验

    Institute of Scientific and Technical Information of China (English)

    杜林林; 刘娟; 刘聪; 李鑫; 吕雪

    2012-01-01

    本试验为探讨复方参芩对人工感染心肌炎型细小病毒病犬的疗效,将犬分为空白对照组、模型组、阳性药物对照组、复方参芩组,用犬细小病毒接种建立动物模型,用复方参芩预防犬细小病毒病,应用生物信号采集系统的心电图技术测定试验动物的心率、心电图,取心脏石蜡包埋、切片、镜检.试验结果显示,攻毒后3d,模型组犬心率和心电图异常率增加,心肌损害严重;复方参芩组犬心率保持正常,心电图异常率显著低于模型组犬,心肌组织与空白对照组相比差异不显著.试验犬感染病毒第5天,空白对照组犬未出现死亡,模型组犬死亡率为100%,复方参芩组保护率为80%,阳性药物对照组保护率为70%.表明复方参芩能有效预防心肌炎型犬细小病毒病.%To study therapeutic experiment of compound Shenqin on sickness dog of myocarditis parvovirus caused by artifi-cal infection. The dogs were divided into control group,model group, positive control group,compound Shenqin group. Animal model was established with canine parvovirus. And canine parvovirus disease was prevented with compound Shenqin, experimental animals the heart rate and electrocardiogram was determinated by the biological signal acquisition system of ECG technology. Then completion of animal experiments, the animals were killed and the heart was paraffin-embedded, tissue section, microscopic examination. The results showed that after infection the third day,the heart rate and disorder rate of electrocardiogram of dog in model group was increased, serious damage to myocardial;the heart rate of dog in the compound Shenqin group retains normally,the disorder rate of electrocardiogram were significantly lower than dog in the model group, cardiac tissue compared with the control group no significantly difference. After experimental animals infected the fifth day, the death rate of dog in the model group is up to 100 percent. But the

  14. Transient Microgeographic Clines during B Chromosome Invasion.

    Science.gov (United States)

    Camacho, Juan Pedro M; Shaw, Michael W; Cabrero, Josefa; Bakkali, Mohammed; Ruíz-Estévez, Mercedes; Ruíz-Ruano, Francisco J; Martín-Blázquez, Rubén; López-León, María Dolores

    2015-11-01

    The near-neutral model of B chromosome evolution predicts that the invasion of a new population should last some tens of generations, but the details on how it proceeds in real populations are mostly unknown. Trying to fill this gap, we analyze here a natural population of the grasshopper Eyprepocnemis plorans at three time points during the last 35 years. Our results show that B chromosome frequency increased significantly during this period and that a cline observed in 1992 had disappeared in 2012 once B chromosome frequency reached an upper limit at all sites sampled. This indicates that, during B chromosome invasion, transient clines for B chromosome frequency are formed at the invasion front on a microgeographic scale. Computer simulation experiments showed that the pattern of change observed for genotypic frequencies is consistent with the existence of B chromosome drive through females and selection against individuals with a high number of B chromosomes. PMID:26655780

  15. Mitosis. Microtubule detyrosination guides chromosomes during mitosis.

    Science.gov (United States)

    Barisic, Marin; Silva e Sousa, Ricardo; Tripathy, Suvranta K; Magiera, Maria M; Zaytsev, Anatoly V; Pereira, Ana L; Janke, Carsten; Grishchuk, Ekaterina L; Maiato, Helder

    2015-05-15

    Before chromosomes segregate into daughter cells, they align at the mitotic spindle equator, a process known as chromosome congression. Centromere-associated protein E (CENP-E)/Kinesin-7 is a microtubule plus-end-directed kinetochore motor required for congression of pole-proximal chromosomes. Because the plus-ends of many astral microtubules in the spindle point to the cell cortex, it remains unknown how CENP-E guides pole-proximal chromosomes specifically toward the equator. We found that congression of pole-proximal chromosomes depended on specific posttranslational detyrosination of spindle microtubules that point to the equator. In vitro reconstitution experiments demonstrated that CENP-E-dependent transport was strongly enhanced on detyrosinated microtubules. Blocking tubulin tyrosination in cells caused ubiquitous detyrosination of spindle microtubules, and CENP-E transported chromosomes away from spindle poles in random directions. Thus, CENP-E-driven chromosome congression is guided by microtubule detyrosination. PMID:25908662

  16. CHROMOSOMAL ABNORMALITIES IN PATIENTS WITH RECURRENT MISCARRIAGE

    Directory of Open Access Journals (Sweden)

    Daniela Mierla

    2012-06-01

    Full Text Available Chromosomal abnormalities are involved in the etiology of recurrent spontaneous pregnancy loss and sub-fertility. The purpose of this study was to determine the frequency and contribution of chromosomal abnormalities in recurrent miscarriages. The results obtained and literature review are helpful in understanding the importance of cytogenetics analysis of female infertility. To investigate the distribution of chromosomal abnormalities in the Romanian population with recurrent miscarriage, karyotype analysis by G-banding was performed from peripheral blood in 967 women infertility. Results: Chromosomal abnormalities were found to 79 women (8,17%. The percentage of chromosomal abnormalities in the studied population correlates with the data in the literature. Chromosomal abnormalities could play the important role in etiology of infertility and are more frequently detected in this group of patients compared to general population. In the infertile couples balanced chromosomal abnormalities are the main cause of spontaneous abortions.

  17. [The evolution of human Y chromosome].

    Science.gov (United States)

    Yang, Xianrong; Wang, Meiqin; Li, Shaohua

    2014-09-01

    The human Y chromosome is always intriguing for researchers, because of its role in gender determination and its unusual evolutionary history. The Y chromosome evolves from an autosome, and its evolution has been characterized by massive gene decay. The lack of recombination and protein-coding genes and high content of repetitive sequences have hindered the progress in our understanding of the Y chromosome biology. Recently, with the advances in comparative genomics and sequencing technology, the research on Y chromosome has become a hotspot, with an intensified debate about Y-chromosome final destination resulting from degeneration. This review focuses on the structure, inheritance characteristics, gene content, and the origin and evolution of Y chromosome. We also discuss the long-term destiny of Y chromosome. PMID:25252301

  18. Dynamics of chromosome segregation in Escherichia coli

    DEFF Research Database (Denmark)

    Nielsen, Henrik Jørck

    2007-01-01

    Since the 1960’es the conformation and segregation of the chromosome in Escherichia coli has been a subject of interest for many scientists. However, after 40 years of research, we still know incredibly little about how the chromosome is organized inside the cell, how it manages to duplicate this...... and reliable method enabled us to start the analysis on the distribution of various chromosomal loci inside slowly growing cells. With the actual counting and measuring no longer being any problem we could easily analyze 14 loci distributed on the E.coli chromosome. More than 15.000 cells were...... on the P1 par system. Using the new system, which is based on the pMT1 par system from Yersenia pestis, we labeled loci on opposite sides of the E.coli chromosome simultaneously and were able to show that the E.coli chromosome is organized with one chromosomal arm in each cell half. This astounding...

  19. Microdissection and chromosome painting of the alien chromosome in an addition line of wheat-Thinopyrum intermedium

    Science.gov (United States)

    The chromosome painting is an efficient tool for chromosome research. However, plant chromosome painting is relatively underdeveloped. In this study, chromosome painting was developed and used to identify alien chromosomes in TAi-27, a wheat-Thinopyrum intermedium addition line, and chromosomes of...

  20. Analysis of the SOS response of Vibrio and other bacteria with multiple chromosomes

    Directory of Open Access Journals (Sweden)

    Sanchez-Alberola Neus

    2012-02-01

    Full Text Available Abstract Background The SOS response is a well-known regulatory network present in most bacteria and aimed at addressing DNA damage. It has also been linked extensively to stress-induced mutagenesis, virulence and the emergence and dissemination of antibiotic resistance determinants. Recently, the SOS response has been shown to regulate the activity of integrases in the chromosomal superintegrons of the Vibrionaceae, which encompasses a wide range of pathogenic species harboring multiple chromosomes. Here we combine in silico and in vitro techniques to perform a comparative genomics analysis of the SOS regulon in the Vibrionaceae, and we extend the methodology to map this transcriptional network in other bacterial species harboring multiple chromosomes. Results Our analysis provides the first comprehensive description of the SOS response in a family (Vibrionaceae that includes major human pathogens. It also identifies several previously unreported members of the SOS transcriptional network, including two proteins of unknown function. The analysis of the SOS response in other bacterial species with multiple chromosomes uncovers additional regulon members and reveals that there is a conserved core of SOS genes, and that specialized additions to this basic network take place in different phylogenetic groups. Our results also indicate that across all groups the main elements of the SOS response are always found in the large chromosome, whereas specialized additions are found in the smaller chromosomes and plasmids. Conclusions Our findings confirm that the SOS response of the Vibrionaceae is strongly linked with pathogenicity and dissemination of antibiotic resistance, and suggest that the characterization of the newly identified members of this regulon could provide key insights into the pathogenesis of Vibrio. The persistent location of key SOS genes in the large chromosome across several bacterial groups confirms that the SOS response plays an

  1. TEACHING TACIT KNOWLEDGE: CAN ARTIFICAL INTELIGENCE HELP?

    Directory of Open Access Journals (Sweden)

    ŠVEC, Václav

    2014-12-01

    Full Text Available In the paper we first examine students´ ability to use tacit knowledge. We conducted the experiment to test whether the students are able to transfer and use tacit knowledge they obtained in the basic course of Strategic management. As tacit knowledge is difficult to transfer to another person we used course design with several experiential techniques to increase the students´ abilities in the field of Strategic management. For the evaluation experiment we chose to play a board game “Power Grid”, where we tested whether the students were able to use knowledge they had been taught in the basic course. As the result we found out low students´ ability to use tacit knowledge even despite the fact that in the basic course where they obtained the knowledge we used experiential techniques which force students to acquire a skill and therefore, according to Polanyi (in Schmidt, Hunter, 1993, they also acquire corresponding understanding that defies articulation, therefore tacit knowledge. According to the result of the experiment we propose the business game with the artificial intelligence as a teaching tool which can be further discussed as a tool for teaching specific tacit knowledge in the paper.

  2. TEACHING TACIT KNOWLEDGE: CAN ARTIFICAL INTELIGENCE HELP?

    OpenAIRE

    ŠVEC, Václav; Pavlicek, Josef; TICHA, Ivana

    2014-01-01

    In the paper we first examine students´ ability to use tacit knowledge. We conducted the experiment to test whether the students are able to transfer and use tacit knowledge they obtained in the basic course of Strategic management. As tacit knowledge is difficult to transfer to another person we used course design with several experiential techniques to increase the students´ abilities in the field of Strategic management. For the evaluation experiment we chose to play a board game “Power Gr...

  3. Artifical intelligence techniques in power systems

    Energy Technology Data Exchange (ETDEWEB)

    Warwick, K.; Ekwue, A.; Aggarwal, R. [eds.

    1997-12-31

    Research in artificial intelligence has developed many techniques and methodologies that can be either adapted or used directly to solve complex power system problems. A variety of such problems are covered in this book including reactive power control, alarm analysis, fault diagnosis, protection systems and load forecasting. Methods such as knowledge-based (expert) systems, fuzzy logic, neural networks and genetic algorithms are all first introduced and then investigated in terms of their applicability in the power systems field. The book, therefore, serves as both an introduction to the use of artificial intelligence techniques for those from a power systems background and as an overview of the power systems implementation area for those from an artificial intelligence computing or control background. It is structured so that it is suitable for various levels of reader, covering basic principles as well as applications and case studies. The most popular methods and the most fruitful application fields are considered in more detail. (UK)

  4. Flexible electrode array for artifical vision

    Science.gov (United States)

    Krulevitch, Peter; Polla, Dennis L.; Maghribi, Mariam N.; Hamilton, Julie

    2006-12-05

    An image is captured or otherwise converted into a signal in an artificial vision system. The signal is transmitted to the retina utilizing an implant. The implant consists of a polymer substrate made of a compliant material such as poly(dimethylsiloxane) or PDMS. The polymer substrate is conformable to the shape of the retina. Electrodes and conductive leads are embedded in the polymer substrate. The conductive leads and the electrodes transmit the signal representing the image to the cells in the retina. The signal representing the image stimulates cells in the retina.

  5. IFESS 2005 Special Session 5 Artifical Vision

    Energy Technology Data Exchange (ETDEWEB)

    Weiland, J.D.; Greenbaum, E.; Delbeke, J.; Troyk, P.R.; Sawan, M.

    2005-07-01

    A special session on visual prostheses was held during the Annual Meeting of the International Functional Electrical Stimulation Society (IFESS), in Montreal, Canada, July 5-9, 2005. IFESS is a meeting that typically attracts researchers in implantable nerve stimulators, functional electrical stimulation, and rehabilitation. All of these areas have significant overlap with the retinal prosthesis, but these areas have decades of research behind them. The special session provided a forum for researchers with vast experience in nerve stimulation to interact with leading research in retinal and cortical visual prostheses. The grant paid for the travel and conference costs of the presenters in the session. The session was chaired by James Weiland (the PI on this grant). The session co-chair was Phil Troyk, Ph.D., from the Illinois Institute of Technology. The Department of Energy was acknowledged at the start of the session as the sponsor. The following talks were delivered: Clinical Trial of a Prototype Retinal Prosthesis James Weiland, Ph.D. Doheny Eye Institute, Los Angeles, California The U.S. Department of Energy's Artificial Sight Program Elias Greenbaum, Ph.D. Oak Ridge National Laboratory, Oak Ridge, Tennessee A 16-Channel stimulator ASIC for use in an intracortical visual prosthesis Phillip R. Troyk, Ph.D. Illinois Institute of Technology, Chicago, Illinois Two approaches to the Optic Nerve Visual Prosthesis Jean Delbeke, M.D. University Cath de Louvain, Louvain, Belgium Design and Implementation of High Power Efficiency Modules for a Cortical Visual Stimulator Mohammad Sawan, Ph.D. Ecole Polytechnique de Montreal, Montreal, Canada Remaining funds from the grant were used to support Dr. Weiland's travel to the Association for Research in Vision and Ophthalmology in May 2006, with DOE approval, where several projects, supported by the DOE artificial retina program, were presented.

  6. Delineating Rearrangements in Single Yeast Artificial Chromosomes by Quantitative DNA Fiber Mapping

    OpenAIRE

    Weier, Heinz-Ulrich G.; Greulich-Bode, Karin M.; Wu, Jenny; Duell, Thomas

    2009-01-01

    Cloning of large chunks of human genomic DNA in recombinant systems such as yeast or bacterial artificial chromosomes has greatly facilitated the construction of physical maps, the positional cloning of disease genes or the preparation of patient-specific DNA probes for diagnostic purposes. For this process to work efficiently, the DNA cloning process and subsequent clone propagation need to maintain stable inserts that are neither deleted nor otherwise rearranged. Some regions of the human g...

  7. International workshop of chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Pericak-Vance, M.A. (Duke Univ. Medical Center, Durham, NC (United States). Div. of Neurology); Carrano, A.J. (Lawrence Livermore National Lab., CA (United States))

    1991-09-16

    This document summarizes the workshop on physical and genetic mapping of chromosome 19. The first session discussed the major disease loci found on the chromosome. The second session concentrated on reference families, markers and linkage maps. The third session concentrated on radiation hybrid mapping, somatic cell hybrid panels, macro restriction maps and YACs, followed by cDNA and long range physical maps. The fourth session concentrated on compiling consensus genetic and physical maps as well as discussing regions of conflict. The final session dealt with the LLNL cosmid contig database and comparative mapping of homologous regions of the human and mouse genomes, and ended with a discussion of resource sharing. 18 refs., 2 figs. (MHB)

  8. Chromosome replication, cell growth, division and shape: a personal perspective.

    Science.gov (United States)

    Zaritsky, Arieh; Woldringh, Conrad L

    2015-01-01

    The origins of Molecular Biology and Bacterial Physiology are reviewed, from our personal standpoints, emphasizing the coupling between bacterial growth, chromosome replication and cell division, dimensions and shape. Current knowledge is discussed with historical perspective, summarizing past and present achievements and enlightening ideas for future studies. An interactive simulation program of the bacterial cell division cycle (BCD), described as "The Central Dogma in Bacteriology," is briefly represented. The coupled process of transcription/translation of genes encoding membrane proteins and insertion into the membrane (so-called transertion) is invoked as the functional relationship between the only two unique macromolecules in the cell, DNA and peptidoglycan embodying the nucleoid and the sacculus respectively. We envision that the total amount of DNA associated with the replication terminus, so called "nucleoid complexity," is directly related to cell size and shape through the transertion process. Accordingly, the primary signal for cell division transmitted by DNA dynamics (replication, transcription and segregation) to the peptidoglycan biosynthetic machinery is of a physico-chemical nature, e.g., stress in the plasma membrane, relieving nucleoid occlusion in the cell's center hence enabling the divisome to assemble and function between segregated daughter nucleoids. PMID:26284044

  9. Bacterial Wound Culture

    Science.gov (United States)

    ... Home Visit Global Sites Search Help? Bacterial Wound Culture Share this page: Was this page helpful? Also known as: Aerobic Wound Culture; Anaerobic Wound Culture Formal name: Culture, wound Related ...

  10. Bacterial Meningitis in Infants

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-04-01

    Full Text Available A retrospective study of 80 infantile patients (ages 30-365 days; 47 male, 33 female with culture-proven bacterial meningitis seen over a 16 year period (1986-2001 is reported from Taiwan.

  11. Baseline chromosome aberrations in children

    Czech Academy of Sciences Publication Activity Database

    Merlo, D.F.; Ceppi, M.; Stagi, E.; Bocchini, V.; Šrám, Radim; Rössner st., Pavel

    2007-01-01

    Roč. 172, - (2007), s. 60-67. ISSN 0378-4274 Grant ostatní: EU(EU) 2002-02198; EU(EU) 2005-016320 Institutional research plan: CEZ:AV0Z50390512 Source of funding: R - rámcový projekt EK ; R - rámcový projekt EK Keywords : chromosome aberrations * children * molecular epidemiology Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 2.826, year: 2007

  12. Clonality - X Chromosome Inactivation Assay

    OpenAIRE

    sprotocols

    2014-01-01

    Author: Molecular Profiling Initiative, NCI This method was successful in our lab using prostate tissue and for our specific objectives. Investigators must be aware that they will need to tailor the following protocol for their own research objectives and tissue under study. Investigators can utilize X chromosome inactivation (methylation) to determine the clonality status of a tumor or premalignant lesion in females. The technique is based on a methylation-sensitive restriction enzym...

  13. Hobo transposons causing chromosomal breakpoints.

    OpenAIRE

    Ladevèze, V; Aulard, S.; Chaminade, N; Périquet, G; Lemeunier, F

    1998-01-01

    Several laboratory surveys have shown that transposable elements (TEs) can cause chromosomal breaks and lead to inversions, as in dysgenic crosses involving P-elements. However, it is not presently clear what causes inversions in natural populations of Drosophila. The only direct molecular studies must be taken as evidence against the involvement of mobile elements. Here, in Drosophila lines transformed with the hobo transposable element, and followed for 100 generations, we show the appearan...

  14. Chromosomal instability determines taxane response

    OpenAIRE

    Swanton, Charles; Nicke, Barbara; Schuett, Marion; Eklund, Aron C.; Ng, Charlotte; Li, Qiyuan; Hardcastle, Thomas; Lee, Alvin; Roy, Rajat; East, Philip; Kschischo, Maik; Endesfelder, David; Wylie, Paul; Kim, Se Nyun; Chen, Jie-Guang

    2009-01-01

    Microtubule-stabilizing (MTS) agents, such as taxanes, are important chemotherapeutics with a poorly understood mechanism of action. We identified a set of genes repressed in multiple cell lines in response to MTS agents and observed that these genes are overexpressed in tumors exhibiting chromosomal instability (CIN). Silencing 22/50 of these genes, many of which are involved in DNA repair, caused cancer cell death, suggesting that these genes are involved in the survival of aneuploid cells....

  15. Bacterial mitotic machineries

    DEFF Research Database (Denmark)

    Gerdes, Kenn; Møller-Jensen, Jakob; Ebersbach, Gitte;

    2004-01-01

    Here, we review recent progress that yields fundamental new insight into the molecular mechanisms behind plasmid and chromosome segregation in prokaryotic cells. In particular, we describe how prokaryotic actin homologs form mitotic machineries that segregate DNA before cell division. Thus, the P...

  16. Calibrating bacterial evolution

    OpenAIRE

    Ochman, Howard; Elwyn, Susannah; Moran, Nancy A

    1999-01-01

    Attempts to calibrate bacterial evolution have relied on the assumption that rates of molecular sequence divergence in bacteria are similar to those of higher eukaryotes, or to those of the few bacterial taxa for which ancestors can be reliably dated from ecological or geological evidence. Despite similarities in the substitution rates estimated for some lineages, comparisons of the relative rates of evolution at different classes of nucleotide sites indicate no basis for their universal appl...

  17. Chromosome aberration assays in Allium

    Energy Technology Data Exchange (ETDEWEB)

    Grant, W.F.

    1982-01-01

    The common onion (Allium cepa) is an excellent plant for the assay of chromosome aberrations after chemical treatment. Other species of Allium (A. cepa var. proliferum, A. carinatum, A. fistulosum and A. sativum) have also been used but to a much lesser extent. Protocols have been given for using root tips from either bulbs or seeds of Allium cepa to study the cytological end-points, such as chromosome breaks and exchanges, which follow the testing of chemicals in somatic cells. It is considered that both mitotic and meiotic end-points should be used to a greater extent in assaying the cytogenetic effects of a chemical. From a literature survey, 148 chemicals are tabulated that have been assayed in 164 Allium tests for their clastogenic effect. Of the 164 assays which have been carried out, 75 are reported as giving a positive reaction, 49 positive and with a dose response, 1 positive and temperature-related, 9 borderline positive, and 30 negative; 76% of the chemicals gave a definite positive response. It is proposed that the Allium test be included among those tests routinely used for assessing chromosomal damage induced by chemicals.

  18. Chromosome rearrangements and transposable elements.

    Science.gov (United States)

    Lonnig, Wolf-Ekkehard; Saedler, Heinz

    2002-01-01

    There has been limited corroboration to date for McClintock's vision of gene regulation by transposable elements (TEs), although her proposition on the origin of species by TE-induced complex chromosome reorganizations in combination with gene mutations, i.e., the involvement of both factors in relatively sudden formations of species in many plant and animal genera, has been more promising. Moreover, resolution is in sight for several seemingly contradictory phenomena such as the endless reshuffling of chromosome structures and gene sequences versus synteny and the constancy of living fossils (or stasis in general). Recent wide-ranging investigations have confirmed and enlarged the number of earlier cases of TE target site selection (hot spots for TE integration), implying preestablished rather than accidental chromosome rearrangements for nonhomologous recombination of host DNA. The possibility of a partly predetermined generation of biodiversity and new species is discussed. The views of several leading transposon experts on the rather abrupt origin of new species have not been synthesized into the macroevolutionary theory of the punctuated equilibrium school of paleontology inferred from thoroughly consistent features of the fossil record. PMID:12429698

  19. Comparative analysis of sex chromosomes in Leporinus species (Teleostei, Characiformes) using chromosome painting

    Science.gov (United States)

    2013-01-01

    Background The Leporinus genus, belonging to the Anostomidae family, is an interesting model for studies of sex chromosome evolution in fish, particularly because of the presence of heteromorphic sex chromosomes only in some species of the genus. In this study we used W chromosome-derived probes in a series of cross species chromosome painting experiments to try to understand events of sex chromosome evolution in this family. Results W chromosome painting probes from Leporinus elongatus, L. macrocephalus and L. obtusidens were hybridized to each others chromosomes. The results showed signals along their W chromosomes and the use of L. elongatus W probe against L. macrocephalus and L. obtusidens also showed signals over the Z chromosome. No signals were observed when the later aforementioned probe was used in hybridization procedures against other four Anostomidae species without sex chromosomes. Conclusions Our results demonstrate a common origin of sex chromosomes in L. elongatus, L. macrocephalus and L. obtusidens but suggest that the L. elongatus chromosome system is at a different evolutionary stage. The absence of signals in the species without differentiated sex chromosomes does not exclude the possibility of cryptic sex chromosomes, but they must contain other Leporinus W sequences than those described here. PMID:23822802

  20. Whole chromosome painting of B chromosomes of the red-eye tetra Moenkhausia sanctaefilomenae (Teleostei, Characidae)

    Science.gov (United States)

    Scudeler, Patricia Elda Sobrinho; Diniz, Débora; Wasko, Adriane Pinto; Oliveira, Claudio; Foresti, Fausto

    2015-01-01

    Abstract B chromosomes are dispensable genomic elements found in different groups of animals and plants. In the present study, a whole chromosome probe was generated from a specific heterochromatic B chromosome occurring in cells of the characidae fish Moenkhausia sanctaefilomenae (Steindachner, 1907). The chromosome painting probes were used in fluorescence in situ hybridization (FISH) experiments for the assessment of metaphase chromosomes obtained from individuals from three populations of Moenkhausia sanctaefilomenae. The results revealed that DNA sequences were shared between a specific B chromosome and many chromosomes of the A complement in all populations analyzed, suggesting a possible intra-specific origin of these B chromosomes. However, no hybridization signals were observed in other B chromosomes found in the same individuals, implying a possible independent origin of B chromosome variants in this species. FISH experiments using 18S rDNA probes revealed the presence of non-active ribosomal genes in some B chromosomes and in some chromosomes of the A complement, suggesting that at least two types of B chromosomes had an independent origin. The role of heterochromatic segments and ribosomal sequences in the origin of B chromosomes were discussed. PMID:26753081

  1. Chromosomal divergence and evolutionary inferences in Rhodniini based on the chromosomal location of ribosomal genes

    Directory of Open Access Journals (Sweden)

    Sebastian Pita

    2013-05-01

    Full Text Available In this study, we used fluorescence in situ hybridisation to determine the chromosomal location of 45S rDNA clusters in 10 species of the tribe Rhodniini (Hemiptera: Reduviidae: Triatominae. The results showed striking inter and intraspecific variability, with the location of the rDNA clusters restricted to sex chromosomes with two patterns: either on one (X chromosome or both sex chromosomes (X and Y chromosomes. This variation occurs within a genus that has an unchanging diploid chromosome number (2n = 22, including 20 autosomes and 2 sex chromosomes and a similar chromosome size and genomic DNA content, reflecting a genome dynamic not revealed by these chromosome traits. The rDNA variation in closely related species and the intraspecific polymorphism in Rhodnius ecuadoriensis suggested that the chromosomal position of rDNA clusters might be a useful marker to identify recently diverged species or populations. We discuss the ancestral position of ribosomal genes in the tribe Rhodniini and the possible mechanisms involved in the variation of the rDNA clusters, including the loss of rDNA loci on the Y chromosome, transposition and ectopic pairing. The last two processes involve chromosomal exchanges between both sex chromosomes, in contrast to the widely accepted idea that the achiasmatic sex chromosomes of Heteroptera do not interchange sequences.

  2. Whole-genome profiling and shotgun sequencing delivers an anchored, gene-decorated, physical map assembly of bread wheat chromosome 6A

    OpenAIRE

    Poursarebani, N.; Nussbaumer, T.; Šimková, H. (Hana); Šafář, J.; Witsenboer, H.; van Oeveren, J.; Doležel, J. (Jaroslav); Mayer, K. F. X.; N. Stein; Schnurbusch, T.

    2014-01-01

    Bread wheat (Triticum aestivum L.) is the most important staple food crop for 35% of the world's population. International efforts are underway to facilitate an increase in wheat production, of which the International Wheat Genome Sequencing Consortium (IWGSC) plays an important role. As part of this effort, we have developed a sequence-based physical map of wheat chromosome 6A using whole-genome profiling (WGP (TM)). The bacterial artificial chromosome (BAC) contig assembly tools FINGERPRINT...

  3. Chromosome analysis of arsenic affected cattle

    Directory of Open Access Journals (Sweden)

    S. Shekhar

    2014-10-01

    Full Text Available Aim: The aim was to study the chromosome analysis of arsenic affected cattle. Materials and Methods: 27 female cattle (21 arsenic affected and 6 normal were selected for cytogenetical study. The blood samples were collected, incubated, and cultured using appropriate media and specific methods. The samples were analyzed for chromosome number and morphology, relative length of the chromosome, arm ratio, and centromere index of X chromosome and chromosomal abnormalities in arsenic affected cattle to that of normal ones. Results: The diploid number of metaphase chromosomes in arsenic affected cattle as well as in normal cattle were all 2n=60, 58 being autosomes and 2 being sex chromosomes. From the centromeric position, karyotyping studies revealed that all the 29 pair of autosomes was found to be acrocentric or telocentric, and the sex chromosomes (XX were submetacentric in both normal and arsenic affected cattle. The relative length of all the autosome pairs and sex chrosomosome pair was found to be higher in normal than that of arsenic affected cattle. The mean arm ratio of X-chromosome was higher in normal than that of arsenic affected cattle, but it is reverse in case of centromere index value of X-chromosome. There was no significant difference of arm ratio and centromere index of X-chromosomes between arsenic affected and normal cattle. No chromosomal abnormalities were found in arsenic affected cattle. Conclusion: The chromosome analysis of arsenic affected cattle in West Bengal reported for the first time in this present study which may serve as a guideline for future studies in other species. These reference values will also help in comparison of cytological studies of arsenic affected cattle to that of various toxicants.

  4. The peripheral chromosome scaffold, a novel structural component of mitotic chromosomes.

    Science.gov (United States)

    Sheval, Eugene V; Polyakov, Vladimir Y

    2008-06-01

    Using an original high-salt extraction protocol, we observed a novel chromosome substructure, referred to as the peripheral chromosome scaffold. This chromosome domain contained the perichromosomal layer proteins pKi-67, B23/nucleophosmin and fibrillarin, but no DNA fragments (i.e., the loop domain bases were not associated with the peripheral scaffold). Modern models of chromosome organization do not predict the existence of a peripheral chromosome scaffold domain, and thus our observations have conceptual implications for understanding chromosome architecture. PMID:18337132

  5. Chromosomal duplications and cointegrates generated by the bacteriophage lamdba Red system in Escherichia coli K-12

    Directory of Open Access Journals (Sweden)

    Nadkarni Ashwini

    2004-12-01

    sequences in the chromosome generates a partial duplication of the bacterial chromosome. When the incoming DNA species is circular rather than linear, cointegrates are the most frequent type of recombinant.

