WorldWideScience

Sample records for bacterial adhesion

  1. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    parameters, which influence the transition from a planktonic lifestyle to a sessile lifestyle, have been studied. Protein conditioning film formation was found to influence bacterial adhesion and subsequent biofilm formation considerable, and an aqueous extract of fish muscle tissue was shown to...... tract to the microbial flocs in waste water treatment facilities. Microbial biofilms may however also cause a wide range of industrial and medical problems, and have been implicated in a wide range of persistent infectious diseases, including implantassociated microbial infections. Bacterial adhesion is...... the first committing step in biofilm formation, and has therefore been intensely scrutinized. Much however, still remains elusive. Bacterial adhesion is a highly complex process, which is influenced by a variety of factors. In this thesis, a range of physico-chemical, molecular and environmental...

  2. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    Management of bacterial infections is becoming increasingly difficult due to the emergence and increasing prevalence of bacterial pathogens that are resistant to available antibiotics. Conventional antibiotics generally kill bacteria by interfering with vital cellular functions, an approach that....... As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will...

  3. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    Management of bacterial infections is becoming increasingly difficult due to the emergence and increasing prevalence of bacterial pathogens that are resistant to available antibiotics. Conventional antibiotics generally kill bacteria by interfering with vital cellular functions, an approach that ...... become valuable weapons for preventing pathogen contamination and fighting infectious diseases in the future....

  4. Bacterial adhesion and biofilms on surfaces

    Institute of Scientific and Technical Information of China (English)

    Trevor Roger Garrett; Manmohan Bhakoo; Zhibing Zhang

    2008-01-01

    Bacterial adhesion has become a significant problem in industry and in the domicile,and much research has been done for deeper understanding of the processes involved.A generic biological model of bacterial adhesion and population growth called the bacterial biofilm growth cycle,has been described and modified many times.The biofilm growth cycle encompasses bacterial adhesion at all levels,starting with the initial physical attraction of bacteria to a substrate,and ending with the eventual liberation of cell dusters from the biofilm matrix.When describing bacterial adhesion one is simply describing one or more stages of biofilm development,neglecting the fact that the population may not reach maturity.This article provides an overview of bacterial adhesion.cites examples of how bac-terial adhesion affects industry and summarises methods and instrumentation used to improve our understanding of the adhesive prop-erties of bacteria.

  5. Factors influencing bacterial adhesion to contact lenses

    OpenAIRE

    Dutta, Debarun; Cole, Nerida; Willcox, Mark

    2012-01-01

    The process of any contact lens related keratitis generally starts with the adhesion of opportunistic pathogens to contact lens surface. This article focuses on identifying the factors which have been reported to affect bacterial adhesion to contact lenses. Adhesion to lenses differs between various genera/species/strains of bacteria. Pseudomonas aeruginosa, which is the predominant causative organism, adheres in the highest numbers to both hydrogel and silicone hydrogel lenses in vitro. The ...

  6. Bacterial microleakage of aged adhesive restorations

    Directory of Open Access Journals (Sweden)

    Nevin Cobanoglu

    2015-01-01

    Full Text Available Objective: The aim of this study was to investigate the marginal bacterial leakage of two self-etch adhesive systems after long-term water storage. Materials and Methods: Class V cavities were prepared on the buccal and lingual surfaces of extracted premolar teeth. After the sterilization of the teeth, four cavities were not restored for control purposes, whereas the other teeth were divided into two groups (n = 16 cavities each: Clearfil Protect Bond (CPB, Clearfil SE Bond (CSE. After the application of the bonding agent, cavities were restored with a composite resin. Then, the teeth were thermo cycled, stored in saline solution for 6 months and put into a broth culture of Streptococcus mutans. The teeth were fixed, sectioned and stained using the Gram-Colour modified method. The stained sections were then evaluated under a light microscope. The bacterial leakage was scored as: 0 - absence of stained bacteria, 1 - bacterial staining along the cavity walls, 2 - bacterial staining within the cut dentinal tubules. The data were analysed using the Kruskal-Wallis and Mann-Whitney U-test (P = 0.05. Results: The bacterial staining was detected within the cut dentinal tubules in all control cavities, in three cavities in the CSE group and one cavity in the CPB group. There were no observed statistically significant differences between the bacterial penetrations of the two bonding systems (P > 0.05. Conclusion: Both bonding systems provided acceptable prevention of marginal bacterial leakage after long-term water storage.

  7. Bacterial adhesion to worn silicone hydrogel contact lenses

    OpenAIRE

    Santos, Lívia; Rodrigues, Diana Alexandra Ferreira; Lira, Madalena; Oliveira, M. Elisabete; Oliveira, Rosário; Yebra-Pimentel Vilar, Eva; Azeredo, Joana

    2008-01-01

    Purpose. The aim of this study was to, firstly, investigate whether silicone-hydrogel contact lenses (CL) are more or less susceptible to bacterial adhesion than conventional ones and, secondly, assess the influence of lens wear in the extent of bacterial adhesion. Four silicone-hydrogel CL (galyfilcon A, balafilcon A, lotrafilcon A, and lotrafilcon B) and one conventional hydrogel (etafilcon A) CL were tested. Methods. Bacterial adhesion experiments were performed on unworn and worn CL us...

  8. Application of Sub-Micrometer Vibrations to Mitigate Bacterial Adhesion

    OpenAIRE

    Will R. Paces; Holmes, Hal R.; Eli Vlaisavljevich; Snyder, Katherine L.; Ee Lim Tan; Rajachar, Rupak M.; Keat Ghee Ong

    2014-01-01

    As a prominent concern regarding implantable devices, eliminating the threat of opportunistic bacterial infection represents a significant benefit to both patient health and device function. Current treatment options focus on chemical approaches to negate bacterial adhesion, however, these methods are in some ways limited. The scope of this study was to assess the efficacy of a novel means of modulating bacterial adhesion through the application of vibrations using magnetoelastic materials. M...

  9. Application of Sub-Micrometer Vibrations to Mitigate Bacterial Adhesion

    Directory of Open Access Journals (Sweden)

    Will R. Paces

    2014-03-01

    Full Text Available As a prominent concern regarding implantable devices, eliminating the threat of opportunistic bacterial infection represents a significant benefit to both patient health and device function. Current treatment options focus on chemical approaches to negate bacterial adhesion, however, these methods are in some ways limited. The scope of this study was to assess the efficacy of a novel means of modulating bacterial adhesion through the application of vibrations using magnetoelastic materials. Magnetoelastic materials possess unique magnetostrictive property that can convert a magnetic field stimulus into a mechanical deformation. In vitro experiments demonstrated that vibrational loads generated by the magnetoelastic materials significantly reduced the number of adherent bacteria on samples exposed to Escherichia coli, Staphylococcus epidermidis and Staphylococcus aureus suspensions. These experiments demonstrate that vibrational loads from magnetoelastic materials can be used as a post-deployment activated means to deter bacterial adhesion and device infection.

  10. Probing bacterial adhesion at the single-cell level

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Müller, Torsten; Meyer, Rikke Louise

    cantilever coated with the commercial cell adhesive CellTakTM. We applied the method to study adhesion of living cells to abiotic surfaces at the single-cell level. Immobilisation of single bacterial cells to the cantilever was stable for several hours, and viability was confirmed by Live/Dead staining and......Bacteria initiate attachment to surfaces with the aid of different extracellular proteins and polymeric adhesins. To quantitatively analyse the cell-cell and cell-surface interactions provided by bacterial adhesins, it is essential to go down to single cell level where cell-to-cell variation can be...... considered. We have developed a simple and versatile method to make single-cell bacterial probes for measuring single cell adhesion by force spectroscopy using atomic force microscopy (AFM). A single-cell probe was readily made by picking up a bacterial cell from a glass surface by approaching a tipless AFM...

  11. Bacterial adhesion to glass and metal-oxide surfaces.

    Science.gov (United States)

    Li, Baikun; Logan, Bruce E

    2004-07-15

    Metal oxides can increase the adhesion of negatively-charged bacteria to surfaces primarily due to their positive charge. However, the hydrophobicity of a metal-oxide surface can also increase adhesion of bacteria. In order to understand the relative contribution of charge and hydrophobicity to bacterial adhesion, we measured the adhesion of 8 strains of bacteria, under conditions of low and high-ionic strength (1 and 100 mM, respectively) to 11 different surfaces and examined adhesion as a function of charge, hydrophobicity (water contact angle) and surface energy. Inorganic surfaces included three uncoated glass surfaces and eight metal-oxide thin films prepared on the upper (non-tin-exposed) side of float glass by chemical vapor deposition. The Gram-negative bacteria differed in lengths of lipopolysaccharides on their outer surface (three Escherichia coli strains), the amounts of exopolysaccharides (two Pseudomonas aeruginosa strains), and their known relative adhesion to sand grains (two Burkholderia cepacia strains). One Gram positive bacterium was also used that had a lower adhesion to glass than these other bacteria (Bacillus subtilis). For all eight bacteria, there was a consistent increase in adhesion between with the type of inorganic surface in the order: float glass exposed to tin (coded here as Si-Sn), glass microscope slide (Si-m), uncoated air-side float glass surface (Si-a), followed by thin films of (Co(1-y-z)Fe(y)Cr(z))3O4, Ti/Fe/O, TiO2, SnO2, SnO2:F, SnO2:Sb, A1(2)O3, and Fe2O3 (the colon indicates metal doping, a slash indicates that the metal is a major component, while the dash is used to distinguish surfaces). Increasing the ionic strength from 1 to 100 mM increased adhesion by a factor of 2.0 +/- 0.6 (73% of the sample results were within the 95% CI) showing electrostatic charge was important in adhesion. However, adhesion was not significantly correlated with bacterial charge and contact angle. Adhesion (A) of the eight strains was

  12. Bacterial Adhesion to Hexadecane (Model NAPL)-Water Interfaces

    Science.gov (United States)

    Ghoshal, S.; Zoueki, C. R.; Tufenkji, N.

    2009-05-01

    The rates of biodegradation of NAPLs have been shown to be influenced by the adhesion of hydrocarbon- degrading microorganisms as well as their proximity to the NAPL-water interface. Several studies provide evidence for bacterial adhesion or biofilm formation at alkane- or crude oil-water interfaces, but there is a significant knowledge gap in our understanding of the processes that influence initial adhesion of bacteria on to NAPL-water interfaces. In this study bacterial adhesion to hexadecane, and a series of NAPLs comprised of hexadecane amended with toluene, and/or with asphaltenes and resins, which are the surface active fractions of crude oils, were examined using a Microbial Adhesion to Hydrocarbons (MATH) assay. The microorganisms employed were Mycobacterium kubicae, Pseudomonas aeruginosa and Pseudomonas putida, which are hydrocarbon degraders or soil microorganisms. MATH assays as well as electrophoretic mobility measurements of the bacterial cells and the NAPL droplet surfaces in aqueous solutions were conducted at three solution pHs (4, 6 and 7). Asphaltenes and resins were shown to generally decrease microbial adhesion. Results of the MATH assay were not in qualitative agreement with theoretical predictions of bacteria- hydrocarbon interactions based on the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) model of free energy of interaction between the cell and NAPL droplets. In this model the free energy of interaction between two colloidal particles is predicted based on electrical double layer, van der Waals and hydrophobic forces. It is likely that the steric repulsion between bacteria and NAPL surfaces, caused by biopolymers on bacterial surfaces and aphaltenes and resins at the NAPL-water interface contributed to the decreased adhesion compared to that predicted by the XDLVO model.

  13. Bacterial adhesion on amorphous and crystalline metal oxide coatings

    Energy Technology Data Exchange (ETDEWEB)

    Almaguer-Flores, Argelia [Facultad de Odontología, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico); Silva-Bermudez, Phaedra, E-mail: suriel21@yahoo.com [Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, 14389 México D.F. (Mexico); Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico); Galicia, Rey; Rodil, Sandra E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 México D.F. (Mexico)

    2015-12-01

    Several studies have demonstrated the influence of surface properties (surface energy, composition and topography) of biocompatible materials on the adhesion of cells/bacteria on solid substrates; however, few have provided information about the effect of the atomic arrangement or crystallinity. Using magnetron sputtering deposition, we produced amorphous and crystalline TiO{sub 2} and ZrO{sub 2} coatings with controlled micro and nanoscale morphology. The effect of the structure on the physical–chemical surface properties was carefully analyzed. Then, we studied how these parameters affect the adhesion of Escherichia coli and Staphylococcus aureus. Our findings demonstrated that the nano-topography and the surface energy were significantly influenced by the coating structure. Bacterial adhesion at micro-rough (2.6 μm) surfaces was independent of the surface composition and structure, contrary to the observation in sub-micron (0.5 μm) rough surfaces, where the crystalline oxides (TiO{sub 2} > ZrO{sub 2}) surfaces exhibited higher numbers of attached bacteria. Particularly, crystalline TiO{sub 2}, which presented a predominant acidic nature, was more attractive for the adhesion of the negatively charged bacteria. The information provided by this study, where surface modifications are introduced by means of the deposition of amorphous or crystalline oxide coatings, offers a route for the rational design of implant surfaces to control or inhibit bacterial adhesion. - Highlights: • Amorphous (a) and crystalline (c) TiO{sub 2} and ZrO{sub 2} coatings were deposited. • The atomic ordering influences the coatings surface charge and nano-topography. • The atomic ordering modifies the bacterial adhesion for the same surface chemistry. • S. aureus adhesion was lower on a-TiO{sub 2} and a-ZrO{sub 2} than on their c-oxide counterpart. • E. coli adhesion on a-TiO{sub 2} was lower than on the c-TiO{sub 2}.

  14. Bacterial adhesion on ion-implanted stainless steel surfaces

    International Nuclear Information System (INIS)

    Stainless steel disks were implanted with N+, O+ and SiF3+, respectively at the Surrey Ion Beam Centre. The surface properties of the implanted surfaces were analyzed, including surface chemical composition, surface topography, surface roughness and surface free energy. Bacterial adhesion of Pseudomonas aeruginosa, Staphylococcus epidermidis and Staphylococcus aureus, which frequently cause medical device-associated infections was evaluated under static condition and laminar flow condition. The effect of contact time, growth media and surface properties of the ion-implanted steels on bacterial adhesion was investigated. The experimental results showed that SiF3+-implanted stainless steel performed much better than N+-implanted steel, O+-implanted steel and untreated stainless steel control on reducing bacterial attachment under identical experimental conditions

  15. Bacterial adhesion on ion-implanted stainless steel surfaces

    Science.gov (United States)

    Zhao, Q.; Liu, Y.; Wang, C.; Wang, S.; Peng, N.; Jeynes, C.

    2007-08-01

    Stainless steel disks were implanted with N +, O + and SiF 3+, respectively at the Surrey Ion Beam Centre. The surface properties of the implanted surfaces were analyzed, including surface chemical composition, surface topography, surface roughness and surface free energy. Bacterial adhesion of Pseudomonas aeruginosa, Staphylococcus epidermidis and Staphylococcus aureus, which frequently cause medical device-associated infections was evaluated under static condition and laminar flow condition. The effect of contact time, growth media and surface properties of the ion-implanted steels on bacterial adhesion was investigated. The experimental results showed that SiF 3+-implanted stainless steel performed much better than N +-implanted steel, O +-implanted steel and untreated stainless steel control on reducing bacterial attachment under identical experimental conditions.

  16. The impact of structure dimensions on initial bacterial adhesion.

    Science.gov (United States)

    Helbig, Ralf; Günther, Denise; Friedrichs, Jens; Rößler, Florian; Lasagni, Andrés; Werner, Carsten

    2016-07-21

    Substrate topography can have profound effects on initial bacterial adhesion during biofilm formation. We applied Staphylococcus epidermidis and Escherichia coli cells onto periodically structured substrates with different structure dimensions, structure types and wetting properties. We found a strong dependence of cell retention on the structure dimensions of the applied substrates. Periodicities in the range of the cell size increased, whereas smaller periodicities decreased cell retention, independent of contact time (minutes to hours) and hydrophobicity. These novel insights on the role of surface topography on bacterial retention might facilitate the development of non-fouling surfaces in the future. PMID:27232637

  17. Bacterial adhesion force quantification by fluidic force microscopy

    Science.gov (United States)

    Potthoff, Eva; Ossola, Dario; Zambelli, Tomaso; Vorholt, Julia A.

    2015-02-01

    Quantification of detachment forces between bacteria and substrates facilitates the understanding of the bacterial adhesion process that affects cell physiology and survival. Here, we present a method that allows for serial, single bacterial cell force spectroscopy by combining the force control of atomic force microscopy with microfluidics. Reversible bacterial cell immobilization under physiological conditions on the pyramidal tip of a microchanneled cantilever is achieved by underpressure. Using the fluidic force microscopy technology (FluidFM), we achieve immobilization forces greater than those of state-of-the-art cell-cantilever binding as demonstrated by the detachment of Escherichia coli from polydopamine with recorded forces between 4 and 8 nN for many cells. The contact time and setpoint dependence of the adhesion forces of E. coli and Streptococcus pyogenes, as well as the sequential detachment of bacteria out of a chain, are shown, revealing distinct force patterns in the detachment curves. This study demonstrates the potential of the FluidFM technology for quantitative bacterial adhesion measurements of cell-substrate and cell-cell interactions that are relevant in biofilms and infection biology.Quantification of detachment forces between bacteria and substrates facilitates the understanding of the bacterial adhesion process that affects cell physiology and survival. Here, we present a method that allows for serial, single bacterial cell force spectroscopy by combining the force control of atomic force microscopy with microfluidics. Reversible bacterial cell immobilization under physiological conditions on the pyramidal tip of a microchanneled cantilever is achieved by underpressure. Using the fluidic force microscopy technology (FluidFM), we achieve immobilization forces greater than those of state-of-the-art cell-cantilever binding as demonstrated by the detachment of Escherichia coli from polydopamine with recorded forces between 4 and 8 nN for many

  18. Inhibition of Bacterial Adhesion by Subinhibitory Concentrations of Antibiotics

    Directory of Open Access Journals (Sweden)

    Vidya K

    2005-01-01

    Full Text Available Background: Urinary Tract Infections (UTIs due to Escherichia coli is one of the most common diseases encountered in clinical practice. Most common recognised pathogenic factor in E.coli is adhesion. There is accumulating evidence that through subinhibitory concentrations (sub - MICs of many antibiotics do not kill bacteria, they are able to interfere with some important aspects of bacterial cell function. Materials and Methods: A study was conducted to investigate the effect of sub MICs (1/2-1/8 MIC of ciprofloxacin, ceftazidime, gentamicin, ampicillin and co - trimoxazole on E. coli adhesiveness to human vaginal epithelial cells using three strains ATCC 25922, MTCC 729 and U 105. Results: The 1/2 MIC of all the antibiotics tested produced the greatest inhibition of bacterial adhesion. Morphological changes were observed with ciprofloxacin, ceftazidime and ampicillin at 1/2 MIC and to a lesser extent at 1/4 and 1/8 MIC. Co-trimoxazole caused the greatest suppression of adhesion at 1/2 MIC of E. coli strain MTCC 729 when compared with the controls, followed by ceftazidime. Conclusion: These results suggest that co - trimoxazole is the most effective antibiotic in the treatment of urinary tract infections caused by uropathogenic E. coli.

  19. Bovine milk osteopontin - Targeting bacterial adhesion for biofilm control

    DEFF Research Database (Denmark)

    Kristensen, Mathilde Frost; Meyer, Rikke Louise; Schlafer, Sebastian

    performed in technical and biological duplicates. Bifidobacterium dentium, Rothia dentocariosa and Streptococcus mutans did not adhere to the flow cell, irrespective of the presence of osteopontin. Osteopontin reduced the adhesion of Actinomyces naeslundii, Actinomyces viscosus, Lactobacillus paracasei...... subsp. paracasei, Streptococcus mitis and Streptococcus oralis with 74.0%, 62.4%, 90.0%, 89.6% and 81.5%, respectively, compared to protein-free saliva. All reductions were statistically significant (p<0.05) and significantly stronger than the reductions observed for caseinoglycomacropeptide (p<0.......05). ), as determined by two-sample t-tests. The broad range anti-adhesive effect of osteopontin on dental bacterial strains might explain the reduced biofilm formation observed and be exploited in vivo for increased caries control....

  20. Bacterial adhesion to orthopaedic implant materials and a novel oxygen plasma modified PEEK surface

    NARCIS (Netherlands)

    Rochford, E. T. J.; Poulsson, A. H. C.; Salavarrieta Varela, J.; Lezuo, P.; Richards, R. G.; Moriarty, T. F.

    2014-01-01

    Despite extensive use of polyetheretherketone (PEEK) in biomedical applications, information about bacterial adhesion to this biomaterial is limited. This study investigated Staphylococcus aureus and Staphylococcus epidermidis adhesion to injection moulded and machined PEEK OPTIMA (R) using a custom

  1. Oral bacterial adhesion forces to biomaterial surfaces constituting the bracket-adhesive-enamel junction in orthodontic treatment

    NARCIS (Netherlands)

    Mei, Li; Busscher, Henk J; van der Mei, Henny C; Chen, Yangxi; de Vries, Joop; Ren, Yijin

    2009-01-01

    Bacterial adhesion to biomaterial surfaces constituting the bracket-adhesive-enamel junction represents a growing problem in orthodontics, because bacteria can adversely affect treatment by causing demineralization of the enamel surface around the brackets. It is important to know the forces with wh

  2. Characterization and bacterial adhesion of chitosan-perfluorinated acid films.

    Science.gov (United States)

    Bierbrauer, Karina L; Alasino, Roxana V; Muñoz, Adrián; Beltramo, Dante M; Strumia, Miriam C

    2014-02-01

    We reported herein the study and characterization of films obtained by casting of chitosan solutions in perfluorinated acids, trifluoroacetic (TFA), perfluoropropionic (PFPA), and perfluorooctanoic (PFOA). The films were characterized by FTIR, solid state (13)C NMR, X-ray, AFM, contact angle, thermogravimetric effluent analysis by mass spectrometry, and rheology. The results showed a marked influence of chain length of the perfluorinated acids on the hydrophobic/hydrophilic ratio of the modified chitosan films which was evidenced by the different characteristics observed. The material that showed greater surface stability was chitosan-PFOA. Chitosan film with the addition of PFOA modifier became more hydrophobic, thus water vapor permeability diminished compared to chitosan films alone, this new material also depicted bacterial adhesion which, together with the features already described, proves its potential in applications for bioreactor coating. PMID:24189195

  3. A Laboratory Assessment of Factors That Affect Bacterial Adhesion to Contact Lenses

    Directory of Open Access Journals (Sweden)

    Debarun Dutta

    2013-11-01

    Full Text Available Adhesion of pathogenic microbes, particularly bacteria, to contact lenses is implicated in contact lens related microbial adverse events. Various in vitro conditions such as type of bacteria, the size of initial inoculum, contact lens material, nutritional content of media, and incubation period can influence bacterial adhesion to contact lenses and the current study investigated the effect of these conditions on bacterial adhesion to contact lenses. There was no significant difference in numbers of bacteria that adhered to hydrogel etafilcon A or silicone hydrogel senofilcon A contact lenses. Pseudomonas aeruginosa adhered in higher numbers compared to Staphylococcus aureus. Within a genera/species, adhesion of different bacterial strains did not differ appreciably. The size of initial inoculum, nutritional content of media, and incubation period played significant roles in bacterial adhesion to lenses. A set of in vitro assay conditions to help standardize adhesion between studies have been recommended.

  4. A cell cycle and nutritional checkpoint controlling bacterial surface adhesion.

    Directory of Open Access Journals (Sweden)

    Aretha Fiebig

    2014-01-01

    Full Text Available In natural environments, bacteria often adhere to surfaces where they form complex multicellular communities. Surface adherence is determined by the biochemical composition of the cell envelope. We describe a novel regulatory mechanism by which the bacterium, Caulobacter crescentus, integrates cell cycle and nutritional signals to control development of an adhesive envelope structure known as the holdfast. Specifically, we have discovered a 68-residue protein inhibitor of holdfast development (HfiA that directly targets a conserved glycolipid glycosyltransferase required for holdfast production (HfsJ. Multiple cell cycle regulators associate with the hfiA and hfsJ promoters and control their expression, temporally constraining holdfast development to the late stages of G1. HfiA further functions as part of a 'nutritional override' system that decouples holdfast development from the cell cycle in response to nutritional cues. This control mechanism can limit surface adhesion in nutritionally sub-optimal environments without affecting cell cycle progression. We conclude that post-translational regulation of cell envelope enzymes by small proteins like HfiA may provide a general means to modulate the surface properties of bacterial cells.

  5. A Laboratory Assessment of Factors That Affect Bacterial Adhesion to Contact Lenses

    OpenAIRE

    Debarun Dutta; Mark DP Willcox

    2013-01-01

    Adhesion of pathogenic microbes, particularly bacteria, to contact lenses is implicated in contact lens related microbial adverse events. Various in vitro conditions such as type of bacteria, the size of initial inoculum, contact lens material, nutritional content of media, and incubation period can influence bacterial adhesion to contact lenses and the current study investigated the effect of these conditions on bacterial adhesion to contact lenses. There was no significant difference in num...

  6. Control of bacterial adhesion and growth on honeycomb-like patterned surfaces.

    Science.gov (United States)

    Yang, Meng; Ding, Yonghui; Ge, Xiang; Leng, Yang

    2015-11-01

    It is a great challenge to construct a persistent bacteria-resistant surface even though it has been demonstrated that several surface features might be used to control bacterial behavior, including surface topography. In this study, we develop micro-scale honeycomb-like patterns of different sizes (0.5-10 μm) as well as a flat area as the control on a single platform to evaluate the bacterial adhesion and growth. Bacteria strains, Escherichia coli and Staphylococcus aureus with two distinct shapes (rod and sphere) are cultured on the platforms, with the patterned surface-up and surface-down in the culture medium. The results demonstrate that the 1 μm patterns remarkably reduce bacterial adhesion and growth while suppressing bacterial colonization when compared to the flat surface. The selective adhesion of the bacterial cells on the patterns reveals that the bacterial adhesion is cooperatively mediated by maximizing the cell-substrate contact area and minimizing the cell deformation, from a thermodynamic point of view. Moreover, study of bacterial behaviors on the surface-up vs. surface-down samples shows that gravity does not apparently affect the spatial distribution of the adherent cells although it indeed facilitates bacterial adhesion. Furthermore, the experimental results suggest that two major factors, i.e. the availability of energetically favorable adhesion sites and the physical confinements, contribute to the anti-bacterial nature of the honeycomb-like patterns. PMID:26302067

  7. Asymmetry and inequity in the inheritance of a bacterial adhesive

    Science.gov (United States)

    Cooley, Benjamin J.; Dellos-Nolan, Sheri; Dhamani, Numa; Todd, Ross; Waller, William; Wozniak, Daniel; Gordon, Vernita D.

    2016-04-01

    Pseudomonas aeruginosa is an opportunistic human pathogen that forms biofilm infections in a wide variety of contexts. Biofilms initiate when bacteria attach to a surface, which triggers changes in gene expression leading to the biofilm phenotype. We have previously shown, for the P. aeruginosa lab strain PAO1, that the self-produced polymer Psl is the most dominant adhesive for attachment to the surface but that another self-produced polymer, Pel, controls the geometry of attachment of these rod-shaped bacteria—strains that make Psl but not Pel are permanently attached to the surface but adhere at only one end (tilting up off the surface), whereas wild-type bacteria that make both Psl and Pel are permanently attached and lie down flat with very little or no tilting (Cooley et al 2013 Soft Matter 9 3871–6). Here we show that the change in attachment geometry reflects a change in the distribution of Psl on the bacterial cell surface. Bacteria that make Psl and Pel have Psl evenly coating the surface, whereas bacteria that make only Psl have Psl concentrated at only one end. We show that Psl can act as an inheritable, epigenetic factor. Rod-shaped P. aeruginosa grows lengthwise and divides across the middle. We find that asymmetry in the distribution of Psl on a parent cell is reflected in asymmetry between siblings in their attachment to the surface. Thus, Pel not only promotes P. aeruginosa lying down flat on the surface, it also helps to homogenize the distribution of Psl within a bacterial population.

  8. Bacterial Adhesion Forces to Ag-Impregnated Contact Lens Cases and Transmission to Contact Lenses

    NARCIS (Netherlands)

    Qu, Wenwen; Busscher, Henk J.; van der Mei, Henny C.; Hooymans, Johanna M. M.

    2013-01-01

    Purpose: To measure adhesion forces of Pseudomonas aeruginosa, Staphylococcus aureus, and Serratia marcescens to a rigid contact lens (CL), standard polypropylene, and Ag-impregnated lens cases using atomic force microscopy and determine bacterial transmission from lens case to CL. Methods: Adhesion

  9. Silver-nanoparticle-coated biliary stent inhibits bacterial adhesion in bacterial cholangitis in swine

    Institute of Scientific and Technical Information of China (English)

    Wei Wen; Li-Mei Ma; Wei He; Xiao-Wei Tang; Yin Zhang; Xiang Wang; Li Liu; Zhi-Ning Fan

    2016-01-01

    BACKGROUND: One of the major limitations of biliary stents is the stent occlusion, which is closely related to the over-growth of bacteria. This study aimed to evaluate the feasibility of a novel silver-nanoparticle-coated polyurethane (Ag/PU) stent in bacterial cholangitis model in swine. METHODS: Ag/PU was designed by coating silver nanopar-ticles on polyurethane (PU) stent. Twenty-four healthy pigs with bacterial cholangitis using Ag/PU and PU stents were ran-domly divided into an Ag/PU stent group (n=12) and a PU stent group (n=12), respectively. The stents were inserted by standard endoscopic retrograde cholangiopancreatography. Laboratory assay was performed for white blood cell (WBC) count, alanine aminotransferase (ALT), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) at baseline time, 8 hours, 1, 2, 3, and 7 days after stent placements. The segment of bile duct containing the stent was examined histologically ex vivo. Implanted bili-ary stents were examined by a scan electron microscope. The amount of silver release was also measured in vitro. RESULTS: The number of inflammatory cells and level of ALT, IL-1β and TNF-α were significantly lower in the Ag/PU stent group than in the PU stent group. Hyperplasia of the mucosa was more severe in the PU stent group than in the Ag/PU stent group. In contrast to the biofilm of bacteria on the PU stent, fewer bacteria adhered to the Ag/PU stent. CONCLUSIONS: PU biliary stents modified with silver nanoparticles are able to alleviate the inflammation of pigs with bacterial cholangitis. Silver-nanoparticle-coated stents are resistant to bacterial adhesion.

  10. Bacterial filamentation accelerates colonization of adhesive spots embedded in biopassive surfaces

    International Nuclear Information System (INIS)

    Sessile bacteria adhere to engineered surfaces and host tissues and pose a substantial clinical and economical risk when growing into biofilms. Most engineered and biological interfaces are of chemically heterogeneous nature and provide adhesive islands for bacterial attachment and growth. To mimic either defects in a surface coating of biomedical implants or heterogeneities within mucosal layers (Peyer's patches), we embedded micrometre-sized adhesive islands in a poly(ethylene glycol) biopassive background. We show experimentally and computationally that filamentation of Escherichia coli can significantly accelerate the bacterial surface colonization under physiological flow conditions. Filamentation can thus provide an advantage to a bacterial population to bridge non-adhesive distances exceeding 5 μm. Bacterial filamentation, caused by blocking of bacterial division, is common among bacterial species and can be triggered by environmental conditions or antibiotic treatment. While great awareness exists that the build-up of antibiotic resistance serves as intrinsic survival strategy, we show here that antibiotic treatment can actually promote surface colonization by triggering filamentation, which in turn prevents daughter cells from being washed away. Our combined microfabrication and computational approaches provide quantitative insights into mechanisms that enable biofouling of biopassive surfaces with embedded adhesive spots, even for spot distances that are multiples of the bacterial length. (paper)

  11. A short-time scale colloidal system reveals early bacterial adhesion dynamics.

    Directory of Open Access Journals (Sweden)

    Christophe Beloin

    2008-07-01

    Full Text Available The development of bacteria on abiotic surfaces has important public health and sanitary consequences. However, despite several decades of study of bacterial adhesion to inert surfaces, the biophysical mechanisms governing this process remain poorly understood, due, in particular, to the lack of methodologies covering the appropriate time scale. Using micrometric colloidal surface particles and flow cytometry analysis, we developed a rapid multiparametric approach to studying early events in adhesion of the bacterium Escherichia coli. This approach simultaneously describes the kinetics and amplitude of early steps in adhesion, changes in physicochemical surface properties within the first few seconds of adhesion, and the self-association state of attached and free-floating cells. Examination of the role of three well-characterized E. coli surface adhesion factors upon attachment to colloidal surfaces--curli fimbriae, F-conjugative pilus, and Ag43 adhesin--showed clear-cut differences in the very initial phases of surface colonization for cell-bearing surface structures, all known to promote biofilm development. Our multiparametric analysis revealed a correlation in the adhesion phase with cell-to-cell aggregation properties and demonstrated that this phenomenon amplified surface colonization once initial cell-surface attachment was achieved. Monitoring of real-time physico-chemical particle surface properties showed that surface-active molecules of bacterial origin quickly modified surface properties, providing new insight into the intricate relations connecting abiotic surface physicochemical properties and bacterial adhesion. Hence, the biophysical analytical method described here provides a new and relevant approach to quantitatively and kinetically investigating bacterial adhesion and biofilm development.

  12. Surface physicochemistry and ionic strength affects eDNA's role in bacterial adhesion to abiotic surfaces

    DEFF Research Database (Denmark)

    Regina, Viduthalai R.; Lokanathan, Arcot R.; Modrzynski, Jakub Jan;

    2014-01-01

    Extracellular DNA (eDNA) is an important structural component of biofilms formed by many bacteria, but few reports have focused on its role in initial cell adhesion. The aim of this study was to investigate the role of eDNA in bacterial adhesion to abiotic surfaces, and determine to which extent e......DNA-mediated adhesion depends on the physicochemical properties of the surface and surrounding liquid. We investigated eDNA alteration of cell surface hydrophobicity and zeta potential, and subsequently quantified the effect of eDNA on the adhesion of Staphylococcus xylosus to glass surfaces functionalised with...... different chemistries resulting in variable hydrophobicity and charge. Cell adhesion experiments were carried out at three different ionic strengths. Removal of eDNA from S. xylosus cells by DNase treatment did not alter the zeta potential, but rendered the cells more hydrophilic. DNase treatment impaired...

  13. Reversibility of bacterial adhesion at an electrode surface

    NARCIS (Netherlands)

    Poortinga, AT; Busscher, HJ; Bos, R.R.M.

    2001-01-01

    Deposition of four bacterial strains from a 1 mM potassium phosphate buffer (pH 7) to an indium tin oxide (ITO) electrode surface has been studied in a parallel plate flow chamber at three electrode potentials (-0.2, 0.1, and 0.5 V). Capacitance measurements demonstrated that the ITO surface was neg

  14. Bacterial adhesion forces with substratum surfaces and the susceptibility of biofilms to antibiotics

    NARCIS (Netherlands)

    Muszanska, L.H.; Nejadnik, M.R.; Chen, Y.; Heuvel, van den E.R.; Busscher, H.J.; Mei, van der H.C.; Norde, W.

    2012-01-01

    Biofilms causing biomaterial-associated infection resist antibiotic treatment and usually necessitate the replacement of infected implants. Here we relate bacterial adhesion forces and the antibiotic susceptibility of biofilms on uncoated and polymer brush-coated silicone rubber. Nine strains of Sta

  15. Lack of effect of an externally applied electric field on bacterial adhesion to glass

    NARCIS (Netherlands)

    Poortinga, AT; Busscher, HJ; Bos, R.R.M.

    2001-01-01

    Deposition to glass of Streptococcus salivarius HB-C12 and Staphylococcus epidermidis 3399 in a parallel plate flow chamber in the absence and presence of an externally applied electric field has been studied experimentally. No effect on bacterial adhesion, including initial deposition rates, number

  16. Spring constants and adhesive properties of native bacterial biofilm cells measured by atomic force microscopy.

    Science.gov (United States)

    Volle, C B; Ferguson, M A; Aidala, K E; Spain, E M; Núñez, M E

    2008-11-15

    Bacterial biofilms were imaged by atomic force microscopy (AFM), and their elasticity and adhesion to the AFM tip were determined from a series of tip extension and retraction cycles. Though the five bacterial strains studied included both Gram-negative and -positive bacteria and both environmental and laboratory strains, all formed simple biofilms on glass surfaces. Cellular spring constants, determined from the extension portion of the force cycle, varied between 0.16+/-0.01 and 0.41+/-0.01 N/m, where larger spring constants were measured for Gram-positive cells than for Gram-negative cells. The nonlinear regime in the extension curve depended upon the biomolecules on the cell surface: the extension curves for the smooth Gram-negative bacterial strains with the longest lipopolysaccharides on their surface had a larger nonlinear region than the rough bacterial strain with shorter lipopolysaccharides on the surface. Adhesive forces between the retracting silicon nitride tip and the cells varied between cell types in terms of the force components, the distance components, and the number of adhesion events. The Gram-negative cells' adhesion to the tip showed the longest distance components, sometimes more than 1 microm, whereas the shortest distance adhesion events were measured between the two Gram-positive cell types and the tip. Fixation of free-swimming planktonic cells by NHS and EDC perturbed both the elasticity and the adhesive properties of the cells. Here we consider the biochemical meaning of the measured physical properties of simple biofilms and implications to the colonization of surfaces in the first stages of biofilm formation. PMID:18815013

  17. Probing living bacterial adhesion by single cell force spectroscopy using atomic force microscopy

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Ogaki, Ryosuke; Regina, Viduthalai R.; Müller, Torsten; Meyer, Rikke Louise

    (ethylene glycol) (PEG) coatings on titanium. We investigate the ability of a high density poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) coating to resist bacterial adhesion and biofilm formation from three clinically relevant bacteria: Pseudomonas aeruginosa, Staphylococcus aureus and Staphylococcus...... cultures. The high density PLL-g-PEG coatings completely resisted bacterial colonization, whereas conventional coatings couldn’t resist colonization by S. epidermidis. The unique ability of S. epidermidis to colonize conventional PLL-g-PEG coatings was investigated by looking into the composition of S......Bacteria initiate attachment to the surfaces with the aid of different extracellular polymers. To quantitatively study how these polymers mediate bacterial adhesion and possibly their interactions, it is essential to go down to single cell level, with in mind that cell-to-cell variation should be...

  18. Surface Treatments and Functional Coatings for Biocompatibility Improvement and Bacterial Adhesion Reduction in Dental Implantology

    Directory of Open Access Journals (Sweden)

    Pietro Mandracci

    2016-01-01

    Full Text Available Surface modification of dental implants is a key process in the production of these medical devices, and especially titanium implants used in the dental practice are commonly subjected to surface modification processes before their clinical use. A wide range of treatments, such as sand blasting, acid etching, plasma etching, plasma spray deposition, sputtering deposition and cathodic arc deposition, have been studied over the years in order to improve the performance of dental implants. Improving or accelerating the osseointegration process is usually the main goal of these surface processes, but the improvement of biocompatibility and the prevention of bacterial adhesion are also of considerable importance. In this review, we report on the research of the recent years in the field of surface treatments and coatings deposition for the improvement of dental implants performance, with a main focus on the osseointegration acceleration, the reduction of bacterial adhesion and the improvement of biocompatibility.

  19. Effect of corrosion rate and surface energy of silver coatings on bacterial adhesion.

    Science.gov (United States)

    Shao, Wei; Zhao, Q

    2010-03-01

    Many studies suggest a strong antimicrobial activity of silver coatings. The biocidal activity of silver is related to the biologically active silver ion released from silver coatings. However, no studies have been reported on the effect of surface energy of silver coatings on antibacterial performance. In this paper, three silver coatings with various corrosion rates and surface energies were prepared on stainless steel plates using AgNO(3) based electroless plating solutions. The corrosion rate and surface energy of the silver coatings were characterized with CorrTest Electrochemistry Workstation and Dataphysics OCA-20 contact angle analyzer, respectively. The antibacterial performance of the silver coatings was evaluated with Pseudomonas aeruginosa PA01, which frequently causes medical device-associated infections. The experimental results showed that surface energy had significant influence on initial bacterial adhesion at low corrosion rate. The extended DLVO theory was used to explain the bacterial adhesion behavior. PMID:19910169

  20. Covalent Attachment of Poly(ethylene glycol) to Surfaces, Critical for Reducing Bacterial Adhesion

    DEFF Research Database (Denmark)

    Kingshott, Peter; Wei, Jiang; Bagge, Dorthe;

    2003-01-01

    The effects of different poly(ethylene glycol) (PEG) attachment strategies upon the adhesion of a Gram-negative bacteria (Pseudomonas sp.) was tested. PEG was covalently immobilized, at the lower critical solution temperature of PEG, to a layer of branched poly(ethylenimine) (PEI). PEI was both...... physically adsorbed to a stainless-steel (SS) substrate and covalently immobilized to a carboxylated poly(ethylene terephthalate) (PET-COOH) surface. On both substrates, the PEI and PEG grafting conditions were optimized so that the levels of surface coverage after each step were maximized and were the same...... attachment of PEI to the substrate. In bacterial adhesion experiments, the optimal SS-PEG surface was not capable of reducing the number of adherent Pseudomonas sp. when compared to the controls. However, the PET-PEG surface reduced the level of adhesion by between 2 and 4 orders of magnitude for up to 5 h...

  1. Quantitative analysis of initial adhesion of bacterial vaginosis anaerobes in ME-180 cells

    OpenAIRE

    Machado, António; Salgueiro, Débora; Harwich, Michael; Jefferson, Kimberly K; Cerca, Nuno

    2013-01-01

    Bacterial vaginosis (BV) is the most common vaginal disorder in women of reproductive age [1]. Despite decades of research, the etiology of BV still remains elusive. It is well established that adhesion to host cells or tissues is a necessary early step in the establishment of infection [2]. Since it is often considered a polymicrobial condition, it has been proposed that some bacteria have a preponderant role as early colonizers, while others have an impact later in the development of a mu...

  2. Microbial colonization of contact lenses, tear film deposition, bacterial adhesion and disinfection

    OpenAIRE

    Santos, Lívia

    2008-01-01

    Tese de doutoramento em Engenharia Química e Biológica (ramo de conhecimento em Tecnologia Microbiana) Biomedical devices are susceptible of microbial contamination. Adhering bacteria to contact lenses (CLs) may induce ocular infections, being microbial keratitis (MK) the most sight threatening. The present Thesis investigates the role of surface properties and conditioning film on microbial colonization, bacterial adhesion, detachment, viability and disinfection of silicone hy...

  3. Quantifying bacterial adhesion on antifouling polymer brushes via single-cell force spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Rodriguez-Emmenegger, Cesar; Janel, S.; de los Santos Pereira, Andres; Bruns, M.; Lafont, F.

    2015-01-01

    Roč. 6, č. 31 (2015), s. 5740-5751. ISSN 1759-9954 R&D Projects: GA ČR(CZ) GJ15-09368Y; GA MŠk(CZ) ED1.1.00/02.0109 Grant ostatní: OPPK(XE) CZ.2.16/3.1.00/21545 Institutional support: RVO:61389013 Keywords : antifouling polymer brushes * single-cell force spectroscopy * bacterial adhesion Subject RIV: BO - Biophysics Impact factor: 5.520, year: 2014

  4. Initial Bacterial Adhesion on Different Yttria-Stabilized Tetragonal Zirconia Implant Surfaces in Vitro

    Directory of Open Access Journals (Sweden)

    Lamprini Karygianni

    2013-12-01

    Full Text Available Bacterial adhesion to implant biomaterials constitutes a virulence factor leading to biofilm formation, infection and treatment failure. The aim of this study was to examine the initial bacterial adhesion on different implant materials in vitro. Four implant biomaterials were incubated with Enterococcus faecalis, Staphylococcus aureus and Candida albicans for 2 h: 3 mol % yttria-stabilized tetragonal zirconia polycrystal surface (B1a, B1a with zirconium oxide (ZrO2 coating (B2a, B1a with zirconia-based composite coating (B1b and B1a with zirconia-based composite and ZrO2 coatings (B2b. Bovine enamel slabs (BES served as control. The adherent microorganisms were quantified and visualized using scanning electron microscopy (SEM; DAPI and live/dead staining. The lowest bacterial count of E. faecalis was detected on BES and the highest on B1a. The fewest vital C. albicans strains (42.22% were detected on B2a surfaces, while most E. faecalis and S. aureus strains (approximately 80% were vital overall. Compared to BES; coated and uncoated zirconia substrata exhibited no anti-adhesive properties. Further improvement of the material surface characteristics is essential.

  5. Surface immobilization of kanamycin-chitosan nanoparticles on polyurethane ureteral stents to prevent bacterial adhesion.

    Science.gov (United States)

    Venkat Kumar, Govindarajan; Su, Chia-Hung; Velusamy, Palaniyandi

    2016-09-13

    Bacterial adhesion is a major problem that can lead to the infection of implanted urological stents. In this study, kanamycin-chitosan nanoparticles (KMCSNPs) were immobilized on the surface of a polyurethane ureteral stent (PUS) to prevent urinary bacterial infection. KMCSNPs were synthesized using the ionic gelation method. The synthesized KMCSNPs appeared spherical with a ζ-average particle size of 225 nm. KMCSNPs were immobilized on the PUS surface by covalent immobilization techniques. The surface-modified PUS was characterized using attenuated total reflectance Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and energy dispersive X-ray spectroscopy. The surface-modified PUS showed significantly increased antibacterial activity against Escherichia coli MTCC 729 and Proteus mirabilis MTCC 425 relative to the surface of an unmodified PUS. These findings suggest that the KMCSNP-immobilized PUS has the potential to prevent bacterial infection in the human urinary tract. PMID:27436679

  6. Attenuated total reflection fourier transform infrared spectroscopy towards disclosing mechanism of bacterial adhesion on thermally stabilized titanium nano-interfaces.

    Science.gov (United States)

    Gopal, Judy; Chun, Sechul; Doble, Mukesh

    2016-08-01

    Titanium is widely used as medical implant material and as condenser material in the nuclear industry where its integrity is questioned due to its susceptibility to bacterial adhesion. A systematic investigation on the influence of thermally (50-800 °C) stabilized titanium (TS-Ti) nano oxide towards bacterial adhesion was carried out. The results showed that below 350 °C significant bacterio-phobicity was observed, while above 500 °C significant affinity towards bacterial cells was recorded. Conventional characterization tools such as HR-TEM and XRD did not provide much insight on the changes occurring on the oxide film with heat treatment, however, attenuated total reflection fourier transform infrared spectroscopy (ATR-FTIR) of the surface showed significant changes in the spectral pattern as a function of increasing heat treatment. It was observed that elevated OH, N-H and C=O groups and rutile titania on the TS-Ti oxide films led to higher affinity for bacterial adhesion. On the other hand low temperature TS-Ti nanooxide films (film grown at 50 °C was observed to be the most efficient anti-bacterial adhesion interface, while the 800 °C interface was the one showing highest affinity towards bacterial adhesion. This study confirms the successful application of ATR-FTIR technique for nano-oxide film characterization and towards understanding the variations in bacterial interaction of such nano interfaces. PMID:27412653

  7. Antiadhesive Properties of Arabinogalactan Protein from Ribes nigrum Seeds against Bacterial Adhesion of Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Jutta Messing

    2014-03-01

    Full Text Available Fruit extracts from black currants (Ribes nigrum L. are traditionally used for treatment of gastritis based on seed polysaccharides that inhibit the adhesion of Helicobacter pylori to stomach cells. For detailed investigations an arabinogalactan protein (F2 was isolated from seeds and characterized concerning molecular weight, carbohydrate, amino acid composition, linkage, configuration and reaction with β-glucosyl Yariv. Functional testing of F2 was performed by semiquantitative in situ adhesion assay on sections of human gastric mucosa and by quantitative in vitro adhesion assay with FITC-labled H. pylori strain J99 and human stomach AGS cells. Bacterial adhesins affected were identified by overlay assay with immobilized ligands. 125I-radiolabeled F2 served for binding studies to H. pylori and interaction experiments with BabA and SabA. F2 had no cytotoxic effects against H. pylori and AGS cells; but inhibited bacterial binding to human gastric cells. F2 inhibited the binding of BabA and fibronectin-binding adhesin to its specific ligands. Radiolabeled F2 bound non-specifically to different strains of H. pylori; and to BabA deficient mutant. F2 did not lead to subsequent feedback regulation or increased expression of adhesins or virulence factors. From these data the non-specific interactions between F2 and the H. pylori lead to moderate antiadhesive effects.

  8. Antiadhesive properties of arabinogalactan protein from ribes nigrum seeds against bacterial adhesion of Helicobacter pylori.

    Science.gov (United States)

    Messing, Jutta; Niehues, Michael; Shevtsova, Anna; Borén, Thomas; Hensel, Andreas

    2014-01-01

    Fruit extracts from black currants (Ribes nigrum L.) are traditionally used for treatment of gastritis based on seed polysaccharides that inhibit the adhesion of Helicobacter pylori to stomach cells. For detailed investigations an arabinogalactan protein (F2) was isolated from seeds and characterized concerning molecular weight, carbohydrate, amino acid composition, linkage, configuration and reaction with β-glucosyl Yariv. Functional testing of F2 was performed by semiquantitative in situ adhesion assay on sections of human gastric mucosa and by quantitative in vitro adhesion assay with FITC-labled H. pylori strain J99 and human stomach AGS cells. Bacterial adhesins affected were identified by overlay assay with immobilized ligands. ¹²⁵I-radiolabeled F2 served for binding studies to H. pylori and interaction experiments with BabA and SabA. F2 had no cytotoxic effects against H. pylori and AGS cells; but inhibited bacterial binding to human gastric cells. F2 inhibited the binding of BabA and fibronectin-binding adhesin to its specific ligands. Radiolabeled F2 bound non-specifically to different strains of H. pylori; and to BabA deficient mutant. F2 did not lead to subsequent feedback regulation or increased expression of adhesins or virulence factors. From these data the non-specific interactions between F2 and the H. pylori lead to moderate antiadhesive effects. PMID:24662083

  9. Adhesión bacteriana a biomateriales Bacterial adhesion to biomaterials

    Directory of Open Access Journals (Sweden)

    C Ábalos

    2005-02-01

    Full Text Available En términos generales, para la adhesión bacteriana, influyen cuatro elementos: Material, Microorganismos, antimicrobianos y mecanismos de defensa. La influencia del material es más importante en los estadios iniciales de la adhesión, pudiendo influir el mismo material, su rugosidad o su energía superficial., si es que existe una influencia del material en la adhesión bacteriana, esta reside en las caracteristicas de la película adquirida y en la especificidad de las proteinas adsorbidas salivares (receptores, que puedan ser condicionadas por la composición del material o por las características de superficie de este.In general terms, there are four elements which influence on bacterial adhesion: the material, the micro organisms, antimicrobials and defence mechanisms. The influence of the material is more relevant at the initial states of adhesion where the proper material, its roughness or its superficial energy can have some influence. If there is some influence of the material in the bacterial adhesion, it relies on the features of the acquired film and on the specificity of the adsorved salivary proteins (receptors, which can be influenced by the composition of the material or the characteristics of its surface.

  10. Cell resistant zwitterionic polyelectrolyte coating promotes bacterial attachment: an adhesion contradiction.

    Science.gov (United States)

    Martinez, Jessica S; Kelly, Kristopher D; Ghoussoub, Yara E; Delgado, Jose D; Keller Iii, Thomas C S; Schlenoff, Joseph B

    2016-04-22

    Polymers of various architectures with zwitterionic functionality have recently been shown to effectively suppress nonspecific fouling of surfaces by proteins and prokaryotic (bacteria) or eukaryotic (mammalian) cells as well as other microorganisms and environmental contaminants. In this work, zwitterionic copolymers were used to make thin coatings on substrates with the layer-by-layer method. Polyelectrolyte multilayers, PEMUs, were built with [poly(allylamine hydrochloride)], PAH, and copolymers of acrylic acid and either the AEDAPS zwitterionic group 3-[2-(acrylamido)-ethyldimethyl ammonio] propane sulfonate (PAA-co-AEDAPS), or benzophenone (PAABp). Benzophenone allowed the PEMU to be toughened by photocrosslinking post-deposition. The attachment of two mammalian cell lines, rat aortic smooth muscle (A7r5) and mouse fibroblasts (3T3), and the biofilm-forming Gram-negative bacteria Escherichia coli was studied on PEMUs terminated with PAA-co-AEDAPS. Consistent with earlier studies, it is shown that PAH/PAA-co-AEDAPS PEMUs resist the adhesion of mammalian cells, but, contrary to our initial hypothesis, are bacterial adhesive and significantly so after maximizing the surface presentation of PAA-co-AEDAPS. This unexpected contrast in the adhesive behavior of prokaryotic and eukaryotic cells is explained by differences in adhesion mechanisms as well as different responses to the topology and morphology of the multilayer surface. PMID:26872345

  11. Construction of force measuring optical tweezers instrumentation and investigations of biophysical properties of bacterial adhesion organelles

    CERN Document Server

    Andersson, Magnus

    2015-01-01

    Optical tweezers are a technique in which microscopic-sized particles, including living cells and bacteria, can be non-intrusively trapped with high accuracy solely using focused light. The technique has therefore become a powerful tool in the field of biophysics. Optical tweezers thereby provide outstanding manipulation possibilities of cells as well as semi-transparent materials, both non-invasively and non-destructively, in biological systems. In addition, optical tweezers can measure minute forces (< 10-12 N), probe molecular interactions and their energy landscapes, and apply both static and dynamic forces in biological systems in a controlled manner. The assessment of intermolecular forces with force measuring optical tweezers, and thereby the biomechanical structure of biological objects, has therefore considerably facilitated our understanding of interactions and structures of biological systems. Adhesive bacterial organelles, so called pili, mediate adhesion to host cells and are therefore crucial...

  12. Inhibited Bacterial Adhesion and Biofilm Formation on Quaternized Chitosan-Loaded Titania Nanotubes with Various Diameters

    Directory of Open Access Journals (Sweden)

    Wen-tao Lin

    2016-03-01

    Full Text Available Titania nanotube-based local drug delivery is an attractive strategy for combating implant-associated infection. In our previous study, we demonstrated that the gentamicin-loaded nanotubes could dramatically inhibit bacterial adhesion and biofilm formation on implant surfaces. Considering the overuse of antibiotics may lead to the evolution of antibiotic-resistant bacteria, we synthesized a new quaternized chitosan derivative (hydroxypropyltrimethyl ammonium chloride chitosan, HACC with a 27% degree of substitution (DS; referred to as 27% HACC that had a strong antibacterial activity and simultaneously good biocompatibility with osteogenic cells. Titania nanotubes with various diameters (80, 120, 160, and 200 nm and 200 nm length were loaded with 2 mg of HACC using a lyophilization method and vacuum drying. Two standard strain, methicillin-resistant Staphylococcus aureus (American Type Culture Collection 43300 and Staphylococcus epidermidis (American Type Culture Collection 35984, and two clinical isolates, S. aureus 376 and S. epidermidis 389, were selected to investigate the bacterial adhesion at 6 h and biofilm formation at 24, 48, and 72 h on the HACC-loaded nanotubes (NT-H using the spread plate method, confocal laser scanning microscopy (CLSM, and scanning electron microscopy (SEM. Smooth titanium (Smooth Ti was also investigated and compared. We found that NT-H could significantly inhibit bacterial adhesion and biofilm formation on its surface compared with Smooth Ti, and the NT-H with 160 nm and 200 nm diameters had stronger antibacterial activity because of the extended HACC release time of NT-H with larger diameters. Therefore, NT-H can significantly improve the antibacterial ability of orthopedic implants and provide a promising strategy to prevent implant-associated infections.

  13. Bacterial Adhesion Forces with Substratum Surfaces and the Susceptibility of Biofilms to Antibiotics

    OpenAIRE

    Muszanska, Agnieszka K.; Nejadnik, M. Reza; Chen, Yun; van den Heuvel, Edwin R; Busscher, Henk J.; van der Mei, Henny C; Norde, Willem

    2012-01-01

    Biofilms causing biomaterial-associated infection resist antibiotic treatment and usually necessitate the replacement of infected implants. Here we relate bacterial adhesion forces and the antibiotic susceptibility of biofilms on uncoated and polymer brush-coated silicone rubber. Nine strains of Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa adhered more weakly to brush-coated silicone rubber (−0.05 ± 0.03 to −0.51 ± 0.62 nN) than to uncoated silicone rubber (−1...

  14. Bacterial adhesion and biofilm formation on surfaces of variable roughness and hydrophobicity

    DEFF Research Database (Denmark)

    Tang, Lone; Pillai, Saju; Iversen, Anders;

    L.Biofilm formation on surfaces in food production and processing can deteriorate the quality of food products and be a hazard to consumers. The food industry currently uses a number of approaches to either remove biofilm or prevent its formation. Due to the inherent resilience of bacteria...... in biofilm, a particularly attractive approach is the modification of surfaces with the aim to impede the first step in biofilm formation, namely bacterial adhesion. Surface properties such as hydrophobicity, roughness and predisposition for fouling by protein are recognised as important in bacterial......) and compare it to two nanostructured sol-gel coatings with variable hydrophobicity. Test surfaces were characterised with respect to surface roughness by atomic force microscopy, surface hydrophobicity by contact angle (CA) measurements, protein adsorption by quartz crystal microbalance analyses...

  15. Biofilm formation, bacterial adhesion and host response on polymeric implants-issues and prevention

    International Nuclear Information System (INIS)

    Several polymeric materials find application in biomedical implants and devices due to their superior physicochemical properties. The main requirement for these polymers is that they should be biocompatible, which means they prevent bacterial adhesion and are blood compatible. Many parameters contribute to the degree of biocompatibility. This paper discusses the mechanism of the formation of biofilms and lists the factors that influence the bacterial adhesion and haemocompatibility. Polymer surfaces are also modified to enhance adsorption of host cells. The physical, chemical and biological techniques are meant to modify the surface of the biomaterial but at the same time retain the key properties. The various polymer treatment processes have advantages and disadvantages and a few techniques have been proved to be both highly effective at treatment and found suitable for various in vivo environments. The current research focus pertaining to smart materials, biodegradable polymers, combinatorial chemistry, computational modelling and newer analytical techniques to understand polymer-cell interaction holds promise in designing better, cost effective and biocompatible polymers

  16. Host mucin glycosylation plays a role in bacterial adhesion in lungs of individuals with cystic fibrosis.

    Science.gov (United States)

    Venkatakrishnan, Vignesh; Packer, Nicolle H; Thaysen-Andersen, Morten

    2013-10-01

    Malfunction of the cell surface glycoprotein, cystic fibrosis transmembrane conductance regulator, is the molecular hallmark of cystic fibrosis (CF), causing salt imbalance across the lung epithelium and biochemical and biophysical alterations of the mucous secretion and airway surfaces. Abnormal glycosylation of both secreted and membrane-tethered airway mucins in CF hosts are reported by a substantial body of literature and correlates with bacterial infection and inflammation in CF airways, features that are linked to the CF pathology. It is established that Pseudomonas aeruginosa and other CF-typic bacteria use the altered host mucin glycosylation as receptors for adhesion by dedicated lectins and adhesins recognizing an array of the aberrantly expressed glycan determinants. This review aims to describe the aberrant mucin glycosylation phenotype observed in CF airways relative to the non-CF equivalent by summarizing the wealth of literature on this topic. The possible causes and effects of altered glycosylation in the respiratory system are discussed. Specific attention is given to the adhesion mechanisms of the opportunistic P. aeruginosa, which utilizes the molecular alterations of the lung to gain access to the normally sterile airways. Finally, the emerging glycosylation-based therapeutics that show promising potential for reducing bacterial infection in individuals with CF by molecular mimicry mechanisms are discussed. PMID:24138697

  17. Calcium phosphate coating containing silver shows high antibacterial activity and low cytotoxicity and inhibits bacterial adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Yoshiki, E-mail: andoy@jmmc.jp [Division of Microbiology, Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan); Research Department, Japan Medical Materials Corporation, Uemura Nissei Bldg.9F 3-3-31 Miyahara, Yodogawa-ku, Osaka 532-0003 (Japan); Miyamoto, Hiroshi [Division of Microbiology, Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan); Noda, Iwao; Sakurai, Nobuko [Research Department, Japan Medical Materials Corporation, Uemura Nissei Bldg.9F 3-3-31 Miyahara, Yodogawa-ku, Osaka 532-0003 (Japan); Akiyama, Tomonori [Division of Microbiology, Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan); Yonekura, Yutaka; Shimazaki, Takafumi; Miyazaki, Masaki; Mawatari, Masaaki; Hotokebuchi, Takao [Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan)

    2010-01-01

    Surgical site infection is one of the serious complications of orthopedic implants. In order to reduce the incidence of implant-associated infections, we developed a novel coating technology of calcium phosphate (CP) containing silver (Ag), designated Ag-CP coating, using a thermal spraying technique. In this study, we evaluated the antibacterial efficacy and biological safety of this coating. In vitro antibacterial activity tests showed that the growths of Escherichia coli, Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) are completely suppressed on Ag-CP coating. In vitro bacterial adherence tests revealed that the number of adherent bacteria on the surface of this coating is significantly less (p < 0.02) than that on the surface of the CP coating. Moreover, the Ag-CP coating completely inhibits MRSA adhesion [<10 colony-forming units (CFU)] when 10{sup 2} CFU MRSA is inoculated. On the other hand, V79 Chinese hamster lung cells were found to grow on the Ag-CP coating as well as on the CP coating in a cytotoxicity test. These results indicate that the Ag-CP coating on the surface of orthopedic implants exhibits antibacterial activity and inhibits bacterial adhesion without cytotoxicity.

  18. Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles

    Science.gov (United States)

    Huang, Qiaoyun; Wu, Huayong; Cai, Peng; Fein, Jeremy B.; Chen, Wenli

    2015-11-01

    Bacterial adhesion onto mineral surfaces and subsequent biofilm formation play key roles in aggregate stability, mineral weathering, and the fate of contaminants in soils. However, the mechanisms of bacteria-mineral interactions are not fully understood. Atomic force microscopy (AFM) was used to determine the adhesion forces between bacteria and goethite in water and to gain insight into the nanoscale surface morphology of the bacteria-mineral aggregates and biofilms formed on clay-sized minerals. This study yields direct evidence of a range of different association mechanisms between bacteria and minerals. All strains studied adhered predominantly to the edge surfaces of kaolinite rather than to the basal surfaces. Bacteria rarely formed aggregates with montmorillonite, but were more tightly adsorbed onto goethite surfaces. This study reports the first measured interaction force between bacteria and a clay surface, and the approach curves exhibited jump-in events with attractive forces of 97 ± 34 pN between E. coli and goethite. Bond strengthening between them occurred within 4 s to the maximum adhesion forces and energies of -3.0 ± 0.4 nN and -330 ± 43 aJ (10-18 J), respectively. Under the conditions studied, bacteria tended to form more extensive biofilms on minerals under low rather than high nutrient conditions.

  19. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions

    Directory of Open Access Journals (Sweden)

    Katsikogianni M.

    2004-12-01

    Full Text Available This article reviews the mechanisms of bacterial adhesion to biomaterial surfaces, the factors affecting the adhesion, the techniques used in estimating bacteria-material interactions and the models that have been developed in order to predict adhesion. The process of bacterial adhesion includes an initial physicochemical interaction phase and a late molecular and cellular one. It is a complicated process influenced by many factors, including the bacterial properties, the material surface characteristics, the environmental factors, such as the presence of serum proteins and the associated flow conditions. Two categories of techniques used in estimating bacteria-material interactions are described: those that utilize fluid flowing against the adhered bacteria and counting the percentage of bacteria that detach, and those that manipulate single bacteria in various configurations which lend themselves to more specific force application and provide the basis for theoretical analysis of the receptor-ligand interactions. The theories that are reviewed are the Derjaguin-Landau-Verwey-Overbeek (DLVO theory, the thermodynamic approach and the extended DLVO theory. Over the years, significant work has been done to investigate the process of bacterial adhesion to biomaterial surfaces, however a lot of questions still remain unanswered.

  20. Surface Physicochemistry and Ionic Strength Affects eDNA’s Role in Bacterial Adhesion to Abiotic Surfaces

    OpenAIRE

    Regina, Viduthalai R.; Lokanathan, Arcot R.; Jakub J Modrzyński; Sutherland, Duncan S; Rikke L Meyer

    2014-01-01

    Extracellular DNA (eDNA) is an important structural component of biofilms formed by many bacteria, but few reports have focused on its role in initial cell adhesion. The aim of this study was to investigate the role of eDNA in bacterial adhesion to abiotic surfaces, and determine to which extent eDNA-mediated adhesion depends on the physicochemical properties of the surface and surrounding liquid. We investigated eDNA alteration of cell surface hydrophobicity and zeta potential, and subsequen...

