WorldWideScience

Sample records for bacterial adhesion

  1. Bacterial adhesion

    NARCIS (Netherlands)

    Loosdrecht, van M.C.M.

    1988-01-01

    As mentioned in the introduction of this thesis bacterial adhesion has been studied from a variety of (mostly practice oriented) starting points. This has resulted in a range of widely divergent approaches. In order to elucidate general principles in bacterial adhesion phenomena, we felt it

  2. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    reduce or delay bacterial biofilm formation of a range of urinary tract infectious E.coli and Klebsiella isolates. Several other proteinaceous coatings were also found to display anti-adhesive properties, possibly providing a measure for controlling the colonization of implant materials. Several other...... components. These substances may both mediate and stabilize the bacterial biofilm. Finally, several adhesive structures were examined, and a novel physiological biofilm phenotype in E.coli biofilms was characterized, namely cell chain formation. The autotransporter protein, antigen 43, was implicated...

  3. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    Management of bacterial infections is becoming increasingly difficult due to the emergence and increasing prevalence of bacterial pathogens that are resistant to available antibiotics. Conventional antibiotics generally kill bacteria by interfering with vital cellular functions, an approach...... that imposes selection pressure for resistant bacteria. New approaches are urgently needed. Targeting bacterial virulence functions directly is an attractive alternative. An obvious target is bacterial adhesion. Bacterial adhesion to surfaces is the first step in colonization, invasion, and biofilm formation....... As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will become...

  4. Corrosion, haemocompatibility and bacterial adhesion behaviour of ...

    Indian Academy of Sciences (India)

    Bacterial adhesion, haemocompatibility and corrosion behaviour of TiZrN coating were examined in order to evaluate the coating's compatibility for ideal implant. Results revealed that TiZrN coatings exhibited less bacterial attachment against Staphylococcus aureus and Escherichia coli bacteria, negligible platelets ...

  5. Bacterial endotoxin adhesion to different types of orthodontic adhesives

    Directory of Open Access Journals (Sweden)

    Priscilla Coutinho ROMUALDO

    Full Text Available Abstract Bacterial endotoxin (LPS adhesion to orthodontic brackets is a known contributing factor to inflammation of the adjacent gingival tissues. Objective The aim of this study was to assess whether LPS adheres to orthodontic adhesive systems, comparing two commercial brands. Material and Methods Forty specimens were fabricated from Transbond XT and Light Bond composite and bonding agent components (n=10/component, then contaminated by immersion in a bacterial endotoxin solution. Contaminated and non-contaminated acrylic resin samples were used as positive and negative control groups, respectively. LPS quantification was performed by the Limulus Amebocyte Lysate QCL-1000™ test. Data obtained were scored and subjected to the Chi-square test using a significance level of 5%. Results There was endotoxin adhesion to all materials (p0.05. There was no significant difference (p>0.05 among commercial brands. Affinity of endotoxin was significantly greater for the bonding agents (p=0.0025. Conclusions LPS adhered to both orthodontic adhesive systems. Regardless of the brand, the endotoxin had higher affinity for the bonding agents than for the composites. There is no previous study assessing the affinity of LPS for orthodontic adhesive systems. This study revealed that LPS adheres to orthodontic adhesive systems. Therefore, additional care is recommended to orthodontic applications of these materials.

  6. Corrosion, haemocompatibility and bacterial adhesion behaviour of ...

    Indian Academy of Sciences (India)

    TiZrN coating was deposited on 316L stainless steel (SS) by the reactive magnetron co-sputtering technique. Cubic phase of TiZrN with uniform surface morphology was observed by X-ray diffraction and atomic force microscopy. Bacterial adhesion, haemocompatibility and corrosion behaviour of TiZrN coating were ...

  7. Synthesis of LTA zeolite for bacterial adhesion

    Directory of Open Access Journals (Sweden)

    Raja Belaabed

    2016-07-01

    X-ray diffraction, environmental scanning electron microscope and attenuated total reflection-Fourier transform infrared spectroscopy were used to characterize the synthesized zeolite. To evaluate the bacterial adhesion to zeolite LTA the hydrophobicity and surface properties are examined using contact angle measurement.

  8. Bacterial adhesion of porphyromonas gingivalis on provisional fixed prosthetic materials

    Directory of Open Access Journals (Sweden)

    Mustafa Zortuk

    2010-01-01

    Conclusion : The quantity of bacterial adhesion and surface roughness differed among the assessed provisional fixed prosthodontic materials. The light-polymerized provisional material Revotek LC had rougher surface and more bacterial adhesion compared with the others.

  9. Synthesis of LTA zeolite for bacterial adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Belaabed, R.; Eabed, S.; Addaou, A.; Laajab, A.; Rodriguez, M.A.; Lahsini, A.

    2016-07-01

    High affinity and adhesion capacity for Gram-positive bacteria on minerals has been widely studied. In this work the adhesion of bacteria on synthesized zeolite has been studied. The Zeolite Linde Type A (LTA) has been synthesized using hydrothermal route using processing parameters to obtain low cost materials. For adhesion studies Staphylococcus aureus and Bacillus subtilis were used as Gram-positive bacteria, Escherichia coli and Pseudomonas aeruginosa are used as Gram-negative bacteria. X-ray diffraction, environmental scanning electron microscope and attenuated total reflection-Fourier transform infrared spectroscopy were used to characterize the synthesized zeolite. To evaluate the bacterial adhesion to zeolite LTA the hydrophobicity and surface properties are examined using contact angle measurement. (Author)

  10. Vaginal epithelial cells regulate membrane adhesiveness to co-ordinate bacterial adhesion.

    Science.gov (United States)

    Younes, Jessica A; Klappe, Karin; Kok, Jan Willem; Busscher, Henk J; Reid, Gregor; van der Mei, Henny C

    2016-04-01

    Vaginal epithelium is colonized by different bacterial strains and species. The bacterial composition of vaginal biofilms controls the balance between health and disease. Little is known about the relative contribution of the epithelial and bacterial cell surfaces to bacterial adhesion and whether and how adhesion is regulated over cell membrane regions. Here, we show that bacterial adhesion forces with cell membrane regions not located above the nucleus are stronger than with regions above the nucleus both for vaginal pathogens and different commensal and probiotic lactobacillus strains involved in health. Importantly, adhesion force ratios over membrane regions away from and above the nucleus coincided with the ratios between numbers of adhering bacteria over both regions. Bacterial adhesion forces were dramatically decreased by depleting the epithelial cell membrane of cholesterol or sub-membrane cortical actin. Thus, epithelial cells can regulate membrane regions to which bacterial adhesion is discouraged, possibly to protect the nucleus. © 2015 John Wiley & Sons Ltd.

  11. Bacterial adhesion and growth on a polymer brush-coating

    NARCIS (Netherlands)

    Nejadnik, M.R.; Mei, van der H.C.; Norde, W.; Busscher, H.J.

    2008-01-01

    Biomaterials-related infections pose serious problems in implant surgery, despite the development of non-adhesive coatings. Non-adhesive coatings, like polymer brush-coatings, have so far only been investigated with respect to preventing initial bacterial adhesion, but never with respect to effects

  12. Vaginal epithelial cells regulate membrane adhesiveness to co-ordinate bacterial adhesion

    NARCIS (Netherlands)

    Younes, Jessica A.; Klappe, Karin; Kok, Jan Willem; Busscher, Henk J.; Reid, Gregor; van der Mei, Henny C.

    Vaginal epithelium is colonized by different bacterial strains and species. The bacterial composition of vaginal biofilms controls the balance between health and disease. Little is known about the relative contribution of the epithelial and bacterial cell surfaces to bacterial adhesion and whether

  13. Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces

    NARCIS (Netherlands)

    Boks, N.P.; Norde, W.; Meil, H.C.; Busscher, H.J.

    2008-01-01

    Using a parallel-plate flow chamber, the hydrodynamic shear forces to prevent bacterial adhesion (F-prev) and to detach adhering bacteria (F-det) were evaluated for hydrophilic glass, hydrophobic, dimethyldichlorosilane (DDS)-coated glass and six different bacterial strains, in order to test the

  14. Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces

    NARCIS (Netherlands)

    Boks, Niels P.; Norde, Willem; van der Mei, Henny C.; Busscher, Henk J.

    2008-01-01

    Using a parallel-plate flow chamber, the hydrodynamic shear forces to prevent bacterial adhesion (F(prev)) and to detach adhering bacteria (F(det)) were evaluated for hydrophilic glass, hydrophobic, dimethyldichlorosilane (DDS)-coated glass and six different bacterial strains, in order to test the

  15. Probing bacterial adhesion at the single-cell level

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Müller, Torsten; Meyer, Rikke Louise

    Bacteria initiate attachment to surfaces with the aid of different extracellular proteins and polymeric adhesins. To quantitatively analyse the cell-cell and cell-surface interactions provided by bacterial adhesins, it is essential to go down to single cell level where cell-to-cell variation can...... be considered. We have developed a simple and versatile method to make single-cell bacterial probes for measuring single cell adhesion by force spectroscopy using atomic force microscopy (AFM). A single-cell probe was readily made by picking up a bacterial cell from a glass surface by approaching a tipless AFM...... cantilever coated with the commercial cell adhesive CellTakTM. We applied the method to study adhesion of living cells to abiotic surfaces at the single-cell level. Immobilisation of single bacterial cells to the cantilever was stable for several hours, and viability was confirmed by Live/Dead staining...

  16. Bacterial Vaginosis Bacterial and Epithelial Cell Adhesion Molecules

    Directory of Open Access Journals (Sweden)

    Şayeste Demirezen

    2016-05-01

    molecules. The most important adhesion molecules of epithelium are cadherins, fibronectins, Toll like receptors and carbohydrates. In bacteria, pilis, lypopolysaccaharide and biofilm have primary importance. In this review, the adhesion molecules are discussed in detail and their roles in formation of clue cell are clarified.

  17. Bacterial Adhesion of Porphyromonas Gingivalis on Provisional Fixed Prosthetic Materials

    OpenAIRE

    Zortuk, Mustafa; Kesim, Servet; Kaya, Esma; Özbilge, Hatice; Kiliç, Kerem; Çölgeçen, Özlem

    2010-01-01

    Background: When provisional restorations are worn for long term period, the adhesion of bacteria becomes a primary factor in the development of periodontal diseases. The aims of this study were to evaluate the surface roughness and bacterial adhesion of four different provisional fixed prosthodon-tic materials. Methods: Ten cylindrical specimens were prepared from bis-acrylic composites (PreVISION CB and Protemp 3 Garant), a light-polymerized composite (Revotek LC), and a polymethyl metha...

  18. Bacterial Adhesion of Porphyromonas Gingivalis on Provisional Fixed Prosthetic Materials

    Science.gov (United States)

    Zortuk, Mustafa; Kesim, Servet; Kaya, Esma; Özbilge, Hatice; Kiliç, Kerem; Çölgeçen, Özlem

    2010-01-01

    Background: When provisional restorations are worn for long term period, the adhesion of bacteria becomes a primary factor in the development of periodontal diseases. The aims of this study were to evaluate the surface roughness and bacterial adhesion of four different provisional fixed prosthodon-tic materials. Methods: Ten cylindrical specimens were prepared from bis-acrylic composites (PreVISION CB and Protemp 3 Garant), a light-polymerized composite (Revotek LC), and a polymethyl methacrylate-based (Dentalon) provisional fixed prosthodontic materials. Surface roughness was assessed by profilometry. The bacterial adhesion test was applied using Porphyromonas gingivalis (P. gingivalis) and spectro-fluorometric method. Statistical analysis was performed using ANOVA and Dunnett t-tests. Results: All tested materials were significantly rougher than glass (P provisional fixed prosthodontic materials. Conclusion: The quantity of bacterial adhesion and surface roughness differed among the assessed provisional fixed prosthodontic materials. The light-polymerized provisional material Revotek LC had rougher surface and more bacterial adhesion compared with the others. PMID:21448445

  19. Bacterial adhesion and growth on a polymer brush-coating.

    Science.gov (United States)

    Nejadnik, M Reza; van der Mei, Henny C; Norde, Willem; Busscher, Henk J

    2008-10-01

    Biomaterials-related infections pose serious problems in implant surgery, despite the development of non-adhesive coatings. Non-adhesive coatings, like polymer brush-coatings, have so far only been investigated with respect to preventing initial bacterial adhesion, but never with respect to effects on kinetics of bacterial growth. Here, we compare adhesion and 20 h growth of three bacterial strains (Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa) on pristine and brush-coated silicone rubber in a parallel plate flow chamber. Brush-coatings were made using a tri-block copolymer of polyethylene oxide (PEO) and polypropylene oxide (PPO). Brush-coatings prevented adhesion of staphylococci to below 5 x 10(5)cm(-2) after 30 min, which is a 10-fold reduction compared to pristine silicone rubber. Biofilms grew on both brush-coated and pristine silicone rubber, while the viability of biofilms on brush-coatings was higher than on pristine silicone rubber. However, biofilms on brush-coatings developed more slowly and detached almost fully by high fluid shear. Brush-coating remained non-adhesive after S. epidermidis biofilm formation and subsequent removal whereas a part of its functionality was lost after removal of S. aureus biofilms. Adhesion, growth and detachment of P. aeruginosa were not significantly different on brush-coatings as compared with pristine silicone rubber, although here too the viability of biofilms on brush-coatings was higher. We conclude that polymer brush-coatings strongly reduce initial adhesion of staphylococci and delay their biofilm growth. In addition, biofilms on brush-coatings are more viable and easily removed by the application of fluid shear.

  20. Bacterial adhesion on amorphous and crystalline metal oxide coatings

    Energy Technology Data Exchange (ETDEWEB)

    Almaguer-Flores, Argelia [Facultad de Odontología, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico); Silva-Bermudez, Phaedra, E-mail: suriel21@yahoo.com [Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, 14389 México D.F. (Mexico); Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico); Galicia, Rey; Rodil, Sandra E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico)

    2015-12-01

    Several studies have demonstrated the influence of surface properties (surface energy, composition and topography) of biocompatible materials on the adhesion of cells/bacteria on solid substrates; however, few have provided information about the effect of the atomic arrangement or crystallinity. Using magnetron sputtering deposition, we produced amorphous and crystalline TiO{sub 2} and ZrO{sub 2} coatings with controlled micro and nanoscale morphology. The effect of the structure on the physical–chemical surface properties was carefully analyzed. Then, we studied how these parameters affect the adhesion of Escherichia coli and Staphylococcus aureus. Our findings demonstrated that the nano-topography and the surface energy were significantly influenced by the coating structure. Bacterial adhesion at micro-rough (2.6 μm) surfaces was independent of the surface composition and structure, contrary to the observation in sub-micron (0.5 μm) rough surfaces, where the crystalline oxides (TiO{sub 2} > ZrO{sub 2}) surfaces exhibited higher numbers of attached bacteria. Particularly, crystalline TiO{sub 2}, which presented a predominant acidic nature, was more attractive for the adhesion of the negatively charged bacteria. The information provided by this study, where surface modifications are introduced by means of the deposition of amorphous or crystalline oxide coatings, offers a route for the rational design of implant surfaces to control or inhibit bacterial adhesion. - Highlights: • Amorphous (a) and crystalline (c) TiO{sub 2} and ZrO{sub 2} coatings were deposited. • The atomic ordering influences the coatings surface charge and nano-topography. • The atomic ordering modifies the bacterial adhesion for the same surface chemistry. • S. aureus adhesion was lower on a-TiO{sub 2} and a-ZrO{sub 2} than on their c-oxide counterpart. • E. coli adhesion on a-TiO{sub 2} was lower than on the c-TiO{sub 2}.

  1. Electric double layer interactions in bacterial adhesion to surfaces

    NARCIS (Netherlands)

    Poortinga, AT; Norde, W; Busscher, HJ; Bos, R.R.M.

    2002-01-01

    The DLVO (Derjaguin, Landau, Verwey, Overbeek) theory was originally developed to describe interactions between non-biological lyophobic colloids such as polystyrene particles, but is also used to describe bacterial adhesion to surfaces. Despite the differences between the surface of bacteria and

  2. Bisphosphonates enhance bacterial adhesion and biofilm formation on bone hydroxyapatite.

    Science.gov (United States)

    Kos, Marcin; Junka, Adam; Smutnicka, Danuta; Szymczyk, Patrycja; Gluza, Karolina; Bartoszewicz, Marzenna

    2015-07-01

    Because of the suspicion that bisphosphonates enhance bacterial colonization, this study evaluated adhesion and biofilm formation by Streptococcus mutans 25175, Staphylococcus aureus 6538, and Pseudomonas aeruginosa 14454 reference strains on hydroxyapatite coated with clodronate, pamidronate, or zoledronate. Bacterial strains were cultured on bisphosphonate-coated and noncoated hydroxyapatite discs. After incubation, nonadhered bacteria were removed by centrifugation. Biofilm formation was confirmed by scanning electron microscopy. Bacterial colonization was estimated using quantitative cultures compared by means with Kruskal-Wallis and post-hoc Student-Newman-Keuls tests. Modeling of the interactions between bisphosphonates and hydroxyapatite was performed using the Density Functional Theory method. Bacterial colonization of the hydroxyapatite discs was significantly higher for all tested strains in the presence of bisphosphonates vs. Adherence in the presence of pamidronate was higher than with other bisphosphonates. Density Functional Theory analysis showed that the protonated amine group of pamidronate, which are not present in clodronate or zoledronate, forms two additional hydrogen bonds with hydroxyapatite. Moreover, the reactive cationic amino group of pamidronate may attract bacteria by direct electrostatic interaction. Increased bacterial adhesion and biofilm formation can promote osteomyelitis, cause failure of dental implants or bisphosphonate-coated joint prostheses, and complicate bone surgery in patients on bisphosphonates. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  3. Inhibition of Bacterial Adhesion by Subinhibitory Concentrations of Antibiotics

    Directory of Open Access Journals (Sweden)

    Vidya K

    2005-01-01

    Full Text Available Background: Urinary Tract Infections (UTIs due to Escherichia coli is one of the most common diseases encountered in clinical practice. Most common recognised pathogenic factor in E.coli is adhesion. There is accumulating evidence that through subinhibitory concentrations (sub - MICs of many antibiotics do not kill bacteria, they are able to interfere with some important aspects of bacterial cell function. Materials and Methods: A study was conducted to investigate the effect of sub MICs (1/2-1/8 MIC of ciprofloxacin, ceftazidime, gentamicin, ampicillin and co - trimoxazole on E. coli adhesiveness to human vaginal epithelial cells using three strains ATCC 25922, MTCC 729 and U 105. Results: The 1/2 MIC of all the antibiotics tested produced the greatest inhibition of bacterial adhesion. Morphological changes were observed with ciprofloxacin, ceftazidime and ampicillin at 1/2 MIC and to a lesser extent at 1/4 and 1/8 MIC. Co-trimoxazole caused the greatest suppression of adhesion at 1/2 MIC of E. coli strain MTCC 729 when compared with the controls, followed by ceftazidime. Conclusion: These results suggest that co - trimoxazole is the most effective antibiotic in the treatment of urinary tract infections caused by uropathogenic E. coli.

  4. Bacterial adhesion to orthopaedic implant materials and a novel oxygen plasma modified PEEK surface

    NARCIS (Netherlands)

    Rochford, E. T. J.; Poulsson, A. H. C.; Salavarrieta Varela, J.; Lezuo, P.; Richards, R. G.; Moriarty, T. F.

    2014-01-01

    Despite extensive use of polyetheretherketone (PEEK) in biomedical applications, information about bacterial adhesion to this biomaterial is limited. This study investigated Staphylococcus aureus and Staphylococcus epidermidis adhesion to injection moulded and machined PEEK OPTIMA (R) using a

  5. Control of bacterial adhesion and growth on honeycomb-like patterned surfaces.

    Science.gov (United States)

    Yang, Meng; Ding, Yonghui; Ge, Xiang; Leng, Yang

    2015-11-01

    It is a great challenge to construct a persistent bacteria-resistant surface even though it has been demonstrated that several surface features might be used to control bacterial behavior, including surface topography. In this study, we develop micro-scale honeycomb-like patterns of different sizes (0.5-10 μm) as well as a flat area as the control on a single platform to evaluate the bacterial adhesion and growth. Bacteria strains, Escherichia coli and Staphylococcus aureus with two distinct shapes (rod and sphere) are cultured on the platforms, with the patterned surface-up and surface-down in the culture medium. The results demonstrate that the 1 μm patterns remarkably reduce bacterial adhesion and growth while suppressing bacterial colonization when compared to the flat surface. The selective adhesion of the bacterial cells on the patterns reveals that the bacterial adhesion is cooperatively mediated by maximizing the cell-substrate contact area and minimizing the cell deformation, from a thermodynamic point of view. Moreover, study of bacterial behaviors on the surface-up vs. surface-down samples shows that gravity does not apparently affect the spatial distribution of the adherent cells although it indeed facilitates bacterial adhesion. Furthermore, the experimental results suggest that two major factors, i.e. the availability of energetically favorable adhesion sites and the physical confinements, contribute to the anti-bacterial nature of the honeycomb-like patterns. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Bacterial adhesion to host tissues : mechanisms and consequences

    National Research Council Canada - National Science Library

    Wilson, Michael, 1947

    2002-01-01

    "This book is about the adhesion of bacteria to their human hosts. Although adhesion is essential for maintaining members of the normal microflora in/on their host, it is also the crucial first stage in any infectious disease...

  7. Enhancement and suppression effects of a nanopatterned surface on bacterial adhesion

    Science.gov (United States)

    Li, Xinlei; Chen, Tongsheng

    2016-05-01

    We present a quantitative thermodynamic model to elucidate the effects of a nanopatterned surface on bacterial adhesion. Based on the established model, we studied the equilibrium state of rodlike bacterial cells adhered to a nanopillar-patterned surface. Theoretical analyses showed the physical origin of bacterial adhesion on a nanopatterned surface is actually determined by the balance between adhesion energy and deformation energy of the cell membrane. We found that there are enhancement effects on bacterial adhesion to the patterned surface with large radius and small spacing of nanopillars, but suppression effects for nanopillars with a radius smaller than a critical value. In addition, according to our model, a phase diagram has been constructed which can clarify the interrelated effects of the radius and the spacing of nanopillars. The broad agreement with experimental observations implies that these studies would provide useful guidance to the design of nanopatterned surfaces for biomedical applications.

  8. Probing living bacterial adhesion by single cell force spectroscopy using atomic force microscopy

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Ogaki, Ryosuke; Regina, Viduthalai R.

    be considered. We have therefore developed a simple and versatile method to make single-cell bacterial probes for measuring single cell adhesion with atomic force microscopy (AFM).[1] A single-cell probe was readily made by picking up a bacterial cell from a glass surface using a tipless AFM cantilever coated...... with a commercial cell adhesive CellTakTM. The method was applied to four different bacterial strains, and single-cell adhesion was measured on three surfaces (fresh glass, hydrophilic glass, mica). Attachment to the cantilever was stable during the 2 h of AFM force measurements, and viability was confirmed by Live....../Dead fluorescence staining at the end of each experiment. The adhesion force and final rupture length were dependent on bacterial strains, surfaces properties, and time of contact. The single-cell probe offers control of the cell immobilization, thus holds advantages over the commonly used multi-cell probes where...

  9. Bacterial binding to extracellular proteins - in vitro adhesion

    DEFF Research Database (Denmark)

    Schou, C.; Fiehn, N.-E.

    1999-01-01

    Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis......Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis...

  10. Bacterial Adhesion Forces to Ag-Impregnated Contact Lens Cases and Transmission to Contact Lenses

    NARCIS (Netherlands)

    Qu, Wenwen; Busscher, Henk J.; van der Mei, Henny C.; Hooymans, Johanna M. M.

    Purpose: To measure adhesion forces of Pseudomonas aeruginosa, Staphylococcus aureus, and Serratia marcescens to a rigid contact lens (CL), standard polypropylene, and Ag-impregnated lens cases using atomic force microscopy and determine bacterial transmission from lens case to CL. Methods: Adhesion

  11. Atomic force microscopy studies of bioprocess engineering surfaces - imaging, interactions and mechanical properties mediating bacterial adhesion.

    Science.gov (United States)

    James, Sean A; Hilal, Nidal; Wright, Chris J

    2017-07-01

    The detrimental effect of bacterial biofilms on process engineering surfaces is well documented. Thus, interest in the early stages of bacterial biofilm formation; in particular bacterial adhesion and the production of anti-fouling coatings has grown exponentially as a field. During this time, Atomic force microscopy (AFM) has emerged as a critical tool for the evaluation of bacterial adhesion. Due to its versatility AFM offers not only insight into the topographical landscape and mechanical properties of the engineering surfaces, but elucidates, through direct quantification the topographical and biomechnical properties of the foulants The aim of this review is to collate the current research on bacterial adhesion, both theoretical and practical, and outline how AFM as a technique is uniquely equipped to provide further insight into the nanoscale world at the bioprocess engineering surface. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Probing living bacterial adhesion by single cell force spectroscopy using atomic force microscopy

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Ogaki, Ryosuke; Regina, Viduthalai R.

    Bacteria initiate attachment to the surfaces with the aid of different extracellular polymers. To quantitatively study how these polymers mediate bacterial adhesion and possibly their interactions, it is essential to go down to single cell level, with in mind that cell-to-cell variation should...... with a commercial cell adhesive CellTakTM. The method was applied to four different bacterial strains, and single-cell adhesion was measured on three surfaces (fresh glass, hydrophilic glass, mica). Attachment to the cantilever was stable during the 2 h of AFM force measurements, and viability was confirmed by Live...

  13. Bacterial adhesion to urethral catheters: role of coating materials and immersion in antibiotic solution.

    Science.gov (United States)

    Cormio, L; La Forgia, P; La Forgia, D; Siitonen, A; Ruutu, M

    2001-09-01

    To determine whether new coating materials (silver and hydrogel) or immersion in antibiotic solution may reduce or prevent bacterial adhesion to urethral catheters. Precut segment of Teflon-, silver- and hydrogel-coated urethral catheters were incubated with two uropathogenic bacterial strains with and without previous immersion in antibiotic solution. Tobramycin, ceftriaxone and ciprofloxacin solutions were used as these antibiotics are commonly administered for the prophylaxis and treatment of urinary tract infection (UTI), especially in hospitals. Microbiological analysis showed that the new coating materials (silver and hydrogel) did not reduce bacterial adhesion to urethral catheters, whereas immersion in antibiotic solution yielded a statistically significant (ptobramycin. Immersion in a suitable antibiotic solution may significantly reduce bacterial adhesion to urethral catheters and consequently reduce the risk of UTI in connection with these devices. Although experimental, these findings may be of clinical relevance and provide grounds for further studies in vivo.

  14. Bacterial filamentation accelerates colonization of adhesive spots embedded in biopassive surfaces

    International Nuclear Information System (INIS)

    Möller, Jens; Emge, Philippe; Vizcarra, Ima Avalos; Kollmannsberger, Philip; Vogel, Viola

    2013-01-01

    Sessile bacteria adhere to engineered surfaces and host tissues and pose a substantial clinical and economical risk when growing into biofilms. Most engineered and biological interfaces are of chemically heterogeneous nature and provide adhesive islands for bacterial attachment and growth. To mimic either defects in a surface coating of biomedical implants or heterogeneities within mucosal layers (Peyer's patches), we embedded micrometre-sized adhesive islands in a poly(ethylene glycol) biopassive background. We show experimentally and computationally that filamentation of Escherichia coli can significantly accelerate the bacterial surface colonization under physiological flow conditions. Filamentation can thus provide an advantage to a bacterial population to bridge non-adhesive distances exceeding 5 μm. Bacterial filamentation, caused by blocking of bacterial division, is common among bacterial species and can be triggered by environmental conditions or antibiotic treatment. While great awareness exists that the build-up of antibiotic resistance serves as intrinsic survival strategy, we show here that antibiotic treatment can actually promote surface colonization by triggering filamentation, which in turn prevents daughter cells from being washed away. Our combined microfabrication and computational approaches provide quantitative insights into mechanisms that enable biofouling of biopassive surfaces with embedded adhesive spots, even for spot distances that are multiples of the bacterial length. (paper)

  15. Bacterial filamentation accelerates colonization of adhesive spots embedded in biopassive surfaces

    Science.gov (United States)

    Möller, Jens; Emge, Philippe; Avalos Vizcarra, Ima; Kollmannsberger, Philip; Vogel, Viola

    2013-12-01

    Sessile bacteria adhere to engineered surfaces and host tissues and pose a substantial clinical and economical risk when growing into biofilms. Most engineered and biological interfaces are of chemically heterogeneous nature and provide adhesive islands for bacterial attachment and growth. To mimic either defects in a surface coating of biomedical implants or heterogeneities within mucosal layers (Peyer's patches), we embedded micrometre-sized adhesive islands in a poly(ethylene glycol) biopassive background. We show experimentally and computationally that filamentation of Escherichia coli can significantly accelerate the bacterial surface colonization under physiological flow conditions. Filamentation can thus provide an advantage to a bacterial population to bridge non-adhesive distances exceeding 5 μm. Bacterial filamentation, caused by blocking of bacterial division, is common among bacterial species and can be triggered by environmental conditions or antibiotic treatment. While great awareness exists that the build-up of antibiotic resistance serves as intrinsic survival strategy, we show here that antibiotic treatment can actually promote surface colonization by triggering filamentation, which in turn prevents daughter cells from being washed away. Our combined microfabrication and computational approaches provide quantitative insights into mechanisms that enable biofouling of biopassive surfaces with embedded adhesive spots, even for spot distances that are multiples of the bacterial length.

  16. A short-time scale colloidal system reveals early bacterial adhesion dynamics.

    Directory of Open Access Journals (Sweden)

    Christophe Beloin

    2008-07-01

    Full Text Available The development of bacteria on abiotic surfaces has important public health and sanitary consequences. However, despite several decades of study of bacterial adhesion to inert surfaces, the biophysical mechanisms governing this process remain poorly understood, due, in particular, to the lack of methodologies covering the appropriate time scale. Using micrometric colloidal surface particles and flow cytometry analysis, we developed a rapid multiparametric approach to studying early events in adhesion of the bacterium Escherichia coli. This approach simultaneously describes the kinetics and amplitude of early steps in adhesion, changes in physicochemical surface properties within the first few seconds of adhesion, and the self-association state of attached and free-floating cells. Examination of the role of three well-characterized E. coli surface adhesion factors upon attachment to colloidal surfaces--curli fimbriae, F-conjugative pilus, and Ag43 adhesin--showed clear-cut differences in the very initial phases of surface colonization for cell-bearing surface structures, all known to promote biofilm development. Our multiparametric analysis revealed a correlation in the adhesion phase with cell-to-cell aggregation properties and demonstrated that this phenomenon amplified surface colonization once initial cell-surface attachment was achieved. Monitoring of real-time physico-chemical particle surface properties showed that surface-active molecules of bacterial origin quickly modified surface properties, providing new insight into the intricate relations connecting abiotic surface physicochemical properties and bacterial adhesion. Hence, the biophysical analytical method described here provides a new and relevant approach to quantitatively and kinetically investigating bacterial adhesion and biofilm development.

  17. Electrochemical determination of the onset of bacterial surface adhesion

    Science.gov (United States)

    Jones, Akhenaton-Andrew; Buie, Cullen

    2017-11-01

    Microbial biofouling causes economic loss through corrosion and drag losses on ship hulls, and in oil and food distribution. Microorganisms interacting with surfaces under these open channel flows contend with high shear rates and active transport to the surface. The metallic surfaces they interact with carry charge at various potentials that are little addressed in literature. In this study we demonstrate that the Levich curve, chronoamperometry, and cyclic voltammetry in a rotating disk electrode are ideal for studying adhesion of microbes to metallic surfaces. We study the adhesion of Escherichia coli, Bacillus subtilis, and 1 μm silica microspheres over a 0.15 - 37.33 dynes .cm-2 or shear rates of 14.73 - 3727.28 s-1 range. Our results agree with literature on red blood cells in rotating disk electrodes, deposition rates from optical systems, and show that we can quantify changes in active electrode area by bacteria adhesion and protein secretion. These methods measure changes in area instead of mass, are more accurate than fluorescence microscopy, and apply to a larger range of problems than on-chip flow devices.

  18. Absolute Quantitation of Bacterial Biofilm Adhesion and Viscoelasticity by Microbead Force Spectroscopy

    Science.gov (United States)

    Lau, Peter C.Y.; Dutcher, John R.; Beveridge, Terry J.; Lam, Joseph S.

    2009-01-01

    Bacterial biofilms are the most prevalent mode of bacterial growth in nature. Adhesive and viscoelastic properties of bacteria play important roles at different stages of biofilm development. Following irreversible attachment of bacterial cells onto a surface, a biofilm can grow in which its matrix viscoelasticity helps to maintain structural integrity, determine stress resistance, and control ease of dispersion. In this study, a novel application of force spectroscopy was developed to characterize the surface adhesion and viscoelasticity of bacterial cells in biofilms. By performing microbead force spectroscopy with a closed-loop atomic force microscope, we accurately quantified these properties over a defined contact area. Using the model gram-negative bacterium Pseudomonas aeruginosa, we observed that the adhesive and viscoelastic properties of an isogenic lipopolysaccharide mutant wapR biofilm were significantly different from those measured for the wild-type strain PAO1 biofilm. Moreover, biofilm maturation in either strain also led to prominent changes in adhesion and viscoelasticity. To minimize variability in force measurements resulting from experimental parameter changes, we developed standardized conditions for microbead force spectroscopy to enable meaningful comparison of data obtained in different experiments. Force plots measured under standard conditions showed that the adhesive pressures of PAO1 and wapR early biofilms were 34 ± 15 Pa and 332 ± 47 Pa, respectively, whereas those of PAO1 and wapR mature biofilms were 19 ± 7 Pa and 80 ± 22 Pa, respectively. Fitting of creep data to a Voigt Standard Linear Solid viscoelasticity model revealed that the instantaneous and delayed elastic moduli in P. aeruginosa were drastically reduced by lipopolysaccharide deficiency and biofilm maturation, whereas viscosity was decreased only for biofilm maturation. In conclusion, we have introduced a direct biophysical method for simultaneously quantifying

  19. Mechanical and Anti-bacterial Properties of Dental Adhesive Containing Diamond Nanoparticles

    Directory of Open Access Journals (Sweden)

    zeinab Ebadi

    2012-12-01

    Full Text Available The effect of nanoparticle diamond incorporated in an experimental dental adhesive formulation is valuated by examining the mechanical properties and shear bond strength of the system. Diamond nanoparticles were incorporated into the dentin adhesive system in different concentrations of 0, 0.05, 0.1, 0.2, 0.5, and 1.0 weight percentages. The suspensions were ultrasonicated to facilitate the nano-particle dispersion in an adhesive solution containing ethanol, bis-GMA, UDMA, TMPTMA, HEMA  and photo-initiator  system. Diametral  tensile  strength, fexural strength, fexural modulus, depth of cure and microshear bond strength of the adhesive system were measured. The adhesive-dentin interface was then observed by scanning electron microscopy. The results were analyzed using one-way ANOVA at a signifcant level of P>0.05. No signifcant difference was observed between the diametral tensile strength of the adhesive. At nanoparticle content level of 0.1% (by wt, however, 85% increase in fexural strength and 13% enhancement in fexural modulus were observed. Microshear bond strength test revealed 70% and 79% improvements of adhesion force in systems containing 0.1% and 0.2% nanoparticles, respectively. Although the neat diamond nanoparticles revealed antibacterial activity, the adhesive containing different percentages of the nano particles did not show any antibacterial activities when tested against, Staphilococcus Aureus, Staphilococcus Streptococcus, Staphilococcus ephidermidis, Saprophyticus, Enterococcus faecalis bacteries.

  20. The influence of surface modification on bacterial adhesion to titanium-based substrates.

    Science.gov (United States)

    Lorenzetti, Martina; Dogša, Iztok; Stošicki, Tjaša; Stopar, David; Kalin, Mitjan; Kobe, Spomenka; Novak, Saša

    2015-01-28

    This study examines bacterial adhesion on titanium-substrates used for bone implants. Adhesion is the most critical phase of bacterial colonization on medical devices. The surface of titanium was modified by hydrothermal treatment (HT) to synthesize nanostructured TiO2-anatase coatings, which were previously proven to improve corrosion resistance, affect the plasma protein adsorption, and enhance osteogenesis. The affinity of the anatase coatings toward bacterial attachment was studied by using a green fluorescent protein-expressing Escherichia coli (gfp-E. coli) strain in connection with surface photoactivation by UV irradiation. We also analyzed the effects of surface topography, roughness, charge, and wettability. The results suggested the dominant effects of the macroscopic surface topography, as well as microasperity at the surface roughness scale, which were produced during titanium machining, HT treatment, or both. Macroscopic grooves provided a preferential site for bacteria deposit within the valleys, while the microscopic roughness of the valleys determined the actual interaction surface between bacterium and substrate, resulting in an "interlocking" effect and undesired high bacterial adhesion on nontreated titanium. In the case of TiO2-coated samples, the nanocrystals reduced the width between the microasperities and thus added nanoroughness features. These factors decreased the contact area between the bacterium and the coating, with consequent lower bacterial adhesion (up to 50% less) in comparison to the nontreated titanium. On the other hand, the pronounced hydrophilicity of one of the HT-coated discs after pre-irradiation seemed to enhance the attachment of bacteria, although the increase was not statistically significant (p > 0.05). This observation may be explained by the acquired similar degree of wetting between gfp-E. coli and the coating. No correlation was found between the bacterial adhesion and the ζ-values of the samples in PBS, so the

  1. Reversibility of bacterial adhesion at an electrode surface

    NARCIS (Netherlands)

    Poortinga, AT; Busscher, HJ; Bos, R.R.M.

    2001-01-01

    Deposition of four bacterial strains from a 1 mM potassium phosphate buffer (pH 7) to an indium tin oxide (ITO) electrode surface has been studied in a parallel plate flow chamber at three electrode potentials (-0.2, 0.1, and 0.5 V). Capacitance measurements demonstrated that the ITO surface was

  2. Electric double layer interactions in bacterial adhesion and detachment

    NARCIS (Netherlands)

    Poortinga, Albert Thijs

    2001-01-01

    Samenvatting: The use of biomaterial implants can be seriously hindered by the occurence of bacterial infections. Bacteria may adhere to implants, subsequently grow on the surface of the implant and excrete several metabolic products, therewith constituting a commnity of bacteria that is called a

  3. Surface thermodynamics and adhesion forces governing bacterial transmission in contact lens related microbial keratitis

    NARCIS (Netherlands)

    Qu, Wenwen; Busscher, Henk J.; Hooymans, Johanna M. M.; van der Mei, Henny C.

    2011-01-01

    Contact lens induced microbial keratitis results from bacterial transmission from one surface to another. We investigated the adhesion forces of Pseudomonas aeruginosa, Staphylococci and Serratia to different contact lenses, lens cases and corneal surfaces using AFM, and applied a Weibull analysis

  4. Vizantin inhibits bacterial adhesion without affecting bacterial growth and causes Streptococcus mutans biofilm to detach by altering its internal architecture.

    Science.gov (United States)

    Takenaka, Shoji; Oda, Masataka; Domon, Hisanori; Ohsumi, Tatsuya; Suzuki, Yuki; Ohshima, Hayato; Yamamoto, Hirofumi; Terao, Yutaka; Noiri, Yuichiro

    2016-11-11

    An ideal antibiofilm strategy is to control both in the quality and quantity of biofilm while maintaining the benefits derived from resident microflora. Vizantin, a recently developed immunostimulating compound, has also been found to have antibiofilm property. This study evaluated the influence on biofilm formation of Streptococcus mutans in the presence of sulfated vizantin and biofilm development following bacterial adhesion on a hydroxyapatite disc coated with sulfated vizantin. Supplementation with sulfated vizantin up to 50 μM did not affect either bacterial growth or biofilm formation, whereas 50 μM sulfated vizantin caused the biofilm to readily detach from the surface. Sulfated vizantin at the concentration of 50 μM upregulated the expression of the gtfB and gtfC genes, but downregulated the expression of the gtfD gene, suggesting altered architecture in the biofilm. Biofilm development on the surface coated with sulfated vizantin was inhibited depending on the concentration, suggesting prevention from bacterial adhesion. Among eight genes related to bacterial adherence in S. mutans, expression of gtfB and gtfC was significantly upregulated, whereas the expression of gtfD, GbpA and GbpC was downregulated according to the concentration of vizantin, especially with 50 μM vizantin by 0.8-, 0.4-, and 0.4-fold, respectively. These findings suggest that sulfated vizantin may cause structural degradation as a result of changing gene regulation related to bacterial adhesion and glucan production of S. mutans. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Microcoupon Assay Of Adhesion And Growth Of Bacterial Films

    Science.gov (United States)

    Pierson, Duane L.; Koenig, David W.

    1994-01-01

    Microbiological assay technique facilitates determination of some characteristics of sessile bacteria like those that attach to and coat interior walls of water-purification systems. Biofilms cause sickness and interfere with purification process. Technique enables direct measurement of rate of attachment of bacterial cells, their metabolism, and effects of chemicals on them. Used to quantify effects of both bactericides and growth-stimulating agents and in place of older standard plate-count and tube-dilution techniques.

  6. Quantitative characterization of the influence of the nanoscale morphology of nanostructured surfaces on bacterial adhesion and biofilm formation.

    Directory of Open Access Journals (Sweden)

    Ajay Vikram Singh

    Full Text Available Bacterial infection of implants and prosthetic devices is one of the most common causes of implant failure. The nanostructured surface of biocompatible materials strongly influences the adhesion and proliferation of mammalian cells on solid substrates. The observation of this phenomenon has led to an increased effort to develop new strategies to prevent bacterial adhesion and biofilm formation, primarily through nanoengineering the topology of the materials used in implantable devices. While several studies have demonstrated the influence of nanoscale surface morphology on prokaryotic cell attachment, none have provided a quantitative understanding of this phenomenon. Using supersonic cluster beam deposition, we produced nanostructured titania thin films with controlled and reproducible nanoscale morphology respectively. We characterized the surface morphology; composition and wettability by means of atomic force microscopy, X-ray photoemission spectroscopy and contact angle measurements. We studied how protein adsorption is influenced by the physico-chemical surface parameters. Lastly, we characterized Escherichia coli and Staphylococcus aureus adhesion on nanostructured titania surfaces. Our results show that the increase in surface pore aspect ratio and volume, related to the increase of surface roughness, improves protein adsorption, which in turn downplays bacterial adhesion and biofilm formation. As roughness increases up to about 20 nm, bacterial adhesion and biofilm formation are enhanced; the further increase of roughness causes a significant decrease of bacterial adhesion and inhibits biofilm formation. We interpret the observed trend in bacterial adhesion as the combined effect of passivation and flattening effects induced by morphology-dependent protein adsorption. Our findings demonstrate that bacterial adhesion and biofilm formation on nanostructured titanium oxide surfaces are significantly influenced by nanoscale morphological

  7. Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions.

    Science.gov (United States)

    Ribeiro, Marta; Monteiro, Fernando J; Ferraz, Maria P

    2012-01-01

    Staphylococcus comprises up to two-thirds of all pathogens in orthopedic implant infections and they are the principal causative agents of two major types of infection affecting bone: septic arthritis and osteomyelitis, which involve the inflammatory destruction of joint and bone. Bacterial adhesion is the first and most important step in implant infection. It is a complex process influenced by environmental factors, bacterial properties, material surface properties and by the presence of serum or tissue proteins. Properties of the substrate, such as chemical composition of the material, surface charge, hydrophobicity, surface roughness and the presence of specific proteins at the surface, are all thought to be important in the initial cell attachment process. The biofilm mode of growth of infecting bacteria on an implant surface protects the organisms from the host immune system and antibiotic therapy. The research for novel therapeutic strategies is incited by the emergence of antibiotic-resistant bacteria. This work will provide an overview of the mechanisms and factors involved in bacterial adhesion, the techniques that are currently being used studying bacterial-material interactions as well as provide insight into future directions in the field.

  8. [The change of bacterial adhesion during deposition nitrogen-diamond like carbon coating on pure titanium].

    Science.gov (United States)

    Yin, Lu; Xiao, Yun

    2011-10-01

    The aim of this study was to observe the change of bacterial adhesion on pure titanium coated with nitrogen-diamond like carbon (N-DLC) films and to guide the clinical application. N-DLC was deposited on titanium using ion plating machine, TiN film, anodic oxide film and non-deposition were used as control, then made specimens adhering on the surface of resin denture base for 6 months. The adhesion of Saccharomyces albicans on the titanium surface was observed using scanning electron microscope, and the roughness was tested by roughness detector. The number of Saccharomyces albicans adhering on diamond-like carbon film was significantly less than on the other groups (P DLC film was less than other group (P coated with N-DLC film reduced the adhesion of Saccharomyces albicans after clinical application, thereby reduced the risk of denture stomatitis.

  9. Quantifying bacterial adhesion on antifouling polymer brushes via single-cell force spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Rodriguez-Emmenegger, Cesar; Janel, S.; de los Santos Pereira, Andres; Bruns, M.; Lafont, F.

    2015-01-01

    Roč. 6, č. 31 (2015), s. 5740-5751 ISSN 1759-9954 R&D Projects: GA ČR(CZ) GJ15-09368Y; GA MŠk(CZ) ED1.1.00/02.0109 Grant - others:OPPK(XE) CZ.2.16/3.1.00/21545 Program:OPPK Institutional support: RVO:61389013 Keywords : antifouling polymer brushes * single-cell force spectroscopy * bacterial adhesion Subject RIV: BO - Biophysics Impact factor: 5.687, year: 2015

  10. Bacterial Adhesion and Surface Roughness for Different Clinical Techniques for Acrylic Polymethyl Methacrylate.

    Science.gov (United States)

    Dantas, Lucas Costa de Medeiros; da Silva-Neto, João Paulo; Dantas, Talita Souza; Naves, Lucas Zago; das Neves, Flávio Domingues; da Mota, Adérito Soares

    2016-01-01

    This study sought to assess the effect of different surface finishing and polishing protocols on the surface roughness and bacterial adhesion (S. sanguinis) to polymethyl methacrylates (PMMA). Fifty specimens were divided into 5 groups (n = 10) according to their fabrication method and surface finishing protocol: LP (3 : 1 ratio and laboratory polishing), NF (Nealon technique and finishing), NP (Nealon technique and manual polishing), MF (3 : 1 ratio and manual finishing), and MP (3 : 1 ratio and manual polishing). For each group, five specimens were submitted to bacterial adhesion tests and analyzed by scanning electron microscopy (SEM). Two additional specimens were subjected to surface topography analysis by SEM and the remaining three specimens were subjected to surface roughness measurements. Data were compared by one-way ANOVA. The mean bacterial counts were as follows: NF, 19.6 ± 3.05; MP, 5.36 ± 2.08; NP, 4.96 ± 1.93; MF, 7.36 ± 2.45; and LP, 1.56 ± 0.62 (CFU). The mean surface roughness values were as follows: NF, 3.23 ± 0.15; MP, 0.52 ± 0.05; NP, 0.60 ± 0.08; MF, 2.69 ± 0.12; and LP, 0.07 ± 0.02 (μm). A reduction in the surface roughness was observed to be directly related to a decrease in bacterial adhesion. It was verified that the laboratory processing of PMMA might decrease the surface roughness and consequently the adhesion of S. sanguinis to this material.

  11. Does penile tourniquet application alter bacterial adhesion to rat urethral cells: an in vitro study.

    Science.gov (United States)

    Boybeyi-Turer, Ozlem; Kacmaz, Birgul; Arat, Esra; Atasoy, Pınar; Kisa, Ucler; Gunal, Yasemin Dere; Aslan, Mustafa Kemal; Soyer, Tutku

    2018-04-01

    To investigate the effects of penile tourniquet (PT) application on bacterial adhesion to urothelium. Fifty-six rats were allocated into control group (CG), sham group (SG), PT group (PTG). No intervention was applied in CG. A 5mm-length urethral repair was performed in SG and PTG. In PTG, a 10-min duration of PT was applied during the procedure and the tissue oxygenation monitor was used to adjust the same degree of ischemia in all subjects. Samples were examined for wound healing parameters and tissue levels of inflammatory markers, eNOS, e-selectin, and ICAM-1antibodies. The adhesion of Escherichia coli to urothelium was investigated with in vitro adhesion assay. Inflammation was higher and wound healing was worse in SG than CG and in PTG in comparison to CG and SG (pcaused endothelial corruption and prevented cell proliferation in cell culture. The PT application does not improve wound healing and increases bacterial adhesion molecules in penile tissue. The in vitro assays showed that PT causes severe endothelial damage and inhibits endothelial cell proliferation. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Effect of different finishing techniques for restorative materials on surface roughness and bacterial adhesion.

    Science.gov (United States)

    Aykent, Filiz; Yondem, Isa; Ozyesil, Atilla G; Gunal, Solen K; Avunduk, Mustafa C; Ozkan, Semiha

    2010-04-01

    The formation of biofilm and bacterial accumulation on dental materials may lead to the development of gingival inflammation and secondary caries. The purpose of this study was to examine the effect of different surface finishing and polishing methods on surface roughness and the adhesion of S. mutans bacteria to 2 new-generation indirect composite resins, 1 direct composite resin, and 1 ceramic material. Forty specimens (10 x 10 x 2 mm) of each material, indirect composite resins (SR Adoro, Estenia), direct composite resin (Tetric), and a ceramic material (VITABLOCS Mark II), were fabricated. Specimens were divided into 4 groups (n=10) that were treated with 1 of the following 4 surface finishing techniques: diamond rotary cutting instrument, sandpaper discs (Sof-Lex), silicone-carbide rubber points (Shofu), or a felt wheel with diamond paste. Surface roughness was measured with a profilometer. Test specimens were covered with artificial saliva and mucin to produce pellicle. Bacterial suspension (10(9) CFU/ml) was then added to the pellicle-coated specimens, and bacterial adhesion was determined using a confocal laser microscope and image analyzing program. Data were analyzed with 2-way ANOVA, followed by Tukey HSD test, Pearson correlation, and regression analysis (alpha=.05). The highest surface roughness values were recorded in SR Adoro and diamond rotary cutting instrument groups. The lowest vital S. mutans adhesion was seen in the ceramic group and in SR Adoro indirect composite resin (Padhesion to indirect composite resin materials differed from that to ceramic material after surface treatments. A positive correlation was observed between surface roughness and the vital S. mutans adhesion. Copyright 2010 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  13. Influence of surface-energy components of Ni-P-TiO2-PTFE nanocomposite coatings on bacterial adhesion.

    Science.gov (United States)

    Liu, Chen; Zhao, Qi

    2011-08-02

    The influence of total surface energy on bacterial adhesion has been investigated intensively with the frequent conclusion that bacterial adhesion is less on low-energy surfaces. However, there are also a number of contrary findings that high-energy surfaces have a smaller biofouling tendency. Recently, it was found that the CQ ratio, which is defined as the ratio of Lifshitz-van der Waals (LW) apolar to electron donor surface-energy components of substrates, has a strong correlation to bacterial adhesion. However, the electron donor surface-energy components of substrates varied over only a very limited range. In this article, a series of Ni-P-TiO(2)-PTFE nanocomposite coatings with wide range of surface-energy components were prepared using an electroless plating technique. The bacterial adhesion and removal on the coatings were evaluated with different bacteria under both static and flow conditions. The experimental results demonstrated that there was a strong correlation between bacterial attachment (or removal) and the CQ ratio. The coatings with the lowest CQ ratio had the lowest bacterial adhesion or the highest bacterial removal, which was explained using the extented DLVO theory.

  14. Bacterial adhesion on direct and indirect dental restorative composite resins: An in vitro study on a natural biofilm.

    Science.gov (United States)

    Derchi, Giacomo; Vano, Michele; Barone, Antonio; Covani, Ugo; Diaspro, Alberto; Salerno, Marco

    2017-05-01

    Both direct and indirect techniques are used for dental restorations. Which technique should be preferred or whether they are equivalent with respect to bacterial adhesion is unclear. The purpose of this in vitro study was to determine the affinity of bacterial biofilm to dental restorative composite resins placed directly and indirectly. Five direct composite resins for restorations (Venus Diamond, Adonis, Optifil, Enamel Plus HRi, Clearfil Majesty Esthetic) and 3 indirect composite resins (Gradia, Estenia, Signum) were selected. The materials were incubated in unstimulated whole saliva for 1 day. The biofilms grown were collected and their bacterial cells counted. In parallel, the composite resin surface morphology was analyzed with atomic force microscopy. Both bacterial cell count and surface topography parameters were subjected to statistical analysis (α=.05). Indirect composite resins showed significantly lower levels than direct composite resins for bacterial cell adhesion, (Pcomposite resins (P>.05). However, within the indirect composite resins a significantly lower level was found for Gradia than Estenia or Signum (Pcomposite resin roughness and bacterial adhesion when the second and particularly the third-order statistical moments of the composite resin height distributions were considered. Indirect dental restorative composite resins were found to be less prone to biofilm adhesion than direct composite resins. A correlation of bacterial adhesion to surface morphology exists that is described by kurtosis; thus, advanced data analysis is required to discover possible insights into the biologic effects of morphology. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  15. An investigation of the effect of scaling-induced surface roughness on bacterial adhesion in common fixed dental restorative materials.

    Science.gov (United States)

    Checketts, Matthew R; Turkyilmaz, Ilser; Asar, Neset Volkan

    2014-11-01

    Bacterial plaque must be routinely removed from teeth, adjacent structures, and prostheses. However, the removal of this plaque can inadvertently increase the risk of future bacterial adhesion. The purpose of this investigation was to assess the change in the surface roughness of 3 different surfaces after dental prophylactic instrumentation and how this influenced bacterial adhesion. Forty specimens each of Type III gold alloy, lithium disilicate, and zirconia were fabricated in the same dimensions. The specimens were divided into 4 groups: ultrasonic scaler, stainless steel curette, prophylaxis cup, and control. Pretreatment surface roughness measurements were made with a profilometer. Surface treatments in each group were performed with a custom mechanical scaler. Posttreatment surface roughness values were measured. In turn, the specimens were inoculated with Streptococcus mutans, Lactobacillus acidophilus, and Actinomyces viscosus. Bacterial adhesion was assessed by rinsing the specimens with sterile saline to remove unattached cells. The specimens were then placed in sterile tubes with 1 mL of sterile saline. The solution was plated and quantified. Scanning electron microscopy was performed. The statistical analysis of surface roughness was completed by using repeated-measures single-factor ANOVA with a Bonferroni correction. The surface roughness values for gold alloy specimens increased as a result of prophylaxis cup treatment (0.221 to 0.346 Ra) (Pbacterial adhesion to gold alloy proved inconclusive. A quantitative comparison indicated no statistically significant differences in pretreatment and posttreatment surface roughness values for lithium disilicate and zirconia specimens. In spite of these similarities, the overall bacterial adherence values for lithium disilicate were significantly greater than those recorded for gold alloy or zirconia (PInstrumentation of the lithium disilicate and zirconia with the stainless steel curette significantly increased

  16. Inhibited Bacterial Adhesion and Biofilm Formation on Quaternized Chitosan-Loaded Titania Nanotubes with Various Diameters

    Directory of Open Access Journals (Sweden)

    Wen-tao Lin

    2016-03-01

    Full Text Available Titania nanotube-based local drug delivery is an attractive strategy for combating implant-associated infection. In our previous study, we demonstrated that the gentamicin-loaded nanotubes could dramatically inhibit bacterial adhesion and biofilm formation on implant surfaces. Considering the overuse of antibiotics may lead to the evolution of antibiotic-resistant bacteria, we synthesized a new quaternized chitosan derivative (hydroxypropyltrimethyl ammonium chloride chitosan, HACC with a 27% degree of substitution (DS; referred to as 27% HACC that had a strong antibacterial activity and simultaneously good biocompatibility with osteogenic cells. Titania nanotubes with various diameters (80, 120, 160, and 200 nm and 200 nm length were loaded with 2 mg of HACC using a lyophilization method and vacuum drying. Two standard strain, methicillin-resistant Staphylococcus aureus (American Type Culture Collection 43300 and Staphylococcus epidermidis (American Type Culture Collection 35984, and two clinical isolates, S. aureus 376 and S. epidermidis 389, were selected to investigate the bacterial adhesion at 6 h and biofilm formation at 24, 48, and 72 h on the HACC-loaded nanotubes (NT-H using the spread plate method, confocal laser scanning microscopy (CLSM, and scanning electron microscopy (SEM. Smooth titanium (Smooth Ti was also investigated and compared. We found that NT-H could significantly inhibit bacterial adhesion and biofilm formation on its surface compared with Smooth Ti, and the NT-H with 160 nm and 200 nm diameters had stronger antibacterial activity because of the extended HACC release time of NT-H with larger diameters. Therefore, NT-H can significantly improve the antibacterial ability of orthopedic implants and provide a promising strategy to prevent implant-associated infections.

  17. Bacterial Adhesion Forces with Substratum Surfaces and the Susceptibility of Biofilms to Antibiotics

    OpenAIRE

    Muszanska, Agnieszka K.; Nejadnik, M. Reza; Chen, Yun; van den Heuvel, Edwin R.; Busscher, Henk J.; van der Mei, Henny C.; Norde, Willem

    2012-01-01

    Biofilms causing biomaterial-associated infection resist antibiotic treatment and usually necessitate the replacement of infected implants. Here we relate bacterial adhesion forces and the antibiotic susceptibility of biofilms on uncoated and polymer brush-coated silicone rubber. Nine strains of Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa adhered more weakly to brush-coated silicone rubber (−0.05 ± 0.03 to −0.51 ± 0.62 nN) than to uncoated silicone rubber (−1...

  18. Stainless steel modified with poly(ethylene glycol) can prevent protein adsorption but not bacterial adhesion

    DEFF Research Database (Denmark)

    Wei, Jiang; Bagge, Dorthe; Gram, Lone

    2003-01-01

    The surface of AISI 316 grade stainless steel (SS) was modified with a layer of poly(ethylene glycol) (PEG) (molecular weight 5000) with the aim of preventing protein adsorption and bacterial adhesion. Model SS substrates were first modified to introduce a very high density of reactive amine groups....... The chemical composition and uniformity of the surfaces were determined using X-ray photoelectron spectroscopy (XPS) and time-of-flight static secondary ion mass spectrometry (ToF-SSIMS) in the imaging mode. The effects of PEI concentration and different substrate pre-cleaning methods on the structure...

  19. Bacterial adhesion on conventional and self-ligating metallic brackets after surface treatment with plasma-polymerized hexamethyldisiloxane

    Directory of Open Access Journals (Sweden)

    Rogerio Amaral Tupinambá

    Full Text Available ABSTRACT Introduction: Plasma-polymerized film deposition was created to modify metallic orthodontic brackets surface properties in order to inhibit bacterial adhesion. Methods: Hexamethyldisiloxane (HMDSO polymer films were deposited on conventional (n = 10 and self-ligating (n = 10 stainless steel orthodontic brackets using the Plasma-Enhanced Chemical Vapor Deposition (PECVD radio frequency technique. The samples were divided into two groups according to the kind of bracket and two subgroups after surface treatment. Scanning Electron Microscopy (SEM analysis was performed to assess the presence of bacterial adhesion over samples surfaces (slot and wings region and film layer integrity. Surface roughness was assessed by Confocal Interferometry (CI and surface wettability, by goniometry. For bacterial adhesion analysis, samples were exposed for 72 hours to a Streptococcus mutans solution for biofilm formation. The values obtained for surface roughness were analyzed using the Mann-Whitney test while biofilm adhesion were assessed by Kruskal-Wallis and SNK test. Results: Significant statistical differences (p 0.05. Conclusion: Plasma-polymerized film deposition was only effective on reducing surface roughness and bacterial adhesion in conventional brackets. It was also noted that conventional brackets showed lower biofilm adhesion than self-ligating brackets despite the absence of film.

  20. Bacterial adhesion on conventional and self-ligating metallic brackets after surface treatment with plasma-polymerized hexamethyldisiloxane

    Science.gov (United States)

    Tupinambá, Rogerio Amaral; Claro, Cristiane Aparecida de Assis; Pereira, Cristiane Aparecida; Nobrega, Celestino José Prudente; Claro, Ana Paula Rosifini Alves

    2017-01-01

    ABSTRACT Introduction: Plasma-polymerized film deposition was created to modify metallic orthodontic brackets surface properties in order to inhibit bacterial adhesion. Methods: Hexamethyldisiloxane (HMDSO) polymer films were deposited on conventional (n = 10) and self-ligating (n = 10) stainless steel orthodontic brackets using the Plasma-Enhanced Chemical Vapor Deposition (PECVD) radio frequency technique. The samples were divided into two groups according to the kind of bracket and two subgroups after surface treatment. Scanning Electron Microscopy (SEM) analysis was performed to assess the presence of bacterial adhesion over samples surfaces (slot and wings region) and film layer integrity. Surface roughness was assessed by Confocal Interferometry (CI) and surface wettability, by goniometry. For bacterial adhesion analysis, samples were exposed for 72 hours to a Streptococcus mutans solution for biofilm formation. The values obtained for surface roughness were analyzed using the Mann-Whitney test while biofilm adhesion were assessed by Kruskal-Wallis and SNK test. Results: Significant statistical differences (p 0.05). Conclusion: Plasma-polymerized film deposition was only effective on reducing surface roughness and bacterial adhesion in conventional brackets. It was also noted that conventional brackets showed lower biofilm adhesion than self-ligating brackets despite the absence of film. PMID:28902253

  1. Construction of Zn-incorporated multilayer films to promote osteoblasts growth and reduce bacterial adhesion.

    Science.gov (United States)

    Liu, Peng; Zhao, Yongchun; Yuan, Zhang; Ding, Hongyan; Hu, Yan; Yang, Weihu; Cai, Kaiyong

    2017-06-01

    To improve the biological performance of titanium substrates, a bioactive multilayered structure of chitosan/gelatin pair, containing zinc ions, was constructed via a layer-by-layer self-assembly technique. The successful preparation of zinc ions incorporated multilayer films was demonstrated by scanning electron microscopy, X-ray photoelectron spectroscopy, and contact angle measurements, respectively. The biological behaviors of osteoblasts adhered to modified Ti substrates were investigated in vitro via cytoskeleton observation, cell viability measurement, and alkaline phosphatase activity assay. The cytocompatibility evaluation verified that the present system was capable of promoting the growth of osteoblasts. In addition, Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria were used to evaluate antibacterial property of modified Ti substrates. Bacterial adhesion and viability assay confirmed that Zn-loaded multilayer films were able to inhibit the adhesion and growth of bacteria. The approach presented here affords an alternative to reduce bacterial infection and promote osteoblast growth for titanium-based implants. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Calcium phosphate coating containing silver shows high antibacterial activity and low cytotoxicity and inhibits bacterial adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Yoshiki, E-mail: andoy@jmmc.jp [Division of Microbiology, Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan); Research Department, Japan Medical Materials Corporation, Uemura Nissei Bldg.9F 3-3-31 Miyahara, Yodogawa-ku, Osaka 532-0003 (Japan); Miyamoto, Hiroshi [Division of Microbiology, Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan); Noda, Iwao; Sakurai, Nobuko [Research Department, Japan Medical Materials Corporation, Uemura Nissei Bldg.9F 3-3-31 Miyahara, Yodogawa-ku, Osaka 532-0003 (Japan); Akiyama, Tomonori [Division of Microbiology, Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan); Yonekura, Yutaka; Shimazaki, Takafumi; Miyazaki, Masaki; Mawatari, Masaaki; Hotokebuchi, Takao [Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan)

    2010-01-01

    Surgical site infection is one of the serious complications of orthopedic implants. In order to reduce the incidence of implant-associated infections, we developed a novel coating technology of calcium phosphate (CP) containing silver (Ag), designated Ag-CP coating, using a thermal spraying technique. In this study, we evaluated the antibacterial efficacy and biological safety of this coating. In vitro antibacterial activity tests showed that the growths of Escherichia coli, Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) are completely suppressed on Ag-CP coating. In vitro bacterial adherence tests revealed that the number of adherent bacteria on the surface of this coating is significantly less (p < 0.02) than that on the surface of the CP coating. Moreover, the Ag-CP coating completely inhibits MRSA adhesion [<10 colony-forming units (CFU)] when 10{sup 2} CFU MRSA is inoculated. On the other hand, V79 Chinese hamster lung cells were found to grow on the Ag-CP coating as well as on the CP coating in a cytotoxicity test. These results indicate that the Ag-CP coating on the surface of orthopedic implants exhibits antibacterial activity and inhibits bacterial adhesion without cytotoxicity.

  3. Bacterial adhesion to protein-coated surfaces: An AFM and QCM-D study

    Science.gov (United States)

    Strauss, Joshua; Liu, Yatao; Camesano, Terri A.

    2009-09-01

    Bacterial adhesion to biomaterials, mineral surfaces, or other industrial surfaces is strongly controlled by the way bacteria interact with protein layers or organic matter and other biomolecules that coat the materials. Despite this knowledge, many studies of bacterial adhesion are performed under clean conditions, instead of in the presence of proteins or organic molecules. We chose fetal bovine serum (FBS) as a model protein, and prepared FBS films on quartz crystals. The thickness of the FBS layer was characterized using atomic force microscopy (AFM) imaging under liquid and quartz crystal microbalance with dissipation (QCM-D). Next, we characterized how the model biomaterial surface would interact with the nocosomial pathogen Staphylococcus epidermidis. An AFM probe was coated with S. epidermidis cells and used to probe a gold slide that had been coated with FBS or another protein, fibronectin (FN). These experiments show that AFM and QCM-D can be used in complementary ways to study the complex interactions between bacteria, proteins, and surfaces.