  6. Kinetics of Suicide of Bacterial Populations

    International Nuclear Information System (INIS)

    Based on a number of assumptions, formulas are presented for the survival of hypothetical bacterial cultures under self-irradiation by incorporated tritium in the chromosomal material. The formulas average over different classes of cells in the balanced growing populations taking into account the increased rate of inactivation of cells with more DNA, and that nuclear division causes the number of independent chromosomes to increase. The partial multinuclearity tends to make the logarithmic survival curves concave downward, but heterogeneity in amount of DNA in the chromosomes does the opposite. Details of how the resultant effects compensate for various patterns of DNA replication and how the target numbers and final slope are given. If DNA synthesis takes only a small fraction of the total cycle, the survival curves are the well-known one or two target curves and intermediate forms depending on the point in the cell cycle that the synthesis takes place. If synthesis takes almost all of the cell cycle as is the case for enteric bacteria growing in glucose minimal medium, the apparent target numbers are lower and are, in fact, unity if nuclear division is midway in the cell cycle. This is consistent with the experimental results in studies of survival, and in cytological and other studies of the nuclear replication cycle. The effect of gaps in DNA synthesis at various parts of the cell cycle are given and their relevance to various biological systems is discussed. The apparent target number is lowest if synthesis takes place at the end of the cell cycle than if it takes place earlier. Means are provided so that the sensitivity of the resting genome can be calculated from the results of measurements of balanced growing populations. (author)

  7. Deciphering evolutionary strata on plant sex chromosomes and fungal mating-type chromosomes through compositional segmentation.

    Science.gov (United States)

    Pandey, Ravi S; Azad, Rajeev K

    2016-03-01

    Sex chromosomes have evolved from a pair of homologous autosomes which differentiated into sex determination systems, such as XY or ZW system, as a consequence of successive recombination suppression between the gametologous chromosomes. Identifying the regions of recombination suppression, namely, the "evolutionary strata", is central to understanding the history and dynamics of sex chromosome evolution. Evolution of sex chromosomes as a consequence of serial recombination suppressions is well-studied for mammals and birds, but not for plants, although 48 dioecious plants have already been reported. Only two plants Silene latifolia and papaya have been studied until now for the presence of evolutionary strata on their X chromosomes, made possible by the sequencing of sex-linked genes on both the X and Y chromosomes, which is a requirement of all current methods that determine stratum structure based on the comparison of gametologous sex chromosomes. To circumvent this limitation and detect strata even if only the sequence of sex chromosome in the homogametic sex (i.e. X or Z chromosome) is available, we have developed an integrated segmentation and clustering method. In application to gene sequences on the papaya X chromosome and protein-coding sequences on the S. latifolia X chromosome, our method could decipher all known evolutionary strata, as reported by previous studies. Our method, after validating on known strata on the papaya and S. latifolia X chromosome, was applied to the chromosome 19 of Populus trichocarpa, an incipient sex chromosome, deciphering two, yet unknown, evolutionary strata. In addition, we applied this approach to the recently sequenced sex chromosome V of the brown alga Ectocarpus sp. that has a haploid sex determination system (UV system) recovering the sex determining and pseudoautosomal regions, and then to the mating-type chromosomes of an anther-smut fungus Microbotryum lychnidis-dioicae predicting five strata in the non

  8. Chromosome engineering: power tools for plant genetics.

    Science.gov (United States)

    Chan, Simon W L

    2010-12-01

    The term "chromosome engineering" describes technologies in which chromosomes are manipulated to change their mode of genetic inheritance. This review examines recent innovations in chromosome engineering that promise to greatly increase the efficiency of plant breeding. Haploid Arabidopsis thaliana have been produced by altering the kinetochore protein CENH3, yielding instant homozygous lines. Haploid production will facilitate reverse breeding, a method that downregulates recombination to ensure progeny contain intact parental chromosomes. Another chromosome engineering success is the conversion of meiosis into mitosis, which produces diploid gametes that are clones of the parent plant. This is a key step in apomixis (asexual reproduction through seeds) and could help to preserve hybrid vigor in the future. New homologous recombination methods in plants will potentiate many chromosome engineering applications. PMID:20933291

  9. Radiation induced chromosome instability in human fibroblasts

    International Nuclear Information System (INIS)

    Evidence has been arising that some biological effects can manifest many cell divisions after irradiation. We have demonstrated that de novo chromosome instability can be detected 10- 15 mean population doubling after heavy ion irradiations. This chromosome instability is characterized by end to end fusions between specific chromosomes. The specificity of the instability may differ from one donor to another but for the same donor, the same instability should be observed after irradiation, during the senescence process and after SV40 transfection (before crisis). In irradiated primary culture fibroblasts, the expression of the delayed chromosomal instability lasts for several cell divisions without inducing cell death. Several rounds of fusions- breakage-fusions can be performed and unbalanced clones emerge (gain or loss of chromosomes with the shorter telomeres would become unstable first.. The difference in the chromosomal instability among donors could be due to a polymorphism in telomere lengths. This could induce large variation in long term response to irradiation among individuals. (author)

  10. Consequences of Cas9 cleavage in the chromosome of Escherichia coli.

    Science.gov (United States)

    Cui, Lun; Bikard, David

    2016-05-19

    The RNA-guided Cas9 nuclease from CRISPR-Cas systems has emerged as a powerful biotechnological tool. The specificity of Cas9 can be reprogrammed to cleave desired sequences in a cell's chromosome simply by changing the sequence of a small guide RNA. Unlike in most eukaryotes, Cas9 cleavage in the chromosome of bacteria has been reported to kill the cell. However, the mechanism of cell death remains to be investigated. Bacteria mainly rely on homologous recombination (HR) with sister chromosomes to repair double strand breaks. Here, we show that the simultaneous cleavage of all copies of the Escherichia coli chromosome at the same position cannot be repaired, leading to cell death. However, inefficient cleavage can be tolerated through continuous repair by the HR pathway. In order to kill cells reliably, HR can be blocked using the Mu phage Gam protein. Finally, the introduction of the non-homologous end joining (NHEJ) pathway from Mycobacterium tuberculosis was not able to rescue the cells from Cas9-mediated killing, but did introduce small deletions at a low frequency. This work provides a better understanding of the consequences of Cas9 cleavage in bacterial chromosomes which will be instrumental in the development of future CRISPR tools. PMID:27060147

  11. Chromosome evolution in Solanum traced by cross-species BAC-FISH.

    Science.gov (United States)

    Szinay, Dóra; Wijnker, Erik; van den Berg, Ronald; Visser, Richard G F; de Jong, Hans; Bai, Yuling

    2012-08-01

    Chromosomal rearrangements are relatively rare evolutionary events and can be used as markers to study karyotype evolution. This research aims to use such rearrangements to study chromosome evolution in Solanum. Chromosomal rearrangements between Solanum crops and several related wild species were investigated using tomato and potato bacterial artificial chromosomes (BACs) in a multicolour fluorescent in situ hybridization (FISH). The BACs selected are evenly distributed over seven chromosomal arms containing inversions described in previous studies. The presence/absence of these inversions among the studied Solanum species were determined and the order of the BAC-FISH signals was used to construct phylogenetic trees.Compared with earlier studies, data from this study provide support for the current grouping of species into different sections within Solanum; however, there are a few notable exceptions, such as the tree positions of S. etuberosum (closer to the tomato group than to the potato group) and S. lycopersicoides (sister to S. pennellii). These apparent contradictions might be explained by interspecific hybridization events and/or incomplete lineage sorting. This cross-species BAC painting technique provides unique information on genome organization, evolution and phylogenetic relationships in a wide variety of species. Such information is very helpful for introgressive breeding. PMID:22686400

  12. Meiosis I: When Chromosomes Undergo Extreme Makeover

    OpenAIRE

    Miller, Matthew P.; Amon, Angelika; Ünal, Elçin

    2013-01-01

    The ultimate success of cell division relies on the accurate partitioning of the genetic material. Errors in this process occur in nearly all tumors and are the leading cause of miscarriages and congenital birth defects in humans. Two cell divisions, mitosis and meiosis, use common as well as unique mechanisms to ensure faithful chromosome segregation. In mitosis, alternating rounds of DNA replication and chromosome segregation preserves the chromosome complement of the progenitor cell. In co...

  13. Novel Gene Acquisition on Carnivore Y Chromosomes

    OpenAIRE

    Murphy, William J.; A J Pearks Wilkerson; Terje Raudsepp; Richa Agarwala; Schäffer, Alejandro A.; Roscoe Stanyon; Chowdhary, Bhanu P

    2006-01-01

    Despite its importance in harboring genes critical for spermatogenesis and male-specific functions, the Y chromosome has been largely excluded as a priority in recent mammalian genome sequencing projects. Only the human and chimpanzee Y chromosomes have been well characterized at the sequence level. This is primarily due to the presumed low overall gene content and highly repetitive nature of the Y chromosome and the ensuing difficulties using a shotgun sequence approach for assembly. Here we...

  14. Holoprosencephaly due to Numeric Chromosome Abnormalities

    OpenAIRE

    Solomon, Benjamin D.; Rosenbaum, Kenneth N.; Meck, Jeanne M.; Muenke, Maximilian

    2010-01-01

    Holoprosencephaly (HPE) is the most common malformation of the human forebrain. When a clinician identifies a patient with HPE, a routine chromosome analysis is often the first genetic test sent for laboratory analysis in order to assess for a structural or numerical chromosome anomaly. An abnormality of chromosome number is overall the most frequently identified etiology in a patient with HPE. These abnormalities include trisomy 13, trisomy 18, and triploidy, though several others have been ...

  15. CHROMOSOMAL ABNORMALITIES IN PATIENTS WITH RECURRENT MISCARRIAGE

    OpenAIRE

    Daniela Mierla; Viorica Radoi; Veronica Stoian

    2012-01-01

    Chromosomal abnormalities are involved in the etiology of recurrent spontaneous pregnancy loss and sub-fertility. The purpose of this study was to determine the frequency and contribution of chromosomal abnormalities in recurrent miscarriages. The results obtained and literature review are helpful in understanding the importance of cytogenetics analysis of female infertility. To investigate the distribution of chromosomal abnormalities in the Romanian population with recurrent miscarriage, ka...

  16. How does DNA break during chromosomal translocations?

    OpenAIRE

    Nambiar, Mridula; Raghavan, Sathees C.

    2011-01-01

    Chromosomal translocations are one of the most common types of genetic rearrangements and are molecular signatures for many types of cancers. They are considered as primary causes for cancers, especially lymphoma and leukemia. Although many translocations have been reported in the last four decades, the mechanism by which chromosomes break during a translocation remains largely unknown. In this review, we summarize recent advances made in understanding the molecular mechanism of chromosomal t...

  17. Advances in plant chromosome genomics

    Czech Academy of Sciences Publication Activity Database

    Doležel, Jaroslav; Vrána, Jan; Cápal, Petr; Kubaláková, Marie; Burešová, Veronika; Šimková, Hana

    2014-01-01

    Roč. 32, č. 1 (2014), s. 122-136. ISSN 0734-9750 R&D Projects: GA ČR GAP501/10/1740; GA ČR GAP501/10/1778; GA ČR GBP501/12/G090; GA MŠk(CZ) LO1204 Grant ostatní: GA MŠk(CZ) ED0007/01/01 Institutional support: RVO:61389030 Keywords : BAC library * Chromosome sorting * Cytogenetics Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.015, year: 2014

  18. Multiple chromosomes of Azotobacter vinelandii.

    OpenAIRE

    1989-01-01

    The number of copies of the genes leuB, nifH, nifD, and nifK per cell of Azotobacter vinelandii has been determined to be about 80. A beta-lactamase gene was integrated into the A. vinelandii chromosome by single-point crossover. Subsequently, we have been able to detect nearly 80 copies of this beta-lactamase gene per cell of A. vinelandii when cultured for a large number of generations in the presence of ampicillin. The multiple copies of the beta-lactamase gene do not seem to be present on...

  19. Chromosome banding in Amphibia. XXIV. The B chromosomes of Gastrotheca espeletia (Anura, Hylidae).

    Science.gov (United States)

    Schmid, M; Ziegler, C G; Steinlein, C; Nanda, I; Haaf, T

    2002-01-01

    The mitotic chromosomes of an Ecuadorian population of the marsupial frog Gastrotheca espeletia were analyzed by means of banding techniques and fluorescence in situ hybridization. This species is characterized by unusual supernumerary (B) chromosomes. The maximum number of B chromosomes is 9 and they occur in three different morphological types. Banding analyses show that the B chromosomes are completely heterochromatic, consist of AT base pair-rich repeated DNA sequences, replicate their DNA in very late S-phase of the cell cycle, and are probably derived from a centromeric or paracentromeric region of a standard (A) chromosome. Exceptionally, the B chromosomes carry 18S + 28S ribosomal RNA genes and the conserved vertebrate telomeric DNA sequence appears to be underrepresented. Flow cytometric measurements of the nuclear DNA content differentiate between individuals with different numbers of B chromosomes. Significantly more B chromosomes are present in female than in male animals. PMID:12438715

  20. Giemsa C-banding of Barley Chromosomes. IV. Chromosomal Constitution of Autotetraploid Barley

    DEFF Research Database (Denmark)

    Linde-Laursen, Ib

    1984-01-01

    homologues of each of the chromosomes. The aneuploid C2--seedlings were fairly equally distributed on hypo-and hyperploids, and on the seven chromosome groups. This suggests that a particular chromosome is lost or gained at random in gametes and embryos. The 11 C3--seedlings comprised seven true euploids......The progeny of an autotetraploid barley plant (C1) consisted of 45 tetraploids and 33 aneuploids. Giemsa C-banding was used to identify each of the chromosomes in 20 euploid and 31 aneuploid C2--seedlings, and in 11 C3--offspring of aneuploid C2--plants. The euploid C2--seedlings all had four......, one seedling with 2n=28 having an extra chromosome 6 and missing one chromosome 3, and three seedlings with 2n=29. The chromosomal composition of aneuploid C3--seedlings did not reflect that of their aneuploid C2--parents with respect to missing or extra chromosomes. Two hypohexaploid C2--seedlings...

  1. Bacterial meningitis in children

    International Nuclear Information System (INIS)

    To demonstrate the epidemiology, clinical manifestations and bacteriological profile of bacterial meningitis in children beyond the neonatal period in our hospital. This was a retrospective descriptive study conducted at Prince Rashid Hospital in Irbid, Jordan. The medical records of 50 children with the diagnosis of bacterial meningitis during 4 years period, were reviewed. The main cause of infection was streptococcus pneumoniae, followed by Haemophilus influenza and Niesseria meningitides. Mortality was higher in infants and meningococcal infection, while complications were more encountered in cases of streptococcus pneumoniae. Cerebrospinal fluid culture was positive in 11 cases and Latex agglutination test in 39. There is a significant reduction of the numbers of bacterial meningitis caused by Haemophilus influenza type B species. (author)

  2. Microtubule detyrosination guides chromosomes during mitosis

    OpenAIRE

    Barisic, Marin; Silva e Sousa, Ricardo; Tripathy, Suvranta K.; Magiera, Maria M.; Zaytsev, Anatoly V.; Pereira, Ana L.; Janke, Carsten; Grishchuk, Ekaterina L.; Maiato, Helder

    2015-01-01

    Before chromosomes segregate into daughter cells they align at the mitotic spindle equator, a process known as chromosome congression. CENP-E/Kinesin-7 is a microtubule plus-end-directed kinetochore motor required for congression of pole-proximal chromosomes. Because the plus-ends of many astral microtubules in the spindle point to the cell cortex, it remains unknown how CENP-E guides pole-proximal chromosomes specifically towards the equator. Here we found that congression of pole-proximal c...

  3. Exceptional Complex Chromosomal Rearrangements in Three Generations

    Directory of Open Access Journals (Sweden)

    Hannie Kartapradja

    2015-01-01

    Full Text Available We report an exceptional complex chromosomal rearrangement (CCR found in three individuals in a family that involves 4 chromosomes with 5 breakpoints. The CCR was ascertained in a phenotypically abnormal newborn with additional chromosomal material on the short arm of chromosome 4. Maternal karyotyping indicated that the mother carried an apparently balanced CCR involving chromosomes 4, 6, 11, and 18. Maternal transmission of the derivative chromosome 4 resulted in partial trisomy for chromosomes 6q and 18q and a partial monosomy of chromosome 4p in the proband. Further family studies found that the maternal grandmother carried the same apparently balanced CCR as the proband’s mother, which was confirmed using the whole chromosome painting (WCP FISH. High resolution whole genome microarray analysis of DNA from the proband’s mother found no evidence for copy number imbalance in the vicinity of the CCR translocation breakpoints, or elsewhere in the genome, providing evidence that the mother’s and grandmother’s CCRs were balanced at a molecular level. This structural rearrangement can be categorized as an exceptional CCR due to its complexity and is a rare example of an exceptional CCR being transmitted in balanced and/or unbalanced form across three generations.

  4. Chromosome heteromorphisms in the Japanese, 3

    International Nuclear Information System (INIS)

    The type and frequency of chromosome variants detected by the C-staining method were ascertained in 1,857 individuals residing in Hiroshima. The most frequent heteromorphic variant was the total inversion of the C-band in chromosome 9 found in 27 individuals (1.45%). The total inversion of the C-band in chromosome 1 was not seen in this sample, but the partial inversion of the C-band in chromosome 1 was found in 18 persons (0.97%). Partial inversion was also detected in the C-band in chromosome 9 in 22 individuals (1.18%). In chromosome 16, neither total nor partial inversion of the C-band was observed in the present study. The frequencies of chromosomes 1, 9, and 16 with a very large C-band were 0.70%, 0.22%, and 0.54%, respectively. Aside from these (1, 9, and 16) a very large C-band was found occasionally in chromosomes 4, 5, 6, 11, 12, 14, and 15, and an unusual insertion of the Y chromosome was observed. A total of 128 C-band variants (6.89%) was found in the 1,857 Hiroshima residents. (author)

  5. Cognitive and medical features of chromosomal aneuploidy.

    Science.gov (United States)

    Hutaff-Lee, Christa; Cordeiro, Lisa; Tartaglia, Nicole

    2013-01-01

    This chapter describes the physical characteristics, medical complications, and cognitive and psychological profiles that are associated with chromosomal aneuploidy conditions, a group of conditions in which individuals are born with one or more additional chromosome. Overall, chromosomal aneuploidy conditions occur in approximately 1 in 250 children. Information regarding autosomal disorders including trisomy 21 (Down syndrome), trisomy 13 (Patau syndrome), and trisomy 18 (Edward syndrome) are presented. Sex chromosome aneuploidy conditions such as Klinefelter syndrome (47,XXY), XYY, trisomy X, and Turner syndrome (45,X), in addition to less frequently occurring tetrasomy and pentasomy conditions are also covered. Treatment recommendations and suggestions for future research directions are discussed. PMID:23622175

  6. Chromosomal aberrations in ore miners of Slovakia

    International Nuclear Information System (INIS)

    A pilot study was performed in which the incidence of chromosomal aberrations in lymphocytes of miners in ore mines located in Central Slovakia was monitored and related to lifetime underground radon exposure and to lifetime smoking. The conclusions drawn from the results of the study were as follows: the counts of chromosomal aberrations in lymphocytes of miners were significantly higher than in an age matched control group of white-collar staff; the higher counts of chromosomal aberrations could be ascribed to underground exposure of miners and to smoking; a dependence of chromosomal aberration counts on the exposure to radon could not be assessed. (A.K.)

  7. Recombinant cells that highly express chromosomally-integrated heterologous gene

    Science.gov (United States)

    Ingram, Lonnie O.; Ohta, Kazuyoshi; Wood, Brent E.

    2007-03-20

    Recombinant host cells are obtained that comprise (A) a heterologous, polypeptide-encoding polynucleotide segment, stably integrated into a chromosome, which is under transcriptional control of an endogenous promoter and (B) a mutation that effects increased expression of the heterologous segment, resulting in enhanced production by the host cells of each polypeptide encoded by that segment, relative to production of each polypeptide by the host cells in the absence of the mutation. The increased expression thus achieved is retained in the absence of conditions that select for cells displaying such increased expression. When the integrated segment comprises, for example, ethanol-production genes from an efficient ethanol producer like Zymomonas mobilis, recombinant Escherichia coli and other enteric bacterial cells within the present invention are capable of converting a wide range of biomass-derived sugars efficiently to ethanol.

  8. CRISPR-mediated control of the bacterial initiation of replication.

    Science.gov (United States)

    Wiktor, Jakub; Lesterlin, Christian; Sherratt, David J; Dekker, Cees

    2016-05-01

    Programmable control of the cell cycle has been shown to be a powerful tool in cell-biology studies. Here, we develop a novel system for controlling the bacterial cell cycle, based on binding of CRISPR/dCas9 to the origin-of-replication locus. Initiation of replication of bacterial chromosomes is accurately regulated by the DnaA protein, which promotes the unwinding of DNA at oriC We demonstrate that the binding of CRISPR/dCas9 to any position within origin or replication blocks the initiation of replication. Serial-dilution plating, single-cell fluorescence microscopy, and flow-cytometry experiments show that ongoing rounds of chromosome replication are finished upon CRISPR/dCas9 binding, but no new rounds are initiated. Upon arrest, cells stay metabolically active and accumulate cell mass. We find that elevating the temperature from 37 to 42°C releases the CRISR/dCas9 replication inhibition, and we use this feature to recover cells from the arrest. Our simple and robust method of controlling the bacterial cell cycle is a useful asset for synthetic biology and DNA-replication studies in particular. The inactivation of CRISPR/dCas9 binding at elevated temperatures may furthermore be of wide interest for CRISPR/Cas9 applications in genomic engineering. PMID:27036863

  9. Diagnosis of bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    Đukić Slobodanka

    2013-01-01

    Full Text Available Bacterial vaginosis is a common, complex clinical syndrome characterized by alterations in the normal vaginal flora. When symptomatic, it is associated with a malodorous vaginal discharge and on occasion vaginal burning or itching. Under normal conditions, lactobacilli constitute 95% of the bacteria in the vagina. Bacterial vaginosis is associated with severe reduction or absence of the normal H2O2­producing lactobacilli and overgrowth of anaerobic bacteria and Gardnerella vaginalis, Atopobium vaginae, Mycoplasma hominis and Mobiluncus species. Most types of infectious disease are diagnosed by culture, by isolating an antigen or RNA/DNA from the microbe, or by serodiagnosis to determine the presence of antibodies to the microbe. Therefore, demonstration of the presence of an infectious agent is often a necessary criterion for the diagnosis of the disease. This is not the case for bacterial vaginosis, since the ultimate cause of the disease is not yet known. There are a variety of methods for the diagnosis of bacterial vaginosis but no method can at present be regarded as the best. Diagnosing bacterial vaginosis has long been based on the clinical criteria of Amsel, whereby three of four defined criteria must be satisfied. Nugent’s scoring system has been further developed and includes validation of the categories of observable bacteria structures. Up­to­date molecular tests are introduced, and better understanding of vaginal microbiome, a clear definition for bacterial vaginosis, and short­term and long­term fluctuations in vaginal microflora will help to better define molecular tests within the broader clinical context.

  10. Interfering with bacterial gossip

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Tolker-Nielsen, Tim; Givskov, Michael

    2011-01-01

    defense. Antibiotics exhibit a rather limited effect on biofilms. Furthermore, antibiotics have an ‘inherent obsolescence’ because they select for development of resistance. Bacterial infections with origin in bacterial biofilms have become a serious threat in developed countries. Pseudomonas aeruginosa......, resistance and QS inhibition as future antimicrobial targets, in particular those that would work to minimize selection pressures for the development of resistant bacteria.......Biofilm resilience poses major challenges to the development of novel antimicrobial agents. Biofilm bacteria can be considered small groups of “Special Forces” capable of infiltrating the host and destroying important components of the cellular defense system with the aim of crippling the host...

  11. Simple generation of site-directed point mutations in the Escherichia coli chromosome using Red®/ET® Recombination

    Directory of Open Access Journals (Sweden)

    Jung Kirsten

    2008-04-01

    Full Text Available Abstract Background Introducing point mutations into bacterial chromosomes is important for further progress in studies relying on functional genomics, systems- and synthetic biology, and for metabolic engineering. For many investigations, chromosomal systems are required rather than artificial plasmid based systems. Results Here we describe the introduction of a single point mutation into the Escherichia coli chromosome by site-directed mutagenesis without leaving any selection marker. We used Red®/ET® Recombination in combination with rpsL counter-selection to introduce a single point mutation into the E. coli MG1655 genome, one of the widely used bacterial model strains in systems biology. The method we present is rapid and highly efficient. Since single-stranded synthetic oligonucleotides can be used for recombination, any chromosomal modification can be designed. Conclusion Chromosomal modifications performed by rpsL counter-selection may also be used for other bacteria that contain an rpsL homologue, since Red®/ET® Recombination has been applied to several enteric bacteria before.

  12. Chromosomal replicons of higher plants

    Energy Technology Data Exchange (ETDEWEB)

    Van' t Hof, J.

    1987-03-16

    This brief discussion of replicons of higher plants offers a glimpse into the properties of chromosomal DNA replication. It gives evidence that the S phase of unrelated plant species is comprised of temporally ordered replicon families that increase in number with genome size. This orderly process, which assures a normal inheritance of genetic material to recipient daughter cells, is maintained at the level of replicon clusters by two mutually exclusive mechanisms, one involving the rate at which single replicons replicate their allotment of DNA, and another by means of the tempo-pause. The same two mechanisms are used by cells to alter the pattern of chromosomal DNA replication just prior to and during normal development. Both mechanisms are genetically determined and produce genetic effects when disturbed of disrupted by additional non-conforming DNAs. Further insight into how these two mechanisms operate requires more molecular information about the nature of replicons and the factors that govern when a replicon family replicates. Plant material is a rich and ideal source for this information just awaiting exploitation. 63 refs.

  13. Increased chromosome radiosensitivity during pregnancy

    International Nuclear Information System (INIS)

    It was necessary to consider the risks of exposure of pregnant women, not only in relation to the child, but also in relation to their own hypersensitivity. We have demonstrated that pregnancy increases radiosensitivity of chromosome in the mouse at the end of gestation. This is of importance since it may have implications on radioprotection of pregnant women and give experimental guidelines to the problems of hypersensitivity to drugs and cancer aggravation during pregnancy. Blood obtained from women at various times of pregnancy was exposed to ionizing radiations. By comparison to non-pregnant women, an increase in chromosome breakage was observed in metaphases from lymphocytes, after short-term culture in the presence of the serum of the same donor. Immediately after delivery, this increase in radiosensitivity disappeared. In a prospective study, serial analyses showed a very strong correlation between the amount of pregnancy hormones, progesterone in particular, and the increase in radiosensitivity. Pregnant women may have an increased sensitivity to ionizing radiation during the second half of their pregnancy. This study provides the first evidence in human that radiosensitivity may vary in relation to physiological conditions

  14. Retrospective dosimetry by chromosomal analysis

    International Nuclear Information System (INIS)

    The joint EU/CIS project ECP-6, was set up to examine whether cytogenetic dosimetry is possible for persons irradiated years previously at Chernobyl. The paper describes the possibility of achieving this by the examination of blood lymphocytes for unstable and stable chromosome aberrations; dicentrics and translocations. Emphasis was placed on the relatively new fluorescence in situ hybridization (FISH) method for rapid screening for stable translocations. In a collaborative experiment in vitro dose response calibration curves for dicentrics and FISH were produced with gamma radiation over the range 0-1.0 Gy. A pilot study of about 60 liquidators with registered doses ranging from 0-300 mSv was undertaken to determine whether the chromosomal methods may verify the recorded doses. It was concluded that the dicentric is no longer valid as a measured endpoint. Translocations may be used to verify early dosimetry carried out on highly irradiated persons. For the vast majority of lesser exposed subjects FISH is impractical as an individual dosimeter; it may have some value for comparing groups of subjects

  15. Chromosomal instability determines taxane response.

    Science.gov (United States)

    Swanton, Charles; Nicke, Barbara; Schuett, Marion; Eklund, Aron C; Ng, Charlotte; Li, Qiyuan; Hardcastle, Thomas; Lee, Alvin; Roy, Rajat; East, Philip; Kschischo, Maik; Endesfelder, David; Wylie, Paul; Kim, Se Nyun; Chen, Jie-Guang; Howell, Michael; Ried, Thomas; Habermann, Jens K; Auer, Gert; Brenton, James D; Szallasi, Zoltan; Downward, Julian

    2009-05-26

    Microtubule-stabilizing (MTS) agents, such as taxanes, are important chemotherapeutics with a poorly understood mechanism of action. We identified a set of genes repressed in multiple cell lines in response to MTS agents and observed that these genes are overexpressed in tumors exhibiting chromosomal instability (CIN). Silencing 22/50 of these genes, many of which are involved in DNA repair, caused cancer cell death, suggesting that these genes are involved in the survival of aneuploid cells. Overexpression of these "CIN-survival" genes is associated with poor outcome in estrogen receptor-positive breast cancer and occurs frequently in basal-like and Her2-positive cases. In diploid cells, but not in chromosomally unstable cells, paclitaxel causes repression of CIN-survival genes, followed by cell death. In the OV01 ovarian cancer clinical trial, a high level of CIN was associated with taxane resistance but carboplatin sensitivity, indicating that CIN may determine MTS response in vivo. Thus, pretherapeutic assessment of CIN may optimize treatment stratification and clinical trial design using these agents. PMID:19458043

  16. Chromosomal replicons of higher plants

    International Nuclear Information System (INIS)

    This brief discussion of replicons of higher plants offers a glimpse into the properties of chromosomal DNA replication. It gives evidence that the S phase of unrelated plant species is comprised of temporally ordered replicon families that increase in number with genome size. This orderly process, which assures a normal inheritance of genetic material to recipient daughter cells, is maintained at the level of replicon clusters by two mutually exclusive mechanisms, one involving the rate at which single replicons replicate their allotment of DNA, and another by means of the tempo-pause. The same two mechanisms are used by cells to alter the pattern of chromosomal DNA replication just prior to and during normal development. Both mechanisms are genetically determined and produce genetic effects when disturbed of disrupted by additional non-conforming DNAs. Further insight into how these two mechanisms operate requires more molecular information about the nature of replicons and the factors that govern when a replicon family replicates. Plant material is a rich and ideal source for this information just awaiting exploitation. 63 refs

  17. The X chromosome of monotremes shares a highly conserved region with the eutherian and marsupial X chromosomes despite the absence of X chromosome inactivation

    Energy Technology Data Exchange (ETDEWEB)

    Watson, J.M.; Spencer, J.A.; Graves, J.A.M. (La Trobe Univ., Bundoora, Victoria (Australia)); Riggs, A.D. (Beckman Inst., Duarte, CA (USA))

    1990-09-01

    Eight genes, located on the long arm of the human X chromosome and present on the marsupial X chromosome, were mapped by in situ hybridization to the chromosomes of the platypus Ornithorhynchus anatinus, one of the three species of monotreme mammals. All were located on the X chromosome. The authors conclude that the long arm of the human X chromosome represents a highly conserved region that formed part of the X chromosome in a mammalian ancestor at least 150 million years ago. Since three of these genes are located on the long arm of the platypus X chromosome, which is G-band homologous to the Y chromosome and apparently exempt from X chromosome inactivation, the conservation of this region has evidently not depended on isolation by X-Y chromosome differentiation and X chromosome inactivation.

