WorldWideScience

Sample records for bacteria revealsdifferent strategies

  1. The Evolution of Two-Component Systems in Bacteria RevealsDifferent Strategies for Niche Adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Alm, Eric; Huang, Katherine; Arkin, Adam

    2006-09-13

    Two-component systems including histidine protein kinasesrepresent the primary signal transduction paradigm in prokaryoticorganisms. To understand how these systems adapt to allow organisms todetect niche-specific signals, we analyzed the phylogenetic distributionof nearly 5000 histidine protein kinases from 207 sequenced prokaryoticgenomes. We found that many genomes carry a large repertoire of recentlyevolved signaling genes, which may reflect selective pressure to adapt tonew environmental conditions. Both lineage-specific gene family expansionand horizontal gene transfer play major roles in the introduction of newhistidine kinases into genomes; however, there are differences in howthese two evolutionary forces act. Genes imported via horizontal transferare more likely to retain their original functionality as inferred from asimilar complement of signaling domains, while gene family expansionaccompanied by domain shuffling appears to be a major source of novelgenetic diversity. Family expansion is the dominantsource of newhistidine kinase genes in the genomes most enriched in signalingproteins, and detailed analysis reveals that divergence in domainstructure and changes in expression patterns are hallmarks of recentexpansions. Finally, while these two modes of gene acquisition arewidespread across bacterial taxa, there are clear species-specificpreferences for which mode is used.

  2. Current strategies for improving food bacteria

    NARCIS (Netherlands)

    Kuipers, O P; Buist, Girbe; Kok, Jan

    2000-01-01

    Novel concepts and methodologies are emerging that hold great promise for the directed improvement of food-related bacteria, specifically lactic acid bacteria. Also, the battle against food spoilage and pathogenic bacteria can now be fought more effectively. Here we describe recent advances in

  3. Metabolic strategies of beer spoilage lactic acid bacteria in beer.

    Science.gov (United States)

    Geissler, Andreas J; Behr, Jürgen; von Kamp, Kristina; Vogel, Rudi F

    2016-01-04

    Beer contains only limited amounts of readily fermentable carbohydrates and amino acids. Beer spoilage lactic acid bacteria (LAB) have to come up with metabolic strategies in order to deal with selective nutrient content, high energy demand of hop tolerance mechanisms and a low pH. The metabolism of 26 LAB strains of 6 species and varying spoilage potentialwas investigated in order to define and compare their metabolic capabilities using multivariate statistics and outline possible metabolic strategies. Metabolic capabilities of beer spoilage LAB regarding carbohydrate and amino acids did not correlate with spoilage potential, but with fermentation type (heterofermentative/homofermentative) and species. A shift to mixed acid fermentation by homofermentative (hof) Pediococcus claussenii and Lactobacillus backii was observed as a specific feature of their growth in beer. For heterofermentative (hef) LAB a mostly versatile carbohydrate metabolism could be demonstrated, supplementing the known relevance of organic acids for their growth in beer. For hef LAB a distinct amino acid metabolism, resulting in biogenic amine production, was observed, presumably contributing to energy supply and pH homeostasis.

  4. Biocontainment strategies for live lactic acid bacteria vaccine vectors

    Science.gov (United States)

    2010-01-01

    Stability is an important issue when engineering bacteria for use as live vaccine vectors. For the majority of live bacterial vaccines, the antigen-encoding gene is either plasmid located or integrated into the chromosome. Regardless, several safety concerns can be raised for both instances. One concern when using plasmid-encoded antigens is the transfer of antibiotic resistance markers. Alternatively, for chromosomal integrated antigens however, the concern focuses on the spread and possible release of genetically-modified microorganisms (GMM) into the environment, which is problematic. Their recombinant nature calls for a proper bio-containment strategy to be implemented or in place before any realistic attempt at releasing a live bacterial vaccine. No examples of human bacterial vaccines causing problems among animals have been found in the literature but the possibility exists and has to be both tested and evaluated before release of a live bacterial vaccine. The ideal GMM for use in humans should therefore contain the minimal amount of foreign DNA and must not include an antibiotic resistance marker. Furthermore, the possibilities of transgene horizontal transfer must be minimized, and GMM lethality for biocontainment should be achieved in an unconfined environment. PMID:21327129

  5. Recycling antibiotics into GUMBOS: A new combination strategy to combat multi-drug resistant bacteria

    Science.gov (United States)

    The emergence of multi-drug resistant bacteria, coupled with the lack of new antibiotics in development, is fast evolving into a global crisis. New strategies utilizing existing antibacterial agents are urgently needed. We propose one such strategy in which four outmoded ß-lactam antibiotics (amp...

  6. Elucidation of bacteria found in car interiors and strategies to reduce the presence of potential pathogens

    Science.gov (United States)

    Stephenson, Rachel E.; Gutierrez, Daniel; Peters, Cindy; Nichols, Mark; Boles, Blaise R.

    2014-01-01

    The human microbiome is influenced by a number of factors, including environmental exposure to microbes. Because many humans spend a large amount of time in built environments, it can be expected that the microbial ecology of these environments will influence the human microbiome. In an attempt to further understand the microbial ecology of built environments, the microbiota of car interiors was analyzed using culture dependent and culture independent methods. While it was found that the number and type of bacteria varied widely among the cars and sites tested, Staphylococcus and Propionibacterium were nearly always the dominant genera found at the locations sampled. Because Staphylococcus is of particular concern to human health, the characteristics of this genus found in car interiors were investigated. Staphylococcus epidermidis, S. aureus, and S. warnerii were the most prevalent staphylococcal species found, and 22.6% of S. aureus strains isolated from shared community vehicles were resistant to methicillin. The reduction in the prevalence of pathogenic bacteria in cars by using silver-based antimicrobial surface coatings was also evaluated. Coatings containing 5% silver ion additives were applied to steering wheels, placed in cars for five months and were found to eliminate the presence of culturable pathogenic bacteria recovered from these sites relative to controls. Together, these results provide new insight into the microbiota found in an important built environment, the automobile, and potential strategies for controlling the presence of human pathogens. PMID:24564823

  7. Experimental evolution and the adjustment of metabolic strategies in lactic acid bacteria.

    Science.gov (United States)

    Bachmann, Herwig; Molenaar, Douwe; Branco Dos Santos, Filipe; Teusink, Bas

    2017-08-01

    Experimental evolution of microbes has gained lots of interest in recent years, mainly due to the ease of strain characterisation through next-generation sequencing. While evolutionary and systems biologists use experimental evolution to address fundamental questions in their respective fields, studies with lactic acid bacteria are often more directed by applied questions. Insight into population and genome dynamics are valuable for experimental design and data interpretation, and it is becoming increasingly apparent how different constraints limit and govern the outcome of microbial adaptation to a selective environment. Examples for such constraints are the finite membrane and cellular space which can lead to trade-offs between cellular strategies. A powerful perspective is that of resource allocation, which allows cells to maximise fitness. This impacts on metabolic strategies that have different protein/resource demands. This review focuses on parameters and forces that shape cellular optimisation processes and that are determining for the outcome of laboratory evolution experiments. Phenotypic changes of experimentally evolved lactic acid bacteria will be discussed in the light of the selection conditions and the prevailing constraints. © FEMS 2017.

  8. Exploiting Quorum Sensing Interfering Strategies in Gram-Negative Bacteria for the Enhancement of Environmental Applications.

    Science.gov (United States)

    Zhang, Weiwei; Li, Chenghua

    2015-01-01

    Quorum sensing (QS) is a widespread intercellular form of communication to coordinate physiological processes and cooperative activities of bacteria at the population level, and it depends on the production, secretion, and detection of small diffusible autoinducers, such as acyl-homoserine lactones (AHLs), auto-inducing oligo-peptides (AIPs) and autoinducer 2. In this review, the function of QS autoinducers of gram-negative bacteria in different aspects of wastewater treatment systems is examined. Based on research primarily performed over the past 10 years, QS involvement in the formation of biofilm and aerobic granules and changes of the microbial community and degradation/transformation pathways is discussed. In particular, the QS pathway in the role of bacterial infections and disease prevention in aquaculture is addressed. Interference of QS autoinducer-regulated pathways is considered potential treatment for a variety of environmentally related problems. This review is expected to serve as a stepping stone for further study and development strategies based on the mediation of QS-regulated pathways to enhance applications in both wastewater treatment systems and aquaculture.

  9. Exploiting quorum sensing interfering strategies in gram-negative bacteria for the enhancement of environmental applications

    Directory of Open Access Journals (Sweden)

    Weiwei eZhang

    2016-01-01

    Full Text Available Quorum sensing (QS is a widespread intercellular form of communication to coordinate physiological processes and cooperative activities of bacteria at the population level, and it depends on the production, secretion, and detection of small diffusible autoinducers, such as acyl-homoserine lactones (AHLs, auto-inducing oligo-peptides (AIPs and autoinducer 2. In this review, the function of QS autoinducers of gram-negative bacteria in different aspects of wastewater treatment systems is examined. Based on research primarily performed over the past ten years, QS involvement in the formation of biofilm and aerobic granules and changes of the microbial community and degradation/transformation pathways is discussed. In particular, the QS pathway in the role of bacterial infections and disease prevention in aquaculture is addressed. Interference of QS autoinducer-regulated pathways is considered potential treatment for a variety of environmentally related problems. This review is expected to serve as a stepping stone for further study and development strategies based on the mediation of QS-regulated pathways to enhance applications in both wastewater treatment systems and aquaculture.

  10. Exploiting Quorum Sensing Interfering Strategies in Gram-Negative Bacteria for the Enhancement of Environmental Applications

    Science.gov (United States)

    Zhang, Weiwei; Li, Chenghua

    2016-01-01

    Quorum sensing (QS) is a widespread intercellular form of communication to coordinate physiological processes and cooperative activities of bacteria at the population level, and it depends on the production, secretion, and detection of small diffusible autoinducers, such as acyl-homoserine lactones (AHLs), auto-inducing oligo-peptides (AIPs) and autoinducer 2. In this review, the function of QS autoinducers of gram-negative bacteria in different aspects of wastewater treatment systems is examined. Based on research primarily performed over the past 10 years, QS involvement in the formation of biofilm and aerobic granules and changes of the microbial community and degradation/transformation pathways is discussed. In particular, the QS pathway in the role of bacterial infections and disease prevention in aquaculture is addressed. Interference of QS autoinducer-regulated pathways is considered potential treatment for a variety of environmentally related problems. This review is expected to serve as a stepping stone for further study and development strategies based on the mediation of QS-regulated pathways to enhance applications in both wastewater treatment systems and aquaculture. PMID:26779175

  11. Evolutionary strategies of viruses, bacteria and archaea in hydrothermal vent ecosystems revealed through metagenomics.

    Science.gov (United States)

    Anderson, Rika E; Sogin, Mitchell L; Baross, John A

    2014-01-01

    The deep-sea hydrothermal vent habitat hosts a diverse community of archaea and bacteria that withstand extreme fluctuations in environmental conditions. Abundant viruses in these systems, a high proportion of which are lysogenic, must also withstand these environmental extremes. Here, we explore the evolutionary strategies of both microorganisms and viruses in hydrothermal systems through comparative analysis of a cellular and viral metagenome, collected by size fractionation of high temperature fluids from a diffuse flow hydrothermal vent. We detected a high enrichment of mobile elements and proviruses in the cellular fraction relative to microorganisms in other environments. We observed a relatively high abundance of genes related to energy metabolism as well as cofactors and vitamins in the viral fraction compared to the cellular fraction, which suggest encoding of auxiliary metabolic genes on viral genomes. Moreover, the observation of stronger purifying selection in the viral versus cellular gene pool suggests viral strategies that promote prolonged host integration. Our results demonstrate that there is great potential for hydrothermal vent viruses to integrate into hosts, facilitate horizontal gene transfer, and express or transfer genes that manipulate the hosts' functional capabilities.

  12. Evolutionary strategies of viruses, bacteria and archaea in hydrothermal vent ecosystems revealed through metagenomics.

    Directory of Open Access Journals (Sweden)

    Rika E Anderson

    Full Text Available The deep-sea hydrothermal vent habitat hosts a diverse community of archaea and bacteria that withstand extreme fluctuations in environmental conditions. Abundant viruses in these systems, a high proportion of which are lysogenic, must also withstand these environmental extremes. Here, we explore the evolutionary strategies of both microorganisms and viruses in hydrothermal systems through comparative analysis of a cellular and viral metagenome, collected by size fractionation of high temperature fluids from a diffuse flow hydrothermal vent. We detected a high enrichment of mobile elements and proviruses in the cellular fraction relative to microorganisms in other environments. We observed a relatively high abundance of genes related to energy metabolism as well as cofactors and vitamins in the viral fraction compared to the cellular fraction, which suggest encoding of auxiliary metabolic genes on viral genomes. Moreover, the observation of stronger purifying selection in the viral versus cellular gene pool suggests viral strategies that promote prolonged host integration. Our results demonstrate that there is great potential for hydrothermal vent viruses to integrate into hosts, facilitate horizontal gene transfer, and express or transfer genes that manipulate the hosts' functional capabilities.

  13. Coupling of radiofrequency with magnetic nanoparticles treatment as an alternative physical antibacterial strategy against multiple drug resistant bacteria

    Science.gov (United States)

    Chaurasia, Akhilesh K.; Thorat, Nanasaheb D.; Tandon, Anshula; Kim, Jin-Hahn; Park, Sung Ha; Kim, Kyeong Kyu

    2016-09-01

    Antibiotic resistant bacteria not only affect human health and but also threatens the safety in hospitals and among communities. However, the emergence of drug resistant bacteria is inevitable due to evolutionary selection as a consequence of indiscriminate antibiotic usage. Therefore, it is necessary to develop a novel strategy by which pathogenic bacteria can be eliminated without triggering resistance. We propose a novel magnetic nanoparticle-based physical treatment against pathogenic bacteria, which blocks biofilm formation and kills bacteria. In this approach, multiple drug resistant Staphylococcus aureus USA300 and uropathogenic Escherichia coli CFT073 are trapped to the positively charged magnetic core-shell nanoparticles (MCSNPs) by electrostatic interaction. All the trapped bacteria can be completely killed within 30 min owing to the loss of membrane potential and dysfunction of membrane-associated complexes when exposed to the radiofrequency current. These results indicate that MCSNP-based physical treatment can be an alternative antibacterial strategy without leading to antibiotic resistance, and can be used for many purposes including environmental and therapeutic applications.

  14. Contrasting life strategies of viruses that infect photo- and heterotrophic bacteria, as revealed by viral tagging.

    Science.gov (United States)

    Deng, Li; Gregory, Ann; Yilmaz, Suzan; Poulos, Bonnie T; Hugenholtz, Philip; Sullivan, Matthew B

    2012-10-30

    Ocean viruses are ubiquitous and abundant and play important roles in global biogeochemical cycles by means of their mortality, horizontal gene transfer, and manipulation of host metabolism. However, the obstacles involved in linking viruses to their hosts in a high-throughput manner bottlenecks our ability to understand virus-host interactions in complex communities. We have developed a method called viral tagging (VT), which combines mixtures of host cells and fluorescent viruses with flow cytometry. We investigated multiple viruses which infect each of two model marine bacteria that represent the slow-growing, photoautotrophic genus Synechococcus (Cyanobacteria) and the fast-growing, heterotrophic genus Pseudoalteromonas (Gammaproteobacteria). Overall, viral tagging results for viral infection were consistent with plaque and liquid infection assays for cyanobacterial myo-, podo- and siphoviruses and some (myo- and podoviruses) but not all (four siphoviruses) heterotrophic bacterial viruses. Virus-tagged Pseudoalteromonas organisms were proportional to the added viruses under varied infection conditions (virus-bacterium ratios), while no more than 50% of the Synechococcus organisms were virus tagged even at viral abundances that exceeded (5 to 10×) that of their hosts. Further, we found that host growth phase minimally impacts the fraction of virus-tagged Synechococcus organisms while greatly affecting phage adsorption to Pseudoalteromonas. Together these findings suggest that at least two contrasting viral life strategies exist in the oceans and that they likely reflect adaptation to their host microbes. Looking forward to the point at which the virus-tagging signature is well understood (e.g., for Synechococcus), application to natural communities should begin to provide population genomic data at the proper scale for predictively modeling two of the most abundant biological entities on Earth. Viral study suffers from an inability to link viruses to hosts en

  15. Exploring Post-Treatment Reversion of Antimicrobial Resistance in Enteric Bacteria of Food Animals as a Resistance Mitigation Strategy.

    Science.gov (United States)

    Volkova, Victoriya V; KuKanich, Butch; Riviere, Jim E

    2016-11-01

    Antimicrobial drug use in food animals is associated with an elevation in relative abundance of bacteria resistant to the drug among the animal enteric bacteria. Some of these bacteria are potential foodborne pathogens. Evidence suggests that at least in the enteric nontype-specific Escherichia coli, after treatment the resistance abundance reverts to the background pre-treatment levels, without further interventions. We hypothesize that it is possible to define the distribution of the time period after treatment within which resistance to the administered drug, and possibly other drugs in case of coselection, in fecal bacteria of the treated animals returns to the background pre-treatment levels. Furthermore, it is possible that a novel resistance mitigation strategy for microbiological food safety could be developed based on this resistance reversion phenomenon. The strategy would be conceptually similar to existing antimicrobial drug withdrawal periods, which is a well-established and accepted mitigation strategy for avoiding violative drug residues in the edible products from the treated animals. For developing resistance-relevant withdrawals, a mathematical framework can be used to join the necessary pharmacological, microbiological, and animal production components to project the distributions of the post-treatment resistance reversion periods in the production animal populations for major antimicrobial drug classes in use. The framework can also help guide design of empirical studies into the resistance-relevant withdrawal periods and development of mitigation approaches to reduce the treatment-associated elevation of resistance in animal enteric bacteria. We outline this framework, schematically and through exemplar equations, and how its components could be formulated.

  16. Perinatal vertical transmission of antibiotic-resistant bacteria: a systematic review and proposed research strategy.

    Science.gov (United States)

    Seale, J; Millar, M

    2014-07-01

    Antibiotic-resistant bacteria contribute to both early- and late-onset sepsis and outbreaks in neonatal intensive care units (NICUs). The extent to which vertical transmission of these resistant bacteria contributes to colonisation or infection of vulnerable infants in NICUs is unclear. Risk factors for vertical transmission of antibiotic-resistant bacteria are not well described. To identify studies describing vertical transmission of antibiotic-resistant bacteria, risk factors for transmission and the impact of colonisation on neonatal outcomes. EMBASE, CINAHL, Cochrane, PubMed, and MEDLINE databases were searched using selected terminology. Titles and abstracts were screened by two reviewers. Selected papers were reviewed in full by two individuals to ascertain whether they fulfilled the inclusion criteria. Any original article investigating perinatal vertical transmission of antibiotic-resistant bacteria between a mother and neonate was included. Data were extracted on study design, organism, antibiotic resistance, and means of ascertaining vertical transmission. Five papers out of 4839 titles fulfilled the inclusion criteria. Four studies were predominantly observational and one was a case report. Each demonstrated perinatal transmission. No study reported risk factors for the transmission of resistant bacteria or the impact of colonisation on neonatal outcomes. There is an absence of research into the perinatal transmission of resistant organisms despite the potential implications of such a situation. We outline objectives that need to be addressed in future research and describe a study design to ascertain the prevalence and risk factors for vertical transmission. © 2014 Royal College of Obstetricians and Gynaecologists.

  17. Biocontrol bacteria selected by a direct plant protection strategy against avocado white root rot show antagonism as a prevalent trait.

    Science.gov (United States)

    González-Sánchez, M Á; Pérez-Jiménez, R M; Pliego, C; Ramos, C; de Vicente, A; Cazorla, F M

    2010-07-01

    This study was undertaken to study bacterial strains obtained directly for their efficient direct control of the avocado white root rot, thus avoiding prescreening by any other possible mechanism of biocontrol which could bias the selection. A collection of 330 bacterial isolates was obtained from the roots and soil of healthy avocado trees. One hundred and forty-three representative bacterial isolates were tested in an avocado/Rosellinia test system, resulting in 22 presumptive protective strains, all of them identified mainly as Pseudomonas and Bacillus species. These 22 candidate strains were screened in a more accurate biocontrol trial, confirming protection of some strains (4 out of the 22). Analyses of the potential bacterial traits involved in the biocontrol activity suggest that different traits could act jointly in the final biocontrol response, but any of these traits were neither sufficient nor generalized for all the active bacteria. All the protective strains selected were antagonistic against some fungal root pathogens. Diverse bacteria with biocontrol activity could be obtained by a direct plant protection strategy of selection. All the biocontrol strains finally selected in this work were antagonistic, showing that antagonism is a prevalent trait in the biocontrol bacteria selected by a direct plant protection strategy. This is the first report on the isolation of biocontrol bacterial strains using direct plant protection strategy in the system avocado/Rosellinia. Characterization of selected biocontrol bacterial strains obtained by a direct plant protection strategy showed that antagonism is a prevalent trait in the selected strains in this experimental system. This suggests that antagonism could be used as useful strategy to select biocontrol strains. © 2009 The Authors. Journal compilation © 2009 The Society for Applied Microbiology.

  18. Resistance in bacteria of the food chain: epidemiology and control strategies

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Wegener, Henrik Caspar; Collignon, P.

    2008-01-01

    Bacteria have evolved multiple mechanisms for the efficient evolution and spread of antimicrobial resistance. Modern food production facilitates the emergence and spread of resistance through the intensive use of antimicrobial agents and international trade of both animals and food products....... The main route of transmission between food animals and humans is via food products, although other modes of transmission, such as direct contact and through the environment, also occur. Resistance can spread as resistant pathogens or via transferable genes in different commensal bacteria, making...... quantification of the transmission difficult. The exposure of humans to antimicrobial resistance from food animals can be controlled by either limiting the selective pressure from antimicrobial usage or by limiting the spread of the bacteria/genes. A number of control options are reviewed, including drug...

  19. Engineering strategies aimed at control of acidification rate of lactic acid bacteria

    DEFF Research Database (Denmark)

    Martinussen, Jan; Solem, Christian; Holm, Anders Koefoed

    2013-01-01

    The ability of lactic acid bacteria to produce lactic acid from various sugars plays an important role in food fermentations. Lactic acid is derived from pyruvate, the end product of glycolysis and thus a fast lactic acid production rate requires a high glycolytic flux. In addition to lactic acid...... fermentation processes, but also for novel applications of lactic acid bacteria, such as cell factories for the production of green fuels and chemicals. With respect to the control and regulation of the fermentation mode, some progress has been made, but the question of which component(s) control the main...

  20. Resistance in bacteria of the food chain: epidemiology and control strategies

    DEFF Research Database (Denmark)

    Cavaco, Lina; Aarestrup, Frank Møller

    2013-01-01

    . The emergence and spread of resistant bacteria in the food chain is a major concern as food-producing animals may constitute a huge reservoir for antimicrobial resistance. Furthermore, food animals and food of animal origin is traded worldwide, which means that the occurrences of antimicrobial resistance...... in the food supply of one country is currently potentially a problem for all countries....

  1. A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes.

    Science.gov (United States)

    Sharma, Virender K; Johnson, Natalie; Cizmas, Leslie; McDonald, Thomas J; Kim, Hyunook

    2016-05-01

    Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in the aquatic environment have become an emerging contaminant issue, which has implications for human and ecological health. This review begins with an introduction to the occurrence of ARB and ARG in different environmental systems such as natural environments and drinking water resources. For example, ARG or ARB with resistance to ciprofloxacin, sulfamethoxazole, trimethoprim, quinolone, vancomycin, or tetracycline (e.g., tet(A), tet(B), tet(C), tet(G), tet(O), tet(M), tet(W), sul I, and sul II) have been detected in the environment. The development of resistance may be intrinsic, may be acquired through spontaneous mutations (de novo), or may occur due to horizontal gene transfer from donor bacteria, phages, or free DNA to recipient bacteria. An overview is also provided of the current knowledge regarding inactivation of ARB and ARG, and the mechanism of the effects of different disinfection processes in water and wastewater (chlorination, UV irradiation, Fenton reaction, ozonation, and photocatalytic oxidation). The effects of constructed wetlands and nanotechnology on ARB and ARG are also summarized. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. A novel beta-defensin structure: a potential strategy of big defensin for overcoming resistance by Gram-positive bacteria.

    Science.gov (United States)

    Kouno, Takahide; Fujitani, Naoki; Mizuguchi, Mineyuki; Osaki, Tsukasa; Nishimura, Shin-ichiro; Kawabata, Shun-ichiro; Aizawa, Tomoyasu; Demura, Makoto; Nitta, Katsutoshi; Kawano, Keiichi

    2008-10-07

    Big defensin is a 79-residue peptide derived from hemocytes of the Japanese horseshoe crab. It has antimicrobial activities against Gram-positive and -negative bacteria. The amino acid sequence of big defensin can be divided into an N-terminal hydrophobic half and a C-terminal cationic half. Interestingly, the trypsin cleaves big defensin into two fragments, the N-terminal and C-terminal fragments, which are responsible for antimicrobial activity against Gram-positive and -negative bacteria, respectively. To explore the antimicrobial mechanism of big defensin, we determined the solution structure of mature big defensin and performed a titration experiment with DPC micelles. Big defensin has a novel defensin structure; the C-terminal domain adopts a beta-defensin structure, and the N-terminal domain forms a unique globular conformation. It is noteworthy that the hydrophobic N-terminal domain undergoes a conformational change in micelle solution, while the C-terminal domain remains unchanged. Here, we propose that the N-terminal domain achieves its antimicrobial activity in a novel fashion and explain that big defensin has developed a strategy different from those of other beta-defensins to suppress the growth of Gram-positive bacteria.

  3. Heavy Metal Resistance Strategies of Acidophilic Bacteria and Their Acquisition: Importance for Biomining and Bioremediation

    Directory of Open Access Journals (Sweden)

    Claudio A Navarro

    2013-01-01

    Full Text Available Microbial solubilizing of metals in acid environments is successfully used in industrial bioleaching of ores or biomining to extract metals such as copper, gold, uranium and others. This is done mainly by acidophilic and other microorganisms that mobilize metals and generate acid mine drainage or AMD, causing serious environmental problems. However, bioremediation or removal of the toxic metals from contaminated soils can be achieved by using the specific properties of the acidophilic microorganisms interacting with these elements. These bacteria resist high levels of metals by using a few "canonical" systems such as active efflux or trapping of the metal ions by metal chaperones. Nonetheless, gene duplications, the presence of genomic islands, the existence of additional mechanisms such as passive instruments for pH and cation homeostasis in acidophiles and an inorganic polyphosphate-driven metal resistance mechanism have also been proposed. Horizontal gene transfer in environmental microorganisms present in natural ecosystems is considered to be an important mechanism in their adaptive evolution. This process is carried out by different mobile genetic elements, including genomic islands (GI, which increase the adaptability and versatility of the microorganism. This mini-review also describes the possible role of GIs in metal resistance of some environmental microorganisms of importance in biomining and bioremediation of metal polluted environments such as Thiomonas arsenitoxydans, a moderate acidophilic microorganism, Acidithiobacillus caldus and Acidithiobacillus ferrooxidans strains ATCC 23270 and ATCC 53993, all extreme acidophiles able to tolerate exceptionally high levels of heavy metals. Some of these bacteria contain variable numbers of GIs, most of which code for high numbers of genes related to metal resistance. In some cases there is an apparent correlation between the number of metal resistance genes and the metal tolerance of each

  4. Multiplicity of Mathematical Modeling Strategies to Search for Molecular and Cellular Insights into Bacteria Lung Infection.

    Science.gov (United States)

    Cantone, Martina; Santos, Guido; Wentker, Pia; Lai, Xin; Vera, Julio

    2017-01-01

    Even today two bacterial lung infections, namely pneumonia and tuberculosis, are among the 10 most frequent causes of death worldwide. These infections still lack effective treatments in many developing countries and in immunocompromised populations like infants, elderly people and transplanted patients. The interaction between bacteria and the host is a complex system of interlinked intercellular and the intracellular processes, enriched in regulatory structures like positive and negative feedback loops. Severe pathological condition can emerge when the immune system of the host fails to neutralize the infection. This failure can result in systemic spreading of pathogens or overwhelming immune response followed by a systemic inflammatory response. Mathematical modeling is a promising tool to dissect the complexity underlying pathogenesis of bacterial lung infection at the molecular, cellular and tissue levels, and also at the interfaces among levels. In this article, we introduce mathematical and computational modeling frameworks that can be used for investigating molecular and cellular mechanisms underlying bacterial lung infection. Then, we compile and discuss published results on the modeling of regulatory pathways and cell populations relevant for lung infection and inflammation. Finally, we discuss how to make use of this multiplicity of modeling approaches to open new avenues in the search of the molecular and cellular mechanisms underlying bacterial infection in the lung.

  5. Engineered biomaterial and biophysical stimulation as combinatorial strategies to address prosthetic infection by pathogenic bacteria.

    Science.gov (United States)

    Boda, Sunil Kumar; Basu, Bikramjit

    2017-10-01

    A plethora of antimicrobial strategies are being developed to address prosthetic infection. The currently available methods for implant infection treatment include the use of antibiotics and revision surgery. Among the bacterial strains, Staphylococcus species pose significant challenges particularly, with regard to hospital acquired infections. In order to combat such life threatening infectious diseases, researchers have developed implantable biomaterials incorporating nanoparticles, antimicrobial reinforcements, surface coatings, slippery/non-adhesive and contact killing surfaces. This review discusses a few of the biomaterial and biophysical antimicrobial strategies, which are in the developmental stage and actively being pursued by several research groups. The clinical efficacy of biophysical stimulation methods such as ultrasound, electric and magnetic field treatments against prosthetic infection depends critically on the stimulation protocol and parameters of the treatment modality. A common thread among the three biophysical stimulation methods is the mechanism of bactericidal action, which is centered on biophysical rupture of bacterial membranes, the generation of reactive oxygen species (ROS) and bacterial membrane depolarization evoked by the interference of essential ion-transport. Although the extent of antimicrobial effect, normally achieved through biophysical stimulation protocol is insufficient to warrant therapeutic application, a combination of antibiotic/ROS inducing agents and biophysical stimulation methods can elicit a clinically relevant reduction in viable bacterial numbers. In this review, we present a detailed account of both the biomaterial and biophysical approaches for achieving maximum bacterial inactivation. Summarizing, the biophysical stimulation methods in a combinatorial manner with material based strategies can be a more potent solution to control bacterial infections. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B

  6. Genome-wide protein localization prediction strategies for gram negative bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Romine, Margaret F.

    2011-06-15

    Genome-wide prediction of protein subcellular localization is an important type of evidence used for inferring protein function. While a variety of computational tools have been developed for this purpose, errors in the gene models and use of protein sorting signals that are not recognized by the more commonly accepted tools can diminish the accuracy of their output. As part of an effort to manually curate the annotations of 19 strains of Shewanella, numerous insights were gained regarding the use of computational tools and proteomics data to predict protein localization. Identification of the suite of secretion systems present in each strain at the start of the process made it possible to tailor-fit the subsequent localization prediction strategies to each strain for improved accuracy. Comparisons of the computational predictions among orthologous proteins revealed inconsistencies in the computational outputs, which could often be resolved by adjusting the gene models or ortholog group memberships. While proteomic data was useful for verifying start site predictions and post-translational proteolytic cleavage, care was needed to distinguish cellular versus sample processing-mediated cleavage events. Searches for lipoprotein signal peptides revealed that neither TatP nor LipoP are designed for identification of lipoprotein substrates of the twin arginine translocation system and that the +2 rule for lipoprotein sorting does not apply to this Genus. Analysis of the relationships between domain occurrence and protein localization prediction enabled identification of numerous location-informative domains which could then be used to refine or increase confidence in location predictions. This collective knowledge was used to develop a general strategy for predicting protein localization that could be adapted to other organisms.

  7. Dual Recognition Strategy for Specific and Sensitive Detection of Bacteria Using Aptamer-Coated Magnetic Beads and Antibiotic-Capped Gold Nanoclusters.

    Science.gov (United States)

    Cheng, Dan; Yu, Mengqun; Fu, Fei; Han, Weiye; Li, Gan; Xie, Jianping; Song, Yang; Swihart, Mark T; Song, Erqun

    2016-01-05

    Food poisoning and infectious diseases caused by pathogenic bacteria such as Staphylococcus aureus (SA) are serious public health concerns. A method of specific, sensitive, and rapid detection of such bacteria is essential and important. This study presents a strategy that combines aptamer and antibiotic-based dual recognition units with magnetic enrichment and fluorescent detection to achieve specific and sensitive quantification of SA in authentic specimens and in the presence of much higher concentrations of other bacteria. Aptamer-coated magnetic beads (Apt-MB) were employed for specific capture of SA. Vancomycin-stabilized fluorescent gold nanoclusters (AuNCs@Van) were prepared by a simple one-step process and used for sensitive quantification of SA in the range of 32-10(8) cfu/mL with the detection limit of 16 cfu/mL via a fluorescence intensity measurement. And using this strategy, about 70 cfu/mL of SA in complex samples (containing 3 × 10(8) cfu/mL of other different contaminated bacteria) could be successfully detected. In comparison to prior studies, the developed strategy here not only simplifies the preparation procedure of the fluorescent probes (AuNCs@Van) to a great extent but also could sensitively quantify SA in the presence of much higher concentrations of other bacteria directly with good accuracy. Moreover, the aptamer and antibiotic used in this strategy are much less expensive and widely available compared to common-used antibodies, making it cost-effective. This general aptamer- and antibiotic-based dual recognition strategy, combined with magnetic enrichment and fluorescent detection of trace bacteria, shows great potential application in monitoring bacterial food contamination and infectious diseases.

  8. Genome-wide protein localization prediction strategies for gram negative bacteria

    Directory of Open Access Journals (Sweden)

    Romine Margaret F

    2011-06-01

    Full Text Available Abstract Background Genome-wide prediction of protein subcellular localization is an important type of evidence used for inferring protein function. While a variety of computational tools have been developed for this purpose, errors in the gene models and use of protein sorting signals that are not recognized by the more commonly accepted tools can diminish the accuracy of their output. Results As part of an effort to manually curate the annotations of 19 strains of Shewanella, numerous insights were gained regarding the use of computational tools and proteomics data to predict protein localization. Identification of the suite of secretion systems present in each strain at the start of the process made it possible to tailor-fit the subsequent localization prediction strategies to each strain for improved accuracy. Comparisons of the computational predictions among orthologous proteins revealed inconsistencies in the computational outputs, which could often be resolved by adjusting the gene models or ortholog group memberships. While proteomic data was useful for verifying start site predictions and post-translational proteolytic cleavage, care was needed to distinguish cellular versus sample processing-mediated cleavage events. Searches for lipoprotein signal peptides revealed that neither TatP nor LipoP are designed for identification of lipoprotein substrates of the twin arginine translocation system and that the +2 rule for lipoprotein sorting does not apply to this Genus. Analysis of the relationships between domain occurrence and protein localization prediction enabled identification of numerous location-informative domains which could then be used to refine or increase confidence in location predictions. This collective knowledge was used to develop a general strategy for predicting protein localization that could be adapted to other organisms. Conclusion Improved localization prediction accuracy is not simply a matter of developing better

  9. Genome-wide protein localization prediction strategies for gram negative bacteria

    Science.gov (United States)

    2011-01-01

    Background Genome-wide prediction of protein subcellular localization is an important type of evidence used for inferring protein function. While a variety of computational tools have been developed for this purpose, errors in the gene models and use of protein sorting signals that are not recognized by the more commonly accepted tools can diminish the accuracy of their output. Results As part of an effort to manually curate the annotations of 19 strains of Shewanella, numerous insights were gained regarding the use of computational tools and proteomics data to predict protein localization. Identification of the suite of secretion systems present in each strain at the start of the process made it possible to tailor-fit the subsequent localization prediction strategies to each strain for improved accuracy. Comparisons of the computational predictions among orthologous proteins revealed inconsistencies in the computational outputs, which could often be resolved by adjusting the gene models or ortholog group memberships. While proteomic data was useful for verifying start site predictions and post-translational proteolytic cleavage, care was needed to distinguish cellular versus sample processing-mediated cleavage events. Searches for lipoprotein signal peptides revealed that neither TatP nor LipoP are designed for identification of lipoprotein substrates of the twin arginine translocation system and that the +2 rule for lipoprotein sorting does not apply to this Genus. Analysis of the relationships between domain occurrence and protein localization prediction enabled identification of numerous location-informative domains which could then be used to refine or increase confidence in location predictions. This collective knowledge was used to develop a general strategy for predicting protein localization that could be adapted to other organisms. Conclusion Improved localization prediction accuracy is not simply a matter of developing better computational algorithms. It

  10. Subcellular localization of extracytoplasmic proteins in monoderm bacteria: rational secretomics-based strategy for genomic and proteomic analyses.

    Directory of Open Access Journals (Sweden)

    Sandra Renier

    Full Text Available Genome-scale prediction of subcellular localization (SCL is not only useful for inferring protein function but also for supporting proteomic data. In line with the secretome concept, a rational and original analytical strategy mimicking the secretion steps that determine ultimate SCL was developed for Gram-positive (monoderm bacteria. Based on the biology of protein secretion, a flowchart and decision trees were designed considering (i membrane targeting, (ii protein secretion systems, (iii membrane retention, and (iv cell-wall retention by domains or post-translocational modifications, as well as (v incorporation to cell-surface supramolecular structures. Using Listeria monocytogenes as a case study, results were compared with known data set from SCL predictors and experimental proteomics. While in good agreement with experimental extracytoplasmic fractions, the secretomics-based method outperforms other genomic analyses, which were simply not intended to be as inclusive. Compared to all other localization predictors, this method does not only supply a static snapshot of protein SCL but also offers the full picture of the secretion process dynamics: (i the protein routing is detailed, (ii the number of distinct SCL and protein categories is comprehensive, (iii the description of protein type and topology is provided, (iv the SCL is unambiguously differentiated from the protein category, and (v the multiple SCL and protein category are fully considered. In that sense, the secretomics-based method is much more than a SCL predictor. Besides a major step forward in genomics and proteomics of protein secretion, the secretomics-based method appears as a strategy of choice to generate in silico hypotheses for experimental testing.

  11. Patterns of bacteria-host associations suggest different ecological strategies between two reef building cold-water coral species

    Science.gov (United States)

    Meistertzheim, Anne.-Leila; Lartaud, Franck; Arnaud-Haond, Sophie; Kalenitchenko, Dimitri; Bessalam, Manon; Le Bris, Nadine; Galand, Pierre E.

    2016-08-01

    Cold-water corals (CWC) are main ecosystem engineers of the deep sea, and their reefs constitute hot-spots of biodiversity. However, their ecology remains poorly understood, particularly, the nature of the holobiont formed by corals with their associated bacterial communities. Here, we analyzed Madrepora oculata and Lophelia pertusa samples, collected from one location in a Mediterranean canyon in two different seasons (autumn and spring), in order to test for species specificity and temporal stability of the host-bacteria associations. The 16S rRNA sequencing revealed host-specific patterns of bacterial communities associated with L. pertusa and M. oculata, both in terms of community composition and diversity. All analyzed M. oculata polyps exhibited temporally and spatially similar bacterial communities dominated by haplotypes homologous to the known cnidarians-associated genus Endozoicomonas. In contrast, the bacterial communities associated with L. pertusa varied among polyps from the same colony, as well as among distinct colonies and between seasons. While the resilient consortium formed by M. oculata and its bacterial community fit the definition of holobiont, the versatility of the L. pertusa microbiome suggests that this association is more influenced by the environmental conditions or nutritional status. Our results thus highlight distinct host/microbes association strategies for these two closely related Scleractinians sharing the same habitat, suggesting distinct sensitivity to environmental change.

  12. Strategies for Pathogen Biocontrol Using Lactic Acid Bacteria and Their Metabolites: A Focus on Meat Ecosystems and Industrial Environments

    Directory of Open Access Journals (Sweden)

    Patricia Castellano

    2017-07-01

    Full Text Available The globalization of trade and lifestyle ensure that the factors responsible for the emergence of diseases are more present than ever. Despite biotechnology advancements, meat-based foods are still under scrutiny because of the presence of pathogens, which causes a loss of consumer confidence and consequently a fall in demand. In this context, Lactic Acid Bacteria (LAB as GRAS organisms offer an alternative for developing pathogen-free foods, particularly avoiding Listeria monocytogenes, with minimal processing and fewer additives while maintaining the foods’ sensorial characteristics. The use of LAB strains, enabling us to produce antimicrobial peptides (bacteriocins in addition to lactic acid, with an impact on quality and safety during fermentation, processing, and/or storage of meat and ready-to-eat (RTE meat products, constitutes a promising tool. A number of bacteriocin-based strategies including the use of bioprotective cultures, purified and/or semi-purified bacteriocins as well as their inclusion in varied packaging materials under different storage conditions, have been investigated. The application of bacteriocins as part of hurdle technology using non-thermal technologies was explored for the preservation of RTE meat products. Likewise, considering that food contamination with L. monocytogenes is a consequence of the post-processing manipulation of RTE foods, the role of bacteriocinogenic LAB in the control of biofilms formed on industrial surfaces is also discussed.

  13. Strategies for Pathogen Biocontrol Using Lactic Acid Bacteria and Their Metabolites: A Focus on Meat Ecosystems and Industrial Environments.

    Science.gov (United States)

    Castellano, Patricia; Pérez Ibarreche, Mariana; Blanco Massani, Mariana; Fontana, Cecilia; Vignolo, Graciela M

    2017-07-11

    The globalization of trade and lifestyle ensure that the factors responsible for the emergence of diseases are more present than ever. Despite biotechnology advancements, meat-based foods are still under scrutiny because of the presence of pathogens, which causes a loss of consumer confidence and consequently a fall in demand. In this context, Lactic Acid Bacteria (LAB) as GRAS organisms offer an alternative for developing pathogen-free foods, particularly avoiding Listeria monocytogenes , with minimal processing and fewer additives while maintaining the foods' sensorial characteristics. The use of LAB strains, enabling us to produce antimicrobial peptides (bacteriocins) in addition to lactic acid, with an impact on quality and safety during fermentation, processing, and/or storage of meat and ready-to-eat (RTE) meat products, constitutes a promising tool. A number of bacteriocin-based strategies including the use of bioprotective cultures, purified and/or semi-purified bacteriocins as well as their inclusion in varied packaging materials under different storage conditions, have been investigated. The application of bacteriocins as part of hurdle technology using non-thermal technologies was explored for the preservation of RTE meat products. Likewise, considering that food contamination with L. monocytogenes is a consequence of the post-processing manipulation of RTE foods, the role of bacteriocinogenic LAB in the control of biofilms formed on industrial surfaces is also discussed.

  14. Strategies to increase the hygienic and economic value of fresh fish: Biopreservation using lactic acid bacteria of marine origin.

    Science.gov (United States)

    Gómez-Sala, Beatriz; Herranz, Carmen; Díaz-Freitas, Belén; Hernández, Pablo E; Sala, Ana; Cintas, Luis M

    2016-04-16

    In this work we describe the development of a biopreservation strategy for fresh fish based on the use of bacteriocinogenic LAB of marine origin. For this purpose, two multibacteriocinogenic LAB strains, Lactobacillus curvatus BCS35 and Enterococcus faecium BNM58, previously isolated from fish and fish products were selected owing to their capability to inhibit the growth of several fish-spoilage and food-borne pathogenic bacteria. Two commercially important fish species were chosen, young hake (Merluccius merluccius) and megrim (Lepidorhombus boscii), and the specimens were acquired at the Marín (Pontevedra, Spain) retail fish market, after one night in the chilled hold of a near-shore fishing vessel. The biopreservation potential and the application strategies of these two LAB strains were first tested at a laboratory scale, where several batches of fresh fish were inoculated with: (i) the multibacteriocinogenic LAB culture(s) as protective culture(s); and/or (ii) their cell-free culture supernatant(s) as food ingredient(s), and (iii) the lyophilized bacteriocin preparation(s) as lyophilized food ingredient(s). All batches were stored in polystyrene boxes, permanently filled with ice at 0-2 °C, for 14 days. Microbiological analyses, as well as sensorial analyses, were carried out during the biopreservation trials. Subsequently, Lb. curvatus BCS35 was selected to up-scale the trials, and combinations of the three application methods were assayed. For this purpose, this strain was grown in a semi-industrial scale fermentor (150l) in modified MRS broth, and three batches of fresh fish were inoculated with the protective culture and/or food ingredient, and stored on ice in a chilled chamber at 0-2 °C at the Marín retail fish market for 14 days. Microbiological analyses were carried out during the storage period, showing that when Lb. curvatus BCS35 culture or the corresponding cell-free culture supernatant was used as protective culture or food ingredient

  15. Improvement on bacteria-induced calcium mineralization ability of Bacillus pseudofirmus by an integrated high-throughput screening strategy

    NARCIS (Netherlands)

    Zhang, J.L.; Deng, X.; Feng, X.; Han, N.X.; Jonkers, H.M.

    2013-01-01

    The CaCO3-mineralizing bacteria from different taxonomic groups have shown potential in restoration of construction material such as concretes, cements and stony materials. However, these strains are far from the demand of practical application due to some shortages, including the low mineralizing

  16. Alternative fluorescent labeling strategies for characterizing gram-positive pathogenic bacteria: Flow cytometry supported counting, sorting, and proteome analysis of Staphylococcus aureus retrieved from infected host cells.

    Science.gov (United States)

    Hildebrandt, Petra; Surmann, Kristin; Salazar, Manuela Gesell; Normann, Nicole; Völker, Uwe; Schmidt, Frank

    2016-10-01

    Staphylococcus aureus is a Gram-positive opportunistic pathogen that is able to cause a broad range of infectious diseases in humans. Furthermore, S. aureus is able to survive inside nonprofessional phagocytic host cell which serve as a niche for the pathogen to hide from the immune system and antibiotics therapies. Modern OMICs technologies provide valuable tools to investigate host-pathogen interactions upon internalization. However, these experiments are often hampered by limited capabilities to retrieve bacteria from such an experimental setting. Thus, the aim of this study was to develop a labeling strategy allowing fast detection and quantitation of S. aureus in cell lysates or infected cell lines by flow cytometry for subsequent proteome analyses. Therefore, S. aureus cells were labeled with the DNA stain SYTO ® 9, or Vancomycin BODIPY ® FL (VMB), a glycopeptide antibiotic binding to most Gram-positive bacteria which was conjugated to a fluorescent dye. Staining of S. aureus HG001 with SYTO 9 allowed counting of bacteria from pure cultures but not in cell lysates from infection experiments. In contrast, with VMB it was feasible to stain bacteria from pure cultures as well as from samples of infection experiments. VMB can also be applied for histocytochemistry analysis of formaldehyde fixed cell layers grown on coverslips. Proteome analyses of S. aureus labeled with VMB revealed that the labeling procedure provoked only minor changes on proteome level and allowed cell sorting and analysis of S. aureus from infection settings with sensitivity similar to continuous gfp expression. Furthermore, VMB labeling allowed precise counting of internalized bacteria and can be employed for downstream analyses, e.g., proteomics, of strains not easily amendable to genetic manipulation such as clinical isolates. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.

  17. Elaboration of highly hydrophobic polymeric surface — a potential strategy to reduce the adhesion of pathogenic bacteria?

    Energy Technology Data Exchange (ETDEWEB)

    Poncin-Epaillard, F., E-mail: fabienne.poncin-epaillard@univ-lemans.fr [Institut des Molécules et Matériaux du Mans (IMMM), département Polymères, Colloïdes et Interfaces, UMR CNRS 6283 Université LUNAM, av. O. Messiaen, 72085 Le Mans (France); Herry, J.M. [INRA-AgroParisTech, UMR 1319 MICALIS, équipe B2HM, 25 avenue de la République, 91300 Massy (France); Marmey, P.; Legeay, G. [CTTM, 20 rue Thalès de Milet 72000 Le Mans (France); Debarnot, D. [Institut des Molécules et Matériaux du Mans (IMMM), département Polymères, Colloïdes et Interfaces, UMR CNRS 6283 Université LUNAM, av. O. Messiaen, 72085 Le Mans (France); Bellon-Fontaine, M.N. [INRA-AgroParisTech, UMR 1319 MICALIS, équipe B2HM, 25 avenue de la République, 91300 Massy (France)

    2013-04-01

    Different polymeric surfaces have been modified in order to reach a high hydrophobic character, indeed the superhydrophobicity property. For this purpose, polypropylene and polystyrene have been treated by RF or μwaves CF{sub 4} plasma with different volumes, the results were compared according to the density of injected power. The effect of pretreatment such as mechanical abrasion or plasma activation was also studied. The modified surfaces were shown as hydrophobic, or even superhydrophobic depending of defects density. They were characterized by measurement of wettability and roughness at different scales, i.e. macroscopic, mesoscopic and atomic. It has been shown that a homogeneous surface at the macroscopic scale could be heterogeneous at lower mesoscopic scale. This was associated with the crystallinity of the material. The bioadhesion tests were performed with Gram positive and negative pathogenic strains: Listeria monocytogenes, Pseudomonas aeruginosa and Hafnia alvei. They have demonstrated an antibacterial efficiency of very hydrophobic and amorphous PS treated for all strains tested and a strain-dependent efficiency with modified PP surface being very heterogeneous at the mesoscopic scale. Thus, these biological results pointed out not only the respective role of the surface chemistry and topography in bacterial adhesion, but also the dependence on the peaks and valley distribution at bacteria dimension scale. Highlights: ► Simple, eco-friendly modification of polymers leading to highly hydrophobic property ► Plasma treatment inducing surface fluorination and roughness ► Study of non-adhesion of different types of bacteria onto such polymeric surfaces ► Dependence of their non-adhesion on surface topography whatever their characteristics.

  18. Design, characterization and applications of new ionic liquid matrices for multifunctional analysis of biomolecules: A novel strategy for pathogenic bacteria biosensing

    International Nuclear Information System (INIS)

    Abdelhamid, Hani Nasser; Khan, M Shahnawaz; Wu, Hui-Fen

    2014-01-01

    Highlights: • Design and characterize novel UV absorbed-ionic liquid matrices series. • Apply the new series for different analytes. • Introduce a novel methodology for pathogenic bacteria biosensing. • Tabulate the physical parameters of the new series. - Abstract: The design, preparation and performance for novel UV-light absorbing (room-temperature) ionic liquid matrices (UV-RTILMs) for matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) were reported. A series of UV-RTILMs was prepared by ultrasonication of equimolar of acid (mefenamic acid) and bases (aniline (ANI), pyridine (Pyr), dimethyl aniline (DMANI) and 2-methyl picoline (2-P)). The UV-RTILMs have not only significant absorbance at the desired wavelength (337 nm of the N 2 Laser), but also have available protons that can easily undergo proton transfer reactions to ionize the target molecules. The novel UV-RTILMs have the ability to ionize different and wide classes of compounds such as drugs, carbohydrate, and amino acids. The new UV-RTILMs series have been successfully and selectively applied for biosensing the lysates of pathogenic bacteria in the presence of the cell macromolecules. A new strategy for biosensing pathogens was presented via sensing the pathogens lysate in the cell suspension. The new materials can effectively detect the bacterial toxins without separation or any pretreatment. They offered excellent ionization of labile oligosaccharides with protonated peaks. They could significantly enhance the analyte signals, produce homogeneous spotting, reducing spot-to-spot variation, excellent vacuum stability, higher ion peak intensity, and wide application possibility. The physical parameters such as molar refractivity, molar volume, parachor, surface tension, density and polarizability were calculated and tabulated. The new UV-RTILMs could offer excellent reproducibility and great repeatability and they are promising matrices for wide applications on MALDI-MS

  19. Design, characterization and applications of new ionic liquid matrices for multifunctional analysis of biomolecules: A novel strategy for pathogenic bacteria biosensing

    Energy Technology Data Exchange (ETDEWEB)

    Abdelhamid, Hani Nasser [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan (China); Department of Chemistry, Assuit University, Assuit, 71515 (Egypt); Khan, M Shahnawaz [Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan (China); Wu, Hui-Fen, E-mail: hwu@faculty.nsysu.edu.tw [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan (China); School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 800, Taiwan (China); Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan (China); Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan (China); Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan (China)

    2014-05-01

    Highlights: • Design and characterize novel UV absorbed-ionic liquid matrices series. • Apply the new series for different analytes. • Introduce a novel methodology for pathogenic bacteria biosensing. • Tabulate the physical parameters of the new series. - Abstract: The design, preparation and performance for novel UV-light absorbing (room-temperature) ionic liquid matrices (UV-RTILMs) for matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) were reported. A series of UV-RTILMs was prepared by ultrasonication of equimolar of acid (mefenamic acid) and bases (aniline (ANI), pyridine (Pyr), dimethyl aniline (DMANI) and 2-methyl picoline (2-P)). The UV-RTILMs have not only significant absorbance at the desired wavelength (337 nm of the N{sub 2} Laser), but also have available protons that can easily undergo proton transfer reactions to ionize the target molecules. The novel UV-RTILMs have the ability to ionize different and wide classes of compounds such as drugs, carbohydrate, and amino acids. The new UV-RTILMs series have been successfully and selectively applied for biosensing the lysates of pathogenic bacteria in the presence of the cell macromolecules. A new strategy for biosensing pathogens was presented via sensing the pathogens lysate in the cell suspension. The new materials can effectively detect the bacterial toxins without separation or any pretreatment. They offered excellent ionization of labile oligosaccharides with protonated peaks. They could significantly enhance the analyte signals, produce homogeneous spotting, reducing spot-to-spot variation, excellent vacuum stability, higher ion peak intensity, and wide application possibility. The physical parameters such as molar refractivity, molar volume, parachor, surface tension, density and polarizability were calculated and tabulated. The new UV-RTILMs could offer excellent reproducibility and great repeatability and they are promising matrices for wide applications on MALDI-MS.

  20. Use of a mixed culture strategy to isolate halophilic bacteria with antibacterial and cytotoxic activity from the Manaure solar saltern in Colombia.

    Science.gov (United States)

    Conde-Martínez, Natalia; Acosta-González, Alejandro; Díaz, Luis E; Tello, Edisson

    2017-12-08

    Water evaporation in solar salterns creates salinity gradients that promote the adaptation of microbial species to different salinities. This competitive habitat challenges the metabolic capabilities of microorganisms and promotes alterations in their production of secondary metabolites. Thus, solar salterns are a potentially important source of new natural products. In Colombia, the most important and representative solar saltern is located in Manaure (La Guajira) in the north of Colombia. The aim of this study was to develop an alternative screening strategy to select halophilic bacteria as producers of bioactive compounds from mixed microbial cultures rather than individual environmental isolates. Brine and sediment samples from different ponds (across a salinity gradient) were inoculated in seven different culture media to grow bacteria and archaea, allowing for a total of 40 different mixed cultures. An organic extract from each mixed culture was obtained and tested against multidrug resistant pathogens, including Klebsiella pneumoniae, vancomycin-resistant Enterococcus faecium, methicillin-resistant Staphylococcus aureus and Bacillus subtilis. In addition, the extracts were tested against two human cancer cell lines, cervical adenocarcinoma (SiHa) and lung carcinoma (A-549). Twenty-four of the forty extracts from mixed cultures obtained from brine and sediment samples from the Manaure solar saltern showed antibacterial activity against Bacillus subtilis. Two extracts, referred to as A1SM3-29 and A1SM3-36, were also active against a methicillin-resistant Staphylococcus aureus, with the latter extract also showing slight cytotoxic activity against the assayed human lung cancer cell line. From this mixed culture, nine isolates were cultivated, and their extracts were tested against the same pathogens, resulting in the identification of a Vibrio sp. strain (A1SM3-36-8) with antimicrobial activity that was similar to that observed for the mixed culture extract

  1. Antibiotics from predatory bacteria

    Directory of Open Access Journals (Sweden)

    Juliane Korp

    2016-03-01

    Full Text Available Bacteria, which prey on other microorganisms, are commonly found in the environment. While some of these organisms act as solitary hunters, others band together in large consortia before they attack their prey. Anecdotal reports suggest that bacteria practicing such a wolfpack strategy utilize antibiotics as predatory weapons. Consistent with this hypothesis, genome sequencing revealed that these micropredators possess impressive capacities for natural product biosynthesis. Here, we will present the results from recent chemical investigations of this bacterial group, compare the biosynthetic potential with that of non-predatory bacteria and discuss the link between predation and secondary metabolism.

  2. Magnetic Bacteria.

    Science.gov (United States)

    Nelson, Jane Bray; Nelson, Jim

    1992-01-01

    Describes the history of Richard Blakemore's discovery of magnetotaxic organisms. Discusses possible reasons why the magnetic response in bacteria developed. Proposes research experiments integrating biology and physics in which students investigate problems using cultures of magnetotaxic organisms. (MDH)

  3. Big bacteria

    DEFF Research Database (Denmark)

    Schulz, HN; Jørgensen, BB

    2001-01-01

    A small number of prokaryotic species have a unique physiology or ecology related to their development of unusually large size. The biomass of bacteria varies over more than 10 orders of magnitude, from the 0.2 mum wide nanobacteria to the largest cells of the colorless sulfur bacteria......, Thiomargarita namibiensis, with a diameter of 750 mum. All bacteria, including those that swim around in the environment, obtain their food molecules by molecular diffusion. Only the fastest and largest swimmers known, Thiovulum majus, are able to significantly increase their food supply by motility...... and by actively creating an advective flow through the entire population. Diffusion limitation generally restricts the maximal size of prokaryotic cells and provides a selective advantage for mum-sized cells at the normally low substrate concentrations in the environment. The largest heterotrophic bacteria...

  4. Big bacteria

    DEFF Research Database (Denmark)

    Schulz, HN; Jørgensen, BB

    2001-01-01

    A small number of prokaryotic species have a unique physiology or ecology related to their development of unusually large size. The biomass of bacteria varies over more than 10 orders of magnitude, from the 0.2 mum wide nanobacteria to the largest cells of the colorless sulfur bacteria...... and by actively creating an advective flow through the entire population. Diffusion limitation generally restricts the maximal size of prokaryotic cells and provides a selective advantage for mum-sized cells at the normally low substrate concentrations in the environment. The largest heterotrophic bacteria......, the 80 x 600 mum large Epulopiscium sp. from the gut of tropical fish, are presumably living in a very nutrient-rich medium. Many large bacteria contain numerous inclusions in the cells that reduce the volume of active cytoplasm. The most striking examples of competitive advantage from large cell size...

  5. The fecal bacteria

    Science.gov (United States)

    Sadowsky, Michael J.; Whitman, Richard L.

    2011-01-01

    The Fecal Bacteria offers a balanced, integrated discussion of fecal bacteria and their presence and ecology in the intestinal tract of mammals, in the environment, and in the food supply. This volume covers their use in examining and assessing water quality in order to offer protection from illnesses related to swimming in or ingesting contaminated water, in addition to discussing their use in engineering considerations of water quality, modeling, monitoring, and regulations. Fecal bacteria are additionally used as indicators of contamination of ready-to-eat foods and fresh produce. The intestinal environment, the microbial community structure of the gut microbiota, and the physiology and genomics of this broad group of microorganisms are explored in the book. With contributions from an internationally recognized group of experts, the book integrates medicine, public health, environmental, and microbiological topics in order to provide a unique, holistic understanding of fecal bacteria. Moreover, it shows how the latest basic science and applied research findings are helping to solve problems and develop effective management strategies. For example, readers will discover how the latest tools and molecular approaches have led to our current understanding of fecal bacteria and enabled us to improve human health and water quality. The Fecal Bacteria is recommended for microbiologists, clinicians, animal scientists, engineers, environmental scientists, food safety experts, water quality managers, and students. It will help them better understand fecal bacteria and use their knowledge to protect human and environmental health. They can also apply many of the techniques and molecular tools discussed in this book to the study of a broad range of microorganisms in a variety of habitats.

  6. An Effective and Practical Strategy for Biocontrol of Plant Diseases Using On-Site Mass Cultivation of Chitin-Degrading Bacteria

    Directory of Open Access Journals (Sweden)

    Young-Cheol Kim

    2017-03-01

    Full Text Available Recent worldwide demand for organic and sustainable agriculture products is driving the development of formulations of biopesticides effective in the field. Biopesticides have the benefit of environmentally-friendly qualities. However, biocontrol approaches largely have been ineffective in controlling plant pests in field conditions. Previously, we developed a cost-effective biocontrol formulation containing chitin and chitinase-producing biocontrol bacteria with field efficacy. This formulated product has successfully suppressed various plant diseases in the field conditions. In this review, we focus on ecological aspects and the potential mechanisms underpinning the success of chitinase-producing bacteria. In addition, we discuss the possibility on-site cultivation of the formulated products to further strengthen the approach as being farmer friendly and successful.