  1. The effect of dissolved organic carbon on bacterial adhesion to conditioning films adsorbed on glass from natural seawater collected during different seasons

    NARCIS (Netherlands)

    Bakker, D.P.; Klijnstra, J.W.; Busscher, H.J.; Mei, H.C. van der

    2003-01-01

    Adhesion of three marine bacterial strains, i.e. Marinobacter hydrocarbonoclasticus, Psychrobacter sp. and Halomonas pacifica with different cell surface hydrophobicities was measured on glass in a stagnation point flow chamber. Prior to bacterial adhesion, the glass surface was conditioned for 1 h

  2. The effect of dissolved organic carbon on bacterial adhesion to conditioning films adsorbed on glass from natural seawater collected during different seasons

    NARCIS (Netherlands)

    Bakker, DP; Klijnstra, JW; Busscher, HJ; van der Mei, HC

    2003-01-01

    Adhesion of three marine bacterial strains, i.e. Marinobacter hydrocarbonoclasticus , Psychrobacter sp. and Halomonas pacifica with different cell surface hydrophobicities was measured on glass in a stagnation point flow chamber. Prior to bacterial adhesion, the glass surface was conditioned for 1 h

  3. Functionalization of a Rigid Divalent Ligand for LecA, a Bacterial Adhesion Lectin**

    Science.gov (United States)

    Fu, Ou; Pukin, Aliaksei V; Quarles van Ufford, H C; Kemmink, Johan; de Mol, Nico J; Pieters, Roland J

    2015-01-01

    The bacterial adhesion lectin LecA is an attractive target for interference with the infectivity of its producer P. aeruginosa. Divalent ligands with two terminal galactoside moieties connected by an alternating glucose-triazole spacer were previously shown to be very potent inhibitors. In this study, we chose to prepare a series of derivatives with various new substituents in the spacer in hopes of further enhancing the LecA inhibitory potency of the molecules. Based on the binding mode, modifications were made to the spacer to enable additional spacer–protein interactions. The introduction of positively charged, negatively charged, and also lipophilic functional groups was successful. The compounds were good LecA ligands, but no improved binding was seen, even though altered thermodynamic parameters were observed by isothermal titration calorimetry (ITC). PMID:26478841

  4. Optical tweezers for single molecule force spectroscopy on bacterial adhesion organelles

    Science.gov (United States)

    Andersson, Magnus; Axner, Ove; Uhlin, Bernt Eric; Fällman, Erik

    2006-08-01

    Instrumentation and methodologies for single molecule force spectroscopy on bacterial adhesion organelles by the use of force measuring optical tweezers have been developed. A thorough study of the biomechanical properties of fimbrial adhesion organelles expressed by uropathogenic E. coli, so-called pili, is presented. Steady-state as well as dynamic force measurements on P pili, expressed by E. coli causing pyelonephritis, have revealed, among other things, various unfolding and refolding properties of the helical structure of P pili, the PapA rod. Based on these properties an energy landscape model has been constructed by which specific biophysical properties of the PapA rod have been extracted, e.g. the number of subunits, the length of a single pilus, bond lengths and activation energies for bond opening and closure. Moreover, long time repetitive measurements have shown that the rod can be unfolded and refolded repetitive times without losing its intrinsic properties. These properties are believed to be of importance for the bacteria's ability to maintain close contact with host cells during initial infections. The results presented are considered to be of importance for the field of biopolymers in general and the development of new pharmaceuticals towards urinary tract infections in particular. The results show furthermore that the methodology can be used to gain knowledge of the intrinsic biomechanical function of adhesion organelles. The instrumentation is currently used for characterization of type 1 pili, expressed by E. coli causing cystitis, i.e. infections in the bladder. The first force spectrometry investigations of these pili will be presented.

  5. Rigid multibody simulation of a helix-like structure: the dynamics of bacterial adhesion pili.

    Science.gov (United States)

    Zakrisson, Johan; Wiklund, Krister; Servin, Martin; Axner, Ove; Lacoursière, Claude; Andersson, Magnus

    2015-07-01

    We present a coarse-grained rigid multibody model of a subunit assembled helix-like polymer, e.g., adhesion pili expressed by bacteria, that is capable of describing the polymer's force-extension response. With building blocks representing individual subunits, the model appropriately describes the complex behavior of pili expressed by the gram-negative uropathogenic Escherichia coli bacteria under the action of an external force. Numerical simulations show that the dynamics of the model, which include the effects of both unwinding and rewinding, are in good quantitative agreement with the characteristic force-extension response as observed experimentally for type 1 and P pili. By tuning the model, it is also possible to reproduce the force-extension response in the presence of anti-shaft antibodies, which dramatically changes the mechanical properties. Thus, the model and results in this work give enhanced understanding of how a pilus unwinds under the action of external forces and provide a new perspective of the complex bacterial adhesion processes. PMID:25851543

  6. Surface-modified nanoparticles as a new, versatile, and mechanically robust nonadhesive coating : Suppression of protein adsorption and bacterial adhesion

    NARCIS (Netherlands)

    Holmes, P. F.; Currie, E. P. K.; Thies, J. C.; van der Mei, H. C.; Busscher, H. J.; Norde, W.

    2009-01-01

    The synthesis of surface-modified silica nanoparticles, chemically grafted with acrylate and poly(ethylene glycol) (PEG) groups, and the ability of the resulting crosslinked coatings to inhibit protein adsorption and bacterial adhesion are explored. Water contact angles, nanoindentation, and atomic

  7. Influence of day and night wear on surface properties of silicone hydrogel contact lenses and bacterial adhesion

    NARCIS (Netherlands)

    Vermeltfoort, Petronella; Rustema-Abbing, Mina; de Vries, Jacob; Bruinsma, Gerda M; Busscher, Hendrik; van der Linden, Matthijs L; Hooymans, Johanna MM; van der Mei, Henderina

    2006-01-01

    Purpose: The aim of this study was to determine the effect of continuous wear on physicochemical surface properties of silicone hydrogel (S-H) lenses and their susceptibility to bacterial adhesion. Methods: In this study, volunteers wore 2 pairs of either "lotrafilcon A" or "balafilcon A" S-H contac

  8. Calcium phosphate coating containing silver shows high antibacterial activity and low cytotoxicity and inhibits bacterial adhesion

    International Nuclear Information System (INIS)

    Surgical site infection is one of the serious complications of orthopedic implants. In order to reduce the incidence of implant-associated infections, we developed a novel coating technology of calcium phosphate (CP) containing silver (Ag), designated Ag-CP coating, using a thermal spraying technique. In this study, we evaluated the antibacterial efficacy and biological safety of this coating. In vitro antibacterial activity tests showed that the growths of Escherichia coli, Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) are completely suppressed on Ag-CP coating. In vitro bacterial adherence tests revealed that the number of adherent bacteria on the surface of this coating is significantly less (p 2 CFU MRSA is inoculated. On the other hand, V79 Chinese hamster lung cells were found to grow on the Ag-CP coating as well as on the CP coating in a cytotoxicity test. These results indicate that the Ag-CP coating on the surface of orthopedic implants exhibits antibacterial activity and inhibits bacterial adhesion without cytotoxicity.

  9. Proteinaceous determinants of surface colonization in bacteria: Bacterial adhesion and biofilm formation from a protein secretion perspective

    Directory of Open Access Journals (Sweden)

    MickaelDesvaux

    2013-10-01

    Full Text Available Bacterial colonization of biotic or abiotic surfaces results from two quite distinct physiological processes, namely bacterial adhesion and biofilm formation. Broadly speaking, a biofilm is defined as the sessile development of microbial cells. Biofilm formation arises following bacterial adhesion but not all single bacterial cells adhering reversibly or irreversibly engage inexorably into a sessile mode of growth. Among molecular determinants promoting bacterial colonization, surface proteins are the most functionally diverse active components. To be present on the bacterial cell surface, though, a protein must be secreted in the first place. Considering the close association of secreted proteins with their cognate secretion systems, the secretome (which refers both to the secretion systems and their protein substrates is a key concept to apprehend the protein secretion and related physiological functions. The protein secretion systems are here considered in light of the differences in the cell-envelope architecture between diderm-LPS (archetypal Gram-negative, monoderm (archetypal Gram-positive and diderm-mycolate (archetypal acid-fast bacteria. Besides, their cognate secreted proteins engaged in the bacterial colonization process are regarded from single protein to supramolecular protein structure as well as the non-classical protein secretion. This state-of-the-art on the complement of the secretome (the secretion systems and their cognate effectors involved in the surface colonization process in diderm-LPS and monoderm bacteria paves the way for future research directions in the field.

  10. Comparison of effects of suture and cyanoacrylate tissue adhesive on bacterial counts in contaminated lacerations.

    OpenAIRE

    Howell, J M; Bresnahan, K A; Stair, T O; Dhindsa, H S; Edwards, B A

    1995-01-01

    We studied the effects of closing lacerations with suture or cyanoacrylate tissue adhesive on staphylococcal counts in inoculated guinea pig lacerations. Wounds closed with adhesive alone had lower counts than wounds containing suture material (P < 0.05). The results of a time-kill study were consistent with a bacteriostatic adhesive effect of the adhesive against Staphylococcus aureus.

  11. Patterned macroarray plates in comparison of bacterial adhesion inhibition of tantalum, titanium, and chromium compared with diamond-like carbon.

    Science.gov (United States)

    Levon, Jaakko; Myllymaa, Katja; Kouri, Vesa-Petteri; Rautemaa, Riina; Kinnari, Teemu; Myllymaa, Sami; Konttinen, Yrjö T; Lappalainen, Reijo

    2010-03-15

    Staphylococcus aureus device-related infection is a common complication in implantology. Bacterial adhesion on implant surfaces is the initial step in the infective process. The aim was to develop a method suitable for quantitative bacterial adherence studies and to test a new diamond-like carbon (DLC) coating against commonly used metallic biomaterials with regards to Staphylococcus aureus adhesion. Patterned silicon chips with spots of tantalum, titanium, chromium, and DLC were produced using ultraviolet lithography and physical vapor deposition. These patterned chips were used as such or glued to array plates, pretreated with serum and exposed to S. aureus (S-15981) for 90 min, followed by acridine orange staining and fluorescence microscopy. An adhesion index showed that the ranking order of the biomaterials was titanium, tantalum, chromium, and DLC, with the DLC being clearly most resistant against colonization with S. aureus. Micropatterned surfaces are useful for quantitative comparison of bacterial adherence on different biomaterials. In the presence of serum, DLC is superior in its ability to resist adhesion and colonization by S. aureus compared with the commonly used biomaterial metals tantalum, titanium, and chromium. PMID:19437436

  12. Bacterial adhesion studies on titanium, titanium nitride and modified hydroxyapatite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jeyachandran, Y.L. [Department of Physics, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India); Venkatachalam, S. [Department of Physics, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India); Karunagaran, B. [Department of Physics, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India); Narayandass, Sa.K. [Department of Physics, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India)]. E-mail: sakndass@yahoo.com; Mangalaraj, D. [Department of Physics, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India); Bao, C.Y. [West China College of Stomatology, Sichuan University, Chengdu 610041 (China); Zhang, C.L. [West China College of Stomatology, Sichuan University, Chengdu 610041 (China)

    2007-01-15

    A qualitative study on adhesion of the oral bacteria Porphyromonas gingivalis on titanium (Ti), titanium nitride (TiN), fluorine modified hydroxyapatite (FHA) and zinc modified FHA (Zn-FHA) thin films is investigated. Ti and TiN thin films were deposited by DC magnetron sputtering and hydroxyapatite-based films were prepared by solgel method. The crystalline structure, optical characteristics, chemical composition and surface topography of the films were studied by XRD, optical transmission, XPS, EDAX and AFM measurements. The predominant crystallite orientation in the Ti and TiN films was along (002) and (111) of hcp and cubic structures, respectively. The Ti : O : N composition ratio in the surface of the Ti and TiN films was found to be 7 : 21 : 1 and 3 : 8 : 2, respectively. The atomic concentration ratio (Zn + Ca) / P in Zn-FHA film was found to be 1.74 whereby the Zn replaced 3.2% of Ca. The rough surface feature in modified HA films was clearly observed in the SEM images and the surface roughness (rms) of Ti and TiN films was 2.49 and 3.5 nm, respectively, as observed using AFM. The film samples were sterilized, treated in the bacteria culture medium, processed and analyzed using SEM. Surface roughness of the films was found to have least influence on the bacterial adhesion. More bacteria were observed on the TiN film with oxide nitride surface layer and less number of adhered bacteria was noticed on the Ti film with native surface oxide layer and on Zn-FHA film.

  13. Influence of Oxynitrided Surface in the Production of a Less Susceptible Titanium Surface to Skin-Borne Bacterial Adhesion.

    Science.gov (United States)

    Aires, Michelle de Medeiros; Treter, Janine; Braz, Danilo Cavalcante; Krug, Cristiano; Macedo, Alexandre José; Alves Júnior, Clodomiro

    2016-05-01

    There is a growing quest for an ideal biomaterial that shows appropriate cellular response and is not susceptible to microbial adhesion. In this study, commercial grade II titanium was submitted to RF/DC plasma surface modification at 2.2 mbar, using gas mixtures of argon, nitrogen, and oxygen at proportions 4:1:2 and 4:1:3. The surfaces were physically and chemically characterized. In order to evaluate bacterial response, the surfaces were exposed to Staphylococcus epidermidis. Oxynitrided samples, although having a higher roughness as compared with untreated samples, exhibited lower bacterial growth. This observation is probably due to the formation of different crystalline phases of nitrides and oxides caused by plasma treatment. The surface with highest contact angle and highest surface tension showed lower bacterial adhesion. These results were confirmed by scanning electron microscopy. The role of nitrogen in reducing bacterial adhesion is clear when this material is compared with untreated titanium, on which only an oxide film is present. PMID:26611366

  14. Corrosion, haemocompatibility and bacterial adhesion behaviour of TiZrN-coated 316L SS for bioimplants

    Indian Academy of Sciences (India)

    Gobi Saravanan Kaliaraj; Vinita Vishwakarma; Ananthakumar Ramadoss; D Ramachandran; Arul Maximus Rabel

    2015-08-01

    TiZrN coating was deposited on 316L stainless steel (SS) by the reactive magnetron co-sputtering technique. Cubic phase of TiZrN with uniform surface morphology was observed by X-ray diffraction and atomic force microscopy. Bacterial adhesion, haemocompatibility and corrosion behaviour of TiZrN coating were examined in order to evaluate the coating’s compatibility for ideal implant. Results revealed that TiZrN coatings exhibited less bacterial attachment against Staphylococcus aureus and Escherichia coli bacteria, negligible platelets activation and superior corrosion resistance than the uncoated 316L SS.

  15. Improving bacterial cellulose for blood vessel replacement: functionalization with a chimeric protein containing a cellulose-binding module and an adhesion peptide

    OpenAIRE

    Andrade, Fábia K.; Costa, Raquel; Domingues, Lucília; Soares, Raquel; Gama, F. M.

    2010-01-01

    Chimeric proteins containing a cellulose-binding module (CBM) and an adhesion peptide (RGD or GRGDY) were produced and used to improve the adhesion of human microvascular endothelial cells (HMEC) to bacterial cellulose (BC). The effect of these proteins on the HMEC–BC interaction was studied. The results obtained demonstrated that recombinant proteins containing adhesion sequences were able to significantly increase the attachment of HMEC to BC surfaces, especially the RGD sequenc...

  16. Non-invasive SFG spectroscopy: a tool to reveal the conformational change of grafted chains due to bacterial adhesion

    Science.gov (United States)

    Bulard, Emilie; Dubost, Henri; Fontaine-Aupart, Marie-Pierre; Zheng, Wanquan; Herry, Jean-Marie; Bellon-Fontaine, Marie-No"lle; Briandet, Romain; Bourguignon, Bernard

    2011-07-01

    In many fields such as biomedical or food industry, surface colonization by micro-organisms leads to biofilms formation that are tridimentional biostructures highly resistant to the action of antimicrobials, by mechanisms still unclear. In order to deepen our understanding of the initial interaction of bacteria cells with a solid surface, we analyze by in situ vibrational Sum Frequency Generation (SFG) spectroscopy the effect of the adhesion of hydrophilic Lactoccocus lactis bacteria and its hydrophobic mutants in distilled water on a self-assembled monolayer (SAM) of octadecanethiol (ODT) on a gold film. When a homogeneous bacterial monolayer is deposited on this ordered surface, SFG spectrum of the ODT SAM shows significant intensity changes from that in air or in water. Its modelling as a function of conformation allows to distinguish optical effects due to the water solution surrounding bacteria from conformational changes of the ODT SAM due to the presence of the bacteria cells. Futhermore, bacterial adhesion induces different measurable effects on the ODT SAM conformation, depending on the hydrophobic / hydrophilic character of the bacterial surface. Such a result deserves to be taken into account for the design of new materials with improved properties or to control biofilm formation.

  17. Statistical analysis of long- and short-range forces involved in bacterial adhesion to substratum surfaces as measured using atomic force microscopy.

    Science.gov (United States)

    Chen, Yun; Busscher, Henk J; van der Mei, Henny C; Norde, Willem

    2011-08-01

    Surface thermodynamic analyses of microbial adhesion using measured contact angles on solid substrata and microbial cell surfaces are widely employed to determine the nature of the adhesion forces, i.e., the interplay between Lifshitz-van der Waals and acid-base forces. While surface thermodynamic analyses are often viewed critically, atomic force microscopy (AFM) can also provide information on the nature of the adhesion forces by means of Poisson analysis of the measured forces. This review first presents a description of Poisson analysis and its underlying assumptions. The data available from the literature for different combinations of bacterial strains and substrata are then summarized, leading to the conclusion that bacterial adhesion to surfaces is generally dominated by short-range, attractive acid-base interactions, in combination with long-range, weaker Lifshitz-van der Waals forces. This is in line with the findings of surface thermodynamic analyses of bacterial adhesion. Comparison with single-molecule ligand-receptor forces from the literature suggests that the short-range-force contribution from Poisson analysis involves a discrete adhesive bacterial cell surface site rather than a single molecular force. The adhesion force arising from these cell surface sites and the number of sites available may differ from strain to strain. Force spectroscopy, however, involves the tedious task of identifying the minor peaks in the AFM retraction force-distance curve. This step can be avoided by carrying out Poisson analysis on the work of adhesion, which can also be derived from retraction force-distance curves. This newly proposed way of performing Poisson analysis confirms that multiple molecular bonds, rather than a single molecular bond, contribute to a discrete adhesive bacterial cell surface site. PMID:21642399

  18. Photorhabdus adhesion modification protein (Pam) binds extracellular polysaccharide and alters bacterial attachment

    LENUS (Irish Health Repository)

    Jones, Robert T

    2010-05-12

    Abstract Background Photorhabdus are Gram-negative nematode-symbiotic and insect-pathogenic bacteria. The species Photorhabdus asymbiotica is able to infect humans as well as insects. We investigated the secreted proteome of a clinical isolate of P. asymbiotica at different temperatures in order to identify proteins relevant to the infection of the two different hosts. Results A comparison of the proteins secreted by a clinical isolate of P. asymbiotica at simulated insect (28°C) and human (37°C) temperatures led to the identification of a small and highly abundant protein, designated Pam, that is only secreted at the lower temperature. The pam gene is present in all Photorhabdus strains tested and shows a high level of conservation across the whole genus, suggesting it is both ancestral to the genus and probably important to the biology of the bacterium. The Pam protein shows limited sequence similarity to the 13.6 kDa component of a binary toxin of Bacillus thuringiensis. Nevertheless, injection or feeding of heterologously produced Pam showed no insecticidal activity to either Galleria mellonella or Manduca sexta larvae. In bacterial colonies, Pam is associated with an extracellular polysaccharide (EPS)-like matrix, and modifies the ability of wild-type cells to attach to an artificial surface. Interestingly, Surface Plasmon Resonance (SPR) binding studies revealed that the Pam protein itself has adhesive properties. Although Pam is produced throughout insect infection, genetic knockout does not affect either insect virulence or the ability of P. luminescens to form a symbiotic association with its host nematode, Heterorhabditis bacteriophora. Conclusions We studied a highly abundant protein, Pam, which is secreted in a temperature-dependent manner in P. asymbiotica. Our findings indicate that Pam plays an important role in enhancing surface attachment in insect blood. Its association with exopolysaccharide suggests it may exert its effect through mediation of

  19. Photorhabdus adhesion modification protein (Pam binds extracellular polysaccharide and alters bacterial attachment

    Directory of Open Access Journals (Sweden)

    Joyce Susan A

    2010-05-01

    Full Text Available Abstract Background Photorhabdus are Gram-negative nematode-symbiotic and insect-pathogenic bacteria. The species Photorhabdus asymbiotica is able to infect humans as well as insects. We investigated the secreted proteome of a clinical isolate of P. asymbiotica at different temperatures in order to identify proteins relevant to the infection of the two different hosts. Results A comparison of the proteins secreted by a clinical isolate of P. asymbiotica at simulated insect (28°C and human (37°C temperatures led to the identification of a small and highly abundant protein, designated Pam, that is only secreted at the lower temperature. The pam gene is present in all Photorhabdus strains tested and shows a high level of conservation across the whole genus, suggesting it is both ancestral to the genus and probably important to the biology of the bacterium. The Pam protein shows limited sequence similarity to the 13.6 kDa component of a binary toxin of Bacillus thuringiensis. Nevertheless, injection or feeding of heterologously produced Pam showed no insecticidal activity to either Galleria mellonella or Manduca sexta larvae. In bacterial colonies, Pam is associated with an extracellular polysaccharide (EPS-like matrix, and modifies the ability of wild-type cells to attach to an artificial surface. Interestingly, Surface Plasmon Resonance (SPR binding studies revealed that the Pam protein itself has adhesive properties. Although Pam is produced throughout insect infection, genetic knockout does not affect either insect virulence or the ability of P. luminescens to form a symbiotic association with its host nematode, Heterorhabditis bacteriophora. Conclusions We studied a highly abundant protein, Pam, which is secreted in a temperature-dependent manner in P. asymbiotica. Our findings indicate that Pam plays an important role in enhancing surface attachment in insect blood. Its association with exopolysaccharide suggests it may exert its effect

  20. Quorum-sensing regulation governs bacterial adhesion, biofilm development, and host colonization in Pantoea stewartii subspecies stewartii

    OpenAIRE

    Koutsoudis, Maria D.; Tsaltas, Dimitrios; Minogue, Timothy D.; von Bodman, Susanne B.

    2006-01-01

    The phytopathogenic bacterium Pantoea stewartii subsp. stewartii synthesizes stewartan exo/capsular polysaccharide (EPS) in a cell density-dependent manner governed by the EsaI/EsaR quorum-sensing (QS) system. This study analyzes biofilm development and host colonization of the WT and QS regulatory mutant strains of P. stewartii. First, we show that the cell density-dependent synthesis of stewartan EPS, governed by the EsaI/EsaR QS system, is required for proper bacterial adhesion and develop...

  1. CLA-1 and its splicing variant CLA-2 mediate bacterial adhesion and cytosolic bacterial invasion in mammalian cells

    OpenAIRE

    Vishnyakova, Tatyana G.; Kurlander, Roger; Bocharov, Alexander V.; Baranova, Irina N.; CHEN, ZHIGANG; Abu-Asab, Mones S.; Tsokos, Maria; Malide, Daniela; Basso, Federica; Remaley, Alan; Csako, Gyorgy; Eggerman, Thomas L.; Patterson, Amy P.

    2006-01-01

    CD36 and LIMPII analog 1, CLA-1, and its splicing variant, CLA-2 (SR-BI and SR-BII in rodents), are human high density lipoprotein receptors with an identical extracellular domain which binds a spectrum of ligands including bacterial cell wall components. In this study, CLA-1- and CLA-2-stably transfected HeLa and HEK293 cells demonstrated several-fold increases in the uptake of various bacteria over mock-transfected cells. All bacteria tested, including both Gram-negatives (Escherichia coli ...

  2. Phospholipase D promotes Arcanobacterium haemolyticum adhesion via lipid raft remodeling and host cell death following bacterial invasion

    Directory of Open Access Journals (Sweden)

    Carlson Petteri

    2010-10-01

    Full Text Available Abstract Background Arcanobacterium haemolyticum is an emerging bacterial pathogen, causing pharyngitis and more invasive infections. This organism expresses an unusual phospholipase D (PLD, which we propose promotes bacterial pathogenesis through its action on host cell membranes. The pld gene is found on a genomic region of reduced %G + C, suggesting recent horizontal acquisition. Results Recombinant PLD rearranged HeLa cell lipid rafts in a dose-dependent manner and this was inhibited by cholesterol sequestration. PLD also promoted host cell adhesion, as a pld mutant had a 60.3% reduction in its ability to adhere to HeLa cells as compared to the wild type. Conversely, the pld mutant appeared to invade HeLa cells approximately two-fold more efficiently as the wild type. This finding was attributable to a significant loss of host cell viability following secretion of PLD from intracellular bacteria. As determined by viability assay, only 15.6% and 82.3% of HeLa cells remained viable following invasion by the wild type or pld mutant, respectively, as compared to untreated HeLa cells. Transmission electron microscopy of HeLa cells inoculated with A. haemolyticum strains revealed that the pld mutant was contained within intracellular vacuoles, as compared to the wild type, which escaped the vacuole. Wild type-infected HeLa cells also displayed the hallmarks of necrosis. Similarly inoculated HeLa cells displayed no signs of apoptosis, as measured by induction of caspase 3/7, 8 or 9 activities. Conclusions These data indicate that PLD enhances bacterial adhesion and promotes host cell necrosis following invasion, and therefore, may be important in the disease pathogenesis of A. haemolyticum infections.

  3. The mechanics of adhesion polymers and their role in bacterial attachment

    OpenAIRE

    Zakrisson, Johan

    2015-01-01

    Bacterial resistance to antibiotics is increasing at a high rate in both developing and developed countries. To circumvent the problem of drug-resistant bacterial pathogens, we need to develop new effective methods, substances, and materials that can disarm and prevent them from causing infections. However, to do this we first need to find new possible targets in bacteria to approach and novel strategies to apply.Escherichia coli (E. coli) bacteria is a normal member of the intestinal microfl...

  4. Adhesion molecule levels in serum and cerebrospinal fluid in children with bacterial meningitis and sepsis

    Directory of Open Access Journals (Sweden)

    Soad M Jaber

    2009-01-01

    Full Text Available Background : Adhesion molecules play a role in leukocyte recruitment during central nervous system (CNS inflammation. Aim: This study was designed to compare serum, cerebrospinal fluid (CSF concentrations of adhesion molecules in children with meningitis and sepsis, and to evaluate their sources. Setting : This study was carried out at Pediatric Department, King Abdulaziz University Hospital from January 2007 to June 2008. Design: Serum and CSF samples were collected on admission from meningitis (n = 40, sepsis (n = 20 patients, and sera from controls (n = 20. Materials and Methods : Endothelial (E, leukocyte (L, platelet (P selectins intercellular cell adhesion molecule-1 (ICAM-1, and vascular cell adhesion molecules-1 (VCAM-1 were measured using ELISA. Statistics : ANOVA and Spearman′s correlations were used. Adhesion molecules with albumin concentration were estimated in CSF/serum to calculate concentration quotients. Results : In meningitis, serum sE-, sL-, sP-selectins sICAM-1, sVCAM-1 levels were higher than controls. Compared to sepsis, serum sE-selectin, sL-selectin, sVCAM-1, CSF-sL-selectin, CSF-sVCAM-1, VCAM-1 ratio and index were higher, while serum sP-selectin was lower than meningitis. sE-selectin ratio, CSF sICAM-1 were higher in meningitis with positive than negative culture. The sE-selectin index was higher in meningitis with neurological complication than those without it. In meningitis, correlation was found between CSF protein and CSF white blood cell counts (WBCs, CSF sICAM-1, CSF sVCAM-1 and between CSF sE-selectin and CSF sICAM-1. Conclusions : This study supports the role of adhesion molecules especially sL-selectin, sVCAM-1 in meningitis and suggests further research to determine their use as biomarkers for meningitis and use of their antagonists as therapeutic for CNS inflammation. The presence of discrepancy of CSF/serum ratios for molecules of same molecular weight suggest intrathecal shedding in addition to

  5. Reduction of bacterial adhesion on dental composite resins by silicon–oxygen thin film coatings

    International Nuclear Information System (INIS)

    Adhesion of bacteria on dental materials can be reduced by modifying the physical and chemical characteristics of their surfaces, either through the application of specific surface treatments or by the deposition of thin film coatings. Since this approach does not rely on the use of drugs or antimicrobial agents embedded in the materials, its duration is not limited by their possible depletion. Moreover it avoids the risks related to possible cytotoxic effects elicited by antibacterial substances released from the surface and diffused in the surrounding tissues. In this work, the adhesion of Streptococcus mutans and Streptococcus mitis was studied on four composite resins, commonly used for manufacturing dental prostheses. The surfaces of dental materials were modified through the deposition of a-SiOx thin films by plasma enhanced chemical vapor deposition. The chemical bonding structure of the coatings was analyzed by Fourier-transform infrared spectroscopy. The morphology of the dental materials before and after the coating deposition was assessed by means of optical microscopy and high-resolution mechanical profilometry, while their wettability was investigated by contact angle measurements. The sample roughness was not altered after coating deposition, while a noticeable increase of wettability was detected for all the samples. Also, the adhesion of S. mitis decreased in a statistically significant way on the coated samples, when compared to the uncoated ones, which did not occur for S. mutans. Within the limitations of this study, a-SiOx coatings may affect the adhesion of bacteria such as S. mitis, possibly by changing the wettability of the composite resins investigated. (paper)

  6. Antiadhesive Properties of Arabinogalactan Protein from Ribes nigrum Seeds against Bacterial Adhesion of Helicobacter pylori

    OpenAIRE

    Jutta Messing; Michael Niehues; Anna Shevtsova; Thomas Borén; Andreas Hensel

    2014-01-01

    Fruit extracts from black currants (Ribes nigrum L.) are traditionally used for treatment of gastritis based on seed polysaccharides that inhibit the adhesion of Helicobacter pylori to stomach cells. For detailed investigations an arabinogalactan protein (F2) was isolated from seeds and characterized concerning molecular weight, carbohydrate, amino acid composition, linkage, configuration and reaction with beta-glucosyl Yariv. Functional testing of F2 was performed by semiquantitative in situ...

  7. Quorum-sensing regulation governs bacterial adhesion, biofilm development, and host colonization in Pantoea stewartii subspecies stewartii.

    Science.gov (United States)

    Koutsoudis, Maria D; Tsaltas, Dimitrios; Minogue, Timothy D; von Bodman, Susanne B

    2006-04-11

    The phytopathogenic bacterium Pantoea stewartii subsp. stewartii synthesizes stewartan exo/capsular polysaccharide (EPS) in a cell density-dependent manner governed by the EsaI/EsaR quorum-sensing (QS) system. This study analyzes biofilm development and host colonization of the WT and QS regulatory mutant strains of P. stewartii. First, we show that the cell density-dependent synthesis of stewartan EPS, governed by the EsaI/EsaR QS system, is required for proper bacterial adhesion and development of spatially defined, 3D biofilms. Second, a nonvirulent mutant lacking the esaI gene adheres strongly to surfaces and develops densely packed, less structurally defined biofilms in vitro. This strain appears to be arrested in a low cell density developmental mode. Exposure of this strain to exogenous N-acyl-homoserine lactone counteracts this adhesion phenotype. Third, QS mutants lacking the EsaR repressor attach poorly to surfaces and form amorphous biofilms heavily enmeshed in excess EPS. Fourth, the WT strain disseminates efficiently within the xylem, primarily in a basipetal direction. In contrast, the two QS mutant strains remain largely localized at the site of infection. Fifth, and most significantly, epifluorescence microscopic imaging of infected leaf tissue and excised xylem vessels reveals that the bacteria colonize the xylem with unexpected specificity, particularly toward the annular rings and spiral secondary wall thickenings of protoxylem, as opposed to indiscriminate growth to fill the xylem lumen. These observations are significant to bacterial plant pathogenesis in general and may reveal targets for disease control. PMID:16585516

  8. Pseudomonas aeruginosa outer membrane vesicles triggered by human mucosal fluid and lysozyme can prime host tissue surfaces for bacterial adhesion

    Directory of Open Access Journals (Sweden)

    Matteo Maria Emiliano Metruccio

    2016-06-01

    Full Text Available Pseudomonas aeruginosa is a leading cause of human morbidity and mortality that often targets epithelial surfaces. Host immunocompromise, or the presence of indwelling medical devices, including contact lenses, can predispose to infection. While medical devices are known to accumulate bacterial biofilms, it is not well understood why resistant epithelial surfaces become susceptible to P. aeruginosa. Many bacteria, including P. aeruginosa, release Outer Membrane Vesicles (OMVs in response to stress that can fuse with host cells to alter their function. Here, we tested the hypothesis that mucosal fluid can trigger OMV release to compromise an epithelial barrier. This was tested using tear fluid and corneal epithelial cells in vitro and in vivo. After 1 h both human tear fluid, and the tear component lysozyme, greatly enhanced OMV release from P. aeruginosa strain PAO1 compared to PBS controls (~100 fold. TEM and SDS-PAGE showed tear fluid and lysozyme-induced OMVs were similar in size and protein composition, but differed from biofilm-harvested OMVs, the latter smaller with fewer proteins. Lysozyme-induced OMVs were cytotoxic to human corneal epithelial cells in vitro and murine corneal epithelium in vivo. OMV exposure in vivo enhanced Ly6G/C expression at the corneal surface, suggesting myeloid cell recruitment, and primed the cornea for bacterial adhesion (~4-fold, P < 0.01. Sonication disrupted OMVs retained cytotoxic activity, but did not promote adhesion, suggesting the latter required OMV-mediated events beyond cell killing. These data suggest that mucosal fluid induced P. aeruginosa OMVs could contribute to loss of epithelial barrier function during medical device-related infections.

  9. Direct Loading and Tunable Release of Antibiotics from Polyelectrolyte Multilayers To Reduce Bacterial Adhesion and Biofilm Formation.

    Science.gov (United States)

    Wang, Bailiang; Jin, Tingwei; Xu, Qingwen; Liu, Huihua; Ye, Zi; Chen, Hao

    2016-05-18

    Bacteria adhesion on the surface of biomaterials and following biofilm formation are important problems in biomedical applications. The charged antibiotics with small molar mass can hardly deposit alternately with polymers into multilayered films to load the drug. Herein, the (poly(acrylic acid)-gentamicin/poly(ethylenimine))n ((PAA-GS/PEI)n) multilayer film was designed and constructed via a layer-by-layer self-assembly method. Low molar mass GS cations were first combined with polyanion PAA and self-assembled with PEI to form multilayer films showing exponential growth behavior. The GS dosage could be adjusted by changing the layer number of films. Furthermore, the thermal cross-linking method was used to control the release rate of GS in PBS buffer. Owing to the diffusion of GS, a zone of inhibition of about 7.0 mm showed the efficient disinfection activity of the multilayer film. It could also be seen from the biofilm inhibition assay that the multilayer film effectively inhibited bacterial adhesion and biofilm formation. As the drug loading dosage was 160 μg/cm(2), the multilayer films showed very low cytotoxicity against human lens epithelial cells. The present work provides an easy way to load GS into multilayer films which can be applied to surface modification of implants and biomedical devices. PMID:27105066

  10. Candidate Targets for New Anti-Virulence Drugs: Selected Cases of Bacterial Adhesion and Biofilm Formation

    DEFF Research Database (Denmark)

    Klemm, Per; Hancock, Viktoria; Kvist, Malin;

    2007-01-01

    Management of bacterial infections is becoming increasingly difficult due to the rising frequency of strains that are resistant to many current antibiotics. New types of antibiotics are, therefore, urgently needed. Virulence factors or virulence-associated phenotypes such as adhesins and biofilm...

  11. Solvent-free functionalization of silicone rubber and efficacy of PAAm brushes grafted from an amino-PPX layer against bacterial adhesion

    NARCIS (Netherlands)

    Fundeanu, Irina; Klee, Doris; Schouten, Arend J.; Busscher, Henk J.; van der Mei, Henny C.

    2010-01-01

    Silicone rubber is a frequently employed biomaterial that is prone to bacterial adhesion and biofilm formation. In this study, the surface of silicone rubber was solvent-free functionalized by chemical vapor deposition (CVD) of poly(o-amino-p-xylylene-co-p-xylylene (amino-PPX). Subsequently, the ami

  12. Bacterial deposition in a parallel plate and a stagnation point flow chamber : microbial adhesion mechanisms depend on the mass transport conditions

    NARCIS (Netherlands)

    Bakker, DP; Busscher, HJ; van der Mei, HC

    2002-01-01

    Deposition onto glass in a parallel plate (PP) and in a stagnation point (SP) flow chamber of Marinobacter hydrocarbonoclasticus, Psychrobacter sp. and Halomonas pacifica, suspended in artificial seawater, was compared in order to determine the influence of methodology on bacterial adhesion mechanis

  13. New lactic acid bacterial strains from traditional Mongolian fermented milk products have altered adhesion to porcine gastric mucin depending on the carbon source.

    Science.gov (United States)

    Kimoto-Nira, Hiromi; Yamasaki, Seishi; Sasaki, Keisuke; Moriya, Naoko; Takenaka, Akio; Suzuki, Chise

    2015-03-01

    Attachment of lactic acid bacteria to the mucosal surface of the gastrointestinal tract is a major property of probiotics. Here, we examined the ability of 21 lactic acid bacterial strains isolated from traditional fermented milk products in Mongolia to adhere to porcine gastric mucin in vitro. Higher attachment was observed with Lactobacillus delbrueckii subsp. bulgaricus strains 6-8 and 8-1 than with Lactobacillus rhamnosus GG (positive control). Lactococcus lactis subsp. cremoris strain 7-1 adhered to mucin as effectively as did strain GG. Heat inactivation decreased the adhesive ability of strains 6-8 and 8-1 but did not affect strain 7-1. The adhesion of strains 6-8, 7-1 and 8-1 was significantly inhibited when the cells were pretreated with periodate and trypsin, indicating that proteinaceous and carbohydrate-like cell surface compounds are involved in the adhesion of these strains. The adhesion of strain 7-1 was affected by the type of carbohydrate present in the growth medium, being higher with fructose than with lactose, galactose or xylose as the carbon source. The sugar content of 7-1 cells grown on various carbohydrates was negatively correlated with its adhesive ability. We provide new probiotic candidate strains and new information regarding carbohydrate preference that influences lactic acid bacterial adhesion to mucin. PMID:25186082

  14. Vascular Endothelial Growth Factor And Soluble Adhesion Molecules As A Diagnostic Markers For Spontaneous Bacterial Peritonitis In Cirrhotic Liver Disease

    Directory of Open Access Journals (Sweden)

    Hamdia Ezzat Ahmed, (2Ahmed Dorrah,

    2006-03-01

    Full Text Available Spontaneous bacterial peritonitis (SBP is a frequent and severe complication in cirrhotic patients with ascites that usually results in renal failure and death despite the efficacy of the current antibiotic therapy. The aim of this study was determine serum and ascitic fluid of soluble-L selectin (s-L Selectin, intracellular adhesion molecule-1 (ICAM-1, Vascular cell adhesion molecule-1 (VCAM-1 and vascular endothelial growth factor (VEGF in cirrhotic patients, and to search for a relationship between them and SBP. This study was performed on 30 cirrhotic patients with SBP. Their ages ranged (from 38-55 years with mean of (32 + 5.5, 30 cirrhotic patients with non-infected ascites; their ages ranged (from 30-52 years with mean of (35 + 6.5. This group considered as cirrhotic control group and 20 healthy control subjects their ages ranged (from 28-55 years with mean of (30 + 7.5. Serum and ascitic fluid of adhesion molecules as well as VEGF levels were significantly higher in cirrhotic patients with SBP as well as cirrhotic patients with non-infected ascites as compared to healthy control group. There were significant increase in serum and ascitic fluid level of leukocyte, PMN and ICAM-1 in SBP as compared to cirrhotic with non-infected ascites. There was non-significant decrease in serum and AF level of VEGF in cirrhotic control group as compared to SBP group. The ascitic fluid PMN and s-L Selectin were higher in culture positive SBP patients particularly in those with gram positive isolates, where these are non-significant increase in serum and ascitic fluid level of VEGF in culture positive SBP than culture negative cases. Positive correlation was found between serum and ascitic fluid level of ICAM-1 in SBP and non-infected cirrhotic group. Also, positive correlation was found between VEGF levels in serum ascetic fluid levels in both cirrhotic groups (SBP and non-infected cirrhotic group. These data suggest that: Significant elevated level of

  15. Parabolic Flight Evaluation of Bacterial Adhesion on Multiple Antimicrobial Surface Treatments

    Science.gov (United States)

    Birmele, Michele

    2011-01-01

    This report describes the development of a test method and the evaluation of the effectiveness of antimicrobial technologies in reduced gravity based on parabolic flight experiments. Microbial growth is a common occurrence on fully immersed wetted surfaces in spacecraft environmental control and life support systems despite the use of chemical and/or physical \\disinfection. Many materials and surface treatments with antimicrobial properties are commercially available but none have been vetted for spaceflight applications. Herein a test method is explained that included ground and reduced gravity parabolic flight experiments with a standard microorganism recovered from spacecraft, Pseudomonas aeruginosa, added at a concentration of 1 x 10(exp 5) cells per milliliter (mL) onto challenge material coupon surfaces. Several experimental materials were observed to slightly reduce microbial attachment in reduced gravity flight experiments, but none were capable of eliminating all challenge bacteria. Lunar gravity had an increased antimicrobial effect in 28 out of 36 test coupons compared to microgravity when provided otherwise identical conditions for growth, suggesting trace .amounts of gravity may be required for maximum antimicrobial performance. Bacterial cells exposed to variable gravity had more than twice as ,much intracellular adenosine triphosphate (ATP) when compared to control cells exposed only to Earth gravity due to a short duration response to environmental stress. An ATP luminescence assay was the method most amenable to development of an in-flight microbial monitoring assay

  16. Fabrication of Functional Wrinkled Interfaces from Polymer Blends: Role of the Surface Functionality on the Bacterial Adhesion

    Directory of Open Access Journals (Sweden)

    Marta Palacios-Cuesta

    2014-11-01

    Full Text Available The generation of nano-microstructured surfaces is a current challenge in polymer science. The fabrication of such surfaces has been accomplished mainly following two different alternatives i.e., by adapting techniques, such as molding (embossing or nano/microimprinting, or by developing novel techniques including laser ablation, soft lithography or laser scanning. Surface instabilities have been recently highlighted as a promising alternative to induce surface features. In particular, wrinkles have been extensively explored for this purpose. Herein, we describe the preparation of wrinkled interfaces by confining a photosensitive monomeric mixture composed of monofunctional monomer and a crosslinking agent within a substrate and a cover. The wrinkle characteristics can be controlled by the monomer mixture and the experimental conditions employed for the photopolymerization. More interestingly, incorporation within the material of a functional copolymer allowed us to vary the surface chemical composition while maintaining the surface structure. For that purpose we incorporated either a fluorinated copolymer that enhanced the surface hydrophobicity of the wrinkled interface or an acrylic acid containing copolymer that increased the hydrophilicity of the wrinkled surface. Finally, the role of the hydrophobicity on the bacterial surface adhesion will be tested by using Staphylococcus aureus.

  17. The anti-adhesive mode of action of a purified mushroom (Lentinus edodes) extract with anticaries and antigingivitis properties in two oral bacterial phatogens

    Science.gov (United States)

    2014-01-01

    Background In previous works we have shown that a low-molecular-mass (LMM) fraction from mushroom (Lentinus edodes) homogenate interferes with binding of Streptococcus mutans to hydroxyapatite and Prevotella intermedia to gingival cells. Additionally, inhibition of biofilm formation of both odonto- and periodonto-pathogenic bacteria and detachment from preformed biofilms have been described for this compound. Further purification of mushroom extract has been recently achieved and a sub-fraction (i.e. # 5) has been identified as containing the majority of the mentioned biological activities. The aim of this study was to characterise the bacterial receptors for the purified mushroom sub-fraction #5 in order to better elucidate the mode of action of this compound when interfering with bacterial adhesion to host surfaces or with bacteria-bacteria interactions in the biofilm state. Methods Candidate bacterial molecules to act as target of this compound were bacterial surface molecules involved in cell adhesion and biofilm formation, and, thus, we have considered cell wall associated proteins (CWPs), teichoic acid (TA) and lipoteichoic acid (LTA) of S. mutans, and outer membrane proteins (OMPs) and lipopolysaccharide (LPS) of P. intermedia. Results Fifteen S. mutans CWPs and TA were capable of binding sub-fraction #5, while LTA did not. As far as P. intermedia is concerned, we show that five OMPs interact with sub-fraction # 5. Capacity of binding to P. intermedia LPS was also studied but in this case negative results were obtained. Conclusions Binding sub-fraction # 5 to surface molecules of S. mutans or P. intermedia may result in inactivation of their physiological functions. As a whole, these results indicate, at molecular level, the bacterial surface alterations affecting adhesion and biofim formation. For these antimicrobial properties, the compound may find use in daily oral hygiene. PMID:24564835

  18. Investigating the BSA protein adsorption and bacterial adhesion of Al-alloy surfaces after creating a hierarchical (micro/nano) superhydrophobic structure.

    Science.gov (United States)

    Moazzam, Parisa; Razmjou, Amir; Golabi, Mohsen; Shokri, Dariush; Landarani-Isfahani, Amir

    2016-09-01

    Bacterial adhesion and subsequent biofilm formation on metals such as aluminum (Al) alloys lead to serious issues in biomedical and industrial fields from both an economical and health perspective. Here, we showed that a careful manipulation of Al surface characteristics via a facile two-steps superhydrophobic modification can provide not only biocompatibility and an ability to control protein adsorption and bacterial adhesion, but also address the issue of apparent long-term toxicity of Al-alloys. To find out the roles of surface characteristics, surface modification and protein adsorption on microbial adhesion and biofilm formation, the surfaces were systematically characterized by SEM, EDX, XPS, AFM, FTIR, water contact angle (WCA) goniometry, surface free energy (SFE) measurement, MTT, Bradford, Lowry and microtiter plate assays and also flow-cytometry and potentiostat analyses. Results showed that WCA and SFE changed from 70° to 163° and 36.3 to 0.13 mN m(-1) , respectively. The stable and durable modification led to a substantial reduction in static/dynamic BSA adsorption. The effect of such a treatment on the biofilm formation was analyzed by using three different bacteria of Pseudomonas aeruginosa, Staphylococcus epidermidis, and Staphylococcus aureus. The microtiter plate assay and flow cytometry analysis showed that the modification not only could substantially reduce the bacterial adhesion but this biofouling resistance is independent of bacterium type. An excellent cell viability after exposure of HeLa cells to waters incubated with the modified samples was observed. Finally, the corrosion rate reduced sharply from 856.6 to 0.119 MPY after superhydrophobic modifications, which is an excellent stable corrosion inhibition property. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2220-2233, 2016. PMID:27104583

  19. Contributions of adhesive proteins to the cellular and bacterial response to surfaces treated with bioactive polymers: case of poly(sodium styrene sulfonate) grafted titanium surfaces.

    Science.gov (United States)

    Felgueiras, Helena P; Aissa, Ines Ben; Evans, Margaret D M; Migonney, Véronique

    2015-11-01

    The research developed on functionalized model or prosthetic surfaces with bioactive polymers has raised the possibility to modulate and/or control the biological in vitro and in vivo responses to synthetic biomaterials. The mechanisms underlying the bioactivity exhibited by sulfonated groups on surfaces involves both selective adsorption and conformational changes of adsorbed proteins. Indeed, surfaces functionalized by grafting poly(sodium styrene sulfonate) [poly(NaSS)] modulate the cellular and bacterial response by inducing specific interactions with fibronectin (Fn). Once implanted, a biomaterial surface is exposed to a milieu of many proteins that compete for the surface which dictates the subsequent biological response. Once understood, this can be controlled by dictating exposure of active binding sites. In this in vitro study, we report the influence of binary mixtures of proteins [albumin (BSA), Fn and collagen type I (Col I)] adsorbed on poly(NaSS) grafted Ti6Al4V on the adhesion and differentiation of MC3T3-E1 osteoblast-like cells and the adhesion and proliferation of Staphylococcus aureus (S. aureus). Outcomes showed that poly(NaSS) stimulated cell spreading, attachment strength, differentiation and mineralization, whatever the nature of protein provided at the interface compared with ungrafted Ti6Al4V (control). While in competition, Fn and Col I were capable of prevailing over BSA. Fn played an important role in the early interactions of the cells with the surface, while Col I was responsible for increased alkaline phosphatase, calcium and phosphate productions associated with differentiation. Poly(NaSS) grafted surfaces decreased the adhesion of S. aureus and the presence of Fn on these chemically altered surfaces increased bacterial resistance ≈70% compared to the ungrafted Ti6Al4V. Overall, our study showed that poly(NaSS) grafted Ti6Al4V selectively adsorbed proteins (particularly Fn) promoting the adhesion and differentiation of osteoblast

  20. β2 integrins (CD11/18) are essential for the chemosensory adhesion and migration of polymorphonuclear leukocytes on bacterial cellulose.

    Science.gov (United States)

    Kim, Gun-Dong; Lee, Seung Eun; Yang, Hana; Park, Hye Rim; Son, Gun Woo; Park, Cheung-Seog; Park, Yong Seek

    2015-05-01

    Bacterial cellulose (BC) has been studied widely for applications in biomedical materials such as prosthetic artificial blood vessels owing to its unique characteristics, which include nontoxicity and nonimmunogenicity as compared with synthetic biopolymers such as expanded polytetrafluorethylene (ePTFE). However, to date, studies on the relative effect of leukocytes on BC as a prosthetic vascular graft are insufficient. Polymorphonuclear leukocytes (PMN) play a pivotal role in early-phase immune response to bacterial or periprosthetic infection. PMN recruitment at sites of infection or inflammation mediated by various integrins such as β2 integrin family (CD11/CD18 family). Therefore, we discuss our investigations into the mechanisms by which β2 integrins-mediated chemosensory adhesion and migration of PMN on the vascular graft surface, BC. Our results show that CD11b/CD18 components mainly mediate PMN adherence on BC. CD11b/CD18 displays weak coordination with the other two α subunits (CD11a and CD11c). Furthermore, it was found that the β subunit (CD18) plays a critical role in both the adhesion and migration of N-formylmethionyl-leucyl-phenylalanine (fMLP)-stimulated PMN on BC. The activity of CD18 contrasts with that of the individual α subunits. Among these, only CD11b displayed inhibition of PMN migration on BC surfaces. PMID:25231265

  1. An in vitro study on bacterial growth interactions and intestinal epithelial cell adhesion characteristics of probiotic combinations.

    Science.gov (United States)

    Moussavi, Mahta; Adams, Michelle Catherine

    2010-05-01

    The aims of this study were to examine long-term growth interactions of five probiotic strains (Lactobacillus casei 01, Lactobacillus plantarum HA8, Lactobacillus rhamnosus GG, Lactobacillus reuteri ATCC 55730 and Bifidobacterium lactis Bb12) either alone or in combination with Propionibacterium jensenii 702 in a co-culture system and to determine their adhesion ability to human colon adenocarcinoma cell line Caco-2. Growth patterns of probiotic Lactobacillus strains were not considerably affected by the presence of P. jensenii 702, whereas lactobacilli exerted a strong antagonistic action against P. jensenii 702. In the co-culture of Bif. lactis Bb12 and P. jensenii 702, a significant synergistic influence on growth of both bacteria was observed (P < 0.05). The results of adhesion assay showed that when probiotic strains were tested in combination, there was evidence of an associated effect on percentage adherence. However, in most cases these differences were not statistically significant (P < 0.05). Adhesion percentage of Lb. casei 01 and Lb. rhamnosus GG both decreased significantly in the presence of P. jensenii 702 compared to their adhesion levels when alone (P < 0.05). These results show that the survival and percentage adhesion of some probiotic strains may be influenced by the presence of other strains and this should be considered when formulating in the probiotic products. PMID:19949794

  2. CXCL1 can be regulated by IL-6 and promotes granulocyte adhesion to brain capillaries during bacterial toxin exposure and encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Roy Monica

    2012-01-01

    Full Text Available Abstract Background Granulocytes generally exert protective roles in the central nervous system (CNS, but recent studies suggest that they can be detrimental in experimental autoimmune encephalomyelitis (EAE, the most common model of multiple sclerosis. While the cytokines and adhesion molecules involved in granulocyte adhesion to the brain vasculature have started to be elucidated, the required chemokines remain undetermined. Methods CXCR2 ligand expression was examined in the CNS of mice suffering from EAE or exposed to bacterial toxins by quantitative RT-PCR and in situ hybridization. CXCL1 expression was analyzed in IL-6-treated endothelial cell cultures by quantitative RT-PCR and ELISA. Granulocytes were counted in the brain vasculature after treatment with a neutralizing anti-CXCL1 antibody using stereological techniques. Results CXCL1 was the most highly expressed ligand of the granulocyte receptor CXCR2 in the CNS of mice subjected to EAE or infused with lipopolysaccharide (LPS or pertussis toxin (PTX, the latter being commonly used to induce EAE. IL-6 upregulated CXCL1 expression in brain endothelial cells by acting transcriptionally and mediated the stimulatory effect of PTX on CXCL1 expression. The anti-CXCL1 antibody reduced granulocyte adhesion to brain capillaries in the three conditions under study. Importantly, it attenuated EAE severity when given daily for a week during the effector phase of the disease. Conclusions This study identifies CXCL1 not only as a key regulator of granulocyte recruitment into the CNS, but also as a new potential target for the treatment of neuroinflammatory diseases such as multiple sclerosis.

  3. Direct Covalent Grafting of Phytate to Titanium Surfaces through Ti-O-P Bonding Shows Bone Stimulating Surface Properties and Decreased Bacterial Adhesion.

    Science.gov (United States)

    Córdoba, Alba; Hierro-Oliva, Margarita; Pacha-Olivenza, Miguel Ángel; Fernández-Calderón, María Coronada; Perelló, Joan; Isern, Bernat; González-Martín, María Luisa; Monjo, Marta; Ramis, Joana M

    2016-05-11

    Myo-inositol hexaphosphate, also called phytic acid or phytate (IP6), is a natural molecule abundant in vegetable seeds and legumes. Among other functions, IP6 inhibits bone resorption. It is adsorbed on the surface of hydroxyapatite, inhibiting its dissolution and decreasing the progressive loss of bone mass. We present here a method to directly functionalize Ti surfaces covalently with IP6, without using a cross-linker molecule, through the reaction of the phosphate groups of IP6 with the TiO2 layer of Ti substrates. The grafting reaction consisted of an immersion in an IP6 solution to allow the physisorption of the molecules onto the substrate, followed by a heating step to obtain its chemisorption, in an adaptation of the T-Bag method. The reaction was highly dependent on the IP6 solution pH, only achieving a covalent Ti-O-P bond at pH 0. We evaluated two acidic pretreatments of the Ti surface, to increase its hydroxylic content, HNO3 30% and HF 0.2%. The structure of the coated surfaces was characterized by X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and ellipsometry. The stability of the IP6 coating after three months of storage and after sterilization with γ-irradiation was also determined. Then, we evaluated the biological effect of Ti-IP6 surfaces in vitro on MC3T3-E1 osteoblastic cells, showing an osteogenic effect. Finally, the effect of the surfaces on the adhesion and biofilm viability of oral microorganisms S. mutans and S. sanguinis was also studied, and we found that Ti-IP6 surfaces decreased the adhesion of S. sanguinis. A surface that actively improves osseointegration while decreasing the bacterial adhesion could be suitable for use in bone implants. PMID:27088315

  4. Efficiency of surface modified Ti coated with copper nanoparticles to control marine bacterial adhesion under laboratory simulated conditions

    Indian Academy of Sciences (India)

    CHOKKALINGAM PRIYA; GANESSIN ARAVIND; WILSON RICHARD THILAGARAJ

    2016-04-01

    Titanium (Ti) used as condenser material in nuclear power plants encounter severe biofouling in marine environment which in turn affects the efficiency of the metal. To reduce the biofouling by marine microorganisms, surface modification of the Ti was carried out by anodization process to obtain nanotubes (TiO$_2$-NTs). The electrolyte solution containing 1% of ammonium fluoride resulted in uniform growth of TiO$_2$-NTs. TiO$_2$-NTs were furthercoated with chemically synthesized copper nanoparticles (NT-CuNP) using 3-amino propyl triethoxy silane as a coupling agent. NT-CuNP was characterized by field-emission scanning electron microscopy (FE-SEM), energydispersivespectroscopy and X-ray diffraction. The stability of the coating was determined by the amount of Cu$^+$ ions released into the surrounding using AAS. The microbial adhesion on the surface of Ti, TiO$_2$-NTs and NT-CuNPcoupons were evaluated by sea water exposure studies using total viable count method and also characterized by FE-SEM for any morphological changes. The NT-CuNP coupons show a 60% reduction in microbial adhesion whencompared to control Ti coupons.

  5. Nitrogen starvation affects bacterial adhesion to soil Adesão de bactérias desnutridas por nitrogênio a solo

    Directory of Open Access Journals (Sweden)

    Maria Tereza Borges

    2008-09-01

    Full Text Available One of the main factors limiting the bioremediation of subsoil environments based on bioaugmentation is the transport of selected microorganisms to the contaminated zones. The characterization of the physiological responses of the inoculated microorganisms to starvation, especially the evaluation of characteristics that affect the adhesion of the cells to soil particles, is fundamental to anticipate the success or failure of bioaugmentation. The objective of this study was to investigate the effect of nitrogen starvation on cell surface hydrophobicity and cell adhesion to soil particles by bacterial strains previously characterized as able to use benzene, toluene or xilenes as carbon and energy sources. The strains LBBMA 18-T (non-identified, Arthrobacter aurescens LBBMA 98, Arthrobacter oxydans LBBMA 201, and Klebsiella sp. LBBMA 204-1 were used in the experiments. Cultivation of the cells in nitrogen-deficient medium caused a significant reduction of the adhesion to soil particles by all the four strains. Nitrogen starvation also reduced significantly the strength of cell adhesion to the soil particles, except for Klebsiella sp. LBBMA 204-1. Two of the four strains showed significant reduction in cell surface hydrophobicity. It is inferred that the efficiency of bacterial transport through soils might be potentially increased by nitrogen starvation.Um dos principais fatores limitantes da biorremediação in situ de solos subterrâneos, baseada na bioaumentação, é o transporte dos microrganismos selecionados até o local contaminado. A caracterização das respostas fisiológicas dos microrganismos introduzidos no subsolo a condições de escassez nutricional, notadamente a avaliação de características que afetam a adesão celular ao solo, é fundamental para se prever o sucesso da bioaumentação. O objetivo deste trabalho foi determinar o efeito da desnutrição em meio com escassez de nitrogênio sobre a hidrofobicidade celular e a

  6. A kit for the investigation of live Escherichia coli cell adhesion to glycosylated surfaces

    DEFF Research Database (Denmark)

    Hartmann, M.; Horst, A. K.; Klemm, Per; Lindhorst, T. K.

    2010-01-01

    A combination of microtiter plate functionalization techniques and two facile bacterial adhesion inhibition assays form a flexible toolbox for the investigation of bacterial adhesion mechanisms on glycosylated surfaces.......A combination of microtiter plate functionalization techniques and two facile bacterial adhesion inhibition assays form a flexible toolbox for the investigation of bacterial adhesion mechanisms on glycosylated surfaces....

  7. Assessment of bacterial adhesion of different dental materials%几种常用口腔材料细菌粘附性能比较

    Institute of Scientific and Technical Information of China (English)

    丁宁; 张祖太; 何敏; 刘艳; 任蕾

    2014-01-01

    Objective To evaluate the difference of bacterial adhesion of different dental materials. Methods Five type of dental materials were selected, including self-curing denture base resin,composite resin, zirconia, titanium and nickel-cobalt alloy. 1. 3cm × 2. 0cm × 0. 2cm specimens of these dental materials were prepared and five test pieces in each material made. The surface of the specimens were polished. Sreptococcus mutans ATCC 25175 was selected, and the bacterial suspension was placed on the specimens and cultured at 37℃ for 48h. Then the bacteria that adhered to the specimens were eluted, cultured again and counted. The data were statistically analyzed. Results The amount of the bacteria that adhered to titanium was the least, followed by zirconia,resin,nickel-cobalt alloy and self-curing denture base resin( P<0. 05 ) . Conclusion Among the five types of dental materials, titanium had better antibacterial adhesion property.%目的:探讨5种口腔常用材料的抗细菌粘附性能。方法将自凝甲基丙烯酸甲酯基托树脂、Z250复合树脂、氧化锆陶瓷、纯钛和镍铬合金5种牙科常用修复材料,分别制备成3.0cm ×2.0cm ×0.2cm的板片试件,每组各5片。各组试件表面进行抛光处理,使试件表面粗糙度( Ra)值无显著性差异。实验菌株选用变形链球菌,用细菌悬浮液置试件表面,37℃培养48h,对粘附在材料表面的细菌再进行洗脱、培养、菌落计数,使用SPSSl7.0软件对试验结果进行统计分析。结果纯钛表面变形链球菌粘附量最低,依次为氧化锆陶瓷、Z250复合树脂、镍铬合金、自凝甲基丙烯酸甲酯基托树脂。结论不同口腔材料在同样粗糙度的条件下,抗细菌粘附性能存在差异,钛具有较好的抗细菌粘附性能。

  8. Statistical Analysis of Long- and Short-Range Forces Involved in Bacterial Adhesion to Substratum Surfaces as Measured Using Atomic Force Microscopy ▿

    OpenAIRE

    CHEN, YUN; Henk J Busscher; van der Mei, Henny C.; Norde, Willem

    2011-01-01

    Surface thermodynamic analyses of microbial adhesion using measured contact angles on solid substrata and microbial cell surfaces are widely employed to determine the nature of the adhesion forces, i.e., the interplay between Lifshitz-van der Waals and acid-base forces. While surface thermodynamic analyses are often viewed critically, atomic force microscopy (AFM) can also provide information on the nature of the adhesion forces by means of Poisson analysis of the measured forces. This review...

  9. Abdominal Adhesions

    Science.gov (United States)

    ... adhesions? Abdominal adhesions can cause intestinal obstruction and female infertility—the inability to become pregnant after a year of trying. Abdominal adhesions can lead to female infertility by preventing fertilized eggs from reaching the uterus, ...

  10. Statistical Analysis of Long- and Short-Range Forces Involved in Bacterial Adhesion to Substratum Surfaces as Measured Using Atomic Force Microscopy

    NARCIS (Netherlands)

    Chen, Yun; Busscher, Henk J.; van der Mei, Henny C.; Norde, Willem

    2011-01-01

    Surface thermodynamic analyses of microbial adhesion using measured contact angles on solid substrata and microbial cell surfaces are widely employed to determine the nature of the adhesion forces, i.e., the interplay between Lifshitz-van der Waals and acid-base forces. While surface thermodynamic a

  11. Bacterial adhesion to titanium-oxy-nitride (TiNOX) coatings with different resistivities : a novel approach for the development of biomaterials

    NARCIS (Netherlands)

    Koerner, RJ; Butterworth, LA; Mayer, [No Value; Dasbach, R; Busscher, HJ

    2002-01-01

    In this study the quantitative adhesion of a strain of Staphylococcus epidermidis, Streptococcus mutans and Pseudomonas aeruginosa to and the ease of removal from different TiNOX coatings was investigated by means of a parallel plate flow chamber and in situ image analysis. Quality of adhesion was d

  12. Characteristics of the adhesive determinants of Lactobacillus fermentum 104.

    OpenAIRE

    Henriksson, A; Szewzyk, R; Conway, P L

    1991-01-01

    The adhesion of Lactobacillus fermentum 104-R and the variant strain 104-S to porcine gastric squamous epithelium was investigated. An epithelium-specific adhesion was detected for strain 104-S; however, strain 104-R expressed enhanced adhesion capacity to the control surfaces of polystyrene and bovine serum albumin. To characterize the adhesive determinants, the bacterial cells were exposed to various treatments. The adhesion pattern of bacterial cells in buffers of pH values ranging from 2 ...