  18. DNA Probe Pooling for Rapid Delineation of Chromosomal Breakpoints

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chun-Mei; Kwan, Johnson; Baumgartner, Adolf; Weier, Jingly F.; Wang, Mei; Escudero, Tomas; Munne' , Santiago; Zitzelsberger, Horst F.; Weier, Heinz-Ulrich

    2009-01-30

    Structural chromosome aberrations are hallmarks of many human genetic diseases. The precise mapping of translocation breakpoints in tumors is important for identification of genes with altered levels of expression, prediction of tumor progression, therapy response, or length of disease-free survival as well as the preparation of probes for detection of tumor cells in peripheral blood. Similarly, in vitro fertilization (IVF) and preimplantation genetic diagnosis (PGD) for carriers of balanced, reciprocal translocations benefit from accurate breakpoint maps in the preparation of patient-specific DNA probes followed by a selection of normal or balanced oocytes or embryos. We expedited the process of breakpoint mapping and preparation of case-specific probes by utilizing physically mapped bacterial artificial chromosome (BAC) clones. Historically, breakpoint mapping is based on the definition of the smallest interval between proximal and distal probes. Thus, many of the DNA probes prepared for multi-clone and multi-color mapping experiments do not generate additional information. Our pooling protocol described here with examples from thyroid cancer research and PGD accelerates the delineation of translocation breakpoints without sacrificing resolution. The turnaround time from clone selection to mapping results using tumor or IVF patient samples can be as short as three to four days.

  19. Nuclear RNAs confined to a reticular compartment between chromosome territories

    International Nuclear Information System (INIS)

    RNA polymerase II transcripts are confined to nuclear compartments. A detailed analysis of the nuclear topology of RNA from individual genes was performed for transcripts from the marker gene coding for chloramphenicol acetyltransferase, expressed at a high level from the HTLV-1 LTR promoter. The construct was transfected into A293 cells where the RNA was organized as an extensive reticular network. We also studied the RNA distribution from combinations of neighboring HIV and bacterial resistance genes that co-integrated within the genome of COS-7 cells-revealing spherical or track-like accumulations of RNA that were extensively branched. There were many nuclei with distinct but overlapping RNA accumulations. Since the coding genes localized at the overlapping points, the RNAs are synthesized at a common region and diverge. The correlation between the frequency of the separation of the transcripts and the physical distance of the respective genes suggests a subcompartmentalization in the microenvironment of genes on the basis of geometric parameters. Thus, the more distant the genes are on the same chromosome, the more likely they are confined to separated subcompartments of an extensive reticular system. Co-delineation of the RNA transcripts with Cajal bodies and chromosome territories indicated the organization of nuclear RNA transcripts in a reticular interchromosome domain compartment

  20. Molecular evolution of bacterial indoleamine 2,3-dioxygenase.

    Science.gov (United States)

    Yuasa, Hajime J; Ushigoe, Akiko; Ball, Helen J

    2011-10-01

    Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) are tryptophan-degrading enzymes that catalyze the first step in L-Trp catabolism via the kynurenine pathway. In mammals, TDO is mainly expressed in the liver and primarily supplies nicotinamide adenine dinucleotide (NAD(+)). TDO is widely distributed from mammals to bacteria. Active IDO enzymes have been reported only in vertebrates and fungi. In mammals, IDO activity plays a significant role in the immune system while in fungal species, IDO is constitutively expressed and supplies NAD(+), like mammalian TDO. A search of genomic databases reveals that some bacterial species also have a putative IDO gene. A phylogenetic analysis clustered bacterial IDOs into two groups, group I or group II bacterial IDOs. The catalytic efficiencies of group I bacterial IDOs were very low and they are suspected not to contribute significantly to L-Trp metabolism. The bacterial species bearing the group I bacterial IDO are scattered across a few phyla and no phylogenetically close relationship is observed between them. This suggests that the group I bacterial IDOs might be acquired by horizontal gene transmission that occurred in each lineage independently. In contrast, group II bacterial IDOs showed rather high catalytic efficiency. Particularly, the enzymatic characteristics (K(m), V(max) and inhibitor selectivity) of the Gemmatimonas aurantiaca IDO are comparable to those of mammalian IDO1, although comparison of the IDO sequences does not suggest a close evolutionary relationship. In several bacteria, TDO and the kynureninase gene (kynU) are clustered on their chromosome suggesting that these genes could be transcribed in an operon. Interestingly, G. aurantiaca has no TDO, and the IDO is clustered with kynU on its chromosome. Although the G. aurantiaca also has NadA and NadB to synthesize a quinolinic acid (a precursor of NAD(+)) via the aspartate pathway, the high activity of the G. aurantiaca IDO flanking

  1. Chromosomal painting and ZW sex chromosomes differentiation in Characidium (Characiformes, Crenuchidae

    Directory of Open Access Journals (Sweden)

    Artoni Roberto F

    2011-07-01

    Full Text Available Abstract Background The Characidium (a Neotropical fish group have a conserved diploid number (2n = 50, but show remarkable differences among species and populations in relation to sex chromosome systems and location of nucleolus organizer regions (NOR. In this study, we isolated a W-specific probe for the Characidium and characterized six Characidium species/populations using cytogenetic procedures. We analyzed the origin and differentiation of sex and NOR-bearing chromosomes by chromosome painting in populations of Characidium to reveal their evolution, phylogeny, and biogeography. Results A W-specific probe for efficient chromosome painting was isolated by microdissection and degenerate oligonucleotide primed-polymerase chain reaction (DOP-PCR amplification of W chromosomes from C. gomesi. The W probe generated weak signals dispersed on the proto sex chromosomes in C. zebra, dispersed signals in both W and Z chromosomes in C. lauroi and, in C. gomesi populations revealed a proximal site on the long arms of the Z chromosome and the entire W chromosome. All populations showed small terminal W probe sites in some autosomes. The 18S rDNA revealed distinctive patterns for each analyzed species/population with regard to proto sex chromosome, sex chromosome pair, and autosome location. Conclusions The results from dual-color fluorescence in situ hybridization (dual-color FISH using W and 18S rDNA probes allowed us to infer the putative evolutionary pathways for the differentiation of sex chromosomes and NORs, from structural rearrangements in a sex proto-chromosome, followed by gene erosion and heterochromatin amplification, morphological differentiation of the sex chromosomal pair, and NOR transposition, giving rise to the distinctive patterns observed among species/populations of Characidium. Biogeographic isolation and differentiation of sex chromosomes seem to have played a major role in the speciation process in this group of fish.

  2. Chromosomal painting and ZW sex chromosomes differentiation in Characidium (Characiformes, Crenuchidae)

    Science.gov (United States)

    2011-01-01

    Background The Characidium (a Neotropical fish group) have a conserved diploid number (2n = 50), but show remarkable differences among species and populations in relation to sex chromosome systems and location of nucleolus organizer regions (NOR). In this study, we isolated a W-specific probe for the Characidium and characterized six Characidium species/populations using cytogenetic procedures. We analyzed the origin and differentiation of sex and NOR-bearing chromosomes by chromosome painting in populations of Characidium to reveal their evolution, phylogeny, and biogeography. Results A W-specific probe for efficient chromosome painting was isolated by microdissection and degenerate oligonucleotide primed-polymerase chain reaction (DOP-PCR) amplification of W chromosomes from C. gomesi. The W probe generated weak signals dispersed on the proto sex chromosomes in C. zebra, dispersed signals in both W and Z chromosomes in C. lauroi and, in C. gomesi populations revealed a proximal site on the long arms of the Z chromosome and the entire W chromosome. All populations showed small terminal W probe sites in some autosomes. The 18S rDNA revealed distinctive patterns for each analyzed species/population with regard to proto sex chromosome, sex chromosome pair, and autosome location. Conclusions The results from dual-color fluorescence in situ hybridization (dual-color FISH) using W and 18S rDNA probes allowed us to infer the putative evolutionary pathways for the differentiation of sex chromosomes and NORs, from structural rearrangements in a sex proto-chromosome, followed by gene erosion and heterochromatin amplification, morphological differentiation of the sex chromosomal pair, and NOR transposition, giving rise to the distinctive patterns observed among species/populations of Characidium. Biogeographic isolation and differentiation of sex chromosomes seem to have played a major role in the speciation process in this group of fish. PMID:21787398

  3. Variation, evolution, and correlation analysis of C+G content and genome or chromosome size in different kingdoms and phyla.

    Science.gov (United States)

    Li, Xiu-Qing; Du, Donglei

    2014-01-01

    C+G content (GC content or G+C content) is known to be correlated with genome/chromosome size in bacteria but the relationship for other kingdoms remains unclear. This study analyzed genome size, chromosome size, and base composition in most of the available sequenced genomes in various kingdoms. Genome size tends to increase during evolution in plants and animals, and the same is likely true for bacteria. The genomic C+G contents were found to vary greatly in microorganisms but were quite similar within each animal or plant subkingdom. In animals and plants, the C+G contents are ranked as follows: monocot plants>mammals>non-mammalian animals>dicot plants. The variation in C+G content between chromosomes within species is greater in animals than in plants. The correlation between average chromosome C+G content and chromosome length was found to be positive in Proteobacteria, Actinobacteria (but not in other analyzed bacterial phyla), Ascomycota fungi, and likely also in some plants; negative in some animals, insignificant in two protist phyla, and likely very weak in Archaea. Clearly, correlations between C+G content and chromosome size can be positive, negative, or not significant depending on the kingdoms/groups or species. Different phyla or species exhibit different patterns of correlation between chromosome-size and C+G content. Most chromosomes within a species have a similar pattern of variation in C+G content but outliers are common. The data presented in this study suggest that the C+G content is under genetic control by both trans- and cis- factors and that the correlation between C+G content and chromosome length can be positive, negative, or not significant in different phyla. PMID:24551092

  4. Bacterial extracellular lignin peroxidase

    Science.gov (United States)

    Crawford, Donald L.; Ramachandra, Muralidhara

    1993-01-01

    A newly discovered lignin peroxidase enzyme is provided. The enzyme is obtained from a bacterial source and is capable of degrading the lignin portion of lignocellulose in the presence of hydrogen peroxide. The enzyme is extracellular, oxidative, inducible by lignin, larch wood xylan, or related substrates and capable of attacking certain lignin substructure chemical bonds that are not degradable by fungal lignin peroxidases.

  5. Bacterial Skin Infections

    Science.gov (United States)

    ... or scraped, the injury should be washed with soap and water and covered with a sterile bandage. Petrolatum may be applied to open areas to keep the tissue moist and to try to prevent bacterial invasion. Doctors recommend that people do not use ...

  6. Bacterial microflora of nectarines

    Science.gov (United States)

    Microflora of fruit surfaces has been the best source of antagonists against fungi causing postharvest decays of fruit. However, there is little information on microflora colonizing surfaces of fruits other than grapes, apples, and citrus fruit. We characterized bacterial microflora on nectarine f...

  7. Non-disjunction of chromosome 13

    DEFF Research Database (Denmark)

    Bugge, Merete; Collins, Andrew; Hertz, Jens Michael;

    2007-01-01

    recombination in both maternal MI and MII errors and the former is associated with a significant number of tetrads (33%) that are nullichiasmate, which do not appear to be a feature of normal chromosome 13 meiosis. This study supports the evidence for subtle chromosome-specific influences on the mechanisms that...

  8. Chromosome number9 specific repetitive DNA sequence

    International Nuclear Information System (INIS)

    Human repetitive DNA libraries have been constructed and various recombinant DNA clones isolated that are likely candidates for chromosome specific sequences. The first clone tested (pHuR 98; plasmid human repeat 98) was biotinylated and hybridized to human chromosomes in situ. The hybridized recombinant probe was detected with fluoresceinated avidin, and chromosomes were counter-stained with either propidium iodide or distamycin-DAPI. Specific hybridization to chromosome band 9q1 was obtained. The localization was confirmed by hybridizing radiolabeled pHuR 98 DNA to human chromosomes sorted by flow cytometry. Various methods, including orthogonal field pulsed gel electrophoresis analysis indicate that 75 kilobase blocks of this sequence are interspersed with other repetitive DNA sequences in this chromosome band. This study is the first to report a human repetitive DNA sequence uniquely localized to a specific chromosome. This clone provides an easily detected and highly specific chromosomal marker for molecular cytogenetic analyses in numerous basic research and clinical studies

  9. Chromosomal characterization of Pseudonannolene strinatii (Spirostreptida, Pseudonannolenidae

    Directory of Open Access Journals (Sweden)

    Kleber Agari Campos

    2004-03-01

    Full Text Available The chromosomes of the cave millipede Pseudonannolene strinatii Mauriès, 1974 were investigated. The diploid chromosome number was found to be 2n=16, XX/XY; the C-banding technique revealed a large amount of heterochromatin while the silver staining technique (Ag-NOR evidenced the presence of heteromorphism of the NORs in some cells.

  10. Chromosomal Aneuploidies and Early Embryonic Developmental Arrest

    Directory of Open Access Journals (Sweden)

    Maria Maurer

    2015-07-01

    Full Text Available Background: Selecting the best embryo for transfer, with the highest chance of achieving a vital pregnancy, is a major goal in current in vitro fertilization (IVF technology. The high rate of embryonic developmental arrest during IVF treatment is one of the limitations in achieving this goal. Chromosomal abnormalities are possibly linked with chromosomal arrest and selection against abnormal fertilization products. The objective of this study was to evaluate the frequency and type of chromosomal abnormalities in preimplantation embryos with developmental arrest. Materials and Methods: This cohort study included blastomeres of embryos with early developmental arrest that were biopsied and analyzed by fluorescence in-situ hybridization (FISH with probes for chromosomes 13, 16, 18, 21 and 22. Forty-five couples undergoing IVF treatment were included, and 119 arrested embryos were biopsied. All probes were obtained from the Kinderwunsch Zentrum, Linz, Austria, between August 2009 and August 2011. Results: Of these embryos, 31.6% were normal for all chromosomes tested, and 68.4% were abnormal. Eleven embryos were uniformly aneuploid, 20 were polyploid, 3 were haploid, 11 displayed mosaicism and 22 embryos exhibited chaotic chromosomal complement. Conclusion: Nearly 70% of arrested embryos exhibit chromosomal errors, making chromosomal abnormalities a major cause of embryonic arrest and may be a further explanation for the high developmental failure rates during culture of the embryos in the IVF setting.

  11. Mechanisms of Chromosome Number Evolution in Yeast

    Science.gov (United States)

    Gordon, Jonathan L.; Byrne, Kevin P.; Wolfe, Kenneth H.

    2011-01-01

    The whole-genome duplication (WGD) that occurred during yeast evolution changed the basal number of chromosomes from 8 to 16. However, the number of chromosomes in post-WGD species now ranges between 10 and 16, and the number in non-WGD species (Zygosaccharomyces, Kluyveromyces, Lachancea, and Ashbya) ranges between 6 and 8. To study the mechanism by which chromosome number changes, we traced the ancestry of centromeres and telomeres in each species. We observe only two mechanisms by which the number of chromosomes has decreased, as indicated by the loss of a centromere. The most frequent mechanism, seen 8 times, is telomere-to-telomere fusion between two chromosomes with the concomitant death of one centromere. The other mechanism, seen once, involves the breakage of a chromosome at its centromere, followed by the fusion of the two arms to the telomeres of two other chromosomes. The only mechanism by which chromosome number has increased in these species is WGD. Translocations and inversions have cycled telomere locations, internalizing some previously telomeric genes and creating novel telomeric locations. Comparison of centromere structures shows that the length of the CDEII region is variable between species but uniform within species. We trace the complete rearrangement history of the Lachancea kluyveri genome since its common ancestor with Saccharomyces and propose that its exceptionally low level of rearrangement is a consequence of the loss of the non-homologous end joining (NHEJ) DNA repair pathway in this species. PMID:21811419

  12. Genomic Dark Matter Illuminated: Anopheles Y Chromosomes.

    Science.gov (United States)

    Redmond, Seth N; Neafsey, Daniel E

    2016-08-01

    Hall et al. have strategically used long-read sequencing technology to characterize the structure and highly repetitive content of the Y chromosome in Anopheles malaria mosquitoes. Their work confirms that this important but elusive heterochromatic sex chromosome is evolving extremely rapidly and harbors a remarkably small number of genes. PMID:27263828

  13. Physical map of the Bacillus cereus chromosome.

    OpenAIRE

    Kolstø, A B; Grønstad, A; Oppegaard, H

    1990-01-01

    A physical map of the Bacillus cereus chromosome has been constructed by aligning 11 NotI fragments, ranging in size from 200 to 1,300 kilobases. The size of the chromosome is about 5.7 megabases. This is the first Bacillus genome of which a complete physical map has been described.

  14. Compositions for chromosome-specific staining

    Science.gov (United States)

    Gray, Joe W.; Pinkel, Daniel

    1998-01-01

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods are provided to disable the hybridization capacity of shared, high copy repetitive sequences and/or remove such sequences to provide for useful contrast. Still further methods are provided to produce chromosome-specific staining reagents which are made specific to the targeted chromosomal material, which can be one or more whole chromosomes, one or more regions on one or more chromosomes, subsets of chromosomes and/or the entire genome. Probes and test kits are provided for use in tumor cytogenetics, in the detection of disease related loci, in analysis of structural abnormalities, such as translocations, and for biological dosimetry. Further, methods and prenatal test kits are provided to stain targeted chromosomal material of fetal cells, including fetal cells obtained from maternal blood. Still further, the invention provides for automated means to detect and analyse chromosomal abnormalities.

  15. Mapping of human chromosomal regions related to neoplasia: evidence from chromosomes 1 and 17

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, J.D.

    1977-12-01

    In clonal aberrations leading to an excess or partial excess of chromosome I, trisomy for bands 1q25-1q32 was noted in the myeloid cells from all of 34 patients who had various disorders such as acute leukemia, polycythemia vera, and myelofibrosis. This was not the result of a particularly fragile site in that region of the chromosome because the break points in reciprocal translocations that involve it occurred almost exclusively in the short arm. Two consistent rearrangements that have been observed in chromosome 17 produced either duplication of the entire long arm or a translocation of the distal portion of the long arm to chromosome 15. The nonrandom chromosomal changes found in hematologic disorders can now be correlated with the gene loci on these chromosomes or chromosomal segments. Seventy-five genes related to various metabolic enzymes have been mapped; it may be significant that chromosomes carrying gene loci related to nucleic acid metabolism are more frequently involved in hematologic disorders (and other malignancies as well) than are gene loci related to intermediary or carbohydrate metabolism. Furthermore, the known virus-human chromosome associations are closely correlated with the chromosomes affected in hematologic disorders. If one of the effects of carcinogens (including viruses) is to activate genes that regulate host cell DNA synthesis, and if translocations or duplications of specific chromosomal segments produce the same effect, then either of these mechanisms might provide the affected cell with a proliferative advantage.

  16. Review of the Y chromosome and hypertension

    Directory of Open Access Journals (Sweden)

    D. Ely

    2000-06-01

    Full Text Available The Y chromosome from spontaneously hypertensive rats (SHR has a locus that raises blood pressure 20-25 mmHg. Associated with the SHR Y chromosome effect is a 4-week earlier pubertal rise of testosterone and dependence upon the androgen receptor for the full blood pressure effect. Several indices of enhanced sympathetic nervous system (SNS activity are also associated with the SHR Y chromosome. Blockade of SNS outflow reduced the blood pressure effect. Salt sensitivity was increased by the Y chromosome as was salt appetite which was SNS dependent. A strong correlation (r = 0.57, P<0.001 was demonstrable between plasma testosterone and angiotensin II. Coronary collagen increased with blood pressure and the presence of the SHR Y chromosome. A promising candidate gene for the Y effect is the Sry locus (testis determining factor, a transcription factor which may also have other functions.

  17. Genetic conflict and sex chromosome evolution

    Science.gov (United States)

    Meiklejohn, Colin D; Tao, Yun

    2009-01-01

    Chromosomal sex determination systems create the opportunity for the evolution of selfish genetic elements that increase the transmission of one sex chromosome at the expense of its homolog. Because such selfish elements on sex chromosomes can reduce fertility and distort the sex ratio of progeny, unlinked suppressors are expected to evolve, bringing different regions of the genome into conflict over the meiotic transmission of the sex chromosomes. Here we argue that recurrent genetic conflict over sex chromosome transmission is an important evolutionary force that has shaped a wide range of seemingly disparate phenomena including the epigenetic regulation of genes expressed in the germline, the distribution of genes in the genome, and the evolution of hybrid sterility between species. PMID:19931208

  18. Advances in understanding paternally transmitted Chromosomal Abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, F; Sloter, E; Wyrobek, A J

    2001-03-01

    Multicolor FISH has been adapted for detecting the major types of chromosomal abnormalities in human sperm including aneuploidies for clinically-relevant chromosomes, chromosomal aberrations including breaks and rearrangements, and other numerical abnormalities. The various sperm FISH assays have been used to evaluate healthy men, men of advanced age, and men who have received mutagenic cancer therapy. The mouse has also been used as a model to investigate the mechanism of paternally transmitted genetic damage. Sperm FISH for the mouse has been used to detect chromosomally abnormal mouse sperm, while the PAINT/DAPI analysis of mouse zygotes has been used to evaluate the types of chromosomal defects that can be paternally transmitted to the embryo and their effects on embryonic development.

  19. New Y chromosomes and early stages of sex chromosome differentiation: sex determination in Megaselia

    Indian Academy of Sciences (India)

    Walther Traut

    2010-09-01

    The phorid fly Megaselia scalaris is a laboratory model for the turnover and early differentiation of sex chromosomes. Isolates from the field have an XY sex-determining mechanism with chromosome pair 2 acting as X and Y chromosomes. The sex chromosomes are homomorphic but display early signs of sex chromosome differentiation: a low level of molecular differences between X and Y. The male-determining function $(M)$, maps to the distal part of the Y chromosome’s short arm. In laboratory cultures, new Y chromosomes with no signs of a molecular differentiation arise at a low rate, probably by transposition of to these chromosomes. Downstream of the primary signal, the homologue of the Drosophila doublesex (dsx) is part of the sex-determining pathway while Sex-lethal (Sxl), though structurally conserved, is not.

  20. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration.

    Science.gov (United States)

    Bachtrog, Doris

    2013-02-01

    The human Y chromosome is intriguing not only because it harbours the master-switch gene that determines gender but also because of its unusual evolutionary history. The Y chromosome evolved from an autosome, and its evolution has been characterized by massive gene decay. Recent whole-genome and transcriptome analyses of Y chromosomes in humans and other primates, in Drosophila species and in plants have shed light on the current gene content of the Y chromosome, its origins and its long-term fate. Furthermore, comparative analysis of young and old Y chromosomes has given further insights into the evolutionary and molecular forces triggering Y-chromosome degeneration and into the evolutionary destiny of the Y chromosome. PMID:23329112

  1. Heme uptake in bacterial pathogens

    OpenAIRE

    Contreras, Heidi; Chim, Nicholas; Credali, Alfredo; Goulding, Celia W.

    2014-01-01

    Iron is an essential nutrient for the survival of organisms. Bacterial pathogens possess specialized pathways to acquire heme from their human hosts. In this review, we present recent structural and biochemical data that provide mechanistic insights into several bacterial heme uptake pathways, encompassing the sequestration of heme from human hemoproteins to secreted or membrane-associated bacterial proteins, the transport of heme across bacterial membranes, and the degradation of heme within...

  2. Novel gene acquisition on carnivore Y chromosomes.

    Directory of Open Access Journals (Sweden)

    2006-03-01

    Full Text Available Despite its importance in harboring genes critical for spermatogenesis and male-specific functions, the Y chromosome has been largely excluded as a priority in recent mammalian genome sequencing projects. Only the human and chimpanzee Y chromosomes have been well characterized at the sequence level. This is primarily due to the presumed low overall gene content and highly repetitive nature of the Y chromosome and the ensuing difficulties using a shotgun sequence approach for assembly. Here we used direct cDNA selection to isolate and evaluate the extent of novel Y chromosome gene acquisition in the genome of the domestic cat, a species from a different mammalian superorder than human, chimpanzee, and mouse (currently being sequenced. We discovered four novel Y chromosome genes that do not have functional copies in the finished human male-specific region of the Y or on other mammalian Y chromosomes explored thus far. Two genes are derived from putative autosomal progenitors, and the other two have X chromosome homologs from different evolutionary strata. All four genes were shown to be multicopy and expressed predominantly or exclusively in testes, suggesting that their duplication and specialization for testis function were selected for because they enhance spermatogenesis. Two of these genes have testis-expressed, Y-borne copies in the dog genome as well. The absence of the four newly described genes on other characterized mammalian Y chromosomes demonstrates the gene novelty on this chromosome between mammalian orders, suggesting it harbors many lineage-specific genes that may go undetected by traditional comparative genomic approaches. Specific plans to identify the male-specific genes encoded in the Y chromosome of mammals should be a priority.

  3. Chromosome differentiation patterns during cichlid fish evolution

    Directory of Open Access Journals (Sweden)

    Nirchio Mauro

    2010-06-01

    Full Text Available Abstract Background Cichlid fishes have been the subject of increasing scientific interest because of their rapid adaptive radiation which has led to an extensive ecological diversity and their enormous importance to tropical and subtropical aquaculture. To increase our understanding of chromosome evolution among cichlid species, karyotypes of one Asian, 22 African, and 30 South American cichlid species were investigated, and chromosomal data of the family was reviewed. Results Although there is extensive variation in the karyotypes of cichlid fishes (from 2n = 32 to 2n = 60 chromosomes, the modal chromosome number for South American species was 2n = 48 and the modal number for the African ones was 2n = 44. The only Asian species analyzed, Etroplus maculatus, was observed to have 46 chromosomes. The presence of one or two macro B chromosomes was detected in two African species. The cytogenetic mapping of 18S ribosomal RNA (18S rRNA gene revealed a variable number of clusters among species varying from two to six. Conclusions The karyotype diversification of cichlids seems to have occurred through several chromosomal rearrangements involving fissions, fusions and inversions. It was possible to identify karyotype markers for the subfamilies Pseudocrenilabrinae (African and Cichlinae (American. The karyotype analyses did not clarify the phylogenetic relationship among the Cichlinae tribes. On the other hand, the two major groups of Pseudocrenilabrinae (tilapiine and haplochromine were clearly discriminated based on the characteristics of their karyotypes. The cytogenetic mapping of 18S ribosomal RNA (18S rRNA gene did not follow the chromosome diversification in the family. The dynamic evolution of the repeated units of rRNA genes generates patterns of chromosomal distribution that do not help follows the phylogenetic relationships among taxa. The presence of B chromosomes in cichlids is of particular interest because they may not be represented in

  4. Evolutionary transitions in bacterial symbiosis

    OpenAIRE

    Sachs, Joel L.; Skophammer, Ryan G.; Regus, John U.

    2011-01-01

    Diverse bacterial lineages form beneficial infections with eukaryotic hosts. The origins, evolution, and breakdown of these mutualisms represent important evolutionary transitions. To examine these key events, we synthesize data from diverse interactions between bacteria and eukaryote hosts. Five evolutionary transitions are investigated, including the origins of bacterial associations with eukaryotes, the origins and subsequent stable maintenance of bacterial mutualism with hosts, the captur...

  5. Importance of prophages to evolution and virulence of bacterial pathogens.

    Science.gov (United States)

    Fortier, Louis-Charles; Sekulovic, Ognjen

    2013-07-01

    Bacteriophages, or simply phages, are viruses infecting bacteria. With an estimated 10 ( 31) particles in the biosphere, phages outnumber bacteria by a factor of at least 10 and not surprisingly, they influence the evolution of most bacterial species, sometimes in unexpected ways. "Temperate" phages have the ability to integrate into the chromosome of their host upon infection, where they can reside as "quiescent" prophages until conditions favor their reactivation. Lysogenic conversion resulting from the integration of prophages encoding powerful toxins is probably the most determinant contribution of prophages to the evolution of pathogenic bacteria. We currently grasp only a small fraction of the total phage diversity. Phage biologists keep unraveling novel mechanisms developed by phages to parasitize their host. The purpose of this review is to give an overview of some of the various ways by which prophages change the lifestyle and boost virulence of some of the most dangerous bacterial pathogens. PMID:23611873

  6. Extensive cotransformation of natural variation into chromosomes of naturally competent Haemophilus influenzae.

    Science.gov (United States)

    Mell, Joshua Chang; Lee, Jae Yun; Firme, Marlo; Sinha, Sunita; Redfield, Rosemary J

    2014-04-01

    Naturally competent bacterial species actively take up environmental DNA and can incorporate it into their chromosomes by homologous recombination. This can bring genetic variation from environmental DNA to recipient chromosomes, often in multiple long "donor" segments. Here, we report the results of genome sequencing 96 colonies of a laboratory Haemophilus influenzae strain, which had been experimentally transformed by DNA from a diverged clinical isolate. Donor segments averaged 6.9 kb (spanning several genes) and were clustered into recombination tracts of ~19.5 kb. Individual colonies had replaced from 0.1 to 3.2% of their chromosomes, and ~1/3 of all donor-specific single-nucleotide variants were present in at least one recombinant. We found that nucleotide divergence did not obviously limit the locations of recombination tracts, although there were small but significant reductions in divergence at recombination breakpoints. Although indels occasionally transformed as parts of longer recombination tracts, they were common at breakpoints, suggesting that indels typically block progression of strand exchange. Some colonies had recombination tracts in which variant positions contained mixtures of both donor and recipient alleles. These tracts were clustered around the origin of replication and were interpreted as the result of heteroduplex segregation in the original transformed cell. Finally, a pilot experiment demonstrated the utility of natural transformation for genetically dissecting natural phenotypic variation. We discuss our results in the context of the potential to merge experimental and population genetic approaches, giving a more holistic understanding of bacterial gene transfer. PMID:24569039

  7. Insights from twenty years of bacterial genome sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Jun, Se Ran [ORNL; Nookaew, Intawat [ORNL; Leuze, Michael Rex [ORNL; Ahn, Tae-Hyuk [ORNL; Karpinets, Tatiana V [ORNL; Lund, Ole [Technical University of Denmark; Kora, Guruprasad H [ORNL; Wassenaar, Trudy [Molecular Microbiology & Genomics Consultants, Zotzenheim, Germany; Poudel, Suresh [ORNL; Ussery, David W [ORNL

    2015-01-01

    Since the first two complete bacterial genome sequences were published in 1995, the science of bacteria has dramatically changed. Using third-generation DNA sequencing, it is possible to completely sequence a bacterial genome in a few hours and identify some types of methylation sites along the genome as well. Sequencing of bacterial genome sequences is now a standard procedure, and the information from tens of thousands of bacterial genomes has had a major impact on our views of the bacterial world. In this review, we explore a series of questions to highlight some insights that comparative genomics has produced. To date, there are genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. However, the distribution is quite skewed towards a few phyla that contain model organisms. But the breadth is continuing to improve, with projects dedicated to filling in less characterized taxonomic groups. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system provides bacteria with immunity against viruses, which outnumber bacteria by tenfold. How fast can we go? Second-generation sequencing has produced a large number of draft genomes (close to 90 % of bacterial genomes in GenBank are currently not complete); third-generation sequencing can potentially produce a finished genome in a few hours, and at the same time provide methlylation sites along the entire chromosome. The diversity of bacterial communities is extensive as is evident from the genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. Genome sequencing can help in classifying an organism, and in the case where multiple genomes of the same species are available, it is possible to calculate the pan- and core genomes; comparison of more than 2000 Escherichia coli genomes finds an E. coli core genome of about 3100 gene families and a total of about 89,000 different gene families. Why do we care about bacterial genome

  8. Chromosomal rearrangements in cattle and pigs revealed by chromosome microdissection and chromosome painting

    OpenAIRE

    Yerle Martine; Ducos Alain; Pinton Alain

    2003-01-01

    Abstract A pericentric inversion of chromosome 4 in a boar, as well as a case of (2q-;5p+) translocation mosaicism in a bull were analysed by chromosome painting using probes generated by conventional microdissection. For the porcine inversion, probes specific for p arms and q arms were produced and hybridised simultaneously on metaphases of a heterozygote carrier. In the case of the bovine translocation, two whole chromosome probes (chromosome 5, and derived chromosome 5) were elaborated and...