  7. Considering the Specific Impact of Harsh Conditions and Oil Weathering on Diversity, Adaptation, and Activity of Hydrocarbon-Degrading Bacteria in Strategies of Bioremediation of Harsh Oily-Polluted Soils

    Science.gov (United States)

    Al Disi, Zulfa; Jaoua, Samir; Al-Thani, Dhabia; Al-Meer, Saeed

    2017-01-01

    Weathering processes change properties and composition of spilled oil, representing the main reason of failure of bioaugmentation strategies. Our purpose was to investigate the metabolic adaptation of hydrocarbon-degrading bacteria at harsh conditions to be considered to overcome the limitations of bioaugmentation strategies at harsh conditions. Polluted soils, exposed for prolonged periods to weathered oil in harsh soils and weather conditions, were used. Two types of enrichment cultures were employed using 5% and 10% oil or diesel as sole carbon sources with varying the mineral nitrogen sources and C/N ratios. The most effective isolates were obtained based on growth, tolerance to toxicity, and removal efficiency of diesel hydrocarbons. Activities of the newly isolated bacteria, in relation to the microenvironment from where they were isoalted and their interaction with the weathered oil, showed individual specific ability to adapt when exposed to such factors, to acquire metabolic potentialities. Among 39 isolates, ten identified ones by 16S rDNA genes similarities, including special two Pseudomonas isolates and one Citrobacter isolate, showed particularity of shifting hydrocarbon-degrading ability from short chain n-alkanes (n-C12–n-C16) to longer chain n-alkanes (n-C21–n-C25) and vice versa by alternating nitrogen source compositions and C/N ratios. This is shown for the first time. PMID:28243605

  8. The combination of functional metagenomics and an oil-fed enrichment strategy revealed the phylogenetic diversity of lipolytic bacteria overlooked by the cultivation-based method.

    Science.gov (United States)

    Narihiro, Takashi; Suzuki, Aya; Yoshimune, Kazuaki; Hori, Tomoyuki; Hoshino, Tamotsu; Yumoto, Isao; Yokota, Atsushi; Kimura, Nobutada; Kamagata, Yoichi

    2014-01-01

    Metagenomic screening and conventional cultivation have been used to exploit microbial lipolytic enzymes in nature. We used an indigenous forest soil (NS) and oil-fed enriched soil (OS) as microbial and genetic resources. Thirty-four strains (17 each) of lipolytic bacteria were isolated from the NS and OS microcosms. These isolates were classified into the (sub)phyla Betaproteobacteria, Gammaproteobacteria, Firmicutes, and Actinobacteria, all of which are known to be the main microbial resources of commercially available lipolytic enzymes. Seven and 39 lipolytic enzymes were successfully retrieved from the metagenomic libraries of the NS and OS microcosms, respectively. The screening efficiency (a ratio of positive lipolytic clones to the total number of environmental clones) was markedly higher in the OS microcosm than in the NS microcosm. Moreover, metagenomic clones encoding the lipolytic enzymes associated with Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Armatimonadetes, and Planctomycetes and hitherto-uncultivated microbes were recovered from these libraries. The results of the present study indicate that functional metagenomics can be effectively used to capture as yet undiscovered lipolytic enzymes that have eluded the cultivation-based method, and these combined approaches may be able to provide an overview of lipolytic organisms potentially present in nature.

  9. An original deal for new molecule: reversal of efflux pump activity, a rational strategy to combat gram-negative resistant bacteria.

    Science.gov (United States)

    Pagès, J-M; Amaral, L; Fanning, S

    2011-01-01

    The worldwide dissemination of «multi-drug resistant» (MDR) pathogens has severely reduced the efficacy of our antibiotic arsenal and increased the frequency of therapeutic failure. MDR bacteria over-express efflux pumps and this active mechanism can extrude all classes of antibiotics from the cell. It is necessary to clearly decipher the genetic, structural and functional aspects of this transport system in order to combat this polyselective mechanism. By understanding how efflux pumps work we may be able to develop a new group of antibacterial agents, collectively termed efflux reversals, including membrane permeabilisers, efflux pump inhibitors and flux-competitive agents, specific blockers, energy poisons, etc. Several chemical families of efflux pump inhibitors have been described and characterized. Among them several inhibitor compounds demonstrate efficient blocking of the efflux pump activity involved in the MDR phenotype as observed in many Gram-negative clinical isolates. This new family of molecules represents the first antibacterial class of compound specifically targeting active transport in the bacterial cell.

  10. Inoculating Helianthus annuus (sunflower) grown in zinc and cadmium contaminated soils with plant growth promoting bacteria--effects on phytoremediation strategies.

    Science.gov (United States)

    Marques, Ana P G C; Moreira, Helena; Franco, Albina R; Rangel, António O S S; Castro, Paula M L

    2013-06-01

    Plant growth promoting bacteria (PGPR) may help reducing the toxicity of heavy metals to plants in polluted environments. In this work the effects of inoculating metal resistant and plant growth promoting bacterial strains on the growth of Helianthus annuus grown in Zn and Cd spiked soils were assessed. The PGPR strains Ralstonia eutropha (B1) and Chrysiobacterium humi (B2) reduced losses of weight in metal exposed plants and induced changes in metal bioaccumulation and bioconcentration - with strain B2 decreasing up to 67% Zn accumulation and by 20% Zn bioconcentration factor (BCF) in the shoots, up to 64% Zn uptake and 38% Zn BCF in the roots, and up to 27% Cd uptake and 27% Cd BCF in plant roots. The impact of inoculation on the bacterial communities in the rhizosphere of the plant was also assessed. Bacterial community diversity decreased with increasing levels of metal contamination in the soil, but in rhizosphere soil of plants inoculated with the PGPR strains, a higher bacterial diversity was kept throughout the experimental period. Inoculation of sunflower, particularly with C. humi (B2), appears to be an effective way of enhancing the short term stabilization potential of the plant in metal contaminated land, lowering losses in plant biomass and decreasing aboveground tissue contamination. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Strategies for the empirical management of infection in cancer patients with emphasis on the emergence of resistant gram-negative bacteria.

    Science.gov (United States)

    Klastersky, Jean; Georgala, Aspasia

    2014-12-01

    Combinations of antibiotics (namely penicillins and aminoglycosides) have been advocated in the 1970s for the empirical therapy of FN in cancer patients in order to take advantage of the possible synergism between these agents and to extend the potential antimicrobial spectrum of empirical therapy. Later, with the development of potent broad spectrum antibiotics, the need for combinations became less obvious as monotherapy with these new agents appeared as effective and less toxic than previously used combinations. However, today we are facing a major challenge through the emergence of multi-resistant microrganisms. With such bacteria, we might be coming back to the pre-antibiotic era when no active agents were available. This situation is due, in part, by the excessive use of antibiotics, namely as a prophylaxis for infection, and is complicated by the fact that very few new effective antibiotics are being developed by the pharmaceutical industry. Under these circumstances, it is likely that we will have to resort to "old timers" such as the polymyxins. It is also possible that combination therapy will come back in favor to take advantage of the synergism and extend the spectrum of coverage, just as it has been the case for the management of resistant tuberculosis. At the same time, the development of multidisciplinary antimicrobial stewardship is mandatory for efficient infection control and minimizing emergence of antimicrobial resistance. Copyright © 2014. Published by Elsevier Ireland Ltd.

  12. Biofilms: Community Behavior by Bacteria

    Indian Academy of Sciences (India)

    IAS Admin

    ment of Microbiology and. Cell Biology, Indian. Institute of Science. Her laboratory is interested in host–pathogen interaction and understanding the survival strategies of pathogens. Biofilm is a lifestyle exhibited by bacteria. This is an intricate process that involves cell–cell communication which leads to the regulation of ...

  13. Phenotypic switching in bacteria

    Science.gov (United States)

    Merrin, Jack

    Living matter is a non-equilibrium system in which many components work in parallel to perpetuate themselves through a fluctuating environment. Physiological states or functionalities revealed by a particular environment are called phenotypes. Transitions between phenotypes may occur either spontaneously or via interaction with the environment. Even in the same environment, genetically identical bacteria can exhibit different phenotypes of a continuous or discrete nature. In this thesis, we pursued three lines of investigation into discrete phenotypic heterogeneity in bacterial populations: the quantitative characterization of the so-called bacterial persistence, a theoretical model of phenotypic switching based on those measurements, and the design of artificial genetic networks which implement this model. Persistence is the phenotype of a subpopulation of bacteria with a reduced sensitivity to antibiotics. We developed a microfluidic apparatus, which allowed us to monitor the growth rates of individual cells while applying repeated cycles of antibiotic treatments. We were able to identify distinct phenotypes (normal and persistent) and characterize the stochastic transitions between them. We also found that phenotypic heterogeneity was present prior to any environmental cue such as antibiotic exposure. Motivated by the experiments with persisters, we formulated a theoretical model describing the dynamic behavior of several discrete phenotypes in a periodically varying environment. This theoretical framework allowed us to quantitatively predict the fitness of dynamic populations and to compare survival strategies according to environmental time-symmetries. These calculations suggested that persistence is a strategy used by bacterial populations to adapt to fluctuating environments. Knowledge of the phenotypic transition rates for persistence may provide statistical information about the typical environments of bacteria. We also describe a design of artificial

  14. Strategy; Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2005-07-15

    Francois Loos, Minister of Industry, explains the French energy policy in the frame of Europe. ONERC is a French public body in charge of defining a national strategy against climate changes. It submits its first strategic elements to the Government. (authors)

  15. Isolating bacteria from sponges: Why and How?

    Science.gov (United States)

    Laport, Marinella Silva

    2018-03-28

    It is known that sponge-associated bacteria are an attractive source of new bioactive substances with biotechnological potential. These include antimicrobials, enzymes and surfactants. However, the potential of these microorganisms remains little investigated due to the difficulty of isolating new bacterial groups that produce original bioactive metabolites and enzymes. Cultivation methods are still playing crucial functions in many studies involving bacteria isolated from sponges, and in the traditional approach for biodiscovery by screening culture collections. For instance, culture media which are rich in nutrients favor the fast cultivation in comparison with slower growing bacteria, and diluted and/or poor culture media increase the possibility of growing previously uncultured bacteria. The ability to grow bacteria in culture and to characterize their secondary metabolites are a crucial approach to new biotechnology products of potential value. Many microbial biotechnology compounds used nowadays were extracted from cultured bacteria. This review presents and discusses some strategies to isolate and culture bacteria from sponges for biotechnological exploration. Finally, whole genome sequencing of sponge-associated bacteria is proposed as a novel strategy for biodiscovery. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Copper resistance determinants in bacteria.

    Science.gov (United States)

    Brown, N L; Rouch, D A; Lee, B T

    1992-01-01

    Copper is an essential trace element that is utilized in a number of oxygenases and electron transport proteins, but it is also a highly toxic heavy metal, against which all organisms must protect themselves. Known bacterial determinants of copper resistance are plasmid-encoded. The mechanisms which confer resistance must be integrated with the normal metabolism of copper. Different bacteria have adopted diverse strategies for copper resistance, and this review outlines what is known about bacterial copper resistance mechanisms and their genetic regulation.

  17. Optimal strategy for competence differentiation in bacteria.

    Directory of Open Access Journals (Sweden)

    C Scott Wylie

    2010-09-01

    Full Text Available A phylogenetically diverse subset of bacterial species are naturally competent for transformation by DNA. Transformation entails recombination of genes between different lineages, representing a form of bacterial sex that increases standing genetic variation. We first assess whether homologous recombination by transformation is favored by evolution. Using stochastic population genetic computer simulations in which beneficial and deleterious mutations occur at many loci throughout the whole genome, we find that transformation can increase both the rate of adaptive evolution and the equilibrium level of fitness. Secondly, motivated by experimental observations of Bacillus subtilis, we assume that competence additionally entails a weak persister phenotype, i.e., the rates of birth and death are reduced for these cells. Consequently, persisters evolve more slowly than non-persisters. We show via simulation that strains which stochastically switch into and out of the competent phenotype are evolutionarily favored over strains that express only a single phenotype. Our model's simplicity enables us to derive and numerically solve a system of finite- deterministic equations that describe the evolutionary dynamics. The observed tradeoff between the benefit of recombination and the cost of persistence may explain the previously mysterious observation that only a fractional subpopulation of B. subtilis cells express competence. More generally, this work demonstrates that population genetic forces can give rise to phenotypic diversity even in an unchanging and homogeneous environment.

  18. Bleach vs. Bacteria

    Science.gov (United States)

    ... Articles | Inside Life Science Home Page Bleach vs. Bacteria By Sharon Reynolds Posted April 2, 2014 Your ... hypochlorous acid to help kill invading microbes, including bacteria. Researchers funded by the National Institutes of Health ...

  19. Genomics of Probiotic Bacteria

    Science.gov (United States)

    O'Flaherty, Sarah; Goh, Yong Jun; Klaenhammer, Todd R.

    Probiotic bacteria from the Lactobacillus and Bifidobacterium species belong to the Firmicutes and the Actinobacteria phylum, respectively. Lactobacilli are members of the lactic acid bacteria (LAB) group, a broadly defined family of microorganisms that ferment various hexoses into primarily lactic acid. Lactobacilli are typically low G + C gram-positive species which are phylogenetically diverse, with over 100 species documented to date. Bifidobacteria are heterofermentative, high G + C content bacteria with about 30 species of bifidobacteria described to date.

  20. [Unique properties of highly radioresistant bacteria].

    Science.gov (United States)

    Romanovskaia, V A; Rokitko, P V; Malashenko, Iu R

    2000-01-01

    In connection with the Chernobyl Nuclear Power Plant (ChNPP) accident and the negative ecological after-effects for biota in this zone the interest has arisen to radioresistant bacteria, as to the most dynamic model of the given ecosystem, and to mechanisms which provide resistance of bacteria to ionizing radiation. The analysis of published data has shown that the radioresistant bacteria are not interrelated taxonomically and phylogenetically. The extreme radioresistant bacteria are represented by the Deinococcus species, which form a group phylogenetically close to the line Thermus-Meiothermus. Other radioresistant bacteria are the representatives of the genera Rubrobacter, Methylobacterium, Kocuria, Bacillus and some archebacteria. Data on natural habitats, of radioresistant bacteria are not numerous. In a number of cases it is difficult to distinguish their natural habitats, as they were isolated from the samples which were previously exposed to X-ray or gamma-irradiation, or from the ecosystems with the naturally raised radioactivity. To understand the strategy of survival of radioresistant bacteria, we briefly reviewed the mechanism of action of various species of radiation on cells and macromolecules; physiological signs of the cell damage caused by radiation; mechanisms eliminating (repairing) these damages. More details on mechanisms of the DNA repair in D. radiodurans are described. The extreme resistance of D. radiodurans to the DNA damaging factors is defined by 1) repair mechanisms which fundamentally differ from those in other procaryotes; 2) ability to increase the efficiency of a standard set of the DNA repairing proteins. Literary and own data on the effect of radiation on survival of various groups of bacteria in natural ecosystems are summarized. The ecological consequences of the ChNPP accident for soil bacteria in this region were estimated. The reduction of the number of soil bacteria and recession of microbial diversity under the effect of

  1. How honey kills bacteria

    NARCIS (Netherlands)

    Kwakman, Paulus H. S.; te Velde, Anje A.; de Boer, Leonie; Speijer, Dave; Vandenbroucke-Grauls, Christina M. J. E.; Zaat, Sebastian A. J.

    2010-01-01

    With the rise in prevalence of antibiotic-resistant bacteria, honey is increasingly valued for its antibacterial activity. To characterize all bactericidal factors in a medical-grade honey, we used a novel approach of successive neutralization of individual honey bactericidal factors. All bacteria

  2. Mathematical studies on nosocomial spread of antibiotic-resistant bacteria

    NARCIS (Netherlands)

    Gurieva, T.V.

    2017-01-01

    Infections with antibiotic-resistant bacteria are a worldwide problem in hospitals and their rates remain high in many countries despite efforts to reduce the rates. Infection prevention is complicated by asymptomatic carriers. Using mathematical modelling, different intervention strategies were

  3. Hydrogen production by nonphotosynthetic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Huang, S.D.; Secor, C.K.; Zweig, R.M.; Ascione, R.

    1984-01-01

    H-producing nonphotosynthetic bacteria are identified and H from sewage treatment plants, H from rumen bacteria, and large-scale production of H through the genetic manipulation of H-producing nonphotosynthetic bacteria are discussed. (Refs. 36).

  4. [Darwin and bacteria].

    Science.gov (United States)

    Ledermann D, Walter

    2009-02-01

    As in 2009 the scientific world celebrates two hundreds years from the birthday of Charles Darwin and one hundred and fifty from the publication of The Origin of Species, an analysis of his complete work is performed, looking for any mention of bacteria. But it seems that the great naturahst never took knowledge about its existence, something rather improbable in a time when the discovery of bacteria shook the medical world, or he deliberately ignored them, not finding a place for such microscopic beings into his theory of evolution. But the bacteria badly affected his familiar life, killing scarlet fever one of his children and worsening to death the evolution of tuberculosis of his favourite Annie. Darwin himself could suffer the sickness of Chagas, whose etiological agent has a similar level to bacteria in the scale of evolution.

  5. Extracellular communication in bacteria

    DEFF Research Database (Denmark)

    Chhabra, S.R.; Philipp, B.; Eberl, L.

    2005-01-01

    molecules, in different Gram-positive and Gram-negative bacteria they control pathogenicity, secondary metabolite production, biofilm differentiation, DNA transfer and bioluminescence. The development of biosensors for the detection of these signal molecules has greatly facilitated their subsequent chemical...

  6. Mycorrhiza helper bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Deveau, Aurelie [French National Insitute for Agricultural Research (INRA); Labbe, Jessy [ORNL

    2016-10-01

    This chapter focuses on the Mycorrhiza Helper Bacteria (MHB), a generic name given to bacteria which stimulate the formation of mycorrhizal symbiosis. By extension, some bacterial strains that positively impact the functioning of mycorrhizal symbiosis are also called MHB. These bacteria have applicative interests, as they indirectly improve the health and growth of tree seedlings. MHB are not restricted to a specific type of ecosystem, but are rather generalist in the way that they associate with both herbaceous and woody mycorrhizal plants from boreal, temperate, arid and tropical ecosystems. However, understanding the molecular mechanisms and their specificities will help us to know more about the ecology of the MHB. The process of acquisition varies between fungal species; while ectomycorrhizal fungi most probably recurrently acquire them from the environment, the association between bacterial endosymbionts and Glomeromycota probably dates back to very ancient times, and has since been vertically transmitted.

  7. High efficiency recombineering in lactic acid bacteria

    OpenAIRE

    van Pijkeren, Jan-Peter; Britton, Robert A.

    2012-01-01

    The ability to efficiently generate targeted point mutations in the chromosome without the need for antibiotics, or other means of selection, is a powerful strategy for genome engineering. Although oligonucleotide-mediated recombineering (ssDNA recombineering) has been utilized in Escherichia coli for over a decade, the successful adaptation of ssDNA recombineering to Gram-positive bacteria has not been reported. Here we describe the development and application of ssDNA recombineering in lact...

  8. Antifreeze Proteins of Bacteria

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 12. Antifreeze Proteins of Bacteria. M K Chattopadhyay. General Article Volume 12 Issue 12 December 2007 pp 25-30. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/012/12/0025-0030 ...

  9. (PHB)-producing bacteria

    African Journals Online (AJOL)

    Jane

    2011-06-06

    Jun 6, 2011 ... Bioplastics are naturally occurring biodegradable polymers made from polyhydroxyalkanoates (PHA) of which poly 3-hydroxy butyric acid ... The plastic polymers accumulate intracellularly as light- refracting amorphous ... study focuses on the isolation and identification of novel species of bacteria capable ...

  10. Do Bacteria Age?

    Indian Academy of Sciences (India)

    Bacteria are thought to be examples of organisms that do not age. ... sues, organs, organ systems, organism, population, species, and .... Humans inevitably grow old through aging. All vertebrates show physical manifestations of aging somewhat similar to humans (other than white hair!). Aging is also seen in plants.

  11. Antifreeze Proteins of Bacteria

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 12. Antifreeze Proteins of Bacteria. M K Chattopadhyay. General Article Volume 12 Issue 12 December 2007 pp 25-30. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/012/12/0025-0030. Keywords.

  12. Antibiotic-Resistant Bacteria.

    Science.gov (United States)

    Longenecker, Nevin E.; Oppenheimer, Dan

    1982-01-01

    A study conducted by high school advanced bacteriology students appears to confirm the hypothesis that the incremental administration of antibiotics on several species of bacteria (Escherichia coli, Staphylococcus epidermis, Bacillus sublitus, Bacillus megaterium) will allow for the development of antibiotic-resistant strains. (PEB)

  13. (PHB)-producing bacteria

    African Journals Online (AJOL)

    Isolation and characterization of two novel polyhydroxybutyrate (PHB)-producing bacteria. ... subsequently studied using phenotype microarray panels which allowed the testing of the effect of more than 90 different carbon, nitrogen, sulfur and phosphorus sources as well as pH on the growth characteristics of these strains.

  14. The friendly bacteria within us Commensal bacteria of the intestine ...

    Indian Academy of Sciences (India)

    The friendly bacteria within us Commensal bacteria of the intestine: Roles in health and disease B.S. Ramakrishna Professor & Head Gastroenterology & Hepatology Christian Medical College Vellore · Slide 2 · Intestinal bacteria: the hidden organ · Slide 4 · Slide 5 · The normal bacterial flora prevents GI disease · Slide 7.

  15. The friendly bacteria within us Commensal bacteria of the intestine ...

    Indian Academy of Sciences (India)

    Short chain fatty acids (SCFA) are main source of energy for colonic epithelial cells · SCFA – role in colonic disease · SCFA prevent mucosal inflammation · Immunoregulation by gut bacteria · Balance of bacterial species in the gut · Immunosensory detection of intestinal bacteria · Pathogenic bacteria release interleukin-8 ...

  16. Manufacture of Probiotic Bacteria

    Science.gov (United States)

    Muller, J. A.; Ross, R. P.; Fitzgerald, G. F.; Stanton, C.

    Lactic acid bacteria (LAB) have been used for many years as natural biopreservatives in fermented foods. A small group of LAB are also believed to have beneficial health effects on the host, so called probiotic bacteria. Probiotics have emerged from the niche industry from Asia into European and American markets. Functional foods are one of the fastest growing markets today, with estimated growth to 20 billion dollars worldwide by 2010 (GIA, 2008). The increasing demand for probiotics and the new food markets where probiotics are introduced, challenges the industry to produce high quantities of probiotic cultures in a viable and stable form. Dried concentrated probiotic cultures are the most convenient form for incorporation into functional foods, given the ease of storage, handling and transport, especially for shelf-stable functional products. This chapter will discuss various aspects of the challenges associated with the manufacturing of probiotic cultures.

  17. Bacteria in ulcera crurum.

    Science.gov (United States)

    Kontiainen, S; Rinne, E

    1988-01-01

    Bacterial cultures derived from 432 chronic leg ulcers were analysed retrospectively to determine which bacteria are most commonly found in these ulcers. The study covered a 2-year period. Two-thirds of the patients were over 70 years of age. Staphylococcus aureus was found in nearly half of the ulcers studied, Pseudomonas sp. in one-third, pyogenic streptococci and enterococci in every fifth and Proteus sp. in every tenth. The frequency by which pyogenic streptococci were isolated was about 10 to 20 times as high as previously reported. Obligate anaerobic bacteria were also frequently isolated. The sensitivity of the isolates from the second year to antimicrobial agents likely to be chosen if systemic therapy were required is also reported. The results are discussed in relation to previous findings.

  18. Bacteria in ancient sediments

    International Nuclear Information System (INIS)

    Izzo, G.

    1986-01-01

    In order to ascertain the role of biological activity in ancient sediments, two microbiological studies were carried out. The first was on pleistocenic clay sediments on land, the second on deep oceanic sediments. In the present paper by direct counting the samples is demonstrated the presence of bacteria in a range of 10 5 to 10 7 . Further studies must be carried out to ascertain the activities by in situ incubation methods

  19. Bacteria colonizing paper machines

    OpenAIRE

    Ekman, Jaakko

    2011-01-01

    Bacteria growing in paper machines can cause several problems. Biofilms detaching from paper machine surfaces may lead to holes and spots in the end product or even break the paper web leading to expensive delays in production. Heat stable endospores will remain viable through the drying section of paper machine, increasing the microbial contamination of paper and board. Of the bacterial species regularly found in the end products, Bacillus cereus is the only one classified as a pathogen. Cer...

  20. Pepsin homologues in bacteria

    Directory of Open Access Journals (Sweden)

    Bateman Alex

    2009-09-01

    Full Text Available Abstract Background Peptidase family A1, to which pepsin belongs, had been assumed to be restricted to eukaryotes. The tertiary structure of pepsin shows two lobes with similar folds and it has been suggested that the gene has arisen from an ancient duplication and fusion event. The only sequence similarity between the lobes is restricted to the motif around the active site aspartate and a hydrophobic-hydrophobic-Gly motif. Together, these contribute to an essential structural feature known as a psi-loop. There is one such psi-loop in each lobe, and so each lobe presents an active Asp. The human immunodeficiency virus peptidase, retropepsin, from peptidase family A2 also has a similar fold but consists of one lobe only and has to dimerize to be active. All known members of family A1 show the bilobed structure, but it is unclear if the ancestor of family A1 was similar to an A2 peptidase, or if the ancestral retropepsin was derived from a half-pepsin gene. The presence of a pepsin homologue in a prokaryote might give insights into the evolution of the pepsin family. Results Homologues of the aspartic peptidase pepsin have been found in the completed genomic sequences from seven species of bacteria. The bacterial homologues, unlike those from eukaryotes, do not possess signal peptides, and would therefore be intracellular acting at neutral pH. The bacterial homologues have Thr218 replaced by Asp, a change which in renin has been shown to confer activity at neutral pH. No pepsin homologues could be detected in any archaean genome. Conclusion The peptidase family A1 is found in some species of bacteria as well as eukaryotes. The bacterial homologues fall into two groups, one from oceanic bacteria and one from plant symbionts. The bacterial homologues are all predicted to be intracellular proteins, unlike the eukaryotic enzymes. The bacterial homologues are bilobed like pepsin, implying that if no horizontal gene transfer has occurred the duplication

  1. Respective impact of implementation of prevention strategies, colonization with multiresistant bacteria and antimicrobial use on the risk of early- and late-onset VAP: An analysis of the OUTCOMEREA network.

    Directory of Open Access Journals (Sweden)

    Wafa Ibn Saied

    Full Text Available The impact of prevention strategies and risk factors for early-onset (EOP versus late-onset (LOP ventilator-associated pneumonia (VAP are still debated.To evaluate, in a multicenter cohort, the risk factors for EOP and LOP, as the evolution of prevention strategies.7,784 patients with mechanical ventilation (MV for at least 48 hours were selected into the multicenter prospective OUTCOMEREA database (1997-2016. VAP occurring between the 3rd and 6th day of MV defined EOP, while those occurring after defined LOPs. We used a Fine and Gray subdistribution model to take the successful extubation into account as a competing event.Overall, 1,234 included patients developed VAP (EOP: 445 (36%; LOP: 789 (64%. Male gender was a risk factor for both EOP and LOP. Factors specifically associated with EOP were admission for respiratory distress, previous colonization with multidrug-resistant Pseudomonas aeruginosa, chest tube and enteral feeding within the first 2 days of MV. Antimicrobials administrated within the first 2 days of MV were all protective of EOP. ICU admission for COPD exacerbation or pneumonia were early risk factors for LOP, while imidazole and vancomycin use within the first 2 days of MV were protective factors. Late risk factors (between the 3rd and the 6th day of MV were the intra-hospital transport, PAO2-FIO2<200 mmHg, vasopressor use, and known colonization with methicillin-resistant Staphylococcus aureus. Among the antimicrobials administered between the 3rd and the 6th day, fluoroquinolones were the solely protective one.Contrarily to LOP, the risk of EOP decreased across the study time periods, concomitantly with an increase in the compliance with bundle of prevention measures.VAP risk factors are mostly different according to the pneumonia time of onset, which should lead to differentiated prevention strategies.

  2. [Prevent bacteria from communicating: Divide and cure].

    Science.gov (United States)

    Mion, S; Rémy, B; Plener, L; Chabrière, E; Daudé, D

    2018-03-26

    Quorum Sensing (QS) is a communication system used by numerous bacteria to synchronize their behavior according to the cell density. In this way, bacteria secrete and sense small mediating molecules, called autoinducers (AI), which concentration increases in the environment proportionally to bacterial cell number. QS induces major physiological and phenotypic changes such as virulence induction and biofilm formation. Biofilm represents a physical barrier which shelters bacteria poorly sensitive to antimicrobial treatments and favors the apparition of resistance mechanisms. Disturbing QS is referred to as quorum quenching (QQ). This strategy is used by microorganisms themselves to prevent the development of specific group behaviors. Two strategies are mainly employed: the use of quorum sensing inhibitors (QSI) and of quorum quenching enzymes (QQE) that degrades AI. Many studies have been dedicated to identifying QSI (natural or synthetic) as well as QQE and demonstrating their anti-virulence and anti-biofilm effects on numerous bacterial species. Synergistic effects between QQ and traditional treatments such as antibiotherapy or with reemerging phage therapy have been put forward. The efficiency of numerous QSI and QQE was thereby demonstrated either with in vitro or in vivo animal models leading to the development of medical devices containing QSI and QQE to improve already existing treatments. Copyright © 2018 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  3. Plant growth-promoting bacteria: mechanisms and applications.

    Science.gov (United States)

    Glick, Bernard R

    2012-01-01

    The worldwide increases in both environmental damage and human population pressure have the unfortunate consequence that global food production may soon become insufficient to feed all of the world's people. It is therefore essential that agricultural productivity be significantly increased within the next few decades. To this end, agricultural practice is moving toward a more sustainable and environmentally friendly approach. This includes both the increasing use of transgenic plants and plant growth-promoting bacteria as a part of mainstream agricultural practice. Here, a number of the mechanisms utilized by plant growth-promoting bacteria are discussed and considered. It is envisioned that in the not too distant future, plant growth-promoting bacteria (PGPB) will begin to replace the use of chemicals in agriculture, horticulture, silviculture, and environmental cleanup strategies. While there may not be one simple strategy that can effectively promote the growth of all plants under all conditions, some of the strategies that are discussed already show great promise.

  4. Visualizing aquatic bacteria by light and transmission electron microscopy.

    Science.gov (United States)

    Silva, Thiago P; Noyma, Natália P; Duque, Thabata L A; Gamalier, Juliana P; Vidal, Luciana O; Lobão, Lúcia M; Chiarini-Garcia, Hélio; Roland, Fábio; Melo, Rossana C N

    2014-01-01

    The understanding of the functional role of aquatic bacteria in microbial food webs is largely dependent on methods applied to the direct visualization and enumeration of these organisms. While the ultrastructure of aquatic bacteria is still poorly known, routine observation of aquatic bacteria by light microscopy requires staining with fluorochromes, followed by filtration and direct counting on filter surfaces. Here, we used a new strategy to visualize and enumerate aquatic bacteria by light microscopy. By spinning water samples from varied tropical ecosystems in a cytocentrifuge, we found that bacteria firmly adhere to regular slides, can be stained by fluorochoromes with no background formation and fast enumerated. Significant correlations were found between the cytocentrifugation and filter-based methods. Moreover, preparations through cytocentrifugation were more adequate for bacterial viability evaluation than filter-based preparations. Transmission electron microscopic analyses revealed a morphological diversity of bacteria with different internal and external structures, such as large variation in the cell envelope and capsule thickness, and presence or not of thylakoid membranes. Our results demonstrate that aquatic bacteria represent an ultrastructurally diverse population and open avenues for easy handling/quantification and better visualization of bacteria by light microscopy without the need of filter membranes.

  5. Bacteria counting method based on polyaniline/bacteria thin film.

    Science.gov (United States)

    Zhihua, Li; Xuetao, Hu; Jiyong, Shi; Xiaobo, Zou; Xiaowei, Huang; Xucheng, Zhou; Tahir, Haroon Elrasheid; Holmes, Mel; Povey, Malcolm

    2016-07-15

    A simple and rapid bacteria counting method based on polyaniline (PANI)/bacteria thin film was proposed. Since the negative effects of immobilized bacteria on the deposition of PANI on glass carbon electrode (GCE), PANI/bacteria thin films containing decreased amount of PANI would be obtained when increasing the bacteria concentration. The prepared PANI/bacteria film was characterized with cyclic voltammetry (CV) technique to provide quantitative index for the determination of the bacteria count, and electrochemical impedance spectroscopy (EIS) was also performed to further investigate the difference in the PANI/bacteria films. Good linear relationship of the peak currents of the CVs and the log total count of bacteria (Bacillus subtilis) could be established using the equation Y=-30.413X+272.560 (R(2)=0.982) over the range of 5.3×10(4) to 5.3×10(8)CFUmL(-1), which also showed acceptable stability, reproducibility and switchable ability. The proposed method was feasible for simple and rapid counting of bacteria. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Physics of Intracellular Organization in Bacteria.

    Science.gov (United States)

    Wingreen, Ned S; Huang, Kerwyn Casey

    2015-01-01

    With the realization that bacteria achieve exquisite levels of spatiotemporal organization has come the challenge of discovering the underlying mechanisms. In this review, we describe three classes of such mechanisms, each of which has physical origins: the use of landmarks, the creation of higher-order structures that enable geometric sensing, and the emergence of length scales from systems of chemical reactions coupled to diffusion. We then examine the diversity of geometric cues that exist even in cells with relatively simple geometries, and end by discussing both new technologies that could drive further discovery and the implications of our current knowledge for the behavior, fitness, and evolution of bacteria. The organizational strategies described here are employed in a wide variety of systems and in species across all kingdoms of life; in many ways they provide a general blueprint for organizing the building blocks of life.

  7. Probiotic bacteria induce a 'glow of health'.

    Directory of Open Access Journals (Sweden)

    Tatiana Levkovich

    Full Text Available Radiant skin and hair are universally recognized as indications of good health. However, this 'glow of health' display remains poorly understood. We found that feeding of probiotic bacteria to aged mice induced integumentary changes mimicking peak health and reproductive fitness characteristic of much younger animals. Eating probiotic yogurt triggered epithelial follicular anagen-phase shift with sebocytogenesis resulting in thick lustrous fur due to a bacteria-triggered interleukin-10-dependent mechanism. Aged male animals eating probiotics exhibited increased subcuticular folliculogenesis, when compared with matched controls, yielding luxuriant fur only in probiotic-fed subjects. Female animals displayed probiotic-induced hyperacidity coinciding with shinier hair, a feature that also aligns with fertility in human females. Together these data provide insights into mammalian evolution and novel strategies for integumentary health.

  8. Beneficial bacteria inhibit cachexia

    Science.gov (United States)

    Varian, Bernard J.; Goureshetti, Sravya; Poutahidis, Theofilos; Lakritz, Jessica R.; Levkovich, Tatiana; Kwok, Caitlin; Teliousis, Konstantinos; Ibrahim, Yassin M.; Mirabal, Sheyla; Erdman, Susan E.

    2016-01-01

    Muscle wasting, known as cachexia, is a debilitating condition associated with chronic inflammation such as during cancer. Beneficial microbes have been shown to optimize systemic inflammatory tone during good health; however, interactions between microbes and host immunity in the context of cachexia are incompletely understood. Here we use mouse models to test roles for bacteria in muscle wasting syndromes. We find that feeding of a human commensal microbe, Lactobacillus reuteri, to mice is sufficient to lower systemic indices of inflammation and inhibit cachexia. Further, the microbial muscle-building phenomenon extends to normal aging as wild type animals exhibited increased growth hormone levels and up-regulation of transcription factor Forkhead Box N1 [FoxN1] associated with thymus gland retention and longevity. Interestingly, mice with a defective FoxN1 gene (athymic nude) fail to inhibit sarcopenia after L. reuteri therapy, indicating a FoxN1-mediated mechanism. In conclusion, symbiotic bacteria may serve to stimulate FoxN1 and thymic functions that regulate inflammation, offering possible alternatives for cachexia prevention and novel insights into roles for microbiota in mammalian ontogeny and phylogeny. PMID:26933816

  9. Chemical communication in bacteria

    Science.gov (United States)

    Suravajhala, Srinivasa Sandeep; Saini, Deepak; Nott, Prabhu

    Luminescence in Vibrio fischeri is a model for quorum-sensing-gene-regulation in bacteria. We study luminescence response of V. fischeri to both internal and external cues at the single cell and population level. Experiments with ES114, a wild-type strain, and ainS mutant show that luminescence induction in cultures is not always proportional to cell-density and there is always a basal level of luminescence. At any given concentration of the exogenously added signals, C6-HSL and C8-HSL, luminescence per cell reaches a maximum during the exponential phase and decreases thereafter. We hypothesize that (1) C6-HSL production and LuxR activity are not proportional to cell-density, and (2) there is a shift in equilibrium from C6-HSL to C8-HSL during the later stages of growth of the culture. RT-PCR analysis of luxI and luxR shows that the expression of these genes is maximum corresponding to the highest level of luminescence. The shift in equilibrium is shown by studying competitive binding of C6-HSL and C8-HSL to LuxR. We argue that luminescence is a unicellular behaviour, and an intensive property like per cell luminescence is more important than gross luminescence of the population in understanding response of bacteria to chemical signalling. Funding from the Department of Science and Technology, India is acknowledged.

  10. Macrophage defense mechanisms against intracellular bacteria.

    Science.gov (United States)

    Weiss, Günter; Schaible, Ulrich E

    2015-03-01

    Macrophages and neutrophils play a decisive role in host responses to intracellular bacteria including the agent of tuberculosis (TB), Mycobacterium tuberculosis as they represent the forefront of innate immune defense against bacterial invaders. At the same time, these phagocytes are also primary targets of intracellular bacteria to be abused as host cells. Their efficacy to contain and eliminate intracellular M. tuberculosis decides whether a patient initially becomes infected or not. However, when the infection becomes chronic or even latent (as in the case of TB) despite development of specific immune activation, phagocytes have also important effector functions. Macrophages have evolved a myriad of defense strategies to combat infection with intracellular bacteria such as M. tuberculosis. These include induction of toxic anti-microbial effectors such as nitric oxide and reactive oxygen intermediates, the stimulation of microbe intoxication mechanisms via acidification or metal accumulation in the phagolysosome, the restriction of the microbe's access to essential nutrients such as iron, fatty acids, or amino acids, the production of anti-microbial peptides and cytokines, along with induction of autophagy and efferocytosis to eliminate the pathogen. On the other hand, M. tuberculosis, as a prime example of a well-adapted facultative intracellular bacterium, has learned during evolution to counter-balance the host's immune defense strategies to secure survival or multiplication within this otherwise hostile environment. This review provides an overview of innate immune defense of macrophages directed against intracellular bacteria with a focus on M. tuberculosis. Gaining more insights and knowledge into this complex network of host-pathogen interaction will identify novel target sites of intervention to successfully clear infection at a time of rapidly emerging multi-resistance of M. tuberculosis against conventional antibiotics. © 2015 The Authors

  11. Macrophage defense mechanisms against intracellular bacteria

    Science.gov (United States)

    Weiss, Günter; Schaible, Ulrich E

    2015-01-01

    Macrophages and neutrophils play a decisive role in host responses to intracellular bacteria including the agent of tuberculosis (TB), Mycobacterium tuberculosis as they represent the forefront of innate immune defense against bacterial invaders. At the same time, these phagocytes are also primary targets of intracellular bacteria to be abused as host cells. Their efficacy to contain and eliminate intracellular M. tuberculosis decides whether a patient initially becomes infected or not. However, when the infection becomes chronic or even latent (as in the case of TB) despite development of specific immune activation, phagocytes have also important effector functions. Macrophages have evolved a myriad of defense strategies to combat infection with intracellular bacteria such as M. tuberculosis. These include induction of toxic anti-microbial effectors such as nitric oxide and reactive oxygen intermediates, the stimulation of microbe intoxication mechanisms via acidification or metal accumulation in the phagolysosome, the restriction of the microbe's access to essential nutrients such as iron, fatty acids, or amino acids, the production of anti-microbial peptides and cytokines, along with induction of autophagy and efferocytosis to eliminate the pathogen. On the other hand, M. tuberculosis, as a prime example of a well-adapted facultative intracellular bacterium, has learned during evolution to counter-balance the host's immune defense strategies to secure survival or multiplication within this otherwise hostile environment. This review provides an overview of innate immune defense of macrophages directed against intracellular bacteria with a focus on M. tuberculosis. Gaining more insights and knowledge into this complex network of host-pathogen interaction will identify novel target sites of intervention to successfully clear infection at a time of rapidly emerging multi-resistance of M. tuberculosis against conventional antibiotics. PMID:25703560

  12. Cable Bacteria in Freshwater Sediments

    DEFF Research Database (Denmark)

    Risgaard-Petersen, Nils; Kristiansen, Michael; Frederiksen, Rasmus

    2015-01-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable...... bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures...... marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary...

  13. Immunomodulatory properties of probiotic bacteria

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen

    2007-01-01

    Certain lactic acid bacteria (LAB) are part of the commensal intestinal flora and considered beneficial for health, as they compete with pathogens for adhesion sites in the intestine and ferment otherwise indigestible compounds. Another important property of these so-called probiotic bacteria...... with bacteria, and the cytokine pattern induced by specific bacteria resembled the pattern induced in MoDC, except for TNF-alpha and IL-6, which were induced in response to different bacteria in blood DC/monocytes and monocyte-derived DC. Autologous NK cells produced IFN-gamma when cultured with blood DC......, monocytes and monocyte-derived DC and IL-12-inducing bacteria, whereas only DC induced IFN-gamma production in allogeneic T cells. In vitro-generated DC is a commonly used model of tissue DC, but they differ in certain aspects from intestinal DC, which are in direct contact with the intestinal microbiota...

  14. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria

    Directory of Open Access Journals (Sweden)

    Abiola Olumuyiwa Olaitan

    2014-11-01

    Full Text Available Polymyxins are polycationic antimicrobial peptides that are currently the last-resort antibiotics for the treatment of multidrug-resistant, Gram-negative bacterial infections. The reintroduction of polymyxins for antimicrobial therapy has been followed by an increase in reports of resistance among Gram-negative bacteria. Some bacteria, such as Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii, develop resistance to polymyxins in a process referred to as acquired resistance, whereas other bacteria, such as Proteus spp., Serratia spp. and Burkholderia spp., are naturally resistant to these drugs. Reports of polymyxin resistance in clinical isolates have recently increased, including acquired and intrinsically resistant pathogens. This increase is considered a serious issue, prompting concern due to the low number of currently available effective antibiotics. This review summarizes current knowledge concerning the different strategies bacteria employ to resist the activities of polymyxins.Gram-negative bacteria employ several strategies to protect themselves from polymyxin antibiotics (polymyxin B and colistin, including a variety of lipopolysaccharide (LPS modifications, such as modifications of lipid A with phosphoethanolamine and 4-amino-4-deoxy-L-arabinose, in addition to the use of efflux pumps, the formation of capsules and overexpression of the outer membrane protein OprH, which are all effectively regulated at the molecular level. The increased understanding of these mechanisms is extremely vital and timely to facilitate studies of antimicrobial peptides and find new potential drugs targeting clinically relevant Gram-negative bacteria.

  15. [Chitinolytic activity of bacteria].

    Science.gov (United States)

    Saks, Elzbieta; Jankiewicz, Urszula

    2010-01-01

    Chitinolytic bacteria play an important role in degradation of chitin, one of the most abundant biopolymers in nature. These microorganisms synthesize specific enzymes, that catalyze hydrolysis of beta-1,4-glycosidic bonds in low-digestible chitin polymers, turning it into low-molecular, easy to digest compounds. During last decades many bacterial chitinolytic enzymes have been studied and characterized, mainly for their potential applications in agriculture, industry and medicine. Several chitinase classifications have been proposed, either on the base of substrate specificity or amino acid sequence similarities. X-ray crystallography and NMR spectroscopy techniques enabled the determination of three dimensional structure of some chitinases, what was helpful in explaining their catalytic mechanism. Development of biotechnology and molecular biology enables a deep research in regulation and cloning of bacterial chitinase genes.

  16. Bacteria, phages and septicemia.

    Directory of Open Access Journals (Sweden)

    Ausra Gaidelyte

    Full Text Available The use of phages is an attractive option to battle antibiotic resistant bacteria in certain bacterial infections, but the role of phage ecology in bacterial infections is obscure. Here we surveyed the phage ecology in septicemia, the most severe type of bacterial infection. We observed that the majority of the bacterial isolates from septicemia patients spontaneously secreted phages active against other isolates of the same bacterial strain, but not to the strain causing the disease. Such phages were also detected in the initial blood cultures, indicating that phages are circulating in the blood at the onset of sepsis. The fact that most of the septicemic bacterial isolates carry functional prophages suggests an active role of phages in bacterial infections. Apparently, prophages present in sepsis-causing bacterial clones play a role in clonal selection during bacterial invasion.

  17. Acoustofluidic bacteria separation

    International Nuclear Information System (INIS)

    Li, Sixing; Huang, Tony Jun; Ma, Fen; Zeng, Xiangqun; Bachman, Hunter; Cameron, Craig E

    2017-01-01

    Bacterial separation from human blood samples can help with the identification of pathogenic bacteria for sepsis diagnosis. In this work, we report an acoustofluidic device for label-free bacterial separation from human blood samples. In particular, we exploit the acoustic radiation force generated from a tilted-angle standing surface acoustic wave (taSSAW) field to separate Escherichia coli from human blood cells based on their size difference. Flow cytometry analysis of the E. coli separated from red blood cells shows a purity of more than 96%. Moreover, the label-free electrochemical detection of the separated E. coli displays reduced non-specific signals due to the removal of blood cells. Our acoustofluidic bacterial separation platform has advantages such as label-free separation, high biocompatibility, flexibility, low cost, miniaturization, automation, and ease of in-line integration. The platform can be incorporated with an on-chip sensor to realize a point-of-care sepsis diagnostic device. (paper)

  18. Acoustofluidic bacteria separation

    Science.gov (United States)

    Li, Sixing; Ma, Fen; Bachman, Hunter; Cameron, Craig E.; Zeng, Xiangqun; Huang, Tony Jun

    2017-01-01

    Bacterial separation from human blood samples can help with the identification of pathogenic bacteria for sepsis diagnosis. In this work, we report an acoustofluidic device for label-free bacterial separation from human blood samples. In particular, we exploit the acoustic radiation force generated from a tilted-angle standing surface acoustic wave (taSSAW) field to separate Escherichia coli from human blood cells based on their size difference. Flow cytometry analysis of the E. coli separated from red blood cells shows a purity of more than 96%. Moreover, the label-free electrochemical detection of the separated E. coli displays reduced non-specific signals due to the removal of blood cells. Our acoustofluidic bacterial separation platform has advantages such as label-free separation, high biocompatibility, flexibility, low cost, miniaturization, automation, and ease of in-line integration. The platform can be incorporated with an on-chip sensor to realize a point-of-care sepsis diagnostic device.

  19. Vaginal bacteria modify HIV tenofovir microbicide efficacy in African women.

    Science.gov (United States)

    Klatt, Nichole R; Cheu, Ryan; Birse, Kenzie; Zevin, Alexander S; Perner, Michelle; Noël-Romas, Laura; Grobler, Anneke; Westmacott, Garrett; Xie, Irene Y; Butler, Jennifer; Mansoor, Leila; McKinnon, Lyle R; Passmore, Jo-Ann S; Abdool Karim, Quarraisha; Abdool Karim, Salim S; Burgener, Adam D

    2017-06-02

    Antiretroviral-based strategies for HIV prevention have shown inconsistent results in women. We investigated whether vaginal microbiota modulated tenofovir gel microbicide efficacy in the CAPRISA (Centre for the AIDS Program of Research in South Africa) 004 trial. Two major vaginal bacterial community types-one dominated by Lactobacillus (59.2%) and the other where Gardnerella vaginalis predominated with other anaerobic bacteria (40.8%)-were identified in 688 women profiled. Tenofovir reduced HIV incidence by 61% ( P = 0.013) in Lactobacillus- dominant women but only 18% ( P = 0.644) in women with non- Lactobacillus bacteria, a threefold difference in efficacy. Detectible mucosal tenofovir was lower in non- Lactobacillus women, negatively correlating with G. vaginalis and other anaerobic bacteria, which depleted tenofovir by metabolism more rapidly than target cells convert to pharmacologically active drug. This study provides evidence linking vaginal bacteria to microbicide efficacy through tenofovir depletion via bacterial metabolism. Copyright © 2017, American Association for the Advancement of Science.

  20. Membrane-active macromolecules kill antibiotic-tolerant bacteria and potentiate antibiotics towards Gram-negative bacteria.

    Directory of Open Access Journals (Sweden)

    Divakara S S M Uppu

    Full Text Available Chronic bacterial biofilms place a massive burden on healthcare due to the presence of antibiotic-tolerant dormant bacteria. Some of the conventional antibiotics such as erythromycin, vancomycin, linezolid, rifampicin etc. are inherently ineffective against Gram-negative bacteria, particularly in their biofilms. Here, we report membrane-active macromolecules that kill slow dividing stationary-phase and antibiotic tolerant cells of Gram-negative bacteria. More importantly, these molecules potentiate antibiotics (erythromycin and rifampicin to biofilms of Gram-negative bacteria. These molecules eliminate planktonic bacteria that are liberated after dispersion of biofilms (dispersed cells. The membrane-active mechanism of these molecules forms the key for potentiating the established antibiotics. Further, we demonstrate that the combination of macromolecules and antibiotics significantly reduces bacterial burden in mouse burn and surgical wound infection models caused by Acinetobacter baumannii and Carbapenemase producing Klebsiella pneumoniae (KPC clinical isolate respectively. Colistin, a well-known antibiotic targeting the lipopolysaccharide (LPS of Gram-negative bacteria fails to kill antibiotic tolerant cells and dispersed cells (from biofilms and bacteria develop resistance to it. On the contrary, these macromolecules prevent or delay the development of bacterial resistance to known antibiotics. Our findings emphasize the potential of targeting the bacterial membrane in antibiotic potentiation for disruption of biofilms and suggest a promising strategy towards developing therapies for topical treatment of Gram-negative infections.

  1. Membrane-active macromolecules kill antibiotic-tolerant bacteria and potentiate antibiotics towards Gram-negative bacteria.

    Science.gov (United States)

    Uppu, Divakara S S M; Konai, Mohini M; Sarkar, Paramita; Samaddar, Sandip; Fensterseifer, Isabel C M; Farias-Junior, Celio; Krishnamoorthy, Paramanandam; Shome, Bibek R; Franco, Octávio L; Haldar, Jayanta

    2017-01-01

    Chronic bacterial biofilms place a massive burden on healthcare due to the presence of antibiotic-tolerant dormant bacteria. Some of the conventional antibiotics such as erythromycin, vancomycin, linezolid, rifampicin etc. are inherently ineffective against Gram-negative bacteria, particularly in their biofilms. Here, we report membrane-active macromolecules that kill slow dividing stationary-phase and antibiotic tolerant cells of Gram-negative bacteria. More importantly, these molecules potentiate antibiotics (erythromycin and rifampicin) to biofilms of Gram-negative bacteria. These molecules eliminate planktonic bacteria that are liberated after dispersion of biofilms (dispersed cells). The membrane-active mechanism of these molecules forms the key for potentiating the established antibiotics. Further, we demonstrate that the combination of macromolecules and antibiotics significantly reduces bacterial burden in mouse burn and surgical wound infection models caused by Acinetobacter baumannii and Carbapenemase producing Klebsiella pneumoniae (KPC) clinical isolate respectively. Colistin, a well-known antibiotic targeting the lipopolysaccharide (LPS) of Gram-negative bacteria fails to kill antibiotic tolerant cells and dispersed cells (from biofilms) and bacteria develop resistance to it. On the contrary, these macromolecules prevent or delay the development of bacterial resistance to known antibiotics. Our findings emphasize the potential of targeting the bacterial membrane in antibiotic potentiation for disruption of biofilms and suggest a promising strategy towards developing therapies for topical treatment of Gram-negative infections.

  2. Money and transmission of bacteria.

    NARCIS (Netherlands)

    Gedik, H.; Voss, T.A.; Voss, A.

    2013-01-01

    Money is one of the most frequently passed items in the world. The aim of this study was to ascertain the survival status of bacteria including Staphylococcus aureus, Escherichia coli, and Vancomycin- Resistant Enterococci (VRE) on banknotes from different countries and the transmission of bacteria

  3. Motility of electric cable bacteria

    DEFF Research Database (Denmark)

    Bjerg, Jesper Tataru; Damgaard, Lars Riis; Holm, Simon Agner

    2016-01-01

    Cable bacteria are filamentous bacteria that electrically couple sulfide oxidation and oxygen reduction at centimeter distances, and observations in sediment environments have suggested that they are motile. By time-lapse microscopy, we found that cable bacteria used gliding motility on surfaces...... with a highly variable speed of 0.50.3 ms1 (meanstandard deviation) and time between reversals of 155108 s. They frequently moved forward in loops, and formation of twisted loops revealed helical rotation of the filaments. Cable bacteria responded to chemical gradients in their environment, and around the oxic......-anoxic interface, they curled and piled up, with straight parts connecting back to the source of sulfide. Thus, it appears that motility serves the cable bacteria in establishing and keeping optimal connections between their distant electron donor and acceptors in a dynamic sediment environment....

  4. Isolation and screening of lactic acid bacteria, Lactococcus lactis ...

    African Journals Online (AJOL)

    In aquaculture probiotic feeding could play a crucial role in developing microbial control strategies, since disease outbreaks are recognized as important constraints to aquaculture production and the fear of antibiotic resistance. In this study, lactic acid bacteria (LAB) strains from the intestinal tissue of African catfish Clarias ...

  5. Hydrocarbon degradation potentials of bacteria isolated from spent ...

    African Journals Online (AJOL)

    This study has shown that resident bacteria strains in lubricating oil contaminated soils have potential application in the bioremediation of oil polluted sites and enhance the possibility of developing models and strategies for removing hydrocarbon pollutants from the environment. Keywords: Biodegradation, hydrocarbon ...

  6. Isolation and screening of lactic acid bacteria, Lactococcus lactis ...

    African Journals Online (AJOL)

    Yomi

    2012-04-10

    Apr 10, 2012 ... In aquaculture probiotic feeding could play a crucial role in developing microbial control strategies, since disease outbreaks are recognized as important constraints to aquaculture production and the fear of antibiotic resistance. In this study, lactic acid bacteria (LAB) strains from the intestinal tissue of.

  7. Making More of Milk Sugar by Engineering Lactic Acid Bacteria

    NARCIS (Netherlands)

    Vos, Willem M. de; Hols, Pascal; Kranenburg, Richard van; Luesink, Evert; Kuipers, Oscar P.; Oost, John van der; Kleerebezem, Michiel; Hugenholtz, Jeroen

    1998-01-01

    By exploiting their genetic and metabolic capacity, lactic acid bacteria can be used to generate a variety of products from milk sugar lactose other than the archetypical lactic acid. This review will outline the different genetic and metabolic engineering strategies that can be applied to lactic

  8. Tumour targeting with systemically administered bacteria.

    LENUS (Irish Health Repository)

    Morrissey, David

    2012-01-31

    Challenges for oncology practitioners and researchers include specific treatment and detection of tumours. The ideal anti-cancer therapy would selectively eradicate tumour cells, whilst minimising side effects to normal tissue. Bacteria have emerged as biological gene vectors with natural tumour specificity, capable of homing to tumours and replicating locally to high levels when systemically administered. This property enables targeting of both the primary tumour and secondary metastases. In the case of invasive pathogenic species, this targeting strategy can be used to deliver genes intracellularly for tumour cell expression, while non-invasive species transformed with plasmids suitable for bacterial expression of heterologous genes can secrete therapeutic proteins locally within the tumour environment (cell therapy approach). Many bacterial genera have been demonstrated to localise to and replicate to high levels within tumour tissue when intravenously (IV) administered in rodent models and reporter gene tagging of bacteria has permitted real-time visualisation of this phenomenon. Live imaging of tumour colonising bacteria also presents diagnostic potential for this approach. The nature of tumour selective bacterial colonisation appears to be tumour origin- and bacterial species- independent. While originally a correlation was drawn between anaerobic bacterial colonisation and the hypoxic nature of solid tumours, it is recently becoming apparent that other elements of the unique microenvironment within solid tumours, including aberrant neovasculature and local immune suppression, may be responsible. Here, we consider the pre-clinical data supporting the use of bacteria as a tumour-targeting tool, recent advances in the area, and future work required to develop it into a beneficial clinical tool.

  9. METHODS FOR DETECTING BACTERIA USING POLYMER MATERIALS

    NARCIS (Netherlands)

    Van Grinsven Bart Robert, Nicolaas; Cleij, Thomas

    2017-01-01

    A method for characterizing bacteria includes passing a liquid containing an analyte comprising a first bacteria and a second bacteria over and in contact with a polymer material on a substrate. The polymer material is formulated to bind to the first bacteria, and the first bacteria binds to the

  10. Interactions between diatoms and bacteria.

    Science.gov (United States)

    Amin, Shady A; Parker, Micaela S; Armbrust, E Virginia

    2012-09-01

    Diatoms and bacteria have cooccurred in common habitats for hundreds of millions of years, thus fostering specific associations and interactions with global biogeochemical consequences. Diatoms are responsible for one-fifth of the photosynthesis on Earth, while bacteria remineralize a large portion of this fixed carbon in the oceans. Through their coexistence, diatoms and bacteria cycle nutrients between oxidized and reduced states, impacting bioavailability and ultimately feeding higher trophic levels. Here we present an overview of how diatoms and bacteria interact and the implications of these interactions. We emphasize that heterotrophic bacteria in the oceans that are consistently associated with diatoms are confined to two phyla. These consistent bacterial associations result from encounter mechanisms that occur within a microscale environment surrounding a diatom cell. We review signaling mechanisms that occur in this microenvironment to pave the way for specific interactions. Finally, we discuss known interactions between diatoms and bacteria and exciting new directions and research opportunities in this field. Throughout the review, we emphasize new technological advances that will help in the discovery of new interactions. Deciphering the languages of diatoms and bacteria and how they interact will inform our understanding of the role these organisms have in shaping the ocean and how these interactions may change in future oceans.

  11. Interactions between Diatoms and Bacteria

    Science.gov (United States)

    Amin, Shady A.; Parker, Micaela S.

    2012-01-01

    Summary: Diatoms and bacteria have cooccurred in common habitats for hundreds of millions of years, thus fostering specific associations and interactions with global biogeochemical consequences. Diatoms are responsible for one-fifth of the photosynthesis on Earth, while bacteria remineralize a large portion of this fixed carbon in the oceans. Through their coexistence, diatoms and bacteria cycle nutrients between oxidized and reduced states, impacting bioavailability and ultimately feeding higher trophic levels. Here we present an overview of how diatoms and bacteria interact and the implications of these interactions. We emphasize that heterotrophic bacteria in the oceans that are consistently associated with diatoms are confined to two phyla. These consistent bacterial associations result from encounter mechanisms that occur within a microscale environment surrounding a diatom cell. We review signaling mechanisms that occur in this microenvironment to pave the way for specific interactions. Finally, we discuss known interactions between diatoms and bacteria and exciting new directions and research opportunities in this field. Throughout the review, we emphasize new technological advances that will help in the discovery of new interactions. Deciphering the languages of diatoms and bacteria and how they interact will inform our understanding of the role these organisms have in shaping the ocean and how these interactions may change in future oceans. PMID:22933565

  12. Review on SERS of Bacteria

    Directory of Open Access Journals (Sweden)

    Pamela A. Mosier-Boss

    2017-11-01

    Full Text Available Surface enhanced Raman spectroscopy (SERS has been widely used for chemical detection. Moreover, the inherent richness of the spectral data has made SERS attractive for use in detecting biological materials, including bacteria. This review discusses methods that have been used to obtain SERS spectra of bacteria. The kinds of SERS substrates employed to obtain SERS spectra are discussed as well as how bacteria interact with silver and gold nanoparticles. The roll of capping agents on Ag/Au NPs in obtaining SERS spectra is examined as well as the interpretation of the spectral data.

  13. Beer spoilage bacteria and hop resistance

    NARCIS (Netherlands)

    Sakamoto, K; Konings, WN

    2003-01-01

    For brewing industry, beer spoilage bacteria have been problematic for centuries. They include some lactic acid bacteria such as Lactobacillus brevis, Lactobacillus lindneri and Pediococcus damnosus, and some Gram-negative bacteria such as Pectinatus cerevisiiphilus, Pectinatus frisingensis and

  14. Gut Bacteria Affect Immunotherapy Response

    Science.gov (United States)

    Three new studies have identified intestinal bacteria that appear to influence the response to checkpoint inhibitors. This Cancer Currents blog post explains how the researchers think their findings could be used to improve patients’ responses to these immunotherapy drugs.

  15. Sewage-pollution indicator bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.; Rodrigues, V.; Alwares, E.; Rodrigues, C.; Baksh, R.; Jayan, S.; Mohandass, C.

    indiscriminate, deliber- ate, accidental, or regular/routine disposals), higher will be the number of coliforms in environmental samples. Further, microbiologists rely on the principle that higher the incidence of sewage indicator bacteria in any environment...