  13. The relationship between inhibition of bacterial adhesion to a solid surface by sub-MICs of antibiotics and subsequent development of a biofilm

    OpenAIRE

    Cerca, Nuno; Martins, Silvia; Pier, Gerald B.; Oliveira, Rosário; Azeredo, Joana

    2005-01-01

    Many studies have demonstrated that subminimal inhibitory concentrations (sub-MICs) of antibiotics can inhibit initial microbial adherence to medical device surfaces. It has been suggested that, by inhibiting initial adhesion, biofilm formation might be prevented. However, since initial adherence and subsequent biofilm formation may be two distinct phenomena, conclusions regarding the effects of sub-MIC antibiotics on initial adhesion cannot be extrapolated to biofilm formation. In t...

  14. A simple technique to assess bacterial attachment to metal surfaces

    Digital Repository Service at National Institute of Oceanography (India)

    Sonak, S.; Bhosle, N.B.

    There are several methods to assess bacterial adhesion to metal surfaces. Although these methods are sensitive, they are time consuming and need expensive chemicals and instruments. Hence, their use in assessing bacterial adhesion is limited...

  15. Bacterial endotoxin enhances colorectal cancer cell adhesion and invasion through TLR-4 and NF-kappaB-dependent activation of the urokinase plasminogen activator system.

    LENUS (Irish Health Repository)

    Killeen, S D

    2009-05-19

    Perioperative exposure to lipopolysaccharide (LPS) is associated with accelerated metastatic colorectal tumour growth. LPS directly affects cells through Toll-like receptor 4 (TLR-4) and the transcription factor NF-kappaB. The urokinase plasminogen activator (u-PA) system is intimately implicated in tumour cell extracellular matrix (ECM) interactions fundamental to tumour progression. Thus we sought to determine if LPS directly induces accelerated tumour cell ECM adhesion and invasion through activation of the u-PA system and to elucidate the cellular pathways involved. Human colorectal tumour cell lines were stimulated with LPS. u-PA concentration, u-PA activity, active u-PA, surface urokinase plasminogen activator receptor (u-PAR) and TLR-4 expression were assessed by ELISA, colorimetric assay, western blot analysis and flow cytometry respectively. In vitro tumour cell vitronectin adhesion and ECM invasion were analysed by vitronectin adhesion assay and ECM invasion chambers. u-PA and u-PAR function was inhibited with anti u-PA antibodies or the selective u-PA inhibitors amiloride or WXC-340, TLR-4 by TLR-4-blocking antibodies and NF-kappaB by the selective NF-kappaB inhibitor SN-50. LPS upregulates u-PA and u-PAR in a dose-dependent manner, enhancing in vitro tumour cell vitronectin adhesion and ECM invasion by >40% (P<0.01). These effects were ameliorated by u-PA and u-PAR inhibition. LPS activates NF-kappaB through TLR-4. TLR-4 and NF-kappaB inhibition ameliorated LPS-enhanced u-PA and u-PAR expression, tumour cell vitronectin adhesion and ECM invasion. LPS promotes tumour cell ECM adhesion and invasion through activation of the u-PA system in a TLR-4- and NF-kappaB-dependent manner.

  16. Respiratory Viruses Augment the Adhesion of Bacterial Pathogens to Respiratory Epithelium in a Viral Species- and Cell Type-Dependent Manner

    OpenAIRE

    Avadhanula, Vasanthi; Rodriguez, Carina A.; DeVincenzo, John P.; Wang, Yan; Webby, Richard J; Ulett, Glen C.; Adderson, Elisabeth E.

    2006-01-01

    Secondary bacterial infections often complicate respiratory viral infections, but the mechanisms whereby viruses predispose to bacterial disease are not completely understood. We determined the effects of infection with respiratory syncytial virus (RSV), human parainfluenza virus 3 (HPIV-3), and influenza virus on the abilities of nontypeable Haemophilus influenzae and Streptococcus pneumoniae to adhere to respiratory epithelial cells and how these viruses alter the expression of known recept...

  17. Adhesive Categories

    DEFF Research Database (Denmark)

    Lack, Stephen; Sobocinski, Pawel

    2003-01-01

    We introduce adhesive categories, which are categories with structure ensuring that pushouts along monomorphisms are well-behaved. Many types of graphical structures used in computer science are shown to be examples of adhesive categories. Double-pushout graph rewriting generalises well to...... rewriting on arbitrary adhesive categories....

  18. Adhesive Categories

    DEFF Research Database (Denmark)

    Lack, Stephen; Sobocinski, Pawel

    2004-01-01

    We introduce adhesive categories, which are categories with structure ensuring that pushouts along monomorphisms are well-behaved. Many types of graphical structures used in computer science are shown to be examples of adhesive categories. Double-pushout graph rewriting generalises well to...... rewriting on arbitrary adhesive categories....

  19. Nitrogen starvation affects bacterial adhesion to soil Adesão de bactérias desnutridas por nitrogênio a solo

    OpenAIRE

    Maria Tereza Borges; Antônio Galvão Nascimento; Ulisses Nunes Rocha; Marcos Rogério Tótola

    2008-01-01

    One of the main factors limiting the bioremediation of subsoil environments based on bioaugmentation is the transport of selected microorganisms to the contaminated zones. The characterization of the physiological responses of the inoculated microorganisms to starvation, especially the evaluation of characteristics that affect the adhesion of the cells to soil particles, is fundamental to anticipate the success or failure of bioaugmentation. The objective of this study was to investigate the ...

  20. Effect of Superhydrophobic Surface of Titanium on Staphylococcus aureus Adhesion

    OpenAIRE

    Peifu Tang; Wei Zhang; Yan Wang; Boxun Zhang; Hao Wang; Changjian Lin; Lihai Zhang

    2011-01-01

    Despite the systemic antibiotics prophylaxis, orthopedic implants still remain highly susceptible to bacterial adhesion and resulting in device-associated infection. Surface modification is an effective way to decrease bacterial adhesion. In this study, we prepared surfaces with different wettability on titanium surface based on TiO2 nanotube to examine the effect of bacterial adhesion. Firstly, titanium plates were calcined to form hydrophilic TiO2 nanotube films of anatase phase. Subsequent...

  1. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of a health claim related to Monurelle® and reduction of bacterial colonisation of the urinary tract by the inhibition of the adhesion of P-fimbriated E.coli to uroepithelial cells pursuant to Article 13(5) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    cranberry (Vaccinium macrocarpon) extract (including 36 mg proanthocyanidins) and 60 mg of ascorbic acid, is sufficiently characterised. The claimed effect proposed by the applicant is reduction of E.coli adhesion to uroepithelial cells. The Panel considers that reduction of bacterial colonisation of the...

  2. Reduction in Thrombosis and Bacterial Adhesion with 7 Day Implantation of S-Nitroso-N-acetylpenicillamine (SNAP)-Doped Elast-eon E2As Catheters in Sheep

    OpenAIRE

    Brisbois, Elizabeth J.; Davis, Ryan P.; Jones, Anna M.; Major, Terry C.; Bartlett, Robert H.; Meyerhoff, Mark E.; Handa, Hitesh

    2015-01-01

    Thrombosis and infection are two common problems associated with blood-contacting medical devices such as catheters. Nitric oxide (NO) is known to be a potent antimicrobial agent as well as an inhibitor of platelet activation and adhesion. Healthy endothelial cells that line the inner walls of all blood vessels exhibit a NO flux of 0.5~4×10−10 mol cm−2 min−1 that helps prevent thrombosis. Materials with a NO flux that is equivalent to this level are expected to exhibit similar anti-thrombotic...

  3. Surgical adhesives

    Directory of Open Access Journals (Sweden)

    I. A. THOMAZINI-SANTOS

    2001-12-01

    Full Text Available The authors have performed a literature review of surgical adhesives, such as cyanoacrylate, collagen gelatin, and fibrin glue. They have included different types of commercial and non-commercial fibrin sealants and have reported on the different components in these adhesives, such as fibrinogen, cryoprecipitate, bovine thrombin, and thrombin-like fraction of snake venom.

  4. Bacterial adhesion of zirconia ceramics versus nickel chromium alloy as oral materials%氧化锆陶瓷与镍铬合金口腔材料的细菌黏附性对比

    Institute of Scientific and Technical Information of China (English)

    韩月红; 成之远; 王明德

    2016-01-01

    BACKGROUND: Experimental and clinical experiences show that the surface roughness of dental restoration materials directly affects bacterial adhesion; in addition, the material composition and physicochemical properties are also important influencing factors. OBJECTIVE: To compare the bacterial adhesion of zirconia ceramics and nickel chromium al oy as oral materials. METHODS: Zirconia ceramics and nickel chromium al oy were respectively cut into 10 pieces of 3. 0 cm ×3.0 cm×0. 2 cm plate specimens. For each material, five pieces were subjected to surface polishing treatment, and the other five pieces were glazed. Surface roughness value of specimens was detected. Experimental strains of Streptococcus mutans was cultured on the specimen surface at 37 ℃ for 48 hours, and the amount of bacteria adhering to the specimen surface was detected. RESULTS AND CONCLUSION: Surface roughness of four groups of specimens showed no difference. The amount of bacteria that adhered to the polishing specimens of zirconia ceramics was significantly lower than that of nickel chromium al oy (P < 0.05), but no difference was found in the amount of bacteria adhering to the glazing specimens of nickel-chromium al oy and zirconia ceramics. These findings indicate that zirconia ceramics has better ability to inhibit bacterial adhesion than nickel-chromium al oy, especial y after glazing.%背景:实验及临床经验表明,修复材料表面的粗糙度直接影响细菌的黏附性,除此之外,材料组成及本身理化性质也是重要影响因素。目的:对比氧化锆陶瓷与镍铬合金口腔材料的细菌黏附性。方法:将氧化锆陶瓷、镍铬合金分别制成3.0 cm ×3.0 cm ×0.2 cm 的板片,每种材料各10片。两种材料各选取其中5片进行抛光处理,另5片进行上釉处理,检测4组试件的粗糙度。将变形链球菌浮液滴加于4组材料表面,37℃厌氧培养48 h,检测各组细菌黏附数量。结果与结论:4

  5. Bifunctional coating based on carboxymethyl chitosan with stable conjugated alkaline phosphatase for inhibiting bacterial adhesion and promoting osteogenic differentiation on titanium

    Science.gov (United States)

    Zheng, Dong; Neoh, Koon Gee; Kang, En-Tang

    2016-01-01

    In this work, alkaline phosphatase (ALP) was covalently immobilized on carboxymethyl chitosan (CMCS)-coated polydopamine (PDA)-functionalized Ti to achieve a bifunctional surface. Our results showed ∼89% reduction in Staphylococcus epidermidis adhesion on this surface compared to that on pristine Ti. The ALP-modified Ti supported cell proliferation, and significantly enhanced cellular ALP activity and calcium deposition of osteoblasts, human mesenchymal stem cells (hMSCs) and human adipose-derived stem cells (hADSCs). The extent of enhancement in the functions of these cells is dependent on the surface density of immobilized ALP. The substrate prepared using an ALP solution of 50 μg/cm2 resulted in 44%, 54% and 129% increase in calcium deposited by osteoblasts, hMSCs and hADSCs, respectively, compared to those cultured on pristine Ti. The ALP-modified substrates also promoted the osteogenic differentiation of hMSCs and hADSCs by up-regulating gene expressions of runt-related transcription factor 2 (RUNX2), osterix (OSX), and osteocalcin (OC) in the two types of stem cells. The surface-immobilized ALP was stable after being subjected to 1 h immersion in 70% ethanol and autoclaving at 121 °C for 20 min. However, the enzymatic bioactivity of the surface-immobilized ALP was reduced by about 50% after these substrates were immersed in phosphate buffered saline (PBS) or PBS containing lysozyme for 14 days.

  6. Influence of Klebsiella pneumoniae CRP protein on bacterial adhesion and virulence in vitro%肺炎克雷伯菌转录调控子CRP对菌株粘附能力及细胞活性的影响

    Institute of Scientific and Technical Information of China (English)

    谭斌; 白群华; 罗美; 杨世亚; 薛健; 周锡鹏; 李迎丽; 邱景富

    2014-01-01

    Objective To analyze the adhesion and cell virulence of Klebsiella pneumonia wild type (WT) strain,complemented strain c-Δcrp (cAMP receptor protein) and mutant strain Δcrp,in order to investigate crp gene on the adhesion and cell toxicity of Klebsiella pneumonia.Methods After infection of A549 cells by Klebsiella pneumonia WT strain,c-Δcrp strain and Δcrp strain,the cells were lysed and the bacteria were quantified by plating appropriate dilutions on Luria-Bertani agar plates.LDH release was detected to estimate cell activity.Infection time and MOI were optimized.Results The adhesion ability of Klebsiella pneumonia WT (logCFU =5.145) and c-Δcrp strain (logCFU =4.915) was higher than that of Δcrp strain (logCFU =4.122) (P =0.004).The optimal conditions to determinate the LDH release included infected cells incubation for 8 h at 37 ℃,the developing time for 10 min in dark,and 1:10 dilution of the supernatant for test.The virulence of WT strain (70.69%) was significantly higher than that of Δcrp strain (19.54%) (P=0.001).Conclusion Knocking-out of crp gene causes obvious decrease of cellular toxicity and adhesion,comparing with the WT strain and c-Δcrp strain.Klebsiella pneumonia CRP protein positively regulates bacterial virulence and adhesion.%目的 分析肺炎克雷伯菌临床分离株WT(wild type)、回补株(c-Δcrp)和突变株(Δcrp)对人肺癌上皮细胞A549细胞的粘附能力及细胞活性的影响.方法 肺炎克雷伯菌WT株、c-Δcrp株和Δcrp株感染人肺癌上皮细胞A549,经裂解液裂解后平板计数计算粘附的菌量.LDH释放法检测细菌对细胞的毒性,优化感染时间和感染指数.结果 WT株及c-Δcrp株粘附的菌量分别为logCFU=5.145和logCFU=4.915,均高于Δcrp株(logCFU=4.122),差异有统计学意义(F=8.366,P=0.004).以MOI=1 000(细菌∶细胞=1000)的菌量感染靶细胞,37℃孵育8h,加底物液避光显色10 min,离心所得上清稀释10倍进行测定为最佳反应条件.WT

  7. Vimentin in Bacterial Infections

    DEFF Research Database (Denmark)

    Mak, Tim N; Brüggemann, Holger

    2016-01-01

    -vimentin interactions are presented in this review: the role of vimentin in pathogen-binding on the cell surface and subsequent bacterial invasion and the interaction of cytosolic vimentin and intracellular pathogens with regards to innate immune signaling. Mechanistic insight is presented involving distinct bacterial......Despite well-studied bacterial strategies to target actin to subvert the host cell cytoskeleton, thus promoting bacterial survival, replication, and dissemination, relatively little is known about the bacterial interaction with other components of the host cell cytoskeleton, including intermediate...... filaments (IFs). IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge...

  8. Scientific Opinion on the substantiation of a health claim related to proanthocyanidins in Urell® and reduction of bacterial colonisation of the urinary tract by inhibition of the adhesion of P-fimbriated E. coli to uroepithelial cells pursuant to Article 13(5 of Regulation (EC No 1924/2006

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA

    2013-07-01

    Full Text Available Following an application from Pharmatoka, submitted pursuant to Article 13.5 of Regulation (EC No 1924/2006 via the Competent Authority of France, the Panel on Dietetic Products, Nutrition and Allergies (NDA was asked to deliver an opinion on the scientific substantiation of a health claim related to a Urell® product containing cranberry (Vaccinium macrocarpon juice powder standardised for proanthocyanidins (PAC content and bacterial colonisation of the urinary tract by inhibition of the adhesion of P-fimbriated E. coli to uroepithelial cells. The food that is the subject of the health claim is PAC in Urell®. The Panel considers that the food constituent, PAC in Urell®, which is the subject of the claim, is sufficiently characterised. The Panel considers that reduction of bacterial colonisation of the urinary tract by inhibition of the adhesion of P-fimbriated E. coli to uroepithelial cells is a beneficial physiological effect. No human studies from which conclusions could be drawn for the scientific substantiation of the claim were provided by the applicant. The Panel concludes that a cause and effect relationship has not been established between the consumption of proanthocyanidins in Urell® and reduction of bacterial colonisation of the urinary tract by inhibition of the adhesion of P-fimbriated E. coli to uroepithelial cells.

  9. Staphylococcus epidermidis adhesion on hydrophobic and hydrophilic textured biomaterial surfaces

    International Nuclear Information System (INIS)

    It is of great interest to use nano- or micro-structured surfaces to inhibit microbial adhesion and biofilm formation and thereby to prevent biomaterial-associated infection, without modification of the surface chemistry or bulk properties of the materials and without use of the drugs. Our previous study showed that a submicron textured polyurethane surface can inhibit staphylococcal bacterial adhesion and biofilm formation. To further understand the effect of the geometry of textures on bacterial adhesion as well as the underlying mechanism, in this study, submicron and micron textured polyurethane surfaces featuring ordered arrays of pillars were fabricated and modified to have different wettabilities. All the textured surfaces were originally hydrophobic and showed significant reductions in Staphylococcus epidermidis RP62A adhesion in phosphate buffered saline or 25% platelet poor plasma solutions under shear, as compared to smooth surfaces. After being subjected to an air glow discharge plasma treatment, all polyurethane surfaces were modified to hydrophilic, and reductions in bacterial adhesion on surfaces were subsequently found to be dependent on the size of the patterns. The submicron patterned surfaces reduced bacterial adhesion, while the micron patterned surfaces led to increased bacterial adhesion. The extracellular polymeric substances (EPS) from the S. epidermidis cell surfaces were extracted and purified, and were coated on a glass colloidal surface so that the adhesion force and separation energy in interactions of the EPS and the surface could be measured by colloidal probe atomic force microscopy. These results were consistent with the bacterial adhesion observations. Overall, the data suggest that the increased surface hydrophobicity and the decreased availability of the contact area contributes to a reduction in bacterial adhesion to the hydrophobic textured surfaces, while the availability of the contact area is the primary determinant factor

  10. Scientific Opinion on the substantiation of a health claim related to Monurelle® and reduction of bacterial colonisation of the urinary tract by the inhibition of the adhesion of P-fimbriated E.coli to uroepithelial cells pursuant to Article 13(5 of Regulation (EC No 1924/2006

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA

    2013-02-01

    Full Text Available Following an application from Zambon B.V., submitted for authorisation of a health claim pursuant to Article 13(5 of Regulation (EC No 1924/2006 via the Competent Authority of the Netherlands, the Panel on Dietetic Products, Nutrition and Allergies (NDA was asked to deliver an opinion on the scientific substantiation of a health claim related to Monurelle® and reduction of bacterial colonisation of the urinary tract by the inhibition of the adhesion of P-fimbriated E.coli to uroepithelial cells. The food that is the subject of the health claim, Monurelle®, which is a combination of 120 mg cranberry (Vaccinium macrocarpon extract (including 36 mg proanthocyanidins and 60 mg of ascorbic acid, is sufficiently characterised. The claimed effect proposed by the applicant is reduction of E.coli adhesion to uroepithelial cells. The Panel considers that reduction of bacterial colonisation of the urinary tract by inhibition of the adhesion of P-fimbriated E.coli to uroepithelial cells is a beneficial physiological effect. Several health claim applications on cranberry products standardised by their proanthocyanidin content have already been evaluated by EFSA with an unfavourable outcome. The Panel notes that no studies from which conclusions could be drawn for the scientific substantiation of the claim were provided by the applicant. The Panel concludes that a cause and effect relationship has not been established between the consumption of Monurelle® and reduction of bacterial colonisation of the urinary tract by inhibition of the adhesion of P-fimbriated E.coli to uroepithelial cells.

  11. Effect of osteopontin on the initial adhesion of dental bacteria.

    Science.gov (United States)

    Schlafer, Sebastian; Meyer, Rikke L; Sutherland, Duncan S; Städler, Brigitte

    2012-12-28

    Bacterial biofilms are involved in numerous infections of the human body, including dental caries. While conventional therapy of biofilm diseases aims at eradication and mechanical removal of the biofilms, recent therapeutic approaches target the mechanisms of biofilm formation and bacterial adhesion in particular. The effect of bovine milk osteopontin, a highly phosphorylated whey protein, on adhesion of Streptococcus mitis, Streptococcus sanguinis, and Actinomyces naeslundii, three prominent colonizers in dental biofilms, to saliva-coated surfaces was investigated. While adhesion of A. naeslundii was not affected by osteopontin, a strong, dose-dependent reduction in the number of adhering S. mitis was shown. No difference in bacterial adhesion was observed for caseinoglycomacropeptide, another phosphorylated milk protein. Osteopontin did not affect bacterial viability, but changed bacterial surface hydrophobicity, and may be suggested to prevent the adhesins of S. mitis from interacting with their salivary receptors. The antiadhesive effect of osteopontin may be useful for caries prevention. PMID:23167781

  12. Monitoring of bacterial adhesion by image analysis

    Czech Academy of Sciences Publication Activity Database

    Krulikovská, T.; Schreiberová, O.; Chernyavskiy, Oleksandr; Hrdinová, J.; Masák, J.; Čejková, A.; Jirků, V.; Hron, P.

    Chania: Technical University of Crete, 2008 - (Kalogerakis, N.; Fava, F.; Banwart, S.), s. 1-4 ISBN 978-960-8475-12-0. [European Bioremediation Conference /4./. Chania (GR), 03.09.2008-06.09.2008] Grant ostatní: GA Mšk(CZ) 2B08062 Institutional research plan: CEZ:AV0Z50110509 Keywords : biofilm * rhodococcus erythropolis * confocal microscopy Subject RIV: BO - Biophysics

  13. Bacterial gastroenteritis

    Science.gov (United States)

    Infectious diarrhea - bacterial gastroenteritis; Acute gastroenteritis; Gastroenteritis - bacterial ... Bacterial gastroenteritis can affect 1 person or a group of people who all ate the same food. It is ...

  14. Adhesion of actinomyces isolates to experimental pellicles.

    Science.gov (United States)

    Steinberg, D; Kopec, L K; Bowen, W H

    1993-06-01

    The ability of oral bacteria to adhere to surfaces is associated with their pathogenicity. Actinomyces can adhere to pellicle and cells through extracellular fimbriae. Research on adhesion of actinomyces has been conducted with use of hydroxyapatite (HA) coated with mammalian-derived salivary constituents, whereas the bacterial-derived components of the acquired pellicle have been largely ignored. The influence of the cell-free bacterial enzyme, glucosyltransferase (GTF), on adhesion of human and rodent isolates of Actinomyces viscosus was examined. Cell-free GTF was adsorbed onto parotid saliva-coated hydroxyapatite (sHA). Next, A. viscosus was exposed to the pellicle following the synthesis of glucan formed in situ by GTF. Glucans formed on the pellicle served as binding sites for adhesion of a rodent strain of A. viscosus. Conversely, the presence of in situ glucans on sHA reduced the adhesion of human isolates of A. viscosus compared with their adhesion to sHA. Adhesion of the rodent strains may be facilitated through a dextran-binding protein, since the rodent strains aggregated in the presence of dextrans and mutan. The human isolates were not aggregated by dextran or mutan. Pellicle harboring A. viscosus rodent strains interfered with the subsequent adhesion of Streptococcus mutans to the bacterial-coated pellicle. In contrast, the adhesion of S. mutans to pellicle was not decreased when the pellicle was pre-exposed to a human isolate of A. viscosus. The experimental data suggest that human and the rodent isolates of A. viscosus have distinct glucan adhesion properties.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8496474

  15. Adhesion and Cohesion

    Directory of Open Access Journals (Sweden)

    J. Anthony von Fraunhofer

    2012-01-01

    Full Text Available The phenomena of adhesion and cohesion are reviewed and discussed with particular reference to dentistry. This review considers the forces involved in cohesion and adhesion together with the mechanisms of adhesion and the underlying molecular processes involved in bonding of dissimilar materials. The forces involved in surface tension, surface wetting, chemical adhesion, dispersive adhesion, diffusive adhesion, and mechanical adhesion are reviewed in detail and examples relevant to adhesive dentistry and bonding are given. Substrate surface chemistry and its influence on adhesion, together with the properties of adhesive materials, are evaluated. The underlying mechanisms involved in adhesion failure are covered. The relevance of the adhesion zone and its importance with regard to adhesive dentistry and bonding to enamel and dentin is discussed.

  16. Vimentin in Bacterial Infections.

    Science.gov (United States)

    Mak, Tim N; Brüggemann, Holger

    2016-01-01

    Despite well-studied bacterial strategies to target actin to subvert the host cell cytoskeleton, thus promoting bacterial survival, replication, and dissemination, relatively little is known about the bacterial interaction with other components of the host cell cytoskeleton, including intermediate filaments (IFs). IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge about the role of IFs in bacterial infections, focusing on the type III IF protein vimentin. Recent studies have revealed the involvement of vimentin in host cell defenses, acting as ligand for several pattern recognition receptors of the innate immune system. Two main aspects of bacteria-vimentin interactions are presented in this review: the role of vimentin in pathogen-binding on the cell surface and subsequent bacterial invasion and the interaction of cytosolic vimentin and intracellular pathogens with regards to innate immune signaling. Mechanistic insight is presented involving distinct bacterial virulence factors that target vimentin to subvert its function in order to change the host cell fate in the course of a bacterial infection. PMID:27096872

  17. Vimentin in Bacterial Infections

    Directory of Open Access Journals (Sweden)

    Tim N. Mak

    2016-04-01

    Full Text Available Despite well-studied bacterial strategies to target actin to subvert the host cell cytoskeleton, thus promoting bacterial survival, replication, and dissemination, relatively little is known about the bacterial interaction with other components of the host cell cytoskeleton, including intermediate filaments (IFs. IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge about the role of IFs in bacterial infections, focusing on the type III IF protein vimentin. Recent studies have revealed the involvement of vimentin in host cell defenses, acting as ligand for several pattern recognition receptors of the innate immune system. Two main aspects of bacteria-vimentin interactions are presented in this review: the role of vimentin in pathogen-binding on the cell surface and subsequent bacterial invasion and the interaction of cytosolic vimentin and intracellular pathogens with regards to innate immune signaling. Mechanistic insight is presented involving distinct bacterial virulence factors that target vimentin to subvert its function in order to change the host cell fate in the course of a bacterial infection.

  18. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2013. Scientific Opinion on the substantiation of a health claim related to proanthocyanidins in Urell® and reduction of bacterial colonisation of the urinary tract by inhibition of the adhesion of P-fimbriated E. coli

    DEFF Research Database (Denmark)

    Tetens, Inge

    related to a Urell® product containing cranberry (Vaccinium macrocarpon) juice powder standardised for proanthocyanidins (PAC) content and bacterial colonisation of the urinary tract by inhibition of the adhesion of P-fimbriated E. coli to uroepithelial cells. The food that is the subject of the health......Following an application from Pharmatoka, submitted pursuant to Article 13(5) of Regulation (EC) No 1924/2006 via the Competent Authority of France, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver an opinion on the scientific substantiation of a health claim...

  19. Scientific Opinion on the substantiation of a health claim related to Monurelle® and reduction of bacterial colonisation of the urinary tract by the inhibition of the adhesion of P-fimbriated E.coli to uroepithelial cells pursuant to Article 13(5) of Regulation (EC) No 1924/2006

    OpenAIRE

    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA)

    2013-01-01

    Following an application from Zambon B.V., submitted for authorisation of a health claim pursuant to Article 13(5) of Regulation (EC) No 1924/2006 via the Competent Authority of the Netherlands, the Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver an opinion on the scientific substantiation of a health claim related to Monurelle® and reduction of bacterial colonisation of the urinary tract by the inhibition of the adhesion of P-fimbriated E.coli to uroepithelial ...

  20. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of a health claim related to Monurelle® and reduction of bacterial colonisation of the urinary tract by the inhibition of the adhesion of P-fimbriated E.coli to uroepithelial cells pursuant to Article 13(5) of Regulation (EC) No 1924/2006

    OpenAIRE

    Tetens, Inge

    2013-01-01

    Following an application from Zambon B.V., submitted for authorisation of a health claim pursuant to Article 13(5) of Regulation (EC) No 1924/2006 via the Competent Authority of the Netherlands, the Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver an opinion on the scientific substantiation of a health claim related to Monurelle® and reduction of bacterial colonisation of the urinary tract by the inhibition of the adhesion of P-fimbriated E.coli to uroepithelial ...

  1. Nanoscale Adhesion Forces of Pseudomonas aeruginosa Type IV Pili

    OpenAIRE

    Beaussart, Audrey; Baker, Amy E.; Kuchma, Sherry L.; El-Kirat-Chatel, Sofiane; O’Toole, George A; Yves F Dufrêne

    2014-01-01

    A variety of bacterial pathogens use nanoscale protein fibers called type IV pili to mediate cell adhesion, a primary step leading to infection. Currently, how these nanofibers respond to mechanical stimuli and how this response is used to control adhesion is poorly understood. Here, we use atomic force microscopy techniques to quantify the forces guiding the adhesion of Pseudomonas aeruginosa type IV pili to surfaces. Using chemical force microscopy and single-cell force spectroscopy, we sho...

  2. Adhesive interactions between medically important yeasts and bacteria

    NARCIS (Netherlands)

    Millsap, KW; van der Mei, HC; Busscher, HJ; Bos, R.R.M.

    1998-01-01

    Yeasts are being increasingly identified as important organisms in human infections. Adhesive interactions between yeasts and bacteria may contribute to yeast retention al body sites. Methods for studying adhesive interactions between bacterial strains are well known, and range from simple macroscop

  3. Advanced adhesives in electronics

    CERN Document Server

    Bailey, C

    2011-01-01

    Adhesives are widely used in the manufacture of electronic devices to act as passive and active components. Recently there has been considerable interest in the use of conductive adhesives. This book reviews key types of conductive adhesives, processing methods, properties and the way they can be modelled as well as potential applications.$bAdhesives for electronic applications serve important functional and structural purposes in electronic components and packaging, and have developed significantly over the last few decades. Advanced adhesives in electronics reviews recent developments in adhesive joining technology, processing and properties. The book opens with an introduction to adhesive joining technology for electronics. Part one goes on to cover different types of adhesive used in electronic systems, including thermally conductive adhesives, isotropic and anisotropic conductive adhesives and underfill adhesives for flip-chip applications. Part two focuses on the properties and processing of electronic ...

  4. Anti-adhesive properties of fish tropomyosins

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; Bernbom, Nete; Gram, Lone;

    2008-01-01

    Aims: We have recently found that preconditioning of stainless steel surfaces with an aqueous fish muscle extract can significantly impede bacterial adhesion. The purpose of this study was to identify and characterize the primary components associated with this bacteria-repelling effect. Methods...

  5. Adhesion of food-borne bacteria to stainless steel is reduced by food conditioning films

    DEFF Research Database (Denmark)

    Bernbom, Nete; Ng, Yin; Jorgensen, R.L.;

    2009-01-01

    Preconditioning of stainless steel with aqueous cod muscle extract significantly impedes subsequent bacterial adhesion most likely due to repelling effects of fish tropomyosin. The purpose of this study was to determine if other food conditioning films decrease or enhance bacterial adhesion...

  6. Extract from Rumex acetosa L. for prophylaxis of periodontitis: inhibition of bacterial in vitro adhesion and of gingipains of Porphyromonas gingivalis by epicatechin-3-O-(4β→8-epicatechin-3-O-gallate (procyanidin-B2-Di-gallate.

    Directory of Open Access Journals (Sweden)

    Jana Schmuch

    Full Text Available The aerial parts of Rumex acetosa L. have been used in traditional European medicine for inflammatory diseases of the mouth epithelial tissue. The following study aimed to investigate the influence of a proanthocyanidin-enriched extract from R. acetosa extract against the adhesion of Porphyromonas gingivalis (P. gingivalis, a pathogen strongly involved in chronic and aggressive periodontitis. A further goal was to define the bioactive lead structures responsible for a potential antiadhesive activity and to characterize the underlying molecular mechanisms of the antiadhesive effects.An extract of R. acetosa (RA1 with a defined mixture of flavan-3-ols, oligomeric proanthocyanidins and flavonoids, was used. Its impact on P. gingivalis adhesion to KB cells was studied by flow cytometry, confocal laser scanning microscopy and in situ adhesion assay using murine buccal tissue. RA1 and its compounds 1 to 15 were further investigated for additional effects on gingipain activity, hemagglutination and gene expression by RT-PCR.RA1 (5 to 15 μg/mL reduced P. gingivalis adhesion in a dose-dependent manner to about 90%. Galloylated proanthocyanidins were confirmed to be responsible for this antiadhesive effect with epicatechin-3-O-gallate-(4β,8-epicatechin-3'-O-gallate (syn. procyanidin B2-di-gallate being the lead compound. Ungalloylated flavan-3-ols and oligomeric proanthocyanidins were inactive. RA1 and the galloylated proanthocyanidins strongly interact with the bacterial virulence factor Arg-gingipain, while the corresponding Lys-gingipain was hardly influenced. RA1 inhibited also hemagglutination. In silico docking studies indicated that epicatechin-3-O-gallate-(4β,8-epicatechin-3'-O-gallate interacts with the active side of Arg-gingipain and hemaglutinin from P. gingivalis; the galloylation of the molecule seems to be responsible for fixation of the ligand to the protein. In conclusion, the proanthocyanidin-enriched extract RA1 and its main active

  7. Adhesion in microelectronics

    CERN Document Server

    Mittal, K L

    2014-01-01

    This comprehensive book will provide both fundamental and applied aspects of adhesion pertaining to microelectronics in a single and easily accessible source. Among the topics to be covered include; Various theories or mechanisms of adhesionSurface (physical or chemical) characterization of materials as it pertains to adhesionSurface cleaning as it pertains to adhesionWays to improve adhesionUnraveling of interfacial interactions using an array of pertinent techniquesCharacterization of interfaces / interphasesPolymer-polymer adhesionMetal-polymer adhesion  (metallized polymers)Polymer adhesi

  8. Thermal Characterization of Adhesive

    Science.gov (United States)

    Spomer, Ken A.

    1999-01-01

    The current Space Shuttle Reusable Solid Rocket Motor (RSRM) nozzle adhesive bond system is being replaced due to obsolescence. Down-selection and performance testing of the structural adhesives resulted in the selection of two candidate replacement adhesives, Resin Technology Group's Tiga 321 and 3M's EC2615XLW. This paper describes rocket motor testing of these two adhesives. Four forty-pound charge motors were fabricated in configurations that would allow side by side comparison testing of the candidate replacement adhesives and the current RSRM adhesives. The motors provided an environment where the thermal performance of adhesives in flame surface bondlines was compared. Results of the FPC testing show that: 1) The phenolic char depths on radial bond lines is approximately the same and vary depending on the position in the blast tube regardless of which adhesive was used; 2) The adhesive char depth of the candidate replacement adhesives is less than the char depth of the current adhesives; 3) The heat-affected depth of the candidate replacement adhesives is less than the heat-affected depth of the current adhesives; and 4) The ablation rates for both replacement adhesives are slower than that of the current adhesives.

  9. Adhesion Potential of Intestinal Microbes Predicted by Physico-Chemical Characterization Methods

    OpenAIRE

    de Wouters, Tomas; Jans, Christoph; Niederberger, Tobias; Fischer, Peter; Rühs, Patrick Alberto

    2015-01-01

    Bacterial adhesion to epithelial surfaces affects retention time in the human gastro-intestinal tract and therefore significantly contributes to interactions between bacteria and their hosts. Bacterial adhesion among other factors is strongly influenced by physico-chemical factors. The accurate quantification of these physico-chemical factors in adhesion is however limited by the available measuring techniques. We evaluated surface charge, interfacial rheology and tensiometry (interfacial ten...

  10. Understanding Marine Mussel Adhesion

    Energy Technology Data Exchange (ETDEWEB)

    H. G. Silverman; F. F. Roberto

    2007-12-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are waterimpervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion.

  11. Understanding marine mussel adhesion.

    Science.gov (United States)

    Silverman, Heather G; Roberto, Francisco F

    2007-01-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are water-impervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion. PMID:17990038

  12. Adhesion of streptococcus rattus and streptococcus mutans to metal surfaces

    International Nuclear Information System (INIS)

    The adhesion of Streptococcus rattus BHT and Streptococcus mutans IB to metal specimens of amalgam, silver, tin and copper was studied using (6-3H) thymidine labeled cells. In the standard assay the metal specimens were suspended by a nylon thread in an adhesion solution containing a chemically defined bacterial growth medium (FMC), sucrose, and radiolabeled bacteria. Maximum amounts of adhering bacteria were obtained after about 100 min of incubation. Saturation of the metal specimens with bacteria was not observed. Both strains also adhered in the absence of sucrose, indicating that glucan formation was not necessary for adhesion. However, in the presence of glucose, adhesion was only 26-45% of that observed in the presence of equimolar sucrose. Sucrose-dependent stimulation of adhesion seemed to be due to increased cell-to-cell adhesion capacity. Isolated radiolabeled water-insoluble and water-soluble polysaccharides produced from sucrose by S. rattus BHT were not adsorbed to the metal surfaces. (author)

  13. PH dependent adhesive peptides

    Science.gov (United States)

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  14. Engineering bio-adhesive functions in an antimicrobial polymer multilayer

    International Nuclear Information System (INIS)

    Functionalization of a biomaterial surface with adhesive ligands is an effective way to promote specific cell adhesion. Ideally, biomaterial for applications in biomedical implants should simultaneously promote host cell adhesion and inhibit bacterial adhesion. Currently, little attention has been paid to the design of antimicrobial biomaterial with selective adhesiveness towards only targeted cells or tissues. In this study, the role of two typical adhesive ligands on the bioadhesion functions of a model antimicrobial film was elucidated. First, an adhesive ligand including an RGD peptide or collagen (CL) was chemically coupled to an antimicrobial polymeric multilayer composed of dextran sulfate (DS) and chitosan (CS). It was demonstrated that the density of RGD and CL immobilized on the DS/CS multilayer ranges between 4 to 137 ng cm−2 and 100 to 1000 ng cm−2, respectively. Then the effect of immobilized RGD or CL on both bacterial and fibroblast adhesion was investigated. By determining the density and morphology of adherent fibroblast on a DS/CS multilayer with or without an adhesive ligand, it was shown that RGD or CL effectively promoted fibroblast adhesion and proliferation in a concentration-dependent manner. Interestingly, the type of adhesive ligands imposed distinct effects in bacterial adhesion. Immobilized RGD did not enhance Staphylococcus aureus and Escherichia coli adhesion on DS/CS multilayers under all concentrations. In contrast, CL triggered significant S. aureus adhesion on DS/CS multilayers even at low surface concentration and when fibroblast adhesion was absent. Moreover, the detachment forces of individual S. aureus on CL coated DS/CS multilayers probed by atomic force microscopy (AFM) was 3 times and 20 times higher than that on the control substrate and on unmodified DS/CS multilayers, respectively. Interestingly, the lowest detachment force of E. coli was found on the CL coated DS/CS multilayers. This study demonstrated the

  15. Particle adhesion and removal

    CERN Document Server

    Mittal, K L

    2015-01-01

    The book provides a comprehensive and easily accessible reference source covering all important aspects of particle adhesion and removal.  The core objective is to cover both fundamental and applied aspects of particle adhesion and removal with emphasis on recent developments.  Among the topics to be covered include: 1. Fundamentals of surface forces in particle adhesion and removal.2. Mechanisms of particle adhesion and removal.3. Experimental methods (e.g. AFM, SFA,SFM,IFM, etc.) to understand  particle-particle and particle-substrate interactions.4. Mechanics of adhesion of micro- and  n

  16. Multiple linear regression analysis of bacterial deposition to polyurethane coatings after conditioning film formation in the marine environment

    NARCIS (Netherlands)

    Bakker, D.P.; Busscher, H.J.; Zanten, J. van; Vries, J. de; Klijnstra, J.W.; Mei, H.C. van der

    2004-01-01

    Many studies have shown relationships of substratum hydrophobicity, charge or roughness with bacterial adhesion, although bacterial adhesion is governed by interplay of different physico-chemical properties and multiple regression analysis would be more suitable to reveal mechanisms of bacterial adh

  17. Multiple linear regression analysis of bacterial deposition to polyurethane coating after conditioning film formation in the marine environment

    NARCIS (Netherlands)

    Bakker, Dewi P; Busscher, Henk J; van Zanten, Joyce; de Vries, Jacob; Klijnstra, Job W; van der Mei, Henny C

    2004-01-01

    Many studies have shown relationships of substratum hydrophobicity, charge or roughness with bacterial adhesion, although bacterial adhesion is governed by interplay of different physico-chemical properties and multiple regression analysis would be more suitable to reveal mechanisms of bacterial adh

  18. Staphylococcus aureus and Staphylococcus epidermidis adhesion to nanohydroxyapatite in the presence of model proteins

    International Nuclear Information System (INIS)

    Bacterial infections can have adverse effects on the efficacy, lifetime, and safety of an implanted device. The aim of this study was to investigate the initial adhesion of several strains, namely S. aureus and S. epidermidis, on two distinct types of nanohydroxyapatite (nanoHA), sintered at 725 °C and 1000 °C. A comparison was also made with nanohydroxyapatite having adsorbed fetal bovine serum (FBS), human fibronectin (FN) and human serum albumin (HSA). Adhered bacterial cells were examined by scanning electron microscopy and quantified as colony forming units after being released by sonication. The wettability of the sample surface with and without adsorbed protein was assessed by contact-angle measurements. NanoHA sintered at 1000 °C showed lower bacterial adhesion than this heat-treated at 725 °C. Adsorption of FBS onto the nanoHA surface caused a decrease in the adhesion of all strains on both materials. The bacterial adhesion patterns in the presence of FN were different for both nanoHA substrates; the adherence of the bacterial strains, except for the clinical strain of S. epidermidis, was significantly higher on nanoHA 1000 in comparison to nanoHA 1000 without protein and the bacterial adhesion on the FN-coated nanoHA 725 was lower in comparison to the bare nanoHA 725. The effect of HSA on bacterial adhesion was concentration and bacterial strain dependent. (paper)

  19. Radiation-curable adhesives

    International Nuclear Information System (INIS)

    Radiation-curable adhesives may be classified into two broad categories. In the first category, adhesive bonding occurs as a direct result of irradiation. The second category includes pressure-sensitive and hot-melt adhesives, which are composed of linear or lightly cross-linked polymers prepared by a radiation-induced polymerization reaction. This chapter is mainly concerned with radiation-curable adhesives of the first category. The various adhesive types are discussed and adhesive performance is examined, particularly in relation to the chemistry and chemical technology which underlies the individual materials. A description of a limited number of representative applications is included as is an outline of recent developments of curing and dispensing equipment. 268 refs., 14 figs., 13 tabs

  20. Tissue adhesives in otorhinolaryngology

    Directory of Open Access Journals (Sweden)

    Schneider, Gerlind

    2009-01-01

    Full Text Available The development of medical tissue adhesives has a long history without finding an all-purpose tissue adhesive for clinical daily routine. This is caused by the specific demands which are made on a tissue adhesive, and the different areas of application. In otorhinolaryngology, on the one hand, this is the mucosal environment as well as the application on bones, cartilage and periphery nerves. On the other hand, there are stressed regions (skin, oral cavity, pharynx, oesophagus, trachea and unstressed regions (middle ear, nose and paranasal sinuses, cranial bones. But due to the facts that adhesives can have considerable advantages in assuring surgery results, prevention of complications and so reduction of medical costs/treatment expenses, the search for new adhesives for use in otorhinolaryngology will be continued intensively. In parallel, appropriate application systems have to be developed for microscopic and endoscopic use.

  1. Adhesion of Pseudomonas fluorescens onto nanophase materials

    Science.gov (United States)

    Webster, Thomas J.; Tong, Zonghua; Liu, Jin; Banks, M. Katherine

    2005-07-01

    Nanobiotechnology is a growing area of research, primarily due to the potentially numerous applications of new synthetic nanomaterials in engineering/science. Although various definitions have been given for the word 'nanomaterials' by many different experts, the commonly accepted one refers to nanomaterials as those materials which possess grains, particles, fibres, or other constituent components that have one dimension specifically less than 100 nm. In biological applications, most of the research to date has focused on the interactions between mammalian cells and synthetic nanophase surfaces for the creation of better tissue engineering materials. Although mammalian cells have shown a definite positive response to nanophase materials, information on bacterial interactions with nanophase materials remains elusive. For this reason, this study was designed to assess the adhesion of Pseudomonas fluorescens on nanophase compared to conventional grain size alumina substrates. Results provide the first evidence of increased adhesion of Pseudomonas fluorescens on alumina with nanometre compared to conventional grain sizes. To understand more about the process, polymer (specifically, poly-lactic-co-glycolic acid or PLGA) casts were made of the conventional and nanostructured alumina surfaces. Results showed similar increased Pseudomonas fluorescens capture on PLGA casts of nanostructured compared to conventional alumina as on the alumina itself. For these reasons, a key material property shown to enhance bacterial adhesion was elucidated in this study for both polymers and ceramics: nanostructured surface features.

  2. Infliximab TNF-alpha antagonist decreases intraabdominal adhesions

    International Nuclear Information System (INIS)

    Objective was to evaluate the effect of infliximab on adhesion formation and its associated morbidity and complications. This study was performed in the Faculty of Medicine, Gaze University, Turkey between July 2005 and October 2005. Thirty-five rats were randomly divided into 4 groups. Laparotomy was performed in the Sham group (n=5), whereas cecal abrasion was carried out in all other groups. After cecal abrasion 0.9% sodium chloride was administered in the saline group (n=10), infliximab was administered to the study group (n=10) and nothing was administered to the last group (n=10). Adhesion formation was evaluated with macroscopic adhesion scoring systems. Peritoneal fluid samples and mesenteric lymph node biopsies were taken to rule out bacterial peritonitis. Blood and peritoneal irrigation fluids samples were taken to measure the Tumor necrosis factor-alpha (TNF-alpha) levels. Macroscopic adhesion scores showed fewer adhesions in the infliximab group. The infliximab group had significantly fewer adhesions than the abrasion control and saline groups. According to the histological findings, there were no statistically significant differences between the groups. Early blocking of the activity of TNF-alpha after cecal abrasion resulted in lower rates of adhesion formation, macroscopically. The TNF-alpha, a proinflammatory cytokine appears to be an important mediator for postoperative adhesion formation. (author)

  3. Handbook of adhesion

    CERN Document Server

    Packham, D E

    2006-01-01

    This second edition of the successful Handbook of Adhesion provides concise and authoritative articles covering many aspects of the science and technology associated with adhesion and adhesives. It is intended to fill a gap between the necessarily simplified treatment of the student textbook and the full and thorough treatment of the research monograph and review article. The articles are structured in such a way, with internal cross-referencing and external literature references, that the reader can build up a broader and deeper understanding, as their needs require.This second edition includ

  4. Lactobacillus Adhesion to Mucus

    Directory of Open Access Journals (Sweden)

    Maxwell L. Van Tassell

    2011-05-01

    Full Text Available Mucus provides protective functions in the gastrointestinal tract and plays an important role in the adhesion of microorganisms to host surfaces. Mucin glycoproteins polymerize, forming a framework to which certain microbial populations can adhere, including probiotic Lactobacillus species. Numerous mechanisms for adhesion to mucus have been discovered in lactobacilli, including partially characterized mucus binding proteins. These mechanisms vary in importance with the in vitro models studied, which could significantly affect the perceived probiotic potential of the organisms. Understanding the nature of mucus-microbe interactions could be the key to elucidating the mechanisms of probiotic adhesion within the host.

  5. Adhesion of pathogenic Vibrio alginolyticus to the gill mucus of Pseudosciaena crocea

    Institute of Scientific and Technical Information of China (English)

    CHEN Qiang; YAN Qingpi; MA Shen; ZHUANG Zhixia; WANG Xiaoru

    2007-01-01

    Adhesion of Vibrio alginolyticus to the gill mucus of Pseudosciaena crocea has been investigated using [methyl-3H]thymidine as isotope tracer. The results showed that: the adhesive quantity of V. alginolyticus increased with bacterial concentrations and reached equilibrium after incubated for 180 min; the higher adhesive quantity was obtained at 15~30 ℃ and sourish conditions; adhesion of V. alginolyticus could not achieved without Na+, and Ca2+ played an auxiliary role in the bacterial adhesion; adhesion of V. alginolyticus was inhibited remarkably by starvation, heat treatment and periodic acid treatment; all of the eight kinds of carbohydrates investigated enhanced the adhesion of V. alginolyticus to the gill mucus of P. crocea, among them, glucose, mannose, fructose and maltose showed the specially enhanced adhesion. The results indicated that V. alginolyticus could adhere to the gill mucus of P. crocea facilely in seawater, and this bacterial adhesion was influenced by environmental factors and closely related to superficial carbohydrate structures and some heat-sensitive structures.

  6. Osteomyelitis in leukocyte adhesion deficiency type 1 syndrome

    DEFF Research Database (Denmark)

    Jabbari Azad, Farahzad; Ardalan, Maryam; H.Rafati, Ali;

    2010-01-01

    Leukocyte adhesion deficiency type 1 (LAD-1) is a rare, inherited immunodeficiency that affects one per million people yearly and usually presents with recurrent, indolent bacterial infections of the skin, mouth, and respiratory tract and impaired pus formation and wound healing. A 13-year-old girl...

  7. Influence of Surface Roughness of Stainless steel on Microbial Adhesion

    DEFF Research Database (Denmark)

    Bagge, D.; Hilbert, Lisbeth Rischel; Gram, L.

    2002-01-01

    Bacterial adhesion and biofilm formation is of growing interest in the food processing industry where bacteria can survive on surfaces and resist cleaning and disinfection. The condition of the surfaces (eg lack of cracks) and their general roughness is assumed to be important for the hygienic st...

  8. Adhesion of Streptococcus mutans to Zirconia, Titanium Alloy and some other Restorative Materials: “An in-vitro Study”

    Directory of Open Access Journals (Sweden)

    Ezzatollah Jalalian

    2015-04-01

    Full Text Available Introduction: Bacterial adhesion on restorative materials may lead to gingival inflammation and secondary caries.Objectives: The aim of this in vitro study was to evaluate the adhesion of streptococcus mutans to zirconia, Feldespatic porcelain, titanium alloy and Indirect composite resin In-vitro. The effect of surface roughness on bacterial adhesion was also studied.Materials and Methods: 10 specimens (5mm diameter, 1mm thickness of each material, Zirconia, Indirect composite resin, Titanium alloy and Feldespatic porcelain were fabricated. Enamel was used as reference. Specimens were covered with artificial saliva and bacterial suspension (109 CFU/mL. Bacterial adhesion was determined using scanning electron microscope and culturing the specimens in blood agar. Data were analyzed with One way ANOVA followed by Tukey post hoc test for roughness and Kruskal-wallis test for adhesion values.Results: The highest bacterial adhesion was recorded for composite specimens and the lowest was seen in Ziconia group (p<0.5. The mean value of adhesion for zirconia, feldespatic peocelain, Titanium alloy and indirect composite were 28±6.32, 40.80±8.40, 75±4.47 and 386±13.75, respectively. The differences between zirconia and titanium alloy and also zirconia and indirect composite and porcelain and indirect composite were statistically significant (p<0.5.Conclusion: Zirconia showed the lowest bacterial adhesion in comparison to other tested materials and Enamel. The difference between zirconia and titanium alloy and also zirconia and indirect composite was statistically significant (p<0.5. No correlation was found between surface roughness and bacterial adhesion. Keywords: Bacterial adhesions; Streptococcus mutans; Dental caries

  9. Single-cell force spectroscopy of pili-mediated adhesion

    Science.gov (United States)

    Sullan, Ruby May A.; Beaussart, Audrey; Tripathi, Prachi; Derclaye, Sylvie; El-Kirat-Chatel, Sofiane; Li, James K.; Schneider, Yves-Jacques; Vanderleyden, Jos; Lebeer, Sarah; Dufrêne, Yves F.

    2013-12-01

    Although bacterial pili are known to mediate cell adhesion to a variety of substrates, the molecular interactions behind this process are poorly understood. We report the direct measurement of the forces guiding pili-mediated adhesion, focusing on the medically important probiotic bacterium Lactobacillus rhamnosus GG (LGG). Using non-invasive single-cell force spectroscopy (SCFS), we quantify the adhesion forces between individual bacteria and biotic (mucin, intestinal cells) or abiotic (hydrophobic monolayers) surfaces. On hydrophobic surfaces, bacterial pili strengthen adhesion through remarkable nanospring properties, which - presumably - enable the bacteria to resist high shear forces under physiological conditions. On mucin, nanosprings are more frequent and adhesion forces larger, reflecting the influence of specific pili-mucin bonds. Interestingly, these mechanical responses are no longer observed on human intestinal Caco-2 cells. Rather, force curves exhibit constant force plateaus with extended ruptures reflecting the extraction of membrane nanotethers. These single-cell analyses provide novel insights into the molecular mechanisms by which piliated bacteria colonize surfaces (nanosprings, nanotethers), and offer exciting avenues in nanomedicine for understanding and controlling the adhesion of microbial cells (probiotics, pathogens).

  10. Continuous monitoring of bacterial attachment

    Science.gov (United States)

    Koeing, D. W.; Mishra, S. K.; Pierson, D. L.

    1994-01-01

    A major concern with the Space Station Freedom (SSF) water supply system is the control of longterm microbial contamination and biofilm development in the water storage and distribution systems. These biofilms have the potential for harboring pathogens as well as microbial strains containing resistance factors that could negatively influence crew health. The proposed means for disinfecting the water system on SSF (iodine) may encourage the selection of resistant strains. In fact, biofilm bacteria were observed in water lines from the Space Shuttle Columbia (OV-102); therefore, an alternative remediation method is required to disinfect spacecraft water lines. A thorough understanding of colonization events and the physiological parameters that will influence bacteria adhesion is required. The limiting factor for development of this technology is the ability to continuously monitor adhesion events and the effects of biocides on sessile bacteria. Methods were developed to allow bacterial adhesion and subsequent biocidal treatment to be monitored continuously. This technique couples automated image analysis with a continuous flow of a bacterial suspension through an optical flow cell. A strain of Pseudomonas cepacia isolated from the water supply of the Space Shuttle Discovery (OV-103) during STS-39 was grown in a nitrogen-limited continuous culture. This culture was challenged continuously with iodine during growth, and the adhesion characteristics of this strain was measure with regard to flow rate. Various biocides (ozone, hypochlorite, and iodine) were added to the flow stream to evaluate how well each chemical removed the bacteria. After biocide treatment, a fresh bacterial suspension was introduced into the flow cell, and the attachment rate was evaluated on the previously treated surface. This secondary fouling was again treated with biocide to determine the efficacy of multiple batch chemical treatments in removing biofilm.

  11. The 'Swiss cheese' instability of bacterial biofilms

    CERN Document Server

    Jang, Hongchul; Stocker, Roman

    2012-01-01

    We demonstrate a novel pattern that results in bacterial biofilms as a result of the competition between hydrodynamic forces and adhesion forces. After the passage of an air plug, the break up of the residual thin liquid film scrapes and rearranges bacteria on the surface, such that a Swiss cheese pattern of holes is left in the residual biofilm.

  12. Adhesion of Lunar Dust

    Science.gov (United States)

    Walton, Otis R.

    2007-04-01

    This paper reviews the physical characteristics of lunar dust and the effects of various fundamental forces acting on dust particles on surfaces in a lunar environment. There are transport forces and adhesion forces after contact. Mechanical forces (i.e., from rover wheels, astronaut boots and rocket engine blast) and static electric effects (from UV photo-ionization and/or tribo-electric charging) are likely to be the major contributors to the transport of dust particles. If fine regolith particles are deposited on a surface, then surface energy-related (e.g., van der Walls) adhesion forces and static-electric-image forces are likely to be the strongest contributors to adhesion. Some measurement techniques are offered to quantify the strength of adhesion forces. And finally some dust removal techniques are discussed.

  13. Leukocyte Adhesion Deficiency (LAD)

    Science.gov (United States)

    ... Content Marketing Share this: Main Content Area Leukocyte Adhesion Deficiency (LAD) LAD is an immune deficiency in ... are slow to heal also may have LAD. Treatment and Research Doctors prescribe antibiotics to prevent and ...

  14. Management of adhesive capsulitis

    OpenAIRE

    Neviaser, Andrew

    2015-01-01

    Kristen L Stupay,1 Andrew S Neviaser2 1Tulane University School of Medicine, New Orleans, LA, USA; 2George Washington University Medical Faculty Associates, Washington, DC, USA Abstract: Adhesive capsulitis of the shoulder is a condition of capsular contracture that reduces both active and passive glenohumeral motion. The cause of adhesive capsulitis is not known but it is strongly associated with endocrine abnormalities such as diabetes. Diverse terminology and the absence of definitive cri...

  15. Bacterial Vaginosis

    Science.gov (United States)

    ... 586. Related Content STDs during Pregnancy Fact Sheet Pregnancy and HIV, Viral Hepatitis, and STD Prevention Pelvic Inflammatory Disease ( ... Bacterial Vaginosis (BV) Chlamydia Gonorrhea Genital Herpes Hepatitis HIV/AIDS & STDs Human Papillomavirus ... STDs See Also Pregnancy Reproductive ...

  16. Bacterial Meningitis

    Science.gov (United States)

    ... Schedules Preteen & Teen Vaccines Meningococcal Disease Sepsis Bacterial Meningitis Recommend on Facebook Tweet Share Compartir On this ... serious disease. Laboratory Methods for the Diagnosis of Meningitis This manual summarizes laboratory methods used to isolate, ...

  17. Prostatitis - bacterial

    Science.gov (United States)

    Any bacteria that can cause a urinary tract infection can cause acute bacterial prostatitis. Infections spread through sexual contact can cause prostatitis. These include chlamydia and gonorrhea . Sexually transmitted ...

  18. Bacterial Conjunctivitis

    OpenAIRE

    Köhle, Ülkü; Kükner, Şahap

    2003-01-01

    Conjunctivitis is an infection of the conjunctiva, generally characterized by irritation, itching, foreign body sensation, tearing and discharge. Bacterial conjunctivitis may be distinguished from other types of conjunctivitis by the presence of yellow–white mucopurulent discharge. It is the most common form of ocular infection all around the world. Staphylococcus species are the most common bacterial pathogenes, followed by Streptococcus pneumoniae and Haemophilus i...

  19. Adhesion mechanisms of Vibrio fluvialis to skin mucus of Epinephelus awoara

    Institute of Scientific and Technical Information of China (English)

    鄢庆枇; 赵敏慧; 王晓露; 邹文政; 陈昌生

    2010-01-01

    Vibrio fluvialis incubated in trypticase soy broth(TSB)showed stronger adhesion to the skin mucus of Epinephelus awoara than V.fluvialis grown on trypticase soy agar(TSA),and this bacterial adhesion was assessed in terms of saturation kinetics.Treating bacteria with antibody against O-antigens resulted in significantly reduced bacterial adhesion.In the early growth stage,the adhering bacteria numbers increased with incubation time,peaked at 24 h,and then dropped sharply.Prior heat treatment of the mucus at ...

  20. Sticky Matrix: Adhesion Mechanism of the Staphylococcal Polysaccharide Intercellular Adhesin.

    Science.gov (United States)

    Formosa-Dague, Cécile; Feuillie, Cécile; Beaussart, Audrey; Derclaye, Sylvie; Kucharíková, Soňa; Lasa, Iñigo; Van Dijck, Patrick; Dufrêne, Yves F

    2016-03-22

    The development of bacterial biofilms on surfaces leads to hospital-acquired infections that are difficult to fight. In Staphylococci, the cationic polysaccharide intercellular adhesin (PIA) forms an extracellular matrix that connects the cells together during biofilm formation, but the molecular forces involved are unknown. Here, we use advanced force nanoscopy techniques to unravel the mechanism of PIA-mediated adhesion in a clinically relevant methicillin-resistant Staphylococcus aureus (MRSA) strain. Nanoscale multiparametric imaging of the structure, adhesion, and elasticity of bacteria expressing PIA shows that the cells are surrounded by a soft and adhesive matrix of extracellular polymers. Cell surface softness and adhesion are dramatically reduced in mutant cells deficient for the synthesis of PIA or under unfavorable growth conditions. Single-cell force spectroscopy demonstrates that PIA promotes cell-cell adhesion via the multivalent electrostatic interaction with polyanionic teichoic acids on the S. aureus cell surface. This binding mechanism rationalizes, at the nanoscale, the well-known ability of PIA to strengthen intercellular adhesion in staphylococcal biofilms. Force nanoscopy offers promising prospects for understanding the fundamental forces in antibiotic-resistant biofilms and for designing anti-adhesion compounds targeting matrix polymers. PMID:26908275

  1. Bacterial carbonatogenesis

    International Nuclear Information System (INIS)

    Several series of experiments in the laboratory as well as in natural conditions teach that the production of carbonate particles by heterotrophic bacteria follows different ways. The 'passive' carbonatogenesis is generated by modifications of the medium that lead to the accumulation of carbonate and bicarbonate ions and to the precipitation of solid particles. The 'active' carbonatogenesis is independent of the metabolic pathways. The carbonate particles are produced by ionic exchanges through the cell membrane following still poorly known mechanisms. Carbonatogenesis appears to be the response of heterotrophic bacterial communities to an enrichment of the milieu in organic matter. The active carbonatogenesis seems to start first. It is followed by the passive one which induces the growth of initially produced particles. The yield of heterotrophic bacterial carbonatogenesis and the amounts of solid carbonates production by bacteria are potentially very high as compared to autotrophic or chemical sedimentation from marine, paralic or continental waters. Furthermore, the bacterial processes are environmentally very ubiquitous; they just require organic matter enrichment. Thus, apart from purely evaporite and autotrophic ones, all Ca and/or Mg carbonates must be considered as from heterotrophic bacterial origin. By the way, the carbon of carbonates comes from primary organic matter. Such considerations ask questions about some interpretations from isotopic data on carbonates. Finally, bacterial heterotrophic carbonatogenesis appears as a fundamental phase in the relationships between atmosphere and lithosphere and in the geo-biological evolution of Earth. (author)

  2. Electrically Conductive Epoxy Adhesives

    Directory of Open Access Journals (Sweden)

    Lan Bai

    2011-02-01

    Full Text Available Conductive adhesives are widely used in electronic packaging applications such as die attachment and solderless interconnections, component repair, display interconnections, and heat dissipation. The effects of film thickness as functions of filler volume fraction, conductive filler size, shape, as well as uncured adhesive matrix viscosity on the electrical conduction behavior of epoxy-based adhesives are presented in this work. For this purpose, epoxy-based adhesives were prepared using conductive fillers of different size, shape, and types, including Ni powder, flakes, and filaments, Ag powder, and Cu powder. The filaments were 20 μm in diameter, and 160 or 260 μm in length. HCl and H3PO4 acid solutions were used to etch and remove the surface oxide layers from the fillers. The plane resistance of filled adhesive films was measured using the four-point method. In all cases of conductive filler addition, the planar resistivity levels for the composite adhesive films increased when the film thickness was reduced. The shape of resistivity-thickness curves was negative exponential decaying type and was modeled using a mathematical relation. The relationships between the conductive film resistivities and the filler volume fractions were also derived mathematically based on the experimental data. Thus, the effects of surface treatment of filler particles, the type, size, shape of fillers, and the uncured epoxy viscosity could be included empirically by using these mathematical relations based on the experimental data. By utilizing the relations we proposed to model thickness-dependent and volume fraction-dependent conduction behaviors separately, we were able to describe the combined and coupled volume fraction-film thickness relationship mathematically based on our experimental data.

  3. Bacterial lipases

    NARCIS (Netherlands)

    Jaeger, Karl-Erich; Ransac, Stéphane; Dijkstra, Bauke W.; Colson, Charles; Heuvel, Margreet van; Misset, Onno

    1994-01-01

    Many different bacterial species produce lipases which hydrolyze esters of glycerol with preferably long-chain fatty acids. They act at the interface generated by a hydrophobic lipid substrate in a hydrophilic aqueous medium. A characteristic property of lipases is called interfacial activation, mea

  4. Bacterial Ecology

    DEFF Research Database (Denmark)

    Fenchel, Tom

    2011-01-01

    Bacterial ecology is concerned with the interactions between bacteria and their biological and nonbiological environments and with the role of bacteria in biogeochemical element cycling. Many fundamental properties of bacteria are consequences of their small size. Thus, they can efficiently exploit...