  9. Sex chromosome evolution: platypus gene mapping suggests that part of the human X chromosome was originally autosomal.

    OpenAIRE

    Watson, J M; Spencer, J. A.; Riggs, A D; Graves, J.A.

    1991-01-01

    To investigate the evolution of the mammalian sex chromosomes, we have compared the gene content of the X chromosomes in the mammalian groups most distantly related to man (marsupials and monotremes). Previous work established that genes on the long arm of the human X chromosome are conserved on the X chromosomes in all mammals, revealing that this region was part of an ancient mammalian X chromosome. However, we now report that several genes located on the short arm of the human X chromosome...

  10. [Bacterial diseases of rape].

    Science.gov (United States)

    Zakharova, O M; Mel'nychuk, M D; Dankevych, L A; Patyka, V P

    2012-01-01

    Bacterial destruction of the culture was described and its agents identified in the spring and winter rape crops. Typical symptoms are the following: browning of stem tissue and its mucilagization, chlorosis of leaves, yellowing and beginning of soft rot in the place of leaf stalks affixion to stems, loss of pigmentation (violet). Pathogenic properties of the collection strains and morphological, cultural, physiological, and biochemical properties of the agents of rape's bacterial diseases isolated by the authors have been investigated. It was found that all the isolates selected by the authors are highly or moderately aggressive towards different varieties of rape. According to the complex of phenotypic properties 44% of the total number of isolates selected by the authors are related to representatives of the genus Pseudomonas, 37% - to Xanthomonas and 19% - to Pectobacterium. PMID:23293826

  11. Bacterial proteases and virulence

    DEFF Research Database (Denmark)

    Frees, Dorte; Brøndsted, Lone; Ingmer, Hanne

    Bacterial pathogens rely on proteolysis for variety of purposes during the infection process. In the cytosol, the main proteolytic players are the conserved Clp and Lon proteases that directly contribute to virulence through the timely degradation of virulence regulators and indirectly by providing...... tolerance to adverse conditions such as those experienced in the host. In the membrane, HtrA performs similar functions whereas the extracellular proteases, in close contact with host components, pave the way for spreading infections by degrading host matrix components or interfering with host cell...... cell. These extracellular proteases are activated in complex cascades involving auto-processing and proteolytic maturation. Thus, proteolysis has been adopted by bacterial pathogens at multiple levels to ensure the success of the pathogen in contact with the human host....

  12. Construction of physical maps for the sex-specific regions of papaya sex chromosomes

    Directory of Open Access Journals (Sweden)

    Na Jong-Kuk

    2012-05-01

    Full Text Available Abstract Background Papaya is a major fruit crop in tropical and subtropical regions worldwide. It is trioecious with three sex forms: male, female, and hermaphrodite. Sex determination is controlled by a pair of nascent sex chromosomes with two slightly different Y chromosomes, Y for male and Yh for hermaphrodite. The sex chromosome genotypes are XY (male, XYh (hermaphrodite, and XX (female. The papaya hermaphrodite-specific Yh chromosome region (HSY is pericentromeric and heterochromatic. Physical mapping of HSY and its X counterpart is essential for sequencing these regions and uncovering the early events of sex chromosome evolution and to identify the sex determination genes for crop improvement. Results A reiterate chromosome walking strategy was applied to construct the two physical maps with three bacterial artificial chromosome (BAC libraries. The HSY physical map consists of 68 overlapped BACs on the minimum tiling path, and covers all four HSY-specific Knobs. One gap remained in the region of Knob 1, the only knob structure shared between HSY and X, due to the lack of HSY-specific sequences. This gap was filled on the physical map of the HSY corresponding region in the X chromosome. The X physical map consists of 44 BACs on the minimum tiling path with one gap remaining in the middle, due to the nature of highly repetitive sequences. This gap was filled on the HSY physical map. The borders of the non-recombining HSY were defined genetically by fine mapping using 1460 F2 individuals. The genetically defined HSY spanned approximately 8.5 Mb, whereas its X counterpart extended about 5.4 Mb including a 900 Kb region containing the Knob 1 shared by the HSY and X. The 8.5 Mb HSY corresponds to 4.5 Mb of its X counterpart, showing 4 Mb (89% DNA sequence expansion. Conclusion The 89% increase of DNA sequence in HSY indicates rapid expansion of the Yh chromosome after genetic recombination was suppressed 2–3 million years ago. The

  13. DNA sequences and composition from 12 BAC clones-derived MUSB SSR markers mapped to cotton (Gossypium Hirsutum L. x G. Barbadense L.)chromosomes 11 and 21

    Science.gov (United States)

    To discover resistance (R) and/or pathogen-induced (PR) genes involved in disease response, 12 bacterial artificial chromosome (BAC) clones from cv. Acala Maxxa (G. hirsutum) were sequenced at the Clemson University, Genomics Institute, Clemson, SC. These BACs derived MUSB single sequence repeat (SS...

  14. Supramolecular bacterial systems

    OpenAIRE

    Sankaran, Shrikrishnan

    2015-01-01

    For nearly over a decade, a wide variety of dynamic and responsive supramolecular architectures have been investigated and developed to address biological systems. Since the non-covalent interactions between individual molecular components in such architectures are similar to the interactions found in living systems, it was possible to integrate chemically-synthesized and naturally-occurring components to create platforms with interesting bioactive properties. Bacterial cells and recombinant ...

  15. Bacterial transformation of terpenoids

    International Nuclear Information System (INIS)

    Data on the bacterial transformation of terpenoids published in the literature in the past decade are analyzed. Possible pathways for chemo-, regio- and stereoselective modifications of terpenoids are discussed. Considerable attention is given to new technological approaches to the synthesis of terpenoid derivatives suitable for the use in the perfume and food industry and promising as drugs and chiral intermediates for fine organic synthesis. The bibliography includes 246 references

  16. Chromosomal Islands of Streptococcus pyogenes and related streptococci: Molecular Switches for Survival and Virulence

    Directory of Open Access Journals (Sweden)

    Scott Van Nguyen

    2014-08-01

    Full Text Available Streptococcus pyogenes is a significant pathogen of humans, annually causing over 700,000,000 infections and 500,000 deaths. Virulence in S. pyogenes is closely linked to mobile genetic elements like phages and chromosomal islands (CI. S. pyogenes phage-like chromosomal islands (SpyCI confer a complex mutator phenotype on their host. SpyCI integrate into the 5’ end of DNA mismatch repair (MMR gene mutL, which also disrupts downstream operon genes lmrP, ruvA, and tag. During early logarithmic growth, SpyCI excise from the bacterial chromosome and replicate as episomes, relieving the mutator phenotype. As growth slows and the cells enter stationary phase, SpyCI reintegrate into the chromosome, again silencing the MMR operon. This system creates a unique growth-dependent and reversible mutator phenotype. Additional CI using the identical attachment site in mutL have been identified in related species, including Streptococcus dysgalactiae subsp. equisimilis, Streptococcus anginosus, Streptococcus intermedius, Streptococcus parauberis, and Streptococcus canis. These CI have small genomes, which range from 13-20 kB, conserved integrase and DNA replication genes, and no identifiable genes encoding capsid proteins. SpyCI may employ a helper phage for packaging and dissemination in a fashion similar to the Staphylococcus aureus pathogenicity islands (SaPI. Outside of the core replication and integration genes, SpyCI and related CI show considerable diversity with the presence of many indels that may contribute to the host cell phenotype or fitness. SpyCI are a subset of a larger family of streptococcal CI who potentially regulate the expression of other host genes. The biological and phylogenetic analysis of streptococcal chromosomal islands provides important clues as to how these chromosomal islands help S. pyogenes and other streptococcal species persist in human populations in spite of antibiotic therapy and immune challenges.

  17. Chromosomal islands of Streptococcus pyogenes and related streptococci: molecular switches for survival and virulence.

    Science.gov (United States)

    Nguyen, Scott V; McShan, William M

    2014-01-01

    Streptococcus pyogenes is a significant pathogen of humans, annually causing over 700,000,000 infections and 500,000 deaths. Virulence in S. pyogenes is closely linked to mobile genetic elements like phages and chromosomal islands (CI). S. pyogenes phage-like chromosomal islands (SpyCI) confer a complex mutator phenotype on their host. SpyCI integrate into the 5' end of DNA mismatch repair (MMR) gene mutL, which also disrupts downstream operon genes lmrP, ruvA, and tag. During early logarithmic growth, SpyCI excise from the bacterial chromosome and replicate as episomes, relieving the mutator phenotype. As growth slows and the cells enter stationary phase, SpyCI reintegrate into the chromosome, again silencing the MMR operon. This system creates a unique growth-dependent and reversible mutator phenotype. Additional CI using the identical attachment site in mutL have been identified in related species, including Streptococcus dysgalactiae subsp. equisimilis, Streptococcus anginosus, Streptococcus intermedius, Streptococcus parauberis, and Streptococcus canis. These CI have small genomes, which range from 13 to 20 kB, conserved integrase and DNA replication genes, and no identifiable genes encoding capsid proteins. SpyCI may employ a helper phage for packaging and dissemination in a fashion similar to the Staphylococcus aureus pathogenicity islands (SaPI). Outside of the core replication and integration genes, SpyCI and related CI show considerable diversity with the presence of many indels that may contribute to the host cell phenotype or fitness. SpyCI are a subset of a larger family of streptococcal CI who potentially regulate the expression of other host genes. The biological and phylogenetic analysis of streptococcal chromosomal islands provides important clues as to how these chromosomal islands help S. pyogenes and other streptococcal species persist in human populations in spite of antibiotic therapy and immune challenges. PMID:25161960

  18. ParABS system in chromosome partitioning in the bacterium Myxococcus xanthus.

    Directory of Open Access Journals (Sweden)

    Antonio A Iniesta

    Full Text Available Chromosome segregation is an essential cellular function in eukaryotic and prokaryotic cells. The ParABS system is a fundamental player for a mitosis-like process in chromosome partitioning in many bacterial species. This work shows that the social bacterium Myxococcus xanthus also uses the ParABS system for chromosome segregation. Its large prokaryotic genome of 9.1 Mb contains 22 parS sequences near the origin of replication, and it is shown here that M. xanthus ParB binds preferentially to a consensus parS sequence in vitro. ParB and ParA are essential for cell viability in M. xanthus as in Caulobacter crescentus, but unlike in many other bacteria. Absence of ParB results in anucleate cells, chromosome segregation defects and loss of viability. Analysis of ParA subcellular localization shows that it clusters at the poles in all cells, and in some, in the DNA-free cell division plane between two chromosomal DNA masses. This ParA localization pattern depends on ParB but not on FtsZ. ParB inhibits the nonspecific interaction of ParA with DNA, and ParA colocalizes with chromosomal DNA only when ParB is depleted. The subcellular localization of ParB suggests a single ParB-parS complex localized at the edge of the nucleoid, next to a polar ParA cluster, with a second ParB-parS complex migrating after the replication of parS takes place to the opposite nucleoid edge, next to the other polar ParA cluster.

  19. Identification of Diverse Antimicrobial Resistance Determinants Carried on Bacterial, Plasmid, or Viral Metagenomes from an Activated Sludge Microbial Assemblage▿

    OpenAIRE

    Parsley, Larissa C.; Consuegra, Erin J.; Kakirde, Kavita S.; Land, Andrew M.; Harper, Willie F.; Liles, Mark R.

    2010-01-01

    Using both sequence- and function-based metagenomic approaches, multiple antibiotic resistance determinants were identified within metagenomic libraries constructed from DNA extracted from bacterial chromosomes, plasmids, or viruses within an activated sludge microbial assemblage. Metagenomic clones and a plasmid that in Escherichia coli expressed resistance to chloramphenicol, ampicillin, or kanamycin were isolated, with many cloned DNA sequences lacking any significant homology to known ant...

  20. Nonrandom chromosomal changes in human malignant cells

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, J D

    1977-01-01

    The role of chromosomal changes in human malignant cells has been the subject of much debate. The observation of nonrandom chromosomal changes has become well recognized in chronic myelogenous leukemia, and more recently in acute myelogenous leukemia. In the present report, data are presented on the sites of duplication of chromosome No. 1 in hematologic disorders. Trisomy for region lq25 to lq32 was observed in every one of 34 patients whose cells showed duplication of some part of chromosome No. 1. Adjacent regions lq21 to lq25, and lq32 to lqter, also were trisomic in the majority of patients. Two patients had deletions, one of lq32 to qter, and the other, of lp32 to pter. The sites of chromosomal breaks leading to trisomy differ from those involved in balanced reciprocal translocations. Some of these sites are sometimes, but not always, vulnerable in constitutional chromosomal abnormalities. The nature of the proliferative advantage conferred on myeloid cells by these chromosomal changes is unknown.

  1. Chromosome number evolution in skippers (Lepidoptera, Hesperiidae).

    Science.gov (United States)

    Lukhtanov, Vladimir A

    2014-01-01

    Lepidoptera (butterflies and moths), as many other groups of animals and plants, simultaneously represent preservation of ancestral karyotype in the majority of families with a high degree of chromosome number instability in numerous independently evolved phylogenetic lineages. However, the pattern and trends of karyotype evolution in some Lepidoptera families are poorly studied. Here I provide a survey of chromosome numbers in skippers (family Hesperiidae) based on intensive search and analysis of published data. I demonstrate that the majority of skippers preserve the haploid chromosome number n=31 that seems to be an ancestral number for the Hesperiidae and the order Lepidoptera at whole. However, in the tribe Baorini the derived number n=16 is the most typical state which can be used as a (syn)apomorphic character in further phylogenetic investigations. Several groups of skippers display extreme chromosome number variations on within-species (e.g. the representatives of the genus Carcharodus Hübner, [1819]) and between-species (e.g. the genus Agathymus Freeman, 1959) levels. Thus, these groups can be used as model systems for future analysis of the phenomenon of chromosome instability. Interspecific chromosomal differences are also shown to be useful for discovering and describing new cryptic species of Hesperiidae representing in such a way a powerful tool in biodiversity research. Generally, the skipper butterflies promise to be an exciting group that will significantly contribute to the growing knowledge of patterns and processes of chromosome evolution. PMID:25610542

  2. Chromosome number evolution in skippers (Lepidoptera, Hesperiidae

    Directory of Open Access Journals (Sweden)

    Vladimir Lukhtanov

    2014-11-01

    Full Text Available Lepidoptera (butterflies and moths, as many other groups of animals and plants, simultaneously represent preservation of ancestral karyotype in the majority of families with a high degree of chromosome number instability in numerous independently evolved phylogenetic lineages. However, the pattern and trends of karyotype evolution in some Lepidoptera families are poorly studied. Here I provide a survey of chromosome numbers in skippers (family Hesperiidae based on intensive search and analysis of published data. I demonstrate that the majority of skippers preserve the haploid chromosome number n=31 that seems to be an ancestral number for the Hesperiidae and the order Lepidoptera at whole. However, in the tribe Baorini the derived number n=16 is the most typical state which can be used as a (synapomorphic character in further phylogenetic investigations. Several groups of skippers display extreme chromosome number variations on within-species (e.g. the representatives of the genus Carcharodus Hübner, [1819] and between-species (e.g. the genus Agathymus Freeman, 1959 levels. Thus, these groups can be used as model systems for future analysis of the phenomenon of chromosome instability. Interspecific chromosomal differences are also shown to be useful for discovering and describing new cryptic species of Hesperiidae representing in such a way a powerful tool in biodiversity research. Generally, the skipper butterflies promise to be an exciting group that will significantly contribute to the growing knowledge of patterns and processes of chromosome evolution.

  3. Group 3 chromosome bin maps of wheat and their relationship to rice chromosome 1.

    Science.gov (United States)

    Munkvold, J D; Greene, R A; Bermudez-Kandianis, C E; La Rota, C M; Edwards, H; Sorrells, S F; Dake, T; Benscher, D; Kantety, R; Linkiewicz, A M; Dubcovsky, J; Akhunov, E D; Dvorák, J; Miftahudin; Gustafson, J P; Pathan, M S; Nguyen, H T; Matthews, D E; Chao, S; Lazo, G R; Hummel, D D; Anderson, O D; Anderson, J A; Gonzalez-Hernandez, J L; Peng, J H; Lapitan, N; Qi, L L; Echalier, B; Gill, B S; Hossain, K G; Kalavacharla, V; Kianian, S F; Sandhu, D; Erayman, M; Gill, K S; McGuire, P E; Qualset, C O; Sorrells, M E

    2004-10-01

    The focus of this study was to analyze the content, distribution, and comparative genome relationships of 996 chromosome bin-mapped expressed sequence tags (ESTs) accounting for 2266 restriction fragments (loci) on the homoeologous group 3 chromosomes of hexaploid wheat (Triticum aestivum L.). Of these loci, 634, 884, and 748 were mapped on chromosomes 3A, 3B, and 3D, respectively. The individual chromosome bin maps revealed bins with a high density of mapped ESTs in the distal region and bins of low density in the proximal region of the chromosome arms, with the exception of 3DS and 3DL. These distributions were more localized on the higher-resolution group 3 consensus map with intermediate regions of high-mapped-EST density on both chromosome arms. Gene ontology (GO) classification of mapped ESTs was not significantly different for homoeologous group 3 chromosomes compared to the other groups. A combined analysis of the individual bin maps using 537 of the mapped ESTs revealed rearrangements between the group 3 chromosomes. Approximately 232 (44%) of the consensus mapped ESTs matched sequences on rice chromosome 1 and revealed large- and small-scale differences in gene order. Of the group 3 mapped EST unigenes approximately 21 and 32% matched the Arabidopsis coding regions and proteins, respectively, but no chromosome-level gene order conservation was detected. PMID:15514041

  4. Evaluation of bacterial wilt resistance in tomato lines nearly isogenic for the Mi gene for resistance to root-knot

    OpenAIRE

    Deberdt, P.; Olivier, J; Thoquet, P; Quénéhervé, Patrick; Prior, P

    1999-01-01

    Resistance to bacterial wilt, caused by #Ralstonia solancearum$, in tomato lines CRA 66 and Caraïbo is reported to be decreased by root-knot nematode galling and by introduction of the #Mi$ gene for nematode resistance. The #Mi$ gene is located on tomato chromosome 6, which also carries a major quantitative trait locus (QTL) for resistance to bacterial wilt. Bacterial wilt resistance was evaluated in F3-progenies derived from two crosses between near-isogenic lines Caraïbo x Carmido and CRA 6...

  5. Chromosome heteromorphism quantified by high-resolution bivariate flow karyotyping.

    Science.gov (United States)

    Trask, B; van den Engh, G; Mayall, B; Gray, J W

    1989-11-01

    Maternal and paternal homologues of many chromosome types can be differentiated on the basis of their peak position in Hoechst 33258 versus chromomycin A3 bivariate flow karyotypes. We demonstrate here the magnitude of DNA content differences among normal chromosomes of the same type. Significant peak-position differences between homologues were observed for an average of four chromosome types in each of the karyotypes of 98 different individuals. The frequency of individuals with differences in homologue peak positions varied among chromosome types: e.g., chromosome 15, 61%; chromosome 3, 4%. Flow karyotypes of 33 unrelated individuals were compared to determine the range of peak position among normal chromosomes. Chromosomes Y, 21, 22, 15, 16, 13, 14, and 19 were most heteromorphic, and chromosomes 2-8 and X were least heteromorphic. The largest chromosome 21 was 45% larger than the smallest 21 chromosome observed. The base composition of the variable regions differed among chromosome types. DNA contents of chromosome variants determined from flow karyotypes were closely correlated to measurements of DNA content made of gallocyanin chrome alum-stained metaphase chromosomes on slides. Fluorescence in situ hybridization with chromosome-specific repetitive sequences indicated that variability in their copy number is partly responsible for peak-position variability in some chromosomes. Heteromorphic chromosomes are identified for which parental flow karyotype information will be essential if de novo rearrangements resulting in small DNA content changes are to be detected with flow karyotyping. PMID:2479266

  6. Adaptation through chromosomal inversions in Anopheles

    Directory of Open Access Journals (Sweden)

    Diego eAyala

    2014-05-01

    Full Text Available Chromosomal inversions have been repeatedly involved in local adaptation in a large number of animals and plants. The ecological and behavioral plasticity of Anopheles species - human malaria vectors - is mirrored by high amounts of polymorphic inversions. The adaptive significance of chromosomal inversions has been consistently attested by strong and significant correlations between their frequencies and a number of phenotypic traits. Here, we provide an extensive literature review of the different adaptive traits associated with chromosomal inversions in the genus Anopheles. Traits having important consequences for the success of present and future vector control measures, such as insecticide resistance and behavioral changes, are discussed.

  7. Plasmid- and chromosome-encoded siderophore anguibactin systems found in marine vibrios: biosynthesis, transport and evolution.

    Science.gov (United States)

    Naka, Hiroaki; Liu, Moqing; Actis, Luis A; Crosa, Jorge H

    2013-08-01

    Vibrio anguillarum is a marine pathogen that causes vibriosis, a hemorrhagic septicemia in aquatic invertebrate as well as vertebrate animals. The siderophore anguibactin system is one of the most important virulence factors of this bacterium. Most of the anguibactin biosynthesis and transport genes are located in the 65-kb pJM1 virulence plasmid although some of them are found in the chromosome of this fish pathogen. Over 30 years of research unveiled the role numerous chromosomal and pJM1 genes play in the synthesis of anguibactin and the transport of cognate ferric complexes into the bacterial cell. Furthermore, these studies showed that pJM1-carrying strains might be originated from pJM1-less strains producing the chromosome-mediated siderophore vanchrobactin. Additionally, we recently identified a chromosome-mediated anguibactin system in V. harveyi suggesting the possible evolutional origin of the V. anguillarum anguibactin system. In this review, we present our current understanding of the mechanisms and evolution hypothesis of the anguibactin system that might have occurred in these pathogenic vibrios. PMID:23660776

  8. Spatiotemporal choreography of chromosome and megaplasmids in the Sinorhizobium meliloti cell cycle.

    Science.gov (United States)

    Frage, Benjamin; Döhlemann, Johannes; Robledo, Marta; Lucena, Daniella; Sobetzko, Patrick; Graumann, Peter L; Becker, Anke

    2016-06-01

    A considerable share of bacterial species maintains multipartite genomes. Precise coordination of genome replication and segregation with cell growth and division is vital for proliferation of these bacteria. The α-proteobacterium Sinorhizobium meliloti possesses a tripartite genome composed of one chromosome and the megaplasmids pSymA and pSymB. Here, we investigated the spatiotemporal pattern of segregation of these S. meliloti replicons at single cell level. Duplication of chromosomal and megaplasmid origins of replication occurred spatially and temporally separated, and only once per cell cycle. Tracking of FROS (fluorescent repressor operator system)-labelled origins revealed a strict temporal order of segregation events commencing with the chromosome followed by pSymA and then by pSymB. The repA2B2C2 region derived from pSymA was sufficient to confer the spatiotemporal behaviour of this megaplasmid to a small plasmid. Altering activity of the ubiquitous prokaryotic replication initiator DnaA, either positively or negatively, resulted in an increase in replication initiation events or G1 arrest of the chromosome only. This suggests that interference with DnaA activity does not affect replication initiation control of the megaplasmids. PMID:26853523

  9. Chromosomal abnormalities in patients with sperm disorders

    Directory of Open Access Journals (Sweden)

    L. Y. Pylyp

    2013-02-01

    Full Text Available Chromosomal abnormalities are among the most common genetic causes of spermatogenic disruptions. Carriers of chromosomal abnormalities are at increased risk of infertility, miscarriage or birth of a child with unbalanced karyotype due to the production of unbalanced gametes. The natural selection against chromosomally abnormal sperm usually prevents fertilization with sperm barring in cases of serious chromosomal abnormalities. However, assisted reproductive technologies in general and intracytoplasmic sperm injection in particular, enable the transmission of chromosomal abnormalities to the progeny. Therefore, cytogenetic studies are important in patients with male factor infertility before assisted reproduction treatment. The purpose of the current study was to investigate the types and frequencies of chromosomal abnormalities in 724 patients with infertility and to estimate the risk of chromosomal abnormalities detection in subgroups of patients depending on the severity of spermatogenic disruption, aiming at identifying groups of patients in need of cytogenetic studies. Karyotype analysis was performed in 724 blood samples of men attending infertility clinic. Chromosomal preparation was performed by standard techniques. At least 20 GTG-banded metaphase plates with the resolution from 450 to 750 bands per haploid set were analysed in each case. When chromosomal mosaicism was suspected, this number was increased to 50. Abnormal karyotypes were observed in 48 (6.6% patients, including 67% of autosomal abnormalities and 33% of gonosomal abnormalities. Autosomal abnormalities were represented by structural rearrangements. Reciprocal translocations were the most common type of structural chromosomal abnormalities in the studied group, detected with the frequency of 2.6% (n = 19, followed by Robertsonian translocation, observed with the frequency of 1.2% (n = 9. The frequency of inversions was 0.6% (n = 4. Gonosomal abnormalities included 14 cases

  10. A novel method for increasing the transformation efficiency of Escherichia coli-application forbacterial artificial chromosome library construction.

    OpenAIRE

    Zhu, H; Dean, R.A.

    1999-01-01

    Bacterial artificial chromosome (BAC) libraries play a pivotal role in genomics studies. A crucial step in BAC library construction is the transformation of Escherichia coli by electroporation. Absolute efficiency (cfu/microgram DNA) is affected by a number of factors including the topological form and treatment of DNA samples. Here we report a simple new protocol using tRNA assisted precipitation that increased transformation efficiency by 70-fold for BAC ligations and up to 400-fold for pla...

  11. Chromosome landmarks and autosome-sex chromosome translocations in Rumex hastatulus, a plant with XX/XY1Y2 sex chromosome system.

    Science.gov (United States)

    Grabowska-Joachimiak, Aleksandra; Kula, Adam; Książczyk, Tomasz; Chojnicka, Joanna; Sliwinska, Elwira; Joachimiak, Andrzej J

    2015-06-01

    Rumex hastatulus is the North American endemic dioecious plant with heteromorphic sex chromosomes. It is differentiated into two chromosomal races: Texas (T) race characterised by a simple XX/XY sex chromosome system and North Carolina (NC) race with a polymorphic XX/XY1Y2 sex chromosome system. The gross karyotype morphology in NC race resembles the derived type, but chromosomal changes that occurred during its evolution are poorly understood. Our C-banding/DAPI and fluorescence in situ hybridization (FISH) experiments demonstrated that Y chromosomes of both races are enriched in DAPI-positive sequences and that the emergence of polymorphic sex chromosome system was accompanied by the break of ancestral Y chromosome and switch in the localization of 5S rDNA, from autosomes to sex chromosomes (X and Y2). Two contrasting domains were detected within North Carolina Y chromosomes: the older, highly heterochromatinised, inherited from the original Y chromosome and the younger, euchromatic, representing translocated autosomal material. The flow-cytometric DNA estimation showed ∼3.5 % genome downsizing in the North Carolina race. Our results are in contradiction to earlier reports on the lack of heterochromatin within Y chromosomes of this species and enable unambiguous identification of autosomes involved in the autosome-heterosome translocation, providing useful chromosome landmarks for further studies on the karyotype and sex chromosome differentiation in this species. PMID:25394583

  12. Visualization of yeast chromosomal DNA

    Science.gov (United States)

    Lubega, Seth

    1990-01-01

    The DNA molecule is the most significant life molecule since it codes the blue print for other structural and functional molecules of all living organisms. Agarose gel electrophoresis is now being widely used to separate DNA of virus, bacteria, and lower eukaryotes. The task was undertaken of reviewing the existing methods of DNA fractionation and microscopic visualization of individual chromosonal DNA molecules by gel electrophoresis as a basis for a proposed study to investigate the feasibility of separating DNA molecules in free fluids as an alternative to gel electrophoresis. Various techniques were studied. On the molecular level, agarose gel electrophoresis is being widely used to separate chromosomal DNA according to molecular weight. Carl and Olson separate and characterized the entire karyotype of a lab strain of Saccharomyces cerevisiae. Smith et al. and Schwartz and Koval independently reported the visualization of individual DNA molecules migrating through agarose gel matrix during electrophoresis. The techniques used by these researchers are being reviewed in the lab as a basis for the proposed studies.

  13. Final report. Human artificial episomal chromosome (HAEC) for building large genomic libraries

    Energy Technology Data Exchange (ETDEWEB)

    Jean-Michael H. Vos

    1999-12-09

    Collections of human DNA fragments are maintained for research purposes as clones in bacterial host cells. However for unknown reasons, some regions of the human genome appear to be unclonable or unstable in bacteria. Their team has developed a system using episomes (extrachromosomal, autonomously replication DNA) that maintains large DNA fragments in human cells. This human artificial episomal chromosomal (HAEC) system may prove useful for coverage of these especially difficult regions. In the broader biomedical community, the HAEC system also shows promise for use in functional genomics and gene therapy. Recent improvements to the HAEC system and its application to mapping, sequencing, and functionally studying human and mouse DNA are summarized. Mapping and sequencing the human genome and model organisms are only the first steps in determining the function of various genetic units critical for gene regulation, DNA replication, chromatin packaging, chromosomal stability, and chromatid segregation. Such studies will require the ability to transfer and manipulate entire functional units into mammalian cells.

  14. Dynamic changes in paternal X-chromosome activity during imprinted X-chromosome inactivation in mice

    OpenAIRE

    Patrat, Catherine; Okamoto, Ikuhiro; Diabangouaya, Patricia; Vialon, Vivian; Le Baccon, Patricia; Chow, Jennifer; Heard, Edith

    2009-01-01

    In mammals, X-chromosome dosage compensation is achieved by inactivating one of the two X chromosomes in females. In mice, X inactivation is initially imprinted, with inactivation of the paternal X (Xp) chromosome occurring during preimplantation development. One theory is that the Xp is preinactivated in female embryos, because of its previous silence during meiosis in the male germ line. The extent to which the Xp is active after fertilization and the exact time of onset of X-linked gene si...