  4. The effect of dissolved organic carbon on bacterial adhesion to conditioning films adsorbed on glass from natural seawater collected during different seasons

    NARCIS (Netherlands)

    Bakker, DP; Klijnstra, JW; Busscher, HJ; van der Mei, HC

    2003-01-01

    Adhesion of three marine bacterial strains, i.e. Marinobacter hydrocarbonoclasticus , Psychrobacter sp. and Halomonas pacifica with different cell surface hydrophobicities was measured on glass in a stagnation point flow chamber. Prior to bacterial adhesion, the glass surface was conditioned for 1 h

  5. The effect of dissolved organic carbon on bacterial adhesion to conditioning films adsorbed on glass from natural seawater collected during different seasons

    NARCIS (Netherlands)

    Bakker, D.P.; Klijnstra, J.W.; Busscher, H.J.; Mei, H.C. van der

    2003-01-01

    Adhesion of three marine bacterial strains, i.e. Marinobacter hydrocarbonoclasticus, Psychrobacter sp. and Halomonas pacifica with different cell surface hydrophobicities was measured on glass in a stagnation point flow chamber. Prior to bacterial adhesion, the glass surface was conditioned for 1 h

  6. Bacterial adhesion forces with substratum surfaces and the susceptibility of biofilms to antibiotics.

    Science.gov (United States)

    Muszanska, Agnieszka K; Nejadnik, M Reza; Chen, Yun; van den Heuvel, Edwin R; Busscher, Henk J; van der Mei, Henny C; Norde, Willem

    2012-09-01

    Biofilms causing biomaterial-associated infection resist antibiotic treatment and usually necessitate the replacement of infected implants. Here we relate bacterial adhesion forces and the antibiotic susceptibility of biofilms on uncoated and polymer brush-coated silicone rubber. Nine strains of Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa adhered more weakly to brush-coated silicone rubber (-0.05 ± 0.03 to -0.51 ± 0.62 nN) than to uncoated silicone rubber (-1.05 ± 0.46 to -5.1 ± 1.3 nN). Biofilms of weakly adhering organisms on polymer brush coatings remained in a planktonic state, susceptible to gentamicin, unlike biofilms formed on uncoated silicone rubber.

  7. Bacterial and mammalian cells adhesion to tantalum-decorated micro-/nano-structured titanium.

    Science.gov (United States)

    Zhu, Yu; Gu, Yingxin; Qiao, Shichong; Zhou, Linyi; Shi, Junyu; Lai, Hongchang

    2017-03-01

    Microorganisms are frequently introduced to dental implants during surgery and start the race for the surface with host cells before osseointegration occurs. The aim of the study was to endow implant surfaces with biological functions that reliably select cells over microbes. Nano-structured tantalum (Ta) has exhibited excellent compatibility. Thus, nano-structured Ta films were deposited on the sand-blasted, large grit, and acid-etched (SLA) titanium by the magnetron sputtering method, thus forming hierarchical micro-/nano-structured surfaces. No obvious Ta release confirmed the robustness of the deposited layer probably arising from the stable Ta 2 O 5 . Moreover, Ta-modified surfaces not only improved the initial adhesion and spreading of rat bone mesenchymal stem cells (rBMSCs), but also exhibited good antibacterial activities towards Streptococcus mutans and Porphyromonas gingivalis. The satisfactory cell-surface interactions on Ta-modified surfaces depended largely on the up-regulation of adhesion-related genes and activation of focal adhesion kinase (FAK), as confirmed by real-time PCR and Western blot. Here, the coculture model was also forwarded to mimic the perioperative bacterial contamination. We found that the adherent cell number and the cell-surface coverage were hampered by bacteria presence on both surfaces. Yet, rBMSCs still attached and spread more readily on Ta-modified surfaces than on SLA titanium surfaces even in coculture with adhering oral pathogens. Our results revealed that Ta-modified micro-/nano-structured surfaces would selectively promote cell-surface rather than bacteria-surface interactions, boding well for the applications for dental implants in possibly infected environments. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 871-878, 2017. © 2016 Wiley Periodicals, Inc.

  8. Adhesion of bacterial pathogens to soil colloidal particles: influences of cell type, natural organic matter, and solution chemistry.

    Science.gov (United States)

    Zhao, Wenqiang; Walker, Sharon L; Huang, Qiaoyun; Cai, Peng

    2014-04-15

    Bacterial adhesion to granular soil particles is well studied; however, pathogen interactions with naturally occurring colloidal particles (colloids as a function of cell type, natural organic matter (NOM), and solution chemistry. Specifically, batch adhesion experiments were conducted using NOM-present, NOM-stripped soil colloids, Streptococcus suis SC05 and Escherichia coli WH09 over a wide range of solution pH (4.0-9.0) and ionic strength (IS, 1-100 mM KCl). Cell characterization techniques, Freundlich isotherm, and Derjaguin-Landau-Verwey-Overbeek (DLVO) theory (sphere-sphere model) were utilized to quantitatively determine the interactions between cells and colloids. The adhesion coefficients (Kf) of S. suis SC05 to NOM-present and NOM-stripped soil colloids were significantly higher than E. coli WH09, respectively. Similarly, Kf values of S. suis SC05 and E. coli WH09 adhesion to NOM-stripped soil colloids were greater than those colloids with NOM-present, respectively, suggesting NOM inhibits bacterial adhesion. Cell adhesion to soil colloids declined with increasing pH and enhanced with rising IS (1-50 mM). Interaction energy calculations indicate these adhesion trends can be explained by DLVO-type forces, with S. suis SC05 and E. coli WH09 being weakly adhered in shallow secondary energy minima via polymer bridging and charge heterogeneity. S. suis SC05 adhesion decreased at higher IS 100 mM, which is attributed to the change of hydrophobic effect and steric repulsion resulted from the greater presence of extracellular polymeric substances (EPS) on S. suis SC05 surface as compared to E. coli WH09. Hence, pathogen adhesion to the colloidal material is determined by a combination of DLVO, charge heterogeneity, hydrophobic and polymer interactions as a function of solution chemistry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Composite film fabricated on biomedical material with corona streamer plasma processing to mitigate bacterial adhesion

    Science.gov (United States)

    Alhamarneh, Ibrahim; Pedrow, Patrick; Eskhan, Asma; Abu-Lail, Nehal

    2011-10-01

    Composite films might control bacterial adhesion and concomitant biofouling that afflicts biomedical materials. Different size molecules of polyethylene glycol (PEG) with nominal molecular weights 600, 2000, and 20000 g/mol were used to synthesize composite films with plasma processing and dip-coating procedures on surgical-grade 316L stainless steel. Before dip-coating, the substrate was pre-coated with plasma-polymerized di(ethylene glycol) vinyl ether (pp-EO2V) in an atmospheric pressure corona streamer plasma reactor. The PEG dip-coating step followed immediately in the same chamber due to the finite lifetime of radicals associated with freshly deposited pp-EO2V. Morphology of the composite film was investigated with an ESEM. FTIR confirmed incorporation of pp-EO2V and PEG species into the composite film. More investigations on the composite film were conducted by XPS measurements. Adhesion of the composite film was evaluated with a standard peel-off test. Stability of the composite film in buffer solution was evaluated by AFM. AFM was also used to measure the film roughness and thickness. Polar and non-polar contact angle measurements were included.

  10. Surface Proteins of Lactococcus lactis: Bacterial Resources for Muco-adhesion in the Gastrointestinal Tract

    Directory of Open Access Journals (Sweden)

    Muriel Mercier-Bonin

    2017-11-01

    Full Text Available Food and probiotic bacteria, in particular lactic acid bacteria, are ingested in large amounts by humans and are part of the transient microbiota which is increasingly considered to be able to impact the resident microbiota and thus possibly the host health. The lactic acid bacterium Lactococcus lactis is extensively used in starter cultures to produce dairy fermented food. Also because of a generally recognized as safe status, L. lactis has been considered as a possible vehicle to deliver in vivo therapeutic molecules with anti-inflammatory properties in the gastrointestinal tract. One of the key factors that may favor health effects of beneficial bacteria to the host is their capacity to colonize transiently the gut, notably through close interactions with mucus, which covers and protects the intestinal epithelium. Several L. lactis strains have been shown to exhibit mucus-binding properties and bacterial surface proteins have been identified as key determinants of such capacity. In this review, we describe the different types of surface proteins found in L. lactis, with a special focus on mucus-binding proteins and pili. We also review the different approaches used to investigate the adhesion of L. lactis to mucus, and particularly to mucins, one of its major components, and we present how these approaches allowed revealing the role of surface proteins in muco-adhesion.

  11. Surface physicochemical properties at the micro and nano length scales: role on bacterial adhesion and Xylella fastidiosa biofilm development.

    Science.gov (United States)

    Lorite, Gabriela S; Janissen, Richard; Clerici, João H; Rodrigues, Carolina M; Tomaz, Juarez P; Mizaikoff, Boris; Kranz, Christine; de Souza, Alessandra A; Cotta, Mônica A

    2013-01-01

    The phytopathogen Xylella fastidiosa grows as a biofilm causing vascular occlusion and consequently nutrient and water stress in different plant hosts by adhesion on xylem vessel surfaces composed of cellulose, hemicellulose, pectin and proteins. Understanding the factors which influence bacterial adhesion and biofilm development is a key issue in identifying mechanisms for preventing biofilm formation in infected plants. In this study, we show that X. fastidiosa biofilm development and architecture correlate well with physicochemical surface properties after interaction with the culture medium. Different biotic and abiotic substrates such as silicon (Si) and derivatized cellulose films were studied. Both biofilms and substrates were characterized at the micro- and nanoscale, which corresponds to the actual bacterial cell and membrane/ protein length scales, respectively. Our experimental results clearly indicate that the presence of surfaces with different chemical composition affect X. fastidiosa behavior from the point of view of gene expression and adhesion functionality. Bacterial adhesion is facilitated on more hydrophilic surfaces with higher surface potentials; XadA1 adhesin reveals different strengths of interaction on these surfaces. Nonetheless, despite different architectural biofilm geometries and rates of development, the colonization process occurs on all investigated surfaces. Our results univocally support the hypothesis that different adhesion mechanisms are active along the biofilm life cycle representing an adaptation mechanism for variations on the specific xylem vessel composition, which the bacterium encounters within the infected plant.

  12. Surface-modified nanoparticles as a new, versatile, and mechanically robust nonadhesive coating : Suppression of protein adsorption and bacterial adhesion

    NARCIS (Netherlands)

    Holmes, P. F.; Currie, E. P. K.; Thies, J. C.; van der Mei, H. C.; Busscher, H. J.; Norde, W.

    2009-01-01

    The synthesis of surface-modified silica nanoparticles, chemically grafted with acrylate and poly(ethylene glycol) (PEG) groups, and the ability of the resulting crosslinked coatings to inhibit protein adsorption and bacterial adhesion are explored. Water contact angles, nanoindentation, and atomic

  13. INSITU ENUMERATION OF BACTERIAL ADHESION IN A PARALLEL PLATE FLOW CHAMBER - ELIMINATION OR IN FOCUS FLOWING BACTERIA FROM THE ANALYSIS

    NARCIS (Netherlands)

    MEINDERS, JM; VANDERMEI, HC; BUSSCHER, HJ

    1992-01-01

    Automated in situ enumeration using image analysis of bacterial adhesion to solid substrata in, e.g., a parallel plate flow chamber requires sophisticated methods to ensure that in-focus flowing bacteria are separated from the adhering ones and eliminated from the analysis. In this paper, three

  14. Influence of Fimbriae on Bacterial Adhesion and Viscoelasticity and Correlations of the Two Properties with Biofilm Formation.

    Science.gov (United States)

    Wang, Huabin; Wilksch, Jonathan J; Chen, Ligang; Tan, Jason W H; Strugnell, Richard A; Gee, Michelle L

    2017-01-10

    The surface polymers of bacteria determine the ability of bacteria to adhere to a substrate for colonization, which is an essential step for a variety of microbial processes, such as biofilm formation and biofouling. Capsular polysaccharides and fimbriae are two major components on a bacterial surface, which are critical for mediating cell-surface interactions. Adhesion and viscoelasticity of bacteria are two major physical properties related to bacteria-surface interactions. In this study, we employed atomic force microscopy (AFM) to interrogate how the adhesion work and the viscoelasticity of a bacterial pathogen, Klebsiella pneumoniae, influence biofilm formation. To do this, the wild-type, type 3 fimbriae-deficient, and type 3 fimbriae-overexpressed K. pneumoniae strains have been investigated in an aqueous environment. The results show that the measured adhesion work is positively correlated to biofilm formation; however, the viscoelasticity is not correlated to biofilm formation. This study indicates that AFM-based adhesion measurements of bacteria can be used to evaluate the function of bacterial surface polymers in biofilm formation and to predict the ability of bacterial biofilm formation.

  15. The quorum-sensing effect of aerobic granules on bacterial adhesion, biofilm formation, and sludge granulation.

    Science.gov (United States)

    Ren, Ting-ting; Yu, Han-qing; Li, Xiao-yan

    2010-10-01

    Quorum sensing (QS) through signal chemical molecules is known to be essential to bacterial adhesion and biofilm formation. In this study, the QS ability of aerobic granules--a special form of biofilms used for biological wastewater treatment--was investigated and compared with that of conventional activated sludge flocs. A novel sectional membrane bioreactor was used together with a flow-cell to evaluate the possible influence of signal chemicals produced by the source sludge on the growth mode of bacterial cells. The results demonstrate the apparent production of QS chemicals from granules and its impact on initial cell attachment and granule formation. When granules were used as the signal-producing biomass, the attached-growth mode was dominant for the free cells, and the biofilm formation rate in the flow-cell was about ten times faster than in cases which used activated sludge as the signal source biomass. In addition, the intracellular extract from mature granules significantly accelerated the sludge granulation process. It is argued that the production and expression of QS signal chemicals from granules and granule precursors might have induced the gene expression of bacteria in suspension for attached growth rather than suspended growth, leading to granule formation and its stable structure.

  16. Residual structure of Streptococcus mutans biofilm following complete disinfection favors secondary bacterial adhesion and biofilm re-development.

    Directory of Open Access Journals (Sweden)

    Tatsuya Ohsumi

    Full Text Available Chemical disinfection of oral biofilms often leaves biofilm structures intact. This study aimed to examine whether the residual structure promotes secondary bacterial adhesion. Streptococcus mutans biofilms generated on resin-composite disks in a rotating disc reactor were disinfected completely with 70% isopropyl alcohol, and were again cultured in the same reactor after resupplying with the same bacterial solution. Specimens were subjected to fluorescence confocal laser scanning microscopy, viable cell counts and PCR-Invader assay in order to observe and quantify secondarily adhered cells. Fluorescence microscopic analysis, particularly after longitudinal cryosectioning, demonstrated stratified patterns of viable cells on the disinfected biofilm structure. Viable cell counts of test specimens were significantly higher than those of controls, and increased according to the amount of residual structure and culture period. Linear regression analysis exhibited a high correlation between viable and total cell counts. It was concluded that disinfected biofilm structures favored secondary bacterial adhesion.

  17. Bacterial adhesion studies on titanium, titanium nitride and modified hydroxyapatite thin films

    International Nuclear Information System (INIS)

    Jeyachandran, Y.L.; Venkatachalam, S.; Karunagaran, B.; Narayandass, Sa.K.; Mangalaraj, D.; Bao, C.Y.; Zhang, C.L.

    2007-01-01

    A qualitative study on adhesion of the oral bacteria Porphyromonas gingivalis on titanium (Ti), titanium nitride (TiN), fluorine modified hydroxyapatite (FHA) and zinc modified FHA (Zn-FHA) thin films is investigated. Ti and TiN thin films were deposited by DC magnetron sputtering and hydroxyapatite-based films were prepared by solgel method. The crystalline structure, optical characteristics, chemical composition and surface topography of the films were studied by XRD, optical transmission, XPS, EDAX and AFM measurements. The predominant crystallite orientation in the Ti and TiN films was along (002) and (111) of hcp and cubic structures, respectively. The Ti : O : N composition ratio in the surface of the Ti and TiN films was found to be 7 : 21 : 1 and 3 : 8 : 2, respectively. The atomic concentration ratio (Zn + Ca) / P in Zn-FHA film was found to be 1.74 whereby the Zn replaced 3.2% of Ca. The rough surface feature in modified HA films was clearly observed in the SEM images and the surface roughness (rms) of Ti and TiN films was 2.49 and 3.5 nm, respectively, as observed using AFM. The film samples were sterilized, treated in the bacteria culture medium, processed and analyzed using SEM. Surface roughness of the films was found to have least influence on the bacterial adhesion. More bacteria were observed on the TiN film with oxide nitride surface layer and less number of adhered bacteria was noticed on the Ti film with native surface oxide layer and on Zn-FHA film

  18. Bacterial adhesion studies on titanium, titanium nitride and modified hydroxyapatite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jeyachandran, Y.L. [Department of Physics, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India); Venkatachalam, S. [Department of Physics, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India); Karunagaran, B. [Department of Physics, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India); Narayandass, Sa.K. [Department of Physics, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India)]. E-mail: sakndass@yahoo.com; Mangalaraj, D. [Department of Physics, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India); Bao, C.Y. [West China College of Stomatology, Sichuan University, Chengdu 610041 (China); Zhang, C.L. [West China College of Stomatology, Sichuan University, Chengdu 610041 (China)

    2007-01-15

    A qualitative study on adhesion of the oral bacteria Porphyromonas gingivalis on titanium (Ti), titanium nitride (TiN), fluorine modified hydroxyapatite (FHA) and zinc modified FHA (Zn-FHA) thin films is investigated. Ti and TiN thin films were deposited by DC magnetron sputtering and hydroxyapatite-based films were prepared by solgel method. The crystalline structure, optical characteristics, chemical composition and surface topography of the films were studied by XRD, optical transmission, XPS, EDAX and AFM measurements. The predominant crystallite orientation in the Ti and TiN films was along (002) and (111) of hcp and cubic structures, respectively. The Ti : O : N composition ratio in the surface of the Ti and TiN films was found to be 7 : 21 : 1 and 3 : 8 : 2, respectively. The atomic concentration ratio (Zn + Ca) / P in Zn-FHA film was found to be 1.74 whereby the Zn replaced 3.2% of Ca. The rough surface feature in modified HA films was clearly observed in the SEM images and the surface roughness (rms) of Ti and TiN films was 2.49 and 3.5 nm, respectively, as observed using AFM. The film samples were sterilized, treated in the bacteria culture medium, processed and analyzed using SEM. Surface roughness of the films was found to have least influence on the bacterial adhesion. More bacteria were observed on the TiN film with oxide nitride surface layer and less number of adhered bacteria was noticed on the Ti film with native surface oxide layer and on Zn-FHA film.

  19. The effect of iatrogenic Staphylococcus epidermidis intercellar adhesion operon on the formation of bacterial biofilm on polyvinyl chloride surfaces.

    Science.gov (United States)

    Lianhua, Ye; Yunchao, Huang; Guangqiang, Zhao; Kun, Yang; Xing, Liu; Fengli, Guo

    2014-12-01

    The intercellular adhesion gene (ica) of Staphylococcus epidermidis is a key factor for bacterial aggregation. This study explored the effect of ica on the formation of bacterial biofilm on polyvinyl chloride (PVC) surfaces. Genes related to bacterial biofilm formation, including 16S rRNA, autolysin (atlE), fibrinogen binding protein gene (fbe), and ica were identified and sequenced from 112 clinical isolates of iatrogenic S. epidermidis by polymerase chain reaction (PCR) and gene sequencing. Based on the sequencing result, ica operon-positive (icaADB+/atlE+/fbe+) and ica operon-negative (icaADB-/atlE+/fbe+) strains were separated and co-cultivated with PVC material. After 6, 12, 18, 24, and 30 h of co-culture, the thickness of the bacterial biofilm and quantity of bacterial colony on the PVC surface were measured under the confocal laser scanning microscope and scanning electron microscope. The positive rate of S. epidermidis-specific 16SrRNA in 112 iatrogenic strains was 100% (112/112). The genotype of ica-positive (icaADB+/atlE+/fbe+) strains accounted for 57.1% (64/112), and genotype of ica-negative (icaADB-/atlE+/fbe+) strains accounted for 37.5% (42/112). During 30 h of co-culture, no obvious bacterial biofilm formed on the surface of PVC in the ica-positive group, however, mature bacterial biofilm structure formed after 24 h. For all time points, thickness of bacterial biofilm and quantity of bacterial colony on PVC surfaces in the ica operon-positive group were significantly higher than those in ica operon-negative group (poperon-negative and ica operon-positive strains. The ica operon plays an important role in bacterial biofilm formation and bacterial multiplication on PVC material.

  20. Anhydride-functional silane immobilized onto titanium surfaces induces osteoblast cell differentiation and reduces bacterial adhesion and biofilm formation

    Energy Technology Data Exchange (ETDEWEB)

    Godoy-Gallardo, Maria, E-mail: maria.godoy.gallardo@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Guillem-Marti, Jordi, E-mail: jordi.guillem.marti@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Sevilla, Pablo, E-mail: psevilla@euss.es [Department of Mechanics, Escola Universitària Salesiana de Sarrià (EUSS), C/ Passeig de Sant Bosco, 42, 08017 Barcelona (Spain); Manero, José M., E-mail: jose.maria.manero@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Gil, Francisco J., E-mail: francesc.xavier.gil@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); and others

    2016-02-01

    Bacterial infection in dental implants along with osseointegration failure usually leads to loss of the device. Bioactive molecules with antibacterial properties can be attached to titanium surfaces with anchoring molecules such as silanes, preventing biofilm formation and improving osseointegration. Properties of silanes as molecular binders have been thoroughly studied, but research on the biological effects of these coatings is scarce. The aim of the present study was to determine the in vitro cell response and antibacterial effects of triethoxysilypropyl succinic anhydride (TESPSA) silane anchored on titanium surfaces. X-ray photoelectron spectroscopy confirmed a successful silanization. The silanized surfaces showed no cytotoxic effects. Gene expression analyses of Sarcoma Osteogenic (SaOS-2) osteoblast-like cells cultured on TESPSA silanized surfaces reported a remarkable increase of biochemical markers related to induction of osteoblastic cell differentiation. A manifest decrease of bacterial adhesion and biofilm formation at early stages was observed on treated substrates, while favoring cell adhesion and spreading in bacteria–cell co-cultures. Surfaces treated with TESPSA could enhance a biological sealing on implant surfaces against bacteria colonization of underlying tissues. Furthermore, it can be an effective anchoring platform of biomolecules on titanium surfaces with improved osteoblastic differentiation and antibacterial properties. - Highlights: • TESPSA silane induces osteoblast differentiation. • TESPSA reduces bacterial adhesion and biofilm formation. • TESPSA is a promising anchoring platform of biomolecules onto titanium.

  1. Effect of two different polishing systems on fluoride release, surface roughness and bacterial adhesion of newly developed restorative materials.

    Science.gov (United States)

    Bayrak, Gokcen Deniz; Sandalli, Nuket; Selvi-Kuvvetli, Senem; Topcuoglu, Nursen; Kulekci, Guven

    2017-11-12

    To evaluate the effects of two different polishing systems on fluoride release, surface roughness and bacterial adhesion of five restorative materials MATERIALS AND METHODS: The study groups were comprised of five different restorative materials, Beautifil II (B); GCP Glass Fill (G); Amalgomer CR (A); Dyract XP (D); Fuji IX GP (F) and 21 specimens were prepared from each material. Each group was divided into three subgroups according to the polishing system: Mylar (control) (C), Sof-lex (S), and Enhance-Pogo (EP). The amount of fluoride release was measured using a fluoride ion-selective electrode and surface roughness was investigated with a profilometer. Bacterial adhesion on the materials was evaluated by optical density readouts for S.mutans on a spectrophotometer. The highest amount of fluoride was released from specimens in the S subgroup of group G during all measurement days. Surface roughness values were significantly lower in subgroup C than the other polishing systems in all study groups except group G (P restorative materials especially in glass ionomer-based materials. This article stated that polishing promoted a significant increase of fluoride release on restorative materials especially in glass ionomer-based materials. Further, proper polishing systems must be chosen according to the structure and composition of materials to provide the best clinical benefits in terms of fluoride release, surface roughness and bacterial adhesion. © 2017 Wiley Periodicals, Inc.

  2. Anhydride-functional silane immobilized onto titanium surfaces induces osteoblast cell differentiation and reduces bacterial adhesion and biofilm formation

    International Nuclear Information System (INIS)

    Godoy-Gallardo, Maria; Guillem-Marti, Jordi; Sevilla, Pablo; Manero, José M.; Gil, Francisco J.

    2016-01-01

    Bacterial infection in dental implants along with osseointegration failure usually leads to loss of the device. Bioactive molecules with antibacterial properties can be attached to titanium surfaces with anchoring molecules such as silanes, preventing biofilm formation and improving osseointegration. Properties of silanes as molecular binders have been thoroughly studied, but research on the biological effects of these coatings is scarce. The aim of the present study was to determine the in vitro cell response and antibacterial effects of triethoxysilypropyl succinic anhydride (TESPSA) silane anchored on titanium surfaces. X-ray photoelectron spectroscopy confirmed a successful silanization. The silanized surfaces showed no cytotoxic effects. Gene expression analyses of Sarcoma Osteogenic (SaOS-2) osteoblast-like cells cultured on TESPSA silanized surfaces reported a remarkable increase of biochemical markers related to induction of osteoblastic cell differentiation. A manifest decrease of bacterial adhesion and biofilm formation at early stages was observed on treated substrates, while favoring cell adhesion and spreading in bacteria–cell co-cultures. Surfaces treated with TESPSA could enhance a biological sealing on implant surfaces against bacteria colonization of underlying tissues. Furthermore, it can be an effective anchoring platform of biomolecules on titanium surfaces with improved osteoblastic differentiation and antibacterial properties. - Highlights: • TESPSA silane induces osteoblast differentiation. • TESPSA reduces bacterial adhesion and biofilm formation. • TESPSA is a promising anchoring platform of biomolecules onto titanium.

  3. Photorhabdus adhesion modification protein (Pam) binds extracellular polysaccharide and alters bacterial attachment.

    Science.gov (United States)

    Jones, Robert T; Sanchez-Contreras, Maria; Vlisidou, Isabella; Amos, Matthew R; Yang, Guowei; Muñoz-Berbel, Xavier; Upadhyay, Abhishek; Potter, Ursula J; Joyce, Susan A; Ciche, Todd A; Jenkins, A Toby A; Bagby, Stefan; Ffrench-Constant, Richard H; Waterfield, Nicholas R

    2010-05-12

    Photorhabdus are Gram-negative nematode-symbiotic and insect-pathogenic bacteria. The species Photorhabdus asymbiotica is able to infect humans as well as insects. We investigated the secreted proteome of a clinical isolate of P. asymbiotica at different temperatures in order to identify proteins relevant to the infection of the two different hosts. A comparison of the proteins secreted by a clinical isolate of P. asymbiotica at simulated insect (28 degrees C) and human (37 degrees C) temperatures led to the identification of a small and highly abundant protein, designated Pam, that is only secreted at the lower temperature. The pam gene is present in all Photorhabdus strains tested and shows a high level of conservation across the whole genus, suggesting it is both ancestral to the genus and probably important to the biology of the bacterium. The Pam protein shows limited sequence similarity to the 13.6 kDa component of a binary toxin of Bacillus thuringiensis. Nevertheless, injection or feeding of heterologously produced Pam showed no insecticidal activity to either Galleria mellonella or Manduca sexta larvae. In bacterial colonies, Pam is associated with an extracellular polysaccharide (EPS)-like matrix, and modifies the ability of wild-type cells to attach to an artificial surface. Interestingly, Surface Plasmon Resonance (SPR) binding studies revealed that the Pam protein itself has adhesive properties. Although Pam is produced throughout insect infection, genetic knockout does not affect either insect virulence or the ability of P. luminescens to form a symbiotic association with its host nematode, Heterorhabditis bacteriophora. We studied a highly abundant protein, Pam, which is secreted in a temperature-dependent manner in P. asymbiotica. Our findings indicate that Pam plays an important role in enhancing surface attachment in insect blood. Its association with exopolysaccharide suggests it may exert its effect through mediation of EPS properties. Despite

  4. Photorhabdus adhesion modification protein (Pam binds extracellular polysaccharide and alters bacterial attachment

    Directory of Open Access Journals (Sweden)

    Joyce Susan A

    2010-05-01

    Full Text Available Abstract Background Photorhabdus are Gram-negative nematode-symbiotic and insect-pathogenic bacteria. The species Photorhabdus asymbiotica is able to infect humans as well as insects. We investigated the secreted proteome of a clinical isolate of P. asymbiotica at different temperatures in order to identify proteins relevant to the infection of the two different hosts. Results A comparison of the proteins secreted by a clinical isolate of P. asymbiotica at simulated insect (28°C and human (37°C temperatures led to the identification of a small and highly abundant protein, designated Pam, that is only secreted at the lower temperature. The pam gene is present in all Photorhabdus strains tested and shows a high level of conservation across the whole genus, suggesting it is both ancestral to the genus and probably important to the biology of the bacterium. The Pam protein shows limited sequence similarity to the 13.6 kDa component of a binary toxin of Bacillus thuringiensis. Nevertheless, injection or feeding of heterologously produced Pam showed no insecticidal activity to either Galleria mellonella or Manduca sexta larvae. In bacterial colonies, Pam is associated with an extracellular polysaccharide (EPS-like matrix, and modifies the ability of wild-type cells to attach to an artificial surface. Interestingly, Surface Plasmon Resonance (SPR binding studies revealed that the Pam protein itself has adhesive properties. Although Pam is produced throughout insect infection, genetic knockout does not affect either insect virulence or the ability of P. luminescens to form a symbiotic association with its host nematode, Heterorhabditis bacteriophora. Conclusions We studied a highly abundant protein, Pam, which is secreted in a temperature-dependent manner in P. asymbiotica. Our findings indicate that Pam plays an important role in enhancing surface attachment in insect blood. Its association with exopolysaccharide suggests it may exert its effect

  5. Photorhabdus adhesion modification protein (Pam) binds extracellular polysaccharide and alters bacterial attachment

    LENUS (Irish Health Repository)

    Jones, Robert T

    2010-05-12

    Abstract Background Photorhabdus are Gram-negative nematode-symbiotic and insect-pathogenic bacteria. The species Photorhabdus asymbiotica is able to infect humans as well as insects. We investigated the secreted proteome of a clinical isolate of P. asymbiotica at different temperatures in order to identify proteins relevant to the infection of the two different hosts. Results A comparison of the proteins secreted by a clinical isolate of P. asymbiotica at simulated insect (28°C) and human (37°C) temperatures led to the identification of a small and highly abundant protein, designated Pam, that is only secreted at the lower temperature. The pam gene is present in all Photorhabdus strains tested and shows a high level of conservation across the whole genus, suggesting it is both ancestral to the genus and probably important to the biology of the bacterium. The Pam protein shows limited sequence similarity to the 13.6 kDa component of a binary toxin of Bacillus thuringiensis. Nevertheless, injection or feeding of heterologously produced Pam showed no insecticidal activity to either Galleria mellonella or Manduca sexta larvae. In bacterial colonies, Pam is associated with an extracellular polysaccharide (EPS)-like matrix, and modifies the ability of wild-type cells to attach to an artificial surface. Interestingly, Surface Plasmon Resonance (SPR) binding studies revealed that the Pam protein itself has adhesive properties. Although Pam is produced throughout insect infection, genetic knockout does not affect either insect virulence or the ability of P. luminescens to form a symbiotic association with its host nematode, Heterorhabditis bacteriophora. Conclusions We studied a highly abundant protein, Pam, which is secreted in a temperature-dependent manner in P. asymbiotica. Our findings indicate that Pam plays an important role in enhancing surface attachment in insect blood. Its association with exopolysaccharide suggests it may exert its effect through mediation of

  6. Phospholipase D promotes Arcanobacterium haemolyticum adhesion via lipid raft remodeling and host cell death following bacterial invasion

    Directory of Open Access Journals (Sweden)

    Carlson Petteri

    2010-10-01

    Full Text Available Abstract Background Arcanobacterium haemolyticum is an emerging bacterial pathogen, causing pharyngitis and more invasive infections. This organism expresses an unusual phospholipase D (PLD, which we propose promotes bacterial pathogenesis through its action on host cell membranes. The pld gene is found on a genomic region of reduced %G + C, suggesting recent horizontal acquisition. Results Recombinant PLD rearranged HeLa cell lipid rafts in a dose-dependent manner and this was inhibited by cholesterol sequestration. PLD also promoted host cell adhesion, as a pld mutant had a 60.3% reduction in its ability to adhere to HeLa cells as compared to the wild type. Conversely, the pld mutant appeared to invade HeLa cells approximately two-fold more efficiently as the wild type. This finding was attributable to a significant loss of host cell viability following secretion of PLD from intracellular bacteria. As determined by viability assay, only 15.6% and 82.3% of HeLa cells remained viable following invasion by the wild type or pld mutant, respectively, as compared to untreated HeLa cells. Transmission electron microscopy of HeLa cells inoculated with A. haemolyticum strains revealed that the pld mutant was contained within intracellular vacuoles, as compared to the wild type, which escaped the vacuole. Wild type-infected HeLa cells also displayed the hallmarks of necrosis. Similarly inoculated HeLa cells displayed no signs of apoptosis, as measured by induction of caspase 3/7, 8 or 9 activities. Conclusions These data indicate that PLD enhances bacterial adhesion and promotes host cell necrosis following invasion, and therefore, may be important in the disease pathogenesis of A. haemolyticum infections.

  7. Bacterial adhesion to antibiotic-loaded guided tissue regeneration membranes – A scanning electron microscopy study

    Directory of Open Access Journals (Sweden)

    Chi-Fang Cheng

    2015-01-01

    Conclusion: Incorporation of tetracycline or amoxicillin greatly reduced adhesion of S. mutans or A. actinomycetemcomitans on the ePTFE, glycolide fiber, or collagen membranes. This finding indicates that it is valuable and effective to use the antibiotic-loaded GTR membranes for periodontal regeneration therapy.

  8. ADSORPTION OF CIPROFLOXACIN TO URINARY CATHETERS AND EFFECT ON SUBSEQUENT BACTERIAL ADHESION AND SURVIVAL

    NARCIS (Netherlands)

    REID, G; TIESZER, C; FOERCH, R; BUSSCHER, HJ; KHOURY, AE; BRUCE, AW

    1993-01-01

    The preincubation of urinary catheter material with minimum inhibitory and sub-inhibitory concentrations of ciprofloxacin caused a significant reduction in the adhesion of viable uropathogenic Escherichia coli subsequently exposed to the surfaces for periods of 1, 12, 24 and 48 h. In addition, the

  9. Inhibition of bacterial adhesion to HT-29 cells by lipoteichoic acid ...

    African Journals Online (AJOL)

    The aim of this experiment was to study the effect of the lipoteichoic acid (LTA) extracted from Clostridium butyricum on the adhesion of C. butyricum and Escherichia coli to HT-29 human intestinal cells. The method of extraction of lipoteichoic acid form C. butyricum by TX114 was evaluated. The purification of the LTA by ...

  10. Preparing high-adhesion silver coating on APTMS modified polyethylene with excellent anti-bacterial performance

    Science.gov (United States)

    Li, Wenfei; Chen, Yunxiang; Wu, Song; Zhang, Jian; Wang, Hao; Zeng, Dawen; Xie, Changsheng

    2018-04-01

    Silver coating as a broad-spectrum antimicrobial agent was considered to alleviate the inflammation caused by intrauterine device (IUD) in endometrium. In this work, to avoid the damage of silver coating and ensure its antibacterial properties, 3-aminopropyltrimethoxysilane (APTMS) was introduced to modify the polyethylene (PE) substrate for the purpose of improving the adhesion of the silver coating. From the 90° peel test, it could be found that the adhesive strength of silver coating on the APTMS modified PE substrate was nearly 23 times stronger than the silver coating on substrate without surface modification. The dramatically enhanced adhesive strength could be attributed to the formation of continuous chemical bonds between the silver coatings and substrates after surface modification, which had been confirmed by the XPS. Moreover, the standard antibacterial test revealed that the silver coated samples against Staphylococcus aureus (S. aureus) exhibit excellent antibacterial efficacy. Considering the largely enhanced adhesion and the effective antibacterial property, it is reasonable to believe that the silver coating could be considered as a potential candidate for the antibacterial agent in IUD.

  11. Reduction of bacterial adhesion on dental composite resins by silicon–oxygen thin film coatings

    International Nuclear Information System (INIS)

    Mandracci, Pietro; Pirri, Candido F; Mussano, Federico; Ceruti, Paola; Carossa, Stefano

    2015-01-01

    Adhesion of bacteria on dental materials can be reduced by modifying the physical and chemical characteristics of their surfaces, either through the application of specific surface treatments or by the deposition of thin film coatings. Since this approach does not rely on the use of drugs or antimicrobial agents embedded in the materials, its duration is not limited by their possible depletion. Moreover it avoids the risks related to possible cytotoxic effects elicited by antibacterial substances released from the surface and diffused in the surrounding tissues. In this work, the adhesion of Streptococcus mutans and Streptococcus mitis was studied on four composite resins, commonly used for manufacturing dental prostheses. The surfaces of dental materials were modified through the deposition of a-SiO x thin films by plasma enhanced chemical vapor deposition. The chemical bonding structure of the coatings was analyzed by Fourier-transform infrared spectroscopy. The morphology of the dental materials before and after the coating deposition was assessed by means of optical microscopy and high-resolution mechanical profilometry, while their wettability was investigated by contact angle measurements. The sample roughness was not altered after coating deposition, while a noticeable increase of wettability was detected for all the samples. Also, the adhesion of S. mitis decreased in a statistically significant way on the coated samples, when compared to the uncoated ones, which did not occur for S. mutans. Within the limitations of this study, a-SiO x coatings may affect the adhesion of bacteria such as S. mitis, possibly by changing the wettability of the composite resins investigated. (paper)

  12. Reduction of bacterial adhesion on dental composite resins by silicon-oxygen thin film coatings.

    Science.gov (United States)

    Mandracci, Pietro; Mussano, Federico; Ceruti, Paola; Pirri, Candido F; Carossa, Stefano

    2015-01-29

    Adhesion of bacteria on dental materials can be reduced by modifying the physical and chemical characteristics of their surfaces, either through the application of specific surface treatments or by the deposition of thin film coatings. Since this approach does not rely on the use of drugs or antimicrobial agents embedded in the materials, its duration is not limited by their possible depletion. Moreover it avoids the risks related to possible cytotoxic effects elicited by antibacterial substances released from the surface and diffused in the surrounding tissues. In this work, the adhesion of Streptococcus mutans and Streptococcus mitis was studied on four composite resins, commonly used for manufacturing dental prostheses. The surfaces of dental materials were modified through the deposition of a-SiO(x) thin films by plasma enhanced chemical vapor deposition. The chemical bonding structure of the coatings was analyzed by Fourier-transform infrared spectroscopy. The morphology of the dental materials before and after the coating deposition was assessed by means of optical microscopy and high-resolution mechanical profilometry, while their wettability was investigated by contact angle measurements. The sample roughness was not altered after coating deposition, while a noticeable increase of wettability was detected for all the samples. Also, the adhesion of S. mitis decreased in a statistically significant way on the coated samples, when compared to the uncoated ones, which did not occur for S. mutans. Within the limitations of this study, a-SiO(x) coatings may affect the adhesion of bacteria such as S. mitis, possibly by changing the wettability of the composite resins investigated.

  13. Methicillin-Resistant Staphylococcus aureus Biofilms and Their Influence on Bacterial Adhesion and Cohesion

    Directory of Open Access Journals (Sweden)

    Khulood Hamid Dakheel

    2016-01-01

    Full Text Available Twenty-five methicillin-resistant Staphylococcus aureus (MRSA isolates were characterized by staphylococcal protein A gene typing and the ability to form biofilms. The presence of exopolysaccharides, proteins, and extracellular DNA and RNA in biofilms was assessed by a dispersal assay. In addition, cell adhesion to surfaces and cell cohesion were evaluated using the packed-bead method and mechanical disruption, respectively. The predominant genotype was spa type t127 (22 out of 25 isolates; the majority of isolates were categorized as moderate biofilm producers. Twelve isolates displayed PIA-independent biofilm formation, while the remaining 13 isolates were PIA-dependent. Both groups showed strong dispersal in response to RNase and DNase digestion followed by proteinase K treatment. PIA-dependent biofilms showed variable dispersal after sodium metaperiodate treatment, whereas PIA-independent biofilms showed enhanced biofilm formation. There was no correlation between the extent of biofilm formation or biofilm components and the adhesion or cohesion abilities of the bacteria, but the efficiency of adherence to glass beads increased after biofilm depletion. In conclusion, nucleic acids and proteins formed the main components of the MRSA clone t127 biofilm matrix, and there seems to be an association between adhesion and cohesion in the biofilms tested.

  14. Effect of micro- and nanoscale topography on the adhesion of bacterial cells to solid surfaces.

    Science.gov (United States)

    Hsu, Lillian C; Fang, Jean; Borca-Tasciuc, Diana A; Worobo, Randy W; Moraru, Carmen I

    2013-04-01

    Attachment and biofilm formation by bacterial pathogens on surfaces in natural, industrial, and hospital settings lead to infections and illnesses and even death. Minimizing bacterial attachment to surfaces using controlled topography could reduce the spreading of pathogens and, thus, the incidence of illnesses and subsequent human and financial losses. In this context, the attachment of key microorganisms, including Escherichia coli, Listeria innocua, and Pseudomonas fluorescens, to silica and alumina surfaces with micron and nanoscale topography was investigated. The results suggest that orientation of the attached cells occurs preferentially such as to maximize their contact area with the surface. Moreover, the bacterial cells exhibited different morphologies, including different number and size of cellular appendages, depending on the topographical details of the surface to which they attached. This suggests that bacteria may utilize different mechanisms of attachment in response to surface topography. These results are important for the design of novel microbe-repellant materials.

  15. The influence of breast milk and infant formulae hydrolysates on bacterial adhesion and Caco-2 cells functioning.

    Science.gov (United States)

    Fiedorowicz, Ewa; Markiewicz, Lidia Hanna; Sidor, Katarzyna; Świątecka, Dominika; Cieślińska, Anna; Matysiewicz, Michał; Piskorz-Ogórek, Krystyna; Sienkiewicz-Szłapka, Edyta; Teodorowicz, Małgorzata; Świątecki, Aleksander; Kostyra, Elżbieta

    2016-11-01

    The aim of the study was to determine the concentration of BCM7 in human milk and infant formulae (IF) before and after eznymatic hydrolysis, and to evaluate the effect of obtained hydrolysates on interleukin-8 (IL-8) secretion and on proliferation of enterocytes in the in vitro model (Caco-2 cells). This study evaluates also the effect of hydrolysates on the adhesion of intestinal microbiota isolated from faeces of both healthy (H) and allergic (A) infants. In the study we investigated breast milk delivered by mothers of healthy ('healthy milk'; HM) and allergic ('allergic milk'; AM) infants. Three infant formulae were investigated: from hydrolysed cow casein (IF1), from hydrolysed cow whey (IF2) and from whole cow milk (IF3). Intestinal bacteria: Bifidobacterium, lactic acid bacteria, Enterobacteriaceae, Clostridium and Enterococcus were isolated from faeces of five healthy and five allergic infants. Mixtures of bacterial isolates and bacteria adhering to Caco-2 cells were characterised qualitatively with PCR-DGGE, and quantitavely with FISH. Concentration of BCM7 in breast milk and infant formulae was 1.6 to 8.9 times higher after enzymatic hydrolysis in comparison to undigested samples. The presence of this peptide resulted in alteration of intestinal epithelial proliferation and increase in secretion of IL-8. The quantitative profile of adherred bacteria applied as a mix of all isolates from healthy infants (H-MIX) was unchanged in the presence of HM hydrolysate and was modulated (increased number of beneficial Bifidobacterium and reduced commensal Enterobacteriaceae) in the presence of all IF hydrolysates. The presence of IF hydrolysates affected the profile of adhering isolates obtained from allergic infants (A-MIX) and reduced the adhesion of Enterobacteriaceae; the IF2 and IF3 hydrolysates decreased also the total number of adhering bacteria (TBN). However, a stimulating effect of AM hydrolysate on A-MIX adhesion (increased TBN) was observed. Copyright

  16. Candidate Targets for New Anti-Virulence Drugs: Selected Cases of Bacterial Adhesion and Biofilm Formation

    DEFF Research Database (Denmark)

    Klemm, Per; Hancock, Viktoria; Kvist, Malin

    2007-01-01

    Management of bacterial infections is becoming increasingly difficult due to the rising frequency of strains that are resistant to many current antibiotics. New types of antibiotics are, therefore, urgently needed. Virulence factors or virulence-associated phenotypes such as adhesins and biofilm ...

  17. New lactic acid bacterial strains from traditional Mongolian fermented milk products have altered adhesion to porcine gastric mucin depending on the carbon source.

    Science.gov (United States)

    Kimoto-Nira, Hiromi; Yamasaki, Seishi; Sasaki, Keisuke; Moriya, Naoko; Takenaka, Akio; Suzuki, Chise

    2015-03-01

    Attachment of lactic acid bacteria to the mucosal surface of the gastrointestinal tract is a major property of probiotics. Here, we examined the ability of 21 lactic acid bacterial strains isolated from traditional fermented milk products in Mongolia to adhere to porcine gastric mucin in vitro. Higher attachment was observed with Lactobacillus delbrueckii subsp. bulgaricus strains 6-8 and 8-1 than with Lactobacillus rhamnosus GG (positive control). Lactococcus lactis subsp. cremoris strain 7-1 adhered to mucin as effectively as did strain GG. Heat inactivation decreased the adhesive ability of strains 6-8 and 8-1 but did not affect strain 7-1. The adhesion of strains 6-8, 7-1 and 8-1 was significantly inhibited when the cells were pretreated with periodate and trypsin, indicating that proteinaceous and carbohydrate-like cell surface compounds are involved in the adhesion of these strains. The adhesion of strain 7-1 was affected by the type of carbohydrate present in the growth medium, being higher with fructose than with lactose, galactose or xylose as the carbon source. The sugar content of 7-1 cells grown on various carbohydrates was negatively correlated with its adhesive ability. We provide new probiotic candidate strains and new information regarding carbohydrate preference that influences lactic acid bacterial adhesion to mucin. © 2014 Japanese Society of Animal Science.

  18. Biochemical composition of the marine conditioning film: Implications for bacterial adhesion

    Digital Repository Service at National Institute of Oceanography (India)

    Jain, A.; Bhosle, N.B.

    adhesion, adsorption of dissolved organic matter onto surfaces usually takes place (Baier 1972; Loeb and Neihof 1975; Meyer et al. 1988; Bradshaw et al. 1997; Taylor et al. 1997; Bhosle et al. 2005). This is defined as the conditioning film or the molecular... indicates the involvement of other factors such as salinity, temperature and pH in the adsorption of DOM from natural seawater onto glass panels (Li et al. 2002). Dona Paula Bay experiences periodic blooms of diatomsduring DecembertoJanuary and...

  19. Blue Light Switchable Bacterial Adhesion as a Key Step toward the Design of Biofilms.

    Science.gov (United States)

    Chen, Fei; Wegner, Seraphine V

    2017-12-15

    The control of where and when bacteria adhere to a substrate is a key step toward controlling the formation and organization in biofilms. This study shows how we engineer bacteria to adhere specifically to substrates with high spatial and temporal control under blue light, but not in the dark, by using photoswitchable interaction between nMag and pMag proteins. For this, we express pMag proteins on the surface of E. coli so that the bacteria can adhere to substrates with immobilized nMag protein under blue light. These adhesions are reversible in the dark and can be repeatedly turned on and off. Further, the number of bacteria that can adhere to the substrate as well as the attachment and detachment dynamics are adjustable by using different point mutants of pMag and altering light intensity. Overall, the blue light switchable bacteria adhesions offer reversible, tunable and bioorthogonal control with exceptional spatial and temporal resolution. This enables us to pattern bacteria on substrates with great flexibility.

  20. Prolonging the duration of preventing bacterial adhesion of nanosilver-containing polymer films through hydrophobicity.

    Science.gov (United States)

    Yin, Bing; Liu, Tao; Yin, Yansheng

    2012-12-11

    A superhydrophobic coating composed of silver nanoparticles was developed on copper from fluorinated multilayered polyelectrolyte films to examine its performance in preventing microbial adhesion. Antibacterial and antibiofouling experiments for this novel coating were conducted with SRB. From the disk diffusion tests (for 48 h), it was found that, compared to the traditional coating composed of nanosilver, this novel coating significantly improved antibacterial performance and long-term effectiveness. The oxidation states of the immobilized silver in polyelectrolyte multilayer films were investigated with X-ray photoelectron spectroscopy (XPS), and the stability of the immobilized silver was evaluated through a leaching test. It was found that if silver was exposed to aqueous environments some ionic silver species would be produced and released. The ion release kinetics showed that the duration of sustained release of antibacterial Ag ions from the novel coatings was prolonged, which was why they had more long-term antibacterial performance.

  1. A structural basis for sustained bacterial adhesion: biomechanical properties of CFA/I pili.

    Science.gov (United States)

    Andersson, Magnus; Björnham, Oscar; Svantesson, Mats; Badahdah, Arwa; Uhlin, Bernt Eric; Bullitt, Esther

    2012-02-03

    Enterotoxigenic Escherichia coli (ETEC) are a major cause of diarrheal disease worldwide. Adhesion pili (or fimbriae), such as the CFA/I (colonization factor antigen I) organelles that enable ETEC to attach efficiently to the host intestinal tract epithelium, are critical virulence factors for initiation of infection. We characterized the intrinsic biomechanical properties and kinetics of individual CFA/I pili at the single-organelle level, demonstrating that weak external forces (7.5 pN) are sufficient to unwind the intact helical filament of this prototypical ETEC pilus and that it quickly regains its original structure when the force is removed. While the general relationship between exertion of force and an increase in the filament length for CFA/I pili associated with diarrheal disease is analogous to that of P pili and type 1 pili, associated with urinary tract and other infections, the biomechanical properties of these different pili differ in key quantitative details. Unique features of CFA/I pili, including the significantly lower force required for unwinding, the higher extension speed at which the pili enter a dynamic range of unwinding, and the appearance of sudden force drops during unwinding, can be attributed to morphological features of CFA/I pili including weak layer-to-layer interactions between subunits on adjacent turns of the helix and the approximately horizontal orientation of pilin subunits with respect to the filament axis. Our results indicate that ETEC CFA/I pili are flexible organelles optimized to withstand harsh motion without breaking, resulting in continued attachment to the intestinal epithelium by the pathogenic bacteria that express these pili. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Bacterial nanocellulose-IKVAV hydrogel matrix modulates melanoma tumor cell adhesion and proliferation and induces vasculogenic mimicry in vitro.

    Science.gov (United States)

    Reis, Emily M Dos; Berti, Fernanda V; Colla, Guilherme; Porto, Luismar M

    2017-12-05

    Vasculogenic mimicry process has generated great interest over the past decade. So far, however, there have been only a few matrices available that allow us to study that process in vitro. Here, we have developed an innovative hydrogel platform with defined composition that mimics the structural architecture and biological functions of the extracellular matrix for vasculogenic mimicry of human melanoma cells (SK-MEL-28). We chemically immobilized IKVAV peptide on bacterial nanocellulose (BNC) fibers. BNC-IKVAV hydrogel was found to improve the adhesion and proliferation of SK-MEL-28 cells on the top and bottom surfaces. Particularly, the bottom surface of BNC-IKVAV induced SK-MEL-28 cells to organize themselves as well-established networks related to the vasculogenic mimicry process. Finally, our results showed that not only BNC-IKVAV but also BNC hydrogels can potentially be used as a three-dimensional platform that allows the screening of antitumor drugs. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  3. The anti-adhesive mode of action of a purified mushroom (Lentinus edodes) extract with anticaries and antigingivitis properties in two oral bacterial phatogens.

    Science.gov (United States)

    Signoretto, Caterina; Marchi, Anna; Bertoncelli, Anna; Burlacchini, Gloria; Papetti, Adele; Pruzzo, Carla; Zaura, Egija; Lingström, Peter; Ofek, Itzhak; Pratten, Jonathan; Spratt, David A; Wilson, Michael; Canepari, Pietro

    2014-02-24

    In previous works we have shown that a low-molecular-mass (LMM) fraction from mushroom (Lentinus edodes) homogenate interferes with binding of Streptococcus mutans to hydroxyapatite and Prevotella intermedia to gingival cells. Additionally, inhibition of biofilm formation of both odonto- and periodonto-pathogenic bacteria and detachment from preformed biofilms have been described for this compound. Further purification of mushroom extract has been recently achieved and a sub-fraction (i.e. # 5) has been identified as containing the majority of the mentioned biological activities. The aim of this study was to characterise the bacterial receptors for the purified mushroom sub-fraction #5 in order to better elucidate the mode of action of this compound when interfering with bacterial adhesion to host surfaces or with bacteria-bacteria interactions in the biofilm state. Candidate bacterial molecules to act as target of this compound were bacterial surface molecules involved in cell adhesion and biofilm formation, and, thus, we have considered cell wall associated proteins (CWPs), teichoic acid (TA) and lipoteichoic acid (LTA) of S. mutans, and outer membrane proteins (OMPs) and lipopolysaccharide (LPS) of P. intermedia. Fifteen S. mutans CWPs and TA were capable of binding sub-fraction #5, while LTA did not. As far as P. intermedia is concerned, we show that five OMPs interact with sub-fraction # 5. Capacity of binding to P. intermedia LPS was also studied but in this case negative results were obtained. Binding sub-fraction # 5 to surface molecules of S. mutans or P. intermedia may result in inactivation of their physiological functions. As a whole, these results indicate, at molecular level, the bacterial surface alterations affecting adhesion and biofim formation. For these antimicrobial properties, the compound may find use in daily oral hygiene.

  4. Streptococcus pyogenes CAMP factor promotes bacterial adhesion and invasion in pharyngeal epithelial cells without serum via PI3K/Akt signaling pathway.

    Science.gov (United States)

    Kurosawa, Mie; Oda, Masataka; Domon, Hisanori; Isono, Toshihito; Nakamura, Yuki; Saitoh, Issei; Hayasaki, Haruaki; Yamaguchi, Masaya; Kawabata, Shigetada; Terao, Yutaka

    2018-01-01

    Streptococcus pyogenes is a bacterium that causes systemic diseases, such as pharyngitis and toxic shock syndrome, via oral- or nasal-cavity infection. S. pyogenes produces various molecules known to function with serum components that lead to bacterial adhesion and invasion in human tissues. In this study, we identified a novel S. pyogenes adhesin/invasin. Our results revealed that CAMP factor promoted streptococcal adhesion and invasion in pharyngeal epithelial Detroit562 cells without serum. Recombinant CAMP factor initially localized on the membranes of cells and then became internalized in the cytosol following S. pyogenes infection. Additionally, CAMP factor phosphorylated phosphoinositide 3-kinase and serine-threonine kinase in the cells. ELISA results demonstrate that CAMP factor affected the amount of phosphorylated phosphoinositide 3-kinase and serine-threonine kinase in Detroit562 cells. Furthermore, CAMP factor did not reverse the effect of phosphoinositide 3-kinase knockdown by small interfering RNA in reducing the level of adhesion and invasion of S. pyogenes isogenic cfa-deficient mutant. These results suggested that S. pyogenes CAMP factor activated the phosphoinositide 3-kinase/serine-threonine kinase signaling pathway, promoting S. pyogenes invasion of Detroit562 cells without serum. Our findings suggested that CAMP factor played an important role on adhesion and invasion in pharyngeal epithelial cells. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  5. Bioactive 3D-Shaped Wound Dressings Synthesized from Bacterial Cellulose: Effect on Cell Adhesion of Polyvinyl Alcohol Integrated In Situ

    Directory of Open Access Journals (Sweden)

    Marlon Osorio

    2017-01-01

    Full Text Available We investigated wound dressing composites comprising fibrils of bacterial cellulose (BC grown by fermentation in the presence of polyvinyl alcohol (PVA followed by physical crosslinking. The reference biointerface, neat BC, favoured adhesion of fibroblasts owing to size exclusion effects. Furthermore, it resisted migration across the biomaterial. Such effects were minimized in the case of PVA/BC membranes. Therefore, the latter are suggested in cases where cell adhesion is to be avoided, for instance, in the design of interactive wound dressings with facile exudate control. The bioactivity and other properties of the membranes were related to their morphology and structure and considered those of collagen fibres. Bioactive materials were produced by simple 3D templating of BC during growth and proposed for burn and skin ulcer treatment.

  6. LAP, an alcohol acetaldehyde dehydrogenase enzyme in Listeria, promotes bacterial adhesion to enterocyte-like Caco-2 cells only in pathogenic species.

    Science.gov (United States)

    Jagadeesan, Balamurugan; Koo, Ok Kyung; Kim, Kwang-Pyo; Burkholder, Kristin M; Mishra, Krishna K; Aroonnual, Amornrat; Bhunia, Arun K

    2010-09-01

    Listeria adhesion protein (LAP), an alcohol acetaldehyde dehydrogenase (lmo1634), interacts with host-cell receptor Hsp60 to promote bacterial adhesion during the intestinal phase of Listeria monocytogenes infection. The LAP homologue is present in pathogens (L. monocytogenes, L. ivanovii) and non-pathogens (L. innocua, L. welshimeri, L. seeligeri); however, its role in non-pathogens is unknown. Sequence analysis revealed 98 % amino acid similarity in LAP from all Listeria species. The N-terminus contains acetaldehyde dehydrogenase (ALDH) and the C-terminus an alcohol dehydrogenase (ADH). Recombinant LAP from L. monocytogenes, L. ivanovii, L. innocua and L. welshimeri exhibited ALDH and ADH activities, and displayed strong binding affinity (K(D) 2-31 nM) towards Hsp60. Flow cytometry, ELISA and immunoelectron microscopy revealed more surface-associated LAP in pathogens than non-pathogens. Pathogens exhibited significantly higher adhesion (Ppathogens; however, pretreatment of bacteria with Hsp60 caused 47-92 % reduction in adhesion only in pathogens. These data suggest that biochemical properties of LAP from pathogenic Listeria are similar to those of the protein from non-pathogens in many respects, such as substrate specificity, immunogenicity, and binding affinity to Hsp60. However, protein fractionation analysis of extracts from pathogenic and non-pathogenic Listeria species revealed that LAP was greatly reduced in intracellular and cell-surface protein fractions, and undetectable in the extracellular milieu of non-pathogens even though the lap transcript levels were similar for both. Furthermore, a LAP preparation from L. monocytogenes restored adhesion in a lap mutant (KB208) of L. monocytogenes but not in L. innocua, indicating possible lack of surface reassociation of LAP molecules in this bacterium. Taken together, these data suggest that LAP expression level, cell-surface localization, secretion and reassociation are responsible for LAP

  7. Fine structure of bacterial adhesion to the epithelial cell membranes of the filiform papillae of tongue and palatine mucosa of rodents: a morphometric, TEM, and HRSEM study.

    Science.gov (United States)

    Watanabe, Ii-Sei; Ogawa, Koichi; Cury, Diego Pulzatto; Dias, Fernando José; Sosthenes, Marcia Consentino Kronka; Issa, João Paulo Mardegan; Iyomasa, Mamie Mizusaki

    2013-12-01

    The palatine mucosa and filiform papillae of the dorsal tongue mucosae of rodents were examined using transmission electron microscopy (TEM) and high resolution scanning electron microscopy (HRSEM). In the HRSEM method, the samples were fixed in 2% osmium tetroxide, dehydrated in alcohol, critical point-dried, and coated with gold-palladium. In addition, the HRSEM technique was used for morphometric analysis (length, width, and length/width ratio of cocci and bacilli). For the TEM method, the tissues were fixed in modified Karnovsky solution (2.5% glutaraldehyde, 2% formalin in 0.1M sodium phosphate buffer, pH 7.4) and embedded in Spurr resin. The results demonstrated that there are thick polygonal keratinized epithelial cells where groups of bacteria are revealed in three-dimensional images on the surface of filiform papillae in these animals. The bacterial membranes are randomly attached to the microplicae surface of epithelial cells. Morphometrics showed higher values of length and width of cocci in newborn (0 day) as compared to newborn (7 days) and adults animals, the bacilli showed no differences in these measurements. At high magnification, the TEM images revealed the presence of glycocalyx microfilaments that constitute a fine adhesion area between bacterial membranes and the membranes of epithelial microplicae cells. In conclusion, the present data revealed the fine fibrillar structures of bacteria that facilitate adhesion to the epithelial cell membranes of the oral cavity and morphometric changes in newborn (0 day) rats as compared with other periods. Copyright © 2013 Wiley Periodicals, Inc.

  8. Intelligent Textiles with Comfort Regulation and Inhibition of Bacterial Adhesion Realized by Cross-Linking Poly(n-isopropylacrylamide-co-ethylene glycol methacrylate) to Cotton Fabrics.

    Science.gov (United States)

    Wang, Jiping; Chen, Yangyi; An, Jie; Xu, Ke; Chen, Tao; Müller-Buschbaum, Peter; Zhong, Qi

    2017-04-19

    Comfort regulation and inhibition of bacterial adhesion to textiles is realized by cross-linking thermoresponsive random copolymer to the cotton fabrics. By introduction of ethylene glycol methacrylate (EGMA) monomers into n-isopropylacrylamide (NIPAM) with a molar ratio of 2:18, the obtained random copolymer poly(n-isopropylacrylamide-co-ethylene glycol methacrylate), abbreviated as P(NIPAM-co-EGMA), presents a transition temperature (TT) of 40 °C in an aqueous solution with a concentration of 1 mg/mL. Because of the additional EGMA in the copolymer, the obtained P(NIPAM-co-EGMA) shows a glass transition temperature (T g ) of 0 °C, which is much lower than that of pure PNIPAM (T g = 140 °C). Therefore, the introduction of P(NIPAM-co-EGMA) into the cotton fabrics will have little influence on the softness of the fabrics. Due to the cross-linked P(NIPAM-co-EGMA) layer on the cotton fabrics, the porosity of the polymer layer can be adjusted by varying the external temperature below or above TT, showing that regulation of the air and moisture permeability as well as the body comfort are feasible in the cotton fabrics cross-linked with P(NIPAM-co-EGMA). In addition, the cross-linked P(NIPAM-co-EGMA) layer is capable of absorbing moisture in the ambient atmosphere to form a hydrated layer on top, which can inhibit bacterial adhesion to the textiles.

  9. Reduction in Thrombosis and Bacterial Adhesion with 7 Day Implantation ofS-Nitroso-N-acetylpenicillamine (SNAP)-Doped Elast-eon E2As Catheters in Sheep.

    Science.gov (United States)

    Brisbois, Elizabeth J; Davis, Ryan P; Jones, Anna M; Major, Terry C; Bartlett, Robert H; Meyerhoff, Mark E; Handa, Hitesh

    2015-02-28

    Thrombosis and infection are two common problems associated with blood-contacting medical devices such as catheters. Nitric oxide (NO) is known to be a potent antimicrobial agent as well as an inhibitor of platelet activation and adhesion. Healthy endothelial cells that line the inner walls of all blood vessels exhibit a NO flux of 0.5~4×10 -10 mol cm -2 min -1 that helps prevent thrombosis. Materials with a NO flux that is equivalent to this level are expected to exhibit similar anti-thrombotic properties. In this study, NO-releasing catheters were fabricated by incorporating S -nitroso- N -acetylpenicillamine (SNAP) in the Elast-eon E2As polymer. The SNAP/E2As catheters release physiological levels of NO for up to 20 d, as measured by chemiluminescence. Furthermore, SNAP is stable in the E2As polymer, retaining 89% of the initial SNAP after ethylene oxide (EO) sterilization. The SNAP/E2As and E2As control catheters were implanted in sheep veins for 7 d to examine the effect on thrombosis and bacterial adhesion. The SNAP/E2As catheters reduced the thrombus area when compared to the control (1.56 ± 0.76 and 5.06 ± 1.44 cm 2 , respectively). A 90% reduction in bacterial adhesion was also observed for the SNAP/E2As catheters as compared to the controls. The results suggest that the SNAP/E2As polymer has the potential to improve the hemocompatibility and bactericidal activity of intravascular catheters, as well as other blood-contacting medical devices (e.g., vascular grafts, extracorporeal circuits).

  10. In vitro assessments on bacterial adhesion and corrosion performance of TiN coating on Ti6Al4V titanium alloy synthesized by multi-arc ion plating

    International Nuclear Information System (INIS)

    Lin Naiming; Huang Xiaobo; Zhang Xiangyu; Fan Ailan; Qin Lin; Tang Bin

    2012-01-01

    TiN coating was synthesized on Ti6Al4V titanium alloy surface by multi-arc ion plating (MIP) technique. Surface morphology, cross sectional microstructure, elemental distributions and phase compositions of the obtained coating were analyzed by means of scanning electron microscope (SEM), optical microscope (OM), glow discharge optical emission spectroscope (GDOES) and X-ray diffraction (XRD). Bacterial adhesion and corrosion performance of Ti6Al4V and the TiN coating were assessed via in vitro bacterial adhesion tests and corrosion experiments, respectively. The results indicated that continuous and compact coating which was built up by pure TiN with a typical columnar crystal structure has reached a thickness of 1.5 μm. This TiN coating could significantly reduce the bacterial adhesion and enhance the corrosion resistance of Ti6Al4V substrate.