  5. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    Science.gov (United States)

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects. PMID:26457864

  6. Wood Composite Adhesives

    Science.gov (United States)

    Gomez-Bueso, Jose; Haupt, Robert

    The global environment, in which phenolic resins are being used for wood composite manufacture, has changed significantly during the last decade. This chapter reviews trends that are driving the use and consumption of phenolic resins around the world. The review begins with recent data on volume usage and regional trends, followed by an analysis of factors affecting global markets. In a section on environmental factors, the impact of recent formaldehyde emission regulations is discussed. The section on economics introduces wood composite production as it relates to the available adhesive systems, with special emphasis on the technical requirement to improve phenolic reactivity. Advances in composite process technology are introduced, especially in regard to the increased demands the improvements place upon adhesive system performance. The specific requirements for the various wood composite families are considered in the context of adhesive performance needs. The results of research into current chemistries are discussed, with a review of recent findings regarding the mechanisms of phenolic condensation and acceleration. Also, the work regarding alternate natural materials, such as carbohydrates, lignins, tannins, and proteinaceous materials, is presented. Finally, new developments in alternative adhesive technologies are reported.

  7. Coating Reduces Ice Adhesion

    Science.gov (United States)

    Smith, Trent; Prince, Michael; DwWeese, Charles; Curtis, Leslie

    2008-01-01

    The Shuttle Ice Liberation Coating (SILC) has been developed to reduce the adhesion of ice to surfaces on the space shuttle. SILC, when coated on a surface (foam, metal, epoxy primer, polymer surfaces), will reduce the adhesion of ice by as much as 90 percent as compared to the corresponding uncoated surface. This innovation is a durable coating that can withstand several cycles of ice growth and removal without loss of anti-adhesion properties. SILC is made of a binder composed of varying weight percents of siloxane(s), ethyl alcohol, ethyl sulfate, isopropyl alcohol, and of fine-particle polytetrafluoroethylene (PTFE). The combination of these components produces a coating with significantly improved weathering characteristics over the siloxane system alone. In some cases, the coating will delay ice formation and can reduce the amount of ice formed. SILC is not an ice prevention coating, but the very high water contact angle (greater than 140 ) causes water to readily run off the surface. This coating was designed for use at temperatures near -170 F (-112 C). Ice adhesion tests performed at temperatures from -170 to 20 F (-112 to -7 C) show that SILC is a very effective ice release coating. SILC can be left as applied (opaque) or buffed off until the surface appears clear. Energy dispersive spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS) data show that the coating is still present after buffing to transparency. This means SILC can be used to prevent ice adhesion even when coating windows or other objects, or items that require transmission of optical light. Car windshields are kept cleaner and SILC effectively mitigates rain and snow under driving conditions.

  8. Pathogenesis of postoperative adhesion formation

    NARCIS (Netherlands)

    Hellebrekers, B.W.J.; Kooistra, T.

    2011-01-01

    Background: Current views on the pathogenesis of adhesion formation are based on the "classical concept of adhesion formation", namely that a reduction in peritoneal fibrinolytic activity following peritoneal trauma is of key importance in adhesion development. Methods: A non-systematic literature s

  9. Interference in adhesion of bacteria and yeasts isolated from explanted voice prostheses to silicone rubber by rhamnolipid biosurfactants

    OpenAIRE

    Rodrigues, L. R.; Ibrahim M. Banat; Mei, Henny van der; J. A. Teixeira; Oliveira, Rosário

    2006-01-01

    Aims: The effects and extent of adhesion of four different bacterial and two yeast strains isolated from explanted voice prostheses to silicone rubber with and without an adsorbed rhamnolipid biosurfactant layer obtained from Pseudomonas aeruginosa DS10-129 was studied. Methods and Results: The ability of rhamnolipid biosurfactant to inhibit adhesion of micro-organisms to silicone rubber was investigated in a parallel-plate flow chamber. The anti-adhesive activity of the bio...

  10. Methods to study microbial adhesion on abiotic surfaces

    Directory of Open Access Journals (Sweden)

    Ana Meireles

    2015-09-01

    Full Text Available Microbial biofilms are a matrix of cells and exopolymeric substances attached to a wet and solid surface and are commonly associated to several problems, such as biofouling and corrosion in industries and infectious diseases in urinary catheters and prosthesis. However, these cells may have several benefits in distinct applications, such as wastewater treatment processes, microbial fuel cells for energy production and biosensors. As microbial adhesion is a key step on biofilm formation, it is very important to understand and characterize microbial adhesion to a surface. This study presents an overview of predictive and experimental methods used for the study of bacterial adhesion. Evaluation of surface physicochemical properties have a limited capacity in describing the complex adhesion process. Regarding the experimental methods, there is no standard method or platform available for the study of microbial adhesion and a wide variety of methods, such as colony forming units counting and microscopy techniques, can be applied for quantification and characterization of the adhesion process.

  11. Blocking of bacterial biofilm formation by a fish protein coating

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; Klemm, Per

    2008-01-01

    proteinaceous coating is characterized with regards to its biofilm-reducing properties by using a range of urinary tract infectious isolates with various pathogenic and adhesive properties. The antiadhesive coating significantly reduced or delayed biofilm formation by all these isolates under every condition......Bacterial biofilm formation on inert surfaces is a significant health and economic problem in a wide range of environmental, industrial, and medical areas. Bacterial adhesion is generally a prerequisite for this colonization process and, thus, represents an attractive target for the development of...... biofilm-preventive measures. We have previously found that the preconditioning of several different inert materials with an aqueous fish muscle extract, composed primarily of fish muscle alpha-tropomyosin, significantly discourages bacterial attachment and adhesion to these surfaces. Here, this...

  12. [Bacterial vaginosis].

    Science.gov (United States)

    Romero Herrero, Daniel; Andreu Domingo, Antonia

    2016-07-01

    Bacterial vaginosis (BV) is the main cause of vaginal dysbacteriosis in the women during the reproductive age. It is an entity in which many studies have focused for years and which is still open for discussion topics. This is due to the diversity of microorganisms that cause it and therefore, its difficult treatment. Bacterial vaginosis is probably the result of vaginal colonization by complex bacterial communities, many of them non-cultivable and with interdependent metabolism where anaerobic populations most likely play an important role in its pathogenesis. The main symptoms are an increase of vaginal discharge and the unpleasant smell of it. It can lead to serious consequences for women, such as an increased risk of contracting sexually transmitted infections including human immunodeficiency virus and upper genital tract and pregnancy complications. Gram stain is the gold standard for microbiological diagnosis of BV, but can also be diagnosed using the Amsel clinical criteria. It should not be considered a sexually transmitted disease but it is highly related to sex. Recurrence is the main problem of medical treatment. Apart from BV, there are other dysbacteriosis less characterized like aerobic vaginitis of which further studies are coming slowly but are achieving more attention and consensus among specialists. PMID:27474242

  13. Management of adhesive capsulitis

    Directory of Open Access Journals (Sweden)

    Stupay KL

    2015-08-01

    Full Text Available Kristen L Stupay,1 Andrew S Neviaser2 1Tulane University School of Medicine, New Orleans, LA, USA; 2George Washington University Medical Faculty Associates, Washington, DC, USA Abstract: Adhesive capsulitis of the shoulder is a condition of capsular contracture that reduces both active and passive glenohumeral motion. The cause of adhesive capsulitis is not known but it is strongly associated with endocrine abnormalities such as diabetes. Diverse terminology and the absence of definitive criteria for diagnosis make evaluating treatment modalities difficult. Many treatment methods have been reported, most with some success, but few have been proved to alter the natural course of this disease. Most afflicted patients will achieve acceptable shoulder function without surgery. Those who remain debilitated after 8–12 months are reasonable candidates for invasive treatments. Here, the various treatment methods and the data to support their use are reviewed. Keywords: frozen shoulder, stiff shoulder, periarthritis, painful shoulder 

  14. Surface roughness : causal factors : and its relation to bacterial adhesion

    OpenAIRE

    Tellefsen, Georg

    2013-01-01

    Inflammation around teeth and dental implants is considered to be due to microorganisms producing biofilm and thereby initiating the inflammatory reaction. The etiology is not yet fully understood though many risk factors have been identified, e.g. smoking, oral hygiene, stress etc. That surface roughness plays a role both in the development of the biofilm and discoloration of teeth is nowadays beyond doubt. To create a smooth surface is an important part of the oral hygien...

  15. Syndecans and cell adhesion

    DEFF Research Database (Denmark)

    Couchman, J R; Chen, L; Woods, A

    2001-01-01

    Now that transmembrane signaling through primary cell-matrix receptors, integrins, is being elucidated, attention is turning to how integrin-ligand interactions can be modulated. Syndecans are transmembrane proteoglycans implicated as coreceptors in a variety of physiological processes, including...... cell adhesion, migration, response to growth factors, development, and tumorigenesis. This review will describe this family of proteoglycans in terms of their structures and functions and their signaling in conjunction with integrins, and indicate areas for future research....

  16. Antigenic variation of pilin regulates adhesion of Neisseria meningitidis to human epithelial cells.

    Science.gov (United States)

    Nassif, X; Lowy, J; Stenberg, P; O'Gaora, P; Ganji, A; So, M

    1993-05-01

    Pili have been shown to play an essential role in the adhesion of Neisseria meningitidis to epithelial cells. However, among piliated strains, both inter- and intrastrain variability exist with respect to their degree of adhesion to epithelial cells in vitro (Virji et al., 1992). This suggests that factors other than the presence of pili per se are involved in this process. The N. meningitidis pilin subunit undergoes extensive antigenic variation. Piliated low- and high-adhesive derivatives of the same N. meningitidis strain were selected and the nucleotide sequence of the pilin gene expressed in each was determined. The highly adhesive derivatives had the same pilin sequence. The alleles encoding the pilin subunit of the low-adhesive derivatives were completely different from the one found in the high-adhesive isolates. Using polyclonal antibodies raised against one hyperadhesive variant, it was confirmed that the low-adhesive piliated derivatives expressed pilin variants antigenically different from the highly adhesive strains. The role of antigenic variation in the adhesive process of N. meningitidis was confirmed by performing allelic exchanges of the pilE locus between low- and high-adhesive isolates. Antigenic variation has been considered a means by which virulent bacteria evade the host immune system. This work provides genetic proof that a bacterial pathogen, N. meningitidis, can use antigenic variation to modulate their degree of virulence. PMID:8332064

  17. Ceramic microstructure and adhesion

    Science.gov (United States)

    Buckley, D. H.

    1985-01-01

    When a ceramic is brought into contact with a ceramic, a polymer, or a metal, strong bond forces can develop between the materials. The bonding forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between a ceramic and another solid are discussed from a theoretical consideration of the nature of the surfaces and experimentally by relating bond forces to interface resulting from solid state contact. Surface properties of ceramics correlated with adhesion include, orientation, reconstruction and diffusion as well as the chemistry of the surface specie. Where a ceramic is in contact with a metal their interactive chemistry and bond strength is considered. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structures and crystallographic orientation. Materials examined with respect to interfacial adhesive interactions include silicon carbide, nickel zinc ferrite, manganese zinc ferrite, and aluminum oxide. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.

  18. The viability and intestinal epithelial cell adhesion of probiotic strain combination--in vitro study.

    Science.gov (United States)

    Piątek, Jacek; Gibas-Dorna, Magdalena; Olejnik, Anna; Krauss, Hanna; Wierzbicki, Krzysztof; Żukiewicz-Sobczak, Wioletta; Głowacki, Maciej

    2012-01-01

    To be effective, probiotic bacteria must exhibit a number of functional characteristics, including the resistance to gastric acidity and the ability to adhere to the intestinal epithelium. In this study, we examined in vitro the viability of lactic acid bacteria (LAB) combination after exposure to low pH, and the adhesion of LAB to Caco-2 cells during coincubation of 9 bacterial strains. To test bacterial viability, 6 commercially available products were incubated in 0.1 N HCl at pH 1.2 for 60 min. The greatest growth inhibition was noted for the non-capsulated product containing the Lactobacillus rhamnosus strain (log reduction of CFU = 6.4), and the best survival observed for the product containing 9 bacterial strains, equipped with a modern capsule made according to the Multi-Resistant Encapsulation technology (log reduction of CFU = 0.1). In the adhesion experiment, the combination of 9 bacterial strains was added to 17-day-old Caco-2 cell culture for 90 min. The greatest efficiency of adhesion was observed for the inoculum containing 5.5x10(8) CFU/mL/9.6 cm(2) of Caco-2 and the dose of probiotic bacteria of 190 cells per one Caco-2 cell. As a result, approximately 157 bacterial cells adhered to one Caco-2 cell. The results indicate that the combination of 9 bacterial strains in the examined product is characterized as highly adhesive. PMID:22462453

  19. Interactions between bacteria and solid surfaces in relation to bacterial transport in porous media.

    OpenAIRE

    Rijnaarts, H.H.M.

    1994-01-01

    Interactions between bacteria and solid surfaces strongly influence the behaviour of bacteria in natural and engineered ecosystems. Many biofilm reactors and terrestrial environments are porous media. The purpose of the research presented in this thesis is to gain a better insight into the basic mechanims of bacterial adhesion and transport in such systems. This knowledge is essential for bacterial adhesion science in general, and important for practical applications such as the bioremediatio...

  20. Primary role of electron work function for evaluation of nanostructured titania implant surface against bacterial infection.

    Science.gov (United States)

    Golda-Cepa, M; Syrek, K; Brzychczy-Wloch, M; Sulka, G D; Kotarba, A

    2016-09-01

    The electron work function as an essential descriptor for the evaluation of metal implant surfaces against bacterial infection is identified for the first time. Its validity is demonstrated on Staphylococcus aureus adhesion to nanostructured titania surfaces. The established correlation: work function-bacteria adhesion is of general importance since it can be used for direct evaluation of any electrically conductive implant surfaces. PMID:27207043

  1. Characterization of adhesively bonded joints using bulk adhesive properties

    OpenAIRE

    Kon, Haruhiko

    1991-01-01

    Though using bulk adhesive properties to predict adhesively bonded joint response has yet to be proven infallible, based upon the success of previous works, this effort attempts to shed some light on the stresses present in a typical automotive bonded joint. Adhesive material properties obtained in previous works were used in a finite element analysis of a simulated automotive joint to predict the stresses in that joint. The automotive joint analyzed was a simplified repr...

  2. Adhesion to brown trout skin mucus, antagonism against cyst adhesion and pathogenicity to rainbow trout of some inhibitory bacteria against Saprolegnia parasitica .

    Science.gov (United States)

    Carbajal-González, M T; Fregeneda-Grandes, J M; González-Palacios, C; Aller-Gancedo, J M

    2013-04-29

    Biological control of saprolegniosis with bacteria might be an alternative to the use of chemical compounds. Among criteria for the selection of such bacteria are their absence of pathogenicity to fish and their ability to prevent adhesion of the pathogen to the skin mucus. The pathogenicity to rainbow trout of 21 bacterial isolates with in vitro inhibitory activity against Saprolegnia parasitica was studied. Fifteen of the isolates, identified as Aeromonas sobria, Pantoea agglomerans, Pseudomonas fluorescens, Serratia fonticola, Xanthomonas retroflexus and Yersinia kristensenii, were non-pathogenic when injected into rainbow trout. Their capacity to adhere to the skin mucus of male and female brown trout and to reduce the adhesion of S. parasitica cysts under exclusion, competition and displacement conditions was tested. The 15 bacterial isolates showed a low adhesion rate, ranging between 1.7% (for an A. sobria isolate) and 15.3% (a P. fluorescens isolate). This adhesion was greater in the case of mucus from male brown trout than from females. Similarities in the adhesion to male mucus and other substrates and correlation to that observed to polystyrene suggest that adhesion to skin mucus does not depend on the substrate. A high percentage (88.9%) of the S. parasitica cysts adhered to the skin mucus of male brown trout. Almost all of the bacteria reduced this adhesion ratio significantly under exclusion and competition conditions. However, only half of the isolates displaced cysts from skin mucus, and more bacterial cells were necessary for this effect. A novel method to study the adhesion of S. parasitica cysts to skin mucus of trout and their interactions with inhibitory bacteria is described. PMID:23670078

  3. Adhesive tape exfoliation

    DEFF Research Database (Denmark)

    Bohr, Jakob

    2015-01-01

    Single-crystal graphite can be cleaved by the use of an adhesive tape. This was also the initial route for obtaining graphene, a one-layer thick graphite slab. In this letter a few simple and fun considerations are presented in an attempt to shed some light on why this procedure is successful. In...... particular on the nature of the surprisingly small number of repetitive steps that are needed in order to obtain a single-layer slab. Two frameworks for exfoliation are investigated: parallel exfoliation involving repetitive simultaneous cleaving, the other, serial exfoliation, which involves the repetitive...

  4. Polyurethane adhesive ingestion.

    Science.gov (United States)

    Fitzgerald, Kevin T; Bronstein, Alvin C

    2013-02-01

    Polyurethane adhesives are found in a large number of household products in the United States and are used for a variety of purposes. Several brands of these expanding wood glues (those containing diphenylmethane diisocyanate [MDI]) have the potential to form gastrointestinal (GI) foreign bodies if ingested. The ingested adhesive forms an expanding ball of glue in the esophagus and gastric lumen. This expansion is caused by a polymerization reaction using the heat, water, and gastric acids of the stomach. A firm mass is created that can be 4-8 times its original volume. As little as 2 oz of glue have been reported to develop gastric foreign bodies. The obstructive mass is reported to form within minutes of ingestion of the adhesive. The foreign body can lead to esophageal impaction and obstruction, airway obstruction, gastric outflow obstruction, mucosal hemorrhage, ulceration, laceration, perforation of the esophageal and gastric linings, and death. Clinical signs following ingestion include anorexia, lethargy, vomiting, tachypnea, and abdominal distention and pain, and typically develop within 12 hours. Clinical signs may depend upon the size of the mass. If left untreated, perforation and rupture of the esophagus or stomach can occur. The glue mass does not stick to the GI mucosa and is not always detectable on abdominal palpation. Radiographs are recommended to confirm the presence of the "glue-ball" foreign body, and radiographic evidence of the obstruction may be seen as early as 4-6 hours following ingestion. Emesis is contraindicated owing to the risk of aspiration of the glue into the respiratory tree or the subsequent lodging of the expanding glue mass in the esophagus. Likewise, efforts to dilute the glue and prevent the formation of the foreign body through administration of liquids, activated charcoal, or bulk-forming products to push the foreign body through the GI tract have proven ineffective. Even endoscopy performed to remove the foreign body has

  5. Syndecan proteoglycans and cell adhesion

    DEFF Research Database (Denmark)

    Woods, A; Oh, E S; Couchman, J R

    1998-01-01

    It is now becoming clear that a family of transmembrane proteoglycans, the syndecans, have important roles in cell adhesion. They participate through binding of matrix ligand to their glycosaminoglycan chains, clustering, and the induction of signaling cascades to modify the internal microfilament...... organization. Syndecans can modulate the type of adhesive responses induced by other matrix ligand-receptor interactions, such as those involving the integrins, and so contribute to the control of cell morphology, adhesion and migration....

  6. The neural cell adhesion molecule

    DEFF Research Database (Denmark)

    Berezin, V; Bock, E; Poulsen, F M

    2000-01-01

    During the past year, the understanding of the structure and function of neural cell adhesion has advanced considerably. The three-dimensional structures of several of the individual modules of the neural cell adhesion molecule (NCAM) have been determined, as well as the structure of the complex...... between two identical fragments of the NCAM. Also during the past year, a link between homophilic cell adhesion and several signal transduction pathways has been proposed, connecting the event of cell surface adhesion to cellular responses such as neurite outgrowth. Finally, the stimulation of neurite...

  7. Bacterial hydrodynamics

    CERN Document Server

    Lauga, Eric

    2015-01-01

    Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells yet they represent the bulk of the world's biomass, and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds-number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micron scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically-complex environments. Using hydrodynamics as an organizing framework, we review the biomechanics of bacterial motility and look ahead to future challenges.

  8. Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement

    Science.gov (United States)

    Maier, Greg P.; Rapp, Michael V.; Waite, J. Herbert; Israelachvili, Jacob N.; Butler, Alison

    2015-08-01

    In physiological fluids and seawater, adhesion of synthetic polymers to solid surfaces is severely limited by high salt, pH, and hydration, yet these conditions have not deterred the evolution of effective adhesion by mussels. Mussel foot proteins provide insights about adhesive adaptations: Notably, the abundance and proximity of catecholic Dopa (3,4-dihydroxyphenylalanine) and lysine residues hint at a synergistic interplay in adhesion. Certain siderophores—bacterial iron chelators—consist of paired catechol and lysine functionalities, thereby providing a convenient experimental platform to explore molecular synergies in bioadhesion. These siderophores and synthetic analogs exhibit robust adhesion energies (Ead ≥-15 millijoules per square meter) to mica in saline pH 3.5 to 7.5 and resist oxidation. The adjacent catechol-lysine placement provides a “one-two punch,” whereby lysine evicts hydrated cations from the mineral surface, allowing catechol binding to underlying oxides.

  9. Structural and compositional characterization of the adhesive produced by reef building oysters.

    Science.gov (United States)

    Alberts, Erik M; Taylor, Stephen D; Edwards, Stephanie L; Sherman, Debra M; Huang, Chia-Ping; Kenny, Paul; Wilker, Jonathan J

    2015-04-29

    Oysters have an impressive ability to overcome difficulties of life within the stressful intertidal zone. These shellfish produce an adhesive for attaching to each other and building protective reef communities. With their reefs often exceeding kilometers in length, oysters play a major role in balancing the health of coastal marine ecosystems. Few details are available to describe oyster adhesive composition or structure. Here several characterization methods were applied to describe the nature of this material. Microscopy studies indicated that the glue is comprised of organic fiber-like and sheet-like structures surrounded by an inorganic matrix. Phospholipids, cross-linking chemistry, and conjugated organics were found to differentiate this adhesive from the shell. Symbiosis in material synthesis could also be present, with oysters incorporating bacterial polysaccharides into their adhesive. Oyster glue shows that an organic-inorganic composite material can provide adhesion, a property especially important when constructing a marine ecosystem. PMID:25843147

  10. Effect of oligosaccharides on the adhesion of gut bacteria to human HT-29 cells.

    Science.gov (United States)

    Altamimi, M; Abdelhay, O; Rastall, R A

    2016-06-01

    The influence of five oligosaccharides (cellobiose, stachyose, raffinose, lactulose and chito-oligosaccharides) on the adhesion of eight gut bacteria (Bifidobacterium bifidum ATCC 29521, Bacteroides thetaiotaomicron ATCC 29148D-5, Clostridium leptum ATCC 29065, Blautia coccoides ATCC 29236, Faecalibacterium prausnitzii ATCC 27766, Bacteroides fragilis ATCC 23745, Clostridium difficile ATCC 43255 and Lactobacillus casei ATCC 393) to mucous secreting and non-mucous secreting HT-29 human epithelial cells, was investigated. In pure culture, the bacteria showed variations in their ability to adhere to epithelial cells. The effect of oligosaccharides diminished adhesion and the presence of mucus played a major factor in adhesion, likely due to high adhesiveness to mucins present in the native human mucus layer covering the whole cell surface. However, clostridia displayed almost the same level of adhesion either with or without mucus being present. Bl. coccoides adhesion was decreased by stachyose and cellobiose in non-mucus-secreting cells in pure culture, while in mixed faecal culture cellobiose displayed the highest antiadhesive activity with an overall average of 65% inhibition amongst tested oligomers and lactulose displayed the lowest with an average of 47.4%. Bifidobacteria, Bacteroides, lactobacilli and clostridia were inhibited within the following ranges 47-78%, 32-65%, 11.7-58% and 64-85% respectively. This means that clostridia were the most strongly influenced members of the microflora amongst the bacterial groups tested in mixed culture. In conclusion, introducing oligosaccharides which are candidate prebiotics into pure or mixed cultures has affected bacterial adhesion. PMID:27018325

  11. Stretchable, Adhesion-Tunable Dry Adhesive by Surface Wrinkling

    KAUST Repository

    Jeong, Hoon Eui

    2010-02-16

    We introduce a simple yet robust method of fabricating a stretchable, adhesion-tunable dry adhesive by combining replica molding and surface wrinkling. By utilizing a thin, wrinkled polydimethyl siloxane (PDMS) sheet with a thickness of 1 mm with built-in micropillars, active, dynamic control of normal and shear adhesion was achieved. Relatively strong normal (∼10.8 N/cm2) and shear adhesion (∼14.7 N/cm2) forces could be obtained for a fully extended (strained) PDMS sheet (prestrain of∼3%), whereas the forces could be rapidly reduced to nearly zero once the prestrain was released (prestrain of ∼0.5%). Moreover, durability tests demonstrated that the adhesion strength in both the normal and shear directions was maintained over more than 100 cycles of attachment and detachment. © 2010 American Chemical Society.

  12. Improved Adhesion and Compliancy of Hierarchical Fibrillar Adhesives.

    Science.gov (United States)

    Li, Yasong; Gates, Byron D; Menon, Carlo

    2015-08-01

    The gecko relies on van der Waals forces to cling onto surfaces with a variety of topography and composition. The hierarchical fibrillar structures on their climbing feet, ranging from mesoscale to nanoscale, are hypothesized to be key elements for the animal to conquer both smooth and rough surfaces. An epoxy-based artificial hierarchical fibrillar adhesive was prepared to study the influence of the hierarchical structures on the properties of a dry adhesive. The presented experiments highlight the advantages of a hierarchical structure despite a reduction of overall density and aspect ratio of nanofibrils. In contrast to an adhesive containing only nanometer-size fibrils, the hierarchical fibrillar adhesives exhibited a higher adhesion force and better compliancy when tested on an identical substrate. PMID:26167951

  13. Effect of adhesive thickness on adhesively bonded T-joint

    International Nuclear Information System (INIS)

    The aim of this work is to analyze the effect of adhesive thickness on tensile strength of adhesively bonded stainless steel T-joint. Specimens were made from SUS 304 Stainless Steel plate and SUS 304 Stainless Steel perforated plate. Four T-joint specimens with different adhesive thicknesses (0.5, 1.0, 1.5 and 2.0 mm) were made. Experiment result shows T-joint specimen with adhesive thickness of 1.0 mm yield highest maximum load. Identical T-joint specimen jointed by spot welding was also tested. Tensile test shows welded T-Joint had eight times higher tensile load than adhesively bonded T-joint. However, in low pressure application such as urea granulator chamber, high tensile strength is not mandatory. This work is useful for designer in fertilizer industry and others who are searching for alternative to spot welding

  14. Relevance of MUC1 mucin variable number of tandem repeats polymorphism in H pylori adhesion to gastric epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Natália R Costa; Nuno Mendes; Nuno T Marcos; Celso A Reis; Thomas Caffrey; Michael A Hollingsworth; Filipe Santos-Silva

    2008-01-01

    AIM:To evaluate the influence of MUC1 mucin variable number of tandem repeats (VNTR) variability on H pylori adhesion to gastric cells.METHODS:Enzyme linked immunosorbent assay (ELISA)-based adhesion assays were performed to measure the adhesion of different H pylori strains (HP26695 and HPTx30a) to gastric carcinoma cell lines (GP202 and MKN45) and GP202 clones expressing recombinant MUC1 with different VNTR lengths.RESULTS:Evaluation of adhesion results shows that H pylori pathogenic strain HP26695 has a significantly higher (P<0.05) adhesion to all the cell lines and clones tested,when compared to the non-pathogenic strain HPTx30a.Bacteria showed a significantly higher (P<0.05)adhesion to the GP202 cell line,when compared to the MKN45 cell line.Furthermore,both strains showed a significantly higher (P<0.05) adhesion to GP202 clones with larger MUC1 VNTR domains.CONCLUSION:This work shows that MUC1 mucin variability conditions H pylori binding to gastric cells.The extent of bacterial adhesion depends on the size of the MUC1 VNTR domain.The adhesion is further dependent on bacterial pathogenicity and the gastric cell line.MUC1 mucin variability may contribute to determine H pylori colonization of the gastric mucosa.

  15. Syndecans, signaling, and cell adhesion

    DEFF Research Database (Denmark)

    Couchman, J R; Woods, A

    1996-01-01

    structures within the heparan sulfate chains, leaving the roles of chondroitin sulfate chains and extracellular portion of the core proteins to be elucidated. Evidence that syndecans are a class of receptor involved in cell adhesion is mounting, and their small cytoplasmic domains may link with the...... transmembrane signaling from matrix to cytoskeleton, as proposed for other classes of adhesion receptors....

  16. Improved adhesive properties of recombinant bifidobacteria expressing the Bifidobacterium bifidum-specific lipoprotein BopA

    Directory of Open Access Journals (Sweden)

    Gleinser Marita

    2012-06-01

    Full Text Available Abstract Background Bifidobacteria belong to one of the predominant bacterial groups in the intestinal microbiota of infants and adults. Several beneficial effects on the health status of their human hosts have been demonstrated making bifidobacteria interesting candidates for probiotic applications. Adhesion of probiotics to the intestinal epithelium is discussed as a prerequisite for colonisation of and persistence in the gastrointestinal tract. Results In the present study, 15 different strains of bifidobacteria were tested for adhesion. B. bifidum was identified as the species showing highest adhesion to all tested intestinal epithelial cell (IEC lines. Adhesion of B. bifidum S17 to IECs was strongly reduced after treatment of bacteria with pronase. These results strongly indicate that a proteinaceous cell surface component mediates adhesion of B. bifidum S17 to IECs. In silico analysis of the currently accessible Bifidobacterium genomes identified bopA encoding a lipoprotein as a B. bifidum-specific gene previously shown to function as an adhesin of B. bifidum MIMBb75. The in silico results were confirmed by Southern Blot analysis. Furthermore, Northern Blot analysis demonstrated that bopA is expressed in all B. bifidum strains tested under conditions used to cultivate bacteria for adhesion assays. The BopA gene was successfully expressed in E. coli and purified by Ni-NTA affinity chromatography as a C-terminal His6-fusion. Purified BopA had an inhibitory effect on adhesion of B. bifidum S17 to IECs. Moreover, bopA was successfully expressed in B. bifidum S17 and B. longum/infantis E18. Strains overexpressing bopA showed enhanced adhesion to IECs, clearly demonstrating a role of BopA in adhesion of B. bifidum strains. Conclusions BopA was identified as a B. bifidum-specific protein involved in adhesion to IECs. Bifidobacterium strains expressing bopA show enhanced adhesion. Our results represent the first report on recombinant

  17. Strategy of control for bacterial biofilm processes

    Directory of Open Access Journals (Sweden)

    A. N. Mayansky

    2014-09-01

    Full Text Available Main directions of the modern search of the antibiofilm preparations aimed at adhesive bacterial reactions, control of QS-systems, influence over bis-(3’-5’-cyclic dimeric guanosine monophosphate (cdi-GMP, and secretory bacterial processes are analysed. Approaches for biofilm dispersal and increasing the sensitivity of biofilm bacteria to antimicrobial drugs are discussed. It is underlined that the majority of inhibitor molecules were studied in vitro or in infected mice experiments. It is prognosed that in future there will appear medical preparations which will help for fighting bacterial biofilms preventing their development and spreading in the host organism.

  18. Enthalpy of interaction between coaggregating and non-coaggregating oral bacterials pairs - a microcalorimetric study

    NARCIS (Netherlands)

    Postollec, F.; Norde, W.; Mei, van der H.C.; Busscher, H.J.

    2003-01-01

    Bacterial adhesion and coaggregation are involved in the development of oral biofilms, called dental plaque. Although various techniques have already been used to study different aspects of these bacterial interactions, microcalorimetry has not yet been applied. This paper describes how isothermal r

  19. Enthalpy of interaction between coaggregating and non-coaggregating oral bacterial pairs - a microcalorimetric study

    NARCIS (Netherlands)

    Postollec, F; Norde, W; van der Mei, HC; Busscher, HJ

    2003-01-01

    Bacterial adhesion and coaggregation are involved in the development of oral biofilms, called dental plaque. Although various techniques have already been used to study different aspects of these bacterial interactions, microcalorimetry has not yet been applied. This paper describes how isothermal r

  20. Hyaluronan-mediated cellular adhesion

    Science.gov (United States)

    Curtis, Jennifer

    2005-03-01

    Many cells surround themselves with a cushioning halo of polysaccharides that is further strengthened and organized by proteins. In fibroblasts and chrondrocytes, the primary component of this pericellular matrix is hyaluronan, a large linear polyanion. Hyaluronan production is linked to a variety of disease, developmental, and physiological processes. Cells manipulate the concentration of hyaluronan and hyaluronan receptors for numerous activities including modulation of cell adhesion, cell motility, and differentiation. Recent investigations by identify hyaluronan's role in mediating early-stage cell adhesion. An open question is how the cell removes the 0.5-10 micron thick pericellular matrix to allow for further mature adhesion events requiring nanometer scale separations. In this investigation, holographic optical tweezers are used to study the adhesion and viscoelastic properties of chondrocytes' pericellular matrix. Ultimately, we aim to shed further light on the spatial and temporal details of the dramatic transition from micron to nanometer gaps between the cell and its adhesive substrate.

  1. [Retention of adhesive bridges].

    Science.gov (United States)

    Raes, F; De Boever, J

    1994-04-01

    Since the development of adhesive bridges in the early seventies, the retention and therefore the durability of these bridges has been tremendously improved. Conditioning of the non-precious metal by silanisation, careful acid etching of the enamel and the use of the appropriate composite resin are of prime importance. Furthermore, the meticulous preparation with enough interproximal embrace, occlusal rests, interocclusal clearance and cingulum stops is equally important. Including more teeth in the design does not necessarily lead to an improved retention. Besides the material and technical aspects, the whole clinical procedure needs much attention. The retention does not depend on one single factor, but on the precision of all the necessary clinical steps and on a well-defined selection of the material. In this way a five-year survival rate of close to 80% can be obtained. PMID:11830965

  2. Effect of fibril shape on adhesive properties

    Science.gov (United States)

    Soto, Daniel; Hill, Ginel; Parness, Aaron; Esparza, Noé; Cutkosky, Mark; Kenny, Tom

    2010-08-01

    Research into the gecko's adhesive system revealed a unique architecture for adhesives using tiny hairs. By using a stiff material (β-keratin) to create a highly structured adhesive, the gecko's system demonstrates properties not seen in traditional pressure-sensitive adhesives which use a soft, unstructured planar layer. In contrast to pressure sensitive adhesives, the gecko adhesive displays frictional adhesion, in which increased shear force allows it to withstand higher normal loads. Synthetic fibrillar adhesives have been fabricated but not all demonstrate this frictional adhesion property. Here we report the dual-axis force testing of single silicone rubber pillars from synthetic adhesive arrays. We find that the shape of the adhesive pillar dictates whether frictional adhesion or pressure-sensitive behavior is observed. This work suggests that both types of behavior can be achieved with structures much larger than gecko terminal structures. It also indicates that subtle differences in the shape of these pillars can significantly influence their properties.

  3. Material- and feature-dependent effects on cell adhesion to micro injection moulded medical polymers.

    Science.gov (United States)

    Choi, Seong Ying; Habimana, Olivier; Flood, Peter; Reynaud, Emmanuel G; Rodriguez, Brian J; Zhang, Nan; Casey, Eoin; Gilchrist, Michael D

    2016-09-01

    Two polymers, polymethylmethacrylate (PMMA) and cyclic olefin copolymer (COC), containing a range of nano- to micron- roughness surfaces (Ra 0.01, 0.1, 0.4, 1.0, 2.0, 3.2 and 5.0μm) were fabricated using electrical discharge machining (EDM) and replicated using micro injection moulding (μIM). Polymer samples were characterized using optical profilometry, atomic force microscopy (AFM) and water surface contact angle. Cell adhesion tests were carried out using bacterial Pseudomonas fluorescens and mammalian Madin-Darby Canine Kidney (MDCK) cells to determine the effect of surface hydrophobicity, surface roughness and stiffness. It is found that there are features which gave insignificant differences (feature-dependent effect) in cell adhesion, albeit a significant difference in the physicochemical properties (material-dependent effect) of substrata. In bacterial cell adhesion, the strongest feature-dependence is found at Ra 0.4μm surfaces, with material-dependent effects strongest at Ra 0.01μm. Ra 0.1μm surfaces exhibited strongest feature-dependent effects and Ra 5.0μm has strongest material-dependent effects on mammalian cell adhesion. Bacterial cell adhesion is found to be favourable to hydrophobic surfaces (COC), with the lowest adhesion at Ra 0.4μm for both materials. Mammalian cell adhesion is lowest in Ra 0.1μm and highest in Ra 1.0μm, and generally favours hydrophilic surfaces (PMMA). These findings can be used as a basis for developing medical implants or microfluidic devices using micro injection moulding for diagnostic purposes, by tuning the cell adhesion on different areas containing different surface roughnesses on the diagnostic microfluidic devices or medical implants. PMID:27137802

  4. Comparative study of the bacterial adhesion and oral hygiene of magnetic appliance with two different kinds of materials%两种不同材质的磁力矫治器表面细菌粘附及卫生情况的对比研究

    Institute of Scientific and Technical Information of China (English)

    朱房勇; 陈玉华; 邹建明; 高宇峰; 许艳华

    2014-01-01

    Objective To investigate the bacterial adhesion and oral hygiene of magnetic appliance with the thermoplastic materials and polymethyl methacrylate plastics,in order to provide reference for clinics.Methods Eighteen patients with crossbite were selected and divided into polymethyl methacrylate plastics group(group A)and thermoplastic materials (group B),with 9 cases in each group.The two groups were observed with the indexes as follows:colony counting,peculiar smell,pigmentation,soft scale.Results Before treatment,there was no significant difference in colony counting between the two groups (P > 0.05).After treatment for 6 months and 1 years,there were significant differences in colony counting,peculiar smell and pigmentation between the two groups (P < 0.05),and increased with time.Conclusions The thermoplastic materials are superior to polymethyl methacrylate plastics in oral hygiene.But to achieve good hygiene effect,it is important to have oral health,healthy eating behaviors,maintenance and cleaning appliance.%目的 对热压膜材料和自凝塑料这两种不同材质的磁力矫治器表面细菌粘附及矫治器的卫生情况进行临床对比研究,为临床使用热压膜材料提供依据.方法 早期反(牙合)畸形患者18例随机分为两组,每组9例.A组戴用自凝塑料制作的磁力矫治器,B组戴用热压膜材料为主制作的磁力矫治器.对矫治器表面细菌附着情况,矫治器异味、色素沉着、软垢的效果进行研究.结果 A、B两组茵落计数在矫治前比较差异无统计学意义(P>0.05).在矫治后6个月及1年后A组茵落计数、异味、色素沉着情况明显大于B组,差异有统计学意义(P<0.05).A、B两组茵落计数、异味、色素沉着情况随着矫治时间的增加而增加,差异有统计学意义(P<0.05).结论 热压膜材料的卫生情况明显好于聚甲基丙烯酸甲酯,建议临床使用热压膜材料代替.但要达到良好的卫生效果,采取正确的

  5. Impact of oils and coatings on adhesion of structural adhesives

    OpenAIRE

    Hagström, Marcus

    2015-01-01

    This is a master thesis project conducted for Scania CV AB in collaboration with Swerea Kimab. The purpose is to examine how oils and coatings on the surface affect the adhesion of adhesives. Earlier work done by Scania indicate that the amount of oil applied may have an impact on the adhesion. Substrates tested are hot dipped galvanised steel, electro galvanised. AlSi and ZnMg. Oils used are Anticorit RP 3802 that is an anti-corrosive oil and Renoform 3802 that is a drawing oil. The two adhes...

  6. Multiple Pilus Motors Cooperate for Persistent Bacterial Movement in Two Dimensions

    Science.gov (United States)

    Holz, Claudia; Opitz, Dirk; Greune, Lilo; Kurre, Rainer; Koomey, Michael; Schmidt, M. Alexander; Maier, Berenike

    2010-04-01

    In various bacterial species surface motility is mediated by cycles of type IV pilus motor elongation, adhesion, and retraction, but it is unclear whether bacterial movement follows a random walk. Here we show that the correlation time of persistent movement in Neisseria gonorrhoeae increases with the number of pili. The unbinding force of individual pili from the surface F=10pN was considerably lower than the stalling force F>100pN, suggesting that density, force, and adhesive properties of the pilus motor enable a tug-of-war mechanism for bacterial movement.

  7. Wet adhesion and adhesive locomotion of snails on anti-adhesive non-wetting surfaces.

    Directory of Open Access Journals (Sweden)

    Neil J Shirtcliffe

    Full Text Available Creating surfaces capable of resisting liquid-mediated adhesion is extremely difficult due to the strong capillary forces that exist between surfaces. Land snails use this to adhere to and traverse across almost any type of solid surface of any orientation (horizontal, vertical or inverted, texture (smooth, rough or granular or wetting property (hydrophilic or hydrophobic via a layer of mucus. However, the wetting properties that enable snails to generate strong temporary attachment and the effectiveness of this adhesive locomotion on modern super-slippy superhydrophobic surfaces are unclear. Here we report that snail adhesion overcomes a wide range of these microscale and nanoscale topographically structured non-stick surfaces. For the one surface which we found to be snail resistant, we show that the effect is correlated with the wetting response of the surface to a weak surfactant. Our results elucidate some critical wetting factors for the design of anti-adhesive and bio-adhesion resistant surfaces.

  8. Wet Adhesion and Adhesive Locomotion of Snails on Anti-Adhesive Non-Wetting Surfaces

    Science.gov (United States)

    Shirtcliffe, Neil J.; McHale, Glen; Newton, Michael I.

    2012-01-01

    Creating surfaces capable of resisting liquid-mediated adhesion is extremely difficult due to the strong capillary forces that exist between surfaces. Land snails use this to adhere to and traverse across almost any type of solid surface of any orientation (horizontal, vertical or inverted), texture (smooth, rough or granular) or wetting property (hydrophilic or hydrophobic) via a layer of mucus. However, the wetting properties that enable snails to generate strong temporary attachment and the effectiveness of this adhesive locomotion on modern super-slippy superhydrophobic surfaces are unclear. Here we report that snail adhesion overcomes a wide range of these microscale and nanoscale topographically structured non-stick surfaces. For the one surface which we found to be snail resistant, we show that the effect is correlated with the wetting response of the surface to a weak surfactant. Our results elucidate some critical wetting factors for the design of anti-adhesive and bio-adhesion resistant surfaces. PMID:22693563

  9. Marine Bioinspired Underwater Contact Adhesion.

    Science.gov (United States)

    Clancy, Sean K; Sodano, Antonio; Cunningham, Dylan J; Huang, Sharon S; Zalicki, Piotr J; Shin, Seunghan; Ahn, B Kollbe

    2016-05-01

    Marine mussels and barnacles are sessile biofouling organisms that adhere to a number of surfaces in wet environments and maintain remarkably strong bonds. Previous synthetic approaches to mimic biological wet adhesive properties have focused mainly on the catechol moiety, present in mussel foot proteins (mfps), and especially rich in the interfacial mfps, for example, mfp-3 and -5, found at the interface between the mussel plaque and substrate. Barnacles, however, do not use Dopa for their wet adhesion, but are instead rich in noncatecholic aromatic residues. Due to this anomaly, we were intrigued to study the initial contact adhesion properties of copolymerized acrylate films containing the key functionalities of barnacle cement proteins and interfacial mfps, for example, aromatic (catecholic or noncatecholic), cationic, anionic, and nonpolar residues. The initial wet contact adhesion of the copolymers was measured using a probe tack testing apparatus with a flat-punch contact geometry. The wet contact adhesion of an optimized, bioinspired copolymer film was ∼15.0 N/cm(2) in deionized water and ∼9.0 N/cm(2) in artificial seawater, up to 150 times greater than commercial pressure-sensitive adhesive (PSA) tapes (∼0.1 N/cm(2)). Furthermore, maximum wet contact adhesion was obtained at ∼pH 7, suggesting viability for biomedical applications. PMID:27046671

  10. Adhesion and multi-materials

    International Nuclear Information System (INIS)

    Adhesion is a multidisciplinary science relevant to many practical fields. The main application of adhesion is bonding by adhesives. This technique is widely used in the industrial world and more specifically in the advanced technical domains. Adhesion is also involved in multi-component materials such as coatings, multilayer materials, polymer blends, composite materials... The multidisciplinary aspect of adhesion is well demonstrated by considering the wide variety of concepts, models and theories proposed for its description. An example of the adhesion between a fiber and a matrix in a composite material will lead to a general model relating the molecular properties of the interface to its capacity of stress transfer and hence to the macroscopic mechanical properties of the composite. This relationship is valid whatever the fiber (glass, carbon, polymeric) or the polymer matrix (thermoplastics, thermosetting). Any deviation from this model can be attributed to the existence of an interfacial zone or interphase exhibiting properties, mainly mechanical properties, different from the bulk matrix. Two examples are examined: the first one deals with the creation of a trans crystalline interphase in a semi-crystalline thermoplastic matrix and the second one is concerned with the formation of a pseudo glassy interphase in an elastomer matrix. These examples stress the need for complementary approaches in the understanding of adhesion phenomena at different levels of knowledge, from molecular to macroscopic. They also show how important it is to understand the mechanisms of formation of inter phases in order to be able to master the performance of multicomponent materials. (Author)

  11. Surface Tension Mediated Under-Water Adhesion of Rigid Spheres on Soft, Charged Surfaces

    Science.gov (United States)

    Sinha, Shayandev; Das, Siddhartha

    2015-11-01

    Understanding the phenomenon of surface-tension-mediated under-water adhesion is necessary for studying a plethora of physiological and technical phenomena, such as the uptake of bacteria or nanoparticle by cells, attachment of virus on bacterial surfaces, biofouling on large ocean vessels and marine devices, etc. This adhesion phenomenon becomes highly non-trivial in case the soft surface where the adhesion occurs is also charged. Here we propose a theory for analyzing such an under-water adhesion of a rigid sphere on a soft, charged surface, represented by a grafted polyelectrolyte layer (PEL). We develop a model based on the minimization of free energy that, in addition to considering the elastic and the surface-tension-mediated adhesion energies, also accounts for the PEL electric double layer (EDL) induced electrostatic energies. We show that in the presence of surface charges, adhesion gets enhanced. This can be explained by the fact that the increase in the elastic energy is better balanced by the lowering of the EDL energy associated with the adhesion process. The entire behaviour is further dictated by the surface tension components that govern the adhesion energy.

  12. Characterization of silver nanoparticle-infused tissue adhesive for ophthalmic use.

    Science.gov (United States)

    Yee, William; Selvaduray, Guna; Hawkins, Benjamin

    2015-03-01

    In this work, we demonstrate the successful enhancement of breaking strength, adhesive strength, and antibacterial efficacy of ophthalmic tissue adhesive (2-octyl cyanoacrylate) by doping with silver nanoparticles, and investigate the effects of nanoparticle size and concentration. Recent work has shown that silver nanoparticles are a viable antibacterial additive to many compounds, but their efficacy in tissue adhesives was heretofore untested. Our results indicate that doping the adhesive with silver nanoparticles reduced bacterial growth by an order of magnitude or more; nanoparticle size and concentration had minimal influence in the range tested. Tensile breaking strength of polymerized adhesive samples and adhesive strength between a T-shaped support and excised porcine sclera were measured using a universal testing machine according to ASTM (formerly American Society for Testing and Materials) standard techniques. Both tests showed significant improvement with the addition of silver nanoparticles. The enhanced mechanical strength and antibacterial efficacy of the doped adhesive supports the use of tissue adhesives as a viable supplement or alternative to sutures. PMID:26562766

  13. Focal Adhesion Kinases in Adhesion Structures and Disease

    Directory of Open Access Journals (Sweden)

    Pierre P. Eleniste

    2012-01-01

    Full Text Available Cell adhesion to the extracellular matrix (ECM is essential for cell migration, proliferation, and embryonic development. Cells can contact the ECM through a wide range of matrix contact structures such as focal adhesions, podosomes, and invadopodia. Although they are different in structural design and basic function, they share common remodeling proteins such as integrins, talin, paxillin, and the tyrosine kinases FAK, Pyk2, and Src. In this paper, we compare and contrast the basic organization and role of focal adhesions, podosomes, and invadopodia in different cells. In addition, we discuss the role of the tyrosine kinases, FAK, Pyk2, and Src, which are critical for the function of the different adhesion structures. Finally, we discuss the essential role of these tyrosine kinases from the perspective of human diseases.

  14. Focal adhesion kinases in adhesion structures and disease.

    Science.gov (United States)

    Eleniste, Pierre P; Bruzzaniti, Angela

    2012-01-01

    Cell adhesion to the extracellular matrix (ECM) is essential for cell migration, proliferation, and embryonic development. Cells can contact the ECM through a wide range of matrix contact structures such as focal adhesions, podosomes, and invadopodia. Although they are different in structural design and basic function, they share common remodeling proteins such as integrins, talin, paxillin, and the tyrosine kinases FAK, Pyk2, and Src. In this paper, we compare and contrast the basic organization and role of focal adhesions, podosomes, and invadopodia in different cells. In addition, we discuss the role of the tyrosine kinases, FAK, Pyk2, and Src, which are critical for the function of the different adhesion structures. Finally, we discuss the essential role of these tyrosine kinases from the perspective of human diseases. PMID:22888421

  15. Adhesion of Asaia bogorensis to Glass and Polystyrene in the Presence of Cranberry Juice.

    Science.gov (United States)

    Antolak, Hubert; Kregiel, Dorota; Czyzowska, Agata

    2015-06-01

    The aim of the study was to evaluate the adhesion abilities of the acetic acid bacterium Asaia bogorensis to glass and polystyrene in the presence of American cranberry (Vaccinium macrocarpon) juice. The strain of A. bogorensis used was isolated from spoiled commercial fruit-flavored drinking water. The cranberry juice was analyzed for polyphenols, organic acids, and carbohydrates using high-performance liquid chromatography and liquid chromatography-mass spectrometry techniques. The adhesive abilities of bacterial cells in culture medium supplemented with cranberry juice were determined using luminometry and microscopy. The viability of adhered and planktonic bacterial cells was determined by the plate count method, and the relative adhesion coefficient was calculated. This strain of A. bogorensis was characterized by strong adhesion properties that were dependent upon the type of surface. The highest level of cell adhesion was found on the polystyrene. However, in the presence of 10% cranberry juice, attachment of bacterial cells was three times lower. Chemical analysis of juice revealed the presence of sugars, organic acids, and anthocyanins, which were identified as galactosides, glucosides, and arabinosides of cyanidin and peonidin. A-type proanthocyanidins responsible for the antiadhesion properties of V. macrocarpon also were detected. PMID:26038911

  16. Photovoltaic module with adhesion promoter

    Science.gov (United States)

    Xavier, Grace

    2013-10-08

    Photovoltaic modules with adhesion promoters and methods for fabricating photovoltaic modules with adhesion promoters are described. A photovoltaic module includes a solar cell including a first surface and a second surface, the second surface including a plurality of interspaced back-side contacts. A first glass layer is coupled to the first surface by a first encapsulating layer. A second glass layer is coupled to the second surface by a second encapsulating layer. At least a portion of the second encapsulating layer is bonded directly to the plurality of interspaced back-side contacts by an adhesion promoter.

  17. Adhesives from modified soy protein

    Science.gov (United States)

    Sun, Susan; Wang, Donghai; Zhong, Zhikai; Yang, Guang

    2008-08-26

    The, present invention provides useful adhesive compositions having similar adhesive properties to conventional UF and PPF resins. The compositions generally include a protein portion and modifying ingredient portion selected from the group consisting of carboxyl-containing compounds, aldehyde-containing compounds, epoxy group-containing compounds, and mixtures thereof. The composition is preferably prepared at a pH level at or near the isoelectric point of the protein. In other preferred forms, the adhesive composition includes a protein portion and a carboxyl-containing group portion.

  18. Focal Adhesion Kinases in Adhesion Structures and Disease

    OpenAIRE

    Pierre P. Eleniste; Angela Bruzzaniti

    2012-01-01

    Cell adhesion to the extracellular matrix (ECM) is essential for cell migration, proliferation, and embryonic development. Cells can contact the ECM through a wide range of matrix contact structures such as focal adhesions, podosomes, and invadopodia. Although they are different in structural design and basic function, they share common remodeling proteins such as integrins, talin, paxillin, and the tyrosine kinases FAK, Pyk2, and Src. In this paper, we compare and contrast the basic organiza...

  19. Bacterial biofilms investigated by atomic force microscopy and electrochemistry

    DEFF Research Database (Denmark)

    Hu, Yifan

    Streptococcus mutans (dental caries). AFM was used to investigate the adhesion force on single live cell surfaces. Four different strains of Staphylococcus epidermidis in liquid aqueous environments were adressed. These strains were selected because of their special surface proteins related with the initial...... attachment on the surface. High-resolution AFM imaging showed no detectable differences among the four strains. Adhesion maps using hydrophobically modified tips compared with bare hydrophilic silicon nitride tips also showed small differences only. This indicates that hydrophobic effects are not the primary...... driving forces towards adhesion. Two chemical inhibitor compounds were found to have strong effects on the adhesion between the bare tips and the bacteria. Secondly, AFM and electrochemistry were combined to study bacterial biofilm formation on Au(111)-surfaces, to determine the surface charge and growth...

  20. Decrease of Staphylococcal adhesion on surgical stainless steel after Si ion implantation

    International Nuclear Information System (INIS)

    Highlights: • Si ion implantation of AISI 316LVM medical grade alloy might reduce bacterial adhesion and colonization. • Si ion implantation does not impair the attachment, viability and matrix maturation of human mesenchymal stem cells. • Nano-topography and surface chemistry changes account for the Si ion implantation induced effects. - Abstract: 316LVM austenitic stainless steel is often the material of choice on temporal musculoskeletal implants and surgical tools as it combines good mechanical properties and acceptable corrosion resistance to the physiologic media, being additionally relatively inexpensive. This study has aimed at improving the resistance to bacterial colonization of this surgical stainless steel, without compromising its biocompatibility and resistance. To achieve this aim, the effect of Si ion implantation on 316LVM has been studied. First, the effect of the ion implantation parameters (50 keV; fluence: 2.5–5 × 1016 ions/cm2; angle of incidence: 45–90°) has been assessed in terms of depth profiling of chemical composition by XPS and nano-topography evaluation by AFM. The in vitro biocompatibility of the alloy has been evaluated with human mesenchymal stem cells. Finally, bacterial adhesion of Staphylococcus epidermidis and Staphylococcus aureus on these surfaces has been assessed. Reduction of bacterial adhesion on Si implanted 316LVM is dependent on the implantation conditions as well as the features of the bacterial strains, offering a promising implantable biomaterial in terms of biocompatibility, mechanical properties and resistance to bacterial colonization. The effects of surface composition and nano-topography on bacterial adhesion, directly related to ion implantation conditions, are also discussed

  1. Decrease of Staphylococcal adhesion on surgical stainless steel after Si ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Braceras, Iñigo, E-mail: inigo.braceras@tecnalia.com [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Pacha-Olivenza, Miguel A. [CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Universidad de Extremadura, Departamento de Física Aplicada, Facultad de Ciencias, Av. Elvas s/n, 06006 Badajoz (Spain); Calzado-Martín, Alicia [Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Multigner, Marta [Centro Nacional de Investigaciones Metalúrgicas, CENIM-CSIC, Avda Gregorio del Amo 8, 28040 Madrid (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Vera, Carolina [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Broncano, Luis Labajos-; Gallardo-Moreno, Amparo M. [Universidad de Extremadura, Departamento de Física Aplicada, Facultad de Ciencias, Av. Elvas s/n, 06006 Badajoz (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); González-Carrasco, José Luis [Centro Nacional de Investigaciones Metalúrgicas, CENIM-CSIC, Avda Gregorio del Amo 8, 28040 Madrid (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Vilaboa, Nuria [Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); and others

    2014-08-15

    Highlights: • Si ion implantation of AISI 316LVM medical grade alloy might reduce bacterial adhesion and colonization. • Si ion implantation does not impair the attachment, viability and matrix maturation of human mesenchymal stem cells. • Nano-topography and surface chemistry changes account for the Si ion implantation induced effects. - Abstract: 316LVM austenitic stainless steel is often the material of choice on temporal musculoskeletal implants and surgical tools as it combines good mechanical properties and acceptable corrosion resistance to the physiologic media, being additionally relatively inexpensive. This study has aimed at improving the resistance to bacterial colonization of this surgical stainless steel, without compromising its biocompatibility and resistance. To achieve this aim, the effect of Si ion implantation on 316LVM has been studied. First, the effect of the ion implantation parameters (50 keV; fluence: 2.5–5 × 10{sup 16} ions/cm{sup 2}; angle of incidence: 45–90°) has been assessed in terms of depth profiling of chemical composition by XPS and nano-topography evaluation by AFM. The in vitro biocompatibility of the alloy has been evaluated with human mesenchymal stem cells. Finally, bacterial adhesion of Staphylococcus epidermidis and Staphylococcus aureus on these surfaces has been assessed. Reduction of bacterial adhesion on Si implanted 316LVM is dependent on the implantation conditions as well as the features of the bacterial strains, offering a promising implantable biomaterial in terms of biocompatibility, mechanical properties and resistance to bacterial colonization. The effects of surface composition and nano-topography on bacterial adhesion, directly related to ion implantation conditions, are also discussed.

  2. Ex vivo intestinal adhesion of Escherichia coli LF82 in Crohn's disease

    DEFF Research Database (Denmark)

    Jensen, Stina Rikke; Fink, Lisbeth Nielsen; Nielsen, Ole Haagen;

    2011-01-01

    Adherent-invasive Escherichia coli (AIEC) are reported to inhabit the gut mucosa in Crohn's disease (CD), however, little is known about the importance of host factors for the interplay between AIEC and the human gut. To examine if differences in bacterial adhesion patterns are disease associated...

  3. Comparison of adhesion of the food spoilage bacterium Shewanella putrefaciens to stainless steel and silver surfaces

    DEFF Research Database (Denmark)

    Hjelm, Mette; Hilbert, Lisbeth Rischel; Møller, Per;

    2002-01-01

    The aim of this study is to compare the number of attached bacteria, Shewanella putrefaciens, on stainless steel with different silver surfaces. Thus evaluating if silver surfaces could contribute to a higher hygienic status in the food industry. Bacterial adhesion to three types of silver surfac...

  4. Antibacterial properties of cyanoacrylate tissue adhesive: Does the polymerization reaction play a role?

    Directory of Open Access Journals (Sweden)

    Romero Ivana

    2009-01-01

    Full Text Available Purpose: To ascertain if the polymerization reaction also contributes additionally to the antibacterial effects of two commonly used cyanoacrylate tissue adhesives. Materials and Methods: Fresh liquid ethyl-cyanoacrylate (EC and N-butyl-cyanoacrylate (BC adhesives were applied onto 6-mm sterile filter paper discs. In the first group, the adhesive-soaked discs were immediately placed onto confluent monolayer cultures of bacteria, allowing the polymerization reaction to proceed while in culture. In the second group, the adhesive-soaked disc was allowed to first polymerize prior to being placed onto the bacterial cultures. Four types of bacteria were studied: Staphylococcus aureus , Streptococcus pneumoniae , Escherichia coli , and Pseudomonas aeruginosa . Immediately after the discs were applied, the cultures were incubated at 35° C for 24 h. Bacterial inhibitory halos were measured in the cultures at the end of the incubation period. Results: For EC, exposure of the bacteria to the cyanoacrylate polymerization reaction increased the bacterial inhibitory halos in Streptococcus pneumonia, Staphylococcus aureus and Escherichia coli. For BC, it increased the bacterial inhibitory halos in Staphylococcus aureus and Streptococcus pneumoniae . No inhibitory halos were observed in Pseudomonas aeruginosa. The bactericidal effect was higher in actively polymerizing EC, compared to previously polymerized EC in Staphylococcus aureus , Streptococcus pneumoniae, and Escherichia coli ; however, no such differences were observed for BC. Conclusions: The polymerization reaction may also be an important factor in the antibacterial properties of EC and BC.

  5. Inhibition of microbial adhesion to silicone rubber treated with biosurfactant from Streptococcus thermophilus A

    NARCIS (Netherlands)

    Rodrigues, L; van der Mei, H; Banat, IM; Teixeira, J; Oliveira, R

    2006-01-01

    Microbial adhesion of four bacterial and two yeast strains isolated from explanted voice prostheses to silicone rubber before and after conditioning with a biosurfactant obtained from the probiotic bacterium Streptococcus thermophilus A was investigated in a parallel plate flow chamber. The silicone

  6. Cellular and molecular investigations of the adhesion and mechanics of Listeria monocytogenes

    Science.gov (United States)

    Eskhan, Asma Omar

    Atomic force microscopy has been used to quantify the adherence and mechanical properties of an array of L. monocytogenes strains and their surface biopolymers. First, eight L. monocytogenes strains that represented the two major lineages of the species were compared for their adherence and mechanics at cellular and molecular levels. Our results indicated that strains of lineage' II were characterized by higher adhesion and Young's moduli, longer and more rigid surface biopolymers and lower specific and nonspecific forces when compared to lineage' I strains. Additionally, adherence and mechanical properties of eight L. monocytogenes epidemic and environmental strains were probed. Our results pointed to that environmental and epidemic strains representative of a given lineage were similar in their adherence and mechanical properties when investigated at a cellular level. However, when the molecular properties of the strains were considered, epidemic strains were characterized by higher specific and nonspecific forces, shorter, denser and more flexible biopolymers compared to environmental strains. Second, the role of environmental pH conditions of growth on the adhesion and mechanics of a pathogenic L. monocytogenes EGDe was investigated. Our results pointed to a transition in the adhesion energies for cells cultured at pH 7. In addition, when the types of molecular forces that govern the adhesion were quantified using Poisson statistical approach and using a new proposed method, specific hydrogen-bond energies dominated the bacterial adhesion process. Such a finding is instrumental to researchers designing methods to control bacterial adhesion. Similarly, bacterial cells underwent a transition in their mechanical properties. We have shown that cells cultured at pH 7 were the most rigid compared to those cultured in lower or higher pH conditions of growth. Due to transitions observed in adherence and mechanics when cells were cultured at pH 7, we hypothesized that

  7. Denture Adhesives - A Literature Review

    Directory of Open Access Journals (Sweden)

    Sudhanshu Shekhar

    2016-06-01

    Full Text Available Successful complete denture treatment combines exemplary technique, effective patient rapport and education and familiarity with all possible management options to provide the highest degree of patient satisfaction. Dentists need to know about denture adhesives to be able to identify those patients who actually need them and to be able to educate them about the advantages, disadvantages and correct use of these products. Denture adhesives are commercially available nontoxic, soluble materials that when applied to the tissue surface of dentures enhance their retention, stability and performance. They were introduced in dentistry in the late 18th century. The first patent related to adhesives was issued in 1913, followed in the 1920’s and 1930’s. The purpose of the use of denture adhesives can be described as to subjectively benefit denture-wearers with improved stability, retention and comfort of their dentures, and with improved incisal force, masticatory ability, and confidence.

  8. Laser surface modification and adhesion

    CERN Document Server

    Mittal, K L

    2014-01-01

    The book provides a unique overview on laser techniques and applications for the purpose of improving adhesion by altering surface chemistry and topography/morphology of the substrate. It details laser surface modification techniques for a wide range of industrially relevant materials (plastics, metals, ceramics, composites) with the aim to improve and enhance their adhesion to other materials. The joining of different materials is of critical importance in the fabrication of many and varied products.

  9. Notch-Mediated Cell Adhesion

    OpenAIRE

    Akihiko Murata; Shin-Ichi Hayashi

    2016-01-01

    Notch family members are generally recognized as signaling molecules that control various cellular responses in metazoan organisms. Early fly studies and our mammalian studies demonstrated that Notch family members are also cell adhesion molecules; however, information on the physiological roles of this function and its origin is limited. In this review, we discuss the potential present and ancestral roles of Notch-mediated cell adhesion in order to explore its origin and the initial roles of...

  10. Adhesive capsulitis: a case report

    OpenAIRE

    Kazemi, Mohsen

    2000-01-01

    Adhesive capsulitis or frozen shoulder is an uncommon entity in athletes. However, it is a common cause of shoulder pain and disability in the general population. Although it is a self limiting ailment, its rather long, restrictive and painful course forces the affected person to seek treatment. Conservative management remains the mainstay treatment of adhesive capsulitis. This includes chiropractic manipulation of the shoulder, therapeutic modalities, mobilization, exercise, soft tissue ther...