  15. Tracking Chromosome Evolution in Southern African Gerbils Using Flow-Sorted Chromosome Paints

    OpenAIRE

    Knight, L.I.; Ng, B. L.; Cheng, W; Fu, B.; Yang, F.; Rambau, R V

    2013-01-01

    Desmodillus and Gerbilliscus (formerly Tatera) comprise a monophyletic group of gerbils (subfamily Gerbillinae) which last shared an ancestor approximately 8 million years ago; diploid chromosome number variation among the species ranges from 2n = 36 to 2n = 50. In an attempt to shed more light on chromosome evolution and speciation in these rodents, we compared the karyotypes of 7 species, representing 3 genera, based on homology data revealed by chromosome painting with probes derived from ...

  16. Haploidization via Chromosome Elimination: Means and Mechanisms.

    Science.gov (United States)

    Ishii, Takayoshi; Karimi-Ashtiyani, Raheleh; Houben, Andreas

    2016-04-29

    The ability to generate haploids and subsequently induce chromosome doubling significantly accelerates the crop breeding process. Haploids have been induced through the generation of plants from haploid tissues (in situ gynogenesis and androgenesis) and through the selective loss of a parental chromosome set via inter- or intraspecific hybridization. Here, we focus on the mechanisms responsible for this selective chromosome elimination. CENH3, a variant of the centromere-specific histone H3, has been exploited to create an efficient method of haploid induction, and we discuss this approach in some detail. Parallels have been drawn with chromosome-specific elimination, which occurs as a normal part of differentiation and sex determination in many plant and animal systems. PMID:26772657

  17. Cancer chromosomal instability: therapeutic and diagnostic challenges

    OpenAIRE

    McGranahan, Nicholas; Burrell, Rebecca A.; Endesfelder, David; Novelli, Marco R; Swanton, Charles

    2012-01-01

    This review provides a much-needed translational perspective into the issue of aneuploidy and chromosomal instability, discussing the prognostic value of CIN assessment in human tumours, methods to analyze it and how it could be therapeutically targeted.

  18. Lattice animal model of chromosome organization

    Science.gov (United States)

    Iyer, Balaji V. S.; Arya, Gaurav

    2012-07-01

    Polymer models tied together by constraints of looping and confinement have been used to explain many of the observed organizational characteristics of interphase chromosomes. Here we introduce a simple lattice animal representation of interphase chromosomes that combines the features of looping and confinement constraints into a single framework. We show through Monte Carlo simulations that this model qualitatively captures both the leveling off in the spatial distance between genomic markers observed in fluorescent in situ hybridization experiments and the inverse decay in the looping probability as a function of genomic separation observed in chromosome conformation capture experiments. The model also suggests that the collapsed state of chromosomes and their segregation into territories with distinct looping activities might be a natural consequence of confinement.

  19. Chromosome studies in the genus Jatropha L.

    Directory of Open Access Journals (Sweden)

    R.Sasikala and M.Paramathma

    2010-07-01

    Full Text Available The inflorescences of ten species of the genus Jatropha were fixed in Cornoy’s fluid (6:3:1. Acetocarmine stain (2% wasused for staining the pollen mother cells. Seven species exhibited 11 bivalents and 2n =22 and x=11. But the two otherspecies, J.villosa var. villosa and J.villosa var. ramnadensis showed only 10 bivalents and 2n number of 20 chromosomesand x=10. The study concluded the occurrence of two kinds of haploid chromosome numbers of n =10 and n =11. ExceptJatropha tanjorensis, cytological investigation in all species exhibited normal and complete pairing and bivalent formationin metaphase I and equal separation of chromosome in anaphase and indicated that the course of meiosis was normal.Jatropha tanjorensis did not exhibit normal course of meiosis and no proper count of chromosomes could be made. Presentchromosomal studies in Jatropha revealed the existence of two basic chromosomes numbers x = 5 and x = 6.

  20. System for the analysis of plant chromosomes

    International Nuclear Information System (INIS)

    The paper describes a computer system for the automation workers of recognition analysis and interpretation of plant chromosomes. This system permit to carry out the analysis in a more comfortable and faster way, using the image processing techniques

  1. Label Free Chromosome Translocation Detection with Silicon nanowires

    DEFF Research Database (Denmark)

    Kwasny, Dorota; Andersen, Karsten Brandt; Frøhling, Kasper Bayer;

    HROMOSOME translocation, which is a rearrangement of arms between two chromosomes, is a major group of chromosome abnormalities leading to cancer. As a result, two derivative chromosomes with sequences coming from both chromosomes are formed. The current translocation detection method is a Fluore...

  2. Methods and compositions for chromosome-specific staining

    Science.gov (United States)

    Gray, Joe W.; Pinkel, Daniel

    2003-07-22

    Methods and compositions for chromosome-specific staining are provided. Compositions comprise heterogenous mixtures of labeled nucleic acid fragments having substantially complementary base sequences to unique sequence regions of the chromosomal DNA for which their associated staining reagent is specific. Methods include methods for making the chromosome-specific staining compositions of the invention, and methods for applying the staining compositions to chromosomes.

  3. The hierarchically organized splitting of chromosomal bands for all human chromosomes

    Directory of Open Access Journals (Sweden)

    Liehr Thomas

    2009-01-01

    Full Text Available Abstract Background Chromosome banding is widely used in cytogenetics. However, the biological nature of hierarchically organized splitting of chromosomal bands of human chromosomes is an enigma and has not been, as yet, studied. Results Here we present for the first time the hierarchically organized splitting of chromosomal bands in their sub-bands for all human chromosomes. To do this, array-proved multicolor banding (aMCB probe-sets for all human chromosomes were applied to normal metaphase spreads of three different G-band levels. We confirmed for all chromosomes to be a general principle that only Giemsa-dark bands split into dark and light sub-bands, as we demonstrated previously by chromosome stretching. Thus, the biological band splitting is in > 50% of the sub-bands different than implemented by the ISCN nomenclature suggesting also a splitting of G-light bands. Locus-specific probes exemplary confirmed the results of MCB. Conclusion Overall, the present study enables a better understanding of chromosome architecture. The observed difference of biological and ISCN band-splitting may be an explanation why mapping data from human genome project do not always fit the cytogenetic mapping.

  4. Y chromosome evolution: emerging insights into processes of Y chromosome degeneration

    Science.gov (United States)

    Bachtrog, Doris

    2014-01-01

    The human Y chromosome is intriguing not only because it harbours the master-switch gene determining gender but also because of its unusual evolutionary trajectory. Previously an autosome, Y chromosome evolution has been characterized by massive gene decay. Recent whole-genome and transcriptome analyses of Y chromosomes in humans and other primates, in Drosophila species as well as in plants have shed light on the current gene content of the Y, its origins and its long-term fate. Comparative analysis of young and old Y chromosomes have given further insights into the evolutionary and molecular forces triggering Y degeneration and its evolutionary destiny. PMID:23329112

  5. Localization of topoisomerase II in mitotic chromosomes

    OpenAIRE

    1985-01-01

    In the preceding article we described a polyclonal antibody that recognizes cSc-1, a major polypeptide component of the chicken mitotic chromosome scaffold. This polypeptide was shown to be chicken topoisomerase II. In the experiments described in the present article we use indirect immunofluorescence and immunoelectron microscopy to examine the distribution of topoisomerase II within intact chromosomes. We also describe a simple experimental protocol that differentiates antigens that are int...

  6. Female meiotic sex chromosome inactivation in chicken.

    Directory of Open Access Journals (Sweden)

    Sam Schoenmakers

    2009-05-01

    Full Text Available During meiotic prophase in male mammals, the heterologous X and Y chromosomes remain largely unsynapsed, and meiotic sex chromosome inactivation (MSCI leads to formation of the transcriptionally silenced XY body. In birds, the heterogametic sex is female, carrying Z and W chromosomes (ZW, whereas males have the homogametic ZZ constitution. During chicken oogenesis, the heterologous ZW pair reaches a state of complete heterologous synapsis, and this might enable maintenance of transcription of Z- and W chromosomal genes during meiotic prophase. Herein, we show that the ZW pair is transiently silenced, from early pachytene to early diplotene using immunocytochemistry and gene expression analyses. We propose that ZW inactivation is most likely achieved via spreading of heterochromatin from the W on the Z chromosome. Also, persistent meiotic DNA double-strand breaks (DSBs may contribute to silencing of Z. Surprisingly, gammaH2AX, a marker of DSBs, and also the earliest histone modification that is associated with XY body formation in mammalian and marsupial spermatocytes, does not cover the ZW during the synapsed stage. However, when the ZW pair starts to desynapse, a second wave of gammaH2AX accumulates on the unsynapsed regions of Z, which also show a reappearance of the DSB repair protein RAD51. This indicates that repair of meiotic DSBs on the heterologous part of Z is postponed until late pachytene/diplotene, possibly to avoid recombination with regions on the heterologously synapsed W chromosome. Two days after entering diplotene, the Z looses gammaH2AX and shows reactivation. This is the first report of meiotic sex chromosome inactivation in a species with female heterogamety, providing evidence that this mechanism is not specific to spermatogenesis. It also indicates the presence of an evolutionary force that drives meiotic sex chromosome inactivation independent of the final achievement of synapsis.

  7. Abnormal sex chromosome constitution and longitudinal growth

    DEFF Research Database (Denmark)

    Aksglaede, Lise; Skakkebaek, Niels E; Juul, Anders

    2008-01-01

    Growth is a highly complex process regulated by the interaction between sex steroids and the GH IGF-axis. However, other factors such as sex chromosome-related genes play independent roles.......Growth is a highly complex process regulated by the interaction between sex steroids and the GH IGF-axis. However, other factors such as sex chromosome-related genes play independent roles....

  8. Y chromosome microdeletions in Turkish infertile men

    OpenAIRE

    Zamani Ayse; Kutlu Ruhusen; Durakbasi-Dursun H; Gorkemli Huseyin; Acar Aynur

    2006-01-01

    AIMS: To detect the frequency and types of both chromosomal abnormalities and Y chromosome microdeletions in infertile men attending to our university intracytoplasmic sperm injection ICSI/IVF centre and fertile control subjects in our patient population. SETTINGS AND DESIGN: A total of 50 infertile men who were referred to IVF center of Meram medical faculty were selected for the molecular azospermia factor (AZF) screening program. MATERIALS AND METHODS: Karyotype analysis and polymeras...

  9. Demasculinization of the Anopheles gambiae X chromosome

    Directory of Open Access Journals (Sweden)

    Magnusson Kalle

    2012-05-01

    Full Text Available Abstract Background In a number of organisms sex-biased genes are non-randomly distributed between autosomes and the shared sex chromosome X (or Z. Studies on Anopheles gambiae have produced conflicting results regarding the underrepresentation of male-biased genes on the X chromosome and it is unclear to what extent sexual antagonism, dosage compensation or X-inactivation in the male germline, the evolutionary forces that have been suggested to affect the chromosomal distribution of sex-biased genes, are operational in Anopheles. Results We performed a meta-analysis of sex-biased gene expression in Anopheles gambiae which provides evidence for a general underrepresentation of male-biased genes on the X-chromosome that increased in significance with the observed degree of sex-bias. A phylogenomic comparison between Drosophila melanogaster, Aedes aegypti and Culex quinquefasciatus also indicates that the Anopheles X chromosome strongly disfavours the evolutionary conservation of male-biased expression and that novel male-biased genes are more likely to arise on autosomes. Finally, we demonstrate experimentally that transgenes situated on the Anopheles gambiae X chromosome are transcriptionally silenced in the male germline. Conclusion The data presented here support the hypothesis that the observed demasculinization of the Anopheles X chromosome is driven by X-chromosome inactivation in the male germline and by sexual antagonism. The demasculinization appears to be the consequence of a loss of male-biased expression, rather than a failure in the establishment or the extinction of male-biased genes.

  10. Delayed chromosomal instability induced by DNA damage.

    OpenAIRE

    Marder, B A; Morgan, W. F.

    1993-01-01

    DNA damage induced by ionizing radiation can result in gene mutation, gene amplification, chromosome rearrangements, cellular transformation, and cell death. Although many of these changes may be induced directly by the radiation, there is accumulating evidence for delayed genomic instability following X-ray exposure. We have investigated this phenomenon by studying delayed chromosomal instability in a hamster-human hybrid cell line by means of fluorescence in situ hybridization. We examined ...

  11. Principles of chromosomal organization: lessons from yeast

    OpenAIRE

    Zimmer, Christophe; Fabre, Emmanuelle

    2011-01-01

    The spatial organization of genes and chromosomes plays an important role in the regulation of several DNA processes. However, the principles and forces underlying this nonrandom organization are mostly unknown. Despite its small dimension, and thanks to new imaging and biochemical techniques, studies of the budding yeast nucleus have led to significant insights into chromosome arrangement and dynamics. The dynamic organization of the yeast genome during interphase argues for both the physica...

  12. Assembly of Lampbrush Chromosomes from Sperm Chromatin

    OpenAIRE

    Gall, Joseph G.; Murphy, Christine

    1998-01-01

    We have examined the behavior of demembranated sperm heads when injected into the germinal vesicle (GV) of amphibian oocytes. Xenopus sperm heads injected into Xenopus GVs swelled immediately and within hours began to stain with an antibody against RNA polymerase II (Pol II). Over time each sperm head became a loose mass of chromosome-like threads, which by 24–48 h resolved into individually recognizable lampbrush chromosomes (LBCs). Although LBCs derived from sperm are unreplicated single ch...

  13. Sequence conservation on the Y chromosome

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, L.H.; Yang-Feng, L. [Yale Univ. School of Medicine, New Haven, CT (United States); Lau, C. [Univ. of California, San Francisco, CA (United States)

    1994-09-01

    The Y chromosome is present in all mammals and is considered to be essential to sex determination. Despite intense genomic research, only a few genes have been identified and mapped to this chromosome in humans. Several of them, such as SRY and ZFY, have been demonstrated to be conserved and Y-located in other mammals. In order to address the issue of sequence conservation on the Y chromosome, we performed fluorescence in situ hybridization (FISH) with DNA from a human Y cosmid library as a probe to study the Y chromosomes from other mammalian species. Total DNA from 3,000-4,500 cosmid pools were labeled with biotinylated-dUTP and hybridized to metaphase chromosomes. For human and primate preparations, human cot1 DNA was included in the hybridization mixture to suppress the hybridization from repeat sequences. FISH signals were detected on the Y chromosomes of human, gorilla, orangutan and baboon (Old World monkey) and were absent on those of squirrel monkey (New World monkey), Indian munjac, wood lemming, Chinese hamster, rat and mouse. Since sequence analysis suggested that specific genes, e.g. SRY and ZFY, are conserved between these two groups, the lack of detectable hybridization in the latter group implies either that conservation of the human Y sequences is limited to the Y chromosomes of the great apes and Old World monkeys, or that the size of the syntenic segment is too small to be detected under the resolution of FISH, or that homologeous sequences have undergone considerable divergence. Further studies with reduced hybridization stringency are currently being conducted. Our results provide some clues as to Y-sequence conservation across species and demonstrate the limitations of FISH across species with total DNA sequences from a particular chromosome.

  14. Chromosomal profile of indigenous pig (Sus scrofa

    Directory of Open Access Journals (Sweden)

    P. Guru Vishnu

    2015-02-01

    Full Text Available Aim: The objective of this study was to investigate the chromosomal profile of indigenous pigs by computing morphometric measurements. Materials and Methods: A cytogenetic study was carried out in 60 indigenous pigs to analyze the chromosomal profile by employing the short term peripheral blood lymphocyte culture technique. Results: The modal chromosome number (2n in indigenous pigs was found to be 38 and a fundamental number of 64 as in the exotic. First chromosome was the longest pair, and thirteenth pair was the second largest while Y-chromosome was the smallest in the karyotype of the pig. The mean relative length, arm ratio, centromeric indices and morphological indices of chromosomes varied from 1.99±0.01 to 11.23±0.09, 1.04±0.05 to 2.95±0.02, 0.51±0.14 to 0.75±0.09 and 2.08±0.07 to 8.08±0.15%, respectively in indigenous pigs. Sex had no significant effect (p>0.05 on all the morphometric measurements studied. Conclusion: The present study revealed that among autosomes first five pairs were sub metacentric, next two pairs were sub telocentric (6-7, subsequent five pairs were metacentric (8-12 and remaining six pairs were telocentric (13-18, while both allosomes were metacentric. The chromosomal number, morphology and various morphometric measurements of the chromosomes of the indigenous pigs were almost similar to those established breeds reported in the literature.

  15. Die Haplotypisierung des Y-Chromosoms

    OpenAIRE

    Roewer, Lutz

    2001-01-01

    Haploid vererbte Polymorphismen des Y-Chromosoms sind wichtige diagnostische Werkzeuge der forensischen Genetik und verwandter Disziplinen, insbesondere der Anthropologie. Geschlechtsspezifität und uniparentaler Erbgang der Merkmale ermöglichen eine Reihe von Untersuchungen, die mit autosomalen Markern erfolglos bleiben müssen. Kurze tandem-repetitive STR-Sequenzen, die polymorphen Marker der Wahl im forensischen Labor, sind auch auf dem Y-Chromosom nachzuweisen. Aufgrund der rekombinationsfr...

  16. Bacterial Degradation of Pesticides

    DEFF Research Database (Denmark)

    Knudsen, Berith Elkær

    This PhD project was carried out as part of the Microbial Remediation of Contaminated Soil and Water Resources (MIRESOWA) project, funded by the Danish Council for Strategic Research (grant number 2104-08-0012). The environment is contaminated with various xenobiotic compounds e.g. pesticides......D student, to construct fungal-bacterial consortia in order to potentially stimulate pesticide degradation thereby increasing the chance of successful bioaugmentation. The results of the project are reported in three article manuscripts, included in this thesis. In manuscript I, the mineralization of 2...

  17. Bacterial terpene cyclases.

    Science.gov (United States)

    Dickschat, Jeroen S

    2016-01-01

    Covering: up to 2015. This review summarises the accumulated knowledge about characterised bacterial terpene cyclases. The structures of identified products and of crystallised enzymes are included, and the obtained insights into enzyme mechanisms are discussed. After a summary of mono-, sesqui- and diterpene cyclases the special cases of the geosmin and 2-methylisoborneol synthases that are both particularly widespread in bacteria will be presented. A total number of 63 enzymes that have been characterised so far is presented, with 132 cited references. PMID:26563452

  18. MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island.

    Science.gov (United States)

    Ashton, Philip M; Nair, Satheesh; Dallman, Tim; Rubino, Salvatore; Rabsch, Wolfgang; Mwaigwisya, Solomon; Wain, John; O'Grady, Justin

    2015-03-01

    Short-read, high-throughput sequencing technology cannot identify the chromosomal position of repetitive insertion sequences that typically flank horizontally acquired genes such as bacterial virulence genes and antibiotic resistance genes. The MinION nanopore sequencer can produce long sequencing reads on a device similar in size to a USB memory stick. Here we apply a MinION sequencer to resolve the structure and chromosomal insertion site of a composite antibiotic resistance island in Salmonella Typhi Haplotype 58. Nanopore sequencing data from a single 18-h run was used to create a scaffold for an assembly generated from short-read Illumina data. Our results demonstrate the potential of the MinION device in clinical laboratories to fully characterize the epidemic spread of bacterial pathogens. PMID:25485618

  19. The X chromosome of monotremes shares a highly conserved region with the eutherian and marsupial X chromosomes despite the absence of X chromosome inactivation.

    OpenAIRE

    Watson, J M; Spencer, J. A.; Riggs, A D; Graves, J.A.

    1990-01-01

    Eight genes, located on the long arm of the human X chromosome and present on the marsupial X chromosome, were mapped by in situ hybridization to the chromosomes of the platypus Ornithorhynchus anatinus, one of the three species of monotreme mammals. All were located on the X chromosome. We conclude that the long arm of the human X chromosome represents a highly conserved region that formed part of the X chromosome in a mammalian ancestor at least 150 million years ago. Since three of these g...

  20. Characterizing the chromosomes of the platypus (Ornithorhynchus anatinus).

    Science.gov (United States)

    McMillan, Daniel; Miethke, Pat; Alsop, Amber E; Rens, Willem; O'Brien, Patricia; Trifonov, Vladimir; Veyrunes, Frederic; Schatzkamer, Kyriena; Kremitzki, Colin L; Graves, Tina; Warren, Wesley; Grützner, Frank; Ferguson-Smith, Malcolm A; Graves, Jennifer A Marshall

    2007-01-01

    Like the unique platypus itself, the platypus genome is extraordinary because of its complex sex chromosome system, and is controversial because of difficulties in identification of small autosomes and sex chromosomes. A 6-fold shotgun sequence of the platypus genome is now available and is being assembled with the help of physical mapping. It is therefore essential to characterize the chromosomes and resolve the ambiguities and inconsistencies in identifying autosomes and sex chromosomes. We have used chromosome paints and DAPI banding to identify and classify pairs of autosomes and sex chromosomes. We have established an agreed nomenclature and identified anchor BAC clones for each chromosome that will ensure unambiguous gene localizations. PMID:18185982

  1. Chromosomal variations in the primate Alouatta seniculus seniculus.

    Science.gov (United States)

    Yunis, E J; Torres de Caballero, O M; Ramírez, C; Ramírez, Z E

    1976-01-01

    Chromosome analysis in 23 specimens of Alouatta s. seniculus trapped in different localities of Colombia were examined with the C- and Q-banding techniques. The chromosome numbers (2n=44) showed variations from 2n = 43 to 2n = 45 involving three and five microchromosomes, respectively. Two specimens also showed a structural chromosome variation involving a pericentric inversion of the chromosome No. 13. Chromosome measurements revealed an X chromosome with a value significantly smaller to that established for the standard mammalian X chromosome. PMID:817992

  2. Evolutionary stability of sex chromosomes in snakes.

    Science.gov (United States)

    Rovatsos, Michail; Vukić, Jasna; Lymberakis, Petros; Kratochvíl, Lukáš

    2015-12-22

    Amniote vertebrates possess various mechanisms of sex determination, but their variability is not equally distributed. The large evolutionary stability of sex chromosomes in viviparous mammals and birds was believed to be connected with their endothermy. However, some ectotherm lineages seem to be comparably conserved in sex determination, but previously there was a lack of molecular evidence to confirm this. Here, we document a stability of sex chromosomes in advanced snakes based on the testing of Z-specificity of genes using quantitative PCR (qPCR) across 37 snake species (our qPCR technique is suitable for molecular sexing in potentially all advanced snakes). We discovered that at least part of sex chromosomes is homologous across all families of caenophidian snakes (Acrochordidae, Xenodermatidae, Pareatidae, Viperidae, Homalopsidae, Colubridae, Elapidae and Lamprophiidae). The emergence of differentiated sex chromosomes can be dated back to about 60 Ma and preceded the extensive diversification of advanced snakes, the group with more than 3000 species. The Z-specific genes of caenophidian snakes are (pseudo)autosomal in the members of the snake families Pythonidae, Xenopeltidae, Boidae, Erycidae and Sanziniidae, as well as in outgroups with differentiated sex chromosomes such as monitor lizards, iguanas and chameleons. Along with iguanas, advanced snakes are therefore another example of ectothermic amniotes with a long-term stability of sex chromosomes comparable with endotherms. PMID:26702042

  3. Origin and evolution of X chromosome inactivation.

    Science.gov (United States)

    Gribnau, Joost; Grootegoed, J Anton

    2012-06-01

    Evolution of the mammalian sex chromosomes heavily impacts on the expression of X-encoded genes, both in marsupials and placental mammals. The loss of genes from the Y chromosome forced a two-fold upregulation of dose sensitive X-linked homologues. As a corollary, female cells would experience a lethal dose of X-linked genes, if this upregulation was not counteracted by evolution of X chromosome inactivation (XCI) that allows for only one active X chromosome per diploid genome. Marsupials rely on imprinted XCI, which inactivates always the paternally inherited X chromosome. In placental mammals, random XCI (rXCI) is the predominant form, inactivating either the maternal or paternal X. In this review, we discuss recent new insights in the regulation of XCI. Based on these findings, we propose an X inactivation center (Xic), composed of a cis-Xic and trans-Xic that encompass all elements and factors acting to control rXCI either in cis or in trans. We also highlight that XCI may have evolved from a very small nucleation site on the X chromosome in the vicinity of the Sox3 gene. Finally, we discuss the possible evolutionary road maps that resulted in imprinted XCI and rXCI as observed in present day mammals. PMID:22425180

  4. Ionizing radiation damage to the folded chromosome of Escherichia coli K-12: sedimentation properties of irradiated nucleoids and chromosomal deoxyribonucleic acid

    International Nuclear Information System (INIS)

    The structures of the membrane-free nucleoid of Escherichia coli K-12 and of unfolded chromosomal deoxyribonucleic acid (DNA) were investigated by low-speed sedimentation on neutral sucrose gradients after irradiation with 60Co gamma rays. Irradiation both in vivo and in vitro was used as a molecular probe of the constraints on DNA packaging in the bacterial chromosome. The number of domains of supercoiling was estimated to be approximately 180 per genome equivalent of DNA, based on measurements of relaxation caused by single-strand break formation in folded chromosomes gamma irradiated in vivo and in vitro. Similar estimates based on the target size of ribonucleic acid molecules responsible for maintaining the compact packaging of the nucleoid predicted negligible unfolding due to the formation of ribonucleic acid single-strand breaks at doses of up to 10 krad; this was born out by experimental measurements. Unfolding of the nucleoid in vitro by limit digestion with ribonuclease or by heating at 700C resulted in DNA complexes with sedimentation coefficients of 1,030 +- 59S and 625 +- 15S, respectively. The difference in these rates was apparently due to more complete deproteinization and thus less mass in the heated material. These structures are believed to represent intact, replicating genomes in the form of complex-theta structures containing two to three genome equivalents of DNA

  5. Bacterial contamination of enteral diets.

    OpenAIRE

    de Leeuw, I H; Vandewoude, M F

    1986-01-01

    Enteral feeding solutions can be contaminated by bacterial micro-organisms already present in the ingredients, or introduced during preparation or transport, or in the hospital ward. During jejunostomy feeding without pump or filter, ascending bacterial invasion of the feeding bag is possible. In patients with lowered immune response contaminated feedings can cause serious septic clinical problems. The progressive loss of the nutritional value of the enteral feeding solution by bacterial cont...

  6. Transport powered by bacterial turbulence

    OpenAIRE

    Kaiser, Andreas; Peshkov, Anton; Sokolov, Andrey; ten Hagen, Borge; Löwen, Hartmut; Aranson, Igor S.

    2014-01-01

    We demonstrate that collective turbulent-like motion in a bacterial bath can power and steer directed transport of mesoscopic carriers through the suspension. In our experiments and simulations, a microwedge-like "bulldozer" draws energy from a bacterial bath of varied density. We obtain that a maximal transport speed is achieved in the turbulent state of the bacterial suspension. This apparent rectification of random motion of bacteria is caused by polar ordered bacteria inside the cusp regi...

  7. Structural insight into negative DNA supercoiling by DNA gyrase, a bacterial type 2A DNA topoisomerase

    OpenAIRE

    Papillon, Julie; Ménétret, Jean-François; Batisse, Claire; Hélye, Reynald; Schultz, Patrick; Potier, Noëlle; Lamour, Valérie

    2013-01-01

    Type 2A DNA topoisomerases (Topo2A) remodel DNA topology during replication, transcription and chromosome segregation. These multisubunit enzymes catalyze the transport of a double-stranded DNA through a transient break formed in another duplex. The bacterial DNA gyrase, a target for broad-spectrum antibiotics, is the sole Topo2A enzyme able to introduce negative supercoils. We reveal here for the first time the architecture of the full-length Thermus thermophilus DNA gyrase alone and in a cl...

  8. Localization of ecdysterone on polytene chromosomes of Drosophila melanogaster.

    OpenAIRE

    Gronemeyer, H; Pongs, O

    1980-01-01

    Ecdysterone has been crosslinked in situ to polytene chromosomes of salivary glands of Drosophila melanogaster by photoactivation. The crosslinked hormone has been localized on the chromosomes by indirect immunofluorescence microscopy. At different developmental stages the hormone was detected at different chromosomal loci. These chromosomal sites correspond to ecdysterone-inducible puff sites. Thus, the hormone binds directly to chromosomal loci, whose transcription depends on the presence o...

  9. Spontaneous bacterial peritonitis

    Institute of Scientific and Technical Information of China (English)

    Anastasios Koulaouzidis; Shivaram Bhat; Athar A Saeed

    2009-01-01

    Since its initial description in 1964, research has transformed spontaneous bacterial peritonitis (SBP) from a feared disease (with reported mortality of 90%) to a treatable complication of decompensated cirrhosis,albeit with steady prevalence and a high recurrence rate. Bacterial translocation, the key mechanism in the pathogenesis of SBP, is only possible because of the concurrent failure of defensive mechanisms in cirrhosis.Variants of SBP should be treated. Leucocyte esterase reagent strips have managed to shorten the 'tap-toshot' time, while future studies should look into their combined use with ascitic fluid pH. Third generation cephalosporins are the antibiotic of choice because they have a number of advantages. Renal dysfunction has been shown to be an independent predictor of mortality in patients with SBP. Albumin is felt to reduce the risk of renal impairment by improving effective intravascular volume, and by helping to bind proinflammatory molecules. Following a single episode of SBP, patients should have long-term antibiotic prophylaxis and be considered for liver transplantation.

  10. Adult bacterial meningitis

    DEFF Research Database (Denmark)

    Meyer, C N; Samuelsson, I S; Galle, M;

    2004-01-01

    Episodes of adult bacterial meningitis (ABM) at a Danish hospital in 1991-2000 were identified from the databases of the Department of Clinical Microbiology, and compared with data from the Danish National Patient Register and the Danish National Notification System. Reduced penicillin susceptibi......Episodes of adult bacterial meningitis (ABM) at a Danish hospital in 1991-2000 were identified from the databases of the Department of Clinical Microbiology, and compared with data from the Danish National Patient Register and the Danish National Notification System. Reduced penicillin...... susceptibility occurred in 21 (23%) of 92 cases of known aetiology, compared to an estimated 6% in nationally notified cases (p <0.001). Ceftriaxone plus penicillin as empirical treatment was appropriate in 97% of ABM cases in the study population, and in 99.6% of nationally notified cases. The notification rate...... was 75% for penicillin-susceptible episodes, and 24% for penicillin-non-susceptible episodes (p <0.001). Cases involving staphylococci, Pseudomonas spp. and Enterobacteriaceae were under-reported. Among 51 ABM cases with no identified risk factors, nine of 11 cases with penicillin...

  11. [Endogenous bacterial endophthalmitis].