  11. An in vitro study on bacterial growth interactions and intestinal epithelial cell adhesion characteristics of probiotic combinations.

    Science.gov (United States)

    Moussavi, Mahta; Adams, Michelle Catherine

    2010-05-01

    The aims of this study were to examine long-term growth interactions of five probiotic strains (Lactobacillus casei 01, Lactobacillus plantarum HA8, Lactobacillus rhamnosus GG, Lactobacillus reuteri ATCC 55730 and Bifidobacterium lactis Bb12) either alone or in combination with Propionibacterium jensenii 702 in a co-culture system and to determine their adhesion ability to human colon adenocarcinoma cell line Caco-2. Growth patterns of probiotic Lactobacillus strains were not considerably affected by the presence of P. jensenii 702, whereas lactobacilli exerted a strong antagonistic action against P. jensenii 702. In the co-culture of Bif. lactis Bb12 and P. jensenii 702, a significant synergistic influence on growth of both bacteria was observed (P strains were tested in combination, there was evidence of an associated effect on percentage adherence. However, in most cases these differences were not statistically significant (P casei 01 and Lb. rhamnosus GG both decreased significantly in the presence of P. jensenii 702 compared to their adhesion levels when alone (P survival and percentage adhesion of some probiotic strains may be influenced by the presence of other strains and this should be considered when formulating in the probiotic products.

  12. CXCL1 can be regulated by IL-6 and promotes granulocyte adhesion to brain capillaries during bacterial toxin exposure and encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Roy Monica

    2012-01-01

    Full Text Available Abstract Background Granulocytes generally exert protective roles in the central nervous system (CNS, but recent studies suggest that they can be detrimental in experimental autoimmune encephalomyelitis (EAE, the most common model of multiple sclerosis. While the cytokines and adhesion molecules involved in granulocyte adhesion to the brain vasculature have started to be elucidated, the required chemokines remain undetermined. Methods CXCR2 ligand expression was examined in the CNS of mice suffering from EAE or exposed to bacterial toxins by quantitative RT-PCR and in situ hybridization. CXCL1 expression was analyzed in IL-6-treated endothelial cell cultures by quantitative RT-PCR and ELISA. Granulocytes were counted in the brain vasculature after treatment with a neutralizing anti-CXCL1 antibody using stereological techniques. Results CXCL1 was the most highly expressed ligand of the granulocyte receptor CXCR2 in the CNS of mice subjected to EAE or infused with lipopolysaccharide (LPS or pertussis toxin (PTX, the latter being commonly used to induce EAE. IL-6 upregulated CXCL1 expression in brain endothelial cells by acting transcriptionally and mediated the stimulatory effect of PTX on CXCL1 expression. The anti-CXCL1 antibody reduced granulocyte adhesion to brain capillaries in the three conditions under study. Importantly, it attenuated EAE severity when given daily for a week during the effector phase of the disease. Conclusions This study identifies CXCL1 not only as a key regulator of granulocyte recruitment into the CNS, but also as a new potential target for the treatment of neuroinflammatory diseases such as multiple sclerosis.

  13. Solvent-free functionalization of silicone rubber and efficacy of PAAm brushes grafted from an amino-PPX layer against bacterial adhesion.

    Science.gov (United States)

    Fundeanu, Irina; Klee, Doris; Schouten, Arend J; Busscher, Henk J; van der Mei, Henny C

    2010-11-01

    Silicone rubber is a frequently employed biomaterial that is prone to bacterial adhesion and biofilm formation. In this study, the surface of silicone rubber was solvent-free functionalized by chemical vapor deposition (CVD) of poly(o-amino-p-xylylene-co-p-xylylene (amino-PPX). Subsequently, the amino groups of the amino-PPX layer were used to introduce the initiator from a vapor phase for atom transfer radical polymerization of acrylamide to form polyacrylamide (PAAm) brushes. The modification steps were verified by means of X-ray photoelectron spectroscopy and attenuated total reflection-Fourier transform infrared spectroscopy. Adhesion of Staphylococcus aureus ATCC 12600 and Escherichia coli 3.14 to an amino-PPX-PAAm brush coating in a parallel plate flow chamber was strongly reduced with respect to non-coated silicone rubber - by 93% and 99%, respectively. For E. coli 3.14, this reduction is larger than that obtained for solvent functionalization of γ-aminopropyltriethoxysilane-PAAm brushes due to the higher density of amino groups introduced by the CVD of amino-PPX. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Bacterial adhesion to suture material in a contaminated wound model: Comparison of monofilament, braided, and barbed sutures.

    Science.gov (United States)

    Dhom, Jonas; Bloes, Dominik A; Peschel, Andreas; Hofmann, Ulf K

    2017-04-01

    Contaminated suture material plays an important role in the physiopathology of surgical site infections. Recently, suture material has been developed characterized by barbs projecting from a monofilament base. Claimed advantages for barbed sutures are a shortened wound closure time and reduced maximum wound tension. It has also been suggested that these sutures would be advantageous microbiologically. The aim of this study was to test the microbiological characteristics of the barbed Quill in comparison to the monofilament Ethilon II and the braided sutures Vicryl and triclosan-coated Vicryl Plus. In our study, sutures were cultivated on color-change agar with Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecium, Escherichia coli, and Pseudomonas aeruginosa and the halo size was measured. In a second study arm with longer cultivation bacterial growth was followed by antibiotic treatment. Ethilon II and Quill showed good comparable results, whereas large halos were found around Vicryl. Vicryl Plus results depended on triclosan sensitivity. After longer bacterial cultivation and antibiotic treatment, halos were up to 3.6 times smaller on Quill than on Vicryl (p barbs on Quill. From a microbiological perspective, barbed sutures can be recommended in aseptic surgery, but should only be used carefully in septic surgery. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:925-933, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  15. Nitrogen starvation affects bacterial adhesion to soil Adesão de bactérias desnutridas por nitrogênio a solo

    Directory of Open Access Journals (Sweden)

    Maria Tereza Borges

    2008-09-01

    Full Text Available One of the main factors limiting the bioremediation of subsoil environments based on bioaugmentation is the transport of selected microorganisms to the contaminated zones. The characterization of the physiological responses of the inoculated microorganisms to starvation, especially the evaluation of characteristics that affect the adhesion of the cells to soil particles, is fundamental to anticipate the success or failure of bioaugmentation. The objective of this study was to investigate the effect of nitrogen starvation on cell surface hydrophobicity and cell adhesion to soil particles by bacterial strains previously characterized as able to use benzene, toluene or xilenes as carbon and energy sources. The strains LBBMA 18-T (non-identified, Arthrobacter aurescens LBBMA 98, Arthrobacter oxydans LBBMA 201, and Klebsiella sp. LBBMA 204-1 were used in the experiments. Cultivation of the cells in nitrogen-deficient medium caused a significant reduction of the adhesion to soil particles by all the four strains. Nitrogen starvation also reduced significantly the strength of cell adhesion to the soil particles, except for Klebsiella sp. LBBMA 204-1. Two of the four strains showed significant reduction in cell surface hydrophobicity. It is inferred that the efficiency of bacterial transport through soils might be potentially increased by nitrogen starvation.Um dos principais fatores limitantes da biorremediação in situ de solos subterrâneos, baseada na bioaumentação, é o transporte dos microrganismos selecionados até o local contaminado. A caracterização das respostas fisiológicas dos microrganismos introduzidos no subsolo a condições de escassez nutricional, notadamente a avaliação de características que afetam a adesão celular ao solo, é fundamental para se prever o sucesso da bioaumentação. O objetivo deste trabalho foi determinar o efeito da desnutrição em meio com escassez de nitrogênio sobre a hidrofobicidade celular e a

  16. Bifunctional coating based on carboxymethyl chitosan with stable conjugated alkaline phosphatase for inhibiting bacterial adhesion and promoting osteogenic differentiation on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Dong; Neoh, Koon Gee, E-mail: chenkg@nus.edu.sg; Kang, En-Tang

    2016-01-01

    Graphical abstract: - Highlights: • Alkaline phosphatase was immobilized on carboxymethyl chitosan coating on Ti. • The coating is bifunctional; resists bacterial adhesion and enhances cell functions. • Osteogenic differentiation of osteoblasts and stem cells is enhanced on the coating. • The coating remains stable and functional after ethanol treatment and autoclaving. - Abstract: In this work, alkaline phosphatase (ALP) was covalently immobilized on carboxymethyl chitosan (CMCS)-coated polydopamine (PDA)-functionalized Ti to achieve a bifunctional surface. Our results showed ∼89% reduction in Staphylococcus epidermidis adhesion on this surface compared to that on pristine Ti. The ALP-modified Ti supported cell proliferation, and significantly enhanced cellular ALP activity and calcium deposition of osteoblasts, human mesenchymal stem cells (hMSCs) and human adipose-derived stem cells (hADSCs). The extent of enhancement in the functions of these cells is dependent on the surface density of immobilized ALP. The substrate prepared using an ALP solution of 50 μg/cm{sup 2} resulted in 44%, 54% and 129% increase in calcium deposited by osteoblasts, hMSCs and hADSCs, respectively, compared to those cultured on pristine Ti. The ALP-modified substrates also promoted the osteogenic differentiation of hMSCs and hADSCs by up-regulating gene expressions of runt-related transcription factor 2 (RUNX2), osterix (OSX), and osteocalcin (OC) in the two types of stem cells. The surface-immobilized ALP was stable after being subjected to 1 h immersion in 70% ethanol and autoclaving at 121 °C for 20 min. However, the enzymatic bioactivity of the surface-immobilized ALP was reduced by about 50% after these substrates were immersed in phosphate buffered saline (PBS) or PBS containing lysozyme for 14 days.

  17. Reduction of intercellular adhesion molecule 1 may play a role in anti-inflammatory effect of hyaluronic acid in a rat model of severe non-bacterial cystitis.

    Science.gov (United States)

    Shao, Yuan; Lu, Guo-liang; Shen, Zhou-Jun; He, Hong-chao

    2013-06-01

    To evaluate the impact of intercellular adhesion molecule 1 (ICAM-1) in hyaluronic acid (HA) therapy in rats model of severe non-bacterial cystitis. Cystitis models in Sprague-Dawley female rats were produced by combination of intraperitoneal cyclophosphamide (CYP) with intravesical protamine/lipopolysaccharide (PS/LPS). HA or heparin (0.5 ml) was introduced intravesically to rats' bladders followed PS/LPS. Bladder tissue was prepared for histology including mast cell presence and measurement of ICAM-1, tumor necrosis factor (TNF)-α, and interleukin 6 (IL-6). Cystitis model using intraperitoneal CYP and intravesical SP/LPS showed serious inflammation, higher mast cell count with elevated ICAM-1, TNF-α, and IL-6 levels. After intravesical heparin or HA treatment, incidence of grades 3-4 bladder inflammation and tissue ICAM-1 level were only significantly lower in HA group (P = 0.017, P = 0.021, respectively), but not in heparin group (P = 0.12, P = 0.798, respectively). Remarkably lower level of TNF-α (P = 0.003) and ICAM-1 (P = 0.006) was detected in HA-treated rats compared with heparin-treated rats. Inflammation grade and ICAM-1 level had strong correlation (P < 0.001). IL-6 level after HA or heparin instillation had no difference. Intravesical administration of HA decreased the severity of bladder inflammation, mast cell presence, and levels of ICAM-1 and TNF-α in a rat model of severe non-bacterial cystitis; its effect was more obvious than that of heparin. Reduction of ICAM-1 may play a role in the anti-inflammatory effect of HA.

  18. Physical and chemical quality, biodiversity, and thermodynamic prediction of adhesion of bacterial isolates from a water purification system: a case study

    Directory of Open Access Journals (Sweden)

    Roberta Barbosa Teodoro Alves

    2017-06-01

    Full Text Available ABSTRACT The objective of this study was to evaluate the quality of water purification system and identify the bacteria this system, predict bacterial adherence according to the hydrophobicity of these microorganisms and of the polypropylene distribution loop for purified water. The assessment of drinking water that supplies the purification system allowed good-quality physical, chemical, and microbiological specifications. The physicochemical specifications of the distributed purified water were approved, but the heterotrophic bacteria count was higher than allowed (>2 log CFU mL-1.The sanitation of the storage tank with chlorine decreased the number of bacteria adhered to the surface (4.34 cycles log. By sequencing of the 16SrDNA genes, six species of bacteria were identified. The contact angle was determined and polypropylene surface and all bacteria were considered to be hydrophilic, and adhesion was thermodynamically unfavorable. This case study showed the importance of monitoring the water quality in the purified water systems and the importance of sanitization with chemical agents. The count of heterotrophic bacteria on the polypropylene surface was consistent with the predicted thermodynamics results because the number of adhered cells reached approximate values of 5 log CFU cm-2.

  19. A kit for the investigation of live Escherichia coli cell adhesion to glycosylated surfaces

    DEFF Research Database (Denmark)

    Hartmann, M.; Horst, A. K.; Klemm, Per

    2010-01-01

    A combination of microtiter plate functionalization techniques and two facile bacterial adhesion inhibition assays form a flexible toolbox for the investigation of bacterial adhesion mechanisms on glycosylated surfaces.......A combination of microtiter plate functionalization techniques and two facile bacterial adhesion inhibition assays form a flexible toolbox for the investigation of bacterial adhesion mechanisms on glycosylated surfaces....

  20. Diatom Attachment at Aquatic Interfaces: Molecular Interactions, Mechanisms, and Physiology of Adhesion

    National Research Council Canada - National Science Library

    Gretz, Michael

    1997-01-01

    .... those more hydrophobic and that bacterial 'preconditioning' has variable effects on adhesion; (3) developed methodology for mass culture of fouling diatoms and isolation of adhesive components; (4...

  1. Bacterial endotoxin enhances colorectal cancer cell adhesion and invasion through TLR-4 and NF-kappaB-dependent activation of the urokinase plasminogen activator system.

    LENUS (Irish Health Repository)

    Killeen, S D

    2009-05-19

    Perioperative exposure to lipopolysaccharide (LPS) is associated with accelerated metastatic colorectal tumour growth. LPS directly affects cells through Toll-like receptor 4 (TLR-4) and the transcription factor NF-kappaB. The urokinase plasminogen activator (u-PA) system is intimately implicated in tumour cell extracellular matrix (ECM) interactions fundamental to tumour progression. Thus we sought to determine if LPS directly induces accelerated tumour cell ECM adhesion and invasion through activation of the u-PA system and to elucidate the cellular pathways involved. Human colorectal tumour cell lines were stimulated with LPS. u-PA concentration, u-PA activity, active u-PA, surface urokinase plasminogen activator receptor (u-PAR) and TLR-4 expression were assessed by ELISA, colorimetric assay, western blot analysis and flow cytometry respectively. In vitro tumour cell vitronectin adhesion and ECM invasion were analysed by vitronectin adhesion assay and ECM invasion chambers. u-PA and u-PAR function was inhibited with anti u-PA antibodies or the selective u-PA inhibitors amiloride or WXC-340, TLR-4 by TLR-4-blocking antibodies and NF-kappaB by the selective NF-kappaB inhibitor SN-50. LPS upregulates u-PA and u-PAR in a dose-dependent manner, enhancing in vitro tumour cell vitronectin adhesion and ECM invasion by >40% (P<0.01). These effects were ameliorated by u-PA and u-PAR inhibition. LPS activates NF-kappaB through TLR-4. TLR-4 and NF-kappaB inhibition ameliorated LPS-enhanced u-PA and u-PAR expression, tumour cell vitronectin adhesion and ECM invasion. LPS promotes tumour cell ECM adhesion and invasion through activation of the u-PA system in a TLR-4- and NF-kappaB-dependent manner.

  2. A simple technique to assess bacterial attachment to metal surfaces

    Digital Repository Service at National Institute of Oceanography (India)

    Sonak, S.; Bhosle, N.B.

    There are several methods to assess bacterial adhesion to metal surfaces. Although these methods are sensitive, they are time consuming and need expensive chemicals and instruments. Hence, their use in assessing bacterial adhesion is limited...

  3. Adhesive Categories

    DEFF Research Database (Denmark)

    Lack, Stephen; Sobocinski, Pawel

    2003-01-01

    We introduce adhesive categories, which are categories with structure ensuring that pushouts along monomorphisms are well-behaved. Many types of graphical structures used in computer science are shown to be examples of adhesive categories. Double-pushout graph rewriting generalises well...... to rewriting on arbitrary adhesive categories....

  4. Protein adhesives

    Science.gov (United States)

    Charles R. Frihart; Linda F. Lorenz

    2018-01-01

    Nature uses a wide variety of chemicals for providing adhesion internally (e.g., cell to cell) and externally (e.g., mussels to ships and piers). This adhesive bonding is chemically and mechanically complex, involving a variety of proteins, carbohydrates, and other compounds.Consequently,the effect of protein structures on adhesive properties is only partially...

  5. Beneficial effect of Cu on Ti-Nb-Ta-Zr sputtered uniform/adhesive gum films accelerating bacterial inactivation under indoor visible light.

    Science.gov (United States)

    Alhussein, Akram; Achache, Sofiane; Deturche, Regis; Sanchette, Frederic; Pulgarin, Cesar; Kiwi, John; Rtimi, Sami

    2017-04-01

    This article presents the evidence for the significant effect of copper accelerating the bacterial inactivation on Ti-Nb-Ta-Zr (TNTZ) sputtered films on glass up to a Cu content of 8.3 at.%. These films were deposited by dc magnetron co-sputtering of an alloy target Ti-23Nb-0.7Ta-2Zr (at.%) and a Cu target. The fastest bacterial inactivation of E. coli on this later TNTZ-Cu surface proceeded within ∼75min. The films deposited by magnetron sputtering are chemically homogenous. The film roughness evaluated by atomic force spectroscopy (AFM) on the TNTZ-Cu 8.3 at.% Cu sample presented an RMS-value of 20.1nm being the highest RMS of any Cu-sputtered TNTZ sample. The implication of the RMS value found for this sample leading to the fastest interfacial bacterial inactivation kinetics is also discussed. Values for the Young's modulus and hardness are reported for the TNTZ films in the presence of various Cu-contents. Evaluation of the bacterial inactivation kinetics of E. coli under low intensity actinic hospital light and in the dark was carried out. The stable repetitive bacterial inactivation was consistent with the extremely low Cu-ion release from the samples of 0.4 ppb. Evidence is presented by the bacterial inactivation dependence on the applied light intensity for the intervention of Cu as semiconductor CuO during the bacterial inactivation at the TNTZ-Cu interface. The mechanism of CuO-intervention under light is suggested based on the pH/and potential changes registered during bacterial disinfection. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Adhesive interactions between medically important yeasts and bacteria

    NARCIS (Netherlands)

    Millsap, KW; van der Mei, HC; Busscher, HJ; Bos, R.R.M.

    Yeasts are being increasingly identified as important organisms in human infections. Adhesive interactions between yeasts and bacteria may contribute to yeast retention al body sites. Methods for studying adhesive interactions between bacterial strains are well known, and range from simple

  7. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of a health claim related to Monurelle® and reduction of bacterial colonisation of the urinary tract by the inhibition of the adhesion of P-fimbriated E.coli to uroepithelial cells pursuant to Article 13(5) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    on the scientific substantiation of a health claim related to Monurelle® and reduction of bacterial colonisation of the urinary tract by the inhibition of the adhesion of P-fimbriated E.coli to uroepithelial cells. The food that is the subject of the health claim, Monurelle®, which is a combination of 120 mg...... cranberry (Vaccinium macrocarpon) extract (including 36 mg proanthocyanidins) and 60 mg of ascorbic acid, is sufficiently characterised. The claimed effect proposed by the applicant is reduction of E.coli adhesion to uroepithelial cells. The Panel considers that reduction of bacterial colonisation...... of the urinary tract by inhibition of the adhesion of P-fimbriated E.coli to uroepithelial cells is a beneficial physiological effect. Several health claim applications on cranberry products standardised by their proanthocyanidin content have already been evaluated by EFSA with an unfavourable outcome. The Panel...

  8. Multiple linear regression analysis of bacterial deposition to polyurethane coatings after conditioning film formation in the marine environment

    NARCIS (Netherlands)

    Bakker, D.P.; Busscher, H.J.; Zanten, J. van; Vries, J. de; Klijnstra, J.W.; Mei, H.C. van der

    2004-01-01

    Many studies have shown relationships of substratum hydrophobicity, charge or roughness with bacterial adhesion, although bacterial adhesion is governed by interplay of different physico-chemical properties and multiple regression analysis would be more suitable to reveal mechanisms of bacterial

  9. Multiple linear regression analysis of bacterial deposition to polyurethane coating after conditioning film formation in the marine environment

    NARCIS (Netherlands)

    Bakker, Dewi P; Busscher, Henk J; van Zanten, Joyce; de Vries, Jacob; Klijnstra, Job W; van der Mei, Henny C

    Many studies have shown relationships of substratum hydrophobicity, charge or roughness with bacterial adhesion, although bacterial adhesion is governed by interplay of different physico-chemical properties and multiple regression analysis would be more suitable to reveal mechanisms of bacterial

  10. Cellular Adhesion and Adhesion Molecules

    OpenAIRE

    SELLER, Zerrin

    2014-01-01

    In recent years, cell adhesion and cell adhesion molecules have been shown to be important for many normal biological processes, including embryonic cell migration, immune system functions and wound healing. It has also been shown that they contribute to the pathogenesis of a large number of common human disorders, such as rheumatoid arthritis and tumor cell metastasis in cancer. In this review, the basic mechanisms of cellular adhesion and the structural and functional features of adhes...

  11. Adhesive Categories

    DEFF Research Database (Denmark)

    Lack, Stephen; Sobocinski, Pawel

    2004-01-01

    We introduce adhesive categories, which are categories with structure ensuring that pushouts along monomorphisms are well-behaved. Many types of graphical structures used in computer science are shown to be examples of adhesive categories. Double-pushout graph rewriting generalises well...

  12. Denture Adhesives

    Science.gov (United States)

    ... prevent overuse if zinc is an ingredient. (Some companies include graphics of the amount of adhesive to ... and adequate directions for use or a clear definition of an unsafe dosage or methods or duration ...

  13. Anti-adhesive properties of fish tropomyosins

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; Bernbom, Nete; Gram, Lone

    2008-01-01

    Aims: We have recently found that preconditioning of stainless steel surfaces with an aqueous fish muscle extract can significantly impede bacterial adhesion. The purpose of this study was to identify and characterize the primary components associated with this bacteria-repelling effect. Methods...... to the formation of a proteinaceous conditioning film composed primarily of fish tropomyosins. These fibrous proteins formed a considerable anti-adhesive conditioning layer on and reduced bacterial adhesion to several different materials including polystyrene, vinyl plastic, stainless steel and glass. The protein...... the importance of substratum's physiochemical properties and exposure time with regards to protein adsorption/elution efficiency and subsequent bacterial adhesion. Significance and Impact of the Study: Fish tropomyosin-coatings could potentially offer a nontoxic and relatively inexpensive measure of reducing...

  14. Adhesion molecules

    CERN Document Server

    Preedy, Victor R

    2016-01-01

    This book covers the structure and classification of adhesion molecules in relation to signaling pathways and gene expression. It discusses immunohistochemical localization, neutrophil migration, and junctional, functional, and inflammatory adhesion molecules in pathologies such as leukocyte decompression sickness and ischemia reperfusion injury. Highlighting the medical applications of current research, chapters cover diabetes, obesity, and metabolic syndrome; hypoxia; kidney disease; smoking, atrial fibrillation, and heart disease, the brain and dementia; and tumor proliferation. Finally, it looks at molecular imaging and bioinformatics, high-throughput technologies, and chemotherapy.

  15. Adhesive plasters

    Science.gov (United States)

    Holcombe, Jr., Cressie E.; Swain, Ronald L.; Banker, John G.; Edwards, Charlene C.

    1978-01-01

    Adhesive plaster compositions are provided by treating particles of Y.sub.2 O.sub.3, Eu.sub.2 O.sub.3, Gd.sub.2 O.sub.3 or Nd.sub.2 O.sub.3 with dilute acid solutions. The resulting compositions have been found to spontaneously harden into rigid reticulated masses resembling plaster of Paris. Upon heating, the hardened material is decomposed into the oxide, yet retains the reticulated rigid structure.

  16. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2013. Scientific Opinion on the substantiation of a health claim related to proanthocyanidins in Urell® and reduction of bacterial colonisation of the urinary tract by inhibition of the adhesion of P-fimbriated E. coli to uroepithelial cells pursuant to Article 13(5) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    related to a Urell® product containing cranberry (Vaccinium macrocarpon) juice powder standardised for proanthocyanidins (PAC) content and bacterial colonisation of the urinary tract by inhibition of the adhesion of P-fimbriated E. coli to uroepithelial cells. The food that is the subject of the health...

  17. Corrosion, haemocompatibility and bacterial adhesion behaviour of ...

    Indian Academy of Sciences (India)

    volunteers by venipuncture into sterile tubes containing. 3.8% (wt/vol) trisodium citrate and gently mixed. Whole blood centrifugation was done at 800 cycles min. −1 for 10 min at 37. ◦. C to extract platelets. Then the highly concen- trated platelets were compromised with homologous solu- tion to acquire 330 platelets mm. −3.

  18. Corrosion, haemocompatibility and bacterial adhesion behaviour of ...

    Indian Academy of Sciences (India)

    grade material is used to replace various parts of the body owing to its corrosion resistance, wear resistance and high hardness. However, after implantation, it .... thrombogenicity. The blood was drained from healthy. Figure 1. (a) GIXRD pattern of TiZrN coatings. (b) AFM images of uncoated 316L SS and (c) TiZrN coatings.

  19. Adhesion and Cohesion

    Directory of Open Access Journals (Sweden)

    J. Anthony von Fraunhofer

    2012-01-01

    Full Text Available The phenomena of adhesion and cohesion are reviewed and discussed with particular reference to dentistry. This review considers the forces involved in cohesion and adhesion together with the mechanisms of adhesion and the underlying molecular processes involved in bonding of dissimilar materials. The forces involved in surface tension, surface wetting, chemical adhesion, dispersive adhesion, diffusive adhesion, and mechanical adhesion are reviewed in detail and examples relevant to adhesive dentistry and bonding are given. Substrate surface chemistry and its influence on adhesion, together with the properties of adhesive materials, are evaluated. The underlying mechanisms involved in adhesion failure are covered. The relevance of the adhesion zone and its importance with regard to adhesive dentistry and bonding to enamel and dentin is discussed.

  20. Vimentin in Bacterial Infections

    DEFF Research Database (Denmark)

    Mak, Tim N; Brüggemann, Holger

    2016-01-01

    filaments (IFs). IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge...... about the role of IFs in bacterial infections, focusing on the type III IF protein vimentin. Recent studies have revealed the involvement of vimentin in host cell defenses, acting as ligand for several pattern recognition receptors of the innate immune system. Two main aspects of bacteria......-vimentin interactions are presented in this review: the role of vimentin in pathogen-binding on the cell surface and subsequent bacterial invasion and the interaction of cytosolic vimentin and intracellular pathogens with regards to innate immune signaling. Mechanistic insight is presented involving distinct bacterial...

  1. Advanced adhesives in electronics

    CERN Document Server

    Bailey, C

    2011-01-01

    Adhesives are widely used in the manufacture of electronic devices to act as passive and active components. Recently there has been considerable interest in the use of conductive adhesives. This book reviews key types of conductive adhesives, processing methods, properties and the way they can be modelled as well as potential applications.$bAdhesives for electronic applications serve important functional and structural purposes in electronic components and packaging, and have developed significantly over the last few decades. Advanced adhesives in electronics reviews recent developments in adhesive joining technology, processing and properties. The book opens with an introduction to adhesive joining technology for electronics. Part one goes on to cover different types of adhesive used in electronic systems, including thermally conductive adhesives, isotropic and anisotropic conductive adhesives and underfill adhesives for flip-chip applications. Part two focuses on the properties and processing of electronic ...

  2. Antibodies against Shigella flexneri adhesion molecule outer ...

    African Journals Online (AJOL)

    OMP) as an adhesion factor and examine its ability to cross-react with the OMPs of other Shigella species. Methods: OMP was isolated from the bacterium S. flexneri after shaving the pili using a pili bacterial cutter in a solution of 0.5 ...

  3. Adhesion in microelectronics

    CERN Document Server

    Mittal, K L

    2014-01-01

    This comprehensive book will provide both fundamental and applied aspects of adhesion pertaining to microelectronics in a single and easily accessible source. Among the topics to be covered include; Various theories or mechanisms of adhesionSurface (physical or chemical) characterization of materials as it pertains to adhesionSurface cleaning as it pertains to adhesionWays to improve adhesionUnraveling of interfacial interactions using an array of pertinent techniquesCharacterization of interfaces / interphasesPolymer-polymer adhesionMetal-polymer adhesion  (metallized polymers)Polymer adhesi

  4. Osteopontin adsorption to Gram-positive cells reduces adhesion forces and attachment to surfaces under flow

    DEFF Research Database (Denmark)

    Kristensen, M F; Zeng, G; Neu, T R

    2017-01-01

    The bovine milk protein osteopontin (OPN) may be an efficient means to prevent bacterial adhesion to dental tissues and control biofilm formation. This study sought to determine to what extent OPN impacts adhesion forces and surface attachment of different bacterial strains involved in dental...

  5. Bacterial Keratitis

    Science.gov (United States)

    ... Español Eye Health / Eye Health A-Z Bacterial Keratitis Sections What Is Bacterial Keratitis? Bacterial Keratitis Symptoms ... Lens Care Bacterial Keratitis Treatment What Is Bacterial Keratitis? Leer en Español: ¿Qué Es la Queratitis Bacteriana? ...

  6. Bacterial microleakage of temporary filling materials used for endodontic access cavity sealing

    Directory of Open Access Journals (Sweden)

    Igor Križnar

    2016-12-01

    Conclusion: None of the tested materials were able to completely prevent bacterial microleakage. Adhesively bonded composites and Cavit offer better sealing compared with glass ionomer cements, resin modified glass ionomer cements, and composites without the use of an adhesive system.

  7. Adhesive wafer bonding

    Science.gov (United States)

    Niklaus, F.; Stemme, G.; Lu, J.-Q.; Gutmann, R. J.

    2006-02-01

    Wafer bonding with intermediate polymer adhesives is an important fabrication technique for advanced microelectronic and microelectromechanical systems, such as three-dimensional integrated circuits, advanced packaging, and microfluidics. In adhesive wafer bonding, the polymer adhesive bears the forces involved to hold the surfaces together. The main advantages of adhesive wafer bonding include the insensitivity to surface topography, the low bonding temperatures, the compatibility with standard integrated circuit wafer processing, and the ability to join different types of wafers. Compared to alternative wafer bonding techniques, adhesive wafer bonding is simple, robust, and low cost. This article reviews the state-of-the-art polymer adhesive wafer bonding technologies, materials, and applications.

  8. Adhesive Elastomeric Proteins

    OpenAIRE

    Mansour, Haefa; Liu, Julie

    2013-01-01

    Sutures and staples commonly used to close surgical wounds tend to be much stiffer than the surrounding tissue, often resulting in external tissue damage. Surgical adhesives provide a promising alternative to these sutures and staples. Ideal surgical adhesives are biocompatible, able to set well and remain sticky in moist conditions, possess strong adhesive and cohesive properties, and exhibit mechanical properties that mimic those of the surrounding tissue. Unfortunately, the adhesives avail...

  9. Adhesion of streptococcus rattus and streptococcus mutans to metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Branting, C.; Linder, L.E.; Sund, M.-L.; Oden, A.; Wiatr-Adamczak, E.

    1988-01-01

    The adhesion of Streptococcus rattus BHT and Streptococcus mutans IB to metal specimens of amalgam, silver, tin and copper was studied using (6-/sup 3/H) thymidine labeled cells. In the standard assay the metal specimens were suspended by a nylon thread in an adhesion solution containing a chemically defined bacterial growth medium (FMC), sucrose, and radiolabeled bacteria. Maximum amounts of adhering bacteria were obtained after about 100 min of incubation. Saturation of the metal specimens with bacteria was not observed. Both strains also adhered in the absence of sucrose, indicating that glucan formation was not necessary for adhesion. However, in the presence of glucose, adhesion was only 26-45% of that observed in the presence of equimolar sucrose. Sucrose-dependent stimulation of adhesion seemed to be due to increased cell-to-cell adhesion capacity. Isolated radiolabeled water-insoluble and water-soluble polysaccharides produced from sucrose by S. rattus BHT were not adsorbed to the metal surfaces.

  10. Adhesion of streptococcus rattus and streptococcus mutans to metal surfaces

    International Nuclear Information System (INIS)

    Branting, C.; Linder, L.E.; Sund, M.-L.; Oden, A.; Wiatr-Adamczak, E.

    1988-01-01

    The adhesion of Streptococcus rattus BHT and Streptococcus mutans IB to metal specimens of amalgam, silver, tin and copper was studied using (6- 3 H) thymidine labeled cells. In the standard assay the metal specimens were suspended by a nylon thread in an adhesion solution containing a chemically defined bacterial growth medium (FMC), sucrose, and radiolabeled bacteria. Maximum amounts of adhering bacteria were obtained after about 100 min of incubation. Saturation of the metal specimens with bacteria was not observed. Both strains also adhered in the absence of sucrose, indicating that glucan formation was not necessary for adhesion. However, in the presence of glucose, adhesion was only 26-45% of that observed in the presence of equimolar sucrose. Sucrose-dependent stimulation of adhesion seemed to be due to increased cell-to-cell adhesion capacity. Isolated radiolabeled water-insoluble and water-soluble polysaccharides produced from sucrose by S. rattus BHT were not adsorbed to the metal surfaces. (author)

  11. PH dependent adhesive peptides

    Science.gov (United States)

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  12. Particle adhesion and removal

    CERN Document Server

    Mittal, K L

    2015-01-01

    The book provides a comprehensive and easily accessible reference source covering all important aspects of particle adhesion and removal.  The core objective is to cover both fundamental and applied aspects of particle adhesion and removal with emphasis on recent developments.  Among the topics to be covered include: 1. Fundamentals of surface forces in particle adhesion and removal.2. Mechanisms of particle adhesion and removal.3. Experimental methods (e.g. AFM, SFA,SFM,IFM, etc.) to understand  particle-particle and particle-substrate interactions.4. Mechanics of adhesion of micro- and  n

  13. Adhesion of Escherichia coli under flow conditions reveals potential novel effects of FimH mutations

    DEFF Research Database (Denmark)

    Feenstra, T.; Schmidt Thøgersen, Mariane; Wieser, E.

    2017-01-01

    FimH-mediated adhesion of Escherichia coli to bladder epithelium is a prerequisite for urinary tract infections. FimH is also essential for blood-borne bacterial dissemination, but the mechanisms are poorly understood. The purpose of this study was to assess the influence of different Fim......H mutations on bacterial adhesion using a novel adhesion assay, which models the physiological flow conditions bacteria are exposed to. We introduced 12 different point mutations in the mannose binding pocket of FimH in an E. coli strain expressing type 1 fimbriae only (MSC95-FimH). We compared the bacterial...... bacterial adhesion to mammalian cells under flow conditions. We showed that E. coli MSC95-FimH adheres more efficiently to microvascular endothelium than to bladder epithelium, and that only endothelium supports adhesion at physiological shear stress. The results confirmed that mannose binding pocket...

  14. Adhesion of food-borne bacteria to stainless steel is reduced by food conditioning films

    DEFF Research Database (Denmark)

    Bernbom, Nete; Ng, Yin; Jorgensen, R.L.

    2009-01-01

    also decreases adhesion of other food-relevant bacteria. The manipulation of adhesion was not attributable to growth inhibitory effects. Chemical analysis revealed that the stainless steels were covered by homogenous layers of adsorbed proteins. The presence of tropomyocin was indicated by appearance......Preconditioning of stainless steel with aqueous cod muscle extract significantly impedes subsequent bacterial adhesion most likely due to repelling effects of fish tropomyosin. The purpose of this study was to determine if other food conditioning films decrease or enhance bacterial adhesion...

  15. Bacterial meningitis

    NARCIS (Netherlands)

    Roos, Karen L.; van de Beek, Diederik

    2010-01-01

    Bacterial meningitis is a neurological emergency. Empiric antimicrobial and adjunctive therapy should be initiated as soon as a single set of blood cultures has been obtained. Clinical signs suggestive of bacterial meningitis include fever, headache, meningismus, vomiting, photophobia, and an

  16. The adhesive strength and initial viscosity of denture adhesives.

    Science.gov (United States)

    Han, Jian-Min; Hong, Guang; Dilinuer, Maimaitishawuti; Lin, Hong; Zheng, Gang; Wang, Xin-Zhi; Sasaki, Keiichi

    2014-11-01

    To examine the initial viscosity and adhesive strength of modern denture adhesives in vitro. Three cream-type denture adhesives (Poligrip S, Corect Cream, Liodent Cream; PGS, CRC, LDC) and three powder-type denture adhesives (Poligrip Powder, New Faston, Zanfton; PGP, FSN, ZFN) were used in this study. The initial viscosity was measured using a controlled-stress rheometer. The adhesive strength was measured according to ISO-10873 recommended procedures. All data were analyzed independently by one-way analysis of variance combined with a Student-Newman-Keuls multiple comparison test at a 5% level of significance. The initial viscosity of all the cream-type denture adhesives was lower than the powder-type adhesives. Before immersion in water, all the powder-type adhesives exhibited higher adhesive strength than the cream-type adhesives. However, the adhesive strength of cream-type denture adhesives increased significantly and exceeded the powder-type denture adhesives after immersion in water. For powder-type adhesives, the adhesive strength significantly decreased after immersion in water for 60 min, while the adhesive strength of the cream-type adhesives significantly decreased after immersion in water for 180 min. Cream-type denture adhesives have lower initial viscosity and higher adhesive strength than powder type adhesives, which may offer better manipulation properties and greater efficacy during application.

  17. Synaptic Cell Adhesion

    OpenAIRE

    Missler, Markus; Südhof, Thomas C.; Biederer, Thomas

    2012-01-01

    Chemical synapses are asymmetric intercellular junctions that mediate synaptic transmission. Synaptic junctions are organized by trans-synaptic cell adhesion molecules bridging the synaptic cleft. Synaptic cell adhesion molecules not only connect pre- and postsynaptic compartments, but also mediate trans-synaptic recognition and signaling processes that are essential for the establishment, specification, and plasticity of synapses. A growing number of synaptic cell adhesion molecules that inc...

  18. Adhesion force of staphylococcus aureus on various biomaterial surfaces.

    Science.gov (United States)

    Alam, Fahad; Balani, Kantesh

    2017-01-01

    Staphylococcus comprises of more than half of all pathogens in orthopedic implant infections and they can cause major bone infection which can result in destruction of joint and bone. In the current study, adhesion force of bacteria on the surface of various biomaterial surfaces is measured using atomic force microscope (AFM). Staphylococcus aureus was immobilized on an AFM tipless cantilever as a force probe to measure the adhesion force between bacteria and biomaterials (viz. ultra-high molecular weight poly ethylene (UHMWPE), stainless steel (SS), Ti-6Al-4V alloy, hydroxyapatite (HA)). At the contact time of 10s, UHMWPE shows weak adhesion force (~4nN) whereas SS showed strong adhesion force (~15nN) due to their surface energy and surface roughness. Bacterial retention and viability experiment (3M™ petrifilm test, agar plate) dictates that hydroxyapatite shows the lowest vaibility of bacteria, whereas lowest bacterial retention is observed on UHMWPE surface. Similar results were obtained from live/dead staining test, where HA shows 65% viability, whereas on UHMWPE, SS and Ti-6Al-4V, the bacterial viability is 78%, 94% and 97%, respectively. Lower adhesion forces, constrained pull-off distance (of bacterial) and high antibacterial resistance of bioactive-HA makes it a potential biomaterial for bone-replacement arthroplasty. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Soy protein adhesives

    Science.gov (United States)

    Charles R. Frihart

    2010-01-01

    In the quest to manufacture and use building materials that are more environmentally friendly, soy adhesives can be an important component. Trees fix and store carbon dioxide in the atmosphere. After the trees are harvested, machinery converts the wood into strands, which are then bonded together with adhesives to form strandboard, used in constructing long-lasting...

  20. Adhesive compositions and methods

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Scott D.; Sendijarevic, Vahid; O' Connor, James

    2017-12-05

    The present invention encompasses polyurethane adhesive compositions comprising aliphatic polycarbonate chains. In one aspect, the present invention encompasses polyurethane adhesives derived from aliphatic polycarbonate polyols and polyisocyanates wherein the polyol chains contain a primary repeating unit having a structure:. In another aspect, the invention provides articles comprising the inventive polyurethane compositions as well as methods of making such compositions.

  1. adhesive intestinal obstruction

    African Journals Online (AJOL)

    2006-06-01

    Jun 1, 2006 ... ABSTRACT. Background: Adhesions after abdominal and pelvic surgery are a major cause of intestinal obstruction in the western world and the pathology is steadily gaining prominence in our practice. Objective: To determine the magnitude of adhesive intestinal obstruction; to determine the types.

  2. Instant acting adhesive system

    Science.gov (United States)

    Davis, T. R.; Haines, R. C.

    1971-01-01

    Adhesive developes 80 percent of minimum bond strength of 250 psi less than 30 sec after activation is required. Adhesive is stable, handles easily, is a low toxic hazard, and is useful in industrial and domestic prototype bonding and clamping operations.

  3. Bacterial Proteasomes.

    Science.gov (United States)

    Jastrab, Jordan B; Darwin, K Heran

    2015-01-01

    Interest in bacterial proteasomes was sparked by the discovery that proteasomal degradation is required for the pathogenesis of Mycobacterium tuberculosis, one of the world's deadliest pathogens. Although bacterial proteasomes are structurally similar to their eukaryotic and archaeal homologs, there are key differences in their mechanisms of assembly, activation, and substrate targeting for degradation. In this article, we compare and contrast bacterial proteasomes with their archaeal and eukaryotic counterparts, and we discuss recent advances in our understanding of how bacterial proteasomes function to influence microbial physiology.

  4. EB curable laminating adhesives

    International Nuclear Information System (INIS)

    Matsuyama, Asao; Kobayashi, Masahide; Gotoh, Sakiko

    1992-01-01

    New developed solvent free EB curable laminating adhesives have two liquid components, A with hydroxy and acryloyl group, B with isocyanate and acryloyl group in a molecule. These EB laminating adhesives do not need any aging process, which is a big advantage, and are very suitable for environment, safety, and health because of no heating process and solvent free formulas. And we have made basic research about the relation of peel strength or heat seal strength versus Tg of cured film, elongation at break, elastic modulus, and so on. Basic specifications of the new developed adhesives are shown. (author)

  5. Single-cell force spectroscopy of pili-mediated adhesion

    Science.gov (United States)

    Sullan, Ruby May A.; Beaussart, Audrey; Tripathi, Prachi; Derclaye, Sylvie; El-Kirat-Chatel, Sofiane; Li, James K.; Schneider, Yves-Jacques; Vanderleyden, Jos; Lebeer, Sarah; Dufrêne, Yves F.

    2013-12-01

    Although bacterial pili are known to mediate cell adhesion to a variety of substrates, the molecular interactions behind this process are poorly understood. We report the direct measurement of the forces guiding pili-mediated adhesion, focusing on the medically important probiotic bacterium Lactobacillus rhamnosus GG (LGG). Using non-invasive single-cell force spectroscopy (SCFS), we quantify the adhesion forces between individual bacteria and biotic (mucin, intestinal cells) or abiotic (hydrophobic monolayers) surfaces. On hydrophobic surfaces, bacterial pili strengthen adhesion through remarkable nanospring properties, which - presumably - enable the bacteria to resist high shear forces under physiological conditions. On mucin, nanosprings are more frequent and adhesion forces larger, reflecting the influence of specific pili-mucin bonds. Interestingly, these mechanical responses are no longer observed on human intestinal Caco-2 cells. Rather, force curves exhibit constant force plateaus with extended ruptures reflecting the extraction of membrane nanotethers. These single-cell analyses provide novel insights into the molecular mechanisms by which piliated bacteria colonize surfaces (nanosprings, nanotethers), and offer exciting avenues in nanomedicine for understanding and controlling the adhesion of microbial cells (probiotics, pathogens).

  6. Bioinspired pressure actuated adhesive system

    NARCIS (Netherlands)

    Paretkar, D.R.; Kamperman, M.M.G.; Schneider, A.S.; Martina, D.; Creton, C.; Arzt, E.

    2011-01-01

    We developed a dry synthetic adhesive system inspired by gecko feet adhesion that can switch reversibly from adhesion to non-adhesion with applied pressure as external stimulus. Micropatterned polydimethylsiloxane (PDMS) surfaces with pillars of 30 µm length and 10 µm diameter were fabricated using

  7. Cohesion and Adhesion with Proteins

    Science.gov (United States)

    Charles R. Frihart

    2016-01-01

    With increasing interest in bio-based adhesives, research on proteins has expanded because historically they have been used by both nature and humans as adhesives. A wide variety of proteins have been used as wood adhesives. Ancient Egyptians most likely used collagens tobond veneer to wood furniture, then came casein (milk), blood, fish scales, and soy adhesives, with...

  8. Electrochemical characterization of the bacterial cell surface

    NARCIS (Netherlands)

    Wal, van der A.

    1996-01-01


    Bacterial cells are ubiquitous in natural environments and also play important roles in domestic and industrial processes. They are found either suspended in the aqueous phase or attached to solid particles. The adhesion behaviour of bacteria is influenced by the physico-chemical

  9. The influence of ionic strength on the adhesive bond stiffness of oral streptococci possessing different surface appendages as probed using AFM and QCM-D

    NARCIS (Netherlands)

    Olsson, Adam L. J.; Arun, Narasimhan; Kanger, Johannes S.; Busscher, Henk J.; Ivanov, Ivan E.; Camesano, Terri A.; Chen, Yun; Johannsmann, Diethelm; van der Mei, Henny C.; Sharma, Prashant K.

    2012-01-01

    Bacterial adhesion to surfaces poses threats to human-health, not always associated with adhering organisms, but often with their detachment causing contamination elsewhere. Bacterial adhesion mechanisms may not be valid for their detachment, known to proceed according to a visco-elastic mechanism.

  10. Dry adhesives with sensing features

    International Nuclear Information System (INIS)

    Krahn, J; Menon, C

    2013-01-01

    Geckos are capable of detecting detachment of their feet. Inspired by this basic observation, a novel functional dry adhesive is proposed, which can be used to measure the instantaneous forces and torques acting on an adhesive pad. Such a novel sensing dry adhesive could potentially be used by climbing robots to quickly realize and respond appropriately to catastrophic detachment conditions. The proposed torque and force sensing dry adhesive was fabricated by mixing Carbon Black (CB) and Polydimethylsiloxane (PDMS) to form a functionalized adhesive with mushroom caps. The addition of CB to PDMS resulted in conductive PDMS which, when under compression, tension or torque, resulted in a change in the resistance across the adhesive patch terminals. The proposed design of the functionalized dry adhesive enables distinguishing an applied torque from a compressive force in a single adhesive pad. A model based on beam theory was used to predict the change in resistance across the terminals as either a torque or compressive force was applied to the adhesive patch. Under a compressive force, the sensing dry adhesive was capable of measuring compression stresses from 0.11 Pa to 20.9 kPa. The torque measured by the adhesive patch ranged from 2.6 to 10 mN m, at which point the dry adhesives became detached. The adhesive strength was 1.75 kPa under an applied preload of 1.65 kPa for an adhesive patch with an adhesive contact area of 7.07 cm 2 . (paper)

  11. Dry adhesives with sensing features

    Science.gov (United States)

    Krahn, J.; Menon, C.

    2013-08-01

    Geckos are capable of detecting detachment of their feet. Inspired by this basic observation, a novel functional dry adhesive is proposed, which can be used to measure the instantaneous forces and torques acting on an adhesive pad. Such a novel sensing dry adhesive could potentially be used by climbing robots to quickly realize and respond appropriately to catastrophic detachment conditions. The proposed torque and force sensing dry adhesive was fabricated by mixing Carbon Black (CB) and Polydimethylsiloxane (PDMS) to form a functionalized adhesive with mushroom caps. The addition of CB to PDMS resulted in conductive PDMS which, when under compression, tension or torque, resulted in a change in the resistance across the adhesive patch terminals. The proposed design of the functionalized dry adhesive enables distinguishing an applied torque from a compressive force in a single adhesive pad. A model based on beam theory was used to predict the change in resistance across the terminals as either a torque or compressive force was applied to the adhesive patch. Under a compressive force, the sensing dry adhesive was capable of measuring compression stresses from 0.11 Pa to 20.9 kPa. The torque measured by the adhesive patch ranged from 2.6 to 10 mN m, at which point the dry adhesives became detached. The adhesive strength was 1.75 kPa under an applied preload of 1.65 kPa for an adhesive patch with an adhesive contact area of 7.07 cm2.

  12. Bacterial Vaginosis

    Science.gov (United States)

    ... Archive STDs Home Page Bacterial Vaginosis (BV) Chlamydia Gonorrhea Genital Herpes Hepatitis HIV/AIDS & STDs Human Papillomavirus ( ... of getting other STDs, such as chlamydia and gonorrhea . These bacteria can sometimes cause pelvic inflammatory disease ( ...

  13. Cellular automaton simulation of the diffusive motion of bacteria and their adhesion to nanostructures on a solid surface.

    Science.gov (United States)

    Yamamoto, Takehiro; Emura, Chie; Oya, Masashi

    2016-12-01

    The growth of a biofilm begins with the adhesion of bacteria to a solid surface. Consequently, biofilm growth can be managed by the control of bacterial adhesion. Recent experimental studies have suggested that bacterial adhesion can be controlled by modifying a solid surface using nanostructures. Computational prediction and analysis of bacterial adhesion behavior are expected to be useful for the design of effective arrangements of nanostructures for controlling bacterial adhesion. The present study developed a cellular automaton (CA) model for bacterial adhesion simulation that could describe both the diffusive motion of bacteria and dependence of their adhesion patterns on the distance between nanostructures observed in experimental studies. The diffusive motion was analyzed by the moment scaling spectrum theory, and the present model was confirmed to describe subdiffusion behavior due to obstacles. Adhesion patterns observed in experimental studies can be successfully simulated by introducing CA rules to describe a mechanism by which bacteria tend to move to increase the area of contact with nanostructures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Mucin- and carbohydrate-stimulated adhesion and subproteome changes of the probiotic bacterium Lactobacillus acidophilus NCFM

    DEFF Research Database (Denmark)

    Celebioglu, Hasan Ufuk; Olesen, Sita Vaag; Prehn, Kennie

    2017-01-01

    Adhesion to intestinal mucosa is a crucial property for probiotic bacteria. Adhesion is thought to increase host-bacterial interactions, thus potentially enabling health benefits to the host. Molecular events connected with adhesion and surface proteome changes were investigated for the probiotic...... modify the microbiota. In the present study, effects of emerging and established prebiotic carbohydrates on the probiotic potential of Lactobacillus acidophilus NCFM were investigated by testing adhesion to a mucin layer and intestinal cells, and comparing this with changes in abundancy of surface...

  15. Effect of food models and low-temperature storage on the adhesion of Lactobacillus rhamnosus GG to Caco-2 cells.

    Science.gov (United States)

    Deepika, G; Rastall, R A; Charalampopoulos, D

    2011-08-24

    This study evaluated the effects of fat and sugar levels on the surface properties of Lactobacillus rhamnosus GG during storage in food model systems, simulating yogurt and ice cream, and related them with the ability of the bacterial cells to adhere to Caco-2 cells. Freeze-dried L. rhamnosus GG cells were added to the model food systems and stored for 7 days. The bacterial cells were analyzed for cell viability, hydrophobicity, ζ potential, and their ability to adhere to Caco-2 cells. The results indicated that the food type and its composition affected the surface and adhesion properties of the bacterial cells during storage, with yogurt being a better delivery vehicle than ice cream in terms of bacterial adhesion to Caco-2 cells. The most important factor influencing bacterial adhesion was the storage time rather than the levels of fats and sugars, indicating that conformational changes were taking place on the surface of the bacterial cells during storage.

  16. Adhesive particle shielding

    Science.gov (United States)

    Klebanoff, Leonard Elliott [Dublin, CA; Rader, Daniel John [Albuquerque, NM; Walton, Christopher [Berkeley, CA; Folta, James [Livermore, CA

    2009-01-06

    An efficient device for capturing fast moving particles has an adhesive particle shield that includes (i) a mounting panel and (ii) a film that is attached to the mounting panel wherein the outer surface of the film has an adhesive coating disposed thereon to capture particles contacting the outer surface. The shield can be employed to maintain a substantially particle free environment such as in photolithographic systems having critical surfaces, such as wafers, masks, and optics and in the tools used to make these components, that are sensitive to particle contamination. The shield can be portable to be positioned in hard-to-reach areas of a photolithography machine. The adhesive particle shield can incorporate cooling means to attract particles via the thermophoresis effect.

  17. Electrically Conductive Epoxy Adhesives

    Directory of Open Access Journals (Sweden)

    Lan Bai

    2011-02-01

    Full Text Available Conductive adhesives are widely used in electronic packaging applications such as die attachment and solderless interconnections, component repair, display interconnections, and heat dissipation. The effects of film thickness as functions of filler volume fraction, conductive filler size, shape, as well as uncured adhesive matrix viscosity on the electrical conduction behavior of epoxy-based adhesives are presented in this work. For this purpose, epoxy-based adhesives were prepared using conductive fillers of different size, shape, and types, including Ni powder, flakes, and filaments, Ag powder, and Cu powder. The filaments were 20 μm in diameter, and 160 or 260 μm in length. HCl and H3PO4 acid solutions were used to etch and remove the surface oxide layers from the fillers. The plane resistance of filled adhesive films was measured using the four-point method. In all cases of conductive filler addition, the planar resistivity levels for the composite adhesive films increased when the film thickness was reduced. The shape of resistivity-thickness curves was negative exponential decaying type and was modeled using a mathematical relation. The relationships between the conductive film resistivities and the filler volume fractions were also derived mathematically based on the experimental data. Thus, the effects of surface treatment of filler particles, the type, size, shape of fillers, and the uncured epoxy viscosity could be included empirically by using these mathematical relations based on the experimental data. By utilizing the relations we proposed to model thickness-dependent and volume fraction-dependent conduction behaviors separately, we were able to describe the combined and coupled volume fraction-film thickness relationship mathematically based on our experimental data.

  18. Adhesion and nanomechanics of pili from the probiotic Lactobacillus rhamnosus GG.

    Science.gov (United States)

    Tripathi, Prachi; Beaussart, Audrey; Alsteens, David; Dupres, Vincent; Claes, Ingmar; von Ossowski, Ingemar; de Vos, Willem M; Palva, Airi; Lebeer, Sarah; Vanderleyden, Jos; Dufrêne, Yves F

    2013-04-23

    Knowledge of the mechanisms by which bacterial pili adhere to host cells and withstand external forces is critical to our understanding of their functional roles and offers exciting avenues in biomedicine for controlling the adhesion of bacterial pathogens and probiotics. While much progress has been made in the nanoscale characterization of pili from Gram-negative bacteria, the adhesive and mechanical properties of Gram-positive bacterial pili remain largely unknown. Here, we use single-molecule atomic force microscopy to unravel the binding mechanism of pili from the probiotic Gram-positive bacterium Lactobacillus rhamnosus GG (LGG). First, we show that SpaC, the key adhesion protein of the LGG pilus, is a multifunctional adhesin with broad specificity. SpaC forms homophilic trans-interactions engaged in bacterial aggregation and specifically binds mucin and collagen, two major extracellular components of host epithelial layers. Homophilic and heterophilic interactions display similar binding strengths and dissociation rates. Next, pulling experiments on living bacteria demonstrate that LGG pili exhibit two unique mechanical responses, that is, zipper-like adhesion involving multiple SpaC molecules distributed along the pilus length and nanospring properties enabling pili to resist high force. These mechanical properties may represent a generic mechanism among Gram-positive bacterial pili for strengthening adhesion and withstanding shear stresses in the natural environment. The single-molecule experiments presented here may help us to design molecules capable of promoting or inhibiting bacterial-host interactions.

  19. Carbohydrate Coating Reduces Adhesion of Biofilm-Forming Bacillus subtilis to Gold Surfaces

    Science.gov (United States)

    Kesel, S.; Mader, A.; Seeberger, P. H.; Lieleg, O.

    2014-01-01

    The growth of bacterial biofilms in pipes and food tanks causes severe problems in industry. Biofilms growing on medical implants or catheters are of great concern, as they can cause serious infections and decrease the functionality of the medical device. The prevention of bacterial adhesion—the first step in colonization and biofilm formation—is therefore very important. Current research comprises alterations in surface properties, the prevention of adhesin biosynthesis, inhibition with receptor analogs, or the development of anti-adhesive vaccines. We present a new approach that allows us to study bacterial adhesion with high sensitivity in real-time while testing several different surfaces in parallel. Using the cantilever-array technique we demonstrate that coating of gold surfaces with mono- or disaccharides results in a reduction of the bacterial adhesion of the biofilm-forming bacterium Bacillus subtilis NCIB 3610 to these gold surfaces. This reduction in bacterial adhesion is independent of the studied carbohydrate. Using several mutant strains, we investigate the underlying molecular interactions, and our results suggest that adhesion to gold surfaces is mediated by thiol groups present in proteins of the bacterial cell membrane or biofilm matrix proteins expressed at low levels by the wild-type strain. Furthermore, our data indicate that the adhesion of B. subtilis NCIB 3610 to carbohydrate-coated gold surfaces is facilitated by interactions between carbohydrates installed on the cantilever gold surface and an exopolysaccharide expressed by this strain. Understanding general and specific contributions of molecular interactions mediating bacterial adhesion will enable its prevention in the future. PMID:25038098

  20. Switchable bio-inspired adhesives

    Science.gov (United States)

    Kroner, Elmar

    2015-03-01

    Geckos have astonishing climbing abilities. They can adhere to almost any surface and can run on walls and even stick to ceilings. The extraordinary adhesion performance is caused by a combination of a complex surface pattern on their toes and the biomechanics of its movement. These biological dry adhesives have been intensely investigated during recent years because of the unique combination of adhesive properties. They provide high adhesion, allow for easy detachment, can be removed residue-free, and have self-cleaning properties. Many aspects have been successfully mimicked, leading to artificial, bio-inspired, patterned dry adhesives, and were addressed and in some aspects they even outperform the adhesion capabilities of geckos. However, designing artificial patterned adhesion systems with switchable adhesion remains a big challenge; the gecko's adhesion system is based on a complex hierarchical surface structure and on advanced biomechanics, which are both difficult to mimic. In this paper, two approaches are presented to achieve switchable adhesion. The first approach is based on a patterned polydimethylsiloxane (PDMS) polymer, where adhesion can be switched on and off by applying a low and a high compressive preload. The switch in adhesion is caused by a reversible mechanical instability of the adhesive silicone structures. The second approach is based on a composite material consisting of a Nickel- Titanium (NiTi) shape memory alloy and a patterned adhesive PDMS layer. The NiTi alloy is trained to change its surface topography as a function of temperature, which results in a change of the contact area and of alignment of the adhesive pattern towards a substrate, leading to switchable adhesion. These examples show that the unique properties of bio-inspired adhesives can be greatly improved by new concepts such as mechanical instability or by the use of active materials which react to external stimuli.

  1. BACTERIAL CONSORTIUM

    Directory of Open Access Journals (Sweden)

    Payel Sarkar

    2013-01-01

    Full Text Available Petroleum aromatic hydrocarbons like benzen e, toluene, ethyl benzene and xylene, together known as BTEX, has almost the same chemical structure. These aromatic hydrocarbons are released as pollutants in th e environment. This work was taken up to develop a solvent tolerant bacterial cons ortium that could degrade BTEX compounds as they all share a common chemical structure. We have isolated almost 60 different types of bacterial strains from different petroleum contaminated sites. Of these 60 bacterial strains almost 20 microorganisms were screene d on the basis of capability to tolerate high concentration of BTEX. Ten differe nt consortia were prepared and the compatibility of the bacterial strains within the consortia was checked by gram staining and BTEX tolerance level. Four successful mi crobial consortia were selected in which all the bacterial strains concomitantly grew in presence of high concentration of BTEX (10% of toluene, 10% of benzene 5% ethyl benzene and 1% xylene. Consortium #2 showed the highest growth rate in pr esence of BTEX. Degradation of BTEX by consortium #2 was monitored for 5 days by gradual decrease in the volume of the solvents. The maximum reduction observed wa s 85% in 5 days. Gas chromatography results also reveal that could completely degrade benzene and ethyl benzene within 48 hours. Almost 90% degradation of toluene and xylene in 48 hours was exhibited by consortium #2. It could also tolerate and degrade many industrial solvents such as chloroform, DMSO, acetonitrile having a wide range of log P values (0.03–3.1. Degradation of aromatic hydrocarbon like BTEX by a solvent tolerant bacterial consortium is greatly significant as it could degrade high concentration of pollutants compared to a bacterium and also reduces the time span of degradation.

  2. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    Science.gov (United States)

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-04

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects.

  3. an Adhesive Patch

    Directory of Open Access Journals (Sweden)

    S. Mojtaba Taghizadeh

    2013-01-01

    Full Text Available Drug-in-adhesive transdermal drug delivery systems  TDDSs containing stimulants, termed as energetic substances, such as caffeine and pantothenic acid, were studied. Caffeine is a white crystalline substance and a stimulant to central nervous system. In humans, caffeine acts as a central nervous system stimulant, temporarily warding off drowsiness and restoring alertness. Pantothenic acid, also recognized as vitamin B5, is a water-soluble vitamin. For many animals, pantothenic acid is an essential nutrient. Animals require pantothenic acid to synthesize and metabolize proteins, carbohydrates and fats. For this purpose caffeine and pantothenic acid were  used  as  drug  components with  6.32%  and  1.12%  loadings,  in  different functional and non-functional acrylic pressure sensitive adhesives (PSAs of 52.89%, respectively. Ethylene glycol as a chemical enhancer was used in all TDDSs with 39.67%. The effect of PSAs  type on  in vitro  release and adhesion properties  (peel strength and tack values from drug delivery devices were evaluated. It was found that TDDS containing -COOH functional PSA showed  the  lowest steady state fux. The adhesion properties of the samples were improved by addition of functional acrylic PSA in formulations.

  4. Ultralarge von Willebrand Factor Fibers Mediate Luminal Staphylococcus aureus Adhesion to an Intact Endothelial Cell Layer Under Shear Stress

    NARCIS (Netherlands)

    Pappelbaum, Karin I.; Gorzelanny, Christian; Graessle, Sandra; Suckau, Jan; Laschke, Matthias W.; Bischoff, Markus; Bauer, Corinne; Schorpp-Kistner, Marina; Weidenmaier, Christopher; Schneppenheim, Reinhard; Obser, Tobias; Sinha, Bhanu; Schneider, Stefan W.

    2013-01-01

    Background During pathogenesis of infective endocarditis, Staphylococcus aureus adherence often occurs without identifiable preexisting heart disease. However, molecular mechanisms mediating initial bacterial adhesion to morphologically intact endocardium are largely unknown. Methods and Results

  5. Bacterial Ecology

    DEFF Research Database (Denmark)

    Fenchel, Tom

    2011-01-01

    Bacterial ecology is concerned with the interactions between bacteria and their biological and nonbiological environments and with the role of bacteria in biogeochemical element cycling. Many fundamental properties of bacteria are consequences of their small size. Thus, they can efficiently exploit...

  6. Bacterial meningitis

    NARCIS (Netherlands)

    Heckenberg, Sebastiaan G. B.; Brouwer, Matthijs C.; van de Beek, Diederik

    2014-01-01

    Bacterial meningitis is a neurologic emergency. Vaccination against common pathogens has decreased the burden of disease. Early diagnosis and rapid initiation of empiric antimicrobial and adjunctive therapy are vital. Therapy should be initiated as soon as blood cultures have been obtained,

  7. Bacterial lipases

    NARCIS (Netherlands)

    Jaeger, Karl-Erich; Ransac, Stéphane; Dijkstra, Bauke W.; Colson, Charles; Heuvel, Margreet van; Misset, Onno

    Many different bacterial species produce lipases which hydrolyze esters of glycerol with preferably long-chain fatty acids. They act at the interface generated by a hydrophobic lipid substrate in a hydrophilic aqueous medium. A characteristic property of lipases is called interfacial activation,

  8. Bacterial Ecology

    DEFF Research Database (Denmark)

    Fenchel, Tom

    2011-01-01

    , the production and oxidation of methane, nitrate reduction and fixation of atmospheric nitrogen are exclusively carried out by different groups of bacteria. Some bacterial species – ‘extremophiles’ – thrive in extreme environments in which no eukaryotic organisms can survive with respect to temperature, salinity...

  9. Bacterial Vaginosis

    Science.gov (United States)

    ... that coats the walls of the vagina Vaginal discharge with an unpleasant or fishlike odor Vaginal pain or itching Burning during urination Doctors are unsure of the incubation period for bacterial vaginosis. How Is the Diagnosis Made? Your child’s pediatrician can make the diagnosis ...

  10. Bacterial stress

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Bacterial stress. Physicochemical and chemical parameters: temperature, pressure, pH, salt concentration, oxygen, irradiation. Nutritional depravation: nutrient starvation, water shortage. Toxic compounds: Antibiotics, heavy metals, toxins, mutagens. Interactions with other cells: ...