  16. Why do bacteria divide?

    Science.gov (United States)

    Norris, Vic

    2015-01-01

    The problem of not only how but also why cells divide can be tackled using recent ideas. One idea from the origins of life – Life as independent of its constituents – is that a living entity like a cell is a particular pattern of connectivity between its constituents. This means that if the growing cell were just to get bigger the average connectivity between its constituents per unit mass – its cellular connectivity – would decrease and the cell would lose its identity. The solution is division which restores connectivity. The corollary is that the cell senses decreasing cellular connectivity and uses this information to trigger division. A second idea from phenotypic diversity – Life on the Scales of Equilibria – is that a bacterium must find strategies that allow it to both survive and grow. This means that it has learnt to reconcile the opposing constraints that these strategies impose. The solution is that the cell cycle generates daughter cells with different phenotypes based on sufficiently complex equilibrium (E) and non-equilibrium (NE) cellular compounds and structures appropriate for survival and growth, respectively, alias ‘hyperstructures.’ The corollary is that the cell senses both the quantity of E material and the intensity of use of NE material and then uses this information to trigger the cell cycle. A third idea from artificial intelligence – Competitive Coherence – is that a cell selects the active subset of elements that actively determine its phenotype from a much larger set of available elements. This means that the selection of an active subset of a specific size and composition must be done so as to generate both a coherent cell state, in which the cell’s contents work together harmoniously, and a coherent sequence of cell states, each coherent with respect to itself and to an unpredictable environment. The solution is the use of a range of mechanisms ranging from hyperstructure dynamics to the cell cycle itself. PMID

  17. LACTIC ACID BACTERIA: PROBIOTIC APPLICATIONS

    OpenAIRE

    NEENA GARG

    2015-01-01

    Lactic acid bacteria (LAB) is a heterotrophic Gram-positive bacteria which under goes lactic acid fermentations and leads to production of lactic acid as an end product. LAB includes Lactobacillus, Leuconostoc, Pediococcus, Lactococcus and Streptococcus which are grouped together in the family lactobacillaceae. LAB shows numerous antimicrobial activities due to production of antibacterial and antifungal compounds such as organic acids, bacteriocins, diacetyl, hydrogen peroxide and reutrin. LA...

  18. Thymidine kinase diversity in bacteria

    DEFF Research Database (Denmark)

    Sandrini, Michael; Clausen, A.R.; Munch-Petersen, B.

    2006-01-01

    Thymidine kinases (TKs) appear to be almost ubiquitous and are found in nearly all prokaryotes, eukaryotes, and several viruses. They are the key enzymes in thymidine salvage and activation of several anti-cancer and antiviral drugs. We show that bacterial TKs can be subdivided into 2 groups. The....... The TKs from Gram-positive bacteria are more closely related to the eukaryotic TK1 enzymes than are TKs from Gram-negative bacteria....

  19. [Regulating acid stress resistance of lactic acid bacteria--a review].

    Science.gov (United States)

    Wu, Chongde; Huang, Jun; Zhou, Rongqing

    2014-07-04

    As cell factories, lactic acid bacteria are widely used in food, agriculture, pharmaceutical and other industries. Acid stress is one the important survival challenges encountered by lactic acid bacteria both in fermentation process and in the gastrointestinal tract. Recently, the development of systems biology and metabolic engineering brings unprecedented opportunity for further elucidating the acid tolerance mechanisms and improving the acid stress resistance of lactic acid bacteria. This review addresses physiological mechanisms of lactic acid bacteria during acid stress. Moreover, strategies to improve the acid stress resistance of lactic acid were proposed.

  20. Filtrating forms of soil bacteria

    Science.gov (United States)

    Van'kova, A. A.; Ivanov, P. I.; Emtsev, V. T.

    2013-03-01

    Filtrating (ultramicroscopic) forms (FF) of bacteria were studied in a soddy-podzolic soil and the root zone of alfalfa plants as part of populations of the most widespread physiological groups of soil bacteria. FF were obtained by filtering soil solutions through membrane filters with a pore diameter of 0.22 μm. It was established that the greater part of the bacteria in the soil and in the root zone of the plants has an ultramicroscopic size: the average diameter of the cells is 0.3 μm, and their length is 0.6 μm, which is significantly less than the cell size of banal bacteria. The number of FF varies within a wide range depending on the physicochemical conditions of the habitat. The FF number's dynamics in the soil is of a seasonal nature; i.e., the number of bacteria found increases in the summer and fall and decreases in the winter-spring period. In the rhizosphere of the alfalfa, over the vegetation period, the number of FF and their fraction in the total mass of the bacteria increase. A reverse tendency is observed in the rhizoplane. The morphological particularities (identified by an electron microscopy) and the nature of the FF indicate their physiological activity.

  1. Antimicrobial Activity – The Most Important Property of Probiotic and Starter Lactic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    Blaženka Kos

    2010-01-01

    Full Text Available The antimicrobial activity of industrially important lactic acid bacteria as starter cultures and probiotic bacteria is the main subject of this review. This activity has been attributed to the production of metabolites such as organic acids (lactic and acetic acid, hydrogen peroxide, ethanol, diacetyl, acetaldehyde, acetoine, carbon dioxide, reuterin, reutericyclin and bacteriocins. The potential of using bacteriocins of lactic acid bacteria, primarily used as biopreservatives, represents a perspective, alternative antimicrobial strategy for continuously increasing problem with antibiotic resistance. Another strategy in resolving this problem is an application of probiotics for different gastrointestinal and urogenital infection therapies.

  2. Recent Advances in Second Generation Ethanol Production by Thermophilic Bacteria

    Directory of Open Access Journals (Sweden)

    Sean Michael Scully

    2014-12-01

    Full Text Available There is an increased interest in using thermophilic bacteria for the production of bioethanol from complex lignocellulosic biomass due to their higher operating temperatures and broad substrate range. This review focuses upon the main genera of thermophilic anaerobes known to produce ethanol, their physiology, and the relevance of various environmental factors on ethanol yields including the partial pressure of hydrogen, ethanol tolerance, pH and substrate inhibition. Additionally, recent development in evolutionary adaptation and genetic engineering of thermophilic bacteria is highlighted. Recent developments in advanced process techniques used for ethanol production are reviewed with an emphasis on the advantages of using thermophilic bacteria in process strategies including separate saccharification and fermentation, simultaneous saccharification and fermentation (SSF, and consolidated bioprocessing (CBP.

  3. Chitin elicitation of natural product production in marine bacteria

    DEFF Research Database (Denmark)

    Månsson, Maria; Wietz, Matthias; Larsen, Thomas Ostenfeld

    Genome sequences reveal that our current standard laboratory conditions only support a fraction of the potential secondary metabolism in bacteria.1 Thus, we must rethink cultivation, detection, and isolation strategies for bacterial secondary metabolites in order to explore the huge, so far...... on glucose-based medium. The different phenotypic responses to a natural growth substrate may reflect different niche-adaptations or ecological functions of the compounds produced and it represents a fruitful approach for elicitation of natural product production in marine bacteria....... uncharacterized chemical potential of these organisms. As part of a new project on ecology-driven drug discovery at the Technical University of Denmark, we investigate the use of chitin to elicit or alter production of antibacterial compounds in marine bacteria. Within our large collection of Gram...

  4. Exopolysaccharide and lactic acid bacteria: Perception, functionality and prospects

    Directory of Open Access Journals (Sweden)

    Vivek K. Bajpai

    2016-03-01

    Full Text Available Lactic acid bacteria exhibit the most effective potential to divert significant amount of fermentable sugars towards the biosynthesis of functional exopolysaccharide. Exopolysaccharides from lactic acid bacteria are receiving a renewed interest due to the claims of human health benefits. This review provides an update on multiple uses and production of exopolysaccharides with major emphasis on their chemical properties, characterization, and some other molecular strategies adopted for their genetics and biological tailoring to better understand the process of exopolysaccharide production along with their antiviral efficacy with multiple modes of action. Additionally, microbiological, biochemical, nutritional and biotechnological aspects of exopolysaccharide production have also been discussed. Moreover, appro-priate suggestions have been made on lactic acid bacteria improvements, leading to enhanced production with advanced modification and production process that may contribute to the economic soundness of applications in food and pharmacological industries with this promising group of biomolecules.

  5. Plants, mycorrhizal fungi, and bacteria: a network of interactions.

    Science.gov (United States)

    Bonfante, Paola; Anca, Iulia-Andra

    2009-01-01

    This review focuses on interactions among plants, mycorrhizal fungi, and bacteria, testing the hypothesis whether mycorrhizas can be defined as tripartite associations. After summarizing the main biological features of mycorrhizas, we illustrate the different types of interaction occurring between mycorrhizal fungi and bacteria, from loosely associated microbes to endobacteria. We then discuss, in the context of nutritional strategies, the mechanisms that operate among members of the consortium and that often promote plant growth. Release of active molecules, including volatiles, and physical contact among the partners seem important for the establishment of the bacteria/mycorrhizal fungus/plant network. The potential involvement of quorum sensing and Type III secretion systems is discussed, even if the exact nature of the complex interspecies/interphylum interactions remains unclear.

  6. Human body may produce bacteria.

    Science.gov (United States)

    Salerian, Alen J

    2017-06-01

    "Human body may produce bacteria" proposes that human body may produce bacteria and represent an independent source of infections contrary to the current paradigm of infectious disorders proposed by Louis Pasteur in 1880. The following observations are consistent with this hypothesis: A. Bidirectional transformations of both living and nonliving things have been commonly observed in nature. B. Complex multicellular organisms harbor the necessary properties to produce bacteria (water, nitrogen and oxygen). C. Physical laws suggest any previously observed phenomenon or action will occur again (life began on earth; a non living thing). D. Animal muscle cells may generate energy (fermentation). E. Sterilized food products (i.e. boiled eggs), may produce bacteria and fungus under special conditions and without any exposure to foreign living cells. "Human body may produce bacteria" may challenge the current medical paradigm that views human infectious disorders as the exclusive causative byproducts of invading foreign cells. It may also introduce new avenues to treat infectious disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Acetic Acid Bacteria as Symbionts of Insects

    KAUST Repository

    Crotti, Elena

    2016-06-14

    Acetic acid bacteria (AAB) are being increasingly described as associating with different insect species that rely on sugar-based diets. AAB have been found in several insect orders, among them Diptera, Hemiptera, and Hymenoptera, including several vectors of plant, animal, and human diseases. AAB have been shown to associate with the epithelia of different organs of the host, they are able to move within the insect’s body and to be transmitted horizontally and vertically. Here, we review the ecology of AAB and examine their relationships with different insect models including mosquitoes, leafhoppers, and honey bees. We also discuss the potential use of AAB in symbiont-based control strategies, such as “Trojan-horse” agents, to block the transmission of vector-borne diseases.

  8. Chitin Degradation In Marine Bacteria

    DEFF Research Database (Denmark)

    Paulsen, Sara; Machado, Henrique; Gram, Lone

    2015-01-01

    Introduction: Chitin is the most abundant polymer in the marine environment and the second most abundant in nature. Chitin does not accumulate on the ocean floor, because of microbial breakdown. Chitin degrading bacteria could have potential in the utilization of chitin as a renewable carbon...... and nitrogen source in the fermentation industry.Methods: Here, whole genome sequenced marine bacteria were screened for chitin degradation using phenotypic and in silico analyses.Results: The in silico analyses revealed the presence of three to nine chitinases in each strain, however the number of chitinases...... chitin regulatory system.Conclusions: This study has provided insight into the ecology of chitin degradation in marine bacteria. It also served as a basis for choosing a more efficient chitin degrading production strain e.g. for the use of chitin waste for large-scale fermentations....

  9. Methylotrophic bacteria in sustainable agriculture.

    Science.gov (United States)

    Kumar, Manish; Tomar, Rajesh Singh; Lade, Harshad; Paul, Diby

    2016-07-01

    Excessive use of chemical fertilizers to increase production from available land has resulted in deterioration of soil quality. To prevent further soil deterioration, the use of methylotrophic bacteria that have the ability to colonize different habitats, including soil, sediment, water, and both epiphytes and endophytes as host plants, has been suggested for sustainable agriculture. Methylotrophic bacteria are known to play a significant role in the biogeochemical cycle in soil ecosystems, ultimately fortifying plants and sustaining agriculture. Methylotrophs also improve air quality by using volatile organic compounds such as dichloromethane, formaldehyde, methanol, and formic acid. Additionally, methylotrophs are involved in phosphorous, nitrogen, and carbon cycling and can help reduce global warming. In this review, different aspects of the interaction between methylotrophs and host plants are discussed, including the role of methylotrophs in phosphorus acquisition, nitrogen fixation, phytohormone production, iron chelation, and plant growth promotion, and co-inoculation of these bacteria as biofertilizers for viable agriculture practices.

  10. Bacteria versus selenium: A view from the inside out

    Science.gov (United States)

    Staicu, Lucian; Oremland, Ronald S.; Tobe, Ryuta; Mihara, Hisaaki

    2017-01-01

    Bacteria and selenium (Se) are closely interlinked as the element serves both essential nutrient requirements and energy generation functions. However, Se can also behave as a powerful toxicant for bacterial homeostasis. Conversely, bacteria play a tremendous role in the cycling of Se between different environmental compartments, and bacterial metabolism has been shown to participate to all valence state transformations undergone by Se in nature. Bacteria possess an extensive molecular repertoire for Se metabolism. At the end of the 1980s, a novel mode of anaerobic respiration based on Se oxyanions was experimentally documented for the first time. Following this discovery, specific enzymes capable of reducing Se oxyanions and harvesting energy were found in a number of anaerobic bacteria. The genes involved in the expression of these enzymes have later been identified and cloned. This iterative approach undertaken outside-in led to the understanding of the molecular mechanisms of Se transformations in bacteria. Based on the extensive knowledge accumulated over the years, we now have a full(er) view from the inside out, from DNA-encoding genes to enzymes and thermodynamics. Bacterial transformations of Se for assimilatory purposes have been the object of numerous studies predating the investigation of Se respiration. Remarkable contributions related to the understating of the molecular picture underlying seleno-amino acid biosynthesis are reviewed herein. Under certain circumstances, Se is a toxicant for bacterial metabolism and bacteria have evolved strategies to counteract this toxicity, most notably by the formation of elemental Se (nano)particles. Several biotechnological applications, such as the production of functional materials and the biofortification of crop species using Se-utilizing bacteria, are presented in this chapter.

  11. Bacteria of Phlebotominae Sand Flies Collected in Western Iran

    Directory of Open Access Journals (Sweden)

    Somayeh Rafatbakhsh-Iran

    2015-08-01

    Full Text Available Microorganisms particularly bacteria presenting in insects such as Phlebotominae may play an important role in the epidemiology of human infectious disease. Nowadays, because of vector implications, the routine methods of controlling and spraying have no more beneficial effects on vectors and reservoirs. Little knows about the prevalence and diversity of sand fly bacteria. The main objective of this study was to determine the presence of bacteria of phlebotominae sand flies collected in Hamadan, west of Iran. This information is important in order to development of vector control strategies. The microbial flora of Phlebotomus papatasi and P. sergenti the main vector of Cutaneous Leishmaniasis in the old world, were investigated. We characterized 8 bacteria, including 5 Gram-negative bacteria: Acinetobacter lwoffii, Pseudomonas aeruginosa, Enterobacter cloacae, Edvardsiela sp. and Proteus mirabilis and Gram-positive bacteria: Bacillus subtilis, Staphylococcus saprophyticus and Micrococcus luteus. Our study provides some data on the microbiota diversity of field-collected sand flies for the first time in Hamadan. Our results indicate that there is a range of variation of aerobic bacteria inhabiting sand fly, which possibly reflect the ecological condition of the habitat where the fly breeds. Microbiota is increasingly regarded as an important factor for modulating vector competence in insect vectors. So, mirobiota can be effects on the biology of phlebotominae and their roles in the sandfly-Leishmania interaction. Further experiments are required to clearly delineate the vectorial role of sand flies. Because it is probable that in the future, factors such as environmental changes, migration and urbanization can ease the transmission of leishmaniasis in this area.

  12. Inner Plant Values: Diversity, Colonization and Benefits from Endophytic Bacteria

    Directory of Open Access Journals (Sweden)

    Hongwei Liu

    2017-12-01

    Full Text Available One of the most exciting scientific advances in recent decades has been the realization that the diverse and immensely active microbial communities are not only ‘passengers’ with plants, but instead play an important role in plant growth, development and resistance to biotic and abiotic stresses. A picture is emerging where plant roots act as ‘gatekeepers’ to screen soil bacteria from the rhizosphere and rhizoplane. This typically results in root endophytic microbiome dominated by Proteobacteria, Actinobacteria and to a lesser extent Bacteroidetes and Firmicutes, but Acidobacteria and Gemmatimonadetes being almost depleted. A synthesis of available data suggest that motility, plant cell-wall degradation ability and reactive oxygen species scavenging seem to be crucial traits for successful endophytic colonization and establishment of bacteria. Recent studies provide solid evidence that these bacteria serve host functions such as improving of plant nutrients through acquisition of nutrients from soil and nitrogen fixation in leaves. Additionally, some endophytes can engage ‘priming’ plants which elicit a faster and stronger plant defense once pathogens attack. Due to these plant growth-promoting effects, endophytic bacteria are being widely explored for their use in the improvement of crop performance. Updating the insights into the mechanism of endophytic bacterial colonization and interactions with plants is an important step in potentially manipulating endophytic bacteria/microbiome for viable strategies to improve agricultural production.

  13. Inner Plant Values: Diversity, Colonization and Benefits from Endophytic Bacteria.

    Science.gov (United States)

    Liu, Hongwei; Carvalhais, Lilia C; Crawford, Mark; Singh, Eugenie; Dennis, Paul G; Pieterse, Corné M J; Schenk, Peer M

    2017-01-01

    One of the most exciting scientific advances in recent decades has been the realization that the diverse and immensely active microbial communities are not only 'passengers' with plants, but instead play an important role in plant growth, development and resistance to biotic and abiotic stresses. A picture is emerging where plant roots act as 'gatekeepers' to screen soil bacteria from the rhizosphere and rhizoplane. This typically results in root endophytic microbiome dominated by Proteobacteria, Actinobacteria and to a lesser extent Bacteroidetes and Firmicutes, but Acidobacteria and Gemmatimonadetes being almost depleted. A synthesis of available data suggest that motility, plant cell-wall degradation ability and reactive oxygen species scavenging seem to be crucial traits for successful endophytic colonization and establishment of bacteria. Recent studies provide solid evidence that these bacteria serve host functions such as improving of plant nutrients through acquisition of nutrients from soil and nitrogen fixation in leaves. Additionally, some endophytes can engage 'priming' plants which elicit a faster and stronger plant defense once pathogens attack. Due to these plant growth-promoting effects, endophytic bacteria are being widely explored for their use in the improvement of crop performance. Updating the insights into the mechanism of endophytic bacterial colonization and interactions with plants is an important step in potentially manipulating endophytic bacteria/microbiome for viable strategies to improve agricultural production.

  14. MAGNETIC BACTERIA AND THEIR POTENTIAL APPLICATIONS: A REVIEW ARTICLE

    Directory of Open Access Journals (Sweden)

    Sara Rajab Eljmeli

    2017-03-01

    Full Text Available Introduction: This outline explores the scientific discovery concerning the magnetotactic bacteria (MTB. The results of the discovery are used in microbiology, mineralogy, limnology, physics, biophysics, chemistry, biochemistry, geology, crystallography, and astrobiology. Magnetosomes of the MTB are organized in linear chains and orient the cell body along geomagnetic field lines while flagella actively propel the cells, resulting in so-called magnetotaxis. Materials and Methods: The review article about the magnetotactic bacteria is a collection of many research papers from different institutes. The emerging important points about this review lie in: (1 any biological system is capable of producing magnetic biomaterials such as magnetite (Fe3O4 and gregite (Fe3S4; (2 the navigation of these nano-crystals in the biological system is interconnected with the Earth’s magnetic field. Results: The researchers involved in the study have shown that the magnetotactic bacteria do respond to a magnetic field. This makes them attractive for biomedical and industrial applications because of the availability of superior electromagnets, superconducting magnets and permanent magnet. Magnetic bacteria can also be used as a diagnostic tool in the detection of imperfections even at the nanoscale. Discussion and Conclusions: Although the importance of this issue is still limitedly used in medical area, more performance is necessary to explore the world of these bacteria that are candidate for new industry and new therapy strategies in biotechnology and medical fields.

  15. Novel Adaptive Bacteria Foraging Algorithms for Global Optimization

    Directory of Open Access Journals (Sweden)

    Ahmad N. K. Nasir

    2014-01-01

    Full Text Available This paper presents improved versions of bacterial foraging algorithm (BFA. The chemotaxis feature of bacteria through random motion is an effective strategy for exploring the optimum point in a search area. The selection of small step size value in the bacteria motion leads to high accuracy in the solution but it offers slow convergence. On the contrary, defining a large step size in the motion provides faster convergence but the bacteria will be unable to locate the optimum point hence reducing the fitness accuracy. In order to overcome such problems, novel linear and nonlinear mathematical relationships based on the index of iteration, index of bacteria, and fitness cost are adopted which can dynamically vary the step size of bacteria movement. The proposed algorithms are tested with several unimodal and multimodal benchmark functions in comparison with the original BFA. Moreover, the application of the proposed algorithms in modelling of a twin rotor system is presented. The results show that the proposed algorithms outperform the predecessor algorithm in all test functions and acquire better model for the twin rotor system.

  16. Distribution, Organization, and Ecology of Bacteria in Chronic Wounds▿

    Science.gov (United States)

    Kirketerp-Møller, Klaus; Jensen, Peter Ø.; Fazli, Mustafa; Madsen, Kit G.; Pedersen, Jette; Moser, Claus; Tolker-Nielsen, Tim; Høiby, Niels; Givskov, Michael; Bjarnsholt, Thomas

    2008-01-01

    Between 1 and 2% of the population in the developed world experiences a nonhealing or chronic wound characterized by an apparent arrest in a stage dominated by inflammatory processes. Lately, research groups have proposed that bacteria might be involved in and contribute to the lack of healing of these wounds. To investigate this, we collected and examined samples from chronic wounds obtained from 22 different patients, all selected because of suspicion of Pseudomonas aeruginosa colonization. These wound samples were investigated by standard culturing methods and peptide nucleic acid-based fluorescence in situ hybridization (PNA FISH) for direct identification of bacteria. By means of the culturing methods, Staphylococcus aureus was detected in the majority of the wounds, whereas P. aeruginosa was observed less frequently. In contrast, using PNA FISH, we found that a large fraction of the wounds contained P. aeruginosa. Furthermore, PNA FISH revealed the structural organization of bacteria in the samples. It appeared that P. aeruginosa aggregated as microcolonies imbedded in the matrix component alginate, which is a characteristic hallmark of the biofilm mode of growth. The present investigation suggests that bacteria present within these wounds tend to be aggregated in microcolonies imbedded in a self-produced matrix, characteristic of the biofilm mode of growth. Additionally, we must conclude that there exists no good correlation between bacteria detected by standard culturing methods and those detected by direct detection methods such as PNA FISH. This strongly supports the development of new diagnostic and treatment strategies for chronic wounds. PMID:18508940

  17. Chitin elicitation of natural product production in marine bacteria

    OpenAIRE

    Månsson, Maria; Wietz, Matthias; Larsen, Thomas Ostenfeld; Gram, Lone

    2012-01-01

    Genome sequences reveal that our current standard laboratory conditions only support a fraction of the potential secondary metabolism in bacteria.1 Thus, we must rethink cultivation, detection, and isolation strategies for bacterial secondary metabolites in order to explore the huge, so far uncharacterized chemical potential of these organisms. As part of a new project on ecology-driven drug discovery at the Technical University of Denmark, we investigate the use of chitin to elicit or alter ...

  18. Probiotic bacteria in dairy products

    OpenAIRE

    KORANDOVÁ, Květa

    2012-01-01

    Probiotic microorganisms are live organisms that facilitate optimal composition of intestinal flora. The thesis deals with the positive influence of probiotic microorganisms on human health. It describes the most frequently used bacteria family, which includes Lactobacillus, Lactococcus, Streptococcus and Bifidobacterium. The thesis also deals with health, microbiologic and technological requirements necessary for probiotic effectiveness. It offers an overview of characteristics of products c...

  19. ENDOSPORES OF THERMOPHILIC FERMENTATIVE BACTERIA

    DEFF Research Database (Denmark)

    Volpi, Marta

    2016-01-01

    solely based on endospores of sulphate-reducing bacteria (SRB), which presumably constitute only a small fraction of the total thermophilic endospore community reaching cold environments. My PhD project developed an experimental framework for using thermophilic fermentative endospores (TFEs) to trace...

  20. Programmed survival of soil bacteria

    DEFF Research Database (Denmark)

    Jensen, Lars Bogø; Molin, Søren; Sternberg, Claus

    Biological containment systems have been developed for Pseudomonas putida and related soil bacteria. The systems are based on combinations of lethal genes and regulated gene expression. Two types of killing function have been employed: 1) A membrane protein interfering with the membrane potential...

  1. Synthetic Biology in Streptomyces Bacteria

    NARCIS (Netherlands)

    Medema, Marnix H.; Breitling, Rainer; Takano, Eriko

    2011-01-01

    Actinomycete bacteria of the genus Streptomyces are major producers of bioactive compounds for the biotechnology industry. They are the source of most clinically used antibiotics, as well as of several widely used drugs against common diseases, including cancer . Genome sequencing has revealed that

  2. Deodorant bacteria; Des bacteries desodorisantes

    Energy Technology Data Exchange (ETDEWEB)

    Fanlo, J.L. [Ecole Nationale Superieure des Mines, 30 - Ales (France)

    1998-02-01

    Purifying bacteria: if this concept is not new, its application to gases cleansing has only been developed recently. This method allows to eliminate the volatile organic compounds and the gaseous effluents odors which come from industrial sites. Three bioreactors types exist at the present time. Their principles are explained. (O.M.) 6 refs.

  3. Manipulating Genetic Material in Bacteria

    Science.gov (United States)

    1998-01-01

    Lisa Crawford, a graduate research assistant from the University of Toledo, works with Laurel Karr of Marshall Space Flight Center (MSFC) in the molecular biology laboratory. They are donducting genetic manipulation of bacteria and yeast for the production of large amount of desired protein. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  4. Functional genomics of intracellular bacteria.

    Science.gov (United States)

    de Barsy, Marie; Greub, Gilbert

    2013-07-01

    During the genomic era, a large amount of whole-genome sequences accumulated, which identified many hypothetical proteins of unknown function. Rapidly, functional genomics, which is the research domain that assign a function to a given gene product, has thus been developed. Functional genomics of intracellular pathogenic bacteria exhibit specific peculiarities due to the fastidious growth of most of these intracellular micro-organisms, due to the close interaction with the host cell, due to the risk of contamination of experiments with host cell proteins and, for some strict intracellular bacteria such as Chlamydia, due to the absence of simple genetic system to manipulate the bacterial genome. To identify virulence factors of intracellular pathogenic bacteria, functional genomics often rely on bioinformatic analyses compared with model organisms such as Escherichia coli and Bacillus subtilis. The use of heterologous expression is another common approach. Given the intracellular lifestyle and the many effectors that are used by the intracellular bacteria to corrupt host cell functions, functional genomics is also often targeting the identification of new effectors such as those of the T4SS of Brucella and Legionella.

  5. Biofilms: Community Behavior by Bacteria

    Indian Academy of Sciences (India)

    IAS Admin

    phenotypically planktonic bacteria, leaving behind an empty colony. Dispersal is usually ... dental plaque biofilms includes a series of steps that begins with the initial colonization of the pellicle and ends with the complex formation ... treated by the biofilm method (activated sludge) is very effective. Biofilms can also be used ...

  6. Automated radiometric detection of bacteria

    International Nuclear Information System (INIS)

    Waters, J.R.

    1974-01-01

    A new radiometric method called BACTEC, used for the detection of bacteria in cultures or in supposedly sterile samples, was discussed from the standpoint of methodology, both automated and semi-automated. Some of the results obtained so far were reported and some future applications and development possibilities were described. In this new method, the test sample is incubated in a sealed vial with a liquid culture medium containing a 14 C-labeled substrate. If bacteria are present, they break down the substrate, producing 14 CO 2 which is periodically extracted from the vial as a gas and is tested for radioactivity. If this gaseous radioactivity exceeds a threshold level, it is evidence of bacterial presence and growth in the test vial. The first application was for the detection of bacteria in the blood cultures of hospital patients. Data were presented showing typical results. Also discussed were future applications, such as rapid screening for bacteria in urine industrial sterility testing and the disposal of used 14 C substrates. (Mukohata, S.)

  7. Alternative sources of Legionella bacteria

    NARCIS (Netherlands)

    van Heijnsbergen, H.H.L.

    2017-01-01

    Legionella bacteria can cause Legionnaires’ disease (LD) in humans. Symptoms of LD can range from mild disease to severe pneumonia with sometimes fatal outcome. In the Netherlands, the most important infective agent is Legionella pneumophila. L. pneumophila infection is associated with aquatic

  8. Fuzzy species among recombinogenic bacteria

    Directory of Open Access Journals (Sweden)

    Fraser Christophe

    2005-03-01

    Full Text Available Abstract Background It is a matter of ongoing debate whether a universal species concept is possible for bacteria. Indeed, it is not clear whether closely related isolates of bacteria typically form discrete genotypic clusters that can be assigned as species. The most challenging test of whether species can be clearly delineated is provided by analysis of large populations of closely-related, highly recombinogenic, bacteria that colonise the same body site. We have used concatenated sequences of seven house-keeping loci from 770 strains of 11 named Neisseria species, and phylogenetic trees, to investigate whether genotypic clusters can be resolved among these recombinogenic bacteria and, if so, the extent to which they correspond to named species. Results Alleles at individual loci were widely distributed among the named species but this distorting effect of recombination was largely buffered by using concatenated sequences, which resolved clusters corresponding to the three species most numerous in the sample, N. meningitidis, N. lactamica and N. gonorrhoeae. A few isolates arose from the branch that separated N. meningitidis from N. lactamica leading us to describe these species as 'fuzzy'. Conclusion A multilocus approach using large samples of closely related isolates delineates species even in the highly recombinogenic human Neisseria where individual loci are inadequate for the task. This approach should be applied by taxonomists to large samples of other groups of closely-related bacteria, and especially to those where species delineation has historically been difficult, to determine whether genotypic clusters can be delineated, and to guide the definition of species.

  9. Plant Growth-Promoting Bacteria: Mechanisms and Applications

    Directory of Open Access Journals (Sweden)

    Bernard R. Glick

    2012-01-01

    Full Text Available The worldwide increases in both environmental damage and human population pressure have the unfortunate consequence that global food production may soon become insufficient to feed all of the world's people. It is therefore essential that agricultural productivity be significantly increased within the next few decades. To this end, agricultural practice is moving toward a more sustainable and environmentally friendly approach. This includes both the increasing use of transgenic plants and plant growth-promoting bacteria as a part of mainstream agricultural practice. Here, a number of the mechanisms utilized by plant growth-promoting bacteria are discussed and considered. It is envisioned that in the not too distant future, plant growth-promoting bacteria (PGPB will begin to replace the use of chemicals in agriculture, horticulture, silviculture, and environmental cleanup strategies. While there may not be one simple strategy that can effectively promote the growth of all plants under all conditions, some of the strategies that are discussed already show great promise.

  10. Global Strategy

    DEFF Research Database (Denmark)

    Li, Peter Ping

    2013-01-01

    Global strategy differs from domestic strategy in terms of content and process as well as context and structure. The content of global strategy can contain five key elements, while the process of global strategy can have six major stages. These are expounded below. Global strategy is influenced...... by rich and complementary local contexts with diverse resource pools and game rules at the national level to form a broad ecosystem at the global level. Further, global strategy dictates the interaction or balance between different entry strategies at the levels of internal and external networks....

  11. Influence of natural substrates and co-occurring marine bacteria on the production of secondary metabolites by Photobacterium halotolerans

    DEFF Research Database (Denmark)

    Månsson, Maria; Giobergia, Sonia; Møller, Kirsten A.

    Genome sequences reveal that our current standard laboratory conditions only support a fraction of the potential secondary metabolism in bacteria. Thus, we must rethink cultivation, detection, and isolation strategies for bacterial secondary metabolites in order to explore the huge, so far unchar...... uncharacterized chemical potential of these organisms. We are currently investigating the use of natural substrates and co-cultures with commensal bacteria to elicit or alter production of antibacterial compounds in marine bacteria....

  12. Quantitative relationship between antibiotic exposure and the acquisition and transmission of resistance in bacteria in the laboratory

    NARCIS (Netherlands)

    Händel, N.

    2015-01-01

    The worldwide emergence and spread of antibiotic resistant bacteria represent a major threat to human health care as the chance of therapy failure and costs for treatment increase. To curb the continuous rise of drug resistant bacteria worldwide, new strategies are urgently needed that counteract

  13. Drinking Water Fact Sheet: Coliform Bacteria

    OpenAIRE

    Mesner, Nancy; Daniels, Barbara

    2010-01-01

    This fact sheet provides information about coliform bacteria. Including sections about what coliform bacteria is, how it enters drinking water, health concerns from exposure, drinking water standards, and how to treat drinking water that contains coliforms.

  14. Killer Pigments in Bacteria: An Ecological Nightmare.

    Science.gov (United States)

    Benathen, Isaiah A.; Saccardi, Marion

    2000-01-01

    Describes an alternative to teaching ecology by using bacteria to test competitor survival. Students observe a time-dependent selective killing of other unrelated bacteria by Pseudomonas aeruginosa. (SAH)

  15. Viability of bacteria in peatlands

    Science.gov (United States)

    Bogdanova, O. Yu.; Golovchenko, A. V.; Lysak, L. V.; Glukhova, T. V.; Zvyagintsev, D. G.

    2014-04-01

    The viability of bacteria in oligotrofic bogs and fens was determined by the luminescent microscopy method with the help of a two-component fluorescent dye (L7012 LIVE/DEAD). Living bacterial cells were found in the entire peat profiles. Their portion was maximal (up to 60%) in the upper layers and did not exceed 25% in the lower layers. The portion of dead bacterial cells varied from 3 to 19%, and dormant cells constituted 25 to 95% of the total number of bacterial cells. The numbers of dormant cells increased down the profiles irrespectively of the peat type. The portion of nanoforms did not exceed 5% of the total. The cells of the nanoforms, unlike the bacteria of typical sizes, were characterized by their high viability (93-98%).

  16. Genetics of Lactic Acid Bacteria

    Science.gov (United States)

    Zagorec, Monique; Anba-Mondoloni, Jamila; Coq, Anne-Marie Crutz-Le; Champomier-Vergès, Marie-Christine

    Many meat (or fish) products, obtained by the fermentation of meat originating from various animals by the flora that naturally contaminates it, are part of the human diet since millenaries. Historically, the use of bacteria as starters for the fermentation of meat, to produce dry sausages, was thus performed empirically through the endogenous micro-biota, then, by a volunteer addition of starters, often performed by back-slopping, without knowing precisely the microbial species involved. It is only since about 50 years that well defined bacterial cultures have been used as starters for the fermentation of dry sausages. Nowadays, the indigenous micro-biota of fermented meat products is well identified, and the literature is rich of reports on the identification of lactic acid bacteria (LAB) present in many traditional fermented products from various geographical origin, obtained without the addition of commercial starters (See Talon, Leroy, & Lebert, 2007, and references therein).

  17. Bacteria clustering by polymers induces the expression of quorum-sensing-controlled phenotypes

    Science.gov (United States)

    Lui, Leong T.; Xue, Xuan; Sui, Cheng; Brown, Alan; Pritchard, David I.; Halliday, Nigel; Winzer, Klaus; Howdle, Steven M.; Fernandez-Trillo, Francisco; Krasnogor, Natalio; Alexander, Cameron

    2013-12-01

    Bacteria deploy a range of chemistries to regulate their behaviour and respond to their environment. Quorum sensing is one method by which bacteria use chemical reactions to modulate pre-infection behaviour such as surface attachment. Polymers that can interfere with bacterial adhesion or the chemical reactions used for quorum sensing are therefore a potential means to control bacterial population responses. Here, we report how polymeric ‘bacteria sequestrants’, designed to bind to bacteria through electrostatic interactions and therefore inhibit bacterial adhesion to surfaces, induce the expression of quorum-sensing-controlled phenotypes as a consequence of cell clustering. A combination of polymer and analytical chemistry, biological assays and computational modelling has been used to characterize the feedback between bacteria clustering and quorum sensing signalling. We have also derived design principles and chemical strategies for controlling bacterial behaviour at the population level.

  18. Selective Killing of Pathogenic Bacteria by Antimicrobial Silver Nanoparticle - Cell Wall Binding Domain (CBD) Conjugates.

    Science.gov (United States)

    Kim, Domyoung; Kwon, Seok Joon; Wu, Xia; Sauve, Jessica; Lee, Inseon; Nam, Jahyun; Kim, Jungbae; Dordick, Jonathan S

    2018-04-05

    Broad-spectrum antibiotics indiscriminately kill bacteria, removing non-pathogenic microorganisms and leading to evolution of antibiotic resistant strains. Specific antimicrobials that could selectively kill pathogenic bacteria without targeting other bacteria in the natural microbial community or microbiome may be able to address this concern. In this work, we demonstrate that silver nanoparticles, suitably conjugated to a selective cell wall binding domain (CBD), can efficiently target and selectively kill bacteria. As a relevant example, CBDBA from Bacillus anthracis selectively bound to B. anthracis in a mixture with B. subtilis, as well in a mixture with Staphylococcus aureus. This new biologically-assisted hybrid strategy, therefore, has the potential to provide selective decontamination of pathogenic bacteria with minimal impact on normal microflora.

  19. Box-shaped halophilic bacteria.

    OpenAIRE

    Javor, B; Requadt, C; Stoeckenius, W

    1982-01-01

    Three morphologically similar strains of halophilic, box-shaped procaryotes have been isolated from brines collected in the Sinai, Baja California (Mexico), and southern California (United States). Although the isolates in their morphology resemble Walsby's square bacteria, which are a dominant morphological type in the Red Sea and Baja California brines, they are probably not identical to them. The cells show the general characteristics of extreme halophiles and archaebacteria. They contain ...

  20. Fungal inhibitory lactic acid bacteria

    OpenAIRE

    Ström, Katrin

    2005-01-01

    Lactic acid bacteria (LAB) are microorganisms that have been used for centuries to prepare and improve storage of food and for ensiling of different crops for animal feed. This thesis explores the possibility of using LAB to inhibit growth of spoilage fungi in food and feed products. LAB isolates, collected from plant material or dairy products, were screened for antifungal activity in a dual culture assay. Strains with antifungal activity were identified and the fungal inhibitory activity wa...

  1. Re-engineering bacteria for ethanol production

    Science.gov (United States)

    Yomano, Lorraine P; York, Sean W; Zhou, Shengde; Shanmugam, Keelnatham; Ingram, Lonnie O

    2014-05-06

    The invention provides recombinant bacteria, which comprise a full complement of heterologous ethanol production genes. Expression of the full complement of heterologous ethanol production genes causes the recombinant bacteria to produce ethanol as the primary fermentation product when grown in mineral salts medium, without the addition of complex nutrients. Methods for producing the recombinant bacteria and methods for producing ethanol using the recombinant bacteria are also disclosed.

  2. Oligotrophic bacteria isolated from clinical materials.

    OpenAIRE

    Tada, Y; Ihmori, M; Yamaguchi, J

    1995-01-01

    Oligotrophic bacteria (oligotrophs) are microorganisms that grow in extremely nutritionally deficient conditions in which the concentrations of organic substances are low. Many oligotrophic bacteria were isolated from clinical materials including urine, sputum, swabbings of the throat, vaginal discharges, and others. Seventy-seven strains of oligotrophic bacteria from 871 samples of clinical material were isolated. A relatively higher frequency of isolation of oligotrophic bacteria was shown ...

  3. Stress Physiology of Lactic Acid Bacteria.

    Science.gov (United States)

    Papadimitriou, Konstantinos; Alegría, Ángel; Bron, Peter A; de Angelis, Maria; Gobbetti, Marco; Kleerebezem, Michiel; Lemos, José A; Linares, Daniel M; Ross, Paul; Stanton, Catherine; Turroni, Francesca; van Sinderen, Douwe; Varmanen, Pekka; Ventura, Marco; Zúñiga, Manuel; Tsakalidou, Effie; Kok, Jan

    2016-09-01

    Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the "stressome" of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Stress Physiology of Lactic Acid Bacteria

    Science.gov (United States)

    Papadimitriou, Konstantinos; Alegría, Ángel; Bron, Peter A.; de Angelis, Maria; Gobbetti, Marco; Kleerebezem, Michiel; Lemos, José A.; Linares, Daniel M.; Ross, Paul; Stanton, Catherine; Turroni, Francesca; van Sinderen, Douwe; Varmanen, Pekka; Ventura, Marco; Zúñiga, Manuel; Tsakalidou, Effie

    2016-01-01

    SUMMARY Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the “stressome” of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance. PMID:27466284

  5. Laser-Based Identification of Pathogenic Bacteria

    Science.gov (United States)

    Rehse, Steven J.

    2009-01-01

    Bacteria are ubiquitous in our world. From our homes, to our work environment, to our own bodies, bacteria are the omnipresent although often unobserved companions to human life. Physicists are typically untroubled professionally by the presence of these bacteria, as their study usually falls safely outside the realm of our typical domain. In the…

  6. Bacteria interfere with A-actinomycetemcomitans colonization

    OpenAIRE

    Teughels, Wim; Haake, S. Kinder; Sliepen, Isabelle; Pauwels, Martine; Van Eldere, Johan; Cassiman, Jean-Jacques; Quirynen, Marc

    2007-01-01

    It is known that beneficial bacteria can suppress the emergence of pathogenic bacteria, particularly in the gastrointestinal tract. This study examined the potential for a similar suppression of Aggregatibacter (formerly Actinobacillus) actinomycetemcomitans colonization of epithelial cells, due to its potential relevance in periodontal diseases. Seven presumed beneficial bacteria were examined for their ability to interfere, exclude, or displace A. actinomycetemcomitans from epithelial cells...

  7. AIDS: "it's the bacteria, stupid!".

    Science.gov (United States)

    Broxmeyer, Lawrence; Cantwell, Alan

    2008-11-01

    Acid-fast tuberculous mycobacterial infections are common in AIDS and are regarded as secondary "opportunistic infections." According to the National Institute of Allergy and Infectious Diseases, TB is the major attributable cause of death in AIDS patients. Could such bacteria play a primary or causative role in AIDS? Certainly, In screening tests for HIV, there is frequent, up to 70%, cross-reactivity, between the gag and pol proteins of HIV and patients with mycobacterial infections such as tuberculosis. By 1972, five years before gays started dying in the U.S., Rolland wrote Genital Tuberculosis, a Forgotten Disease? And ironically, in 1979, on the eve of AIDS recognition, Gondzik and Jasiewicz showed that even in the laboratory, genitally infected tubercular male guinea pigs could infect healthy females through their semen by an HIV-compatible ratio of 1 in 6 or 17%, prompting him to warn his patients that not only was tuberculosis a sexually transmitted disease, but also the necessity of the application of suitable contraceptives, such as condoms, to avoid it. Gondzik's solution and date of publication are chilling; his findings significant. Since 1982 Cantwell et al found acid-fast bacteria closely related to tuberculosis (TB) and atypical tuberculosis in AIDS tissue. On the other hand molecular biologist and virologist Duesberg, who originally defined retroviral ultrastructure, has made it clear that HIV is not the cause of AIDS and that the so-called AIDS retrovirus has never been isolated in its pure state. Dr. Etienne de Harven, first to examine retroviruses under the electron, agrees. In 1993 HIV co-discoverer Luc Montagnier reported on cell-wall-deficient (CWD) bacteria which he called "mycoplasma" in AIDS tissue. He suspected these as a necessary "co-factor" for AIDS. Remarkably, Montagnier remained silent on Cantwell's reports of acid-fast bacteria which could simulate "mycoplasma" in AIDS tissue. Mattman makes clear that the differentiation between

  8. Strategie podniku

    OpenAIRE

    Gerlašinský, Marcel

    2009-01-01

    The aim of theoretic part of the thesis is to define the term of a strategy, specify the way how to create the strategy, what approach, methods and instruments are used for the strategy determination. Part of the definicions and further focus will be the area of strategic analysis,competetive advantage and the Enterprise's resources. In the application part, the present strategy of Airport Prague company, that is the the international Prague Ruzyne airport operator, will be specified. On the ...

  9. Subversion of the cytoskeleton by intracellular bacteria: lessons from Listeria, Salmonella, and Vibrio

    Science.gov (United States)

    de Souza Santos, Marcela; Orth, Kim

    2018-01-01

    Summary Entry into host cells and intracellular persistence by invasive bacteria are tightly coupled to the ability of the bacterium to disrupt the eukaryotic cytoskeletal machinery. Herein we review the main strategies used by three intracellular pathogens to harness key modulators of the cytoskeleton. Two of these bacteria, namely Listeria monocytogenes and Salmonella enterica serovar Typhimurium, exhibit quite distinct intracellular lifestyles, and therefore, provide a comprehensive panel for the understanding of the intricate bacteria-cytoskeleton interplay during infections. The emerging intracellular pathogen Vibrio parahaemolyticus is depicted as a developing model for the uncovering of novel mechanisms used to hijack the cytoskeleton. PMID:25440316

  10. Control of Fusarium Wilt of Chili With Chitinolytic Bacteria

    Directory of Open Access Journals (Sweden)

    DWI SURYANTO

    2010-03-01

    Full Text Available Biological control of plant disease using antagonistic microorganism has been obtaining much attention and implemented for decades. One of the potential microorganisms used in this strategy is chitinolytic bacteria. Utilization of this bacteria ranges from cell life, enzymes, genes, or other metabolites. In this study, we examined the ability of chitinolytic bacteria as a biocontrol agent of Fusarium wilt of red chili (Capsicum annuum L. seedlings. The ability of chitinolytic bacteria to suppress the disease was evaluated by soaking red chili seeds in the bacterial isolates solution for 30 minutes prior seedling. Percentage of seedling of treated chili seed at end of study (4-weeks ranging from 46 to 82.14%. Relative reduction of the seedling damping-off was observed in all bacterial treatment ranged from 28.57 to 60.71%. Furthermore, manifestation of bacterial suppression to Fusarium wilt was also exhibited by increasing of seedling height (ranged from 7.33 to 7.87 cm compared to 6.88 cm and dry-weight (ranged from 2.7 to 4.3 mg compared to 2.3 mg. However, no significant effect was observed in leaf number. Then, from all chitinolytic isolates tested, BK08 was the most potential candidate for biological control agent of Fusarium wilt in chili seedling.

  11. Purification Techniques of Bacteriocins from Lactic Acid Bacteria and Other Gram-Positive Bacteria

    Science.gov (United States)

    Saavedra, Lucila; Sesma, Fernando

    The search for new antimicrobial peptides produced by lactic acid ­bacteria and other Gram-positive microorganisms has become an interesting field of research in the past decades. The fact that bacteriocins are active against numerous foodborne and human pathogens, are produced by generally regarded as safe (GRAS) microorganisms, and are readily degraded by proteolytic host systems makes them attractive candidates for biotechnological applications. However, before suggesting or choosing a new bacteriocin for future technology developments, it is necessary to elucidate its biochemical structure and its mode of action, which may be carried out once the bacteriocin is purified to homogeneity. This chapter focuses on describing the main strategies used for the purification of numerous bacteriocins.

  12. Potential role of bacteria packaging by protozoa in the persistence and transmission of pathogenic bacteria

    OpenAIRE

    Denoncourt, Alix M.; Paquet, Valérie E.; Charette, Steve J.

    2014-01-01

    Many pathogenic bacteria live in close association with protozoa. These unicellular eukaryotic microorganisms are ubiquitous in various environments. A number of protozoa such as amoebae and ciliates ingest pathogenic bacteria, package them usually in membrane structures, and then release them into the environment. Packaged bacteria are more resistant to various stresses and are more apt to survive than free bacteria. New evidence indicates that protozoa and not bacteria control the packaging...

  13. Magic Pools: Parallel Assessment of Transposon Delivery Vectors in Bacteria.

    Science.gov (United States)

    Liu, Hualan; Price, Morgan N; Waters, Robert Jordan; Ray, Jayashree; Carlson, Hans K; Lamson, Jacob S; Chakraborty, Romy; Arkin, Adam P; Deutschbauer, Adam M

    2018-01-01

    Transposon mutagenesis coupled to next-generation sequencing (TnSeq) is a powerful approach for discovering the functions of bacterial genes. However, the development of a suitable TnSeq strategy for a given bacterium can be costly and time-consuming. To meet this challenge, we describe a part-based strategy for constructing libraries of hundreds of transposon delivery vectors, which we term "magic pools." Within a magic pool, each transposon vector has a different combination of upstream sequences (promoters and ribosome binding sites) and antibiotic resistance markers as well as a random DNA barcode sequence, which allows the tracking of each vector during mutagenesis experiments. To identify an efficient vector for a given bacterium, we mutagenize it with a magic pool and sequence the resulting insertions; we then use this efficient vector to generate a large mutant library. We used the magic pool strategy to construct transposon mutant libraries in five genera of bacteria, including three genera of the phylum Bacteroidetes . IMPORTANCE Molecular genetics is indispensable for interrogating the physiology of bacteria. However, the development of a functional genetic system for any given bacterium can be time-consuming. Here, we present a streamlined approach for identifying an effective transposon mutagenesis system for a new bacterium. Our strategy first involves the construction of hundreds of different transposon vector variants, which we term a "magic pool." The efficacy of each vector in a magic pool is monitored in parallel using a unique DNA barcode that is introduced into each vector design. Using archived DNA "parts," we next reassemble an effective vector for making a whole-genome transposon mutant library that is suitable for large-scale interrogation of gene function using competitive growth assays. Here, we demonstrate the utility of the magic pool system to make mutant libraries in five genera of bacteria.

  14. The determination and arrangement of a combination of enzyme lactate dehydrogenase of bacteria Acinetobacter sp. as a device the identity important bacteria agent composts

    Science.gov (United States)

    Sukmawati, D.; Puspitaningrum, R.; Muzajjanah

    2017-07-01

    The number of garbage generated by the industry or society is a usual problem encountered by almost all urban centers, especially large cities such as Jakarta. Waste prevention strategy required quickly and accurately. One strategy for tackling the Junk was getting lactic acid-producing bacteria. It has been shown that lactic acid can increase the acceleration of organic matter such as an overhaul of lignin and cellulose as well as out causing toxic compounds arising from decay. This research will be conducted on the determination and characterization of the enzyme-producing compost bacteria LDH lactate dehydrogenase LDH - which in isolation from the garbage Landfill Rawasari. Methodology: Research carried out consists: isolation of lactic acid-producing bacteria; identification of microscopic, macroscopic and staining Gram; cellulose assay, and optimization of PCR conditions LDH enzymes producing bacteria. Isolation is performed by dilution method and the direct method. As many as 5-point sampling. Each stage is conducted from 10 grams of soil from the top surface of the compost. Isolation results obtained 100 isolate the bacteria. Base on the characteristic of macroscopic and microscopic observations retrieved 14 isolates of bacteria have shaped rods and brought forth a negative kind of Gram positive staining. Bacterial isolates with codes (BK1; BK3; BK4; BK5; BK6; BK7; BK8; BK9; BK10; BK11: BK12; BK 13). The potential bacteria with ability produce lactate dehydrogenase was BK1 and BK3. Base for analysis phylogenetic there was identification bacteria bak1 and bak3 where Acinetobacter sp.

  15. Bacteria detection instrument and method

    Science.gov (United States)

    Renner, W.; Fealey, R. D. (Inventor)

    1972-01-01

    A method and apparatus for screening a sample fluid for bacterial presence are disclosed wherein the fluid sample is mixed with culture media of sufficient quantity to permit bacterial growth in order to obtain a test solution. The concentration of oxygen dissolved in the test solution is then monitored using the potential difference between a reference electrode and a noble metal electrode which are in contact with the test solution. The change in oxygen concentration which occurs during a period of time as indicated by the electrode potential difference is compared with a detection criterion which exceeds the change which would occur absent bacteria.

  16. Bacteria and vampirism in cinema.

    Science.gov (United States)

    Castel, O; Bourry, A; Thévenot, S; Burucoa, C

    2013-09-01

    A vampire is a non-dead and non-alive chimerical creature, which, according to various folklores and popular superstitions, feeds on blood of the living to draw vital force. Vampires do not reproduce by copulation, but by bite. Vampirism is thus similar to a contagious disease contracted by intravascular inoculation with a suspected microbial origin. In several vampire films, two real bacteria were staged, better integrated than others in popular imagination: Yersinia pestis and Treponema pallidum. Bacillus vampiris was created for science-fiction. These films are attempts to better define humans through one of their greatest fears: infectious disease. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  17. Oral Anaerobic Bacteria in the Etiology of Ankylosing Spondylitis

    Directory of Open Access Journals (Sweden)

    Mesut Öğrendik

    2017-06-01

    Full Text Available Ankylosing spondylitis (AS is associated with periodontitis. Anti– Porphyromonas gingivalis and anti– Prevotella intermedia antibody titers were higher in patients with spondyloarthritis than in healthy people. Sulfasalazine is an effective antibiotic treatment for AS. Moxifloxacin and rifamycin were also found to be significantly effective. The etiology hypothesis suggests that oral anaerobic bacteria such as Porphyromonas spp and Prevotella spp contribute to the disease. These bacteria have been identified in AS, and we will discuss their pathogenic properties with respect to our knowledge of the disease. Periodontal pathogens are likely to be responsible for the development of AS in genetically susceptible individuals. This finding should guide the development of more comprehensive and efficacious treatment strategies for AS.

  18. Graphene-based wireless bacteria detection on tooth enamel

    Science.gov (United States)

    Mannoor, Manu S.; Tao, Hu; Clayton, Jefferson D.; Sengupta, Amartya; Kaplan, David L.; Naik, Rajesh R.; Verma, Naveen; Omenetto, Fiorenzo G.; McAlpine, Michael C.

    2012-03-01

    Direct interfacing of nanosensors onto biomaterials could impact health quality monitoring and adaptive threat detection. Graphene is capable of highly sensitive analyte detection due to its nanoscale nature. Here we show that graphene can be printed onto water-soluble silk. This in turn permits intimate biotransfer of graphene nanosensors onto biomaterials, including tooth enamel. The result is a fully biointerfaced sensing platform, which can be tuned to detect target analytes. For example, via self-assembly of antimicrobial peptides onto graphene, we show bioselective detection of bacteria at single-cell levels. Incorporation of a resonant coil eliminates the need for onboard power and external connections. Combining these elements yields two-tiered interfacing of peptide-graphene nanosensors with biomaterials. In particular, we demonstrate integration onto a tooth for remote monitoring of respiration and bacteria detection in saliva. Overall, this strategy of interfacing graphene nanosensors with biomaterials represents a versatile approach for ubiquitous detection of biochemical targets.

  19. Marine bacteria: potential sources for compounds to overcome antibiotic resistance.

    Science.gov (United States)

    Eom, Sung-Hwan; Kim, Young-Mog; Kim, Se-Kwon

    2013-06-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is the most problematic Gram-positive bacterium in the context of public health due to its resistance against almost all available antibiotics except vancomycin and teicoplanin. Moreover, glycopeptide-resistant S. aureus have been emerging with the increasing use of glycopeptides. Recently, resistant strains against linezolid and daptomycin, which are alternative drugs to treat MRSA infection, have also been reported. Thus, the development of new drugs or alternative therapies is clearly a matter of urgency. In response to the antibiotic resistance, many researchers have studied for alternative antibiotics and therapies. In this review, anti-MRSA substances isolated from marine bacteria, with their potential antibacterial effect against MRSA as potential anti-MRSA agents, are discussed and several strategies for overcoming the antibiotic resistance are also introduced. Our objective was to highlight marine bacteria that have potential to lead in developing novel antibiotics or clinically useful alternative therapeutic treatments.

  20. Subversion of inflammasome activation and pyroptosis by pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Larissa D Cunha

    2013-11-01

    Full Text Available Activation of the inflammasome occurs in response to a notably high number of pathogenic microbes and is a broad innate immune response that effectively contributes to restriction of pathogen replication and generation of adaptive immunity. Activation of these platforms leads to caspase-1- and/or caspase-11-dependent secretion of proteins, including cytokines, and induction of a specific form of cell death called pyroptosis, which directly or indirectly contribute for restriction of pathogen replication. Not surprisingly, bona fide intracellular pathogens developed strategies for manipulation of cell death to guarantee intracellular replication. In this sense, the remarkable advances in the knowledge of the inflammasome field have been accompanied by several reports characterizing the inhibition of this platform by several pathogenic bacteria. Herein, we review some processes used by pathogenic bacteria, including Yersinia spp., Pseudomonas aeruginosa, Vibrio parahaemolyticus, Chlamydia trachomatis, Francisella tularensis, Shigella flexneri, Legionella pneumophila and Coxiella burnetii to evade the activation of the inflammasome and the induction of pyroptosis.

  1. Subversion of inflammasome activation and pyroptosis by pathogenic bacteria.

    Science.gov (United States)

    Cunha, Larissa D; Zamboni, Dario S

    2013-01-01

    Activation of the inflammasome occurs in response to a notably high number of pathogenic microbes and is a broad innate immune response that effectively contributes to restriction of pathogen replication and generation of adaptive immunity. Activation of these platforms leads to caspase-1- and/or caspase-11-dependent secretion of proteins, including cytokines, and induction of a specific form of cell death called pyroptosis, which directly or indirectly contribute for restriction of pathogen replication. Not surprisingly, bona fide intracellular pathogens developed strategies for manipulation of cell death to guarantee intracellular replication. In this sense, the remarkable advances in the knowledge of the inflammasome field have been accompanied by several reports characterizing the inhibition of this platform by several pathogenic bacteria. Herein, we review some processes used by pathogenic bacteria, including Yersinia spp., Pseudomonas aeruginosa, Vibrio parahaemolyticus, Chlamydia trachomatis, Francisella tularensis, Shigella flexneri, Legionella pneumophila, and Coxiella burnetii to evade the activation of the inflammasome and the induction of pyroptosis.

  2. Money and transmission of bacteria.

    Science.gov (United States)

    Gedik, Habip; Voss, Timothy A; Voss, Andreas

    2013-08-28

    Money is one of the most frequently passed items in the world. The aim of this study was to ascertain the survival status of bacteria including Staphylococcus aureus, Escherichia coli, and Vancomycin- Resistant Enterococci (VRE) on banknotes from different countries and the transmission of bacteria to people who come in contact with the banknotes. The survival rate was highest for the Romanian Leu yielding all three microorganisms used after both three and six hours of drying. Furthermore, the Leu was the only banknote to yield VRE after one day of drying. Other currencies either enabled the survival of Extended-Spectrum Beta-Lactamases (ESBL) and VRE (e.g. Euro), but not of MRSA, or the other way round (e.g. US Dollar). While a variety of factors such as community hygiene levels, people's behaviour, and antimicrobial resistance rates at community level obviously have influence on the transmission of resistant microorganisms, the type of banknote-paper may be an additional variable to consider.

  3. Differential scanning calorimetry of bacteria.

    Science.gov (United States)

    Miles, C A; Mackey, B M; Parsons, S E

    1986-04-01

    Thermograms obtained by differential scanning calorimetry of a range of bacteria of different heat resistances were compared. Equations were derived to calculate the rate at which the numbers of viable organisms in a calorimeter decline as the temperature is raised at a constant rate. Vegetative bacteria scanned at 10 degrees C min-1 showed multi-peaked thermograms with four major peaks (denoted m, n, p and q) occurring in the regions 68-73, 77-84, 89-99 and 105-110 degrees C respectively. Exceptions were that peak m (the largest peak) occurred at 79-82 degrees C in Bacillus stearothermophilus and an additional peak, r, was detected in Escherichia coli at 119 degrees C. At temperatures below the main peak m there were major differences in thermograms between species. There was a direct relationship between the onset of thermal denaturation and the thermoresistance of different organisms. Heat-sensitive organisms displayed thermogram features which were absent in the more heat-resistant types. When samples were cooled to 5 degrees C and re-heated, a small endothermic peak, pr, was observed at the same temperature as p. Peaks p and pr were identified as the melting endotherms of DNA. In all vegetative organisms examined, maximum death rates, computed from published D and z values, occurred at temperatures above the onset of thermal denaturation, i.e. cell death and irreversible denaturation of cell components occurred within the same temperature range.