    Science.gov (United States)

    Cornut, P-L; Chiquet, C

    2011-01-01

    Endogenous bacterial endophthalmitis, also called metastatic bacterial endophthalmitis, remains a diagnostic and therapeutic challenge. It is a rare and potentially sight-threatening ocular infection that occurs when bacteria reach the eye via the bloodstream, cross the blood-ocular barrier, and multiply within the eye. It usually affects immunocompromised patients and those suffering from diabetes mellitus, malignancy, or cardiac disease, but has also been reported after invasive procedures or in previously healthy people. In most cases, the ocular symptoms occur after the diagnosis of septicemia or systemic infection. Ocular symptoms include decreased vision, redness, discharge, pain, and floaters. The ocular inflammatory signs may be anterior and/or posterior. Bilateral involvement occurs in nearly 25% of cases. A wide range of microorganisms are involved, with differences in their frequency according to geography as well as the patient's age and past medical history, because of variations in the predisposing conditions and the source of the sepsis. The majority of patients are initially misdiagnosed, and ophthalmologists should be aware of this because prompt local and general management is required to save the eye and/or the patient's life. PMID:21145128

  12. Periodic growth of bacterial colonies

    Science.gov (United States)

    Yamazaki, Yoshihiro; Ikeda, Takemasa; Shimada, Hirotoshi; Hiramatsu, Fumiko; Kobayashi, Naoki; Wakita, Jun-ichi; Itoh, Hiroto; Kurosu, Sayuri; Nakatsuchi, Michio; Matsuyama, Tohey; Matsushita, Mitsugu

    2005-06-01

    The formation of concentric ring colonies by bacterial species Bacillus subtilis and Proteus mirabilis has been investigated experimentally, focusing our attention on the dependence of local cell density upon the bacterial motility. It has been confirmed that these concentric ring colonies reflect the periodic change of the bacterial motility between motile cell state and immotile cell state. We conclude that this periodic change is macroscopically determined neither by biological factors (i.e., biological clock) nor by chemical factors (chemotaxis as inhibitor). And our experimental results strongly suggest that the essential factor for the change of the bacterial motility during concentric ring formation is the local cell density.

  13. Investigation of Partamona helleri (Apidae, Meliponini) B chromosome origin. An approach by microdissection and whole chromosome painting

    OpenAIRE

    Martins, Cinthia; Diniz, Debora; Sobrinho-Scudeler, Patricia; Foresti, Fausto; Campos, Lucio; Costa, Marco

    2012-01-01

    The stingless bee Partamona helleri in southeast Brazil shows the regular chromosome number 2n = 34 and a variable number of up to four minute B1 or B2 chromosomes. Previous cytogenetic analyses have indicated morphological similarities between the B1 chromosome and chromosome segments in the regular karyotype. In this study, microdissection and chromosome painting were employed along with C banding, NOR banding, and base-specific fluorochrome staining to investigate the origin of the B1 chro...

  14. The Program of Sex Chromosome Pairing in Meiosis Is Highly Conserved Across Marsupial Species: Implications for Sex Chromosome Evolution

    OpenAIRE

    Page, Jesús; Berríos, Soledad; Parra, María Teresa; Viera, Alberto; Suja, José Ángel; Prieto, Ignacio; Barbero, José Luis; Rufas, Julio S; Fernández-Donoso, Raúl

    2005-01-01

    Marsupials present a series of genetic and chromosomal features that are highly conserved in very distant species. One of these features is the absence of a homologous region between X and Y chromosomes. According to this genetic differentiation, sex chromosomes do not synapse during the first meiotic prophase in males, and a special structure, the dense plate, maintains sex chromosome association. In this report we present results on the process of meiotic sex chromosome pairing obtained fro...

  15. A self-associating protein critical for chromosome attachment, division, and polar organization in caulobacter

    DEFF Research Database (Denmark)

    Ebersbach, Gitte; Briegel, Ariane; Jensen, Grant J; Jacobs-Wagner, Christine; Charbon, Gitte Ebersbach

    2008-01-01

    Cell polarization is an integral part of many unrelated bacterial processes. How intrinsic cell polarization is achieved is poorly understood. Here, we provide evidence that Caulobacter crescentus uses a multimeric pole-organizing factor (PopZ) that serves as a hub to concurrently achieve several...... suggests that localization of PopZ largely relies on PopZ multimerization in chromosome-free regions, consistent with a self-organizing mechanism.......Cell polarization is an integral part of many unrelated bacterial processes. How intrinsic cell polarization is achieved is poorly understood. Here, we provide evidence that Caulobacter crescentus uses a multimeric pole-organizing factor (PopZ) that serves as a hub to concurrently achieve several...

  16. Klinefelter syndrome and other sex chromosomal aneuploidies

    Directory of Open Access Journals (Sweden)

    Graham John M

    2006-10-01

    Full Text Available Abstract The term Klinefelter syndrome (KS describes a group of chromosomal disorder in which there is at least one extra X chromosome to a normal male karyotype, 46,XY. XXY aneuploidy is the most common disorder of sex chromosomes in humans, with prevalence of one in 500 males. Other sex chromosomal aneuploidies have also been described, although they are much less frequent, with 48,XXYY and 48,XXXY being present in 1 per 17,000 to 1 per 50,000 male births. The incidence of 49,XXXXY is 1 per 85,000 to 100,000 male births. In addition, 46,XX males also exist and it is caused by translocation of Y material including sex determining region (SRY to the X chromosome during paternal meiosis. Formal cytogenetic analysis is necessary to make a definite diagnosis, and more obvious differences in physical features tend to be associated with increasing numbers of sex chromosomes. If the diagnosis is not made prenatally, 47,XXY males may present with a variety of subtle clinical signs that are age-related. In infancy, males with 47,XXY may have chromosomal evaluations done for hypospadias, small phallus or cryptorchidism, developmental delay. The school-aged child may present with language delay, learning disabilities, or behavioral problems. The older child or adolescent may be discovered during an endocrine evaluation for delayed or incomplete pubertal development with eunuchoid body habitus, gynecomastia, and small testes. Adults are often evaluated for infertility or breast malignancy. Androgen replacement therapy should begin at puberty, around age 12 years, in increasing dosage sufficient to maintain age appropriate serum concentrations of testosterone, estradiol, follicle stimulating hormone (FSH, and luteinizing hormone (LH. The effects on physical and cognitive development increase with the number of extra Xs, and each extra X is associated with an intelligence quotient (IQ decrease of approximately 15–16 points, with language most affected

  17. Chromosomal organization of adrenergic receptor genes

    International Nuclear Information System (INIS)

    The adrenergic receptors (ARs) (subtypes α1, α2, β1, and β2) are a prototypic family of guanine nucleotide binding regulatory protein-coupled receptors that mediate the physiological effects of the hormone epinephrine and the neurotransmitter norepinephrine. The authors have previously assigned the genes for β2-and α2-AR to human chromosomes 5 and 10, respectively. By Southern analysis of somatic cell hybrids and in situ chromosomal hybridization, they have now mapped the α1-AR gene to chromosome 5q32→q34, the same position as β2-AR, and the β1-AR gene to chromosome 10q24→q26, the region where α2-AR, is located. In mouse, both α2-and β1-AR genes were assigned to chromosome 19, and the α1-AR locus was localized to chromosome 11. Pulsed field gel electrophoresis has shown that the α1-and β2-AR genes in humans are within 300 kilobases (kb) and the distance between the α2- and β1-AR genes is <225 kb. The proximity of these two pairs of AR genes and the sequence similarity that exists among all the ARs strongly suggest that they are evolutionarily related. Moreover, they likely arose from a common ancestral receptor gene and subsequently diverged through gene duplication and chromosomal duplication to perform their distinctive roles in mediation the physiological effects of catecholamines. The AR genes thus provide a paradigm for understanding the evolution of such structurally conserved yet functionally divergent families off receptor molecules

  18. Molecular mapping of chromosomes 17 and X

    Energy Technology Data Exchange (ETDEWEB)

    Barker, D.F.

    1991-01-15

    Progress toward the construction of high density genetic maps of chromosomes 17 and X has been made by isolating and characterizing a relatively large set of polymorphic probes for each chromosome and using these probes to construct genetic maps. We have mapped the same polymorphic probes against a series of chromosome breakpoints on X and 17. The probes could be assigned to over 30 physical intervals on the X chromosome and 7 intervals on 17. In many cases, this process resulted in improved characterization of the relative locations of the breakpoints with respect to each other and the definition of new physical intervals. The strategy for isolation of the polymorphic clones utilized chromosome specific libraries of 1--15 kb segments from each of the two chromosomes. From these libraries, clones were screened for those detecting restriction fragment length polymorphisms. The markers were further characterized, the chromosomal assignments confirmed and in most cases segments of the original probes were subcloned into plasmids to produce probes with improved signal to noise ratios for use in the genetic marker studies. The linkage studies utilize the CEPH reference families and other well-characterized families in our collection which have been used for genetic disease linkage work. Preliminary maps and maps of portions of specific regions of 17 and X are provided. We have nearly completed a map of the 1 megabase Mycoplasma arthritidis genome by applying these techniques to a lambda phage library of its genome. We have found bit mapping to be an efficient means to organize a contiguous set of overlapping clones from a larger genome.

  19. Chromosomal geometry in the interface from the frequency of the radiation induced chromosome aberrations

    International Nuclear Information System (INIS)

    Ionizing radiation induces DNA double-strand breaks (DSBs) and their interaction and illegitimate recombination produces chromosomal aberrations. Stable chromosomal aberrations comprise inter-chromosomal events (translocations) and intra-chromosomal events (inversions). When DSBs induction and interaction is done at random, and the proximity effects are neglected, the expected relation between translocations and inversions is F=86, based on chromosome arm length. The number of translocations and inversions is analyzed by using G-banding in 16 lymphocytes cultures from blood samples acutely irradiated with γ-rays (dose range: 0,5 Gy - 3 Gy). The result obtained was: F=13,5, significantly smaller than F=86. Literature data show similar small F values, but strongly spread. The excess of inversions could be explained by a 'proximity effect', it means that more proximate DSBs have more interaction probability. Therefore, it is possible to postulate a special chromosome arrangement during irradiation and the subsequent interval. We propose a model where individual chromosomes show spherical confinement with some degree of overlapping and DSBs induction proportional to cross section. A DSBs interaction probability function with cut-off length= 1μ is assumed. According to our results, the confinement volume is ≅ 6.4% of the nuclear volume. Nevertheless, we presume that large spread in F data could be due to temporal variation in overlapping and spatial chromosomal confinement. (authors). 14 refs

  20. Chromosome and genome size variation in Luzula (Juncaceae), a genus with holocentric chromosomes

    Czech Academy of Sciences Publication Activity Database

    Bozek, M.; Leitch, A. R.; Leitch, I. J.; Záveská Drábková, Lenka; Kuta, E.

    2012-01-01

    Roč. 170, č. 4 (2012), s. 529-541. ISSN 0024-4074 R&D Projects: GA ČR GP206/07/P147 Institutional support: RVO:67985939 Keywords : chromosomal evolution * endopolyploidy * holokinetic chromosome * karyotype evolution * tetraploides * centromeres * TRNF intergenic spacer Subject RIV: EF - Botanics Impact factor: 2.589, year: 2012

  1. Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution.

    Science.gov (United States)

    Wang, Jianping; Na, Jong-Kuk; Yu, Qingyi; Gschwend, Andrea R; Han, Jennifer; Zeng, Fanchang; Aryal, Rishi; VanBuren, Robert; Murray, Jan E; Zhang, Wenli; Navajas-Pérez, Rafael; Feltus, F Alex; Lemke, Cornelia; Tong, Eric J; Chen, Cuixia; Wai, Ching Man; Singh, Ratnesh; Wang, Ming-Li; Min, Xiang Jia; Alam, Maqsudul; Charlesworth, Deborah; Moore, Paul H; Jiang, Jiming; Paterson, Andrew H; Ming, Ray

    2012-08-21

    Sex determination in papaya is controlled by a recently evolved XY chromosome pair, with two slightly different Y chromosomes controlling the development of males (Y) and hermaphrodites (Y(h)). To study the events of early sex chromosome evolution, we sequenced the hermaphrodite-specific region of the Y(h) chromosome (HSY) and its X counterpart, yielding an 8.1-megabase (Mb) HSY pseudomolecule, and a 3.5-Mb sequence for the corresponding X region. The HSY is larger than the X region, mostly due to retrotransposon insertions. The papaya HSY differs from the X region by two large-scale inversions, the first of which likely caused the recombination suppression between the X and Y(h) chromosomes, followed by numerous additional chromosomal rearrangements. Altogether, including the X and/or HSY regions, 124 transcription units were annotated, including 50 functional pairs present in both the X and HSY. Ten HSY genes had functional homologs elsewhere in the papaya autosomal regions, suggesting movement of genes onto the HSY, whereas the X region had none. Sequence divergence between 70 transcripts shared by the X and HSY revealed two evolutionary strata in the X chromosome, corresponding to the two inversions on the HSY, the older of which evolved about 7.0 million years ago. Gene content differences between the HSY and X are greatest in the older stratum, whereas the gene content and order of the collinear regions are identical. Our findings support theoretical models of early sex chromosome evolution. PMID:22869747

  2. Chromosome painting in biological dosimetry: Semi-automatic system to score stable chromosome aberrations

    International Nuclear Information System (INIS)

    From the beginning of the description of the procedure of chromosome painting by fluorescence in situ hybridization (FISH), it was thought its possible application to score induced chromosomal aberrations in radiation exposition. With chromosome painting it is possible to detect changes between chromosomes that has been validated in radiation exposition. Translocation scoring by FISH, contrarily to the unstable dicentrics, mainly detect stable chromosome aberrations that do not disappear, it allows the capability of quantify delayed acute expositions or chronic cumulative expositions. The large number of cells that have to be analyzed for high accuracy, specially when dealing with low radiation doses, makes it almost imperative to use an automatic analysis system. After validate translocation scoring by FISH in our, we have evaluated the ability and sensitivity to detect chromosomal aberrations by chromosome using different paint probes used, showing that any combination of paint probes can be used to score induced chromosomal aberrations. Our group has developed a FISH analysis that is currently being adapted for translocation scoring analysis. It includes systematic error correction and internal control probes. The performance tests carried out show that 9,000 cells can be analyzed in 10 hr. using a Sparc 4/370. Although with a faster computer, a higher throughput is expected, for large population screening or very low radiation doses, this performance still has to be improved. (author)

  3. Plasmid-Chromosome Recombination of Irradiated Shuttle Vector DNA in African Green Monkey Kidney Cells.

    Science.gov (United States)

    Mudgett, John Stuart

    1987-09-01

    An autonomously replicating shuttle vector was used to investigate the enhancement of plasmid-chromosome recombination in mammalian host cells by ultraviolet light and gamma radiation. Sequences homologous to the shuttle vector were stably inserted into the genome of African Green Monkey kidney cells to act as the target substrate for these recombination events. The SV40- and pBR322-derived plasmid DNA was irradiated with various doses of radiation before transfection into the transformed mammalian host cells. The successful homologous transfer of the bacterial ampicillin resistance (amp^{rm r}) gene from the inserted sequences to replace a mutant amp^->=ne on the shuttle vector was identified by plasmid extraction and transformation into E. coli host cells. Ultraviolet light (UV) was found not to induce homologous plasmid-chromosome recombination, while gamma radiation increased the frequency of recombinant plasmids detected. The introduction of specific double -strand breaks in the plasmid or prolonging the time of plasmid residence in the mammalian host cells also enhanced plasmid-chromosome recombination. In contrast, plasmid mutagenesis was found to be increased by plasmid UV irradiation, but not to change with time. Plasmid survival, recombination, and mutagenesis were not affected by treating the mammalian host cells with UV light prior to plasmid transfection. The amp^{rm r} recombinant plasmid molecules analyzed were found to be mostly the result of nonconservative exchanges which appeared to involve both homologous and possibly nonhomologous interactions with the host chromosome. The observation that these recombinant structures were obtained from all of the plasmid alterations investigated suggests a common mechanistic origin for plasmid -chromosome recombination in these mammalian cells.

  4. Exploring function of conserved non-coding DNA in its chromosomal context

    Directory of Open Access Journals (Sweden)

    Delores J. Grant

    2015-11-01

    Full Text Available There is renewed interest in understanding expression of vertebrate genes in their chromosomal context because regulatory sequences that confer tissue-specific expression are often distributed over large distances along the DNA from the gene. One approach inserts a universal sensor/reporter-gene into the mouse or zebrafish genome to identify regulatory sequences in highly conserved non-coding DNA in the vicinity of the integrated reporter-gene. However detailed mechanisms of interaction of these regulatory elements among themselves and/or with the genes they influence remain elusive with the strategy. The inability to associate distant regulatory elements with the genes they regulate makes it difficult to examine the contribution of sequence changes in regulatory DNA to human disease. Such associations have been obtained in favorable circumstances by testing the regulatory potential of highly conserved non-coding DNA individually in small reporter-gene-containing plasmids. Alternative approaches use tiny fragments of chromosomes in Bacterial Artificial Chromosomes, BACs, where the gene of interest is tagged in vitro with a reporter/sensor gene and integrated into the germ-line of animals for expression. Mutational analysis of the BAC DNA identifies regulatory sequences. A recent approach inserts a sensor/reporter-gene into a BAC that is also truncated progressively from an end of genomic insert, and the end-deleted BAC carrying the sensor is then integrated into the genome of a developing animal for expression. The approach allows mechanisms of tissue-specific gene expression to be explored in much greater detail, although the chromosomal context of such mechanisms is limited to the length of the BAC. Here we discuss the relative strengths of the various approaches and explore how the integrated-sensor in the BACs method applied to a contig of BACs spanning a chromosomal region is likely to address mechanistic questions on interactions between

  5. Mechanisms of ring chromosome formation in 11 cases of human ring chromosome 21

    DEFF Research Database (Denmark)

    McGinniss, M J; Kazazian, H H; Stetten, G;

    1992-01-01

    ), resulting in deletion of varying amounts of 21q22.1 to 21qter. The data from one individual who had a Down syndrome phenotype were consistent with asymmetric breakage and reunion of 21q sequences from an intermediate isochromosome or Robertsonian translocation chromosome as reported by Wong et al. Another......We studied the mechanism of ring chromosome 21 (r(21)) formation in 13 patients (11 unique r(21)s), consisting of 7 from five families with familial r(21) and 6 with de novo r(21). The copy number of chromosome 21 sequences in the rings of these patients was determined by quantitative dosage......). The phenotype of patients correlated well with the extent of deletion or duplication of chromosome 21 sequences. These data demonstrate three mechanisms of r(21) formation and show that the phenotype of r(21) patients varies with the extent of chromosome 21 monosomy or trisomy....

  6. Dielectrophoretic manipulation of human chromosomes in microfluidic channels: extracting chromosome dielectric properties

    DEFF Research Database (Denmark)

    Clausen, Casper Hyttel; Dimaki, Maria; Buckley, Sonia; Svendsen, Winnie Edith

    2011-01-01

    An investigation of the dielectric properties of polyamine buffer prepared human chromosomes is presented in this paper. Chromosomes prepared in this buffer are only a few micrometers in size and shaped roughly like spherical discs. Dielectrophoresis was therefore chosen as the method of manipula......An investigation of the dielectric properties of polyamine buffer prepared human chromosomes is presented in this paper. Chromosomes prepared in this buffer are only a few micrometers in size and shaped roughly like spherical discs. Dielectrophoresis was therefore chosen as the method of...... manipulation combined with a custom designed microfluidic system containing the required electrodes for dielectrophoresis experiments. Our results show that although this system is presently not able to distinguish between the different chromosomes, it can provide average data for the dielectric properties of...

  7. Neo-sex chromosomes in the black muntjac recapitulate incipient evolution of mammalian sex chromosomes

    DEFF Research Database (Denmark)

    Zhou, Qi; Wang, Jun; Huang, Ling; Nie, Wenhui; Wang, Jinhuan; Liu, Yan; Zhao, Xiangyi; Yang, Fengtang; Wang, Wen

    2008-01-01

    BACKGROUND: The regular mammalian X and Y chromosomes diverged from each other at least 166 to 148 million years ago, leaving few traces of their early evolution, including degeneration of the Y chromosome and evolution of dosage compensation. RESULTS: We studied the intriguing case of black...... muntjac, in which a recent X-autosome fusion and a subsequent large autosomal inversion within just the past 0.5 million years have led to inheritance patterns identical to the traditional X-Y (neo-sex chromosomes). We compared patterns of genome evolution in 35-kilobase noncoding regions and 23 gene...... SNX22 abolished a microRNA target site. Finally, expression analyses revealed complex patterns of expression divergence between neo-Y and neo-X alleles. CONCLUSION: The nascent neo-sex chromosome system of black muntjacs is a valuable model in which to study the evolution of sex chromosomes in mammals...

  8. Analysis of the Ceratitis capitata y chromosome using in situ hybridization to mitotic chromosomes

    International Nuclear Information System (INIS)

    In Ceratitis capitata the Y chromosome is responsible for sex-determination. We used fluorescence in situ hybridization (FISH) for cytogenetic analysis of mitotic chromosomes. FISH with the wild-type strain EgyptII and two repetitive DNA probes enabled us to differentiate between the short and the long arm of the Y chromosome and gives a much better resolution than C-banding of mitotic chromosomes. We identified the Y-chromosomal breakpoints in Y-autosome translocations using FISH. Even more complex rearrangements i.e. deletions and insertions in some translocation strains were detected by this method. A strategy for mapping the primary sex determination factor in Ceratitis capitata by FISH is presented. (author)

  9. [Small intestine bacterial overgrowth].

    Science.gov (United States)

    Leung Ki, E L; Roduit, J; Delarive, J; Guyot, J; Michetti, P; Dorta, G

    2010-01-27

    Small intestine bacterial overgrowth (SIBO) is a condition characterised by nutrient malabsorption and excessive bacteria in the small intestine. It typically presents with diarrhea, flatulence and a syndrome of malabsorption (steatorrhea, macrocytic anemia). However, it may be asymptomatic in the eldery. A high index of suspicion is necessary in order to differentiate SIBO from other similar presenting disorders such as coeliac disease, lactose intolerance or the irritable bowel syndrome. A search for predisposing factor is thus necessary. These factors may be anatomical (stenosis, blind loop), or functional (intestinal hypomotility, achlorydria). The hydrogen breath test is the most frequently used diagnostic test although it lacks standardisation. The treatment of SIBO consists of eliminating predisposing factors and broad-spectrum antibiotic therapy. PMID:20214190

  10. Studying bacterial multispecies biofilms

    DEFF Research Database (Denmark)

    Røder, Henriette Lyng; Sørensen, Søren Johannes; Burmølle, Mette

    2016-01-01

    The high prevalence and significance of multispecies biofilms have now been demonstrated in various bacterial habitats with medical, industrial, and ecological relevance. It is highly evident that several species of bacteria coexist and interact in biofilms, which highlights the need for evaluating...... the approaches used to study these complex communities. This review focuses on the establishment of multispecies biofilms in vitro, interspecies interactions in microhabitats, and how to select communities for evaluation. Studies have used different experimental approaches; here we evaluate the...... benefits and drawbacks of varying the degree of complexity. This review aims to facilitate multispecies biofilm research in order to expand the current limited knowledge on interspecies interactions. Recent technological advances have enabled total diversity analysis of highly complex and diverse microbial...

  11. Plant sex chromosomes: molecular structure and function.

    Science.gov (United States)

    Jamilena, M; Mariotti, B; Manzano, S

    2008-01-01

    Recent molecular and genomic studies carried out in a number of model dioecious plant species, including Asparagus officinalis, Carica papaya, Silene latifolia, Rumex acetosa and Marchantia polymorpha, have shed light on the molecular structure of both homomorphic and heteromorphic sex chromosomes, and also on the gene functions they have maintained since their evolution from a pair of autosomes. The molecular structure of sex chromosomes in species from different plant families represents the evolutionary pathway followed by sex chromosomes during their evolution. The degree of Y chromosome degeneration that accompanies the suppression of recombination between the Xs and Ys differs among species. The primitive Ys of A. officinalis and C. papaya have only diverged from their homomorphic Xs in a short male-specific and non-recombining region (MSY), while the heteromorphic Ys of S. latifolia, R. acetosa and M. polymorpha have diverged from their respective Xs. As in the Y chromosomes of mammals and Drosophila, the accumulation of repetitive DNA, including both transposable elements and satellite DNA, has played an important role in the divergence and size enlargement of plant Ys, and consequently in reducing gene density. Nevertheless, the degeneration process in plants does not appear to have reached the Y-linked genes. Although a low gene density has been found in the sequenced Y chromosome of M. polymorpha, most of its genes are essential and are expressed in the vegetative and reproductive organs in both male and females. Similarly, most of the Y-linked genes that have been isolated and characterized up to now in S. latifolia are housekeeping genes that have X-linked homologues, and are therefore expressed in both males and females. Only one of them seems to be degenerate with respect to its homologous region in the X. Sequence analysis of larger regions in the homomorphic X and Y chromosomes of papaya and asparagus, and also in the heteromorphic sex chromosomes

  12. Deficit of mitonuclear genes on the human X chromosome predates sex chromosome formation.

    Science.gov (United States)

    Dean, Rebecca; Zimmer, Fabian; Mank, Judith E

    2015-02-01

    Two taxa studied to date, the therian mammals and Caenorhabditis elegans, display underrepresentations of mitonuclear genes (mt-N genes, nuclear genes whose products are imported to and act within the mitochondria) on their X chromosomes. This pattern has been interpreted as the result of sexual conflict driving mt-N genes off of the X chromosome. However, studies in several other species have failed to detect a convergent biased distribution of sex-linked mt-N genes, leading to questions over the generality of the role of sexual conflict in shaping the distribution of mt-N genes. Here we tested whether mt-N genes moved off of the therian X chromosome following sex chromosome formation, consistent with the role of sexual conflict, or whether the paucity of mt-N genes on the therian X is a chance result of an underrepresentation on the ancestral regions that formed the X chromosome. We used a synteny-based approach to identify the ancestral regions in the platypus and chicken genomes that later formed the therian X chromosome. We then quantified the movement of mt-N genes on and off of the X chromosome and the distribution of mt-N genes on the human X and ancestral X regions. We failed to find an excess of mt-N gene movement off of the X. The bias of mt-N genes on ancestral therian X chromosomes was also not significantly different from the biases on the human X. Together our results suggest that, rather than conflict driving mt-N genes off of the mammalian X, random biases on chromosomes that formed the X chromosome could explain the paucity of mt-N genes in the therian lineage. PMID:25637223

  13. Confirmation of the synteny between human chromosome 22 and mouse chromosome 11

    Energy Technology Data Exchange (ETDEWEB)

    Claudio, J.O.; Rouleau, G.A.; Malo, D. [McGill Univ., Quebec (Canada)

    1994-09-01

    Comparative mapping based on the existence of conserved synteny between human and mouse chromosomes is a useful strategy in determining the chromosomal location of a gene. Using recombinant inbred (RI) strains of mice derived from AKR/J and DBA/2J cross (AKXD), we confirmed the existence of a small area of synteny between the chromosome 22 segment carrying the gene for neurofibromatosis type 2 (NF2) and the most proximal region of mouse chromosome 11 containing its homologue (Nf2). By analyzing the allele distribution pattern of 24 AKXD RI mice using a novel polymorphic dinucleotide (CT){sub n} repeat (D11Mcg1) in the 3{prime} untranslated region of the mouse Nf2 gene and PCR-based simple sequence repeat markers (Research Genetics), we established the chromosomal position of Nf23 on mouse chromosome 11. Minimizing the number of double recombinants in the RI strains analyzed suggests tight linkage of Nf2 to D11Mit1 and D11Mit72 which map to a region containing the genes for leukemia inhibitory factor (Lif) and neurofilament heavy chain polypeptide (Nfh). This region is syntenic to the segment carrying the genes LIF, NF2 and NEFH on human chromosome 22q. We show that D11Mcg1 will be useful for mapping of genes and closely linked loci on the proximal region of mouse chromosome 11. Our data demonstrate the predictive value of comparative mapping and confirm that human chromosome 22q12 is syntenic to the most proximal region of mouse chromosome 11.

  14. Chromosome misalignments induce spindle-positioning defects.

    Science.gov (United States)

    Tame, Mihoko A; Raaijmakers, Jonne A; Afanasyev, Pavel; Medema, René H

    2016-03-01

    Cortical pulling forces on astral microtubules are essential to position the spindle. These forces are generated by cortical dynein, a minus-end directed motor. Previously, another dynein regulator termed Spindly was proposed to regulate dynein-dependent spindle positioning. However, the mechanism of how Spindly regulates spindle positioning has remained elusive. Here, we find that the misalignment of chromosomes caused by Spindly depletion is directly provoking spindle misorientation. Chromosome misalignments induced by CLIP-170 or CENP-E depletion or by noscapine treatment are similarly accompanied by severe spindle-positioning defects. We find that cortical LGN is actively displaced from the cortex when misaligned chromosomes are in close proximity. Preventing the KT recruitment of Plk1 by the depletion of PBIP1 rescues cortical LGN enrichment near misaligned chromosomes and re-establishes proper spindle orientation. Hence, KT-enriched Plk1 is responsible for the negative regulation of cortical LGN localization. In summary, we uncovered a compelling molecular link between chromosome alignment and spindle orientation defects, both of which are implicated in tumorigenesis. PMID:26882550

  15. Ambiguous genitalia: a clinical and chromosomal study

    Directory of Open Access Journals (Sweden)

    V. Anantha Kumari

    2015-12-01

    Methods: The study is undertaken with forty cases with ages ranging from new borne to 20 yrs. Out of these 40 cases eight cases are below one year. In these cases physical examination is correlated with ultrasonography and chromosomal analysis. Results: In chromosomal analysis three persons out of forty cases were mosaics with 45, XO/46, twenty one cases who showed the chromosomal pattern as 46, XY mostly showed with no mullarian reminents. On examination palpable gonads were found in labio-scrotal sacs in seventeen cases. One of these cases was reared as girl found cytogenetically as 46, XY with the ultrasonographic impression as small uterus with no ovaries. Nineteen cases who with ambiguous genitalia showed the chromosomal pattern as 46, XX one out of these cases showed enlargement of the breast, and on examination of external genitalia found enlarged clitoris with labiamajora and minora. The child was brought up as male. Genitogram showed the absence of uterus. Conclusions: Chromosomal studies with ultrasonography can help in rearing a child male or female in young generation by surgical and Hormonal therapy. This prevents many problems in later life. This fact should be advertised openly in the public so that illiterate people should be alert. [Int J Res Med Sci 2015; 3(12.000: 3743-3748

  16. Deep Roots for Aboriginal Australian Y Chromosomes.

    Science.gov (United States)

    Bergström, Anders; Nagle, Nano; Chen, Yuan; McCarthy, Shane; Pollard, Martin O; Ayub, Qasim; Wilcox, Stephen; Wilcox, Leah; van Oorschot, Roland A H; McAllister, Peter; Williams, Lesley; Xue, Yali; Mitchell, R John; Tyler-Smith, Chris

    2016-03-21

    Australia was one of the earliest regions outside Africa to be colonized by fully modern humans, with archaeological evidence for human presence by 47,000 years ago (47 kya) widely accepted [1, 2]. However, the extent of subsequent human entry before the European colonial age is less clear. The dingo reached Australia about 4 kya, indirectly implying human contact, which some have linked to changes in language and stone tool technology to suggest substantial cultural changes at the same time [3]. Genetic data of two kinds have been proposed to support gene flow from the Indian subcontinent to Australia at this time, as well: first, signs of South Asian admixture in Aboriginal Australian genomes have been reported on the basis of genome-wide SNP data [4]; and second, a Y chromosome lineage designated haplogroup C(∗), present in both India and Australia, was estimated to have a most recent common ancestor around 5 kya and to have entered Australia from India [5]. Here, we sequence 13 Aboriginal Australian Y chromosomes to re-investigate their divergence times from Y chromosomes in other continents, including a comparison of Aboriginal Australian and South Asian haplogroup C chromosomes. We find divergence times dating back to ∼50 kya, thus excluding the Y chromosome as providing evidence for recent gene flow from India into Australia. PMID:26923783

  17. Assembly and disassembly of mammalian chromosome pellicle

    Institute of Scientific and Technical Information of China (English)

    NIZUMEI; JELITTLE; 等

    1992-01-01

    By means of indirect double immunofluorescent staining,the coordination of PI antigen and perichromonucleolin(PCN),the constituent of nuclear periphery and nucleolus respectively,in the assembly and disassembly of chromosome pellicle during mitosis was studied.It was found that in 3T3 cells,during mitosis PI antigen began to coat the condensing chromosome surface earlier than PCN did.However,both of them completed their coating on chromosome at approximately the same stage of mitosis,prometaphase metaphase,The dissociation of mitosis,Prometaphase metaphase.The dissociation of PI antigen from chromosome pellicle to participate the formation of nuclear periphery took place also ahead of that of PCN,At early telophase PI antigen had been extensively involved in the formation of nuclear periphery,while PCN remained in association with the surface of decondensing chromosomes.At late telophase,when PI antigen was localized in an fairly well formed nuclear periphery,PCN was in a stage of forming prenucleolar bodies.