  11. Adhesive bonding of wood materials

    Science.gov (United States)

    Charles B. Vick

    1999-01-01

    Adhesive bonding of wood components has played an essential role in the development and growth of the forest products industry and has been a key factor in the efficient utilization of our timber resource. The largest use of adhesives is in the construction industry. By far, the largest amounts of adhesives are used to manufacture building materials, such as plywood,...

  12. Interference in adhesion of bacteria and yeasts isolated from explanted voice prostheses to silicone rubber by rhamnolipid biosurfactants

    OpenAIRE

    Rodrigues, L. R.; Banat, Ibrahim M.; Mei, Henny van der; Teixeira, J. A.; Oliveira, Rosário

    2006-01-01

    Aims: The effects and extent of adhesion of four different bacterial and two yeast strains isolated from explanted voice prostheses to silicone rubber with and without an adsorbed rhamnolipid biosurfactant layer obtained from Pseudomonas aeruginosa DS10-129 was studied. Methods and Results: The ability of rhamnolipid biosurfactant to inhibit adhesion of micro-organisms to silicone rubber was investigated in a parallel-plate flow chamber. The anti-adhesive activity of the bio...

  13. Correction of the disease phenotype in canine leukocyte adhesion deficiency using ex vivo hematopoietic stem cell gene therapy

    OpenAIRE

    Bauer, Thomas R.; Hai, Mehreen; Tuschong, Laura M.; Burkholder, Tanya H.; Gu, Yu-chen; Sokolic, Robert A.; Ferguson, Cole; Dunbar, Cynthia E.; Hickstein, Dennis D.

    2006-01-01

    Canine leukocyte adhesion deficiency (CLAD) represents the canine counter-part of the human disease leukocyte adhesion deficiency (LAD). Defects in the leukocyte integrin CD18 adhesion molecule in both CLAD and LAD lead to recurrent, life-threatening bacterial infections. We evaluated ex vivo retroviral-mediated gene therapy in CLAD using 2 nonmyeloablative conditioning regimens—200 cGy total body irradiation (TBI) or 10 mg/kg busulfan—with or without posttransplantation immunosuppression. In...

  14. The influence of biosurfactants released by S-mitis BMS on the adhesion of pioneer strains and cariogenic bacteria

    NARCIS (Netherlands)

    Van Hoogmoed, CG; Van der Mei, HC; Busscher, HJ

    2004-01-01

    The influence of Streptococcus mitis BMS biosurfactants on the adhesion of eight pioneer and four cariogenic oral bacterial strains was, for a first screening, examined in a microtiter plate assay. The adhesion to pellicle-coated wells of three cariogenic strains was inhibited >70% by the

  15. A MAM7 peptide-based inhibitor of Staphylococcus aureus adhesion does not interfere with in vitro host cell function.

    Directory of Open Access Journals (Sweden)

    Catherine Alice Hawley

    Full Text Available Adhesion inhibitors that block the attachment of pathogens to host tissues may be used synergistically with or as an alternative to antibiotics. The wide-spread bacterial adhesin Multivalent Adhesion Molecule (MAM 7 has recently emerged as a candidate molecule for a broad-spectrum adhesion inhibitor which may be used to prevent bacterial colonization of wounds. Here we have tested if the antibacterial properties of a MAM-based inhibitor could be used to competitively inhibit adhesion of methicillin-resistant Staphylococcus aureus (MRSA to host cells. Additionally, we analyzed its effect on host cellular functions linked to the host receptor fibronectin, such as migration, adhesion and matrix formation in vitro, to evaluate potential side effects prior to advancing our studies to in vivo infection models. As controls, we used inhibitors based on well-characterized bacterial adhesin-derived peptides from F1 and FnBPA, which are known to affect host cellular functions. Inhibitors based on F1 or FnBPA blocked MRSA attachment but at the same time abrogated important cellular functions. A MAM7-based inhibitor did not interfere with host cell function while showing good efficacy against MRSA adhesion in a tissue culture model. These observations provide a possible candidate for a bacterial adhesion inhibitor that does not cause adverse effects on host cells while preventing bacterial infection.

  16. Reduction of periodontal pathogens adhesion by antagonistic strains.

    Science.gov (United States)

    Van Hoogmoed, C G; Geertsema-Doornbusch, G I; Teughels, W; Quirynen, M; Busscher, H J; Van der Mei, H C

    2008-02-01

    Periodontitis results from a shift in the subgingival microflora into a more pathogenic direction with Porphyromonas gingivalis, Prevotella intermedia, and Actinobacillus actinomycetemcomitans considered as periodontopathogens. In many cases, treatment procures only a temporary shift towards a less pathogenic microflora. An alternative treatment could be the deliberate colonization of pockets with antagonistic microorganisms to control the adhesion of periodontopathogens. The aim of this study was to identify bacterial strains that reduce adhesion of periodontopathogens to surfaces. Streptococcus sanguinis, Streptococcus crista, Streptococcus salivarius, Streptococcus mitis, Actinomyces naeslundii, and Haemophilus parainfluenzae were evaluated as potential antagonists against P. gingivalis ATCC 33277, P. intermedia ATCC 49046, and A. actinomycetemcomitans ATCC 43718 as periodontopathogens. Adhesion of periodontopathogens to the bottom plate of a parallel plate flow chamber was studied in the absence (control) and the presence of pre-adhering antagonistic strains up to a surface coverage of 5%. The largest reduction caused by antagonistic strains was observed for P. gingivalis. All antagonistic strains except S. crista ATCC 49999 inhibited the adhesion of P. gingivalis by at least 1.6 cells per adhering antagonist, with the largest significant reduction observed for A. naeslundii ATCC 51655 (3.8 cells per adhering antagonist). Adhering antagonists had a minimal effect on the adhesion of A. actinomycetemcomitans ATCC 43718. Intermediate but significant reductions were perceived for P. intermedia, most notably caused by S. mitis BMS. The adhesion of P. gingivalis was inhibited best by antagonistic strains, while S. mitis BMS appeared to be the most successful antagonist.

  17. Methods to study microbial adhesion on abiotic surfaces

    Directory of Open Access Journals (Sweden)

    Ana Meireles

    2015-09-01

    Full Text Available Microbial biofilms are a matrix of cells and exopolymeric substances attached to a wet and solid surface and are commonly associated to several problems, such as biofouling and corrosion in industries and infectious diseases in urinary catheters and prosthesis. However, these cells may have several benefits in distinct applications, such as wastewater treatment processes, microbial fuel cells for energy production and biosensors. As microbial adhesion is a key step on biofilm formation, it is very important to understand and characterize microbial adhesion to a surface. This study presents an overview of predictive and experimental methods used for the study of bacterial adhesion. Evaluation of surface physicochemical properties have a limited capacity in describing the complex adhesion process. Regarding the experimental methods, there is no standard method or platform available for the study of microbial adhesion and a wide variety of methods, such as colony forming units counting and microscopy techniques, can be applied for quantification and characterization of the adhesion process.

  18. Effect of surface modification of siliconeon Staphylococcus epidermidis adhesion and colonization.

    Science.gov (United States)

    Tang, Haiying; Cao, Ting; Wang, Anfeng; Liang, Xuemei; Salley, Steven O; McAllister, James P; Ng, K Y Simon

    2007-03-15

    Cerebrospinal fluid (CSF) shunts for the treatment of hydrocephalus are generally made of silicone rubber. The growth of bacterial colonies on the silicone surface leads to frequent CSF shunt complications. A systematic study of the effect of the surface modification of silicone on Staphylococcus epidermidis adhesion and colonization was performed for different incubation times by means of colony counting and scanning electron microscopy (SEM). Silicone was modified with different biopolymers and silanes, including heparin, hyaluronan, octadecyltrichlorosilane (OTS), and fluoroalkylsilane (FAS) to provide a stable and biocompatible surface with different surface functional groups and degrees of hydrophobicity. The modified silicone surfaces were studied by using contact angle measurements, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). After 4 and 8 h of incubation, the FAS- and OTS-coated silicone and the hyaluronan coated OTS/silicone surfaces showed significantly reduced bacterial adhesion and colonization compared to blank silicone by both quantification methods. However, the heparin coated OTS/silicone showed significantly increased bacterial adhesion. These results indicate that the nature of the surface functional group and surface roughness determine the extent of bacterial adhesion and colonization. However, the degree of hydrophobicity of the surface did not appear to play a determining role in bacterial adhesion and colonization.

  19. Bacterial lipases

    OpenAIRE

    Jaeger, Karl-Erich; Ransac, Stéphane; Dijkstra, Bauke W.; Colson, Charles; Heuvel, Margreet van; Misset, Onno

    1994-01-01

    Many different bacterial species produce lipases which hydrolyze esters of glycerol with preferably long-chain fatty acids. They act at the interface generated by a hydrophobic lipid substrate in a hydrophilic aqueous medium. A characteristic property of lipases is called interfacial activation, meaning a sharp increase in lipase activity observed when the substrate starts to form an emulsion, thereby presenting to the enzyme an interfacial area. As a consequence, the kinetics of a lipase rea...

  20. Management of adhesive capsulitis

    Directory of Open Access Journals (Sweden)

    Stupay KL

    2015-08-01

    Full Text Available Kristen L Stupay,1 Andrew S Neviaser2 1Tulane University School of Medicine, New Orleans, LA, USA; 2George Washington University Medical Faculty Associates, Washington, DC, USA Abstract: Adhesive capsulitis of the shoulder is a condition of capsular contracture that reduces both active and passive glenohumeral motion. The cause of adhesive capsulitis is not known but it is strongly associated with endocrine abnormalities such as diabetes. Diverse terminology and the absence of definitive criteria for diagnosis make evaluating treatment modalities difficult. Many treatment methods have been reported, most with some success, but few have been proved to alter the natural course of this disease. Most afflicted patients will achieve acceptable shoulder function without surgery. Those who remain debilitated after 8–12 months are reasonable candidates for invasive treatments. Here, the various treatment methods and the data to support their use are reviewed. Keywords: frozen shoulder, stiff shoulder, periarthritis, painful shoulder 

  1. Syndecans and cell adhesion

    DEFF Research Database (Denmark)

    Couchman, J R; Chen, L; Woods, A

    2001-01-01

    Now that transmembrane signaling through primary cell-matrix receptors, integrins, is being elucidated, attention is turning to how integrin-ligand interactions can be modulated. Syndecans are transmembrane proteoglycans implicated as coreceptors in a variety of physiological processes, including...... cell adhesion, migration, response to growth factors, development, and tumorigenesis. This review will describe this family of proteoglycans in terms of their structures and functions and their signaling in conjunction with integrins, and indicate areas for future research....

  2. BACTERIAL ADHESION TO DENTAL AMALGAM AND 3 RESIN COMPOSITES

    NARCIS (Netherlands)

    SULJAK, JP; REID, G; WOOD, SM; MCCONNELL, RJ; VANDERMEI, HC; BUSSCHER, HJ

    Objectives: The ability of three oral bacteria to adhere to hydrophobic amalgam (water contact angle 60 degrees) and hydrophobic resin composites (Prisma-AP.H 56 degrees, Herculite XRV 82 degrees and Z100 89 degrees) was compared using an in vitro assay. Methods and results: Following preincubation

  3. The viability and intestinal epithelial cell adhesion of probiotic strain combination--in vitro study.

    Science.gov (United States)

    Piątek, Jacek; Gibas-Dorna, Magdalena; Olejnik, Anna; Krauss, Hanna; Wierzbicki, Krzysztof; Żukiewicz-Sobczak, Wioletta; Głowacki, Maciej

    2012-01-01

    To be effective, probiotic bacteria must exhibit a number of functional characteristics, including the resistance to gastric acidity and the ability to adhere to the intestinal epithelium. In this study, we examined in vitro the viability of lactic acid bacteria (LAB) combination after exposure to low pH, and the adhesion of LAB to Caco-2 cells during coincubation of 9 bacterial strains. To test bacterial viability, 6 commercially available products were incubated in 0.1 N HCl at pH 1.2 for 60 min. The greatest growth inhibition was noted for the non-capsulated product containing the Lactobacillus rhamnosus strain (log reduction of CFU = 6.4), and the best survival observed for the product containing 9 bacterial strains, equipped with a modern capsule made according to the Multi-Resistant Encapsulation technology (log reduction of CFU = 0.1). In the adhesion experiment, the combination of 9 bacterial strains was added to 17-day-old Caco-2 cell culture for 90 min. The greatest efficiency of adhesion was observed for the inoculum containing 5.5x10(8) CFU/mL/9.6 cm(2) of Caco-2 and the dose of probiotic bacteria of 190 cells per one Caco-2 cell. As a result, approximately 157 bacterial cells adhered to one Caco-2 cell. The results indicate that the combination of 9 bacterial strains in the examined product is characterized as highly adhesive.

  4. Ex vivo intestinal adhesion of Escherichia coli LF82 in Crohn’s disease

    DEFF Research Database (Denmark)

    Jensen, Stina Rikke; Fink, Lisbeth Nielsen; Nielsen, Ole Haagen

    2011-01-01

    Adherent-invasive Escherichia coli (AIEC) are reported to inhabit the gut mucosa in Crohn’s disease (CD), however, little is known about the importance of host factors for the interplay between AIEC and the human gut.To examine if differences in bacterial adhesion patterns are disease associated......, the AIEC-prototype strain LF82 was evaluated for its ability to adhere to ileal and colonic biopsies from CD and healthy controls (HC). Moreover, the efficacy of the non-pathogenic E. coli Nissle 1917 (ECN) in averting LF82 adhesion to ileal mucosa was assessed.Similar numbers of LF82 adhered to biopsies...... from CD and HC. A significantly greater LF82 attachment to ileal versus colonic mucosa was found in HC (P adhesion of LF82 to ileal specimens in CD or HC.These results show that enhanced bacterial adhesion ability is unlikely to play any significant...

  5. Bacterial mitosis

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Borch, Jonas; Dam, Mette

    2003-01-01

    Bacterial DNA segregation takes place in an active and ordered fashion. In the case of Escherichia coli plasmid R1, the partitioning system (par) separates paired plasmid copies and moves them to opposite cell poles. Here we address the mechanism by which the three components of the R1 par system...... movement is powered by insertional polymerization of ParM. Consistently, we find that segregating plasmids are positioned at the ends of extending ParM filaments. Thus, the process of R1 plasmid segregation in E. coli appears to be mechanistically analogous to the actin-based motility operating...

  6. Template assisted surface microstructuring of flowable dental composites and its effect on microbial adhesion properties.

    Science.gov (United States)

    Frenzel, Nadja; Maenz, Stefan; Sanz Beltrán, Vanesa; Völpel, Andrea; Heyder, Markus; Sigusch, Bernd W; Lüdecke, Claudia; Jandt, Klaus D

    2016-03-01

    Despite their various advantages, such as good esthetic properties, absence of mercury and adhesive bonding to teeth, modern dental composites still have some drawbacks, e.g., a relatively high rate of secondary caries on teeth filled with composite materials. Recent research suggests that microstructured biomaterials surfaces may reduce microbial adhesion to materials due to unfavorable physical material-microbe interactions. The objectives of this study were, therefore, to test the hypotheses that (i) different surface microstructures can be created on composites by a novel straightforward approach potentially suitable for clinical application and (ii) that these surface structures have a statistically significant effect on microbial adhesion properties. Six different dental composites were initially tested for their suitability for microstructuring by polydimethylsiloxane (PDMS) templates. Each composite was light-cured between a glass slide and a microstructured PDMS template. The nano-hybrid composite Grandio Flow was the only tested composite with satisfying structurability, and was therefore used for the bacterial adhesion tests. Composites samples were structured with four different microstructures (flat, cubes, linear trapezoid structures, flat pyramids) and incubated for 4h in centrifuged saliva. The bacterial adherence was then characterized by colony forming units (CFUs) and scanning electron microscopy (SEM). All four microstructures were successfully transferred from the PDMS templates to the composite Grandio Flow. The CFU-test as well as the quantitative analysis of the SEM images showed the lowest bacterial adhesion on the flat composite samples. The highest bacterial adhesion was observed on the composite samples with linear trapezoid structures, followed by flat pyramids and cubes. The microstructure of dental composite surfaces statistically significantly influenced the adhesion of oral bacteria. Modifying the composite surface structure may be

  7. Polymer Claw: Instant Underwater Adhesive

    Science.gov (United States)

    2012-09-24

    glycerol is a well-known hygroscopic liquid and lubricant. In the Polymer Claw Progress Report -4- 9/24/12 The Johns Hopkins University Applied Physics...the Polymer Claw adhesive partially solidified, while commercial adhesives were completely liquid after one hour. However, the curing rate was...is not valid for partial liquid adhesives, we will only test at later times, noting the minimum time for which the glass slides break. The time to

  8. Adhesive interactions between voice prosthetic yeast and bacteria on silicone rubber in the absence and presence of saliva.

    Science.gov (United States)

    Millsap, K W; Bos, R; van der Mei, H C; Busscher, H J

    2001-09-01

    Biofilms on silicone rubber voice prostheses are the major cause for frequent failure and replacement of these devices. The presence of both bacterial strains and yeast has been suggested to be crucial for the development of voice prosthetic biofilms. Adhesive interactions between Candida albicans, Candida krusei, and Candida tropicalis with 14 bacterial strains, all isolated from explanted voice prostheses were investigated in a parallel plate flow chamber. Bacteria were first allowed to adhere to silicone rubber, after which the flow chamber was perfused with yeast, suspended either in saliva or buffer. Generally, when yeast were adhering from buffer and saliva, the presence of adhering bacteria suppressed adhesion of yeast. In saliva, Rothia dentocariosa and Staphylococcus aureus enhanced adhesion of yeast, especially of C. albicans. This study shows that bacterial adhesion mostly reduces subsequent adhesion of yeast, while only a few bacterial strains stimulate adhesion of yeast, provided salivary adhesion mediators are present. Interestingly, different clinical studies have identified R. dentocariosa and S. aureus in biofilms on explanted prostheses of patients needing most frequent replacement, while C. albicans is one of the yeast generally held responsible for silicone rubber deterioration.

  9. Polyurethane adhesive ingestion.

    Science.gov (United States)

    Fitzgerald, Kevin T; Bronstein, Alvin C

    2013-02-01

    Polyurethane adhesives are found in a large number of household products in the United States and are used for a variety of purposes. Several brands of these expanding wood glues (those containing diphenylmethane diisocyanate [MDI]) have the potential to form gastrointestinal (GI) foreign bodies if ingested. The ingested adhesive forms an expanding ball of glue in the esophagus and gastric lumen. This expansion is caused by a polymerization reaction using the heat, water, and gastric acids of the stomach. A firm mass is created that can be 4-8 times its original volume. As little as 2 oz of glue have been reported to develop gastric foreign bodies. The obstructive mass is reported to form within minutes of ingestion of the adhesive. The foreign body can lead to esophageal impaction and obstruction, airway obstruction, gastric outflow obstruction, mucosal hemorrhage, ulceration, laceration, perforation of the esophageal and gastric linings, and death. Clinical signs following ingestion include anorexia, lethargy, vomiting, tachypnea, and abdominal distention and pain, and typically develop within 12 hours. Clinical signs may depend upon the size of the mass. If left untreated, perforation and rupture of the esophagus or stomach can occur. The glue mass does not stick to the GI mucosa and is not always detectable on abdominal palpation. Radiographs are recommended to confirm the presence of the "glue-ball" foreign body, and radiographic evidence of the obstruction may be seen as early as 4-6 hours following ingestion. Emesis is contraindicated owing to the risk of aspiration of the glue into the respiratory tree or the subsequent lodging of the expanding glue mass in the esophagus. Likewise, efforts to dilute the glue and prevent the formation of the foreign body through administration of liquids, activated charcoal, or bulk-forming products to push the foreign body through the GI tract have proven ineffective. Even endoscopy performed to remove the foreign body has

  10. The neural cell adhesion molecule

    DEFF Research Database (Denmark)

    Berezin, V; Bock, E; Poulsen, F M

    2000-01-01

    During the past year, the understanding of the structure and function of neural cell adhesion has advanced considerably. The three-dimensional structures of several of the individual modules of the neural cell adhesion molecule (NCAM) have been determined, as well as the structure of the complex...... between two identical fragments of the NCAM. Also during the past year, a link between homophilic cell adhesion and several signal transduction pathways has been proposed, connecting the event of cell surface adhesion to cellular responses such as neurite outgrowth. Finally, the stimulation of neurite...

  11. Novel chemically modified bacterial cellulose nanocomposite as potential biomaterial for stem cell therapy applications.

    Science.gov (United States)

    Xavier Acasigua, Gerson Arisoly; de Olyveira, Gabriel Molina; Manzine Costa, Ligia Maria; Braghirolli, Daikelly Iglesias; Medeiros Fossati, Anna Christina; Guastaldi, Antonio Carlos; Pranke, Patricia; Daltro, Gildásio de Cerqueira; Basmaji, Pierre

    2014-03-01

    Bacterial cellulose (BC) has become established as a remarkably versatile biomaterial and can be used in a wide variety of applied scientific applications, especially for medical devices. In this work, the bacterial cellulose fermentation process is modified by the addition of hyaluronic acid and gelatin (1% w/w) to the culture medium before the bacteria is inoculated. Hyaluronic acid and gelatin influence in bacterial cellulose was analyzed using Transmission Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). Adhesion and viability studies with human dental pulp stem cells using natural bacterial cellulose/hyaluronic acid as scaffolds for regenerative medicine are presented for the first time in this work. MTT viability assays show higher cell adhesion in bacterial cellulose/gelatin and bacterial cellulose/ hyaluronic acid scaffolds over time with differences due to fiber agglomeration in bacterial cellulose/gelatin. Confocal microscopy images showed that the cell were adhered and well distributed within the fibers in both types of scaffolds.

  12. Variation of the adhesion to polystyrene of phenotypic mutants of Pseudomonas aeruginosa ATCC 27853 during starvation conditions.

    Science.gov (United States)

    Cappello, Simone

    2008-01-01

    The aim of this work was to analyse the effects of different growth conditions (phosphate and contemporary carbon-phosphate starvation) on polystyrene adhesion of a strain of Pseudomonas aeruginosa ATCC 27853 and its four phenotypic mutants during experimental growth in starvation conditions. Bacterial adhesion was measured at 20, 40, 60 and 720 min. Data obtained showed that growth conditions are an important factor for the capacity of initial adhesion to inanimate surfaces. The analyses of adhesion of two phenotypic mutants (Mut-P-01 and Mut-P-02) isolated during growth on phosphate starvation is interesting. This kind of experiment yields important information on the prevention of nosocomial infections.

  13. Effect of flagella expression on adhesion of Achromobacter piechaudii to chalk surfaces.

    Science.gov (United States)

    Nejidat, A; Saadi, I; Ronen, Z

    2008-12-01

    To examine flagella role and cell motility in adhesion of Achromobacter piechaudii to chalk. Transmission electron microscopy revealed that stationary cells have thicker and longer flagella than logarithmic cells. SDS-PAGE analysis showed that flagellin was more abundant in stationary cells than logarithmic ones. Sonication or inhibition of flagellin synthesis caused a 30% reduction in adhesion to chalk. Preincubation of chalk with flagella extracts reduced adhesion, by 50%. Three motility mutants were isolated. Mutants 94 and 153 were nonmotile, expressed normal levels of flagellin, have regular flagella and exhibited reduced adhesion. Mutant 208 expressed low levels of flagellin, no flagella and a spherical cell shape but with normal adhesion capacity. Multiple cell surface factors affect the adhesion efficiency to chalk. Flagella per se through physical interaction and through cell motility contribute to the adhesion process. The adhesion behaviour of mutant 208 suggests that cell shape can compensate for flagellar removal and motility. Physiological status affects bacterial cell surface properties and hence adhesion efficiency to chalk. This interaction is essential to sustain biodegradation activities and thus, remediation of contaminated chalk aquifers.

  14. Characterization and Streptococcus mutans adhesion on air polishing dentin.

    Science.gov (United States)

    Tada, Kazuhiro; Oda, Hirotake; Inatomi, Michitomo; Sato, Soh

    2014-07-01

    Air polishing is known as an effective and time saving tooth cleaning method. However, this method increased surface roughness and bacterial adhesion on dentin surface. The aim of this study was to characterize and examine Streptococcus mutans adhesion on dentin surface after air polishing as compared to the conventional method. The dentin blocks (4 × 4 × 1 mm) were polished by a rubber cup with polishing material (Polishing) and air-polished by 25 μm glycine (G25), 65 μm glycine (G65), and 65 μm sodium bicarbonate (NHC65) microparticles. Surface roughness (Ra) was measured by a laser electron microscope. The amount of adhered S. mutans was quantified using a resazurin reduction assay (alamarBlue(®)). The Ra of G25 and G65 was significantly (p < 0.01) smaller than that of NHC65 and greater than that of Polishing. However, there was no significant difference in S. mutans adhesion among Polishing, G25, and G65, while NHC65 showed significantly (p < 0.01) higher S. mutans adhesion. Within the limitations of this in vitro study, air polishing using glycine microparticles conditioned S. mutans adhesion on dentin surface in a similar fashion than the conventional method, and less than air polishing using sodium bicarbonate microparticles.

  15. Work of adhesion of dairy products on stainless steel surface

    Directory of Open Access Journals (Sweden)

    Patrícia Campos Bernardes

    2012-12-01

    Full Text Available The adhesion of the solids presents in food can difficult the process of surface cleaning and promotes the bacterial adhesion process and can trigger health problems. In our study, we used UHT whole milk, chocolate based milk and infant formula to evaluate the adhesion of Enterobacter sakazakii on stainless steel coupons, and we determine the work of adhesion by measuring the contact angle as well as measured the interfacial tension of the samples. Inaddition we evaluated the hydrophobicity of stainless steel after pre-conditioning with milk samples mentioned. E. sakazakii was able to adhere to stainless steel in large numbers in the presence of dairy products. The chocolate based milk obtained the lower contact angle with stainless steel surface, higher interfacial tension and consequently higher adhesion work. It was verified a tendency of decreasing the interfacial tension as a function of the increasing of protein content. The pre-conditioning of the stainless steel coupons with milk samples changed the hydrophobic characteristics of the surfaces and became them hydrophilic. Therefore, variations in the composition of the milk products affect parameters important that can influence the procedure of hygiene in surface used in food industry.

  16. Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement

    Science.gov (United States)

    Maier, Greg P.; Rapp, Michael V.; Waite, J. Herbert; Israelachvili, Jacob N.; Butler, Alison

    2015-08-01

    In physiological fluids and seawater, adhesion of synthetic polymers to solid surfaces is severely limited by high salt, pH, and hydration, yet these conditions have not deterred the evolution of effective adhesion by mussels. Mussel foot proteins provide insights about adhesive adaptations: Notably, the abundance and proximity of catecholic Dopa (3,4-dihydroxyphenylalanine) and lysine residues hint at a synergistic interplay in adhesion. Certain siderophores—bacterial iron chelators—consist of paired catechol and lysine functionalities, thereby providing a convenient experimental platform to explore molecular synergies in bioadhesion. These siderophores and synthetic analogs exhibit robust adhesion energies (Ead ≥-15 millijoules per square meter) to mica in saline pH 3.5 to 7.5 and resist oxidation. The adjacent catechol-lysine placement provides a “one-two punch,” whereby lysine evicts hydrated cations from the mineral surface, allowing catechol binding to underlying oxides.

  17. Studies on the Adhesive Property of Snail Adhesive Mucus.

    Science.gov (United States)

    Newar, Janu; Ghatak, Archana

    2015-11-10

    Many gastropod molluscs are known to secrete mucus which allow these animals to adhere to a substrate while foraging over it. While the mucus is known to provide strong adhesion to both dry and wet surfaces, including both horizontal and vertical ones, no systematic study has been carried out to understand the strength of such adhesion under different conditions. We report here results from preliminary studies on adhesion characteristics of the mucus of a snail found in eastern India, Macrochlamys indica. When perturbed, the snail was found to secrete its adhesive mucus, which was collected and subjected to regular adhesion tests. The hydrated mucus was used as such, and also as mixed with buffer of different pH. These experiments suggest that the mucus was slightly alkaline, and showed the maximum adhesion strength of 9 kPa when present in an alkaline buffer. Preliminary studies indicate that adhesive force is related to the ability of the mucus to incorporate water. In alkaline condition, the gel like mass that it forms, incorporate water from a wet surface and enable strong adhesion.

  18. Effect of adhesive thickness on adhesively bonded T-joint

    Science.gov (United States)

    Abdullah, A. R.; Afendi, Mohd; Majid, M. S. Abdul

    2013-12-01

    The aim of this work is to analyze the effect of adhesive thickness on tensile strength of adhesively bonded stainless steel T-joint. Specimens were made from SUS 304 Stainless Steel plate and SUS 304 Stainless Steel perforated plate. Four T-joint specimens with different adhesive thicknesses (0.5, 1.0, 1.5 and 2.0 mm) were made. Experiment result shows T-joint specimen with adhesive thickness of 1.0 mm yield highest maximum load. Identical T-joint specimen jointed by spot welding was also tested. Tensile test shows welded T-Joint had eight times higher tensile load than adhesively bonded T-joint. However, in low pressure application such as urea granulator chamber, high tensile strength is not mandatory. This work is useful for designer in fertilizer industry and others who are searching for alternative to spot welding.

  19. Stretchable, Adhesion-Tunable Dry Adhesive by Surface Wrinkling

    KAUST Repository

    Jeong, Hoon Eui

    2010-02-16

    We introduce a simple yet robust method of fabricating a stretchable, adhesion-tunable dry adhesive by combining replica molding and surface wrinkling. By utilizing a thin, wrinkled polydimethyl siloxane (PDMS) sheet with a thickness of 1 mm with built-in micropillars, active, dynamic control of normal and shear adhesion was achieved. Relatively strong normal (∼10.8 N/cm2) and shear adhesion (∼14.7 N/cm2) forces could be obtained for a fully extended (strained) PDMS sheet (prestrain of∼3%), whereas the forces could be rapidly reduced to nearly zero once the prestrain was released (prestrain of ∼0.5%). Moreover, durability tests demonstrated that the adhesion strength in both the normal and shear directions was maintained over more than 100 cycles of attachment and detachment. © 2010 American Chemical Society.

  20. Improved adhesive properties of recombinant bifidobacteria expressing the Bifidobacterium bifidum-specific lipoprotein BopA

    Directory of Open Access Journals (Sweden)

    Gleinser Marita

    2012-06-01

    Full Text Available Abstract Background Bifidobacteria belong to one of the predominant bacterial groups in the intestinal microbiota of infants and adults. Several beneficial effects on the health status of their human hosts have been demonstrated making bifidobacteria interesting candidates for probiotic applications. Adhesion of probiotics to the intestinal epithelium is discussed as a prerequisite for colonisation of and persistence in the gastrointestinal tract. Results In the present study, 15 different strains of bifidobacteria were tested for adhesion. B. bifidum was identified as the species showing highest adhesion to all tested intestinal epithelial cell (IEC lines. Adhesion of B. bifidum S17 to IECs was strongly reduced after treatment of bacteria with pronase. These results strongly indicate that a proteinaceous cell surface component mediates adhesion of B. bifidum S17 to IECs. In silico analysis of the currently accessible Bifidobacterium genomes identified bopA encoding a lipoprotein as a B. bifidum-specific gene previously shown to function as an adhesin of B. bifidum MIMBb75. The in silico results were confirmed by Southern Blot analysis. Furthermore, Northern Blot analysis demonstrated that bopA is expressed in all B. bifidum strains tested under conditions used to cultivate bacteria for adhesion assays. The BopA gene was successfully expressed in E. coli and purified by Ni-NTA affinity chromatography as a C-terminal His6-fusion. Purified BopA had an inhibitory effect on adhesion of B. bifidum S17 to IECs. Moreover, bopA was successfully expressed in B. bifidum S17 and B. longum/infantis E18. Strains overexpressing bopA showed enhanced adhesion to IECs, clearly demonstrating a role of BopA in adhesion of B. bifidum strains. Conclusions BopA was identified as a B. bifidum-specific protein involved in adhesion to IECs. Bifidobacterium strains expressing bopA show enhanced adhesion. Our results represent the first report on recombinant

  1. The neural cell adhesion molecule

    DEFF Research Database (Denmark)

    Berezin, V; Bock, E; Poulsen, F M

    2000-01-01

    During the past year, the understanding of the structure and function of neural cell adhesion has advanced considerably. The three-dimensional structures of several of the individual modules of the neural cell adhesion molecule (NCAM) have been determined, as well as the structure of the complex...

  2. Syndecans, signaling, and cell adhesion

    DEFF Research Database (Denmark)

    Couchman, J R; Woods, A

    1996-01-01

    structures within the heparan sulfate chains, leaving the roles of chondroitin sulfate chains and extracellular portion of the core proteins to be elucidated. Evidence that syndecans are a class of receptor involved in cell adhesion is mounting, and their small cytoplasmic domains may link...... transmembrane signaling from matrix to cytoskeleton, as proposed for other classes of adhesion receptors....

  3. Controlling adhesive behavior during recycling

    Science.gov (United States)

    Carl Houtman; Karen Scallon; Jihui Guo; XinPing Wang; Steve Severtson; Mark Kroll; Mike Nowak

    2004-01-01

    Adhesives can be formulated to facilitate their removal by typical paper recycling unit operations. The investigations described in this paper are focused on determining fundamental properties that control particle size during pulping. While pressure-sensitive adhesives (PSAs) with high elastic moduli tend to survive pulping with larger particles, facestock and...

  4. Effect of fibril shape on adhesive properties

    Science.gov (United States)

    Soto, Daniel; Hill, Ginel; Parness, Aaron; Esparza, Noé; Cutkosky, Mark; Kenny, Tom

    2010-08-01

    Research into the gecko's adhesive system revealed a unique architecture for adhesives using tiny hairs. By using a stiff material (β-keratin) to create a highly structured adhesive, the gecko's system demonstrates properties not seen in traditional pressure-sensitive adhesives which use a soft, unstructured planar layer. In contrast to pressure sensitive adhesives, the gecko adhesive displays frictional adhesion, in which increased shear force allows it to withstand higher normal loads. Synthetic fibrillar adhesives have been fabricated but not all demonstrate this frictional adhesion property. Here we report the dual-axis force testing of single silicone rubber pillars from synthetic adhesive arrays. We find that the shape of the adhesive pillar dictates whether frictional adhesion or pressure-sensitive behavior is observed. This work suggests that both types of behavior can be achieved with structures much larger than gecko terminal structures. It also indicates that subtle differences in the shape of these pillars can significantly influence their properties.

  5. Regulative mechanisms of chondrocyte adhesion

    DEFF Research Database (Denmark)

    Schmal, Hagen; Mehlhorn, Alexander T; Fehrenbach, Miriam

    2006-01-01

    Interaction between chondrocytes and extracellular matrix is considered a key factor in the generation of grafts for matrix-associated chondrocyte transplantation. Therefore, our objective was to study the influence of differentiation status on cellular attachment. Adhesion of chondrocytes...... to collagen type II increased after removal from native cartilage up to the third day in monolayer in a dose-dependent manner. Following dedifferentiation after the second passage, adhesion to collagen types I (-84%) and II (-46%) decreased, whereas adhesion to fibrinogen (+59%) and fibronectin (+43......%) increased. A cartilage construct was developed based on a clinically established collagen type I scaffold. In this matrix, more than 80% of the cells could be immobilized by mechanisms of adhesion, filtration, and cell entrapment. Confocal laser microscopy revealed focal adhesion sites as points of cell...

  6. Adhesive capsulitis of the shoulder.

    Science.gov (United States)

    Neviaser, Andrew S; Neviaser, Robert J

    2011-09-01

    Adhesive capsulitis is characterized by painful, gradual loss of active and passive shoulder motion resulting from fibrosis and contracture of the joint capsule. Other shoulder pathology can produce a similar clinical picture, however, and must be considered. Management is based on the underlying cause of pain and stiffness, and determination of the etiology is essential. Subtle clues in the history and physical examination can help differentiate adhesive capsulitis from other conditions that cause a stiff, painful shoulder. The natural history of adhesive capsulitis is a matter of controversy. Management of true capsular restriction of motion (ie, true adhesive capsulitis) begins with gentle, progressive stretching exercises. Most patients improve with nonsurgical treatment. Indications for surgery should be individualized. Failure to obtain symptomatic improvement and continued functional disability following ≥6 months of physical therapy is a general guideline for surgical intervention. Diligent postoperative therapy to maintain motion is required to minimize recurrence of adhesive capsulitis.

  7. Adhesive tape exfoliation

    DEFF Research Database (Denmark)

    Bohr, Jakob

    2015-01-01

    Single-crystal graphite can be cleaved by the use of an adhesive tape. This was also the initial route for obtaining graphene, a one-layer thick graphite slab. In this letter a few simple and fun considerations are presented in an attempt to shed some light on why this procedure is successful....... In particular on the nature of the surprisingly small number of repetitive steps that are needed in order to obtain a single-layer slab. Two frameworks for exfoliation are investigated: parallel exfoliation involving repetitive simultaneous cleaving, the other, serial exfoliation, which involves the repetitive...... cleaving of a single chunk of graphite. For both cases, parallel and serial exfoliation, it is investigated how many generations of cleavages are needed. An approximate model with the probability distribution expressed as a simple closed form is presented and compared with the simulations....

  8. Enthalpy of interaction between coaggregating and non-coaggregating oral bacterial pairs - a microcalorimetric study

    NARCIS (Netherlands)

    Postollec, F; Norde, W; van der Mei, HC; Busscher, HJ

    2003-01-01

    Bacterial adhesion and coaggregation are involved in the development of oral biofilms, called dental plaque. Although various techniques have already been used to study different aspects of these bacterial interactions, microcalorimetry has not yet been applied. This paper describes how isothermal

  9. Enthalpy of interaction between coaggregating and non-coaggregating oral bacterials pairs - a microcalorimetric study

    NARCIS (Netherlands)

    Postollec, F.; Norde, W.; Mei, van der H.C.; Busscher, H.J.

    2003-01-01

    Bacterial adhesion and coaggregation are involved in the development of oral biofilms, called dental plaque. Although various techniques have already been used to study different aspects of these bacterial interactions, microcalorimetry has not yet been applied. This paper describes how isothermal

  10. Mechanism of cell integration on biomaterial implant surfaces in the presence of bacterial contamination

    NARCIS (Netherlands)

    Yue, Chongxia; van der Mei, Henny C.; Kuijer, Roel; Busscher, Henk J.; Rochford, Edward T. J.

    2015-01-01

    Bacterial contamination during biomaterial implantation is often unavoidable, yielding a combat between cells and bacteria. Here we aim to determine the modulatory function of bacterial components on stem-cell, fibroblast, and osteoblast adhesion to a titanium alloy, including the role of

  11. BACTERIAL PLASMIDS

    Directory of Open Access Journals (Sweden)

    Marina Dinic

    2007-12-01

    Full Text Available Plasmids, extrachromosomal DNA, were identified in bacteria pertaining to family of Enterobacteriacae for the very first time. After that, they were discovered in almost every single observed strain. The structure of plasmids is made of circular double chain DNA molecules which are replicated autonomously in a host cell. Their length may vary from few up to several hundred kilobase (kb. Among the bacteria, plasmids are mostly transferred horizontally by conjugation process. Plasmid replication process can be divided into three stages: initiation, elongation, and termination. The process involves DNA helicase I, DNA gyrase, DNA polymerase III, endonuclease, and ligase.Plasmids contain genes essential for plasmid function and their preservation in a host cell (the beginning and the control of replication. Some of them possess genes whichcontrol plasmid stability. There is a common opinion that plasmids are unnecessary fora growth of bacterial population and their vital functions; thus, in many cases they can be taken up or kicked out with no lethal effects to a plasmid host cell. However,there are numerous biological functions of bacteria related to plasmids. Plasmids identification and classification are based upon their genetic features which are presented permanently in all of them, and these are: abilities to preserve themselves in a host cell and to control a replication process. In this way, plasmids classification among incompatibility groups is performed. The method of replicon typing, which is based on genotype and not on phenotype characteristics, has the same results as in compatibility grouping.

  12. Mechanism of cell integration on biomaterial implant surfaces in the presence of bacterial contamination.

    Science.gov (United States)

    Yue, Chongxia; van der Mei, Henny C; Kuijer, Roel; Busscher, Henk J; Rochford, Edward T J

    2015-11-01

    Bacterial contamination during biomaterial implantation is often unavoidable, yielding a combat between cells and bacteria. Here we aim to determine the modulatory function of bacterial components on stem-cell, fibroblast, and osteoblast adhesion to a titanium alloy, including the role of toll-like-receptors (TLRs). Presence of heat-sacrificed Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli, or Pseudomonas aeruginosa induced dose and cell-type dependent responses. Stem-cells were most sensitive to bacterial presence, demonstrating decreased adhesion number yet increased adhesion effort with a relatively large focal adhesion contact area. Blocking TLRs had no effect on stem-cell adhesion in presence of S. aureus, but blocking both TLR2 and TLR4 induced an increased adhesion effort in presence of E. coli. Neither lipopolysaccharide, lipoteichoic acid, nor bacterial DNA provoked the same cell response as did whole bacteria. Herewith we suggest a new mechanism as to how biomaterials are integrated by cells despite the unavoidable presence of bacterial contamination. Stimulation of host cell integration of implant surfaces may open a new window to design new biomaterials with enhanced healing, thereby reducing the risk of biomaterial-associated infection of both "hardware-based" implants as well as of tissue-engineered constructs, known to suffer from similarly high infection risks as currently prevailing in "hardware-based" implants. © 2015 Wiley Periodicals, Inc.

  13. Bacterial adherence to graft tissues in static and flow conditions.

    Science.gov (United States)

    Veloso, Tiago Rafael; Claes, Jorien; Van Kerckhoven, Soetkin; Ditkowski, Bartosz; Hurtado-Aguilar, Luis G; Jockenhoevel, Stefan; Mela, Petra; Jashari, Ramadan; Gewillig, Marc; Hoylaerts, Marc F; Meyns, Bart; Heying, Ruth

    2018-01-01

    Various conduits and stent-mounted valves are used as pulmonary valve graft tissues for right ventricular outflow tract reconstruction with good hemodynamic results. Valve replacement carries an increased risk of infective endocarditis (IE). Recent observations have increased awareness of the risk of IE after transcatheter implantation of a stent-mounted bovine jugular vein valve. This study focused on the susceptibility of graft tissue surfaces to bacterial adherence as a potential risk factor for subsequent IE. Adhesion of Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus sanguinis to bovine pericardium (BP) patch, bovine jugular vein (BJV), and cryopreserved homograft (CH) tissues was quantified under static and shear stress conditions. Microscopic analysis and histology were performed to evaluate bacterial adhesion to matrix components. In general, similar bacteria numbers were recovered from CH and BJV tissue surfaces for all strains, especially in flow conditions. Static bacterial adhesion to the CH wall was lower for S sanguinis adhesion (P static conditions (P forces per se are not the prime determinants of bacterial adherence. Copyright © 2017 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  14. Bacterial adherence: the role of serum and wound fluid

    African Journals Online (AJOL)

    STORAGESEVER

    2008-11-05

    Nov 5, 2008 ... Techno Company, Osaka, Japan). A sterile ... analysis. Wound treatment and adhesion essay. To determine the effect of wound fluid and serum on bacterial adherence, 0.5 ml of either wound fluid or serum and distilled water. (control) ... a mortar pestle to facilitate the elution of the bacteria cells from the.

  15. Effect on adhesion of a nanocapsules-loaded adhesive system

    Directory of Open Access Journals (Sweden)

    Bruna Genari

    2018-02-01

    Full Text Available Abstract This study aimed to evaluate the in situ degree of conversion, contact angle, and immediate and long-term bond strengths of a commercial primer and an experimental adhesive containing indomethacin- and triclosan-loaded nanocapsules (NCs. The indomethacin- and triclosan-loaded NCs, which promote anti-inflammatory and antibacterial effects through controlled release, were incorporated into the primer at a concentration of 2% and in the adhesive at concentrations of 1, 2, 5, and 10%. The in situ degree of conversion (DC, n=3 was evaluated by micro-Raman spectroscopy. The contact angle of the primer and adhesive on the dentin surface (n = 3 was determined by an optical tensiometer. For the microtensile bond strength µTBS test (12 teeth per group, stick-shaped specimens were tested under tensile stress immediately after preparation and after storage in water for 1 year. The data were analyzed using two-way ANOVA, three-way ANOVA and Tukey’s post hoc tests with α=0.05. The use of the NC-loaded adhesive resulted in a higher in situ degree of conversion. The DC values varied from 75.07 ± 8.83% to 96.18 ± 0.87%. The use of NCs in only the adhesive up to a concentration of 5% had no influence on the bond strength. The contact angle of the primer remained the same with and without NCs. The use of both the primer and adhesive with NCs (for all concentrations resulted in a higher contact angle of the adhesive. The longitudinal μTBS was inversely proportional to the concentration of NCs in the adhesive system, exhibiting decreasing values for the groups with primer containing NCs and adhesives with increasing concentrations of NCs. Adhesives containing up to 5% of nanocapsules and primer with no NCs maintained the in situ degree of conversion, contact angle, and immediate and long-term bond strengths. Therefore, the NC-loaded adhesive can be an alternative method for combining the bond performance and therapeutic effects. The use of an

  16. Wet adhesion and adhesive locomotion of snails on anti-adhesive non-wetting surfaces.

    Directory of Open Access Journals (Sweden)

    Neil J Shirtcliffe

    Full Text Available Creating surfaces capable of resisting liquid-mediated adhesion is extremely difficult due to the strong capillary forces that exist between surfaces. Land snails use this to adhere to and traverse across almost any type of solid surface of any orientation (horizontal, vertical or inverted, texture (smooth, rough or granular or wetting property (hydrophilic or hydrophobic via a layer of mucus. However, the wetting properties that enable snails to generate strong temporary attachment and the effectiveness of this adhesive locomotion on modern super-slippy superhydrophobic surfaces are unclear. Here we report that snail adhesion overcomes a wide range of these microscale and nanoscale topographically structured non-stick surfaces. For the one surface which we found to be snail resistant, we show that the effect is correlated with the wetting response of the surface to a weak surfactant. Our results elucidate some critical wetting factors for the design of anti-adhesive and bio-adhesion resistant surfaces.

  17. Wet adhesion and adhesive locomotion of snails on anti-adhesive non-wetting surfaces.

    Science.gov (United States)

    Shirtcliffe, Neil J; McHale, Glen; Newton, Michael I

    2012-01-01

    Creating surfaces capable of resisting liquid-mediated adhesion is extremely difficult due to the strong capillary forces that exist between surfaces. Land snails use this to adhere to and traverse across almost any type of solid surface of any orientation (horizontal, vertical or inverted), texture (smooth, rough or granular) or wetting property (hydrophilic or hydrophobic) via a layer of mucus. However, the wetting properties that enable snails to generate strong temporary attachment and the effectiveness of this adhesive locomotion on modern super-slippy superhydrophobic surfaces are unclear. Here we report that snail adhesion overcomes a wide range of these microscale and nanoscale topographically structured non-stick surfaces. For the one surface which we found to be snail resistant, we show that the effect is correlated with the wetting response of the surface to a weak surfactant. Our results elucidate some critical wetting factors for the design of anti-adhesive and bio-adhesion resistant surfaces.

  18. Marine Bioinspired Underwater Contact Adhesion.

    Science.gov (United States)

    Clancy, Sean K; Sodano, Antonio; Cunningham, Dylan J; Huang, Sharon S; Zalicki, Piotr J; Shin, Seunghan; Ahn, B Kollbe

    2016-05-09

    Marine mussels and barnacles are sessile biofouling organisms that adhere to a number of surfaces in wet environments and maintain remarkably strong bonds. Previous synthetic approaches to mimic biological wet adhesive properties have focused mainly on the catechol moiety, present in mussel foot proteins (mfps), and especially rich in the interfacial mfps, for example, mfp-3 and -5, found at the interface between the mussel plaque and substrate. Barnacles, however, do not use Dopa for their wet adhesion, but are instead rich in noncatecholic aromatic residues. Due to this anomaly, we were intrigued to study the initial contact adhesion properties of copolymerized acrylate films containing the key functionalities of barnacle cement proteins and interfacial mfps, for example, aromatic (catecholic or noncatecholic), cationic, anionic, and nonpolar residues. The initial wet contact adhesion of the copolymers was measured using a probe tack testing apparatus with a flat-punch contact geometry. The wet contact adhesion of an optimized, bioinspired copolymer film was ∼15.0 N/cm(2) in deionized water and ∼9.0 N/cm(2) in artificial seawater, up to 150 times greater than commercial pressure-sensitive adhesive (PSA) tapes (∼0.1 N/cm(2)). Furthermore, maximum wet contact adhesion was obtained at ∼pH 7, suggesting viability for biomedical applications.

  19. TANNIN ADHESIVES AS AN ALTENATIVE TO THE SYNTHETIC PHENOLIC ADHESIVES

    Directory of Open Access Journals (Sweden)

    Semra Çolak

    2003-04-01

    Full Text Available Recently, increasing attention has been paid industrially to the use of tannin formaldehyde adhesives in production of wood based panel products such as particleboard, fiber board and plywood. The researches on the use of tannin extracts as a wood adhesive started in 1950, however, they proceeded very slowly since the problems associated with the application of them. The idea which tannin extract can be used replace the oil-based phenolic adhesive was the base of several studies after the oil crisis of the 1970s. In the past, the economical aspects were important in the researches on the tannin-based adhesives. Nowadays, however, both economical and ecological factors should have taken into consideration in wood bonding.

  20. Structural adhesives directory and databook

    CERN Document Server

    Wilson, Jo

    1996-01-01

    A worldwide directory of commercially available adhesive products for use in a wide range of engineering disciplines. Along with product names and suppliers, basic property data are tabulated and cross-referenced. The book is subdivided according to class of adhesive, with introductions to each class followed by comparison tables and datasheets for each adhesive. The datasheets contain detailed information, from product codes to environmental properties and are therefore of interest across a broad readership. Standardized data will aid the user in cross-comparison between different manufacturers and in easily identifying the required information.

  1. Photovoltaic module with adhesion promoter

    Science.gov (United States)

    Xavier, Grace

    2013-10-08

    Photovoltaic modules with adhesion promoters and methods for fabricating photovoltaic modules with adhesion promoters are described. A photovoltaic module includes a solar cell including a first surface and a second surface, the second surface including a plurality of interspaced back-side contacts. A first glass layer is coupled to the first surface by a first encapsulating layer. A second glass layer is coupled to the second surface by a second encapsulating layer. At least a portion of the second encapsulating layer is bonded directly to the plurality of interspaced back-side contacts by an adhesion promoter.

  2. Adhesion of laser deposited films

    International Nuclear Information System (INIS)

    Zhovannik, E.V.; Nikolaev, I.N.; Utochkin, Yu.A.; Stavkin, D.G.

    1996-01-01

    The method of thin solid films (Ni, Cu, Al, Pd, Si, InSb, Ta 2 O 5 ) formation on different substrates (Cu, Fe, Si, SiO 2 , Ta 2 O 5 , carbon, glass, mica, teflon) with higher adhesion strength (∼ 10 7 Pa) without preliminary treatment of substrate surface was discribed. The method is based on laser evaporation of solid in vacuum. Adhesion was measured by means of a direct pull technique using a pin soldered to buffer film evaporated by laser on the investigated film. Possible reasons for higher adhesion of films fabricated by laser deposition were discussed. 10 refs.; 3 figs

  3. Adhesives from modified soy protein

    Science.gov (United States)

    Sun, Susan [Manhattan, KS; Wang, Donghai [Manhattan, KS; Zhong, Zhikai [Manhattan, KS; Yang, Guang [Shanghai, CN

    2008-08-26

    The present invention provides useful adhesive compositions having similar adhesive properties to conventional UF and PPF resins. The compositions generally include a protein portion and modifying ingredient portion selected from the group consisting of carboxyl-containing compounds, aldehyde-containing compounds, epoxy group-containing compounds, and mixtures thereof. The composition is preferably prepared at a pH level at or near the isoelectric point of the protein. In other preferred forms, the adhesive composition includes a protein portion and a carboxyl-containing group portion.

  4. Adhesion of some probiotic and dairy Lactobacillus strains to Caco-2 cell cultures.

    Science.gov (United States)

    Tuomola, E M; Salminen, S J

    1998-05-05

    The adhesion of 12 different Lactobacillus strains was studied using Caco-2 cell line as an in vitro model for intestinal epithelium. Some of the strains tested have been used as probiotics, and most of them are used in the dairy and food industry. Human and bovine enterotoxigenic Escherichia coli strains were used as positive and negative control, respectively. Bacterial adhesion to Caco-2 cell cultures was quantitated using radiolabelled bacteria. The adherence of bacteria was also observed microscopically after Gram staining. Viability of bacteria prior to adhesion was verified using flow cytometry. Among the tested strains, L. casei (Fyos) was the most adhesive strain and L. casei var. rhamnosus (Lactophilus) was the least adhesive strain, approximately 14 and 3% of the added bacteria adhered to Caco-2 cell cultures, respectively. The corresponding values for positive and negative control E. coli strains were 14 and 4%, respectively. The Lactobacillus strains tested could not be divided into distinctly adhesive or non-adhesive strains, since there was a continuation of adhesion rates. The four most adhesive strains were L. casei (Fyos), L. acidophilus 1 (LC1), L. rhamnosus LC-705 and Lactobacillus GG (ATCC 53103). No significant differences in the percentage adhesion were observed between these strains. Adhesion of all the strains was dependent on the number of bacteria used, since an approximately constant number of Caco-2 cells was used, indicating that the Caco-2 cell binding sites were not saturated. Viability of bacteria was high since approximately 90% of the bacteria were viable with the exception of L. acidophilus 1 which was 74% viable. Microscopic evaluations agreed with the radiolabelled binding as evidenced by observing more bacteria in Gram-stained preparations of good adhering strains compared to poorly adhering strains.

  5. Comparing Soy Flour Wood Adhesives to Purified Soy Protein Adhesives

    Science.gov (United States)

    Charles R. Frihart; Linda F. Lorenz

    2013-01-01

    While economics dictate that soy-based wood adhesives be made with soy flour, much of the recent literature on soy-based wood adhesives has involved using soy protein isolate. The obvious assumption is that the additional carbohydrates in the flour but not in the isolate only serve as inert diluents. Our studies have shown that the isolate can provide 10 times the wet...

  6. Adhesion of Asaia bogorensis to Glass and Polystyrene in the Presence of Cranberry Juice.

    Science.gov (United States)

    Antolak, Hubert; Kregiel, Dorota; Czyzowska, Agata

    2015-06-01

    The aim of the study was to evaluate the adhesion abilities of the acetic acid bacterium Asaia bogorensis to glass and polystyrene in the presence of American cranberry (Vaccinium macrocarpon) juice. The strain of A. bogorensis used was isolated from spoiled commercial fruit-flavored drinking water. The cranberry juice was analyzed for polyphenols, organic acids, and carbohydrates using high-performance liquid chromatography and liquid chromatography-mass spectrometry techniques. The adhesive abilities of bacterial cells in culture medium supplemented with cranberry juice were determined using luminometry and microscopy. The viability of adhered and planktonic bacterial cells was determined by the plate count method, and the relative adhesion coefficient was calculated. This strain of A. bogorensis was characterized by strong adhesion properties that were dependent upon the type of surface. The highest level of cell adhesion was found on the polystyrene. However, in the presence of 10% cranberry juice, attachment of bacterial cells was three times lower. Chemical analysis of juice revealed the presence of sugars, organic acids, and anthocyanins, which were identified as galactosides, glucosides, and arabinosides of cyanidin and peonidin. A-type proanthocyanidins responsible for the antiadhesion properties of V. macrocarpon also were detected.

  7. Adhesive capsulitis: a review.

    Science.gov (United States)

    Ewald, Anthony

    2011-02-15

    Adhesive capsulitis is a common, yet poorly understood, condition causing pain and loss of range of motion in the shoulder. It can occur in isolation or concomitantly with other shoulder conditions (e.g., rotator cuff tendinopathy, bursitis) or diabetes mellitus. It is often self-limited, but can persist for years and may never fully resolve. The diagnosis is usually clinical, although imaging can help rule out other conditions. The differential diagnosis includes acromioclavicular arthropathy, autoimmune disease (e.g., systemic lupus erythematosus, rheumatoid arthritis), biceps tendinopathy, glenohumeral osteoarthritis, neoplasm, rotator cuff tendinopathy or tear (with or without impingement), and subacromial and subdeltoid bursitis. Several treatment options are commonly used, but few have high-level evidence to support them. Because the condition is often self-limited, observation and reassurance may be considered; however, this may not be acceptable to many patients because of the painful and debilitating nature of the condition. Nonsurgical treatments include analgesics (e.g., acetaminophen, nonsteroidal anti-inflammatory drugs), oral prednisone, and intra-articular corticosteroid injections. Home exercise regimens and physical therapy are often prescribed. Surgical treatments include manipulation of the joint under anesthesia and capsular release.

  8. Cellular and molecular investigations of the adhesion and mechanics of Listeria monocytogenes

    Science.gov (United States)

    Eskhan, Asma Omar

    Atomic force microscopy has been used to quantify the adherence and mechanical properties of an array of L. monocytogenes strains and their surface biopolymers. First, eight L. monocytogenes strains that represented the two major lineages of the species were compared for their adherence and mechanics at cellular and molecular levels. Our results indicated that strains of lineage' II were characterized by higher adhesion and Young's moduli, longer and more rigid surface biopolymers and lower specific and nonspecific forces when compared to lineage' I strains. Additionally, adherence and mechanical properties of eight L. monocytogenes epidemic and environmental strains were probed. Our results pointed to that environmental and epidemic strains representative of a given lineage were similar in their adherence and mechanical properties when investigated at a cellular level. However, when the molecular properties of the strains were considered, epidemic strains were characterized by higher specific and nonspecific forces, shorter, denser and more flexible biopolymers compared to environmental strains. Second, the role of environmental pH conditions of growth on the adhesion and mechanics of a pathogenic L. monocytogenes EGDe was investigated. Our results pointed to a transition in the adhesion energies for cells cultured at pH 7. In addition, when the types of molecular forces that govern the adhesion were quantified using Poisson statistical approach and using a new proposed method, specific hydrogen-bond energies dominated the bacterial adhesion process. Such a finding is instrumental to researchers designing methods to control bacterial adhesion. Similarly, bacterial cells underwent a transition in their mechanical properties. We have shown that cells cultured at pH 7 were the most rigid compared to those cultured in lower or higher pH conditions of growth. Due to transitions observed in adherence and mechanics when cells were cultured at pH 7, we hypothesized that

  9. Foreign material in postoperative adhesions

    NARCIS (Netherlands)

    R.W. Luijendijk; D.C.D. de Lange (Diederik); C.C. Wauters; W.C.J. Hop (Wim); J.J. Duron; J.L. Pailler; B.R. Camprodon; L. Holmdahl; H.J. van Geldorp; J. Jeekel (Hans)

    1996-01-01

    textabstractOBJECTIVE: The authors determined the prevalence of foreign body granulomas in intra-abdominal adhesions in patients with a history of abdominal surgery. PATIENTS AND METHODS: In a cross-sectional, multicenter, multinational study, adult patients with a

  10. Underwater adhesion: The barnacle way

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, L.; Anil, A.C.

    silicone substrata. For both materials, significant variation among maternal families in the proportion of barnacles producing a thick adhesive plaque was observed, which suggests the presence of genetic variation, or maternal environmental effects...

  11. Streptococcus mutans and Streptococcus intermedius adhesion to fibronectin films are oppositely influenced by ionic strength

    NARCIS (Netherlands)

    Busscher, H.J.; Belt-Gritter, van de B.; Dijkstra, R.J.B.; Norde, W.; Mei, van der H.C.

    2008-01-01

    Bacterial adhesion to protein-coated surfaces is mediated by an interplay of specific and nonspecific interactions. Although nonspecific interactions are ubiquitously present, little is known about the physicochemical mechanisms of specific interactions. The aim of this paper is to determine the

  12. Inhibition of microbial adhesion to silicone rubber treated with biosurfactant from Streptococcus thermophilus A

    NARCIS (Netherlands)

    Rodrigues, L; van der Mei, H; Banat, IM; Teixeira, J; Oliveira, R

    Microbial adhesion of four bacterial and two yeast strains isolated from explanted voice prostheses to silicone rubber before and after conditioning with a biosurfactant obtained from the probiotic bacterium Streptococcus thermophilus A was investigated in a parallel plate flow chamber. The silicone

  13. Ex vivo intestinal adhesion of Escherichia coli LF82 in Crohn's disease

    DEFF Research Database (Denmark)

    Jensen, Stina Rikke; Fink, Lisbeth Nielsen; Nielsen, Ole Haagen

    2011-01-01

    Adherent-invasive Escherichia coli (AIEC) are reported to inhabit the gut mucosa in Crohn's disease (CD), however, little is known about the importance of host factors for the interplay between AIEC and the human gut. To examine if differences in bacterial adhesion patterns are disease associated...

  14. Solid residues from Ruminococcus cellulose fermentations as components of wood adhesive formulations

    Science.gov (United States)

    P.J. Weimer; A.H. Conner; L.F. Lorenz

    2003-01-01

    Residues from the fermentation of cellulose by the anaerobic bacteria Ruminococcus albus (strain 7) or Ruminococcus flavefaciens (strains FD-1 or B34b) containing residual cellulose, bacterial cells and their associated adhesins, were examined for their ability to serve as components of adhesives for plywood fabrication. The residues contained differing amounts of...

  15. Inhibition of Streptococcus mutans adhesion to buccal epithelial cells by an aqueous extract of Thymus vulgaris.

    Science.gov (United States)

    Hammad, M; Sallal, A-K; Darmani, H

    2007-11-01

    The aim of this study was to investigate the effect of an extract of Thymus vulgaris (thyme) on the growth of Streptococcus mutans (S. mutans) and the adhesion of this bacterium to human buccal epithelial cells. Different concentrations of an aqueous extract of thyme were prepared and the effects investigated on growth of S. mutans. Furthermore, the effect of these extracts on adhesion of S. mutans to buccal epithelial cells was also investigated and compared with the effects of chlorhexidine digluconate. The data revealed that exposure of S. mutans to thyme extract showed a time and concentration-dependent decrease in bacterial viability. The greatest effect was observed when S. mutans had been exposed to 20% thyme extract for a period of 48 h which resulted in 96% inhibition of bacterial growth. Furthermore, the adhesion of S. mutans to buccal epithelial cells was also reduced when either buccal epithelial cells or S. mutans had been pre-incubated with different concentrations of aqueous thyme extracts (83-98% and 75-89% inhibition respectively). There was also greater reduction in the adherence of bacterial cells to buccal epithelial cells after mouth rinsing with 20% aqueous thyme extract compared to rinsing with chlorhexidine digluconate (45% and 89% inhibition of bacterial adhesion respectively). The diminished adherence of S. mutans to buccal epithelial cells after exposure to various concentrations of aqueous thyme extract as well as the antimicrobial properties of this plant may have clinical relevance.

  16. Operative procedures in warm humidified air: Can it reduce adhesion formation? A randomized experimental rat model

    Directory of Open Access Journals (Sweden)

    Arild de Vries

    2016-01-01

    Conclusions: Rats in the study group had higher total adhesion, extent, severity and tenacity scores postoperatively compared to rats in the control group. A possible reason could be the observed higher bacterial load amongst the rats of the study group compared to the rats of the control group.

  17. Force analysis of bacterial transmission from contact lens cases to corneas, with the contact lens as the intermediary

    NARCIS (Netherlands)

    Qu, Wen-wen; Hooymans, Johanna MM; de Vries, Jacob; van der Mei, Henderina; Busscher, Hendrik

    PURPOSE. To determine the probability of transmission of a Staphylococcus aureus strain from a contact lens case, to the contact lens (CL) surfaces, to the cornea, on the basis of bacterial adhesion forces measured by using atomic force microscopy (AFM). METHODS. Adhesion forces between S. aureus

  18. 21 CFR 878.4010 - Tissue adhesive.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tissue adhesive. 878.4010 Section 878.4010 Food... DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4010 Tissue adhesive. (a) Tissue adhesive for the topical approximation of skin—(1) Identification. A tissue adhesive for the topical...