  4. Constitutive and regulated expression vectors to construct polyphosphate deficient bacteria

    Directory of Open Access Journals (Sweden)

    Jerez Carlos A

    2009-03-01

    Full Text Available Abstract Background Inorganic polyphosphate (polyP, a polymer of tens or hundreds of phosphate residues linked by ATP-like bonds, is found in all organisms and performs a wide variety of functions. PolyP is synthesized in bacterial cells by the actions of polyphosphate kinases (PPK1 and PPK2 and degraded by an exopolyphosphatase (PPX. Bacterial cells with polyP deficiencies are impaired in many structural and important cellular functions such as motility, quorum sensing, biofilm formation and virulence. Knockout mutants of the ppk1 gene have been the most frequent strategy employed to generate polyP deficient cells. Results As an alternative method to construct polyP-deficient bacteria we developed constitutive and regulated broad-host-range vectors for depleting the cellular polyP content. This was achieved by the overexpression of yeast exopolyphosphatase (PPX1. Using this approach in a polyphosphate accumulating bacteria (Pseudomonas sp. B4, we were able to eliminate most of the cellular polyP (>95%. Furthermore, the effect of overexpression of PPX1 resembled the functional defects found in motility and biofilm formation in a ppk1 mutant from Pseudomonas aeruginosa PAO1. The plasmids constructed were also successfully replicated in other bacteria such as Escherichia coli, Burkholderia and Salmonella. Conclusion To deplete polyP contents in bacteria broad-host-range expression vectors can be used as an alternative and more efficient method compared with the deletion of ppk genes. It is of great importance to understand why polyP deficiency affects vital cellular processes in bacteria. The construction reported in this work will be of great relevance to study the role of polyP in microorganisms with non-sequenced genomes or those in which orthologs to ppk genes have not been identified.

  5. Bacteria tracking by in vivo magnetic resonance imaging

    Science.gov (United States)

    2013-01-01

    Background Different non-invasive real-time imaging techniques have been developed over the last decades to study bacterial pathogenic mechanisms in mouse models by following infections over a time course. In vivo investigations of bacterial infections previously relied mostly on bioluminescence imaging (BLI), which is able to localize metabolically active bacteria, but provides no data on the status of the involved organs in the infected host organism. In this study we established an in vivo imaging platform by magnetic resonance imaging (MRI) for tracking bacteria in mouse models of infection to study infection biology of clinically relevant bacteria. Results We have developed a method to label Gram-positive and Gram-negative bacteria with iron oxide nano particles and detected and pursued these with MRI. The key step for successful labeling was to manipulate the bacterial surface charge by producing electro-competent cells enabling charge interactions between the iron particles and the cell wall. Different particle sizes and coatings were tested for their ability to attach to the cell wall and possible labeling mechanisms were elaborated by comparing Gram-positive and -negative bacterial characteristics. With 5-nm citrate-coated particles an iron load of 0.015 ± 0.002 pg Fe/bacterial cell was achieved for Staphylococcus aureus. In both a subcutaneous and a systemic infection model induced by iron-labeled S. aureus bacteria, high resolution MR images allowed for bacterial tracking and provided information on the morphology of organs and the inflammatory response. Conclusion Labeled with iron oxide particles, in vivo detection of small S. aureus colonies in infection models is feasible by MRI and provides a versatile tool to follow bacterial infections in vivo. The established cell labeling strategy can easily be transferred to other bacterial species and thus provides a conceptual advance in the field of molecular MRI. PMID:23714179

  6. Environmental strategy

    DEFF Research Database (Denmark)

    Zabkar, Vesna; Cater, Tomaz; Bajde, Domen

    2013-01-01

    perspective, appropriate environmental strategies in compliance with environmental requirements aim at building competitive advantages through sustainable development. There is no universal “green” strategy that would be appropriate for each company, regardless of its market requirements and competitive......Environmental issues and the inclusion of environmental strategies in strategic thinking is an interesting subject of investigation. In general, managerial practices organized along ecologically sound principles contribute to a more environmentally sustainable global economy. From the managerial...

  7. Statistical signatures of a targeted search by bacteria

    Science.gov (United States)

    Jashnsaz, Hossein; Anderson, Gregory G.; Pressé, Steve

    2017-12-01

    Chemoattractant gradients are rarely well-controlled in nature and recent attention has turned to bacterial chemotaxis toward typical bacterial food sources such as food patches or even bacterial prey. In environments with localized food sources reminiscent of a bacterium’s natural habitat, striking phenomena—such as the volcano effect or banding—have been predicted or expected to emerge from chemotactic models. However, in practice, from limited bacterial trajectory data it is difficult to distinguish targeted searches from an untargeted search strategy for food sources. Here we use a theoretical model to identify statistical signatures of a targeted search toward point food sources, such as prey. Our model is constructed on the basis that bacteria use temporal comparisons to bias their random walk, exhibit finite memory and are subject to random (Brownian) motion as well as signaling noise. The advantage with using a stochastic model-based approach is that a stochastic model may be parametrized from individual stochastic bacterial trajectories but may then be used to generate a very large number of simulated trajectories to explore average behaviors obtained from stochastic search strategies. For example, our model predicts that a bacterium’s diffusion coefficient increases as it approaches the point source and that, in the presence of multiple sources, bacteria may take substantially longer to locate their first source giving the impression of an untargeted search strategy.

  8. Sulfur metabolism in phototrophic sulfur bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Dahl, Christiane

    2008-01-01

    Phototrophic sulfur bacteria are characterized by oxidizing various inorganic sulfur compounds for use as electron donors in carbon dioxide fixation during anoxygenic photosynthetic growth. These bacteria are divided into the purple sulfur bacteria (PSB) and the green sulfur bacteria (GSB......). They utilize various combinations of sulfide, elemental sulfur, and thiosulfate and sometimes also ferrous iron and hydrogen as electron donors. This review focuses on the dissimilatory and assimilatory metabolism of inorganic sulfur compounds in these bacteria and also briefly discusses these metabolisms...... in other types of anoxygenic phototrophic bacteria. The biochemistry and genetics of sulfur compound oxidation in PSB and GSB are described in detail. A variety of enzymes catalyzing sulfur oxidation reactions have been isolated from GSB and PSB (especially Allochromatium vinosum, a representative...

  9. Representing strategies

    NARCIS (Netherlands)

    Duijf, Hein; Broersen, Jan

    2016-01-01

    Quite some work in the ATL-tradition uses the differences between various types of strategies (positional, uniform, perfect recall) to give alternative semantics to the same logical language. This paper contributes to another perspective on strategy types, one where we characterise the differences

  10. Representing Strategies

    Directory of Open Access Journals (Sweden)

    Hein Duijf

    2016-07-01

    Full Text Available Quite some work in the ATL-tradition uses the differences between various types of strategies (positional, uniform, perfect recall to give alternative semantics to the same logical language. This paper contributes to another perspective on strategy types, one where we characterise the differences between them on the syntactic (object language level. This is important for a more traditional knowledge representation view on strategic content. Leaving differences between strategy types implicit in the semantics is a sensible idea if the goal is to use the strategic formalism for model checking. But, for traditional knowledge representation in terms of object language level formulas, we need to extent the language. This paper introduces a strategic STIT syntax with explicit operators for knowledge that allows us to charaterise strategy types. This more expressive strategic language is interpreted on standard ATL-type concurrent epistemic game structures. We introduce rule-based strategies in our language and fruitfully apply them to the representation and characterisation of positional and uniform strategies. Our representations highlight crucial conditions to be met for strategy types. We demonstrate the usefulness of our work by showing that it leads to a critical reexamination of coalitional uniform strategies.

  11. Transformation of gram positive bacteria by sonoporation

    Science.gov (United States)

    Yang, Yunfeng; Li, Yongchao

    2014-03-11

    The present invention provides a sonoporation-based method that can be universally applied for delivery of compounds into Gram positive bacteria. Gram positive bacteria which can be transformed by sonoporation include, for example, Bacillus, Streptococcus, Acetobacterium, and Clostridium. Compounds which can be delivered into Gram positive bacteria via sonoporation include nucleic acids (DNA or RNA), proteins, lipids, carbohydrates, viruses, small organic and inorganic molecules, and nano-particles.

  12. Beneficial interactions between insects and gut bacteria

    OpenAIRE

    Rajagopal, R.

    2009-01-01

    Insects are amongst the most successful of animals, both in terms of diversity and in colonizing all ecological niches. Recent studies have highlighted the benefi ciary roles that bacteria play in the success and establishment of insects. By adopting techniques like 16S rRNA sequencing we are now in a position to understand the diversity of bacteria present in insect guts. It has been shown that some of these bacteria, like Wolbachia and Cardinium are involved in manipulating insect populatio...

  13. Magnetotactic bacteria at the geomagnetic equator

    International Nuclear Information System (INIS)

    Frankel, R.B.; Blakemore, R.P.; Araujo, F.F.T. de; Esquivel, D.M.S.; Danon, J.

    1981-01-01

    Magnetotatic bacteria are observed in freshwater and marine sediments of Fortaleza, Brazil, situated close to the geomagnetic equator. Both South-seeking and North-seeking bacteria are present in roughly equal numbers in the same samples. This observation is consistent with the hypothesis that the vertical component of the geomagnetic field selects the predominant polarity type among magnetotactic bacteria in natural environments. (Author) [pt

  14. Evaluation Strategy

    DEFF Research Database (Denmark)

    Coto Chotto, Mayela; Wentzer, Helle; Dirckinck-Holmfeld, Lone

    2009-01-01

    The paper presents an evaluation strategy based on deliberate ideals and principles of dialogue design. The evaluation strategy is based on experiential phenomenology taking the point of departure for design and evaluation processes in the experienced practitioners themselves. The article present...... the evaluation strategy and methodology of a research project Making Online Path to Enter new Markets, MOPEM. It is an EU-research project with partners from different Educational Institutions of Technology and Business in five European Countries.......The paper presents an evaluation strategy based on deliberate ideals and principles of dialogue design. The evaluation strategy is based on experiential phenomenology taking the point of departure for design and evaluation processes in the experienced practitioners themselves. The article presents...

  15. The Impact of Different Antibiotic Regimens on the Emergence of Antimicrobial-Resistant Bacteria

    Science.gov (United States)

    Magal, Pierre; Olivier, Damien; Ruan, Shigui

    2008-01-01

    Backgroud The emergence and ongoing spread of antimicrobial-resistant bacteria is a major public health threat. Infections caused by antimicrobial-resistant bacteria are associated with substantially higher rates of morbidity and mortality compared to infections caused by antimicrobial-susceptible bacteria. The emergence and spread of these bacteria is complex and requires incorporating numerous interrelated factors which clinical studies cannot adequately address. Methods/Principal Findings A model is created which incorporates several key factors contributing to the emergence and spread of resistant bacteria including the effects of the immune system, acquisition of resistance genes and antimicrobial exposure. The model identifies key strategies which would limit the emergence of antimicrobial-resistant bacterial strains. Specifically, the simulations show that early initiation of antimicrobial therapy and combination therapy with two antibiotics prevents the emergence of resistant bacteria, whereas shorter courses of therapy and sequential administration of antibiotics promote the emergence of resistant strains. Conclusions/Significance The principal findings suggest that (i) shorter lengths of antibiotic therapy and early interruption of antibiotic therapy provide an advantage for the resistant strains, (ii) combination therapy with two antibiotics prevents the emergence of resistance strains in contrast to sequential antibiotic therapy, and (iii) early initiation of antibiotics is among the most important factors preventing the emergence of resistant strains. These findings provide new insights into strategies aimed at optimizing the administration of antimicrobials for the treatment of infections and the prevention of the emergence of antimicrobial resistance. PMID:19112501

  16. Antioxidant Properties of Probiotic Bacteria.

    Science.gov (United States)

    Wang, Yang; Wu, Yanping; Wang, Yuanyuan; Xu, Han; Mei, Xiaoqiang; Yu, Dongyou; Wang, Yibing; Li, Weifen

    2017-05-19

    Oxidative stress defines a condition in which the prooxidant-antioxidant balance in the cell is disturbed, resulting in DNA hydroxylation, protein denaturation, lipid peroxidation, and apoptosis, ultimately compromising cells' viability. Probiotics have been known for many beneficial health effects, and the consumption of probiotics alone or in food shows that strain-specific probiotics can present antioxidant activity and reduce damages caused by oxidation. However, the oxidation-resistant ability of probiotics, especially the underling mechanisms, is not properly understood. In this view, there is interest to figure out the antioxidant property of probiotics and summarize the mode of action of probiotic bacteria in antioxidation. Therefore, in the present paper, the antioxidant mechanisms of probiotics have been reviewed in terms of their ability to improve the antioxidant system and their ability to decrease radical generation. Since in recent years, oxidative stress has been associated with an altered gut microbiota, the effects of probiotics on intestinal flora composition are also elaborated.

  17. Isolation and characterization of methanogenic bacteria from ...

    African Journals Online (AJOL)

    Isolation and characterization of methanogenic bacteria from brewery wastewater in Kenya. Sylvia Injete Murunga, Duncan Onyango Mbuge, Ayub Njoroge Gitau, Urbanus Ndungwa Mutwiwa, Ingrid Namae Wekesa ...

  18. Quorum sensing in gram-negative bacteria

    DEFF Research Database (Denmark)

    Wu, H.; Song, Z.J.; Høiby, N.

    2004-01-01

    Bacteria can communicate with each other by means of signal molecules to coordinate the behavior of the entire community, and the mechanism is referred to as quorum sensing (QS). Signal systems enable bacteria to sense the size of their densities by monitoring the concentration of the signal...... molecules. Among Gram-negative bacteria N-acyl-L-homoserine lactone (acyl-HSL)-dependent quorum sensing systems are particularly widespread. These systems are used to coordinate expression of phenotypes that are fundamental to the interaction of bacteria with each other and with their environment...

  19. Mechanisms of Antimicrobial Peptide Resistance in Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    Victor I. Band

    2014-12-01

    Full Text Available Cationic antimicrobial peptides (CAMPs are important innate immune defenses that inhibit colonization by pathogens and contribute to clearance of infections. Gram-negative bacterial pathogens are a major target, yet many of them have evolved mechanisms to resist these antimicrobials. These resistance mechanisms can be critical contributors to bacterial virulence and are often crucial for survival within the host. Here, we summarize methods used by Gram-negative bacteria to resist CAMPs. Understanding these mechanisms may lead to new therapeutic strategies against pathogens with extensive CAMP resistance.

  20. Chemoorganotrophic bacteria isolated from biodeteriorated surfaces in cave and catacombs

    Directory of Open Access Journals (Sweden)

    Zammit Gabrielle

    2012-07-01

    Full Text Available The main objective of this work was the comparative analysis of a large number of bacterial strains isolated from biodeteriorated surfaces in three different sites, namely the catacombs of St. Callistus in Rome, Italy, the catacombs dedicated to St. Agatha in Rabat, Malta and the Cave of Bats in Zuheros, Spain. Our results showed that even considering only culturable chemoorganotrophic bacteria the variability is very high, reflecting the great variety of microhabitats present. Hence any strategies to prevent, control or eliminate the biofilm-embedded microbiota from an archeological surface should take into account a number of considerations as stipulated in our study.

  1. Strategies for combating bacterial biofilm infections

    DEFF Research Database (Denmark)

    Wu, Hong; Moser, Claus Ernst; Wang, Heng-Zhuang

    2015-01-01

    Formation of biofilm is a survival strategy for bacteria and fungi to adapt to their living environment, especially in the hostile environment. Under the protection of biofilm, microbial cells in biofilm become tolerant and resistant to antibiotics and the immune responses, which increases...

  2. Metabolic and functional paths of lactic acid bacteria in plant foods: get out of the labyrinth.

    Science.gov (United States)

    Filannino, Pasquale; Di Cagno, Raffaella; Gobbetti, Marco

    2018-02-01

    Even though lactic acid bacteria are only a small part of the plant autochthonous microbiota, they represent the most important microbes having the capability to promote significant changes in the health-promoting properties of plant foods. Owing to the variety of plant chemical components and the possible pathways for bioconversion, plant fermentation is like a metabolic labyrinth undertaken by bacteria. The winding metabolic pathways involve several secondary plant metabolites (e.g. phenolics). The success of these paths is connected to the adaptive growth and survival of lactic acid bacteria. A panel of various interacting omics approaches unraveled the specific traits of lactic acid bacteria to adapt to plants, which allow the optimal design of fermentation strategies for targeted raw matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Safety strategy

    International Nuclear Information System (INIS)

    Schultheiss, G.F.

    1980-01-01

    The basis for safety strategy in nuclear industry and especially nuclear power plants is the prevention of radioactivity release inside or outside of the technical installation. Therefore either technical or administrative measures are combined to a general strategy concept. This introduction will explain in more detail the following topics: - basic principles of safety - lines of assurance (LOA) - defense in depth - deterministic and probabilistic methods. This presentation is seen as an introduction to the more detailed discussion following in this course, nevertheless some selected examples will be used to illustrate the aspects of safety strategy development although they might be repeated later on. (orig.)

  4. Export strategy

    DEFF Research Database (Denmark)

    Knudsen, Thorbjørn; Koed Madsen, Tage

    2002-01-01

    It is argued here that traditional export strategy research (encompassing the study of internationalization processes and export performance) is characterized by weak theoretical foundations and could benefit from a reorientation towards a dynamic capabilities perspective (DCP). We seek to draw...... on insights from DCP in order to devise a theoretical basis that could enrich export strategy research. Although our development of DCP insights builds on previous work, it also adds a crucial distinction between knowledge stocks and informational architecture. Changes in architecture are of greater...... importance. Following this elaboration of the dynamic capabilities perspective, we outline some implications and guidelines for future export strategy research....

  5. Coliform bacteria, fabrics, and the environment.

    Science.gov (United States)

    Colclasure, Victoria J; Soderquist, Thomas J; Lynch, Thomas; Schubert, Nina; McCormick, Deirdre S; Urrutia, Erika; Knickerbocker, Corey; McCord, Devon; Kavouras, Jerry H

    2015-02-01

    People come into contact with coliform bacteria at recreational sites. Previous research on bacteria adhering to fabrics and surfaces focused on the viability of clinically significant microbes, but did not examine the quantity of bacteria. This study examined the viability and quantity of coliform bacteria adhered to common fabrics. The fabrics of 100% cotton, blended cotton, and silk were exposed to a mixture of environmental coliform isolates. Fabrics were incubated in the dark at 25°C or 37°C or in direct sunlight at room temperature for 30, 60, 90, and 120 days. The quantity and viability of the bacteria were determined by the Most Probable Number technique using Colilert reagent (IDEXX Laboratories, Westbrook, ME) and eosin methylene blue agar, respectively. The highest numbers of bacteria were detected for each type of fabric when stored in the dark at 25°C, whereas the lowest numbers of bacteria were detected when fabrics were stored in the dark at 37°C. Low numbers of bacteria were detected on silk and blended cotton exposed to sunlight at room temperature, but not 100% cotton. It appears that coliform bacteria can survive on fabrics longer than previous studies have reported. Coliform bacteria survive better in the dark, at lower temperatures, and on fabrics that can retain moisture. These findings can be applied directly to the viability of bacteria on clothing and potential human exposure to fecal pathogens. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  6. Identification of Quorum Quenching Bacteria and Its Biocontrol Potential Against Soft Rot Disease Bacteria, Dickeya Dadantii

    OpenAIRE

    Khoiri, Syaiful; Damayanti, Tri Asmira; Giyanto, Giyanto

    2017-01-01

    Dickeya dadantii is one of newly found bacteria causing soft rot on orchids in Indonesia. Infected plants showed severe rot rapidly only in few days. An effort to control the bacteria was conducted by utilizing selected quorum quenching (QQ) inducer bacteria which produce AHL-lactonase by aiiA gene. The aims of this research were to screen and identify of quorum quenching bacteria, and also assayed their biocontrol potential ability against D. dadantii in laboratory. The screening of QQ bacte...

  7. Characterization of Bacteria Isolation of Bacteria from Pinyon Rhizosphere,

    Science.gov (United States)

    2016-01-01

    Two hundred and fifty bacterial strains were isolated from pinyon rhizosphere and screened for biosurfactants production. Among them, six bacterial strains were selected for their potential to produce biosurfactants using two low cost wastes, crude glycerol and lactoserum, as raw material. Both wastes were useful for producing biosurfactants because of their high content in fat and carbohydrates. The six strains were identified by 16S rDNA with an identity percentage higher than 95%, three strains belonged to Enterobacter sp., Pseudomonas aeruginosa, Bacillus pumilus and Rhizobium sp. All strains assayed were able to grow and showed halos around the colonies as evidence of biosurfactants production on Cetyl Trimethyl Ammonium Bromide agar with crude glycerol and lactoserum as substrate. In a mineral salt liquid medium enriched with both wastes, the biosurfactants were produced and collected from free cell medium after 72 h incubation. The biosurfactants produced reduced the surface tension from 69 to 30 mN/m with an emulsification index of diesel at approximately 60%. The results suggest that biosurfactants produced by rhizosphere bacteria from pinyon have promising environmental applications.

  8. Identification of New Aflatoxin B1-Degrading Bacteria from Iran

    Directory of Open Access Journals (Sweden)

    Fahimeh Sangi

    2018-04-01

    Full Text Available Background: Aflatoxin B1 (AFB1 is a mutagenic and carcinogenic compound mainly produced by the Aspergillus parasiticus, A. flavus, A. nomius, A. tamari, and A. pseudotamarii. AFB1 biodegradation is the most important strategy for reducing AFB1 in plant tissues. Bacteria can deactivate and biodegrade AFB1 for effective detoxification of contaminated products. The present study investigated the efficiency of AFB1 degradation by soil bacteria from the Southern Khorasan Province in Eastern Iran by thin-layer and high-performance liquid chromatography during 2014–2015. Methods: DNA was extracted from AFB1-degrading isolates by the cetyltrimethylammonium bromide method and the 16S rRNA gene was amplified with the 27f and 1492r general bacterial primers and the sequences were used to identify the isolates based on their similarity to Gene Bank sequences of known bacterial species. Results: We isolated five strains from four species of AFB1-degrading bacteria from Birjand plain, including Bacillus pumilus, two isolates of Ochrobactrum pseudogrigonens, Pseudomonas aeruginosa, and Enterobacter cloace, which had AFB1-degrading activities of 88%, 78%, 61%, 58%, and 51%, respectively. Conclusion: We provide the first demonstration of AFB1 degradation by B. pumilus in from Iran and the first report identifying O. pseudogrigonens and E. cloace species as having AFB1-degrading activity.

  9. Quorum Quenching in Culturable Phyllosphere Bacteria from Tobacco

    Directory of Open Access Journals (Sweden)

    Guoqiang Zhuang

    2013-07-01

    Full Text Available Many Gram-negative plant pathogenic bacteria employ a N-acylhomoserine lactone (AHL-based quorum sensing (QS system to regulate their virulence traits. A sustainable biocontrol strategy has been developed using quorum quenching (QQ bacteria to interfere with QS and protect plants from pathogens. Here, the prevalence and the diversity of QQ strains inhabiting tobacco leaf surfaces were explored. A total of 1177 leaf-associated isolates were screened for their ability to disrupt AHL-mediated QS, using the biosensor Chromobacterium violaceum CV026. One hundred and sixty-eight strains (14% are capable of interfering with AHL activity. Among these, 106 strains (63% of the culturable quenchers can enzymatically degrade AHL molecules, while the remaining strains might use other QS inhibitors to interrupt the chemical communication. Moreover, almost 79% of the QQ strains capable of inactivating AHLs enzymatically have lactonase activity. Further phylogenetic analysis based on 16S rDNA revealed that the leaf-associated QQ bacteria can be classified as Bacillus sp., Acinetobacter sp., Lysinibacillus sp., Serratia sp., Pseudomonas sp., and Myroides sp. The naturally occurring diversity of bacterial quenchers might provide opportunities to use them as effective biocontrol reagents for suppressing plant pathogen in situ.

  10. Production of Remedial Proteins through Genetically Modified Bacteria

    Directory of Open Access Journals (Sweden)

    Fatima Tariq

    2018-02-01

    Full Text Available Recombinant DNA technology has created biological organisms with advanced genetic sequences and has been extensively used to express multiple genes for therapeutic purposes when expressed in a suitable host. Microbial systems such as prokaryotic bacteria has been successfully utilized as a heterologous systems showing high therapeutic potency for various human diseases. Bioengineered bacteria have been successfully utilized for producing therapeutic proteins, treating infectious diseases, and disease arise due to increasing resistance to antibiotics. Prominently E. coli found to be the most widely used expression system for recombinant therapeutic protein production i.e. hormones, enzymes and antibodies. Besides E. coli, non-pathogenic lactic acid bacteria has also been considered as an excellent candidate for live mucosal vaccine. Likewise, S. typhimurium has been deployed as attenuated type of vaccination as well as in treatment strategy of various cancers due to its ability of wide progression in tumors. The present article is a summarized view of the main achievements and current developments in the field of recombinant therapeutics using bacterial strains focusing on their usability in therapeutics and future potential.

  11. Modulation of host responses by oral commensal bacteria

    Directory of Open Access Journals (Sweden)

    Deirdre A. Devine

    2015-02-01

    Full Text Available Immunomodulatory commensal bacteria are proposed to be essential for maintaining healthy tissues, having multiple roles including priming immune responses to ensure rapid and efficient defences against pathogens. The default state of oral tissues, like the gut, is one of inflammation which may be balanced by regulatory mechanisms and the activities of anti-inflammatory resident bacteria that modulate Toll-like receptor (TLR signalling or NF-κB activation, or influence the development and activities of immune cells. However, the widespread ability of normal resident organisms to suppress inflammation could impose an unsustainable burden on the immune system and compromise responses to pathogens. Immunosuppressive resident bacteria have been isolated from the mouth and, for example, may constitute 30% of the resident streptococci in plaque or on the tongue. Their roles in oral health and dysbiosis remain to be determined. A wide range of bacterial components and/or products can mediate immunomodulatory activity, raising the possibility of development of alternative strategies for therapy and health promotion using probiotics, prebiotics, or commensal-derived immunomodulatory molecules.

  12. Fighting malaria with engineered symbiotic bacteria from vector mosquitoes

    Science.gov (United States)

    Wang, Sibao; Ghosh, Anil K.; Bongio, Nicholas; Stebbings, Kevin A.; Lampe, David J.; Jacobs-Lorena, Marcelo

    2012-01-01

    The most vulnerable stages of Plasmodium development occur in the lumen of the mosquito midgut, a compartment shared with symbiotic bacteria. Here, we describe a strategy that uses symbiotic bacteria to deliver antimalaria effector molecules to the midgut lumen, thus rendering host mosquitoes refractory to malaria infection. The Escherichia coli hemolysin A secretion system was used to promote the secretion of a variety of anti-Plasmodium effector proteins by Pantoea agglomerans, a common mosquito symbiotic bacterium. These engineered P. agglomerans strains inhibited development of the human malaria parasite Plasmodium falciparum and rodent malaria parasite Plasmodium berghei by up to 98%. Significantly, the proportion of mosquitoes carrying parasites (prevalence) decreased by up to 84% for two of the effector molecules, scorpine, a potent antiplasmodial peptide and (EPIP)4, four copies of Plasmodium enolase–plasminogen interaction peptide that prevents plasminogen binding to the ookinete surface. We demonstrate the use of an engineered symbiotic bacterium to interfere with the development of P. falciparum in the mosquito. These findings provide the foundation for the use of genetically modified symbiotic bacteria as a powerful tool to combat malaria. PMID:22802646

  13. Anti-Quorum Sensing Potential of Potato Rhizospheric Bacteria

    Directory of Open Access Journals (Sweden)

    Adeleh Sobhanipour

    2017-01-01

    Full Text Available The occurrence of antibiotic-resistant pathogenic bacteria is becoming a serious problem. The rise of multiresistance strains has forced the pharmaceutical industry to come up with new generation of more effective and potent antibiotics, therefore creating development of antivirulence compounds. Due to extensive usage of cell-to-cell bacterial communication (QS systems to monitor the production of virulence factors, disruption of QS system results in creation of a promising strategy for the control of bacterial infection. Numerous natural quorum quenching (QQ agents have been identified. In addition, many microorganisms are capable of producing smaller molecular QS inhibitors and/or macromolecular QQ enzymes. In present survey, anti QS activity of 1280 rhizosphere bacteria was assessed using the Pectobacterium carotovorum as AHL-donor and Chromobacterium violaceum CV026 as biosensor system. The results showed that 61 strains had highly AHL-degrading activity. Both Lux I and Lux R activity were affected by some isolates, suggesting that the rhizobacteria target both QS signal and receptor. These soil microorganisms with their anti-QS activity have the potential to be novel therapeutic agents for reducing virulence and pathogenicity of antibiotic resistant bacteria.

  14. A New Family of Lysozyme Inhibitors Contributing to Lysozyme Tolerance in Gram-Negative Bacteria

    OpenAIRE

    Callewaert, Lien; Aertsen, Abram; Deckers, Daphne; Vanoirbeek, Kristof G. A.; Vanderkelen, Lise; Van Herreweghe, Joris M.; Masschalck, Barbara; Nakimbugwe, Dorothy; Robben, Johan; Michiels, Chris W.

    2008-01-01

    Lysozymes are ancient and important components of the innate immune system of animals that hydrolyze peptidoglycan, the major bacterial cell wall polymer. Bacteria engaging in commensal or pathogenic interactions with an animal host have evolved various strategies to evade this bactericidal enzyme, one recently proposed strategy being the production of lysozyme inhibitors. We here report the discovery of a novel family of bacterial lysozyme inhibitors with widespread homologs in gram-negative...

  15. Globalization strategy

    OpenAIRE

    Shimizu, Ryuei

    1992-01-01

    History of overseas strategies of Japanese firms can be divided into three periods; until 1960's, when import and export were the main focus; from 1970's to the first half of 1980's, when establishing overseas bases was a major interest for clear purposes of reducing labor cost, averting trade conflicts, or securing natural resources; and after 1985, when strategy started to be formulated from more global viewpoint in order to cope with new situation arising from stronger yen and Japan having...

  16. Rock-degrading endophytic bacteria in cacti

    Science.gov (United States)

    M. Esther Puente; Ching Y. Li; Yoav Bashan

    2009-01-01

    A plant-bacterium association of the cardon cactus (Pachycereus pringlei) and endophytic bacteria promotes establishment of seedlings and growth on igneous rocks without soil. These bacteria weather several rock types and minerals, unbind significant amounts of useful minerals for plants from the rocks, fix in vitro N2. produce...

  17. Comparative Genomics of Green Sulfur Bacteria

    DEFF Research Database (Denmark)

    Ussery, David; Davenport, C; Tümmler, B

    2010-01-01

    Eleven completely sequenced Chlorobi genomes were compared in oligonucleotide usage, gene contents, and synteny. The green sulfur bacteria (GSB) are equipped with a core genome that sustains their anoxygenic phototrophic lifestyle by photosynthesis, sulfur oxidation, and CO(2) fixation. Whole...... weight of 10(6), and are probably instrumental for the bacteria to generate their own intimate (micro)environment....

  18. Resuscitation effects of catalase on airborne bacteria.

    OpenAIRE

    Marthi, B; Shaffer, B T; Lighthart, B; Ganio, L

    1991-01-01

    Catalase incorporation into enumeration media caused a significant increase (greater than 63%) in the colony-forming abilities of airborne bacteria. Incubation for 30 to 60 min of airborne bacteria in collection fluid containing catalase caused a greater than 95% increase in colony-forming ability. However, catalase did not have any effects on enumeration at high relative humidities (80 to 90%).

  19. Lactic Acid Bacteria in the Gut

    NARCIS (Netherlands)

    Stolaki, M.; Vos, de W.M.; Kleerebezem, M.; Zoetendal, E.G.

    2012-01-01

    From all bacterial groups, the lactic acid bacteria (LAB) are probably the group of bacteria that is most associated with human lifestyle. The term LAB mainly refers to the ability of these organisms to convert sugars to lactic acid. The LAB comprise non-sporing, aerotolerant, coccus or rod-shaped,

  20. Energy transduction in lactic acid bacteria

    NARCIS (Netherlands)

    Poolman, Bert

    In the discovery of some general principles of energy transduction, lactic acid bacteria have played an important role. In this review, the energy transducing processes of lactic acid bacteria are discussed with the emphasis on the major developments of the past 5 years. This work not only includes

  1. Role of Outer Membrane Vesicles of Bacteria

    Indian Academy of Sciences (India)

    IAS Admin

    However, not all the surface-associated bacterial toxins mediate binding and internal- ization of the vesicles. Role in Pathogenesis. OMVs are important for pathogenicity and virulence of bacteria. Studies involving various pathogenic bacteria clearly reveal that they produce OMVs within the infected host tissues. Body fluids.

  2. The Microworld of Marine-Bacteria

    DEFF Research Database (Denmark)

    JØRGENSEN, BB

    1995-01-01

    metabolism types, bacteria in the mostly anoxic sea floor play an important role in the major element cycles of the ocean. The communities of giant, filamentous sulfur bacteria that live in the deep-sea hydrothermal vents or along the Pacific coast of South America are presented here as examples....

  3. Structural adaptations of octaheme nitrite reductases from haloalkaliphilic Thioalkalivibrio bacteria to alkaline pH and high salinity.

    Directory of Open Access Journals (Sweden)

    Anna Popinako

    Full Text Available Bacteria Tv. nitratireducens and Tv. paradoxus from soda lakes grow optimally in sodium carbonate/NaCl brines at pH range from 9.5 to 10 and salinity from 0.5 to 1.5 M Na+. Octaheme nitrite reductases (ONRs from haloalkaliphilic bacteria of genus Thioalkalivibrio are stable and active in a wide range of pH (up to 11 and salinity (up to 1 M NaCl. To establish adaptation mechanisms of ONRs from haloalkaliphilic bacteria a comparative analysis of amino acid sequences and structures of ONRs from haloalkaliphilic bacteria and their homologues from non-halophilic neutrophilic bacteria was performed. The following adaptation strategies were observed: (1 strategies specific for halophilic and alkaliphilic proteins (an increase in the number of aspartate and glutamate residues and a decrease in the number of lysine residues on the protein surface, (2 strategies specific for halophilic proteins (an increase in the arginine content and a decrease in the number of hydrophobic residues on the solvent-accessible protein surface, (3 strategies specific for alkaliphilic proteins (an increase in the area of intersubunit hydrophobic contacts. Unique adaptation mechanism inherent in the ONRs from bacteria of genus Thioalkalivibrio was revealed (an increase in the core in the number of tryptophan and phenylalanine residues, and an increase in the number of small side chain residues, such as alanine and valine, in the core.

  4. Clearance of Pseudomonas aeruginosa Foreign-Body Biofilm Infections through Reduction of the Cyclic Di-GMP Level in the Bacteria

    DEFF Research Database (Denmark)

    Christensen, Louise D.; van Gennip, Maria; Rybtke, Morten Theil

    2013-01-01

    Opportunistic pathogenic bacteria can engage in biofilm-based infections that evade immune responses and develop into chronic conditions. Because conventional antimicrobials cannot efficiently eradicate biofilms, there is an urgent need to develop alternative measures to combat biofilm infections...... of biofilm dispersal, but the mice tolerated the dispersed bacteria well. The present work provides proof of the concept that modulation of the c-di-GMP level in bacteria is a viable strategy for biofilm control....

  5. Biodiversity of Bacteria Isolated from Different Soils

    Directory of Open Access Journals (Sweden)

    Fatma YAMAN

    2017-01-01

    Full Text Available The aim of this study was to determine the biodiversity of PHB producing bacteria isolated from soils where fruit and vegetable are cultivated (onion, grape, olive, mulberry and plum in Aydın providence. Morphological, cultural, biochemical, and molecular methods were used for bacteria identification. These isolated bacteria were identified by 16S rRNA sequencing and using BLAST. The following bacteria Bacillus thuringiensis (6, Bacillus cereus (8, Bacillus anthrachis (1, Bacillus circulans (1, Bacillus weihenstephanensis (1, Pseudomonas putida (1, Azotobacter chroococcum (1, Brevibacterium frigoritolerans (1, Burkholderia sp. (1, Staphylococcus epidermidis (1, Streptomyces exfoliatus (1, Variovorax paradoxus (1 were found. The Maximum Likelihood method was used to produce a molecular phylogenetic analysis and a phylogenetic tree was constructed. These bacteria can produce polyhydroxybutyrate (PHB which is an organic polymer with commercial potential as a biodegradable thermoplastic. PHB can be used instead of petrol derivated non-degradable plastics. For this reason, PHB producing microorganisms are substantial in industry.

  6. Coryneform bacteria associated with canine otitis externa

    DEFF Research Database (Denmark)

    Aalbæk, Bent; Bemis, David A.; Schjærff, Mette

    2010-01-01

    This study aims to investigate the occurrence of coryneform bacteria in canine otitis externa. A combined case series and case-control study was carried out to improve the current knowledge on frequency and clinical significance of coryneform bacteria in samples from canine otitis externa. A total...... of 16 cases of otitis externa with involvement of coryneform bacteria were recorded at two referral veterinary hospitals in Denmark and the US, respectively. Coryneform bacteria were identified by partial 16S rRNA gene sequencing. Corynebacterium auriscanis was the most common coryneform species (10...... cases). Small colony variants of this species were also observed. Other coryneform isolates were identified as Corynebacterium amycolatum (3 cases), Corynebacterium freneyi (2 cases) and an Arcanobacterium-like species (1 case). The coryneform bacteria were in all cases isolated together with other...

  7. HYDROCARBON-DEGRADING BACTERIA AND SURFACTANT ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R; Topher Berry, T; Grazyna A. Plaza, G; jacek Wypych, j

    2006-08-15

    Fate of benzene ethylbenzene toluene xylenes (BTEX) compounds through biodegradation was investigated using two different bacteria, Ralstonia picketti (BP-20) and Alcaligenes piechaudii (CZOR L-1B). These bacteria were isolated from extremely polluted petroleum hydrocarbon contaminated soils. PCR and Fatty Acid Methyl Ester (FAME) were used to identify the isolates. Biodegradation was measured using each organism individually and in combination. Both bacteria were shown to degrade each of the BTEX compounds. Alcaligenes piechaudii biodegraded BTEXs more efficiently while mixed with BP-20 and individually. Biosurfactant production was observed by culture techniques. In addition 3-hydroxy fatty acids, important in biosurfactant production, was observed by FAME analysis. In the all experiments toluene and m+p- xylenes were better growth substrates for both bacteria than the other BTEX compounds. In addition, the test results indicate that the bacteria could contribute to bioremediation of aromatic hydrocarbons (BTEX) pollution increase biodegradation through the action by biosurfactants.

  8. Methods for baiting and enriching fungus-feeding (Mycophagous) rhizosphere bacteria

    NARCIS (Netherlands)

    Ballhausen, Max Bernhard; Veen, Van J.A.; Hundscheid, M.P.J.; Boer, De Wietse

    2015-01-01

    Mycophagous soil bacteria are able to obtain nutrients from living fungal hyphae. However, with exception of the soil bacterial genus Collimonas, occurrence of this feeding strategy has not been well examined. Evaluation of the importance of mycophagy in soil bacterial communities requires

  9. Tape Cassette Bacteria Detection System

    Science.gov (United States)

    1973-01-01

    The design, fabrication, and testing of an automatic bacteria detection system with a zero-g capability and based on the filter-capsule approach is described. This system is intended for monitoring the sterility of regenerated water in a spacecraft. The principle of detection is based on measuring the increase in chemiluminescence produced by the action of bacterial porphyrins (i.e., catalase, cytochromes, etc.) on a luminol-hydrogen peroxide mixture. Since viable as well as nonviable organisms initiate this luminescence, viable organisms are detected by comparing the signal of an incubated water sample with an unincubated control. Higher signals for the former indicate the presence of viable organisms. System features include disposable sealed sterile capsules, each containing a filter membrane, for processing discrete water samples and a tape transport for moving these capsules through a processing sequence which involves sample concentration, nutrient addition, incubation, a 4 Molar Urea wash and reaction with luminol-hydrogen peroxide in front of a photomultiplier tube. Liquids are introduced by means of a syringe needle which pierces a rubber septum contained in the wall of the capsule. Detection thresholds obtained with this unit towards E. coli and S. marcescens assuming a 400 ml water sample are indicated.

  10. Antibiotic resistance in probiotic bacteria

    Directory of Open Access Journals (Sweden)

    Miguel eGueimonde

    2013-07-01

    Full Text Available Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. The main probiotic bacteria are strains belonging to the genera Lactobacillus and Bifidobacterium, although other representatives, such as Bacillus or Escherichia coli strains, have also been used. Lactobacillus and Bifidobacterium are two common inhabitants of the human intestinal microbiota. Also, some species are used in food fermentation processes as starters, or as adjunct cultures in the food industry. With some exceptions, antibiotic resistance in these beneficial microbes does not constitute a safety concern in itself, when mutations or intrinsic resistance mechanisms are responsible for the resistance phenotype. In fact, some probiotic strains with intrinsic antibiotic resistance could be useful for restoring the gut microbiota after antibiotic treatment. However, specific antibiotic resistance determinants carried on mobile genetic elements, such as tetracycline resistance genes, are often detected in the typical probiotic genera, and constitute a reservoir of resistance for potential food or gut pathogens, thus representing a serious safety issue.

  11. Comparative cytotoxicity of periodontal bacteria

    International Nuclear Information System (INIS)

    Stevens, R.H.; Hammond, B.F.

    1988-01-01

    The direct cytotoxicity of sonic extracts (SE) from nine periodontal bacteria for human gingival fibroblasts (HGF) was compared. Equivalent dosages (in terms of protein concentration) of SE were used to challenge HGF cultures. The cytotoxic potential of each SE was assessed by its ability to (1) inhibit HGF proliferation, as measured by direct cell counts; (2) inhibit 3H-thymidine incorporation in HGF cultures; or (3) cause morphological alterations of the cells in challenged cultures. The highest concentration (500 micrograms SE protein/ml) of any of the SEs used to challenge the cells was found to be markedly inhibitory to the HGFs by all three of the criteria of cytotoxicity. At the lowest dosage tested (50 micrograms SE protein/ml); only SE from Actinobacillus actinomycetemcomitans, Bacteroides gingivalis, and Fusobacterium nucleatum caused a significant effect (greater than 90% inhibition or overt morphological abnormalities) in the HGFs as determined by any of the criteria employed. SE from Capnocytophaga sputigena, Eikenella corrodens, or Wolinella recta also inhibited cell proliferation and thymidine incorporation at this dosage; however, the degree of inhibition (5-50%) was consistently, clearly less than that of the first group of three organisms named above. The SE of the three other organisms tested (Actinomyces odontolyticus, Bacteroides intermedius, and Streptococcus sanguis) had little or no effect (0-10% inhibition) at this concentration. The data suggest that the outcome of the interaction between bacterial components and normal resident cells of the periodontium is, at least in part, a function of the bacterial species

  12. Comparative cytotoxicity of periodontal bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, R.H.; Hammond, B.F.

    1988-11-01

    The direct cytotoxicity of sonic extracts (SE) from nine periodontal bacteria for human gingival fibroblasts (HGF) was compared. Equivalent dosages (in terms of protein concentration) of SE were used to challenge HGF cultures. The cytotoxic potential of each SE was assessed by its ability to (1) inhibit HGF proliferation, as measured by direct cell counts; (2) inhibit 3H-thymidine incorporation in HGF cultures; or (3) cause morphological alterations of the cells in challenged cultures. The highest concentration (500 micrograms SE protein/ml) of any of the SEs used to challenge the cells was found to be markedly inhibitory to the HGFs by all three of the criteria of cytotoxicity. At the lowest dosage tested (50 micrograms SE protein/ml); only SE from Actinobacillus actinomycetemcomitans, Bacteroides gingivalis, and Fusobacterium nucleatum caused a significant effect (greater than 90% inhibition or overt morphological abnormalities) in the HGFs as determined by any of the criteria employed. SE from Capnocytophaga sputigena, Eikenella corrodens, or Wolinella recta also inhibited cell proliferation and thymidine incorporation at this dosage; however, the degree of inhibition (5-50%) was consistently, clearly less than that of the first group of three organisms named above. The SE of the three other organisms tested (Actinomyces odontolyticus, Bacteroides intermedius, and Streptococcus sanguis) had little or no effect (0-10% inhibition) at this concentration. The data suggest that the outcome of the interaction between bacterial components and normal resident cells of the periodontium is, at least in part, a function of the bacterial species.

  13. Surface-enhanced Raman scattering detection of bacteria on microarrays at single cell levels using silver nanoparticles

    International Nuclear Information System (INIS)

    Zhou, Haibo; Yang, Danting; Mircescu, Nicoleta E.; Ivleva, Natalia P.; Schwarzmeier, Kathrin; Niessner, Reinhard; Haisch, Christoph; Wieser, Andreas; Schubert, Sören

    2015-01-01

    We describe a method for the synthesis of SERS-active silver nanoparticles (AgNPs) directly on the surface of bacteria (bacteria-AgNPs), specifically of E. coli cells. This straightforward strategy allows for the sensitive determination of bacteria on a microarray platform. Antibodies were used as selective receptors on the microarray surface. The Raman signal of bacteria-AgNPs is about 10 times higher than that obtained previously with microarrays based on mixing bacteria and AgNPs (bacteria+AgNPs). The optimum SERS enhancement of bacteria-AgNPs is obtained under 633-nm laser excitation, and this most likely is due to the plasmonic interaction of aggregated AgNPs. The method allows for an identification and quantification even of single E. coli bacteria. In our perception, this straightforward approach represents a most valuable tool for the detection of E. coli and, conceivably, of other bacteria, and thus has a large potential in environmental monitoring, medical diagnosis, and in food safety and quality control. (author)

  14. Sustained delivery of commensal bacteria from pod-intravaginal rings.

    Science.gov (United States)

    Gunawardana, Manjula; Mullen, Madeline; Yoo, Jennifer; Webster, Paul; Moss, John A; Baum, Marc M

    2014-01-01

    Topical administration of live commensal bacteria to the vaginal tract holds significant potential as a cost-effective strategy for the treatment of sexually transmitted infections and the delivery of mucosal vaccines. Probiotic-releasing intravaginal rings (IVRs) embody significant theoretical advantages over traditional daily-dosage forms, such as sustained and controlled delivery leading to improved adherence to therapy compared to that of frequent dosing. The conventional IVR designs, however, are not amenable to the delivery of live bacteria. We have developed a novel pod-IVR technology where polymer-coated tablets ("pods") of Lactobacillus gasseri strain ATCC 33323, a commensal microorganism of human origin, are embedded in silicone IVRs. The release rate of bacterial cells is controlled by the diameter of a delivery channel that exposes a portion of the pod to external fluids. In vitro studies demonstrated that the prototype devices released between 1.1×10(7) and 14×10(7) cells per day for up to 21 days in a controlled sustained fashion with stable burst-free release kinetics. The daily release rates were correlated with the cross-sectional area of the delivery channel. Bacteria in the IVR pods remained viable throughout the in vitro studies and formed biofilms on the surfaces of the devices. This proof-of-principle study represents the first demonstration of a prolonged, sustained release of bacteria from an intravaginal device and warrants further investigation of this device as a nonchemotherapeutic agent for the restoration and maintenance of normal urogenital flora.

  15. Potential role of bacteria packaging by protozoa in the persistence and transmission of pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Alix M Denoncourt

    2014-05-01

    Full Text Available Many pathogenic bacteria live in close association with protozoa. These unicellular eukaryotic microorganisms are ubiquitous in various environments. A number of protozoa such as amoebae and ciliates ingest pathogenic bacteria, package them usually in membrane structures, and then release them into the environment. Packaged bacteria are more resistant to various stresses and are more apt to survive than free bacteria. New evidence indicates that protozoa and not bacteria control the packaging process. It is possible that packaging is more common than suspected and may play a major role in the persistence and transmission of pathogenic bacteria. To confirm the role of packaging in the propagation of infections, it is vital that the molecular mechanisms governing the packaging of bacteria by protozoa be identified as well as elements related to the ecology of this process in order to determine whether packaging acts as a Trojan Horse.

  16. Counting bacteria on a microfluidic chip.

    Science.gov (United States)

    Song, Yongxin; Zhang, Hongpeng; Chon, Chan Hee; Chen, Shu; Pan, Xinxiang; Li, Dongqing

    2010-11-29

    This paper reports a lab-on-a-chip device that counts the number of bacteria flowing through a microchannel. The bacteria number counting is realized by a microfluidic differential Resistive Pulse Sensor (RPS). By using a single microfluidic channel with two detecting arm channels placed at the two ends of the sensing section, the microfluidic differential RPS can achieve a high signal-to-noise ratio. This method is applied to detect and count bacteria in aqueous solution. The detected RPS signals amplitude for Pseudomonas aeruginosa ranges from 0.05 V to 0.17 V and the signal-to-noise ratio is 5-17. The number rate of the bacteria flowing through the sensing gate per minute is a linear function of the sample concentration. Using this experimentally obtained correlation curve, the concentration of bacteria in the sample solution can be evaluated within several minutes by measuring the number rate of the bacteria flowing through the sensing gate of this microfluidic differential RPS chip. The method described in this paper is simple and automatic, and have wide applications in determining the bacteria and cell concentrations for microbiological and other biological applications. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Fermentative Bacteria Influence the Competition between Denitrifiers and DNRA Bacteria

    Directory of Open Access Journals (Sweden)

    Eveline M. van den Berg

    2017-09-01

    results of this study clearly show that not only the ratio of available substrates, but also the nature of the electron donor influences the outcome of competition between DNRA and denitrification. Apparently, fermentative bacteria are competitive for the electron donor and thereby alter the ratio of available substrates for nitrate reduction.

  18. Folate Production by Probiotic Bacteria

    Directory of Open Access Journals (Sweden)

    Stefano Raimondi

    2011-01-01

    Full Text Available Probiotic bacteria, mostly belonging to the genera Lactobacillus and Bifidobacterium, confer a number of health benefits to the host, including vitamin production. With the aim to produce folate-enriched fermented products and/or develop probiotic supplements that accomplish folate biosynthesis in vivo within the colon, bifidobacteria and lactobacilli have been extensively studied for their capability to produce this vitamin. On the basis of physiological studies and genome analysis, wild-type lactobacilli cannot synthesize folate, generally require it for growth, and provide a negative contribution to folate levels in fermented dairy products. Lactobacillus plantarum constitutes an exception among lactobacilli, since it is capable of folate production in presence of para-aminobenzoic acid (pABA and deserves to be used in animal trials to validate its ability to produce the vitamin in vivo. On the other hand, several folate-producing strains have been selected within the genus Bifidobacterium, with a great variability in the extent of vitamin released in the medium. Most of them belong to the species B. adolescentis and B. pseudocatenulatum, but few folate producing strains are found in the other species as well. Rats fed a probiotic formulation of folate-producing bifidobacteria exhibited increased plasma folate level, confirming that the vitamin is produced in vivo and absorbed. In a human trial, the same supplement raised folate concentration in feces. The use of folate-producing probiotic strains can be regarded as a new perspective in the specific use of probiotics. They could more efficiently confer protection against inflammation and cancer, both exerting the beneficial effects of probiotics and preventing the folate deficiency that is associated with premalignant changes in the colonic epithelia.

  19. Bacteria classification using Cyranose 320 electronic nose

    Directory of Open Access Journals (Sweden)

    Gardner Julian W

    2002-10-01

    Full Text Available Abstract Background An electronic nose (e-nose, the Cyrano Sciences' Cyranose 320, comprising an array of thirty-two polymer carbon black composite sensors has been used to identify six species of bacteria responsible for eye infections when present at a range of concentrations in saline solutions. Readings were taken from the headspace of the samples by manually introducing the portable e-nose system into a sterile glass containing a fixed volume of bacteria in suspension. Gathered data were a very complex mixture of different chemical compounds. Method Linear Principal Component Analysis (PCA method was able to classify four classes of bacteria out of six classes though in reality other two classes were not better evident from PCA analysis and we got 74% classification accuracy from PCA. An innovative data clustering approach was investigated for these bacteria data by combining the 3-dimensional scatter plot, Fuzzy C Means (FCM and Self Organizing Map (SOM network. Using these three data clustering algorithms simultaneously better 'classification' of six eye bacteria classes were represented. Then three supervised classifiers, namely Multi Layer Perceptron (MLP, Probabilistic Neural network (PNN and Radial basis function network (RBF, were used to classify the six bacteria classes. Results A [6 × 1] SOM network gave 96% accuracy for bacteria classification which was best accuracy. A comparative evaluation of the classifiers was conducted for this application. The best results suggest that we are able to predict six classes of bacteria with up to 98% accuracy with the application of the RBF network. Conclusion This type of bacteria data analysis and feature extraction is very difficult. But we can conclude that this combined use of three nonlinear methods can solve the feature extraction problem with very complex data and enhance the performance of Cyranose 320.

  20. Mortality of fecal bacteria in seawater

    International Nuclear Information System (INIS)

    Garcia-Lara, J.; Menon, P.; Servais, P.; Billen, G.

    1991-01-01

    The authors propose a method for determining the mortality rate for allochthonous bacteria released in aquatic environments without interference due to the loss of culturability in specific culture media. This method consists of following the disappearance of radioactivity from the trichloracetic acid-insoluble fraction in water samples to which [ 3 H]thymidine-prelabeled allochthonous bacteria have been added. In coastal seawater, they found that the actual rate of disappearance of fecal bacteria was 1 order of magnitude lower than the rate of loss of culturability on specific media. Minor adaptation of the procedure may facilitate assessment of the effect of protozoan grazing and bacteriophage lysis on the overall bacterial mortality rate

  1. Anaerobic bacteria, the colon and colitis.

    Science.gov (United States)

    Roediger, W E

    1980-02-01

    Anaerobic bacteria constitute more than 90% of the bacteria in the colon. An anaerobic environment is needed to maintain their growth and the production of short-chain fatty acids by these bacteria from carbohydrates. Short-chain fatty acids are rapidly absorbed and essential for metabolic as well as functional welfare of the colonic mucosa. The importance of these acids in water absorption and in the patogenesis of colitis is discussed in relation to the concept of "energy deficiency diseases" of the colonic mucosa.

  2. Second messenger - Sensing riboswitches in bacteria.

    Science.gov (United States)

    Ramesh, Arati

    2015-12-01

    Signal sensing in bacteria has traditionally been attributed to protein-based factors. It is however becoming increasingly clear that bacteria also exploit RNAs to serve this role. This review discusses how key developmental processes in bacteria, such as community formation, choice of a sessile versus motile lifestyle, or vegetative growth versus dormant spore formation may be governed by signal sensing RNAs. The signaling molecules that affect these processes, the RNAs that sense these molecules and the underlying molecular basis for specific signal-response are discussed here. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Bacteria Culture Test: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... this page: https://medlineplus.gov/labtests/bacteriaculturetest.html Bacteria Culture Test To use the sharing features on this page, please enable JavaScript. What is a Bacteria Culture Test? Bacteria are a large group of ...

  4. FLOSS strategies

    CSIR Research Space (South Africa)

    Mabaso, NM

    2006-11-01

    Full Text Available stream_source_info Mabaso_2006_D.pdf.txt stream_content_type text/plain stream_size 1617 Content-Encoding UTF-8 stream_name Mabaso_2006_D.pdf.txt Content-Type text/plain; charset=UTF-8 FLOSS Strategies Presented...

  5. Teaching Strategies.

    Science.gov (United States)

    1994

    This instruction guide conveys effective strategies for engaging students in small group exercises, brainstorming, discussions, case studies and controversial issues. After emphasizing the importance of the first small group session for setting the tone, the guide advises teachers to appoint groups of two to five students, assigning the most…

  6. CSR STRATEGIES

    OpenAIRE

    LAURENTIU BARANGA; ION STEGAROIU

    2011-01-01

    Corporate Social Responsibility (CSR) has got three components: economic responsibility of shareholders, corporate environmental responsibility, corporate responsibility of the society. Each component of the CSR has its own features, according to which adequate individual behaviour is established. Knowing these features is very important in CSR strategy development.

  7. Comparison of clinical prediction models for resistant bacteria in community-onset pneumonia.

    Science.gov (United States)

    Self, Wesley H; Wunderink, Richard G; Williams, Derek J; Barrett, Tyler W; Baughman, Adrienne H; Grijalva, Carlos G

    2015-06-01

    Six recently published algorithms classify pneumonia patients presenting from the community into high- and low-risk groups for resistant bacteria. Our objective was to compare performance of these algorithms for identifying patients infected with bacteria resistant to traditional community-acquired pneumonia antibiotics. This was a retrospective study of consecutive adult patients diagnosed with pneumonia in an emergency department and subsequently hospitalized. Each patient was classified as high or low risk for resistant bacteria according to the following algorithms: original health care-associated pneumonia (HCAP) criteria, Summit criteria, Brito and Niederman strategy, Shorr model, Aliberti model, and Shindo model. The reference for comparison was detection of resistant bacteria, defined as methicillin-resistant Staphylococcus aureus or Gram-negative bacteria resistant to ceftriaxone or levofloxacin. A total of 614 patients were studied, including 36 (5.9%) with resistant bacteria. The HCAP criteria classified 304 (49.5%) patients as high risk, with an area under the receiver operating characteristic curve (AUC) of 0.63 (95% confidence interval [CI] = 0.54 to 0.72), sensitivity of 0.69 (95% CI = 0.52 to 0.83), and specificity of 0.52 (95% CI = 0.48 to 0.56). None of the other algorithms improved both sensitivity and specificity or significantly improved the AUC. Compared to the HCAP criteria, the Shorr and Aliberti models classified more patients as high risk, resulting in higher sensitivity and lower specificity. The Shindo model classified fewer patients as high risk, with lower sensitivity and higher specificity. All algorithms for identification of resistant bacteria included in this study had suboptimal performance to guide antibiotic selection. New strategies for selecting empirical antibiotics for community-onset pneumonia are necessary. © 2015 by the Society for Academic Emergency Medicine.

  8. Current Perspectives on Viable but Non-Culturable (VBNC Pathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Thandavarayan eRamamurthy

    2014-07-01

    Full Text Available Under stress conditions, many species of bacteria enter into starvation mode of metabolism or a physiologically viable but non-culturable (VBNC state. Several human pathogenic bacteria have been reported to enter into the VBNC state under these conditions. The pathogenic VBNC bacteria cannot be grown using conventional culture media, although they continue to retain their viability and express their virulence. Though there have been debates on the VBNC concept in the past, several molecular studies have shown that not only VBNC state can be induced under in vitro conditions but also that resuscitation from this state is possible under appropriate conditions. The most notable advance in resuscitating VBNC bacteria is the discovery of resuscitation-promoting factor (Rpf, which is a bacterial cytokines found in both Gram-positive and Gram-negative organisms. VBNC state is a survival strategy adopted by the bacteria, which has important implication in several fields, including environmental monitoring, food technology and infectious disease management and hence it is important to investigate the association of bacterial pathogens under VBNC state and the water/foodborne outbreaks. In this review, we describe various aspects of VBNC bacteria, which include their proteomic and genetic profiles under the VBNC state, conditions of resuscitation, methods of detection, antibiotic resistance and observations on Rpf.

  9. Developing a Real Time Sensing System to Monitor Bacteria in Wound Dressings

    Directory of Open Access Journals (Sweden)

    Patricia Connolly

    2012-05-01

    Full Text Available Infection control is a key aspect of wound management strategies. Infection results in chemical imbalances and inflammation in the wound and may lead to prolonged healing times and degradation of the wound surface. Frequent changing of wound dressings may result in damage to healing tissues and an increased risk of infection. This paper presents the first results from a monitoring system that is being developed to detect presence and growth of bacteria in real time. It is based on impedance sensors that could be placed at the wound-dressing interface and potentially monitor bacterial growth in real time. As wounds can produce large volumes of exudate, the initial system reported here was developed to test for the presence of bacteria in suspension. Impedance was measured using disposable silver-silver chloride electrodes. The bacteria Staphylococcus aureus were chosen for the study as a species commonly isolated from wounds. The growth of bacteria was confirmed by plate counting methods and the impedance data were analysed for discernible differences in the impedance profiles to distinguish the absence and/or presence of bacteria. The main findings were that the impedance profiles obtained by silver-silver chloride sensors in bacterial suspensions could detect the presence of high cell densities. However, the presence of the silver-silver chloride electrodes tended to inhibit the growth of bacteria. These results indicate that there is potential to create a real time infection monitor for wounds based upon impedance sensing.