  18. Deep Roots for Aboriginal Australian Y Chromosomes

    Science.gov (United States)

    Bergström, Anders; Nagle, Nano; Chen, Yuan; McCarthy, Shane; Pollard, Martin O.; Ayub, Qasim; Wilcox, Stephen; Wilcox, Leah; van Oorschot, Roland A.H.; McAllister, Peter; Williams, Lesley; Xue, Yali; Mitchell, R. John; Tyler-Smith, Chris

    2016-01-01

    Summary Australia was one of the earliest regions outside Africa to be colonized by fully modern humans, with archaeological evidence for human presence by 47,000 years ago (47 kya) widely accepted [1, 2]. However, the extent of subsequent human entry before the European colonial age is less clear. The dingo reached Australia about 4 kya, indirectly implying human contact, which some have linked to changes in language and stone tool technology to suggest substantial cultural changes at the same time [3]. Genetic data of two kinds have been proposed to support gene flow from the Indian subcontinent to Australia at this time, as well: first, signs of South Asian admixture in Aboriginal Australian genomes have been reported on the basis of genome-wide SNP data [4]; and second, a Y chromosome lineage designated haplogroup C∗, present in both India and Australia, was estimated to have a most recent common ancestor around 5 kya and to have entered Australia from India [5]. Here, we sequence 13 Aboriginal Australian Y chromosomes to re-investigate their divergence times from Y chromosomes in other continents, including a comparison of Aboriginal Australian and South Asian haplogroup C chromosomes. We find divergence times dating back to ∼50 kya, thus excluding the Y chromosome as providing evidence for recent gene flow from India into Australia. PMID:26923783

  19. Origin and significance of chromosomal alterations

    International Nuclear Information System (INIS)

    The spontaneous frequency of chromsomal changes (structural and numerical aberations) in humans is in the order of 6 in 1,000 newborn. Chromosomal analysis of spontaneous abortuses indicate that about 50% of all spontaneous abortions are chromsomally abnormal. Populations exposed to ionizing radiations (atom bomb survivors) or chemical mutagens (e.g., workers occupational.y exposed to vinyl chloride or benzene) show increased frequencies of chromosomal aberrations in their peripheral blood lymphocytes. Many types of human cancer are associated with specific or non-specific chromosomal aberrations. Several human recessive diseases, such as ataxia telangiectasia (A-T), Faconi's anemia (FA) and Bloom's syndrome (BS) are associated with increased frequencies of chromosomal aberrations. However, no detectable increase in the frequency of spontaneous point mutations in human populations exposed to ionizing radiations or chemical mutagens has been demonstrated so far. These observations point to the importance of understanding the mechanism involved in the origin of chromosomal alterations and their significance, which the author discusses in this paper

  20. Degeneration of the Y chromosome in evolutionary aging models

    Science.gov (United States)

    Lobo, M. P.; Onody, R. N.

    2005-06-01

    The Y chromosomes are genetically degenerated and do not recombine with their matching partners X. Recombination of XX pairs is pointed out as the key factor for the Y chromosome degeneration. However, there is an additional evolutionary force driving sex-chromosomes evolution. Here we show this mechanism by means of two different evolutionary models, in which sex chromosomes with non-recombining XX and XY pairs of chromosomes is considered. Our results show three curious effects. First, we observed that even when both XX and XY pairs of chromosomes do not recombine, the Y chromosomes still degenerate. Second, the accumulation of mutations on Y chromosomes followed a completely different pattern then those accumulated on X chromosomes. And third, the models may differ with respect to sexual proportion. These findings suggest that a more primeval mechanism rules the evolution of Y chromosomes due exclusively to the sex-chromosomes asymmetry itself, i.e., the fact that Y chromosomes never experience female bodies. Over aeons, natural selection favored X chromosomes spontaneously, even if at the very beginning of evolution, both XX and XY pairs of chromosomes did not recombine.

  1. Molecular approaches for bacterial azoreductases

    Directory of Open Access Journals (Sweden)

    Montira Leelakriangsak

    2013-12-01

    Full Text Available Azo dyes are the dominant types of synthetic dyes, widely used in textiles, foods, leather, printing, tattooing, cosmetics, and pharmaceutical industries. Many microorganisms are able to decolorize azo dyes, and there is increasing interest in biological waste treatment methods. Bacterial azoreductases can cleave azo linkages (-N=N- in azo dyes, forming aromatic amines. This review mainly focuses on employing molecular approaches, including gene manipulation and recombinant strains, to study bacterial azoreductases. The construction of the recombinant protein by cloning and the overexpression of azoreductase is described. The mechanisms and function of bacterial azoreductases can be studied by other molecular techniques discussed in this review, such as RT-PCR, southern blot analysis, western blot analysis, zymography, and muta-genesis in order to understand bacterial azoreductase properties, function and application. In addition, understanding the regulation of azoreductase gene expression will lead to the systematic use of gene manipulation in bacterial strains for new strategies in future waste remediation technologies.

  2. The complete sequence of human chromosome 5

    Energy Technology Data Exchange (ETDEWEB)

    Schmutz, Jeremy; Martin, Joel; Terry, Astrid; Couronne, Olivier; Grimwood, Jane; Lowry, State; Gordon, Laurie A.; Scott, Duncan; Xie, Gary; Huang, Wayne; Hellsten, Uffe; Tran-Gyamfi, Mary; She, Xinwei; Prabhakar, Shyam; Aerts, Andrea; Altherr, Michael; Bajorek, Eva; Black, Stacey; Branscomb, Elbert; Caoile, Chenier; Challacombe, Jean F.; Chan, Yee Man; Denys, Mirian; Detter, Chris; Escobar, Julio; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstenin, David; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Israni, Sanjay; Jett, Jamie; Kadner, Kristen; Kimbal, Heather; Kobayashi, Arthur; Lopez, Frederick; Lou, Yunian; Martinez, Diego; Medina, Catherine; Morgan, Jenna; Nandkeshwar, Richard; Noonan, James P.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Priest, James; Ramirez, Lucia; Rash, Sam; Retterer, James; Rodriguez, Alex; Rogers, Stephanie; Salamov, Asaf; Salazar, Angelica; Thayer, Nina; Tice, Hope; Tsai, Ming; Ustaszewska, Anna; Vo, Nu; Wheeler, Jeremy; Wu, Kevin; Yang, Joan; Dickson, Mark; Cheng, Jan-Fang; Eichler, Evan E.; Olsen, Anne; Pennacchio, Len A.; Rokhsar, Daniel S.; Richardson, Paul; Lucas, Susan M.; Myers, Richard M.; Rubin, Edward M.

    2004-04-15

    Chromosome 5 is one of the largest human chromosomes yet has one of the lowest gene densities. This is partially explained by numerous gene-poor regions that display a remarkable degree of noncoding and syntenic conservation with non-mammalian vertebrates, suggesting they are functionally constrained. In total, we compiled 177.7 million base pairs of highly accurate finished sequence containing 923 manually curated protein-encoding genes including the protocadherin and interleukin gene families and the first complete versions of each of the large chromosome 5 specific internal duplications. These duplications are very recent evolutionary events and play a likely mechanistic role, since deletions of these regions are the cause of debilitating disorders including spinal muscular atrophy (SMA).

  3. Chromosomal abnormalities in a psychiatric population

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, K.E.; Lubetsky, M.J.; Wenger, S.L.; Steele, M.W. [Univ. of Pittsburgh Medical Center, PA (United States)

    1995-02-27

    Over a 3.5 year period of time, 345 patients hospitalized for psychiatric problems were evaluated cytogenetically. The patient population included 76% males and 94% children with a mean age of 12 years. The criteria for testing was an undiagnosed etiology for mental retardation and/or autism. Cytogenetic studies identified 11, or 3%, with abnormal karyotypes, including 4 fragile X positive individuals (2 males, 2 females), and 8 with chromosomal aneuploidy, rearrangements, or deletions. While individuals with chromosomal abnormalities do not demonstrate specific behavioral, psychiatric, or developmental problems relative to other psychiatric patients, our results demonstrate the need for an increased awareness to order chromosomal analysis and fragile X testing in those individuals who have combinations of behavioral/psychiatric, learning, communication, or cognitive disturbance. 5 refs., 1 fig., 2 tabs.

  4. The DNA sequence of human chromosome 7.

    Science.gov (United States)

    Hillier, Ladeana W; Fulton, Robert S; Fulton, Lucinda A; Graves, Tina A; Pepin, Kymberlie H; Wagner-McPherson, Caryn; Layman, Dan; Maas, Jason; Jaeger, Sara; Walker, Rebecca; Wylie, Kristine; Sekhon, Mandeep; Becker, Michael C; O'Laughlin, Michelle D; Schaller, Mark E; Fewell, Ginger A; Delehaunty, Kimberly D; Miner, Tracie L; Nash, William E; Cordes, Matt; Du, Hui; Sun, Hui; Edwards, Jennifer; Bradshaw-Cordum, Holland; Ali, Johar; Andrews, Stephanie; Isak, Amber; Vanbrunt, Andrew; Nguyen, Christine; Du, Feiyu; Lamar, Betty; Courtney, Laura; Kalicki, Joelle; Ozersky, Philip; Bielicki, Lauren; Scott, Kelsi; Holmes, Andrea; Harkins, Richard; Harris, Anthony; Strong, Cynthia Madsen; Hou, Shunfang; Tomlinson, Chad; Dauphin-Kohlberg, Sara; Kozlowicz-Reilly, Amy; Leonard, Shawn; Rohlfing, Theresa; Rock, Susan M; Tin-Wollam, Aye-Mon; Abbott, Amanda; Minx, Patrick; Maupin, Rachel; Strowmatt, Catrina; Latreille, Phil; Miller, Nancy; Johnson, Doug; Murray, Jennifer; Woessner, Jeffrey P; Wendl, Michael C; Yang, Shiaw-Pyng; Schultz, Brian R; Wallis, John W; Spieth, John; Bieri, Tamberlyn A; Nelson, Joanne O; Berkowicz, Nicolas; Wohldmann, Patricia E; Cook, Lisa L; Hickenbotham, Matthew T; Eldred, James; Williams, Donald; Bedell, Joseph A; Mardis, Elaine R; Clifton, Sandra W; Chissoe, Stephanie L; Marra, Marco A; Raymond, Christopher; Haugen, Eric; Gillett, Will; Zhou, Yang; James, Rose; Phelps, Karen; Iadanoto, Shawn; Bubb, Kerry; Simms, Elizabeth; Levy, Ruth; Clendenning, James; Kaul, Rajinder; Kent, W James; Furey, Terrence S; Baertsch, Robert A; Brent, Michael R; Keibler, Evan; Flicek, Paul; Bork, Peer; Suyama, Mikita; Bailey, Jeffrey A; Portnoy, Matthew E; Torrents, David; Chinwalla, Asif T; Gish, Warren R; Eddy, Sean R; McPherson, John D; Olson, Maynard V; Eichler, Evan E; Green, Eric D; Waterston, Robert H; Wilson, Richard K

    2003-07-10

    Human chromosome 7 has historically received prominent attention in the human genetics community, primarily related to the search for the cystic fibrosis gene and the frequent cytogenetic changes associated with various forms of cancer. Here we present more than 153 million base pairs representing 99.4% of the euchromatic sequence of chromosome 7, the first metacentric chromosome completed so far. The sequence has excellent concordance with previously established physical and genetic maps, and it exhibits an unusual amount of segmentally duplicated sequence (8.2%), with marked differences between the two arms. Our initial analyses have identified 1,150 protein-coding genes, 605 of which have been confirmed by complementary DNA sequences, and an additional 941 pseudogenes. Of genes confirmed by transcript sequences, some are polymorphic for mutations that disrupt the reading frame. PMID:12853948

  5. Chromosomal aberrations induced by alpha particles

    International Nuclear Information System (INIS)

    The chromosomal aberrations produced by the ionizing radiation are commonly used when it is necessary to establish the exposure dose of an individual, it is a study that is used like complement of the traditional physical systems and its application is only in cases in that there is doubt about what indicates the conventional dosimetry. The biological dosimetry is based on the frequency of aberrations in the chromosomes of the lymphocytes of the individual in study and the dose is calculated taking like reference to the dose-response curves previously generated In vitro. A case of apparent over-exposure to alpha particles to which is practiced analysis of chromosomal aberrations to settle down if in fact there was exposure and as much as possible, to determine the presumed dose is presented. (Author)

  6. Can molecular cell biology explain chromosome motions?

    Directory of Open Access Journals (Sweden)

    Gagliardi L

    2011-05-01

    Full Text Available Abstract Background Mitotic chromosome motions have recently been correlated with electrostatic forces, but a lingering "molecular cell biology" paradigm persists, proposing binding and release proteins or molecular geometries for force generation. Results Pole-facing kinetochore plates manifest positive charges and interact with negatively charged microtubule ends providing the motive force for poleward chromosome motions by classical electrostatics. This conceptual scheme explains dynamic tracking/coupling of kinetochores to microtubules and the simultaneous depolymerization of kinetochore microtubules as poleward force is generated. Conclusion We question here why cells would prefer complex molecular mechanisms to move chromosomes when direct electrostatic interactions between known bound charge distributions can accomplish the same task much more simply.

  7. Chromosome aberration analysis for biological dosimetry: a review

    International Nuclear Information System (INIS)

    Among various biological dosimetry techniques, dicentric chromosome aberration method appears to be the method of choice in analysing accidental radiation exposure in most of the laboratories. The major advantage of this method is its sensitivity as the number of dicentric chromosomes present in control population is too small and more importantly radiation induces mainly dicentric chromosome aberration among unstable aberration. This report brings out the historical development of various cytogenetic methods, the basic structure of DNA, chromosomes and different forms of chromosome aberrations. It also highlights the construction of dose-response curve for dicentric chromosome and its use in the estimation of radiation dose. (author)

  8. The bacterial artificial chromosome (BAC) library of the narrow-leafed lupin (Lupinus angustifolius L.)

    Czech Academy of Sciences Publication Activity Database

    Kasprzak, A.; Šafář, Jan; Janda, Jaroslav; Doležel, Jaroslav; Wolko, B.; Naganowska, B.

    2006-01-01

    Roč. 11, - (2006), s. 396-407. ISSN 1425-8153 R&D Projects: GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50380511 Keywords : BAC * genomic DNA library * Lupinus angustifolius L. Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.238, year: 2006

  9. Expression and function profiling of orphan nuclear receptors using bacterial artificial chromosome (BAC) transgenesis.

    OpenAIRE

    Nemoz-Gaillard, Eric; Tsai, Ming-Jer; Tsai, Sophia Y.

    2003-01-01

    The long term goal of the Nuclear Receptor Signaling Atlas (NURSA) resides in unraveling the physiological and pathological functions of nuclear receptors (NRs) at the molecular, biochemical and cellular levels. This multi-oriented task requires complementary approaches in order to determine the specific function(s) and precise expression and receptor activity patterns for each individual conventional or orphan receptor. To attain this objective, we have chose to turn to technologies recently...

  10. Construction of a bacterial artificial chromosome library of S-type CMS maize mitochondria

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In order to isolate mitochondrial genes easily, we have developed a new method to construct S-type CMS maize mitochondrial gene library by means of embedding mitochondria and enzymatic digesting mitochondria in situ, preparing mtDNA by electrophoresis, digesting LMP agarose with β-agarase, using BAC vector and electroporation. About 2 500 white clones of Mo17 CMS-J mitochondrial gene library were obtained with the average size of 18.24 kb, ranging from 5 to 40 kb, 63.6% inserts came from mitochondrial genome and represented 48 ′ mitochondrial genome equivalents. All the probes had detected the positive clones in the gene library. It is helpful to elucidating the maize mitochondrial genome structure and mechanism of S-type CMS, and may give some valuable reference to the construction of other plant mitochondrial genome library.

  11. Cloning and Mutagenesis of the Murine Gammaherpesvirus 68 Genome as an Infectious Bacterial Artificial Chromosome

    OpenAIRE

    Adler, Heiko; Messerle, Martin; Wagner, Markus; Koszinowski, Ulrich H.

    2000-01-01

    Gammaherpesviruses cause important infections of humans, in particular in immunocompromised patients. Recently, murine gammaherpesvirus 68 (MHV-68) infection of mice has been developed as a small animal model of gammaherpesvirus pathogenesis. Efficient generation of mutants of MHV-68 would significantly contribute to the understanding of viral gene functions in virus-host interaction, thereby further enhancing the potential of this model. To this end, we cloned the MHV-68 genome as a bacteria...

  12. Feasibility of physical map construction from fingerprinted bacterial artificial chromosome libraries of polyploid plant species

    Czech Academy of Sciences Publication Activity Database

    Luo, M. C.; Ma, Y. Q.; You, F. M.; Anderson, O. D.; Kopecký, David; Šimková, Hana; Šafář, Jan; Doležel, Jaroslav; Gill, B.; McGuire, P. E.; Dvorak, J.

    2010-01-01

    Roč. 11, č. 122 (2010), s. 1-8. ISSN 1471-2164 Institutional research plan: CEZ:AV0Z50380511 Keywords : BREAD WHEAT * TETRAPLOID WHEAT * GENETIC-MAP Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.206, year: 2010

  13. A general system for generating unlabelled gene replacements in bacterial chromosomes

    NARCIS (Netherlands)

    Leenhouts, K.; Buist, G.; Bolhuis, A.; Berge, A. ten; Kiel, J.; Mierau, I.; Dabrowska, M.; Venema, G.; Kok, J.

    1996-01-01

    A general system is described that facilitates gene replacements such that the recombinant strains are not labelled with antibiotic resistance genes. The method is based on the conditional replication of derivatives of the lactococcal plasmid pWV01, which lacks the repA gene encoding the replication

  14. Complete Genomes of Classical Swine Fever Virus Cloned into Bacterial Artificial Chromosomes

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Reimann, I.; Uttenthal, Åse;

    Complete genome amplification of viral RNA provides a new tool for the generation of modified pestiviruses. We have used our full-genome amplification strategy for generation of amplicons representing complete genomes of classical swine fever virus. The amplicons were cloned directly into a stable...

  15. BACTERIAL ARTIFICIAL CHROMOSOME(BAC)LIBRARIES CONSTRUCTED FROM THE GENETIC STANDARD OF UPLAND COTTON

    Science.gov (United States)

    Two BAC libraries and one plant transformation-competent BIBAC library were developed from the Gossypium hirsutum acc. TM-1 for the development of an integrative cotton physical and genetic map and other genomic applications. TM-1 is the most desirable choice for the physical map of Upland cotton be...

  16. An approach to automated chromosome analysis

    International Nuclear Information System (INIS)

    The methods of approach developed with a view to automatic processing of the different stages of chromosome analysis are described in this study divided into three parts. Part 1 relates the study of automated selection of metaphase spreads, which operates a decision process in order to reject ail the non-pertinent images and keep the good ones. This approach has been achieved by Computing a simulation program that has allowed to establish the proper selection algorithms in order to design a kit of electronic logical units. Part 2 deals with the automatic processing of the morphological study of the chromosome complements in a metaphase: the metaphase photographs are processed by an optical-to-digital converter which extracts the image information and writes it out as a digital data set on a magnetic tape. For one metaphase image this data set includes some 200 000 grey values, encoded according to a 16, 32 or 64 grey-level scale, and is processed by a pattern recognition program isolating the chromosomes and investigating their characteristic features (arm tips, centromere areas), in order to get measurements equivalent to the lengths of the four arms. Part 3 studies a program of automated karyotyping by optimized pairing of human chromosomes. The data are derived from direct digitizing of the arm lengths by means of a BENSON digital reader. The program supplies' 1/ a list of the pairs, 2/ a graphic representation of the pairs so constituted according to their respective lengths and centromeric indexes, and 3/ another BENSON graphic drawing according to the author's own representation of the chromosomes, i.e. crosses with orthogonal arms, each branch being the accurate measurement of the corresponding chromosome arm. This conventionalized karyotype indicates on the last line the really abnormal or non-standard images unpaired by the program, which are of special interest for the biologist. (author)

  17. Chromosome Evolution and Genome Miniaturization in Minifish

    Science.gov (United States)

    Liu, Shaojun; Hui, Tan Heok; Tan, Sze Ley; Hong, Yunhan

    2012-01-01

    Background Paedocypris is a newly established genus of fish in Southeast Asia. Paedocypris is characterized by several unique features, including a tiny adult size (thus named miniature fish or minifish), fragmentary habitats of acidic peat blackwater swamps, an unusual reproduction mode and truncated development. These peculiarities lend themselves excellent for studying chromosome evolution and rapid speciation in vertebrates but also make them highly controversial for the phylogenetic position. Methodology and Principal Findings We have established an organ procedure to prepare chromosome spreads from tiny organs of minifish and performed a cytogenetic study on two species of the genus Paedocypris, namely P. carbunculus (Pc) and P. sp. “Singkep” (Ps). We found 30 and 34 chromosomes in diploid cells of Pc and Ps, respectively, which are unusual in teleost fishes. The diploid metaphase has 5 pairs of metacentrics and 7 pairs of subtelocentrics in Pc compared to 3 pairs of metacentrics and 11 pairs of subtelocentrics in Ps, whereas the haploid metaphase contains 5 metacentrics and 7 subtelocentrics in Pc compared to 3 metacentrics and 11 subtelocentrics Ps. Chromosome behavior in first meiosis revealed the presence of a chromosomal ring consisting of 2 metacentrics in Pc, suggesting that centric fusion rather than fission was responsible for the karyotypic evolution from Ps to Pc. Flow cytometry revealed that Pc had a 45% nuclear staining intensity relative to medaka whose genome is 700 Mb in size and contains 0.81 pg DNA. The Pc genome should have 315 Mb in length and 0.36 pg of DNA, which represent one of the smallest values in vertebrates, suggesting genome miniaturization in this organism. Conclusions Our data demonstrate that gross chromosome rearrangements and genome miniaturization have accompanied the evolution of Paedocypris fishes. Our data also place Paedocypris outside currently described taxa of the Cypriniformes. PMID:22615970

  18. Horizontal transfer of supernumerary chromosomes in fungi.

    Science.gov (United States)

    van der Does, H Charlotte; Rep, Martijn

    2012-01-01

    Several species of filamentous fungi contain so-called dispensable or supernumerary chromosomes. These chromosomes are dispensable for the fungus to survive, but may carry genes required for specialized functions, such as infection of a host plant. It has been shown that at least some dispensable chromosomes are able to transfer horizontally (i.e., in the absence of a sexual cycle) from one fungal strain to another. In this paper, we describe a method by which this can be shown. Horizontal chromosome transfer (HCT) occurs during co-incubation of two strains. To document the actual occurrence of HCT, it is necessary to select for HCT progeny. This is accomplished by transforming two different drug-resistance genes into the two parent strains before their co-incubation. In one of the strains (the "donor"), a drug-resistance gene should be integrated in a chromosome of which the propensity for HCT is under investigation. In the "tester" or "recipient" strain, another drug-resistance gene should be integrated somewhere in the core genome. In this way, after co-incubation, HCT progeny can be selected on plates containing both drugs. HCT can be initiated with equal amounts of asexual spores of both strains, plated on regular growth medium for the particular fungus, followed by incubation until new asexual spores are formed. The new asexual spores are then harvested and plated on plates containing both drugs. Double drug-resistant colonies that appear should carry at least one chromosome from each parental strain. Finally, double drug-resistant strains need to be analysed to assess whether HCT has actually occurred. This can be done by various genome mapping methods, like CHEF-gels, AFLP, RFLP, PCR markers, optical maps, or even complete genome sequencing. PMID:22183669

  19. Chromosome anomalies in mouse oocytes after irradiation

    International Nuclear Information System (INIS)

    We investigated the cytogenetic effects of X-rays on unfertilized mouse oocytes. NMRI females received an irradiation with 0, 22.2, 66.6, 200, and 600 R during the preovulatory phase 3 hrs after HCG (human chorionic gonadotrophin). This is a stage during oogenesis in which the oocytes pass from late dictyotene to diakinesis. Chromosome anlysis was per formed after ovulation at metaphase II. From these experiments we can draw the following conclusions: X-rays induced during the preovulatory phase a high number of chromosome anomalies. Among these, structural anomalies prevail. 7 out of 144 ovulated oocytes in matched controls carried such an abnormality, whereas after irradiation we observed with 22.2, 66.6, 200, and 600 R, 11 out of 72, 34 out of 108, 89 out of 102, and 122 out of 124, respectively. Irradiation seems also to affect the chromosome segregation during the 1. meiotic division, as we observed after 22.2, 66.6 and 200 R a total of 6 oocytes out of 204 with a supernummary chromosome. In controls, however, no hyperploidy was found in 143 ova. This increase, however, was not significant. Chromosome anomalies, e.g. breaks and deletions that go back to a one-break event increased linearly with increasing dose. Exchanges, however, going back to two-break events fittet best to the linear-quadratic dose-response model. The dose of 600 R seems to represent a kind of borderline in this experiment, because nearly all (122 out 124) carried at least one structural chromosome anomaly. It is also this dose after which the highest frequency of reciprocal translocations was observed in a humpshaped slope in spermatocytes after irradiation of spermatogonia (Preston and Brewen, 1973). With an increasing dosage up to 1,200 R the frequency of translocations decrease again. The elimination of cells, crossing this borderline, might be due to genetic or non-genetic effects. (orig./GSE)

  20. Chromosomal phylogeny and evolution of gibbons (Hylobatidae).

    Science.gov (United States)

    Müller, Stefan; Hollatz, Melanie; Wienberg, Johannes

    2003-11-01

    Although human and gibbons are classified in the same primate superfamily (Hominoidae), their karyotypes differ by extensive chromosome reshuffling. To date, there is still limited understanding of the events that shaped extant gibbon karyotypes. Further, the phylogeny and evolution of the twelve or more extant gibbon species (lesser apes, Hylobatidae) is poorly understood, and conflicting phylogenies have been published. We present a comprehensive analysis of gibbon chromosome rearrangements and a phylogenetic reconstruction of the four recognized subgenera based on molecular cytogenetics data. We have used two different approaches to interpret our data: (1) a cladistic reconstruction based on the identification of ancestral versus derived chromosome forms observed in extant gibbon species; (2) an approach in which adjacent homologous segments that have been changed by translocations and intra-chromosomal rearrangements are treated as discrete characters in a parsimony analysis (PAUP). The orangutan serves as an "outgroup", since it has a karyotype that is supposed to be most similar to the ancestral form of all humans and apes. Both approaches place the subgenus Bunopithecus as the most basal group of the Hylobatidae, followed by Hylobates, with Symphalangus and Nomascus as the last to diverge. Since most chromosome rearrangements observed in gibbons are either ancestral to all four subgenera or specific for individual species and only a few common derived rearrangements at subsequent branching points have been recorded, all extant gibbons may have diverged within relatively short evolutionary time. In general, chromosomal rearrangements produce changes that should be considered as unique landmarks at the divergence nodes. Thus, molecular cytogenetics could be an important tool to elucidate phylogenies in other species in which speciation may have occurred over very short evolutionary time with not enough genetic (DNA sequence) and other biological divergence to

  1. Molecular mapping of chromosomes 17 and X

    Energy Technology Data Exchange (ETDEWEB)

    Barker, D.F.

    1989-01-01

    The basic aims of this project are the construction of high density genetic maps of chromosomes 17 and X and the utilization of these maps for the subsequent isolation of a set of physically overlapping DNA segment clones. The strategy depends on the utilization of chromosome specific libraries of small (1--15 kb) segments from each of the two chromosomes. Since the time of submission of our previous progress report, we have refined the genetic map of markers which we had previously isolated for chromosome 17. We have completed our genetic mapping in CEPH reference and NF1 families of 15 markers in the pericentric region of chromosome 17. Physical mapping results with three probes, were shown be in very close genetic proximity to the NF1 gene, with respect to two translocation breakpoints which disrupt the activity of the gene. All three of the probes were found to lie between the centromere and the most proximal translocation breakpoint, providing important genetic markers proximal to the NF1 gene. Our primary focus has shifted to the X chromosome. We have isolated an additional 30 polymorphic markers, bringing the total number we have isolated to over 80. We have invested substantial effort in characterizing the polymorphisms at each of these loci and constructed plasmid subclones which reveal the polymorphisms for nearly all of the loci. These subclones are of practical value in that they produce simpler and stronger patterns on human genomic Southern blots, thus improving the efficiency of the genetic mapping experiments. These subclones may also be of value for deriving DNA sequence information at each locus, necessary for establishing polymerase chain reaction primers specific for each locus. Such information would allow the use of each locus as a sequence tagged site.