  19. Decrease of Staphylococcal adhesion on surgical stainless steel after Si ion implantation

    International Nuclear Information System (INIS)

    Braceras, Iñigo; Pacha-Olivenza, Miguel A.; Calzado-Martín, Alicia; Multigner, Marta; Vera, Carolina; Broncano, Luis Labajos-; Gallardo-Moreno, Amparo M.; González-Carrasco, José Luis; Vilaboa, Nuria

    2014-01-01

    Highlights: • Si ion implantation of AISI 316LVM medical grade alloy might reduce bacterial adhesion and colonization. • Si ion implantation does not impair the attachment, viability and matrix maturation of human mesenchymal stem cells. • Nano-topography and surface chemistry changes account for the Si ion implantation induced effects. - Abstract: 316LVM austenitic stainless steel is often the material of choice on temporal musculoskeletal implants and surgical tools as it combines good mechanical properties and acceptable corrosion resistance to the physiologic media, being additionally relatively inexpensive. This study has aimed at improving the resistance to bacterial colonization of this surgical stainless steel, without compromising its biocompatibility and resistance. To achieve this aim, the effect of Si ion implantation on 316LVM has been studied. First, the effect of the ion implantation parameters (50 keV; fluence: 2.5–5 × 10 16 ions/cm 2 ; angle of incidence: 45–90°) has been assessed in terms of depth profiling of chemical composition by XPS and nano-topography evaluation by AFM. The in vitro biocompatibility of the alloy has been evaluated with human mesenchymal stem cells. Finally, bacterial adhesion of Staphylococcus epidermidis and Staphylococcus aureus on these surfaces has been assessed. Reduction of bacterial adhesion on Si implanted 316LVM is dependent on the implantation conditions as well as the features of the bacterial strains, offering a promising implantable biomaterial in terms of biocompatibility, mechanical properties and resistance to bacterial colonization. The effects of surface composition and nano-topography on bacterial adhesion, directly related to ion implantation conditions, are also discussed

  20. Decrease of Staphylococcal adhesion on surgical stainless steel after Si ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Braceras, Iñigo, E-mail: inigo.braceras@tecnalia.com [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Pacha-Olivenza, Miguel A. [CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Universidad de Extremadura, Departamento de Física Aplicada, Facultad de Ciencias, Av. Elvas s/n, 06006 Badajoz (Spain); Calzado-Martín, Alicia [Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Multigner, Marta [Centro Nacional de Investigaciones Metalúrgicas, CENIM-CSIC, Avda Gregorio del Amo 8, 28040 Madrid (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Vera, Carolina [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Broncano, Luis Labajos-; Gallardo-Moreno, Amparo M. [Universidad de Extremadura, Departamento de Física Aplicada, Facultad de Ciencias, Av. Elvas s/n, 06006 Badajoz (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); González-Carrasco, José Luis [Centro Nacional de Investigaciones Metalúrgicas, CENIM-CSIC, Avda Gregorio del Amo 8, 28040 Madrid (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Vilaboa, Nuria [Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); and others

    2014-08-15

    Highlights: • Si ion implantation of AISI 316LVM medical grade alloy might reduce bacterial adhesion and colonization. • Si ion implantation does not impair the attachment, viability and matrix maturation of human mesenchymal stem cells. • Nano-topography and surface chemistry changes account for the Si ion implantation induced effects. - Abstract: 316LVM austenitic stainless steel is often the material of choice on temporal musculoskeletal implants and surgical tools as it combines good mechanical properties and acceptable corrosion resistance to the physiologic media, being additionally relatively inexpensive. This study has aimed at improving the resistance to bacterial colonization of this surgical stainless steel, without compromising its biocompatibility and resistance. To achieve this aim, the effect of Si ion implantation on 316LVM has been studied. First, the effect of the ion implantation parameters (50 keV; fluence: 2.5–5 × 10{sup 16} ions/cm{sup 2}; angle of incidence: 45–90°) has been assessed in terms of depth profiling of chemical composition by XPS and nano-topography evaluation by AFM. The in vitro biocompatibility of the alloy has been evaluated with human mesenchymal stem cells. Finally, bacterial adhesion of Staphylococcus epidermidis and Staphylococcus aureus on these surfaces has been assessed. Reduction of bacterial adhesion on Si implanted 316LVM is dependent on the implantation conditions as well as the features of the bacterial strains, offering a promising implantable biomaterial in terms of biocompatibility, mechanical properties and resistance to bacterial colonization. The effects of surface composition and nano-topography on bacterial adhesion, directly related to ion implantation conditions, are also discussed.

  1. Mechanisms of adhesion in geckos.

    Science.gov (United States)

    Autumn, Kellar; Peattie, Anne M

    2002-12-01

    The extraordinary adhesive capabilities of geckos have challenged explanation for millennia, since Aristotle first recorded his observations. We have discovered many of the secrets of gecko adhesion, yet the millions of dry, adhesive setae on the toes of geckos continue to generate puzzling new questions and valuable answers. Each epidermally-derived, keratinous seta ends in hundreds of 200 nm spatular tips, permitting intimate contact with rough and smooth surfaces alike. Prior studies suggested that adhesive force in gecko setae was directly proportional to the water droplet contact angle (θ) , an indicator of the free surface energy of a substrate. In contrast, new theory suggests that adhesion energy between a gecko seta and a surface (W(GS)) is in fact proportional to (1 + cosθ), and only for θ > 60°. A reanalysis of prior data, in combination with our recent study, support the van der Waals hypothesis of gecko adhesion, and contradict surface hydrophobicity as a predictor of adhesion force. Previously, we and our collaborators measured the force production of a single seta. Initial efforts to attach a seta failed because of improper 3D orientation. However, by simulating the dynamics of gecko limbs during climbing (based on force plate data) we discovered that, in single setae, a small normal preload, combined with a 5 μm displacement yielded a very large adhesive force of 200 microNewton (μN), 10 times that predicted by whole-animal measurements. 6.5 million setae of a single tokay gecko attached maximally could generate 130 kg force. This raises the question of how geckos manage to detach their feet in just 15 ms. We discovered that simply increasing the angle that the setal shaft makes with the substrate to 30° causes detachment. Understanding how simultaneous attachment and release of millions of setae are controlled will require an approach that integrates levels ranging from molecules to lizards.

  2. Adhesion of Pathogenic Bacteria to Food Contact Surfaces: Influence of pH of Culture

    Directory of Open Access Journals (Sweden)

    Akier Assanta Mafu

    2011-01-01

    Full Text Available The adhesion of Aeromonas hydrophila, Escherichia coli O157:H7, Salmonella Enteritidis, and Staphylococcus aureus to hydrophobic and hydrophilic surfaces in cultures with different pHs (6, 7, and 8 was studied. The results indicated that the type of material had no effect on the attachment capacity of microorganisms, while environmental pH influenced the adhesion of A. hydrophila, E. coli, and S. aureus to both solid substrates. The attachment of S. Enteritidis (P>.05 was not affected by the type of substrate or the culture pH, whereas E. coli displayed the weakest affinity for both polystyrene and glass surfaces. No correlation was established between the physicochemical properties of the materials, or the bacterial and the rate of bacterial adhesion, except for S. aureus. Photomicrographs have shown that surfaces were contaminated by small clusters of S. Enteritidis while S. aureus invaded the food contact surfaces in the form of small chains or cell aggregates.

  3. Fibrillar Adhesive for Climbing Robots

    Science.gov (United States)

    Pamess, Aaron; White, Victor E.

    2013-01-01

    A climbing robot needs to use its adhesive patches over and over again as it scales a slope. Replacing the adhesive at each step is generally impractical. If the adhesive or attachment mechanism cannot be used repeatedly, then the robot must carry an extra load of this adhesive to apply a fresh layer with each move. Common failure modes include tearing, contamination by dirt, plastic deformation of fibers, and damage from loading/ unloading. A gecko-like fibrillar adhesive has been developed that has been shown useful for climbing robots, and may later prove useful for grasping, anchoring, and medical applications. The material consists of a hierarchical fibrillar structure that currently contains two levels, but may be extended to three or four levels in continuing work. The contacting level has tens of thousands of microscopic fibers made from a rubberlike material that bend over and create intimate contact with a surface to achieve maximum van der Waals forces. By maximizing the real area of contact that these fibers make and minimizing the bending energy necessary to achieve that contact, the net amount of adhesion has been improved dramatically.

  4. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive

    NARCIS (Netherlands)

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J R; Santos, Romana

    Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the

  5. Structural Insights into Ail-Mediated Adhesion in Yersinia pestis

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Satoshi; Lukacik, Petra; Barnard, Travis J.; Noinaj, Nicholas; Felek, Suleyman; Tsang, Tiffany M.; Krukonis, Eric S.; Hinnebusch, B. Joseph; Buchanan, Susan K. (Michigan); (NIH); (Michigan-Med)

    2012-01-30

    Ail is an outer membrane protein from Yersinia pestis that is highly expressed in a rodent model of bubonic plague, making it a good candidate for vaccine development. Ail is important for attaching to host cells and evading host immune responses, facilitating rapid progression of a plague infection. Binding to host cells is important for injection of cytotoxic Yersinia outer proteins. To learn more about how Ail mediates adhesion, we solved two high-resolution crystal structures of Ail, with no ligand bound and in complex with a heparin analog called sucrose octasulfate. We identified multiple adhesion targets, including laminin and heparin, and showed that a 40 kDa domain of laminin called LG4-5 specifically binds to Ail. We also evaluated the contribution of laminin to delivery of Yops to HEp-2 cells. This work constitutes a structural description of how a bacterial outer membrane protein uses a multivalent approach to bind host cells.

  6. Bacterial adherence to polymethylmethacrylate posterior chamber IOLs

    Directory of Open Access Journals (Sweden)

    Tyagi Shalini

    2001-01-01

    Full Text Available Purpose: Bacterial adherence to intraocular lenses (IOLs has been incriminated in the pathogenesis of postoperative endophthalmitis. Staphylococcus epidermidis is the most common organism isolated. We studied the in-vitro adhesion of Staphylococcus epidermidis to Polymethylmethacrylate (PMMA IOLs and the effect of duration of exposure to adherence. Methods: Two groups of 10 IOLs each were incubated in Staphylococcus epidermidis suspension for 2 minutes and 20 minutes respectively. Adhesion of bacterial cells was determined by counting the number of viable bacteria attached to IOLs. Results: The mean bacterial adherence with 2 minutes incubation was 12,889 ± 7,150 bacteria / IOL and with 20 minutes incubation was 84,226 ± 35,024 bacteria/IOL (P< 0.01. Conclusion: Our results show that Staphylococcus epidermidis adheres to PMMA IOLs in vitro and the degree of adherence is less for shorter duration of exposure. We conclude that viable bacteria irreversibly adherent to IOLs may play a role in the pathogenesis of postoperative endophthalmitis. Shorter duration of operative manipulation and exposure to contaminating sources may decrease the chances of postoperative endophthalmitis.

  7. Bacterial adherence to self-reinforced polyglycolic acid and self-reinforced polylactic acid 96 urological spiral stents in vitro.

    Science.gov (United States)

    Pétas, A; Vuopio-Varkila, J; Siitonen, A; Välimaa, T; Talja, M; Taari, K

    1998-01-01

    The aim of this study was to evaluate the bacterial adherence to biodegradable self-reinforced polyglycolic acid (SR-PGA) and self-reinforced poly-DL-lactic acid (SR-PLA 96) spiral stents in vitro. They are used as temporary urethral stents in urology. Gold-plated metal wire, polyurethane and latex were used as controls. Materials were incubated up to 28 days in artificial urine, after which a bacterial suspension was added. After detaching by sonication the adhesive bacteria were analysed as colony forming units (CFUs) and by scanning electron microscopy (SEM) analysis. Adhesion was more significantly correlated to stent bacterial type than to the tested material in both assays. No encrustation was seen on SR-PGA or SR-PLA 96. SR-PGA and SR-PLA 96 had no effect on the bacterial growth. In conclusion, the bacterial properties are equally or more important than the material properties in the adhesion process.

  8. Optimizing Adhesive Design by Understanding Compliance.

    Science.gov (United States)

    King, Daniel R; Crosby, Alfred J

    2015-12-23

    Adhesives have long been designed around a trade-off between adhesive strength and releasability. Geckos are of interest because they are the largest organisms which are able to climb utilizing adhesive toepads, yet can controllably release from surfaces and perform this action over and over again. Attempting to replicate the hierarchical, nanoscopic features which cover their toepads has been the primary focus of the adhesives field until recently. A new approach based on a scaling relation which states that reversible adhesive force capacity scales with (A/C)(1/2), where A is the area of contact and C is the compliance of the adhesive, has enabled the creation of high strength, reversible adhesives without requiring high aspect ratio, fibrillar features. Here we introduce an equation to calculate the compliance of adhesives, and utilize this equation to predict the shear adhesive force capacity of the adhesive based on the material components and geometric properties. Using this equation, we have investigated important geometric parameters which control force capacity and have shown that by controlling adhesive shape, adhesive force capacity can be increased by over 50% without varying pad size. Furthermore, we have demonstrated that compliance of the adhesive far from the interface still influences shear adhesive force capacity. Utilizing this equation will allow for the production of adhesives which are optimized for specific applications in commercial and industrial settings.

  9. Zinc-ion implanted and deposited titanium surfaces reduce adhesion of Streptococccus mutans

    International Nuclear Information System (INIS)

    Xu Juan; Ding Gang; Li Jinlu; Yang Shenhui; Fang Bisong; Sun Hongchen; Zhou Yanmin

    2010-01-01

    While titanium (Ti) is a commonly used dental implant material with advantageous biocompatible and mechanical properties, native Ti surfaces do not have the ability to prevent bacterial colonization. The objective of this study was to evaluate the chemical composition and bacterial adhesive properties of zinc (Zn) ion implanted and deposited Ti surfaces (Zn-PIIID-Ti) as potential dental implant materials. Surfaces of pure Ti (cp-Ti) were modified with increasing concentrations of Zn using plasma immersion ion implantation and deposition (PIIID), and elemental surface compositions were characterized by X-ray photoelectron spectrometry (XPS). To evaluate bacterial responses, Streptococcus mutans were seeded onto the modifiedTi surfaces for 48 h and subsequently observed by scanning electron microscopy. Relative numbers of bacteria on each surface were assessed by collecting the adhered bacteria, reculturing and counting colony forming units after 48 h on bacterial grade plates. Ti, oxygen and carbon elements were detected on all surfaces by XPS. Increased Zn signals were detected on Zn-PIIID-Ti surfaces, correlating with an increase of Zn-deposition time. Substantial numbers of S. mutans adhered to cp-Ti samples, whereas bacterial adhesion on Zn-PIIID-Ti surfaces signficantly decreased as the Zn concentration increased (p < 0.01). In conclusion, PIIID can successfully introduce Zn onto a Ti surface, forming a modified surface layer bearing Zn ions that consequently deter adhesion of S. mutans, a common bacterium in the oral environment.

  10. Zinc-ion implanted and deposited titanium surfaces reduce adhesion of Streptococccus mutans

    Energy Technology Data Exchange (ETDEWEB)

    Xu Juan, E-mail: doctorxue@126.com [Implant Center, School of Stomatology Jilin University, Changchun, Jilin (China) and Stomatological Hospital, Urumqi, Xinjiang (China); Ding Gang [Department of Stomatology, Yidu Central Hospital, Weifang, Shandong (China); Capital Medical University School of Stomatology, Beijing (China); Li Jinlu; Yang Shenhui; Fang Bisong [Capital Medical University School of Stomatology, Beijing (China); Sun Hongchen, E-mail: hcsun@jlu.edu.cn [Implant Center, School of Stomatology Jilin University, Changchun, Jilin (China); Zhou Yanmin, E-mail: zhouym62@126.com [Implant Center, School of Stomatology Jilin University, Changchun, Jilin (China)

    2010-10-01

    While titanium (Ti) is a commonly used dental implant material with advantageous biocompatible and mechanical properties, native Ti surfaces do not have the ability to prevent bacterial colonization. The objective of this study was to evaluate the chemical composition and bacterial adhesive properties of zinc (Zn) ion implanted and deposited Ti surfaces (Zn-PIIID-Ti) as potential dental implant materials. Surfaces of pure Ti (cp-Ti) were modified with increasing concentrations of Zn using plasma immersion ion implantation and deposition (PIIID), and elemental surface compositions were characterized by X-ray photoelectron spectrometry (XPS). To evaluate bacterial responses, Streptococcus mutans were seeded onto the modifiedTi surfaces for 48 h and subsequently observed by scanning electron microscopy. Relative numbers of bacteria on each surface were assessed by collecting the adhered bacteria, reculturing and counting colony forming units after 48 h on bacterial grade plates. Ti, oxygen and carbon elements were detected on all surfaces by XPS. Increased Zn signals were detected on Zn-PIIID-Ti surfaces, correlating with an increase of Zn-deposition time. Substantial numbers of S. mutans adhered to cp-Ti samples, whereas bacterial adhesion on Zn-PIIID-Ti surfaces signficantly decreased as the Zn concentration increased (p < 0.01). In conclusion, PIIID can successfully introduce Zn onto a Ti surface, forming a modified surface layer bearing Zn ions that consequently deter adhesion of S. mutans, a common bacterium in the oral environment.

  11. Comparison of adhesive gut bacteria composition, immunity, and disease resistance in juvenile hybrid tilapia fed two different Lactobacillus strains.

    Science.gov (United States)

    Liu, Wenshu; Ren, Pengfei; He, Suxu; Xu, Li; Yang, Yaling; Gu, Zemao; Zhou, Zhigang

    2013-07-01

    This study compares the effects of two Lactobacillus strains, highly adhesive Lactobacillus brevis JCM 1170 (HALB) and less-adhesive Lactobacillus acidophilus JCM 1132 (LALB), on the survival and growth, adhesive gut bacterial communities, immunity, and protection against pathogenic bacterial infection in juvenile hybrid tilapia. During a 5-week feeding trial the fish were fed a diet containing 0 to 10(9) cells/g feed of the two Lactobacillus strains. Samples of intestine, kidney, and spleen were taken at the start and at 10, 20, and 35 days for analysis of stress tolerance and cytokine gene mRNA levels and to assess the diversity of adhesive gut bacterial communities. A 14-day immersion challenge with Aeromonas hydrophila NJ-1 was also performed following the feeding trial. The results showed no significant differences in survival rate, weight gain, or feed conversion in the different dietary treatments. The adhesive gut bacterial communities were strikingly altered in the fish fed either the HALB or the LALB, but the response was more rapid and substantial with the adhesive strain. The two strains induced similar changes in the patterns (upregulation or downregulation) of intestinal, splenic or kidney cytokine expression, but they differed in the degree of response for these genes. Changes in intestinal HSP70 expression levels coincided with changes in the similarity coefficient of the adhesive gut bacterial communities between the probiotic treatments. The highest dose of the HALB appeared to protect against the toxic effects of immersion in A. hydrophila (P Lactobacillus strains adhere to the gut may be a favorable criterion in selecting probiotic strain for aquaculture. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Surface zwitterionization: Effective method for preventing oral bacterial biofilm formation on hydroxyapatite surfaces

    Science.gov (United States)

    Lee, Myoungjin; Kim, Heejin; Seo, Jiae; Kang, Minji; Kang, Sunah; Jang, Joomyung; Lee, Yan; Seo, Ji-Hun

    2018-01-01

    In this study, we conducted surface zwitterionization of hydroxyapatite (HA) surfaces by immersing them in the zwitterionic polymer solutions to provide anti-bacterial properties to the HA surface. Three different monomers containing various zwitterionic groups, i.e., phosphorylcholine (PC), sulfobetaine (SB), and carboxybetaine (CB), were copolymerized with the methacrylic monomer containing a Ca2+-binding moiety, using the free radical polymerization method. As a control, functionalization of the copolymer containing the Ca2+-binding moiety was synthesized using a hydroxy group. The stable immobilization of the zwitterionic functional groups was confirmed by water contact angle analysis and X-ray photoelectron spectroscopy (XPS) measurement conducted after the sonication process. The zwitterionized HA surface showed significantly decreased protein adsorption, whereas the hydroxyl group-coated HA surface showed limited efficacy. The anti-bacterial adhesion property was confirmed by conducting Streptococcus mutans (S. mutans) adhesion tests for 6 h and 24 h. When furanone C-30, a representative anti-quorum sensing molecule for S. mutans, was used, only a small amount of bacteria adhered after 6 h and the population did not increase after 24 h. In contrast, zwitterionized HA surfaces showed almost no bacterial adhesion after 6 h and the effect was retained for 24 h, resulting in the lowest level of oral bacterial adhesion. These results confirm that surface zwitterionization is a promising method to effectively prevent oral bacterial adhesion on HA-based materials.

  13. Innovative Electrostatic Adhesion Technologies

    Science.gov (United States)

    Bryan, Tom; Macleod, Todd; Gagliano, Larry; Williams, Scott; McCoy, Brian

    2015-01-01

    Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA gripper pad surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and

  14. Glycan-functionalized diamond nanoparticles as potent E. coli anti-adhesives

    Science.gov (United States)

    Barras, Alexandre; Martin, Fernando Ariel; Bande, Omprakash; Baumann, Jean-Sébastien; Ghigo, Jean-Marc; Boukherroub, Rabah; Beloin, Christophe; Siriwardena, Aloysius; Szunerits, Sabine

    2013-02-01

    Bacterial attachment and subsequent biofilm formation on biotic surfaces or medical devices is an increasing source of infections in clinical settings. A large proportion of these biofilm-related infections are caused by Escherichia coli, a major nosocomial pathogen, in which the major adhesion factor is the FimH adhesin located at the tip of type 1 fimbriae. Inhibition of FimH-mediated adhesion has been identified as an efficient antibiotic-alternative strategy to potentially reduce E. coli-related infections. In this article we demonstrate that nanodiamond particles, covently modified with mannose moieties by a ``click'' chemistry approach, are able to efficiently inhibit E. coli type 1 fimbriae-mediated adhesion to eukaryotic cells with relative inhibitory potency (RIP) of as high as 9259 (bladder cell adhesion assay), which is unprecedented when compared with RIP values previously reported for alternate multivalent mannose-functionalized nanostructures designed to inhibit E. coli adhesion. Also remarkable is that these novel mannose-modified NDs reduce E. coli biofilm formation, a property previously not observed for multivalent glyco-nanoparticles and rarely demonstrated for other multivalent or monovalent mannose glycans. This work sets the stage for the further evaluation of these novel NDs as an anti-adhesive therapeutic strategy against E. coli-derived infections.Bacterial attachment and subsequent biofilm formation on biotic surfaces or medical devices is an increasing source of infections in clinical settings. A large proportion of these biofilm-related infections are caused by Escherichia coli, a major nosocomial pathogen, in which the major adhesion factor is the FimH adhesin located at the tip of type 1 fimbriae. Inhibition of FimH-mediated adhesion has been identified as an efficient antibiotic-alternative strategy to potentially reduce E. coli-related infections. In this article we demonstrate that nanodiamond particles, covently modified with

  15. Polyurethane adhesives in flat roofs

    Directory of Open Access Journals (Sweden)

    Bogárová Markéta

    2017-01-01

    Full Text Available It is necessary to stabilize individual layers of flat roofs, mainly because of wind suction. Apart from anchoring and surcharge, these layers can be secured by bonding. At present gluing is an indispensable and widely used stabilization method. On our market we can found many types of adhesives, most widely used are based on polyurethane. This paper focuses on problematic about stabilization thermal insulation from expanded polystyrene to vapor barrier from bitumen. One of the main issues is to calculate the exact amount of adhesive, which is required to guarantee the resistance against wind suction. In this problematic we can not find help neither in technical data sheets provided by the manufactures. Some of these data sheets contain at least information about amount of adhesive depending on location in roof plane and building height, but they do not specify the strength of such connection. It was therefore resorted to select several representatives polyurethane adhesives and their subsequent testing on specimens simulating the flat roof segment. The paper described the test methodology and results for two types of polyurethane adhesives.

  16. Covalent immobilization of lysozyme onto woven and knitted crimped polyethylene terephthalate grafts to minimize the adhesion of broad spectrum pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Al Meslmani, Bassam M., E-mail: almeslmanib@yahoo.com [Department of Pharmaceutical Technology and Biopharmaceutics, Marburg University, Ketzerbach 63, 35037 Marburg (Germany); Mahmoud, Gihan F., E-mail: mahmoudg@staff.uni-marburg.de [Department of Pharmaceutical Technology and Biopharmaceutics, Marburg University, Ketzerbach 63, 35037 Marburg (Germany); Department of Pharmaceutics and Industrial Pharmacy, Helwan University, Ain Helwan, 11795 Cairo (Egypt); Leichtweiß, Thomas, E-mail: Thomas.Leichtweiss@phys.Chemie.uni-giessen.de [Institute of Physical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, 35392 Giessen (Germany); Strehlow, Boris, E-mail: strehlo4@staff.uni-marburg.de [Department of Pharmaceutical Technology and Biopharmaceutics, Marburg University, Ketzerbach 63, 35037 Marburg (Germany); Sommer, Frank O., E-mail: sommerf@med.uni-marburg.de [Institute for Medical Microbiology and Hospital Hygiene, Marburg University, Hans Meerwein Str 2, 35032 Marburg (Germany); Lohoff, Michael D., E-mail: lohoff@med.uni-marburg.de [Institute for Medical Microbiology and Hospital Hygiene, Marburg University, Hans Meerwein Str 2, 35032 Marburg (Germany); Bakowsky, Udo, E-mail: ubakowsky@aol.com [Department of Pharmaceutical Technology and Biopharmaceutics, Marburg University, Ketzerbach 63, 35037 Marburg (Germany)

    2016-01-01

    Graft-associated infections entirely determine the short-term patency of polyethylene terephthalate PET cardiovascular graft. We attempted to enzymatically inhibit the initial bacterial adhesion to PET grafts using lysozyme. Lysozyme was covalently immobilized onto woven and knitted forms of crimped PET grafts by the end-point method. Our figures of merit revealed lysozyme immobilization yield of 15.7 μg/cm{sup 2}, as determined by the Bradford assay. The activity of immobilized lysozyme on woven and knitted PET manifested 58.4% and 55.87% using Micrococcus lysodeikticus cells, respectively. Noteworthy, the adhesion of vein catheter-isolated Staphylococcus epidermidis decreased by 6- to 8-folds and of Staphylococcus aureus by 11- to 12-folds, while the Gram-negative Escherichia coli showed only a decrease by 3- to 4-folds. The anti-adhesion efficiency was specific for bacterial cells and no significant effect was observed on adhesion and growth of L929 cells. In conclusion, immobilization of lysozyme onto PET grafts can inhibit the graft-associated infection. - Highlights: • Lysozyme was covalently immobilized on crimped polyethylene terephthalate (PET). • The activity of immobilized lysozyme was meaningfully reduced. • The maintained activity significantly declined the adhesion of Gram-positive stains. • The enzymatic anti-adhesion efficiency reported lesser extent against Gram-negative. • The anti-bacterial activity displayed no significant effect on cells compatibility.

  17. Influence of subtilisin on the adhesion of a marine bacterium which produces mainly proteins as extracellular polymers.

    Science.gov (United States)

    Leroy, C; Delbarre, C; Ghillebaert, F; Compere, C; Combes, D

    2008-09-01

    The nature of exopolymers involved in the adhesion of a marine biofilm-forming bacterium Pseudoalteromonas sp. D41 was investigated to evaluate and understand the antifouling potential of subtilisin. The exopolymers of D41 produced by fermentation were analysed by FTIR and SDS-PAGE showing the presence of polysaccharides, glycoproteins and proteins. A high content of proteins was detected both in soluble and capsular fractions. The microscopic observations of fluorescamine and calcofluor stained adhered D41 indicated mainly the presence of proteins in exopolymers produced during adhesion. Subtilisin, the broad spectrum protease, tested in natural sea water and in polystyrene microplates showed that antifouling activity was higher in the prevention of bacterial adhesion than in the detachment of adhered D41 cells. Overall, these results demonstrate the involvement of proteins in Pseudoalteromonas sp. D41 adhesion and confirm the high antifouling potential of subtilisin. This study emphasizes the major role of proteins instead of polysaccharides, thus extending our knowledge regarding the nature of extracellular polymers involved in bacterial adhesion. Furthermore, the high antifouling potential of subtilisin evaluated in the very first stages of fouling, bacterial adhesion, could lead to less toxic compounds than organometallic compounds in antifouling paint.

  18. Lignin-Furfural Based Adhesives

    Directory of Open Access Journals (Sweden)

    Prajakta Dongre

    2015-07-01

    Full Text Available Lignin recovered from the hot-water extract of sugar maple (Acer saccharum is used in this study to synthesize adhesive blends to replace phenol-formaldehyde (PF resin. Untreated lignin is characterized by lignin content and nuclear magnetic resonance (NMR analysis. The molecular weight distribution of the lignin and the blends are characterized by size exclusion chromatography (SEC. The effect of pH (0.3, 0.65 and 1, ex situ furfural, and curing conditions on the tensile properties of adhesive reinforced glass fibers is determined and compared to the reinforcement level of commercially available PF resin. The adhesive blend prepared at pH = 0.65 with no added furfural exhibits the highest tensile properties and meets 90% of the PF tensile strength.

  19. Intraperitoneal tenoxicam to prevent abdominal adhesion formation in a rat peritonitis model.

    Science.gov (United States)

    Ezberci, Fikret; Bulbuloglu, Ertan; Ciragil, Pinar; Gul, Mustafa; Kurutas, Ergul Belge; Bozkurt, Serdar; Kale, I Taner

    2006-01-01

    We investigated the effects of intraperitoneal tenoxicam on the development of postoperative intra-abdominal adhesions and oxidative stress in a model of bacterial peritonitis. Bacterial peritonitis was induced in 24 rats by cecal ligation and puncture. The rats were randomly assigned to one of three groups. Group 1 (n = 8) received 2 ml saline intraperitoneally, group 2 (n = 8) received 2 ml (0.5 mg/kg) tenoxicam (Oksamen) intraperitoneally, and group 3 (n = 8) was a control, which did not receive any injection. All animals were killed 14 days later so we could assess the adhesion score and measure anastomotic bursting pressures. Tissue antioxidant levels were measured in 1-g tissue samples taken from the abdominal wall. The adhesion score was significantly lower in the tenoxicam group than in the saline and control groups. The anastomotic bursting pressures were higher in the saline and tenoxicam groups than in the control group. The catalase (CAT) levels were higher in the saline and tenoxicam groups than in the control group. The malondialdehyde (MDH) levels were higher in the saline group than in the tenoxicam and control groups. Intraperitoneal tenoxicam inhibited the formation of postoperative intra-abdominal adhesions without compromising wound healing in this bacterial peritonitis rat model. Tenoxicam also decreased the oxidative stress during peritonitis.

  20. Biofilm-Forming Staphylococcus epidermidis Expressing Vancomycin Resistance Early after Adhesion to a Metal Surface

    Directory of Open Access Journals (Sweden)

    Toshiyuki Sakimura

    2015-01-01

    Full Text Available We investigated biofilm formation and time of vancomycin (VCM resistance expression after adhesion to a metal surface in Staphylococcus epidermidis. Biofilm-forming Staphylococcus epidermidis with a VCM MIC of 1 μg/mL was used. The bacteria were made to adhere to a stainless steel washer and treated with VCM at different times and concentrations. VCM was administered 0, 2, 4, and 8 hours after adhesion. The amount of biofilm formed was evaluated based on the biofilm coverage rates (BCRs before and after VCM administration, bacterial viability in biofilm was visually observed using the fluorescence staining method, and the viable bacterial count in biofilm was measured. The VCM concentration required to decrease BCR significantly compared with that of VCM-untreated bacteria was 4 μg/mL, even in the 0 hr group. In the 4 and 8 hr groups, VCM could not inhibit biofilm growth even at 1,024 μg/mL. In the 8 hr group, viable bacteria remained in biofilm at a count of 104 CFU even at a high VCM concentration (1,024 μg/mL. It was suggested that biofilm-forming Staphylococcus epidermidis expresses resistance to VCM early after adhesion to a metal surface. Resistance increased over time after adhesion as the biofilm formed, and strong resistance was expressed 4–8 hours after adhesion.

  1. In vitro study of Streptococcus mutans adhesion on composite resin coated with three surface sealants

    Directory of Open Access Journals (Sweden)

    Da Hye Kim

    2017-02-01

    Full Text Available Objectives Although the coating of surface sealants to dental composite resin may potentially reduce bacterial adhesion, there seems to be little information regarding this issue. This preliminary in vitro study investigated the adhesion of Streptococcus mutans (S. mutans on the dental composite resins coated with three commercial surface sealants. Materials and Methods Composite resin (Filtek Z250 discs (8 mm in diameter, 1 mm in thickness were fabricated in a mold covered with a Mylar strip (control. In group PoGo, the surfaces were polished with PoGo. In groups PS, OG, and FP, the surfaces polished with PoGo were coated with the corresponding surface sealants (PermaSeal, PS; OptiGuard, OG; Fortify Plus, FP. The surfaces of the materials and S. mutans cells were characterized by various methods. S. mutans adhesion to the surfaces was quantitatively evaluated using flow cytometry (n = 9. Results Group OG achieved the lowest water contact angle among all groups tested (p 0.05 or significantly lower (group OG, p < 0.001 bacterial adhesion when compared with the control group. Conclusions The application of the surface sealants significantly reduced S. mutans adhesion to the composite resin polished with the PoGo.

  2. Oral Consumption of Cranberry Juice Cocktail Inhibits Molecular-Scale Adhesion of Clinical Uropathogenic Escherichia coli

    Science.gov (United States)

    Tao, Yuanyuan; Pinzón-Arango, Paola A.; Howell, Amy B.

    2011-01-01

    Abstract Cranberry juice cocktail (CJC) has been shown to inhibit the formation of biofilm by uropathogenic Escherichia coli. In order to investigate whether the anti-adhesive components could reach the urinary tract after oral consumption of CJC, a volunteer was given 16 oz of either water or CJC. Urine samples were collected at 0, 2, 4, 6, and 8 hours after consumption of a single dose. The ability of compounds in the urine to influence bacterial adhesion was tested for six clinical uropathogenic E. coli strains, including four P-fimbriated strains (B37, CFT073, BF1023, and J96) and two strains not expressing P-fimbriae but exhibiting mannose-resistant hemagglutination (B73 and B78). A non-fimbriated strain, HB101, was used as a control. Atomic force microscopy (AFM) was used to measure the adhesion force between a silicon nitride probe and bacteria treated with urine samples. Within 2 hours after CJC consumption, bacteria of the clinical strains treated with the corresponding urine sample demonstrated lower adhesion forces than those treated with urine collected before CJC consumption. The adhesion forces continued decreasing with time after CJC consumption over the 8-hour measurement period. The adhesion forces of bacteria after exposure to urine collected following water consumption did not change. HB101 showed low adhesion forces following both water and CJC consumption, and these did not change over time. The AFM adhesion force measurements were consistent with the results of a hemagglutination assay, confirming that oral consumption of CJC could act against adhesion of uropathogenic E. coli. PMID:21480803

  3. Adhesion of Antireflective Coatings in Multijunction Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Brock, Ryan; Miller, David C.; Dauskardt, Reinhold H.

    2016-11-21

    The development of a new composite dual cantilever beam (cDCB) thin-film adhesion testing method is reported, which allows the measurement of adhesion on the fragile thin substrates used in multijunction photovoltaics. We address the adhesion of several antireflective coating systems on multijunction cells. By varying interface chemistry and morphology, we demonstrate the ensuing effects on adhesion and help to develop an understanding of how high adhesion can be achieved, as adhesion values ranging from 0.5 J/m2 to 10 J/m2 were measured. Damp Heat (85 degrees C/85% RH) was used to invoke degradation of interfacial adhesion. We show that even with germanium substrates that fracture easily, quantitative measurements of adhesion can still be made at high test yield. The cDCB test is discussed as an important new methodology, which can be broadly applied to any system that makes use of thin, brittle, or otherwise fragile substrates.

  4. Focal adhesions and cell-matrix interactions

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    1988-01-01

    Focal adhesions are areas of cell surfaces where specializations of cytoskeletal, membrane and extracellular components combine to produce stable cell-matrix interactions. The morphology of these adhesions and the components identified in them are discussed together with possible mechanisms...

  5. Role of bacteria in leukocyte adhesion deficiency-associated periodontitis.

    Science.gov (United States)

    Hajishengallis, George; Moutsopoulos, Niki M

    2016-05-01

    Leukocyte adhesion deficiency Type I (LAD-I)-associated periodontitis is an aggressive form of inflammatory bone loss that has been historically attributed to lack of neutrophil surveillance of the periodontal infection. However, this form of periodontitis has proven unresponsive to antibiotics and/or mechanical removal of the tooth-associated biofilm. Recent studies in LAD-I patients and relevant animal models have shown that the fundamental cause of LAD-I periodontitis involves dysregulation of a granulopoietic cytokine cascade. This cascade includes interleukin IL-23 (IL-23) and IL-17 that drive inflammatory bone loss in LAD-I patients and animal models and, moreover, foster a nutritionally favorable environment for bacterial growth and development of a compositionally unique microbiome. Although the lack of neutrophil surveillance in the periodontal pockets might be expected to lead to uncontrolled bacterial invasion of the underlying connective tissue, microbiological analyses of gingival biopsies from LAD-I patients did not reveal tissue-invasive infection. However, bacterial lipopolysaccharide was shown to translocate into the lesions of LAD-I periodontitis. It is concluded that the bacteria serve as initial triggers for local immunopathology through translocation of bacterial products into the underlying tissues where they unleash the dysregulated IL-23-IL-17 axis. Subsequently, the IL-23/IL-17 inflammatory response sustains and shapes a unique local microbiome which, in turn, can further exacerbate inflammation and bone loss in the susceptible host. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Creep behaviour of flexible adhesives

    NARCIS (Netherlands)

    Straalen, IJ.J. van; Botter, E.; Berg, A. van den; Beers, P. van

    2004-01-01

    Since flexible adhesives are used more and more in structural applications, designers should have a better understanding of its behaviour under various conditions as ultimate load, fatigue load, long-term load and environmental conditions. This paper focuses on long-term load conditions and its

  7. Syndecan proteoglycans and cell adhesion

    DEFF Research Database (Denmark)

    Woods, A; Oh, E S; Couchman, J R

    1998-01-01

    It is now becoming clear that a family of transmembrane proteoglycans, the syndecans, have important roles in cell adhesion. They participate through binding of matrix ligand to their glycosaminoglycan chains, clustering, and the induction of signaling cascades to modify the internal microfilament...

  8. Foreign material in postoperative adhesions

    NARCIS (Netherlands)

    R.W. Luijendijk; D.C.D. de Lange (Diederik C.); C.C.A.P. Wauters (C. C A P); W.C.J. Hop (Wim); J.J. Duron; J.L. Pailler; B.R. Camprodon; L. Holmdahl; H.J. van Geldorp (H.); J. Jeekel (Hans)

    1996-01-01

    textabstractObjective: The authors determined the prevalence of foreign body granulomas in intra-abdominal adhesions in patients with a history of abdominal surgery. Patients and Methods: In a cross sectional, multicenter, multinational study, adult patients with a history of one or more previous

  9. Ovalbumin as a Wood Adhesive

    Science.gov (United States)

    Charles R. Frihart; Holly Satori; Zhu Rongxian; Michael J. Birkeland

    2014-01-01

    Use of proteins to bond wood dominated industrial production until the middle of the 20th century (1). The ensuing creation of the plywood and glulam beam industries allowed for more efficient use of wood resources than is possible with solid wood products. Many protein sources have been used as adhesives, including plant (soybean) and animal (blood, fish scales,...

  10. Imaging of lactic acid bacteria with AFM-elasticity and adhesion maps and their relationship to biological and structural data

    Energy Technology Data Exchange (ETDEWEB)

    Schaer-Zammaretti, Prisca; Ubbink, Job

    2003-10-15

    The adhesion of lactic acid bacteria to the intestinal epithelium is one of the most important factors determining probiotic ability of a bacterial strain. Studying bacterial adhesion requires knowledge of the structure and properties of the bacterial surface, which can be studied by atomic force microscopy under native conditions. The observation of the surface topography of bacteria from the species Lactobacillus crispatus, L. helveticus and L. johnsonii shows major differences between bacteria having a crystalline-like protein layer as part of the cell wall and those without such layers. Force volume images calculated into elasticity and adhesion force maps of different bacterial strains show that L. crispatus and L. helveticus have a surface with a homogeneous stiffness with no adhesion events. This is most likely caused by the S-layer, which completely covers the surface of the bacteria. We infer that the absence of adhesion peaks is caused by the semi-crystalline character of such protein layers, in agreement with the results obtained from electron microscopy. Analysis of a number of L. johnsonii strains shows that these bacteria have surface properties which strongly differ from the L. crispatus and L. helveticus strains. For L. johnsonii DMS20533 and L. johnsonii ATCC33200 high adhesion forces are observed, which can be related to a surface rich in polysaccharides. L. johnsonii ATCC332 has lower adhesion forces compared to the other two and, furthermore, the surface topography shows depressions. We suppose that this strain has a surface pattern consisting of crystalline-like proteins alternating with polysaccharide-rich domains. The wide variety in surface properties of lactobacilli could well have wide-ranging implications for food processing and for health benefits.

  11. Ex vivo intestinal adhesion of Escherichia coli LF82 in Crohn's disease

    DEFF Research Database (Denmark)

    Jensen, Stina Rikke; Fink, Lisbeth Nielsen; Nielsen, Ole Haagen

    2011-01-01

    Adherent-invasive Escherichia coli (AIEC) are reported to inhabit the gut mucosa in Crohn's disease (CD), however, little is known about the importance of host factors for the interplay between AIEC and the human gut. To examine if differences in bacterial adhesion patterns are disease associated......, the AIEC-prototype strain LF82 was evaluated for its ability to adhere to ileal and colonic biopsies from CD and healthy controls (HC). Moreover, the efficacy of the non-pathogenic E. coli Nissle 1917 (ECN) in averting LF82 adhesion to ileal mucosa was assessed. Similar numbers of LF82 adhered to biopsies...

  12. In vitro and in vivo biofilm adhesion to esthetic coated arch wires and its correlation with surface roughness.

    Science.gov (United States)

    Taha, Mahasen; El-Fallal, Abeer; Degla, Heba

    2016-03-01

    To evaluate the in vitro ability of esthetic coated rectangular arch wires to retain oral biofilms and in vivo biofilm formation on these wires after 4 and 8 weeks of clinical use and to correlate the findings with the surface roughness of these wires. Three brands of esthetic coated nickel-titanium (NiTi) arch wires were selected. Arch wires retrieved after 4 and 8 weeks of intraoral use were obtained from 30 orthodontic patients. Surface roughness (SR) was assessed with an atomic force microscope. In vitro adhesion assays were performed using Streptococcus mutans (MS), Staphylococcus aureus, and Candida albicans. The amount of bacterial adhesion was quantified using the colony-count method. Paired t-test, analysis of variance, post hoc Tukey's test, and Pearson's correlation coefficient test were used for statistical analysis at the .05 level of significance. In vitro bacterial adhesion showed significant differences between wires in terms of MS adhesion (P  =  .01). All wires showed significant increases in SR (P  =  .001 after 4 weeks and .007 after 8 weeks) and biofilm adhesion (P  =  .0001 after 4 weeks and .045 after 8 weeks) after intraoral exposure. A significant positive correlation (P  =  .001 after 4 weeks and .05 after 8 weeks) was observed between these two variables in vivo, but the correlation was not significant for in vitro bacterial adhesion. SR and biofilm adhesion increased after intraoral use at all time intervals. There was a positive correlation between SR and biofilm adhesion in vivo only.

  13. Nonwoven glass fiber mat reinforces polyurethane adhesive

    Science.gov (United States)

    Roseland, L. M.

    1967-01-01

    Nonwoven glass fiber mat reinforces the adhesive properties of a polyurethane adhesive that fastens hardware to exterior surfaces of aluminum tanks. The mat is embedded in the uncured adhesive. It ensures good control of the bond line and increases the peel strength.

  14. Potential for Biobased Adhesives in Wood Bonding

    Science.gov (United States)

    Charles R. Frihart

    2016-01-01

    There has been a resurgence of interest and research on using bio-based materials as wood adhesives; however, they have achieved only limited market acceptance. To better understand this low level of replacement, it is important to understand why adhesives work or fail in moisture durability tests. A holistic model for wood adhesives has been developed that clarifies...

  15. Current dental adhesives systems. A narrative review.

    Science.gov (United States)

    Milia, Egle; Cumbo, Enzo; Cardoso, Rielson Jose A; Gallina, Giuseppe

    2012-01-01

    Adhesive dentistry is based on the development of materials which establish an effective bond with the tooth tissues. In this context, adhesive systems have attracted considerable research interest in recent years. Successful adhesive bonding depends on the chemistry of the adhesive, on appropriate clinical handling of the material as well as on the knowledge of the morphological changes caused on dental tissue by different bonding procedures. This paper outlines the status of contemporary adhesive systems, with particular emphasis on chemical characteristics and mode of interaction of the adhesives with enamel and dentinal tissues. Dental adhesives are used for several clinical applications and they can be classified based on the clinical regimen in "etch-and-rinse adhesives" and "self-etch adhesives". Other important considerations concern the different anatomical characteristics of enamel and dentine which are involved in the bonding procedures that have also implications for the technique used as well as for the quality of the bond. Etch-and-rinse adhesive systems generally perform better on enamel than self-etching systems which may be more suitable for bonding to dentine. In order to avoid a possible loss of the restoration, secondary caries or pulp damage due to bacteria penetration or due to cytotoxicity effects of eluted adhesive components, careful consideration of several factors is essential in selecting the suitable bonding procedure and adhesive system for the individual patient situation.

  16. Recharging "Hot-Melt" Adhesive Film

    Science.gov (United States)

    Progar, D. J.

    1983-01-01

    Technique for recharging surface with "hot-melt" film makes use of one sided, high-temperature, pressure-sensitive adhesive tape. Purpose of the one-sided tape is to hold hot-melt charge in place until fused to surface. After adhesive has fused to surface and cooled, tape is removed, leaving adhesive on surface.

  17. Influence of substrate modulus on gecko adhesion

    Science.gov (United States)

    Klittich, Mena R.; Wilson, Michael C.; Bernard, Craig; Rodrigo, Rochelle M.; Keith, Austin J.; Niewiarowski, Peter H.; Dhinojwala, Ali

    2017-03-01

    The gecko adhesion system fascinates biologists and materials scientists alike for its strong, reversible, glue-free, dry adhesion. Understanding the adhesion system’s performance on various surfaces can give clues as to gecko behaviour, as well as towards designing synthetic adhesive mimics. Geckos encounter a variety of surfaces in their natural habitats; tropical geckos, such as Gekko gecko, encounter hard, rough tree trunks as well as soft, flexible leaves. While gecko adhesion on hard surfaces has been extensively studied, little work has been done on soft surfaces. Here, we investigate for the first time the influence of macroscale and nanoscale substrate modulus on whole animal adhesion on two different substrates (cellulose acetate and polydimethylsiloxane) in air and find that across 5 orders of magnitude in macroscale modulus, there is no change in adhesion. On the nanoscale, however, gecko adhesion is shown to depend on substrate modulus. This suggests that low surface-layer modulus may inhibit the gecko adhesion system, independent of other influencing factors such as macroscale composite modulus and surface energy. Understanding the limits of gecko adhesion is vital for clarifying adhesive mechanisms and in the design of synthetic adhesives for soft substrates (including for biomedical applications and wearable electronics).

  18. Aspirin augments hyaluronidase induced adhesion inhibition ...

    African Journals Online (AJOL)

    Postoperative adhesions occur after virtually all abdomino-pelvic surgery and are the leading cause of intestinal obstruction and other gynaecologic problems. We used an animal model to test the efficacy of combined administration of aspirin and hyaluronidase on adhesion formation. Adhesions were induced using ...

  19. 21 CFR 878.4380 - Drape adhesive.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Drape adhesive. 878.4380 Section 878.4380 Food and... GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4380 Drape adhesive. (a) Identification. A drape adhesive is a device intended to be placed on the skin to attach a surgical drape. (b...

  20. Initial Homotypic Cell Pair Adhesion in Regenerating Hydra Facilitates Subsequent Adhesion of Homotypic Cells

    Science.gov (United States)

    Takaku, Y.; Hariyama, T.; Tsukahara, Y.

    In Hydra vulgaris at the level of dissociated single cells endodermal cells adhere to each other more readily than to ectodermal cells at the initial adhesion. The time required for adhesion to occur between two adjacent cells is shorter for both endodermal and ectodermal homotypic cell adhesions once the initial adhesion of the first pair of cells has been established. It is confirmed that contact of an aggregated pair with additional homotypic cells facilitates the occurrence of homotypic adhesions; heterotypic adhesions are discouraged. This suggests that adhesion of homotypic cells contributes to an increased readiness for subsequent homotypic cells to adhere.

  1. Primary role of electron work function for evaluation of nanostructured titania implant surface against bacterial infection

    Energy Technology Data Exchange (ETDEWEB)

    Golda-Cepa, M., E-mail: golda@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Syrek, K. [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Brzychczy-Wloch, M. [Department of Bacteriology, Microbial Ecology and Parasitology, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow (Poland); Sulka, G.D. [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Kotarba, A., E-mail: kotarba@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland)

    2016-09-01

    The electron work function as an essential descriptor for the evaluation of metal implant surfaces against bacterial infection is identified for the first time. Its validity is demonstrated on Staphylococcus aureus adhesion to nanostructured titania surfaces. The established correlation: work function–bacteria adhesion is of general importance since it can be used for direct evaluation of any electrically conductive implant surfaces. - Highlights: • The correlation between work function and bacteria adhesion was discovered. • The discovered correlation is rationalized in terms of electrostatic bacteria–surface repulsion. • The results provide basis for the simple evaluation of implant surfaces against infection.

  2. Adhesive organ regeneration in Macrostomum lignano.

    Science.gov (United States)

    Lengerer, Birgit; Hennebert, Elise; Flammang, Patrick; Salvenmoser, Willi; Ladurner, Peter

    2016-06-02

    Flatworms possess pluripotent stem cells that can give rise to all cell types, which allows them to restore lost body parts after injury or amputation. This makes flatworms excellent model systems for studying regeneration. In this study, we present the adhesive organs of a marine flatworm as a simple model system for organ regeneration. Macrostomum lignano has approximately 130 adhesive organs at the ventral side of its tail plate. One adhesive organ consists of three interacting cells: one adhesive gland cell, one releasing gland cell, and one modified epidermal cell, called an anchor cell. However, no specific markers for these cell types were available to study the regeneration of adhesive organs. We tested 15 commercially available lectins for their ability to label adhesive organs and found one lectin (peanut agglutinin) to be specific to adhesive gland cells. We visualized the morphology of regenerating adhesive organs using lectin- and antibody staining as well as transmission electron microscopy. Our findings indicate that the two gland cells differentiate earlier than the connected anchor cells. Using EdU/lectin staining of partially amputated adhesive organs, we showed that their regeneration can proceed in two ways. First, adhesive gland cell bodies are able to survive partial amputation and reconnect with newly formed anchor cells. Second, adhesive gland cell bodies are cleared away, and the entire adhesive organ is build anew. Our results provide the first insights into adhesive organ regeneration and describe ten new markers for differentiated cells and tissues in M. lignano. The position of adhesive organ cells within the blastema and their chronological differentiation have been shown for the first time. M. lignano can regenerate adhesive organs de novo but also replace individual anchor cells in an injured organ. Our findings contribute to a better understanding of organogenesis in flatworms and enable further molecular investigations of cell

  3. Gecko adhesion pad: a smart surface?

    Science.gov (United States)

    Pesika, Noshir S.; Zeng, Hongbo; Kristiansen, Kai; Zhao, Boxin; Tian, Yu; Autumn, Kellar; Israelachvili, Jacob

    2009-11-01

    Recently, it has been shown that humidity can increase the adhesion of the spatula pads that form the outermost (adhesive) surface of the tokay gecko feet by 50% relative to the main adhesion mechanism (i.e. van der Waals adhesive forces), although the mechanism by which the enhancement is realized is still not well understood. A change in the surface hydrophobicity of a gecko setal array is observed when the array, which supports the spatulae, is exposed to a water drop for more than 20 min, suggesting a change in the hydrophilic-lyophilic balance (HLB), and therefore of the conformation of the surface proteins. A surface force apparatus (SFA) was used to quantify these changes, i.e. in the adhesion and friction forces, while shearing the setal array against a silica surface under (i) dry conditions, (ii) 100% humidity and (iii) when fully immersed in water. The adhesion increased in the humid environment but greatly diminished in water. Although the adhesion forces changed significantly, the friction forces remained unaffected, indicating that the friction between these highly textured surfaces is 'load-controlled' rather than 'adhesion-controlled'. These results demonstrate that the gecko adhesive pads have the ability to exploit environmental conditions to maximize their adhesion and stabilize their friction forces. Future designs of synthetic dry adhesives inspired by the gecko can potentially include similar 'smart' surfaces that adapt to their environment.

  4. Gecko adhesion pad: a smart surface?

    Energy Technology Data Exchange (ETDEWEB)

    Pesika, Noshir S [Chemical and Biomolecular Engineering Department, Tulane University, New Orleans, LA 70118 (United States); Zeng Hongbo [Chemical and Materials Engineering Department, University of Alberta, Edmonton, AB, T6G 2V4 (Canada); Kristiansen, Kai; Israelachvili, Jacob [Chemical Engineering Department, University of California, Santa Barbara, CA 93117 (United States); Zhao, Boxin [Chemical Engineering Department and Waterloo Institute of Nanotechnology, University of Waterloo, Ontario, N2L 3G1 (Canada); Tian Yu [State Key Laboratory of Tribology, Department of Precision Instruments, Tsinghua University, Beijing 100084 (China); Autumn, Kellar, E-mail: npesika@tulane.ed [Department of Biology, Lewis and Clark College, Portland, OR 97219 (United States)

    2009-11-18

    Recently, it has been shown that humidity can increase the adhesion of the spatula pads that form the outermost (adhesive) surface of the tokay gecko feet by 50% relative to the main adhesion mechanism (i.e. van der Waals adhesive forces), although the mechanism by which the enhancement is realized is still not well understood. A change in the surface hydrophobicity of a gecko setal array is observed when the array, which supports the spatulae, is exposed to a water drop for more than 20 min, suggesting a change in the hydrophilic-lyophilic balance (HLB), and therefore of the conformation of the surface proteins. A surface force apparatus (SFA) was used to quantify these changes, i.e. in the adhesion and friction forces, while shearing the setal array against a silica surface under (i) dry conditions, (ii) 100% humidity and (iii) when fully immersed in water. The adhesion increased in the humid environment but greatly diminished in water. Although the adhesion forces changed significantly, the friction forces remained unaffected, indicating that the friction between these highly textured surfaces is 'load-controlled' rather than 'adhesion-controlled'. These results demonstrate that the gecko adhesive pads have the ability to exploit environmental conditions to maximize their adhesion and stabilize their friction forces. Future designs of synthetic dry adhesives inspired by the gecko can potentially include similar 'smart' surfaces that adapt to their environment.

  5. Gecko adhesion pad: a smart surface?

    International Nuclear Information System (INIS)

    Pesika, Noshir S; Zeng Hongbo; Kristiansen, Kai; Israelachvili, Jacob; Zhao, Boxin; Tian Yu; Autumn, Kellar

    2009-01-01

    Recently, it has been shown that humidity can increase the adhesion of the spatula pads that form the outermost (adhesive) surface of the tokay gecko feet by 50% relative to the main adhesion mechanism (i.e. van der Waals adhesive forces), although the mechanism by which the enhancement is realized is still not well understood. A change in the surface hydrophobicity of a gecko setal array is observed when the array, which supports the spatulae, is exposed to a water drop for more than 20 min, suggesting a change in the hydrophilic-lyophilic balance (HLB), and therefore of the conformation of the surface proteins. A surface force apparatus (SFA) was used to quantify these changes, i.e. in the adhesion and friction forces, while shearing the setal array against a silica surface under (i) dry conditions, (ii) 100% humidity and (iii) when fully immersed in water. The adhesion increased in the humid environment but greatly diminished in water. Although the adhesion forces changed significantly, the friction forces remained unaffected, indicating that the friction between these highly textured surfaces is 'load-controlled' rather than 'adhesion-controlled'. These results demonstrate that the gecko adhesive pads have the ability to exploit environmental conditions to maximize their adhesion and stabilize their friction forces. Future designs of synthetic dry adhesives inspired by the gecko can potentially include similar 'smart' surfaces that adapt to their environment.

  6. Photochemical tissue bonding with chitosan adhesive films

    Directory of Open Access Journals (Sweden)

    Piller Sabine C

    2010-09-01

    Full Text Available Abstract Background Photochemical tissue bonding (PTB is a promising sutureless technique for tissue repair. PTB is often achieved by applying a solution of rose bengal (RB between two tissue edges, which are irradiated by a green laser to crosslink collagen fibers with minimal heat production. In this study, RB has been incorporated in chitosan films to create a novel tissue adhesive that is laser-activated. Methods Adhesive films, based on chitosan and containing ~0.1 wt% RB were manufactured and bonded to calf intestine by a solid state laser (λ = 532 nm, Fluence~110 J/cm2, spot size~0.5 cm. A single-column tensiometer, interfaced with a personal computer, tested the bonding strength. K-type thermocouples recorded the temperature (T at the adhesive-tissue interface during laser irradiation. Human fibroblasts were also seeded on the adhesive and cultured for 48 hours to assess cell growth. Results The RB-chitosan adhesive bonded firmly to the intestine with adhesion strength of 15 ± 2 kPa, (n = 31. The adhesion strength dropped to 0.5 ± 0.1 (n = 8 kPa when the laser was not applied to the adhesive. The average temperature of the adhesive increased from 26°C to 32°C during laser exposure. Fibroblasts grew confluent on the adhesive without morphological changes. Conclusion A new biocompatible chitosan adhesive has been developed that bonds photochemically to tissue with minimal temperature increase.

  7. Platelet adhesion onto artificial red blood cells.

    Science.gov (United States)

    Muramatsu, N; Kondo, T

    1980-05-01

    Several kinds of polyamide microcapsules containing mammalian hemolysate were prepared by making use of the interfacial polycondensation reaction between diamines and terephthaloyl dichloride and their blood compatibility in terms of platelet adhesion was examined aiming at their ultimate clinical use as artificial red blood cells. It was found that rabbit platelets adhere onto the hemolysate-loaded microcapsules in the presence of the plasma, while no platelet adhesion takes place in the absence of the plasma. This was interpreted as indicating an important role of plasma components in platelet adhesion. Moreover, platelet adhesion was observed to be facilitated by negative charges on the surface of the hemolysate-loaded microcapsules; the more negatively the surface was charge, the more easily the platelets adhered onto the surface. Finally, the present method of assessing platelet adhesion suggested the possibility of its use for kinetic study of platelet adhesion since it allowedus to make numerical evaluation of platelet adhesion as a function of time.

  8. Effect of orthodontic debonding and residual adhesive removal on 3D enamel microroughness

    Directory of Open Access Journals (Sweden)

    Joanna Janiszewska-Olszowska

    2016-10-01

    Full Text Available Background Termination of fixed orthodontic treatment is associated with bracket debonding and residual adhesive removal. These procedures increase enamel roughness to a degree that should depend on the tool used. Enamel roughening may be associated with bacterial retention and staining. However, a very limited data exists on the alteration of 3D enamel roughness resulting from the use of different tools for orthodontic clean-up. Aims 1. To perform a precise assessment of 3D enamel surface roughness resulting from residual adhesive removal following orthodontic debonding molar tubes. 2. To compare enamel surfaces resulting from the use of tungsten carbide bur, a one-step polisher and finisher and Adhesive Residue Remover. Material and Methods Buccal surfaces of forty-five extracted human third molars were analysed using a confocal laser microscope at the magnification of 1080× and 3D roughness parameters were calculated. After 20 s etching, molar tubes were bonded, the teeth were stored in 0.9% saline solution for 24 hours and debonded. Residual adhesive was removed using in fifteen specimen each: a twelve-fluted tungsten carbide bur, a one-step finisher and polisher and Adhesive Residue Remover. Then, surface roughness analysis was repeated. Data normality was assessed using Shapiro–Wilk test. Analysis of variance (ANOVA was used to compare between variables of normal distribution and for the latter—Kruskal-Wallis test. Results Sa (arithmetical mean height was significantly different between the groups (p = 0, 01326; the smoothest and most repeatable surfaces were achieved using Adhesive Residue Remover. Similarly, Sq (root mean square height of the scale-limited surface had the lowest and most homogenous values for Adhesive Residue Remover (p = 0, 01108. Sz (maximum height of the scale-limited surface was statistically different between the groups (p = 0, 0327, however no statistically significant differences were found concerning Ssk

  9. Surface energy and viscoelasticity influence caramel adhesiveness.

    Science.gov (United States)

    Wagoner, Ty B; Foegeding, Edward Allen

    2017-08-26

    Adhesion is an important textural attribute that directs consumer eating patterns and behaviors and can be a negative attribute during food processing. The objectives of this study were to modify caramel formulation and compare adhesion to different materials to quantify the influence of surface energetics and viscoelasticity on caramel adhesiveness. Mechanical adhesion was viewed in the context of pressure sensitive tack theory, where adhesion is controlled by viscoelasticity of the adhesive material and the surface energy relationship of material and probe. Caramel samples varied in total amount of fat and protein, and mechanical adhesion was measured using a series of materials with total surface energies of 39.7-53.2 mJ/m 2 . Adhesiveness decreased as fat and protein content increased, with a significant effect of total surface energy. Viscoelasticity was modeled using creep recovery data fit to a four-element Burger mechanistic model. Burger model parameters representing retarded elasticity correlated strongly with adhesiveness. The results suggest two zones of adhesion based on formulation, one driven by both surface energy relationships-most notably dispersive and total surface energy-and viscoelasticity, and the other driven solely by viscoelasticity. Relationships between mechanical properties and adhesion have been explored but are still not well understood, and could aid in the design of food products with a controlled level of adhesion. The results of this study indicate the importance of considering material surface energy when measuring mechanical adhesion or texture profile analysis. Understanding the relationships between viscoelastic behavior and adhesion can be used to make inferences on perceived texture. © 2017 Wiley Periodicals, Inc.

  10. Adhesion of Aeromonas hydrophila to Glass Surfaces Modified with Organosilanes

    Directory of Open Access Journals (Sweden)

    Dorota Kregiel

    2013-01-01

    Full Text Available The aim of this research is to study the adhesive properties of Aeromonas hydrophila to glass surfaces modified using four silanes with different reactive groups, namely (3-glycidoxypropyl diethoxysilane, (3-N,N-dimethyl-3-N-n hexadecylammoniopropyltrimethoxysilane chloride, (3-N,N,N-triethanolammoniopropyltrimethoxysilane chloride, and (3-N,N-dimethyl- 3-N-n-octylammoniopropyltrimethoxysilane chloride. The strain used in the study was A. hydrophila LOCK0968, isolated from the unchlorinated communal water distribution system in Poland. The effect of glass modification after chemical treatment was analyzed using surface tension measurement. The adhesive properties of the bacteria were studied in a water environment with a low concentration of organic compounds, using luminometric and microscopic methods. Additionally, the viability of the adherent bacterial cells was evaluated by counting the colony-forming units. The presence of active compounds in the culture medium after incubation with a modified carrier was verified using the Kirby- -Bauer method. Half of the chemically modified glass surfaces exhibited better characteristics in comparison with native glass. Among the examined modifying agents, (3-N,N,N-triethanolammoniopropyl trimethoxysilane chloride and (3-N,N-dimethyl-3-N-n octylammoniopropyl trimethoxysilane chloride showed the best antiadhesive and antibacterial properties. The most effective glass modification, with (3-N,N,N triethanolammoniopropyltrimethoxysilane chloride, was able to reduce the bacterial cell count by more than three orders of magnitude. The carriers had no significant effect on the viability of the free bacterial cells in the culture medium. Therefore, it can be said that the modified glass surface alone accounts for the antibacterial activity of the active organosilanes.

  11. Adhesives for fixed orthodontic brackets.

    Science.gov (United States)

    Mandall, N A; Millett, D T; Mattick, C R; Hickman, J; Macfarlane, T V; Worthington, H V

    2003-01-01

    Bonding of orthodontic brackets to teeth is important to enable effective and efficient treatment with fixed appliances. The problem is bracket failure during treatment which increases operator chairside time and lengthens treatment time. A prolonged treatment is likely to increase the oral health risks of orthodontic treatment with fixed appliances one of which is irreversible enamel decalcification. To evaluate the effectiveness of different orthodontic adhesives for bonding. Electronic databases: the Cochrane Oral Health Group's Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE and EMBASE. Date of most recent searches: August 2002 (CENTRAL) (The Cochrane Library Issue 2, 2002). Trials were selected if they met the following criteria: randomised controlled trials (RCTs) and controlled clinical trials (CCTs) comparing two different adhesive groups. Participants were patients with fixed orthodontic appliances. The interventions were adhesives that bonded stainless steel brackets to all teeth except the molars. The primary outcome was debond or bracket failure. Data were recorded on decalcification as a secondary outcome, if present. Information regarding methods, participants, interventions, outcome measures and results were extracted in duplicate by pairs of reviewers (Nicky Mandall (NM) and Rye Mattick (CRM); Declan Millett (DTM) and Joy Hickman (JH2)). Since the data were not presented in a form that was amenable to meta-analysis, the results of the review are presented in narrative form only. Three trials satisfied the inclusion criteria. A chemical cured composite was compared with a light cure composite (one trial), a conventional glass ionomer cement (one trial) and a polyacid-modified resin composite (compomer) (one trial). The quality of the trial reports was generally poor. It is difficult to draw any conclusions from this review, however, suggestions are made for methods of improving future research involving

  12. DIABETES AND SHOULDER ADHESIVE CAPSULITIS

    OpenAIRE

    J. Mohanakrishnan; Bhanumathy Mohanakrishnan

    2016-01-01

    Background: Adhesive capsulitis (AC) of shoulder is a common condition encountered by physical therapists in their routine outpatient care services; AC of shoulder is as by itself being a self limiting disorder lasts from months to years causing pain and discomfort to the patients. The condition is commonly associated with Diabetes mellitus or other co morbidities. The incidence of AC is high among diabetic individuals and it becomes mandatory on the part of physical therapists and other heal...