  11. Zinc-ion implanted and deposited titanium surfaces reduce adhesion of Streptococccus mutans

    International Nuclear Information System (INIS)

    While titanium (Ti) is a commonly used dental implant material with advantageous biocompatible and mechanical properties, native Ti surfaces do not have the ability to prevent bacterial colonization. The objective of this study was to evaluate the chemical composition and bacterial adhesive properties of zinc (Zn) ion implanted and deposited Ti surfaces (Zn-PIIID-Ti) as potential dental implant materials. Surfaces of pure Ti (cp-Ti) were modified with increasing concentrations of Zn using plasma immersion ion implantation and deposition (PIIID), and elemental surface compositions were characterized by X-ray photoelectron spectrometry (XPS). To evaluate bacterial responses, Streptococcus mutans were seeded onto the modifiedTi surfaces for 48 h and subsequently observed by scanning electron microscopy. Relative numbers of bacteria on each surface were assessed by collecting the adhered bacteria, reculturing and counting colony forming units after 48 h on bacterial grade plates. Ti, oxygen and carbon elements were detected on all surfaces by XPS. Increased Zn signals were detected on Zn-PIIID-Ti surfaces, correlating with an increase of Zn-deposition time. Substantial numbers of S. mutans adhered to cp-Ti samples, whereas bacterial adhesion on Zn-PIIID-Ti surfaces signficantly decreased as the Zn concentration increased (p < 0.01). In conclusion, PIIID can successfully introduce Zn onto a Ti surface, forming a modified surface layer bearing Zn ions that consequently deter adhesion of S. mutans, a common bacterium in the oral environment.

  12. Plasma polymerization for cell adhesive/anti-adhesive implant coating

    Science.gov (United States)

    Meichsner, Juergen; Testrich, Holger; Rebl, Henrike; Nebe, Barbara

    2015-09-01

    Plasma polymerization of ethylenediamine (C2H8N2, EDA) and perfluoropropane (C3F8, PFP) with admixture of argon and hydrogen, respectively, was studied using an asymmetric 13.56 MHz CCP. The analysis of the plasma chemical gas phase processes for stable molecules revealed consecutive reactions: C2H8N2 consumption, intermediate product NH3, and main final product HCN. In C3F8- H2 plasma the precursor molecule C3F8 and molecular hydrogen are consumed and HF as well as CF4 and C2F6 are found as main gaseous reaction products. The deposited plasma polymer films on the powered electrode are strongly cross-linked due to ion bombardment. The stable plasma polymerized films from EDA are characterized by high content of nitrogen with N/C ratio of about 0.35. The plasma polymerized fluorocarbon film exhibit a reduced F/C ratio of about 1.2. Adhesion tests with human osteoblast cell line MG-63 on coated Ti6Al4V samples (polished) compared with uncoated reference sample yielded both, the enhanced cell adhesion for plasma polymerized EDA and significantly reduced cell adhesion for fluorocarbon coating, respectively. Aging of the plasma polymerized EDA film, in particular due to the reactions with oxygen from air, showed no significant change in the cell adhesion. The fluorocarbon coating with low cell adhesion is of interest for temporary implants. Funded by the Campus PlasmaMed.

  13. Interaction of Salmonella enterica serovar Typhi with cultured epithelial cells: roles of surface structures in adhesion and invasion

    OpenAIRE

    Bishop, Anne; House, Deborah; Perkins, Timothy; Baker, Stephen; Kingsley, Robert A.; Dougan, Gordon

    2008-01-01

    In this study we investigate the ability of Salmonella enterica serovar Typhi (S. Typhi) surface structures to influence invasion and adhesion in epithelial cell assay systems. In general, S. Typhi was found to be less adherent, invasive and cytotoxic than S. enterica serovar Typhimurium (S. Typhimurium). Culture conditions had little effect on adhesion of S. Typhi to cultured cells but had a marked influence on invasion. In contrast, bacterial growth conditions did not influence S. Typhi api...

  14. Innovative Electrostatic Adhesion Technologies

    Science.gov (United States)

    Bryan, Tom; Macleod, Todd; Gagliano, Larry; Williams, Scott; McCoy, Brian

    2015-01-01

    Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA gripper pad surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and

  15. Elastocapilllarity in insect adhesion: the case of beetle adhesive hair

    Science.gov (United States)

    Gernay, Sophie; Gilet, Tristan; Lambert, Pierre; Federle, Walter

    2014-11-01

    The feet of many insects are covered with dense arrays of hair-like structures called setae. Liquid capillary bridges at the tip of these micrometric structures are responsible for the controlled adhesion of the insect on a large variety of substrates. The resulting adhesion force can exceed several times the body weight of the insect. The high aspect-ratio of setae suggests that flexibility is a key ingredient in this capillary-based adhesion mechanism. There is indeed a strong coupling between their elastic deformation and the shape of the liquid meniscus. In this experimental work, we observe and quantify the local deflection of dock beetle seta tips under perpendicular loading using interference microscopy. Our results are then interpreted in the light of an analytic model of elastocapillarity. This research has been funded by the FRIA/FNRS and the Interuniversity Attraction Poles Programme (IAP 7/38 MicroMAST) initiated by the Belgian Science Policy Office.

  16. Discriminatory bio-adhesion over nano-patterned polymer brushes

    Science.gov (United States)

    Gon, Saugata

    Surfaces functionalized with bio-molecular targeting agents are conventionally used for highly-specific protein and cell adhesion. This thesis explores an alternative approach: Small non-biological adhesive elements are placed on a surface randomly, with the rest of the surface rendered repulsive towards biomolecules and cells. While the adhesive elements themselves, for instance in solution, typically exhibit no selectivity for various compounds within an analyte suspension, selective adhesion of targeted objects or molecules results from their placement on the repulsive surface. The mechanism of selectivity relies on recognition of length scales of the surface distribution of adhesive elements relative to species in the analyte solution, along with the competition between attractions and repulsions between various species in the suspension and different parts of the collecting surface. The resulting binding selectivity can be exquisitely sharp; however, complex mixtures generally require the use of multiple surfaces to isolate the various species: Different components will be adhered, sharply, with changes in collector composition. The key feature of these surface designs is their lack of reliance on biomolecular fragments for specificity, focusing entirely on physicochemical principles at the lengthscales from 1 - 100 nm. This, along with a lack of formal patterning, provides the advantages of simplicity and cost effectiveness. This PhD thesis demonstrates these principles using a system in which cationic poly-L-lysine (PLL) patches (10 nm) are deposited randomly on a silica substrate and the remaining surface is passivated with a bio-compatible PEG brush. TIRF microscopy revealed that the patches were randomly arranged, not clustered. By precisely controlling the number of patches per unit area, the interfaces provide sharp selectivity for adhesion of proteins and bacterial cells. For instance, it was found that a critical density of patches (on the order of

  17. Bacterial Nail Infection (Paronychia)

    Science.gov (United States)

    ... of nail infection is often caused by a bacterial infection but may also be caused by herpes, a ... to a type of yeast called Candida , or bacterial infection, and this may lead to abnormal nail growth. ...

  18. In vitro inhibition of Pseudomonas aeruginosa adhesion by Xylitol

    Directory of Open Access Journals (Sweden)

    Letícia Pinheiro de Sousa

    2011-10-01

    Full Text Available This study evaluated, in vitro, the antimicrobial activity and the anti-adherent property of xylitol (0.5, 2.5 and 5.0%, w/v on two Pseudomonas aeruginosa strains (ATCC 9027 and clinical. The assay of antimicrobial activity was performed to determine a minimum inhibitory concentration (MIC and the adhesion test was performed, by which the parameters regarding, growth in the culture medium, number of colony forming units (CFUs released and slide evaluation by scanning electron microscopy (SEM were analyzed. The Statistical Package for the Social Sciences (SPSS was employed for statistical analysis. Results showed that xylitol had no antimicrobial activity on these strains; however, the inhibition of bacterial adherence was observed in microphotographs obtained by SEM. These results indicated that xylitol could be a future alternative to combat bacterial colonization.

  19. Polyphosphoinositides suppress the adhesion of Haemophilus influenzae to pharyngeal cells

    Directory of Open Access Journals (Sweden)

    Hwang Shie-Ming

    2004-09-01

    Full Text Available Abstract Background One of the primary causes of otitis media (OM, an inflammation of the middle ear, is the bacterium Haemophilus influenzae (HI. OM often occurs to young children, and is mostly treated with antibiotics. Due to concerns over bacterial resistance toward antibiotics, reliable prophylactic treatments such as administrating anti-adhesion agents are now viewed as viable alternatives. Results The present study tested the feasibilty of using phosphoinositides as anti-adhesion agents against HI cells. Cells of non-typeable HI were radiolabeled with 111- indium-oxine, pre-incubated with various individual phosphoinositides for 15 minutes at 37°C, and incubated with a monolayer of human pharynx carcinoma (DT 562 cells for 20 minutes at 37°C. The result showed that at 0.1 mg/mL dipalmitoylphosphatidylinositol-3,4-diphosphate (PI-3,4-PP had the highest anti-adhesion activity, followed by phosphatidylinositol-3-phosphate (PI-3-P and phosphatidylinositol-4-phosphate (PI-4-P. The anti-adhesion activity of PI-3,4-PP was dose-dependent ranging from 0.006 to 0.1 mg/mL. In addition, results from an in vivo study demonstrated that pre-incubation of HI cells with PI-3,4-PP at 1 mg/mL suppressed the growth of HI in nasopharynx of neonatal rats. Conclusions These findings suggest that PI-3-P and PI-4-P and more so PI-3,4-PP may serve as prophylactic agents against HI adhesion and colonization.

  20. Lignin-Furfural Based Adhesives

    Directory of Open Access Journals (Sweden)

    Prajakta Dongre

    2015-07-01

    Full Text Available Lignin recovered from the hot-water extract of sugar maple (Acer saccharum is used in this study to synthesize adhesive blends to replace phenol-formaldehyde (PF resin. Untreated lignin is characterized by lignin content and nuclear magnetic resonance (NMR analysis. The molecular weight distribution of the lignin and the blends are characterized by size exclusion chromatography (SEC. The effect of pH (0.3, 0.65 and 1, ex situ furfural, and curing conditions on the tensile properties of adhesive reinforced glass fibers is determined and compared to the reinforcement level of commercially available PF resin. The adhesive blend prepared at pH = 0.65 with no added furfural exhibits the highest tensile properties and meets 90% of the PF tensile strength.

  1. Insights into the relation between adhesion force and chalcopyrite-bioleaching by Acidithiobacillus ferrooxidans.

    Science.gov (United States)

    Zhu, Jianyu; Wang, Qianfen; Zhou, Shuang; Li, Qian; Gan, Min; Jiang, Hao; Qin, Wenqing; Liu, Xueduan; Hu, Yuehua; Qiu, Guanzhou

    2015-02-01

    This paper presents a study on the relation between bacterial adhesion force and bioleaching rate of chalcopyrite, which sheds light on the influence of interfacial interaction on bioleaching behavior. In our research, Acidithiobacillus ferrooxidans (A. ferrooxidans) were adapted to grow with FeSO4 · 7H2O, element sulfur or chalcopyrite. Then, surface properties of Acidithiobacillus ferrooxidans and chalcopyrite were analyzed by contact angle, zeta potential and Fourier transform infrared spectroscopy (FTIR). Adhesion force between bacteria and chalcopyrite was measured by atomic force microscopy (AFM). Attachment and bioleaching behaviors were also monitored. The results showed that A. ferrooxidans adapted with chalcopyrite exhibited the strongest adhesion force to chalcopyrite and the highest bioleaching rate. Culture adapted with sulfur bacteria took second place and FeSO4 · 7H2O-adapted bacteria were the lowest. Bioleaching rate and bacterial attachment capacity were positively related to bacterial adhesion force, which is affected by the nature of energy source. According to this work, the attachment of bacteria to chalcopyrite surface is one of the most important aspects that influence the bioleaching process of chalcopyrite. PMID:25511439

  2. Design of an anti-adhesive surface by a pilicide strategy.

    Science.gov (United States)

    Reffuveille, Fany; Nicol, Marion; Dé, Emmanuelle; Thébault, Pascal

    2016-10-01

    Biofilm formation on surfaces is one of major problems in medical, cosmetic and food industries. Nowadays any efficient treatment is known, as consequence, research of new strategies to inhibit biofilm formation is urgent. Recently, virstatin, which interferes with bacterial type IV pili formation, has demonstrated a capacity to inhibit biofilm formation developed by Acinetobacter baumannii after 24h. In this study, we aim to elaborate anti-adhesive surfaces preventing biofilm development by the covalent immobilization of virstatin on silicon surface. Surfaces were functionalized by self-assembled monolayers of two aminosilanes (11-aminoundecyltrimethoxysilane (AUTMS) and 3-aminopropyltrimethoxysilane (APTMS)). Then, virstatin (2mM) was immobilized on those modified surfaces. We observed an increase in surface hydrophobicity of AUTMS modified substratum leading to an increase of A. baumannii ATCC 17978 adhesion (after 4h). Immobilization of virstatin molecule on APTMS modified surface was efficient to decrease cell attachment by 32.1±5.7% compared to unmodified surface. As virstatin is known to inhibit type IV pili formation in solution, the observed decrease of bacterial adhesion might be due to this pilicide action. We also demonstrated that hydrophobicity of strains plays a role in adhesion according to surface properties. In conclusion, immobilized virstatin succeeded to inhibit bacterial attachment of various Acinetobacter baumannii strains comparing to APTMS modified support. PMID:27469573

  3. Role of bacteria in leukocyte adhesion deficiency-associated periodontitis.

    Science.gov (United States)

    Hajishengallis, George; Moutsopoulos, Niki M

    2016-05-01

    Leukocyte adhesion deficiency Type I (LAD-I)-associated periodontitis is an aggressive form of inflammatory bone loss that has been historically attributed to lack of neutrophil surveillance of the periodontal infection. However, this form of periodontitis has proven unresponsive to antibiotics and/or mechanical removal of the tooth-associated biofilm. Recent studies in LAD-I patients and relevant animal models have shown that the fundamental cause of LAD-I periodontitis involves dysregulation of a granulopoietic cytokine cascade. This cascade includes interleukin IL-23 (IL-23) and IL-17 that drive inflammatory bone loss in LAD-I patients and animal models and, moreover, foster a nutritionally favorable environment for bacterial growth and development of a compositionally unique microbiome. Although the lack of neutrophil surveillance in the periodontal pockets might be expected to lead to uncontrolled bacterial invasion of the underlying connective tissue, microbiological analyses of gingival biopsies from LAD-I patients did not reveal tissue-invasive infection. However, bacterial lipopolysaccharide was shown to translocate into the lesions of LAD-I periodontitis. It is concluded that the bacteria serve as initial triggers for local immunopathology through translocation of bacterial products into the underlying tissues where they unleash the dysregulated IL-23-IL-17 axis. Subsequently, the IL-23/IL-17 inflammatory response sustains and shapes a unique local microbiome which, in turn, can further exacerbate inflammation and bone loss in the susceptible host. PMID:26375893

  4. Protein-mediated adhesion of the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY to hydrous ferric oxide

    Energy Technology Data Exchange (ETDEWEB)

    Caccavo, F. Jr.

    1999-11-01

    The rate and extent of bacterial Fe(III) mineral reduction are governed by molecular-scale interactions between the bacterial cell surface and the mineral surface. These interactions are poorly understood. This study examined the role of surface proteins in the adhesion of Shewanella alga BrY to hydrous ferric oxide (HFO). Enzymatic degradation of cell surface polysaccharides had no effect on cell adhesion to HFO. The proteolytic enzymes Streptomyces griseus protease and chymotrypsin inhibited the adhesion of S. alga BrY cells to HFO through catalytic degradation of surface proteins. Trypsin inhibited S. alga BrY adhesion solely through surface-coating effects. Protease and chymotrypsin also mediated desorption of adhered S. alga BrY cells from HFO while trypsin did not mediate cell desorption. Protease removed a single peptide band that represented a protein with an apparent molecular mass of 50 kDa. Chymotrypsin removed two peptide bands that represented proteins with apparent molecular masses of 60 and 31 kDa. These proteins represent putative HGO adhesion molecules. A. alga BrY adhesion was inhibited by up to 46% when cells were cultured at sub-MICs of chloramphenicol, suggesting that protein synthesis is necessary for adhesion. Proteins extracted from the surface of S. alga BrY cells inhibited adhesion to HFO by up to 41%. A number of these proteins bound specifically to HFO, suggesting that a complex system of surface proteins mediates S. alga BrY adhesion to HFO.

  5. Adhesion of human gingival fibroblasts/Streptococcus mitis co-culture on the nanocomposite system Chitlac-nAg

    OpenAIRE

    Cataldi, Amelia; Gallorini, Marialucia; Di Giulio, Mara; Guarnieri, Simone; Mariggiò, Maria Addolorata; Traini, Tonino; Di Pietro, Roberta; Cellini, Luigina; Marsich, Eleonora; SANCILIO, SILVIA

    2016-01-01

    Composite materials are increasingly used as dental restoration. In the field of biomaterials, infections remain the main reason of dental devices failure. Silver, in the form of nanoparticles (AgNPs), ions and salt, well known for its antimicrobial properties, is used in several medical applications in order to avoid bacterial infection. To reduce both bacterial adhesion to dental devices and cytotoxicity against eukaryotic cells, we coated BisGMA/TEGDMA methacrylic thermosets with a new mat...

  6. Imaging of lactic acid bacteria with AFM-elasticity and adhesion maps and their relationship to biological and structural data

    International Nuclear Information System (INIS)

    The adhesion of lactic acid bacteria to the intestinal epithelium is one of the most important factors determining probiotic ability of a bacterial strain. Studying bacterial adhesion requires knowledge of the structure and properties of the bacterial surface, which can be studied by atomic force microscopy under native conditions. The observation of the surface topography of bacteria from the species Lactobacillus crispatus, L. helveticus and L. johnsonii shows major differences between bacteria having a crystalline-like protein layer as part of the cell wall and those without such layers. Force volume images calculated into elasticity and adhesion force maps of different bacterial strains show that L. crispatus and L. helveticus have a surface with a homogeneous stiffness with no adhesion events. This is most likely caused by the S-layer, which completely covers the surface of the bacteria. We infer that the absence of adhesion peaks is caused by the semi-crystalline character of such protein layers, in agreement with the results obtained from electron microscopy. Analysis of a number of L. johnsonii strains shows that these bacteria have surface properties which strongly differ from the L. crispatus and L. helveticus strains. For L. johnsonii DMS20533 and L. johnsonii ATCC33200 high adhesion forces are observed, which can be related to a surface rich in polysaccharides. L. johnsonii ATCC332 has lower adhesion forces compared to the other two and, furthermore, the surface topography shows depressions. We suppose that this strain has a surface pattern consisting of crystalline-like proteins alternating with polysaccharide-rich domains. The wide variety in surface properties of lactobacilli could well have wide-ranging implications for food processing and for health benefits

  7. Diverse effects of a biosurfactant from Rhodococcus ruber IEGM 231 on the adhesion of resting and growing bacteria to polystyrene.

    Science.gov (United States)

    Kuyukina, Maria S; Ivshina, Irena B; Korshunova, Irina O; Stukova, Galina I; Krivoruchko, Anastasiya V

    2016-03-01

    This study evaluated the effects of a trehalolipid biosurfactant produced by Rhodococcus ruber IEGM 231 on the bacterial adhesion and biofilm formation on the surface of polystyrene microplates. The adhesion of Gram-positive (Arthrobacter simplex, Bacillus subtilis, Brevibacterium linens, Corynebacterium glutamicum, Micrococcus luteus) and Gram-negative (Escherichia coli, Pseudomonas fluorescencens) bacteria correlated differently with the cell hydrophobicity and surface charge. In particular, exponentially growing bacterial cells with increased hydrophobicities adhered stronger to polystyrene compared to more hydrophilic stationary phase cells. Also, a moderate correlation (0.56) was found between zeta potential and adhesion values of actively growing bacteria, suggesting that less negatively charged cells adhered stronger to polystyrene. Efficient biosurfactant concentrations (10-100 mg/L) were determined, which selectively inhibited (up to 76 %) the adhesion of tested bacterial cultures, however without inhibiting their growth. The biosurfactant was more active against growing bacteria rather than resting cells, thus showing high biofilm-preventing properties. Contact angle measurements revealed more hydrophilic surface of the biosurfactant-covered polystyrene compared to bare polystyrene, which allowed less adhesion of hydrophobic bacteria. Furthermore, surface free-energy calculations showed a decrease in the Wan der Waals (γ(LW)) component and an increase in the acid-based (γ(AB)) component caused by the biosurfactant coating of polysterene. However, our results suggested that the biosurfactant inhibited the adhesion of bacteria independently on their surface charges. AFM scanning revealed three-type biosurfactant structures (micelles, cord-like assemblies and large vesicles) formed on glass, depending on concentrations used, that could lead to diverse anti-adhesive effects against different bacterial species. PMID:26888203

  8. Imaging of lactic acid bacteria with AFM-elasticity and adhesion maps and their relationship to biological and structural data

    Energy Technology Data Exchange (ETDEWEB)

    Schaer-Zammaretti, Prisca; Ubbink, Job

    2003-10-15

    The adhesion of lactic acid bacteria to the intestinal epithelium is one of the most important factors determining probiotic ability of a bacterial strain. Studying bacterial adhesion requires knowledge of the structure and properties of the bacterial surface, which can be studied by atomic force microscopy under native conditions. The observation of the surface topography of bacteria from the species Lactobacillus crispatus, L. helveticus and L. johnsonii shows major differences between bacteria having a crystalline-like protein layer as part of the cell wall and those without such layers. Force volume images calculated into elasticity and adhesion force maps of different bacterial strains show that L. crispatus and L. helveticus have a surface with a homogeneous stiffness with no adhesion events. This is most likely caused by the S-layer, which completely covers the surface of the bacteria. We infer that the absence of adhesion peaks is caused by the semi-crystalline character of such protein layers, in agreement with the results obtained from electron microscopy. Analysis of a number of L. johnsonii strains shows that these bacteria have surface properties which strongly differ from the L. crispatus and L. helveticus strains. For L. johnsonii DMS20533 and L. johnsonii ATCC33200 high adhesion forces are observed, which can be related to a surface rich in polysaccharides. L. johnsonii ATCC332 has lower adhesion forces compared to the other two and, furthermore, the surface topography shows depressions. We suppose that this strain has a surface pattern consisting of crystalline-like proteins alternating with polysaccharide-rich domains. The wide variety in surface properties of lactobacilli could well have wide-ranging implications for food processing and for health benefits.

  9. Ex vivo intestinal adhesion of Escherichia coli LF82 in Crohn’s disease

    DEFF Research Database (Denmark)

    Jensen, Stina Rikke; Fink, Lisbeth Nielsen; Nielsen, Ole Haagen; Brynskov, Jørn; Pedersen, Susanne Brix

    2011-01-01

    , the AIEC-prototype strain LF82 was evaluated for its ability to adhere to ileal and colonic biopsies from CD and healthy controls (HC). Moreover, the efficacy of the non-pathogenic E. coli Nissle 1917 (ECN) in averting LF82 adhesion to ileal mucosa was assessed.Similar numbers of LF82 adhered to......Adherent-invasive Escherichia coli (AIEC) are reported to inhabit the gut mucosa in Crohn’s disease (CD), however, little is known about the importance of host factors for the interplay between AIEC and the human gut.To examine if differences in bacterial adhesion patterns are disease associated...

  10. Computational Chemistry of Adhesive Bonds

    Science.gov (United States)

    Phillips, Donald H.

    1999-01-01

    This investigation is intended to determine the electrical mechanical, and chemical properties of adhesive bonds at the molecular level. The initial determinations will be followed by investigations of the effects of environmental effects on the chemistry and properties of the bond layer.

  11. Adhesion of biocompatible and biodegradable micropatterned surfaces

    NARCIS (Netherlands)

    Kaiser, J.S.; Kamperman, M.M.G.; Souza, E.J.; Schick, B.; Arzt, E.

    2011-01-01

    We studied the effects of pillar dimensions and stiffness of biocompatible and biodegradable micropatterned surfaces on adhesion on different compliant substrates. The micropatterned adhesives were based on biocompatible polydimethylsiloxane (PDMS) and biodegradable poly(lactic-co-glycolic) acid (PL

  12. Leukocyte Adhesion Deficiency: Report of Two Family Related Newborn Infants

    Directory of Open Access Journals (Sweden)

    Zohreh Kavehmanesh

    2010-07-01

    Full Text Available "nLeukocyte adhesion deficiency type 1 (LAD 1 is an autosomal recessive hereditary disorder resulting from deficiency of CD18, characterized by recurrent bacterial infections. We report two consanguineous patients with Leukocyte adhesion deficiency type 1( LAD1. These two infant boy patients were referred to us, within a short period of time, with the complaints of recurrent infections at the age of 38 and 75 days -old, respectively. Parents of two patients were first cousins and their grandmothers also were first cousins. The history of delayed umbilical cord separation was shown in both patients. Patient 1 had history of omphalitis, conjunctivitis, skin lesion of groin area and abscess formation of vaccination site, and had infective wound of eye-lid at the last admission. Patient 2 had history of omphalitis and soft tissue infection of right wrist at the last admission. Laboratory findings showed marked leukocytosis and low CD18 levels (6.6% in Patient 1 and 2.4 % in Patient 2. In Patient 1 recurrent infections were treated with antibiotic regimens and received bone marrow transplantation but Patient 2 died because of septicemia, generalized edema, ascites and progression to acute renal failure at 4 months of age. Due to considerable rate of consanguineous marriages in parents of Leukocyte adhesion deficiency patients, sequence analysis especially for prenatal diagnosis in subsequent pregnancies and genetic counseling is recommended.

  13. Are D-manno-configured Amadori products ligands of the bacterial lectin FimH?

    Science.gov (United States)

    Gloe, Tobias-Elias; Stamer, Insa; Hojnik, Cornelia; Wrodnigg, Tanja M; Lindhorst, Thisbe K

    2015-01-01

    The Amadori rearrangement was employed for the synthesis of C-glycosyl-type D-mannoside analogues, namely 1-propargylamino- and 1-phenylamino-1-deoxy-α-D-manno-heptopyranose. They were investigated as ligands of type 1-fimbriated E. coli bacteria by means of molecular docking and bacterial adhesion studies. It turns out that Amadori rearrangement products have a limited activity as inhibitors of bacterial adhesion because the β-C-glycosidically linked aglycone considerably hampers complexation within the carbohydrate binding site of the type 1-fimbrial lectin FimH. PMID:26199665

  14. Film adhesion in amorphous silicon solar cells

    Indian Academy of Sciences (India)

    A R M Yusoff; M N Syahrul; K Henkel

    2007-08-01

    A major issue encountered during fabrication of triple junction -Si solar cells on polyimide substrates is the adhesion of the solar cell thin films to the substrates. Here, we present our study of film adhesion in amorphous silicon solar cells made on different polyimide substrates (Kapton VN, Upilex-S and Gouldflex), and the effect of tie coats on film adhesion.

  15. Nonwoven glass fiber mat reinforces polyurethane adhesive

    Science.gov (United States)

    Roseland, L. M.

    1967-01-01

    Nonwoven glass fiber mat reinforces the adhesive properties of a polyurethane adhesive that fastens hardware to exterior surfaces of aluminum tanks. The mat is embedded in the uncured adhesive. It ensures good control of the bond line and increases the peel strength.

  16. Scientific Opinion on the substantiation of a health claim related to proanthocyanidins in Urell® and reduction of bacterial colonisation of the urinary tract by inhibition of the adhesion of P-fimbriated E. coli to uroepithelial cells pursuant to Article 13(5) of Regulation (EC) No 1924/2006

    OpenAIRE

    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA)

    2013-01-01

    Following an application from Pharmatoka, submitted pursuant to Article 13.5 of Regulation (EC) No 1924/2006 via the Competent Authority of France, the Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver an opinion on the scientific substantiation of a health claim related to a Urell® product containing cranberry (Vaccinium macrocarpon) juice powder standardised for proanthocyanidins (PAC) content and bacterial colonisation of the urinary tract by inhibition of the ...

  17. Mechanical strength of adhesive-bonding

    International Nuclear Information System (INIS)

    In order to meet the prospective application of a GFRP dewar for energy storage system using a large superconducting magnet, the dewar with a complex structure together with a large size are desired to be made. It is difficult to manufacture such a type of the dewars in one united body. These dewars can be manufactured by the adhesive-bonding method. In the present study, the mechanical strength of adhesive-bonding is studied from this point of view. The mechanical strength of the adhesive-bonding has been investigated by the static tensile method and the impact loading method using small test samples. From the static tensile tests, the following results have been obtained. For the sample adhesive-bonded with insertion structure, the mechanical strength of the adhesive-bonding is found to depend on the adhesives used and on the difference of the thermal contraction between the materials which are adhesive-bonded each other. Using a soft adhesive as Araldite 106, the mechanical strength of the adhesive-bonding is small at room temperature, but it remarkably increases at cryogenic temperatures. For a hard adhesive as Araldite 103 and Stycast 2850 FT, it is large at room temperature, and it further increases at cryogenic temperatures. The dewar has to be strong enough not only at cryogenic temperatures but also at room temperature. A soft adhesive is not suitable for constructing the dewar. For the sample adhesive-bonded with screwing structure, the mechanical strength of the adhesive-bonding depends on the shear strength of GFRP itself. The mechanical strength of the adhesive-bonded part increases with the decreasing temperature. Therefore, this screwing method is advantageous for the construction of the dewar. According to the impact loading tests, it is found that the adhesive-bonding of screwing structure is not brittle at cryogenic temperature. This is due to inherent property of GFRP. (J.P.N.)

  18. Fabrication of microtemplates for the control of bacterial immobilization

    International Nuclear Information System (INIS)

    The authors described a region-selective immobilization methods of bacteria by using superhydrophobic/superhydrophilic and superhydrophobic/poly(ethylene glycol) (PEG) micropatterns for culture scaffold templates. In the case of superhydrophobic/superhydrophilic micropatterns, the superhydrophobic surface was prepared first by microwave-plasma enhanced chemical vapor deposition (MPECVD) from trimethylmethoxysilane. Then the superhydrophilic regions were fabricated by irradiating the superhydrophobic surface with vuv light through a stencil mask. In the case of the superhydrophobic/PEG micropatterned surfaces, PEG surfaces were fabricated first by chemical reaction of ester groups of p-nitrophenyl PEG with NH2 group of NH2-terminated self assembled monolayer from n-6-hexyl-3-aminopropyltrimethoxysilane. The superhydrophobic regions were fabricated by MPECVD thorough a stencil mask. In this study four bacteria were selected from viewpoint of peptidoglycan cell wall (E. coli versus B. subtilis), extracellular polysaccharide (E.coli versus P. stutzeri, P. aeruginosa), and growth rate (P. stutzeri versus P. aeruginosa). The former micropattern brought discrete adhesions of E. coli and B. subtilis specifically on the hydrophobic regions, Furthermore, using the superhydrophobic/PEG micropattern, adhesion of bacteria expanded for E. coli, B. subtilis, P. stutzeri, and P. aeruginosa. They observed a high bacterial adhesion onto superhydrophobic surfaces and the inhibitive effect of bacterial adhesion on PEG surfaces.

  19. Demonstrating Bacterial Flagella.

    Science.gov (United States)

    Porter, John R.; And Others

    1992-01-01

    Describes an effective laboratory method for demonstrating bacterial flagella that utilizes the Proteus mirabilis organism and a special harvesting technique. Includes safety considerations for the laboratory exercise. (MDH)

  20. Flagellar motility is necessary for Aeromonas hydrophila adhesion.

    Science.gov (United States)

    Qin, Yingxue; Lin, Guifang; Chen, Wenbo; Xu, Xiaojin; Yan, Qingpi

    2016-09-01

    Adhesion to host surface or cells is the initial step in bacterial pathogenesis, and the adhesion mechanisms of the fish pathogenic bacteria Aeromonas hydrophila were investigated in this study. First, a mutagenesis library of A. hydrophila that contained 332 random insertion mutants was constructed via mini-Tn10 Km mutagenesis. Four mutants displayed the most attenuated adhesion. Sequence analysis revealed that the mini-Tn10 insertion sites in the four mutant strains were flgC(GenBank accession numbers KX261880), cytb4(GenBank accession numbers JN133621), rbsR(GenBank accession numbers KX261881) and flgE(GenBank accession numbers JQ974982). To further study the roles of flgC and flgE in the adhesion of A. hydrophila, some biological characteristics of the wild-type strain B11, the mutants M121 and M240, and the complemented strains C121 and C240 were investigated. The results showed that the mutation in flgC or flgE led to the flagellar motility of A. hydrophila significant reduction or abolishment. flgC was not necessary for flagellar biosynthesis but was necessary for the full motility of A. hydrophila, flgE was involved in both flagellar biosynthesis and motility. The flagellar motility is necessary for A. hydrophila to adhere to the host mucus, which suggests flagellar motility plays crucial roles in the early infection process of this bacterium. PMID:27432325

  1. Gecko adhesion pad: a smart surface?

    Science.gov (United States)

    Pesika, Noshir S.; Zeng, Hongbo; Kristiansen, Kai; Zhao, Boxin; Tian, Yu; Autumn, Kellar; Israelachvili, Jacob

    2009-11-01

    Recently, it has been shown that humidity can increase the adhesion of the spatula pads that form the outermost (adhesive) surface of the tokay gecko feet by 50% relative to the main adhesion mechanism (i.e. van der Waals adhesive forces), although the mechanism by which the enhancement is realized is still not well understood. A change in the surface hydrophobicity of a gecko setal array is observed when the array, which supports the spatulae, is exposed to a water drop for more than 20 min, suggesting a change in the hydrophilic-lyophilic balance (HLB), and therefore of the conformation of the surface proteins. A surface force apparatus (SFA) was used to quantify these changes, i.e. in the adhesion and friction forces, while shearing the setal array against a silica surface under (i) dry conditions, (ii) 100% humidity and (iii) when fully immersed in water. The adhesion increased in the humid environment but greatly diminished in water. Although the adhesion forces changed significantly, the friction forces remained unaffected, indicating that the friction between these highly textured surfaces is 'load-controlled' rather than 'adhesion-controlled'. These results demonstrate that the gecko adhesive pads have the ability to exploit environmental conditions to maximize their adhesion and stabilize their friction forces. Future designs of synthetic dry adhesives inspired by the gecko can potentially include similar 'smart' surfaces that adapt to their environment.

  2. Gecko adhesion pad: a smart surface?

    International Nuclear Information System (INIS)

    Recently, it has been shown that humidity can increase the adhesion of the spatula pads that form the outermost (adhesive) surface of the tokay gecko feet by 50% relative to the main adhesion mechanism (i.e. van der Waals adhesive forces), although the mechanism by which the enhancement is realized is still not well understood. A change in the surface hydrophobicity of a gecko setal array is observed when the array, which supports the spatulae, is exposed to a water drop for more than 20 min, suggesting a change in the hydrophilic-lyophilic balance (HLB), and therefore of the conformation of the surface proteins. A surface force apparatus (SFA) was used to quantify these changes, i.e. in the adhesion and friction forces, while shearing the setal array against a silica surface under (i) dry conditions, (ii) 100% humidity and (iii) when fully immersed in water. The adhesion increased in the humid environment but greatly diminished in water. Although the adhesion forces changed significantly, the friction forces remained unaffected, indicating that the friction between these highly textured surfaces is 'load-controlled' rather than 'adhesion-controlled'. These results demonstrate that the gecko adhesive pads have the ability to exploit environmental conditions to maximize their adhesion and stabilize their friction forces. Future designs of synthetic dry adhesives inspired by the gecko can potentially include similar 'smart' surfaces that adapt to their environment.

  3. Gecko adhesion pad: a smart surface?

    Energy Technology Data Exchange (ETDEWEB)

    Pesika, Noshir S [Chemical and Biomolecular Engineering Department, Tulane University, New Orleans, LA 70118 (United States); Zeng Hongbo [Chemical and Materials Engineering Department, University of Alberta, Edmonton, AB, T6G 2V4 (Canada); Kristiansen, Kai; Israelachvili, Jacob [Chemical Engineering Department, University of California, Santa Barbara, CA 93117 (United States); Zhao, Boxin [Chemical Engineering Department and Waterloo Institute of Nanotechnology, University of Waterloo, Ontario, N2L 3G1 (Canada); Tian Yu [State Key Laboratory of Tribology, Department of Precision Instruments, Tsinghua University, Beijing 100084 (China); Autumn, Kellar, E-mail: npesika@tulane.ed [Department of Biology, Lewis and Clark College, Portland, OR 97219 (United States)

    2009-11-18

    Recently, it has been shown that humidity can increase the adhesion of the spatula pads that form the outermost (adhesive) surface of the tokay gecko feet by 50% relative to the main adhesion mechanism (i.e. van der Waals adhesive forces), although the mechanism by which the enhancement is realized is still not well understood. A change in the surface hydrophobicity of a gecko setal array is observed when the array, which supports the spatulae, is exposed to a water drop for more than 20 min, suggesting a change in the hydrophilic-lyophilic balance (HLB), and therefore of the conformation of the surface proteins. A surface force apparatus (SFA) was used to quantify these changes, i.e. in the adhesion and friction forces, while shearing the setal array against a silica surface under (i) dry conditions, (ii) 100% humidity and (iii) when fully immersed in water. The adhesion increased in the humid environment but greatly diminished in water. Although the adhesion forces changed significantly, the friction forces remained unaffected, indicating that the friction between these highly textured surfaces is 'load-controlled' rather than 'adhesion-controlled'. These results demonstrate that the gecko adhesive pads have the ability to exploit environmental conditions to maximize their adhesion and stabilize their friction forces. Future designs of synthetic dry adhesives inspired by the gecko can potentially include similar 'smart' surfaces that adapt to their environment.

  4. Adhesive mechanisms in cephalopods: a review.

    Science.gov (United States)

    von Byern, Janek; Klepal, Waltraud

    2006-01-01

    Several genera of cephalopods (Nautilus, Sepia, Euprymna and Idiosepius) produce adhesive secretions, which are used for attachment to the substratum, for mating and to capture prey. These adhesive structures are located in different parts of the body, viz. in the digital tentacles (Nautilus), in the ventral surface of the mantle and fourth arm pair (Sepia), in the dorsal epidermis (Euprymna), or in the dorsal mantle side and partly on the fins (Idiosepius). Adhesion in Sepia is induced by suction of dermal structures on the mantle, while for Nautilus, Euprymna and Idiosepius adhesion is probably achieved by chemical substances. Histochemical studies indicate that in Nautilus and Idiosepius secretory cells that appear to be involved in adhesion stain for carbohydrates and protein, whilst in Euprymna only carbohydrates are detectable. De-adhesion is either achieved by muscle contraction of the tentacles and mantle (Nautilus and Sepia) or by secretion of substances (Euprymna). The de-adhesive mechanism used by Idiosepius remains unknown. PMID:17110356

  5. Host Selection of Microbiota via Differential Adhesion.

    Science.gov (United States)

    McLoughlin, Kirstie; Schluter, Jonas; Rakoff-Nahoum, Seth; Smith, Adrian L; Foster, Kevin R

    2016-04-13

    The host epithelium is the critical interface with microbial communities, but the mechanisms by which the host regulates these communities are poorly understood. Here we develop the hypothesis that hosts use differential adhesion to select for and against particular members of their microbiota. We use an established computational, individual-based model to study the impact of host factors that regulate adhesion at the epithelial surface. Our simulations predict that host-mediated adhesion can increase the competitive advantage of microbes and create ecological refugia for slow-growing species. We show how positive selection via adhesion can be transformed into negative selection if the host secretes large quantities of a matrix such as mucus. Our work predicts that adhesion is a powerful mechanism for both positive and negative selection within the microbiota. We discuss molecules-mucus glycans and IgA-that affect microbe adhesion and identify testable predictions of the adhesion-as-selection model. PMID:27053168

  6. Type 1 pilus-mediated bacterial invasion of bladder epithelial cells

    OpenAIRE

    Martinez, Juan J.; Mulvey, Matthew A.; Schilling, Joel D.; Pinkner, Jerome S.; Hultgren, Scott J.

    2000-01-01

    Most strains of uropathogenic Escherichia coli (UPEC) encode filamentous adhesive organelles called type 1 pili. We have determined that the type 1 pilus adhesin, FimH, mediates not only bacterial adherence, but also invasion of human bladder epithelial cells. In contrast, adherence mediated by another pilus adhesin, PapG, did not initiate bacterial internalization. FimH-mediated invasion required localized host actin reorganization, phosphoinositide 3-kinase (PI 3-kinase) activation and host...

  7. Electrochemical Corrosion of Adhesive Joints

    Czech Academy of Sciences Publication Activity Database

    Vondrák, Jiří

    Vol. 2. Brno: Akademické nakladatelství CERM, 2000 - (Vondrák, J.; Sedlaříková, M.), s. 10.1-10.2 ISBN 80-214-1615-7. [Advanced Batteries and Accumulators /1./. Brno (CZ), 28.08.2000-01.09.2000] Institutional research plan: CEZ:AV0Z4032918 Keywords : adhesive * joints * corrosion Subject RIV: CG - Electrochemistry

  8. Underwater adhesion: The barnacle way

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, L.; Anil, A.C.

    surrounded by calcium carbonate (calcite). It has been suggested that the anionic groups on the matric proteins may serve as sites for nucleation during calcification [47]. The disruption in such interactions can thus bring about hindrance during... of bones, nerves and blood vessels in an aqueous environment and dental filling without the need for drilling [83]. It has been suggested that with the advances in biomimetics, future dentin adhesive monomers may contain domains derived from...

  9. Culinary Medicine-Jalebi Adhesions.

    Science.gov (United States)

    Kapoor, Vinay K

    2016-02-01

    Culinary terms have been used to describe anatomy (bean-shaped kidneys), pathology (strawberry gall bladder), clinical signs (café-au-lait spots), radiological images (sausage-shaped pancreas), etc. While Indian cuisine is popular all over the world, no Indian dish finds mention in medical terminology. In intra-abdominal adhesions, sometimes, the intestinal loops are so densely adherent that it is difficult to make out proximal from distal and it is impossible to separate them without injuring the bowel resulting in spill of contents-resection is the only option (Fig. 1). Jalebi, an Indian dessert, has a single long tubular strip of fried batter filled with sugary syrup so intertwined that it is impossible to discern its ends; if broken, the syrup spills out-the best way to relish it is to chew the whole piece (Fig. 2). Because of these similarities between them, I propose to name dense intra-abdominal adhesions as 'jalebi adhesions.' PMID:27186047

  10. [Adhesion to the antiretroviral treatment].

    Science.gov (United States)

    Carballo, M

    2004-12-01

    The objective of the therapy antiretroviral is to improve the quality of life and the survival of the persons affected by the VIH through the suppression of the viral replication. Nevertheless one of the present problems is the resistant apparition of stumps to the new medicines caused by an incorrect management of the therapeutic plan; by an incorrect adhesion of the personal processing. Since the therapeutic success will depend, among others factors, and of important form of the degree of implication and commitment of the person affected, is a matter of identifying prematurely the possible situations concomitants (personal factors and of addiction, psycho-social, related to the processing and its possible secondary effects, associated factors to the own illness or even to the relation professional-patient) that can interfere in a correct adhesion. For it is necessary of the interaction multidisciplinary of the welfare team, and fundamental the work of nursing at the moment of to detect the possible determinant factors and the intervention definition of strategies arrived at by consensus with the own person, that they promote it or it improve. The quantification of the degree of adhesion (measure in %) values through various direct and indirect methods and should keep in mind in it takes of therapeutic decisions being able to come to be advised the suspension of the processing until obtaining to conscience to the person affected of the importance of a correct therapeutic compliance. PMID:15672996

  11. Effect of a Novel Quaternary Ammonium Methacrylate Polymer (QAMP on Adhesion and Antibacterial Properties of Dental Adhesives

    Directory of Open Access Journals (Sweden)

    Yasmine M. Pupo

    2014-05-01

    control for all evaluated bacterial strains. The use of QAMP in an adhesive system demonstrated effective bond strength, a suitable degree of conversion, and adequate antibacterial effects against oral bacteria, and may be useful as a new approach to provide long-lasting results for dental adhesives.

  12. Effect of a novel quaternary ammonium methacrylate polymer (QAMP) on adhesion and antibacterial properties of dental adhesives.

    Science.gov (United States)

    Pupo, Yasmine M; Farago, Paulo Vitor; Nadal, Jessica M; Simão, Luzia C; Esmerino, Luís Antônio; Gomes, Osnara M M; Gomes, João Carlos

    2014-01-01

    evaluated bacterial strains. The use of QAMP in an adhesive system demonstrated effective bond strength, a suitable degree of conversion, and adequate antibacterial effects against oral bacteria, and may be useful as a new approach to provide long-lasting results for dental adhesives. PMID:24853131

  13. Ileal adhesion of virulent E. coli LF82 is not enhanced in Crohn’s disease

    DEFF Research Database (Denmark)

    Jensen, Rikke S.; Fink, Lisbeth Nielsen; Pedersen, Susanne Brix; Brynskov, J.; Nielsen, Haagen O.

    2011-01-01

    . A second purpose was to assess the probiotic efficacy of E. coli Nissle 1917 (ECN) in averting LF82 adhesion to ileal mucosa. Ileal and colonic specimens were obtained from patients with CD ileitis and controls (n¼10). A model was developed to investigate bacterial adhesion to intestinal biopsies......Adherent-invasive Escherichia coli (AIEC) comprise a new group of E. coli species named from their distinctive ability to adhere to and invade the intestinal epithelium. The AIEC strains have been associated to the ileal mucosa in Crohn’s disease (CD), and the impact of AIEC in the pathogenesis of...... CD has been further strengthened from the evidence that the ileum in CD harbors an abnormally high number of E. coli species. S16 2010 IBD Abstracts The aim of this study was to examine the adhesion of the AIEC reference strain, LF82, to tissue samples from ileum and colon in CD and healthy controls...

  14. Shuffling bacterial metabolomes

    OpenAIRE

    Thomason, Brendan; Read, Timothy D.

    2006-01-01

    Horizontal gene transfer (HGT) has a far more significant role than gene duplication in bacterial evolution. This has recently been illustrated by work demonstrating the importance of HGT in the emergence of bacterial metabolic networks, with horizontally acquired genes being placed in peripheral pathways at the outer branches of the networks.

  15. Glycan involvement in the adhesion of Pseudomonas aeruginosa to tears.

    Science.gov (United States)

    Kautto, Liisa; Nguyen-Khuong, Terry; Everest-Dass, Arun; Leong, Andrea; Zhao, Zhenjun; Willcox, Mark D P; Packer, Nicolle H; Peterson, Robyn

    2016-04-01

    binding inhibition than by the same amount of intact human lactoferrin or by the plant-derived N-glycans released from the rice recombinant lactoferrin; 3) pre-incubation of the bacteria with N-linked glycans released from human tear proteins inhibiting the adhesion of the ocular P. aeruginosa strains to immobilised tear proteins; 4) inhibition by the N-glycans from lactoferrin of the ability of an ocular strain of P. aeruginosa to invade corneal epithelial cells; 5) removal of terminal sialic acid and fucose moieties from the tear glycoproteins with α2-3,6,8 neuraminidase (sialidase) and α1-2,3,4 fucosidase resulting in a reduction in binding of the UTI P. aeruginosa isolate, but not the adhesion of the ocular cytotoxic (6206) or invasive (6294) isolates. Glycosidase activity was validated by mass spectrometry. In all cases, the magnitude of inhibition of bacterial adhesion by the N-glycans was consistently greater for the cytotoxic ocular strain than for the invasive ocular strain. Ocular P. aeruginosa isolates seems to exhibit different adhesion mechanism than previously known PAI and PAII lectin adhesion. The work may contribute towards the development of glycan-focused therapies to prevent P. aeruginosa infection of the eye. PMID:26851486

  16. Durable bonds at the adhesive/dentin interface: an impossible mission or simply a moving target?

    OpenAIRE

    Spencer, Paulette; Jonggu PARK, Qiang YE; Misra, Anil; Bohaty, Brenda S; Singh, Viraj; PARTHASARATHY, Ranga; SENE, Fábio; de Paiva GONÇALVES, Sérgio Eduardo; LAURENCE, Jennifer

    2012-01-01

    Composite restorations have higher failure rates, more recurrent caries and increased frequency of replacement as compared to dental amalgam. Penetration of bacterial enzymes, oral fluids, and bacteria into the crevices between the tooth and composite undermines the restoration and leads to recurrent decay and failure. The gingival margin of composite restora tions is particularly vulnerable to decay and at this margin, the adhesive and its seal to dentin provides the primary barrier between ...

  17. Effect of Milk Proteins on Adhesion of Bacteria to Stainless Steel Surfaces

    OpenAIRE

    Barnes, L. M.; Lo, M. F.; Adams, M. R.; Chamberlain, A. H. L.

    1999-01-01

    Stainless steel coupons were treated with skim milk and subsequently challenged with individual bacterial suspensions of Staphylococcus aureus, Pseudomonas fragi, Escherichia coli, Listeria monocytogenes, and Serratia marcescens. The numbers of attached bacteria were determined by direct epifluorescence microscopy and compared with the attachment levels on clean stainless steel with two different surface finishes. Skim milk was found to reduce adhesion of S. aureus, L. monocytogenes, and S. m...

  18. Wet Adhesion and Adhesive Locomotion of Snails on Anti-Adhesive Non-Wetting Surfaces

    OpenAIRE

    Shirtcliffe, Neil; McHale, Glen; Newton, Michael

    2012-01-01

    Creating surfaces capable of resisting liquid-mediated adhesion is extremely difficult due to the strong capillary forces that exist between surfaces. Land snails use this to adhere to and traverse across almost any type of solid surface of any orientation (horizontal, vertical or inverted), texture (smooth, rough or granular) or wetting property (hydrophilic or hydrophobic) via a layer of mucus. However, the wetting properties that enable snails to generate strong temporary attachment and th...

  19. In vitro adhesion of staphylococci to diamond-like carbon polymer hybrids under dynamic flow conditions.

    Science.gov (United States)

    Soininen, Antti; Levon, Jaakko; Katsikogianni, Maria; Myllymaa, Katja; Lappalainen, Reijo; Konttinen, Yrjö T; Kinnari, Teemu J; Tiainen, Veli-Matti; Missirlis, Yannis

    2011-03-01

    This study compares the ability of selected materials to inhibit adhesion of two bacterial strains commonly implicated in implant-related infections. These two strains are Staphylococcus aureus (S-15981) and Staphylococcus epidermidis (ATCC 35984). In experiments we tested six different materials, three conventional implant metals: titanium, tantalum and chromium, and three diamond-like carbon (DLC) coatings: DLC, DLC-polydimethylsiloxane hybrid (DLC-PDMS-h) and DLC-polytetrafluoroethylene hybrid (DLC-PTFE-h) coatings. DLC coating represents extremely hard material whereas DLC hybrids represent novel nanocomposite coatings. The two DLC polymer hybrid films were chosen for testing due to their hardness, corrosion resistance and extremely good non-stick (hydrophobic and oleophobic) properties. Bacterial adhesion assay tests were performed under dynamic flow conditions by using parallel plate flow chambers (PPFC). The results show that adhesion of S. aureus to DLC-PTFE-h and to tantalum was significantly (P coating showed as low susceptibility to S. aureus adhesion as all the tested conventional implant metals. The adherence of S. epidermidis to biomaterials was not significantly (P coating without increasing the risk of implant-related infections. PMID:21243516

  20. Ex vivo intestinal adhesion of Escherichia coli LF82 in Crohn’s disease

    DEFF Research Database (Denmark)

    Jensen, Stina Rikke; Fink, Lisbeth Nielsen; Nielsen, Ole Haagen;

    2011-01-01

    Adherent-invasive Escherichia coli (AIEC) are reported to inhabit the gut mucosa in Crohn’s disease (CD), however, little is known about the importance of host factors for the interplay between AIEC and the human gut.To examine if differences in bacterial adhesion patterns are disease associated......, the AIEC-prototype strain LF82 was evaluated for its ability to adhere to ileal and colonic biopsies from CD and healthy controls (HC). Moreover, the efficacy of the non-pathogenic E. coli Nissle 1917 (ECN) in averting LF82 adhesion to ileal mucosa was assessed.Similar numbers of LF82 adhered to...... biopsies from CD and HC. A significantly greater LF82 attachment to ileal versus colonic mucosa was found in HC (P <0.01), however, not in CD. ECN did not reduce the adhesion of LF82 to ileal specimens in CD or HC.These results show that enhanced bacterial adhesion ability is unlikely to play any...

  1. Hydrophobic interaction governs unspecific adhesion of staphylococci: a single cell force spectroscopy study.

    Science.gov (United States)

    Thewes, Nicolas; Loskill, Peter; Jung, Philipp; Peisker, Henrik; Bischoff, Markus; Herrmann, Mathias; Jacobs, Karin

    2014-01-01

    Unspecific adhesion of bacteria is usually the first step in the formation of biofilms on abiotic surfaces, yet it is unclear up to now which forces are governing this process. Alongside long-ranged van der Waals and electrostatic forces, short-ranged hydrophobic interaction plays an important role. To characterize the forces involved during approach and retraction of an individual bacterium to and from a surface, single cell force spectroscopy is applied: A single cell of the apathogenic species Staphylococcus carnosus isolate TM300 is used as bacterial probe. With the exact same bacterium, hydrophobic and hydrophilic surfaces can be probed and compared. We find that as far as 50 nm from the surface, attractive forces can already be recorded, an indication of the involvement of long-ranged forces. Yet, comparing the surfaces of different surface energy, our results corroborate the model that large, bacterial cell wall proteins are responsible for adhesion, and that their interplay with the short-ranged hydrophobic interaction of the involved surfaces is mainly responsible for adhesion. The ostensibly long range of the attraction is a result of the large size of the cell wall proteins, searching for contact via hydrophobic interaction. The model also explains the strong (weak) adhesion of S. carnosus to hydrophobic (hydrophilic) surfaces. PMID:25247133

  2. Hydrophobic interaction governs unspecific adhesion of staphylococci: a single cell force spectroscopy study

    Directory of Open Access Journals (Sweden)

    Nicolas Thewes

    2014-09-01

    Full Text Available Unspecific adhesion of bacteria is usually the first step in the formation of biofilms on abiotic surfaces, yet it is unclear up to now which forces are governing this process. Alongside long-ranged van der Waals and electrostatic forces, short-ranged hydrophobic interaction plays an important role. To characterize the forces involved during approach and retraction of an individual bacterium to and from a surface, single cell force spectroscopy is applied: A single cell of the apathogenic species Staphylococcus carnosus isolate TM300 is used as bacterial probe. With the exact same bacterium, hydrophobic and hydrophilic surfaces can be probed and compared. We find that as far as 50 nm from the surface, attractive forces can already be recorded, an indication of the involvement of long-ranged forces. Yet, comparing the surfaces of different surface energy, our results corroborate the model that large, bacterial cell wall proteins are responsible for adhesion, and that their interplay with the short-ranged hydrophobic interaction of the involved surfaces is mainly responsible for adhesion. The ostensibly long range of the attraction is a result of the large size of the cell wall proteins, searching for contact via hydrophobic interaction. The model also explains the strong (weak adhesion of S. carnosus to hydrophobic (hydrophilic surfaces.

  3. Experimental Investigation of Optimal Adhesion of Mushroomlike Elastomer Microfibrillar Adhesives.

    Science.gov (United States)

    Marvi, Hamidreza; Song, Sukho; Sitti, Metin

    2015-09-22

    Optimal fiber designs for the maximal pull-off force have been indispensable for increasing the attachment performance of recently introduced gecko-inspired reversible micro/nanofibrillar adhesives. There are several theoretical studies on such optimal designs; however, due to the lack of three-dimensional (3D) fabrication techniques that can fabricate such optimal designs in 3D, there have not been many experimental investigations on this challenge. In this study, we benefitted from recent advances in two-photon lithography techniques to fabricate mushroomlike polyurethane elastomer fibers with different aspect ratios of tip to stalk diameter (β) and tip wedge angles (θ) to investigate the effect of these two parameters on the pull-off force. We found similar trends to those predicted theoretically. We found that β has an impact on the slope of the force-displacement curve while both β and θ play a role in the stress distribution and crack propagation. We found that these effects are coupled and the optimal set of parameters also depends on the fiber material. This is the first experimental verification of such optimal designs proposed for mushroomlike microfibers. This experimental approach could be used to evaluate a wide range of complex microstructured adhesive designs suggested in the literature and optimize them. PMID:26322396

  4. Impact of sub-inhibitory antibiotics on fibronectin-mediated host cell adhesion and invasion by Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Rasigade Jean

    2011-12-01

    Full Text Available Abstract Background Staphylococcus aureus is a well-armed pathogen prevalent in severe infections such as endocarditis and osteomyelitis. Fibronectin-binding proteins A and B, encoded by fnbA/B, are major pathogenesis determinants in these infections through their involvement in S. aureus adhesion to and invasion of host cells. Sub-minimum inhibitory concentrations (sub-MICs of antibiotics, frequently occurring in vivo because of impaired drug diffusion at the infection site, can alter S. aureus phenotype. We therefore investigated their impact on S. aureus fibronectin-mediated adhesiveness and invasiveness. Methods After in vitro challenge of S. aureus 8325-4 and clinical isolates with sub-MICs of major anti-staphylococcal agents, we explored fnbA/B transcription levels, bacterial adhesiveness to immobilised human fibronectin and human osteoblasts in culture, and bacterial invasion of human osteoblasts. Results Oxacillin, moxifloxacin and linezolid led to the development of a hyper-adhesive phenotype in the fibronectin adhesion assay that was consistent with an increase in fnbA/B transcription. Conversely, rifampin treatment decreased fibronectin binding in all strains tested without affecting fnbA/B transcription. Gentamicin and vancomycin had no impact on fibronectin binding or fnbA/B transcription levels. Only oxacillin-treated S. aureus displayed a significantly increased adhesion to cultured osteoblasts, but its invasiveness did not differ from that of untreated controls. Conclusion Our findings demonstrate that several antibiotics at sub-MICs modulate fibronectin binding in S. aureus in a drug-specific fashion. However, hyper- and hypo- adhesive phenotypes observed in controlled in vitro conditions were not fully confirmed in whole cell infection assays. The relevance of adhesion modulation during in vivo infections is thus still uncertain and requires further investigations.

  5. Synaptic Cell Adhesion Molecules in Alzheimer's Disease

    Science.gov (United States)

    Leshchyns'ka, Iryna

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative brain disorder associated with the loss of synapses between neurons in the brain. Synaptic cell adhesion molecules are cell surface glycoproteins which are expressed at the synaptic plasma membranes of neurons. These proteins play key roles in formation and maintenance of synapses and regulation of synaptic plasticity. Genetic studies and biochemical analysis of the human brain tissue, cerebrospinal fluid, and sera from AD patients indicate that levels and function of synaptic cell adhesion molecules are affected in AD. Synaptic cell adhesion molecules interact with Aβ, a peptide accumulating in AD brains, which affects their expression and synaptic localization. Synaptic cell adhesion molecules also regulate the production of Aβ via interaction with the key enzymes involved in Aβ formation. Aβ-dependent changes in synaptic adhesion affect the function and integrity of synapses suggesting that alterations in synaptic adhesion play key roles in the disruption of neuronal networks in AD. PMID:27242933

  6. The Rheological Property of Potato Starch Adhesives

    Directory of Open Access Journals (Sweden)

    Junjun Liu

    2014-02-01

    Full Text Available The main goal of this study was to use potato starch in the production of environmentally sound adhesives. ‘Three-formaldehyde glue’ pollutes the environment and harms to human health strongly, which widely used for wood-based panels preparation. Environment-friendly potato starch adhesives were prepared using method of oxidation-gelatinization, insteading of the three formaldehyde glue. The effects of the quality ratio of starch and water, temperature and shear rate on the apparent viscosity of the adhesive were studied. The rheological eigenvalue of apparent viscosity was studied through nonlinear regression. The results showed that the apparent viscosity of potato starch adhesives decreased with the increasing of temperature; the apparent viscosity decreased slowly with the increasing of rotor speed; the phenomenon of shear thinning appeared within potato starch adhesives which was pseudo-plastic fluids. Potato starch adhesives with characteristics of non-toxic, no smell and pollution could be applied in interior and upscale packaging.

  7. Lignin-Furfural Based Adhesives

    OpenAIRE

    Prajakta Dongre; Mark Driscoll; Thomas Amidon; Biljana Bujanovic

    2015-01-01

    Lignin recovered from the hot-water extract of sugar maple (Acer saccharum) is used in this study to synthesize adhesive blends to replace phenol-formaldehyde (PF) resin. Untreated lignin is characterized by lignin content and nuclear magnetic resonance (NMR) analysis. The molecular weight distribution of the lignin and the blends are characterized by size exclusion chromatography (SEC). The effect of pH (0.3, 0.65 and 1), ex situ furfural, and curing conditions on the tensile properties of a...

  8. Lignin-Furfural Based Adhesives

    OpenAIRE

    Prajakta Dongre; Mark Driscoll; Thomas Amidon; Biljana Bujanovic

    2015-01-01

    Lignin recovered from the hot-water extract of sugar maple ( Acer saccharum ) is used in this study to synthesize adhesive blends to replace phenol-formaldehyde (PF) resin. Untreated lignin is characterized by lignin content and nuclear magnetic resonance (NMR) analysis. The molecular weight distribution of the lignin and the blends are characterized by size exclusion chromatography (SEC). The effect of pH (0.3, 0.65 and 1), ex situ furfural, and curing conditions on the tensile properties of...

  9. Interactive forces between co-aggregating and non-co-aggregating oral bacterial pairs

    NARCIS (Netherlands)

    Postollec, F; Norde, W; de Vries, Jacob; De Vries, J; Busscher, HJ; Van der Mei, HC

    2006-01-01

    The temporo-spatial development of plaque is governed by adhesive interactions between different co-aggregating bacterial strains and species. Physico-chemically, these interactions are due to attractive Lifshitz-Van der Waals and acid-base forces, and occur despite electrostatic repulsion and with

  10. Bacterially Antiadhesive, Optically Transparent Surfaces Inspired from Rice Leaves.

    Science.gov (United States)

    Oh, Jun Kyun; Lu, Xiaoxu; Min, Younjin; Cisneros-Zevallos, Luis; Akbulut, Mustafa

    2015-09-01

    Because of the growing prevalence of antimicrobial resistance strains, there is an increasing need to develop material surfaces that prevent bacterial attachment and contamination in the absence of antibiotic agents. Herein, we present bacterial antiadhesive materials inspired from rice leaves. "Rice leaf-like surfaces" (RLLS) were fabricated by a templateless, self-masking reactive-ion etching approach. Bacterial attachment on RLLS was characterized under both static and dynamic conditions using Gram-negative Escherichia coli O157:H7 and Gram-positive Staphylococcus aureus. RLLS surfaces showed exceptional bacterial antiadhesion properties with a >99.9% adhesion inhibition efficiency. Furthermore, the optical properties of RLLS were investigated using UV-vis-NIR spectrophotometry. In contrast to most other bacterial antiadhesive surfaces, RLLS demonstrated optical-grade transparency (i.e., ≥92% transmission). We anticipate that the combination of bacterial antiadhesion efficiency, optical grade transparency, and the convenient single-step method of preparation makes RLLS a very attractive candidate for the surfaces of biosensors; endoscopes; and microfluidic, bio-optical, lab-on-a-chip, and touchscreen devices. PMID:26237234

  11. Syndecan-4 and focal adhesion function

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    2001-01-01

    Two groups have now reported the viability of mice that lack syndecan-4. These mice have wound healing/angiogenesis problems, and fibroblasts from these animals differ in adhesion and migration from normal. This is consistent with recent in vitro data indicating a need for signaling via syndecan-4...... for focal adhesion formation, and reports that overexpression of proteins that bind syndecan-4 can modify cell adhesion and migration....

  12. Tuning the kinetics of cadherin adhesion

    OpenAIRE

    Sivasankar, Sanjeevi

    2013-01-01

    Cadherins are Ca2+ dependent cell-cell adhesion proteins that maintain the structural integrity of the epidermis; their principle function is to resist mechanical force. This review summarizes the biophysical mechanisms by which classical cadherins tune adhesion and withstand mechanical stress. We first relate the structure of classical cadherins to their equilibrium binding properties. We then review the role of mechanical perturbations in tuning the kinetics of cadherin adhesion. In particu...

  13. Improving controllable adhesion on both rough and smooth surfaces with a hybrid electrostatic/gecko-like adhesive

    OpenAIRE

    Ruffatto, Donald; Parness, Aaron; Spenko, Matthew

    2014-01-01

    This paper describes a novel, controllable adhesive that combines the benefits of electrostatic adhesives with gecko-like directional dry adhesives. When working in combination, the two technologies create a positive feedback cycle whose adhesion, depending on the surface type, is often greater than the sum of its parts. The directional dry adhesive brings the electrostatic adhesive closer to the surface, increasing its effect. Similarly, the electrostatic adhesion helps engage more of the di...