  10. Contribution of midgut bacteria to blood digestion and egg production in aedes aegypti (diptera: culicidae) (L.)

    Science.gov (United States)

    2011-01-01

    Background The insect gut harbors a variety of microorganisms that probably exceed the number of cells in insects themselves. These microorganisms can live and multiply in the insect, contributing to digestion, nutrition, and development of their host. Recent studies have shown that midgut bacteria appear to strengthen the mosquito's immune system and indirectly enhance protection from invading pathogens. Nevertheless, the physiological significance of these bacteria for mosquitoes has not been established to date. In this study, oral administration of antibiotics was employed in order to examine the contribution of gut bacteria to blood digestion and fecundity in Aedes aegypti. Results The antibiotics carbenicillin, tetracycline, spectinomycin, gentamycin and kanamycin, were individually offered to female mosquitoes. Treatment of female mosquitoes with antibiotics affected the lysis of red blood cells (RBCs), retarded the digestion of blood proteins and reduced egg production. In addition, antibiotics did not affect the survival of mosquitoes. Mosquito fertility was restored in the second gonotrophic cycle after suspension of the antibiotic treatment, showing that the negative effects of antibiotics in blood digestion and egg production in the first gonotrophic cycle were reversible. Conclusions The reduction of bacteria affected RBC lysis, subsequently retarded protein digestion, deprived mosquito from essential nutrients and, finally, oocyte maturation was affected, resulting in the production of fewer viable eggs. These results indicate that Ae. aegypti and its midgut bacteria work in synergism to digest a blood meal. Our findings open new possibilities to investigate Ae. aegypti-associated bacteria as targets for mosquito control strategies. PMID:21672186

  11. Enteropathogenic Escherichia coli, Samonella, Shigella and Yersinia: cellular aspects of host-bacteria interactions in enteric diseases

    Directory of Open Access Journals (Sweden)

    Reis Roberta

    2010-07-01

    Full Text Available Abstract A successful infection of the human intestine by enteropathogenic bacteria depends on the ability of bacteria to attach and colonize the intestinal epithelium and, in some cases, to invade the host cell, survive intracellularly and disseminate from cell to cell. To accomplish these processes bacteria have evolved an arsenal of molecules that are mostly secreted by dedicated type III secretion systems, and that interact with the host, subverting normal cellular functions. Here we overview the most important molecular strategies developed by enteropathogenic Escherichia coli, Salmonella enterica, Shigella flexneri, and Yersinia enterocolitica to cause enteric infections. Despite having evolved different effectors, these four microorganisms share common host cellular targets.

  12. Comparative genomics of the lactic acid bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Makarova, K.; Slesarev, A.; Wolf, Y.; Sorokin, A.; Mirkin, B.; Koonin, E.; Pavlov, A.; Pavlova, N.; Karamychev, V.; Polouchine, N.; Shakhova, V.; Grigoriev, I.; Lou, Y.; Rokhsar, D.; Lucas, S.; Huang, K.; Goodstein, D. M.; Hawkins, T.; Plengvidhya, V.; Welker, D.; Hughes, J.; Goh, Y.; Benson, A.; Baldwin, K.; Lee, J. -H.; Diaz-Muniz, I.; Dosti, B.; Smeianov, V; Wechter, W.; Barabote, R.; Lorca, G.; Altermann, E.; Barrangou, R.; Ganesan, B.; Xie, Y.; Rawsthorne, H.; Tamir, D.; Parker, C.; Breidt, F.; Broadbent, J.; Hutkins, R.; O' Sullivan, D.; Steele, J.; Unlu, G.; Saier, M.; Klaenhammer, T.; Richardson, P.; Kozyavkin, S.; Weimer, B.; Mills, D.

    2006-06-01

    Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacteria encode a broad repertoire of transporters for efficient carbon and nitrogen acquisition from the nutritionally rich environments they inhabit and reflect a limited range of biosynthetic capabilities that indicate both prototrophic and auxotrophic strains. Phylogenetic analyses, comparison of gene content across the group, and reconstruction of ancestral gene sets indicate a combination of extensive gene loss and key gene acquisitions via horizontal gene transfer during the coevolution of lactic acid bacteria with their habitats.

  13. Lactic acid bacteria: microbiological and functional aspects

    National Research Council Canada - National Science Library

    Lahtinen, Sampo

    2012-01-01

    "Updated with the substantial progress made in lactic acid and bacteria research since the third edition, this fourth volume discusses improved insights in genetics and new molecular biological techniques...

  14. Ecology: Electrical Cable Bacteria Save Marine Life

    DEFF Research Database (Denmark)

    Nielsen, Lars Peter

    2016-01-01

    Animals at the bottom of the sea survive oxygen depletion surprisingly often, and a new study identifies cable bacteria in the sediment as the saviors. The bacterial electrical activity creates an iron 'carpet', trapping toxic hydrogen sulfide....

  15. Flow cytometry, fluorescent probes, and flashing bacteria

    NARCIS (Netherlands)

    Bunthof, C.J.

    2002-01-01


    Key words: fluorescent probes, flow cytometry, CSLM, viability, survival, microbial physiology, lactic acid bacteria, Lactococcus lactis , Lactobacillus plantarum , cheese, milk,

  16. Effect of leukocyte hydrolases on bacteria

    International Nuclear Information System (INIS)

    Cohen, D.; Michel, J.; Ferne, M.; Bergner-Rabinowitz, S.; Ginsburg, I.

    1979-01-01

    Leukocyte extracts, trypsin, and lysozyme are all capable of releasing the bulk of the LPS from S. typhi, S. typhimurium, and E. coli. Bacteria which have been killed by heat, ultraviolet irradiation, or by a variety of metabolic inhibitors and antibiotics which affect protein, DNA, RNA, and cell wall synthesis no longer yield soluble LPS following treatment with the releasing agents. On the other hand, bacteria which are resistant to certain of the antibiotics yield nearly the full amount of soluble LPS following treatment, suggesting that certain heatabile endogenous metabolic pathways collaborate with the releasing agents in the release of LPS from the bacteria. It is suggested that some of the beneficial effects of antibiotics on infections with gram-negative bacteria may be the prevention of massive release of endotoxin by leukocyte enzymes in inflammatory sites

  17. Distribution of phytopathogenic bacteria in infested seeds

    Science.gov (United States)

    Populations of phytopathogenic bacteria representing five host-pathogen combinations were assessed to determine if there was a mathematical relationship common across seedborne bacterial diseases. Bacterial populations were estimated from naturally-infested seeds of cowpea (Vigna unguiculata), peppe...

  18. Bacteria-mediated bisphenol A degradation.

    Science.gov (United States)

    Zhang, Weiwei; Yin, Kun; Chen, Lingxin

    2013-07-01

    Bisphenol A (BPA) is an important monomer in the manufacture of polycarbonate plastics, food cans, and other daily used chemicals. Daily and worldwide usage of BPA and BPA-contained products led to its ubiquitous distribution in water, sediment/soil, and atmosphere. Moreover, BPA has been identified as an environmental endocrine disruptor for its estrogenic and genotoxic activity. Thus, BPA contamination in the environment is an increasingly worldwide concern, and methods to efficiently remove BPA from the environment are urgently recommended. Although many factors affect the fate of BPA in the environment, BPA degradation is mainly depended on the metabolism of bacteria. Many BPA-degrading bacteria have been identified from water, sediment/soil, and wastewater treatment plants. Metabolic pathways of BPA degradation in specific bacterial strains were proposed, based on the metabolic intermediates detected during the degradation process. In this review, the BPA-degrading bacteria were summarized, and the (proposed) BPA degradation pathway mediated by bacteria were referred.

  19. Abundance, viability and culturability of Antarctic bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; DeSouza, M.J.B.D.; Nair, S.; Chandramohan, D.

    The viability of total number of bacteria decide the mineralisation rate in any ecosystem and ultimately the fertility of the region. This study aims at establishing the extent of viability in the standing stock of the Antarctic bacterial population...

  20. Systemic resistance induced by rhizosphere bacteria

    NARCIS (Netherlands)

    Loon, L.C. van; Bakker, P.A.H.M.; Pieterse, C.M.J.

    1998-01-01

    Nonpathogenic rhizobacteria can induce a systemic resistance in plants that is phenotypically similar to pathogen-induced systemic acquired resistance (SAR). Rhizobacteria-mediated induced systemic resistance (ISR) has been demonstrated against fungi, bacteria, and viruses in Arabidopsis, bean,

  1. Discovering lactic acid bacteria by genomics

    NARCIS (Netherlands)

    Klaenhammer, T; Altermann, E; Arigoni, F; Bolotin, A; Breidt, F; Broadbent, J; Cano, R; Chaillou, S; Deutscher, J; Gasson, M; van de Guchte, M; Guzzo, J; Hartke, A; Hawkins, T; Hols, P; Hutkins, R; Kleerebezem, M; Kok, J; Kuipers, O; Maguin, E; McKay, L; Mills, D; Nauta, A; Overbeek, R; Pel, H; Pridmore, D; Saier, M; van Sinderen, D; Sorokin, A; Steele, J; O'Sullivan, D; de Vos, W; Weimer, B; Zagorec, M; Siezen, R

    This review summarizes a collection of lactic acid bacteria that are now undergoing genomic sequencing and analysis. Summaries are presented on twenty different species, with each overview discussing the organisms fundamental and practical significance, environmental habitat, and its role in

  2. Do bacteria, not fish, produce 'fish kairomone'?

    NARCIS (Netherlands)

    Ringelberg, J.; Van Gool, E.

    1998-01-01

    Fish-associated chemicals enhance phototactic downward swimming in Daphnia. If perch were treated with the antibiotic ampicillin, this enhancement was significantly decreased. Therefore, not fish, but bacteria associated with fish, seem to produce this kairomone. [KEYWORDS: Diel vertical migration;

  3. A nanovehicle developed for treating deep-seated bacteria using low-dose X-ray.

    Science.gov (United States)

    Pan, Chien-Lin; Chen, Ming-Hong; Tung, Fu-I; Liu, Tse-Ying

    2017-01-01

    Many non-antibiotic strategies, such as photocatalysis and photodynamic therapy, have been proposed to inhibit and/or kill bacteria. However, these approaches still have drawbacks such as insufficient bacterial specificity and the limited penetration depth of ultraviolet and near-infrared light. To overcome these limitations, we developed a bacteria-specific anti-bacterial technique via using low-dose X-ray. Graphene oxide quantum dots (GQDs, a multifunctional vehicle) conjugated with vancomycin (Van, a bacteria-targeting ligand) were assembled with Protoporphyrin IX (PpIX, a photo/radiation sensitizer) to yield a novel Van-GQDs/PpIX complex that specifically attached to Escherichia coli and efficiently generated intracellular reactive oxygen species following X-ray activation. Delivery using GQDs increased the PpIX/Van ratio in the target bacterial cell, damaged bacterial cell wall, and enhanced X-ray-induced PpIX activation. Hence, this approach allowed for the use of a low-dose X-ray to efficiently activate the Van-GQDs/PpIX complex to exert its bactericidal effects on Escherichia coli without damaging normal cells. Furthermore, the E. coli did not develop resistance to the proposed approach for at least 7 rounds of repeated administration during one week. Thus, this proposed vehicle exhibiting bacteria-specific X-ray-triggered toxicity is a promising alternative to antibiotics for treating serious bacterial infections occurring in deep-seated tissues/organs (e.g., osteomyelitis and peritonitis). Administration of antibiotics is the most common treatment modality for bacterial infections. However, in some cases, patient attributes such as age, health, tolerance to antibiotics do not allow for the use of high-dose antibiotics. In addition, some bacteria develop resistance to antibiotics because of improper and long-term use of these agents. Therefore, non-antibiotic strategies to treat deeply situated bacterial infections, such as osteomyelitis, are urgently

  4. Rapid methods for detection of bacteria

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Andersen, B.Ø.; Miller, M.

    2006-01-01

    Traditional methods for detection of bacteria in drinking water e.g. Heterotrophic Plate Counts (HPC) or Most Probable Number (MNP) take 48-72 hours to give the result. New rapid methods for detection of bacteria are needed to protect the consumers against contaminations. Two rapid methods: Measu......: Measurements of Adosine Triphosphate and BactiQuantTM have shown promising results as new monitoring tools, which gives the result within minutes/hours....

  5. Potentials of Exopolysaccharides from Lactic Acid Bacteria

    OpenAIRE

    Patel, Seema; Majumder, Avishek; Goyal, Arun

    2011-01-01

    Recent research in the area of importance of microbes has revealed the immense industrial potential of exopolysaccharides and their derivative oligosaccharides from lactic acid bacteria. However, due to lack of adequate technological knowledge, the exopolysaccharides have remained largely under exploited. In the present review, the enormous potentials of different types of exopolysaccharides from lactic acid bacteria are described. This also summarizes the recent advances in the applications ...

  6. Systemic resistance induced by rhizosphere bacteria

    OpenAIRE

    Loon, L.C. van; Bakker, P.A.H.M.; Pieterse, C.M.J.

    1998-01-01

    Nonpathogenic rhizobacteria can induce a systemic resistance in plants that is phenotypically similar to pathogen-induced systemic acquired resistance (SAR). Rhizobacteria-mediated induced systemic resistance (ISR) has been demonstrated against fungi, bacteria, and viruses in Arabidopsis, bean, carnation, cucumber, radish, tobacco, and tomato under conditions in which the inducing bacteria and the challenging pathogen remained spatially separated. Bacterial strains differ in their ability to ...

  7. ORAL BACTERIA AND SYSTEMS DISEASES: A REVIEW

    OpenAIRE

    Moromi Nakata, Hilda

    2014-01-01

    In order to show a global vision of oral bacteria in systemic diseases, it is important to analyze the presence and consequences of these microorganisms in relation with: bacteremia, endocarditis, cardiovascular disease, cerebrovascular disease, bacterial pneumonia, neonatal weight, nefritis, arthritis, dermatitis and diabetes mellitus, reaching conclusions for each one of them. Con el objeto de presentar una visión general de la bacterias orales en los procesos sistémicos, se analiza la p...

  8. Molecular genetic studies on obligate anaerobic bacteria

    International Nuclear Information System (INIS)

    Woods, D.R.

    1982-01-01

    Molecular genetic studies on obligate anaerobic bacteria have lagged behind similar studies in aerobes. However, the current interest in biotechnology, the involvement of anaerobes in disease and the emergence of antibioticresistant strains have focused attention on the genetics of anaerobes. This article reviews molecular genetic studies in Bacteroides spp., Clostridium spp. and methanogens. Certain genetic systems in some anaerobes differ from those in aerobes and illustrate the genetic diversity among bacteria

  9. [Teichoic acids from lactic acid bacteria].

    Science.gov (United States)

    Livins'ka, O P; Harmasheva, I L; Kovalenko, N K

    2012-01-01

    The current view of the structural diversity of teichoic acids and their involvement in the biological activity of lactobacilli has been reviewed. The mechanisms of effects of probiotic lactic acid bacteria, in particular adhesive and immunostimulating functions have been described. The prospects of the use of structure data of teichoic acid in the assessment of intraspecific diversity of lactic acid bacteria have been also reflected.

  10. DOT strategies versus orbiter strategies

    NARCIS (Netherlands)

    Rutten, R.J.

    2001-01-01

    The Dutch Open Telescope is a high-resolution solar imager coming on-line at La Palma. The definition of the DOT science niche, strategies, and requirements resemble Solar Orbiter considerations and deliberations. I discuss the latter in the light of the former, and claim that multi-line observation

  11. Vapor-induced transfer of bacteria in the absence of mechanical disturbances

    Energy Technology Data Exchange (ETDEWEB)

    Ayoub, G.M., E-mail: gayoub@aub.edu.lb [Department of Civil and Environmental Engineering, American University of Beirut (Lebanon); Dahdah, L.; Alameddine, I. [Department of Civil and Environmental Engineering, American University of Beirut (Lebanon); Malaeb, L. [Water Desalination and Reuse Research Center, KAUST, Thuwal 23955-6900 (Saudi Arabia)

    2014-09-15

    Graphical abstract: - Highlights: • Study is first to investigate the possibility of transfer of bacteria through vapor. • Bacteria exhibited transfer in the absence of mechanical disturbances in reactors. • Gram positive smaller bacteria transferred more than gram negative larger bacteria. • Transfer probability increases at optimal growth temperature of mesophilic bacteria. • Salinity lowers bacterial survival and has synergistic effect with temperature. - Abstract: Transfer of bacteria through water vapor generated at moderate temperatures (30–50 °C) in passive solar stills, has scarcely been reported. The objective of this research was to investigate whether bacteria in highly humid atmospheres can get transferred through water vapor in the absence of other transfer media to find their way to the distillate. To achieve this objective, passive solar reactors were chosen as the medium for experimentation, and distillation experiments were conducted by spiking a pure bacterial culture (Escherichia coli, Klebsiella pneumonia or Enterococcus faecalis) in low mineralized water vs. highly mineralized water in the dark under moderate temperatures ranges (30–35 °C, 40–45 °C and 50–55 °C). Results showed that bacteria indeed get transferred with the vapor in stills when not exposed to solar U.V. radiation. The trends observed were adequately explained by a zero-modified Hurdle–Poisson model. The numbers of cultivable bacterial colonies transferred were bacterial size, water type and temperature dependent with highest transfers occurring in E. faecalis > E. coli > K. pneumonia at the 40 °C range in low mineralized water. Proper management strategies are recommended to achieve complete disinfection in solar stills.

  12. Role of Atypical Bacteria in Hospitalized Patients With Nursing Home-Acquired Pneumonia.

    Science.gov (United States)

    Meyer-Junco, Laura

    2016-10-01

    Background: Nursing home-acquired pneumonia (NHAP) has been identified as one of the leading causes of mortality and hospitalization for long-term care residents. However, current and previous pneumonia guidelines differ on the appropriate management of NHAP in hospitalized patients, specifically in regard to the role of atypical bacteria such as Chlamydiae pneumonia, Mycoplasma pneumoniae, and Legionella. Objectives: The purpose of this review is to evaluate clinical trials conducted in hospitalized patients with NHAP to determine the prevalence of atypical bacteria and thus the role for empiric antibiotic coverage of these pathogens in NHAP. Methods: Comprehensive MEDLINE (1966-April 2016) and Embase (1980-April 2016) searches were performed using the terms "atypical bacteria", "atypical pneumonia", "nursing-home acquired pneumonia", "pneumonia", "elderly", "nursing homes", and "long term care". Additional articles were retrieved from the review of references cited in the collected studies. Thirteen published clinical trials were identified. Results: In the majority of studies, atypical bacteria were infrequently identified in patients hospitalized with NHAP. However, when an active community-acquired pneumonia (CAP) cohort was available, the rate of atypical bacteria between NHAP and CAP study arms was similar. Only 3 studies in this review adhered to recommended strategies for investigating atypical bacteria; in 2 of these studies, C. pneumoniae was the most common pathogen identified in NHAP cohorts. Conclusion: Although atypical bacteria were uncommon in most NHAP studies in this review, suboptimal microbial investigations were commonly performed. To accurately describe the role of atypical bacteria in NHAP, more studies using validated diagnostic tests are needed.

  13. Vapor-induced transfer of bacteria in the absence of mechanical disturbances

    International Nuclear Information System (INIS)

    Ayoub, G.M.; Dahdah, L.; Alameddine, I.; Malaeb, L.

    2014-01-01

    Graphical abstract: - Highlights: • Study is first to investigate the possibility of transfer of bacteria through vapor. • Bacteria exhibited transfer in the absence of mechanical disturbances in reactors. • Gram positive smaller bacteria transferred more than gram negative larger bacteria. • Transfer probability increases at optimal growth temperature of mesophilic bacteria. • Salinity lowers bacterial survival and has synergistic effect with temperature. - Abstract: Transfer of bacteria through water vapor generated at moderate temperatures (30–50 °C) in passive solar stills, has scarcely been reported. The objective of this research was to investigate whether bacteria in highly humid atmospheres can get transferred through water vapor in the absence of other transfer media to find their way to the distillate. To achieve this objective, passive solar reactors were chosen as the medium for experimentation, and distillation experiments were conducted by spiking a pure bacterial culture (Escherichia coli, Klebsiella pneumonia or Enterococcus faecalis) in low mineralized water vs. highly mineralized water in the dark under moderate temperatures ranges (30–35 °C, 40–45 °C and 50–55 °C). Results showed that bacteria indeed get transferred with the vapor in stills when not exposed to solar U.V. radiation. The trends observed were adequately explained by a zero-modified Hurdle–Poisson model. The numbers of cultivable bacterial colonies transferred were bacterial size, water type and temperature dependent with highest transfers occurring in E. faecalis > E. coli > K. pneumonia at the 40 °C range in low mineralized water. Proper management strategies are recommended to achieve complete disinfection in solar stills

  14. Study Strategies

    DEFF Research Database (Denmark)

    Nielsen, Camilla Kirketerp; Noer, Vibeke Røn

    module”. The projects differ in terms of both starting point and main focus of research (an alternative educational model and profession-orientated Game-based learning). However, in the on-going process of research, an empirical ´harmony´ on common recurrent themes related to students `study strategies......ID: 1277 / 22 SES 06 B: 2 22. Research in Higher Education Format of Presentation: Paper Alternative EERA Network: 19. Ethnography Topics: NW 22: Teaching, learning and assessment in higher education Keywords: Profession-oriented learning, study strategies, professionalisation processes......-class until graduation and entrance into the nursing field as professional nurses. Case 2: In the veterinary educational environment, a pedagogical development project on development, implementation and evaluation of game-based learning as a possible way of strengthening the interplay between practice...

  15. Competition for hydrogen by human faecal bacteria: evidence for the predominance of methane producing bacteria.

    OpenAIRE

    Strocchi, A; Furne, J K; Ellis, C J; Levitt, M D

    1991-01-01

    Studies of sludge have shown that some species of sulphate reducing bacteria outcompete methane producing bacteria for the common substrate H2. A similar competition may exist in human faeces where the methane (CH4) producing status of an individual depends on the faecal concentration of sulphate reducing bacteria. To determine if non-methanogenic faeces outcompete CH4 producing faeces for H2, aliquots of each type of faeces were incubated alone or mixed together, with or without addition of ...

  16. Antioxidant activity of Sphaerococcus coronopifolius associated bacteria

    Directory of Open Access Journals (Sweden)

    Nádia Fino

    2014-06-01

    Full Text Available Associated bacteria living on macroalgae surfaces are an interesting source of new secondary metabolites with biological activities. The aim of this study was the isolation and identification of epiphytic bacteria from the marine algae Sphaerococcus coronopifolius and the evaluation of the antioxidant activity of the bacteria extracts. The identification of epiphytic bacteria was determined by 16S rRNA gene sequencing. Bacteria extracts were obtained with methanol and dichloromethane (1:1 extraction. Antioxidant activity was evaluated by quantification of total phenolic content (TPC, 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging activity and oxygen radical absorbent capacity (ORAC. The extracts with higher antioxidant activity were tested on MCF-7 and HepG-2 cell lines in oxidative stress conditions induced by H2O2 at 0.2 mM and 0.5 mM, respectively. In total were isolated 21 Sphaerococcus coronopifolius associated bacteria and identified as Vibrio sp. (28.57%, Shewanella sp. (23.81%, Pseudoalteromonas sp. (19.05%, Bacillus sp. (9.52% and Halomonas sp. (9.52%. Two (9.52% of them presented less than 90% Basic Local Alignment Search Tool (BLAST match. The epiphytic bacteria with the most antioxidant potential evaluated by ORAC and DPPH methods were Sp2, Sp12, Sp23, Sp25 and Sp27. The strain Sp4 show high antioxidant activity in all antioxidant methods (ORAC, DPPH and TPC. In oxidative stress conditions on MCF-7 cell line, the extracts of bacteria (1mg.ml-1: 24hours Sp4 (16.15%, Sp25 (17.95% and Sp27 (10.65% prevented the cell death induced by H2O2. In the HepG-2 cell line was the extracts of Sp2 (9.01%, Sp4 (11.21%, Sp12 (7.20% and Sp23 (8.81% bacteria that high prevented the oxidative stress condition induced by H2O2. In conclusion, the Sphaerococcus coronopifolius associated bacteria can be an interesting and excellent source of marine natural compounds with antioxidant activity.

  17. Magnetosome chain superstructure in uncultured magnetotactic bacteria

    International Nuclear Information System (INIS)

    Abraçado, Leida G; Farina, Marcos; Abreu, Fernanda; Keim, Carolina N; Lins, Ulysses; Campos, Andrea P C

    2010-01-01

    Magnetotactic bacteria produce magnetosomes, which are magnetic particles enveloped by biological membranes, in a highly controlled mineralization process. Magnetosomes are used to navigate in magnetic fields by a phenomenon called magnetotaxis. Two levels of organization and control are recognized in magnetosomes. First, magnetotactic bacteria create a spatially distinct environment within vesicles defined by their membranes. In the vesicles, the bacteria control the size, composition and purity of the mineral content of the magnetic particles. Unique crystal morphologies are produced in magnetosomes as a consequence of this bacterial control. Second, magnetotactic bacteria organize the magnetosomes in chains within the cell body. It has been shown in a particular case that the chains are positioned within the cell body in specific locations defined by filamentous cytoskeleton elements. Here, we describe an additional level of organization of the magnetosome chains in uncultured magnetotactic cocci found in marine and freshwater sediments. Electron microscopy analysis of the magnetosome chains using a goniometer showed that the magnetic crystals in both types of bacteria are not oriented at random along the crystal chain. Instead, the magnetosomes have specific orientations relative to the other magnetosomes in the chain. Each crystal is rotated either 60°, 180° or 300° relative to their neighbors along the chain axis, causing the overlapping of the (1 1 1) and (1-bar 1-bar 1-bar) capping faces of neighboring crystals. We suggest that genetic determinants that are not present or active in bacteria with magnetosomes randomly rotated within a chain must be present in bacteria that organize magnetosomes so precisely. This particular organization may also be used as an indicative biosignature of magnetosomes in the study of magnetofossils in the cases where this symmetry is observed

  18. [Spectrum and susceptibility of preoperative conjunctival bacteria].

    Science.gov (United States)

    Fernández-Rubio, M E; Cuesta-Rodríguez, T; Urcelay-Segura, J L; Cortés-Valdés, C

    2013-12-01

    To describe the conjunctival bacterial spectrum of our patients undergoing intraocular surgery and their antibiotic sensitivity during the study period. A retrospective study of preoperative conjunctival culture of patients consecutively scheduled for intraocular surgery from 21 February 2011 to 1 April 2013. Specimens were directly seeded onto blood-agar and MacConkey-agar (aerobiosis incubation, 2 days), and on chocolate-agar (6% CO2 incubation, 7 days). The identified bacteria were divided into 3 groups according to their origin; the bacteria susceptibility tests were performed on those more pathogenic and on some of the less pathogenic when more than 5 colonies were isolated. The sensitivity of the exigent growing bacteria was obtained with disk diffusion technique, and for of the non-exigent bacteria by determining their minimum inhibitory concentration. The Epidat 3.1 program was used for statistical calculations. A total of 13,203 bacteria were identified in 6,051 cultures, with 88.7% being typical colonizers of conjunctiva (group 1), 8.8% typical of airways (group 2), and the remaining 2.5% of undetermined origin (group 3). 530 cultures (8.8%) were sterile. The sensitivity of group 1 was: 99% vancomycin, 95% rifampicin, 87% chloramphenicol, 76% tetracycline. Levels of co-trimoxazole, aminoglycosides, quinolones, β-lactams and macrolides decreased since 2007. The group 2 was very sensitive to chloramphenicol, cefuroxime, rifampicin, ciprofloxacin and amoxicillin/clavulanate. In group 3, to levofloxacin 93%, ciprofloxacin 89%, tobramycin 76%, but ceftazidime 53% and cefuroxime 29% decreased. None of the tested antibiotics could eradicate all possible conjunctival bacteria. Bacteria living permanently on the conjunctiva (group 1) have achieved higher resistance than the eventual colonizers. Copyright © 2013 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  19. Carbapenemase producing bacteria in the food supply escaping detection.

    Science.gov (United States)

    Morrison, Beverly J; Rubin, Joseph E

    2015-01-01

    Carbapenem antimicrobials are critically important to human health and they are often the only remaining effective antibiotics for treating serious infections. Resistance to these drugs mediated by acquired carbapenemase enzymes is increasingly encountered in gram-negative bacteria and is considered a public health emergency. Animal origin food products are recognized as a potential source of resistant organisms, although carbapenem resistance has only recently been reported. In western countries there are active resistance surveillance programs targeting food animals and retail meat products. These programs primarily target beef, pork and poultry and focus exclusively on E. coli, Salmonella, Campylobacter spp. and Enterococcus spp. This global surveillance strategy does not capture the diversity of foods available nor does it address the presence of resistance gene-bearing mobile genetic elements in non-pathogenic bacterial taxa. To address this gap, a total of 121 seafood products originating in Asia purchased from retail groceries in Canada were tested. Samples were processed using a taxa-independent method for the selective isolation of carbapenem resistant organisms. Isolates were characterized by phenotypic antimicrobial susceptibility testing, PCR and DNA sequencing. Carbapenemase producing bacteria, all blaOXA-48, were isolated from 4 (3.3%) of the samples tested. Positive samples originated from China (n=2) and Korea (n=2) and included squid, sea squirt, clams and seafood medley. Carbapenemase producing organisms found include Pseudomonas, Stenotrophomonas and Myroides species. These findings suggest that non-pathogenic bacteria, excluded from resistance surveillance programs, in niche market meats may serve as a reservoir of carbapenemase genes in the food supply.

  20. Molecular Viability Testing of UV-Inactivated Bacteria.

    Science.gov (United States)

    Weigel, Kris M; Nguyen, Felicia K; Kearney, Moira R; Meschke, John S; Cangelosi, Gerard A

    2017-05-15

    PCR is effective in detecting bacterial DNA in samples, but it is unable to differentiate viable bacteria from inactivated cells or free DNA fragments. New PCR-based analytical strategies have been developed to address this limitation. Molecular viability testing (MVT) correlates bacterial viability with the ability to rapidly synthesize species-specific rRNA precursors (pre-rRNA) in response to brief nutritional stimulation. Previous studies demonstrated that MVT can assess bacterial inactivation by chlorine, serum, and low-temperature pasteurization. Here, we demonstrate that MVT can detect inactivation of Escherichia coli , Aeromonas hydrophila , and Enterococcus faecalis cells by UV irradiation. Some UV-inactivated E. coli cells transiently retained the ability to synthesize pre-rRNA postirradiation (generating false-positive MVT results), but this activity ceased within 1 h following UV exposure. Viable but transiently undetectable (by culture) E. coli cells were consistently detected by MVT. An alternative viability testing method, viability PCR (vPCR), correlates viability with cell envelope integrity. This method did not distinguish viable bacteria from UV-inactivated bacteria under some conditions, indicating that the inactivated cells retained intact cell envelopes. MVT holds promise as a means to rapidly assess microbial inactivation by UV treatment. IMPORTANCE UV irradiation is increasingly being used to disinfect water, food, and other materials for human use. Confirming the effectiveness of UV disinfection remains a challenging task. In particular, microbiological methods that rely on rapid detection of microbial DNA can yield misleading results, due to the detection of remnant DNA associated with dead microbial cells. This report describes a novel method that rapidly distinguishes living microbial cells from dead microbial cells after UV disinfection. Copyright © 2017 American Society for Microbiology.

  1. Carbapenemase producing bacteria in the food supply escaping detection.

    Directory of Open Access Journals (Sweden)

    Beverly J Morrison

    Full Text Available Carbapenem antimicrobials are critically important to human health and they are often the only remaining effective antibiotics for treating serious infections. Resistance to these drugs mediated by acquired carbapenemase enzymes is increasingly encountered in gram-negative bacteria and is considered a public health emergency. Animal origin food products are recognized as a potential source of resistant organisms, although carbapenem resistance has only recently been reported. In western countries there are active resistance surveillance programs targeting food animals and retail meat products. These programs primarily target beef, pork and poultry and focus exclusively on E. coli, Salmonella, Campylobacter spp. and Enterococcus spp. This global surveillance strategy does not capture the diversity of foods available nor does it address the presence of resistance gene-bearing mobile genetic elements in non-pathogenic bacterial taxa. To address this gap, a total of 121 seafood products originating in Asia purchased from retail groceries in Canada were tested. Samples were processed using a taxa-independent method for the selective isolation of carbapenem resistant organisms. Isolates were characterized by phenotypic antimicrobial susceptibility testing, PCR and DNA sequencing. Carbapenemase producing bacteria, all blaOXA-48, were isolated from 4 (3.3% of the samples tested. Positive samples originated from China (n=2 and Korea (n=2 and included squid, sea squirt, clams and seafood medley. Carbapenemase producing organisms found include Pseudomonas, Stenotrophomonas and Myroides species. These findings suggest that non-pathogenic bacteria, excluded from resistance surveillance programs, in niche market meats may serve as a reservoir of carbapenemase genes in the food supply.

  2. Methanol-based industrial biotechnology: current status and future perspectives of methylotrophic bacteria.

    Science.gov (United States)

    Schrader, Jens; Schilling, Martin; Holtmann, Dirk; Sell, Dieter; Filho, Murillo Villela; Marx, Achim; Vorholt, Julia A

    2009-02-01

    Methanol is one of the building blocks in the chemical industry and can be synthesized either from petrochemical or renewable resources, such as biogas. Bioprocess technology with methylotrophic bacteria is well established, as illustrated by large-scale single-cell protein production in the past. During recent years, the first genomes of methylotrophs have been sequenced and significant progress in elucidating their metabolism has been made. In addition, the tool set for genetic engineering of methylotrophic bacteria has expanded greatly and strategies to produce fine and bulk chemicals with methylotrophs have been described. This review highlights the potential of these bacteria for the development of economically competitive bioprocesses based on methanol as an alternative carbon source, bringing together biological, technical and economic considerations.

  3. Marine Pseudomonas putida: a potential source of antimicrobial substances against antibiotic-resistant bacteria

    Directory of Open Access Journals (Sweden)

    Palloma Rodrigues Marinho

    2009-08-01

    Full Text Available Bacteria isolated from marine sponges found off the coast of Rio de Janeiro, Brazil, were screened for the production of antimicrobial substances. We report a new Pseudomonas putida strain (designated P. putida Mm3 isolated from the sponge Mycale microsigmatosa that produces a powerful antimicrobial substance active against multidrug-resistant bacteria. P. putida Mm3 was identified on the basis of 16S rRNA gene sequencing and phenotypic tests. Molecular typing for Mm3 was performed by RAPD-PCR and comparison of the results to other Pseudomonas strains. Our results contribute to the search for new antimicrobial agents, an important strategy for developing alternative therapies to treat infections caused by multidrug-resistant bacteria.

  4. Multi-scale magnetic nanoparticle based optomagnetic bioassay for sensitive DNA and bacteria detection

    DEFF Research Database (Denmark)

    Tian, Bo; Zardán Gómez De La Torre, Teresa; Donolato, Marco

    2016-01-01

    Benefiting from their rapid readout, highly flexible devices and low-cost portable systems, optomagnetic biosensors have drawn increased attention in recent years as bioassay technologies for small molecules, biomarkers, DNA, and bacteria. Herein, an optomagnetic bioassay strategy suitable...... for point-of-care diagnostics, utilizing functionalized magnetic nanoparticles (100 nm) with Brownian relaxation behavior is optimized in order to obtain higher detection sensitivity for DNA molecules and bacteria. Presence of target DNA sequences or bacteria changes the dynamic behavior of the magnetic...... nanoparticles (binding to the target) and thus the optomagnetic response of the sample, which is measured by an optomagnetic setup including a 405 nm laser and a photodetector. The limit of detection is mainly set by the lowest measurable concentration of magnetic nanoparticles. Herein, as new results compared...

  5. Biodegradation of shea nut cake by indigenous soil bacteria ...

    African Journals Online (AJOL)

    This is to isolate bacteria with high shea nut cake degrading ability and consequently select the potential application of these bacteria in bioremediation. The bacteria were grown in mineral salt medium supplemented with 2% shea nut cake as sole source of carbon. More Gram negative bacteria were involved in shea nut ...

  6. Multi-hop conjugation based bacteria nanonetworks.

    Science.gov (United States)

    Balasubramaniam, Sasitharan; Lio', Pietro

    2013-03-01

    Molecular communication is a new paradigm for nanomachines to exchange information, by utilizing biological mechanism and/or components to transfer information (e.g., molecular diffusion, neuronal networks, molecular motors). One possible approach for molecular communication is through the use of bacteria, which can act as carriers for DNA-based information, i.e., plasmids. This paper analyzes multi-hop molecular nanonetworks that utilize bacteria as a carrier. The proposed approach combines different properties of bacteria to enable multi-hop transmission, such as conjugation and chemotaxis-based motility. Various analyses have been performed, including the correlation between the success rate of plasmid delivery to the destination node, and the role of conjugation in enabling this; as well as analyses on the impact of large topology shapes (e.g., Grid, Random, and Scale-free) on the success rate of plasmid delivery for multiple source-destination nanonetworks. A further solution proposed in this paper is the application of antibiotics to act as filters on illegitimate messages that could be delivered by the bacteria. Our evaluation, which has been conducted through a series of simulations, has shown that numerous bacteria properties fit to properties required for communication networking (e.g., packet filtering, routing, addressing).

  7. Overlapping riboflavin supply pathways in bacteria.

    Science.gov (United States)

    García-Angulo, Víctor Antonio

    2017-03-01

    Riboflavin derivatives are essential cofactors for a myriad of flavoproteins. In bacteria, flavins importance extends beyond their role as intracellular protein cofactors, as secreted flavins are a key metabolite in a variety of physiological processes. Bacteria obtain riboflavin through the endogenous riboflavin biosynthetic pathway (RBP) or by the use of importer proteins. Bacteria frequently encode multiple paralogs of the RBP enzymes and as for other micronutrient supply pathways, biosynthesis and uptake functions largely coexist. It is proposed that bacteria shut down biosynthesis and would rather uptake riboflavin when the vitamin is environmentally available. Recently, the overlap of riboflavin provisioning elements has gained attention and the functions of duplicated paralogs of RBP enzymes started to be addressed. Results point towards the existence of a modular structure in the bacterial riboflavin supply pathways. Such structure uses subsets of RBP genes to supply riboflavin for specific functions. Given the importance of riboflavin in intra and extracellular bacterial physiology, this complex array of riboflavin provision pathways may have developed to contend with the various riboflavin requirements. In riboflavin-prototrophic bacteria, riboflavin transporters could represent a module for riboflavin provision for particular, yet unidentified processes, rather than substituting for the RBP as usually assumed.

  8. Molecular analysis of deep subsurface bacteria

    International Nuclear Information System (INIS)

    Jimenez Baez, L.E.

    1989-09-01

    Deep sediments samples from site C10a, in Appleton, and sites, P24, P28, and P29, at the Savannah River Site (SRS), near Aiken, South Carolina were studied to determine their microbial community composition, DNA homology and mol %G+C. Different geological formations with great variability in hydrogeological parameters were found across the depth profile. Phenotypic identification of deep subsurface bacteria underestimated the bacterial diversity at the three SRS sites, since bacteria with the same phenotype have different DNA composition and less than 70% DNA homology. Total DNA hybridization and mol %G+C analysis of deep sediment bacterial isolates suggested that each formation is comprised of different microbial communities. Depositional environment was more important than site and geological formation on the DNA relatedness between deep subsurface bacteria, since more 70% of bacteria with 20% or more of DNA homology came from the same depositional environments. Based on phenotypic and genotypic tests Pseudomonas spp. and Acinetobacter spp.-like bacteria were identified in 85 million years old sediments. This suggests that these microbial communities might have been adapted during a long period of time to the environmental conditions of the deep subsurface

  9. Modulation of immune homeostasis by commensal bacteria

    Science.gov (United States)

    Ivanov, Ivaylo I.; Littman, Dan R.

    2011-01-01

    Intestinal bacteria form a resident community that has co-evolved with the mammalian host. In addition to playing important roles in digestion and harvesting energy, commensal bacteria are crucial for the proper functioning of mucosal immune defenses. Most of these functions have been attributed to the presence of large numbers of “innocuous” resident bacteria that dilute or occupy niches for intestinal pathogens or induce innate immune responses that sequester bacteria in the lumen, thus quenching excessive activation of the mucosal immune system. However it has recently become obvious that commensal bacteria are not simply beneficial bystanders, but are important modulators of intestinal immune homeostasis and that the composition of the microbiota is a major factor in pre-determining the type and robustness of mucosal immune responses. Here we review specific examples of individual members of the microbiota that modify innate and adaptive immune responses, and we focus on potential mechanisms by which such species-specific signals are generated and transmitted to the host immune system. PMID:21215684

  10. Bacteria and plutonium in marine environments

    International Nuclear Information System (INIS)

    Carey, A.E.; Bowen, V.T.

    1978-01-01

    Microbes are important in geochemical cycling of many elements. Recent reports emphasize biogenous particulates and bacterial exometabolites as controlling oceanic distribution of plutonium. Bacteria perform oxidation/reduction reactions on metals such as mercury, nickel, lead, copper, and cadmium. Redox transformations or uptake of Pu by marine bacteria may well proceed by similar mechanisms. Profiles of water samples and sediment cores were obtained along the continental shelf off Nova Scotia and in the Gulf of St. Lawrence. Profiles of water samples, and sediment cores were obtained. Epifluorescent microscopy was used to view bacteria (from water or sediment) after concentration on membrane filters and staining with acridine orange. Radiochemical analyses measured Pu in sediments and water samples. Studies of 237 Pu uptake used a strain of Leucothrix mucor isolated from a macroalga. Enumeration shows bacteria to range 10 4 to 10 5 cells/ml in seawater or 10 7 to 10 8 cells/gram of sediment. These numbers are related to the levels and distrbution of Pu in the samples. In cultures of L. mucor amended with Pu atom concentrations approximating those present in open ocean environments, bacterial cells concentrated 237 Pu slower and to lower levels than did clay minerals, glass beads, or phytoplankton. These data further clarify the role of marine bacteria in Pu biogeochemistry

  11. Genetic tools for the investigation of Roseobacter clade bacteria

    Directory of Open Access Journals (Sweden)

    Tielen Petra

    2009-12-01

    Full Text Available Abstract Background The Roseobacter clade represents one of the most abundant, metabolically versatile and ecologically important bacterial groups found in marine habitats. A detailed molecular investigation of the regulatory and metabolic networks of these organisms is currently limited for many strains by missing suitable genetic tools. Results Conjugation and electroporation methods for the efficient and stable genetic transformation of selected Roseobacter clade bacteria including Dinoroseobacter shibae, Oceanibulbus indolifex, Phaeobacter gallaeciensis, Phaeobacter inhibens, Roseobacter denitrificans and Roseobacter litoralis were tested. For this purpose an antibiotic resistance screening was performed and suitable genetic markers were selected. Based on these transformation protocols stably maintained plasmids were identified. A plasmid encoded oxygen-independent fluorescent system was established using the flavin mononucleotide-based fluorescent protein FbFP. Finally, a chromosomal gene knockout strategy was successfully employed for the inactivation of the anaerobic metabolism regulatory gene dnr from D. shibae DFL12T. Conclusion A genetic toolbox for members of the Roseobacter clade was established. This provides a solid methodical basis for the detailed elucidation of gene regulatory and metabolic networks underlying the ecological success of this group of marine bacteria.

  12. Simultaneous transcriptional profiling of bacteria and their host cells.

    Directory of Open Access Journals (Sweden)

    Michael S Humphrys

    Full Text Available We developed an RNA-Seq-based method to simultaneously capture prokaryotic and eukaryotic expression profiles of cells infected with intracellular bacteria. As proof of principle, this method was applied to Chlamydia trachomatis-infected epithelial cell monolayers in vitro, successfully obtaining transcriptomes of both C. trachomatis and the host cells at 1 and 24 hours post-infection. Chlamydiae are obligate intracellular bacterial pathogens that cause a range of mammalian diseases. In humans chlamydiae are responsible for the most common sexually transmitted bacterial infections and trachoma (infectious blindness. Disease arises by adverse host inflammatory reactions that induce tissue damage & scarring. However, little is known about the mechanisms underlying these outcomes. Chlamydia are genetically intractable as replication outside of the host cell is not yet possible and there are no practical tools for routine genetic manipulation, making genome-scale approaches critical. The early timeframe of infection is poorly understood and the host transcriptional response to chlamydial infection is not well defined. Our simultaneous RNA-Seq method was applied to a simplified in vitro model of chlamydial infection. We discovered a possible chlamydial strategy for early iron acquisition, putative immune dampening effects of chlamydial infection on the host cell, and present a hypothesis for Chlamydia-induced fibrotic scarring through runaway positive feedback loops. In general, simultaneous RNA-Seq helps to reveal the complex interplay between invading bacterial pathogens and their host mammalian cells and is immediately applicable to any bacteria/host cell interaction.

  13. Memory and fitness optimization of bacteria under fluctuating environments.

    Directory of Open Access Journals (Sweden)

    Guillaume Lambert

    2014-09-01

    Full Text Available Bacteria prudently regulate their metabolic phenotypes by sensing the availability of specific nutrients, expressing the required genes for their metabolism, and repressing them after specific metabolites are depleted. It is unclear, however, how genetic networks maintain and transmit phenotypic states between generations under rapidly fluctuating environments. By subjecting bacteria to fluctuating carbon sources (glucose and lactose using microfluidics, we discover two types of non-genetic memory in Escherichia coli and analyze their benefits. First, phenotypic memory conferred by transmission of stable intracellular lac proteins dramatically reduces lag phases under cyclical fluctuations with intermediate timescales (1-10 generations. Second, response memory, a hysteretic behavior in which gene expression persists after removal of its external inducer, enhances adaptation when environments fluctuate over short timescales (< 1 generation. Using a mathematical model we analyze the benefits of memory across environmental fluctuation timescales. We show that memory mechanisms provide an important class of survival strategies in biology that improve long-term fitness under fluctuating environments. These results can be used to understand how organisms adapt to fluctuating levels of nutrients, antibiotics, and other environmental stresses.

  14. Primordial-like enzymes from bacteria with reduced genomes.

    Science.gov (United States)

    Ferla, Matteo P; Brewster, Jodi L; Hall, Kelsi R; Evans, Gary B; Patrick, Wayne M

    2017-08-01

    The first cells probably possessed rudimentary metabolic networks, built using a handful of multifunctional enzymes. The promiscuous activities of modern enzymes are often assumed to be relics of this primordial era; however, by definition these activities are no longer physiological. There are many fewer examples of enzymes using a single active site to catalyze multiple physiologically-relevant reactions. Previously, we characterized the promiscuous alanine racemase (ALR) activity of Escherichia coli cystathionine β-lyase (CBL). Now we have discovered that several bacteria with reduced genomes lack alr, but contain metC (encoding CBL). We characterized the CBL enzymes from three of these: Pelagibacter ubique, the Wolbachia endosymbiont of Drosophila melanogaster (wMel) and Thermotoga maritima. Each is a multifunctional CBL/ALR. However, we also show that CBL activity is no longer required in these bacteria. Instead, the wMel and T. maritima enzymes are physiologically bi-functional alanine/glutamate racemases. They are not highly active, but they are clearly sufficient. Given the abundance of the microorganisms using them, we suggest that much of the planet's biochemistry is carried out by enzymes that are quite different from the highly-active exemplars usually found in textbooks. Instead, primordial-like enzymes may be an essential part of the adaptive strategy associated with streamlining. © 2017 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd.

  15. RETRACTED ARTICLE: Quorum-sensing of bacteria and its application

    Science.gov (United States)

    Jiang, Guoliang; Su, Mingxia

    2009-12-01

    Quorum sensing, or auto induction, as a cell density dependent signaling mechanism in many microorganisms, is triggered via auto inducers which passively diffuse across the bacterial envelope and therefore intracellulaly accumulate only at higher bacterial densities to regulate specialized processes such as genetic competence, bioluminescence, virulence and sporulation. N-acyl homoserine lactones are the most common type of signal molecules. Aquaculture is one of the fastest-growing food-producing industries, but disease outbreaks caused by pathogenic bacteria are a significant constraint on the development of the sector worldwide. Many of these pathogens have been found to be controlled by their quorum sensing systems. As there is relevance between the pathogenic bacteria's virulence factor expression and their auto inducers, quorum quenching is a new effective anti-infective strategy to control infections caused by bacterial pathogens in aquaculture. The techniques used to do this mainly include the following: (1) the inhibition of signal molecule biosynthesis, (2) blocking signal transduction, and (3) chemical inactivation and biodegradation of signal molecules. To provide a basis for finding alternative means of controlling aquatic diseases by quorum quenching instead of treatment by antibiotics and disinfectants, we will discuss the examination, purification and identification of auto inducers in this paper.

  16. Adhesion Properties of Lactic Acid Bacteria on Intestinal Mucin

    Directory of Open Access Journals (Sweden)

    Keita Nishiyama

    2016-09-01

    Full Text Available Lactic acid bacteria (LAB are Gram-positive bacteria that are natural inhabitants of the gastrointestinal (GI tracts of mammals, including humans. Since Mechnikov first proposed that yogurt could prevent intestinal putrefaction and aging, the beneficial effects of LAB have been widely demonstrated. The region between the duodenum and the terminal of the ileum is the primary region colonized by LAB, particularly the Lactobacillus species, and this region is covered by a mucus layer composed mainly of mucin-type glycoproteins. The mucus layer plays a role in protecting the intestinal epithelial cells against damage, but is also considered to be critical for the adhesion of Lactobacillus in the GI tract. Consequently, the adhesion exhibited by lactobacilli on mucin has attracted attention as one of the critical factors contributing to the persistent beneficial effects of Lactobacillus in a constantly changing intestinal environment. Thus, understanding the interactions between Lactobacillus and mucin is crucial for elucidating the survival strategies of LAB in the GI tract. This review highlights the properties of the interactions between Lactobacillus and mucin, while concomitantly considering the structure of the GI tract from a histochemical perspective.

  17. Mathematical model of rhamnolipid production using E.coli bacteria

    Science.gov (United States)

    Adham, Muhammad Fariduddin; Apri, Mochamad; Moeis, Maelita Ramdani

    2018-03-01

    Rhamnolipid is one of biosurfactants that is widely used in many industries. Despite its wide use, production of rhamnolipid usually involves a pathogen that may endanger our health. To tackle this issue, in iGEM (International Genetically Engineered Machine) competition 2015, our team engineered Escherichia coli (E.coli) to produce rhamnolipid. The bacteria were then put into medium containing glucose and lactose. It turned out that bacteria E. coli produced lower rhamnolipid than that by pseudomonas, therefore a good strategy is required to improve their productivity. We present a mathematical model to describe the production of rhamnolipid by the engineered E coli. Using bifurcation analysis, the equilibrium points of the model and their stabilities were analyzed as the amount of lactose was varied. We show that the system produces bistability behavior for some interval values of lactose. From this analysis we found that to guarantee a high production of rhamnolipid, a high level of lactose is required. To maintain the productivity, however, it is sufficient to maintain the lactose level above a certain threshold value.

  18. COMPETITION BETWEEN ANOXYGENIC PHOTOTROPHIC BACTERIA AND COLORLESS SULFUR BACTERIA IN A MICROBIAL MAT

    NARCIS (Netherlands)

    VISSCHER, PT; VANDENENDE, FP; SCHAUB, BEM; VANGEMERDEN, H

    The populations of chemolithoautotrophic (colorless) sulfur bacteria and anoxygenic phototrophic bacteria were enumerated in a marine microbial mat. The highest population densities were found in the 0-5 mm layer of the mat: 2.0 X 10(9) cells CM-3 sediment, and 4.0 X 10(7) cells cm-3 sediment for

  19. Method of Detecting Coliform Bacteria and Escherichia Coli Bacteria from Reflected Light

    Science.gov (United States)

    Vincent, Robert (Inventor)

    2013-01-01

    The present invention relates to a method of detecting coliform bacteria in water from reflected light and a method of detecting Eschericha Coli bacteria in water from reflected light, and also includes devices for the measurement, calculation and transmission of data relating to that method.

  20. Mechanisms and improvement of acid resistance in lactic acid bacteria.

    Science.gov (United States)

    Wang, Chao; Cui, Yanhua; Qu, Xiaojun

    2018-03-01

    Lactic acid bacteria (LAB) can take advantage of fermentable carbohydrates to produce lactic acid. They are proverbially applied in industry, agricultural production, animal husbandry, food enterprise, pharmaceutical engineering and some other important fields, which are closely related to human life. For performing the probiotic functions, LAB have to face the low pH environment of the gastrointestinal tract. Therefore, acid resistance of LAB is of great importance not only for their own growth, but also for fermentation and preparation of probiotic products. Recent research studies on acid resistance mechanisms of LAB are mainly focused on neutralization process, biofilm and cell density, proton pump, protection of macromolecules, pre-adaptation and cross-protection, and effect of solutes. In this context, biotechnological strategies such as synthetic biology, genome shuffling, high pressure homogenization and adaptive laboratory evolution were also used to improve the acid resistance of LAB to respond to constantly changing low pH environment.

  1. Bacteria vs. bacteriophages: parallel evolution of immune arsenals

    Directory of Open Access Journals (Sweden)

    Muhammad Abu Bakr Shabbir

    2016-08-01

    Full Text Available Bacteriophages are the most common entities on earth and represent a constant challenge to bacterial populations. To fend off bacteriophage infection, bacteria evolved immune systems to avert phage adsorption and block invader DNA entry. They developed restriction-modification systems and mechanisms to abort infection and interfere with virion assembly, as well as newly recognized clustered regularly interspaced short palindromic repeats (CRISPR. In response to bacterial immune systems, bacteriophages synchronously evolved resistance mechanisms, such as the anti-CRISPR systems to counterattack bacterial CRISPR-cas systems, in a continuing evolutionary arms race between virus and host. In turn, it is fundamental to the survival of the bacterial cell to evolve a system to combat bacteriophage immune strategies.

  2. Progress in engineering acid stress resistance of lactic acid bacteria.

    Science.gov (United States)

    Wu, Chongde; Huang, Jun; Zhou, Rongqing

    2014-02-01

    Lactic acid bacteria (LAB) are widely used for the production of a variety of fermented foods, and are considered as probiotic due to their health-promoting effect. However, LAB encounter various environmental stresses both in industrial fermentation and application, among which acid stress is one of the most important survival challenges. Improving the acid stress resistance may contribute to the application and function of probiotic action to the host. Recently, the advent of genomics, functional genomics and high-throughput technologies have allowed for the understanding of acid tolerance mechanisms at a systems level, and many method to improve acid tolerance have been developed. This review describes the current progress in engineering acid stress resistance of LAB. Special emphasis is placed on engineering cellular microenvironment (engineering amino acid metabolism, introduction of exogenous biosynthetic capacity, and overproduction of stress response proteins) and maintaining cell membrane functionality. Moreover, strategies to improve acid tolerance and the related physiological mechanisms are also discussed.

  3. Bacteria interfere with A. actinomycetemcomitans colonization.

    Science.gov (United States)

    Teughels, W; Kinder Haake, S; Sliepen, I; Pauwels, M; Van Eldere, J; Cassiman, J-J; Quirynen, M

    2007-07-01

    It is known that beneficial bacteria can suppress the emergence of pathogenic bacteria, particularly in the gastrointestinal tract. This study examined the potential for a similar suppression of Aggregatibacter (formerly Actinobacillus) actinomycetemcomitans colonization of epithelial cells, due to its potential relevance in periodontal diseases. Seven presumed beneficial bacteria were examined for their ability to interfere, exclude, or displace A. actinomycetemcomitans from epithelial cells in vitro. Streptococcus sanguinis, Streptococcus mitis, and Streptococcus salivarius showed prominent inhibitory effects on either A. actinomycetemcomitans recovery or colonization. These results confirmed the hypothesis that bacterial interactions interfere with A. actinomycetemcomitans colonization of epithelial cells in vitro, and demonstrated the potential beneficial effects of S. mitis, S. salivarius, and S. sanguinis.

  4. Lethal photosensitization of biofilm-grown bacteria

    Science.gov (United States)

    Wilson, Michael

    1997-12-01

    Antibacterial agents are increasingly being used for the prophylaxis and treatment of oral diseases. As these agents can be rendered ineffective by resistance development in the target organisms there is a need to develop alternative antimicrobial approaches. Light-activated antimicrobial agents release singlet oxygen and free radicals which can kill adjacent bacteria and a wide range of cariogenic and periodontopathogenic bacteria has been shown to be susceptible to such agents. In the oral cavity these organisms are present as biofilms (dental plaques) which are less susceptible to traditional antimicrobial agents than bacterial suspensions. The results of these studies have shown that biofilm-grown oral bacteria are also susceptible to lethal photosensitization although the light energy doses required are grater than those needed to kill the organisms when they are grown as aqueous suspensions.

  5. Hydrodynamic interaction between bacteria and passive sphere

    Science.gov (United States)

    Zhang, Bokai; Ding, Yang; Xu, Xinliang

    2017-11-01

    Understanding hydrodynamic interaction between bacteria and passive sphere is important for identifying rheological properties of bacterial and colloidal suspension. Over the past few years, scientists mainly focused on bacterial influences on tracer particle diffusion or hydrodynamic capture of a bacteria around stationary boundary. Here, we use superposition of singularities and regularized method to study changes in bacterial swimming velocity and passive sphere diffusion, simultaneously. On this basis, we present a simple two-bead model that gives a unified interpretation of passive sphere diffusion and bacterial swimming. The model attributes both variation of passive sphere diffusion and changes of speed of bacteria to an effective mobility. Using the effective mobility of bacterial head and tail as an input function, the calculations are consistent with simulation results at a broad range of tracer diameters, incident angles and bacterial shapes.

  6. Ancient bacteria show evidence of DNA repair

    DEFF Research Database (Denmark)

    Johnson, Sarah Stewart; Hebsgaard, Martin B; Christensen, Torben R

    2007-01-01

    Recent claims of cultivable ancient bacteria within sealed environments highlight our limited understanding of the mechanisms behind long-term cell survival. It remains unclear how dormancy, a favored explanation for extended cellular persistence, can cope with spontaneous genomic decay over......-term survival of bacteria sealed in frozen conditions for up to one million years. Our results show evidence of bacterial survival in samples up to half a million years in age, making this the oldest independently authenticated DNA to date obtained from viable cells. Additionally, we find strong evidence...... that this long-term survival is closely tied to cellular metabolic activity and DNA repair that over time proves to be superior to dormancy as a mechanism in sustaining bacteria viability....

  7. Widespread Oceanospirillaceae Bacteria in Porites spp.

    Directory of Open Access Journals (Sweden)

    Mark D. Speck

    2012-01-01

    Full Text Available We present evidence that a clade of bacteria in the Oceanospirillaceae is widely distributed in Porites spp. and other hermatypic corals. Bacteria 16S rDNA clone libraries were prepared from community genomic DNA extracted from Porites compressa and Porites lobata surface mucus and adjacent seawater collected along a line transect off Maui. Phylogenetic affiliations of operational taxonomic units (OTUs defined at the 97% level of nucleotide identity varied within and between the respective Porites spp. along the transect and differed from those in the seawater. One OTU (C7-A01, however, occurred in all mucus samples from both Porites species. C7-A01c affiliates with a clade of uncultivated Oceanospirillum-like bacteria; the nearest neighbors of this OTU have been reported only in the surface mucus layer of Porites spp. and other stony corals, in reef-dwelling invertebrates, and the corallivorous six-banded angelfish, Pomacanthus sexstriatus.

  8. Bacteriocins From Lactic Acid Bacteria: Interest For Food Products Biopreservation

    OpenAIRE

    Dortu, C.; Thonart, Philippe

    2009-01-01

    Bacteriocins from lactic acid bacteria: interest for food products biopreservation. Bacteriocins from lactic acid bacteria are low molecular weight antimicrobial peptides. They have inhibitory activity against the bacteria that are closed related to the producer strains and a narrow inhibitory spectrum. Nevertheless, most of them have activity against some food-born pathogenic bacteria as Listeria monocytogenes. The application of bacteriocins or bacteriocin producing lactic acid bacteria in ...

  9. Using Fluorescent Viruses for Detecting Bacteria in Water

    Science.gov (United States)

    Tabacco, Mary Beth; Qian, Xiaohua; Russo, Jaimie A.

    2009-01-01

    A method of detecting water-borne pathogenic bacteria is based partly on established molecular-recognition and fluorescent-labeling concepts, according to which bacteria of a species of interest are labeled with fluorescent reporter molecules and the bacteria can then be detected by fluorescence spectroscopy. The novelty of the present method lies in the use of bacteriophages (viruses that infect bacteria) to deliver the fluorescent reporter molecules to the bacteria of the species of interest.

  10. Rapid detection of bacteria by carbon quantum dots.

    Science.gov (United States)

    Mandal, Tapas K; Parvin, Nargish

    2011-12-01

    This work demonstrated a fluorescence measurement method for rapid detection of bacteria and their counting by using water-soluble carbon quantum dots (CQDs) as a fluorescence marker while sewage water bacteria were detection target bacteria. Highly luminescent water-soluble CQDs were prepared by carbonizing waste part of rice straw materials in a furnace under in-sufficient air flow. Bacteria in a LB media with count the total number of bacteria within a shortest time from any sample of environment.

  11. Bacteriophages: The Enemies of Bad Bacteria Are Our Friends!

    OpenAIRE

    Gutiérrez, Diana; Fernández, Lucía; Martínez, Beatriz; Rodríguez, Ana; García, Pilar

    2017-01-01

    Some bacteria can enter the human body and make people ill. Usually, these diseases can be cured by antibiotics, but sometimes bacteria are resistant to them, meaning that the antibiotics do not kill the bacteria. In these cases, bacteria become very dangerous. Bacteriophages are viruses that infect bacteria but are harmless to humans. To reproduce, they get into a bacterium, where they multiply, and finally they break the bacterial cell open to release the new viruses. Therefore, bacteriopha...

  12. The inhibitory effects of free ammonia on ammonia oxidizing bacteria and nitrite oxidizing bacteria under anaerobic condition.