  13. Polymer nanocarriers for dentin adhesion.

    Science.gov (United States)

    Osorio, R; Osorio, E; Medina-Castillo, A L; Toledano, M

    2014-12-01

    To obtain more durable adhesion to dentin, and to protect collagen fibrils of the dentin matrix from degradation, calcium- and phosphate-releasing particles have been incorporated into the dental adhesive procedure. The aim of the present study was to incorporate zinc-loaded polymeric nanocarriers into a dental adhesive system to facilitate inhibition of matrix metalloproteinases (MMPs)-mediated collagen degradation and to provide calcium ions for mineral deposition within the resin-dentin bonded interface. PolymP- N : Active nanoparticles (nanoMyP) were zinc-loaded through 30-minute ZnCl2 immersion and tested for bioactivity by means of 7 days' immersion in simulated body fluid solution (the Kokubo test). Zinc-loading and calcium phosphate depositions were examined by scanning and transmission electron microscopy, elemental analysis, and x-ray diffraction. Nanoparticles in ethanol solution infiltrated into phosphoric-acid-etched human dentin and Single Bond (3M/ESPE) were applied to determine whether the nanoparticles interfered with bonding. Debonded sticks were analyzed by scanning electron microscopy. A metalloproteinase collagen degradation assay was also performed in resin-infiltrated dentin with and without nanoparticles, measuring C-terminal telopeptide of type I collagen (ICTP) concentration in supernatants, after 4 wk of immersion in artificial saliva. Numerical data were analyzed by analysis of variance (ANOVA) and Student-Newman-Keuls multiple comparisons tests (p degradation. Tested nanoparticles may be incorporated into dental adhesive systems to provide the appropriate environment in which dentin MMP collagen degradation is inhibited and mineral growth can occur. © International & American Associations for Dental Research.

  14. Culinary Medicine—Jalebi Adhesions

    OpenAIRE

    Kapoor, Vinay K

    2015-01-01

    Culinary terms have been used to describe anatomy (bean-shaped kidneys), pathology (strawberry gall bladder), clinical signs (café-au-lait spots), radiological images (sausage-shaped pancreas), etc. While Indian cuisine is popular all over the world, no Indian dish finds mention in medical terminology. In intra-abdominal adhesions, sometimes, the intestinal loops are so densely adherent that it is difficult to make out proximal from distal and it is impossible to separate them without injurin...

  15. Polyurethane adhesives in flat roofs

    OpenAIRE

    Bogárová Markéta; Stodůlka Jindřich; Šuhajda Karel

    2017-01-01

    It is necessary to stabilize individual layers of flat roofs, mainly because of wind suction. Apart from anchoring and surcharge, these layers can be secured by bonding. At present gluing is an indispensable and widely used stabilization method. On our market we can found many types of adhesives, most widely used are based on polyurethane. This paper focuses on problematic about stabilization thermal insulation from expanded polystyrene to vapor barrier from bitumen. One of the main issues is...

  16. Characterisation of cellulose-binding proteins that are involved in the adhesion mechanism of Fibrobacter intestinalis DR7.

    Science.gov (United States)

    Miron, J; Forsberg, C W

    1999-04-01

    Cellulose-binding proteins (CBP) isolated from cell envelopes of the cellulolytic bacterium Fibrobacter intestinalis strain DR7 were studied in order to investigate the adhesion mechanism. The proteins were examined for their reaction with antibodies that specifically block bacterial adhesion, response to glycosylation staining and monosaccharide composition. To this end, the effect of some monosaccharides (CBP components) on blocking of DR7 adhesion to cellulose was determined. Previous study had shown the occurrence of 16 CBP in the outer membrane and periplasm of DR7, of which 6 had endoglucanase activity (Miron and Forsberg 1998). Data from the present study show that most of the 16 CBP of DR7, except for the 38-, 90- and 180-kDa proteins, are glycosylated. Rabbit antibodies that specifically block DR7 adhesion were prepared by affinity preabsorption of antiserum against wild-type DR7 with bacterial cells of its adherence-defective mutant (DR7-M). The preabsorbed antibodies reacted positively in Western blotting with glycosylated CBP of 225, 200, 150, 70, 45 and block the adhesion of DR7 cells to cellulose. It is suggested that some glycosylated residues of CBP may have a predominant role in the adhesion of DR7 to cellulose.

  17. A review of our development of dental adhesives--effects of radical polymerization initiators and adhesive monomers on adhesion.

    Science.gov (United States)

    Ikemura, Kunio; Endo, Takeshi

    2010-03-01

    This paper reviews the development of dental adhesives by collating information of related studies from original scientific papers, reviews, and patent literatures. Through our development, novel radical polymerization initiators, adhesive monomers, and microcapsules were synthesized, and their effects on adhesion were investigated. It was found that 5-monosubstituted barbituric acid (5-MSBA)-containing ternary initiators in conjunction with adhesive monomers contributed to effective adhesion with good polymerization reactivity. Several kinds of novel adhesive monomers bearing carboxyl group, phosphonic acid group or sulfur-containing group were synthesized, and investigated their multi-purpose bonding functions. It was suggested that the flexible methylene chain in the structure of adhesive monomers played a pivotal role in their enhanced bonding durability. It was found that the combination of acidic monomers with sulfur-containing monomer markedly improved adhesion to enamel, dentin, porcelain, alumina, zirconia, non-precious metals and precious metals. A new poly(methyl methacrylate) (PMMA)-type adhesive resin comprising microencapsulated polymerization initiators was also found to exhibit both good formulation stability and excellent adhesive property.

  18. Interference in adhesion of bacteria and yeasts isolated from explanted voice prostheses to silicone rubber by rhamnolipid biosurfactants

    NARCIS (Netherlands)

    Rodrigues, LR; Banat, IM; van der Mei, HC; Teixeira, JA; Oliveira, R

    Aims: The effects and extent of adhesion of four different bacterial and two yeast strains isolated from explanted voice prostheses to silicone rubber with and without an adsorbed rhamnolipid biosurfactant layer obtained from Pseudomonasaeruginosa DS10-129 was studied. Methods and Results: The

  19. Culinary Medicine-Jalebi Adhesions.

    Science.gov (United States)

    Kapoor, Vinay K

    2016-02-01

    Culinary terms have been used to describe anatomy (bean-shaped kidneys), pathology (strawberry gall bladder), clinical signs (café-au-lait spots), radiological images (sausage-shaped pancreas), etc. While Indian cuisine is popular all over the world, no Indian dish finds mention in medical terminology. In intra-abdominal adhesions, sometimes, the intestinal loops are so densely adherent that it is difficult to make out proximal from distal and it is impossible to separate them without injuring the bowel resulting in spill of contents-resection is the only option (Fig. 1). Jalebi, an Indian dessert, has a single long tubular strip of fried batter filled with sugary syrup so intertwined that it is impossible to discern its ends; if broken, the syrup spills out-the best way to relish it is to chew the whole piece (Fig. 2). Because of these similarities between them, I propose to name dense intra-abdominal adhesions as 'jalebi adhesions.'

  20. Modeling of Sylgard Adhesive Strength

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Ralph Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-03

    Sylgard is the name of a silicone elastomeric potting material manufactured by Dow Corning Corporation.1 Although the manufacturer cites its low adhesive strength as a feature of this product, thin layers of Sylgard do in fact have a non-negligible strength, which has been measured in recent tensile and shear debonding tests. The adhesive strength of thin layers of Sylgard potting material can be important in applications in which components having signi cantly di erent thermal expansion properties are potted together, and the potted assembly is subjected to temperature changes. The tensile and shear tractions developed on the potted surfaces of the components can cause signi cant internal stresses, particularly for components made of low-strength materials with a high area-to-volume ratio. This report is organized as follows: recent Sylgard debonding tests are rst brie y summarized, with particular attention to the adhesion between Sylgard and PBX 9501, and also between Sylgard and aluminum. Next, the type of numerical model that will be used to simulate the debonding behavior exhibited in these tests is described. Then the calibration of the debonding model will be illustrated. Finally, the method by which the model parameters are adjusted (scaled) to be applicable to other, non- tested bond thicknesses is summarized, and all parameters of the model (scaled and unscaled) are presented so that other investigators can reproduce all of the simulations described in this report as well as simulations of the application of interest.

  1. Studying bacterial multispecies biofilms

    DEFF Research Database (Denmark)

    Røder, Henriette Lyng; Sørensen, Søren Johannes; Burmølle, Mette

    2016-01-01

    , but the identity and significance of interspecies bacterial interactions is neglected in these analyses. There is therefore an urgent need for bridging the gap between metagenomic analysis and in vitro models suitable for studies of bacterial interactions.Bacterial interactions and coadaptation are important......The high prevalence and significance of multispecies biofilms have now been demonstrated in various bacterial habitats with medical, industrial, and ecological relevance. It is highly evident that several species of bacteria coexist and interact in biofilms, which highlights the need for evaluating...

  2. TRIM15 is a focal adhesion protein that regulates focal adhesion disassembly

    Science.gov (United States)

    Uchil, Pradeep D.; Pawliczek, Tobias; Reynolds, Tracy D.; Ding, Siyuan; Hinz, Angelika; Munro, James B.; Huang, Fang; Floyd, Robert W.; Yang, Haitao; Hamilton, William L.; Bewersdorf, Joerg; Xiong, Yong; Calderwood, David A.; Mothes, Walther

    2014-01-01

    ABSTRACT Focal adhesions are macromolecular complexes that connect the actin cytoskeleton to the extracellular matrix. Dynamic turnover of focal adhesions is crucial for cell migration. Paxillin is a multi-adaptor protein that plays an important role in regulating focal adhesion dynamics. Here, we identify TRIM15, a member of the tripartite motif protein family, as a paxillin-interacting factor and a component of focal adhesions. TRIM15 localizes to focal contacts in a myosin-II-independent manner by an interaction between its coiled-coil domain and the LD2 motif of paxillin. Unlike other focal adhesion proteins, TRIM15 is a stable focal adhesion component with restricted mobility due to its ability to form oligomers. TRIM15-depleted cells display impaired cell migration and reduced focal adhesion disassembly rates, in addition to enlarged focal adhesions. Thus, our studies demonstrate a cellular function for TRIM15 as a regulatory component of focal adhesion turnover and cell migration. PMID:25015296

  3. Functional Peptides from Laminin-1 Improve the Cell Adhesion Capacity of Recombinant Mussel Adhesive Protein.

    Science.gov (United States)

    Wang, Kai; Ji, Lina; Hua, Zichun

    2017-01-01

    Since cell adhesion is important for cell processes such as migration and proliferation, it is a crucial consideration in biomaterial design and development. Based on the fusion of mussel adhesive protein fp151 with laminin-1-originated functional peptides we designed fusion proteins (fLA4, fLG6 and fAG73) and explored their cell adhesion properties. In our study, cell adhesion analysis showed that protein fLG6 and fLA4 had a significantly higher cell adhesion property for A549 than fp151. Moreover, protein fAG73 also displayed a strong adhesion capacity for Hela cells. In conclusion, the incorporation of functional peptides with integrin and heparin/heparan sulphate binding capacity into mussel adhesive protein will promote the application of mussel adhesive protein as cell adhesion biomaterial. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Effect of a Novel Quaternary Ammonium Methacrylate Polymer (QAMP on Adhesion and Antibacterial Properties of Dental Adhesives

    Directory of Open Access Journals (Sweden)

    Yasmine M. Pupo

    2014-05-01

    control for all evaluated bacterial strains. The use of QAMP in an adhesive system demonstrated effective bond strength, a suitable degree of conversion, and adequate antibacterial effects against oral bacteria, and may be useful as a new approach to provide long-lasting results for dental adhesives.

  5. Discovery of a proteolytic flagellin family in diverse bacterial phyla that assembles enzymatically active flagella

    OpenAIRE

    Eckhard, Ulrich; Bandukwala, Hina; Mansfield, Michael J.; Marino, Giada; Cheng, Jiujun; Wallace, Iain; Holyoak, Todd; Charles, Trevor C.; Austin, John; Overall, Christopher M.; Doxey, Andrew C.

    2017-01-01

    Bacterial flagella are cell locomotion and occasional adhesion organelles composed primarily of the polymeric protein flagellin, but to date have not been associated with any enzymatic function. Here, we report the bioinformatics-driven discovery of a class of enzymatic flagellins that assemble to form proteolytically active flagella. Originating by a metallopeptidase insertion into the central flagellin hypervariable region, this flagellin family has expanded to at least 74 bacterial species...

  6. Ileal adhesion of virulent E. coli LF82 is not enhanced in Crohn’s disease

    DEFF Research Database (Denmark)

    Jensen, Rikke S.; Fink, Lisbeth Nielsen; Pedersen, Susanne Brix

    2011-01-01

    Adherent-invasive Escherichia coli (AIEC) comprise a new group of E. coli species named from their distinctive ability to adhere to and invade the intestinal epithelium. The AIEC strains have been associated to the ileal mucosa in Crohn’s disease (CD), and the impact of AIEC in the pathogenesis...... of CD has been further strengthened from the evidence that the ileum in CD harbors an abnormally high number of E. coli species. S16 2010 IBD Abstracts The aim of this study was to examine the adhesion of the AIEC reference strain, LF82, to tissue samples from ileum and colon in CD and healthy controls....... A second purpose was to assess the probiotic efficacy of E. coli Nissle 1917 (ECN) in averting LF82 adhesion to ileal mucosa. Ileal and colonic specimens were obtained from patients with CD ileitis and controls (n¼10). A model was developed to investigate bacterial adhesion to intestinal biopsies...

  7. Surface adhesion and confinement variation of Staphylococcus aurius on SAM surfaces

    Science.gov (United States)

    Amroski, Alicia; Olsen, Morgan; Calabrese, Joseph; Senevirathne, Reshani; Senevirathne, Indrajith

    2012-02-01

    Controlled surface adhesion of non - pathogenic gram positive strain, Staphylococcus aureus is interesting as a model system due to possible development of respective biosensors for prevention and detection of the pathogenic strain methicillin resistant Staphylococcus aureus (MRSA) and further as a study for bio-machine interfacing. Self Assembled Monolayers (SAM) with engineered surfaces of linear thiols on Au(111) were used as the substrate. Sub cultured S. aureus were used for the analysis. The SAM layered surfaces were dipped in 2 -- 4 Log/ml S. aureus solution. Subsequent surface adhesion at different bacterial dilutions on surfaces will be discussed, and correlated with quantitative and qualitative adhesion properties of bacteria on the engineered SAM surfaces. The bacteria adhered SAM surfaces were investigated using intermittent contact, noncontact, lateral force and contact modes of Atomic Force Microscopy (AFM).

  8. Comparison of adhesion of the food spoilage bacterium Shewanella putrefaciens to stainless steel and silver surfaces

    DEFF Research Database (Denmark)

    Hjelm, Mette; Hilbert, Lisbeth Rischel; Møller, Per

    2002-01-01

    The aim of this study is to compare the number of attached bacteria, Shewanella putrefaciens, on stainless steel with different silver surfaces. Thus evaluating if silver surfaces could contribute to a higher hygienic status in the food industry. Bacterial adhesion to three types of silver surfaces...... than one log unit in bacterial numbers on the two types of materials was observed, but for most samples the difference was within one log unit. Treating new silver with sulphide to try to reproduce a tarnished silver surface did not result in a similar lowering of adhering cells when compared to steel...

  9. Handbook of Adhesion, 2nd Edition

    Science.gov (United States)

    Packham, D. E.

    2005-06-01

    This second edition of the successful Handbook of Adhesion provides concise and authoritative articles covering many aspects of the science and technology associated with adhesion and adhesives. It is intended to fill a gap between the necessarily simplified treatment of the student textbook and the full and thorough treatment of the research monograph and review article. The articles are structured in such a way, with internal cross-referencing and external literature references, that the reader can build up a broader and deeper understanding, as their needs require. This second edition includes many new articles covering developments which have risen in prominence in the intervening years, such as scanning probe techniques, the surface forces apparatus and the relation between adhesion and fractal surfaces. Advances in understanding polymer - polymer interdiffusion are reflected in articles drawing out the implications for adhesive bonding. In addition, articles derived from the earlier edition have been revised and updated where needed. Throughout the book there is a renewed emphasis on environmental implications of the use of adhesives and sealants. The scope of the Handbook, which features nearly 250 articles from over 60 authors, includes the background science - physics, chemistry and material science - and engineering, and also aspects of adhesion relevant to the use of adhesives, including topics such as: Sealants and mastics Paints and coatings Printing and composite materials Welding and autohesion Engineering design The Handbook of Adhesion is intended for scientists and engineers in both academia and industry, requiring an understanding of the various facets of adhesion.

  10. Adhesion enhancement of biomimetic dry adhesives by nanoparticle in situ synthesis

    International Nuclear Information System (INIS)

    Díaz Téllez, J P; Harirchian-Saei, S; Li, Y; Menon, C

    2013-01-01

    A novel method to increase the adhesion strength of a gecko-inspired dry adhesive is presented. Gold nanoparticles are synthesized on the tips of the microfibrils of a polymeric dry adhesive to increase its Hamaker constant. Formation of the gold nanoparticles is qualitatively studied through a colour change in the originally transparent substance and quantitatively analysed using ultraviolet–visible spectrophotometry. A pull-off force test is employed to quantify the adhesion enhancement. Specifically, adhesion forces of samples with and without embedded gold nanoparticles are measured and compared. The experimental results indicate that an adhesion improvement of 135% can be achieved. (paper)

  11. Leukocyte adhesion deficiency syndrome: report on the first case in Chile and South America

    OpenAIRE

    Vásquez-De Kartzow, Rodrigo; Jesam, Cristian; Nehgme, Valentina; Várgas, Francisco; Sepúlveda, Carolina

    2012-01-01

    CONTEXT: Adhesion molecule deficiency type 1 is a rare disease that should be suspected in any patient whose umbilical cord presents delay in falling off, and who presents recurrent severe infections. Early diagnostic suspicion and early treatment improve the prognosis. CASE REPORT: The case of a four-month-old boy with recurrent hospitalizations because of severe bronchopneumonia and several episodes of acute otitis media with non-purulent drainage of mucus and positive bacterial cultures is...

  12. Biosurfactant from Lactococcus lactis 53 inhibits microbial adhesion on silicone rubber

    OpenAIRE

    Rodrigues, L. R.; Mei, Henny van der; Teixeira, J. A.; Oliveira, Rosário

    2004-01-01

    The ability of biosurfactant obtained from the probiotic bacterium Lactococcus lactis 53 to inhibit adhesion of four bacterial and two yeast strains isolated from explanted voice prostheses to silicone rubber with and without an adsorbed biosurfactant layer was investigated in a parallel-plate flow chamber. The microbial cell surfaces and the silicone rubber with and without an adsorbed biosurfactant layer were characterized using contact-angle measurements. Water contact angles indi...

  13. Inhibition of microbial adhesion to silicone rubber treated with biosurfactant from Streptococcus thermophilus A

    OpenAIRE

    Rodrigues, L. R.; Mei, Henny van der; Banat, Ibrahim M.; Teixeira, J. A.; Oliveira, Rosário

    2006-01-01

    Prova tipográfica (In Press) Microbial adhesion of four bacterial and two yeast strains isolated from explanted voice prostheses to silicone rubber before and after conditioning with a biosurfactant obtained from the probiotic bacterium Streptococcus thermophilus A was investigated in a parallel plate flow chamber. The silicone rubber with and without an adsorbed biosurfactant layer was characterized using contact angle measurements. Water contact angles indicated that the s...

  14. Escherichia coli adhesion, biofilm development and antibiotic susceptibility on biomedical materials.

    Science.gov (United States)

    Gomes, L C; Silva, L N; Simões, M; Melo, L F; Mergulhão, F J

    2015-04-01

    The aim of this work was to test materials typically used in the construction of medical devices regarding their influence in the initial adhesion, biofilm development and antibiotic susceptibility of Escherichia coli biofilms. Adhesion and biofilm development was monitored in 12-well microtiter plates containing coupons of different biomedical materials--silicone (SIL), stainless steel (SS) and polyvinyl chloride (PVC)--and glass (GLA) as control. The susceptibility of biofilms to ciprofloxacin and ampicillin was assessed, and the antibiotic effect in cell morphology was observed by scanning electron microscopy. The surface hydrophobicity of the bacterial strain and materials was also evaluated from contact angle measurements. Surface hydrophobicity was related with initial E. coli adhesion and subsequent biofilm development. Hydrophobic materials, such as SIL, SS, and PVC, showed higher bacterial colonization than the hydrophilic GLA. Silicone was the surface with the greatest number of adhered cells and the biofilms formed on this material were also less susceptible to both antibiotics. It was found that different antibiotics induced different levels of elongation on E. coli sessile cells. Results revealed that, by affecting the initial adhesion, the surface properties of a given material can modulate biofilm buildup and interfere with the outcome of antimicrobial therapy. These findings raise the possibility of fine-tuning surface properties as a strategy to reach higher therapeutic efficacy. © 2014 Wiley Periodicals, Inc.

  15. Human climbing with efficiently scaled gecko-inspired dry adhesives

    OpenAIRE

    Hawkes, Elliot W.; Eason, Eric V.; Christensen, David L.; Cutkosky, Mark R.

    2015-01-01

    Since the discovery of the mechanism of adhesion in geckos, many synthetic dry adhesives have been developed with desirable gecko-like properties such as reusability, directionality, self-cleaning ability, rough surface adhesion and high adhesive stress. However, fully exploiting these adhesives in practical applications at different length scales requires efficient scaling (i.e. with little loss in adhesion as area grows). Just as natural gecko adhesives have been used as a benchmark for syn...

  16. Bacterial adherence to tantalum versus commonly used orthopedic metallic implant materials.

    Science.gov (United States)

    Schildhauer, Thomas A; Robie, Bruce; Muhr, Gert; Köller, Manfred

    2006-07-01

    Evaluation of bacterial adhesion to pure tantalum and tantalum-coated stainless steel versus commercially pure titanium, titanium alloy (Ti-6Al-4V), and grit-blasted and polished stainless steel. Experimental in vitro cell culture study using Staphylococcus aureus and Staphylococcus epidermidis to evaluate qualitatively and quantitatively bacterial adherence to metallic implants. A bacterial adhesion assay was performed by culturing S. aureus (ATCC 6538) and S. epidermidis (clinical isolate) for one hour with tantalum, tantalum-coated stainless steel, titanium, titanium alloy, grit-blasted and polished stainless steel metallic implant discs. Adhered living and dead bacteria were stained using a 2-color fluorescence assay. Adherence was then quantitatively evaluated by fluorescence microscopy and digital image processing. Qualitative adherence of the bacteria was analyzed with a scanning electron microscope. The quantitative data were related to the implant surface roughness (Pa-value) as measured by confocal laser scanning microscopy. Bacterial adherence of S. aureus varied significantly (p = 0.0035) with the type of metallic implant. Pure tantalum presented with significantly (p titanium alloy, polished stainless steel, and tantalum-coated stainless steel. Furthermore, pure tantalum had a lower, though not significantly, adhesion than commercially pure titanium and grit-blasted stainless steel. Additionally, there was a significantly higher S. aureus adherence to titanium alloy than to commercially pure titanium (p = 0.014). S. epidermidis adherence was not significantly different among the tested materials. There was no statistically significant correlation between bacterial adherence and surface roughness of the tested implants. Pure tantalum presents with a lower or similar S. aureus and S. epidermidis adhesion when compared with commonly used materials in orthopedic implants. Because bacterial adhesion is an important predisposing factor in the development of

  17. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive

    Directory of Open Access Journals (Sweden)

    Nicolas Lebesgue

    2016-06-01

    Full Text Available Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc versus the non-adhesive part (the stem, and also to profile the proteome of the secreted adhesive (glue. This data article contains complementary figures and results related to the research article “Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach” (Lebesgue et al., 2016 [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold, likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives.

  18. The influence of adhesive thickness on the microtensile bond strength of three adhesive systems.

    Science.gov (United States)

    D'Arcangelo, Camillo; Vanini, Lorenzo; Prosperi, Gianni Domenico; Di Bussolo, Giulia; De Angelis, Francesco; D'Amario, Maurizio; Caputi, Sergio

    2009-04-01

    To evaluate the effects of multiple adhesive layers of three etch-and-rinse adhesives on both adhesive thickness and microtensile bond strength (microTBS). Midcoronal occlusal dentin of 36 extracted human molars was used. Teeth were randomly assigned to 3 groups (EB, XP, PQ) according to the adhesive system to be used: PQ1 (Ultradent) (PQ), EnaBond (Micerium) (EB), or XP Bond (Dentsply/DeTrey) (XP). Specimens from each group were further divided into three subgroups according to the number of adhesive coatings (1, 2, or 3). In all subgroups, each adhesive layer was light cured before application of each additional layer. After bonding procedures, composite crowns were incrementally built up. Specimens were sectioned perpendicular to the adhesive interface to produce multiple beams, approximately 1 mm2 in area. Beams were tested under tension at a crosshead speed of 0.5 mm/min until failure. Adhesive thicknesses and failure modes were evaluated with SEM. The microTBS data and mean adhesive thickness were analyzed by two-way ANOVA and multiple-comparison Tukey's test (alpha = 0.05). The mean bond strength (in MPa (SD)) of group EB gradually increased from 1 to 3 consecutive coatings (27.02 (9.38) to 44.32 (4.93), respectively) (p adhesive coatings. The mean thickness of the adhesive layer (in microm (SD)) significantly increased with the number of coatings (p adhesive failure between adhesive and dentin. The XP3 and PQ3 subgroups showed a greater number of total cohesive failure in adhesive. Multiple adhesive coats significantly affected bond strength to dentin. An excess of adhesive layer thickness can negatively influence the strength and the quality of adhesion.

  19. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive.

    Science.gov (United States)

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J R; Santos, Romana

    2016-06-01

    Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc) versus the non-adhesive part (the stem), and also to profile the proteome of the secreted adhesive (glue). This data article contains complementary figures and results related to the research article "Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach" (Lebesgue et al., 2016) [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold), likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives.

  20. Impact of sub-inhibitory antibiotics on fibronectin-mediated host cell adhesion and invasion by Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Rasigade Jean

    2011-12-01

    Full Text Available Abstract Background Staphylococcus aureus is a well-armed pathogen prevalent in severe infections such as endocarditis and osteomyelitis. Fibronectin-binding proteins A and B, encoded by fnbA/B, are major pathogenesis determinants in these infections through their involvement in S. aureus adhesion to and invasion of host cells. Sub-minimum inhibitory concentrations (sub-MICs of antibiotics, frequently occurring in vivo because of impaired drug diffusion at the infection site, can alter S. aureus phenotype. We therefore investigated their impact on S. aureus fibronectin-mediated adhesiveness and invasiveness. Methods After in vitro challenge of S. aureus 8325-4 and clinical isolates with sub-MICs of major anti-staphylococcal agents, we explored fnbA/B transcription levels, bacterial adhesiveness to immobilised human fibronectin and human osteoblasts in culture, and bacterial invasion of human osteoblasts. Results Oxacillin, moxifloxacin and linezolid led to the development of a hyper-adhesive phenotype in the fibronectin adhesion assay that was consistent with an increase in fnbA/B transcription. Conversely, rifampin treatment decreased fibronectin binding in all strains tested without affecting fnbA/B transcription. Gentamicin and vancomycin had no impact on fibronectin binding or fnbA/B transcription levels. Only oxacillin-treated S. aureus displayed a significantly increased adhesion to cultured osteoblasts, but its invasiveness did not differ from that of untreated controls. Conclusion Our findings demonstrate that several antibiotics at sub-MICs modulate fibronectin binding in S. aureus in a drug-specific fashion. However, hyper- and hypo- adhesive phenotypes observed in controlled in vitro conditions were not fully confirmed in whole cell infection assays. The relevance of adhesion modulation during in vivo infections is thus still uncertain and requires further investigations.

  1. Classification of OPP adhesive tapes according to pyrogram of adhesives.

    Science.gov (United States)

    Kumooka, Y

    2011-03-20

    Pressure sensitive adhesives (PSAs) of colorless and transparent oriented polypropylene (OPP) adhesive tapes were analyzed by pyrolysis/gas chromatography/mass spectrometry (Py/GC/MS). The PSAs were acrylic and rubber-based PSAs and the tapes were classified according to total ion current (TIC) chromatograms of the PSAs. The main pyrolyzates of the acrylic PSAs were decomposition products of monomers, monomers, dimmers and trimers. Those of the rubber-based PSAs were the monomers of elastomers, and subtle peaks observed were the pyrolyzates of tackifiers and volatile additives in the TIC chromatograms. Small differences were observed among the classifications of the acrylic PSAs by Py/GC/MS, attenuated total reflection Fourier transform infrared (ATR FT-IR) and Matrix-assisted laser desorption/ionization mass spectrometry (MALDI/MS). The classification of the rubber-based PSAs by Py/GC/MS and that by ATR FT-IR were the same, and a slight difference was observed between those by Py/GC/MS and MALDI MS. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  2. Adhesive Strength of dry Adhesive Structures Depending on the Thickness of Metal Coating

    International Nuclear Information System (INIS)

    Kim, Gyu Hye; Kwon, Da Som; Kim, Mi Jung; Kim, Su Hee; Yoon, Ji Won; An, Tea Chang; Hwang, Hui Yun

    2016-01-01

    Recently, engineering applications have started to adopt solutions inspired by nature. The peculiar adhesive properties of gecko skin are an example, as they allow the animal to move freely on vertical walls and even on ceilings. The high adhesive forces between gecko feet and walls are due to the hierarchical microscopical structure of the skin. In this study, the effect of metal coatings on the adhesive strength of synthetic, hierarchically structured, dry adhesives was investigated. Synthetic dry adhesives were fabricated using PDMS micro-molds prepared by photolithography. Metal coatings on synthetic dry adhesives were formed by plasma sputtering. Adhesive strength was measured by pure shear tests. The highest adhesion strengths were found with coatings composed of 4 nm thick layers of Indium, 8 nm thick layers of Zinc and 6 nm thick layers of Gold, respectively

  3. Influence of composition on the adhesive strength and initial viscosity of denture adhesives.

    Science.gov (United States)

    Han, Jian-min; Hong, Guang; Hayashida, Kentaro; Maeda, Takeshi; Murata, Hiroshi; Sasaki, Keiichi

    2014-01-01

    To investigate the effect of composition on the initial viscosity and adhesive strength between denture adhesives and the denture base. Two types of water-soluble polymers (methoxy ethylene maleic anhydride copolymer [PVM-MA] and sodium carboxymethyl cellulose [CMC]) were used. Samples were divided into three groups. Group 1 contained only PVM-MA; Group 2 contained only CMC; and Group 3 contained PVM-MA and CMC. The initial viscosity and adhesive strength were measured. For Group 1, the initial viscosity increased significantly as PVM-MA content increased. The adhesive strength of Group 1 lasted longer than Group 2. The adhesive strength of Group 3 varied greatly. The ratio of CMC and PVM-MA has a significant effect on the initial viscosity and adhesive strength of denture adhesives. Our results suggest that it is possible to improve the durability of a denture adhesive by combining different water-soluble polymers.

  4. Adhesion of rhodium films on metallic substrates

    International Nuclear Information System (INIS)

    Marot, L.; Covarel, G.; Tuilier, M.-H.; Steiner, R.; Oelhafen, P.

    2008-01-01

    Rhodium coated metallic films were prepared by magnetron sputtering on metallic substrates. All films were elaborated in same conditions on copper, molybdenum and stainless steel. Adhesion strength tests were carried out by scratch test. The results reveal that the adhesion strength between the film and the substrate is influenced by the hardness of the substrate. Increase of deposition temperature improves the adhesion of the coating. In addition, pre-treatment of substrates by a filtered cathodic vacuum arc and the layer thickness have has some effects on the final adhesion strength

  5. Autologous fibrin adhesive in experimental tubal anastomosis.

    Science.gov (United States)

    Rajaram, S; Rusia, U; Agarwal, S; Agarwal, N

    1996-01-01

    To evaluate autologous fibrin in rabbit oviduct anastomosis versus 7-0 vikryl, a conventional suture material used in tubal anastomosis. Thrombin was added to the autologous fibrinogen at the site of anastomosis to obtain a tissue adhesive. The anastomotic time, pregnancy rate, and litter size were evaluated. Three months later, a relaparotomy was done to evaluate patency and degree of adhesions, and a tubal biopsy was taken from the site of anastomosis. Analysis of results showed a statistically significant (P < .001) shortened anastomotic time and superior histopathological union in the tissue adhesive group. Patency rate, pregnancy rate, and degree of adhesions were comparable in both groups.

  6. Nucleation and growth of cadherin adhesions

    International Nuclear Information System (INIS)

    Lambert, Mireille; Thoumine, Olivier; Brevier, Julien; Choquet, Daniel; Riveline, Daniel; Mege, Rene-Marc

    2007-01-01

    Cell-cell contact formation relies on the recruitment of cadherin molecules and their anchoring to actin. However, the precise chronology of events from initial cadherin trans-interactions to adhesion strengthening is unclear, in part due to the lack of access to the distribution of cadherins within adhesion zones. Using N-cadherin expressing cells interacting with N-cadherin coated surfaces, we characterized the formation of cadherin adhesions at the ventral cell surface. TIRF and RIC microscopies revealed streak-like accumulations of cadherin along actin fibers. FRAP analysis indicated that engaged cadherins display a slow turnover at equilibrium, compatible with a continuous addition and removal of cadherin molecules within the adhesive contact. Association of cadherin cytoplasmic tail to actin as well as actin cables and myosin II activity are required for the formation and maintenance of cadherin adhesions. Using time lapse microscopy we deciphered how cadherin adhesions form and grow. As lamellipodia protrude, cadherin foci stochastically formed a few microns away from the cell margin. Neo-formed foci coalesced aligned and coalesced with preformed foci either by rearward sliding or gap filling to form cadherin adhesions. Foci experienced collapse at the rear of cadherin adhesions. Based on these results, we present a model for the nucleation, directional growth and shrinkage of cadherin adhesions

  7. Wood adhesives from Eucalyptus tar and creosote

    OpenAIRE

    Pimenta, AS; Vital, BR; Fujiwara, FY

    1997-01-01

    This study has shown that Eucalyptus tar and creosote can be used in phenolic adhesive formulations (resols) for wood products bonding. Some adhesives were prepared substituting 0; 17.7; 35.0 and 67.0% of the phenol by anhydrous tar and 0; 15.0 e 28.5% by creosote. In gluing Brazilian pine veneers, eucalypt tar and creosote based adhesives required longer pressing times for curing than conventional phenol-formaldehyde adhesives. By using C-13 NMR, the number of carbons in side chains and hydr...

  8. [Spontaneous bacterial peritonitis].

    Science.gov (United States)

    Strauss, Edna; Caly, Wanda Regina

    2003-01-01

    Spontaneous bacterial peritonitis occurs in 30% of patients with ascites due to cirrhosis leading to high morbidity and mortality rates. The pathogenesis of spontaneous bacterial peritonitis is related to altered host defenses observed in end-stage liver disease, overgrowth of microorganisms, and bacterial translocation from the intestinal lumen to mesenteric lymph nodes. Clinical manifestations vary from severe to slight or absent, demanding analysis of the ascitic fluid. The diagnosis is confirmed by a number of neutrophils over 250/mm3 associated or not to bacterial growth in culture of an ascites sample. Enterobacteriae prevail and Escherichia coli has been the most frequent bacterium reported. Mortality rates decreased markedly in the last two decades due to early diagnosis and prompt antibiotic treatment. Third generation intravenous cephalosporins are effective in 70% to 95% of the cases. Recurrence of spontaneous bacterial peritonitis is common and can be prevented by the continuous use of oral norfloxacin. The development of bacterial resistance demands the search for new options in the prophylaxis of spontaneous bacterial peritonitis; probiotics are a promising new approach, but deserve further evaluation. Short-term antibiotic prophylaxis is recommended for patients with cirrhosis and ascites shortly after an acute episode of gastrointestinal bleeding.

  9. E. coli Nissle 1917 Affects Salmonella adhesion to porcine intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Peter Schierack

    Full Text Available BACKGROUND: The probiotic Escherichia coli strain Nissle 1917 (EcN has been shown to interfere in a human in vitro model with the invasion of several bacterial pathogens into epithelial cells, but the underlying molecular mechanisms are not known. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated the inhibitory effects of EcN on Salmonella Typhimurium invasion of porcine intestinal epithelial cells, focusing on EcN effects on the various stages of Salmonella infection including intracellular and extracellular Salmonella growth rates, virulence gene regulation, and adhesion. We show that EcN affects the initial Salmonella invasion steps by modulating Salmonella virulence gene regulation and Salmonella SiiE-mediated adhesion, but not extra- and intracellular Salmonella growth. However, the inhibitory activity of EcN against Salmonella invasion always correlated with EcN adhesion capacities. EcN mutants defective in the expression of F1C fimbriae and flagellae were less adherent and less inhibitory toward Salmonella invasion. Another E. coli strain expressing F1C fimbriae was also adherent to IPEC-J2 cells, and was similarly inhibitory against Salmonella invasion like EcN. CONCLUSIONS: We propose that EcN affects Salmonella adhesion through secretory components. This mechanism appears to be common to many E. coli strains, with strong adherence being a prerequisite for an effective reduction of SiiE-mediated Salmonella adhesion.

  10. Increased Mesenchymal Stem Cell Response and Decreased Staphylococcus aureus Adhesion on Titania Nanotubes without Pharmaceuticals

    Directory of Open Access Journals (Sweden)

    Zhiqiang Xu

    2015-01-01

    Full Text Available Titanium (Ti implants with enhanced biocompatibility and antibacterial property are highly desirable and characterized by improved success rates. In this study, titania nanotubes (TNTs with various tube diameters were fabricated on Ti surfaces through electrochemical anodization at 10, 30, and 60 V (denoted as NT10, NT30, and NT60, resp.. Ti was also investigated and used as a control. NT10 with a diameter of 30 nm could promote the adhesion and proliferation of bone marrow mesenchymal stem cells (BMSCs without noticeable differentiation. NT30 with a diameter of 100 nm could support the adhesion and proliferation of BMSCs and induce osteogenesis. NT60 with a diameter of 200 nm demonstrated the best ability to promote cell spreading and osteogenic differentiation; however, it clearly impaired cell adhesion and proliferation. As the tube diameter increased, bacterial adhesion on the TNTs decreased and reached the lowest value on NT60. Therefore, NT30 without pharmaceuticals could be used to increase mesenchymal stem cell response and decrease Staphylococcus aureus adhesion and thus should be further studied for improving the efficacy of Ti-based orthopedic implants.

  11. Identification and adhesion profile of Lactobacillus spp. strains isolated from poultry

    Science.gov (United States)

    Rocha, Ticiana Silva; Baptista, Ana Angelita Sampaio; Donato, Tais Cremasco; Milbradt, Elisane Lenita; Okamoto, Adriano Sakai; Filho, Raphael Lucio Andreatti

    2014-01-01

    In the aviculture industry, the use of Lactobacillus spp. as a probiotic has been shown to be frequent and satisfactory, both in improving bird production indexes and in protecting intestine against colonization by pathogenic bacteria. Adhesion is an important characteristic in selecting Lactobacillus probiotic strains since it impedes its immediate elimination to enable its beneficial action in the host. This study aimed to isolate, identify and characterize the in vitro and in vivo adhesion of Lactobacillus strains isolated from birds. The Lactobacillus spp. was identified by PCR and sequencing and the strains and its adhesion evaluated in vitro via BMM cell matrix and in vivo by inoculation in one-day-old birds. Duodenum, jejunum, ileum and cecum were collected one, four, 12 and 24 h after inoculation. The findings demonstrate greater adhesion of strains in the cecum and an important correlation between in vitro and in vivo results. It was concluded that BMM utilization represents an important technique for triage of Lactobacillus for subsequent in vivo evaluation, which was shown to be efficient in identifying bacterial adhesion to the enteric tract. PMID:25477944

  12. Characterization of the in vitro adhesion of Actinobacillus pleuropneumoniae to swine alveolar epithelial cells.

    Science.gov (United States)

    Van Overbeke, Ingrid; Chiers, Koen; Charlier, Gerard; Vandenberghe, Isabel; Van Beeumen, Jozef; Ducatelle, Richard; Haesebrouck, Freddy

    2002-08-02

    Actinobacillus pleuropneumoniae biovar 1 serotypes 2, 5a, 9 and 10 strains were tested for their ability to adhere to alveolar epithelial cells in culture. For the serotypes 5a, 9 and 10 strains, optimal adherence was observed after growth of bacterial cells in a NAD-restricted medium (0.001% NAD). This condition was also associated with the expression of a 55 kDa outer membrane protein (OMP) and of fimbriae. For the serotype 2 strain, adherence and expression of fimbriae and a 55 kDa OMP was less influenced by the growth conditions. The N-terminal amino acid sequence of the 55 kDa OMP had no homology with any known sequence, suggesting that it is an as yet unknown protein. Adherence capabilities were significantly reduced following treatment of the bacteria with proteolytic enzymes or heat. These findings suggest that proteins are involved in adhesion. The hydrophobic bond-breaking agent tetramethylurea was unable to inhibit the adherence of A. pleuropneumoniae to alveolar epithelial cells. Treatment of the bacteria with sodium metaperiodate resulted in lower adhesion scores for the serotypes 2 and 9 strains but the inhibition of adhesion was clearly lower than after treatment with proteolytic enzymes. This indicates that, besides proteins, carbohydrates might also be involved in adhesion of A. pleuropneumoniae to alveolar epithelial cells. The finding that inhibition of adhesion was very high when bacteria were treated with a combination of sodium metaperiodate and pronase also suggests that more than one adhesin is involved.

  13. Levorotatory carbohydrates and xylitol subdue Streptococcus mutans and Candida albicans adhesion and biofilm formation.

    Science.gov (United States)

    Brambilla, Eugenio; Ionescu, Andrei C; Cazzaniga, Gloria; Ottobelli, Marco; Samaranayake, Lakshman P

    2016-05-01

    Dietary carbohydrates and polyols affect the microbial colonization of oral surfaces by modulating adhesion and biofilm formation. The aim of this study was to evaluate the influence of a select group of l-carbohydrates and polyols on either Streptococcus mutans or Candida albicans adhesion and biofilm formation in vitro. S. mutans or C. albicans suspensions were inoculated on polystyrene substrata in the presence of Tryptic soy broth containing 5% of the following compounds: d-glucose, d-mannose, l-glucose, l-mannose, d- and l-glucose (raceme), d- and l-mannose (raceme), l-glucose and l-mannose, sorbitol, mannitol, and xylitol. Microbial adhesion (2 h) and biofilm formation (24 h) were evaluated using MTT-test and Scanning Electron Microscopy (SEM). Xylitol and l-carbohydrates induced the lowest adhesion and biofilm formation in both the tested species, while sorbitol and mannitol did not promote C. albicans biofilm formation. Higher adhesion and biofilm formation was noted in both organisms in the presence of d-carbohydrates relative to their l-carbohydrate counterparts. These results elucidate, hitherto undescribed, interactions of the individually tested strains with l- and d-carbohydrates, and how they impact fungal and bacterial colonization. In translational terms, our data raise the possibility of using l-form of carbohydrates and xylitol for dietary control of oral plaque biofilms. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Properties of pressure sensitive adhesives found in paper recycling operations

    Science.gov (United States)

    Ryan F. Verhulst; Steven J. Severtson; Jihui Guo; Carl J. Houtman

    2006-01-01

    Hot melt and water-based adhesives are very different materials with similar physical properties. Their ability to act as adhesives is due to physical bonds and mechanical interlocks which form as adhesive flows into topographical features on the substrate surface. Hot-melt adhesives are based on soft, rubbery polymers while water-based adhesives are usually acrylic...

  15. Effect of inorganic fillers in paper on the adhesion of pressure-sensitive adhesives

    Science.gov (United States)

    Weixu Chen; Xiaoyan Tang; John Considine; Kevin T. Turner

    2011-01-01

    Inorganic fillers are inexpensive materials used to increase the density, smoothness and other properties of paper that are important for printing. In the current study, the adhesion of pressure-sensitive adhesives (PSAs), a common type of adhesive used in labels and tapes, to papers containing varying amounts and types of fillers is investigated. Papers with three...

  16. Adhesive Bonding and Corrosion Performance Investigated as a Function of Aluminum Oxide Chemistry and Adhesives

    NARCIS (Netherlands)

    Abrahami, S.T.; Hauffman, T.; de Kok, John M.M.; Terryn, H.A.; Mol, J.M.C.

    2017-01-01

    The long-term strength and durability of an adhesive bond is dependent on the stability of the oxide-adhesive interface. As such, changes in the chemistry of the oxide and/or the adhesive are expected to modify the interfacial properties and affect the joint performance in practice. The upcoming

  17. Interfering with bacterial gossip

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Tolker-Nielsen, Tim; Givskov, Michael

    2011-01-01

    defense. Antibiotics exhibit a rather limited effect on biofilms. Furthermore, antibiotics have an ‘inherent obsolescence’ because they select for development of resistance. Bacterial infections with origin in bacterial biofilms have become a serious threat in developed countries. Pseudomonas aeruginosa...... that appropriately target bacteria in their relevant habitat with the aim of mitigating their destructive impact on patients. In this review we describe molecular mechanisms involved in “bacterial gossip” (more scientifically referred to as quorum sensing (QS) and c-di-GMP signaling), virulence, biofilm formation......, resistance and QS inhibition as future antimicrobial targets, in particular those that would work to minimize selection pressures for the development of resistant bacteria....

  18. Characterization of macrophage adhesion molecule

    International Nuclear Information System (INIS)

    Remold-O'Donnell, E.; Savage, B.

    1988-01-01

    Macrophage adhesion molecule (MAM), an abundant surface molecule which functions in the adhesion and spreading of guinea pig macrophages on surfaces, is characterized as a heterodimer of the trypsin- and plasmin-sensitive glycopeptide gp160 (MAM-α) and the glycopeptide gp93 (MAM-β). The density of MAM molecules is estimated at 630,000 per macrophage on the basis of quantitative binding of 125 I-labeled monoclonal antibody. The glycopeptide subunits display microheterogeneity on isoelectrofocusing; the pI is 5.8-6.3 for gp160 (MAM-α) and 6.4-7.0 for gp93 (MAM-β). A neutrophil gp160, gp93 molecule was shown to be indistinguishable from macrophage MAM on the basis of electrophoresis, isoelectrofocusing, and reactivity with 10 monoclonal antibodies. A related heterodimer of gp93 associated with a larger, antigenically different glycopeptide (gp180, gp93)was identified on circulating lymphocytes. Cumulative properties indicate that MAM is the guinea pig analog of human Mo1 and mouse Mac-1

  19. DIABETES AND SHOULDER ADHESIVE CAPSULITIS

    Directory of Open Access Journals (Sweden)

    J. Mohanakrishnan

    2016-08-01

    Full Text Available Background: Adhesive capsulitis (AC of shoulder is a common condition encountered by physical therapists in their routine outpatient care services; AC of shoulder is as by itself being a self limiting disorder lasts from months to years causing pain and discomfort to the patients. The condition is commonly associated with Diabetes mellitus or other co morbidities. The incidence of AC is high among diabetic individuals and it becomes mandatory on the part of physical therapists and other health professionals to approach this issue on a holistic manner. This paper deals with the importance of a physiotherapist role in prevention and dealing with the causative factors of AC and not merely its symptom. Methods: Extensive literature review was done from the electronic data bases, Systematic reviews and critical reviews from Pub med indexed journals and other peer reviewed publications across the globe. Results: It was not the type of diabetes but the duration of the disease and the glycemic index, marking the causative factor for adhesive capsulitis of shoulder. Conclusion: It may be concluded that physiotherapist play a vital role in identifying the pre-diabetic or a diabetic state of an individual reporting in a multi disciplinary set up with a AC of shoulder, and also has a role in the prevention of AC by helping the individual to maintain a good glycemic control with a holistic approach which includes aerobic exercises, General Flexibility exercises, Weight management and Yoga therapy.

  20. Design and fabrication of polymer based dry adhesives inspired by the gecko adhesive system

    Science.gov (United States)

    Jin, Kejia

    There has been significant interest in developing dry adhesives mimicking the gecko adhesive system, which offers several advantages compared to conventional pressure sensitive adhesives. Specifically, gecko adhesive pads have anisotropic adhesion properties: the adhesive pads (spatulae) stick strongly when sheared in one direction but are non-adherent when sheared in the opposite direction. This anisotropy property is attributed to the complex topography of the array of fine tilted and curved columnar structures (setae) that bear the spatulae. In this thesis, easy, scalable methods, relying on conventional and unconventional techniques are presented to incorporate tilt in the fabrication of synthetic polymer-based dry adhesives mimicking the gecko adhesive system, which provide anisotropic adhesion properties. In the first part of the study, the anisotropic adhesion and friction properties of samples with various tilt angles to test the validity of a nanoscale tape-peeling model of spatular function are measured. Consistent with the Peel Zone model, samples with lower tilt angles yielded larger adhesion forces. Contact mechanics of the synthetic array were highly anisotropic, consistent with the frictional adhesion model and gecko-like. Based on the original design, a new design of gecko-like dry adhesives was developed which showed superior tribological properties and furthermore showed anisotropic adhesive properties without the need for tilt in the structures. These adhesives can be used to reversibly suspend weights from vertical surfaces (e.g., walls) and, for the first time to our knowledge, horizontal surfaces (e.g., ceilings) by simultaneously and judiciously activating anisotropic friction and adhesion forces. Furthermore, adhesion properties between artificial gecko-inspired dry adhesives and rough substrates with varying roughness are studied. The results suggest that both adhesion and friction forces on a rough substrate depends significantly on the

  1. Osteomyelitis in leukocyte adhesion deficiency type 1 syndrome

    DEFF Research Database (Denmark)

    Jabbari Azad, Farahzad; Ardalan, Maryam; H.Rafati, Ali

    2010-01-01

    Leukocyte adhesion deficiency type 1 (LAD-1) is a rare, inherited immunodeficiency that affects one per million people yearly and usually presents with recurrent, indolent bacterial infections of the skin, mouth, and respiratory tract and impaired pus formation and wound healing. A 13-year-old girl...... diagnosed LAD-I at the age of 7 years was brought to the Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, because of a draining plaque on the left leg for 2.5 years. She had recurrent skin infections and had been treated with repeated courses of different antibiotic...... combinations, with temporary responses, since 5 years of age. Examination revealed a 7 x 8 cm minimally erythematous hyperpigmented plaque with multiple draining sinuses on the left leg. Tissue culture yielded Pseudomonas aeruginosa. Flow cytometry showed CD18 (18.79%), CD11a (51.59%), CD11b (18.61%) and CD11c...

  2. Bacterial surface adaptation

    Science.gov (United States)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  3. Bacterial Meningitis in Infants

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-04-01

    Full Text Available A retrospective study of 80 infantile patients (ages 30-365 days; 47 male, 33 female with culture-proven bacterial meningitis seen over a 16 year period (1986-2001 is reported from Taiwan.

  4. Factitious Bacterial Meningitis Revisited

    Science.gov (United States)

    Peterson, E.; Thrupp, L.; Uchiyama, N.; Hawkins, B.; Wolvin, B.; Greene, G.

    1982-01-01

    Nonviable gram-negative bacilli were seen in smears of cerebrospinal fluid from eight infants in whom bacterial meningitis was ruled out. Tubes from commercial kits were the source of the factitious organisms. PMID:7153328

  5. Photocatalytic inactivation of biofilms on bioactive dental adhesives.

    Science.gov (United States)

    Cai, Yanling; Strømme, Maria; Melhus, Asa; Engqvist, Håkan; Welch, Ken

    2014-01-01

    Biofilms are the most prevalent mode of microbial life in nature and are 10-1000 times more resistant to antibiotics than planktonic bacteria. Persistent biofilm growth associated at the margin of a dental restoration often leads to secondary caries, which remains a challenge in restorative dentistry. In this work, we present the first in vitro evaluation of on-demand photocatalytic inactivation of biofilm on a novel dental adhesive containing TiO2 nanoparticles. Streptococcus mutans biofilm was cultured on this photocatalytic surface for 16 h before photocatalytic treatment with ultraviolet-A (UV-A) light. UV-A doses ranging from 3 to 43 J/cm(2) were applied to the surface and the resulting viability of biofilms was evaluated with a metabolic activity assay incorporating phenol red that provided a quantitative measure of the reduction in viability due to the photocatalytic treatments. We show that an UV-A irradiation dose of 8.4 J/cm(2) leads to one order of magnitude reduction in the number of biofilm bacteria on the surface of the dental adhesives while as much as 5-6 orders of magnitude reduction in the corresponding number can be achieved with a dose of 43 J/cm(2). This material maintains its functional properties as an adhesive in restorative dentistry while offering the possibility of a novel dental procedure in the treatment or prevention of bacterial infections via on-demand UV-A irradiation. Similar materials could be developed for the treatment of additional indications such as peri-implantits. Copyright © 2013 Wiley Periodicals, Inc.

  6. Structural insights into Ail-mediated adhesion in Yersinia pestis.

    Science.gov (United States)

    Yamashita, Satoshi; Lukacik, Petra; Barnard, Travis J; Noinaj, Nicholas; Felek, Suleyman; Tsang, Tiffany M; Krukonis, Eric S; Hinnebusch, B Joseph; Buchanan, Susan K

    2011-11-09

    Ail is an outer membrane protein from Yersinia pestis that is highly expressed in a rodent model of bubonic plague, making it a good candidate for vaccine development. Ail is important for attaching to host cells and evading host immune responses, facilitating rapid progression of a plague infection. Binding to host cells is important for injection of cytotoxic Yersinia outer proteins. To learn more about how Ail mediates adhesion, we solved two high-resolution crystal structures of Ail, with no ligand bound and in complex with a heparin analog called sucrose octasulfate. We identified multiple adhesion targets, including laminin and heparin, and showed that a 40 kDa domain of laminin called LG4-5 specifically binds to Ail. We also evaluated the contribution of laminin to delivery of Yops to HEp-2 cells. This work constitutes a structural description of how a bacterial outer membrane protein uses a multivalent approach to bind host cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. POLYSACCHARIDES AND eDNA AID BACTERIAL ATTACHMENT TO POLYMER BRUSH COATINGS (PLL-g-PEG)

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Ogaki, Ryosuke; Regina, Viduthalai R.

    density plays a critical role and we therefore investigated the antifouling properties of the poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) coating produced by the recently developed temperature-induced polyelectrolyte (TIP) grafting technique. The PLL-g-PEG coatings with higher density resulted......Polymer brush coatings of poly(ethylene glycol) are considered the gold standard for nonfouling surfaces, but nevertheless, a few bacteria manage to attach and initiate biofilm formation on these coatings. To achieve robust resistance against bacterial adhesion and biofilm formation, grafting......-cell adhesion forces measured for each strain and toward titanium and the two types of PLL-g-PEG coatings. We were intrigued by the strain-dependent results in adhesion to conventional PLL-g-PEG, and investigated if the difference in adhesion mechanism between the three strains could explain the result. We...

  8. Adhesion mechanism of a gecko-inspired oblique structure with an adhesive tip for asymmetric detachment

    International Nuclear Information System (INIS)

    Sekiguchi, Yu; Sato, Chiaki; Takahashi, Kunio

    2015-01-01

    An adhesion model of an oblique structure with an adhesive tip is proposed by considering a limiting stress for adhesion to describe the detachment mechanism of gecko foot hairs. When a force is applied to the root of the oblique structure, normal and shear stresses are generated at contact and the adhesive tip is detached from the surface when reaching the limiting stress. An adhesion criterion that considers both the normal and shear stresses is introduced, and the asymmetric detachment of the oblique structure is theoretically investigated. In addition, oblique beam array structures are manufactured, and an inclination effect of the structure on the asymmetric detachment is experimentally verified. (paper)

  9. Prenatal diagnostic procedure for leukocyte adhesion deficiency

    NARCIS (Netherlands)

    Weening, R. S.; Bredius, R. G.; Wolf, H.; van der Schoot, C. E.

    1991-01-01

    Leukocyte adhesion deficiency (LAD) is a rare autosomal recessive disorder which leads to recurrent severe infections due to impaired leukocyte functions. The disorder is caused by an absence or deficiency of leukocyte cell adhesion molecules (LeuCAMs) on the leukocyte membranes. The diagnosis is

  10. Predicting Failure Initiation in Structural Adhesive Joints

    Science.gov (United States)

    2012-08-15

    Elastoplástico de Adhesivos – Modeling, characterization and simulation of the elastoplastic behavior of adhesives. Maestría en Ciencia de Materiales...adhesive and a 1018 steel”. Maestría en Ciencia de Materiales. Centro de Investigación en Materiales Avanzados S.C. May 2012.  Abstract: In the

  11. Mechanisms of temporary adhesion in benthic animals

    NARCIS (Netherlands)

    Dodou, D.; Breedveld, P.; Winter, J.C.F.; Dankelman, J.; Leeuwen, van J.L.

    2011-01-01

    Adhesive systems are ubiquitous in benthic animals and play a key role in diverse functions such as locomotion, food capture, mating, burrow building, and defence. For benthic animals that release adhesives, surface and material properties and external morphology have received little attention

  12. Switchable adhesion by chemical functionality and topography

    NARCIS (Netherlands)

    Kamperman, M.M.G.; Synytska, A.

    2012-01-01

    Progress in adhesion technology over the last few decades has led to widespread replacement of mechanical fasteners with adhesive bonds. Despite the advances, it remains challenging to produce materials that are sticky on demand. In this feature article we highlight recent efforts to develop

  13. Film adhesion in amorphous silicon solar cells

    Indian Academy of Sciences (India)

    TECS

    Abstract. A major issue encountered during fabrication of triple junction a-Si solar cells on polyimide sub- strates is the adhesion of the solar cell thin films to the substrates. Here, we present our study of film adhesion in amorphous silicon solar cells made on different polyimide substrates (Kapton VN, Upilex-S and ...

  14. Film adhesion in amorphous silicon solar cells

    Indian Academy of Sciences (India)

    A major issue encountered during fabrication of triple junction -Si solar cells on polyimide substrates is the adhesion of the solar cell thin films to the substrates. Here, we present our study of film adhesion in amorphous silicon solar cells made on different polyimide substrates (Kapton VN, Upilex-S and Gouldflex), and the ...

  15. Age Increases Monocyte Adhesion on Collagen

    Science.gov (United States)

    Khalaji, Samira; Zondler, Lisa; Kleinjan, Fenneke; Nolte, Ulla; Mulaw, Medhanie A.; Danzer, Karin M.; Weishaupt, Jochen H.; Gottschalk, Kay-E.

    2017-05-01

    Adhesion of monocytes to micro-injuries on arterial walls is an important early step in the occurrence and development of degenerative atherosclerotic lesions. At these injuries, collagen is exposed to the blood stream. We are interested whether age influences monocyte adhesion to collagen under flow, and hence influences the susceptibility to arteriosclerotic lesions. Therefore, we studied adhesion and rolling of human peripheral blood monocytes from old and young individuals on collagen type I coated surface under shear flow. We find that firm adhesion of monocytes to collagen type I is elevated in old individuals. Pre-stimulation by lipopolysaccharide increases the firm adhesion of monocytes homogeneously in older individuals, but heterogeneously in young individuals. Blocking integrin αx showed that adhesion of monocytes to collagen type I is specific to the main collagen binding integrin αxβ2. Surprisingly, we find no significant age-dependent difference in gene expression of integrin αx or integrin β2. However, if all integrins are activated from the outside, no differences exist between the age groups. Altered integrin activation therefore causes the increased adhesion. Our results show that the basal increase in integrin activation in monocytes from old individuals increases monocyte adhesion to collagen and therefore the risk for arteriosclerotic plaques.

  16. Influence of Blood Contamination During Multimode Adhesive ...

    African Journals Online (AJOL)

    Objectives: The present study evaluated the effects of blood contamination performed at different steps of bonding on the microtensile bond strength (μTBS) of multimode adhesives to dentin when using the self-etch approach. Materials and Methods: Seventy-five molars were randomly assigned to three adhesive groups ...

  17. Is nonoperative management of adhesive intestinal obstruction ...

    African Journals Online (AJOL)

    Background: Nonoperative management of adhesive intestinal obstruction gives good results in adults but there are scant studies on its outcome in children. This study reports outcomes and experiences with nonoperative and operative management of adhesive intestinal obstruction in children in a resource-poor country.

  18. Hot-Melt Adhesive Attachment System

    Science.gov (United States)

    Fox, R. L.; Frizzell, A. W.; Little, B. D.; Progar, D. J.; Coultrip, R. H.; Couch, R. H.; Stein, B. A.; Buckley, J. D.; St. Clair, T. L.; Gleason, J. R.

    1983-01-01

    Adhesive system is as effective on Earth as in space. Fiberglass cloth mounted in head assembly. When adhesive reaches melt temperature head is attached to metals composites, ceramics, and other materials. Once attached, head cooled rapidly for quick stick. Used to tether tools or attach temporary scaffolding to walls, buildings, or beams.

  19. Adhesion rings surround invadopodia and promote maturation

    Directory of Open Access Journals (Sweden)

    Kevin M. Branch

    2012-06-01

    Invasion and metastasis are aggressive cancer phenotypes that are highly related to the ability of cancer cells to degrade extracellular matrix (ECM. At the cellular level, specialized actin-rich structures called invadopodia mediate focal matrix degradation by serving as exocytic sites for ECM-degrading proteinases. Adhesion signaling is likely to be a critical regulatory input to invadopodia, but the mechanism and location of such adhesion signaling events are poorly understood. Here, we report that adhesion rings surround invadopodia shortly after formation and correlate strongly with invadopodium activity on a cell-by-cell basis. By contrast, there was little correlation of focal adhesion number or size with cellular invadopodium activity. Prevention of adhesion ring formation by inhibition of RGD-binding integrins or knockdown (KD of integrin-linked kinase (ILK reduced the number of ECM-degrading invadopodia and reduced recruitment of IQGAP to invadopodium actin puncta. Furthermore, live cell imaging revealed that the rate of extracellular MT1-MMP accumulation at invadopodia was greatly reduced in both integrin-inhibited and ILK-KD cells. Conversely, KD of MT1-MMP reduced invadopodium activity and dynamics but not the number of adhesion-ringed invadopodia. These results suggest a model in which adhesion rings are recruited to invadopodia shortly after formation and promote invadopodium maturation by enhancing proteinase secretion. Since adhesion rings are a defining characteristic of podosomes, similar structures formed by normal cells, our data also suggest further similarities between invadopodia and podosomes.

  20. Adhesions and Adhesiolysis: The Role of Laparoscopy

    Science.gov (United States)

    Kavic, Suzanne M.

    2002-01-01

    Background: Adhesions commonly result from abdominal and pelvic surgical procedures and may result in intestinal obstruction, infertility, chronic pain, or complicate subsequent operations. Laparoscopy produces less peritoneal trauma than does conventional laparotomy and may result in decreased adhesion formation. We present a review of the available data on laparoscopy and adhesion formation, as well as laparoscopic adhesiolysis. We also review current adjuvant techniques that may be used by practicing laparoscopists to prevent adhesion formation. Database: A Medline search using “adhesions,” “adhesiolysis,” and “laparoscopy” as key words was performed for English-language articles. Further references were obtained through cross-referencing the bibliography cited in each work. Discussion: The majority of studies indicate that laparoscopy may reduce postoperative adhesion formation relative to laparotomy. However, laparoscopy by itself does not appear to eliminate adhesions completely. A variety of adjuvant materials are available to surgeons, and the most recent investigation has demonstrated significant potential for intraperitoneal barriers. Newer technologies continue to evolve and should result in clinically relevant reductions in adhesion formation. PMID:12113430

  1. Biobased adhesives and non-conventional bonding

    Science.gov (United States)

    Charles Frihart

    2010-01-01

    Biobased adhesives fall into several major classes based upon their chemical structures. Starches are used in large volume, especially in the paper products industries, but cellulosics generally do not have the strength and water resistance needed for most wood products. Several authors have covered cellulosics adhesives (Baumann and Conner 2002, Pizzi 2006). However...

  2. Scaling Principles for Understanding and Exploiting Adhesion

    Science.gov (United States)

    Crosby, Alfred

    A grand challenge in the science of adhesion is the development of a general design paradigm for adhesive materials that can sustain large forces across an interface yet be detached with minimal force upon command. Essential to this challenge is the generality of achieving this performance under a wide set of external conditions and across an extensive range of forces. Nature has provided some guidance through various examples, e.g. geckos, for how to meet this challenge; however, a single solution is not evident upon initial investigation. To help provide insight into nature's ability to scale reversible adhesion and adapt to different external constraints, we have developed a general scaling theory that describes the force capacity of an adhesive interface in the context of biological locomotion. We have demonstrated that this scaling theory can be used to understand the relative performance of a wide range of organisms, including numerous gecko species and insects, as well as an extensive library of synthetic adhesive materials. We will present the development and testing of this scaling theory, and how this understanding has helped guide the development of new composite materials for high capacity adhesives. We will also demonstrate how this scaling theory has led to the development of new strategies for transfer printing and adhesive applications in manufacturing processes. Overall, the developed scaling principles provide a framework for guiding the design of adhesives.

  3. Chapter 16: Soy Proteins as Wood Adhesives

    Science.gov (United States)

    Charles R. Frihart; Christopher G. Hunt; Michael J. Birkeland

    2014-01-01

    Protein adhesives allowed the development of bonded wood products such as plywood and glulam in the early 20th century. Petrochemical-based adhesives replaced proteins in most wood bonding applications because of lower cost, improved production efficiencies, and enhanced durability. However, several technological and environmental factors have led to a resurgence of...