  14. Nucleation and growth of cadherin adhesions

    International Nuclear Information System (INIS)

    Cell-cell contact formation relies on the recruitment of cadherin molecules and their anchoring to actin. However, the precise chronology of events from initial cadherin trans-interactions to adhesion strengthening is unclear, in part due to the lack of access to the distribution of cadherins within adhesion zones. Using N-cadherin expressing cells interacting with N-cadherin coated surfaces, we characterized the formation of cadherin adhesions at the ventral cell surface. TIRF and RIC microscopies revealed streak-like accumulations of cadherin along actin fibers. FRAP analysis indicated that engaged cadherins display a slow turnover at equilibrium, compatible with a continuous addition and removal of cadherin molecules within the adhesive contact. Association of cadherin cytoplasmic tail to actin as well as actin cables and myosin II activity are required for the formation and maintenance of cadherin adhesions. Using time lapse microscopy we deciphered how cadherin adhesions form and grow. As lamellipodia protrude, cadherin foci stochastically formed a few microns away from the cell margin. Neo-formed foci coalesced aligned and coalesced with preformed foci either by rearward sliding or gap filling to form cadherin adhesions. Foci experienced collapse at the rear of cadherin adhesions. Based on these results, we present a model for the nucleation, directional growth and shrinkage of cadherin adhesions

  15. The effectiveness of potent dental adhesives on the viability of LPS challenged human gingival fibroblasts.

    Science.gov (United States)

    Garner, Angelia D; Tucci, Michelle A; Benghuzzi, Hamed A

    2014-01-01

    Dental adhesives are necessary for the retention of specific dental restorations utilized to repair the anatomy of the tooth after dental decay is removed. Adhesives come into contact with healthy and diseased periodontal tissues. Porphyromonas gingivalis is a gram negative bacterial pathogen, and lipopolysaccharide (LPS-PG) is an endotoxin found in gingival connective tissues of patients who suffer from periodontal disease. The presence of the endotoxin causes inflammation. This study aims to evaluate the effectiveness of potent dental adhesives when human gingival fibroblasts are challenged with LPS-PG. The fibroblasts were exposed to the dental adhesives polymethly methacrylate (PMMA), OptiBond®, and Prime & Bond® which were purchased from Patterson Dental, a national dental materials supplier. The human gingival fibroblasts (HGF-1, ATCC® CRL-2014™) were purchased from American Type Culture Collection (ATCC). The porphyromonas gingival lipopolysaccharide (LPS-PG) was purchased from Fisher Scientific (Pittsburg, PA). No significant differences in metabolic behavior was detected among the groups (p<0.132). While the glutathione assay determined that there was not any significant increase in oxidative stress levels; the lactate dehydrogenase assay identified significant cellular damage in the group exposed to combinations of the Prime & Bond® adhesives and LPS-PG at 48 hour intervals (p<0.003). No significant changes were noted in cellular morphology at any phases, and all cells demonstrated typical fibroblast spindle shape. PMID:25405402

  16. Levorotatory carbohydrates and xylitol subdue Streptococcus mutans and Candida albicans adhesion and biofilm formation.

    Science.gov (United States)

    Brambilla, Eugenio; Ionescu, Andrei C; Cazzaniga, Gloria; Ottobelli, Marco; Samaranayake, Lakshman P

    2016-05-01

    Dietary carbohydrates and polyols affect the microbial colonization of oral surfaces by modulating adhesion and biofilm formation. The aim of this study was to evaluate the influence of a select group of l-carbohydrates and polyols on either Streptococcus mutans or Candida albicans adhesion and biofilm formation in vitro. S. mutans or C. albicans suspensions were inoculated on polystyrene substrata in the presence of Tryptic soy broth containing 5% of the following compounds: d-glucose, d-mannose, l-glucose, l-mannose, d- and l-glucose (raceme), d- and l-mannose (raceme), l-glucose and l-mannose, sorbitol, mannitol, and xylitol. Microbial adhesion (2 h) and biofilm formation (24 h) were evaluated using MTT-test and Scanning Electron Microscopy (SEM). Xylitol and l-carbohydrates induced the lowest adhesion and biofilm formation in both the tested species, while sorbitol and mannitol did not promote C. albicans biofilm formation. Higher adhesion and biofilm formation was noted in both organisms in the presence of d-carbohydrates relative to their l-carbohydrate counterparts. These results elucidate, hitherto undescribed, interactions of the individually tested strains with l- and d-carbohydrates, and how they impact fungal and bacterial colonization. In translational terms, our data raise the possibility of using l-form of carbohydrates and xylitol for dietary control of oral plaque biofilms. PMID:26456320

  17. E. coli Nissle 1917 Affects Salmonella adhesion to porcine intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Peter Schierack

    Full Text Available BACKGROUND: The probiotic Escherichia coli strain Nissle 1917 (EcN has been shown to interfere in a human in vitro model with the invasion of several bacterial pathogens into epithelial cells, but the underlying molecular mechanisms are not known. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated the inhibitory effects of EcN on Salmonella Typhimurium invasion of porcine intestinal epithelial cells, focusing on EcN effects on the various stages of Salmonella infection including intracellular and extracellular Salmonella growth rates, virulence gene regulation, and adhesion. We show that EcN affects the initial Salmonella invasion steps by modulating Salmonella virulence gene regulation and Salmonella SiiE-mediated adhesion, but not extra- and intracellular Salmonella growth. However, the inhibitory activity of EcN against Salmonella invasion always correlated with EcN adhesion capacities. EcN mutants defective in the expression of F1C fimbriae and flagellae were less adherent and less inhibitory toward Salmonella invasion. Another E. coli strain expressing F1C fimbriae was also adherent to IPEC-J2 cells, and was similarly inhibitory against Salmonella invasion like EcN. CONCLUSIONS: We propose that EcN affects Salmonella adhesion through secretory components. This mechanism appears to be common to many E. coli strains, with strong adherence being a prerequisite for an effective reduction of SiiE-mediated Salmonella adhesion.

  18. Bacterial Wound Culture

    Science.gov (United States)

    ... Home Visit Global Sites Search Help? Bacterial Wound Culture Share this page: Was this page helpful? Also known as: Aerobic Wound Culture; Anaerobic Wound Culture Formal name: Culture, wound Related ...

  19. Bacterial Meningitis in Infants

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-04-01

    Full Text Available A retrospective study of 80 infantile patients (ages 30-365 days; 47 male, 33 female with culture-proven bacterial meningitis seen over a 16 year period (1986-2001 is reported from Taiwan.

  20. Calibrating bacterial evolution

    OpenAIRE

    Ochman, Howard; Elwyn, Susannah; Moran, Nancy A

    1999-01-01

    Attempts to calibrate bacterial evolution have relied on the assumption that rates of molecular sequence divergence in bacteria are similar to those of higher eukaryotes, or to those of the few bacterial taxa for which ancestors can be reliably dated from ecological or geological evidence. Despite similarities in the substitution rates estimated for some lineages, comparisons of the relative rates of evolution at different classes of nucleotide sites indicate no basis for their universal appl...

  1. Design and fabrication of polymer based dry adhesives inspired by the gecko adhesive system

    Science.gov (United States)

    Jin, Kejia

    There has been significant interest in developing dry adhesives mimicking the gecko adhesive system, which offers several advantages compared to conventional pressure sensitive adhesives. Specifically, gecko adhesive pads have anisotropic adhesion properties: the adhesive pads (spatulae) stick strongly when sheared in one direction but are non-adherent when sheared in the opposite direction. This anisotropy property is attributed to the complex topography of the array of fine tilted and curved columnar structures (setae) that bear the spatulae. In this thesis, easy, scalable methods, relying on conventional and unconventional techniques are presented to incorporate tilt in the fabrication of synthetic polymer-based dry adhesives mimicking the gecko adhesive system, which provide anisotropic adhesion properties. In the first part of the study, the anisotropic adhesion and friction properties of samples with various tilt angles to test the validity of a nanoscale tape-peeling model of spatular function are measured. Consistent with the Peel Zone model, samples with lower tilt angles yielded larger adhesion forces. Contact mechanics of the synthetic array were highly anisotropic, consistent with the frictional adhesion model and gecko-like. Based on the original design, a new design of gecko-like dry adhesives was developed which showed superior tribological properties and furthermore showed anisotropic adhesive properties without the need for tilt in the structures. These adhesives can be used to reversibly suspend weights from vertical surfaces (e.g., walls) and, for the first time to our knowledge, horizontal surfaces (e.g., ceilings) by simultaneously and judiciously activating anisotropic friction and adhesion forces. Furthermore, adhesion properties between artificial gecko-inspired dry adhesives and rough substrates with varying roughness are studied. The results suggest that both adhesion and friction forces on a rough substrate depends significantly on the

  2. Vibrio fischeri and Escherichia coli adhesion tendencies towards photolithographically modified nanosmooth poly (tert-butyl methacrylate polymer surfaces

    Directory of Open Access Journals (Sweden)

    Elena P Ivanova

    2008-09-01

    Full Text Available Elena P Ivanova1, Natasa Mitik-Dineva1, Radu C Mocanasu1, Sarah Murphy1, James Wang2, Grant van Riessen3, Russell J Crawford11Faculty Life and Social Sciences; 2IRIS, Swinburne University of Technology, Hawthorn, Victoria, Australia; 3Centre for Materials and Surface Science, La Trobe University, Melbourne, Victoria, AustraliaAbstract: This study reports the adhesion behavior of two bacterial species, Vibrio fischeri and Escherichia coli, to the photoresistant poly(tert-butyl methacrylate (P(tBMA polymer surface. The data has demonstrated that ultraviolet irradiation of P(tBMA was able to provide control over bacterial adhesion tendencies. Following photolithography, several of the surface characteristics of P(tBMA were found to be altered. Atomic force microscopy analysis indicated that photolithographically modified P(tBMA (henceforth termed ‘modified polymer’ appeared as a ‘nanosmooth’ surface with an average surface roughness of 1.6 nm. Although confocal laser scanning microscopy and scanning electron microscopy analysis clearly demonstrated that V. fischeri and E. coli presented largely different patterns of attachment in order to adhere to the same surfaces, both species exhibited a greater adhesion propensity towards the ‘nanosmooth’ surface. The adhesion of both species to the modified polymer surface appeared to be facilitated by an elevated production of extracellular polymeric substances when in contact with the substrate.Keywords: poly(tert-butylmethacrylate polymeric surfaces, surface nanotopography, bacterial attachment, extracellular polymeric substances

  3. Innovative Solutions to Sticky Situations: Antiadhesive Strategies for Treating Bacterial Infections.

    Science.gov (United States)

    Cusumano, Zachary T; Klein, Roger D; Hultgren, Scott J

    2016-04-01

    Bacterial adherence to host tissue is an essential process in pathogenesis, necessary for invasion and colonization and often required for the efficient delivery of toxins and other bacterial effectors. As existing treatment options for common bacterial infections dwindle, we find ourselves rapidly approaching a tipping point in our confrontation with antibiotic-resistant strains and in desperate need of new treatment options. Bacterial strains defective in adherence are typically avirulent and unable to cause infection in animal models. The importance of this initial binding event in the pathogenic cascade highlights its potential as a novel therapeutic target. This article seeks to highlight a variety of strategies being employed to treat and prevent infection by targeting the mechanisms of bacterial adhesion. Advancements in this area include the development of novel antivirulence therapies using small molecules, vaccines, and peptides to target a variety of bacterial infections. These therapies target bacterial adhesion through a number of mechanisms, including inhibition of pathogen receptor biogenesis, competition-based strategies with receptor and adhesin analogs, and the inhibition of binding through neutralizing antibodies. While this article is not an exhaustive description of every advancement in the field, we hope it will highlight several promising examples of the therapeutic potential of antiadhesive strategies. PMID:27227305

  4. Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM.

    Science.gov (United States)

    Buck, B Logan; Altermann, Eric; Svingerud, Tina; Klaenhammer, Todd R

    2005-12-01

    Lactobacilli are major inhabitants of the normal microflora of the gastrointestinal tract, and some select species have been used extensively as probiotic cultures. One potentially important property of these organisms is their ability to interact with epithelial cells in the intestinal tract, which may promote retention and host-bacterial communication. However, the mechanisms by which they attach to intestinal epithelial cells are unknown. The objective of this study was to investigate cell surface proteins in Lactobacillus acidophilus that may promote attachment to intestinal tissues. Using genome sequence data, predicted open reading frames were searched against known protein and protein motif databases to identify four proteins potentially involved in adhesion to epithelial cells. Homologous recombination was used to construct isogenic mutations in genes encoding a mucin-binding protein, a fibronectin-binding protein, a surface layer protein, and two streptococcal R28 homologs. The abilities of the mutants to adhere to intestinal epithelial cells were then evaluated in vitro. Each strain was screened on Caco-2 cells, which differentiate and express markers characteristic of normal small-intestine cells. A significant decrease in adhesion was observed in the fibronectin-binding protein mutant (76%) and the mucin-binding protein mutant (65%). A surface layer protein mutant also showed reduction in adhesion ability (84%), but the effect of this mutation is likely due to the loss of multiple surface proteins that may be embedded in the S-layer. This study demonstrated that multiple cell surface proteins in L. acidophilus NCFM can individually contribute to the organism's ability to attach to intestinal cells in vitro. PMID:16332821

  5. Xylo-oligosaccharides inhibit pathogen adhesion to enterocytes in vitro.

    Science.gov (United States)

    Ebersbach, Tine; Andersen, Jens Bo; Bergström, Anders; Hutkins, Robert W; Licht, Tine Rask

    2012-01-01

    We previously reported that the non-digestible carbohydrates inulin and apple pectin promoted Listeria monocytogenes infection in guinea pigs, whereas xylo- and galacto-oligosaccharides (XOS and GOS), prevented infection by this pathogen. In the present study, mechanisms that could explain the previous in vivo observations were explored. Mixing bacterial cultures with XOS significantly (P < 0.05) decreased the ability of two out of three strains of L. monocytogenes to adhere to Caco-2 cells. Additionally, 2 h incubation with XOS followed by washing of the bacteria significantly (P < 0.05) decreased the ability of all three strains to adhere to Caco-2 cells. Consistently, expression of the adhesion-relevant genes inlA and lap was reduced by the presence of XOS. The observation that XOS inhibit the adhesion of Listeria to the intestinal epithelium in vitro may explain the reported preventive effect of XOS on Listeria infection in guinea pigs in vivo, while the preventive effect of GOS was not explicable by the assays chosen here. PMID:22056968

  6. Leukocyte adhesion defect type 1 presenting with recurrent pyoderma gangrenosum

    Directory of Open Access Journals (Sweden)

    Neha Thakur

    2013-01-01

    Full Text Available Leukocyte adhesion deficiency 1 (LAD-1 is a rare autosomal recessive disorder of leukocyte function. LAD-1 affects about 1 per 10 million individuals and is characterized by recurrent bacterial and fungal infections and depressed inflammatory responses despite striking blood neutrophilia. Patients with the severe clinical form of LAD-1 express <0.3% of the normal amount of the β2 -integrin molecules, whereas patients with the moderate phenotype may express 2-7%. Skin infection may progress to large chronic ulcers with polymicrobial infection, including anaerobic organisms. The ulcers heal slowly, require months of antibiotic treatment, and often require plastic surgical grafting. The diagnosis of LAD-1 is established most readily by flow cytometric measurements of surface CD11b in stimulated and unstimulated neutrophils using monoclonal antibodies directed against CD11b. Pyoderma gangrenosum (PG is an uncommon condition characterized by recurrent sterile, inflammatory skin ulcers. Commonly, PG occurs in the context of inflammatory bowel disease or rheumatic, hematologic, or immunologic disorders. Here, we present a 5-year-old female with a long history of PG, which healed with atrophic scarring, who was ultimately diagnosed with leukocyte adhesion deficiency type 1 (LAD1. She had a good response to high-dose prednisone therapy (2 mg/kg and was discharged after 3 weeks of admission but only to be re-admitted 3 weeks later with severe pneumonia. During hospital stay, she developed pneumothorax and pneumomediastinum and later succumbed to her illness.

  7. Adhesion Potential of Intestinal Microbes Predicted by Physico-Chemical Characterization Methods.

    Directory of Open Access Journals (Sweden)

    Tomas de Wouters

    Full Text Available Bacterial adhesion to epithelial surfaces affects retention time in the human gastro-intestinal tract and therefore significantly contributes to interactions between bacteria and their hosts. Bacterial adhesion among other factors is strongly influenced by physico-chemical factors. The accurate quantification of these physico-chemical factors in adhesion is however limited by the available measuring techniques. We evaluated surface charge, interfacial rheology and tensiometry (interfacial tension as novel approaches to quantify these interactions and evaluated their biological significance via an adhesion assay using intestinal epithelial surface molecules (IESM for a set of model organisms present in the human gastrointestinal tract. Strain pairs of Lactobacillus plantarum WCFS1 with its sortase knockout mutant Lb. plantarum NZ7114 and Lb. rhamnosus GG with Lb. rhamnosus DSM 20021T were used with Enterococcus faecalis JH2-2 as control organism. Intra-species comparison revealed significantly higher abilities for Lb. plantarum WCSF1 and Lb. rhamnosus GG vs. Lb. plantarum NZ7114 and Lb. rhamnosus DSM 20021T to dynamically increase interfacial elasticity (10-2 vs. 10-3 Pa*m and reduce interfacial tension (32 vs. 38 mN/m. This further correlated for Lb. plantarum WCSF1 and Lb. rhamnosus GG vs. Lb. plantarum NZ7114 and Lb. rhamnosus DSM 20021T with the decrease of relative hydrophobicity (80-85% vs. 57-63%, Zeta potential (-2.9 to -4.5 mV vs. -8.0 to -13.8 mV and higher relative adhesion capacity to IESM (3.0-5.0 vs 1.5-2.2. Highest adhesion to the IESM collagen I and fibronectin was found for Lb. plantarum WCFS1 (5.0 and E. faecalis JH2-2 (4.2 whereas Lb. rhamnosus GG showed highest adhesion to type II mucus (3.8. Significantly reduced adhesion (2 fold to the tested IESM was observed for Lb. plantarum NZ7114 and Lb. rhamnosus DSM 20021T corresponding with lower relative hydrophobicity, Zeta potential and abilities to modify interfacial elasticity

  8. POLYSACCHARIDES AND eDNA AID BACTERIAL ATTACHMENT TO POLYMER BRUSH COATINGS (PLL-g-PEG)

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Ogaki, Ryosuke; Regina, Viduthalai R.; Meyer, Rikke Louise

    Polymer brush coatings of poly(ethylene glycol) are considered the gold standard for nonfouling surfaces, but nevertheless, a few bacteria manage to attach and initiate biofilm formation on these coatings. To achieve robust resistance against bacterial adhesion and biofilm formation, grafting...... in complete absence of bacterial colonization from Pseudomonas aeruginosa, Staphylococcus aureus and Staphylococcus epidermis, whereas the conventional PLL-g-PEG coatings only resisted colonization by P. aeruginosa and S. aureus, but not S. epidermidis. Colonization patterns were also reflected in...... of the conventional coating. These results explain why S. epidermidis, which produces polysaccharides and extracellular DNA, could successfully colonize the conventional PLL-g-PEG coatings. The ability of high-density PLL-g-PEG to resist polysaccharides, DNA, and bacterial adhesion of all strains is...

  9. Adhesive polypeptides of Staphylococcus aureus identified using a novel secretion library technique in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Holm Liisa

    2011-05-01

    Full Text Available Abstract Background Bacterial adhesive proteins, called adhesins, are frequently the decisive factor in initiation of a bacterial infection. Characterization of such molecules is crucial for the understanding of bacterial pathogenesis, design of vaccines and development of antibacterial drugs. Because adhesins are frequently difficult to express, their characterization has often been hampered. Alternative expression methods developed for the analysis of adhesins, e.g. surface display techniques, suffer from various drawbacks and reports on high-level extracellular secretion of heterologous proteins in Gram-negative bacteria are scarce. These expression techniques are currently a field of active research. The purpose of the current study was to construct a convenient, new technique for identification of unknown bacterial adhesive polypeptides directly from the growth medium of the Escherichia coli host and to identify novel proteinaceous adhesins of the model organism Staphylococcus aureus. Results Randomly fragmented chromosomal DNA of S. aureus was cloned into a unique restriction site of our expression vector, which facilitates secretion of foreign FLAG-tagged polypeptides into the growth medium of E. coli ΔfliCΔfliD, to generate a library of 1663 clones expressing FLAG-tagged polypeptides. Sequence and bioinformatics analyses showed that in our example, the library covered approximately 32% of the S. aureus proteome. Polypeptides from the growth medium of the library clones were screened for binding to a selection of S. aureus target molecules and adhesive fragments of known staphylococcal adhesins (e.g coagulase and fibronectin-binding protein A as well as polypeptides of novel function (e.g. a universal stress protein and phosphoribosylamino-imidazole carboxylase ATPase subunit were detected. The results were further validated using purified His-tagged recombinant proteins of the corresponding fragments in enzyme-linked immunoassay and

  10. Focal adhesions and cell-matrix interactions

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    1988-01-01

    Focal adhesions are areas of cell surfaces where specializations of cytoskeletal, membrane and extracellular components combine to produce stable cell-matrix interactions. The morphology of these adhesions and the components identified in them are discussed together with possible mechanisms of...

  11. Synthesis of melamine-glucose resin adhesive

    Institute of Scientific and Technical Information of China (English)

    CHEN; Shuanhu; ZHANG; Lei

    2005-01-01

    The synthesis of a novel melamine-glucose adhesive that is similar to urea-formaldehyde adhesive is reported in this paper. The conditions of synthesis, such as the initial pH, the quantity of catalyst, the temperature of reaction, the percentage of each reactant and the time of reaction, were optimized by using the orthogonal experimental method.

  12. Adhesion force studies of nanofibers and nanoparticles.

    Science.gov (United States)

    Xing, Malcolm; Zhong, Wen; Xu, Xiuling; Thomson, Douglas

    2010-07-20

    Surface adhesion between nanofibers and nanoparticles has attracted attention for potential biomedical applications, but the measurement has not been reported. Adhesion forces were measured using a polystyrene (PS) nanoparticle attached to an atomic force microscopy (AFM) tip/probe. Electrospun PS nanofibers of different diameters were tapped with the probe to study the effect of fiber diameters on adhesion force. Both AFM experiments and numerical models suggest that the adhesion force increases with increased fiber diameters. Numerical models further demonstrated that local deformation of the fiber surface, including the flattening of surface asperities and the nanofiber wrapping around the particle during contact, may have a significant impact on the adhesion force. The adhesion forces are in the order of 100 nN, much smaller than the adhesion forces of the gecko foot hair, but much larger than that of the receptor-ligand pair, antibody-antigen pair, and single-stranded DNA from a substrate. Adhesion forces of nanofibers with roughness were predicted by numerical analysis. This study is expected to provide approaches and information useful in the design of nanomedicine and scaffold based on nanofibers for tissue engineering and regenerative medicine. PMID:20552953

  13. Adhesion Between Poly(dimethylsiloxane) Layers

    DEFF Research Database (Denmark)

    Yu, Liyun; Daugaard, Anders Egede; Skov, Anne Ladegaard

    Different adhesion methods of poly(dimethylsiloxane) (PDMS) layers were studied with respect to adhesional force and the resulting rheology of the two-layered PDMS films were investigated. The role of adhesion between PDMS layers on the performances of two-layer structures was studied with peel...

  14. Mechanisms of temporary adhesion in benthic animals

    NARCIS (Netherlands)

    Dodou, D.; Breedveld, P.; Winter, J.C.F.; Dankelman, J.; Leeuwen, van J.L.

    2011-01-01

    Adhesive systems are ubiquitous in benthic animals and play a key role in diverse functions such as locomotion, food capture, mating, burrow building, and defence. For benthic animals that release adhesives, surface and material properties and external morphology have received little attention compa

  15. Evaluation of progestogens for postoperative adhesion prevention.

    Science.gov (United States)

    Beauchamp, P J; Quigley, M M; Held, B

    1984-10-01

    Progesterone (P) has been shown to have potent antiinflammatory and immunosuppressive properties. Previous reports have suggested that the use of P decreases postoperative adhesion formation. To further evaluate the role of pharmacologic doses of progestogens in adhesion prevention, 42 mature New Zealand White rabbits underwent standardized injuries to the uterine horns, fimbriae, and pelvic peritoneum and received one of six treatments. Group S had intraperitoneal placement of normal saline (0.9%); group H received intraperitoneal placement of 32% dextran 70; group IM-P received intramuscular P-in-oil 10 days before and after laparotomy in addition to intraperitoneal saline; group IP-P had intraperitoneal placement of an aqueous P suspension; group DP received medroxyprogesterone acetate intraperitoneally; and group C received no intramuscular or intraperitoneal adhesion-prevention agents. The animals were sacrificed 6 weeks after laparotomy, and the adhesions were scored. Intraperitoneal saline (group S) significantly reduced the amount of adhesions when compared with the control group (C) (P less than 0.05). No significant difference was observed when group S was compared with group H. Intramuscular P added to saline (group IM-P) did not cause further reduction in adhesions when compared with group S. Both group IP-P and group DP had more adhesions than did group S (P less than 0.01). These data fail to support previous claims regarding adhesion prevention by the use of locally or parenterally administered progestogens. PMID:6237937

  16. Recurrent spinal adhesive arachnoiditis: a case report

    Directory of Open Access Journals (Sweden)

    James Pitágoras de Mattos

    1988-03-01

    Full Text Available Spinal adhesive arachnoiditis is not an uncommon disease, usually having a monophasic course. We studied an atypical patient with recurrent spinal adhesive arachnoiditis nine years after intrathecal anesthesia and the first attack of the disease. Also noteworthy was the favorable evolution after surgery.

  17. Syndecans: synergistic activators of cell adhesion

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    1998-01-01

    Cell-surface proteoglycans participate in cell adhesion, growth-factor signalling, lipase activity and anticoagulation. Until recently, only the roles of the glycosaminoglycan chains were investigated. Now, with molecular characterization of several core proteins, the roles of each individual...... molecules modulating integrin-based adhesion....

  18. Adhesion mechanism of a gecko-inspired oblique structure with an adhesive tip for asymmetric detachment

    Science.gov (United States)

    Sekiguchi, Yu; Takahashi, Kunio; Sato, Chiaki

    2015-12-01

    An adhesion model of an oblique structure with an adhesive tip is proposed by considering a limiting stress for adhesion to describe the detachment mechanism of gecko foot hairs. When a force is applied to the root of the oblique structure, normal and shear stresses are generated at contact and the adhesive tip is detached from the surface when reaching the limiting stress. An adhesion criterion that considers both the normal and shear stresses is introduced, and the asymmetric detachment of the oblique structure is theoretically investigated. In addition, oblique beam array structures are manufactured, and an inclination effect of the structure on the asymmetric detachment is experimentally verified.

  19. Critical length scale controls adhesive wear mechanisms

    Science.gov (United States)

    Aghababaei, Ramin; Warner, Derek H.; Molinari, Jean-Francois

    2016-06-01

    The adhesive wear process remains one of the least understood areas of mechanics. While it has long been established that adhesive wear is a direct result of contacting surface asperities, an agreed upon understanding of how contacting asperities lead to wear debris particle has remained elusive. This has restricted adhesive wear prediction to empirical models with limited transferability. Here we show that discrepant observations and predictions of two distinct adhesive wear mechanisms can be reconciled into a unified framework. Using atomistic simulations with model interatomic potentials, we reveal a transition in the asperity wear mechanism when contact junctions fall below a critical length scale. A simple analytic model is formulated to predict the transition in both the simulation results and experiments. This new understanding may help expand use of computer modelling to explore adhesive wear processes and to advance physics-based wear laws without empirical coefficients.

  20. Coating to enhance metal-polymer adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Parthasarathi, A.; Mahulikar, D. [Olin Metals Research Laboratories, New Haven, CT (United States)

    1996-12-31

    An ultra-thin electroplated coating has been developed to enhance adhesion of metals to polymers. The coating was developed for microelectronic packaging applications where it greatly improves adhesion of metal leadframes to plastic molding compounds. Recent tests show that the coating enhances adhesion of different metals to other types of adhesives as well and may thus have wider applicability. Results of adhesion tests with this coating, as well as its other characteristics such as corrosion resistance, are discussed. The coating is a very thin transparent electroplated coating containing zinc and chromium. It has been found to be effective on a variety of metal surfaces including copper alloys, Fe-Ni alloys, Al alloys, stainless steel, silver, nickel, Pd/Ni and Ni-Sn. Contact resistance measurements show that the coating has little or no effect on electrical resistivity.

  1. Dynamic analysis of two adhesively bonded rods

    Directory of Open Access Journals (Sweden)

    Kenneth L. Kuttler

    2009-07-01

    Full Text Available This work presents two models for the dynamic analysis of two rods that are adhesively bonded. The first model assumes that the adhesive is an elasto-plastic material and that complete debonding occurs when the stress reaches the yield limit. In the second model the degradation of the adhesive is described by the introduction of material damage. Failure occurs when the material is completely damaged, or the damage reaches a critical floor value. Both models are analyzed and the existence of a weak solution is established for the model with damage. In the quasistatic case, a new condition for adhesion is found as the limit of the adhesive thickness tends to zero.

  2. Adhesives for orthodontic bracket bonding

    Directory of Open Access Journals (Sweden)

    Déborah Daniella Diniz Fonseca

    2010-04-01

    Full Text Available The advent of acid etching, introduced by Buonocore in 1955, brought the possibility of bonding between the bracket base and enamel, contributing to more esthetic and conservative orthodontics. This direct bracket bonding technique has brought benefits such as reduced cost and time in performing the treatment, as well as making it easier to perform oral hygiene. The aim of this study was to conduct a survey of published studies on orthodontic bracket bonding to dental enamel. It was verified that resin composites and glass ionomer are the most studied and researched materials for this purpose. Resin-modified glass ionomer, with its biocompatibility, capacity of releasing fluoride and no need for acid etching on the tooth structure, has become increasingly popular among dentists. However, due to the esthetic and mechanical properties of light polymerizable resin composite, it continues to be one of the adhesives of choice in the bracket bonding technique and its use is widely disseminated.

  3. Multibody simulation of adhesion pili

    CERN Document Server

    Zakrisson, Johan; Servin, Martin; Axner, Ove; Lacoursiere, Claude; Andersson, Magnus

    2014-01-01

    We present a coarse grained rigid multibody model of a subunit assembled helix-like polymer, e.g., adhesion pili expressed by bacteria, that is capable of describing the polymers force-extension response. With building blocks representing individual subunits the model appropriately describes the complex behavior of pili expressed by the gram-negative uropathogenic Escherichia coli bacteria under the action of an external force. Numerical simulations show that the dynamics of the model, which include both the effects of unwinding and rewinding, are in good quantitative agreement with the characteristic force-extension response as observed experimentally for type 1 and P pili. By tuning the model, it is also possible to reproduce the force-extension response in the presence of anti-shaft antibodies, which dramatically changes the mechanical properties. Thus, the model and the results in this work give enhanced understanding of how a pilus unwinds under action of external forces and provide new perspective of th...

  4. Surface tension driven shaping of adhesive microfluidic channel walls

    DEFF Research Database (Denmark)

    Janting, Jakob; Storm, Elisabeth K.; Geschke, Oliver

    2005-01-01

    The feasibility of making microfluidic channels with different wall geometries using adjacent lines of dispensed adhesive between substrates has been studied. Important parameters for the geometry have been identified to be: surface tension (adhesive / substrates), adhesive viscosity / thixotropy...

  5. MECHANISMS OF BACTERIAL POLYHOSTALITY

    Directory of Open Access Journals (Sweden)

    Markova Yu.A.

    2007-12-01

    Full Text Available In the review data about factors of pathogenicity of the bacteria, capable to amaze both animals, and a plant are collected. Such properties of microorganisms as adhesion, secretion of some enzymes, mobility, a phenomenon of cooperative sensitivity - play an essential role at defeat of different organisms. They are used for many universal offensive strategy overcoming protection of an organism, irrespective of its evolutionary origin. Studying of these mechanisms, will allow to provide new approaches to monitoring illnesses.

  6. Bacterial meningitis in children

    International Nuclear Information System (INIS)

    To demonstrate the epidemiology, clinical manifestations and bacteriological profile of bacterial meningitis in children beyond the neonatal period in our hospital. This was a retrospective descriptive study conducted at Prince Rashid Hospital in Irbid, Jordan. The medical records of 50 children with the diagnosis of bacterial meningitis during 4 years period, were reviewed. The main cause of infection was streptococcus pneumoniae, followed by Haemophilus influenza and Niesseria meningitides. Mortality was higher in infants and meningococcal infection, while complications were more encountered in cases of streptococcus pneumoniae. Cerebrospinal fluid culture was positive in 11 cases and Latex agglutination test in 39. There is a significant reduction of the numbers of bacterial meningitis caused by Haemophilus influenza type B species. (author)

  7. Diagnosis of bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    Đukić Slobodanka

    2013-01-01

    Full Text Available Bacterial vaginosis is a common, complex clinical syndrome characterized by alterations in the normal vaginal flora. When symptomatic, it is associated with a malodorous vaginal discharge and on occasion vaginal burning or itching. Under normal conditions, lactobacilli constitute 95% of the bacteria in the vagina. Bacterial vaginosis is associated with severe reduction or absence of the normal H2O2­producing lactobacilli and overgrowth of anaerobic bacteria and Gardnerella vaginalis, Atopobium vaginae, Mycoplasma hominis and Mobiluncus species. Most types of infectious disease are diagnosed by culture, by isolating an antigen or RNA/DNA from the microbe, or by serodiagnosis to determine the presence of antibodies to the microbe. Therefore, demonstration of the presence of an infectious agent is often a necessary criterion for the diagnosis of the disease. This is not the case for bacterial vaginosis, since the ultimate cause of the disease is not yet known. There are a variety of methods for the diagnosis of bacterial vaginosis but no method can at present be regarded as the best. Diagnosing bacterial vaginosis has long been based on the clinical criteria of Amsel, whereby three of four defined criteria must be satisfied. Nugent’s scoring system has been further developed and includes validation of the categories of observable bacteria structures. Up­to­date molecular tests are introduced, and better understanding of vaginal microbiome, a clear definition for bacterial vaginosis, and short­term and long­term fluctuations in vaginal microflora will help to better define molecular tests within the broader clinical context.

  8. Interfering with bacterial gossip

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Tolker-Nielsen, Tim; Givskov, Michael

    2011-01-01

    defense. Antibiotics exhibit a rather limited effect on biofilms. Furthermore, antibiotics have an ‘inherent obsolescence’ because they select for development of resistance. Bacterial infections with origin in bacterial biofilms have become a serious threat in developed countries. Pseudomonas aeruginosa......, resistance and QS inhibition as future antimicrobial targets, in particular those that would work to minimize selection pressures for the development of resistant bacteria.......Biofilm resilience poses major challenges to the development of novel antimicrobial agents. Biofilm bacteria can be considered small groups of “Special Forces” capable of infiltrating the host and destroying important components of the cellular defense system with the aim of crippling the host...

  9. Adhesion in ceramics and magnetic media

    Science.gov (United States)

    Miyoshi, Kazuhisa

    1989-01-01

    When a ceramic is brought into contact with a metal or a polymeric material such as a magnetic medium, strong bonds form between the materials. For ceramic-to-metal contacts, adhesion and friction are strongly dependent on the ductility of the metals. Hardness of metals plays a much more important role in adhesion and friction than does the surface energy of metals. Adhesion, friction, surface energy, and hardness of a metal are all related to its Young's modulus and shear modulus, which have a marked dependence on the electron configuration of the metal. An increase in shear modulus results in a decrease in area of contact that is greater than the corresponding increase in surface energy (the fond energy) with shear modulus. Consequently, the adhesion and friction decrease with increasing shear modulus. For ceramics in contact with polymeric magnetic tapes, environment is extremely important. For example, a nitrogen environment reduces adhesion and friction when ferrite contacts polymeric tape, whereas a vacuum environment strengthens the ferrite-to-tape adhesion and increases friction. Adhesion and friction are strongly dependent on the particle loading of the tape. An increase in magnetic particle concentration increases the complex modulus of the tape, and a lower real area of contact and lower friction result.

  10. Dangling chain elastomers as repeatable fibrillar adhesives.

    Science.gov (United States)

    Sitti, Metin; Cusick, Brian; Aksak, Burak; Nese, Alper; Lee, Hyung-il; Dong, Hongchen; Kowalewski, Tomasz; Matyjaszewski, Krzysztof

    2009-10-01

    This work reports on repeatable adhesive materials prepared by controlled grafting of dangling hetero chains from polymer elastomers. The dangling chain elastomer system was prepared by grafting poly(n-butyl acrylate) (PBA) chains from prefunctionalized polydimethylsiloxane (PDMS) elastomer networks using atom transfer radical polymerization. To study the effects of chain growth and network strain as they relate to network adhesion mechanics, various lengths of PBA chains with degree of polymerizations (DP) of 65, 281, 508, and 1200 were incorporated into the PDMS matrix. PBA chains with a DP value of 281 grafted from a flat PDMS substrate showed the highest (approximately 3.5-fold) enhancement of nano- and macroscale adhesion relative to a flat raw (ungrafted and not prefunctionalized) PDMS substrate. Moreover, to study the effect of PBA dangling chains on adhesion in fibrillar elastomer structures inspired by gecko foot hairs, a dip-transfer fabrication method was used to graft PBA chains with a DP value of 296 from the tip endings of mushroom-shaped PDMS micropillars. A PBA chain covered micropillar array showed macroscale adhesion enhancement up to approximately 7 times relative to the flat ungrafted prefunctionalized PDMS control substrate, showing additional nonoptimized approximately 2-fold adhesion enhancement due to fibrillar structuring and mushroom-shaped tip ending. These dangling hetero chains on elastomer micro-/nanofibrillar structures may provide a novel fabrication platform for multilength scale, repeatable, and high-strength fibrillar adhesives inspired by gecko foot hairs. PMID:20355863

  11. Adhesion property of epoxidized natural rubber (ENR-based adhesives containing calcium carbonate

    Directory of Open Access Journals (Sweden)

    2008-06-01

    Full Text Available The adhesion property (i.e. viscosity, loop tack and peel strength of epoxidized natural rubber (ENR 25 and ENR 50 grade-based pressure-sensitive adhesive was studied in the presence of calcium carbonate. The range of calcium carbonate loaded was from 10 to 50 parts per hundred parts of rubber (phr. Coumarone-indene resin was used as the tackifier and its concentration was fixed at 80 phr. Toluene was chosen as the solvent throughout the investigation. The substrates (PET film/paper were coated with the adhesive using a SHEEN hand coater at a coating thickness of 60 µm. Viscosity of the adhesive was measured by a HAAKE Rotary Viscometer whereas loop tack and peel strength were determined by a Llyod Adhesion Tester operating at 30 cm/min. Results show that viscosity of ENR-based adhesives increases gradually with increase in calcium carbonate loading due to the concentration effect of the filler. However, for loop tack and peel strength, it passes through a maximum at 30 phr calcium carbonate, an observation which is attributed to the optimum wettability of adhesive on the substrate at this adhesive composition. ENR 25-based adhesive consistently exhibits higher adhesion property than ENR 50 for all calcium carbonate loadings studied.

  12. Staphylococcus aureus adhesion to standard micro-rough and electropolished implant materials.

    Science.gov (United States)

    Harris, Llinos G; Meredith, D Osian; Eschbach, Lukas; Richards, R Geoff

    2007-06-01

    Implant-associated infections can cause serious complications including osteomyelitis and soft tissue damage, and are a great problem due to the emergence of antibiotic resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA). In some cases, antibiotic-loaded beads which release the antibiotic locally have been used, however such systems may lead to the development of antibiotic-resistant bacteria, as seen with gentamicin-loaded beads. Hence modifying the actual metal implant surface to inhibit or reduce initial bacterial adhesion may be an alternative option. This study describes the visualisation and quantification of S. aureus adhering to standard micro-rough 'commercially pure' titanium (TS) and Ti-6Al-7Nb (NS) surfaces, electropolished titanium (TE) and Ti-6Al-7Nb (NE) surfaces, and standard electropolished stainless steel (SS). Qualitative and quantitative results of S. aureus on the different surfaces correlated with each other, and showed significantly more live bacteria on NS than on the other surfaces, whilst there was no significant difference between the amount of bacteria on TS, TE, NE and SS surfaces. The results showed a significant decrease in the amount of bacteria adhering to the NE compared to standard NS surfaces. Such an observation suggests that the NS surface encouraged S. aureus adhesion, and could lead to higher infection rates in vivo. Hence electropolishing Ti-6Al-7Nb surfaces could be advantageous in osteosynthesis areas in minimising bacterial adhesion and lowering the rate of infection. PMID:17268867

  13. Adhesion of Dental Materials to Tooth Structure

    Science.gov (United States)

    Mitra, Sumita B.

    2000-03-01

    The understanding and proper application of the principles of adhesion has brought forth a new paradigm in the realm of esthetic dentistry. Modern restorative tooth procedures can now conserve the remaining tooth-structure and also provide for the strengthening of the tooth. Adhesive restorative techniques call for the application and curing of the dental adhesive at the interface between the tooth tissue and the filling material. Hence the success of the restoration depends largely on the integrity of this interface. The mechanism of adhesion of the bonding materials to the dental hard tissue will be discussed in this paper. There are four main steps that occur during the application of the dental adhesive to the oral hard tissues: 1) The first step is the creation of a microstructure in the tooth enamel or dentin by means of an acidic material. This can be through the application of a separate etchant or can be accomplished in situ by the adhesive/primer. This agent has to be effective in removing or modifying the proteinaceous “smear” layer, which would otherwise act as a weak boundary layer on the surface to be bonded. 2) The primer/adhesive must then be able to wet and penetrate the microstructure created in the tooth. Since the surface energies of etched enamel and that of etched dentin are different finding one material to prime both types of dental tissues can be quite challenging. 3) The ionomer types of materials, particularly those that are carboxylate ion-containing, can chemically bond with the calcium ions of the hydroxyapatite mineral. 4) Polymerization in situ allows for micromechanical interlocking of the adhesive. The importance of having the right mechanical properties of the cured adhesive layer and its role in absorbing and dissipating stresses encountered by a restored tooth will also be discussed.

  14. Bacterial invasion reconstructed molecule by molecule

    Energy Technology Data Exchange (ETDEWEB)

    Werner, James H [Los Alamos National Laboratory

    2009-01-01

    We propose to visualize the initial stages of bacterial infection of a human host cell with unmatched spatial and temporal resolution. This work will develop a new capability for the laboratory (super-resolution optical imaging), will test unresolved scientific hypotheses regarding host-pathogen interaction dynamics, and leverages state of the art 3D molecular tracking instrumentation developed recently by our group. There is much to be gained by applying new single molecule tools to the important and familiar problem of pathogen entry into a host cell. For example, conventional fluorescence microscopy has identified key host receptors, such as CD44 and {alpha}5{beta}1 integrin, that aggregate near the site of Salmonella typhimurium infection of human cells. However, due to the small size of the bacteria ({approx} 2 {micro}m) and the diffraction of the emitted light, one just sees a fluorescent 'blob' of host receptors that aggregate at the site of attachment, making it difficult to determine the exact number of receptors present or whether there is any particular spatial arrangement of the receptors that facilitates bacterial adhesion/entry. Using newly developed single molecule based super-resolution imaging methods, we will visualize how host receptors are directed to the site of pathogen adhesion and whether host receptors adopt a specific spatial arrangement for successful infection. Furthermore, we will employ our 3D molecular tracking methods to follow the injection of virulence proteins, or effectors, into the host cell by the pathogen Type III secretion system (TTSS). We expect these studies to provide mechanistic insights into the early events of pathogen infection that have here-to-fore been technically beyond our reach. Our Research Goals are: Goal 1--Construct a super-resolution fluorescence microscope and use this new capability to image the spatial distribution of different host receptors (e.g. CD44, as {alpha}5{beta}1 integrin) at the

  15. Improving controllable adhesion on both rough and smooth surfaces with a hybrid electrostatic/gecko-like adhesive.

    Science.gov (United States)

    Ruffatto, Donald; Parness, Aaron; Spenko, Matthew

    2014-04-01

    This paper describes a novel, controllable adhesive that combines the benefits of electrostatic adhesives with gecko-like directional dry adhesives. When working in combination, the two technologies create a positive feedback cycle whose adhesion, depending on the surface type, is often greater than the sum of its parts. The directional dry adhesive brings the electrostatic adhesive closer to the surface, increasing its effect. Similarly, the electrostatic adhesion helps engage more of the directional dry adhesive fibrillar structures, particularly on rough surfaces. This paper presents the new hybrid adhesive's manufacturing process and compares its performance to three other adhesive technologies manufactured using a similar process: reinforced PDMS, electrostatic and directional dry adhesion. Tests were performed on a set of ceramic tiles with varying roughness to quantify its effect on shear adhesive force. The relative effectiveness of the hybrid adhesive increases as the surface roughness is increased. Experimental data are also presented for different substrate materials to demonstrate the enhanced performance achieved with the hybrid adhesive. Results show that the hybrid adhesive provides up to 5.1× greater adhesion than the electrostatic adhesive or directional dry adhesive technologies alone. PMID:24451392

  16. Bacteria repelling poly(methylmethacrylate-co-dimethylacrylamide) coatings for biomedical devices† †Electronic supplementary information (ESI) available: Polymer microarray screening, including analysis of bacterial adhesion by fluorescence microscopy and SEM, and chemical composition of bacteria repelling polymers identified in the screen; polymer synthesis and characterisation; preparation of catheter pieces and solvent studies, and details for confocal imaging/analysis. See DOI: 10.1039/c4tb01129e Click here for additional data file.

    OpenAIRE

    Venkateswaran, Seshasailam; Wu, Mei; Gwynne, Peter J.; Hardman, Ailsa; Lilienkampf, Annamaria; Pernagallo, Salvatore; Blakely, Garry; Swann, David G; Gallagher, Maurice P.; Bradley, Mark

    2014-01-01

    Nosocomial infections due to bacteria have serious implications on the health and recovery of patients in a variety of medical scenarios. Since bacterial contamination on medical devices contributes to the majority of nosocomical infections, there is a need for redesigning the surfaces of medical devices, such as catheters and tracheal tubes, to resist the binding of bacteria. In this work, polyurethanes and polyacrylates/acrylamides, which resist binding by the major bacterial pathogens unde...

  17. Bacterial extracellular lignin peroxidase

    Science.gov (United States)

    Crawford, Donald L.; Ramachandra, Muralidhara

    1993-01-01

    A newly discovered lignin peroxidase enzyme is provided. The enzyme is obtained from a bacterial source and is capable of degrading the lignin portion of lignocellulose in the presence of hydrogen peroxide. The enzyme is extracellular, oxidative, inducible by lignin, larch wood xylan, or related substrates and capable of attacking certain lignin substructure chemical bonds that are not degradable by fungal lignin peroxidases.

  18. Bacterial Skin Infections

    Science.gov (United States)

    ... or scraped, the injury should be washed with soap and water and covered with a sterile bandage. Petrolatum may be applied to open areas to keep the tissue moist and to try to prevent bacterial invasion. Doctors recommend that people do not use ...

  19. Bacterial microflora of nectarines

    Science.gov (United States)

    Microflora of fruit surfaces has been the best source of antagonists against fungi causing postharvest decays of fruit. However, there is little information on microflora colonizing surfaces of fruits other than grapes, apples, and citrus fruit. We characterized bacterial microflora on nectarine f...

  20. BigA is a novel adhesin of Brucella that mediates adhesion to epithelial cells.

    Science.gov (United States)

    Czibener, Cecilia; Merwaiss, Fernando; Guaimas, Francisco; Del Giudice, Mariela Giselda; Serantes, Diego Armando Rey; Spera, Juan Manuel; Ugalde, Juan Esteban

    2016-04-01

    Adhesion to cells is the initial step in the infectious cycle of basically all pathogenic bacteria, and to do so, microorganisms have evolved surface molecules that target different cellular receptors. Brucella is an intracellular pathogen that infects a wide range of mammals whose virulence is completely dependent on the capacity to replicate in phagocytes. Although much has been done to elucidate how Brucella multiplies in macrophages, we still do not understand how bacteria invade epithelial cells to perform a replicative cycle or what adhesion molecules are involved in the process. We report the identification in Brucella abortus of a novel adhesin that harbours a bacterial immunoglobulin-like domain and demonstrate that this protein is involved in the adhesion to polarized epithelial cells such as the Caco-2 and Madin-Darby canine kidney models targeting the bacteria to the cell-cell interaction membrane. While deletion of the gene significantly reduced adhesion, over-expression dramatically increased it. Addition of the recombinant protein to cells induced cytoskeleton rearrangements and showed that this adhesin targets proteins of the cell-cell interaction membrane in confluent cultures. PMID:26400021

  1. Corneal cell adhesion to contact lens hydrogel materials enhanced via tear film protein deposition.

    Directory of Open Access Journals (Sweden)

    Claire M Elkins

    Full Text Available Tear film protein deposition on contact lens hydrogels has been well characterized from the perspective of bacterial adhesion and viability. However, the effect of protein deposition on lens interactions with the corneal epithelium remains largely unexplored. The current study employs a live cell rheometer to quantify human corneal epithelial cell adhesion to soft contact lenses fouled with the tear film protein lysozyme. PureVision balafilcon A and AirOptix lotrafilcon B lenses were soaked for five days in either phosphate buffered saline (PBS, borate buffered saline (BBS, or Sensitive Eyes Plus Saline Solution (Sensitive Eyes, either pure or in the presence of lysozyme. Treated contact lenses were then contacted to a live monolayer of corneal epithelial cells for two hours, after which the contact lens was sheared laterally. The apparent cell monolayer relaxation modulus was then used to quantify the extent of cell adhesion to the contact lens surface. For both lens types, lysozyme increased corneal cell adhesion to the contact lens, with the apparent cell monolayer relaxation modulus increasing up to an order of magnitude in the presence of protein. The magnitude of this increase depended on the identity of the soaking solution: lenses soaked in borate-buffered solutions (BBS, Sensitive Eyes exhibited a much greater increase in cell attachment upon protein addition than those soaked in PBS. Significantly, all measurements were conducted while subjecting the cells to moderate surface pressures and shear rates, similar to those experienced by corneal cells in vivo.

  2. Lysophosphatidic acid regulates adhesion molecules and enhances migration of human oral keratinocytes.

    Science.gov (United States)

    Thorlakson, Hong H; Schreurs, Olav; Schenck, Karl; Blix, Inger J S

    2016-04-01

    Oral keratinocytes are connected via cell-to-cell adhesions to protect underlying tissues from physical and bacterial damage. Lysophosphatidic acids (LPAs) are a family of phospholipid mediators that have the ability to regulate gene expression, cytoskeletal rearrangement, and cytokine/chemokine secretion, which mediate proliferation, migration, and differentiation. Several forms of LPA are found in saliva and gingival crevicular fluid, but it is unknown how they affect human oral keratinocytes (HOK). The aim of the present study was therefore to examine how different LPA forms affect the expression of adhesion molecules and the migration and proliferation of HOK. Keratinocytes were isolated from gingival biopsies obtained from healthy donors and challenged with different forms of LPA. Quantitative real-time RT-PCR, immunocytochemistry, and flow cytometry were used to analyze the expression of adhesion molecules. Migration and proliferation assays were performed. Lysophosphatidic acids strongly promoted expression of E-cadherin and occludin mRNAs and translocation of E-cadherin protein from the cytoplasm to the membrane. Occludin and claudin-1 proteins were up-regulated by LPA. Migration of HOK in culture was increased, but proliferation was reduced, by the addition of LPA. This indicates that LPA can have a role in the regulation of the oral epithelial barrier by increasing the expression of adhesion molecules of HOK, by promotion of migration and by inhibition of proliferation. PMID:26913569

  3. Controllable and switchable capillary adhesion mechanism for bio-adhesive pads: Effect of micro patterns

    Institute of Scientific and Technical Information of China (English)

    ZHANG XiangJun; LIU Yuan; LIU YongHe; AHMED S.I.-U.

    2009-01-01

    Some insects and animals, such as bugs, grasshoppers and tree frogs, realize their efficient adhesion mechanism to glass surface, wall and ceiling by injecting a wetting liquid thin film into the pad-substrate contact area. Their ability to control adhesion (attaching or detaching from a surface) is in many cases connected to the contact geometry and surface patterns of their attachment pads. This paper focuses on the dependence of the capillary adhesion (wet adhesion) on the micro patterns of the bio-adhesive pads. The objective is to reveal the possible mechanism for a bio-adhesive pad to control capillary force through adjusting its micro-scale surface pattern and topography. A capillary adhesion force model is built up taking account of the combined role of micro-dimple geometry as well as the wetting behavior of the confined liquid thin film. Calculated results of the apparent contact angle on the regularly micro-dimpled surfaces are compared with and in good agreement with the experimental measurements. Simulation of the capillary adhesion force reveals that it is controllable in a large mag-nitude by adjusting a dimensionless surface pattern parameter k defined as a/(a+b), where a is the dia-meter of micro dimple, and (a+b) is the side length of one pattern cell. When adjusting the parameter k more than 0.75, the capillary adhesion force could be switchable from attractive to repulsive. This effect of micro patterns on the interfacial capillary force is proved to be dominant when the pad-substrate clearance decreases to the nano/micrometer scale. These results indicate that a controllable and switchable capillary adhesive mechanism might be utilized by a living insect or animal to realize its stable adhesion and quick releasing movement through adjusting the micro-pattern topography of its bio-adhesive pad.

  4. A randomized control clinical trial of fissure sealant retention: Self etch adhesive versus total etch adhesive

    OpenAIRE

    Nadia Aman; Farhan Raza Khan; Aisha Salim; Huma Farid

    2015-01-01

    Context: There are limited studies on comparison of Total etch (TE) and Self etch (SE) adhesive for placement of sealants. Aims: The aim of the study was to compare the retention of fissure sealants placed using TE adhesive to those sealants placed using SE (seventh generation) adhesive. Settings and Design: The study was conducted in the dental section, Aga Khan University Hospital. This study was a randomized single blinded trial with a split mouth design. Materials and Methods:...

  5. Embedded adhesive connection for laminated glass plates

    DEFF Research Database (Denmark)

    Hansen, Jens Zangenberg; Poulsen, S.H.; Bagger, A.; Stang, Henrik; Olesen, John Forbes

    2012-01-01

    The structural behavior of a new connection design, the embedded adhesive connection, used for laminated glass plates is investigated. The connection consists of an aluminum plate encapsulated in-between two adjacent triple layered laminated glass plates. Fastening between glass and aluminum is...... ensured using a structural adhesive. At first, the elastic and viscoelastic material properties of the adhesive are identified where the influence of load-rate and failure properties are also examined. Through an inverse analysis using the finite element method, the experimental observations are...... replicated to identify a material model of the adhesive. The material model consists of an elastic and linear viscoelastic formulation suitable for a numerical implementation of the material. Based on two relevant load cases, out-of-plane bending and in-plane shear, the connection performance is investigated...

  6. ENHANCING ADHESION OF TETRAHEDRAL AMORPHOUS CARBON FILMS

    Institute of Scientific and Technical Information of China (English)

    Zhao Yuqing; Lin Yi; Wang Xiaoyan; Wang Yanwu; Wei Xinyu

    2005-01-01

    Objective The high energy ion bombardment technique is applied to enhancing the adhesion of the tetrahedral amorphous carbon (TAC) films deposited by the filtered cathode vacuum arc (FCVA). Methods The abrasion method, scratch method, heating and shaking method as well as boiling salt solution method is used to test the adhesion of the TAC films on various material substrates. Results The test results show that the adhesion is increased as the ion bombardment energy increases. However, if the bombardment energy were over the corresponding optimum value, the adhesion would be enhanced very slowly for the harder material substrates and drops quickly, for the softer ones. Conclusion The optimum values of the ion bombardment energy are larger for the harder materials than that for the softer ones.

  7. Micropatterning cell adhesion on polyacrylamide hydrogels.

    Science.gov (United States)

    Zhang, Jian; Guo, Wei-Hui; Rape, Andrew; Wang, Yu-Li

    2013-01-01

    Cell shape and substrate rigidity play critical roles in regulating cell behaviors and fate. Controlling cell shape on elastic adhesive materials holds great promise for creating a physiologically relevant culture environment for basic and translational research and clinical applications. However, it has been technically challenging to create high-quality adhesive patterns on compliant substrates. We have developed an efficient and economical method to create precise micron-scaled adhesive patterns on the surface of a hydrogel (Rape et al., Biomaterials 32:2043-2051, 2011). This method will facilitate the research on traction force generation, cellular mechanotransduction, and tissue engineering, where precise controls of both materials rigidity and adhesive patterns are important. PMID:23955741

  8. Recent advances in nanostructured biomimetic dry adhesives

    Directory of Open Access Journals (Sweden)

    CarloMenon

    2013-12-01

    Full Text Available The relatively large size of the gecko and its ability to climb a multitude of structures with ease has often been cited as the inspiration upon which the field of dry adhesives is based. Since 2010, there have been many advances in the field of dry adhesives with much of the new research focusing on developing nanoscale and hierarchical features in a concentrated effort to develop synthetic gecko-like dry adhesives which are strong, durable and self-cleaning. A brief overview of the geckos and the hairs which it uses to adhere to many different surfaces is provided before delving into the current methods and materials used to fabricate synthetic gecko hairs. A summary of the recently published literature on bio-inspired, nanostructured dry adhesives is presented with an emphasis being placed on fabrication techniques.

  9. Heme uptake in bacterial pathogens

    OpenAIRE

    Contreras, Heidi; Chim, Nicholas; Credali, Alfredo; Goulding, Celia W.

    2014-01-01

    Iron is an essential nutrient for the survival of organisms. Bacterial pathogens possess specialized pathways to acquire heme from their human hosts. In this review, we present recent structural and biochemical data that provide mechanistic insights into several bacterial heme uptake pathways, encompassing the sequestration of heme from human hemoproteins to secreted or membrane-associated bacterial proteins, the transport of heme across bacterial membranes, and the degradation of heme within...

  10. In vitro study of the properties influencing Staphylococcus epidermidis adhesion to prosthetic vascular graft materials

    International Nuclear Information System (INIS)

    This study examines the influence of the properties of various vascular graft materials on the bacterial adherence process of two different strains of Staphylococcus epidermidis (mucous and normucous producing). Dacron grafts (both knitted and woven), Teflon grafts, and Dacron grafts coated with one and two layers of silicone were studied because these materials differ significantly in porosity, hydrophobicity, and surface charge (zeta potential). Graft segments were immersed in 3H-labeled bacteria solution for periods ranging from 5 to 180 minutes and liquid scintillation techniques were used to quantify bacterial adherence. The porous knitted Dacron material had a significantly higher rate of bacterial adherence than either the woven Dacron or Teflon (p less than 0.05). Silicone coating (either one or two layers) reduced adherence by a factor of four for the knitted Dacron (p less than 0.05) and by a factor of two for woven Dacron (p less than 0.05). The mucous producing strain of S. epidermidis displayed significantly better adherence to woven and knitted Dacron than the normucous producing strain, but only when 0.25% dextrose was added to the bacteria solution. These findings indicate that the highly porous knitted Dacron grafts have the highest propensity for bacterial adhesion. Graft materials with the most negative zeta potentials are more resistant to bacterial adherence. Silicone coating of Dacron material significantly changed adherence characteristics, suggesting that this may be a viable strategy for protecting implantable medical devices containing materials to which bacteria readily adhere

  11. Adhesion between Polydimethylsiloxane Layers by Crosslinking

    DEFF Research Database (Denmark)

    Yu, Liyun; Daugaard, Anders Egede; Skov, Anne Ladegaard

    2013-01-01

    Adhesion between two surfaces may be strongly improved by chemical crosslinking of the interfaces. Polydimethylsiloxane (PDMS) is a widely used polymer that has received considerable attention due to its unique properties, such as relatively low price, biocompatibility, flexibility, high thermal...... investigated by rheology and microscopy. The objective of this work was to create adhesion of two layers without destroying the original viscoelastic properties of the PDMS films....

  12. Hierarchical Nanopatterns for Cell Adhesion Studies

    OpenAIRE

    Schwieder, Marco

    2008-01-01

    Hierarchical nanopatterned interfaces are an intriguing tool to study clustering processes of proteins like for example integrins that mediate cell adhesion. The aim of this work is the development of innovative methods for the fabrication of hierarchical micro-nanopatterned surfaces and the use of such systems as platforms to study cell adhesion. In the first part of this work different approaches are presented which are suitable for preparing micro-nanopatterned interfaces at a large scale ...

  13. Effectiveness of cyanoacrylate adhesive in rabbit aortorrhaphy

    OpenAIRE

    Marcus Vinicius Henriques de Carvalho; Evaldo Marchi; Mario Pantaroto

    2015-01-01

    BACKGROUND: Even when properly performed, arterial sutures are not always absolutely hemostatic. Tissue sealants and adhesives have become available that can be used to complete sutures, preventing hemorrhage problems.OBJECTIVES: To evaluate the effectiveness of cyanoacrylate adhesive for sealing aortotomies in rabbits in a coagulopathic state, by analyzing survival of the animals and the time taken to achieve hemostasis.METHODS: Ten-mm long aortotomies were performed on the infrarenal aortas...

  14. Phosphoproteomic analysis of adhesion receptor signalling

    OpenAIRE

    Robertson, Joseph

    2014-01-01

    The binding of integrin adhesion receptors to their extracellular matrix (ECM) ligands activates intracellular signalling pathways that control diverse and fundamental aspects of cell behaviour. While it is clear that protein kinases and phosphatases play an integral role in such adhesion-mediated signalling, current knowledge of the phosphorylation events regulated downstream of integrin ligation is limited and prohibits a systems-level understanding of the molecular mechanisms through which...

  15. Relationships between water wettability and ice adhesion.

    Science.gov (United States)

    Meuler, Adam J; Smith, J David; Varanasi, Kripa K; Mabry, Joseph M; McKinley, Gareth H; Cohen, Robert E

    2010-11-01

    Ice formation and accretion may hinder the operation of many systems critical to national infrastructure, including airplanes, power lines, windmills, ships, and telecommunications equipment. Yet despite the pervasiveness of the icing problem, the fundamentals of ice adhesion have received relatively little attention in the scientific literature and it is not widely understood which attributes must be tuned to systematically design "icephobic" surfaces that are resistant to icing. Here we probe the relationships between advancing/receding water contact angles and the strength of ice adhesion to bare steel and twenty-one different test coatings (∼200-300 nm thick) applied to the nominally smooth steel discs. Contact angles are measured using a commercially available goniometer, whereas the average strengths of ice adhesion are evaluated with a custom-built laboratory-scale adhesion apparatus. The coatings investigated comprise commercially available polymers and fluorinated polyhedral oligomeric silsesquioxane (fluorodecyl POSS), a low-surface-energy additive known to enhance liquid repellency. Ice adhesion strength correlates strongly with the practical work of adhesion required to remove a liquid water drop from each test surface (i.e., with the quantity [1 + cos θ(rec)]), and the average strength of ice adhesion was reduced by as much as a factor of 4.2 when bare steel discs were coated with fluorodecyl POSS-containing materials. We argue that any further appreciable reduction in ice adhesion strength will require textured surfaces, as no known materials exhibit receding water contact angles on smooth/flat surfaces that are significantly above those reported here (i.e., the values of [1 + cos θ(rec)] reported here have essentially reached a minimum for known materials). PMID:20949900

  16. The adhesive revolution of restorative dentistry

    OpenAIRE

    Barnes, IE; Newsome, PRH

    1996-01-01

    In many countries, the incidence of dental decay in the young is decreasing, and Hong Kong is no exception. However, there remains in the region, a number of restorative dental problems of some significance. These are tooth discolouration, fracture, and root surface decay. This article discusses these problems and the way in which their treatment is increasingly being undertaken by means of minimalԸ?intervention adhesive techniques. The formulation of dental adhesive systems that are effectiv...

  17. Particle diameter influences adhesion under flow.

    OpenAIRE

    Shinde Patil, V R; Campbell, C. J.; Yun, Y.H.; Slack, S M; Goetz, D J

    2001-01-01

    The diameter of circulating cells that may adhere to the vascular endothelium spans an order of magnitude from approximately 2 microm (e.g., platelets) to approximately 20 microm (e.g., a metastatic cell). Although mathematical models indicate that the adhesion exhibited by a cell will be a function of cell diameter, there have been few experimental investigations into the role of cell diameter in adhesion. Thus, in this study, we coated 5-, 10-, 15-, and 20-microm-diameter microspheres with ...