    Science.gov (United States)

    Qian, Wenting; Peng, Yongzhen; Li, Xiyao; Zhang, Qiong; Ma, Bin

    2017-11-01

    The free ammonia (FA) inhibition on ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) under anaerobic condition was investigated in this study. The results indicated that NOB was more sensitive to the FA anaerobic treatment than AOB. The FA anaerobic inhibition on nitrifier gradually heightened with the increase of FA concentration. Accompanied with FA concentration increase from 0 to 16.82mgNH 3 -N·L -1 (the highest concentration adopted in this study), the activity of AOB reduced by 15.9%, while NOB decreased by 29.2%. After FA anaerobic treatment, nitrite was accumulated during nitrification. However, the nitrite accumulation disappeared on the sixth cycle of activity recovery tests with excessive aeration. Based on this result, a novel strategy for achieving nitritation is proposed, which involves recirculating a portion of the activated sludge through a side-line sludge treatment unit, where the sludge is subjected to treatment with FA under anaerobic condition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Functional Encyclopedia of Bacteria and Archaea

    Energy Technology Data Exchange (ETDEWEB)

    Blow, M. J.; Deutschbauer, A. M.; Hoover, C. A.; Lamson, J.; Lamson, J.; Price, M. N.; Waters, J.; Wetmore, K. M.; Bristow, J.; Arkin, A. P.

    2013-03-20

    Bacteria and Archaea exhibit a huge diversity of metabolic capabilities with fundamental importance in the environment, and potential applications in biotechnology. However, the genetic bases of these capabilities remain unclear due largely to an absence of technologies that link DNA sequence to molecular function. To address this challenge, we are developing a pipeline for high throughput annotation of gene function using mutagenesis, growth assays and DNA sequencing. By applying this pipeline to annotate gene function in 50 diverse microbes we hope to discover thousands of new gene functions and produce a proof of principle `Functional Encyclopedia of Bacteria and Archaea?.

  14. DNA Barcoding on Bacteria: A Review

    Directory of Open Access Journals (Sweden)

    D. E. Lebonah

    2014-01-01

    Full Text Available Bacteria are omnipotent and they can be found everywhere. The study of bacterial pathogens has been happening from olden days to prevent epidemics, food spoilage, losses in agricultural production, and loss of lives. Modern techniques in DNA based species identification are considered. So, there is a need to acquire simple and quick identification technique. Hence, this review article covers the efficacy of DNA barcoding of bacteria. Routine DNA barcoding involves the production of PCR amplicons from particular regions to sequence them and these sequence data are used to identify or “barcode” that organism to make a distinction from other species.

  15. Differential staining of bacteria: gram stain.

    Science.gov (United States)

    Moyes, Rita B; Reynolds, Jackie; Breakwell, Donald P

    2009-11-01

    In 1884, Hans Christian Gram, a Danish doctor, developed a differential staining technique that is still the cornerstone of bacterial identification and taxonomic division. This multistep, sequential staining protocol separates bacteria into four groups based on cell morphology and cell wall structure: Gram-positive cocci, Gram-negative cocci, Gram-positive rods, and Gram-negative rods. The Gram stain is useful for assessing bacterial contamination of tissue culture samples or for examining the Gram stain status and morphological features of bacteria isolated from mixed or isolated bacterial cultures. (c) 2009 by John Wiley & Sons, Inc.

  16. Bacteria Provide Cleanup of Oil Spills, Wastewater

    Science.gov (United States)

    2010-01-01

    Through Small Business Innovation Research (SBIR) contracts with Marshall Space Flight Center, Micro-Bac International Inc., of Round Rock, Texas, developed a phototrophic cell for water purification in space. Inside the cell: millions of photosynthetic bacteria. Micro-Bac proceeded to commercialize the bacterial formulation it developed for the SBIR project. The formulation is now used for the remediation of wastewater systems and waste from livestock farms and food manufacturers. Strains of the SBIR-derived bacteria also feature in microbial solutions that treat environmentally damaging oil spills, such as that resulting from the catastrophic 2010 Deepwater Horizon oil rig explosion in the Gulf of Mexico.

  17. ISOLATION OF OBLIGATELY ANAEROBIC PSYCHROPHILIC BACTERIA.

    Science.gov (United States)

    SINCLAIR, N A; STOKES, J L

    1964-03-01

    Sinclair, N. A. (Washington State University, Pullman), and J. L. Stokes. Isolation of obligately anaerobic psychrophilic bacteria. J. Bacteriol. 87:562-565. 1964.-A total of 11 strains of strictly anaerobic psychrophilic bacteria have been isolated from soil, mud, and sewage. The organisms grow well at 0 C in liquid and on solid media, and grow only in the complete absence of oxygen. On the basis of shape, sporulation, flagellation, and strictly anaerobic growth, all of the organisms were classified as strains of Clostridium. Some of the biochemical properties of the strains and the effect of temperature on growth are described.

  18. Bacteria-Triggered Release of Antimicrobial Agents

    DEFF Research Database (Denmark)

    Komnatnyy, Vitaly V.; Chiang, Wen-Chi; Tolker-Nielsen, Tim

    2014-01-01

    Medical devices employed in healthcare practice are often susceptible to microbial contamination. Pathogenic bacteria may attach themselves to device surfaces of catheters or implants by formation of chemically complex biofilms, which may be the direct cause of device failure. Extracellular...... material is demonstrated by the bacteria‐triggered release of antibiotics to control bacterial populations and signaling molecules to modulate quorum sensing. The self‐regulating system provides the basis for the development of device‐relevant polymeric materials, which only release antibiotics...... in dependency of the titer of bacteria surrounding the medical device....

  19. Genomic and evolutionary comparisons of diazotrophic and pathogenic bacteria of the order Rhizobiales

    Directory of Open Access Journals (Sweden)

    Vasconcelos Ana

    2010-02-01

    Full Text Available Abstract Background Species belonging to the Rhizobiales are intriguing and extensively researched for including both bacteria with the ability to fix nitrogen when in symbiosis with leguminous plants and pathogenic bacteria to animals and plants. Similarities between the strategies adopted by pathogenic and symbiotic Rhizobiales have been described, as well as high variability related to events of horizontal gene transfer. Although it is well known that chromosomal rearrangements, mutations and horizontal gene transfer influence the dynamics of bacterial genomes, in Rhizobiales, the scenario that determine pathogenic or symbiotic lifestyle are not clear and there are very few studies of comparative genomic between these classes of prokaryotic microorganisms trying to delineate the evolutionary characterization of symbiosis and pathogenesis. Results Non-symbiotic nitrogen-fixing bacteria and bacteria involved in bioremediation closer to symbionts and pathogens in study may assist in the origin and ancestry genes and the gene flow occurring in Rhizobiales. The genomic comparisons of 19 species of Rhizobiales, including nitrogen-fixing, bioremediators and pathogens resulted in 33 common clusters to biological nitrogen fixation and pathogenesis, 15 clusters exclusive to all nitrogen-fixing bacteria and bacteria involved in bioremediation, 13 clusters found in only some nitrogen-fixing and bioremediation bacteria, 01 cluster exclusive to some symbionts, and 01 cluster found only in some pathogens analyzed. In BBH performed to all strains studied, 77 common genes were obtained, 17 of which were related to biological nitrogen fixation and pathogenesis. Phylogenetic reconstructions for Fix, Nif, Nod, Vir, and Trb showed possible horizontal gene transfer events, grouping species of different phenotypes. Conclusions The presence of symbiotic and virulence genes in both pathogens and symbionts does not seem to be the only determinant factor for lifestyle

  20. [Bacterial biofilms as a natural form of existence of bacteria in the environment and host organism].

    Science.gov (United States)

    Romanova, Iu M; Gintsburg, A L

    2011-01-01

    Advances in microscopic analysis and molecular genetics research methods promoted the acquisition of evidence that natural bacteria populations exist predominately as substrate attached biofilms. Bacteria in biofilms are able to exchange signals and display coordinated activity that is inherent to multicellular organisms. Formation of biofilm communities turned out to be one of the main survival strategies of bacteria in their ecological niche. Bacteria in attached condition in biofilm are protected from the environmental damaging factors and effects of antibacterial substances in the environment and host organism during infection. According to contemporary conception, biofilm is a continuous layer of bacterial cells that are attached to a surface and each other, and contained in a biopolymer matrix. Such bacterial communities may be composed of bacteria of one or several species, and composed of actively functioning cells as well as latent and uncultured forms. Particular attention has recently been paid to the role of biofilms in the environment and host organism. Microorganisms form biofilm on any biotic and abiotic surfaces which creates serious problems in medicine and various areas of economic activity. Currently, it is established that biofilms are one of the pathogenetic factors of chronic inflection process formation. The review presents data on ubiquity of bacteria existence as biofilms, contemporary methods of microbial community analysis, structural-functional features of bacterial biofilms. Particular attention is paid to the role of biofilm in chronic infection process formation, heightened resistance to antibiotics of bacteria in biofilms and possible mechanisms of resistance. Screening approaches for agents against biofilms in chronic infections are discussed.

  1. Protein aggregation in bacteria: the thin boundary between functionality and toxicity.

    Science.gov (United States)

    Bednarska, Natalia G; Schymkowitz, Joost; Rousseau, Frederic; Van Eldere, Johan

    2013-09-01

    Misfolding and aggregation of proteins have a negative impact on all living organisms. In recent years, aggregation has been studied in detail due to its involvement in neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's diseases, and type II diabetes--all associated with accumulation of amyloid fibrils. This research highlighted the central importance of protein homeostasis, or proteostasis for short, defined as the cellular state in which the proteome is both stable and functional. It implicates an equilibrium between synthesis, folding, trafficking, aggregation, disaggregation and degradation. In accordance with the eukaryotic systems, it has been documented that protein aggregation also reduces fitness of bacterial cells, but although our understanding of the cellular protein quality control systems is perhaps most detailed in bacteria, the use of bacterial proteostasis as a drug target remains little explored. Here we describe protein aggregation as a normal physiological process and its role in bacterial virulence and we shed light on how bacteria defend themselves against the toxic threat of aggregates. We review the impact of aggregates on bacterial viability and look at the ways that bacteria use to maintain a balance between aggregation and functionality. The proteostasis in bacteria can be interrupted via overexpression of proteins, certain antibiotics such as aminoglycosides, as well as antimicrobial peptides--all leading to loss of cell viability. Therefore intracellular protein aggregation and disruption of proteostatic balance in bacteria open up another strategy that should be explored towards the discovery of new antimicrobials.

  2. Modes of action for biological control of Botrytis cinerea by antagonistic bacteria

    Directory of Open Access Journals (Sweden)

    Rana HAIDAR

    2017-01-01

    Full Text Available The role of beneficial bacteria in biocontrol of plant diseases, particularly those caused by the necrotrophic fungus Botrytis cinerea, has been investigated by testing many bacteria under laboratory and field conditions. Bacteria may protect plants against B. cinerea by direct antagonistic interactions between biocontrol agents and this pathogen, as well as indirect effects through the induction of host resistance. This review focuses on various bacteria that act as biological control agents (BCAs of B. cinerea and their associated mechanisms. The modes of action (MoAs include: i synthesis of anti-fungal metabolites, such as antibiotics, cell wall-degrading enzymes and volatile organic compounds (VOCs; ii competition for nutrients and/or a niche; and iii induction of host resistance. The challenge for development of BCAs is to reduce the variability of efficiency and to prove persistence under a large range of conditions. We discuss the advantages and drawbacks of MoA for future applications of bacteria in the field and in post-harvest storage, as well as combination of different MoAs as a strategy to achieve a more regular efficacy.

  3. Simultaneous aptasensor for multiplex pathogenic bacteria detection based on multicolor upconversion nanoparticles labels.

    Science.gov (United States)

    Wu, Shijia; Duan, Nuo; Shi, Zhao; Fang, Congcong; Wang, Zhouping

    2014-03-18

    A highly sensitive and specific multiplex method for the simultaneous detection of three pathogenic bacteria was fabricated using multicolor upconversion nanoparticles (UCNPs) as luminescence labels coupled with aptamers as the molecular recognition elements. Multicolor UCNPs were synthesized via doping with various rare-earth ions to obtain well-separated emission peaks. The aptamer sequences were selected using the systematic evolution of ligands by exponential enrichment (SELEX) strategy for Staphylococcus aureus, Vibrio parahemolyticus, and Salmonella typhimurium. When applied in this method, aptamers can be used for the specific recognition of the bacteria from complex mixtures, including those found in real food matrixes. Aptamers and multicolor UCNPs were employed to selectively capture and simultaneously quantify the three target bacteria on the basis of the independent peaks. Under optimal conditions, the correlation between the concentration of three bacteria and the luminescence signal was found to be linear from 50-10(6) cfu mL(-1). Improved by the magnetic separation and concentration effect of Fe3O4 magnetic nanoparticles, the limits of detection of the developed method were found to be 25, 10, and 15 cfu mL(-1) for S. aureus, V. parahemolyticus, and S. typhimurium, respectively. The capability of the bioassay in real food samples was also investigated, and the results were consistent with experimental results obtained from plate-counting methods. This proposed method for the detection of various pathogenic bacteria based on multicolor UCNPs has great potential in the application of food safety and multiplex nanosensors.

  4. Exogenous alanine and/or glucose plus kanamycin kills antibiotic-resistant bacteria.

    Science.gov (United States)

    Peng, Bo; Su, Yu-Bin; Li, Hui; Han, Yi; Guo, Chang; Tian, Yao-Mei; Peng, Xuan-Xian

    2015-02-03

    Multidrug-resistant bacteria are an increasingly serious threat to human and animal health. However, novel drugs that can manage infections by multidrug-resistant bacteria have proved elusive. Here we show that glucose and alanine abundances are greatly suppressed in kanamycin-resistant Edwardsiella tarda by GC-MS-based metabolomics. Exogenous alanine or glucose restores susceptibility of multidrug-resistant E. tarda to killing by kanamycin, demonstrating an approach to killing multidrug-resistant bacteria. The mechanism underlying this approach is that exogenous glucose or alanine promotes the TCA cycle by substrate activation, which in turn increases production of NADH and proton motive force and stimulates uptake of antibiotic. Similar results are obtained with other Gram-negative bacteria (Vibrio parahaemolyticus, Klebsiella pneumoniae, Pseudomonas aeruginosa) and Gram-positive bacterium (Staphylococcus aureus), and the results are also reproduced in a mouse model for urinary tract infection. This study establishes a functional metabolomics-based strategy to manage infection by antibiotic-resistant bacteria. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Bacteria-Containing Vacuoles: Subversion of Cellular Membrane Traffic and Autophagy.

    Science.gov (United States)

    Tang, Bor Luen

    2015-01-01

    Intracellular bacterial pathogens drive the formation of host membrane-derived pseudo-organelles that facilitate their replication, survival, or dormancy. The formation and maintenance of these bacteria-containing vacuoles (BCVs) are dependent on the bacteria's ability to usurp the host's intracellular membrane system, in particular dynamic compartments involved in exo-/endocytic membrane traffic and autophagy. Bacteria are typically internalized by phagocytosis, and the compartment matures through endosomal fusion. The bacteria-containing phagosome/endosome often becomes the base for BCV formation. Diverse strategies used by different bacterial pathogens prevent the BCV from being destroyed via the endolysosomal pathway. Furthermore, bacterial survival or proliferation in BCVs could be augmented by host membrane transport processes subverted by secreted bacterial factors, which facilitate the acquisition of membrane sources and nutrients. BCVs may be targeted for destruction by autophagy, and various facultative and obligate intracellular bacteria have evolved ways to evade or even exploit autophagy. Here we review examples of bacterial subversion of host cellular membrane transport and autophagy machinery for a productive invasion.

  6. Molecular microbiology of gut bacteria: genetic diversity and community structure analysis.

    Science.gov (United States)

    Peterka, M; Tepsic, Katarina; Accetto, T; Kostanjsek, R; Ramsak, Andreja; Lipoglavsek, L; Avgustin, G

    2003-01-01

    Recently developed molecular biology approaches make possible the detailed genetic, taxonomic and ecological examination of microorganisms from various habitats. Animal gut represents one of the most complex microbial ecosystems with a large degree of microbial biodiversity present. Bacteria inhabiting the gut usually play important roles in metabolic transformations of substrates and sometimes, e.g. in ruminants, they make the basis for an obligate symbiosis with the host. Here we discuss molecular microbiology as a strategy for examination of gut bacteria, concentrating on a typical and in such environment dominant group of strictly anaerobic Gram-negative bacteria from the phylogenetic group Cytophaga/Flexibacter/Bacteroides. The bacteria from the genus Prevotella are the most abundant Gram-negative bacteria in the rumen and form a distinctive phylogenetic cluster, clearly separated from prevotellas isolated from other ecological niches. They may represent a good choice for a model organism in genetic manipulation experiments and for studies of gene transfer mechanisms taking place in the gut. The molecular tools for detection and monitoring of ruminal prevotellas are discussed.

  7. Coexistence of phage and bacteria on the boundary of self-organized refuges

    Science.gov (United States)

    Heilmann, Silja; Sneppen, Kim; Krishna, Sandeep

    2012-01-01

    Bacteriophage are voracious predators of bacteria and a major determinant in shaping bacterial life strategies. Many phage species are virulent, meaning that infection leads to certain death of the host and immediate release of a large batch of phage progeny. Despite this apparent voraciousness, bacteria have stably coexisted with virulent phages for eons. Here, using individual-based stochastic spatial models, we study the conditions for achieving coexistence on the edge between two habitats, one of which is a bacterial refuge with conditions hostile to phage whereas the other is phage friendly. We show how bacterial density-dependent, or quorum-sensing, mechanisms such as the formation of biofilm can produce such refuges and edges in a self-organized manner. Coexistence on these edges exhibits the following properties, all of which are observed in real phage–bacteria ecosystems but difficult to achieve together in nonspatial ecosystem models: (i) highly efficient virulent phage with relatively long lifetimes, high infection rates and large burst sizes; (ii) large, stable, and high-density populations of phage and bacteria; (iii) a fast turnover of both phage and bacteria; and (iv) stability over evolutionary timescales despite imbalances in the rates of phage vs. bacterial evolution. PMID:22807479

  8. Bacteria in crude oil survived autoclaving and stimulated differentially by exogenous bacteria.

    Directory of Open Access Journals (Sweden)

    Xiao-Cui Gong

    Full Text Available Autoclaving of crude oil is often used to evaluate the hydrocarbon-degrading abilities of bacteria. This may be potentially useful for bioaugmentation and microbial enhanced oil recovery (MEOR. However, it is not entirely clear if "endogenous" bacteria (e.g., spores in/on crude oil survive the autoclaving process, or influence subsequent evaluation of the hydrocarbon-degradation abilities of the "exogenous" bacterial strains. To test this, we inoculated autoclaved crude oil medium with six exogenous bacterial strains (three Dietzia strains, two Acinetobacter strains, and one Pseudomonas strain. The survival of the spore-forming Bacillus and Paenibacillus and the non-spore-forming mesophilic Pseudomonas, Dietzia, Alcaligenes, and Microbacterium was detected using a 16S rRNA gene clone library and terminal restriction fragment length polymorphism (T-RFLP analysis. However, neither bacteria nor bacterial activity was detected in three controls consisting of non-inoculated autoclaved crude oil medium. These results suggest that detection of endogenous bacteria was stimulated by the six inoculated strains. In addition, inoculation with Acinetobacter spp. stimulated detection of Bacillus, while inoculation with Dietzia spp. and Pseudomonas sp. stimulated the detection of more Pseudomonas. In contrast, similar exogenous bacteria stimulated similar endogenous bacteria at the genus level. Based on these results, special emphasis should be applied to evaluate the influence of bacteria capable of surviving autoclaving on the hydrocarbon-degrading abilities of exogenous bacteria, in particular, with regard to bioaugmentation and MEOR. Bioaugmentation and MEOR technologies could then be developed to more accurately direct the growth of specific endogenous bacteria that may then improve the efficiency of treatment or recovery of crude oil.

  9. An intimate link: two-component signal transduction systems and metal transport systems in bacteria

    OpenAIRE

    Singh, Kamna; Senadheera, Dilani B; Cvitkovitch, Dennis G

    2014-01-01

    Bacteria have evolved various strategies to contend with high concentrations of environmental heavy metal ions for rapid, adaptive responses to maintain cell viability. Evidence gathered in the past two decades suggests that bacterial two-component signal transduction systems (TCSTSs) are intimately involved in monitoring cation accumulation, and can regulate the expression of related metabolic and virulence genes to elicit adaptive responses to changes in the concentration of these ions. Usi...

  10. The Potential of Indigenous Bacteria for Removing Cadmium from Industrial Wastewater in Lawang, East Java

    OpenAIRE

    Agung Pambudiono; Endang Suarsini; Mohamad Amin

    2018-01-01

    Heavy metals have been used in various areas around the world especially in the industrial sector. Heavy metals contamination is very dangerous for ecosystem because of its toxicity for some organisms. Cadmium (Cd) is a dangerous metal pollutant that can cause remarkable diverse of toxic effects, in particular for humans and animals. The use of bacteria as bioremediation agents has been widely studied because more efficient, less cost, and environmentally friendly strategy. This present study...

  11. Characterization of potential probiotic bacteria isolated from ...

    African Journals Online (AJOL)

    Characterization of potential probiotic bacteria isolated from sorghum and pearl millet of the semi-arid tropics. ... A total of nine probiotic bacterial isolates were short listed based on these traits. The sequences of 16s rDNA gene ... probiotic foods. Key words: Probiotics, prebiotics, sorghum, pearl millet, product development.

  12. On Bunsen Burners, Bacteria and the Bible

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 2. On Bunsen Burners, Bacteria and the Bible. Milind Watve. Classroom Volume 1 Issue 2 February 1996 pp 84-89. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/001/02/0084-0089 ...

  13. Prevalence, histopathological findings and aerobic bacteria flora ...

    African Journals Online (AJOL)

    Aerobic bacteria isolated from the lungs with pneumopathies were E. coli, Klebsiella pneumoniae, Mannheimia haemolytica, Streptococcus pyogenes, Staphylococcus aureus, Bacillus subtilis, Proteus vulgaris and Pasteurella multocida. E. coli with a prevalence rate of 73.5% was the most predominant isolate. There was ...

  14. Antibiotic Resistance of Bacteria: A Global Challenge

    Indian Academy of Sciences (India)

    vealed several aminoglycoside resistances in nonculturable bac- teria. Notwithstanding the availability of so many antimicrobial agents, infectious diseases still remain the second leading cause of death worldwide. Eventually, the widespread occurrence of antibiotic-resistant bacteria has added a new dimension to the.

  15. Polyphasic taxonomic characterization of lactic acid bacteria ...

    African Journals Online (AJOL)

    Polyphasic taxonomic characterization of lactic acid bacteria isolated from spontaneous sorghum fermentations used to produce ting, a traditional South African food. ... The results of these analyses showed that ting fermentation involved at least three different species of LAB, i.e. Lactobacillus fermentum, L. plantarum

  16. Stress physiology of lactic acid bacteria

    NARCIS (Netherlands)

    Papadimitriou, Konstantinos; Alegría, Ángel; Bron, Peter A.; Angelis, De Maria; Gobbetti, Marco; Kleerebezem, Michiel; Lemos, José A.; Linares, Daniel M.; Ross, Paul; Stanton, Catherine; Turroni, Francesca; Sinderen, Van Douwe; Varmanen, Pekka; Ventura, Marco; Zúñiga, Manuel; Tsakalidou, Effie; Kok, Jan

    2016-01-01

    Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and

  17. Stress Physiology of Lactic Acid Bacteria

    NARCIS (Netherlands)

    Papadimitriou, Konstantinos; Alegría, Ángel; Bron, Peter A; de Angelis, Maria; Gobbetti, Marco; Kleerebezem, Michiel; Lemos, José A; Linares, Daniel M; Ross, Paul; Stanton, Catherine; Turroni, Francesca; van Sinderen, Douwe; Varmanen, Pekka; Ventura, Marco; Zúñiga, Manuel; Tsakalidou, Effie; Kok, Jan

    Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the

  18. Reflections Lederberg and the 'Cellularity' of Bacteria

    Indian Academy of Sciences (India)

    Srimath

    He tried to observe bacterial mating and the details of conjugation at the cellular level [3]. (reproduced in the Classics section), processes that are still being investigated [4]. He made the important discovery that penicillin induces the formation of spheroplasts. The announcing. Lederberg and the 'Cellularity' of Bacteria.

  19. Assessment of indigenous bacteria from biodiesel effluents ...

    African Journals Online (AJOL)

    This study was conducted in order to identify indigenous microorganisms which have the capability to degrade biodiesel contaminated sites. Bacterial isolates were identified on the basis of morphological and biochemical characterization in which nine bacteria were isolated from the site, Staphylococcus aureus and ...

  20. Anhydrobiosis in bacteria: From physiology to applications

    Indian Academy of Sciences (India)

    With regard to the desiccation tolerance in bacteria, although many mechanisms remain undiscovered at the molecular level, important research about the physiology of the anhydrobiotic state and its applications has been performed, and here we provide the most recent information about this subject. On the other hand, the ...

  1. Chitinolytic bacteria of the mammal digestive tract

    Czech Academy of Sciences Publication Activity Database

    Šimůnek, Jiří; Hodrová, Blanka; Bartoňová, H.; Kopečný, Jan

    2001-01-01

    Roč. 46, č. 1 (2001), s. 76-78 ISSN 0015-5632 R&D Projects: GA ČR GA525/00/0984; GA AV ČR KSK5052113 Keywords : chitinolytic bacteria Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.776, year: 2001

  2. Filamentous bacteria transport electrons over centimetre distances

    DEFF Research Database (Denmark)

    Pfeffer, Christian; Larsen, Steffen; Song, Jie

    2012-01-01

    across centimetre-wide zones. Here we present evidence that the native conductors are long, filamentous bacteria. They abounded in sediment zones with electric currents and along their length they contained strings with distinct properties in accordance with a function as electron transporters. Living...

  3. Control of indigenous pathogenic bacteria in seafood

    DEFF Research Database (Denmark)

    Huss, Hans Henrik

    1997-01-01

    The pathogenic bacteria indigenous to the aquatic and general environment are listed. Their distribution in nature, prevalence in seafood and the possibilities for growth of these organisms in various types of products are outlined These data, combined with what is known regarding the epidemiology...

  4. Biological Potential of Chitinolytic Marine Bacteria

    DEFF Research Database (Denmark)

    Paulsen, Sara Skøtt; Andersen, Birgitte; Gram, Lone

    2016-01-01

    Chitinolytic microorganisms secrete a range of chitin modifying enzymes, which can be exploited for production of chitin derived products or as fungal or pest control agents. Here, we explored the potential of 11 marine bacteria (Pseudoalteromonadaceae, Vibrionaceae) for chitin degradation using...

  5. Bioluminescent hydrocarbonclastic bacteria of the Niger Delta

    African Journals Online (AJOL)

    Administrator

    2007-02-19

    Feb 19, 2007 ... Utilization of three petroleum hydrocarbons (Mobil SAE 40 Engine Oil, Diesel and Bonny light Crude. Oil) by four ... growth of hydrocarbonoclastic bioluminescent bacteria which could serve as a potential tool for the remediation of petroleum ... lized TNT. In the Niger Delta, increasing petroleum exploration.

  6. Genetics of proteinases of lactic acid bacteria

    NARCIS (Netherlands)

    Kok, Jan; Venema, Gerhardus

    Because it is essential for good growth with concomitant rapid acid production, and for the production of flavorous peptides and amino acids, the proteolytic ability of lactic acid bacteria is of crucial importance for reliable dairy product quality. In view of this importance, considerable research

  7. On Bunsen Burners, Bacteria and the Bible

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 2. On Bunsen Burners, Bacteria and the Bible. Milind Watve. Classroom Volume 1 Issue 2 February 1996 pp 84-89. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/001/02/0084-0089 ...

  8. Identification of bacteria using mass spectrometry techniques

    Czech Academy of Sciences Publication Activity Database

    Krásný, Lukáš; Hynek, R.; Hochel, I.

    2013-01-01

    Roč. 353, NOV 2013 (2013), s. 67-79 ISSN 1387-3806 R&D Projects: GA ČR GAP503/10/0664 Institutional support: RVO:61388971 Keywords : Mass spectrometry * Bacteria * Identification Subject RIV: EE - Microbiology, Virology Impact factor: 2.227, year: 2013

  9. (Transport of subsurface bacteria in porous media)

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This report describes studies undertaken to better understand basic microbiology of deep underground regions with special reference to Savannah River Plant. The studies related herein describe studies to enhance sampling methods of deep aquifers and soil columns, to develop equipment to better understand the migration of bacteria in deep soils, and to improve methods to culturing and maintaining deep isolates.

  10. [Transport of subsurface bacteria in porous media

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    This report describes studies undertaken to better understand basic microbiology of deep underground regions with special reference to Savannah River Plant. The studies related herein describe studies to enhance sampling methods of deep aquifers and soil columns, to develop equipment to better understand the migration of bacteria in deep soils, and to improve methods to culturing and maintaining deep isolates.

  11. Drug efflux proteins in multidrug resistant bacteria

    NARCIS (Netherlands)

    vanVeen, HW; Konings, WN

    Bacteria contain an array of transport proteins in their cytoplasmic membrane. Many of these proteins play an important role in conferring resistance to toxic compounds. The multidrug efflux systems encountered in prokaryotic cells are very similar to those observed in eukaryotic cells. Therefore, a

  12. Exopolysaccharides produced by lactic acid bacteria

    NARCIS (Netherlands)

    Caggianiello, Graziano; Kleerebezem, Michiel; Spano, Giuseppe

    2016-01-01

    A wide range of lactic acid bacteria (LAB) is able to produce capsular or extracellular polysaccharides, with various chemical compositions and properties. Polysaccharides produced by LAB alter the rheological properties of the matrix in which they are dispersed, leading to typically viscous and

  13. Role of Outer Membrane Vesicles of Bacteria

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 8. Role of Outer Membrance Vesicles of Bacteria. M V Jagannadham M K Chattopadhyay. General Article Volume 20 Issue 8 August 2015 pp 711-725. Fulltext. Click here to view fulltext PDF. Permanent link:

  14. Competitive interactions between sponge-associated bacteria.

    Science.gov (United States)

    Esteves, Ana I S; Cullen, Alescia; Thomas, Torsten

    2017-03-01

    The diversity of the microbial communities associated with marine sponges has been extensively studied, but their functioning and interactions within the sponge holobiont are only recently being appreciated. Sponge-associated microorganisms are known for the production of a range of inhibitory metabolites with biotechnological application, but the ecological role that these compounds remains elusive. In this work, we explore the competitive interactions between cultivated sponge-associated bacteria to inspect whether bacteria that produce antimicrobial activities are able to inhibit potentially pathogenic bacteria. We isolated a Bacillus sp. bacterium with sponge-degrading activity, which likely has a negative impact on the host. This bacterium, along with other sponge isolates from the same genus, was found to be inhibited by a subpopulation of closely related sponge-derived Pseudovibrio spp. In some Pseudovibrio strains, these inhibitory activities were correlated with the genetic capacity to produce polyketides, such as erythronolide. Our observations suggest that antagonistic activities likely influence the composition of the sponge microbiome, including the abundance of bacteria that can be harmful to the host. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Biotechnological potential of sponge-associated bacteria.

    Science.gov (United States)

    Santos-Gandelman, Juliana F; Giambiagi-deMarval, Marcia; Oelemann, Walter M R; Laport, Marinella S

    2014-01-01

    As sessile and filter-feeding metazoans, marine sponges represent an ecologically important and highly diverse component of marine benthic communities throughout the world. It has been suggested that marine sponges are hosts to many microorganisms which can constitute up to 40-60% of its biomass. Recently, sponges have attracted a high interest from scientific community because two important factors. First there is the fact that sponges have a wide range of associated bacteria; and, second, they are a rich source of bioactive substances. Since 1950, a number of bioactive substances with various pharmacological functions have been isolated from marine sponges. However, many of these substances were subsequently shown to be actually synthesized by sponge-associated bacteria. Bacteria associated with marine sponges constitute an interesting source of novel bioactive compounds with biotechnological potential such as antimicrobial substances, enzymes and surfactants. In addition, these bacteria may be biofilm forming and can act as bioindicators in bioremediation processes of environmental pollution caused by oil and heavy metals. This review focuses on the biotechnological applications of these microorganisms.

  16. Separation, Purification and Identification of Bacteria

    African Journals Online (AJOL)

    user

    2011-05-16

    May 16, 2011 ... biochemical characteristics of the bacteria (Joseph et al., 2001). The common standard strains such as .... Berger's Manual of. Determinative Bacteriology. The Williams and Wilkins CO., Baltimore. (USA). Bruce E, Susan (1988). Recent advances in the development of an improved human anthrax vaccine.

  17. Freeze-drying of lactic acid bacteria.

    Science.gov (United States)

    Fonseca, Fernanda; Cenard, Stéphanie; Passot, Stéphanie

    2015-01-01

    Lactic acid bacteria are of great importance for the food and biotechnology industry. They are widely used as starters for manufacturing food (e.g., yogurt, cheese, fermented meats, and vegetables) and probiotic products, as well as for green chemistry applications. Freeze-drying or lyophilization is a convenient method for preservation of bacteria. By reducing water activity to values below 0.2, it allows long-term storage and low-cost distribution at suprazero temperatures, while minimizing losses in viability and functionality. Stabilization of bacteria via freeze-drying starts with the addition of a protectant solution to the bacterial suspension. Freeze-drying includes three steps, namely, (1) freezing of the concentrated and protected cell suspension, (2) primary drying to remove ice by sublimation, and (3) secondary drying to remove unfrozen water by desorption. In this chapter we describe a method for freeze-drying of lactic acid bacteria at a pilot scale, thus allowing control of the process parameters for maximal survival and functionality recovery.

  18. Probiotic bacteria may become dormant during storage.

    Science.gov (United States)

    Lahtinen, Sampo J; Gueimonde, Miguel; Ouwehand, Arthur C; Reinikainen, Johanna P; Salminen, Seppo J

    2005-03-01

    The determination of bacterial viability in probiotic products is of economic, technological, and clinical significance. We compared four methods to enumerate three Bifidobacterium strains in fermented oat products during storage. A subpopulation of nonculturable cells retained a functional cell membrane typical of viable cells, indicating that probiotic bacteria become dormant during storage.

  19. Probiotic Bacteria May Become Dormant during Storage

    OpenAIRE

    Lahtinen, Sampo J.; Gueimonde, Miguel; Ouwehand, Arthur C.; Reinikainen, Johanna P.; Salminen, Seppo J.

    2005-01-01

    The determination of bacterial viability in probiotic products is of economic, technological, and clinical significance. We compared four methods to enumerate three Bifidobacterium strains in fermented oat products during storage. A subpopulation of nonculturable cells retained a functional cell membrane typical of viable cells, indicating that probiotic bacteria become dormant during storage.

  20. [Innovative treatments for multidrug-resistant bacteria].

    Science.gov (United States)

    Pierre, Tattevin; Aurélien, Lorleac'h; Matthieu, Revest

    2014-03-01

    The spread of multidrug-resistant bacteria has accelerated sharply in the last decade. According to the World Health Organization they are responsible for an estimated 25 000 deaths in Europe each year. In addition, few new antibiotics are under development, raising the spectrum of a return to the "pre-antibiotic era". Non antibiotic antibacterial agents have recently attracted renewed interest. The most promising candidates are: i) phages (bacteria-infecting viruses) have been widely used in Eastern European countries since the 1930s but come up against logistic and regulatory obstacles due to the evolutionary nature of these biologic agents, while convincing clinical data are lacking; ii) bacteriocines are smallantibacterialpeptidesproducedby numerous bacteria; some have a rapid bactericidal effect, good tolerability, and a limited impact on the commensal flora; however, clinical use of bacteriocines is complicated by their fragility, poor penetration, and substantial risk of resistance selection ; iii) antisense oligonucleo tides act by inactivating genes through specific interaction with a complementary DNA or RNA fragment, potentially allowing specific inhibition of selected bacterial virulence factors. However, this therapeutic class may be more suitable for viral or genetic diseases than for multidrug-resistant bacterial infections, owing to the difficulty of delivering them inside bacteria.

  1. Antibiotic-Resistant Bacteria: There is Hope.

    Science.gov (United States)

    Offner, Susan

    1998-01-01

    Argues that reduction in the use of antibiotics would enable antibiotic-sensitive bacteria to flourish. Presents an activity designed to show students how a small, seemingly unimportant difference in doubling time can, over a period of time, make an enormous difference in population size. (DDR)

  2. Why engineering lactic acid bacteria for biobutanol

    Science.gov (United States)

    The Gram-positive Lactic acid bacteria (LAB) are considered attractive biocatalysts for biomass to biofuels for several reasons. They have GRAS (Generally Recognized As Safe) status that are acceptable in food, feed, and medical applications. LAB are fermentative: selected strains are capable of f...

  3. Manganese Oxidation by Bacteria: Biogeochemical Aspects

    Digital Repository Service at National Institute of Oceanography (India)

    Sujith, P.P.; LokaBharathi, P.A.

    to oxygen in the aquatic environment and therefore control the fate of several elements. Mn oxidizing bacteria have a suit of enzymes that not only help to scavenge Mn but also other associated elements, thus playing a crucial role in biogeochemical cycles...

  4. The proteolytic system of lactic acid bacteria.

    Science.gov (United States)

    Mayo, B

    1993-12-01

    Lactic acid bacteria are widely used throughout the world, empirically or deliberately, in the manufacturing of several food and feed stuffs, including milk products (such as cheese, butter, yoghurt, buttermilk, etc.), fermented vegetables (pickles, olives and sauerkraut), sausages, sourdough bread and silage, due to their ability to convert sugars into lactic acid. Of these, dairy products are of outstanding economic importance. Starter cultures used in the dairy industry are mixtures of carefully selected lactic acid bacteria which are added to the milk to fulfil the desired fermentation. Dairy starter cultures must reach high densities in milk in order to produce lactic acid at the required rates for manufacturing. Under these conditions, amino acids supply becomes limitant due to their scarce concentration in milk and to the auxotrophies shown by many starter bacteria. This implies the necessity of a proteolytic system, able to degrade the most abundant protein in milk, casein, into assimilable amino acids and peptides. Casein degradation and utilization require the concerted action of proteinases, peptidases and amino acid and peptide uptake systems. This whole set of enzymes constitutes the proteolytic system. In this article an overview of the recent biochemical and genetic data on the proteolytic system of lactic acid bacteria will be presented.

  5. NOTE: Survivability of Bacteria in Hypervelocity Impact

    Science.gov (United States)

    Burchell, Mark J.; Mann, Jo; Bunch, Alan W.; Brandão, Pedro F. B.

    2001-12-01

    Bacteria belonging to the genus Rhodococcus have been tested for their survivability in hypervelocity impacts at 5.1±0.1 km s -1. This is similar to the martian escape velocity for example but is slower than the mean velocities typical of impacts from space on planets like Mars (typically 14 km s -1) and Earth (typically 20-25 km s -1). The bacteria fired were loaded on a projectile using a two-stage light-gas gun. The targets were plates of nutrient media. Analysis techniques including pyrolysis mass spectrometry and selective growth in acetonitrile confirmed that the bacterium grown on a target plate after a shot was the original strain. The indication is that, if fired on a projectile, bacteria can survive a hypervelocity impact and subsequently grow. This holds implications for the study of possible natural migration of life around the Solar System on minor bodies which end up impacting target planets, thus transferring life if the bacteria can survive the resulting hypervelocity impact.

  6. Phytase activity in rabbit cecal bacteria

    Czech Academy of Sciences Publication Activity Database

    Marounek, Milan; Břeňová, Natalia; Suchorská, O.; Mrázek, Jakub

    2009-01-01

    Roč. 54, č. 2 (2009), s. 111-114 ISSN 0015-5632 R&D Projects: GA ČR GA523/07/0673 Institutional research plan: CEZ:AV0Z50450515 Keywords : rabbit * cecal bacteria Subject RIV: GH - Livestock Nutrition Impact factor: 0.978, year: 2009

  7. Molecular approaches to study probiotic bacteria

    NARCIS (Netherlands)

    Vaughan, E.E.; Heilig, G.H.J.; Zoetendal, E.G.; Satokari, R.; Collins, J.K.; Akkermans, A.D.L.; Vos, de W.M.

    2000-01-01

    Functional foods comprising probiotic bacteria are receiving increasing attention from the scientific community and science funding agencies [1]. An essential aspect relating to the functionality of probiotic-based foods is to develop molecular methods to determine the presence, activity and

  8. Bioluminescent hydrocarbonclastic bacteria of the Niger Delta ...

    African Journals Online (AJOL)

    Utilization of three petroleum hydrocarbons (Mobil SAE 40 Engine Oil, Diesel and Bonny light Crude Oil) by four bioluminescent bacteria (Vibrio harveyi, V. fisheri, Photobacterium leiognathi and P. Phosphoreum isolated from the Bonny estuary in the Niger Delta, Nigeria was investigated. Microbial utilization was monitored ...

  9. Pathomorphology and aerobic bacteria associated with pneumonia ...

    African Journals Online (AJOL)

    Pneumonia occurs in all ages of sheep and goats, in all breeds, in every country of the world causing heavy economic losses. The aim of this study was to determine the prevalence of pneumonia and aerobic bacteria flora associated with it in small ruminants slaughtered at the Nsukka abattoir. Pneumonic lung of small ...

  10. Isolation of biosurfactant-producing marine bacteria

    African Journals Online (AJOL)

    user

    2012-06-06

    Jun 6, 2012 ... Biosurfactant-producing marine bacteria were isolated from oil-spilled seawater collected from harbors and docks in Mumbai, India. ... pollution of the environment especially soil and water. A spill of over 800 tonnes of oil .... substrates (agro-industrial wastes) and efficient methods for cultivation of microbes ...

  11. The proteolytic systems of lactic acid bacteria

    NARCIS (Netherlands)

    Kunji, Edmund R.S.; Mierau, Igor; Hagting, Anja; Poolman, Bert; Konings, Wil N.

    1996-01-01

    Proteolysis in dairy lactic acid bacteria has been studied in great detail by genetic, biochemical and ultrastructural methods. From these studies the picture emerges that the proteolytic systems of lactococci and lactobacilli are remarkably similar in their components and mode of action. The

  12. Proteolytic enzymes of lactic acid bacteria

    NARCIS (Netherlands)

    Law, J; Haandrikman, A

    The proteolytic system of lactic acid bacteria is essential for their growth in milk and contributes significantly to flavour development in fermented milk products where these microorganisms are used as starter cultures. The proteolytic system is composed of proteinases which initially cleave the

  13. Seeing Streptococcus pneumoniae, a Common Killer Bacteria

    DEFF Research Database (Denmark)

    Kjærgaard, Rikke Schmidt; Andersen, Ebbe Sloth

    2014-01-01

    of the bacteria Streptococcus pneumoniae by use of ink, watercolours and computer graphics. We propose a novel artistic visual rendering of Streptococcus pneumoniae and ask what the value of these kind of representations are compared to traditional scientific data. We ask if drawings and computer...

  14. Hypermutation and stress adaptation in bacteria

    Indian Academy of Sciences (India)

    2011-08-19

    Aug 19, 2011 ... [Jayaraman R. 2011 Hypermutation and stress adaptation in bacteria. J. Genet. 90, 383–391]. Introduction. Adaptive evolution by natural selection depends upon the supply of mutations, especially beneficial mutations. (reviewed by Sniegowski and Gerrish 2010). Generally, spontaneous mutation rates are ...

  15. Fermentation of D-Tagatose by Human Intestinal Bacteria and Dairy Lactic Acid Bacteria

    OpenAIRE

    Bertelsen, Hans; Andersen, Hans; Tvede, Michael

    2011-01-01

    A number of 174 normal or pathogenic human enteric bacteria and dairy lactic acid bacteria were screened for D-tagatose fermentation by incubation for 48 hours. Selection criteria for fermentation employed included a drop in pH below 5.5 and a distance to controls of more than 0.5. Only a few of the normal occurring enteric human bacteria were able to ferment D-tagatose, among those Enterococcus faecalis, Enterococcus faecium and Lactobacillus strains. D-Tagatose fermentation seems to be comm...

  16. Effects of symbiotic bacteria on chemical sensitivity of Daphnia magna.

    Science.gov (United States)

    Manakul, Patcharaporn; Peerakietkhajorn, Saranya; Matsuura, Tomoaki; Kato, Yasuhiko; Watanabe, Hajime

    2017-07-01

    The crustacean zooplankton Daphnia magna has been widely used for chemical toxicity tests. Although abiotic factors have been well documented in ecotoxicological test protocols, biotic factors that may affect the sensitivity to chemical compounds remain limited. Recently, we identified symbiotic bacteria that are critical for the growth and reproduction of D. magna. The presence of symbiotic bacteria on Daphnia raised the question as to whether these bacteria have a positive or negative effect on toxicity tests. In order to evaluate the effects of symbiotic bacteria on toxicity tests, bacteria-free Daphnia were prepared, and their chemical sensitivities were compared with that of Daphnia with symbiotic bacteria based on an acute immobilization test. The Daphnia with symbiotic bacteria showed higher chemical resistance to nonylphenol, fenoxycarb, and pentachlorophenol than bacteria-free Daphnia. These results suggested potential roles of symbiotic bacteria in the chemical resistance of its host Daphnia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Counting small RNA in pathogenic bacteria.

    Science.gov (United States)

    Shepherd, Douglas P; Li, Nan; Micheva-Viteva, Sofiya N; Munsky, Brian; Hong-Geller, Elizabeth; Werner, James H

    2013-05-21

    Here, we present a modification to single-molecule fluorescence in situ hybridization that enables quantitative detection and analysis of small RNA (sRNA) expressed in bacteria. We show that short (~200 nucleotide) nucleic acid targets can be detected when the background of unbound singly dye-labeled DNA oligomers is reduced through hybridization with a set of complementary DNA oligomers labeled with a fluorescence quencher. By neutralizing the fluorescence from unbound probes, we were able to significantly reduce the number of false positives, allowing for accurate quantification of sRNA levels. Exploiting an automated, mutli-color wide-field microscope and data analysis package, we analyzed the statistics of sRNA expression in thousands of individual bacteria. We found that only a small fraction of either Yersinia pseudotuberculosis or Yersinia pestis bacteria express the small RNAs YSR35 or YSP8, with the copy number typically between 0 and 10 transcripts. The numbers of these RNA are both increased (by a factor of 2.5× for YSR35 and 3.5× for YSP8) upon a temperature shift from 25 to 37 °C, suggesting they play a role in pathogenesis. The copy number distribution of sRNAs from bacteria-to-bacteria are well-fit with a bursting model of gene transcription. The ability to directly quantify expression level changes of sRNA in single cells as a function of external stimuli provides key information on the role of sRNA in cellular regulatory networks.

  18. [Methanotrophic bacteria of acid sphagnum bogs].

    Science.gov (United States)

    Dedysh, S N

    2002-01-01

    Acid sphagnum bogs cover a considerable part of the territory of Russia and are an important natural source of biogenic methane, which is formed in their anaerobic layers. A considerable portion of this methane is consumed in the aerobic part of the bog profile by acidophilic methanotrophic bacteria, which comprise the methane filter of sphagnum bogs and decrease CH4 emission to the atmosphere. For a long time, these bacteria escaped isolation, which became possible only after the elucidation of the optimal conditions of their functioning in situ: pH 4.5 to 5.5; temperature, from 15 to 20 degrees C; and low salt concentration in the solution. Reproduction of these conditions and rejection of earlier used media with a high content of biogenic elements allowed methanotrophic bacteria of two new genera and species--Methylocella palustris and Methylocapsa acidophila--to be isolated from the peat of sphagnum bogs of the northern part of European Russia and West Siberia. These bacteria are well adapted to the conditions in cold, acid, oligotrophic sphagnum bogs. They grow in a pH range of 4.2-7.5 with an optimum at 5.0-5.5, prefer moderate temperatures (15-25 degrees C) and media with a low content of mineral salts (200-500 mg/l), and are capable of active nitrogen fixation. Design of fluorescently labeled 16S rRNA-targeted oligonucleotide probes for the detection of Methylocella palustris and Methylocapsa acidophila and their application to the analysis of sphagnum peat samples showed that these bacteria represent dominant populations of methanotrophs with a density of 10(5)-10(6) cells/g peat. In addition to Methylocella and Methylocapsa populations, one more abundant population of methanotrophs was revealed (10(6) cells/g peat), which were phylogenetically close to the genus Methylocystis.

  19. Coprinopsis cinerea intracellular lactonases hydrolyze quorum sensing molecules of Gram-negative bacteria.

    Science.gov (United States)

    Stöckli, Martina; Lin, Chia-Wei; Sieber, Ramon; Plaza, David F; Ohm, Robin A; Künzler, Markus

    2017-05-01

    Biofilm formation on fungal hyphae and production of antifungal molecules are strategies of bacteria in their competition with fungi for nutrients. Since these strategies are often coordinated and under control of quorum sensing by the bacteria, interference with this bacterial communication system can be used as a counter-strategy by the fungi in this competition. Hydrolysis of N-acyl-homoserine lactones (HSL), a quorum sensing molecule used by Gram-negative bacteria, by fungal cultures has been demonstrated. However, the enzymes that are responsible for this activity, have not been identified. In this study, we identified and characterized two paralogous HSL hydrolyzing enzymes from the coprophilous fungus Coprinopsis cinerea. The C. cinerea HSL lactonases belong to the metallo-β-lactamase family and show sequence homology to and a similar biochemical activity as the well characterized lactonase AiiA from Bacillus thuringiensis. We show that the fungal lactonases, similar to the bacterial enzymes, are kept intracellularly and act as a sink for the bacterial quorum sensing signals both in C. cinerea and in Saccharomyces cerevisiae expressing C. cinerea lactonases, due to the ability of these signal molecules to diffuse over the fungal cell wall and plasma membrane. The two isogenes coding for the C. cinerea HSL lactonases are arranged in the genome as a tandem repeat and expressed preferentially in vegetative mycelium. The occurrence of orthologous genes in genomes of other basidiomycetes appears to correlate with a saprotrophic lifestyle. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Characteristic sizes of life in the oceans - from bacteria to whales

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Berge, T.; Goncalves, R.

    2016-01-01

    -based scaling laws for resource acquisition, mobility, sensory range, and progeny size for all pelagic marine life, from bacteria to whales. Further, we review and develop simple theoretical arguments for observed scaling laws and the characteristic sizes of a change or breakdown of power laws. We divide life...... in the ocean into seven major realms based on trophic strategy, physiology, and life history strategy. Such a categorization represents a move away from a taxonomically oriented description toward a trait-based description of life in the oceans. Finally, we discuss life forms that transgress the simple size...

  1. Antibacterial activity of silver-killed bacteria: the "zombies" effect

    Science.gov (United States)

    Wakshlak, Racheli Ben-Knaz; Pedahzur, Rami; Avnir, David

    2015-04-01

    We report a previously unrecognized mechanism for the prolonged action of biocidal agents, which we denote as the zombies effect: biocidally-killed bacteria are capable of killing living bacteria. The concept is demonstrated by first killing Pseudomonas aeruginosa PAO1 with silver nitrate and then challenging, with the dead bacteria, a viable culture of the same bacterium: Efficient antibacterial activity of the killed bacteria is observed. A mechanism is suggested in terms of the action of the dead bacteria as a reservoir of silver, which, due to Le-Chatelier's principle, is re-targeted to the living bacteria. Langmuirian behavior, as well as deviations from it, support the proposed mechanism.

  2. Impact of matric potential and pore size distribution on growth dynamics of filamentous and non-filamentous soil bacteria

    NARCIS (Netherlands)

    Wolf, A.B.; Vos, M.; De Boer, W.; Kowalchuk, G.A.

    2013-01-01

    The filamentous growth form is an important strategy for soil microbes to bridge air-filled pores in unsaturated soils. In particular, fungi perform better than bacteria in soils during drought, a property that has been ascribed to the hyphal growth form of fungi. However, it is unknown if, and to

  3. Impact of Matric Potential and Pore Size Distribution on Growth Dynamics of Filamentous and Non-Filamentous Soil Bacteria

    NARCIS (Netherlands)

    Wolf, A.B.; Vos, de M.; Boer, de W.; Kowalchuk, G.A.

    2013-01-01

    The filamentous growth form is an important strategy for soil microbes to bridge air-filled pores in unsaturated soils. In particular, fungi perform better than bacteria in soils during drought, a property that has been ascribed to the hyphal growth form of fungi. However, it is unknown if, and to

  4. Production of L-carnitine by secondary metabolism of bacteria

    Directory of Open Access Journals (Sweden)

    Iborra José L

    2007-10-01

    Full Text Available Abstract The increasing commercial demand for L-carnitine has led to a multiplication of efforts to improve its production with bacteria. The use of different cell environments, such as growing, resting, permeabilized, dried, osmotically stressed, freely suspended and immobilized cells, to maintain enzymes sufficiently active for L-carnitine production is discussed in the text. The different cell states of enterobacteria, such as Escherichia coli and Proteus sp., which can be used to produce L-carnitine from crotonobetaine or D-carnitine as substrate, are analyzed. Moreover, the combined application of both bioprocess and metabolic engineering has allowed a deeper understanding of the main factors controlling the production process, such as energy depletion and the alteration of the acetyl-CoA/CoA ratio which are coupled to the end of the biotransformation. Furthermore, the profiles of key central metabolic activities such as the TCA cycle, the glyoxylate shunt and the acetate metabolism are seen to be closely interrelated and affect the biotransformation efficiency. Although genetically modified strains have been obtained, new strain improvement strategies are still needed, especially in Escherichia coli as a model organism for molecular biology studies. This review aims to summarize and update the state of the art in L-carnitine production using E. coli and Proteus sp, emphasizing the importance of proper reactor design and operation strategies, together with metabolic engineering aspects and the need for feed-back between wet and in silico work to optimize this biotransformation.

  5. Production of L-carnitine by secondary metabolism of bacteria.

    Science.gov (United States)

    Bernal, Vicente; Sevilla, Angel; Cánovas, Manuel; Iborra, José L

    2007-10-02

    The increasing commercial demand for L-carnitine has led to a multiplication of efforts to improve its production with bacteria. The use of different cell environments, such as growing, resting, permeabilized, dried, osmotically stressed, freely suspended and immobilized cells, to maintain enzymes sufficiently active for L-carnitine production is discussed in the text. The different cell states of enterobacteria, such as Escherichia coli and Proteus sp., which can be used to produce L-carnitine from crotonobetaine or D-carnitine as substrate, are analyzed. Moreover, the combined application of both bioprocess and metabolic engineering has allowed a deeper understanding of the main factors controlling the production process, such as energy depletion and the alteration of the acetyl-CoA/CoA ratio which are coupled to the end of the biotransformation. Furthermore, the profiles of key central metabolic activities such as the TCA cycle, the glyoxylate shunt and the acetate metabolism are seen to be closely interrelated and affect the biotransformation efficiency. Although genetically modified strains have been obtained, new strain improvement strategies are still needed, especially in Escherichia coli as a model organism for molecular biology studies. This review aims to summarize and update the state of the art in L-carnitine production using E. coli and Proteus sp, emphasizing the importance of proper reactor design and operation strategies, together with metabolic engineering aspects and the need for feed-back between wet and in silico work to optimize this biotransformation.

  6. Walleye Autochthonous Bacteria as Promising Probiotic Candidates against Flavobacterium columnare

    Directory of Open Access Journals (Sweden)

    Hamza Seghouani

    2017-07-01

    Full Text Available Walleye (Sander vitreus is the second most fished freshwater species in Canada. While much sought by anglers, walleye also supports substantial commercial fisheries. To cope with the recent decline of wild walleye populations, fish farmers produce juveniles for lake stocking. However, walleye breeding is particularly tedious, mostly due to high disease susceptibility at larval and juvenile developmental stages. The main threat is the columnaris disease, which is caused by Flavobacterium columnare, an opportunistic bacteria. As F. columnare strains exhibit increasing antibiotic resistance, there is a strong need to develop efficient and sustainable alternative strategies to control columnaris disease. Bacterial probiotics have been shown to mitigate infections either by enhancing host immune response or by inhibiting pathogen growth. Being successfully assessed in many fish/pathogen combinations, we developed a tailored probiotic strategy for walleye to prevent and treat columnaris disease. Thirty-seven endogenous bacterial strains were isolated from healthy walleye’s skin and gut, were tested in vitro against F. columnare. Significant antagonistic effect against F. columnare was measured for 2 out of 37 endogenous strains. These two probiotic strains were identified as Pseudomonas fluorescens. The antagonistic effect of these two successful probiotics was further validated in vivo during a 2-month stress trial: groups receiving probiotic treatments showed on average 53.74% survival improvement.

  7. Identification of Lactic Acid Bacteria and Propionic Acid Bacteria using FTIR Spectroscopy and Artificial Neural Networks

    OpenAIRE

    Dziuba, Bartłomiej; Nalepa, Beata

    2012-01-01

    In the present study, lactic acid bacteria and propionic acid bacteria have been identified at the genus level with the use of artificial neural networks (ANNs) and Fourier transform infrared spectroscopy (FTIR). Bacterial strains of the genera Lactobacillus, Lactococcus, Leuconostoc, Streptococcus and Propionibacterium were analyzed since they deliver health benefits and are routinely used in the food processing industry. The correctness of bacterial identification by ANNs and FTIR was evalu...

  8. Consumer Exposure to Antimicrobial Resistant Bacteria From Food at Swiss Retail Level

    Directory of Open Access Journals (Sweden)

    Christoph Jans

    2018-03-01

    products featured a medium to high potential of AMR exposure for Gram-negative and Gram-positive foodborne pathogens and indicator bacteria. Food at retail, additional food categories including fermented and novel foods as well as technologically important bacteria and AMR genetics are recommended to be better integrated into systematic One Health AMR surveillance and mitigation strategies to close observed knowledge gaps and enable a comprehensive AMR risk assessment for consumers.

  9. Applicability of photodynamic antimicrobial chemotherapy as an alternative to inactivate fish pathogenic bacteria in aquaculture systems.

    Science.gov (United States)

    Arrojado, Cátia; Pereira, Carla; Tomé, João P C; Faustino, Maria A F; Neves, Maria G P M S; Tomé, Augusto C; Cavaleiro, José A S; Cunha, Angela; Calado, Ricardo; Gomes, Newton C M; Almeida, Adelaide

    2011-10-01

    Aquaculture activities are increasing worldwide, stimulated by the progressive reduction of natural fish stocks in the oceans. However, these activities also suffer heavy production and financial losses resulting from fish infections caused by microbial pathogens, including multidrug resistant bacteria. Therefore, strategies to control fish infections are urgently needed, in order to make aquaculture industry more sustainable. Antimicrobial photodynamic therapy (aPDT) has emerged as an alternative to treat diseases and prevent the development of antibiotic resistance by pathogenic bacteria. The aim of this work was to evaluate the applicability of aPDT to inactivate pathogenic fish bacteria. To reach this objective a cationic porphyrin Tri-Py(+)-Me-PF was tested against nine pathogenic bacteria isolated from a semi-intensive aquaculture system and against the cultivable bacteria of the aquaculture system. The ecological impact of aPDT in the aquatic environment was also tested on the natural bacterial community, using the overall bacterial community structure and the cultivable bacteria as indicators. Photodynamic inactivation of bacterial isolates and of cultivable bacteria was assessed counting the number of colonies. The impact of aPDT in the overall bacterial community structure of the aquaculture water was evaluated by denaturing gel gradient electrophoresis (DGGE). The results showed that, in the presence of Tri-Py(+)-Me-PF, the growth of bacterial isolates was inhibited, resulting in a decrease of ≈7-8 log after 60-270 min of irradiation. Cultivable bacteria were also considerably affected, showing decreases up to the detection limit (≈2 log decrease on cell survival), but the inactivation rate varied significantly with the sampling period. The DGGE fingerprint analyses revealed changes in the bacterial community structure caused by the combination of aPDT and light. The results indicate that aPDT can be regarded as a new approach to control fish

  10. Consumer Exposure to Antimicrobial Resistant Bacteria From Food at Swiss Retail Level

    Science.gov (United States)

    Jans, Christoph; Sarno, Eleonora; Collineau, Lucie; Meile, Leo; Stärk, Katharina D. C.; Stephan, Roger

    2018-01-01

    featured a medium to high potential of AMR exposure for Gram-negative and Gram-positive foodborne pathogens and indicator bacteria. Food at retail, additional food categories including fermented and novel foods as well as technologically important bacteria and AMR genetics are recommended to be better integrated into systematic One Health AMR surveillance and mitigation strategies to close observed knowledge gaps and enable a comprehensive AMR risk assessment for consumers. PMID:29559960

  11. Isolation of surfactant-resistant bacteria from natural, surfactant-rich marine habitats.

    Science.gov (United States)

    Plante, Craig J; Coe, Kieran M; Plante, Rebecca G

    2008-08-01

    Environmental remediation efforts often utilize either biodegradative microbes or surfactants, but not in combination. Coupling both strategies holds the potential to dramatically increase the rate and extent of remediation because surfactants can enhance the bioavailability of contaminants to microbes. However, many surfactants permeabilize bacterial cell membranes and are effective disinfectants. An important goal then is to find or genetically modify microorganisms that possess both desirable degradative capabilities and the ability to thrive in the presence of surfactants. The guts of some marine invertebrates, particularly deposit feeders, have previously been shown to contain high levels of biosurfactants. Our primary aim was to mine these natural, surfactant-rich habitats for surfactant-resistant bacteria. Relative to sediment porewaters, the gut contents of two polychaete deposit feeders, Nereis succinea and Amphitrite ornata, exhibited a significantly higher ratio of bacteria resistant to both cationic and anionic surfactants. In contrast, bacteria in the gut fluids of a holothuroid, Leptosynapta tenuis, showed surfactant susceptibility similar to that of bacteria from sediments. Analyses of 16S rRNA gene sequences revealed that the majority of surfactant-resistant isolates were previously undescribed species of the genus Vibrio or were of a group most closely related to Spongiobacter spp. We also tested a subset of resistant bacteria for the production of biosurfactants. The majority did produce biosurfactants, as demonstrated via the oil-spreading method, but in all cases, production was relatively weak under the culture conditions employed. Novel surfactant-resistant, biosurfactant-producing bacteria, and the habitats from which they were isolated, provide a new source pool for potential microorganisms to be exploited in the in situ bioremediation of marine sediments.