  4. [Diagnosis of bacterial vaginosis].

    Science.gov (United States)

    Djukić, Slobodanka; Ćirković, Ivana; Arsić, Biljana; Garalejić, Eliana

    2013-01-01

    Bacterial vaginosis is a common, complex clinical syndrome characterized by alterations in the normal vaginal flora. When symptomatic, it is associated with a malodorous vaginal discharge and on occasion vaginal burning or itching. Under normal conditions, lactobacilli constitute 95% of the bacteria in the vagina. Bacterial vaginosis is associated with severe reduction or absence of the normal H2O2-producing lactobacilli and overgrowth of anaerobic bacteria and Gardnerella vaginalis, Atopobium vaginae, Mycoplasma hominis and Mobiluncus species. Most types of infectious disease are diagnosed by culture, by isolating an antigen or RNA/DNA from the microbe, or by serodiagnosis to determine the presence of antibodies to the microbe. Therefore, demonstration of the presence of an infectious agent is often a necessary criterion for the diagnosis of the disease. This is not the case for bacterial vaginosis, since the ultimate cause of the disease is not yet known. There are a variety of methods for the diagnosis of bacterial vaginosis but no method can at present be regarded as the best. Diagnosing bacterial vaginosis has long been based on the clinical criteria of Amsel, whereby three of four defined criteria must be satisfied. Nugent's scoring system has been further developed and includes validation of the categories of observable bacteria structures. Up-to-date molecular tests are introduced, and better understanding of vaginal microbiome, a clear definition for bacterial vaginosis, and short-term and long-term fluctuations in vaginal microflora will help to better define molecular tests within the broader clinical context.

  5. Bacterial attachment and viscoelasticity: physicochemical and motility effects analyzed using quartz crystal microbalance with dissipation (QCM-D).

    Science.gov (United States)

    Gutman, Jenia; Walker, Sharon L; Freger, Viatcheslav; Herzberg, Moshe

    2013-01-02

    This investigation is focused on the combined effect of bacterial physicochemical characteristics and motility on cell adhesion and deposition using a flow-through quartz crystal microbalance with dissipation (QCM-D). Three model flagellated strains with different degrees of motility were selected, including a highly motile Escherichia coli K12 MG1655, an environmental strain Sphingomonas wittichii RW1, and a nonmotile (with paralyzed flagella) Escherichia coli K12 MG1655 ΔmotA that is incapable of encoding the motor torque generator for flagellar movement. Of the three strains, S. wittichii RW1 is highly hydrophobic, while E. coli strains are equally hydrophilic. Consideration of the hydrophobicity provides an alternative explanation for the bacterial adhesion behavior. QCM-D results show that motility is a critical factor in determining bacterial adhesion, as long as the aquatic chemical conditions are conducive for motility and the substratum and bacterial surface are similarly hydrophobic or hydrophilic. Once their properties are not similar, the contribution of hydrophobic interactions becomes more pronounced. QCM-D results suggest that during adhesion of the hydrophobic bacterium, S. wittichii RW1, the initial step of adhesion and maturation of bacteria-substratum interaction on hydrophilic surface includes a dynamic change of the viscoelastic properties of the bond bacterium-surface becoming more viscously oriented.

  6. Genetics Home Reference: leukocyte adhesion deficiency type 1

    Science.gov (United States)

    ... Home Health Conditions Leukocyte adhesion deficiency type 1 Leukocyte adhesion deficiency type 1 Printable PDF Open All ... Javascript to view the expand/collapse boxes. Description Leukocyte adhesion deficiency type 1 is a disorder that ...

  7. Interpenetrating Polymer Network (IPN) Adhesives for Electron Beam Cure

    National Research Council Canada - National Science Library

    Sands, James

    2000-01-01

    Electron beam (e-beam)-processed polymer adhesives have historically performed poorly compared to traditional adhesive technologies due to a lack of toughness engineered into these new types of adhesive materials...

  8. Differences of Streptococcus mutans adhesion between artificial mouth systems: a dinamic and static methods

    Directory of Open Access Journals (Sweden)

    Aryan Morita

    2016-06-01

    Full Text Available Background: Various materials have been used for treating dental caries. Dental caries is a disease that attacks hard tissues of the teeth. The initial phase of caries is a formation of bacterial biofilm, called as dental plaque. Dental restorative materials are expected for preventing secondary caries formation initiated by dental plaque. Initial bacterial adhesion is assumed to be an important stage of dental plaque formation. Bacteria that recognize the receptor for binding to the pellicle on tooth surface are known as initial bacterial colonies. One of the bacteria that plays a role in the early stage of dental plaque formation is Streptococcus mutans (S. mutans. Artificial mouth system (AMS used in bacterial biofilm research on the oral cavity provides the real condition of oral cavity and continous and intermittent supply of nutrients for bacteria. Purpose: This study aimed to compare the profile of S. mutans bacterial adhesion as the primary etiologic agent for dental caries between using static method and using artificial mouth system, a dinamic. method (AMS. Method: The study was conducted at Faculty of Dentistry and Integrated Research and testing laboratory (LPPT in Universitas Gadjah Mada from April to August 2015. Composite resin was used as the subject of this research. Twelve composite resins with a diameter of 5 mm and a width of 2 mm were divided into two groups, namely group using static method and group using dynamic method. Static method was performed by submerging the samples into a 100µl suspension of 1.5 x 108 CFU/ml S. mutans and 200µl BHI broth. Meanwhile AMS method was carried out by placing the samples at the AMS tube drained with 20 drops/minute of bacterial suspension and sterile aquadest. After 72 hours, five samples from each group were calculated for their biofilm mass using 1% crystal violet and read by a spectrofotometer with a wavelength of 570 nm. Meanwhile, one sample from each group was taken for its

  9. Do uniform tangential interfacial stresses enhance adhesion?

    Science.gov (United States)

    Menga, Nicola; Carbone, Giuseppe; Dini, Daniele

    2018-03-01

    We present theoretical arguments, based on linear elasticity and thermodynamics, to show that interfacial tangential stresses in sliding adhesive soft contacts may lead to a significant increase of the effective energy of adhesion. A sizable expansion of the contact area is predicted in conditions corresponding to such scenario. These results are easily explained and are valid under the assumptions that: (i) sliding at the interface does not lead to any loss of adhesive interaction and (ii) spatial fluctuations of frictional stresses can be considered negligible. Our results are seemingly supported by existing experiments, and show that frictional stresses may lead to an increase of the effective energy of adhesion depending on which conditions are established at the interface of contacting bodies in the presence of adhesive forces.

  10. Adhesive Joints in Wind Turbine Blades

    DEFF Research Database (Denmark)

    Jørgensen, Jeppe Bjørn

    The industrial goal of this PhD project is to enable manufacturing of larger wind turbine blades by improving the existing design methods for adhesive joints. This should improve the present joint design such that more efficient wind turbine blades can be produced. The main scientific goal...... of the project is to develop new- and to improve the existing design rules for adhesive joints in wind turbine blades. The first scientific studies of adhesive joints were based on stress analysis, which requires that the bond-line is free of defects, but this is rarely the case for a wind turbine blade. Instead...... curing and test temperatures) on the formation of transverse cracks in the adhesive were tested experimentally. It was assumed that the transverse cracks evolved due to a combination of mechanical- and residual stresses in the adhesive. A new approach was developed that allows the residual stress...

  11. Adhesives for orthodontic bracket bonding

    Directory of Open Access Journals (Sweden)

    Déborah Daniella Diniz Fonseca

    2010-04-01

    Full Text Available The advent of acid etching, introduced by Buonocore in 1955, brought the possibility of bonding between the bracket base and enamel, contributing to more esthetic and conservative orthodontics. This direct bracket bonding technique has brought benefits such as reduced cost and time in performing the treatment, as well as making it easier to perform oral hygiene. The aim of this study was to conduct a survey of published studies on orthodontic bracket bonding to dental enamel. It was verified that resin composites and glass ionomer are the most studied and researched materials for this purpose. Resin-modified glass ionomer, with its biocompatibility, capacity of releasing fluoride and no need for acid etching on the tooth structure, has become increasingly popular among dentists. However, due to the esthetic and mechanical properties of light polymerizable resin composite, it continues to be one of the adhesives of choice in the bracket bonding technique and its use is widely disseminated.

  12. Adhesive polypeptides of Staphylococcus aureus identified using a novel secretion library technique in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Holm Liisa

    2011-05-01

    Full Text Available Abstract Background Bacterial adhesive proteins, called adhesins, are frequently the decisive factor in initiation of a bacterial infection. Characterization of such molecules is crucial for the understanding of bacterial pathogenesis, design of vaccines and development of antibacterial drugs. Because adhesins are frequently difficult to express, their characterization has often been hampered. Alternative expression methods developed for the analysis of adhesins, e.g. surface display techniques, suffer from various drawbacks and reports on high-level extracellular secretion of heterologous proteins in Gram-negative bacteria are scarce. These expression techniques are currently a field of active research. The purpose of the current study was to construct a convenient, new technique for identification of unknown bacterial adhesive polypeptides directly from the growth medium of the Escherichia coli host and to identify novel proteinaceous adhesins of the model organism Staphylococcus aureus. Results Randomly fragmented chromosomal DNA of S. aureus was cloned into a unique restriction site of our expression vector, which facilitates secretion of foreign FLAG-tagged polypeptides into the growth medium of E. coli ΔfliCΔfliD, to generate a library of 1663 clones expressing FLAG-tagged polypeptides. Sequence and bioinformatics analyses showed that in our example, the library covered approximately 32% of the S. aureus proteome. Polypeptides from the growth medium of the library clones were screened for binding to a selection of S. aureus target molecules and adhesive fragments of known staphylococcal adhesins (e.g coagulase and fibronectin-binding protein A as well as polypeptides of novel function (e.g. a universal stress protein and phosphoribosylamino-imidazole carboxylase ATPase subunit were detected. The results were further validated using purified His-tagged recombinant proteins of the corresponding fragments in enzyme-linked immunoassay and

  13. Single-bacterium nanomechanics in biomedicine: unravelling the dynamics of bacterial cells

    International Nuclear Information System (INIS)

    Aguayo, S; Bozec, L; Donos, N; Spratt, D

    2015-01-01

    The use of the atomic force microscope (AFM) in microbiology has progressed significantly throughout the years since its first application as a high-resolution imaging instrument. Modern AFM setups are capable of characterizing the nanomechanical behaviour of bacterial cells at both the cellular and molecular levels, where elastic properties and adhesion forces of single bacterium cells can be examined under different experimental conditions. Considering that bacterial and biofilm-mediated infections continue to challenge the biomedical field, it is important to understand the biophysical events leading towards bacterial adhesion and colonization on both biological and non-biological substrates. The purpose of this review is to present the latest findings concerning the field of single-bacterium nanomechanics, and discuss future trends and applications of nanoindentation and single-cell force spectroscopy techniques in biomedicine. (topical review)

  14. Adhesion protein protocols [Methods in molecular biology, v. 96

    National Research Council Canada - National Science Library

    Dejana, Elisabetta; Corada, Monica

    1999-01-01

    "An international corps of expert investigators describe their optimized techniques for both the identification of new cell adhesion proteins and for the characterization of novel adhesive structures...

  15. MECHANISMS OF BACTERIAL POLYHOSTALITY

    Directory of Open Access Journals (Sweden)

    Markova Yu.A.

    2007-12-01

    Full Text Available In the review data about factors of pathogenicity of the bacteria, capable to amaze both animals, and a plant are collected. Such properties of microorganisms as adhesion, secretion of some enzymes, mobility, a phenomenon of cooperative sensitivity - play an essential role at defeat of different organisms. They are used for many universal offensive strategy overcoming protection of an organism, irrespective of its evolutionary origin. Studying of these mechanisms, will allow to provide new approaches to monitoring illnesses.

  16. Impairment of the bacterial biofilm stability by triclosan.

    Directory of Open Access Journals (Sweden)

    Helen V Lubarsky

    Full Text Available The accumulation of the widely-used antibacterial and antifungal compound triclosan (TCS in freshwaters raises concerns about the impact of this harmful chemical on the biofilms that are the dominant life style of microorganisms in aquatic systems. However, investigations to-date rarely go beyond effects at the cellular, physiological or morphological level. The present paper focuses on bacterial biofilms addressing the possible chemical impairment of their functionality, while also examining their substratum stabilization potential as one example of an important ecosystem service. The development of a bacterial assemblage of natural composition--isolated from sediments of the Eden Estuary (Scotland, UK--on non-cohesive glass beads (<63 µm and exposed to a range of triclosan concentrations (control, 2-100 µg L(-1 was monitored over time by Magnetic Particle Induction (MagPI. In parallel, bacterial cell numbers, division rate, community composition (DGGE and EPS (extracellular polymeric substances: carbohydrates and proteins secretion were determined. While the triclosan exposure did not prevent bacterial settlement, biofilm development was increasingly inhibited by increasing TCS levels. The surface binding capacity (MagPI of the assemblages was positively correlated to the microbial secreted EPS matrix. The EPS concentrations and composition (quantity and quality were closely linked to bacterial growth, which was affected by enhanced TCS exposure. Furthermore, TCS induced significant changes in bacterial community composition as well as a significant decrease in bacterial diversity. The impairment of the stabilization potential of bacterial biofilm under even low, environmentally relevant TCS levels is of concern since the resistance of sediments to erosive forces has large implications for the dynamics of sediments and associated pollutant dispersal. In addition, the surface adhesive capacity of the biofilm acts as a sensitive measure of

  17. Impairment of the Bacterial Biofilm Stability by Triclosan

    Science.gov (United States)

    Hubas, Cédric; Behrens, Sebastian; Ricciardi, Francesco; Paterson, David M.

    2012-01-01

    The accumulation of the widely-used antibacterial and antifungal compound triclosan (TCS) in freshwaters raises concerns about the impact of this harmful chemical on the biofilms that are the dominant life style of microorganisms in aquatic systems. However, investigations to-date rarely go beyond effects at the cellular, physiological or morphological level. The present paper focuses on bacterial biofilms addressing the possible chemical impairment of their functionality, while also examining their substratum stabilization potential as one example of an important ecosystem service. The development of a bacterial assemblage of natural composition – isolated from sediments of the Eden Estuary (Scotland, UK) – on non-cohesive glass beads (triclosan concentrations (control, 2 – 100 µg L−1) was monitored over time by Magnetic Particle Induction (MagPI). In parallel, bacterial cell numbers, division rate, community composition (DGGE) and EPS (extracellular polymeric substances: carbohydrates and proteins) secretion were determined. While the triclosan exposure did not prevent bacterial settlement, biofilm development was increasingly inhibited by increasing TCS levels. The surface binding capacity (MagPI) of the assemblages was positively correlated to the microbial secreted EPS matrix. The EPS concentrations and composition (quantity and quality) were closely linked to bacterial growth, which was affected by enhanced TCS exposure. Furthermore, TCS induced significant changes in bacterial community composition as well as a significant decrease in bacterial diversity. The impairment of the stabilization potential of bacterial biofilm under even low, environmentally relevant TCS levels is of concern since the resistance of sediments to erosive forces has large implications for the dynamics of sediments and associated pollutant dispersal. In addition, the surface adhesive capacity of the biofilm acts as a sensitive measure of ecosystem effects. PMID:22523534

  18. Sundew adhesive: a naturally occurring hydrogel.

    Science.gov (United States)

    Huang, Yujian; Wang, Yongzhong; Sun, Leming; Agrawal, Richa; Zhang, Mingjun

    2015-06-06

    Bioadhesives have drawn increasing interest in recent years, owing to their eco-friendly, biocompatible and biodegradable nature. As a typical bioadhesive, sticky exudate observed on the stalked glands of sundew plants aids in the capture of insects and this viscoelastic adhesive has triggered extensive interests in revealing the implied adhesion mechanisms. Despite the significant progress that has been made, the structural traits of the sundew adhesive, especially the morphological characteristics in nanoscale, which may give rise to the viscous and elastic properties of this mucilage, remain unclear. Here, we show that the sundew adhesive is a naturally occurring hydrogel, consisting of nano-network architectures assembled with polysaccharides. The assembly process of the polysaccharides in this hydrogel is proposed to be driven by electrostatic interactions mediated with divalent cations. Negatively charged nanoparticles, with an average diameter of 231.9 ± 14.8 nm, are also obtained from this hydrogel and these nanoparticles are presumed to exert vital roles in the assembly of the nano-networks. Further characterization via atomic force microscopy indicates that the stretching deformation of the sundew adhesive is associated with the flexibility of its fibrous architectures. It is also observed that the adhesion strength of the sundew adhesive is susceptible to low temperatures. Both elasticity and adhesion strength of the sundew adhesive reduce in response to lowering the ambient temperature. The feasibility of applying sundew adhesive for tissue engineering is subsequently explored in this study. Results show that the fibrous scaffolds obtained from sundew adhesive are capable of increasing the adhesion of multiple types of cells, including fibroblast cells and smooth muscle cells, a property that results from the enhanced adsorption of serum proteins. In addition, in light of the weak cytotoxic activity exhibited by these scaffolds towards a variety of

  19. Bacterial Cell Mechanics.

    Science.gov (United States)

    Auer, George K; Weibel, Douglas B

    2017-07-25

    Cellular mechanical properties play an integral role in bacterial survival and adaptation. Historically, the bacterial cell wall and, in particular, the layer of polymeric material called the peptidoglycan were the elements to which cell mechanics could be primarily attributed. Disrupting the biochemical machinery that assembles the peptidoglycan (e.g., using the β-lactam family of antibiotics) alters the structure of this material, leads to mechanical defects, and results in cell lysis. Decades after the discovery of peptidoglycan-synthesizing enzymes, the mechanisms that underlie their positioning and regulation are still not entirely understood. In addition, recent evidence suggests a diverse group of other biochemical elements influence bacterial cell mechanics, may be regulated by new cellular mechanisms, and may be triggered in different environmental contexts to enable cell adaptation and survival. This review summarizes the contributions that different biomolecular components of the cell wall (e.g., lipopolysaccharides, wall and lipoteichoic acids, lipid bilayers, peptidoglycan, and proteins) make to Gram-negative and Gram-positive bacterial cell mechanics. We discuss the contribution of individual proteins and macromolecular complexes in cell mechanics and the tools that make it possible to quantitatively decipher the biochemical machinery that contributes to bacterial cell mechanics. Advances in this area may provide insight into new biology and influence the development of antibacterial chemotherapies.

  20. Role of Adhesion Molecules in Eosinophil Activation: A Comparative Study on the Effect of Adhesion Molecules on Eosinophil Survival

    Directory of Open Access Journals (Sweden)

    Kazutoshi Yamaguchi

    2004-01-01

    Conclusions: The regulation of adhesion molecules, by not only preventing eosinophil adhesion but also eosinophil activation, may be a potential target in the treatment of allergic inflammatory disorders.

  1. Radiation curable adhesive compositions and composite structures

    International Nuclear Information System (INIS)

    Brenner, W.

    1984-01-01

    This disclosure relates to novel adhesive compositions and composite structures utilizing the same, wherein said adhesive compositions contain an elastomer, a chemically compatible ethylenically unsaturated monomer, a tackifier, an adhesion promoter, and optionally, pigments, fillers, thickeners and flow control agents which are converted from the liquid to the solid state by exposure to high energy ionizing radiation such as electron beam. A particularly useful application for such adhesive compositions comprises the assembly of certain composite structures or laminates consisting of, for example, a fiber flocked rubber sheet and a metal base with the adhesive fulfilling the multiple functions of adhering the flocked fiber to the rubber sheet as well as adhering the rubber sheet to the metal base. Optionally, the rubber sheet itself may also be cured at the same time as the adhesive composition with all operations being carried out at ambient temperatures and in the presence of air, with exposure of said assembly to selected dosages of high energy ionizing radiation. These adhesive compositions contain no solvents thereby almost eliminating air pollution or solvent toxicity problems, and offer substantial savings in energy and labor as they are capable of curing in very short time periods without the use of external heat which might damage the substrate

  2. Adhesion Control between Resist and Photomask Blank

    Science.gov (United States)

    Kurihara, Masaaki; Hatakeyama, Sho; Yoshida, Kouji; Abe, Makoto; Totsukawa, Daisuke; Morikawa, Yasutaka; Mohri, Hiroshi; Hoga, Morihisa; Hayashi, Naoya; Ohtani, Hiroyuki; Fujihira, Masamichi

    2009-06-01

    Most problems in photomask fabrication such as pattern collapse, haze, and cleaning damage are related to the behavior of surfaces and interfaces of resists, opaque layers, and quartz substrates. Therefore, it is important to control the corresponding surface and interface energies in photomask fabrication processes. In particular, adhesion analysis in microscopic regions is strongly desirable to optimize material and process designs in photomask fabrication. We applied the direct peeling (DP) method with a scanning probe microscope (SPM) tip and measured the adhesion of resist patterns on Cr and quartz surfaces for photomask process optimization. We also studied the effect of tip shape on the reproducibility of adhesion measurements and the dependence of collapse behavior on the resist profile. We measured lateral forces between the resulting collapsed resist pillar and the Cr or the quartz surface before and after the sliding and related these observed lateral forces to the static and kinetic frictional forces, respectively. We also studied the effect of surface modification of the Cr and quartz surfaces with silanization reagents on adhesion measured with the DP method. Resist adhesion could be controlled by surface modification using silanes. We also discuss the relationship between the adhesion observed with the DP method and the properties of the modified surfaces including water contact angles and local adhesive forces measured from force-distance curves with an SPM.

  3. Adhesion property of epoxidized natural rubber (ENR-based adhesives containing calcium carbonate

    Directory of Open Access Journals (Sweden)

    2008-06-01

    Full Text Available The adhesion property (i.e. viscosity, loop tack and peel strength of epoxidized natural rubber (ENR 25 and ENR 50 grade-based pressure-sensitive adhesive was studied in the presence of calcium carbonate. The range of calcium carbonate loaded was from 10 to 50 parts per hundred parts of rubber (phr. Coumarone-indene resin was used as the tackifier and its concentration was fixed at 80 phr. Toluene was chosen as the solvent throughout the investigation. The substrates (PET film/paper were coated with the adhesive using a SHEEN hand coater at a coating thickness of 60 µm. Viscosity of the adhesive was measured by a HAAKE Rotary Viscometer whereas loop tack and peel strength were determined by a Llyod Adhesion Tester operating at 30 cm/min. Results show that viscosity of ENR-based adhesives increases gradually with increase in calcium carbonate loading due to the concentration effect of the filler. However, for loop tack and peel strength, it passes through a maximum at 30 phr calcium carbonate, an observation which is attributed to the optimum wettability of adhesive on the substrate at this adhesive composition. ENR 25-based adhesive consistently exhibits higher adhesion property than ENR 50 for all calcium carbonate loadings studied.

  4. Comparison of Allevyn Adhesive and Biatain Adhesive in the management of pressure ulcers.

    Science.gov (United States)

    Amione, P; Ricci, E; Topo, F; Izzo, L; Pirovano, R; Rega, V; Cocci, C; Masina, M

    2005-09-01

    The primary objective was to assess dressing delamination and the ensuing potential consequences during wear and/or removal, as well as the effect of residue remaining in the ulcer following foam breakdown. In this prospective multicentre study, 32 patients with a grade II or III pressure ulcer were randomised to receive either Allevyn Adhesive or Biatain Adhesive dressing. The performance of the dressings was assessed over seven dressing changes or a maximum of six weeks. The primary efficacy variable was the proportion of patients with at least one delaminated dressing (delamination being defined as the falling apart of a dressing during wear or removal, or the presence of residue from the dressing in the ulcer). Allevyn Adhesive was significantly less likely to delaminate than Biatain Adhesive: 83% of patients given Biatain Adhesive had a dressing that delaminated compared with 14% for Allevyn Adhesive (p = 0.014). Furthermore, a greater proportion of the Biatain Adhesive dressings delaminated compared with the Allevyn Adhesive dressings: 50% versus 4% (p < 0.001). Allevyn Adhesive performed significantly better in the following parameters: handling exudate (p = 0.044), comfort (p = 0.007), ease of application (p = 0.004), conformability during application (p = 0.003) and removal (p < 0.0001), and adherence to the skin during application (p = 0.003) and prior to removal (p = 0.011). Three patients given Allevyn Adhesive (21%) reported three adverse events; six patients given Biatain Adhesive (33%) reported eight adverse events. Allevyn Adhesive is effective and well tolerated in the management of pressure ulcers and less likely to delaminate than Biatain Adhesive.

  5. Adhesion forces of the sea-water bacterium Paracoccus seriniphilus on titanium: Influence of microstructures and environmental conditions.

    Science.gov (United States)

    Davoudi, Neda; Huttenlochner, Katharina; Chodorski, Jonas; Schlegel, Christin; Bohley, Martin; Müller-Renno, Christine; Aurich, Jan C; Ulber, Roland; Ziegler, Christiane

    2017-11-06

    The bacterial attachment to surfaces is the first step of biofilm formation. This attachment is governed by adhesion forces which act between the bacterium and the substrate. Such forces can be measured by single cell force spectroscopy, where a single bacterium is attached to a cantilever of a scanning force microscope, and force-distance curves are measured. For the productive sea-water bacterium Paracoccus seriniphilus, pH dependent measurements reveal the highest adhesion forces at pH 4. Adhesion forces measured at salinities between 0% and 4.5% NaCl are in general higher for higher salinity. However, there is an exception for 0.9% where a higher adhesion force was measured than expected. These results are in line with zeta potential measurements of the bacterium, which also show an exceptionally low zeta potential at 0.9% NaCl. In the absence of macromolecular interactions, the adhesion forces are thus governed by (unspecific) electrostatic interactions, which can be adjusted by pH and ionic strength. It is further shown that microstructures on the titanium surface increase the adhesion force. Growth medium reduces the interaction forces dramatically, most probably through macromolecular bridging.

  6. Bacterial meningitis in children

    International Nuclear Information System (INIS)

    Marji, S.

    2007-01-01

    To demonstrate the epidemiology, clinical manifestations and bacteriological profile of bacterial meningitis in children beyond the neonatal period in our hospital. This was a retrospective descriptive study conducted at Prince Rashid Hospital in Irbid, Jordan. The medical records of 50 children with the diagnosis of bacterial meningitis during 4 years period, were reviewed. The main cause of infection was streptococcus pneumoniae, followed by Haemophilus influenza and Niesseria meningitides. Mortality was higher in infants and meningococcal infection, while complications were more encountered in cases of streptococcus pneumoniae. Cerebrospinal fluid culture was positive in 11 cases and Latex agglutination test in 39. There is a significant reduction of the numbers of bacterial meningitis caused by Haemophilus influenza type B species. (author)

  7. Interfering with bacterial gossip

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Tolker-Nielsen, Tim; Givskov, Michael

    2011-01-01

    Biofilm resilience poses major challenges to the development of novel antimicrobial agents. Biofilm bacteria can be considered small groups of “Special Forces” capable of infiltrating the host and destroying important components of the cellular defense system with the aim of crippling the host...... defense. Antibiotics exhibit a rather limited effect on biofilms. Furthermore, antibiotics have an ‘inherent obsolescence’ because they select for development of resistance. Bacterial infections with origin in bacterial biofilms have become a serious threat in developed countries. Pseudomonas aeruginosa...... that appropriately target bacteria in their relevant habitat with the aim of mitigating their destructive impact on patients. In this review we describe molecular mechanisms involved in “bacterial gossip” (more scientifically referred to as quorum sensing (QS) and c-di-GMP signaling), virulence, biofilm formation...

  8. Adhesion Between Poly(dimethylsiloxane) Layers

    DEFF Research Database (Denmark)

    Yu, Liyun; Daugaard, Anders Egede; Skov, Anne Ladegaard

    Different adhesion methods of poly(dimethylsiloxane) (PDMS) layers were studied with respect to adhesional force and the resulting rheology of the two-layered PDMS films were investigated. The role of adhesion between PDMS layers on the performances of two-layer structures was studied with peel s...... strength test and by SEM pictures. The rheology of the double-layered compared to the monolayer films changed in some cases which indicates that the adhesion process needs to be carefully introduced in order not to alter the final properties....

  9. Embedded adhesive connection for laminated glass plates

    DEFF Research Database (Denmark)

    Hansen, Jens Zangenberg; Poulsen, S.H.; Bagger, A.

    2012-01-01

    The structural behavior of a new connection design, the embedded adhesive connection, used for laminated glass plates is investigated. The connection consists of an aluminum plate encapsulated in-between two adjacent triple layered laminated glass plates. Fastening between glass and aluminum...... is ensured using a structural adhesive. At first, the elastic and viscoelastic material properties of the adhesive are identified where the influence of load-rate and failure properties are also examined. Through an inverse analysis using the finite element method, the experimental observations...... usage in a design situation. The embedded connection shows promising potential as a future fastening system for load-carrying laminated glass plates....

  10. Molybdenum protective coatings adhesion to steel substrate

    Science.gov (United States)

    Blesman, A. I.; Postnikov, D. V.; Polonyankin, D. A.; Teplouhov, A. A.; Tyukin, A. V.; Tkachenko, E. A.

    2017-06-01

    Protection of the critical parts, components and assemblies from corrosion is an urgent engineering problem and many other industries. Protective coatings’ forming on surface of metal products is a promising way of corrosionprevention. The adhesion force is one of the main characteristics of coatings’ durability. The paper presents theoretical and experimental adhesion force assessment for coatings formed by molybdenum magnetron sputtering ontoa steel substrate. Validity and reliability of results obtained by simulation and sclerometry method allow applying the developed model for adhesion force evaluation in binary «steel-coating» systems.

  11. Silver nanoparticle-doped zirconia capillaries for enhanced bacterial filtration.

    Science.gov (United States)

    Wehling, Julia; Köser, Jan; Lindner, Patrick; Lüder, Christian; Beutel, Sascha; Kroll, Stephen; Rezwan, Kurosch

    2015-03-01

    Membrane clogging and biofilm formation are the most serious problems during water filtration. Silver nanoparticle (Agnano) coatings on filtration membranes can prevent bacterial adhesion and the initiation of biofilm formation. In this study, Agnano are immobilized via direct reduction on porous zirconia capillary membranes to generate a nanocomposite material combining the advantages of ceramics being chemically, thermally and mechanically stable with nanosilver, an efficient broadband bactericide for water decontamination. The filtration of bacterial suspensions of the fecal contaminant Escherichia coli reveals highly efficient bacterial retention capacities of the capillaries of 8 log reduction values, fulfilling the requirements on safe drinking water according to the U.S. Environmental Protection Agency. Maximum bacterial loading capacities of the capillary membranes are determined to be 3×10(9)bacterialcells/750mm(2) capillary surface until back flushing is recommendable. The immobilized Agnano remain accessible and exhibit strong bactericidal properties by killing retained bacteria up to maximum bacterial loads of 6×10(8)bacterialcells/750mm(2) capillary surface and the regenerated membranes regain filtration efficiencies of 95-100%. Silver release is moderate as only 0.8% of the initial silver loading is leached during a three-day filtration experiment leading to average silver contaminant levels of 100μg/L. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Diagnosis of bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    Đukić Slobodanka

    2013-01-01

    Full Text Available Bacterial vaginosis is a common, complex clinical syndrome characterized by alterations in the normal vaginal flora. When symptomatic, it is associated with a malodorous vaginal discharge and on occasion vaginal burning or itching. Under normal conditions, lactobacilli constitute 95% of the bacteria in the vagina. Bacterial vaginosis is associated with severe reduction or absence of the normal H2O2­producing lactobacilli and overgrowth of anaerobic bacteria and Gardnerella vaginalis, Atopobium vaginae, Mycoplasma hominis and Mobiluncus species. Most types of infectious disease are diagnosed by culture, by isolating an antigen or RNA/DNA from the microbe, or by serodiagnosis to determine the presence of antibodies to the microbe. Therefore, demonstration of the presence of an infectious agent is often a necessary criterion for the diagnosis of the disease. This is not the case for bacterial vaginosis, since the ultimate cause of the disease is not yet known. There are a variety of methods for the diagnosis of bacterial vaginosis but no method can at present be regarded as the best. Diagnosing bacterial vaginosis has long been based on the clinical criteria of Amsel, whereby three of four defined criteria must be satisfied. Nugent’s scoring system has been further developed and includes validation of the categories of observable bacteria structures. Up­to­date molecular tests are introduced, and better understanding of vaginal microbiome, a clear definition for bacterial vaginosis, and short­term and long­term fluctuations in vaginal microflora will help to better define molecular tests within the broader clinical context.

  13. Adult bacterial meningitis

    DEFF Research Database (Denmark)

    Meyer, C N; Samuelsson, I S; Galle, M

    2004-01-01

    Episodes of adult bacterial meningitis (ABM) at a Danish hospital in 1991-2000 were identified from the databases of the Department of Clinical Microbiology, and compared with data from the Danish National Patient Register and the Danish National Notification System. Reduced penicillin susceptibi......Episodes of adult bacterial meningitis (ABM) at a Danish hospital in 1991-2000 were identified from the databases of the Department of Clinical Microbiology, and compared with data from the Danish National Patient Register and the Danish National Notification System. Reduced penicillin...

  14. Bacterial blight of cotton

    Directory of Open Access Journals (Sweden)

    Aïda JALLOUL

    2015-04-01

    Full Text Available Bacterial blight of cotton (Gossypium ssp., caused by Xanthomonas citri pathovar malvacearum, is a severe disease occurring in all cotton-growing areas. The interactions between host plants and the bacteria are based on the gene-for-gene concept, representing a complex resistance gene/avr gene system. In light of the recent data, this review focuses on the understanding of these interactions with emphasis on (1 the genetic basis for plant resistance and bacterial virulence, (2 physiological mechanisms involved in the hypersensitive response to the pathogen, including hormonal signaling, the oxylipin pathway, synthesis of antimicrobial molecules and alteration of host cell structures, and (3 control of the disease.

  15. Bacterial meningitis in infants.

    Science.gov (United States)

    Ku, Lawrence C; Boggess, Kim A; Cohen-Wolkowiez, Michael

    2015-03-01

    Neonatal bacterial meningitis is uncommon but devastating. Morbidity among survivors remains high. The types and distribution of pathogens are related to gestational age, postnatal age, and geographic region. Confirming the diagnosis is difficult. Clinical signs are often subtle, lumbar punctures are frequently deferred, and cerebrospinal fluid (CSF) cultures can be compromised by prior antibiotic exposure. Infants with bacterial meningitis can have negative blood cultures and normal CSF parameters. Promising tests such as the polymerase chain reaction require further study. Prompt treatment with antibiotics is essential. Clinical trials investigating a vaccine for preventing neonatal Group B Streptococcus infections are ongoing. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Handbook of adhesive bonded structural repair

    CERN Document Server

    Wegman, Raymond F

    1992-01-01

    Provides repair methods for adhesive bonded and composite structures; identifies suitable materials and equipment for repairs; describes damage evaluation criteria and techniques, and methods of inspection before and after repair.

  17. Recent advances in nanostructured biomimetic dry adhesives

    Directory of Open Access Journals (Sweden)

    Andras ePattantyus-Abraham

    2013-12-01

    Full Text Available The relatively large size of the gecko and its ability to climb a multitude of structures with ease has often been cited as the inspiration upon which the field of dry adhesives is based. Since 2010, there have been many advances in the field of dry adhesives with much of the new research focusing on developing nanoscale and hierarchical features in a concentrated effort to develop synthetic gecko-like dry adhesives which are strong, durable and self-cleaning. A brief overview of the geckos and the hairs which it uses to adhere to many different surfaces is provided before delving into the current methods and materials used to fabricate synthetic gecko hairs. A summary of the recently published literature on bio-inspired, nanostructured dry adhesives is presented with an emphasis being placed on fabrication techniques.

  18. Hierarchical capillary adhesion of microcantilevers or hairs

    International Nuclear Information System (INIS)

    Liu Jianlin; Feng Xiqiao; Xia Re; Zhao Hongping

    2007-01-01

    As a result of capillary forces, animal hairs, carbon nanotubes or nanowires of a periodically or randomly distributed array often assemble into hierarchical structures. In this paper, the energy method is adopted to analyse the capillary adhesion of microsized hairs, which are modelled as clamped microcantilevers wetted by liquids. The critical conditions for capillary adhesion of two hairs, three hairs or two bundles of hairs are derived in terms of Young's contact angle, elastic modulus and geometric sizes of the beams. Then, the hierarchical capillary adhesion of hairs is addressed. It is found that for multiple hairs or microcantilevers, the system tends to take a hierarchical structure as a result of the minimization of the total potential energy of the system. The level number of structural hierarchy increases with the increase in the number of hairs if they are sufficiently long. Additionally, we performed experiments to verify our theoretical solutions for the adhesion of microbeams

  19. Development of LARC-13 adhesive systems

    Science.gov (United States)

    Hoggatt, J. T.

    1979-01-01

    Various adhesive formulations were evaluated and the effects of various environments upon different titanium bond surface treatments were noted. Initial data show LARC-13 to possess good 589K (600 F) stability as compared to other high temperature stable systems.

  20. Proteomic analysis of integrin adhesion complexes.

    Science.gov (United States)

    Byron, Adam; Humphries, Jonathan D; Bass, Mark D; Knight, David; Humphries, Martin J

    2011-04-05

    Integrin receptors regulate cell fate by coupling the binding of extracellular adhesion proteins to the assembly of intracellular cytoskeletal and signaling complexes. A detailed, integrative view of adhesion complexes will provide insight into the molecular mechanisms that control cell morphology, survival, movement, and differentiation. To date, membrane receptor-associated signaling complexes have been refractory to proteomic analysis because of their inherent lability and inaccessibility. We developed a methodology to isolate ligand-induced integrin adhesion complexes, and we used this technique to analyze the composition of complexes associated with multiple receptor-ligand pairs and define core and receptor-specific subnetworks. In particular, we identified regulator of chromosome condensation-2 (RCC2) as a component of fibronectin-activated signaling pathways that regulate directional cell movement. The development of this proteomics pipeline provides the means to investigate the molecular composition and function of various adhesion complexes.

  1. Competitive time- and density-dependent adhesion of staphylococci and osteoblasts on crosslinked poly(ethylene glycol)-based polymer coatings in co-culture flow chambers

    NARCIS (Netherlands)

    Fernandez, Isabel C. Saldarriaga; Busscher, Henk J.; Metzger, Steve W.; Grainger, David W.; van der Mei, Henny C.

    Biomaterial-associated infections (BAI) remain a serious clinical complication, often arising from an inability of host tissue-implant integration to out-compete bacterial adhesion and growth. A commercial polymer coating based on polyethylene glycol (PEG), available in both chemically inert and

  2. Adhesive/Dentin Interface: The Weak Link in the Composite Restoration

    Science.gov (United States)

    Spencer, Paulette; Ye, Qiang; Park, Jonggu; Topp, Elizabeth M.; Misra, Anil; Marangos, Orestes; Wang, Yong; Bohaty, Brenda S.; Singh, Viraj; Sene, Fabio; Eslick, John; Camarda, Kyle; Katz, J. Lawrence

    2010-01-01

    Results from clinical studies suggest that more than half of the 166 million dental restorations that were placed in the United States in 2005 were replacements for failed restorations. This emphasis on replacement therapy is expected to grow as dentists use composite as opposed to dental amalgam to restore moderate to large posterior lesions. Composite restorations have higher failure rates, more recurrent caries, and increased frequency of replacement as compared to amalgam. Penetration of bacterial enzymes, oral fluids, and bacteria into the crevices between the tooth and composite undermines the restoration and leads to recurrent decay and premature failure. Under in vivo conditions the bond formed at the adhesive/dentin interface can be the first defense against these noxious, damaging substances. The intent of this article is to review structural aspects of the clinical substrate that impact bond formation at the adhesive/dentin interface; to examine physico-chemical factors that affect the integrity and durability of the adhesive/dentin interfacial bond; and to explore how these factors act synergistically with mechanical forces to undermine the composite restoration. The article will examine the various avenues that have been pursued to address these problems and it will explore how alterations in material chemistry could address the detrimental impact of physico-chemical stresses on the bond formed at the adhesive/dentin interface. PMID:20195761

  3. Th17 Cell Induction by Adhesion of Microbes to Intestinal Epithelial Cells.

    Science.gov (United States)

    Atarashi, Koji; Tanoue, Takeshi; Ando, Minoru; Kamada, Nobuhiko; Nagano, Yuji; Narushima, Seiko; Suda, Wataru; Imaoka, Akemi; Setoyama, Hiromi; Nagamori, Takashi; Ishikawa, Eiji; Shima, Tatsuichiro; Hara, Taeko; Kado, Shoichi; Jinnohara, Toshi; Ohno, Hiroshi; Kondo, Takashi; Toyooka, Kiminori; Watanabe, Eiichiro; Yokoyama, Shin-Ichiro; Tokoro, Shunji; Mori, Hiroshi; Noguchi, Yurika; Morita, Hidetoshi; Ivanov, Ivaylo I; Sugiyama, Tsuyoshi; Nuñez, Gabriel; Camp, J Gray; Hattori, Masahira; Umesaki, Yoshinori; Honda, Kenya

    2015-10-08

    Intestinal Th17 cells are induced and accumulate in response to colonization with a subgroup of intestinal microbes such as segmented filamentous bacteria (SFB) and certain extracellular pathogens. Here, we show that adhesion of microbes to intestinal epithelial cells (ECs) is a critical cue for Th17 induction. Upon monocolonization of germ-free mice or rats with SFB indigenous to mice (M-SFB) or rats (R-SFB), M-SFB and R-SFB showed host-specific adhesion to small intestinal ECs, accompanied by host-specific induction of Th17 cells. Citrobacter rodentium and Escherichia coli O157 triggered similar Th17 responses, whereas adhesion-defective mutants of these microbes failed to do so. Moreover, a mixture of 20 bacterial strains, which were selected and isolated from fecal samples of a patient with ulcerative colitis on the basis of their ability to cause a robust induction of Th17 cells in the mouse colon, also exhibited EC-adhesive characteristics. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Screening of immunomodulatory and adhesive Lactobacillus with antagonistic activities against Salmonella from fermented vegetables.

    Science.gov (United States)

    Feng, Junchang; Liu, Pilong; Yang, Xin; Zhao, Xin

    2015-12-01

    The purpose of this study was to select strains of lactic acid bacteria (LAB) by their in vitro adhesive and immunomodulatory properties for potential use as probiotics. In this study, 16 randomly selected LAB strains from fermented vegetables (sauerkraut, bean and cabbage) were first screened for their tolerance to acid, bile salts, pepsin and pancreatin, bacterial inhibitory activities and abilities to adherence to Caco-2 cells. Then, 4 strains with the highest adhesion abilities were selected for further studies of their immunomodulatory properties and inhibitory effects against Salmonella adhesion and invasion to Caco-2 cells in vitro. The results showed that these 16 LAB strains effectively survived in simulated gastrointestinal condition and inhibited growth of six tested pathogens. Lactobacillus rhamnosus P1, Lactobacillus plantarum P2, Lactobacillus rhamnosus P3 and Lactobacillus casei P4 had the highest abilities to adhere to Caco-2 cells. Furthermore, L. plantarum P2 strain showed higher abilities to induce expression of tumor necrosis factor-α and interleukin-12 by splenic monocytes and strongly inhibited the adhesion and invasion of S. enteritidis ATCC13076 to Caco-2 cells. These results suggest that Lactobacillus strains P2 could be used as a probiotic candidate in food against Salmonella infection.

  5. Corneal cell adhesion to contact lens hydrogel materials enhanced via tear film protein deposition.

    Directory of Open Access Journals (Sweden)

    Claire M Elkins

    Full Text Available Tear film protein deposition on contact lens hydrogels has been well characterized from the perspective of bacterial adhesion and viability. However, the effect of protein deposition on lens interactions with the corneal epithelium remains largely unexplored. The current study employs a live cell rheometer to quantify human corneal epithelial cell adhesion to soft contact lenses fouled with the tear film protein lysozyme. PureVision balafilcon A and AirOptix lotrafilcon B lenses were soaked for five days in either phosphate buffered saline (PBS, borate buffered saline (BBS, or Sensitive Eyes Plus Saline Solution (Sensitive Eyes, either pure or in the presence of lysozyme. Treated contact lenses were then contacted to a live monolayer of corneal epithelial cells for two hours, after which the contact lens was sheared laterally. The apparent cell monolayer relaxation modulus was then used to quantify the extent of cell adhesion to the contact lens surface. For both lens types, lysozyme increased corneal cell adhesion to the contact lens, with the apparent cell monolayer relaxation modulus increasing up to an order of magnitude in the presence of protein. The magnitude of this increase depended on the identity of the soaking solution: lenses soaked in borate-buffered solutions (BBS, Sensitive Eyes exhibited a much greater increase in cell attachment upon protein addition than those soaked in PBS. Significantly, all measurements were conducted while subjecting the cells to moderate surface pressures and shear rates, similar to those experienced by corneal cells in vivo.

  6. Adhesion in hydrogels and model glassy polymers

    Science.gov (United States)

    Guvendiren, Murat

    Two main topics are addressed in this dissertation: (1) adhesion in hydrogels; (2) interfacial interactions between model glassy polymers. A self-assembly technique for the formation of hydrogels from acrylic triblock copolymer solutions was developed, based on vapor phase solvent exchange. Structure formation in the gels was characterized by small angle X-ray scattering, and swelling was measured in controlled pH buffer solutions. Strong gels are formed with polymer weight fractions between 0.01 and 0.15, and with shear moduli between 0.6 kPa and 3.5 kPa. Adhesive functionality, based on 3,4-dihydroxy-L-phenylalanine (DOPA) was also incorporated into the triblock copolymers. The effect of DOPA concentration on gel formation and swelling was investigated in detail. The adhesive properties of DOPA-functionalized hydrogels on TiO2 were investigated with an axisymmetric adhesion method. It was shown that the presence of DOPA enhances the adhesive properties of the hydrogels, but that the effect is minimized at pH values below 10, where the DOPA groups are hydrophobic. Thin film membranes were produced in order to study the specific interactions between DOPA and TiO2 and DOPA and tissue, using a membrane inflation method. The presence of DOPA in the membranes enhances the adhesion on TiO 2 and tissue, although adhesion to tissue requires that the DOPA groups be oxidized while in contact with the tissue of interest. Porous hydrogel scaffolds for tissue engineering applications were formed by adding salt crystals to the triblock copolymer solution prior to solvent exchange. Salt was then leached out by immersing the gel into water. Structures of the porous hydrogels were characterized by confocal laser scanning microscopy. These hydrogels were shown to be suitable for tissue regeneration and drug delivery applications. Diffusion-mediated adhesion between two component miscible polymer systems having very different glassy temperatures was also investigated. Axisymmetric

  7. The Bacterial Growth Curve.

    Science.gov (United States)

    Paulton, Richard J. L.

    1991-01-01

    A procedure that allows students to view an entire bacterial growth curve during a two- to three-hour student laboratory period is described. Observations of the lag phase, logarithmic phase, maximum stationary phase, and phase of decline are possible. A nonpathogenic, marine bacterium is used in the investigation. (KR)

  8. Bacterial fingerprints across Europe

    NARCIS (Netherlands)

    Glasner, Corinna

    2014-01-01

    Bacterial pathogens, such as Staphylococcus aureus and carbapenemase-producing Enterobacteriaceae (CPE), impose major threats to human health worldwide. Both have a ‘Jekyll & Hyde’ character, since they can be present as human commensals, but can also become harmful invasive pathogens especially

  9. [Bacterial biofilms and infection].

    Science.gov (United States)

    Lasa, I; Del Pozo, J L; Penadés, J R; Leiva, J

    2005-01-01

    In developed countries we tend to think of heart disease and the numerous forms of cancer as the main causes of mortality, but on a global scale infectious diseases come close, or may even be ahead: 14.9 million deaths in 2002 compared to cardiovascular diseases (16.9 million deaths) and cancer (7.1 million deaths) (WHO report 2004). The infectious agents responsible for human mortality have evolved as medical techniques and hygienic measures have changed. Modern-day acute infectious diseases caused by specialized bacterial pathogens such as diphtheria, tetanus, cholera, plague, which represented the main causes of death at the beginning of XX century, have been effectively controlled with antibiotics and vaccines. In their place, more than half of the infectious diseases that affect mildly immunocompromised patients involve bacterial species that are commensal with the human body; these can produce chronic infections, are resistant to antimicrobial agents and there is no effective vaccine against them. Examples of these infections are the otitis media, native valve endocarditis, chronic urinary infections, bacterial prostatitis, osteomyelitis and all the infections related to medical devices. Direct analysis of the surface of medical devices or of tissues that have been foci of chronic infections shows the presence of large numbers of bacteria surrounded by an exopolysaccharide matrix, which has been named the "biofilm". Inside the biofilm, bacteria grow protected from the action of the antibodies, phagocytic cells and antimicrobial treatments. In this article, we describe the role of bacterial biofilms in human persistent infections.

  10. EDITORIAL SPONTANEOUS BACTERIAL PERITONITIS ...

    African Journals Online (AJOL)

    hi-tech

    Spontaneous bacterial peritonitis (SBP) frequent]y occurs in patients with liver cirrhosis and ascites. It is defined as an infection of previously sterile ascitic fluid without any demonstrable intrabdominal source of infection. It is now internationally agreed that a polymorphonuclear (PMN) cell count in the ascitic fluid of over 250 ...

  11. Bacterial membrane proteomics.

    Science.gov (United States)

    Poetsch, Ansgar; Wolters, Dirk

    2008-10-01

    About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.

  12. Seizures Complicating Bacterial Meningitis

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-09-01

    Full Text Available The clinical data of 116 patients, 1 month to <5 years of age, admitted for bacterial meningitis, and grouped according to those with and without seizures during hospitalization, were compared in a study at Buddhist Dalin Tzu Chi General Hospital, Chang Gung Memorial Hospital and other centers in Taiwan.

  13. Diagnosis of bacterial infection

    African Journals Online (AJOL)

    rapid and easy-to-use test for bacterial infections. Clearly, this is a very ... detect antigens or specific antibodies, e.g. group A streptococcal antigen testing can be employed to reduce antibiotic use. Culture-based tests are often ... White blood cell count 12 000 cells/mm³; or the presence of >10% ...

  14. Bacterial Meningitis Outcome

    OpenAIRE

    J Gordon Millichap

    1995-01-01

    The neurologic, psychological, and educational outcomes of bacterial meningitis in 130 children evaluated at a mean age of 8 years, and 6 years after their meningitis, are reported from the Department of Paediatrics and Clinical Epidemiology and Biostatistics Unit, University of Melbourne, and the Royal Children’s Hospital, Victoria, Australia.

  15. 21 CFR 175.125 - Pressure-sensitive adhesives.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Pressure-sensitive adhesives. 175.125 Section 175... Substances for Use Only as Components of Adhesives § 175.125 Pressure-sensitive adhesives. Pressure-sensitive adhesives may be safely used as the food-contact surface of labels and/or tapes applied to food, in...

  16. Platelet adhesiveness: the effect of centrifugation on the measurement of adhesiveness in platelet-rich plasma

    Science.gov (United States)

    McBride, J. A.

    1968-01-01

    Platelet adhesiveness has been measured in citrated whole blood and in platelet-rich plasma obtained from normal subjects, splenectomized patients, and from patients in whom the diagnosis of recurrent venous thrombosis had been made. The duration of centrifugation used in the preparation of platelet-rich plasma was found to have a profound effect on the measurement of platelet adhesiveness because the figure for platelet adhesiveness measured in platelet-rich plasma obtained by centrifugation was considerably lower than that found in citrated whole blood. This effect was particularly marked when platelet-rich plasma was obtained from subjects in whom platelet adhesiveness measured in whole blood was increased. PMID:5699080

  17. Elimination of the reactivation process in the adhesion of chlorinated SBS rubber with polychloroprene adhesives

    Directory of Open Access Journals (Sweden)

    2007-04-01

    Full Text Available Chlorination treatment of a thermoplastic styrene-butadiene-styrene rubber (SBS with a 3 wt% solution of trichloroisocyanuric acid (TCI in methyl ethyl ketone (MEK introduces chlorinated and oxidized moieties on the rubber surface which increase its surface energy and produces surface microroughness. Consequently adhesion properties, evaluated by T-peel strength measurements in chlorinated SBS/solvent based-polyurethane adhesive/leather joints, are enhanced. In this study, two solvent-based polychloroprene adhesives (PCP0 and PCP30R have been considered as an alternative to the commonly used solvent-based polyurethane adhesive (PU. A thermoreactive phenolic resin was added to one of the polychloroprene adhesive formulations (PCP30R. This tackifier resin favors chlorination of the adhesive and reinforces the interface between the chlorinated adhesive and the chlorinated rubber surface. Besides, PCP30R adhesive does not need adhesive reactivation and considerable high T-peel strength value (5.7±0.3 kN/m was obtained. Elimination of the reactivation process implies a considerable improvement of the manufacturing process in the footwear industry.

  18. Properties of pressure-sensitive adhesive tapes with soft adhesives to human skin and their mechanism.

    Science.gov (United States)

    Tokumura, Fumio; Homma, Takeyasu; Tomiya, Toshiki; Kobayashi, Yuko; Matsuda, Tetsuaki

    2007-05-01

    The use of soft adhesives in the manufacture of pressure-sensitive adhesive tapes has recently increased. The dermal peeling force of adhesive tapes with soft adhesives was studied. Four kinds of adhesive tapes with adhesives of different softness were made, by adding varying amounts of isopropyl myristate as a softener. The tapes were applied on the flexor side of the forearm of six healthy male volunteers. The dermal peeling force, the amount of stripped corneocytes, the level of pain when the tapes were removed and the degree of penetration of adhesives into the sulcus cutis (skin furrows) were evaluated at 1 and 24 h after application of the tapes. Furthermore, a skin model panel (a sulcus cutis and crista cutis model panel) and a crista cutis model panel were constructed from a general stainless-steel panel, and the peeling force of the tapes against the model panels was measured. As the softness of adhesives increased, the peeling force against a general stainless-steel panel with a flat surface decreased, although the peeling force against human skin did not significantly change. The amount of stripped corneocytes on the removed tapes and the level of pain when the tapes were removed decreased with the increase in softness of the adhesives. These results suggest that adhesive tapes with soft adhesives that contain isopropyl myristate as a softener are suitable for the skin. Furthermore, the degree of penetration of adhesive into the sulcus cutis increased as the softness of adhesives increased. Upon evaluation of the peeling force against the model panels, as the softness of adhesives increased, there was a slight decrease in the peeling force against the skin model panel, while there was a remarkable decrease in the peeling force against the crista cutis model panel. These results suggest that the lack of change in the dermal peeling force as the softness of adhesives increased was caused by penetration of soft adhesive into the sulcus cutis, and that the

  19. Influence of Application Time and Etching Mode of Universal Adhesives on Enamel Adhesion.

    Science.gov (United States)

    Sai, Keiichi; Takamizawa, Toshiki; Imai, Arisa; Tsujimoto, Akimasa; Ishii, Ryo; Barkmeier, Wayne W; Latta, Mark A; Miyazaki, Masashi

    2018-01-01

    To investigate the influence of application time and etching mode of universal adhesives on enamel adhesion. Five universal adhesives, Adhese Universal, Bondmer Lightless, Clearfil Universal Bond Quick, G-Premio Bond, and Scotchbond Universal, were used. Bovine incisors were prepared and divided into four groups of ten teeth each. SBS, Ra, and SFE were determined after the following procedures: 1. self-etch mode with immediate air blowing after application (IA); 2. self-etch mode with prolonged application time (PA); 3. etch-and-rinse mode with IA; 4. etch-and-rinse mode with PA. After 24-h water storage, the bonded assemblies were subjected to shear bond strength (SBS) tests. For surface roughness (Ra) and surface free energy (SFE) measurements, the adhesives were simply applied to the enamel and rinsed with acetone and water before the measurements were carried out. Significantly higher SBS and Ra values were obtained with etch-and-rinse mode than with self-etch mode regardless of the application time or type of adhesive. Although most adhesives showed decreased SFE values with increased application time in self-etch mode, SFE values in etch-and-rinse mode were dependent on the adhesive type and application time. Etching mode, application time, and type of adhesive significantly influenced the SBS, Ra, and SFE values.

  20. Adhesive capsulitis: review of imaging and treatment

    International Nuclear Information System (INIS)

    Harris, Guy; Bou-Haider, Pascal; Harris, Craig

    2013-01-01

    Adhesive capsulitis is one of the most common conditions affecting the shoulder; however, early clinical diagnosis can be challenging. Treatment is most effective when commenced prior to the onset of capsular thickening and contracture; consequently, the role of imaging is increasing. The aim of this review is to demonstrate the typical imaging appearances of adhesive capsulitis and to examine some of the evidence regarding each of these imaging modalities. An evaluation of the various management options available to the clinician is also presented.

  1. Compressive modulus of adhesive bonded rubber block

    OpenAIRE

    Wiriya Thongruang; Charoenyut Dechwayukul

    2008-01-01

    The present study examined the effect of a thin adhesive layer on the modulus of an elastic rubber block bonded between two plates. The plates were assumed to be rigid, both in extension and flexure, and subjected to vertical compression loading. The Gent’s approach was used to obtain the analytic deformations of the rubber and adhesive. The analytic deformations were then validated with the finite element model. There was a good agreement between both methods. The modulus of the bonded rubbe...

  2. Photochemical tissue bonding with chitosan adhesive films

    OpenAIRE

    Lauto, Antonio; Mawad, Damia; Barton, Matthew; Gupta, Abhishek; Piller, Sabine C; Hook, James

    2010-01-01

    Abstract Background Photochemical tissue bonding (PTB) is a promising sutureless technique for tissue repair. PTB is often achieved by applying a solution of rose bengal (RB) between two tissue edges, which are irradiated by a green laser to crosslink collagen fibers with minimal heat production. In this study, RB has been incorporated in chitosan films to create a novel tissue adhesive that is laser-activated. Methods Adhesive films, based on chitosan and containing ~0.1 wt% RB were manufact...

  3. Tooth surface treatment strategies for adhesive cementation

    OpenAIRE

    Rohr, Nadja; Fischer, Jens

    2017-01-01

    PURPOSE The aim of this study was to evaluate the effect of tooth surface pre-treatment steps on shear bond strength, which is essential for understanding the adhesive cementation process. MATERIALS AND METHODS Shear bond strengths of different cements with various tooth surface treatments (none, etching, priming, or etching and priming) on enamel and dentin of human teeth were measured using the Swiss shear test design. Three adhesives (Permaflo DC, Panavia F 2.0, and Panavia V5) and one sel...

  4. Bacterial Attachment, Aggregation, and Alignment on Subcellular Nanogratings.

    Science.gov (United States)

    Lai, Chang Quan

    2018-04-03

    Recent investigations on the interactions of bacteria with micro/nanostructures have revealed a wide range of prokaryotic responses that were previously unknown. Despite these advances, however, it remains unclear how collective bacterial behavior on a surface would be influenced by the presence of anisotropic nanostructures with subcellular dimensions. To clarify this, the attachment, aggregation, and alignment of Pseudomonas aeruginosa on orderly subcellular nanogratings with systematically varied geometries were investigated. Compared with a flat surface, attachment and aggregation of bacteria on the nanogratings were reduced by up to 83 and 84% respectively, whereas alignment increased by a maximum of 850%. Using a semiempirical quantitative model, these results were shown to be caused by a lowering of physicochemical attraction between the substrate and bacteria, possible disruption to cell communication, and physical isolation of bacteria that were entrenched in the nanogratings by capillary action. Furthermore, the bacterial attachment level was generally found to be exponentially related to the contact area between the substrate and bacterial cells, except when there were significant deficits in the available contact area, which prompted the bacterial cells to employ their appendages to maintain a minimum attachment rate. Because the contact area for adhesion is strongly dependent on the geometry of the surface features and orientation of the bacterial cells, these results indicate that the conventional practice of using roughness parameters to draw quantitative relationships between surface topographies and bacterial attachment could suffer from inaccuracies due to the lack of shape and orientation information provided by these parameters. On the basis of these insights, design principles for generating maximal and minimal bacterial attachment on a surface were also proposed and verified with results reported in the literature.

  5. Corticosteroids for Bacterial Keratitis

    Science.gov (United States)

    Srinivasan, Muthiah; Mascarenhas, Jeena; Rajaraman, Revathi; Ravindran, Meenakshi; Lalitha, Prajna; Glidden, David V.; Ray, Kathryn J.; Hong, Kevin C.; Oldenburg, Catherine E.; Lee, Salena M.; Zegans, Michael E.; McLeod, Stephen D.; Lietman, Thomas M.; Acharya, Nisha R.

    2013-01-01

    Objective To determine whether there is a benefit in clinical outcomes with the use of topical corticosteroids as adjunctive therapy in the treatment of bacterial corneal ulcers. Methods Randomized, placebo-controlled, double-masked, multicenter clinical trial comparing prednisolone sodium phosphate, 1.0%, to placebo as adjunctive therapy for the treatment of bacterial corneal ulcers. Eligible patients had a culture-positive bacterial corneal ulcer and received topical moxifloxacin for at least 48 hours before randomization. Main Outcome Measures The primary outcome was best spectacle-corrected visual acuity (BSCVA) at 3 months from enrollment. Secondary outcomes included infiltrate/scar size, reepithelialization, and corneal perforation. Results Between September 1, 2006, and February 22, 2010, 1769 patients were screened for the trial and 500 patients were enrolled. No significant difference was observed in the 3-month BSCVA (−0.009 logarithm of the minimum angle of resolution [logMAR]; 95% CI, −0.085 to 0.068; P = .82), infiltrate/scar size (P = .40), time to reepithelialization (P = .44), or corneal perforation (P > .99). A significant effect of corticosteroids was observed in subgroups of baseline BSCVA (P = .03) and ulcer location (P = .04). At 3 months, patients with vision of counting fingers or worse at baseline had 0.17 logMAR better visual acuity with corticosteroids (95% CI, −0.31 to −0.02; P = .03) compared with placebo, and patients with ulcers that were completely central at baseline had 0.20 logMAR better visual acuity with corticosteroids (−0.37 to −0.04; P = .02). Conclusions We found no overall difference in 3-month BSCVA and no safety concerns with adjunctive corticosteroid therapy for bacterial corneal ulcers. Application to Clinical Practice Adjunctive topical corticosteroid use does not improve 3-month vision in patients with bacterial corneal ulcers. PMID:21987582

  6. Advances in modeling and design of adhesively bonded systems

    CERN Document Server

    Kumar, S

    2013-01-01

    The book comprehensively charts a way for industry to employ adhesively bonded joints to make systems more efficient and cost-effective Adhesively bonded systems have found applications in a wide spectrum of industries (e.g., aerospace, electronics, construction, ship building, biomedical, etc.) for a variety of purposes. Emerging adhesive materials with improved mechanical properties have allowed adhesion strength approaching that of the bonded materials themselves. Due to advances in adhesive materials and the many potential merits that adhesive bonding offers, adhesive bonding has replac

  7. Model of moisture absorption by adhesive joint

    Science.gov (United States)

    Bonilla Mora, Veronica; Mieloszyk, Magdalena; Ostachowicz, Wieslaw

    2018-01-01

    Adhesive joints offer many advantages over traditional mechanical joining systems. Nonetheless, their use is limited since they can be adversely affected by extreme temperatures and humidity conditions. Moisture contamination (even 1-3% of the sample weight) in an adhesive can alter its tensile strength and compromise the structural integrity of the joint. Moisture absorption processes can be monitored using methods based on fibre Bragg grating sensors embedded in the adhesive material. In the present paper, a finite element model of an adhesive joint between composite elements was analysed using the commercial code Abaqus™. The investigation contains two main parts: a thermal analysis and a hygro-mechanical analysis. The achieved results were verified using experimental investigation results for a sample with embedded fibre Bragg grating sensors that were applied to monitor the moisture-induced strains in the adhesive joint. The achieved numerical results show good agreement with the experimental ones for all considered analyses. The presented models can also be used for the determination of moisture content in an adhesive layer especially in a range of 1.5-2.5% of the water content.

  8. Adhesion toughness of multilayer graphene films.

    Science.gov (United States)

    Wood, Joseph D; Harvey, Christopher M; Wang, Simon

    2017-12-05

    Interface adhesion toughness between multilayer graphene films and substrates is a major concern for their integration into functional devices. Results from the circular blister test, however, display seemingly anomalous behaviour as adhesion toughness depends on number of graphene layers. Here we show that interlayer shearing and sliding near the blister crack tip, caused by the transition from membrane stretching to combined bending, stretching and through-thickness shearing, decreases fracture mode mixity G II /G I , leading to lower adhesion toughness. For silicon oxide substrate and pressure loading, mode mixity decreases from 232% for monolayer films to 130% for multilayer films, causing the adhesion toughness G c to decrease from 0.424 J m -2 to 0.365 J m -2 . The mode I and II adhesion toughnesses are found to be G Ic  = 0.230 J m -2 and G IIc  = 0.666 J m -2 , respectively. With point loading, mode mixity decreases from 741% for monolayer films to 262% for multilayer films, while the adhesion toughness G c decreases from 0.543 J m -2 to 0.438 J m -2 .