  2. Tracking chromosome evolution in southern African gerbils using flow-sorted chromosome paints.

    Science.gov (United States)

    Knight, L I; Ng, B L; Cheng, W; Fu, B; Yang, F; Rambau, R V

    2013-01-01

    Desmodillus and Gerbilliscus (formerly Tatera) comprise a monophyletic group of gerbils (subfamily Gerbillinae) which last shared an ancestor approximately 8 million years ago; diploid chromosome number variation among the species ranges from 2n = 36 to 2n = 50. In an attempt to shed more light on chromosome evolution and speciation in these rodents, we compared the karyotypes of 7 species, representing 3 genera, based on homology data revealed by chromosome painting with probes derived from flow-sorted chromosomes of the hairy footed gerbil, Gerbillurus paeba (2n = 36). The fluorescent in situ hybridization data revealed remarkable genome conservation: these species share a high proportion of conserved chromosomes, and differences are due to 10 Robertsonian (Rb) rearrangements (3 autapomorphies, 3 synapomorphies and 4 hemiplasies/homoplasies). Our data suggest that chromosome evolution in Desmodillus occurred at a rate of ~1.25 rearrangements per million years (Myr), and that the rate among Gerbilliscus over a time period spanning 8 Myr is also ~1.25 rearrangements/Myr. The recently diverged Gerbillurus (G. tytonis and G. paeba) share an identical karyotype, while Gerbilliscus kempi, G. afra and G. leucogaster differ by 6 Rb rearrangements (a rate of ~1 rearrangement/Myr). Thus, our data suggests a very slow rate of chromosomal evolution in Southern African gerbils. PMID:23652816

  3. Non-disjunction of chromosome 18

    DEFF Research Database (Denmark)

    Bugge, M; Collins, A; Petersen, M B;

    1998-01-01

    A sample of 100 trisomy 18 conceptuses analysed separately and together with a published sample of 61 conceptuses confirms that an error in maternal meiosis II (MII) is the most frequent cause of non-disjunction for chromosome 18. This is unlike all other human trisomies that have been studied......, which show a higher frequency in maternal meiosis I (MI). Maternal MI trisomy 18 shows a low frequency of recombination in proximal p and medial q, but not the reduction in proximal q observed in chromosome 21 MI non-disjunction. Maternal MII non-disjunction does not fit the entanglement model that...

  4. Cancer chromosomal instability: therapeutic and diagnostic challenges.

    Science.gov (United States)

    McGranahan, Nicholas; Burrell, Rebecca A; Endesfelder, David; Novelli, Marco R; Swanton, Charles

    2012-06-01

    Chromosomal instability (CIN)-which is a high rate of loss or gain of whole or parts of chromosomes-is a characteristic of most human cancers and a cause of tumour aneuploidy and intra-tumour heterogeneity. CIN is associated with poor patient outcome and drug resistance, which could be mediated by evolutionary adaptation fostered by intra-tumour heterogeneity. In this review, we discuss the clinical consequences of CIN and the challenges inherent to its measurement in tumour specimens. The relationship between CIN and prognosis supports assessment of CIN status in the clinical setting and suggests that stratifying tumours according to levels of CIN could facilitate clinical risk assessment. PMID:22595889

  5. DNA Repair Defects and Chromosomal Aberrations

    Science.gov (United States)

    Hada, Megumi; George, K. A.; Huff, J. L.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Yields of chromosome aberrations were assessed in cells deficient in DNA doublestrand break (DSB) repair, after exposure to acute or to low-dose-rate (0.018 Gy/hr) gamma rays or acute high LET iron nuclei. We studied several cell lines including fibroblasts deficient in ATM (ataxia telangiectasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. Chromosomes were analyzed using the fluorescence in situ hybridization (FISH) chromosome painting method in cells at the first division post irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma irradiation induced greater yields of both simple and complex exchanges in the DSB repair-defective cells than in the normal cells. The quadratic dose-response terms for both simple and complex chromosome exchanges were significantly higher for the ATM- and NBS-deficient lines than for normal fibroblasts. However, in the NBS cells the linear dose-response term was significantly higher only for simple exchanges. The large increases in the quadratic dose-response terms in these repair-defective cell lines points the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and minimize the formation of aberrations. The differences found between ATM- and NBS-deficient cells at low doses suggest that important questions should with regard to applying observations of radiation sensitivity at high dose to low-dose exposures. For aberrations induced by iron nuclei, regression models preferred purely linear dose responses for simple exchanges and quadratic dose responses for complex exchanges. Relative biological effectiveness (RBE) factors of all of

  6. Human chromosome 'painting' probes used to measure chromosome translocations in non-human primates: extrapolations from monkey to man

    International Nuclear Information System (INIS)

    Chromosome painting with a probe specific for human chromosome 4 was used to 'paint' monkey chromosomes to measure the persistence of translocations in peripheral blood lymphocytes of a rhesus monkey exposed to ionising radiation more than 25 years ago. The human probe painted the entire length of two large rhesus and cynomolgus monkey chromosomes with no cross hybridisation to other chromosomes, facilitating rapid detection of chromosome translocations. Translocation frequency measured in one monkey was significantly higher than that for unirradiated animals. The use of human probes to obtain cytogenetic data from Macaca species irradiated years previously or exposed to chemical clastogens makes this genus an excellent model for studying genetic damage. (author)

  7. Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome

    OpenAIRE

    Machiela, Mitchell J.; Zhou, Weiyin; Karlins, Eric; Sampson, Joshua N.; Neal D Freedman; Yang, Qi; Hicks, Belynda; Dagnall, Casey; Hautman, Christopher; Jacobs, Kevin B.; Abnet, Christian C.; Aldrich, Melinda C; Amos, Christopher; Amundadottir, Laufey T.; Arslan, Alan A.

    2016-01-01

    To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP microarray intensity data of 38,303 women from cancer genome-wide association studies (20,878 cases and 17,425 controls) and detected 124 mosaic X events >2 Mb in 97 (0.25%) women. Here we show rates for X-chromosome mosaicism are four times higher than mean autosomal rates; X mosaic events more often include the entire chromosome and participants with X events more likely harbour autosomal mosaic events. X ...

  8. Evolution of Bacterial Suicide

    Science.gov (United States)

    Tchernookov, Martin; Nemenman, Ilya

    2013-03-01

    While active, controlled cellular suicide (autolysis) in bacteria is commonly observed, it has been hard to argue that autolysis can be beneficial to an individual who commits it. We propose a theoretical model that predicts that bacterial autolysis is evolutionarily advantageous to an individualand would fixate in physically structured environments for stationary phase colonies. We perform spatially resolved agent-based simulations of the model, which predict that lower mixing in the environment results in fixation of a higher autolysis rate from a single mutated cell, regardless of the colony's genetic diversity. We argue that quorum sensing will fixate as well, even if initially rare, if it is coupled to controlling the autolysis rate. The model does not predict a strong additional competitive advantage for cells where autolysis is controlled by quorum sensing systems that distinguish self from nonself. These predictions are broadly supported by recent experimental results in B. subtilisand S. pneumoniae. Research partially supported by the James S McDonnell Foundation grant No. 220020321 and by HFSP grant No. RGY0084/2011.

  9. Electromagnetism of Bacterial Growth

    Science.gov (United States)

    Ainiwaer, Ailiyasi

    2011-10-01

    There has been increasing concern from the public about personal health due to the significant rise in the daily use of electrical devices such as cell phones, radios, computers, GPS, video games and television. All of these devices create electromagnetic (EM) fields, which are simply magnetic and electric fields surrounding the appliances that simultaneously affect the human bio-system. Although these can affect the human system, obstacles can easily shield or weaken the electrical fields; however, magnetic fields cannot be weakened and can pass through walls, human bodies and most other objects. The present study was conducted to examine the possible effects of bacteria when exposed to magnetic fields. The results indicate that a strong causal relationship is not clear, since different magnetic fields affect the bacteria differently, with some causing an increase in bacterial cells, and others causing a decrease in the same cells. This phenomenon has yet to be explained, but the current study attempts to offer a mathematical explanation for this occurrence. The researchers added cultures to the magnetic fields to examine any effects to ion transportation. Researchers discovered ions such as potassium and sodium are affected by the magnetic field. A formula is presented in the analysis section to explain this effect.

  10. The rare bacterial biosphere.

    Science.gov (United States)

    Pedrós-Alió, Carlos

    2012-01-01

    All communities are dominated by a few species that account for most of the biomass and carbon cycling. On the other hand, a large number of species are represented by only a few individuals. In the case of bacteria, these rare species were until recently invisible. Owing to their low numbers, conventional molecular techniques could not retrieve them. Isolation in pure culture was the only way to identify some of them, but current culturing techniques are unable to isolate most of the bacteria in nature. The recent development of fast and cheap high-throughput sequencing has begun to allow access to the rare species. In the case of bacteria, the exploration of this rare biosphere has several points of interest. First, it will eventually produce a reasonable estimate of the total number of bacterial taxa in the oceans; right now, we do not even know the right order of magnitude. Second, it will answer the question of whether "everything is everywhere." Third, it will require hypothesizing and testing the ecological mechanisms that allow subsistence of many species in low numbers. And fourth, it will open an avenue of research into the immense reserve of genes with potential applications hidden in the rare biosphere. PMID:22457983

  11. Transport Powered by Bacterial Turbulence

    Science.gov (United States)

    Kaiser, Andreas; Peshkov, Anton; Sokolov, Andrey; ten Hagen, Borge; Löwen, Hartmut; Aranson, Igor S.

    2014-04-01

    We demonstrate that collective turbulentlike motion in a bacterial bath can power and steer the directed transport of mesoscopic carriers through the suspension. In our experiments and simulations, a microwedgelike "bulldozer" draws energy from a bacterial bath of varied density. We obtain that an optimal transport speed is achieved in the turbulent state of the bacterial suspension. This apparent rectification of random motion of bacteria is caused by polar ordered bacteria inside the cusp region of the carrier, which is shielded from the outside turbulent fluctuations.

  12. Transport powered by bacterial turbulence.

    Science.gov (United States)

    Kaiser, Andreas; Peshkov, Anton; Sokolov, Andrey; ten Hagen, Borge; Löwen, Hartmut; Aranson, Igor S

    2014-04-18

    We demonstrate that collective turbulentlike motion in a bacterial bath can power and steer the directed transport of mesoscopic carriers through the suspension. In our experiments and simulations, a microwedgelike "bulldozer" draws energy from a bacterial bath of varied density. We obtain that an optimal transport speed is achieved in the turbulent state of the bacterial suspension. This apparent rectification of random motion of bacteria is caused by polar ordered bacteria inside the cusp region of the carrier, which is shielded from the outside turbulent fluctuations. PMID:24785075

  13. Constitutive Stringent Response Restores Viability of Bacillus subtilis Lacking Structural Maintenance of Chromosome Protein

    Science.gov (United States)

    Benoist, Camille; Guérin, Cyprien; Noirot, Philippe; Dervyn, Etienne

    2015-01-01

    Bacillus subtilis mutants lacking the SMC-ScpAB complex are severely impaired for chromosome condensation and partitioning, DNA repair, and cells are not viable under standard laboratory conditions. We isolated suppressor mutations that restored the capacity of a smc deletion mutant (Δsmc) to grow under standard conditions. These suppressor mutations reduced chromosome segregation defects and abrogated hypersensitivity to gyrase inhibitors of Δsmc. Three suppressor mutations were mapped in genes involved in tRNA aminoacylation and maturation pathways. A transcriptomic survey of isolated suppressor mutations pointed to a potential link between suppression of Δsmc and induction of the stringent response. This link was confirmed by (p)ppGpp quantification which indicated a constitutive induction of the stringent response in multiple suppressor strains. Furthermore, sublethal concentrations of arginine hydroxamate (RHX), a potent inducer of stringent response, restored growth of Δsmc under non permissive conditions. We showed that production of (p)ppGpp alone was sufficient to suppress the thermosensitivity exhibited by the Δsmc mutant. Our findings shed new light on the coordination between chromosome dynamics mediated by SMC-ScpAB and other cellular processes during rapid bacterial growth. PMID:26539825

  14. Understanding Chromosome Disorders and their Implications for Special Educators

    Directory of Open Access Journals (Sweden)

    Linda Gilmore

    2014-03-01

    Full Text Available More children are now being diagnosed with chromosome abnormalities. Some chromosome disorder syndromes are relatively well known; while others are so rare that there is only limited evidence about their likely impact on learning and development. For educators, a basic level of knowledge about chromosome abnormalities is important for understanding the literature and communicating with families and professionals. This paper describes chromosomes, and the numerical and structural anomalies that can occur, usually spontaneously during early cell division. Distinctive features of various chromosome syndromes are summarised before a discussion of the rare chromosome disorders that are labelled, not with a syndrome name, but simply by a description of the chromosome number, size and shape. Because of the potential within-group variability that characterises syndromes, and the scarcity of literature about the rare chromosome disorders, expectations for learning and development of individual students need to be based on the range of possible outcomes that may be achievable.

  15. Function of the Sex Chromosomes in Mammalian Fertility

    OpenAIRE

    Heard, Edith; Turner, James

    2011-01-01

    In female germ cells, the inactive X chromosome is reactivated before meiosis and thereafter remains active. In contrast, the X chromosome in males is inactivated during meiosis, and silencing is largely maintained during spermiogenesis.

  16. Mapping and ordered cloning of the human X chromosome

    Energy Technology Data Exchange (ETDEWEB)

    Caskey, C.T.; Nelson, D.L.

    1992-12-01

    Progress is reported on gathering X chromosome specific libraries and integrating those with the library produced in this project. Further studies on understanding Fragile X Syndrome and other hereditary diseases related to the X chromosome are described. (DT)

  17. Chromosome segregation: learning to let go.

    Science.gov (United States)

    Higgins, Jonathan M G

    2013-10-01

    To ensure accurate chromosome segregation, cohesion between sister chromatids must be released in a controlled manner during mitosis. A new study reveals how distinct centromere populations of the cohesin protector Sgo1 are regulated by microtubule attachments, cyclin-dependent kinases, and the kinetochore kinase Bub1. PMID:24112985

  18. Improved prenatal detection of chromosomal anomalies

    DEFF Research Database (Denmark)

    Frøslev-Friis, Christina; Hjort-Pedersen, Karina; Henriques, Carsten U;

    2011-01-01

    Prenatal screening for karyotype anomalies takes place in most European countries. In Denmark, the screening method was changed in 2005. The aim of this study was to study the trends in prevalence and prenatal detection rates of chromosome anomalies and Down syndrome (DS) over a 22-year period....

  19. Precise Centromere Positioning on Chicken Chromosome 3

    NARCIS (Netherlands)

    Zlotina, A.; Galkina, S.A.; Krasikova, A.; Crooijmans, R.P.M.A.; Groenen, M.A.M.; Gaginskaya, E.; Deryusheva, S.

    2010-01-01

    Despite the progress of the chicken (Gallus gallus) genome sequencing project, the centromeric sequences of most macrochromosomes remain unknown. This makes it difficult to determine centromere positions in the genome sequence assembly. Using giant lampbrush chromosomes from growing oocytes, we anal

  20. Y chromosome microdeletions in Turkish infertile men

    Directory of Open Access Journals (Sweden)

    Zamani Ayse

    2006-01-01

    Full Text Available AIMS: To detect the frequency and types of both chromosomal abnormalities and Y chromosome microdeletions in infertile men attending to our university intracytoplasmic sperm injection ICSI/IVF centre and fertile control subjects in our patient population. SETTINGS AND DESIGN: A total of 50 infertile men who were referred to IVF center of Meram medical faculty were selected for the molecular azospermia factor (AZF screening program. MATERIALS AND METHODS: Karyotype analysis and polymerase chain reaction amplification using 15 Y-specific sequence-tagged sites of AZF region were done. RESULTS: The total prevalence of chromosomal abnormalities was found to be 10% (5/50, including 4 patients with numerical and 1 patient with structural abnormalities. Overall, 4 of the 50 patients tested (8% exhibited deletions of the Y chromosome, 3 of them being azospermic and 1 of them oligospermic men. The frequency of the microdeletions in subgroups with azospermia and oligozoospermia was found to be 10.7% (3/29 and 4.7% (1/21 respectively. Microdeletions of AZFb and AZFc regions were detected in all of the 4 patients. Neither AZFa nor AZFd microdeletions were indicated. CONCLUSIONS: Our findings suggest that one must know whether there is a genetic cause for male infertility before patients can be subjected to ISCI or testicular sperm extraction (TESE/ISCI treatment.

  1. Johannsen's criticism of the chromosome theory.

    Science.gov (United States)

    Roll-Hansen, Nils

    2014-01-01

    The genotype theory of Wilhelm Johannsen (1857-1927) was an important contribution to the founding of classical genetics. This theory built on Johannsen's experimental demonstration that hereditary change is discontinuous, not continuous as had been widely assumed. Johannsen is also known for his criticism of traditional Darwinian evolution by natural selection, as well as his criticism of the classical Mendelian chromosome theory of heredity. He has often been seen as one of the anti-Darwinians that caused the "eclipse of Darwinism" in the early 20th century, before it was saved by the Modern Synthesis. This article focuses on Johannsen's criticism of the chromosome theory. He was indeed skeptical of the notion of the chromosomes as the sole carriers of heredity, but he praised the mapping of Mendelian genes on the chromosomes as a major step forward. Johannsen objected that these genes could not account for the whole of heredity, and that the stability of the genotype depended on much more than the stability of Mendelian genes. For Johannsen, the genotype, as a property of the whole organism, was the fundamental and empirically well-established entity. PMID:25345701

  2. Chameleons out of disguise: sex chromosomes revealed

    Czech Academy of Sciences Publication Activity Database

    Rovatsos, M.; Johnson Pokorná, Martina; Altmanová, M.; Kratochvíl, L.

    Brno: Ústav biologie obratlovců AV ČR, 2015 - (Bryja, J.; Řehák, Z.; Zukal, J.). s. 212-212 ISBN 978-80-87189-18-4. [Zoologické dny. 12.02.2015-13.02.2015, Brno] Institutional support: RVO:67985904 Keywords : sex chromosomes Subject RIV: EG - Zoology

  3. The evolution of sex chromosomes in papaya

    Czech Academy of Sciences Publication Activity Database

    Yu, Qingyi; Moore, Paul H.; Alam, Maqsudul; Jiang, Jiming; Paterson, Andrew H.; Vyskot, Boris; Ming, Ray

    San Diego, 2006. W340-W340. [Plant & Animal Genomes XIV Conference. 14.01.2006-18.01.2006, San Diego] R&D Projects: GA ČR(CZ) GA521/06/0056; GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50040507 Keywords : evolution * sex chromosomes * papaya Subject RIV: BO - Biophysics

  4. First trimester ultrasound screening of chromosomal abnormalities

    Directory of Open Access Journals (Sweden)

    Trninić-Pjević Aleksandra

    2007-01-01

    Full Text Available Introduction: A retrocervical subcutaneous collection of fluid at 11-14 weeks of gestation, can be visualized by ultrasound as nuchal translucency (NT. Objective. To examine the distribution of fetal nuchal translucency in low risk population, to determine the detection rate of chromosomal abnormalities in the population of interest based on maternal age and NT measurement. Method. Screening for chromosomal defects, advocated by The Fetal Medicine Foundation (FMF, was performed in 1,341 pregnancies in the period January 2000 - April 2004. Initial risk for chromosomal defects (based on maternal and gestational age and corrected risk, after the NT measurement, were calculated. Complete data were collected from 1,048 patients. Results. Out of 1,048 pregnancies followed, 8 cases of Down’s syndrome were observed, 7 were detected antenatally and 6 out of 7 were detected due to screening that combines maternal age and NT measurement. According to our results, sensitivity of the screening for aneuploidies based on maternal age alone was 12.5% and false positive rate 13.1%, showing that screening based on NT measurement is of great importance. Screening by a combination of maternal age and NT, and selecting a screening-positive group for invasive testing enabled detection of 75% of fetuses with trisomy 21. Conclusion. In screening for chromosomal abnormalities, an approach which combines maternal age and NT is effective and increases the detection rate compared to the use of any single test. .

  5. Ring Chromosome 7 in an Indian Woman

    Science.gov (United States)

    Kaur, Anupam; Dhillon, Sumit; Garg, P. D.; Singh, Jai Rup

    2008-01-01

    Background: Ring chromosome 7 [r(7)] is a rare cytogenetic aberration, with only 16 cases (including 3 females) reported in the literature to date. This is the first reported case of r(7) from India. Method: Clinical and cytogenetic investigations were carried out in an adult female with microcephaly and intellectual disability. Results: Ring…

  6. IAPT/IOPB chromosome data 20

    Czech Academy of Sciences Publication Activity Database

    Altinordu, F.; Šumberová, Kateřina; Ankova, T.; Erst, A. S.; Kuzmin, I. V.; Shaulo, D. N.; Plugatar, Y. V.; Baltisberger, M.; Deldago, L.; Gallego Martín, F.; Rico, E.; Lavia, G. I.; Krapovickas, A.; de los Angeles Martines, M.; Lazaroff, Y.; Solis Neffa, V. G.; Ortiz, A. M.; Sivestri, M. C.; Pavlova, D.; Bani, A.; Polido, C. A.; Moraes, A. P.; Forni-Martins, E. R.; Probatova, N. S.; Kazanovsky, S. G.; Barkalov, V. Y.; Rudyka, E. G.; Shatokhina, A. V.; Krivenko, D. A.; Verkhozina, A. V.; Nechaev, V. A.; Romero-da Cruz, M. V.; Wefferling, K. M.; Owen, H. A.; Hoot, S. B.

    2015-01-01

    Roč. 64, č. 6 (2015), s. 1344-1350. ISSN 0040-0262 R&D Projects: GA ČR GB14-36079G Institutional support: RVO:67985939 Keywords : chromosome count * plant s Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.299, year: 2014

  7. Making the Chromosome-Gene-Protein Connection.

    Science.gov (United States)

    Mulvihill, Charlotte

    1996-01-01

    Presents an exercise that demonstrates the chromosome-gene-protein connection using sickle-cell anemia, a genetic disease with a well-characterized molecular basis. Involves connecting changes in DNA to protein outcomes and tying them into the next generation by meiosis and gamete formation with genetic crosses. Motivates students to integrate…

  8. Chromosome Analysis and Sorting Using Flow Cytometry

    Czech Academy of Sciences Publication Activity Database

    Doležel, Jaroslav; Kubaláková, Marie; Čihalíková, Jarmila; Suchánková, Pavla; Šimková, Hana

    New Jersey : Humana Press, 2011 - (Birchler, J.), s. 221-237 ISBN 978-1-61737-956-7 R&D Projects: GA ČR GA521/07/1573; GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50380511 Keywords : Chromosome analysis * flow cytometry * root meristems Subject RIV: EB - Genetics ; Molecular Biology

  9. The chromosome 9q subtelomere deletion syndrome

    NARCIS (Netherlands)

    Stewart, D.R.; Kleefstra, T.

    2007-01-01

    The chromosome 9q subtelomere deletion syndrome (9qSTDS) is among the first and most common clinically recognizable syndromes to arise from widespread testing by fluorescent in situ hybridization (FISH) of subtelomere deletions. There are about 50 reported cases worldwide. Affected individuals invar

  10. Progressive segregation of the Escherichia coli chromosome

    DEFF Research Database (Denmark)

    Nielsen, Henrik Jørck; Youngren, Brenda; Hansen, Flemming G.;

    2006-01-01

    We have followed the fate of 14 different loci around the Escherichia coli chromosome in living cells at slow growth rate using a highly efficient labelling system and automated measurements. Loci are segregated as they are replicated, but with a marked delay. Most markers segregate in a smooth...

  11. The genomics of plant sex chromosomes

    Czech Academy of Sciences Publication Activity Database

    Vyskot, Boris; Hobza, Roman

    2015-01-01

    Roč. 236, JUL 2015 (2015), s. 126-135. ISSN 0168-9452 R&D Projects: GA ČR(CZ) GBP501/12/G090; GA ČR(CZ) GAP501/12/2220 Institutional support: RVO:68081707 Keywords : Y-CHROMOSOME * SILENE-LATIFOLIA * DIOECIOUS PLANT Subject RIV: BO - Biophysics Impact factor: 3.607, year: 2014

  12. Psychoeducational Implications of Sex Chromosome Anomalies

    Science.gov (United States)

    Wodrich, David L.; Tarbox, Jennifer

    2008-01-01

    Numerous anomalies involving the sex chromosomes (X or Y) have been documented and their impact on development, learning, and behavior studied. This article reviews three of these disorders, Turner syndrome, Klinefelter syndrome, and Lesch-Nyhan disease. Each of these three is associated with one or more selective impairments or behavioral…

  13. A computer simulation of chromosomal instability

    Science.gov (United States)

    Goodwin, E.; Cornforth, M.

    The transformation of a normal cell into a cancerous growth can be described as a process of mutation and selection occurring within the context of clonal expansion. Radiation, in addition to initial DNA damage, induces a persistent and still poorly understood genomic instability process that contributes to the mutational burden. It will be essential to include a quantitative description of this phenomenon in any attempt at science-based risk assessment. Monte Carlo computer simulations are a relatively simple way to model processes that are characterized by an element of randomness. A properly constructed simulation can capture the essence of a phenomenon that, as is often the case in biology, can be extraordinarily complex, and can do so even though the phenomenon itself is incompletely understood. A simple computer simulation of one manifestation of genomic instability known as chromosomal instability will be presented. The model simulates clonal expansion of a single chromosomally unstable cell into a colony. Instability is characterized by a single parameter, the rate of chromosomal rearrangement. With each new chromosome aberration, a unique subclone arises (subclones are defined as having a unique karyotype). The subclone initially has just one cell, but it can expand with cell division if the aberration is not lethal. The computer program automatically keeps track of the number of subclones within the expanding colony, and the number of cells within each subclone. Because chromosome aberrations kill some cells during colony growth, colonies arising from unstable cells tend to be smaller than those arising from stable cells. For any chosen level of instability, the computer program calculates the mean number of cells per colony averaged over many runs. These output should prove useful for investigating how such radiobiological phenomena as slow growth colonies, increased doubling time, and delayed cell death depend on chromosomal instability. Also of

  14. Molecular Characterisation of Structural Chromosomal Abnormalities Associated with Congenital Disorders

    OpenAIRE

    Mansouri, Mahmoud R.

    2006-01-01

    Chromosomal abnormalities are defined as changes in the chromosome structure and fall in one of two categories. The first category is numerical alterations while the second category consists of structural abnormalities. Structural chromosomal abnormalities do not always interrupt genes in order to cause disease. They can also affect gene expression by separating a gene and its promoter element from distant regulatory elements. We have used characterisation of structural chromosomal abnormalit...

  15. The Evolutionary Pathway of X Chromosome Inactivation in Mammals

    OpenAIRE

    Shevchenko, A.; Zakharova, I.; Zakian, S.

    2013-01-01

    X chromosome inactivation is a complex process that occurs in marsupial and eutherian mammals. The process is thought to have arisen during the differentiation of mammalian sex chromosomes to achieve an equal dosage of X chromosome genes in males and females. The differences in the X chromosome inactivation processes in marsupial and eutherian mammals are considered, and the hypotheses on its origin and evolution are discussed in this review.

  16. Characterization of Chenopodium quinoa chromosomes using fish and repetitive sequences

    International Nuclear Information System (INIS)

    Quinoa is one of the underestimated crops, which recently attracted attention. During last few years many efforts were done to save the natural genetic diversity of quinoa cultivars and landraces as well as to obtained new variability by mutagenesis. Plant characteristics based mainly on morphological and molecular markers. Cytogenetic analysis was not used for these studies. Quinoa is an allotetraploid species with 36 small chromosomes. To follow the chromosomal rearrangement cause by spontaneous or induced mutations it is necessary to find cytogenetics markers for chromosomes and chromosome arms. The physical mapping of repetitive DNAs by fluorescent in situ hybridization (FISH) can provide a valuable tool in studies of genome organization and chromosome rearrangements. To characterized quinoa genome several repetitive sequences were used as DNA probes for FISH. Double FISH with rRNA genes as probes allowed to distinguished three pairs of homologue chromosomes. Telomeric repeats hybridisation signals were present only in terminal part of all chromosome arms and no intercalar position was observed. Other tandem repetitive sequence - minisatellite was characteristic for centromeric and pericentromeric region of all quinoa chromosomes although number of repeats differ between loci. It allowed to divided quinoa chromosomes into few groups. Disperse repetitive sequences such as mobile element-like sequences used in this study were detected in all eighteen chromosome pairs. Hybridization signals were characteristics for pericentromeric region of one or both chromosome arms as relatively weak but discrete signals although few chromosomes exhibited signals in intercalary position. Two others repetitive sequences also exhibited disperse organization; however they are not mobile elements. Their FISH signals were spread throughout whole chromosome arms but only one was present on all quinoa chromosomes. The other revealed hybridization signals only on the half of the

  17. On the origin of sex chromosomes from meiotic drive

    OpenAIRE

    Úbeda, Francisco; Patten, Manus M.; Wild, Geoff

    2015-01-01

    Most animals and many plants make use of specialized chromosomes (sex chromosomes) to determine an individual's sex. Best known are the XY and ZW sex-determination systems. Despite having evolved numerous times, sex chromosomes present something of an evolutionary puzzle. At their origin, alleles that dictate development as one sex or the other (primitive sex chromosomes) face a selective penalty, as they will be found more often in the more abundant sex. How is it possible that primitive sex...

  18. Sonographically determined anomalies and outcome in 170 chromosomally abnormal fetuses

    OpenAIRE

    Wladimiroff, Juriy; Bhaggoe, W.; Kristelijn, M. J E; Cohen-Overbeek, Titia; Hollander, Nicolette; Brandenburg, Helen; Los, F.J.

    1995-01-01

    textabstractStructural pathology and outcome were studied in 170 chromosomally abnormal fetuses. Numerical chromosomal abnormalities were established in 158 (93 per cent) cases, of which 110 (71 per cent) represented trisomies, 30 (18 per cent) Turner syndrome, and 18 (11 per cent) triploidy. Structural chromosomal abnormalities were diagnosed in 12 (7 per cent) cases. Gestational age at referral was significantly shorter for pregnancies with Turner syndrome than for the other chromosomal abn...

  19. Balanced Chromosomal Rearrangement in Recurrent Spontaneous Abortions: A Case Report

    OpenAIRE

    Zarifian, Ahmadreza; Farhoodi, Zeinab; Amel, Roya; Mirzaee, Salmeh; Hassanzadeh-Nazarabadi, Mohammad

    2012-01-01

    One of the major causes of spontaneous abortion before the fourth month of pregnancy is chromosomal abnormalities. We report an unusual case of a familial balanced chromosomal translocation in a consanguineous couple who experienced 4 spontaneous abortions. Chromosomal studies were performed on the basis of G-banding technique at high resolution and revealed 46, XX, t (16; 6) (p12; q26) and 46, XY, t (16; 6) (p12; q26) in both partners, which induced such pregnancy complications. Chromosomal ...

  20. Diffusing Polymers in Confined Microdomains and Estimation of Chromosomal Territory Sizes from Chromosome Capture Data

    Science.gov (United States)

    Amitai, A.; Holcman, D.

    2013-06-01

    Is it possible to extract the size and structure of chromosomal territories (confined domain) from the encounter frequencies of chromosomal loci? To answer this question, we estimate the mean time for two monomers located on the same polymer to encounter, which we call the mean first encounter time in a confined microdomain (MFETC). We approximate the confined domain geometry by a harmonic potential well and obtain an asymptotic expression that agrees with Brownian simulations for the MFETC as a function of the polymer length, the radius of the confined domain, and the activation distance radius ɛ at which the two searching monomers meet. We illustrate the present approach using chromosome capture data for the encounter rate distribution of two loci depending on their distances along the DNA. We estimate the domain size that restricts the motion of one of these loci for chromosome II in yeast.