  18. Shear adhesion strength of aligned electrospun nanofibers.

    Science.gov (United States)

    Najem, Johnny F; Wong, Shing-Chung; Ji, Guang

    2014-09-01

    Inspiration from nature such as insects' foot hairs motivates scientists to fabricate nanoscale cylindrical solids that allow tens of millions of contact points per unit area with material substrates. In this paper, we present a simple yet robust method for fabricating directionally sensitive shear adhesive laminates. By using aligned electrospun nylon-6, we create dry adhesives, as a succession of our previous work on measuring adhesion energies between two single free-standing electrospun polymer fibers in cross-cylinder geometry, randomly oriented membranes and substrate, and peel forces between aligned fibers and substrate. The synthetic aligned cylindrical solids in this study are electrically insulating and show a maximal Mode II shear adhesion strength of 27 N/cm(2) on a glass slide. This measured value, for the purpose of comparison, is 270% of that reported from gecko feet. The Mode II shear adhesion strength, based on a commonly known "dead-weight" test, is 97-fold greater than the Mode I (normal) adhesion strength of the same. The data indicate a strong shear binding on and easy normal lifting off. Anisotropic adhesion (Mode II/Mode I) is pronounced. The size and surface boundary effects, crystallinity, and bending stiffness of fibers are used to understand these electrospun nanofibers, which vastly differ from otherwise known adhesive technologies. The anisotropic strength distribution is attributed to a decreasing fiber diameter and an optimized laminate thickness, which, in turn, influences the bending stiffness and solid-state "wettability" of points of contact between nanofibers and surface asperities. PMID:25105533

  19. Synthesis and Characterization of Mussel Adhesive Peptides

    OpenAIRE

    Deshmukh Manjeet Vinayakrao

    2005-01-01

    Mussels, marine organisms, attach to underwater surfaces by making a byssus, which is an extra-corporeal bundle of tiny tendons attached distally to a foreign surface and proximally by insertion of the root into the byssal retractor muscles. The interaction exterior of byssus and marine surface is an adhesive plaque that contains different proportion of five mytilus edulis adhesive proteins (mefp-1 to 5). Relatively high contains ...

  20. Elimination of the reactivation process in the adhesion of chlorinated SBS rubber with polychloroprene adhesives

    Directory of Open Access Journals (Sweden)

    2007-04-01

    Full Text Available Chlorination treatment of a thermoplastic styrene-butadiene-styrene rubber (SBS with a 3 wt% solution of trichloroisocyanuric acid (TCI in methyl ethyl ketone (MEK introduces chlorinated and oxidized moieties on the rubber surface which increase its surface energy and produces surface microroughness. Consequently adhesion properties, evaluated by T-peel strength measurements in chlorinated SBS/solvent based-polyurethane adhesive/leather joints, are enhanced. In this study, two solvent-based polychloroprene adhesives (PCP0 and PCP30R have been considered as an alternative to the commonly used solvent-based polyurethane adhesive (PU. A thermoreactive phenolic resin was added to one of the polychloroprene adhesive formulations (PCP30R. This tackifier resin favors chlorination of the adhesive and reinforces the interface between the chlorinated adhesive and the chlorinated rubber surface. Besides, PCP30R adhesive does not need adhesive reactivation and considerable high T-peel strength value (5.7±0.3 kN/m was obtained. Elimination of the reactivation process implies a considerable improvement of the manufacturing process in the footwear industry.

  1. Dependence of the initial adhesion of biofilm forming Pseudomonas putida mt2 on physico-chemical material properties.

    Science.gov (United States)

    Montag, Dominik; Frant, Marion; Horn, Harald; Liefeith, Klaus

    2012-01-01

    Bacterial adhesion is strongly dependent on the physico-chemical properties of materials and plays a fundamental role in the development of a growing biofilm. Selected materials were characterized with respect to their physico-chemical surface properties. The different materials, glass and several polymer foils, showed a stepwise range of surface tensions (γ(s)) between 10.3 and 44.7 mN m(-1). Measured zeta potential values were in the range between -74.8 and -28.3 mV. The initial bacterial adhesion parameter q(max) was found to vary between 6.6 × 10(6) and 28.1 × 10(6) cm(-2). By correlation of the initial adhesions kinetic parameters with the surface tension data, the optimal conditions for the immobilization of Pseudomonas putida mt2 were found to be at a surface tension of 24.7 mN m(-1). Both higher and lower surface tensions lead to a smaller number of adherent cells per unit surface area. Higher energy surfaces, commonly termed hydrophilic, could constrain bacterial adhesion because of their more highly ordered water structure (exclusion zone) close to the surface. At low energy surfaces, commonly referred to as hydrophobic, cell adhesion is inhibited due to a thin, less dense zone (depletion layer or clathrate structure) close to the surface. Correlation of q (max) with zeta potential results in a linear relationship. Since P. putida carries weak negative charges, a measurable repulsive effect can be assumed on negative surfaces. PMID:22452391

  2. Myxococcus xanthus gliding motors are elastically coupled to the substrate as predicted by the focal adhesion model of gliding motility

    CERN Document Server

    Balagam, Rajesh; Czerwinski, Fabian; Sun, Mingzhai; Kaplan, Heidi B; Shaevitz, Joshua W; Igoshin, Oleg A

    2014-01-01

    Myxococcus xanthus is a model organism for studying bacterial social behaviors due to its ability to form complex multi-cellular structures. Knowledge of M. xanthus surface gliding motility and the mechanisms that coordinate it are critically important to our understanding of collective cell behaviors. Although the mechanism of gliding motility is still under investigation, recent experiments suggest that there are two possible mechanisms underlying force production for cell motility: the focal adhesion mechanism and the helical rotor mechanism which differ in the biophysics of the cell-substrate interactions. Whereas the focal adhesion model predicts an elastic coupling, the helical rotor model predicts a viscous coupling. Using a combination of computational modeling, imaging, and force microscopy, we find evidence for elastic coupling in support of the focal adhesion model. Using a biophysical model of the M. xanthus cell, we investigated how the mechanical interactions between cells are affected by intera...

  3. Antimicrobial commodities. Part 2. Antimicrobial and antifungal paint (adhesive); Kokin seikatsu yohin (dai 2 kai). Kokin / bokabi toryo (secchakuzai)

    Energy Technology Data Exchange (ETDEWEB)

    Toyonaga, Y. [Shinto Paint Co. Ltd., Amagasaki, Osaka (Japan)

    1998-07-01

    Since paints or adhesives suffer damage during their practical use from microorganisms existing in the nature, antimicrobial agents are added to products. The antimicrobial agents are classified into three according to the use: preservatives for killing and inhibiting germs (bacteria), antifungal agents for killing and inhibiting eumycetes (mold); and antimicrobial agents in a narrow sense for inhibiting the propagation of bacterial which causes damage to the health, such as MRSA. This paper describes the functions and examples of compositions of paints and adhesives, and then concrete examples of compositions, methods of use, and effects of preservatives, antifungal agents and antimicrobial agents for paints and adhesives. Concerning, especially, preservatives and antifungal agents, the main uses, trade names oral toxities and solvents of 30 compounds are listed. Concerning the antimicrobial agent in a narrow sense, examples of compositions of antimicrobial pastes are enumerated. 5 refs., 1 fig., 8 tabs.

  4. 21 CFR 878.3750 - External prosthesis adhesive.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false External prosthesis adhesive. 878.3750 Section 878...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3750 External prosthesis adhesive. (a) Identification. An external prosthesis adhesive is a silicone-type adhesive intended to...

  5. Evolutionary transitions in bacterial symbiosis

    OpenAIRE

    Sachs, Joel L.; Skophammer, Ryan G.; Regus, John U.

    2011-01-01

    Diverse bacterial lineages form beneficial infections with eukaryotic hosts. The origins, evolution, and breakdown of these mutualisms represent important evolutionary transitions. To examine these key events, we synthesize data from diverse interactions between bacteria and eukaryote hosts. Five evolutionary transitions are investigated, including the origins of bacterial associations with eukaryotes, the origins and subsequent stable maintenance of bacterial mutualism with hosts, the captur...

  6. Controlled Adhesion of Silicone Elastomer Surfaces

    Science.gov (United States)

    Owen, Michael

    2000-03-01

    Opportunities exist for controllably enhancing the adhesion of silicone surfaces, ranging from modest enhancement of release force levels of pressure-sensitive adhesive (PSA) release liners by incorporation of adhesion promoters known as high release additives (HRA), to permanent bonding of silicone elastomers using surface modification techniques such as plasma or corona treatment. Although only a part of the complex interaction of factors contributing to adhesion, surface properties such as wettability are a critical component in the understanding and control of release and adhesion phenomena. Surface characterization studies of low-surface-energy silicones before and after various adhesion modification strategies are reviewed. The silicones include polydimethylsiloxane (PDMS) and fluorosiloxane elastomers and coatings. Techniques used include contact angle, the Johnson, Kendall and Roberts (JKR) contact mechanics approach, scanning electron microscopy (SEM), atomic force microscopy (AFM), and x-ray photoelectron spectroscopy (XPS). Topics addressed are: use of HRA in PDMS release liners, the interaction of PDMS PSAs with polytetrafluoroethylene (PTFE), and the effect of plasma treatment on PDMS and fluorosiloxane surfaces.

  7. Preparation and Properties of Cornstarch Adhesives

    Directory of Open Access Journals (Sweden)

    Li Yang

    2013-08-01

    Full Text Available The main goal of this study was to use cornstarch in the production of environmentally sound adhesives. ‘Three-formaldehyde glue’ pollutes the environment and harms to human health strongly, which widely used for wood-based panels preparation. Environment-friendly cornstarch adhesives were prepared using method of oxidation-gelatinization, insteading of the three formaldehyde glue. The effects of the quality ratio of starch and water, temperature and shear rate on the apparent viscosity of the adhesive were studied. The rheological eigenvalue of apparent viscosity was studied through nonlinear regression. The results showed that the apparent viscosity of cornstarch adhesives increased and then decreased with the increasing of temperature and the maximum value was obtained at 10oC; the apparent viscosity decreased slowly with the increasing of rotor speed; the phenomenon of shear thinning appeared wither cornstarch adhesives which was pseudo-plastic fluids. Cornstarch adhesives with characteristics of non-toxic, no smell and pollution could be applied in interior and upscale packaging.

  8. FINITE ELEMENT ANALYSIS OF WOOD ADHESIVE JOINTS

    Directory of Open Access Journals (Sweden)

    Thomas GEREKE

    2016-03-01

    Full Text Available Engineered wood products such as glulam or cross-laminated timber are widely established in the construction industry. Their structural behaviour and reliability clearly bases on the adhesive bonding. In order to understand and improve the performance of glued wood members a finite element modelling of standard single lap shear samples was carried out. A three-dimensional model of a longitudinal tensile-shear specimen with quasi-centric load application was developed. The main influences of wood and adhesive parameters on structural performance were identified. Therefore, variations of the elasticity, the annual ring angle, fibre angle, and the interface zone and their effect on the occurring stresses in the adhesive bond line were investigated numerically. The adhesive bond line is most significantly sensitive to the Young´s modulus of the adhesive itself. A variation of the fibre angle of the glued members in the standard test is an essential criterion and to be considered when preparing lap shear specimens. A model with representation of early- and latewood gives a more detailed insight into wooden adhesive joints.

  9. Enhanced adhesion of diamond coatings

    Science.gov (United States)

    Zheng, Zhido

    potential layers identified: TiN and TiC. Crystalline diamond coatings are subsequently deposited on these layers by hot filament CVD. A large grained TiC coating with a relatively rough surface was found to provide the best adhesion to the diamond layer. As judged qualitatively by the extent of spallation adjacent to hardness indentation, this intermediate layer performs better than similar TiC layers reported in the literature. The residual stresses in the diamond coatings are analysed using Raman microprobe spectroscopy, and compared with the predictions of the analytical model. The adhesion of the diamond coatings on various substrates with and without an intermediate layer of TiC is quantitatively evaluated by measuring the length of the delamination crack surrounding through-thickness holes in the coating and comparing with the relationship derived between crack length and strain energy release rate. The measured adherence on WC-Co substrates, as characterised by the critical strain energy release rate for growth of the delamination crack, was found to be significantly higher in the presence of the TiC intermediate layer developed during the course of this work.

  10. Advances in modeling and design of adhesively bonded systems

    CERN Document Server

    Kumar, S

    2013-01-01

    The book comprehensively charts a way for industry to employ adhesively bonded joints to make systems more efficient and cost-effective Adhesively bonded systems have found applications in a wide spectrum of industries (e.g., aerospace, electronics, construction, ship building, biomedical, etc.) for a variety of purposes. Emerging adhesive materials with improved mechanical properties have allowed adhesion strength approaching that of the bonded materials themselves. Due to advances in adhesive materials and the many potential merits that adhesive bonding offers, adhesive bonding has replac

  11. Comparison of the Anti-Adhesion Activity of Three Different Cranberry Extracts on Uropathogenic P-fimbriated Escherichia coli: a Randomized, Double-blind, Placebo Controlled, Ex Vivo, Acute Study.

    Science.gov (United States)

    Howell, Amy; Souza, Dan; Roller, Marc; Fromentin, Emilie

    2015-07-01

    Research suggests that cranberry (Vaccinium macrocarpon) helps maintain urinary tract health. Bacterial adhesion to the uroepithelium is the initial step in the progression to development of a urinary tract infection. The bacterial anti-adhesion activity of cranberry proanthocyanidins (PACs) has been demonstrated in vitro. Three different cranberry extracts were developed containing a standardized level of 36 mg of PACs. This randomized, double-blind, placebo controlled, ex vivo, acute study was designed to compare the anti-adhesion activity exhibited by human urine following consumption of three different cranberry extracts on uropathogenic P-fimbriated Escherichia coli in healthy men and women. All three cranberry extracts significantly increased anti-adhesion activity in urine. from 6 to 12 hours after intake of a single dose standardized to deliver 36 mg of PACs (as measured by the BL-DMAC method), versus placebo. PMID:26411014

  12. Application of the Blister Test in Study of Epoxy Adhesive

    Institute of Scientific and Technical Information of China (English)

    Fei Xiong; Ingegerd Annergren

    2000-01-01

    Shaft-loaded blister test technique is used as an effective quantitative tool to measure adhesion strength. Investigation on conductive adhesive was done by modified blister test. It is found that shaftloaded blister test can be a good solution for the debonding of thin film adhesion. The intrinsic stable interface debonding process has been proved an attractive alternative to the conventional adhesion measurement techniques. In our study, epoxy matrix adhesive was studied using blister test technique in comparison with the traditional test-lap shear test. Adhesion strength was studied as a function of surface treatment and the metallization of substrate. It was found that surface conditions of substrate have significant impact on adhesion behaviour. The oxidation of surface is responsible for the poor adhesion. Activating chemical treatment and Plasma cleaning on substrate surface has been found to be a way of dreamatically improving adhesion strength of electronic conductive adhesive.

  13. On the determining role of network structure titania in silicone against bacterial colonization: Mechanism and disruption of biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Depan, D.; Misra, R.D.K., E-mail: dmisra@louisiana.edu

    2014-01-01

    Silicone-based biomedical devices are prone to microbial adhesion, which is the primary cause of concern in the functioning of the artificial device. Silicone exhibiting long-term and effective antibacterial ability is highly desirable to prevent implant related infections. In this regard, nanophase titania was incorporated in silicone as an integral part of the silicone network structure through cross-link mechanism, with the objective to reduce bacterial adhesion to a minimum. The bacterial adhesion was studied using crystal violet assay, while the mechanism of inhibition of biofilm formation was studied via electron microscopy. The incorporation of nanophase titania in silicone dramatically reduced the viability of Staphylococcus aureus (S. aureus) and the capability to adhere on the surface of hybrid silicone by ∼ 93% in relation to stand alone silicone. The conclusion of dramatic reduction in the viability of S. aureus is corroborated by different experimental approaches including biofilm inhibition assay, zone of inhibition, and through a novel experiment that involved incubation of biofilm with titania nanoparticles. It is proposed that the mechanism of disruption of bacterial film in the presence of titania involves puncturing of the bacterial cell membrane. - Highlights: • Network structure titania in silicone imparts antimicrobial activity. • Ability to microbial adhesion is significantly reduced. • Antimicrobial mechanism involves rupture of biofilm.

  14. On the determining role of network structure titania in silicone against bacterial colonization: Mechanism and disruption of biofilm

    International Nuclear Information System (INIS)

    Silicone-based biomedical devices are prone to microbial adhesion, which is the primary cause of concern in the functioning of the artificial device. Silicone exhibiting long-term and effective antibacterial ability is highly desirable to prevent implant related infections. In this regard, nanophase titania was incorporated in silicone as an integral part of the silicone network structure through cross-link mechanism, with the objective to reduce bacterial adhesion to a minimum. The bacterial adhesion was studied using crystal violet assay, while the mechanism of inhibition of biofilm formation was studied via electron microscopy. The incorporation of nanophase titania in silicone dramatically reduced the viability of Staphylococcus aureus (S. aureus) and the capability to adhere on the surface of hybrid silicone by ∼ 93% in relation to stand alone silicone. The conclusion of dramatic reduction in the viability of S. aureus is corroborated by different experimental approaches including biofilm inhibition assay, zone of inhibition, and through a novel experiment that involved incubation of biofilm with titania nanoparticles. It is proposed that the mechanism of disruption of bacterial film in the presence of titania involves puncturing of the bacterial cell membrane. - Highlights: • Network structure titania in silicone imparts antimicrobial activity. • Ability to microbial adhesion is significantly reduced. • Antimicrobial mechanism involves rupture of biofilm

  15. Covalent immobilization of lysozyme onto woven and knitted crimped polyethylene terephthalate grafts to minimize the adhesion of broad spectrum pathogens.

    Science.gov (United States)

    Al Meslmani, Bassam M; Mahmoud, Gihan F; Leichtweiß, Thomas; Strehlow, Boris; Sommer, Frank O; Lohoff, Michael D; Bakowsky, Udo

    2016-01-01

    Graft-associated infections entirely determine the short-term patency of polyethylene terephthalate PET cardiovascular graft. We attempted to enzymatically inhibit the initial bacterial adhesion to PET grafts using lysozyme. Lysozyme was covalently immobilized onto woven and knitted forms of crimped PET grafts by the end-point method. Our figures of merit revealed lysozyme immobilization yield of 15.7 μg/cm(2), as determined by the Bradford assay. The activity of immobilized lysozyme on woven and knitted PET manifested 58.4% and 55.87% using Micrococcus lysodeikticus cells, respectively. Noteworthy, the adhesion of vein catheter-isolated Staphylococcus epidermidis decreased by 6- to 8-folds and of Staphylococcus aureus by 11- to 12-folds, while the Gram-negative Escherichia coli showed only a decrease by 3- to 4-folds. The anti-adhesion efficiency was specific for bacterial cells and no significant effect was observed on adhesion and growth of L929 cells. In conclusion, immobilization of lysozyme onto PET grafts can inhibit the graft-associated infection. PMID:26478289

  16. [Bacterial diseases of rape].

    Science.gov (United States)

    Zakharova, O M; Mel'nychuk, M D; Dankevych, L A; Patyka, V P

    2012-01-01

    Bacterial destruction of the culture was described and its agents identified in the spring and winter rape crops. Typical symptoms are the following: browning of stem tissue and its mucilagization, chlorosis of leaves, yellowing and beginning of soft rot in the place of leaf stalks affixion to stems, loss of pigmentation (violet). Pathogenic properties of the collection strains and morphological, cultural, physiological, and biochemical properties of the agents of rape's bacterial diseases isolated by the authors have been investigated. It was found that all the isolates selected by the authors are highly or moderately aggressive towards different varieties of rape. According to the complex of phenotypic properties 44% of the total number of isolates selected by the authors are related to representatives of the genus Pseudomonas, 37% - to Xanthomonas and 19% - to Pectobacterium. PMID:23293826

  17. Bacterial proteases and virulence

    DEFF Research Database (Denmark)

    Frees, Dorte; Brøndsted, Lone; Ingmer, Hanne

    Bacterial pathogens rely on proteolysis for variety of purposes during the infection process. In the cytosol, the main proteolytic players are the conserved Clp and Lon proteases that directly contribute to virulence through the timely degradation of virulence regulators and indirectly by providing...... tolerance to adverse conditions such as those experienced in the host. In the membrane, HtrA performs similar functions whereas the extracellular proteases, in close contact with host components, pave the way for spreading infections by degrading host matrix components or interfering with host cell...... cell. These extracellular proteases are activated in complex cascades involving auto-processing and proteolytic maturation. Thus, proteolysis has been adopted by bacterial pathogens at multiple levels to ensure the success of the pathogen in contact with the human host....

  18. Pressure-sensitive adhesives for transdermal drug delivery systems.

    Science.gov (United States)

    Tan; Pfister

    1999-02-01

    Adhesives are a critical component in transdermal drug delivery (TDD) devices. In addition to the usual requirements of functional adhesive properties, adhesives for TDD applications must have good biocompatibility with the skin, chemical compatibility with the drug, various components of the formulation, and provide consistent, effective delivery of the drug. This review discusses the three most commonly used adhesives (polyisobutylenes, polyacrylates and silicones) in TDD devices, and provides an update on recently introduced TDD products and recent developments of new adhesives. PMID:10234208

  19. Improved stress prediction in adhesive bonded optical components

    OpenAIRE

    Vreugd, J. de; Voert, M.J.A. te; Nijenhuis, J.R.; Pijnenburg, J.A.C.M.; Tabak, E.

    2012-01-01

    Adhesives are widely used in optomechanical structures for bonding optical components to their mounts. The main advantage of using adhesives is the excellent strength to weight ratio. Adhesive bonding is seen as a desirable joining technique as it allows for greater flexibility in design. A disadvantage of adhesives however is the limited dimensional stability and loadability. To design stable optical mounts, accurate prediction of stresses and deformation is therefore needed. Adhesives show ...

  20. Supramolecular bacterial systems

    OpenAIRE

    Sankaran, Shrikrishnan

    2015-01-01

    For nearly over a decade, a wide variety of dynamic and responsive supramolecular architectures have been investigated and developed to address biological systems. Since the non-covalent interactions between individual molecular components in such architectures are similar to the interactions found in living systems, it was possible to integrate chemically-synthesized and naturally-occurring components to create platforms with interesting bioactive properties. Bacterial cells and recombinant ...

  1. Bacterial transformation of terpenoids

    International Nuclear Information System (INIS)

    Data on the bacterial transformation of terpenoids published in the literature in the past decade are analyzed. Possible pathways for chemo-, regio- and stereoselective modifications of terpenoids are discussed. Considerable attention is given to new technological approaches to the synthesis of terpenoid derivatives suitable for the use in the perfume and food industry and promising as drugs and chiral intermediates for fine organic synthesis. The bibliography includes 246 references

  2. Chemical modification of polyvinyl chloride and silicone elastomer in inhibiting adhesion of Aeromonas hydrophila.

    Science.gov (United States)

    Kregiel, Dorota; Berlowska, Joanna; Mizerska, Urszula; Fortuniak, Witold; Chojnowski, Julian; Ambroziak, Wojciech

    2013-07-01

    Disease-causing bacteria of the genus Aeromonas are able to adhere to pipe materials, colonizing the surfaces and forming biofilms in water distribution systems. The aim of our research was to study how the modification of materials used commonly in the water industry can reduce bacterial cell attachment. Polyvinyl chloride and silicone elastomer surfaces were activated and modified with reactive organo-silanes by coupling or co-crosslinking silanes with the native material. Both the native and modified surfaces were tested using the bacterial strain Aeromonas hydrophila, which was isolated from the Polish water distribution system. The surface tension of both the native and modified surfaces was measured. To determine cell viability and bacterial adhesion two methods were used, namely plate count and luminometry. Results were expressed in colony-forming units (c.f.u.) and in relative light units (RLU) per cm(2). Almost all the chemically modified surfaces exhibited higher anti-adhesive and anti-microbial properties in comparison to the native surfaces. Among the modifying agents examined, poly[dimethylsiloxane-co-(N,N-dimethyl-N-n-octylammoniopropyl chloride) methylsiloxane)] terminated with hydroxydimethylsilyl groups (20 %) in silicone elastomer gave the most desirable results. The surface tension of this modifier, was comparable to the non-polar native surface. However, almost half of this value was due to the result of polar forces. In this case, in an adhesion analysis, only 1 RLU cm(-2) and less than 1 c.f.u. cm(-2) were noted. For the native gumosil, the results were 9,375 RLU cm(-2) and 2.5 × 10(8) c.f.u. cm(-2), respectively. The antibacterial activity of active organo-silanes was associated only with the carrier surface because no antibacterial compounds were detected in liquid culture media, in concentrations that were able to inhibit cell growth. PMID:23397109

  3. Adhesion and biocides inactivation of Salmonella on stainless steel and polyethylene

    Directory of Open Access Journals (Sweden)

    Eduardo Cesar Tondo

    2010-12-01

    Full Text Available The adhesion of Salmonella (S. strains to stainless steel and polyethylene and their inactivation by biocides used in food industry was investigated. Coupons of stainless steel and polyethylene were immersed in bacterial suspensions of S. Enteritidis, S. Typhimurium, and S. Bredeney during 15, 30, and 60 minutes, and submitted to different concentrations of peracetic acid (PAA, sodium hypochlorite (NaOCl, and quaternary ammonium (Quat sanitizers. Hydrophobicity of the surfaces was evaluated by contact angle measurements using the sessile drop method and bacterial adhesion was accompanied through bacterial counts and scanning electron microscopy (SEM. Results indicated that the three serovars of Salmonella presented similar adhesion to both materials (5.0 to 6.5 log cfu cm-2. The time of exposure did not influence the counts of adhered cells on both surfaces, however SEM revealed larger clusters of S. Enteritidis on both materials, not found for the other serovars. S. Enteritidis presented lower sessile drop angle on polyethylene, indicating hydrophilic properties of this material. The biocides were not able to inactivate all the microorganisms adhered on both surfaces. At least 1 log cfu cm-2 of all serovars tested remained viable after the exposure to different biocide concentrations. In general, higher counts of survivors were observed on polyethylene disinfected with different concentrations of biocides. S. Bredeney e S. Typhimurium were more resistant than S. Enteritidis to PAA, whilst S. Enteritidis presented smaller reduction rates to NaOCl. This last biocide was able to reduce Salmonella counts in approximately 3.0 to 4.0 log cm-2. When adhered to polyethylene, the serovars S. Typhimurium and S. Enteritidis were more resistant to Quat than S. Bredeney in all concentrations tested, and the numbers of S. Enteritidis remained almost unaltered. On stainless steel disinfected by Quat, S. Bredeney presented higher numbers of survivors.

  4. A comparative study on adhesion and recovery of potential probiotic strains of Lactobacillus spp. by in vitro assay and analysis of human colon biopsies

    DEFF Research Database (Denmark)

    Larsen, Nadejda Nikolajevna; Michaelsen, Kim F.; Pærregaard, Anders;

    2009-01-01

    Adhesion of the new Lactobacillus isolates, L. casei D12, L. casei Q85, L. casei Z11 and L. plantarum Q47, to the porcine intestinal cell line IPEC-J2 was investigated and compared to the recovery of the same bacterial strains from colon biopsies and faeces obtained from human intervention studies...... intestinal colonization. High correlation was shown between recovery from the different sections of the colon of the same subject, indicating consistency of bacterial colonization of the epithelium. The recovery of L. casei Z11 and L. casei Q85 was highest and comparable to the reference strains of L....... rhamnosus 19070 and L. casei F19, indicating their potential to colonize the human intestine. Analysis of linear regression demonstrated poor correlation between in vitro and in vivo results, emphasizing the importance of critical evaluation of in vitro adhesion data for prediction of bacterial colonization...

  5. Neutrophil adhesion and chemotaxis depend on substrate mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Jannat, Risat A; Hammer, Daniel A [Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA 19104 (United States); Robbins, Gregory P; Ricart, Brendon G [Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 311A Towne Building, 220 South 33rd Street, Philadelphia, PA 19104 (United States); Dembo, Micah, E-mail: hammer@seas.upenn.ed [Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215 (United States)

    2010-05-19

    Neutrophil adhesion to the vasculature and chemotaxis within tissues play critical roles in the inflammatory response to injury and pathogens. Unregulated neutrophil activity has been implicated in the progression of numerous chronic and acute diseases such as rheumatoid arthritis, asthma and sepsis. Cell migration of anchorage-dependent cells is known to depend on both chemical and mechanical interactions. Although neutrophil responses to chemical cues have been well characterized, little is known about the effect of underlying tissue mechanics on neutrophil adhesion and migration. To address this question, we quantified neutrophil migration and traction stresses on compliant hydrogel substrates with varying elasticity in a micromachined gradient chamber in which we could apply either a uniform concentration or a precise gradient of the bacterial chemoattractant fMLP. Neutrophils spread more extensively on substrates of greater stiffness. In addition, increasing the stiffness of the substrate leads to a significant increase in the chemotactic index for each fMLP gradient tested. As the substrate becomes stiffer, neutrophils generate higher traction forces without significant changes in cell speed. These forces are often displayed in pairs and focused in the uropod. Increases in the mean fMLP concentration beyond the K{sub D} of the receptor lead to a decrease in chemotactic index on all surfaces. Blocking with an antibody against {beta}{sub 2}-integrins leads to a significant reduction, but not an elimination, of directed motility on stiff materials, but no change in motility on soft materials, suggesting neutrophils can display both integrin-dependent and integrin-independent motility. These findings are critical for understanding how neutrophil migration may change in different mechanical environments in vivo and can be used to guide the design of migration inhibitors that more efficiently target inflammation.

  6. Adhesion Molecules Associated with Female Genital Tract Infection

    Science.gov (United States)

    Li, Lin-Xi; Carrascosa, José Manuel; Cabré, Eduard; Dern, Olga; Sumoy, Lauro; Requena, Gerard; McSorley, Stephen J.

    2016-01-01

    Efforts to develop vaccines that can elicit mucosal immune responses in the female genital tract against sexually transmitted infections have been hampered by an inability to measure immune responses in these tissues. The differential expression of adhesion molecules is known to confer site-dependent homing of circulating effector T cells to mucosal tissues. Specific homing molecules have been defined that can be measured in blood as surrogate markers of local immunity (e.g. α4β7 for gut). Here we analyzed the expression pattern of adhesion molecules by circulating effector T cells following mucosal infection of the female genital tract in mice and during a symptomatic episode of vaginosis in women. While CCR2, CCR5, CXCR6 and CD11c were preferentially expressed in a mouse model of Chlamydia infection, only CCR5 and CD11c were clearly expressed by effector T cells during bacterial vaginosis in women. Other homing molecules previously suggested as required for homing to the genital mucosa such as α4β1 and α4β7 were also differentially expressed in these patients. However, CD11c expression, an integrin chain rarely analyzed in the context of T cell immunity, was the most consistently elevated in all activated effector CD8+ T cell subsets analyzed. This molecule was also induced after systemic infection in mice, suggesting that CD11c is not exclusive of genital tract infection. Still, its increase in response to genital tract disorders may represent a novel surrogate marker of mucosal immunity in women, and warrants further exploration for diagnostic and therapeutic purposes. PMID:27272720

  7. Surface Modifications in Adhesion and Wetting

    Science.gov (United States)

    Longley, Jonathan

    Advances in surface modification are changing the world. Changing surface properties of bulk materials with nanometer scale coatings enables inventions ranging from the familiar non-stick frying pan to advanced composite aircraft. Nanometer or monolayer coatings used to modify a surface affect the macro-scale properties of a system; for example, composite adhesive joints between the fuselage and internal frame of Boeing's 787 Dreamliner play a vital role in the structural stability of the aircraft. This dissertation focuses on a collection of surface modification techniques that are used in the areas of adhesion and wetting. Adhesive joints are rapidly replacing the familiar bolt and rivet assemblies used by the aerospace and automotive industries. This transition is fueled by the incorporation of composite materials into aircraft and high performance road vehicles. Adhesive joints have several advantages over the traditional rivet, including, significant weight reduction and efficient stress transfer between bonded materials. As fuel costs continue to rise, the weight reduction is accelerating this transition. Traditional surface pretreatments designed to improve the adhesion of polymeric materials to metallic surfaces are extremely toxic. Replacement adhesive technologies must be compatible with the environment without sacrificing adhesive performance. Silane-coupling agents have emerged as ideal surface modifications for improving composite joint strength. As these coatings are generally applied as very thin layers (method to surface vibration for moving drops in microfluidic devices. The final surface modification considered is the application of a thin layer of rubber to a rigid surface. While this technique has many practical uses, such as easy release coatings in marine environments, it is applied herein to enable spontaneous healing between a rubber surface and a glass cover slip. Study of the diffusion controlled healing of a blister can be made by

  8. Influence of surface roughness of stainless steel on microbial adhesion and corrosion resistance

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Bagge-Ravn, Dorthe; Kold, John;

    2003-01-01

    resistance was evaluated in a commercial disinfectant and in 1 M NaCl. Electropolished and grit 4000 polished steel proved more corrosion resistant as opposed to grit 80 and 120 polished surfaces. In conclusion, the surface finish did not influence bacterial attachment, colonisation, or removal, but is an...... was not affected by surface roughness (Ra) ranging from grit 4000 polished stainless steel (Ra <0.01) to ground stainless steel (Ra 0.9). Neither adhesion of Ps. aeruginosa nor its removal by an alkaline commercial cleaner in a flow system was affected by surface roughness. Pitting corrosion...... important parameter for the corrosion resistance of the surface....

  9. Gene products specifying adhesion of uropathogenic Escherichia coli are minor components of pili.

    OpenAIRE

    Lindberg, F; Lund, B; Normark, S

    1986-01-01

    The papE, papF, and papG genes of uropathogenic Escherichia coli are dispensable for the synthesis and assembly of pili associated with pyelonephritis, called Pap pili. Phenotypically, papF and papG mediate digalactoside [alpha-D-Galp-(1----4)-beta-D-Galp)-specific adhesion. Although whole bacterial cells of a papE mutant bind to this receptor, purified pili from such a mutant do not. This is in contrast to pili purified from the wild type, which bind specifically. The DNA sequences of the pa...

  10. Nanorough titanium surfaces reduce adhesion of Escherichia coli and Staphylococcus aureus via nano adhesion points.

    Science.gov (United States)

    Lüdecke, Claudia; Roth, Martin; Yu, Wenqi; Horn, Uwe; Bossert, Jörg; Jandt, Klaus D

    2016-09-01

    Microbial adhesion to natural and synthetic materials surfaces is a key issue e.g. in food industry, sewage treatment and most importantly in the biomedical field. The current development and progress in nanoscale structuring of materials surfaces to control microbial adhesion requires an advanced understanding of the microbe-material-interaction. This study aimed to investigate the nanostructure of the microbe-material-interface and link it to microbial adhesion kinetics as function of titanium surface nanoroughness to gain new insight into controlling microbial adhesion via materials' surface nanoroughness. Adhesion of Escherichia coli and Staphylococcus aureus was statistically significantly reduced (p≤0.05) by 55.6 % and 40.5 %, respectively, on physical vapor deposited titanium thin films with a nanoroughness of 6nm and the lowest surface peak density compared to 2nm with the highest surface peak density. Cross-sectioning of the microbial cells with a focused ion beam (FIB) and SEM imaging provided for the first time direct insight into the titanium-microbe-interface. High resolution SEM micrographs gave evidence that the surface peaks are the loci of initial contact between the microbial cells and the material's surface. In a qualitative model we propose that the initial microbial adhesion on nanorough surfaces is controlled by the titanium surface peak density via nano adhesion points. This new understanding will help towards the design of materials surfaces for controlling microbial adhesion. PMID:27288816

  11. Ultrasonic Nondestructive Characterization of Adhesive Bonds

    Science.gov (United States)

    Qu, Jianmin

    1999-01-01

    Adhesives and adhesive joints are widely used in various industrial applications to reduce weight and costs, and to increase reliability. For example, advances in aerospace technology have been made possible, in part, through the use of lightweight materials and weight-saving structural designs. Joints, in particular, have been and continue to be areas in which weight can be trimmed from an airframe through the use of novel attachment techniques. In order to save weight over traditional riveted designs, to avoid the introduction of stress concentrations associated with rivet holes, and to take full advantage of advanced composite materials, engineers and designers have been specifying an ever-increasing number of adhesively bonded joints for use on airframes. Nondestructive characterization for quality control and remaining life prediction has been a key enabling technology for the effective use of adhesive joints. Conventional linear ultrasonic techniques generally can only detect flaws (delamination, cracks, voids, etc) in the joint assembly. However, more important to structural reliability is the bond strength. Although strength, in principle, cannot be measured nondestructively, a slight change in material nonlinearity may indicate the onset of failure. Furthermore, microstructural variations due to aging or under-curing may also cause changes in the third order elastic constants, which are related to the ultrasonic nonlinear parameter of the polymer adhesive. It is therefore reasonable to anticipate a correlation between changes in the ultrasonic nonlinear acoustic parameter and the remaining bond strength. It has been observed that higher harmonics of the fundamental frequency are generated when an ultrasonic wave passes through a nonlinear material. It seems that such nonlinearity can be effectively used to characterize bond strength. Several theories have been developed to model this nonlinear effect. Based on a microscopic description of the nonlinear

  12. Biocompatible, Free-Standing Film Composed of Bacterial Cellulose Nanofibers-Graphene Composite.

    Science.gov (United States)

    Jin, Lin; Zeng, Zhiping; Kuddannaya, Shreyas; Wu, Dingcai; Zhang, Yilei; Wang, Zhenling

    2016-01-13

    In recent years, graphene films have been used in a series of wide applications in the biomedical area, because of several advantageous characteristics. Currently, these films are derived from graphene oxide (GO) via chemical or physical reduction methods, which results in a significant decrease in surface hydrophilicity, although the electrical property could be greatly improved, because of the reduction process. Hence, the comprehensive performance of the graphene films showed practical limitations in the biomedical field, because of incompatibility of highly hydrophobic surfaces to support cell adhesion and growth. In this work, we present a novel fabrication of bacterial cellulose nanofibers/reduced graphene oxide (BC-RGO) film, using a bacterial reduction method. Thus-prepared BC-RGO films maintained excellent hydrophilicity, while electrical properties were improved by bacterial reduction of GO films in culture. Human marrow mesenchymal stem cells (hMSCs) cultured on these surfaces showed improved cellular response with higher cell proliferation on the BC-RGO film, compared to free-standing reduced graphene oxide film without the nanoscale fibrous structure. Furthermore, the cellular adhesion and proliferation were even comparable to that on the tissue culture plate, indicating that the bacterial cellulose nanofibers play a critically contructive role in supporting cellular activities. The novel fabrication method greatly enhanced the biochemical activity of the cells on the surface, which could aid in realizing several potential applications of graphene film in biomedical area, such as tissue engineering, bacterial devices, etc. PMID:26670811

  13. N-acetyl-L-cysteine affects growth, extracellular polysaccharide production, and bacterial biofilm formation on solid surfaces.

    Science.gov (United States)

    Olofsson, Ann-Cathrin; Hermansson, Malte; Elwing, Hans

    2003-08-01

    N-Acetyl-L-cysteine (NAC) is used in medical treatment of patients with chronic bronchitis. The positive effects of NAC treatment have primarily been attributed to the mucus-dissolving properties of NAC, as well as its ability to decrease biofilm formation, which reduces bacterial infections. Our results suggest that NAC also may be an interesting candidate for use as an agent to reduce and prevent biofilm formation on stainless steel surfaces in environments typical of paper mill plants. Using 10 different bacterial strains isolated from a paper mill, we found that the mode of action of NAC is chemical, as well as biological, in the case of bacterial adhesion to stainless steel surfaces. The initial adhesion of bacteria is dependent on the wettability of the substratum. NAC was shown to bind to stainless steel, increasing the wettability of the surface. Moreover, NAC decreased bacterial adhesion and even detached bacteria that were adhering to stainless steel surfaces. Growth of various bacteria, as monocultures or in a multispecies community, was inhibited at different concentrations of NAC. We also found that there was no detectable degradation of extracellular polysaccharides (EPS) by NAC, indicating that NAC reduced the production of EPS, in most bacteria tested, even at concentrations at which growth was not affected. Altogether, the presence of NAC changes the texture of the biofilm formed and makes NAC an interesting candidate for use as a general inhibitor of formation of bacterial biofilms on stainless steel surfaces. PMID:12902275

  14. Bacterial cellulose and bacterial cellulose-vaccarin membranes for wound healing.

    Science.gov (United States)

    Qiu, Yuyu; Qiu, Liying; Cui, Jing; Wei, Qufu

    2016-02-01

    Bacterial cellulose (BC) and bacterial cellulose-vaccarin (BC-Vac) membranes were successfully produced in large scale. BC was synthesized by Gluconacetobacter xylinum. BC-Vac membranes were prepared by immersing BC in vaccarin solution. The surface morphologies of BC and BC-Vac membranes were examined by a scanning electron microscope (SEM) and an atomic force microscopy (AFM). The images showed that BC-Vac exhibited the characteristic 3D nanofibrillar network of BC matrix but there was adhesion between fibers. The mechanical properties of BC and BC-Vac membranes were evaluated and the results indicated that the adding of drug vaccarin into the BC membranes increased the malleability indicated by the increment in elongation at break compared with BC. Fourier transform infrared spectroscopy (FTIR) analysis was conducted to confirm the incorporation of vaccarin in BC-Vac and investigate the hydroxyl interactions between BC and drug vaccarin. Cell viability and cell attachment studies demonstrated that BC and BC-Vac membranes had no cytotoxicity and could be a good carrier for cell growth. The wound healing performance was examined in vivo by rat skin models. Histological observations revealed that wounds treated with BC-Vac epithelialized and regenerated faster than treated with BC. Therefore, BC-Vac was considered as a potential candidate for wound dressing materials. PMID:26652377

  15. Competition of Lactobacillus paracasei with Salmonella enterica for Adhesion to Caco-2 Cells

    Directory of Open Access Journals (Sweden)

    Alicja Jankowska

    2008-01-01

    Full Text Available Competition of commensal and probiotic bacteria with pathogens for adhesion and colonization is one of the important protective mechanisms of gastrointestinal tract. In this study, we examined the ability of Lactobacillus paracasei to inhibit the adhesion of pathogenic Salmonella enterica to human colon adenocarcinoma Caco-2 cells. Caco-2 cells were grown for 6 or 21 days to obtain nondifferentiated or well-differentiated cells, respectively. In adhesion experiments, bacteria were added to the cells for 2 or 4 hours. The number of attached bacteria was expressed as colony-forming units (CFUs, Caco-2 cells were counted in hematocytometer. Both bacterial strains used adhered better to well-differentiated than to nondifferentiated Caco-2 cells, however, the amount of Salmonella adhered to Caco-2 after 2 hours of contact was 12-fold higher in comparison to . paracasei and almost 27-fold higher after 4 hours of contact. Two types of experiments were done: coincubation (both bacteria were added to Caco-2 cells simultaneously, and preincubation (. paracasei was incubated with Caco-2 cells first, and then . enterica was added. In coincubation experiment, the presence of . paracasei decreased . enterica adhesion by 4-fold and in preincubation experiment even 7-fold. Generally, Lactobacillus spent culture supernatants (SCSs acted weaker as inhibitors of Salmonella adhesion in comparison to the whole . paracasei culture in coincubation experiment. In conclusion, the displacement of pathogens by lactic acid bacteria and its secretions showed here depends on the time of bacteria-epithelial cell contact, and also on the stage of Caco-2 differentiation.

  16. Adhesive properties of a symbolic bacterium from a wood-boreing marine shipworm

    International Nuclear Information System (INIS)

    Adhesive properties of cellulolytic, nitrogen-fixing bacterium isolated from a marine shipworm are described. 35S-labeled cells of the shipworm bacterium bound preferentially Whatman no.1 cellulose filter paper, compared with its binding to other cellulose substrata or substrata lacking cellulose. The ability of the bacteria to bind to Whatman no. 1 filter paper was significantly reduced by glutaraldehyde or heat treatment of cells. Pretreatment of cells with azide, valinomycin, gramicidin-D, bis-hexafluoroacetylacetone (1799), or carbonyl cyanide-p-trifluoromethoxyphenylhydrazone inhibited adhesion activity. Cells pretreated with pronase or trypsin also exhibited reduced binding activity, but chymotrypsin and peptidase had no effect on adhesion activity. Cellodextrins and methyl cellulose 15 inhibited the adhesion of the shipworm bacteria to filter paper, whereas glucose, cellobiose, and soluble carboxymethyl cellulose had no significant effect. The divalent cation chelators EDTA and EGTA [ethylene hlycol-bis(β-aminoethyl ether)-N,N,N'N'-tetraacetic acid] had little or no effect on adhesive properties of shipworm bacteria. Also, preabsorbing the substratum with extracellular endoglucanase isolated from the ship worm bacterium or 1% bovine serum albumin had no apparent effect on bacterial binding. Low concentration (0.01%) of sodium dodecyl sulfate solubilized a fraction from whole cells, which appeared to be involved in cellular binding activity. After removal of sodium dodecyl, sulfate, several proteins in this fraction associated with intact cells. These cells exhibited up to 50% enhanced binding to filter paper in comparison to cells which had not been exposed to the sodium dodecyl sulfate-solubilized fraction

  17. Chemically emulsified crude oil as substrate for bacterial oxidation : differences in species response

    International Nuclear Information System (INIS)

    The ability of bacterial species to oxidize alkanes in crude oil in water emulsions was studied. Alkanes in crude oil need specific physiological adaptations to the microorganisms. Synthesis of biosurfactants has been considered as a prerequisite for either specific adhesion mechanisms to large oil drops or emulsification of oil followed by uptake of submicron oil droplets. In this study four bacterial species were tested. Emulsions were prepared by nonionic sorbitan ester and polyoxyethylene ether surfactants. The oxidation rates were measured. Both positive and negative effects of surfactant amendments were observed. The same surfactant affected different bacteria in different ways. The response to the surfactant amendment depended on the physiological state of the bacteria. The results showed that surfactants resulted in decreased cell adhesion to the oil phase for all the bacteria. 19 refs., 3 tabs., 4 figs

  18. Genomics and X-ray microanalysis indicate that Ca2+ and thiols mediate the aggregation and adhesion of Xylella fastidiosa

    Directory of Open Access Journals (Sweden)

    Leite B.

    2002-01-01

    Full Text Available The availability of the genome sequence of the bacterial plant pathogen Xylella fastidiosa, the causal agent of citrus variegated chlorosis, is accelerating important investigations concerning its pathogenicity. Plant vessel occlusion is critical for symptom development. The objective of the present study was to search for information that would help to explain the adhesion of X. fastidiosa cells to the xylem. Scanning electron microscopy revealed that adhesion may occur without the fastidium gum, an exopolysaccharide produced by X. fastidiosa, and X-ray microanalysis demonstrated the presence of elemental sulfur both in cells grown in vitro and in cells found inside plant vessels, indicating that the sulfur signal is generated by the pathogen surface. Calcium and magnesium peaks were detected in association with sulfur in occluded vessels. We propose an explanation for the adhesion and aggregation process. Thiol groups, maintained by the enzyme peptide methionine sulfoxide reductase, could be active on the surface of the bacteria and appear to promote cell-cell aggregation by forming disulfide bonds with thiol groups on the surface of adjacent cells. The enzyme methionine sulfoxide reductase has been shown to be an auxiliary component in the adhesiveness of some human pathogens. The negative charge conferred by the ionized thiol group could of itself constitute a mechanism of adhesion by allowing the formation of divalent cation bridges between the negatively charged bacteria and predominantly negatively charged xylem walls.

  19. Molecular Characterization of Bacterial Respiration on Minerals

    Energy Technology Data Exchange (ETDEWEB)

    Blake, Robert C.

    2013-04-26

    anomalous dispersion (MAD) phasing; 4. An acid-stable red cytochrome with a novel absorbance peak at 579 nm was purified from cell-free extracts of L. ferriphilum. Functional studies demonstrated that this cytochrome was an important component of the aerobic iron respiratory chain in this organism; 5. The specific adhesion of At. ferrooxidans to pyrite is mediated by an extracellular protein that was identified as aporusticyanin. The adhesion of At. ferrooxidans to minerals was characterized by high affinity binding that exhibited a high specificity for pyrite over other sulfide minerals. The principal biopolymer involved in this high-affinity adhesion to pyrite was isolated by mineral affinity chromatography and identified as aporusticyanin. The adhesion of purified aporusticyanin to minerals was observed to adhere to different mineral with a pattern of reactivity identical to that observed with the intact bacterium. Further, preincubation of pyrite with excess exogenous aporusticyanin served to inhibit the adherence of intact cells to the surface of the mineral, indicating that the protein and the cells adhered to the pyrite in a mutually exclusive manner. Taken together, these observations support a model where aporusticyanin located on the surface of the bacterial cell acts as a mineral-specific receptor for the initial adherence of At. ferrooxidans to solid pyrite; 6. The specific adhesion of L. ferriphilum to pyrite was mediated by a different acid-stable extracellular protein than aporusticyanin; and 7. A prototype integrating cavity absorption meter (ICAM) was assembled to determine whether this novel spectrophotometer could be used to study cellular respiration in situ.

  20. Thermal Characterization of Epoxy Adhesive by Hotfire Testing

    Science.gov (United States)

    Spomer, Ken A.; Haddock, M. Reed; McCool, Alex (Technical Monitor)

    2001-01-01

    This paper describes subscale solid-rocket motor hot-fire testing of epoxy adhesives in flame surface bondlines to evaluate heat-affected depth, char depth and ablation rate. Hot-fire testing is part of an adhesive down-selection program on the Space Shuttle Solid Rocket Motor Nozzle to provide additional confidence in the down-selected adhesives. The current nozzle structural adhesive bond system is being replaced due to obsolescence. Prior to hot-fire testing, adhesives were tested for chemical, physical and mechanical properties, which resulted in the selection of two potential replacement adhesives, Resin Technology Group's TIGA 321 and 3M's EC2615XLW. Hot-fire testing consisted of four forty-pound charge (FPC) motors fabricated in configurations that would allow side-by-side comparison testing of the candidate replacement adhesives with the current RSRM adhesives. Results of the FPC motor testing show that: 1) the phenolic char depths on radial bondlines is approximately the same and vary depending on the position in the blast tube regardless of which adhesive was used, 2) the replacement candidate adhesive char depths are equivalent to the char depths of the current adhesives, 3) the heat-affected depths of the candidate and current adhesives are equivalent, and 4) the ablation rates for both replacement adhesives were equivalent to the current adhesives.

  1. Bacterial Degradation of Pesticides

    DEFF Research Database (Denmark)

    Knudsen, Berith Elkær

    This PhD project was carried out as part of the Microbial Remediation of Contaminated Soil and Water Resources (MIRESOWA) project, funded by the Danish Council for Strategic Research (grant number 2104-08-0012). The environment is contaminated with various xenobiotic compounds e.g. pesticides......D student, to construct fungal-bacterial consortia in order to potentially stimulate pesticide degradation thereby increasing the chance of successful bioaugmentation. The results of the project are reported in three article manuscripts, included in this thesis. In manuscript I, the mineralization of 2...

  2. Bacterial mitotic machineries

    DEFF Research Database (Denmark)

    Gerdes, Kenn; Møller-Jensen, Jakob; Ebersbach, Gitte; Kruse, Torben; Nordström, Kurt

    2004-01-01

    Here, we review recent progress that yields fundamental new insight into the molecular mechanisms behind plasmid and chromosome segregation in prokaryotic cells. In particular, we describe how prokaryotic actin homologs form mitotic machineries that segregate DNA before cell division. Thus, the P......M protein of plasmid R1 forms F actin-like filaments that separate and move plasmid DNA from mid-cell to the cell poles. Evidence from three different laboratories indicate that the morphogenetic MreB protein may be involved in segregation of the bacterial chromosome....

  3. Bacterial terpene cyclases.

    Science.gov (United States)

    Dickschat, Jeroen S

    2016-01-01

    Covering: up to 2015. This review summarises the accumulated knowledge about characterised bacterial terpene cyclases. The structures of identified products and of crystallised enzymes are included, and the obtained insights into enzyme mechanisms are discussed. After a summary of mono-, sesqui- and diterpene cyclases the special cases of the geosmin and 2-methylisoborneol synthases that are both particularly widespread in bacteria will be presented. A total number of 63 enzymes that have been characterised so far is presented, with 132 cited references. PMID:26563452

  4. Apparatus for Removing Remaining Adhesives of Filter

    International Nuclear Information System (INIS)

    A Large amount of ventilation filter was used at radiation areas not only in nuclear power plants but also in nuclear facilities. These spent ventilation filters are generated as radioactive waste and composed of a steel frame, glass fiber media and aluminum separator. When treated, the spent filter is separated into filter media for air purification and frame. After separation, while the filter media is collected using steel drum for reducing internal exposure, the filter frame is treated further to remove adhesives for recycling the frame as many as possible in order to reduce waste and cost and improve working conditions. Usually, the adhesives are separated from the filter frame manually. As a result, a lot of time and labor is required. So, the objective of this study is to develop a motor-driven apparatus for removing adhesives efficiently

  5. Biologically Inspired Mushroom-Shaped Adhesive Microstructures

    Science.gov (United States)

    Heepe, Lars; Gorb, Stanislav N.

    2014-07-01

    Adhesion is a fundamental phenomenon with great importance in technology, in our everyday life, and in nature. In this article, we review physical interactions that resist the separation of two solids in contact. By using examples of biological attachment systems, we summarize and categorize various principles that contribute to the so-called gecko effect. Emphasis is placed on the contact geometry and in particular on the mushroom-shaped geometry, which is observed in long-term biological adhesive systems. Furthermore, we report on artificial model systems with this bio-inspired geometry and demonstrate that surface microstructures with this geometry are promising candidates for technical applications, in which repeatable, reversible, and residue-free adhesion under different environmental conditions—such as air, fluid, and vacuum—is required. Various applications in robotic systems and in industrial pick-and-place processes are discussed.

  6. Laparoscopic Management of Adhesive Small Bowel Obstruction

    Science.gov (United States)

    Konjic, Ferid; Idrizovic, Enes; Hasukic, Ismar; Jahic, Alen

    2016-01-01

    Introduction: Adhesions are the reason for bowel obstruction in 80% of the cases. In well selected patients the adhesive ileus laparoscopic treatment has multiple advantages which include the shorter hospitalization period, earlier food taking, and less postoperative morbidity rate. Case report: Here we have a patient in the age of 35 hospitalized at the clinic due to occlusive symptoms. Two years before an opened appendectomy had been performed on him. He underwent the treatment of exploration laparoscopy and laparoscopic adhesiolysis. Dilated small bowel loops connected with the anterior abdominal wall in the ileocecal region by adhesions were found intraoperatively and then resected harmonically with scalpel. One strangulation around which a small bowel loop was wrapped around was found and dissected. Postoperative course was normal. PMID:27041815

  7. Effects of Rhodomyrtus tomentosa Leaf Extract on Staphylococcal Adhesion and Invasion in Bovine Udder Epidermal Tissue Model

    Science.gov (United States)

    Mordmuang, Auemphon; Shankar, Shiv; Chethanond, Usa; Voravuthikunchai, Supayang Piyawan

    2015-01-01

    Bovine mastitis is one of the most important infectious diseases in dairy herds, and staphylococci are the most important etiologic agents of this disease. Antibiotics and chemical agents used in livestock for prevention and cure of the disease can accumulate in milk and give rise to food safety concerns. Rhodomyrtus tomentosa leaf extract was studied as an alternative approach to reduce the bacterial infections. The ethanolic extract of this plant demonstrated antibacterial activity with minimum inhibitory concentration (MIC) values as low as 16–64 μg/mL against staphylococcal isolates. In addition, the extract had an effect on the bacterial cell surface properties by increasing its hydrophobicity in a concentration dependent manner. To further extend the antibacterial efficacy, silver nanoparticles synthesized with the extract, a pure rhodomyrtone, and liposomal encapsulated rhodomyrtone were applied and their inhibitory effects on bacterial adhesion and invasion were determined by ex vivo study in a bovine udder epidermal tissue model. These agents exerted remarkable antibacterial activity against staphylococci and decreased the adhesion of the bacterial cells to the tissues. These results supported that R. tomentosa ethanolic extract could be applied as an alternative agent for bovine udder care in dairy farms. PMID:26501314

  8. Improving the affinity of fibroblasts for bacterial cellulose using carbohydrate-binding modules fused to RGD

    OpenAIRE

    Andrade, Fábia K; Moreira, Susana Margarida Gomes; Domingues, Lucília; Gama, F. M.

    2010-01-01

    The attachment of cells to biomedical materials can be improved by using adhesion sequences, such as Arg-Gly-Asp (RGD), found in several extracellular matrix proteins. In this work, bifunctional recombinant proteins, with a Cellulose-Binding Module (CBM), from the cellulosome of Clostridium thermocellum and cell binding sequences - RGD, GRGDY - were cloned and expressed in E.coli. These RGD-containing cellulose binding proteins were purified and used to coat bacterial cellulose fibres. Its ef...

  9. High-Temperature Adhesive Strain Gage Developed

    Science.gov (United States)

    Pereira, J. Michael; Roberts, Gary D.

    1997-01-01

    Researchers at the NASA Lewis Research Center have developed a unique strain gage and adhesive system for measuring the mechanical properties of polymers and polymer composites at elevated temperatures. This system overcomes some of the problems encountered in using commercial strain gages and adhesives. For example, typical commercial strain gage adhesives require a postcure at temperatures substantially higher than the maximum test temperature. The exposure of the specimen to this temperature may affect subsequent results, and in some cases may be higher than the glass-transition temperature of the polymer. In addition, although typical commercial strain gages can be used for short times at temperatures up to 370 C, their long-term use is limited to 230 C. This precludes their use for testing some high-temperature polyimides near their maximum temperature capability. Lewis' strain gage and adhesive system consists of a nonencapsulated, unbacked gage grid that is bonded directly to the polymer after the specimen has been cured but prior to the normal postcure cycle. The gage is applied with an adhesive specially formulated to cure under the specimen postcure conditions. Special handling, mounting, and electrical connection procedures were developed, and a fixture was designed to calibrate each strain gage after it was applied to a specimen. A variety of tests was conducted to determine the performance characteristics of the gages at elevated temperatures on PMR-15 neat resin and titanium specimens. For these tests, which included static tension, thermal exposure, and creep tests, the gage and adhesive system performed within normal strain gage specifications at 315 C. An example of the performance characteristics of the gage can be seen in the figure, which compares the strain gage measurement on a polyimide specimen at 315 C with an extensometer measurement.

  10. Mechanical Behaviour of Adhesive Joints in Cartonboard for Packaging

    OpenAIRE

    Korin, Christer

    2009-01-01

    A cartonboard package is often sealed and closed with an adhesive – either a hot-melt adhesive (adhesives that are applied in a molten state on the cartonboard) or a dispersion adhesive (adhesives that are applied as water-based dispersions). This thesis focuses on the process of hot-melt gluing, and how material properties and process conditions affect the performance of the adhesive joint. Requirements vary depending on how the package is to be used. A package that is only supposed to prote...

  11. Surgical Adhesives in Facial Plastic Surgery.

    Science.gov (United States)

    Toriumi, Dean M; Chung, Victor K; Cappelle, Quintin M

    2016-06-01

    In facial plastic surgery, attaining hemostasis may require adjuncts to traditional surgical techniques. Fibrin tissue adhesives have broad applications in surgery and are particularly useful when addressing the soft tissue encountered in facial plastic surgery. Beyond hemostasis, tissue adhesion and enhanced wound healing are reported benefits associated with a decrease in operating time, necessity for drains and pressure dressings, and incidence of wound healing complications. These products are clinically accessible to most physicians who perform facial plastic surgery, including skin grafts, flaps, rhytidectomy, and endoscopic forehead lift. PMID:27267012

  12. EFFECTIVENESS OF ADHESIVES IN SOYBEAN SEED INOCULATION

    Directory of Open Access Journals (Sweden)

    Zlata Milaković

    2012-06-01

    Full Text Available Effectiveness of soybean seed inoculation can be improved by application of substances increasing adhesion of inoculant to the seed. Higher initial inoculum in the soil is ensured in this way, which increases formation of higher number and mass of nodules and consequently produces higher yield. In this research effects of different adhesives on nodulation capacity and components of soybean yield has been investigated. The best result of the investigated parameters was obtained by sugar and honey application, while carboximethyl cellulose did not show similar influence

  13. Coatings against corrosion and microbial adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Telegdi, J.; Szabo, T.; Al-Taher, F.; Pfeifer, E.; Kuzmann, E.; Vertes, A. [Chemical Research Center, Hungarian Academy of Sciences, 1025 Budapest, Pusztaszeri ut 59/67 (Hungary)

    2010-12-15

    A systematic study on anti-corrosion and anti-fouling effect of hydrophobic Langmuir-Blodgett and self-assembled molecular layers deposited on metal surfaces, as well as anti-microbial adhesion properties of coatings with biocide is presented. Both types of efficiencies produced by LB films are enhanced by Fe{sup 3+} ions built in the molecular film. The quaternary ammonium type biocide embedded into the cross-linked gelatin decreased significantly the microbial adhesion, the biofilm formation. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Adhesion of PBO Fiber in Epoxy Composites

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The high mechanical and thermal performance of poly p-phenylene- 2, 6-benzobisoxazole ( PBO ) fiber provides great potential applications as reinforcement fibers for composites. A composite of PBO fiber and epoxy resin has excellent electrical insulation properties, therefore, it is considered to be the best choice for the reinforcement in high magnetic field coils for pulsed magnetic fields up to 100 T.However, poor adhesion between PBO fiber and matrix is found because of the chemically inactive and/or relatively smooth surface of the reinforcement fiber preventing efficient chemical bonding in the interface, which is a challenging issue to improve mechanical properties. Here, we report the surface modification of PBO fibers by ultraviolet (UV)irradiation, O2 and NH3 plasma, as well as acidic treatments. The interfacial adhesion strength values of all the treatments show the similar level as determined for aramid fibers by pull-out tests, a significant impact on fibermatrix-adhesion was not achieved. The surface free energy and roughness are increased for both sized and extracted fibers after plasma treatments together with maleic anhydride grafting. The sized fiber shows marginal improvement in adhesion strength and no change in fiber tensile strength because of the barrier effect of the finish.For the extracted fiber, different surface treatments either show no apparent effect or cause reduction in adhesion strength. Atomic force microscopy (AFM) topography analysis of the fracture surfaces proved adhesive failure at the fiber surface. The fiber surface roughness is increased and more surface flaws are induced, which could result in coarse interface structures when the treated fiber surface has no adequate wetting and functional groups. The adhesion failure is further confirmed by similar adhesion strength and compression shear strength values when the fiber was embedded in various epoxy resins with different temperature behavior. The tensile strength of fiber

  15. Reversible low adhesive to high adhesive superhydrophobicity transition on ZnO nanoparticle surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian, E-mail: jianli83@126.com; Jing, Zhijiao; Yang, Yaoxia; Zha, Fei; Yan, Long; Lei, Ziqiang, E-mail: leizq@nwnu.edu.cn

    2014-01-15

    Superhydrophobic ZnO surfaces with water contact angle of 162° and sliding angle of 2° were fabricated successfully by spraying hydrophobic ZnO nanoparticle suspensions without limitations the shape and size of substrates. The as-prepared superhydrophobic ZnO surfaces are low adhesive and a water droplet easily rolls off with the surface slightly tilted. However, after being irradiated by UV light through a photomask, it becomes highly adhesive, on which a water droplet is firmly pinned without any movement. Further annealing the irradiated film, water droplets can roll off the surface again. Reversible transition between the low adhesive rolling state and high adhesive pinning state can be realized simply by UV illumination and heat treatment alternately. At the same time, the maximum adhesive force between the superhydrophobic ZnO surfaces and the water droplet changes from extreme low (∼5.1 μN) to very high (∼136.1 μN). When irradiated without a photomask, the surface became hydrophilic. Additionally, a water droplet can be transfered from the low adhesive superhydrophobic ZnO surfaces to the hydrophilic ZnO surfaces using the high adhesive superhydrophobic ZnO surfaces as a mechanical hand.