  9. Use of Adhesion Promoters in Asphalt Mixtures

    Directory of Open Access Journals (Sweden)

    Cihlářová Denisa

    2018-03-01

    Full Text Available The purpose of asphalt binder as a significant binder in road constructions is to permanently bind aggregates of different compositions and grain sizes. The asphalt binder itself does not have suitable adhesiveness, so after a period of time, bare grains can appear. This results in a gradual separation of the grains from an asphalt layer and the presence of potholes in a pavement. Adhesion promoters or adhesive agents are important and proven promoters in practice. They are substances mainly based on the fatty acids of polyamides which should increase the reliability of the asphalt’s binder adhesion to the aggregates, thus increasing the lifetime period of the asphalt mixture as well as its resistance to mechanical strain. The amount of a promoter or agent added to the asphalt mixture is negligible and constitutes about 0.3% of the asphalt’s binder weight. Nevertheless, even this quantity significantly increases the adhesive qualities of an asphalt binder. The article was created in cooperatation with the Slovak University of Technology, in Bratislava, Slovakia, and focuses on proving the new AD2 adhesive additive and comparing it with the Addibit and Wetfix BE promoters used on aggregates from the Skuteč - Litická and Bystřec quarries.

  10. Comparison of bacterial attachment to platelet bags with and without preconditioning with plasma.

    Science.gov (United States)

    Loza-Correa, M; Kalab, M; Yi, Q-L; Eltringham-Smith, L J; Sheffield, W P; Ramirez-Arcos, S

    2017-07-01

    Canadian Blood Services produces apheresis and buffy coat pooled platelet concentrates (PCs) stored in bags produced by two different manufacturers (A and B, respectively), both made of polyvinyl chloride-butyryl trihexyl citrate. This study was aimed at comparing Staphylococcus epidermidis adhesion to the inner surface of both bag types in the presence or absence of plasma factors. Sets (N = 2-6) of bags type A and B were left non-coated (control) or preconditioned with platelet-rich, platelet-poor or defibrinated plasma (PRP, PPP and DefibPPP, respectively). Each bag was inoculated with a 200-ml S. epidermidis culture adjusted to 0·5 colony-forming units/ml. Bags were incubated under platelet storage conditions for 7 days. After culture removal, bacteria attached to the plastic surface were either dislodged by sonication for bacterial quantification or examined in situ by scanning electron microscopy (SEM). Higher bacterial adhesion was observed to preconditioned PC bags than control containers for both bag types (P 0·05). By contrast, a significant increase in bacterial adherence was observed to type A bags compared with type B bags in the absence of plasma (P platelet collection bags depends on the presence of plasma factors. Future efforts should be focused on reducing plasma proteins' attachment to platelet storage containers to decrease subsequent bacterial adhesion. © 2017 International Society of Blood Transfusion.

  11. Inhibition of microbial adhesion to silicone rubber treated with biosurfactant from Streptococcus thermophilus A.

    Science.gov (United States)

    Rodrigues, Lígia; van der Mei, Henny; Banat, Ibrahim M; Teixeira, José; Oliveira, Rosário

    2006-02-01

    Microbial adhesion of four bacterial and two yeast strains isolated from explanted voice prostheses to silicone rubber before and after conditioning with a biosurfactant obtained from the probiotic bacterium Streptococcus thermophilus A was investigated in a parallel plate flow chamber. The silicone rubber with and without an adsorbed biosurfactant layer was characterized using contact angle measurements. Water contact angles indicated that the silicone rubber surface with adsorbed biosurfactant was more hydrophilic (58 degrees) than bare silicone rubber (109 degrees). The results obtained showed that the biosurfactant was effective in decreasing the initial deposition rates, and the number of bacterial cells adhering after 4 h, for all microorganisms tested. A decrease in the initial deposition rate was observed for Rothia dentocariosa GBJ 52/2B and Staphylococcus aureus GB 2/1 from 1937+/-194 to 179+/-21 microorganisms cm(-2) s(-1) and from 1255+/-54 to 233+/-26 microorganisms cm(-2) s(-1), respectively, accounting for an 86% reduction of the initial deposition rate for both strains. The number of bacterial cells adhering to the silicone rubber with preadsorbed biosurfactant after 4 h was further reduced by 89% and 97% by the two strains, respectively. The two yeast strains tested showed less reduction in adhesion after 4 h, to values between 67% and 70%. Such a pretreatment with surface-active compounds may constitute a promising strategy to reduce the microbial colonization rate of silicone rubber voice prostheses.

  12. Leukocyte adhesion deficiency syndrome: report on the first case in Chile and South America

    Directory of Open Access Journals (Sweden)

    Rodrigo Vásquez-De Kartzow

    Full Text Available CONTEXT: Adhesion molecule deficiency type 1 is a rare disease that should be suspected in any patient whose umbilical cord presents delay in falling off, and who presents recurrent severe infections. Early diagnostic suspicion and early treatment improve the prognosis. CASE REPORT: The case of a four-month-old boy with recurrent hospitalizations because of severe bronchopneumonia and several episodes of acute otitis media with non-purulent drainage of mucus and positive bacterial cultures is presented. His medical history included neonatal sepsis and delayed umbilical cord detachment. Laboratory studies showed marked leukocytosis with predominance of neutrophils and decreased CD11b and CD18. These were all compatible with a diagnosis of leukocyte adhesion deficiency type I [LAD type 1].

  13. Necrotizing Ulcer After BCG Vaccination in a Girl With Leukocyte-adhesion Deficiency Type 1.

    Science.gov (United States)

    Kurosawa, Hidemitsu; Mizukami, Tomoyuki; Nunoi, Hiroyuki; Kato, Masaya; Sato, Yuya; Okuya, Mayuko; Fukushima, Keitaro; Katsuyama, Yoshihiko; Arisaka, Osamu

    2018-01-01

    Leukocyte-adhesion deficiency-1 is a recessively inherited disorder associated with recurrent bacterial infections, severe periodontitis, peripheral leukocytosis, and impaired wound healing. We diagnosed moderate-type leukocyte-adhesion deficiency-1 in a 7-year-old girl who developed a necrotizing ulcer after Bacillus Calmette-Guerin vaccination. The patient showed moderate expression of CD18 in neutrophils with a homozygous splice mutation with c.41_c.58+2dup20 of ITGB2 and experienced recurrent severe infections complicated with systemic lupus erythematosus. She received hematopoietic stem cell transplantation from a matched elder brother with heterozygous mutation of ITGB2, and has since remained free of infection and systemic lupus erythematosus symptoms without immunosuppression therapy.

  14. Comparison of the Anti-Adhesion Activity of Three Different Cranberry Extracts on Uropathogenic P-fimbriated Escherichia coli: a Randomized, Double-blind, Placebo Controlled, Ex Vivo, Acute Study.

    Science.gov (United States)

    Howell, Amy; Souza, Dan; Roller, Marc; Fromentin, Emilie

    2015-07-01

    Research suggests that cranberry (Vaccinium macrocarpon) helps maintain urinary tract health. Bacterial adhesion to the uroepithelium is the initial step in the progression to development of a urinary tract infection. The bacterial anti-adhesion activity of cranberry proanthocyanidins (PACs) has been demonstrated in vitro. Three different cranberry extracts were developed containing a standardized level of 36 mg of PACs. This randomized, double-blind, placebo controlled, ex vivo, acute study was designed to compare the anti-adhesion activity exhibited by human urine following consumption of three different cranberry extracts on uropathogenic P-fimbriated Escherichia coli in healthy men and women. All three cranberry extracts significantly increased anti-adhesion activity in urine. from 6 to 12 hours after intake of a single dose standardized to deliver 36 mg of PACs (as measured by the BL-DMAC method), versus placebo.

  15. Metagenomic insights into zooplankton-associated bacterial communities

    DEFF Research Database (Denmark)

    De Corte, Daniele; Srivastava, Abhishek; Koski, Marja

    2018-01-01

    ocean. The zooplankton-associated bacterial community is able to colonize the zooplankton's internal and external surfaces by using a large set of adhesion mechanisms and to metabolize complex organic compounds released or exuded by the zooplankton such as chitin, taurine and other complex molecules....... Moreover, the high number of genes involved in iron and phosphorus metabolisms in the zooplankton-associated microbiome suggests that this zooplankton-associated bacterial community mediates specific biogeochemical processes (through the proliferation of specific taxa) that are generally underrepresented......, we assessed the phylogenetic composition and metabolic potential of microbial communities associated with crustacean zooplankton species collected in the North Atlantic. Using Illumina sequencing of the 16S rRNA gene we found significant differences between the microbial communities associated...

  16. Bacillus cereus Adhesion to Simulated Intestinal Mucus Is Determined by Its Growth on Mucin, Rather Than Intestinal Environmental Parameters.

    Science.gov (United States)

    Tsilia, Varvara; Uyttendaele, Mieke; Kerckhof, Frederiek-Maarten; Rajkovic, Andreja; Heyndrickx, Marc; Van de Wiele, Tom

    2015-11-01

    Adhesion of pathogenic bacteria to intestinal mucus, the protective layer of the gastrointestinal epithelium, is often considered a virulence factor. The ability of food-poisoning Bacillus cereus strains to attach to mucus and the factors affecting this interaction have not yet been investigated. Therefore, the role of adhesion in pathogenesis of B. cereus still remains unknown. In the present study, an in vitro assay based on mucin agar was used to simulate adhesion of B. cereus to mucus. Bacterial-associated factors (e.g., strain specificity and microbial competition) known to influence adhesion to different surfaces and a variety of environmental conditions (e.g., pH and oxygen) encountered in the gastrointestinal tract were investigated. The effect of these parameters on B. cereus NVH 0500/00 mucin adhesion was generally limited even in the presence of microbial competition. This suggests that B. cereus NVH 0500/00 is a versatile pathogen. Inoculation of 4 to 5 log colony-forming units (CFU) per milliliter. B. cereus NVH 0500/00 resulted in 5-6 log CFU/mL mucin-associated bacteria after a short incubation period. This indicates that this pathogenic strain could grow in the presence of mucin agar. This growth may potentially mask the effect of the studied conditions. Yet, extensive attachment of B. cereus to mucin is not necessarily a prerequisite for virulence, because other pathogenic strains do not adhere with the same efficiency to mucin. Nevertheless, adhesion may contribute to the disease by providing close contact to nutrient sources, such as mucin, which would not only result in bacterial proliferation, but also in disruption of the protective host mucus surface.

  17. Influence of surface features on the adhesion of Staphyloccocus epidermidis to Ag–TiCN thin films

    International Nuclear Information System (INIS)

    Carvalho, Isabel; Almeida Alves, Cristiana Filipa; Carvalho, Sandra; Henriques, Mariana; Oliveira, João Carlos; Piedade, Ana Paula

    2013-01-01

    Staphylococcus epidermidis has emerged as one of the major nosocomial pathogens associated with infections of implanted medical devices. The initial adhesion of these organisms to the surface of biomaterials is assumed to be an important stage in their colonization. The main objective of this work is to assess the influence of surface features on the adhesion of S. epidermidis to Ag–TiCN coatings deposited by dc reactive magnetron sputtering. The structural results obtained by x-ray diffraction show that the coatings crystallize in a B1-NaCl crystal structure typical of TiC 0.3 N 0.7 . The increase of Ag content promoted the formation of Ag crystalline phases. According to the results obtained with atomic force microscopy, a decrease on the surface roughness of the films from 39 to 7 nm is observed as the Ag content increases from 0 to 15 at.%. Surface energy results show that the increase of Ag promotes an increase in hydrophobicity. Bacterial adhesion and biofilm formation on coatings were assessed by the enumeration of the number of viable cells. The results showed that the surface with lower roughness and higher hydrophobicity leads to greater bacterial adhesion and biofilm formation, highlighting that surface morphology and hydrophobicity rule the colonization of materials. (paper)

  18. Black Currant (Ribes nigrum L. and Bilberry (Vaccinium myrtillus L. Fruit Juices Inhibit Adhesion of Asaia spp.

    Directory of Open Access Journals (Sweden)

    Hubert Antolak

    2016-01-01

    Full Text Available The aim of the study was to evaluate the activity of high-polyphenolic black currant (Ribes nigrum L. and bilberry (Vaccinium myrtillus L. juices against bacterial strains Asaia lannensis and Asaia bogorensis isolated as spoilage of commercial soft drinks. The composition of fruit juices was evaluated using chromatographic techniques HPLC and LC-MS. The adhesion to glass, polystyrene, and polyethylene terephthalate in two different culture media was evaluated by luminometry and the plate count method. The major anthocyanins in the V. myrtillus were petunidin-3-glucoside, malvidin-3-glucoside, cyanidin-3-glucoside, and delphinidin-3-glucoside, while in R. nigrum delphinidin-3-rutinoside and cyanidin-3-rutinoside were detected. The LC-MS analysis showed presence of anthocyanins (delphinidin, cyanidin, petunidin, and malvidin derivatives, phenolic acids (chlorogenic and neochlorogenic acids, flavonols (quercetin-3-glucoside, quercetin-3-rutinoside, and flavanols (procyanidin B2 and procyanidin type A2. Additionally, in the bilberry juice A type procyanidin trimer was detected. The adhesion of Asaia spp. cells depended on the type of medium, carbon sources, and the type of abiotic surfaces. We noted that the adhesion was significantly stronger in minimal medium containing sucrose. The addition of bilberry and black currant juices notably reduced bacterial growth as well as cell adhesion to polyethylene terephthalate surfaces.

  19. Tissue adhesives for simple traumatic lacerations.

    Science.gov (United States)

    Beam, Joel W

    2008-01-01

    Farion K, Osmond MH, Hartling L, et al. Tissue adhesives for traumatic lacerations in children and adults. Cochrane Database Syst Rev. 2001(4);CD003326. What is the clinical evidence base for tissue adhesives in the management of simple traumatic lacerations? Studies were identified by searches of the following databases: Cochrane Wounds Group Specialized Trials Register (September 2003), Cochrane Central Register of Controlled Trials (CENTRAL) (CDROM 2003, issue 3), MEDLINE (1966 to September 2003, week 1), EMBASE (1988 to 2003, week 36), Web of Science Science Citation Index (1975 to September 13, 2003) and various clinical trials registers (September 2003). Investigators and product manufacturers were contacted to identify additional eligible studies. The search terms included wounds and injuries, laceration, face injury, nose injury, tissue adhesives, and acrylates. Each study fulfilled the following criteria: (1) The study was a randomized controlled trial that compared tissue adhesives with standard wound closure (SWC) (sutures, staples, adhesive strips) or tissue adhesive with tissue adhesive. (2) The wounds were acute, linear lacerations less than 12 hours old, resulting from blunt or sharp trauma. (3) The wound length, width, and depth allowed for approximation of the edges with minimal tension after deep sutures were placed, if required. Studies were included with no language or publication status restriction, with participants of any age recruited in an emergency department, outpatient clinic, walk-in clinic, or other primary care setting. Studies were excluded if the wounds were stellate lacerations, puncture wounds, mammalian bites, infected, heavily contaminated or devitalized, crossing joints or mucocutaneous junctions, in hair-bearing areas, or in patients with keloid formation or chronic illness. The characteristics of the study and participants, interventions, outcome measures, and findings were extracted by one author and verified by a second

  20. Differential role of eDNA, proteins, and polysaccharides in cell-cell and cell-substrate adhesion by three Staphylococcus species

    DEFF Research Database (Denmark)

    Meyer, Rikke Louise; Okshevsky, Mira Ursula; Zeng, Guanghong

    valuable for designing new approaches to biofilm prevention. In this study, we combine microfluidic flow-cell studies with single-cell analyses to understand how polysaccharides, extracellular DNA (eDNA), and proteins contribute individually and in concert to mediate bacterial adhesion and aggregation...... on abiotic surfaces. We quantified initial adhesion, cell aggregation, and single-cell adhesion forces of Staphylococcus aureus, Staphylococcus epidermidis, and Staphylococcus xylosus in the presence and absence of DNase, dispersin, or subtilisin, which cleave extracellular DNA, polysaccharides and proteins...... affected by DNase and dispersin treatments, hence eDNA and polysaccharides were essential for cell-cell interactions. We showed that proteins, polysaccharides and eDNA contribute differently to the adhesion of three Staphylcococcus species, underlining the need to either tailor biofilm prevention...

  1. [Influence of electromagnetic emission at the frequencies of molecular absorption and emission spectra of oxygen and nitrogen oxide on the adhesion and formation of Pseudomonas aeruginosa biofilm].

    Science.gov (United States)

    Pronina, E A; Shvidenko, I G; Shub, G M; Shapoval, O G

    2011-01-01

    Evaluate the influence of electromagnetic emission (EME) at the frequencies of molecular absorption and emission spectra of atmospheric oxygen and nitrogen oxide (MAES 02 and MAES NO respectively) on the adhesion, population progress and biofilm formation of Pseudomonas aeruginosa. Adhesive activity was evaluated by mean adhesion index (MAI) of bacteria on human erythrocytes. Population growth dynamic was assessed by optical density index of broth cultures; biofilm formation--by values of optical density of the cells attached to the surface of polystyrol wells. P.aeruginosa bacteria had high adhesive properties that have increased under the influence of MAES 02 frequency emission and have not changed under the influence of MAES NO frequency. Exposure of bacteria to MAES NO frequency did not influence the population progress; exposure to MAES 02 frequency stimulated the biofilm formation ability of the bacteria, and MAES NO--decreased this ability. EME at MAES NO frequency can be used to suppress bacterial biofilm formation by pseudomonas.

  2. In vitro adhesion of staphylococci to diamond-like carbon polymer hybrids under dynamic flow conditions.

    Science.gov (United States)

    Soininen, Antti; Levon, Jaakko; Katsikogianni, Maria; Myllymaa, Katja; Lappalainen, Reijo; Konttinen, Yrjö T; Kinnari, Teemu J; Tiainen, Veli-Matti; Missirlis, Yannis

    2011-03-01

    This study compares the ability of selected materials to inhibit adhesion of two bacterial strains commonly implicated in implant-related infections. These two strains are Staphylococcus aureus (S-15981) and Staphylococcus epidermidis (ATCC 35984). In experiments we tested six different materials, three conventional implant metals: titanium, tantalum and chromium, and three diamond-like carbon (DLC) coatings: DLC, DLC-polydimethylsiloxane hybrid (DLC-PDMS-h) and DLC-polytetrafluoroethylene hybrid (DLC-PTFE-h) coatings. DLC coating represents extremely hard material whereas DLC hybrids represent novel nanocomposite coatings. The two DLC polymer hybrid films were chosen for testing due to their hardness, corrosion resistance and extremely good non-stick (hydrophobic and oleophobic) properties. Bacterial adhesion assay tests were performed under dynamic flow conditions by using parallel plate flow chambers (PPFC). The results show that adhesion of S. aureus to DLC-PTFE-h and to tantalum was significantly (P DLC-PDMS-h (0.671 ± 0.001 × 10(7)/cm(2) and 0.751 ± 0.002 × 10(7)/cm(2) vs. 1.055 ± 0.002 × 10(7)/cm(2), respectively). No significant differences were detected between other tested materials. Hence DLC-PTFE-h coating showed as low susceptibility to S. aureus adhesion as all the tested conventional implant metals. The adherence of S. epidermidis to biomaterials was not significantly (P DLC-PTFE-h films could be used as a biomaterial coating without increasing the risk of implant-related infections.

  3. Effect of growth time on the surface and adhesion properties of Lactobacillus rhamnosus GG.

    Science.gov (United States)

    Deepika, G; Green, R J; Frazier, R A; Charalampopoulos, D

    2009-10-01

    To investigate the changes in the surface properties of Lactobacillus rhamnosus GG during growth, and relate them with the ability of the Lactobacillus cells to adhere to Caco-2 cells. Lactobacillus rhamnosus GG was grown in complex medium, and cell samples taken at four time points and freeze dried. Untreated and trypsin treated freeze dried samples were analysed for their composition using SDS-PAGE analysis and Fourier transform infrared spectroscopy (FTIR), hydrophobicity and zeta potential, and for their ability to adhere to Caco-2 cells. The results suggested that in the case of early exponential phase samples (4 and 8 h), the net surface properties, i.e. hydrophobicity and charge, were determined to a large extent by anionic hydrophilic components, whereas in the case of stationary phase samples (13 and 26 h), hydrophobic proteins seemed to play the biggest role. Considerable differences were also observed between the ability of the different samples to adhere to Caco-2 cells; maximum adhesion was observed for the early stationary phase sample (13 h). The results suggested that the adhesion to Caco-2 cells was influenced by both proteins and non-proteinaceous compounds present on the surface of the Lactobacillus cells. The surface properties of Lact. rhamnosus GG changed during growth, which in return affected the ability of the Lactobacillus cells to adhere to Caco-2 cells. The levels of adhesion of Lactobacillus cells to Caco-2 cells were influenced by the growth time and reflected changes on the bacterial surface. This study provides critical information on the physicochemical factors that influence bacterial adhesion to intestinal cells.

  4. 78 FR 63220 - Guidance for Industry on Acute Bacterial Skin and Skin Structure Infections: Developing Drugs for...

    Science.gov (United States)

    2013-10-23

    ... assist sponsors in the development of new antibacterial drugs to treat acute bacterial skin and skin..., rm. 2201, Silver Spring, MD 20993-0002. Send one self-addressed adhesive label to assist that office... Fishers Lane, rm. 1061, Rockville, MD 20852. FOR FURTHER INFORMATION CONTACT: Joseph G. Toerner, Center...

  5. Radiometric detection of bacterial metabolism

    International Nuclear Information System (INIS)

    Camargo, E.E.; Wagner Junior, H.N.

    1979-01-01

    The measurement of 14 CO 2 produced by the bacterial oxidation of labelled compounds is discussed as a means of evaluating the bacterial metabolism. The following items are discussed:automated radiometric detection, types of graphs, clinical applications of the radiometric system and influential factors. Complementary studies on bacterial assimilation of substances are presented. (M.A.) [pt

  6. Evaluation of dental adhesive systems incorporating an antibacterial monomer eugenyl methacrylate (EgMA) for endodontic restorations.

    Science.gov (United States)

    Almaroof, A; Niazi, S A; Rojo, L; Mannocci, F; Deb, S

    2017-05-01

    The purpose of this study was to incorporate EgMA, an antibacterial monomer into two commercial dental adhesive systems for their application in endodontic restoration with the aim to disinfect the root canal space before curing and to inhibit bacterial growth on their surfaces after being cured. EgMA monomer was added at 20%wt. into the formulation of the single-component self-etch, Clearfil Universal Bond™ (CUB) and into the catalyst and the adhesive components of the total-etch Adper Scotchbond-multipurpose™ (SBMP) adhesive systems. The degree of conversion (DC) was calculated from FTIR spectra, glass transition temperature (Tg) determined by DSC, water sorption and solubility were measured gravimetrically, and surface free energy (SFE) via contact angle measurements. The bonding performance to coronal and middle root canal dentin was assessed through push-out bond strength after filling the canals with a composite core material and the surface integrity was observed using SEM and confocal laser scanning microscopy (CLSM). The standard agar diffusion test (ADT) was used to identify the sensitivity of three endodontically pathogenic bacteria, Enterococcus faecalis, Streptococcus mutans and Propionibacterium acnes to uncured EgMA modified adhesives. Multispecies biofilm model from these strains was grown on the disc surface of cured adhesives and investigated using quantitative microbial culture and CLSM with live/dead staining. MTT assay was also used to determine the cytotoxicity of these adhesives. The incorporation of EgMA lowered polymerization exotherm and enhanced the hydrophobic character of these adhesives, without changing the DC and Tg in comparison to the controls (without EgMA). The total push-out bond strengths of the EgMA-containing adhesives were not significantly different from those of the controls (p>0.05). The modification of self-etch adhesive system enhanced the bond strength in the middle region of the roots canal. SEM of debonded

  7. Indirect MR arthrographic findings of adhesive capsulitis.

    Science.gov (United States)

    Song, Kyoung Doo; Kwon, Jong Won; Yoon, Young Cheol; Choi, Sang-Hee

    2011-12-01

    The objective of our study was to compare the indirect MR arthrographic findings of patients with adhesive capsulitis and patients without adhesive capsulitis. Indirect MR arthrograms of 35 patients (21 women, 14 men; mean age, 50.1 years) diagnosed with adhesive capsulitis clinically were compared with indirect MR arthrograms of 45 patients (23 women, 22 men; mean age, 48.9 years) without adhesive capsulitis. Joint capsule thickness in the axillary recess and the thicknesses of the enhancing portion of the axillary recess and the rotator interval were, respectively, evaluated on coronal T2-weighted images and coronal and sagittal fat-suppressed enhanced T1-weighted images by two radiologists independently. Reliability was studied using the intraclass correlation coefficient (ICC). Receiver operating characteristic (ROC) curves were compared. Patients with adhesive capsulitis had significantly thickened joint capsules in the axillary recess and a thickened enhancing portion in the axillary recess and in the rotator interval. The difference in the thicknesses of the enhancing portion in the axillary recess and in the rotator interval were significantly greater than the difference in joint capsule thicknesses in the axillary recess between the adhesive capsulitis group and the control group (p capsule in the axillary recess and the thicknesses of the enhancing portion of the axillary recess and the rotator interval were 0.797, 0.861, and 0.847, respectively. An abundance of enhancing tissue in the rotator interval and thickening and enhancement of the axillary recess are signs suggestive of adhesive capsulitis on indirect MR arthrography.

  8. Adhesive performance of precoated brackets after expiration.

    Science.gov (United States)

    Cloud, Cayce C; Trojan, Terry M; Suliman, Sam N; Tantbirojn, Daranee; Versluis, Antheunis

    2016-03-01

    To evaluate adhesive performance in terms of debonding forces of precoated metal and ceramic brackets 4 years after expiration. Buccal and lingual surfaces of embedded extracted maxillary premolars were etched with 34% Tooth Conditioner Gel (Dentsply Caulk, Milford, Del), rinsed, and dried. Transbond MIP (3M Unitek, Monrovia, Calif) was applied prior to placing adhesive precoated brackets (APC II Victory stainless steel and APC Plus Clarity ceramic brackets, 3M Unitek). The preexpiration brackets had 29-35 months before, and the postexpiration brackets were 45-52 months past, their expiration dates. Sample size was 17-21 per group. Debonding forces were determined by subjecting the bonded brackets to a shear force in a universal testing machine. Debonding forces were compared using two-way ANOVA. Debonded surfaces were examined under a stereomicroscope to determine failure modes, which were compared using the chi-square test. No statistically significant difference was found in debonding forces (P  =  .8581) or failure modes (P  =  .4538) between expired and unexpired brackets. Metal brackets required statistically significantly higher debonding forces than did ceramic brackets (P  =  .0001). For both expired and unexpired brackets, failure modes were mostly cohesive in the adhesive layer for ceramic brackets, and mixed between adhesive and cohesive failure in the adhesive layer for metal brackets. Adhesive precoated brackets did not have any reduction in enamel-adhesion properties up to 4 years after their expiration date. Extended shelf life testing for precoated dental brackets may be worth considering.

  9. Bacterial Cell Wall Components

    Science.gov (United States)

    Ginsberg, Cynthia; Brown, Stephanie; Walker, Suzanne

    Bacterial cell-surface polysaccharides cells are surrounded by a variety of cell-surface structures that allow them to thrive in extreme environments. Components of the cell envelope and extracellular matrix are responsible for providing the cells with structural support, mediating intercellular communication, allowing the cells to move or to adhere to surfaces, protecting the cells from attack by antibiotics or the immune system, and facilitating the uptake of nutrients. Some of the most important cell wall components are polysaccharide structures. This review discusses the occurrence, structure, function, and biosynthesis of the most prevalent bacterial cell surface polysaccharides: peptidoglycan, lipopolysaccharide, arabinogalactan, and lipoarabinomannan, and capsular and extracellular polysaccharides. The roles of these polysaccharides in medicine, both as drug targets and as therapeutic agents, are also described.

  10. Epoxy-resin adhesive and method for bonding using such an epoxy resin adhesive

    NARCIS (Netherlands)

    Bhowmik, S.; Poulis, J.A.; Benedictus, R.

    2008-01-01

    The invention relates to an epoxy resin adhesive comprising a dotation of nano-substances, wherein the nano- substances are selected from the group comprising carbon-fibre nanotubes, carbon nano-fibres, silicate nano powders, and wherein the nano-substances are dispersed in the adhesive with a

  11. New impact specimen for adhesives: optimization of high-speed-loaded adhesive joints

    NARCIS (Netherlands)

    Bezemer, A.A.; Guyt, C.B.; Vlot, A.

    1998-01-01

    A new kind of joint specimen has been developed to load the adhesive in pure shear on impact. The specimen is tested with three adhesives at five layer thicknesses, and at three test speeds. From these tests it can be concluded that the rod-ring specimen is suitable for use in impact tests at high

  12. Focal adhesion kinase maintains, but not increases the adhesion of dental pulp cells.

    Science.gov (United States)

    Qian, Yuyan; Shao, Meiying; Zou, Wenlin; Wang, Linyan; Cheng, Ran; Hu, Tao

    2017-04-01

    Focal adhesion kinase (FAK) functions as a key enzyme in the integrin-mediated adhesion-signalling pathway. Here, we aimed to investigate the effects of FAK on adhesion of human dental pulp (HDP) cells. We transfected lentiviral vectors to silence or overexpress FAK in HDP cells ex vivo. Early cell adhesion, cell survival and focal contacts (FCs)-related proteins (FAK and paxillin) were examined. By using immunofluorescence, the formation of FCs and cytoskeleton was detected, respectively. We found that both adhesion and survival of HDP cells were suppressed by FAK inhibition. However, FAK overexpression slightly inhibited cell adhesion and exhibited no change in cell survival compared with the control. A thick rim of cytoskeleton accumulated and smaller dot-shaped FCs appeared in FAK knockdown cells. Phosphorylation of paxillin (p-paxillin) was inhibited in FAK knockdown cells, verifying that the adhesion was inhibited. Less cytoskeleton and elongated FCs were observed in FAK-overexpressed cells. However, p-paxillin had no significant difference compared with the control. In conclusion, the data suggest that FAK maintains cell adhesion, survival and cytoskeleton formation, but excessive FAK has no positive effects on these aspects.

  13. Adhesion force imaging in air and liquid by adhesion mode atomic force microscopy

    NARCIS (Netherlands)

    van der Werf, Kees; Putman, C.A.J.; Putman, Constant A.; de Grooth, B.G.; Greve, Jan

    1994-01-01

    A new imaging mode for the atomic force microscope(AFM), yielding images mapping the adhesion force between tip and sample, is introduced. The adhesion mode AFM takes a force curve at each pixel by ramping a piezoactuator, moving the silicon‐nitride tip up and down towards the sample. During the

  14. Pathogenic Bacterium Acinetobacter baumannii Inhibits the Formation of Neutrophil Extracellular Traps by Suppressing Neutrophil Adhesion

    Directory of Open Access Journals (Sweden)

    Go Kamoshida

    2018-02-01

    Full Text Available Hospital-acquired infections caused by Acinetobacter baumannii have become problematic because of high rates of drug resistance. A. baumannii is usually harmless, but it may cause infectious diseases in an immunocompromised host. Although neutrophils are the key players of the initial immune response against bacterial infection, their interactions with A. baumannii remain largely unknown. A new biological defense mechanism, termed neutrophil extracellular traps (NETs, has been attracting attention. NETs play a critical role in bacterial killing by bacterial trapping and inactivation. Many pathogenic bacteria have been reported to induce NET formation, while an inhibitory effect on NET formation is rarely reported. In the present study, to assess the inhibition of NET formation by A. baumannii, bacteria and human neutrophils were cocultured in the presence of phorbol 12-myristate 13-acetate (PMA, and NET formation was evaluated. NETs were rarely observed during the coculture despite neutrophil PMA stimulation. Furthermore, A. baumannii prolonged the lifespan of neutrophils by inhibiting NET formation. The inhibition of NET formation by other bacteria was also investigated. The inhibitory effect was only apparent with live A. baumannii cells. Finally, to elucidate the mechanism of this inhibition, neutrophil adhesion was examined. A. baumannii suppressed the adhesion ability of neutrophils, thereby inhibiting PMA-induced NET formation. This suppression of cell adhesion was partly due to suppression of the surface expression of CD11a in neutrophils. The current study constitutes the first report on the inhibition of NET formation by a pathogenic bacterium, A. baumannii, and prolonging the neutrophil lifespan. This novel pathogenicity to inhibit NET formation, thereby escaping host immune responses might contribute to a development of new treatment strategies for A. baumannii infections.

  15. Pathogenic Bacterium Acinetobacter baumannii Inhibits the Formation of Neutrophil Extracellular Traps by Suppressing Neutrophil Adhesion

    Science.gov (United States)

    Kamoshida, Go; Kikuchi-Ueda, Takane; Nishida, Satoshi; Tansho-Nagakawa, Shigeru; Ubagai, Tsuneyuki; Ono, Yasuo

    2018-01-01

    Hospital-acquired infections caused by Acinetobacter baumannii have become problematic because of high rates of drug resistance. A. baumannii is usually harmless, but it may cause infectious diseases in an immunocompromised host. Although neutrophils are the key players of the initial immune response against bacterial infection, their interactions with A. baumannii remain largely unknown. A new biological defense mechanism, termed neutrophil extracellular traps (NETs), has been attracting attention. NETs play a critical role in bacterial killing by bacterial trapping and inactivation. Many pathogenic bacteria have been reported to induce NET formation, while an inhibitory effect on NET formation is rarely reported. In the present study, to assess the inhibition of NET formation by A. baumannii, bacteria and human neutrophils were cocultured in the presence of phorbol 12-myristate 13-acetate (PMA), and NET formation was evaluated. NETs were rarely observed during the coculture despite neutrophil PMA stimulation. Furthermore, A. baumannii prolonged the lifespan of neutrophils by inhibiting NET formation. The inhibition of NET formation by other bacteria was also investigated. The inhibitory effect was only apparent with live A. baumannii cells. Finally, to elucidate the mechanism of this inhibition, neutrophil adhesion was examined. A. baumannii suppressed the adhesion ability of neutrophils, thereby inhibiting PMA-induced NET formation. This suppression of cell adhesion was partly due to suppression of the surface expression of CD11a in neutrophils. The current study constitutes the first report on the inhibition of NET formation by a pathogenic bacterium, A. baumannii, and prolonging the neutrophil lifespan. This novel pathogenicity to inhibit NET formation, thereby escaping host immune responses might contribute to a development of new treatment strategies for A. baumannii infections. PMID:29467765

  16. Bacterial meningitis in Nottingham.

    OpenAIRE

    Ispahani, P.

    1983-01-01

    Records of 171 cases of bacterial meningitis admitted to Nottingham hospitals from January 1974 to June 1980 were reviewed. The distribution of organisms producing meningitis and the factors influencing mortality in different age groups were assessed. Neisseria meningitidis, Haemophilus influenzae and Streptococcus pneumoniae accounted for 69% of all proven cases. The overall mortality was 26% being lowest in patients with meningococcal meningitis (0%) and highest in those with pneumococcal m...

  17. Neutrophil adhesion and chemotaxis depend on substrate mechanics

    Science.gov (United States)

    Jannat, Risat A.; Dembo, Micah; Hammer, Daniel A.

    2009-01-01

    Neutrophil adhesion to the vasculature and chemotaxis within tissues play critical roles in the inflammatory response to injury and pathogens. Unregulated neutrophil activity has been implicated in the progression of numerous chronic and acute diseases such as rheumatoid arthritis, asthma, and sepsis. Cell migration of anchorage-dependent cells is known to depend on both chemical and mechanical interactions. Although neutrophil responses to chemical cues have been well characterized, little is known about the effect of underlying tissue mechanics on neutrophil adhesion and migration. To address this question, we quantified neutrophil migration and traction stresses on compliant hydrogel substrates with varying elasticity in a micro-machined gradient chamber in which we could apply either a uniform concentration or a precise gradient of the bacterial chemoattractant fMLP. Neutrophils spread more extensively on substrates of greater stiffness. In addition, increasing the stiffness of the substrate leads to a significant increase in the chemotactic index for each fMLP gradient tested. As the substrate becomes stiffer, neutrophils generate higher traction forces without significant changes in cell speed. These forces are often displayed in pairs and focused in the uropod. Increases in the mean fMLP concentration beyond the KD of the receptor lead to a decrease in chemotactic index on all surfaces. Blocking with an antibody against β2-integrins leads to a significant reduction but not an elimination of directed motility on stiff materials, but no change in motility on soft materials, suggesting neutrophils can display both integrin-dependent and integrin-independent motility. These findings are critical for understanding how neutrophil migration may change in different mechanical environments in vivo and can be used to guide the design of migration inhibitors that more efficiently target inflammation. PMID:20473350

  18. Neutrophil adhesion and chemotaxis depend on substrate mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Jannat, Risat A; Hammer, Daniel A [Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA 19104 (United States); Robbins, Gregory P; Ricart, Brendon G [Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 311A Towne Building, 220 South 33rd Street, Philadelphia, PA 19104 (United States); Dembo, Micah, E-mail: hammer@seas.upenn.ed [Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215 (United States)

    2010-05-19

    Neutrophil adhesion to the vasculature and chemotaxis within tissues play critical roles in the inflammatory response to injury and pathogens. Unregulated neutrophil activity has been implicated in the progression of numerous chronic and acute diseases such as rheumatoid arthritis, asthma and sepsis. Cell migration of anchorage-dependent cells is known to depend on both chemical and mechanical interactions. Although neutrophil responses to chemical cues have been well characterized, little is known about the effect of underlying tissue mechanics on neutrophil adhesion and migration. To address this question, we quantified neutrophil migration and traction stresses on compliant hydrogel substrates with varying elasticity in a micromachined gradient chamber in which we could apply either a uniform concentration or a precise gradient of the bacterial chemoattractant fMLP. Neutrophils spread more extensively on substrates of greater stiffness. In addition, increasing the stiffness of the substrate leads to a significant increase in the chemotactic index for each fMLP gradient tested. As the substrate becomes stiffer, neutrophils generate higher traction forces without significant changes in cell speed. These forces are often displayed in pairs and focused in the uropod. Increases in the mean fMLP concentration beyond the K{sub D} of the receptor lead to a decrease in chemotactic index on all surfaces. Blocking with an antibody against {beta}{sub 2}-integrins leads to a significant reduction, but not an elimination, of directed motility on stiff materials, but no change in motility on soft materials, suggesting neutrophils can display both integrin-dependent and integrin-independent motility. These findings are critical for understanding how neutrophil migration may change in different mechanical environments in vivo and can be used to guide the design of migration inhibitors that more efficiently target inflammation.

  19. Neglected bacterial zoonoses.

    Science.gov (United States)

    Chikeka, I; Dumler, J S

    2015-05-01

    Bacterial zoonoses comprise a group of diseases in humans or animals acquired by direct contact with or by oral consumption of contaminated animal materials, or via arthropod vectors. Among neglected infections, bacterial zoonoses are among the most neglected given emerging data on incidence and prevalence as causes of acute febrile illness, even in areas where recognized neglected tropical diseases occur frequently. Although many other bacterial infections could also be considered in this neglected category, five distinct infections stand out because they are globally distributed, are acute febrile diseases, have high rates of morbidity and case fatality, and are reported as commonly as malaria, typhoid or dengue virus infections in carefully designed studies in which broad-spectrum diagnoses are actively sought. This review will focus attention on leptospirosis, relapsing fever borreliosis and rickettsioses, including scrub typhus, murine typhus and spotted fever group rickettsiosis. Of greatest interest is the lack of distinguishing clinical features among these infections when in humans, which confounds diagnosis where laboratory confirmation is lacking, and in regions where clinical diagnosis is often attributed to one of several perceived more common threats. As diseases such as malaria come under improved control, the real impact of these common and under-recognized infections will become evident, as will the requirement for the strategies and allocation of resources for their control. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  20. Bacterial growth kinetics

    International Nuclear Information System (INIS)

    Boonkitticharoen, V.; Ehrhardt, J.C.; Kirchner, P.T.

    1989-01-01

    Quantitative measurement of bacterial growth may be made using a radioassay technique. This method measures, by scintillation counting, the 14 CO 2 derived from the bacterial metabolism of a 14 C-labeled substrate. Mathematical growth models may serve as reliable tools for estimation of the generation rate constant (or slope of the growth curve) and provide a basis for evaluating assay performance. Two models, i.e., exponential and logistic, are proposed. Both models yielded an accurate fit to the data from radioactive measurement of bacterial growth. The exponential model yielded high precision values of the generation rate constant, with an average relative standard deviation of 1.2%. Under most conditions the assay demonstrated no changes in the slopes of growth curves when the number of bacteria per inoculation was changed. However, the radiometric assay by scintillation method had a growth-inhibiting effect on a few strains of bacteria. The source of this problem was thought to be hypersensitivity to trace amounts of toluene remaining on the detector

  1. Identification of New Factors Modulating Adhesion Abilities of the Pioneer Commensal Bacterium Streptococcus salivarius

    Directory of Open Access Journals (Sweden)

    Benoit Couvigny

    2018-02-01

    Full Text Available Biofilm formation is crucial for bacterial community development and host colonization by Streptococcus salivarius, a pioneer colonizer and commensal bacterium of the human gastrointestinal tract. This ability to form biofilms depends on bacterial adhesion to host surfaces, and on the intercellular aggregation contributing to biofilm cohesiveness. Many S. salivarius isolates auto-aggregate, an adhesion process mediated by cell surface proteins. To gain an insight into the genetic factors of S. salivarius that dictate host adhesion and biofilm formation, we developed a screening method, based on the differential sedimentation of bacteria in semi-liquid conditions according to their auto-aggregation capacity, which allowed us to identify twelve mutations affecting this auto-aggregation phenotype. Mutations targeted genes encoding (i extracellular components, including the CshA surface-exposed protein, the extracellular BglB glucan-binding protein, the GtfE, GtfG and GtfH glycosyltransferases and enzymes responsible for synthesis of cell wall polysaccharides (CwpB, CwpK, (ii proteins responsible for the extracellular localization of proteins, such as structural components of the accessory SecA2Y2 system (Asp1, Asp2, SecA2 and the SrtA sortase, and (iii the LiaR transcriptional response regulator. These mutations also influenced biofilm architecture, revealing that similar cell-to-cell interactions govern assembly of auto-aggregates and biofilm formation. We found that BglB, CshA, GtfH and LiaR were specifically associated with bacterial auto-aggregation, whereas Asp1, Asp2, CwpB, CwpK, GtfE, GtfG, SecA2 and SrtA also contributed to adhesion to host cells and host-derived components, or to interactions with the human pathogen Fusobacterium nucleatum. Our study demonstrates that our screening method could also be used to identify genes implicated in the bacterial interactions of pathogens or probiotics, for which aggregation is either a virulence

  2. [Comparative study of antimicrobial activity of "Biodentin" and "Rootdent" cements and "Futurabond NR" adhesive].

    Science.gov (United States)

    Shamkhalov, G S; Ivanova, E V; Dmitrieva, N A; Akhmedova, Z R

    2013-01-01

    Bacterial contamination under fillings proved to be the main reason for pulp inflammation thus emphasizing the importance of antibacterial properties of restorative materials. The aim of the current study was to assess antibacterial properties of "Biodentine" (Septodont), "Rootdent" (TehnoDent) and adhesive "Futurabond НР" (Voco). Two lines of experiments were carried out using cements water solutions and firm tablet-like samples (made by means of special pattern). All the examined materials showed antibacterial activity against E. coli, S. aureus, C. albiсans, Str. faecalis. The results confirm the analyzed materials to be a useful tool for deep caries lesions treatment.

  3. Dentin pretreatment and adhesive temperature as affecting factors on bond strength of a universal adhesive system

    Directory of Open Access Journals (Sweden)

    Bruna Gabrielle da Silva Sutil

    Full Text Available Abstract Objectives: To evaluate the effects of dentin pretreatment and temperature on the bond strength of a universal adhesive system to dentin. Material and Methods: Ninety-six extracted non-carious human third molars were randomly divided into 12 groups (n=8 according to Scotchbond Universal Adhesive (SbU applied in self-etch (SE and etch-and-rinse (ER mode, adhesive temperature (20°C or 37°C and sodium bicarbonate or aluminum oxide air abrasion. After composite build up, bonded sticks with cross-sectional area of 1 mm2 were obtained to evaluate the microtensile bond strength (μTBS. The specimens were tested at a crosshead speed of 0.5 mm/min on a testing machine until failure. Fractured specimens were analyzed under stereomicroscope to determine the failure patterns in adhesive, cohesive (dentin or resin and mixed fractures. The microtensile bond strength data was analyzed using two-way ANOVA and Tukey's test (α=5%. Results: Interaction between treatment and temperature was statistically significant for SbU applied in self-etch technique. Both dentin treatments showed higher bond strength for ER mode, regardless of adhesive temperature. When compared to control group, sodium bicarbonate increased bond strength of SbU in SE technique. Adhesive temperature did not significantly affect the μTBS of tested groups. Predominantly, adhesive failure was observed for all groups. Conclusions: Dentin surface treatment with sodium bicarbonate air abrasion improves bond strength of SbU, irrespective of adhesive application mode, which makes this approach an alternative to increase adhesive performance of Scotchbond Universal Adhesive to dentin.

  4. Adhesive curing options for photonic packaging

    Science.gov (United States)

    Martin, Steven C.; Hubert, Manfred; Tam, Robin

    2002-06-01

    Varying the intensity of illumination used to cure photoactivated adhesives has been applied in medical and dental applications to improve the performance of polymer materials. For example, it has been observed that dental polymer composite materials express reduced shrinkage, important for durability of non-amalgam restorations, by introducing a phased time-intensity cure schedule. This work identified that curing conditions could influence the final properties of materials, and suggested the possibility of extending the characteristics that could be influenced beyond shrinkage to humidity resistance, Tg, outgassing and other important material properties. Obviously, these results have important ramifications for the photonic industry, with current efforts focused on improved manufacturing techniques. Improvement in low cost packaging solutions, including adhesives, will have to be made to bring the component cost down to address the needs of Metro and similar markets. However, there are perceived problems with the widespread use of adhesives, the most prevalent of these involving long term durability of the bond. Devices are typically aligned to sub-micron precision using active feedback and then must be locked in position to maintain performance. In contrast to traditional fastening methods, adhesive bonding is a highly attractive option due to the ease of deployment, lower equipment costs, and improved flexibility. Moreover, using methods analogous to those employed in dental applications, materials properties of photonic adhesives may be tailored using a programmed cure approach.

  5. Spiders Tune Glue Viscosity to Maximize Adhesion.

    Science.gov (United States)

    Amarpuri, Gaurav; Zhang, Ci; Diaz, Candido; Opell, Brent D; Blackledge, Todd A; Dhinojwala, Ali

    2015-11-24

    Adhesion in humid conditions is a fundamental challenge to both natural and synthetic adhesives. Yet, glue from most spider species becomes stickier as humidity increases. We find the adhesion of spider glue, from five diverse spider species, maximizes at very different humidities that matches their foraging habitats. By using high-speed imaging and spreading power law, we find that the glue viscosity varies over 5 orders of magnitude with humidity for each species, yet the viscosity at maximal adhesion for each species is nearly identical, 10(5)-10(6) cP. Many natural systems take advantage of viscosity to improve functional response, but spider glue's humidity responsiveness is a novel adaptation that makes the glue stickiest in each species' preferred habitat. This tuning is achieved by a combination of proteins and hygroscopic organic salts that determines water uptake in the glue. We therefore anticipate that manipulation of polymer-salts interaction to control viscosity can provide a simple mechanism to design humidity responsive smart adhesives.

  6. Electrostatic behavior of the charge-regulated bacterial cell surface.

    Science.gov (United States)

    Hong, Yongsuk; Brown, Derick G

    2008-05-06

    The electrostatic behavior of the charge-regulated surfaces of Gram-negative Escherichia coli and Gram-positive Bacillus brevis was studied using numerical modeling in conjunction with potentiometric titration and electrophoretic mobility data as a function of solution pH and electrolyte composition. Assuming a polyelectrolytic polymeric bacterial cell surface, these experimental and numerical analyses were used to determine the effective site numbers of cell surface acid-base functional groups and Ca(2+) sorption coefficients. Using effective site concentrations determined from 1:1 electrolyte (NaCl) experimental data, the charge-regulation model was able to replicate the effects of 2:1 electrolyte (CaCl(2)), both alone and as a mixture with NaCl, on the measured zeta potential using a single Ca(2+) surface binding constant for each of the bacterial species. This knowledge is vital for understanding how cells respond to changes in solution pH and electrolyte composition as well as how they interact with other surfaces. The latter is especially important due to the widespread use of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory in the interpretation of bacterial adhesion. As surface charge and surface potential both vary on a charge-regulated surface, accurate modeling of bacterial interactions with surfaces ultimately requires use of an electrostatic model that accounts for the charge-regulated nature of the cell surface.

  7. Human climbing with efficiently scaled gecko-inspired dry adhesives.

    Science.gov (United States)

    Hawkes, Elliot W; Eason, Eric V; Christensen, David L; Cutkosky, Mark R

    2015-01-06

    Since the discovery of the mechanism of adhesion in geckos, many synthetic dry adhesives have been developed with desirable gecko-like properties such as reusability, directionality, self-cleaning ability, rough surface adhesion and high adhesive stress. However, fully exploiting these adhesives in practical applications at different length scales requires efficient scaling (i.e. with little loss in adhesion as area grows). Just as natural gecko adhesives have been used as a benchmark for synthetic materials, so can gecko adhesion systems provide a baseline for scaling efficiency. In the tokay gecko (Gekko gecko), a scaling power law has been reported relating the maximum shear stress σmax to the area A: σmax ∝ A(-1/4). We present a mechanical concept which improves upon the gecko's non-uniform load-sharing and results in a nearly even load distribution over multiple patches of gecko-inspired adhesive. We created a synthetic adhesion system incorporating this concept which shows efficient scaling across four orders of magnitude of area, yielding an improved scaling power law: σmax ∝ A(-1/50). Furthermore, we found that the synthetic adhesion system does not fail catastrophically when a simulated failure is induced on a portion of the adhesive. In a practical demonstration, the synthetic adhesion system enabled a 70 kg human to climb vertical glass with 140 cm(2) of adhesive per hand. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  8. Design and fabrication of gecko-inspired adhesives.

    Science.gov (United States)

    Jin, Kejia; Tian, Yu; Erickson, Jeffrey S; Puthoff, Jonathan; Autumn, Kellar; Pesika, Noshir S

    2012-04-03

    Recently, there has been significant interest in developing dry adhesives mimicking the gecko adhesive system, which offers several advantages compared to conventional pressure-sensitive adhesives. Specifically, gecko adhesive pads have anisotropic adhesion properties; the adhesive pads (spatulae) stick strongly when sheared in one direction but are non-adherent when sheared in the opposite direction. This anisotropy property is attributed to the complex topography of the array of fine tilted and curved columnar structures (setae) that bear the spatulae. In this study, we present an easy, scalable method, relying on conventional and unconventional techniques, to incorporate tilt in the fabrication of synthetic polymer-based dry adhesives mimicking the gecko adhesive system, which provides anisotropic adhesion properties. We measured the anisotropic adhesion and friction properties of samples with various tilt angles to test the validity of a nanoscale tape-peeling model of spatular function. Consistent with the peel zone model, samples with lower tilt angles yielded larger adhesion forces. The tribological properties of the synthetic arrays were highly anisotropic, reminiscent of the frictional adhesion behavior of gecko setal arrays. When a 60° tilt sample was actuated in the gripping direction, a static adhesion strength of ~1.4 N/cm(2) and a static friction strength of ~5.4 N/cm(2) were obtained. In contrast, when the dry adhesive was actuated in the releasing direction, we measured an initial repulsive normal force and negligible friction.

  9. Adhesive properties of a symbolic bacterium from a wood-boreing marine shipworm

    International Nuclear Information System (INIS)

    Imam, S.H.; Greene, R.V.; Griffin, H.L.

    1990-01-01

    Adhesive properties of cellulolytic, nitrogen-fixing bacterium isolated from a marine shipworm are described. 35 S-labeled cells of the shipworm bacterium bound preferentially Whatman no.1 cellulose filter paper, compared with its binding to other cellulose substrata or substrata lacking cellulose. The ability of the bacteria to bind to Whatman no. 1 filter paper was significantly reduced by glutaraldehyde or heat treatment of cells. Pretreatment of cells with azide, valinomycin, gramicidin-D, bis-hexafluoroacetylacetone (1799), or carbonyl cyanide-p-trifluoromethoxyphenylhydrazone inhibited adhesion activity. Cells pretreated with pronase or trypsin also exhibited reduced binding activity, but chymotrypsin and peptidase had no effect on adhesion activity. Cellodextrins and methyl cellulose 15 inhibited the adhesion of the shipworm bacteria to filter paper, whereas glucose, cellobiose, and soluble carboxymethyl cellulose had no significant effect. The divalent cation chelators EDTA and EGTA [ethylene hlycol-bis(β-aminoethyl ether)-N,N,N'N'-tetraacetic acid] had little or no effect on adhesive properties of shipworm bacteria. Also, preabsorbing the substratum with extracellular endoglucanase isolated from the ship worm bacterium or 1% bovine serum albumin had no apparent effect on bacterial binding. Low concentration (0.01%) of sodium dodecyl sulfate solubilized a fraction from whole cells, which appeared to be involved in cellular binding activity. After removal of sodium dodecyl, sulfate, several proteins in this fraction associated with intact cells. These cells exhibited up to 50% enhanced binding to filter paper in comparison to cells which had not been exposed to the sodium dodecyl sulfate-solubilized fraction

  10. Influence of infected root dentin on the bond strength of a self-adhesive resin cement

    Directory of Open Access Journals (Sweden)

    Débora Delai

    2018-01-01

    Full Text Available Aim: The aim of this study was to determine the bond strength (BS of a self-adhesive resin cement to the contaminated root dentin. Materials and Methods: The crown and apical third of twenty single-rooted teeth were removed. The root canals were flared and 1-mm-thick root sections were obtained. The sections were rinsed, dried, and sterilized. The control group (n=20 was composed of one section of each third, which remained immersed in sterile trypticase soy broth (TSB for 2 months. The other sections comprised the experimental group (n = 40 and were immersed in a suspension of Enterococcus faecalis. The culture medium was changed at every 4 days for 2 months. The sections were rinsed with distilled water, dried, and the root canal space was fi lled with the self-adhesive resin cement RelyX™ U200. After 24 h, the push-out test was performed and the types of interface failure were observed on a stereo microscope. Statistical Analysis: Data were statistically analyzed by the nonparametric Mann–Whitney test (α=5%. Results: A significant reduction was observed in the BS of resin cement to the contaminated dentin compared to the healthy dentin, for both thirds analyzed (P < 0.05. The BS was signifi cantly greater at the cervical third compared to the middle third for specimens in the experimental group (P < 0.05. Adhesive and mixed failures were observed more frequently in specimens contaminated with E. faecalis. Conclusion: Bacterial contamination negatively infl uenced the BS of the self-adhesive resin cement to the root dentin, and there was a predominance of adhesive and mixed failures.

  11. Competition of Lactobacillus paracasei with Salmonella enterica for Adhesion to Caco-2 Cells

    Directory of Open Access Journals (Sweden)

    Alicja Jankowska

    2008-01-01

    Full Text Available Competition of commensal and probiotic bacteria with pathogens for adhesion and colonization is one of the important protective mechanisms of gastrointestinal tract. In this study, we examined the ability of Lactobacillus paracasei to inhibit the adhesion of pathogenic Salmonella enterica to human colon adenocarcinoma Caco-2 cells. Caco-2 cells were grown for 6 or 21 days to obtain nondifferentiated or well-differentiated cells, respectively. In adhesion experiments, bacteria were added to the cells for 2 or 4 hours. The number of attached bacteria was expressed as colony-forming units (CFUs, Caco-2 cells were counted in hematocytometer. Both bacterial strains used adhered better to well-differentiated than to nondifferentiated Caco-2 cells, however, the amount of Salmonella adhered to Caco-2 after 2 hours of contact was 12-fold higher in comparison to . paracasei and almost 27-fold higher after 4 hours of contact. Two types of experiments were done: coincubation (both bacteria were added to Caco-2 cells simultaneously, and preincubation (. paracasei was incubated with Caco-2 cells first, and then . enterica was added. In coincubation experiment, the presence of . paracasei decreased . enterica adhesion by 4-fold and in preincubation experiment even 7-fold. Generally, Lactobacillus spent culture supernatants (SCSs acted weaker as inhibitors of Salmonella adhesion in comparison to the whole . paracasei culture in coincubation experiment. In conclusion, the displacement of pathogens by lactic acid bacteria and its secretions showed here depends on the time of bacteria-epithelial cell contact, and also on the stage of Caco-2 differentiation.

  12. Genomics and X-ray microanalysis indicate that Ca2+ and thiols mediate the aggregation and adhesion of Xylella fastidiosa

    Directory of Open Access Journals (Sweden)

    Leite B.

    2002-01-01

    Full Text Available The availability of the genome sequence of the bacterial plant pathogen Xylella fastidiosa, the causal agent of citrus variegated chlorosis, is accelerating important investigations concerning its pathogenicity. Plant vessel occlusion is critical for symptom development. The objective of the present study was to search for information that would help to explain the adhesion of X. fastidiosa cells to the xylem. Scanning electron microscopy revealed that adhesion may occur without the fastidium gum, an exopolysaccharide produced by X. fastidiosa, and X-ray microanalysis demonstrated the presence of elemental sulfur both in cells grown in vitro and in cells found inside plant vessels, indicating that the sulfur signal is generated by the pathogen surface. Calcium and magnesium peaks were detected in association with sulfur in occluded vessels. We propose an explanation for the adhesion and aggregation process. Thiol groups, maintained by the enzyme peptide methionine sulfoxide reductase, could be active on the surface of the bacteria and appear to promote cell-cell aggregation by forming disulfide bonds with thiol groups on the surface of adjacent cells. The enzyme methionine sulfoxide reductase has been shown to be an auxiliary component in the adhesiveness of some human pathogens. The negative charge conferred by the ionized thiol group could of itself constitute a mechanism of adhesion by allowing the formation of divalent cation bridges between the negatively charged bacteria and predominantly negatively charged xylem walls.

  13. Molecular Characterization of Bacterial Respiration on Minerals

    Energy Technology Data Exchange (ETDEWEB)

    Blake, Robert C.

    2013-04-26

    anomalous dispersion (MAD) phasing; 4. An acid-stable red cytochrome with a novel absorbance peak at 579 nm was purified from cell-free extracts of L. ferriphilum. Functional studies demonstrated that this cytochrome was an important component of the aerobic iron respiratory chain in this organism; 5. The specific adhesion of At. ferrooxidans to pyrite is mediated by an extracellular protein that was identified as aporusticyanin. The adhesion of At. ferrooxidans to minerals was characterized by high affinity binding that exhibited a high specificity for pyrite over other sulfide minerals. The principal biopolymer involved in this high-affinity adhesion to pyrite was isolated by mineral affinity chromatography and identified as aporusticyanin. The adhesion of purified aporusticyanin to minerals was observed to adhere to different mineral with a pattern of reactivity identical to that observed with the intact bacterium. Further, preincubation of pyrite with excess exogenous aporusticyanin served to inhibit the adherence of intact cells to the surface of the mineral, indicating that the protein and the cells adhered to the pyrite in a mutually exclusive manner. Taken together, these observations support a model where aporusticyanin located on the surface of the bacterial cell acts as a mineral-specific receptor for the initial adherence of At. ferrooxidans to solid pyrite; 6. The specific adhesion of L. ferriphilum to pyrite was mediated by a different acid-stable extracellular protein than aporusticyanin; and 7. A prototype integrating cavity absorption meter (ICAM) was assembled to determine whether this novel spectrophotometer could be used to study cellular respiration in situ.

  14. Adhesive capsulitis of the hip: a review.

    Science.gov (United States)

    Looney, Colin G; Raynor, Brett; Lowe, Rebecca

    2013-12-01

    Adhesive capsulitis of the hip (ACH) is a rare clinical entity. Similar to adhesive capsulitis of the shoulder, ACH is characterized by a painful decrease in active and passive range of motion as synovial inflammation in the acute stages of the disease progresses to capsular fibrosis in the chronic stages. Once other diagnoses have been ruled out, management of ACH is tailored to reduce inflammation in the acute stages with NSAIDs, intra-articular steroid injections, and targeted physical therapy while biomechanical dysfunction in the spine, hip, sacroiliac joint, or lower limb joints is addressed. In chronic stages of the disease, intervention should focus on decreasing the progression of fibrotic changes and regaining range of motion through aggressive physical therapy. Interventions described for chronic ACH include manipulation under anesthesia; pressure dilatation; and open or arthroscopic synovectomy, lysis of adhesions, and capsular release. Surgical intervention should be considered only after failure of a minimum 3-month course of nonsurgical treatment.

  15. Surface tension and deformation in soft adhesion

    Science.gov (United States)

    Jensen, Katharine

    Modern contact mechanics was originally developed to account for the competition between adhesion and elasticity for relatively stiff deformable materials like rubber, but much softer sticky materials are ubiquitous in biology, engineering, and everyday consumer products. In such soft materials, the solid surface tension can also play an important role in resisting shape change, and significantly modify the physics of contact with soft matter. We report indentation and pull-off experiments that bring small, rigid spheres into adhesive contact with compliant silicone gel substrates, varying both the surface functionalization of the spheres and the bulk elastic properties of the gels. We map the resulting deformation profiles using optical microscopy and image analysis. We examine the substrate geometry in light of capillary and elastic theories in order to explore the interplay of surface tension and bulk elasticity in governing soft adhesion.

  16. Coatings for rubber bonding and paint adhesion

    Science.gov (United States)

    Boulos, M. S.; Petschel, M.

    1997-08-01

    Conversion coatings form an important base for the adhesion of paint to metal substrates and for the bonding of rubber to metal parts. Four types of conversion coatings were assessed as base treatments for the bonding of rubber to steel and for the corrosion protection of metal substrates under paint: amorphous iron phosphate, heavy zinc phosphate, and three types of modified zinc phosphates that utilized one or more metal cations in addition to zinc. When applied, these conversion coatings formed a thin film over the metal substrate that was characterized by scanning electron microscopy, x-ray diffraction, and chemical methods. The performance of the coatings was assessed using physical methods such as dry adhesion, conical mandrel, impact, and stress adhesion for the rubber-bonded parts, and by corrosion resistance methods such as humidity, salt spray, and cyclic corrosion. Coating characterization and performance were correlated.

  17. Bonding Durability of Four Adhesive Systems

    Science.gov (United States)

    Seyed Tabai, Elaheh; Mohammadi Basir, Mahshid

    2015-01-01

    Objectives: This study aimed to compare the durability of four adhesive systems by assessing their microtensile bond strength (MTBS) and microleakage during six months of water storage. Materials and Methods: A total of 128 human third molars were used. The adhesives tested were Scotch Bond Multipurpose (SBMP), Single Bond (SB), Clearfil-SE bond (CSEB), and All-Bond SE (ABSE). After sample preparation for MTBS testing, the microspecimens were subjected to microtensile tester after one day and six months of water storage. For microleakage evaluation, facial and lingual class V cavities were prepared and restored with composite. After thermocycling, microleakage was evaluated. Bond strength values were subjected to one-way ANOVA and Tamhane’s test, and the microleakage data were analyzed by the Kruskal-Wallis, Dunn, Mann Whitney and Wilcoxon tests (Pself-etch adhesives at the gingival margin or MTBS of CSEB and SB. PMID:27123015

  18. Fracture of composite-adhesive-composite systems

    Science.gov (United States)

    Ripling, E. J.; Santner, J. S.; Crosley, P. B.

    1984-01-01

    This program was undertaken to initiate the development of a test method for testing adhesive joints in metal-adhesive-composite systems. The uniform double cantilever beam (UDCB) and the width tapered beam (WTB) specimen geometries were evaluated for measuring Mode I fracture toughness in these systems. The WTB specimen is the preferred geometry in spite of the fact that it is more costly to machine than the UDCB specimen. The use of loading tabs attached to thin sheets of composites proved to be experimentally unsatisfactory. Consequently, a new system was developed to load thin sheets of adherends. This system allows for the direct measurement of displacement along the load line. In well made joints separation occurred between the plies rather than in the adhesive.

  19. Leukocyte Adhesion Molecules in Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Kousuke Noda

    2012-01-01

    Full Text Available Diabetes is a systemic disease that causes a number of metabolic and physiologic abnormalities. One of the major microvascular complications of diabetes is diabetic retinopathy (DR, a leading cause of blindness in people over age 50. The mechanisms underlying the development of DR are not fully understood; however, extensive studies have recently implicated chronic, low-grade inflammation in the pathophysiology of DR. During inflammation leukocytes undergo sequential adhesive interactions with endothelial cells to migrate into the inflamed tissues, a process known as the “leukocyte recruitment cascade” which is orchestrated by precise adhesion molecule expression on the cell surface of leukocytes and the endothelium. This paper summarizes the recent clinical and preclinical works on the roles of leukocyte adhesion molecules in DR.

  20. Systemic Inflammatory Response and Adhesion Molecules

    Directory of Open Access Journals (Sweden)

    L. V. Molchanova

    2005-01-01

    Full Text Available The lecture presents the materials of foreign studies on the mechanisms responsible for the formation of a systemic inflammatory response syndrome (SIRS. The hypotheses accounting for the occurrence of SIRS in emergencies are described. Adhesion molecules (AM and endothelial dysfunction are apparent to be involved in the inflammatory process, no matter what the causes of SIRS are. The current classification of AM and adhesion cascades with altered blood flow is presented. There are two lines in the studies of AM. One line is to measure the concentration of AM in the plasma of patients with emergencies of various etiology. The other is to study the impact of antiadhesion therapy on the alleviation of the severity of terminal state and its outcome. The studies provide evidence for that an adhesive process is a peculiar prelude to a systemic inflammatory response.