  12. Isolation of Surfactant-Resistant Bacteria from Natural, Surfactant-Rich Marine Habitats▿

    Science.gov (United States)

    Plante, Craig J.; Coe, Kieran M.; Plante, Rebecca G.

    2008-01-01

    Environmental remediation efforts often utilize either biodegradative microbes or surfactants, but not in combination. Coupling both strategies holds the potential to dramatically increase the rate and extent of remediation because surfactants can enhance the bioavailability of contaminants to microbes. However, many surfactants permeabilize bacterial cell membranes and are effective disinfectants. An important goal then is to find or genetically modify microorganisms that possess both desirable degradative capabilities and the ability to thrive in the presence of surfactants. The guts of some marine invertebrates, particularly deposit feeders, have previously been shown to contain high levels of biosurfactants. Our primary aim was to mine these natural, surfactant-rich habitats for surfactant-resistant bacteria. Relative to sediment porewaters, the gut contents of two polychaete deposit feeders, Nereis succinea and Amphitrite ornata, exhibited a significantly higher ratio of bacteria resistant to both cationic and anionic surfactants. In contrast, bacteria in the gut fluids of a holothuroid, Leptosynapta tenuis, showed surfactant susceptibility similar to that of bacteria from sediments. Analyses of 16S rRNA gene sequences revealed that the majority of surfactant-resistant isolates were previously undescribed species of the genus Vibrio or were of a group most closely related to Spongiobacter spp. We also tested a subset of resistant bacteria for the production of biosurfactants. The majority did produce biosurfactants, as demonstrated via the oil-spreading method, but in all cases, production was relatively weak under the culture conditions employed. Novel surfactant-resistant, biosurfactant-producing bacteria, and the habitats from which they were isolated, provide a new source pool for potential microorganisms to be exploited in the in situ bioremediation of marine sediments. PMID:18586977

  13. Oh What a Tangled Biofilm Web Bacteria Weave

    Science.gov (United States)

    ... Home Page Oh What a Tangled Biofilm Web Bacteria Weave By Elia Ben-Ari Posted May 1, ... a suitable surface, some water and nutrients, and bacteria will likely put down stakes and form biofilms. ...

  14. Profiling urinary tract infections bacteria among elderly population in ...

    African Journals Online (AJOL)

    UTIs) causing bacteria in elderly in recent times. This study aims to evaluate the prevalence and resistance pattern of UTIs causing bacteria in elderly Nigerian patients. A prospective cross-sectional study was carried out among elderly ...

  15. Surveillance of multidrug resistant bacteria pathogens from female ...

    African Journals Online (AJOL)

    Highest sensitivity was observed with gatifloxacin, imipenam and piperacillin and tazobactum. Thus, according to this study, these antibiotics can be recommended against multi drug resistant bacteria pathogens. Keywords: Multidrug resistance, female infertility, bacteria pathogens. African Journal of Biotechnology Vol.

  16. Isolation and characterization of culturable bacteria from bulk soil ...

    African Journals Online (AJOL)

    The bacteria were screened for their ability to solubilise phosphates, for aminocyclopropane-1-carboxylate (ACC) deaminase activity, production of catalase, hydrogen cyanide, ammonia and protease activity. Efficiency of phosphate solubilising activity by bacteria was determined by phosphate solubilisation index.

  17. Developing new bacteria subroutines in the SWAT model

    Science.gov (United States)

    Fecal bacteria observations from four different sites in Korea and the US demonstrate seasonal variability, showing a significant relationship with temperature (Figure 1); fecal indicator bacteria (FIB) concentrations are relatively higher in summer and lower in winter , including Stillwater river (...

  18. Mimicking Seawater For Culturing Marine Bacteria

    DEFF Research Database (Denmark)

    Rygaard, Anita Mac; Sonnenschein, Eva; Gram, Lone

    2015-01-01

    Only about 1% of marine bacteria have been brought into culture using traditional techniques. The purpose of this study was to investigate if mimicking the natural bacterial environment can increase culturability.We used marine substrates containing defined algal polymers or gellan gum...... 100-fold; from 8.5 x 101 CFU/ml to 5.2 x 103 CFU/ml, whereas addition of AHLs did not improve culturability on any of the media.The substitution of agar with gellan gum shows great promise for increasing culturability of marine bacteria, and further studies are ongoing. The AHLs used in this study...... were selected based on a previous study determining the most common AHLs produced by marine strains of the Vibrionaceae family. However, their effect on culturability could not be fully explained, so also here further studies are being carried out....

  19. Protein-Injection Machines in Bacteria.

    Science.gov (United States)

    Galán, Jorge E; Waksman, Gabriel

    2018-03-08

    Many bacteria have evolved specialized nanomachines with the remarkable ability to inject multiple bacterially encoded effector proteins into eukaryotic or prokaryotic cells. Known as type III, type IV, and type VI secretion systems, these machines play a central role in the pathogenic or symbiotic interactions between multiple bacteria and their eukaryotic hosts, or in the establishment of bacterial communities in a diversity of environments. Here we focus on recent progress elucidating the structure and assembly pathways of these machines. As many of the interactions shaped by these machines are of medical importance, they provide an opportunity to develop novel therapeutic approaches to combat important human diseases. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Have sex or not? Lessons from bacteria.

    Science.gov (United States)

    Lodé, T

    2012-01-01

    Sex is one of the greatest puzzles in evolutionary biology. A true meiotic process occurs only in eukaryotes, while in bacteria, gene transcription is fragmentary, so asexual reproduction in this case really means clonal reproduction. Sex could stem from a signal that leads to increased reproductive output of all interacting individuals and could be understood as a secondary consequence of primitive metabolic reactions. Meiotic sex evolved in proto-eukaryotes to solve a problem that bacteria did not have, namely a large amount of DNA material, occurring in an archaic step of proto-cell formation and genetic exchanges. Rather than providing selective advantages through reproduction, sex could be thought of as a series of separate events which combines step-by-step some very weak benefits of recombination, meiosis, gametogenesis and syngamy. Copyright © 2012 S. Karger AG, Basel.

  1. DNA Mismatch Repair in Eukaryotes and Bacteria

    Directory of Open Access Journals (Sweden)

    Kenji Fukui

    2010-01-01

    Full Text Available DNA mismatch repair (MMR corrects mismatched base pairs mainly caused by DNA replication errors. The fundamental mechanisms and proteins involved in the early reactions of MMR are highly conserved in almost all organisms ranging from bacteria to human. The significance of this repair system is also indicated by the fact that defects in MMR cause human hereditary nonpolyposis colon cancers as well as sporadic tumors. To date, 2 types of MMRs are known: the human type and Escherichia coli type. The basic features of the former system are expected to be universal among the vast majority of organisms including most bacteria. Here, I review the molecular mechanisms of eukaryotic and bacterial MMR, emphasizing on the similarities between them.

  2. [RAPD analysis of plant pathogenic coryneform bacteria].

    Science.gov (United States)

    Yin, Yan-Ni; Chen, Yong-Fang; Li, Shi-Mo; Guo, Jian-Hua

    2005-12-01

    RAPD analysis was used for the taxonomy of plant pathogenic coryneform bacteria, especially for the classification of two new pathogens (Curtobacterium flaccumfaciens pv. basellae pv. nov. and Curtobacterium flaccumfaciens pv. beticola pv. nov.). 20 random primers were screened from 50 ones to detect polymorphism among the total strains used. 80.4% were polymorphic bands among the 225 ones produced. The results of pairwise similarity and UPGMA cluster analysis suggest that the two new pathovars of sugar beet (Beta vulgaris var. saccharifera) and malabar spinach (Basella rubra) are genetically close related with Curtobacterium flacumfaciens, and the minimal similarity coefficient is 0.6511. According to the RAPD analysis and previous research, some newly made taxonomic changes of the plant pathogenic coryneform bacteria are discussed.

  3. Biotechnological potential of Clostridium butyricum bacteria

    Directory of Open Access Journals (Sweden)

    Daria Szymanowska-Powałowska

    2014-09-01

    Full Text Available In response to demand from industry for microorganisms with auspicious biotechnological potential, a worldwide interest has developed in bacteria and fungi isolation. Microorganisms of interesting metabolic properties include non-pathogenic bacteria of the genus Clostridium, particularly C. acetobutylicum, C. butyricum and C. pasteurianum. A well-known property of C. butyricum is their ability to produce butyric acid, as well as effectively convert glycerol to 1,3-propanediol (38.2 g/L. A conversion rate of 0.66 mol 1,3-propanediol/mol of glycerol has been obtained. Results of the studies described in the present paper broaden our knowledge of characteristic features of C. butyricum specific isolates in terms of their phylogenetic affiliation, fermentation capacity and antibacterial properties.

  4. Alkaliphilic bacteria: applications in industrial biotechnology.

    Science.gov (United States)

    Sarethy, Indira P; Saxena, Yashi; Kapoor, Aditi; Sharma, Manisha; Sharma, Sanjeev K; Gupta, Vandana; Gupta, Sanjay

    2011-07-01

    Alkaliphiles are interesting groups of extremophilic organisms that thrive at pH of 9.0 and above. Many of their products, in particular enzymes, have found widespread applications in industry, primarily in the detergent and laundry industries. While the enzymes have been a runaway success from the industrial point of view, many more products have been reported from alkaliphiles such as antibiotics and carotenoids. Less known are their potential for degradation of xenobiotics. They also play a key role in biogeocycling of important inorganic compounds. This review provides an insight into the huge diversity of alkaliphilic bacteria, the varied products obtained from them, and the need for further investigations on these interesting bacteria.

  5. Antibiotic resistance of lactic acid bacteria

    OpenAIRE

    Bulajić Snežana; Mijačević Zora; Savić-Radovanović Radoslava

    2008-01-01

    Knowledge on the antibiotic resistance of lactic acid bacteria is still limited, possibly because of the large numbers of genera and species encountered in this group, as well as variances in their resistance spectra. The EFSA considers antibiotic resistances, especially transferable resistances, an important decision criterion for determining a strain's QPS status. There are no approved standards for the phenotypic or genotypic evaluation of antibiotic resistances in food isolat...

  6. Genetics of proteinases of lactic acid bacteria

    OpenAIRE

    Kok, Jan; Venema, Gerhardus

    1988-01-01

    Because it is essential for good growth with concomitant rapid acid production, and for the production of flavorous peptides and amino acids, the proteolytic ability of lactic acid bacteria is of crucial importance for reliable dairy product quality. In view of this importance, considerable research has been carried out to characterize the enzymes involved. The intensified genetic research in the lactic acid streptococci and the development of gene cloning systems for these organisms have res...

  7. Stress Physiology of Lactic Acid Bacteria

    OpenAIRE

    Papadimitriou, Konstantinos; Alegría, Ángel; Bron, Peter A.; de Angelis, Maria; Gobbetti, Marco; Kleerebezem, Michiel; Lemos, José A.; Linares, Daniel M.; Ross, Paul; Stanton, Catherine; Turroni, Francesca; van Sinderen, Douwe; Varmanen, Pekka; Ventura, Marco; Zúñiga, Manuel

    2016-01-01

    Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diver...

  8. Engineering bacteria for enhanced polyhydroxyalkanoates (PHA) biosynthesis

    OpenAIRE

    Chen, Guo-Qiang; Jiang, Xiao-Ran

    2017-01-01

    Polyhydroxyalkanoates (PHA) have been produced by some bacteria as bioplastics for many years. Yet their commercialization is still on the way. A few issues are related to the difficulty of PHA commercialization: namely, high cost and instabilities on molecular weights (Mw) and structures, thus instability on thermo-mechanical properties. The high cost is the result of complicated bioprocessing associated with sterilization, low conversion of carbon substrates to PHA products, and slow growth...

  9. Biological Potential of Chitinolytic Marine Bacteria

    OpenAIRE

    Sara Skøtt Paulsen; Birgitte Andersen; Lone Gram; Henrique Machado

    2016-01-01

    Chitinolytic microorganisms secrete a range of chitin modifying enzymes, which can be exploited for production of chitin derived products or as fungal or pest control agents. Here, we explored the potential of 11 marine bacteria (Pseudoalteromonadaceae, Vibrionaceae) for chitin degradation using in silico and phenotypic assays. Of 10 chitinolytic strains, three strains, Photobacterium galatheae S2753, Pseudoalteromonas piscicida S2040 and S2724, produced large clearing zones on chitin plates....

  10. Method of detecting and counting bacteria

    Science.gov (United States)

    Picciolo, G. L.; Chappelle, E. W. (Inventor)

    1976-01-01

    An improved method is provided for determining bacterial levels, especially in samples of aqueous physiological fluids. The method depends on the quantitative determination of bacterial adenosine triphosphate (ATP) in the presence of nonbacterial ATP. The bacterial ATP is released by cell rupture and is measured by an enzymatic bioluminescent assay. A concentration technique is included to make the method more sensitive. It is particularly useful where the fluid to be measured contains an unknown or low bacteria count.

  11. Extremophile bacteria glycolipids: structure and biological activity

    OpenAIRE

    Carillo, Sara

    2013-01-01

    Extremophile bacteria are able to survive in harsh life conditions, such as high or low temperatures (thermophiles and psychrophiles, respectively), high pressure (barophiles), high or low pH values (acidophiles or alkalophiles), environments characterized by high salt concentrations (halophiles). Structural features of the macromolecules belonging to the external layer are fundamental in adaptation mechanisms, e.g. it is well known that halophiles membrane phospholipids showed an increase...

  12. Chemotactic waves of bacteria at the mesoscale

    OpenAIRE

    Calvez, Vincent

    2016-01-01

    The existence of travelling waves for a model of concentration waves of bacteria is investigated. The model consists in a kinetic equation for the biased motion of cells following a run-and-tumble process, coupled with two reaction-diffusion equations for the chemical signals. Strong mathematical difficulties arise in comparison with the diffusive regime which was studied in a previous work. The cornerstone of the proof consists in establishing monotonicity properties of the spatial density o...

  13. Streptomyces Bacteria as Potential Probiotics in Aquaculture

    OpenAIRE

    Tan, Loh Teng-Hern; Chan, Kok-Gan; Lee, Learn-Han; Goh, Bey-Hing

    2016-01-01

    In response to the increased seafood demand from the ever-going human population, aquaculture has become the fastest growing animal food-producing sector. However, the indiscriminate use of antibiotics as a biological control agents for fish pathogens has led to the emergence of antibiotic resistance bacteria. Probiotics are defined as living microbial supplement that exert beneficial effects on hosts as well as improvement of environmental parameters. Probiotics have been proven to be effect...

  14. [Application of anaerobic bacteria detection in oral and maxillofacial infection].

    Science.gov (United States)

    Bao, Zhen-ying; Lin, Qin; Meng, Yan-hong; He, Chun; Su, Jia-zeng; Peng, Xin

    2016-02-18

    To investigate the distribution and drug resistance of anaerobic bacteria in the patients with oral and maxillofacial infection. Aerobic and anaerobic bacteria cultures from 61 specimens of pus from the patients with oral and maxillofacial infection in the Department of Oral and Maxillofacial Surgery, Peking University School of Stomatology were identified. The culture type was evaluated by API 20A kit and drug resistance test was performed by Etest method. The clinical data and antibacterial agents for the treatment of the 61 cases were collected, and the final outcomes were recorded. The bacteria cultures were isolated from all the specimens, with aerobic bacteria only in 6 cases (9.8%), anaerobic bacteria only in 7 cases (11.5%), and both aerobic and anaerobic bacteria in 48 cases (78.7%). There were 55 infected cases (90.2%) with anaerobic bacteria, and 81 anaerobic bacteria stains were isolated. The highest bacteria isolation rate of Gram positive anaerobic bacteria could be found in Peptostreptococcus, Bifidobacterium and Pemphigus propionibacterium. No cefoxitin, amoxicillin/carat acid resistant strain was detected in the above three Gram positive anaerobic bacteria. The highest bacteria isolation rate of Gram negative anaerobic bacteria could be detected in Porphyromonas and Prevotella. No metronidazole, cefoxitin, amoxicillin/carat acid resistant strain was found in the two Gram negative anaerobic bacteria. In the study, 48 patients with oral and maxillofacial infection were treated according to the results of drug resistance testing, and the clinical cure rate was 81.3%. Mixed aerobic and anaerobic bacteria cultures are very common in most oral and maxillofacial infection patients. Anaerobic bacteria culture and drug resistance testing play an important role in clinical treatment.

  15. 3D printing of bacteria into functional complex materials

    OpenAIRE

    Schaffner, Manuel; Rühs, Patrick A.; Coulter, Fergal; Kilcher, Samuel; Studart, André R.

    2017-01-01

    Despite recent advances to control the spatial composition and dynamic functionalities of bacteria embedded in materials, bacterial localization into complex three-dimensional (3D) geometries remains a major challenge. We demonstrate a 3D printing approach to create bacteria-derived functional materials by combining the natural diverse metabolism of bacteria with the shape design freedom of additive manufacturing. To achieve this, we embedded bacteria in a biocompatible and functionalized 3D ...

  16. Bacteria as transporters of phosphorus through soil

    DEFF Research Database (Denmark)

    Glæsner, N.; Bælum, Jacob; Jacobsen, C. S.

    2016-01-01

    The transport of phosphorus (P) from agricultural land has led to the eutrophication of surface waters worldwide, especially in areas with intensive animal production. In this research, we investigated the role of bacteria in the leaching of P through three agricultural soils with different......RNA genes cell−1. Leaching of bacteria was in the range of 2.5–4.5 × 105 cells ml−1 prior to application of slurry to the three soil textures. After slurry application, leaching increased to 1.1 × 106 cells ml−1 in the loamy sand, 4.9 × 106 cells ml−1 in the sandy loam and 5.0 × 106 cells ml−1 in the loam....... Based on the reported P content of soil bacteria, 0.3–1.8% of the total P leached was present in the bacterial biomass when no slurry was applied, whereas slurry application increased the leaching of P from the bacterial biomass to 3−7.9% of total P leached. Bacterial leaching was related...

  17. Transfer of DNA from Bacteria to Eukaryotes

    Directory of Open Access Journals (Sweden)

    Benoît Lacroix

    2016-07-01

    Full Text Available Historically, the members of the Agrobacterium genus have been considered the only bacterial species naturally able to transfer and integrate DNA into the genomes of their eukaryotic hosts. Yet, increasing evidence suggests that this ability to genetically transform eukaryotic host cells might be more widespread in the bacterial world. Indeed, analyses of accumulating genomic data reveal cases of horizontal gene transfer from bacteria to eukaryotes and suggest that it represents a significant force in adaptive evolution of eukaryotic species. Specifically, recent reports indicate that bacteria other than Agrobacterium, such as Bartonella henselae (a zoonotic pathogen, Rhizobium etli (a plant-symbiotic bacterium related to Agrobacterium, or even Escherichia coli, have the ability to genetically transform their host cells under laboratory conditions. This DNA transfer relies on type IV secretion systems (T4SSs, the molecular machines that transport macromolecules during conjugative plasmid transfer and also during transport of proteins and/or DNA to the eukaryotic recipient cells. In this review article, we explore the extent of possible transfer of genetic information from bacteria to eukaryotic cells as well as the evolutionary implications and potential applications of this transfer.

  18. Engineering bacteria for enhanced polyhydroxyalkanoates (PHA biosynthesis

    Directory of Open Access Journals (Sweden)

    Guo-Qiang Chen

    2017-09-01

    Full Text Available Polyhydroxyalkanoates (PHA have been produced by some bacteria as bioplastics for many years. Yet their commercialization is still on the way. A few issues are related to the difficulty of PHA commercialization: namely, high cost and instabilities on molecular weights (Mw and structures, thus instability on thermo-mechanical properties. The high cost is the result of complicated bioprocessing associated with sterilization, low conversion of carbon substrates to PHA products, and slow growth of microorganisms as well as difficulty of downstream separation. Future engineering on PHA producing microorganisms should be focused on contamination resistant bacteria especially extremophiles, developments of engineering approaches for the extremophiles, increase on carbon substrates to PHA conversion and controlling Mw of PHA. The concept proof studies could still be conducted on E. coli or Pseudomonas spp. that are easily used for molecular manipulations. In this review, we will use E. coli and halophiles as examples to show how to engineer bacteria for enhanced PHA biosynthesis and for increasing PHA competitiveness.

  19. Engineering bacteria for enhanced polyhydroxyalkanoates (PHA) biosynthesis.

    Science.gov (United States)

    Chen, Guo-Qiang; Jiang, Xiao-Ran

    2017-09-01

    Polyhydroxyalkanoates (PHA) have been produced by some bacteria as bioplastics for many years. Yet their commercialization is still on the way. A few issues are related to the difficulty of PHA commercialization: namely, high cost and instabilities on molecular weights (Mw) and structures, thus instability on thermo-mechanical properties. The high cost is the result of complicated bioprocessing associated with sterilization, low conversion of carbon substrates to PHA products, and slow growth of microorganisms as well as difficulty of downstream separation. Future engineering on PHA producing microorganisms should be focused on contamination resistant bacteria especially extremophiles, developments of engineering approaches for the extremophiles, increase on carbon substrates to PHA conversion and controlling Mw of PHA. The concept proof studies could still be conducted on E. coli or Pseudomonas spp. that are easily used for molecular manipulations. In this review, we will use E. coli and halophiles as examples to show how to engineer bacteria for enhanced PHA biosynthesis and for increasing PHA competitiveness.

  20. Genera and species in acetic acid bacteria.

    Science.gov (United States)

    Yamada, Yuzo; Yukphan, Pattaraporn

    2008-06-30

    Taxonomic studies of acetic acid bacteria were historically surveyed. The genus Acetobacter was first introduced in 1898 with a single species, Acetobacter aceti. The genus Gluconobacter was proposed in 1935 for strains with intense oxidation of glucose to gluconic acid rather than oxidation of ethanol to acetic acid and no oxidation of acetate. The genus "Acetomonas" was described in 1954 for strains with polar flagellation and no oxidation of acetate. The proposals of the two generic names were due to confusion, and "Acetomonas" was a junior subjective synonym of Gluconobacter. The genus Acetobacter was in 1984 divided into two subgenera, Acetobacter and Gluconoacetobacter. The latter was elevated to the genus Gluconacetobacter in 1998. In the acetic acid bacteria, ten genera are presently recognized and accommodated to the family Acetobacteraceae, the Alphaproteobacteria: Acetobacteer, Gluconobacter, Acidomonas, Gluconacetobacter, Asaia, Kozakia, Swaminathania, Saccharibacter, Neoasaia and Granulibacter. In contrast, the genus Frateuria, strains of which were once named 'pseudacetic acid bacteria', was classified into the Gammaproteobacteria. The genus Gluconacetobacter was phylogenetically divided into two groups: the Gluconacetobacter liquefaciens group and the Gluconacetobacter xylinus group. The two groups were discussed taxonomically.

  1. Intracellular bacteria: the origin of dinoflagellate toxicity.

    Science.gov (United States)

    Silva, E S

    1990-01-01

    Dinoflagellate blooms of the same species have been registered either as toxic or nontoxic and, in the latter case, toxicity may be of different types. A hypothesis has been formulated according to which the bacteria having in some way taken part in the toxin formation are either inside the dinoflagellate cell or in the nutritive liquid. The presence of intracellular bacteria in those microorganisms has been studied mainly in material from cultures, a few from the sea, and several strains were isolated from different species. Experiments with crossed inoculations have shown that the bacterial strain from Gonyaulax tamarensis caused the cells of some other species to become toxic. From nontoxic clonal cultures of Prorocentrum balticum, Glenodinium foliaceum, and Gyrodinium instriatum, after inoculation of that bacterial strain, cultures were obtained whose cell extracts showed the same kind of toxicity as G. tamarensis. No toxic action could be found in the extracts of the bacterial cells form the assayed strains. The interference of intracellular bacteria in the metabolism of dinoflagellates must be the main cause of their toxicity.

  2. Soil bacteria for remediation of polluted soils

    Energy Technology Data Exchange (ETDEWEB)

    Springael, D.; Bastiaens, L.; Carpels, M.; Mergaey, M.; Diels, L.

    1996-09-18

    Soil bacteria, specifically adapted to contaminated soils, may be used for the remediation of polluted soils. The Flemish research institute VITO has established a collection of bacteria, which were isolated from contaminated areas. This collection includes microbacteria degrading mineral oils (Pseudomonas sp., Acinetobacter sp. and others), microbacteria degrading polycyclic aromatic hydrocarbons (genera Sphingomonas and Mycobacterium), microbacteria degrading polychlorobiphenyls (genus Ralstonia and strains related to beta-Proteobacteria), and metal resistant bacteria with plasmid borne resistances to Cd, Zn, Ni, Co, Cu, Hg, and Cr. Bench-scale reactors were developed to investigate the industrial feasibility of bioremediation. Batch Stirred Tank Reactors were used to evaluate the efficiency of oil degraders. Soils, contaminated with non-ferrous metals, were treated using a Bacterial Metal Slurry Reactor. It was found that the reduction of the Cd concentration may vary strongly from sample to sample: reduction factors vary from 95 to 50%. Is was shown that Cd contained in metallic sinter and biologically unavailable Cd could not be removed.

  3. Fecal indicator bacteria at Havana Bay

    International Nuclear Information System (INIS)

    Lopez Perez, Lisse; Gomez D'Angelo, Yamiris; Beltran Gonzalez, Jesus; Alvarez Valiente, Reinaldo

    2013-01-01

    Aims: Fecal indicator bacteria concentrations were evaluated in Havana Bay. Methods: Concentrations of traditional fecal indicator bacteria were calculated between April 2010 and February 2011, by MPN methods. Concentrations of thermo tolerant coliform (CTT), Escherichia coli, fecal streptococci (EF), intestinal enterococci (ENT) in seawater, and Clostridium perfringens in sediment surface, were determined. Results: CTT and E. coli levels were far above Cuban water quality standard for indirect contact with water, showing the negative influence of sewage and rivers on the bay. The EF and ENT were measured during sewage spills at the discharge site and they were suitable indicators of fecal contamination, but these indicators didn't show the same behavior in other selected sites. This result comes from its well-known inactivation by solar light in tropical zones and the presumable presence of humid acids in the waters of the bay. Conclusion: Fecal indicator bacteria and its statistical relationships reflect recent and chronic fecal contamination at the bay and near shores.

  4. Acoustic manipulation of bacteria cells suspensions

    Science.gov (United States)

    GutiéRrez-Ramos, Salomé; Hoyos, Mauricio; Aider, Jean Luc; Ruiz, Carlos; Acoustofluidics team Team; Soft; Bio group Collaboration

    An acoustic contacless manipulation gives advantages in the exploration of the complex dynamics enviroment that active matter exhibits. Our works reports the control confinement and dispersion of Escherichia coliRP437-pZA3R-YFP suspensions (M9Glu-Ca) via acoustic levitation.The manipulation of the bacteria bath in a parallel plate resonator is achieved using the acoustic radiation force and the secondary radiation force. The primary radiation force generates levitation of the bacteria cells at the nodal plane of the ultrasonic standing wave generated inside the resonator. On the other side, secondary forces leads to the consolidation of stable aggregates. All the experiments were performed in the acoustic trap described, where we excite the emission plate with a continuous sinusoidal signal at a frequency in the order of MHz and a quartz slide as the reflector plate. In a typical experiment we observed that, before the input of the signal, the bacteria cells exhibit their typical run and tumble behavior and after the sound is turned on all of them displace towards the nodal plane, and instantaneously the aggregation begins in this region. CNRS French National Space Studies, CONACYT Mexico.

  5. Detoxification of cancerogenic compounds by lactic acid bacteria strains.

    Science.gov (United States)

    Lili, Zhao; Junyan, Wei; Hongfei, Zhao; Baoqing, Zhu; Bolin, Zhang

    2017-10-20

    Carcinogens in food are an important issue that threat people's health right now. Lactic acid bacteria (LAB) strains as well-known probiotics have shown numerous perspectives in being used as a good food additive to confront cancerogenic compounds in recent years. Some LAB strains can remove cancerogenic compounds from medium environment via direct physical binding and avoid re-pollution of poisonous secondary metabolites which are generated from degradation of cancerogenic compounds. This article presents a whole overview of the physical-binding of LAB strains to such common cancerogenic compounds existed in food and feed environments as mycotoxins, polycyclic aromatic hydrocarbons (PAHs), heterocyclic amines (HAs) and pthalic acid esters (PAEs).In most cases, summaries of these published researches show that the binding of LAB strains to cancerogenic compounds is a physical process. Binding sites generally take place in cell wall, and peptidoglycan from LAB cells is the chief binding site. The adsorption of lactic acid bacteria to cancerogenic compounds is strain-specific. Specially, the strains from the two genera Lactobacillus and Bifidobacterium show a better potential in binding cancerogenic compounds. Moreover, we firstly used molecular dynamic computer model as a highly potential tool to simulate the binding behavior of peptidoglycan from Lactobacillus acidophilus to DBP, one of pthalic acid esters with genetic toxicity. It was seen that the theoretical data were quite consistent with the experimental results in terms of the ability of this bacterium to bind DBP. Also, the toxicity reduction of cancerogenic compounds by LAB strains could be achieved either in gastrointestinal model or animal tests and clinical researches as well. In conclusion, carefully selected LAB strains should be a good solution as one of safety strategies to reduce potential risk of cancerogenic compounds from food-based products.

  6. Biological hydrogen production from biomass by thermophilic bacteria

    International Nuclear Information System (INIS)

    Claassen, P.A.M.; Mars, A.E.; Budde, M.A.W.; Lai, M.; de Vrije, T.; van Niel, E.W.J.

    2006-01-01

    To meet the reduction of the emission of CO 2 imposed by the Kyoto protocol, hydrogen should be produced from renewable primary energy. Besides the indirect production of hydrogen by electrolysis using electricity from renewable resources, such as sunlight, wind and hydropower, hydrogen can be directly produced from biomass. At present, there are two strategies for the production of hydrogen from biomass: the thermochemical technology, such as gasification, and the biotechnological approach using micro-organisms. Biological hydrogen production delivers clean hydrogen with an environmental-friendly technology and is very suitable for the conversion of wet biomass in small-scale applications, thus having a high chance of becoming an economically feasible technology. Many micro-organisms are able to produce hydrogen from mono- and disaccharides, starch and (hemi)cellulose under anaerobic conditions. The anaerobic production of hydrogen is a common phenomenon, occurring during the process of anaerobic digestion. Here, hydrogen producing micro-organisms are in syn-trophy with methanogenic bacteria which consume the hydrogen as soon as it is produced. In this way, hydrogen production remains obscure and methane is the end-product. By uncoupling hydrogen production from methane production, hydrogen becomes available for recovery and exploitation. This study describes the use of extreme thermophilic bacteria, selected because of a higher hydrogen production efficiency as compared to mesophilic bacteria, for the production of hydrogen from renewable resources. As feedstock energy crops like Miscanthus and Sorghum bicolor and waste streams like domestic organic waste, paper sludge and potato steam peels were used. The feedstock was pretreated and/or enzymatically hydrolyzed prior to fermentation to make a fermentable substrate. Hydrogen production by Caldicellulosiruptor saccharolyticus, Thermotoga elfii and T. neapolitana on all substrates was observed. Nutrient

  7. Isolation and characterization of feather degrading bacteria from ...

    African Journals Online (AJOL)

    This study is aimed at isolating and characterizing new culturable feather degrading bacteria from soils of the University of Mauritius Farm. Bacteria that were isolated were tested for their capability to grow on feather meal agar (FMA). Proteolytic bacteria were tested for feather degradation and were further identified ...

  8. Bacteria associated with contamination of ready-to-eat (RTE ...

    African Journals Online (AJOL)

    The bacteria associated with contamination of ready-to-eat (RTE) cooked rice in Lagos, Nigeria were studied using standard microbiological methods. The objective of this study was to investigate the distribution of pathogenic bacteria recovered from RTE cooked rice in Lagos, assess bacteria load in the contaminated RTE ...

  9. Metabolism in bacteria at low temperature: A recent report

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... The adaptability of bacteria to extreme cold environments has been demonstrated from time to time by various investigators. Metabolic activity of bacteria at subzero temperatures is also evidenced. Recent studies indicate that bacteria continue both catabolic and anabolic activities at subzero temperatures.

  10. Bacteria associated with cultures of psathyrella atroumbonata (Pleger)

    African Journals Online (AJOL)

    These bacteria include Bacillus licheniformis, Bacillus subtilis, Leuconostoc mesenteroides, Pseudomonas aeruginosa, Bacillus cereus and Staphylococcus aureus. The average bacteria count was 1.0 x 106 cfu/ml and these bacteria grew within pH range of 5.0 and 9.0. the optimum temperature range of growth lied ...

  11. The growth of bacteria on organic compounds in drinking water

    NARCIS (Netherlands)

    Kooij, van der D.

    1984-01-01

    Growth ("regrowth") of bacteria In drinking water distribution systems results in a deterioration of the water quality. Regrowth of chemoheterotrophic bacteria depends on the presence of organic. compounds that serve as a nutrient source for these bacteria. A batch-culture technique was

  12. Quantification and Qualification of Bacteria Trapped in Chewed Gum

    NARCIS (Netherlands)

    Wessel, Stefan W.; van der Mei, Henny C.; Morando, David; Slomp, Anje M.; van de Belt-Gritter, Betsy; Maitra, Amarnath; Busscher, Henk J.

    2015-01-01

    Chewing of gum contributes to the maintenance of oral health. Many oral diseases, including caries and periodontal disease, are caused by bacteria. However, it is unknown whether chewing of gum can remove bacteria from the oral cavity. Here, we hypothesize that chewing of gum can trap bacteria and

  13. Bacteria Associated with Fresh Tilapia Fish (Oreochromis niloticus ...

    African Journals Online (AJOL)

    acer

    The isolates were found to be of medical importance. Keywords: Bacteria, Tilapia fish ... target,Systemic bacterial disease: bacteria inwades the fish's body and ... Shinkafi & Ukwaja; Bacteria Associated with Fresh Tilapia Fish (Oreochromis niloticus) Sold At Sokoto Central Market in Sokoto, Nigeria. 218 more prone to raid ...

  14. Rapid Quantification of Viable Campylobacter Bacteria on Chicken Carcasses, Using Real-Time PCR and Propidium Monoazide Treatment, as a Tool for Quantitative Risk Assessment▿ †

    OpenAIRE

    Josefsen, M. H.; Löfström, C.; Hansen, T. B.; Christensen, L. S.; Olsen, J. E.; Hoorfar, J.

    2010-01-01

    A number of intervention strategies against Campylobacter-contaminated poultry focus on postslaughter reduction of the number of cells, emphasizing the need for rapid and reliable quantitative detection of only viable Campylobacter bacteria. We present a new and rapid quantitative approach to the enumeration of food-borne Campylobacter bacteria that combines real-time quantitative PCR (Q-PCR) with simple propidium monoazide (PMA) sample treatment. In less than 3 h, this method generates a sig...

  15. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria

    NARCIS (Netherlands)

    Png, C.W.; Linden, S.K.; Gilshenan, K.S.; Zoetendal, E.G.; McSweeney, C.S.; Sly, L.I.; McGuckin, M.A.; Florin, T.H.

    2010-01-01

    OBJECTIVES: Mucosa-associated bacteria are increased in inflammatory bowel disease (IBD), which suggests the possibility of an increased source of digestible endogenous mucus substrate. We hypothesized that mucolytic bacteria are increased in IBD, providing increased substrate to sustain

  16. Bacteria-Targeting Nanoparticles for Managing Infections

    Science.gov (United States)

    Radovic-Moreno, Aleksandar Filip

    Bacterial infections continue to be a significant concern particularly in healthcare settings and in the developing world. Current challenges include the increasing spread of drug resistant (DR) organisms, the side effects of antibiotic therapy, the negative consequences of clearing the commensal bacterial flora, and difficulties in developing prophylactic vaccines. This thesis was an investigation of the potential of a class of polymeric nanoparticles (NP) to contribute to the management of bacterial infections. More specifically, steps were taken towards using these NPs (1) to achieve greater spatiotemporal control over drug therapy by more targeted antibiotic delivery to bacteria, and (2) to develop a prophylactic vaccine formulation against the common bacterial sexually transmitted disease (STD) caused by Chlamydia trachomatis. In the first part, we synthesized polymeric NPs containing poly(lactic-co-glycolic acid)-block-poly(L-histidine)-block-poly(ethylene glycol) (PLGA-PLH-PEG). We show that these NPs are able to bind to bacteria under model acidic infection conditions and are able to encapsulate and deliver vancomycin to inhibit the growth of Staphylococcus aureus bacteria in vitro. Further work showed that the PLGA-PLH-PEG-based NPs demonstrated the potential for competition for binding bacteria at a site of infection from soluble protein and model phagocytic and tissue-resident cells in a NP composition dependent manner. The NPs demonstrated low toxicity in vitro, were well tolerated by mice in vivo, and circulated in the blood on timescales comparable to control PLGA-PEG NPs. In the second part, we used PLGA-PLH-PEG-based NPs to design a prophylactic vaccine against the obligate intracellular bacterium Chlamydia trachomatis, the most common cause of bacterial STD in the world. Currently, no vaccines against this pathogen are approved for use in humans. We first formulated NPs encapsulating the TLR7 agonist R848 conjugated to poly(lactic acid) (R848-PLA

  17. Vertebrate Hosts as Islands: Dynamics of Selection, Immigration, Loss, Persistence, and Potential Function of Bacteria on Salamander Skin

    Science.gov (United States)

    Loudon, Andrew H.; Venkataraman, Arvind; Van Treuren, William; Woodhams, Douglas C.; Parfrey, Laura Wegener; McKenzie, Valerie J.; Knight, Rob; Schmidt, Thomas M.; Harris, Reid N.

    2016-01-01

    Skin bacterial communities can protect amphibians from a fungal pathogen; however, little is known about how these communities are maintained. We used a neutral model of community ecology to identify bacteria that are maintained on salamanders by selection or by dispersal from a bacterial reservoir (soil) and ecological drift. We found that 75% (9/12) of bacteria that were consistent with positive selection, immigration and loss (emigration and local extinction) rates of bacteria on salamanders in both treatments. Loss was strongly related to bacterial richness, suggesting competition is important for structuring the community. Bacteria closely related to antifungal isolates were more likely to persist on salamanders with or without a bacterial reservoir, suggesting they had a competitive advantage. Furthermore, over-represented and under-represented operational taxonomic units (OTUs) had similar persistence on salamanders when a bacterial reservoir was present. However, under-represented OTUs were less likely to persist in the absence of a bacterial reservoir, suggesting that the over-represented and under-represented bacteria were selected against or for on salamanders through time. Our findings from the neutral model, migration and persistence analyses show that bacteria that exhibit a high similarity to antifungal isolates persist on salamanders, which likely protect hosts against pathogens and improve fitness. This research is one of the first to apply ecological theory to investigate assembly of host associated-bacterial communities, which can provide insights for probiotic bioaugmentation as a conservation strategy against disease. PMID:27014249

  18. Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: A review.

    Science.gov (United States)

    Liu, Yu; Zhou, Haibo; Hu, Ziwei; Yu, Guangxia; Yang, Danting; Zhao, Jinshun

    2017-08-15

    Rapid, accurate detection of pathogen bacteria is a highly topical research area for the sake of food safety and public health. Surface-enhanced Raman scattering (SERS) is being considered as a powerful and attractive technique for pathogen bacteria detection, due to its sensitivity, high speed, comparatively low cost, multiplexing ability and portability. This contribution aims to give a comprehensive overview of SERS as a technique for rapid detection of pathogen bacteria based on label and label-free strategies. A brief tutorial on SERS is given first of all. Then we summarize the recent trends and developments of label and label-free based SERS applied to detection of pathogen bacteria, including the relatively complete interpretation of SERS spectra. In addition, multifunctional SERS platforms for pathogen bacteria in matrix are discussed as well. Furthermore, an outlook of the work done and a perspective on the future directions of SERS as a reliable tool for real-time pathogen bacteria detection are given. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Antifungal Activity of Selected Lactic Acid Bacteria and Propionic Acid Bacteria against Dairy-Associated Spoilage Fungi

    DEFF Research Database (Denmark)

    Aunsbjerg, Stina Dissing

    Bacterial cultures of lactic and propionic acid bacteria are widely used in fermented products including dairy products. Spoilage fungi may constitute a quality and safety issue in these products. The antifungal properties of some lactic and propionic acid bacteria make them potential candidates...... diacetyl and lactic acid, 6 antifungal hydroxy acids were identified. Of these, 3 have previously been reported from antifungal lactic acid bacteria, whereas the other 3 hydroxy acids have not previously been reported produced by antifungal lactic acid bacteria....

  20. Bacteria-Mineral Interactions on the Surfaces of Metal-Resistant Bacteria

    International Nuclear Information System (INIS)

    Malkin, A.J.

    2010-01-01

    The extraordinary ability of indigenous microorganisms, like metal-resistant bacteria, for biotransformation of toxic compounds is of considerable interest for the emerging area of environmental bioremediation. However, the underlying mechanisms by which metal-resistant bacteria transform toxic compounds are currently unknown and await elucidation. The project's objective was to study stress-induced responses of metal-resistant bacteria to environmental changes and chemical stimulants. This project involved a multi-institutional collaboration of our LLNL group with the group of Dr. H.-Y. Holman (Lawrence Berkeley National Laboratory). In this project, we have utilized metal-resistant bacteria Arthrobacter oxydans as a model bacterial system. We have utilized atomic force microscopy (AFM) to visualize for the first time at the nanometer scale formation of stress-induced structures on bacterial surfaces in response to Cr (VI) exposure. We have demonstrated that structure, assembly, and composition of these stress-induced structures are dependent on Cr (VI) concentrations. Our AFM observations of the appearance and development of stress-induced layers on the surfaces of Arthrobacter oxydans bacteria exposed to Cr (VI) were confirmed by Dr. Holman's biochemical, electron microscopy, and synchrotron infrared spectromicroscopy studies. In general, in vitro imaging of live microbial and cellular systems represents one of the most challenging issues in application of AFM. Various approaches for immobilization of bacteria on the substrate for in vitro imaging were tested in this project. Imaging of live bacteria was achieved, however further optimization of experimental methods are needed for high-resolution visualization of the cellular environmental structural dynamics by AFM. This project enhanced the current insight into molecular architecture, structural and environmental variability of bacterial systems. The project partially funded research for two book chapters (1

  1. Effect of biochanin A on corn grain (Zea mays) fermentation by bovine rumen amylolytic bacteria.

    Science.gov (United States)

    Harlow, B E; Flythe, M D; Aiken, G E

    2017-04-01

    The objective was to determine the effect of biochanin A (BCA), an isoflavone produced by red clover (Trifolium pratense L.), on corn fermentation by rumen micro-organisms. When bovine rumen bacterial cell suspensions (n = 3) were incubated (24 h, 39°C) with ground corn, amylolytic bacteria including group D Gram-positive cocci (GPC; Streptococcus bovis; enterococci) proliferated, cellulolytic bacteria were inhibited, lactate accumulated and pH declined. Addition of BCA (30 μg ml -1 ) inhibited lactate production, and pH decline. BCA had no effect on total amylolytics, but increased lactobacilli and decreased GPC. The initial rate and total starch disappearance was decreased by BCA addition. BCA with added Strep. bovis HC5 supernatant (containing bacteriocins) inhibited the amylolytic bacteria tested (Strep. bovis JB1; Strep. bovis HC5; Lactobacillus reuteri, Selenemonas ruminatium) to a greater extent than either addition alone. BCA increased cellulolytics and dry matter digestibility of hay with corn starch. These results indicate that BCA mitigates changes associated with corn fermentation by bovine rumen bacteria ex vivo. BCA could serve as an effective mitigation strategy for rumen acidosis. Future research is needed to evaluate the effect of BCA on mitigating rumen acidosis in vivo. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  2. Killing of Staphylococcus aureus via Magnetic Hyperthermia Mediated by Magnetotactic Bacteria

    Science.gov (United States)

    Chen, Changyou; Chen, Linjie; Yi, Yong; Chen, Chuanfang

    2016-01-01

    Staphylococcus aureus is a common hospital and household pathogen. Given the emergence of antibiotic-resistant derivatives of this pathogen resulting from the use of antibiotics as general treatment, development of alternative therapeutic strategies is urgently needed. Here, we assess the feasibility of killing S. aureus cells in vitro and in vivo through magnetic hyperthermia mediated by magnetotactic bacteria that possess magnetic nanocrystals and demonstrate magnetically steered swimming. The S. aureus suspension was added to magnetotactic MO-1 bacteria either directly or after coating with anti-MO-1 polyclonal antibodies. The suspensions were then subjected to an alternating magnetic field (AMF) for 1 h. S. aureus viability was subsequently assessed through conventional plate counting and flow cytometry. We found that approximately 30% of the S. aureus cells mixed with uncoated MO-1 cells were killed after AMF treatment. Moreover, attachment between the magnetotactic bacteria and S. aureus increased the killing efficiency of hyperthermia to more than 50%. Using mouse models, we demonstrated that magnetic hyperthermia mediated by antibody-coated magnetotactic MO-1 bacteria significantly improved wound healing. These results collectively demonstrated the effective eradication of S. aureus both in vitro and in vivo, indicating the potential of magnetotactic bacterium-mediated magnetic hyperthermia as a treatment for S. aureus-induced skin or wound infections. PMID:26873320

  3. Colonization with Multidrug-Resistant Bacteria – On the Efficiency of Local Decolonization Procedures

    Science.gov (United States)

    Münch, Julia; Hagen, Ralf Matthias; Müller, Martin; Kellert, Viktor; Wiemer, Dorothea Franziska; Hinz, Rebecca; Schwarz, Norbert Georg; Frickmann, Hagen

    2017-01-01

    The effectiveness of a disinfectant-based decolonization strategy for multidrug-resistant bacteria like extended spectrum β-lactamase (ESBL)-positive Gram-negative bacteria with or without additional fluoroquinolon and carbapenem resistance as well as vancomycin-resistant enterococci and methicillin-resistant Staphylococcus aureus was assessed. Between 2011 and 2015, 25 patients from Libya, Syria, and the Ukraine with war traumata were treated at the Bundeswehr hospital Hamburg. The patients were heavily colonized and infected with multidrug-resistant bacteria, altogether comprising 371 distinct combinations of pathogens and isolation sites. Local disinfection was assessed for effectiveness regarding successful decolonization of multidrug-resistant bacteria. Altogether, 170 cases of successful decolonization were observed, comprising 95 (55.8%) such events at sampling sites that were accessible to disinfecting procedures. The remaining 75 (44.2%) decolonization events had to be considered as spontaneous. In contrast, 95 out of 172 (55.2%) colonized isolation sites that were accessible to disinfection procedures were successfully decolonized. Patient compliance with the enforced hygiene procedures was associated with decolonization success. Systemic antibiotic therapy did not relevantly affect isolation time. Disinfecting washing moderately supports local decolonization of multidrug-resistant pathogens in comparison with spontaneous decolonization rates if the patients’ compliance with the applied hygiene procedures is ensured. PMID:28690877

  4. Colonization with Multidrug-Resistant Bacteria - On the Efficiency of Local Decolonization Procedures.

    Science.gov (United States)

    Münch, Julia; Hagen, Ralf Matthias; Müller, Martin; Kellert, Viktor; Wiemer, Dorothea Franziska; Hinz, Rebecca; Schwarz, Norbert Georg; Frickmann, Hagen

    2017-06-01

    The effectiveness of a disinfectant-based decolonization strategy for multidrug-resistant bacteria like extended spectrum β-lactamase (ESBL)-positive Gram-negative bacteria with or without additional fluoroquinolon and carbapenem resistance as well as vancomycin-resistant enterococci and methicillin-resistant Staphylococcus aureus was assessed. Between 2011 and 2015, 25 patients from Libya, Syria, and the Ukraine with war traumata were treated at the Bundeswehr hospital Hamburg. The patients were heavily colonized and infected with multidrug-resistant bacteria, altogether comprising 371 distinct combinations of pathogens and isolation sites. Local disinfection was assessed for effectiveness regarding successful decolonization of multidrug-resistant bacteria. Altogether, 170 cases of successful decolonization were observed, comprising 95 (55.8%) such events at sampling sites that were accessible to disinfecting procedures. The remaining 75 (44.2%) decolonization events had to be considered as spontaneous. In contrast, 95 out of 172 (55.2%) colonized isolation sites that were accessible to disinfection procedures were successfully decolonized. Patient compliance with the enforced hygiene procedures was associated with decolonization success. Systemic antibiotic therapy did not relevantly affect isolation time. Disinfecting washing moderately supports local decolonization of multidrug-resistant pathogens in comparison with spontaneous decolonization rates if the patients' compliance with the applied hygiene procedures is ensured.

  5. Quorum sensing communication between bacteria and human cells: signals, targets and functions

    Directory of Open Access Journals (Sweden)

    Angelika eHolm

    2014-06-01

    Full Text Available Both direct and long-range interactions between pathogenic Pseudomonas aeruginosa bacteria and their eukaryotic hosts are important in the outcome of infections. For cell-to-cell communication, these bacteria employ the quorum sensing (QS system to pass on information of the density of the bacterial population and collectively switch on virulence factor production, biofilm formation and resistance development. Thus, QS allows bacteria to behave as a community to perform tasks which would be impossible for individual cells, e.g. to overcome defense and immune systems and establish infections in higher organisms. This review highlights these aspects of QS and our own recent research on how P.aeruginosa communicates with human cells using the small QS signal molecules N-acyl homoserine lactones (AHL. We focus on how this conversation changes the behavior and function of neutrophils, macrophages and epithelial cells and on how the signaling machinery in human cells responsible for the recognition of AHL. Understanding the bacteria-host relationships at both cellular and molecular levels is essential for the identification of new targets and for the development of novel strategies to fight bacterial infections in the future.

  6. Killing of Staphylococcus aureus via Magnetic Hyperthermia Mediated by Magnetotactic Bacteria.

    Science.gov (United States)

    Chen, Changyou; Chen, Linjie; Yi, Yong; Chen, Chuanfang; Wu, Long-Fei; Song, Tao

    2016-02-12

    Staphylococcus aureus is a common hospital and household pathogen. Given the emergence of antibiotic-resistant derivatives of this pathogen resulting from the use of antibiotics as general treatment, development of alternative therapeutic strategies is urgently needed. Here, we assess the feasibility of killing S. aureus cells in vitro and in vivo through magnetic hyperthermia mediated by magnetotactic bacteria that possess magnetic nanocrystals and demonstrate magnetically steered swimming. The S. aureus suspension was added to magnetotactic MO-1 bacteria either directly or after coating with anti-MO-1 polyclonal antibodies. The suspensions were then subjected to an alternating magnetic field (AMF) for 1 h. S. aureus viability was subsequently assessed through conventional plate counting and flow cytometry. We found that approximately 30% of the S. aureus cells mixed with uncoated MO-1 cells were killed after AMF treatment. Moreover, attachment between the magnetotactic bacteria and S. aureus increased the killing efficiency of hyperthermia to more than 50%. Using mouse models, we demonstrated that magnetic hyperthermia mediated by antibody-coated magnetotactic MO-1 bacteria significantly improved wound healing. These results collectively demonstrated the effective eradication of S. aureus both in vitro and in vivo, indicating the potential of magnetotactic bacterium-mediated magnetic hyperthermia as a treatment for S. aureus-induced skin or wound infections. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Laser thermal ablation of multidrug-resistant bacteria using functionalized gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Mocan L

    2017-03-01

    Full Text Available Lucian Mocan,1,2 Flaviu A Tabaran,3 Teodora Mocan,2,4 Teodora Pop,5 Ofelia Mosteanu,5 Lucia Agoston-Coldea,6 Cristian T Matea,2 Diana Gonciar,2 Claudiu Zdrehus,1,2 Cornel Iancu1 13rd Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 2Department of Nanomedicine, “Octavian Fodor” Gastroenterology Institute, 3Department of Pathology, University of Agricultural Sciences and Veterinary Medicine, Faculty of Veterinary Medicine, 4Department of Physiology, 53rd Gastroenterology Department, 6Department of Internal Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania Abstract: The issue of multidrug resistance (MDR has become an increasing threat to public health. One alternative strategy against MDR bacteria would be to construct therapeutic vectors capable of physically damaging these microorganisms. Gold nanoparticles hold great promise for the development of such therapeutic agents, since the nanoparticles exhibit impressive properties, of which the most important is the ability to convert light into heat. This property has scientific significance since is exploited to develop nano-photothermal vectors to destroy bacteria at a molecular level. The present paper summarizes the latest advancements in the field of nanotargeted laser hyperthermia of MDR bacteria mediated by gold nanoparticles. Keywords: bacteria, photo-thermal ablation, gold nanoparticles, antibiotic resistance

  8. Reprogrammable microbial cell-based therapeutics against antibiotic-resistant bacteria.

    Science.gov (United States)

    Hwang, In Young; Koh, Elvin; Kim, Hye Rim; Yew, Wen Shan; Chang, Matthew Wook

    2016-07-01

    The discovery of antimicrobial drugs and their subsequent use has offered an effective treatment option for bacterial infections, reducing morbidity and mortality over the past 60 years. However, the indiscriminate use of antimicrobials in the clinical, community and agricultural settings has resulted in selection for multidrug-resistant bacteria, which has led to the prediction of possible re-entrance to the pre-antibiotic era. The situation is further exacerbated by significantly reduced antimicrobial drug discovery efforts by large pharmaceutical companies, resulting in a steady decline in the number of new antimicrobial agents brought to the market in the past several decades. Consequently, there is a pressing need for new antimicrobial therapies that can be readily designed and implemented. Recently, it has become clear that the administration of broad-spectrum antibiotics can lead to collateral damage to the human commensal microbiota, which plays several key roles in host health. Advances in genetic engineering have opened the possibility of reprogramming commensal bacteria that are in symbiotic existence throughout the human body to implement antimicrobial drugs with high versatility and efficacy against pathogenic bacteria. In this review, we discuss recent advances and potentialities of engineered bacteria in providing a novel antimicrobial strategy against antibiotic resistance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Interactions of the cell-wall glycopolymers of lactic acid bacteria with their bacteriophages

    Directory of Open Access Journals (Sweden)

    Marie-Pierre eChapot-Chartier

    2014-05-01

    Full Text Available Lactic acid bacteria (LAB are Gram positive bacteria widely used in the production of fermented food in particular cheese and yoghurts. Bacteriophage infections during fermentation processes have been for many years a major industrial concern and have stimulated numerous research efforts. Better understanding of the molecular mechanisms of bacteriophage interactions with their host bacteria is required for the development of efficient strategies to fight against infections. The bacterial cell wall plays key roles in these interactions. First, bacteriophages must adsorb at the bacterial surface through specific interactions with receptors that are cell wall components. At next step, phages must overcome the barrier constituted by cell wall peptidoglycan to inject DNA inside bacterial cell. Also at the end of the infection cycle, phages synthesize endolysins able to hydrolyze peptidoglycan and lyse bacterial cells to release phage progeny. In the last decade, concomitant development of genomics and structural analysis of cell wall components allowed considerable advances in the knowledge of their structure and function in several model LAB. Here, we describe the present knowledge on the structure of the cell wall glycopolymers of the best characterized LAB emphasizing their structural variations and we present the available data regarding their role in bacteria-phage specific interactions at the different steps of the infection cycle.

  10. Screening and characterization of phosphate solubilizing bacteria from isolate of thermophilic bacteria

    Science.gov (United States)

    Yulianti, Evy; Rakhmawati, Anna

    2017-08-01

    The aims of this study were to select bacteria that has the ability to dissolve phosphate from thermophilic bacteria isolates after the Merapi eruption. Five isolates of selected bacteria was characterized and continued with identification. Selection was done by using a pikovskaya selective medium. Bacterial isolates were grown in selective medium and incubated for 48 hours at temperature of 55 ° C. Characterization was done by looking at the cell and colony morphology, physiological and biochemical properties. Identification was done with the Profile Matching method based on the reference genus Oscillospira traced through Bergey's Manual of Determinative Bacteriology. Dendogram was created based on similarity index SSM. The results showed there were 14 isolates of bacteria that were able to dissolve phosphate indicated by a clear zone surrounding the bacterial colony on selective media. Five isolates were selected with the largest clear zone. Isolates D79, D92, D110a, D135 and D75 have different characters. The result of phenotypic characters identification with Genus Oscillospira profile has a percentage of 100% similarity to isolate D92 and D110a; 92.31% for isolates D79, and 84.6% for isolates D75 and D135. Dendogram generated from average linkage algorithm / UPGMA using the Simple Matching Coefficient (SSM) algorithms showed, isolate thermophilic bacteria D75 and D135 are combined together to form cluster 1. D110a and D92 form a sub cluster A. Sub cluster A and D79 form cluster 2

  11. Bacterial strategies of resistance to antimicrobial peptides.

    Science.gov (United States)

    Joo, Hwang-Soo; Fu, Chih-Iung; Otto, Michael

    2016-05-26

    Antimicrobial peptides (AMPs) are a key component of the host's innate immune system, targeting invasive and colonizing bacteria. For successful survival and colonization of the host, bacteria have a series of mechanisms to interfere with AMP activity, and AMP resistance is intimately connected with the virulence potential of bacterial pathogens. In particular, because AMPs are considered as potential novel antimicrobial drugs, it is vital to understand bacterial AMP resistance mechanisms. This review gives a comparative overview of Gram-positive and Gram-negative bacterial strategies of resistance to various AMPs, such as repulsion or sequestration by bacterial surface structures, alteration of membrane charge or fluidity, degradation and removal by efflux pumps.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. © 2016 The Author(s).

  12. Probiotic bacteria in prevention and treatment of diarrhea

    Directory of Open Access Journals (Sweden)

    Jasmina Havranek

    2009-03-01

    Full Text Available Probiotic bacteria have beneficial effects in prevention and treatment of different diseases. The results of preventive and therapeutic effect of probiotic bacteria on diarrhea during last ten years are shown in this paper. The greatest preventive and therapeutic effect of probiotic bacteria was identified for acute diarrhea in children caused by rotaviruses. Significant, but slightly lower effect of probiotic bacteria was proved for antibiotic associated diarrhea. Positive effect in prevention of traveller’s diarrhea and radiation-induced diarrhea is not significant. Preventive and therapeutic effect on diarrhea is not dependent on the way of probiotic bacteria consumption, by fermented milk, capsule or oral rehydration solution.

  13. Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Bryant, Donald A

    2004-01-01

    Based upon their photosynthetic nature and the presence of a unique light-harvesting antenna structure, the chlorosome, the photosynthetic green bacteria are defined as a distinctive group in the Bacteria. However, members of the two taxa that comprise this group, the green sulfur bacteria...... (Chlorobi) and the filamentous anoxygenic phototrophic bacteria ("Chloroflexales"), are otherwise quite different, both physiologically and phylogenetically. This review summarizes how genome sequence information facilitated studies of the biosynthesis and function of the photosynthetic apparatus...... and carotenoid species also allow the functions of these pigments to be studied in vivo....

  14. Bacteria-bacteria interactions within the microbiota of the ancestral metazoan Hydra contribute to fungal resistance.

    Science.gov (United States)

    Fraune, Sebastian; Anton-Erxleben, Friederike; Augustin, René; Franzenburg, Sören; Knop, Mirjam; Schröder, Katja; Willoweit-Ohl, Doris; Bosch, Thomas C G

    2015-07-01

    Epithelial surfaces of most animals are colonized by diverse microbial communities. Although it is generally agreed that commensal bacteria can serve beneficial functions, the processes involved are poorly understood. Here we report that in the basal metazoan Hydra, ectodermal epithelial cells are covered with a multilayered glycocalyx that provides a habitat for a distinctive microbial community. Removing this epithelial microbiota results in lethal infection by the filamentous fungus Fusarium sp. Restoring the complex microbiota in gnotobiotic polyps prevents pathogen infection. Although mono-associations with distinct members of the microbiota fail to provide full protection, additive and synergistic interactions of commensal bacteria are contributing to full fungal resistance. Our results highlight the importance of resident microbiota diversity as a protective factor against pathogen infections. Besides revealing insights into the in vivo function of commensal microbes in Hydra, our findings indicate that interactions among commensal bacteria are essential to inhibit pathogen infection.