  16. Beetle adhesive hairs differ in stiffness and stickiness: in vivo adhesion measurements on individual setae

    Science.gov (United States)

    Bullock, James M. R.; Federle, Walter

    2011-05-01

    Leaf beetles are able to climb on smooth and rough surfaces using arrays of micron-sized adhesive hairs (setae) of varying morphology. We report the first in vivo adhesive force measurements of individual setae in the beetle Gastrophysa viridula, using a smooth polystyrene substrate attached to a glass capillary micro-cantilever. The beetles possess three distinct adhesive pads on each leg which differ in function and setal morphology. Visualisation of pull-offs allowed forces to be measured for each tarsal hair type. Male discoidal hairs adhered with the highest forces (919 ± 104 nN, mean ± SE), followed by spatulate (582 ± 59 nN) and pointed (127 ± 19 nN) hairs. Discoidal hairs were stiffer in the normal direction (0.693 ± 0.111 N m-1) than spatulate (0.364 ± 0.039 N m-1) or pointed (0.192 ± 0.044 N m-1) hairs. The greater adhesion on smooth surfaces and the higher stability of discoidal hairs help male beetles to achieve strong adhesion on the elytra of females during copulation. A comparison of pull-off forces measured for single setae and whole pads (arrays) revealed comparable levels of adhesive stress. This suggests that beetles are able to achieve equal load sharing across their adhesive pads so that detachment through peeling is prevented.

  17. A randomized control clinical trial of fissure sealant retention: Self etch adhesive versus total etch adhesive

    Directory of Open Access Journals (Sweden)

    Nadia Aman

    2015-01-01

    Full Text Available Context: There are limited studies on comparison of Total etch (TE and Self etch (SE adhesive for placement of sealants. Aims: The aim of the study was to compare the retention of fissure sealants placed using TE adhesive to those sealants placed using SE (seventh generation adhesive. Settings and Design: The study was conducted in the dental section, Aga Khan University Hospital. This study was a randomized single blinded trial with a split mouth design. Materials and Methods: The study included 37 patients, 101 teeth were included in both study groups. The intervention arm was treated with SE Adhesive (Adper Easy One, 3M ESPE, US. Control arm received TE adhesive (Adper Single Bond 2, 3M ESPE, US before sealant application. The patients were followed after 6 months for assessment of sealant retention. Statistical analysis used: Interexaminer agreement for outcome assessment was assessed by Kappa Statistics and outcome in intervention group was assessed by McNemar′s test. Results: Ninety-one pairs of molar (90% were reevaluated for sealant retention. Complete retention was 56% in TE arm and 28% in SE arm with an odds ratio (OR of 3.7. Conclusions: Sealants applied with TE adhesives show higher rate of complete sealant retention than SE adhesive.

  18. Bacterial contamination of enteral diets.

    OpenAIRE

    de Leeuw, I H; Vandewoude, M F

    1986-01-01

    Enteral feeding solutions can be contaminated by bacterial micro-organisms already present in the ingredients, or introduced during preparation or transport, or in the hospital ward. During jejunostomy feeding without pump or filter, ascending bacterial invasion of the feeding bag is possible. In patients with lowered immune response contaminated feedings can cause serious septic clinical problems. The progressive loss of the nutritional value of the enteral feeding solution by bacterial cont...

  19. Transport powered by bacterial turbulence

    OpenAIRE

    Kaiser, Andreas; Peshkov, Anton; Sokolov, Andrey; ten Hagen, Borge; Löwen, Hartmut; Aranson, Igor S.

    2014-01-01

    We demonstrate that collective turbulent-like motion in a bacterial bath can power and steer directed transport of mesoscopic carriers through the suspension. In our experiments and simulations, a microwedge-like "bulldozer" draws energy from a bacterial bath of varied density. We obtain that a maximal transport speed is achieved in the turbulent state of the bacterial suspension. This apparent rectification of random motion of bacteria is caused by polar ordered bacteria inside the cusp regi...

  20. Spontaneous bacterial peritonitis

    Institute of Scientific and Technical Information of China (English)

    Anastasios Koulaouzidis; Shivaram Bhat; Athar A Saeed

    2009-01-01

    Since its initial description in 1964, research has transformed spontaneous bacterial peritonitis (SBP) from a feared disease (with reported mortality of 90%) to a treatable complication of decompensated cirrhosis,albeit with steady prevalence and a high recurrence rate. Bacterial translocation, the key mechanism in the pathogenesis of SBP, is only possible because of the concurrent failure of defensive mechanisms in cirrhosis.Variants of SBP should be treated. Leucocyte esterase reagent strips have managed to shorten the 'tap-toshot' time, while future studies should look into their combined use with ascitic fluid pH. Third generation cephalosporins are the antibiotic of choice because they have a number of advantages. Renal dysfunction has been shown to be an independent predictor of mortality in patients with SBP. Albumin is felt to reduce the risk of renal impairment by improving effective intravascular volume, and by helping to bind proinflammatory molecules. Following a single episode of SBP, patients should have long-term antibiotic prophylaxis and be considered for liver transplantation.

  1. Adult bacterial meningitis

    DEFF Research Database (Denmark)

    Meyer, C N; Samuelsson, I S; Galle, M;

    2004-01-01

    Episodes of adult bacterial meningitis (ABM) at a Danish hospital in 1991-2000 were identified from the databases of the Department of Clinical Microbiology, and compared with data from the Danish National Patient Register and the Danish National Notification System. Reduced penicillin susceptibi......Episodes of adult bacterial meningitis (ABM) at a Danish hospital in 1991-2000 were identified from the databases of the Department of Clinical Microbiology, and compared with data from the Danish National Patient Register and the Danish National Notification System. Reduced penicillin...... susceptibility occurred in 21 (23%) of 92 cases of known aetiology, compared to an estimated 6% in nationally notified cases (p <0.001). Ceftriaxone plus penicillin as empirical treatment was appropriate in 97% of ABM cases in the study population, and in 99.6% of nationally notified cases. The notification rate...... was 75% for penicillin-susceptible episodes, and 24% for penicillin-non-susceptible episodes (p <0.001). Cases involving staphylococci, Pseudomonas spp. and Enterobacteriaceae were under-reported. Among 51 ABM cases with no identified risk factors, nine of 11 cases with penicillin...

  2. [Endogenous bacterial endophthalmitis].

    Science.gov (United States)

    Cornut, P-L; Chiquet, C

    2011-01-01

    Endogenous bacterial endophthalmitis, also called metastatic bacterial endophthalmitis, remains a diagnostic and therapeutic challenge. It is a rare and potentially sight-threatening ocular infection that occurs when bacteria reach the eye via the bloodstream, cross the blood-ocular barrier, and multiply within the eye. It usually affects immunocompromised patients and those suffering from diabetes mellitus, malignancy, or cardiac disease, but has also been reported after invasive procedures or in previously healthy people. In most cases, the ocular symptoms occur after the diagnosis of septicemia or systemic infection. Ocular symptoms include decreased vision, redness, discharge, pain, and floaters. The ocular inflammatory signs may be anterior and/or posterior. Bilateral involvement occurs in nearly 25% of cases. A wide range of microorganisms are involved, with differences in their frequency according to geography as well as the patient's age and past medical history, because of variations in the predisposing conditions and the source of the sepsis. The majority of patients are initially misdiagnosed, and ophthalmologists should be aware of this because prompt local and general management is required to save the eye and/or the patient's life. PMID:21145128

  3. Genome-wide detection of predicted non-coding RNAs related to the adhesion process in Vibrio alginolyticus using high-throughput sequencing

    Directory of Open Access Journals (Sweden)

    Lixing eHuang

    2016-04-01

    Full Text Available The ability to adhere to fish mucus can be affected by environmental conditions and is considered to be a key virulence factor of Vibrio alginolyticus. However, the molecular mechanism underlying this ability is unclear. Our previous study showed that stress conditions such as exposure to Cu, Pb, Hg and low pH were capable of reducing the adhesion ability of V. alginolyticus. Non-coding RNAs (ncRNAs play a crucial role in the intricate regulation of bacterial gene expression, thereby affecting bacterial pathogenicity. Therefore, we hypothesized that ncRNAs played a key role in the V. Alginolyticus adhesion process. To validate this, we combined high throughput sequencing with computational techniques to detect ncRNA dynamics in the stressed samples. The expression of randomly selected novel ncRNAs was confirmed by QPCR. Among the significantly changed ncRNAs, 30 ncRNAs were up-regulated and 2 ncRNAs were down-regulated by all stress treatments. The QPCR results reinforced the reliability of the sequencing data. Target prediction and KEGG pathway analysis indicated that these ncRNAs were closely related to pathways associated with in vitro adhesion. Our results indicated that the chemical stress-induced reduction in the adhesion ability of V. alginolyticus might be due to the perturbation of ncRNA expression. Our findings provide important information for further functional characterization of ncRNAs during the adhesion process of V. alginolyticus.

  4. Periodic growth of bacterial colonies

    Science.gov (United States)

    Yamazaki, Yoshihiro; Ikeda, Takemasa; Shimada, Hirotoshi; Hiramatsu, Fumiko; Kobayashi, Naoki; Wakita, Jun-ichi; Itoh, Hiroto; Kurosu, Sayuri; Nakatsuchi, Michio; Matsuyama, Tohey; Matsushita, Mitsugu

    2005-06-01

    The formation of concentric ring colonies by bacterial species Bacillus subtilis and Proteus mirabilis has been investigated experimentally, focusing our attention on the dependence of local cell density upon the bacterial motility. It has been confirmed that these concentric ring colonies reflect the periodic change of the bacterial motility between motile cell state and immotile cell state. We conclude that this periodic change is macroscopically determined neither by biological factors (i.e., biological clock) nor by chemical factors (chemotaxis as inhibitor). And our experimental results strongly suggest that the essential factor for the change of the bacterial motility during concentric ring formation is the local cell density.

  5. Molecular pathogenesis of Helicobacter pylori infection: the role of bacterial virulence factors.

    Science.gov (United States)

    Molnar, Bela; Galamb, Orsolya; Sipos, Ferenc; Leiszter, Katalin; Tulassay, Zsolt

    2010-01-01

    Helicobacter pylori is one of the most common pathogens affecting humankind, infecting approximately 50% of the world's population. Of those infected, many will develop asymptomatic gastritis, but 10% develop gastric or duodenal ulcers. The clinical outcome of the infection may involve a combination of bacterial factors, host factors and environmental factors. In the process of development of gastritis, ulceration and cancer, several cellular and molecular steps follow each other. Infection, acid survival, adhesion, cytotoxicity, epithelial cell turnover changes, inflammation, regeneration or pathological alteration towards erosions, ulceration, and cancer can be observed on the cellular level. Bacterial factors like urease, AmiE, AmiF, hydrogenase and arginase are needed for survival in the acidic gastric environment. The bacterial flagellae are essential to move the bacteria towards the epithelial surface. Adhesive factors like BabA, SabA and ureaseA are necessary for adhesion against MHC-II complexes and Le antigens. The bacteria VacA and CagA are cytotoxic factors. The Cag type IV secretion system delivers these proteins inside the epithelial cells. After disruption of epithelial cell junctions, the bacteria can pass through the gastric wall facing direct immune response from neutrophils, lymphocytes, mast cells and dendritic cells. This review describes and summarizes our present molecular biological information and knowledge about the Helicobacter infective component, cell functions and processes. The possible role of host counter responses and interactions with gastric epithelia and immune cells are also detailed. PMID:21088410

  6. Dosage effect on uropathogenic Escherichia coli anti-adhesion activity in urine following consumption of cranberry powder standardized for proanthocyanidin content: a multicentric randomized double blind study

    Directory of Open Access Journals (Sweden)

    Tenke Peter

    2010-04-01

    Full Text Available Abstract Background Ingestion of cranberry (Vaccinium macrocarpon Ait. has traditionally been utilized for prevention of urinary tract infections. The proanthocyanidins (PACs in cranberry, in particular the A-type linkages have been implicated as important inhibitors of primarily P-fimbriated E. coli adhesion to uroepithelial cells. Additional experiments were required to investigate the persistence in urine samples over a broader time period, to determine the most effective dose per day and to determine if the urinary anti-adhesion effect following cranberry is detected within volunteers of different origins. Methods Two separate bioassays (a mannose-resistant hemagglutination assay and an original new human T24 epithelial cell-line assay have assessed the ex-vivo urinary bacterial anti-adhesion activity on urines samples collected from 32 volunteers from Japan, Hungary, Spain and France in a randomized, double-blind versus placebo study. An in vivo Caenorhabditis elegans model was used to evaluate the influence of cranberry regimen on the virulence of E. coli strain. Results The results indicated a significant bacterial anti-adhesion activity in urine samples collected from volunteers that consumed cranberry powder compared to placebo (p in vivo Caenorhabditis elegans model showed that cranberry acted against bacterial virulence: E. coli strain presented a reduced ability to kill worms after a growth in urines samples of patients who took cranberry capsules. This effect is particularly important with the regimen of 72 mg of PAC. Conclusions Administration of PAC-standardized cranberry powder at dosages containing 72 mg of PAC per day may offer some protection against bacterial adhesion and virulence in the urinary tract. This effect may offer a nyctohemeral protection.

  7. Aluminum and steel adhesion with polyurethanes from castor oil adhesives submitted to gamma irradiation

    International Nuclear Information System (INIS)

    Polyurethanes adhesive from castor oil is used to join aluminum and steel pieces. The effect of gamma radiation on the resistance to tension tests is investigated. The aluminum and steel pieces after being glued with the adhesive were submitted to gamma irradiation in doses of 1 kGy, 25 kGy and 100 kGy. The rupture strength of the joints after irradiation have a slightly increase or remains practically unchanged indicating that the adhesive properties is not affected by the gamma radiation. (author)

  8. Adhesive thickness effects of a ductile adhesive by optical measurement techniques

    OpenAIRE

    Campilho, Raul; Moura, D.C.; Banea, Mariana D.; Silva, L. F. M. da

    2015-01-01

    Adhesive bonding is an excellent alternative to traditional joining techniques such as welding, mechanical fastening or riveting. However, there are many factors that have to be accounted for during joint design to accurately predict the joint strength. One of these is the adhesive layer thickness (tA). Most of the results are for epoxy structural adhesives, tailored to perform best with small values of tA, and these show that the lap joint strength decreases with increase of tA (the optimum ...

  9. CHARACTERISTICS OF ADHESIVE PROPERTIES OF LACTOBACILLUS - CLINICAL ISOLATES AND COMPONENTS OF BIOLOGICAL PRODUCTS

    Directory of Open Access Journals (Sweden)

    Lavryk G.

    2015-05-01

    Full Text Available Lactobacilli detected in all biotopes of digestive tract, starting from the mouth and ending with the colon, is the dominant flora of vaginal biotope. Their adhesiveness to epithelial cells leads to survive in conditions of microorganism biotopes and to form biofilm, thus mediating passive antagonism against conditionally pathogenic bacteria. Colonization resistance provides a set of mechanisms that provide individual anatomical stability and normal microflora. It is experimentally confirmed that lactobacilli provide biotopes colonization resistance of the human body due to competitive inhibition and coagregation of allochthonous microorganisms. It is important to consider the fact that probiotics should not compete with autochthonous microflora, which is always more physiological for each individual than most valuable exogenous bacteria, even with the greatest potential beneficial properties. The probiotic activity should be directed to the main target bacterial therapy, which is to restore physiological ecological community. The aim of research was to compare the adhesive properties of lactobacilli - clinical isolates of probiotic preparations and ingredients to the buccal epithelium cells and erythrocytes 0 (1 of the blood group system AB0 person. Materials and methods. The object of the research were clinical strains of Lactobacillus spp. selected from the mouth, intestines, vagina healthy people. At the the species identification of lactic acid bacteria were taken into account morphological and cultural properties, aerotolerance. The carbohydrate profile was determined using the test system API-50SN L (Bio-Merieux, lack of catalase activity. The ability of allocated bacteria to adhesion were observed in erythrocytes 0 (1 blood and buccal epithelium cells by human Brilis VI and oth. For comparison were used probiotic strains L. rlantarum 8PA3, L.acidophilus KS 400, Lactobacillus reuteri DSM 17938. The effectiveness of adhesion was assessed

  10. Influence of a chitosan on oral bacterial adhesion and growth in vitro

    NARCIS (Netherlands)

    Busscher, Henk J.; Engels, Eefje; Dijkstra, Rene J. B.; van der Mei, Henny C.

    2008-01-01

    Generally, mechanical plaque control without chemical support is insufficient to prevent oral diseases, and an ongoing quest exists for new antimicrobials for use in oral healthcare. Chitosans are polycationic, naturally occurring antimicrobials that are rapidly finding their way into oral healthcar

  11. Type 3 fimbriae of Klebsiella sp.: molecular characterization and role in bacterial adhesion to plant roots.

    OpenAIRE

    Korhonen, T K; Tarkka, E; Ranta, H; Haahtela, K

    1983-01-01

    Type 3 fimbriae of Klebsiella were purified and characterized. The fimbriae were 4 to 5 nm in diameter and 0.5 to 2 microns long. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the fimbrillin had an apparent molecular weight of 23,500, and it differed from enterobacterial type 1 fimbrillins in its amino acid composition. Hydrophobic amino acids comprised 33.6% of all amino acids in the fimbrillin, which lacked cystine, phenylalanine, and arginine. Serologically, the type 3 fimb...

  12. Electrical methods of controlling bacterial adhesion and biofilm on device surfaces.

    OpenAIRE

    Freebairn, David; Linton, David; Harkin-Jones, Eileen; Jones, David S; Gilmore, Brendan F.; Gorman, Sean P.

    2013-01-01

    This review will summarize the significant body of research within the field of electrical methods of controlling the growth of microorganisms. We examine the progress from early work using current to kill bacteria in static fluids to more realistic treatment scenarios such as flow-through systems designed to imitate the human urinary tract. Additionally, the electrical enhancement of biocide and antibiotic efficacy will be examined alongside recent innovations including the biological applic...

  13. Stainless steel modified with poly(ethylene glycol) can prevent protein adsorption but not bacterial adhesion

    DEFF Research Database (Denmark)

    Wei, Jiang; Bagge, Dorthe; Gram, Lone;

    2003-01-01

    . The chemical composition and uniformity of the surfaces were determined using X-ray photoelectron spectroscopy (XPS) and time-of-flight static secondary ion mass spectrometry (ToF-SSIMS) in the imaging mode. The effects of PEI concentration and different substrate pre-cleaning methods on the structure....... The surface density of PEI was shown to increase with increasing PEI concentration (up to 30 mg/ml), as determined from XPS measurements, and subsequently produced the PEG layer with the highest density of attached chains. In model experiments using beta-lactoglobulin no protein adsorption was detected...

  14. Behaviour of stainless steels immersed in natural waters: electrochemistry and bacterial adhesion

    International Nuclear Information System (INIS)

    The free corrosion potential of a stainless steel immersed in natural seawater rises quickly until it reaches values ranging between +100 and +350 mV/SCE, which increases the risk of initiation of pitting corrosion. According to literature this phenomenon also occurs in fresh waters. The aim of this study is to confirm or to invalidate this trend; the electrochemical behaviour of samples of stainless steels immersed in river water and the influence of the bio-film formed on the surface of the samples are studied. The free corrosion potentials of three different stainless steels (S30403 or AISI 304L, S31603 or AISI 316L, S31254 or 254SMO) have been measured continuously during their immersion in the Seine river. SEM observations of the samples surface show the presence of a bio-film on the three kinds of stainless steel. The free corrosion potentials increase and end up between +100 and +300 mV/SCE. This increase is not immediate, the latency time being around 20 days. This could be related to an effect of the low temperature of the water during the immersion (8-10 C) and/or to an effect of the Total Organic Carbon (TOC), which would limit the growth rate of the bio-film, hence its influence on the evolution of the free corrosion potential. (authors)

  15. Surface Treatments and Functional Coatings for Biocompatibility Improvement and Bacterial Adhesion Reduction in Dental Implantology

    OpenAIRE

    Pietro Mandracci; Federico Mussano; Paola Rivolo; Stefano Carossa

    2016-01-01

    Surface modification of dental implants is a key process in the production of these medical devices, and especially titanium implants used in the dental practice are commonly subjected to surface modification processes before their clinical use. A wide range of treatments, such as sand blasting, acid etching, plasma etching, plasma spray deposition, sputtering deposition and cathodic arc deposition, have been studied over the years in order to improve the performance of dental implants. Impro...

  16. Could DNA uptake be a side effect of bacterial adhesion and twitching motility?

    OpenAIRE

    Bakkali, M.

    2013-01-01

    DNA acquisition promotes the spread of resistance to antibiotics and virulence among bacteria. It is also linked to several natural phenomena including recombination, genome dynamics, adaptation and speciation. Horizontal DNA transfer between bacteria occurs via conjugation, transduction or competence for natural transformation by DNA uptake. Among these, competence is the only mechanism of transformation initiated and entirely controlled by the chromosome of the recipient bacteria. While the...

  17. Biochemical composition of the marine conditioning film: Implications for bacterial adhesion

    Digital Repository Service at National Institute of Oceanography (India)

    Jain, A.; Bhosle, N.B.

    significant positive correlation with CFCHO. Conversely, SS-10 (r = 70.69) showed a significant negative correlation with CFCHO. Backward multiple linear regression analysis indicated that CFCHO were the most predictive component of the conditioning film...

  18. Bacteria repelling poly(methylmethacrylate-co-dimethylacrylamide) coatings for biomedical devices† †Electronic supplementary information (ESI) available: Polymer microarray screening, including analysis of bacterial adhesion by fluorescence microscopy and SEM, and chemical composition of bacteria repelling polymers identified in the screen; polymer synthesis and characterisation; preparation of catheter pieces and solvent studies, and details for confocal imaging/analysis. See DOI: 10.1039/c4tb01129e Click here for additional data file.

    Science.gov (United States)

    Venkateswaran, Seshasailam; Wu, Mei; Gwynne, Peter J.; Hardman, Ailsa; Lilienkampf, Annamaria; Pernagallo, Salvatore; Blakely, Garry; Swann, David G.

    2014-01-01

    Nosocomial infections due to bacteria have serious implications on the health and recovery of patients in a variety of medical scenarios. Since bacterial contamination on medical devices contributes to the majority of nosocomical infections, there is a need for redesigning the surfaces of medical devices, such as catheters and tracheal tubes, to resist the binding of bacteria. In this work, polyurethanes and polyacrylates/acrylamides, which resist binding by the major bacterial pathogens underpinning implant-associated infections, were identified using high-throughput polymer microarrays. Subsequently, two ‘hit’ polymers, PA13 (poly(methylmethacrylate-co-dimethylacrylamide)) and PA515 (poly(methoxyethylmethacrylate-co-diethylaminoethylacrylate-co-methylmethacrylate)), were used to coat catheters and substantially shown to decrease binding of a variety of bacteria (including isolates from infected endotracheal tubes and heart valves from intensive care unit patients). Catheters coated with polymer PA13 showed up to 96% reduction in bacteria binding in comparison to uncoated catheters. PMID:25580245

  19. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2013. Scientific Opinion on the substantiation of a health claim related to proanthocyanidins in Urell® and reduction of bacterial colonisation of the urinary tract by inhibition of the adhesion of P-fimbriated E. coli to uroepithelial cells pursuant to Article 13(5) of Regulation (EC) No 1924/2006

    OpenAIRE

    Tetens, Inge

    2013-01-01

    Following an application from Pharmatoka, submitted pursuant to Article 13(5) of Regulation (EC) No 1924/2006 via the Competent Authority of France, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver an opinion on the scientific substantiation of a health claim related to a Urell® product containing cranberry (Vaccinium macrocarpon) juice powder standardised for proanthocyanidins (PAC) content and bacterial colonisation of the urinary tract by inhibition o...

  20. Biocompatibility of Bacterial Cellulose Based Biomaterials

    Directory of Open Access Journals (Sweden)

    Omar P. Troncoso

    2012-12-01

    Full Text Available Some bacteria can synthesize cellulose when they are cultivated under adequate conditions. These bacteria produce a mat of cellulose on the top of the culture medium, which is formed by a three-dimensional coherent network of pure cellulose nanofibers. Bacterial cellulose (BC has been widely used in different fields, such as the paper industry, electronics and tissue engineering due to its remarkable mechanical properties, conformability and porosity. Nanocomposites based on BC have received much attention, because of the possibility of combining the good properties of BC with other materials for specific applications. BC nanocomposites can be processed either in a static or an agitated medium. The fabrication of BC nanocomposites in static media can be carried out while keeping the original mat structure obtained after the synthesis to form the final nanocomposite or by altering the culture media with other components. The present article reviews the issue of biocompatibility of BC and BC nanocomposites. Biomedical aspects, such as surface modification for improving cell adhesion, in vitro and in vivo studies are given along with details concerning the physics of network formation and the changes that occur in the cellulose networks due to the presence of a second phase. The relevance of biocompatibility studies for the development of BC-based materials in bone, skin and cardiovascular tissue engineering is also discussed.

  1. Curing of natural rubber and epoxy adhesive

    International Nuclear Information System (INIS)

    Low molecular weight epoxy resin based on diglycidyl ether of bisphenol A was synthesized and mixed at constant percentages with natural rubber. The rubber epoxy system was cured with various types of curing agents such as ethylene diamine, maleic anhydride as well as the prepared resole phenol formaldehyde. A study of the photo-induced crosslinking of the prepared elastic adhesives and film samples was carried out by exposure to ultraviolet lamp (300 w) for 2 weeks at 20 deg. C. Samples containing ethylene diamine were cured at 25 + - 1 deg. C. for 24 h while samples containing maleic anhydride or resole phenol formaldehyde resins were thermally cured at 150-170 deg. C. for 10 min. Cured adhesive compositions were tested mechanically and physically and evaluated as wood adhesives. While hardness, chemical resistance as well as heat stability of the prepared cured film sample were investigated. The obtained data indicate that the highest epoxy resin content and the presence of resole phenol formaldehyde resin in composition improve the tensile strength and adhesion properties on wood. While their cured film sample have the best hardness properties, chemical resistance and heat stability. (author)

  2. Epoxy adhesive plays crucial role at CERN

    CERN Multimedia

    2006-01-01

    "Epoxy adhesives are set to play a vital role in Europe's biggest-ever scientific experiment at the European Centre for Nuclear Research (CERN) in Geneva, Switzerland, thereby helping scientists gain a better understanding of the origins of the universe." (1 page)

  3. Tile adhesive production by Inorganic materials

    Directory of Open Access Journals (Sweden)

    Fasil Alemayehu Hayilu

    2013-07-01

    Full Text Available In modern construction, ceramic tile and mosaic which are used for finishing and decoration are attached to the surface by using tile adhesives. It was a long way for tiling technology to arrive at the current cement based modified adhesive. The development in additives and modifier are the paramount factor to improve workability, higher flexibility, and better adhesion. In this document tile adhesive has been produced for economical and high performance formulation. These products have been produced by considering the effect of aggregate. These two products with different size of aggregate have been compared and tested. The test made was slip, bending, and compression test. Economical formulation consists of components like cement, quartz sand, cellulose ether and tartaric acid. But high performance consists of limestone and cellulose fiber in addition to these components. The modifier added has enhanced the final product resistance to sliding, bending and compression strength. In terms of compression strength test about 17.27% high performance is stronger than economical formulation. And in addition high performance is stronger than economical formulation by about 16.89% in terms of bending strength. The other thing is the effect of grain size, the component that has low grain size have shown great strength and resistant to slide.

  4. Interface Fracture in Adhesively Bonded Shell Structures

    DEFF Research Database (Denmark)

    Jensen, Henrik Myhre

    2007-01-01

    Two methods for the prediction of crack propagation through the interface of adhesively bonded shells are discussed. One is based on a fracture mechanics approach; the other is based on a cohesive zone approach. Attention is focussed on predicting the shape of the crack front and the critical...

  5. Adhesion Strength of Biomass Ash Deposits

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao;

    2015-01-01

    This study investigates the shear adhesion strength of biomass ash deposits on superheater tubes. Artificial biomass ash deposits were prepared on superheater tubes and sintered in an oven at temperatures up to 1000°C. Subsequently, the deposits were sheared off with the help of an electrically...

  6. 21 CFR 878.4380 - Drape adhesive.

    Science.gov (United States)

    2010-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4380 Drape adhesive. (a) Identification. A...) Classification. Class I (general controls). The device is exempt from the premarket notification procedures...

  7. Underwater Adhesives Retrofit Pipelines with Advanced Sensors

    Science.gov (United States)

    2015-01-01

    Houston-based Astro Technology Inc. used a partnership with Johnson Space Center to pioneer an advanced fiber-optic monitoring system for offshore oil pipelines. The company's underwater adhesives allow it to retrofit older deepwater systems in order to measure pressure, temperature, strain, and flow properties, giving energy companies crucial data in real time and significantly decreasing the risk of a catastrophe.

  8. Epoxy adhesive plays crucial role at CERN

    CERN Multimedia

    2007-01-01

    "Epoxy adhesives are set to play a vital role in Europe's biggest-ever scientific experiment at the European Centrefor Nuclear Research (CERN) in Geneva, Switzerland, thereby helping scientists gain a better understanding of the origins of the universe." (1/2 page)

  9. Polymer surface properties and their effect on the adhesion of Proteus mirabilis.

    Science.gov (United States)

    Downer, A; Morris, N; Feast, W J; Stickler, D

    2003-01-01

    A problem encountered in patients undergoing long-term catheterization of the urinary tract is that of encrustation and blockage of the catheter by crystalline bacterial biofilms. This is principally caused by the action of the urease-producing pathogen Proteus mirabilis. A major aim of this work is to develop materials resistant to encrustation. Here, the effects of polymer surface properties on the adhesion of P. mirabilis are examined. Spin-coated polymer films were characterized through contact angle measurements to give the Lifschitz-van der Waals, electron acceptor and electron donor terms of the surface free energy, gamma(s)LW, gamma(s)+ and gamma(s)- respectively. A parallel-plate flow cell was used to assess adhesion to these polymer films of P. mirabilis suspended in an aqueous phosphate buffer, pH 7.4, ionic strength 0.26 mol/kg. P. mirabilis was found to adhere significantly less (p < 0.02) to films of agarose, poly(2-hydroxyethylmethacrylate) and cross-linked poly(vinyl alcohol) than to more hydrophobic materials. These polymer films were found to be strongly electron donating, i.e. possessing large gamma(s)-. Films examined using scanning electron microscopy mostly showed no evidence of roughness down to a scale of 1-10 microm. The better performance is thought to be due to a repulsive interaction with the bacterial surface caused by acid/base-type interactions. PMID:12885198

  10. Adhesion of Campylobacter jejuni and Mycobacterium avium onto polyethylene terephtalate (PET) used for bottled waters.

    Science.gov (United States)

    Tatchou-Nyamsi-König, Josiane-Aurore; Dague, Etienne; Mullet, Martine; Duval, Jérôme F L; Gaboriaud, Fabien; Block, Jean-Claude

    2008-12-01

    Adhesion of the bacteria Campylobacter jejuni and Mycobacterium avium onto polyethylene terephtalate (PET), a polymer widely used within the bottled water industry was measured in two different groundwater solutions. From this, it was found that whilst the percentage cell adhesion for a given strain did not change between groundwater types, substantial variation was obtained between the two bacterial species tested: M. avium (10-30% adhered cells) and C. jejuni (1-2%) and no major variations were measured as a function of groundwater composition for a given strain. To explain this, the interfacial electro-hydrodynamic properties of the bacteria were investigated by microelectrophoresis, with the resultant data analysed on the basis of electrokinetic theory for soft biocolloidal particles. The results obtained showed that M. avium carries a significant volume charge density and that its peripheral layer exhibits limited hydrodynamic flow permeation compared to that of C. jejuni. It was also demonstrated that steric hindrance to flow penetration and the degree of hydrophobicity within/of the outer bacterial interface are larger for M. avium cells. In line with this, the larger amount of M. avium cells deposited onto PET substrates as compared to that of C. jejuni can be explained by hydrophobic attraction and chemical binding between hydrophobic PET and outer soft surface layer of the bacteria. Hydrophobicity of PET was addressed by combining contact angle analyses and force spectroscopy using CH(3)-terminated AFM tip. PMID:18929388

  11. The evolution of adhesiveness as a social adaptation.

    Science.gov (United States)

    Garcia, Thomas; Doulcier, Guilhem; De Monte, Silvia

    2015-01-01

    Cellular adhesion is a key ingredient to sustain collective functions of microbial aggregates. Here, we investigate the evolutionary origins of adhesion and the emergence of groups of genealogically unrelated cells with a game-theoretical model. The considered adhesiveness trait is costly, continuous and affects both group formation and group-derived benefits. The formalism of adaptive dynamics reveals two evolutionary stable strategies, at each extreme on the axis of adhesiveness. We show that cohesive groups can evolve by small mutational steps, provided the population is already endowed with a minimum adhesiveness level. Assortment between more adhesive types, and in particular differential propensities to leave a fraction of individuals ungrouped at the end of the aggregation process, can compensate for the cost of increased adhesiveness. We also discuss the change in the social nature of more adhesive mutations along evolutionary trajectories, and find that altruism arises before directly beneficial behavior, despite being the most challenging form of cooperation. PMID:26613415

  12. Adhesion of Antireflective Coatings in Multijunction Photovoltaics: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Brock, Ryan; Dauskardt, Reinhold H.; Miller, David C.

    2016-06-16

    The development of a new composite dual cantilever beam (cDCB) thin-film adhesion testing method is reported, which allows the measurement of adhesion on the fragile thin substrates used in multijunction photovoltaics. We address the adhesion of several antireflective coating systems on multijunction cells. By varying interface chemistry and morphology, we demonstrate the ensuing effects on adhesion and help to develop an understanding of how high adhesion can be achieved, as adhesion values ranging from 0.5 J/m2 to 10 J/m2 were measured. Damp Heat (85 degrees C/85% RH) was used to invoke degradation of interfacial adhesion. We show that even with germanium substrates that fracture easily, quantitative measurements of adhesion can still be made at high test yield. The cDCB test is discussed as an important new methodology, which can be broadly applied to any system that makes use of thin, brittle, or otherwise fragile substrates.

  13. Sliding Adhesion Dynamics of Isolated Gecko Setal Arrays

    Science.gov (United States)

    Sponberg, Simon; Autumn, Kellar

    2003-03-01

    The tokay gecko (Gekko gecko) can adhere to nearly any surface through van der Waals interactions of the specialized setae (b-keratin "hairs") of its toe pads. Our recent research has suggested that a gecko is substantially overbuilt for static adhesion requiring as little as 0.03of its theoretical adhesive capacity. We performed the first sliding adhesion experiments on this novel biological adhesive to determine its response to dynamic loading. We isolated arrays of setae and constructed a precision controlled Robo-toe to study sliding effects. Our results indicate that, unlike many typical adhesives, gecko setal arrays exhibit an increased frictional force upon sliding (mk > ms) which further increases with velocity, suggesting that perturbation rejection may be an evolutionary design principle underlying the evolution of the gecko adhesive. We compare these dynamic properties with those of other adhesives and explore the impacts of these results on the design of artificial adhesives.

  14. Tailoring Novel PTFE Surface Properties: Promoting Cell Adhesion and Antifouling Properties via a Wet Chemical Approach.

    Science.gov (United States)

    Gabriel, Matthias; Niederer, Kerstin; Becker, Marc; Raynaud, Christophe Michel; Vahl, Christian-Friedrich; Frey, Holger

    2016-05-18

    Many biomaterials used for tissue engineering applications lack cell-adhesiveness and, in addition, are prone to nonspecific adsorption of proteins. This is especially important for blood-contacting devices such as vascular grafts and valves where appropriate surface properties should inhibit the initial attachment of platelets and promote endothelial cell colonization. As a consequence, the long-term outcome of the implants would be improved and the need for anticoagulation therapy could be reduced or even abolished. Polytetrafluoroethylene (PTFE), a frequently used polymer for various medical applications, was wet-chemically activated and subsequently modified by grafting the endothelial cell (EC) specific peptide arginine-glutamic acid-aspartic acid-valine (REDV) using a bifunctional polyethylene glycol (PEG)-spacer (known to reduce platelet and nonspecific protein adhesion). Modified and control surfaces were both evaluated in terms of EC adhesion, colonization, and the attachment of platelets. In addition, samples underwent bacterial challenges. The results strongly suggested that PEG-mediated peptide immobilization renders PTFE an excellent substrate for cellular growth while simultaneously endowing the material with antifouling properties. PMID:27041509

  15. A modified microbial adhesion to hydrocarbons assay to account for the presence of hydrocarbon droplets.

    Science.gov (United States)

    Zoueki, Caroline Warne; Tufenkji, Nathalie; Ghoshal, Subhasis

    2010-04-15

    The microbial adhesion to hydrocarbons (MATH) assay has been used widely to characterize microbial cell hydrophobicity and/or the extent of cell adhesion to hydrophobic liquids. The classical MATH assay involves spectrophotometric absorbance measurements of the initial and final cell concentrations in an aqueous cell suspension that has been contacted with a hydrocarbon liquid. In this study, microscopic examination of the aqueous cell suspension after contact with hexadecane or a hexadecane/toluene mixture revealed the presence of hydrocarbon droplets. The hydrocarbon droplets contributed to the absorbance values during spectrophotometric measurements and caused erroneous estimates of cell concentrations and extents of microbial adhesion. A modified MATH assay that avoids such artefacts is proposed here. In this modified assay, microscopic examination of the aqueous suspension and direct cell counts provides cell concentrations that are free of interference from hydrocarbon droplets. The presence of hydrocarbon droplets was noted in MATH assays performed with three bacterial strains, and two different hydrocarbons, at ionic strengths of 0.2 mM and 20 mM and pH 6. In these experiments, the formation of quasi-stable hydrocarbon droplets cannot be attributed to the presence of biosurfactants, or stabilization by biocolloids. The presence of surface potential at the hydrocarbon-water interface that was characterized by electrophoretic mobility of up to -1 and -2 microm cm/Vs, likely caused the formation of the quasi-stable hydrocarbon droplets that provided erroneous results using the classical MATH assay. PMID:20129613

  16. Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation.

    Science.gov (United States)

    Janissen, Richard; Murillo, Duber M; Niza, Barbara; Sahoo, Prasana K; Nobrega, Marcelo M; Cesar, Carlos L; Temperini, Marcia L A; Carvalho, Hernandes F; de Souza, Alessandra A; Cotta, Monica A

    2015-01-01

    Microorganism pathogenicity strongly relies on the generation of multicellular assemblies, called biofilms. Understanding their organization can unveil vulnerabilities leading to potential treatments; spatially and temporally-resolved comprehensive experimental characterization can provide new details of biofilm formation, and possibly new targets for disease control. Here, biofilm formation of economically important phytopathogen Xylella fastidiosa was analyzed at single-cell resolution using nanometer-resolution spectro-microscopy techniques, addressing the role of different types of extracellular polymeric substances (EPS) at each stage of the entire bacterial life cycle. Single cell adhesion is caused by unspecific electrostatic interactions through proteins at the cell polar region, where EPS accumulation is required for more firmly-attached, irreversibly adhered cells. Subsequently, bacteria form clusters, which are embedded in secreted loosely-bound EPS, and bridged by up to ten-fold elongated cells that form the biofilm framework. During biofilm maturation, soluble EPS forms a filamentous matrix that facilitates cell adhesion and provides mechanical support, while the biofilm keeps anchored by few cells. This floating architecture maximizes nutrient distribution while allowing detachment upon larger shear stresses; it thus complies with biological requirements of the bacteria life cycle. Using new approaches, our findings provide insights regarding different aspects of the adhesion process of X. fastidiosa and biofilm formation. PMID:25891045

  17. Cell Adhesion Modification of Streptococcus viridians in the Presence of Xylitol

    Science.gov (United States)

    Esmacher, Jason; Vidakovich, Blair; Giangrande, Michael; Hoffmann, Peter

    2012-10-01

    There is scientific documentation that those who chew gum sweetened by the sugar alcohol xylitol report a dramatically lower incident of both dental caries and otitis media compared to those who chew conventional gum sweetened by sucrose. An explanation contends that xylitol interferes with the ability of Streptococcus viridian (SV) to form biofilms which is a necessary precursor to the bacteria's ability to damage human tissues. We have used atomic force microscopy to study the cell wall/fimbria properties at the nanonewton level in both the presence and absence of xylitol. The first set of measurements used varying concentrations of xylitol incorporated within the incubation medium. The second used non-xylitol grown bacteria, the xylitol was added externally at various concentrations. Our study suggests that growing SV with xylitol reduces their ability to adhere together. Additionally, externally added xylitol showed grouping of cell adhesion to a relatively narrow nanonewton spread that is concentration dependent. Measurement of the adhesion properties of the bacterial cell wall have found that there is a dramatic increase in the cell wall's firmness which simultaneously accompanied a decrease in its ability to support adhesion, even at very low concentrations of xylitol.

  18. Adhesive small bowel adhesions obstruction: Evolutions in diagnosis, management and prevention

    Science.gov (United States)

    Catena, Fausto; Di Saverio, Salomone; Coccolini, Federico; Ansaloni, Luca; De Simone, Belinda; Sartelli, Massimo; Van Goor, Harry

    2016-01-01

    Intra-abdominal adhesions following abdominal surgery represent a major unsolved problem. They are the first cause of small bowel obstruction. Diagnosis is based on clinical evaluation, water-soluble contrast follow-through and computed tomography scan. For patients presenting no signs of strangulation, peritonitis or severe intestinal impairment there is good evidence to support non-operative management. Open surgery is the preferred method for the surgical treatment of adhesive small bowel obstruction, in case of suspected strangulation or after failed conservative management, but laparoscopy is gaining widespread acceptance especially in selected group of patients. "Good" surgical technique and anti-adhesive barriers are the main current concepts of adhesion prevention. We discuss current knowledge in modern diagnosis and evolving strategies for management and prevention that are leading to stratified care for patients. PMID:27022449

  19. Adhesion of synthetic organic polymer on soft tissue. I. A fast setting polyurethane adhesive.

    Science.gov (United States)

    Llewellyn-Thomas, E; Wang, P Y; Cannon, J S

    1974-01-01

    Conventional polyurethane prepolymers have been shown to adhere to living biological tissues. However, their setting is not sufficiently expedient to permit convenient applications in vivo. A prepolymer prepared from the highly reactive 6-chloro-2,4,5-trifluoro-1,3-phenylene diisocyanate, castor oil, and a trace of pyridine has afforded an adhesive which sets in about 2 min in vivo. The fast setting has resulted in poor adhesion on biological tissue. The bonding has been improved by the inclusion of tolylene diisocyanate in the composition without affecting the fast curing rate of the prepolymer. The dispersion of the adhesive and its cohesion after solidification have been adjusted by other minor additives. Preliminary evaluation on animals indicates that this adhesive is most useful as a hemostatic coating in hepatic lacerations. PMID:4819871

  20. Fundamentals of adhesion of thermal spray coatings: Adhesion of single splats

    International Nuclear Information System (INIS)

    Indentation experiments were performed inside a scanning electron microscope to measure adhesive strength of individual alumina splats on a steel substrate. The in situ nature of experimental evaluations made characterization of interfacial crack propagation possible by direct observation. The increase in the strain energy of brittle alumina splats originating from indentation deformation was correlated to the strain energy release rate through the characterization of interfacial crack propagation. An analytical model previously reported and evaluated in studies of the adhesive strength of thin films was employed. An average calculated strain energy release rate of 80 J m-2 was found for single splats. This high value suggests that splat adhesion can make a significant contribution to the adhesion of thermal sprayed coatings.

  1. [Small intestine bacterial overgrowth].

    Science.gov (United States)

    Leung Ki, E L; Roduit, J; Delarive, J; Guyot, J; Michetti, P; Dorta, G

    2010-01-27

    Small intestine bacterial overgrowth (SIBO) is a condition characterised by nutrient malabsorption and excessive bacteria in the small intestine. It typically presents with diarrhea, flatulence and a syndrome of malabsorption (steatorrhea, macrocytic anemia). However, it may be asymptomatic in the eldery. A high index of suspicion is necessary in order to differentiate SIBO from other similar presenting disorders such as coeliac disease, lactose intolerance or the irritable bowel syndrome. A search for predisposing factor is thus necessary. These factors may be anatomical (stenosis, blind loop), or functional (intestinal hypomotility, achlorydria). The hydrogen breath test is the most frequently used diagnostic test although it lacks standardisation. The treatment of SIBO consists of eliminating predisposing factors and broad-spectrum antibiotic therapy. PMID:20214190

  2. Studying bacterial multispecies biofilms

    DEFF Research Database (Denmark)

    Røder, Henriette Lyng; Sørensen, Søren Johannes; Burmølle, Mette

    2016-01-01

    The high prevalence and significance of multispecies biofilms have now been demonstrated in various bacterial habitats with medical, industrial, and ecological relevance. It is highly evident that several species of bacteria coexist and interact in biofilms, which highlights the need for evaluating...... the approaches used to study these complex communities. This review focuses on the establishment of multispecies biofilms in vitro, interspecies interactions in microhabitats, and how to select communities for evaluation. Studies have used different experimental approaches; here we evaluate the...... benefits and drawbacks of varying the degree of complexity. This review aims to facilitate multispecies biofilm research in order to expand the current limited knowledge on interspecies interactions. Recent technological advances have enabled total diversity analysis of highly complex and diverse microbial...

  3. Photopolymerizable phosphate acrylates as comonomers in dental adhesives with or without triclosan monomer units

    International Nuclear Information System (INIS)

    Phosphate diacrylates (CO-DAP, TMP-DAP) based on castor oil or trimethylolpropane were synthesized and evaluated in dental adhesive formulations in comparison with 3-acryloyloxy-2-hydroxypropyl methacrylate phosphate (AMP-P). In an attempt to promote antibacterial activity, another photopolymerizable monomer (TCS-UMA) containing 5-chloro-2-(2,4-dichlorophenoxy)phenol moiety (triclosan) was prepared and incorporated in adhesive resins. Each of these monomers had a molecular structure confirmed by spectral methods. The photopolymerization rates for monomers (0.063–0.088 s−1) were lower than those determined in the monomer combinations (0.116–0.158 s−1) incorporating phosphate diacrylate (11 wt.%), BisGMA (33 wt.%), TEGDMA (10 wt.%), UDMA (10 wt.%) and HEMA (15 wt.%), the degree of conversion varying between 63.4 and 74.5%. The formed copolymers showed high values for water sorption (18.65–57.02 μg/mm3) and water solubility (3.51–13.38 μg/mm3), and the contact angle was dependent on the presence of CO-DAP (θF1: 66.67°), TMP-DAP (θF2: 55.05°) or AMP-P (θF3: 52.90°) in the photocrosslinked specimens compared to the sample without phosphate monomer (θF4: 82.14°). The scanning electron microscopy image of the dentin–resin composite interface after applying our F1 formulation (pH: 4.1) and its light-curing for 20 s supports the evidence of the formation of the hybrid layer with the tooth structure created by self-etching approach, with no gaps or cracks in the adhesive. A comparative analysis of the adhesion achieved with commercial adhesive systems (Single Bond Universal, C-Bond) rather indicates similarities than differences between them. The addition of triclosan methacrylate (1 wt.%) into the formulation inhibited the bacterial growth of the Streptococcus mutans and Escherichia coli in the direct contact area due to the covalently linked antibacterial monomer. - Highlights: • Synthesis of photopolymerizable phosphate acrylate monomers is

  4. Photopolymerizable phosphate acrylates as comonomers in dental adhesives with or without triclosan monomer units

    Energy Technology Data Exchange (ETDEWEB)

    Melinte, Violeta [Petru Poni Institute of Macromolecular Chemistry, 41 A Gr. Ghica Voda Alley, 700487 Iasi (Romania); Buruiana, Tinca, E-mail: tbur@icmpp.ro [Petru Poni Institute of Macromolecular Chemistry, 41 A Gr. Ghica Voda Alley, 700487 Iasi (Romania); Aldea, Horia [Gr. T. Popa University of Medicine and Pharmacy, Faculty of Dentistry, Iasi (Romania); Matiut, Simona [Praxis Medical Investigations, 33 Independence, 700102 Iasi (Romania); Silion, Mihaela; Buruiana, Emil C. [Petru Poni Institute of Macromolecular Chemistry, 41 A Gr. Ghica Voda Alley, 700487 Iasi (Romania)

    2014-01-01

    Phosphate diacrylates (CO-DAP, TMP-DAP) based on castor oil or trimethylolpropane were synthesized and evaluated in dental adhesive formulations in comparison with 3-acryloyloxy-2-hydroxypropyl methacrylate phosphate (AMP-P). In an attempt to promote antibacterial activity, another photopolymerizable monomer (TCS-UMA) containing 5-chloro-2-(2,4-dichlorophenoxy)phenol moiety (triclosan) was prepared and incorporated in adhesive resins. Each of these monomers had a molecular structure confirmed by spectral methods. The photopolymerization rates for monomers (0.063–0.088 s{sup −1}) were lower than those determined in the monomer combinations (0.116–0.158 s{sup −1}) incorporating phosphate diacrylate (11 wt.%), BisGMA (33 wt.%), TEGDMA (10 wt.%), UDMA (10 wt.%) and HEMA (15 wt.%), the degree of conversion varying between 63.4 and 74.5%. The formed copolymers showed high values for water sorption (18.65–57.02 μg/mm{sup 3}) and water solubility (3.51–13.38 μg/mm{sup 3}), and the contact angle was dependent on the presence of CO-DAP (θ{sub F1}: 66.67°), TMP-DAP (θ{sub F2}: 55.05°) or AMP-P (θ{sub F3}: 52.90°) in the photocrosslinked specimens compared to the sample without phosphate monomer (θ{sub F4}: 82.14°). The scanning electron microscopy image of the dentin–resin composite interface after applying our F1 formulation (pH: 4.1) and its light-curing for 20 s supports the evidence of the formation of the hybrid layer with the tooth structure created by self-etching approach, with no gaps or cracks in the adhesive. A comparative analysis of the adhesion achieved with commercial adhesive systems (Single Bond Universal, C-Bond) rather indicates similarities than differences between them. The addition of triclosan methacrylate (1 wt.%) into the formulation inhibited the bacterial growth of the Streptococcus mutans and Escherichia coli in the direct contact area due to the covalently linked antibacterial monomer. - Highlights: • Synthesis of

  5. Surface pretreatments for medical application of adhesion

    Directory of Open Access Journals (Sweden)

    Weber Michael

    2003-09-01

    Full Text Available Abstract Medical implants and prostheses (artificial hips, tendono- and ligament plasties usually are multi-component systems that may be machined from one of three material classes: metals, plastics and ceramics. Typically, the body-sided bonding element is bone. The purpose of this contribution is to describe developments carried out to optimize the techniques , connecting prosthesis to bone, to be joined by an adhesive bone cement at their interface. Although bonding of organic polymers to inorganic or organic surfaces and to bone has a long history, there remains a serious obstacle in realizing long-term high-bonding strengths in the in vivo body environment of ever present high humidity. Therefore, different pretreatments, individually adapted to the actual combination of materials, are needed to assure long term adhesive strength and stability against hydrolysis. This pretreatment for metal alloys may be silica layering; for PE-plastics, a specific plasma activation; and for bone, amphiphilic layering systems such that the hydrophilic properties of bone become better adapted to the hydrophobic properties of the bone cement. Amphiphilic layering systems are related to those developed in dentistry for dentine bonding. Specific pretreatment can significantly increase bond strengths, particularly after long term immersion in water under conditions similar to those in the human body. The bond strength between bone and plastic for example can be increased by a factor approaching 50 (pealing work increasing from 30 N/m to 1500 N/m. This review article summarizes the multi-disciplined subject of adhesion and adhesives, considering the technology involved in the formation and mechanical performance of adhesives joints inside the human body.

  6. Adhesive capsulitis of the shoulder: MR arthrography

    International Nuclear Information System (INIS)

    Adhesive capsulitis is a clinical syndrome involving pain and decreased joint motion caused by thickening and contraction of the joint capsule. The purpose of this study is to describe the MR arthrographic findings of this syndrome. Twenty-nine sets of MR arthrographic images were included in the study. Fourteen patients had adhesive capsulitis diagnosed by physical examination and arthrography, and their MR arthrographic findings were compared with those of 15 subjects in the control group. The images were retrospectively reviewed with specific attention to the thickness of the joint capsule, volume of the axillary pouch (length, width, height(depth)), thinkness of the coracohumeral ligament, presence of extra-articular contrast extravasation, and contrst filling of the subcoracoid bursa. Mean capsular thickness measured at the inferior portion of the axillary pouch was 4.1 mm in patients with adhesive capsulitis and 1.5 mm in the control group. The mean width of the axillary pouch was 2.5 mm in patients and 9.5 mm in controls. In patients, the capsule was significantly thicker and the axillary pouch significantly narrower than in controls (p<0.05). Capsule thickness greater than 2.5 mm at the inferior portion of the axillary pouch (sensitivity 93%, specificity 80%) and a pouch narrower than 3.5 mm (sensitivity 93%, specificity 100%) were useful criteria for the diagnosis of adhesive capsulitis. In patients with this condition, extra-articular contrast extravasation was noted in six patients (43%) and contrast filling of the subcoracoid bursa in three (21%). The MR arthrographic findings of adhesive capsulitis are capsular thickening, a low-volume axillary pouch, extra-articular contrast extravasation, and contrast filling of the subcoracoid bursa. Capsule thickness greater than 2.5 mm at the inferior portion of the axillary pouch and a pouch width of less than 3.5 mm are useful diagnostic imaging characteristics

  7. Adhesion between high-strength concrete, epoxy resin and CFRP

    OpenAIRE

    Aguiar, J. L. Barroso de; Krzywon, Rafal; Camões, Aires; Gorski, M.; Dawczynski, Szymon

    2008-01-01

    This paper presents a study on the adhesion between high-strength concrete, epoxy resin and CFRP. The adhesion of the high-strength concrete was compared with the same property measured in conventional concrete. Shear tests were made to test adhesion from concretes to epoxy resin. Flexural tests were used to evaluate the adhesion between concretes, epoxy and CFRP. The effect of temperature was also evaluated. For ordinary temperatures (20 ºC) the results showed a better flexural performance o...

  8. Single Cell Adhesion Assay Using Computer Controlled Micropipette

    OpenAIRE

    Rita Salánki; Csaba Hős; Norbert Orgovan; Beatrix Péter; Noémi Sándor; Zsuzsa Bajtay; Anna Erdei; Robert Horvath; Bálint Szabó

    2014-01-01

    Cell adhesion is a fundamental phenomenon vital for all multicellular organisms. Recognition of and adhesion to specific macromolecules is a crucial task of leukocytes to initiate the immune response. To gain statistically reliable information of cell adhesion, large numbers of cells should be measured. However, direct measurement of the adhesion force of single cells is still challenging and today's techniques typically have an extremely low throughput (5-10 cells per day). Here, we introduc...

  9. Orientation angle and the adhesion of single gecko setae

    OpenAIRE

    Hill, Ginel C.; Soto, Daniel R.; Peattie, Anne M.; Full, Robert J.; Kenny, T. W.

    2011-01-01

    We investigated the effects of orientation angle on the adhesion of single gecko setae using dual-axis microelectromechanical systems force sensors to simultaneously detect normal and shear force components. Adhesion was highly sensitive to the pitch angle between the substrate and the seta's stalk. Maximum lateral adhesive force was observed with the stalk parallel to the substrate, and adhesion decreased smoothly with increasing pitch. The roll orientation angle only needed to be roughly co...

  10. Adhesion, growth, and matrix production by fibroblasts on laminin substrates

    DEFF Research Database (Denmark)

    Couchman, J R; Höök, M; Rees, D A; Timpl, R

    1983-01-01

    laminin-coated substrates with the development of microfilament bundles and focal adhesions. Antibodies to laminin, but not fibronectin, will prevent or reverse fibroblast adhesion to laminin, whereas antibodies to fibronectin but not laminin will give similar results on fibronectin-coated substrates....... These and other results indicate that fibroblasts possess distinct receptors for laminin and fibronectin which on contact with suitable substrates promote adhesion through interaction with common intermediates. This type of adhesion is compatible with subsequent growth and extracellular matrix...

  11. Properties of Nano SiO2 Modified PVF Adhesive

    Institute of Scientific and Technical Information of China (English)

    CHEN He-sheng; SUN Zhen-ya; XUE Li-hui

    2004-01-01

    Some properties of nano SiO2 modified PVF adhesive were studied. The experimental results show that nano SiO2 can improve the properties of PVF adhesive very well. Meanwhile the modification mechanism of nano SiO2 to PVF adhesive and the applications of this adhesive in paper-plastic composite, concrete and fireproof paint were discussed by using IR and XRD determination.

  12. Cell adhesion molecules: detection with univalent second antibody

    OpenAIRE

    1980-01-01

    Identification of cell surface molecules that play a role in cell-cell adhesion (here called cell adhesion molecules) has been achieved by demonstrating the inhibitory effect of univalent antibodies that bind these molecules in an in vitro assay of cell-cell adhesion. A more convenient reagent, intact (divalent) antibody, has been avoided because it might agglutinate the cells rather than blocking cell-cell adhesion. In this report, we show that intact rabbit immunoglobulin directed against c...

  13. Extreme positive allometry of animal adhesive pads and the size limits of adhesion-based climbing.

    Science.gov (United States)

    Labonte, David; Clemente, Christofer J; Dittrich, Alex; Kuo, Chi-Yun; Crosby, Alfred J; Irschick, Duncan J; Federle, Walter

    2016-02-01

    Organismal functions are size-dependent whenever body surfaces supply body volumes. Larger organisms can develop strongly folded internal surfaces for enhanced diffusion, but in many cases areas cannot be folded so that their enlargement is constrained by anatomy, presenting a problem for larger animals. Here, we study the allometry of adhesive pad area in 225 climbing animal species, covering more than seven orders of magnitude in weight. Across all taxa, adhesive pad area showed extreme positive allometry and scaled with weight, implying a 200-fold increase of relative pad area from mites to geckos. However, allometric scaling coefficients for pad area systematically decreased with taxonomic level and were close to isometry when evolutionary history was accounted for, indicating that the substantial anatomical changes required to achieve this increase in relative pad area are limited by phylogenetic constraints. Using a comparative phylogenetic approach, we found that the departure from isometry is almost exclusively caused by large differences in size-corrected pad area between arthropods and vertebrates. To mitigate the expected decrease of weight-specific adhesion within closely related taxa where pad area scaled close to isometry, data for several taxa suggest that the pads' adhesive strength increased for larger animals. The combination of adjustments in relative pad area for distantly related taxa and changes in adhesive strength for closely related groups helps explain how climbing with adhesive pads has evolved in animals varying over seven orders of magnitude in body weight. Our results illustrate the size limits of adhesion-based climbing, with profound implications for large-scale bio-inspired adhesives. PMID:26787862

  14. Adhesion of Aeromonas sp. to cell lines used as models for intestinal adhesion.

    OpenAIRE

    Kirov, S M; Hayward, L. J.; Nerrie, M. A.

    1995-01-01

    Adhesion to HEp-2 cells has been shown to correlate with enteropathogenicity for Aeromonas species. Such adhesion is thought to reflect the ability of strains to adhere to human intestinal enterocytes, although HEp-2 cells are not of intestinal origin. In this study strains of Aeromonas veronii biotype sobria isolated from various sources were investigated in parallel assays for their ability to adhere to HEp-2 cells and to an intestinal cell line (Caco-2). Quantitative assays showed identica...

  15. Direct observation of microcavitation in underwater adhesion of mushroom-shaped adhesive microstructure

    Directory of Open Access Journals (Sweden)

    Lars Heepe

    2014-06-01

    Full Text Available In this work we report on experiments aimed at testing the cavitation hypothesis [Varenberg, M.; Gorb, S. J. R. Soc., Interface 2008, 5, 383–385] proposed to explain the strong underwater adhesion of mushroom-shaped adhesive microstructures (MSAMSs. For this purpose, we measured the pull-off forces of individual MSAMSs by detaching them from a glass substrate under different wetting conditions and simultaneously video recording the detachment behavior at very high temporal resolution (54,000–100,000 fps. Although microcavitation was observed during the detachment of individual MSAMSs, which was a consequence of water inclusions present at the glass–MSAMS contact interface subjected to negative pressure (tension, the pull-off forces were consistently lower, around 50%, of those measured under ambient conditions. This result supports the assumption that the recently observed strong underwater adhesion of MSAMS is due to an air layer between individual MSAMSs [Kizilkan, E.; Heepe, L.; Gorb, S. N. Underwater adhesion of mushroom-shaped adhesive microstructure: An air-entrapment effect. In Biological and biomimetic adhesives: Challenges and opportunities; Santos, R.; Aldred, N.; Gorb, S. N.; Flammang, P., Eds.; The Royal Society of Chemistry: Cambridge, U.K., 2013; pp 65–71] rather than by cavitation. These results obtained due to the high-speed visualisation of the contact behavior at nanoscale-confined interfaces allow for a microscopic understanding of the underwater adhesion of MSAMSs and may aid in further development of artificial adhesive microstructures for applications in predominantly liquid environments.

  16. Treatment of EVA with corona discharge to improve its adhesion to polychloroprene adhesive

    OpenAIRE

    Martínez García, Asunción; Sánchez Reche, Ana; Gisbert Soler, Santiago; Cepeda Jiménez, Carmen María; Torregrosa Maciá, Rosa; Martín-Martínez, José Miguel

    2002-01-01

    Ethylene vinyl acetate (EVA) material containing 20 wt% vinyl acetate (EVA20) was treated with corona discharge to improve its adhesion to polychloroprene adhesive. Several experimental variables in the corona discharge treatment of EVA20 were considered: corona energy, type of electrode, and number of consecutive treatments. Advancing contact angle measurements (water, 25±C) showed an increase in the wettability of EVA20 after treatment with corona discharge, which corresponds to an in...

  17. Molecular approaches for bacterial azoreductases

    Directory of Open Access Journals (Sweden)

    Montira Leelakriangsak

    2013-12-01

    Full Text Available Azo dyes are the dominant types of synthetic dyes, widely used in textiles, foods, leather, printing, tattooing, cosmetics, and pharmaceutical industries. Many microorganisms are able to decolorize azo dyes, and there is increasing interest in biological waste treatment methods. Bacterial azoreductases can cleave azo linkages (-N=N- in azo dyes, forming aromatic amines. This review mainly focuses on employing molecular approaches, including gene manipulation and recombinant strains, to study bacterial azoreductases. The construction of the recombinant protein by cloning and the overexpression of azoreductase is described. The mechanisms and function of bacterial azoreductases can be studied by other molecular techniques discussed in this review, such as RT-PCR, southern blot analysis, western blot analysis, zymography, and muta-genesis in order to understand bacterial azoreductase properties, function and application. In addition, understanding the regulation of azoreductase gene expression will lead to the systematic use of gene manipulation in bacterial strains for new strategies in future waste remediation technologies.

  18. Soluble adhesion molecules in human cancers: sources and fates.

    NARCIS (Netherlands)

    Kilsdonk, J.W.J. van; Kempen, L.C.L.T. van; Muijen, G.N.P. van; Ruiter, D.J.; Swart, G.W.

    2010-01-01

    Adhesion molecules endow tumor cells with the necessary cell-cell contacts and cell-matrix interactions. As such, adhesion molecules are involved in cell signalling, proliferation and tumor growth. Rearrangements in the adhesion repertoire allow tumor cells to migrate, invade and form metastases. Be

  19. Anisotropic Adhesion Properties of Triangular-Tip-Shaped Micropillars

    KAUST Repository

    Kwak, Moon Kyu

    2011-06-01

    Directional dry adhesive microstructures consisting of high-density triangular-tip-shaped micropillars are described. The wide-tip structures allow for unique directional shear adhesion properties with respect to the peeling direction, along with relatively high normal adhesion. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Fabrication and characterization of hierarchical nanostructured smart adhesion surfaces.

    Science.gov (United States)

    Lee, Hyungoo; Bhushan, Bharat

    2012-04-15

    The mechanics of fibrillar adhesive surfaces of biological systems such as a Lotus leaf and a gecko are widely studied due to their unique surface properties. The Lotus leaf is a model for superhydrophobic surfaces, self-cleaning properties, and low adhesion. Gecko feet have high adhesion due to the high micro/nanofibrillar hierarchical structures. A nanostructured surface may exhibit low adhesion or high adhesion depending upon fibrillar density, and it presents the possibility of realizing eco-friendly surface structures with desirable adhesion. The current research, for the first time uses a patterning technique to fabricate smart adhesion surfaces: single- and two-level hierarchical synthetic adhesive structure surfaces with various fibrillar densities and diameters that allows the observation of either the Lotus or gecko adhesion effects. Contact angles of the fabricated structured samples were measured to characterize their wettability, and contamination experiments were performed to study for self-cleaning ability. A conventional and a glass ball attached to an atomic force microscope (AFM) tip were used to obtain the adhesive forces via force-distance curves to study scale effect. A further increase of the adhesive forces on the samples was achieved by applying an adhesive to the surfaces. PMID:22285098