  15. Vertebrate hosts as islands: dynamics of selection, immigration, loss, persistence and potential function of bacteria on salamander skin

    Directory of Open Access Journals (Sweden)

    Andrew Howard Loudon

    2016-03-01

    Full Text Available Skin bacterial communities can protect amphibians from a fungal pathogen; however, little is known about how these communities are maintained. We used a neutral model of community ecology to identify bacteria that are maintained on salamanders by selection or by dispersal from a bacterial reservoir (soil and ecological drift. We found that 75% (9/12 of bacteria that were consistent with positive selection, < 1% of bacteria that were consistent with random dispersal and none of the bacteria that were consistent under negative selection had a 97% or greater match to antifungal isolates. Additionally we performed an experiment where salamanders were either provided or denied a bacterial reservoir and estimated immigration and loss (emigration and local extinction rates of bacteria on salamanders in both treatments. Loss was strongly related to bacterial richness, suggesting competition is important for structuring the community. Bacteria closely related to antifungal isolates were more likely to persist on salamanders with or without a bacterial reservoir, suggesting they had a competitive advantage. Furthermore, over-represented and under-represented OTUs had similar persistence on salamanders when a bacterial reservoir was present. However, under-represented OTUs were less likely to persist in the absence of a bacterial reservoir, suggesting that the over-represented and under-represented bacteria are selected for or against on salamanders through time. Our findings from the neutral model, migration and persistence analyses show that bacteria that exhibit a high similarity to antifungal isolates persist on salamanders, which likely protect hosts against pathogens and improve fitness. This research is one of the first to apply ecological theory to investigate assembly of host associated-bacterial communities, which can provide insights for probiotic bioaugmentation as a conservation strategy against disease.

  16. Hessian fly-associated bacteria: transmission, essentiality, and composition.

    Directory of Open Access Journals (Sweden)

    Raman Bansal

    Full Text Available Plant-feeding insects have been recently found to use microbes to manipulate host plant physiology and morphology. Gall midges are one of the largest groups of insects that manipulate host plants extensively. Hessian fly (HF, Mayetiola destructor is an important pest of wheat and a model system for studying gall midges. To examine the role of bacteria in parasitism, a systematic analysis of bacteria associated with HF was performed for the first time. Diverse bacteria were found in different developmental HF stages. Fluorescent in situ hybridization detected a bacteriocyte-like structure in developing eggs. Bacterial DNA was also detected in eggs by PCR using primers targeted to different bacterial groups. These results indicated that HF hosted different types of bacteria that were maternally transmitted to the next generation. Eliminating bacteria from the insect with antibiotics resulted in high mortality of HF larvae, indicating that symbiotic bacteria are essential for the insect to survive on wheat seedlings. A preliminary survey identified various types of bacteria associated with different HF stages, including the genera Enterobacter, Pantoea, Stenotrophomonas, Pseudomonas, Bacillus, Ochrobactrum, Acinetobacter, Alcaligenes, Nitrosomonas, Arcanobacterium, Microbacterium, Paenibacillus, and Klebsiella. Similar bacteria were also found specifically in HF-infested susceptible wheat, suggesting that HF larvae had either transmitted bacteria into plant tissue or brought secondary infection of bacteria to the wheat host. The bacteria associated with wheat seedlings may play an essential role in the wheat-HF interaction.

  17. Enhanced analysis of bacteria susceptibility in connected biofilms.

    Science.gov (United States)

    Sommerfeld Ross, Stacy; Reinhardt, Joseph M; Fiegel, Jennifer

    2012-07-01

    A common method for visualizing bacterial biofilms is through confocal laser scanning microscopy images. Current software packages separate connected-biofilm bacteria from unconnected bacteria, such as planktonic or dispersed bacteria, but do not save both image sequences, making interpretation of the two bacterial populations difficult. Thus we report the development of an algorithm to save separate image sequences and enable qualitative and quantitative evaluation of each bacterial population. To improve bacterial viability assessment using a membrane integrity dye, a colocalization algorithm was also developed. This assigns colocalized pixels to the dead bacteria population, rather than to both the live and dead bacteria groups. Visually, this makes it clearer to distinguish a green live bacteria pixel from a yellow colocalized dead bacteria pixel. This algorithm also aids in the quantification of viability for connected-biofilm bacteria and unconnected bacteria to investigate susceptibility of each population to antimicrobials. The utility of these algorithms was demonstrated with Pseudomonas aeruginosa biofilms treated with ciprofloxacin hydrochloride. Results from this study indicate that quantification with colocalization adjustment can prevent underestimation of dead bacteria. These improvements in image processing will enable researchers to visually differentiate connected-biofilm and unconnected bacteria in a single image and to quantify these populations independently for viability without double counting the colocalized image pixels. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Probiotic bacteria: selective enumeration and survival in dairy foods.

    Science.gov (United States)

    Shah, N P

    2000-04-01

    A number of health benefits have been claimed for probiotic bacteria such as Lactobacillus acidophilus, Bifidobacterium spp., and Lactobacillus casei. Because of the potential health benefits, these organisms are increasingly incorporated into dairy foods. However, studies have shown low viability of probiotics in market preparations. In order to assess viability of probiotic bacteria, it is important to have a working method for selective enumeration of these probiotic bacteria. Viability of probiotic bacteria is important in order to provide health benefits. Viability of probiotic bacteria can be improved by appropriate selection of acid and bile resistant strains, use of oxygen impermeable containers, two-step fermentation, micro-encapsulation, stress adaptation, incorporation of micronutrients such as peptides and amino acids and by sonication of yogurt bacteria. This review will cover selective enumeration and survival of probiotic bacteria in dairy foods.

  19. Suppression of Enteric Bacteria by Bacteriophages: Importance of Phage Polyvalence in the Presence of Soil Bacteria.

    Science.gov (United States)

    Yu, Pingfeng; Mathieu, Jacques; Yang, Yu; Alvarez, Pedro J J

    2017-05-02

    Bacteriophages are widely recognized for their importance in microbial ecology and bacterial control. However, little is known about how phage polyvalence (i.e., broad host range) affects bacterial suppression and interspecies competition in environments harboring enteric pathogens and soil bacteria. Here we compare the efficacy of polyvalent phage PEf1 versus coliphage T4 in suppressing a model enteric bacterium (E. coli K-12) in mixtures with soil bacteria (Pseudomonas putida F1 and Bacillus subtilis 168). Although T4 was more effective than PEf1 in infecting E. coli K-12 in pure cultures, PEf1 was 20-fold more effective in suppressing E. coli under simulated multispecies biofilm conditions because polyvalence enhanced PEf1 propagation in P. putida. In contrast, soil bacteria do not propagate coliphages and hindered T4 diffusion through the biofilm. Similar tests were also conducted under planktonic conditions to discern how interspecies competition contributes to E. coli suppression without the confounding effects of restricted phage diffusion. Significant synergistic suppression was observed by the combined effects of phages plus competing bacteria. T4 was slightly more effective in suppressing E. coli in these planktonic mixed cultures, even though PEf1 reached higher concentrations by reproducing also in P. putida (7.2 ± 0.4 vs 6.0 ± 1.0 log 10 PFU/mL). Apparently, enhanced suppression by higher PEf1 propagation was offset by P. putida lysis, which decreased stress from interspecies competition relative to incubations with T4. In similar planktonic tests with more competing soil bacteria species, P. putida lysis was less critical in mitigating interspecies competition and PEf1 eliminated E. coli faster than T4 (36 vs 42 h). Overall, this study shows that polyvalent phages can propagate in soil bacteria and significantly enhance suppression of co-occurring enteric species.

  20. Probiotic bacteria survive in Cheddar cheese and modify populations of other lactic acid bacteria.

    Science.gov (United States)

    Ganesan, B; Weimer, B C; Pinzon, J; Dao Kong, N; Rompato, G; Brothersen, C; McMahon, D J

    2014-06-01

    Starter lactic acid bacteria in Cheddar cheese face physico-chemical stresses during manufacture and ageing that alter their abilities to survive and to interact with other bacterial populations. Nonstarter bacteria are derived from milk handling, cheese equipment and human contact during manufacture. Probiotic bacteria are added to foods for human health benefits that also encounter physiological stresses and microbial competition that may mitigate their survival during ageing. We added probiotic Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus paracasei and Bifidobacterium animalis subsp. lactis to full-fat, reduced-fat and low-fat Cheddar cheeses, aiming to study their survival over 270 days of ageing and to determine the role of the cheese matrix in their survival. Probiotic and other lactic acid bacterial populations were enumerated by quantitative PCR using primers specifically targeting the different bacterial genera or species of interest. Bifidobacteria were initially added at 10(6) CFU g(-1) cheese and survived variably in the different cheeses over the 270-day ageing process. Probiotic lactobacilli that were added at 10(7) CFU g(-1) cheese and incident nonstarter lactobacilli (initially at 10(8) CFU g(-1) cheese) increased by 10- to 100-fold over 270 days. Viable bacterial populations were differentiated using propidium monoazide followed by species-specific qPCR assays, which demonstrated that the starter and probiotic microbes survived over ageing, independent of cheese type. Addition of probiotic bacteria, at levels 100-fold below that of starter bacteria, modified starter and nonstarter bacterial levels. We demonstrated that starter lactococci, nonstarter lactobacilli and probiotic bacteria are capable of surviving throughout the cheesemaking and ageing process, indicating that delivery via hard cheeses is possible. Probiotic addition at lower levels may also alter starter and nonstarter bacterial survival. We applied qPCR to study

  1. Analytical strategies for phosphoproteomics

    DEFF Research Database (Denmark)

    Thingholm, Tine E; Jensen, Ole N; Larsen, Martin R

    2009-01-01

    sensitive and specific strategies. Today, most phosphoproteomic studies are conducted by mass spectrometric strategies in combination with phospho-specific enrichment methods. This review presents an overview of different analytical strategies for the characterization of phosphoproteins. Emphasis...

  2. Introduce of Viable But Nonculturable Bacteria

    Directory of Open Access Journals (Sweden)

    Mehdi Hassanshahian

    2008-03-01

    Full Text Available Viable-But-Nonculturable-State (VBNC is the condition in which bacteria fail to grow on their routine bacteriological media where they would normally grow and develop into colonies, but are still alive and capable of renewed metabolic activity. VBNC state is useful for evaluating public health and for ascertaining the sterility of drinking water, pharmaceuticals, and foodstuff. A number of bacteria, mostly pathogenic to humans, have been proved to enter into this state in response to natural stresses such as starvation, incubation out of optimum growth temperature, increased osmotic pressure, etc. Once in the VBNC state, they undergo various physiological, structural, and genetic alterations. These alterations result in reduced cell size, conversion from bacilli to coccid, thickened cell walls, and peptidoglycan gaining many cross links. Metabolic changes also occur that include reductions in growth, nutrient transport, and respiratory rate; biosynthesis of new protein, and ATP remaining at a constant level. It has been shown that in the VBNC state, some pathogens conserve their virulence properties. Gene expression continues in the VBNC cell. Nucleic acids remain intact in the early VBNC phase but they gradually undergo degradation with prolonged VBNC. Cytological methods such as direct viable count and reduction of tetrazolium salts, and molecular methods such as reverse transcription polymerase chain reaction and green fluorescent protein have been used for the study of VBNC. Resuscitation from VBNC state starts when the inducing factor(s is/are lifted. Factors that help the resuscitation of VBNC bacteria include addition of certain nutrients and chemicals, introduction of a few culturable cells into the VBNC cell population, and passage through the animal host. As virulence properties are sustained during the VBNC phase, special care must be paid when evaluating sterility of drinking water.

  3. Do foliar endophytic bacteria fix nitrogen?

    Science.gov (United States)

    Kueppers, L. M.; Moyes, A. B.; Frank, C.; Pett-Ridge, J.; Carper, D.; Vandehey, N.; O'Neil, J.; Dekas, A.

    2015-12-01

    Endophytic microorganisms - bacteria and fungi that live inside healthy plant tissue - are a relatively unexplored source of functional diversity in natural ecosystems. Prior to modern sequencing technology, detecting uncultured endophytic bacteria and assessing their putative functions was challenging. However, recent work has revealed a remarkable diversity of as yet non-culturable endophytic taxa and is beginning to identify functional roles within plant microbiomes. We recently examined bacterial communities in the foliage of a long-lived, high-elevation conifer species, limber pine (Pinus flexilis), and discovered a community strongly dominated by acetic acid bacteria (Acetobacteraceae), with several taxa closely related to known nitrogen fixers. Given limber pine's status as a pioneer species that is able to grow in low fertility soils, we hypothesized that this bacterial community has a potential functional role in fixing atmospheric nitrogen, providing a source of this limiting nutrient to the host tree. We used the radioisotope 13N2 to confirm that N2 rapidly diffuses into pine needles, where it could potentially be fixed. With an acetylene reduction assay we confirmed nitrogenase enzyme activity inside excised twigs 4 times over a growing season, and estimate potential rates of N2 fixation at 0.1 nmol N2 g needle-1 hr-1. Scaled to the stand level, this N input could be on the order of ~20 mg N m-2 d-1 over a growing season. While these rates are low, the long lifespan of individual trees (~1000 years) makes them biologically meaningful. Still, measured rates of acetylene reduction and bulk 15N2 incorporation are quite variable in space and time. Much work remains to better characterize the plant-microbial interactions in this system, including the rates of nitrogen fixation and their variability over the growing season, across edaphic conditions, among host species, and through plant development; and to determine which community members are responsible

  4. Polymer/bacteria composite nanofiber non-wovens by electrospinning of living bacteria protected by hydrogel microparticles.

    Science.gov (United States)

    Gensheimer, Marco; Brandis-Heep, Astrid; Agarwal, Seema; Thauer, Rudolf K; Greiner, Andreas

    2011-03-10

    Physically crosslinked PVA-hydrogel microparticles are utilized for encapsulation of E. coli and M. luteus. The bacteria survive dry storage or treatment with bacteria-hostile organic solvents significantly better than unprotected bacteria as proven by culture-test experiments. The bacteria-protecting PVA microparticles are available for standard polymer-solution-processing techniques, as exemplarily shown by co-electrospinning of living bacteria encapsulated in dry PVA-hydrogel microparticles together with PVB-, PLLA-, and PCL-form organic solvents. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Modeling Transformation and Conjugation in Bacteria Populations

    Science.gov (United States)

    Russo, John; Dong, J. J.

    The rise of antibiotic resistance in bacteria populations is a growing threat to medical treatment of diseases. Transformation, where a cell absorbs a plasmid from its environment, and conjugation, direct transfer of a plasmid from one cell to another, are the two main mechanisms of emergence of antibiotic resistance. We model the processes using a combined approach of Kinetic Monte Carlo simulation and differential equations to describe the plasmid-carrying and plasmid-free populations. Through analysis of our results, we characterize the conditions that lead to dominance of the antibiotic resistant population. NSF-DMR #1248387.

  6. Polymorphic transformation of helical flagella of bacteria

    Science.gov (United States)

    Lim, Sookkyung; Howard Berg Collaboration; William Ko Collaboration; Yongsam Kim Collaboration; Wanho Lee Collaboration; Charles Peskin Collaboration

    2016-11-01

    Bacteria such as E. coli swim in an aqueous environment by utilizing the rotation of flagellar motors and alternate two modes of motility, runs and tumbles. Runs are steady forward swimming driven by bundles of flagellar filaments whose motors are turning CCW; tumbles involve a reorientation of the direction of swimming triggered by motor reversals. During tumbling, the helical flagellum undergoes polymorphic transformations, which is a local change in helical pitch, helical radius, and handedness. In this work, we investigate the underlying mechanism of structural conformation and how this polymorphic transition plays a role in bacterial swimming. National Science Foundation.

  7. The Origin And Spread Of Airborne Bacteria

    Science.gov (United States)

    Henderson-Begg, S. K.; Moffett, B. F.

    2009-12-01

    The presence of bacteria in clouds may affect their radiation and precipitation properties as some species are able to catalyse the freezing of water at high temperatures (-2C to -10C). Where cloud-borne bacteria originate and the distances they are able to travel in the air remains a mystery. In this study we have attempted to address these issues by comparing metagenomic DNA sequences from air samples with those from other environmental sources. Air samples were collected on 1 July 2009 from a hill top at Thursley Nature Reserve in Surrey, United Kingdom, a rural site, 31 miles from the nearest stretch of coastline, and on 6 July 2009 from the top of a six storey building in Stratford on the East end of London, 38 miles from the nearest coastal area. Samples were collected using the Karcher DS5500 vacuum into a liquid filled collection vessel at an air flow rate of 3.3 m3 min-1 over a 4 hour period. Samples were then concentrated and the bacterial content was investigated by PCR, cloning and sequencing of 16S rRNA genes. During the collection period on 1 July the Royston Weather Station in the South East of England recorded wind speed of 1.9 miles/hour in an Easterly direction, with no cloud cover, relative humidity of 74% and atmospheric pressure of 1021.6 mB. On 6 July wind speed was 9.8 miles/hour in a South Westerly direction, there was light cloud cover, relative humidity was 73.8% and atmospheric pressure was 1002.8 mB. Twenty cloned 16S PCR products from each air sample were sequenced. The species identification of each clone is shown in Table 1. The diversity of bacteria found at both sites was similar, with Stenotrophomona and Pedobacteria species dominating both samples. When the DNA sequences were blasted against the environmental samples database, all sequences were found to display greatest homology to metagenomic DNA from marine sources. This may suggest that the most numerous bacteria in air samples originate in the oceans. Taking account of the

  8. Phosphate solubilizing bacteria around Indian peninsula

    Digital Repository Service at National Institute of Oceanography (India)

    De; Nair, S.; Chandramohan, D.

    compounds especially in environments where low concentrations of phosphorus causes various limitations. References 1 Pomeroy L R, Smith E & Giant C M, Limnol Oceanogr, 10 (1965) 167 2 Gachter R, Meyer } S & Mares A, Limnol Oceanogr, 33 (1988) 1542. 3... of Marine Sciences Vol. 29, March 2000, pp. 48-51 Phosphate solubilizing bacteria around Indian peninsula M-J. B. D. De Souza, S. Nair & D. Chandramohan National Institute of Oceanography, Dona Paula, Goa 403 004 India Received 29 July 1998, revised 16...

  9. Are Bacteria more dangerous in space?

    International Nuclear Information System (INIS)

    Leys, N.; Baatout, S.

    2010-01-01

    With a mission to Mars and a permanent base on the moon as the ultimate dream, space travel is continually pushing back the frontiers. But long space missions present great challenges for science, for example in the field of microbiology. Together with the European Space Agency (ESA), SCK-CEN is studying the effects of space travel conditions on the behaviour of bacteria. In 2009 the SCK-CEN experts completed four innovative research projects at the cutting edge of microbiology, radiation sciences and space travel.

  10. Strategy Development in Organisations

    DEFF Research Database (Denmark)

    Sørensen, Lene

    1999-01-01

    There exist certain ambiguities with the converging fields of information technology and organisational strategy development. The term "IT strategy" has evolved and reflects in some respects this confusion. This paper discusses some of the ambiguities and difficulties of the term "IT strategy......" as used in practice and literature. Emphasis is put on how the term is related to the problem, the organisation, the strategy process and the practical way of methodologically developing the strategy. Finally, alternative strategy developing perspectives are presented....

  11. What's in a Strategy?

    DEFF Research Database (Denmark)

    Obed Madsen, Søren

    in the organization, and it becomes difficult to get an overview of the interaction and relationships between the translated strategies. This not only raises questions about which function the strategy has in an organization but also about what is strategy implementation when the managers don’t implement the strategy......Although a strategy, in theory, should help the organization to move in the same direction by showing a direction for the organization, in practice the strategy increases the number of possible paths, as managers translate the strategy into their own context. This increases the number of strategies...

  12. The Interaction between Heterotrophic Bacteria and Coliform, Fecal Coliform, Fecal Streptococci Bacteria in the Water Supply Networks.

    Science.gov (United States)

    Amanidaz, Nazak; Zafarzadeh, Ali; Mahvi, Amir Hossein

    2015-12-01

    This study investigated the interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in water supply networks. This study was conducted during 2013 on water supply distribution network in Aq Qala City, Golestan Province, Northern Iran and standard methods were applied for microbiological analysis. The surface method was applied to test the heterotrophic bacteria and MPN method was used for coliform, fecal coliform and fecal streptococci bacteria measurements. In 114 samples, heterotrophic bacteria count were over 500 CFU/ml, which the amount of fecal coliform, coliform, and fecal streptococci were 8, 32, and 20 CFU/100 ml, respectively. However, in the other 242 samples, with heterotrophic bacteria count being less than 500 CFU/ml, the amount of fecal coliform, coliform, and fecal streptococci was 7, 23, and 11 CFU/100ml, respectively. The relationship between heterotrophic bacteria, coliforms and fecal streptococci was highly significant (Pcoliforms, fecal streptococci bacteria being high, whenever the concentration of heterotrophic bacteria in the water network systems was high. Interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in the Aq Qala City water supply networks was not notable. It can be due to high concentrations of organic carbon, bio-films and nutrients, which are necessary for growth, and survival of all microorganisms.

  13. Heterotrophic bacteria in soils of Larsemann Oasis of East Antarctica

    Science.gov (United States)

    Churilin, Nikita; Soina, Vera

    2015-04-01

    Antarctic soils. Primitive soils and permafrost layer have a great unevenness in the number of cultivated and potentially viable cells in different horizons. This phenomenon is characteristic for habitats with stable and alternating negative temperatures that can be attributed to the irregular migration of cells during freezing and heterogeneity of microbial populations along the depth of dormancy. One of the identified features was the lack of correlation with the organic content. SEM study of microbial communities in native Antarctic soils revealed the presence of biofilms, which can play an important role in weathering of rocks and primary soil formation, by forming organic horizon and protecting cells from environmental impact. Biofilms can also influence on distribution of bacterial cells in forming soils. Growth regulators (indoleacetic acid, wheat germ agglutinin, alkylhydroxybenzenes, pyruvate Na and serotonin) were used in experiments on the growth reactivation using soil samples with low number of microorganisms. The results obtained by this analysis can be used for further research to develop methods of the most complete selection of viable bacteria from Antarctic soils. We also determined the physiological condition of bacterial populations and their maximum specific growth rate. This method determines the functional (trophic) diversity of microbial communities and the maximum specific growth rate that reflects the environmental strategy of bacterial growth. In spite of the extreme conditions, a variety of physiological and metabolic willingness to consume polymers hydrolytic bacterial associations of endolithic soil is highest in the surface horizon and sharply decreases in the mineral horizon.

  14. Evaluating paratransgenesis as a potential control strategy for African trypanosomiasis.

    Science.gov (United States)

    Medlock, Jan; Atkins, Katherine E; Thomas, David N; Aksoy, Serap; Galvani, Alison P

    2013-01-01

    Genetic-modification strategies are currently being developed to reduce the transmission of vector-borne diseases, including African trypanosomiasis. For tsetse, the vector of African trypanosomiasis, a paratransgenic strategy is being considered: this approach involves modification of the commensal symbiotic bacteria Sodalis to express trypanosome-resistance-conferring products. Modified Sodalis can then be driven into the tsetse population by cytoplasmic incompatibility (CI) from Wolbachia bacteria. To evaluate the effectiveness of this paratransgenic strategy in controlling African trypanosomiasis, we developed a three-species mathematical model of trypanosomiasis transmission among tsetse, humans, and animal reservoir hosts. Using empirical estimates of CI parameters, we found that paratransgenic tsetse have the potential to eliminate trypanosomiasis, provided that any extra mortality caused by Wolbachia colonization is low, that the paratransgene is effective at protecting against trypanosome transmission, and that the target tsetse species comprises a large majority of the tsetse population in the release location.

  15. Modeling how soluble microbial products (SMP) support heterotrophic bacteria in autotroph-based biofilms

    DEFF Research Database (Denmark)

    Merkey, Brian; Rittmann, Bruce E.; Chopp, David L.

    2009-01-01

    . In this paper, we develop and use a mathematical model to describe a model biofilm system that includes autotrophic and heterotrophic bacteria and the key products produced by the bacteria. The model combines the methods of earlier multi-species models with a multi-component biofilm model in order to explore...... the interaction between species via exchange of soluble microbial products (SMP). We show that multiple parameter sets are able to describe the findings of experimental studies, and that heterotrophs growing on autotrophically produced SMP may pursue either r- or K-strategies to sustain themselves when SMP...... is their only substrate. We also show that heterotrophs can colonize some distance from the autotrophs and still be sustained by autotrophically produced SMP. This work defines the feasible range of parameters for utilization of SMP by heterotrophs and the nature of the interactions between autotrophs...

  16. Growth and chemosensory behavior of sulfate-reducing bacteria in oxygen-sulfide gradients

    DEFF Research Database (Denmark)

    Sass, Andrea M.; Wieland, Andrea Eschemann; Kühl, Michael

    2002-01-01

    Growth and chemotactic behavior in oxic–anoxic gradients were studied with two freshwater and four marine strains of sulfate-reducing bacteria related to the genera Desulfovibrio, Desulfomicrobium or Desulfobulbus. Cells were grown in oxygen–sulfide counter-gradients within tubes filled with agar...... to actively change the extension and slope of the gradients by oxygen reduction with lactate or even sulfide as electron donor. Generally, the chemotactic behavior was in agreement with a defense strategy that re-establishes anoxic conditions, thus promoting anaerobic growth and, in a natural community...... chemotactically to lactate, nitrate, sulfate and thiosulfate, and even sulfide functioned as an attractant. In oxic–anoxic gradients the bacteria moved away from high oxygen concentrations and formed bands at the outer edge of the oxic zone at low oxygen concentration (

  17. Revolutionizing membrane protein overexpression in bacteria

    NARCIS (Netherlands)

    Schlegel, Susan; Klepsch, Mirjam; Gialama, Dimitra; Wickstrom, David; Slotboom, Dirk Jan; de Gier, Jan-Willem; Wickström, David

    The bacterium Escherichia coli is the most widely used expression host for overexpression trials of membrane proteins. Usually, different strains, culture conditions and expression regimes are screened for to identify the optimal overexpression strategy. However, yields are often not satisfactory,

  18. Solar-panel and parasol strategies shape the proteorhodopsin distribution pattern in marine Flavobacteriia.

    Science.gov (United States)

    Kumagai, Yohei; Yoshizawa, Susumu; Nakajima, Yu; Watanabe, Mai; Fukunaga, Tsukasa; Ogura, Yoshitoshi; Hayashi, Tetsuya; Oshima, Kenshiro; Hattori, Masahira; Ikeuchi, Masahiko; Kogure, Kazuhiro; DeLong, Edward F; Iwasaki, Wataru

    2018-02-06

    Proteorhodopsin (PR) is a light-driven proton pump that is found in diverse bacteria and archaea species, and is widespread in marine microbial ecosystems. To date, many studies have suggested the advantage of PR for microorganisms in sunlit environments. The ecophysiological significance of PR is still not fully understood however, including the drivers of PR gene gain, retention, and loss in different marine microbial species. To explore this question we sequenced 21 marine Flavobacteriia genomes of polyphyletic origin, which encompassed both PR-possessing as well as PR-lacking strains. Here, we show that the possession or alternatively the lack of PR genes reflects one of two fundamental adaptive strategies in marine bacteria. Specifically, while PR-possessing bacteria utilize light energy ("solar-panel strategy"), PR-lacking bacteria exclusively possess UV-screening pigment synthesis genes to avoid UV damage and would adapt to microaerobic environment ("parasol strategy"), which also helps explain why PR-possessing bacteria have smaller genomes than those of PR-lacking bacteria. Collectively, our results highlight the different strategies of dealing with light, DNA repair, and oxygen availability that relate to the presence or absence of PR phototrophy.

  19. Effect of fluoride-releasing restorative materials on bacteria-induced pH fall at the bacteria-material interface: an in vitro model study.

    Science.gov (United States)

    Mayanagi, Gen; Igarashi, Koei; Washio, Jumpei; Domon-Tawaraya, Hitomi; Takahashi, Nobuhiro

    2014-01-01

    Inhibition of bacterial acid production by dental restorative materials is one of the strategies for secondary caries prevention. This study aimed to evaluate the effect of fluoride-releasing restorative materials on bacteria-induced pH fall at the bacteria-material interface. Four fluoride-releasing restorative materials, glass-ionomer cement (GIC), resin-modified glass-ionomer cement (RMGIC), resin composite (RC) and flowable resin composite (FRC) were used. Each specimen was immersed in potassium phosphate buffer at pH 7.0 for 10min and 4 weeks, and in potassium acetate buffer at pH 5.5 for 4 weeks. An experimental apparatus was made of polymethyl methacrylate and had a well with restorative materials or polymethyl methacrylate (control) at the bottom. The well was packed with cells of Streptococcus mutans, and the pH at the interface between cells and materials was monitored using a miniature pH electrode after the addition of 1% glucose for 90min, and the fluoride released into the well was quantified using a fluoride ion electrode. The pH of GIC (4.98-5.18), RMGIC (4.77-4.99), RC (4.62-4.75) and FRC (4.54-4.84) at 90min were higher than that of control (4.31-4.49). The fluoride amounts released from GIC were the highest, followed by RMGIC, RC and FRC, irrespective of immersion conditions. Saliva coating on materials had no significant effect. The fluoride-releasing restorative materials inhibited pH fall at the bacteria-material interface. The degree of inhibition of pH fall seemed to correspond to the amount of fluoride detected, suggesting that the inhibition was due to the fluoride released from these materials. A little amount of fluoride actually released from the fluoride-releasing materials may have caries preventive potential for oral bacteria. Copyright © 2013. Published by Elsevier Ltd.

  20. Inoculation of sugarcane with diazotrophic bacteria

    Directory of Open Access Journals (Sweden)

    Nivaldo Schultz

    2014-04-01

    Full Text Available The sugarcane industry, a strategic crop in Brazil, requires technological improvements in production efficiency to increase the crop energy balance. Among the various currently studied alternatives, inoculation with diazotrophic bacteria proved to be a technology with great potential. In this context, the efficiency of a mixture of bacterial inoculant was evaluated with regard to the agronomic performance and N nutrition of sugarcane. The experiment was carried out on an experimental field of Embrapa Agrobiologia, in Seropédica, Rio de Janeiro, using a randomized block, 2 × 3 factorial design (two varieties and three treatments with four replications, totaling 24 plots. The varieties RB867515 and RB72454 were tested in treatments consisting of: inoculation with diazotrophic bacteria, N-fertilized control with 120 kg ha-1 N and absolute control (no inoculation and no N fertilizer. The inoculum was composed of five strains of five diazotrophic species. The yield, dry matter accumulation, total N in the shoot dry matter and the contribution of N by biological fixation were evaluated, using the natural 15N abundance in non-inoculated sugarcane as reference. The bacterial inoculant increased the stalk yield of variety RB72454 similarly to fertilization with 120 kg ha-1 N in the harvests of plant-cane and first ratoon crops, however the contribution of biological N fixation was unchanged by inoculation, indicating that the benefits of the inoculant in sugarcane may have resulted from plant growth promotion.

  1. Conjugation in Gram-Positive Bacteria.

    Science.gov (United States)

    Goessweiner-Mohr, Nikolaus; Arends, Karsten; Keller, Walter; Grohmann, Elisabeth

    2014-08-01

    Conjugative transfer is the most important means of spreading antibiotic resistance and virulence factors among bacteria. The key vehicles of this horizontal gene transfer are a group of mobile genetic elements, termed conjugative plasmids. Conjugative plasmids contain as minimum instrumentation an origin of transfer (oriT), DNA-processing factors (a relaxase and accessory proteins), as well as proteins that constitute the trans-envelope transport channel, the so-called mating pair formation (Mpf) proteins. All these protein factors are encoded by one or more transfer (tra) operons that together form the DNA transport machinery, the Gram-positive type IV secretion system. However, multicellular Gram-positive bacteria belonging to the streptomycetes appear to have evolved another mechanism for conjugative plasmid spread reminiscent of the machinery involved in bacterial cell division and sporulation, which transports double-stranded DNA from donor to recipient cells. Here, we focus on the protein key players involved in the plasmid spread through the two different modes and present a new secondary structure homology-based classification system for type IV secretion protein families. Moreover, we discuss the relevance of conjugative plasmid transfer in the environment and summarize novel techniques to visualize and quantify conjugative transfer in situ.

  2. Detection of phenols using engineered bacteria

    Science.gov (United States)

    Wise, Arlene A.; Kuske, Cheryl R.; Terwilliger, Thomas C.

    2007-12-04

    Detection of phenols using engineered bacteria. A biosensor can be created by placing a reporter gene under control of an inducible promoter. The reporter gene produces a signal when a cognate transcriptional activator senses the inducing chemical. Creation of bacterial biosensors is currently restricted by limited knowledge of the genetic systems of bacteria that catabolize xenobiotics. By using mutagenic PCR to change the chemical specificity of the Pseudomonas species CF600 DmpR protein, the potential for engineering novel biosensors for detection of phenols has been demonstrated. DmpR, a well-characterized transcriptional activator of the P. CF600's dmp operon mediates growth on simple phenols. Transcription from Po, the promoter heading the dmp operon, is activated when the sensor domain of DmpR interacts with phenol and mono-substituted phenols. By altering the sensor domain of the DmpR, a group of DmpR derivatives that activate transcription of a Po-lacZ fusion in response to eight of the EPA's eleven priority pollutant phenols has been created. The assays and the sensor domain mutations that alter the chemical specificity of DmpR is described.

  3. Starvation-survival of subsurface bacteria

    International Nuclear Information System (INIS)

    Magill, N.G.

    1988-01-01

    The ability of four subsurface isolates to survive starvation was examined and the results were compared to survival curves obtained for Escherichia coli B and Serratia marcescens. To examine the starvation-survival phenomenon further, several experimental parameters including nutritional history, initial cell density, growth phase, temperature of growth and starvation, and aeration. Nutritional history, initial cell density, and growth phases of the cells had some effect on the ability of these bacteria to survive whereas temperature and limited aeration had no effect under the conditions tested. No conditions were found where E. coli B or Serratia marcescens died rapidly or where less than 10% of the original cell number of viable cells remained. Because the apparent survival of these bacteria may be due to cryptic growth, cross-feeding experiments with 14 C-labeled cells and unlabeled cells were carried out with E. coli B and Pseudomonas Lula V. Leaked extracellular 14 C-compounds were not used for growth or maintenance energy, and were not taken up by either bacterium. Cryptic growth did not occur; the cells were truly starving under the experimental conditions used

  4. Beneficial effects of antioxidative lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Hisako Nakagawa

    2017-01-01

    Full Text Available Oxidative stress is caused by exposure to reactive oxygen intermediates. The oxidative damage of cell components such as proteins, lipids, and nucleic acids one of the important factors associated with diabetes mellitus, cancers and cardiovascular diseases. This occurs as a result of imbalance between the generations of oxygen derived radicals and the organism’s antioxidant potential. The amount of oxidative damage increases as an organism ages and is postulated to be a major causal factor of senescence. To date, many studies have focused on food sources, nutrients, and components that exert antioxidant activity in worms, flies, mice, and humans. Probiotics, live microorganisms that when administered in adequate amounts provide many beneficial effects on the human health, have been attracting growing interest for their health-promoting effects, and have often been administered in fermented milk products. In particular, lactic acid bacteria (LAB are known to conferre physiologic benefits. Many studies have indicated the antioxidative activity of LAB. Here we review that the effects of lactic acid bacteria to respond to oxidative stress, is connected to oxidative-stress related disease and aging.

  5. Cyanobacterial Toxin Degrading Bacteria: Who Are They?

    Directory of Open Access Journals (Sweden)

    Konstantinos Ar. Kormas

    2013-01-01

    Full Text Available Cyanobacteria are ubiquitous in nature and are both beneficial and detrimental to humans. Benefits include being food supplements and producing bioactive compounds, like antimicrobial and anticancer substances, while their detrimental effects are evident by toxin production, causing major ecological problems at the ecosystem level. To date, there are several ways to degrade or transform these toxins by chemical methods, while the biodegradation of these compounds is understudied. In this paper, we present a meta-analysis of the currently available 16S rRNA and mlrA (microcystinase genes diversity of isolates known to degrade cyanobacterial toxins. The available data revealed that these bacteria belong primarily to the Proteobacteria, with several strains from the sphingomonads, and one from each of the Methylobacillus and Paucibacter genera. Other strains belonged to the genera Arthrobacter, Bacillus, and Lactobacillus. By combining the ecological knowledge on the distribution, abundance, and ecophysiology of the bacteria that cooccur with toxic cyanobacterial blooms and newly developed molecular approaches, it is possible not only to discover more strains with cyanobacterial toxin degradation abilities, but also to reveal the genes associated with the degradation of these toxins.

  6. A new family of lysozyme inhibitors contributing to lysozyme tolerance in gram-negative bacteria.

    Directory of Open Access Journals (Sweden)

    Lien Callewaert

    2008-03-01

    Full Text Available Lysozymes are ancient and important components of the innate immune system of animals that hydrolyze peptidoglycan, the major bacterial cell wall polymer. Bacteria engaging in commensal or pathogenic interactions with an animal host have evolved various strategies to evade this bactericidal enzyme, one recently proposed strategy being the production of lysozyme inhibitors. We here report the discovery of a novel family of bacterial lysozyme inhibitors with widespread homologs in gram-negative bacteria. First, a lysozyme inhibitor was isolated by affinity chromatography from a periplasmic extract of Salmonella Enteritidis, identified by mass spectrometry and correspondingly designated as PliC (periplasmic lysozyme inhibitor of c-type lysozyme. A pliC knock-out mutant no longer produced lysozyme inhibitory activity and showed increased lysozyme sensitivity in the presence of the outer membrane permeabilizing protein lactoferrin. PliC lacks similarity with the previously described Escherichia coli lysozyme inhibitor Ivy, but is related to a group of proteins with a common conserved COG3895 domain, some of them predicted to be lipoproteins. No function has yet been assigned to these proteins, although they are widely spread among the Proteobacteria. We demonstrate that at least two representatives of this group, MliC (membrane bound lysozyme inhibitor of c-type lysozyme of E. coli and Pseudomonas aeruginosa, also possess lysozyme inhibitory activity and confer increased lysozyme tolerance upon expression in E. coli. Interestingly, mliC of Salmonella Typhi was picked up earlier in a screen for genes induced during residence in macrophages, and knockout of mliC was shown to reduce macrophage survival of S. Typhi. Based on these observations, we suggest that the COG3895 domain is a common feature of a novel and widespread family of bacterial lysozyme inhibitors in gram-negative bacteria that may function as colonization or virulence factors in bacteria

  7. A New Family of Lysozyme Inhibitors Contributing to Lysozyme Tolerance in Gram-Negative Bacteria

    Science.gov (United States)

    Callewaert, Lien; Aertsen, Abram; Deckers, Daphne; Vanoirbeek, Kristof G. A.; Vanderkelen, Lise; Van Herreweghe, Joris M.; Masschalck, Barbara; Nakimbugwe, Dorothy; Robben, Johan; Michiels, Chris W.

    2008-01-01

    Lysozymes are ancient and important components of the innate immune system of animals that hydrolyze peptidoglycan, the major bacterial cell wall polymer. Bacteria engaging in commensal or pathogenic interactions with an animal host have evolved various strategies to evade this bactericidal enzyme, one recently proposed strategy being the production of lysozyme inhibitors. We here report the discovery of a novel family of bacterial lysozyme inhibitors with widespread homologs in gram-negative bacteria. First, a lysozyme inhibitor was isolated by affinity chromatography from a periplasmic extract of Salmonella Enteritidis, identified by mass spectrometry and correspondingly designated as PliC (periplasmic lysozyme inhibitor of c-type lysozyme). A pliC knock-out mutant no longer produced lysozyme inhibitory activity and showed increased lysozyme sensitivity in the presence of the outer membrane permeabilizing protein lactoferrin. PliC lacks similarity with the previously described Escherichia coli lysozyme inhibitor Ivy, but is related to a group of proteins with a common conserved COG3895 domain, some of them predicted to be lipoproteins. No function has yet been assigned to these proteins, although they are widely spread among the Proteobacteria. We demonstrate that at least two representatives of this group, MliC (membrane bound lysozyme inhibitor of c-type lysozyme) of E. coli and Pseudomonas aeruginosa, also possess lysozyme inhibitory activity and confer increased lysozyme tolerance upon expression in E. coli. Interestingly, mliC of Salmonella Typhi was picked up earlier in a screen for genes induced during residence in macrophages, and knockout of mliC was shown to reduce macrophage survival of S. Typhi. Based on these observations, we suggest that the COG3895 domain is a common feature of a novel and widespread family of bacterial lysozyme inhibitors in gram-negative bacteria that may function as colonization or virulence factors in bacteria interacting with

  8. Plasmids of psychrophilic and psychrotolerant bacteria and their role in adaptation to cold environments

    Directory of Open Access Journals (Sweden)

    Lukasz eDziewit

    2014-11-01

    Full Text Available Extremely cold environments are a challenge for all organisms. They are mostly inhabited by psychrophilic and psychrotolerant bacteria, which employ various strategies to cope with the cold. Such harsh environments are often highly vulnerable to the influence of external factors and may undergo frequent dynamic changes. The rapid adjustment of bacteria to changing environmental conditions is crucial for their survival. Such short-term evolution is often enabled by plasmids – extrachromosomal replicons that represent major players in horizontal gene transfer.The genomic sequences of thousands of microorganisms, including those of many cold-active bacteria have been obtained over the last decade, but the collected data have yet to be thoroughly analyzed. This report describes the results of a meta-analysis of the NCBI sequence databases to identify and characterize plasmids of psychrophilic and psychrotolerant bacteria.We have performed in-depth analyses of 66 plasmids, almost half of which are cryptic replicons not exceeding 10 kb in size. Our analyses of the larger plasmids revealed the presence of numerous genes, which may increase the phenotypic flexibility of their host strains. These genes encode enzymes possibly involved in (i protection against cold and ultraviolet radiation, (ii scavenging of reactive oxygen species, (iii metabolism of amino acids, carbohydrates, nucleotides and lipids, (iv energy production and conversion, (v utilization of toxic organic compounds (e.g. naphthalene, and (vi resistance to heavy metals, metalloids and antibiotics. Some of the plasmids also contain type II restriction-modification systems, which are involved in both plasmid stabilization and protection against foreign DNA. Moreover, approx. 50% of the analyzed plasmids carry genetic modules responsible for conjugal transfer or mobilization for transfer, which may facilitate the spread of these replicons among various bacteria, including across species

  9. Isolation of marine fungi Aspergillus sp. and its in vitro antifouling activity against marine bacteria.

    Science.gov (United States)

    Thiyagarajan, Santhananmari; Bavya, Manoharan; Jamal, Alruwaili

    2016-09-01

    Biofouling is considered as a main issue of concern in aquatic environment causing severe economic loss and pollution. The aim of the present study was to isolate marine fungus antagonistic to biofouling bacteria and to define antifouling compounds present in it. Using standard plate method five predominant biofouling bacteria viz., Methylococcus sp., Flavobacterium sp., Marinococcus sp., Serratia sp. and Pseudomonas sp. were isolated from marine solid substances on Zobell's agar. Tolerance range of these bacteria to NaCl was 2-10%. Isolation of fungi from mangrove and estuarine sediments and their screening identified Aspergillus sp. EF4 as a potential isolate. This isolate caused inhibition of all the five test bacterial cultures measuring zone diameters respectively of 11, 16, 12, 13 and 11mm.? Subsequent to submerged fermentation using shaking flask method this fungus produced bioactive compounds within 5 days. The culture parameters optimized were raffinose as carbon source, yeast extract as lone nitrogen source, pH up to 9.0 and temperature up to 40?C. Antifouling compounds of culture filtrate were separated and detected by a three-step procedure involving thin layer chromatography, bioautography and preparative TLC. The in vitro assay involving glass slide-wooden stick-biofilm method revealed that these compounds could cause inhibition and destruction of bacteria to an extent of 2.16 x 104 CFU ml-1 and 2.46 x 104 CFU ml-1 respectively while growth of bacteria in control beaker was enumerated to be 4.41 x 104 CFU ml-1. High performance liquid chromatography of culture filtrate indicated probable principal antifouling compound as Fumonisin B2. Isolation of antagonistic marine fungus from Indian coast and detection of its antifouling compound would help in planning effective strategies for controlling biofouling in marine environment.

  10. Organism-adapted specificity of the allosteric regulation of pyruvate kinase in lactic acid bacteria.

    Directory of Open Access Journals (Sweden)

    Nadine Veith

    Full Text Available Pyruvate kinase (PYK is a critical allosterically regulated enzyme that links glycolysis, the primary energy metabolism, to cellular metabolism. Lactic acid bacteria rely almost exclusively on glycolysis for their energy production under anaerobic conditions, which reinforces the key role of PYK in their metabolism. These organisms are closely related, but have adapted to a huge variety of native environments. They include food-fermenting organisms, important symbionts in the human gut, and antibiotic-resistant pathogens. In contrast to the rather conserved inhibition of PYK by inorganic phosphate, the activation of PYK shows high variability in the type of activating compound between different lactic acid bacteria. System-wide comparative studies of the metabolism of lactic acid bacteria are required to understand the reasons for the diversity of these closely related microorganisms. These require knowledge of the identities of the enzyme modifiers. Here, we predict potential allosteric activators of PYKs from three lactic acid bacteria which are adapted to different native environments. We used protein structure-based molecular modeling and enzyme kinetic modeling to predict and validate potential activators of PYK. Specifically, we compared the electrostatic potential and the binding of phosphate moieties at the allosteric binding sites, and predicted potential allosteric activators by docking. We then made a kinetic model of Lactococcus lactis PYK to relate the activator predictions to the intracellular sugar-phosphate conditions in lactic acid bacteria. This strategy enabled us to predict fructose 1,6-bisphosphate as the sole activator of the Enterococcus faecalis PYK, and to predict that the PYKs from Streptococcus pyogenes and Lactobacillus plantarum show weaker specificity for their allosteric activators, while still having fructose 1,6-bisphosphate play the main activator role in vivo. These differences in the specificity of allosteric

  11. HCN Producing Bacteria Enable Sensing Of Non-Bioavailable Hg Species by the Whole Cell Biosensor

    Science.gov (United States)

    Horvat, M.; Rijavec, T.; Koron, N.; Lapanje, A.

    2015-12-01

    Bacteria play an important role in Hg transformation reactions. The production of cyanide (HCN) and other secondary metabolites seems to be key elements involved in these transformations. Current hypotheses link the role of HCN production to growth inhibition of nonHCN producing competitor organisms (role of an antimicrobial agent). Our past investigations showed that HCN production did not correlate with antimicrobial activity and since pK value of HCN is very high (pK = 9,21), it can be expected that most of the produced HCN is removed from the microenvironment. This way, the expected inhibitory concentrations can hardly be reached. Accordingly, we proposed a new concept, where the ability of complexation of transient metals by HCN served as a regulation process for the accessibility of micro-elements. In our study, we focused on the presence of HCN producing bacteria and carried it out in the Hg contaminated environment connected to the Idrija Mercury Mine, Slovenia. We characterised the isolates according to the presence of Hg resistance (HgR), level of HCN production and genetic similarities. In laboratory setups, using our merR whole cell based biosensor, we determined the transformation of low bioavailable Hg0 and HgS forms into bioavailable Hg by these HCN producing bacteria. We observed that HgR strains producing HCN had the highest impact on increased Hg bioavailability. In the proposed ecological strategy HgR HCN producing bacteria increase their competitive edge over non-HgR competitors through the increase of Hg toxicity. Due to their activity, Hg is made available to other organisms as well and thus enters into the ecosystem. Finally, using some of the characteristics of bacteria (e.g. Hg resistance genetic elements), we developed a fully automated sensing approach, combining biosensorics and mechatronics, to measure the bioavailability of Hg in situ.

  12. The effect of phylogenetically different bacteria on the fitness of Pseudomonas fluorescens in sand microcosms.

    Directory of Open Access Journals (Sweden)

    Olaf Tyc

    Full Text Available In most environments many microorganisms live in close vicinity and can interact in various ways. Recent studies suggest that bacteria are able to sense and respond to the presence of neighbouring bacteria in the environment and alter their response accordingly. This ability might be an important strategy in complex habitats such as soils, with great implications for shaping the microbial community structure. Here, we used a sand microcosm approach to investigate how Pseudomonas fluorescens Pf0-1 responds to the presence of monocultures or mixtures of two phylogenetically different bacteria, a Gram-negative (Pedobacter sp. V48 and a Gram-positive (Bacillus sp. V102 under two nutrient conditions. Results revealed that under both nutrient poor and nutrient rich conditions confrontation with the Gram-positive Bacillus sp. V102 strain led to significant lower cell numbers of Pseudomonas fluorescens Pf0-1, whereas confrontation with the Gram-negative Pedobacter sp. V48 strain did not affect the growth of Pseudomonas fluorescens Pf0-1. However, when Pseudomonas fluorescens Pf0-1 was confronted with the mixture of both strains, no significant effect on the growth of Pseudomonas fluorescens Pf0-1 was observed. Quantitative real-time PCR data showed up-regulation of genes involved in the production of a broad-spectrum antibiotic in Pseudomonas fluorescens Pf0-1 when confronted with Pedobacter sp. V48, but not in the presence of Bacillus sp. V102. The results provide evidence that the performance of bacteria in soil depends strongly on the identity of neighbouring bacteria and that inter-specific interactions are an important factor in determining microbial community structure.

  13. Bacteria in atmospheric waters: Detection, characteristics and implications

    Science.gov (United States)

    Hu, Wei; Niu, Hongya; Murata, Kotaro; Wu, Zhijun; Hu, Min; Kojima, Tomoko; Zhang, Daizhou

    2018-04-01

    In this review paper, we synthesize the current knowledges about bacteria in atmospheric waters, e.g., cloud, fog, rain, and snow, most of which were obtained very recently. First, we briefly describe the importance of bacteria in atmospheric waters, i.e., the essentiality of studying bacteria in atmospheric waters in understanding aerosol-cloud-precipitation-climate interactions in the Earth system. Next, approaches to collect atmospheric water samples for the detection of bacteria and methods to identify the bacteria are summarized and compared. Then the available data on the abundance, viability and community composition of bacteria in atmospheric waters are summarized. The average bacterial concentration in cloud water was usually on the order 104-105 cells mL-1, while that in precipitation on the order 103-104 cells mL-1. Most of the bacteria were viable or metabolically active. Their community composition was highly diverse and differed at various sites. Factors potentially influencing the bacteria, e.g., air pollution levels and sources, meteorological conditions, seasonal effect, and physicochemical properties of atmospheric waters, are described. After that, the implications of bacteria present in atmospheric waters, including their effect on nucleation in clouds, atmospheric chemistry, ecosystems and public health, are briefly discussed. Finally, based on the current knowledges on bacteria in atmospheric waters, which in fact remains largely unknown, we give perspectives that should be paid attention to in future studies.

  14. Sulphur bacteria mediated formation of Palaeoproterozoic phosphorites

    Science.gov (United States)

    Joosu, Lauri; Lepland, Aivo; Kirsimäe, Kalle

    2014-05-01

    Modern phosphorite formation is typically associated with high productivity in upwelling areas where apatite (Ca-phosphate) precipitation is mediated by sulphur oxidising bacteria [1]. They inhabit the oxic/anoxic interface within the upper few centimetres of sediment column, accumulating phosphate in their cells under oxic conditions and releasing it rapidly when conditions become anoxic. Sulphur bacteria are known to live in close association with a consortium of anaerobic methane oxidising archaea and syntrophic sulphate-reducing bacteria. Paleoproterozoic, c. 2.0 Ga Zaonega Formation in Karelia, Russia contains several P-rich intervals in the upper part of 1500 m thick succession of organic-rich sedimentary rocks interlayered with mafic tuffs and lavas. Apatite in these P-rich intervals forms impure laminae, lenses and round-oval nodules which diameters typically range from 300 to 1000 μm. Individual apatite particles in P-rich laminae and nodules commonly occur as cylinders that are 1-8 μm long and have diameters of 0.5-4 μm. Cross-sections of best preserved cylindrical apatite particles reveal a thin outer rim whereas the internal parts consist of small anhedral elongated crystallites, intergrown with carbonaceous material. During recrystallization the outer rim thickens towards interior and cylinders may attain hexagonal crystal habit, but their size and shape remains largely unchanged [2]. The sizes of Zaonega nodules are similar to giant sulphide-oxidising bacteria known from modern and ancient settings [3, 4]. Individual apatite cylinders and aggregates have shapes and sizes similar to the methanotrophic archaea that inhabit microbial mats in modern seep/vent areas where they operate in close associations with sulphur-oxidising microbial communities [5]. Seep/vent influence during the Zaonega phosphogenesis is indicated by variable, though positive Eu anomaly, expected in magmatically active sedimentary environment experiencing several lava flows

  15. Antagonism correlates with metabolic similarity in diverse bacteria.

    Science.gov (United States)

    Russel, Jakob; Røder, Henriette L; Madsen, Jonas S; Burmølle, Mette; Sørensen, Søren J

    2017-10-03

    In the Origin of Species , Charles R. Darwin [Darwin C (1859) On the Origin of Species ] proposed that the struggle for existence must be most intense among closely related species by means of their functional similarity. It has been hypothesized that this similarity, which results in resource competition, is the driver of the evolution of antagonism among bacteria. Consequently, antagonism should mostly be prevalent among phylogenetically and metabolically similar species. We tested the hypothesis by screening for antagonism among all possible pairwise interactions between 67 bacterial species from 8 different environments: 2,211 pairs of species and 4,422 interactions. We found a clear association between antagonism and phylogenetic distance, antagonism being most likely among closely related species. We determined two metabolic distances between our strains: one by scoring their growth on various natural carbon sources and the other by creating metabolic networks of predicted genomes. For both metabolic distances, we found that the probability of antagonism increased the more metabolically similar the strains were. Moreover, our results were not compounded by whether the antagonism was between sympatric or allopatric strains. Intriguingly, for each interaction the antagonizing strain was more likely to have a wider metabolic niche than the antagonized strain: that is, larger metabolic networks and growth on more carbon sources. This indicates an association between an antagonistic and a generalist strategy.

  16. Platinum Recovery from Synthetic Extreme Environments by Halophilic Bacteria.

    Science.gov (United States)

    Maes, Synthia; Props, Ruben; Fitts, Jeffrey P; Smet, Rebecca De; Vilchez-Vargas, Ramiro; Vital, Marius; Pieper, Dietmar H; Vanhaecke, Frank; Boon, Nico; Hennebel, Tom

    2016-03-01

    Metal recycling based on urban mining needs to be established to tackle the increasing supply risk of critical metals such as platinum. Presently, efficient strategies are missing for the recovery of platinum from diluted industrial process streams, often characterized by extremely low pHs and high salt concentrations. In this research, halophilic mixed cultures were employed for the biological recovery of platinum (Pt). Halophilic bacteria were enriched from Artemia cysts, living in salt lakes, in different salt matrices (sea salt mixture and NH4Cl; 20-210 g L(-1) salts) and at low to neutral pH (pH 3-7). The main taxonomic families present in the halophilic cultures were Halomonadaceae, Bacillaceae, and Idiomarinaceae. The halophilic cultures were able to recover >98% Pt(II) and >97% Pt(IV) at pH 2 within 3-21 h (4-453 mg Ptrecovered h(-1) g(-1) biomass). X-ray absorption spectroscopy confirmed the reduction to Pt(0) and transmission electron microscopy revealed both intra- and extracellular Pt precipitates, with median diameters of 9-30 nm and 11-13 nm, for Pt(II) and Pt(IV), respectively. Flow cytometric membrane integrity staining demonstrated the preservation of cell viability during platinum recovery. This study demonstrates the Pt recovery potential of halophilic mixed cultures in acidic saline conditions.

  17. Exploring Anopheles gut bacteria for Plasmodium blocking activity

    Science.gov (United States)

    Bahia, Ana C; Dong, Yuemei; Blumberg, Benjamin J; Mlambo, Godfree; Tripathi, Abhai; BenMarzouk-Hidalgo, Omar J; Chandra, Ramesh; Dimopoulos, George

    2014-01-01

    SUMMARY Malaria parasite transmission requires the successful development of Plasmodium gametocytes into flagellated microgametes upon mosquito blood ingestion, and the subsequent fertilization of microgametes and macrogametes for the development of motile zygotes, called ookinetes, which invade and transverse the Anopheles vector mosquito midgut at around 18-36 h after blood ingestion. Within the mosquito midgut, the malaria parasite has to withstand the mosquito's innate immune response and the detrimental effect of its commensal bacterial flora. We have assessed the midgut colonization capacity of 5 gut bacterial isolates from field-derived, and 2 from laboratory colony, mosquitoes and their effect on Plasmodium development in vivo and in vitro, along with their impact on mosquito survival. Some bacterial isolates activated the mosquito's immune system, affected the mosquito's life span, and were capable of blocking Plasmodium development. We have also shown that the ability of these bacteria to inhibit the parasites is likely to involve different mechanisms and factors. A Serratia marcescens isolate was particularly efficient in colonizing the mosquitoes’ gut, compromising mosquito survival, and inhibiting both sexual- and asexual-stage Plasmodium through secreted factors, thereby rendering it a potential candidate for the development of a malaria transmission intervention strategy. PMID:24428613

  18. Statistical analysis of the direct count method for enumerating bacteria.

    Science.gov (United States)

    Kirchman, D; Sigda, J; Kapuscinski, R; Mitchell, R

    1982-08-01

    The direct count method for enumerating bacteria in natural environments is widely used. This paper analyzes the sources of variation contributed by the various levels of the method: subsamples, filters, and microscope fields. Based on a nested analysis of variance, we show that most of the variance (less than 80%) is caused by the fields and that the filters contributed nearly all of the remaining variance. The replication at each of the levels determines the total cost and error of a measurement. We compared several sampling schemes, including an optimal strategy which gives the lowest possible variance for a given cost. We recommend that preparing one filter from one subsample is adequate only if the samples are closely spaced in time or distance; otherwise, one filter should be prepared from two or preferably three subsamples. This sampling scheme emphasizes the importance of the highest level of replication. Our analysis shows that the accuracy of the direct count method can be substantially improved (by 20 to 50%) without a large increase in cost when the proper degree of replication at each level is performed.

  19. A metabolic pathway for catabolizing levulinic acid in bacteria

    International Nuclear Information System (INIS)

    Rand, Jacqueline M.; Pisithkul, Tippapha; Clark, Ryan L.; Thiede, Joshua M.; Mehrer, Christopher R.

    2017-01-01

    Microorganisms can catabolize a wide range of organic compounds and therefore have the potential to perform many industrially relevant bioconversions. One barrier to realizing the potential of biorefining strategies lies in our incomplete knowledge of metabolic pathways, including those that can be used to assimilate naturally abundant or easily generated feedstocks. For instance, levulinic acid (LA) is a carbon source that is readily obtainable as a dehydration product of lignocellulosic biomass and can serve as the sole carbon source for some bacteria. Yet, the genetics and structure of LA catabolism have remained unknown. Here, we report the identification and characterization of a seven-gene operon that enables LA catabolism in Pseudomonas putida KT2440. When the pathway was reconstituted with purified proteins, we observed the formation of four acyl-CoA intermediates, including a unique 4-phosphovaleryl-CoA and the previously observed 3-hydroxyvaleryl-CoA product. Using adaptive evolution, we obtained a mutant of Escherichia coli LS5218 with functional deletions of fadE and atoC that was capable of robust growth on LA when it expressed the five enzymes from the P. putida operon. Here, this discovery will enable more efficient use of biomass hydrolysates and metabolic engineering to develop bioconversions using LA as a feedstock.

  20. Identification of Lactic Acid Bacteria and Propionic Acid Bacteria using FTIR Spectroscopy and Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Beata Nalepa

    2012-01-01

    Full Text Available In the present study, lactic acid bacteria and propionic acid bacteria have been identified at the genus level with the use of artificial neural networks (ANNs and Fourier transform infrared spectroscopy (FTIR. Bacterial strains of the genera Lactobacillus, Lactococcus, Leuconostoc, Streptococcus and Propionibacterium were analyzed since they deliver health benefits and are routinely used in the food processing industry. The correctness of bacterial identification by ANNs and FTIR was evaluated at two stages. At first stage, ANNs were tested based on the spectra of 66 reference bacterial strains. At second stage, the evaluation involved 286 spectra of bacterial strains isolated from food products, deposited in our laboratory collection, and identified by genus-specific PCR. ANNs were developed based on the spectra and their first derivatives. The most satisfactory results were reported for the probabilistic neural network, which was built using a combination of W5W4W3 spectral ranges. This network correctly identified the genus of 95 % of the lactic acid bacteria and propionic acid bacteria strains analyzed.