WorldWideScience

Sample records for bacteria lysis processes

  1. Study of the phage production efficiency in the bacteria lysis processes

    International Nuclear Information System (INIS)

    Vidania Munoz, R. de; Garces, F.; Davila, C. A.

    1979-01-01

    In this work we present a search for the best production conditions of λvir andλ clear phages In E coli K12 and E coli C 6 00 infected cells respectively. By keeping fixed some parameters of the process as the bacterial and phage generation times and (he bacterial burst side, we have finder that the lysis yield is strongly dependent on the multiplicity and in a lesser degree on the infection time. It appears from the experimental results that other variables are important, as infection efficiency and approach time from phages to bacteria. We will try to describe the lysis phenomenon by a numerical model on the bases of the se experimental results. (Author) 11 refs

  2. Study of the phage production efficiency in the bacteria lysis processes; Estudio del rendimiento en fagos para los procesos de lisis bacteriana

    Energy Technology Data Exchange (ETDEWEB)

    Vidania Munoz, R de; Garces, F; Davila, C A

    1979-07-01

    In this work we present a search for the best production conditions of {lambda}vir and{lambda} clear phages In E coli K12 and E coli C{sub 6}00 infected cells respectively. By keeping fixed some parameters of the process as the bacterial and phage generation times and the bacterial burst side, we have found that the lysis yield is strongly dependent on the multiplicity and in a lesser degree on the infection time. It appears from the experimental results that other variables are important, as infection efficiency and approach time from phages to bacteria. We will try to describe the lysis phenomenon by a numerical model on the bases of the se experimental results. (Author) 11 refs.

  3. Integration of nanoparticle cell lysis and microchip PCR for one-step rapid detection of bacteria.

    Science.gov (United States)

    Wan, Weijie; Yeow, John T W

    2012-04-01

    This paper describes an integrated microchip system as an efficient and cost-effective solution involving Nanotechnology and Lab-on-a-Chip technology for the rapid detection of bacteria. The system is based on using surface-modified gold nanoparticles for efficient cell lysis followed by microchip PCR without having to remove the nanoparticles from the PCR solution. Poly(quaternary ammonium) modified gold nanoparticles are used to provide a novel and efficient cell lysis method without the need to go through time-consuming, expensive and complicated microfabrication processes as most of current cell lysis methods for Lab-on-a-Chip applications do. It also facilitates the integration of cell lysis and PCR by sharing the same reaction chamber as PCR uses. It is integrated with a prototype microchip PCR system consisting of a physical microchip PCR device and an automated temperature control mechanism. The research work explores solutions for the problem of PCR inhibition caused by gold nanoparticles as well as for the problem of non-specific PCR amplification in the integrated microchip system. It also explores the possibility of greatly reducing PCR cycling time to achieve the same result compared to the protocol for a regular PCR machine. The simplicity of the setup makes it easy to be integrated with other Lab-on-a-Chip functional modules to create customized solutions for target applications.

  4. Cell lysis and superoxide dismutase activities of highly radioresistant bacteria

    International Nuclear Information System (INIS)

    Yoshinaka, Taeko; Yano, Keiji; Yamaguchi, Hikoyuki

    1976-01-01

    The highly radioresistant bacterium, Arthrobacter radiotolerans, has been isolated from the radioactive hot spring of Misasa, and it does not sporulate, it is Gram-positive, and its color is pink to red. This bacterium shows the highest resistance to gamma-ray among Gram-positive resistants, but the lytic enzyme capable of lysing the cells of strong radioresistants and the surface structure of the cells are little known except those about Micrococcus radiodurans. The cells of the M. radiodurans can be lysed by Achramobacter lyticus enzyme, and electron microscopic observation and chemical analysis revealed the mutilayered surface structure of the cells consisting of an inner membrane, a mucopeptide wall layer and a very outer layer. The superoxide dismutase (SOD) activity of aerobic and anaerobic bacteria was studied, and the relatively high SOD activity of the M. radiodurans was found. The SOD function acts against the threat posed by the reactive superoxide radical being generated biologically, photochemically and radiochemically in the presence of molecular oxygen. In this paper, it is reported that the lytic enzyme No.2 obtained from Cytophaga sp., containing N-acetyl-muramyl-L-alanine amidase, peptidase and endopeptidase, and showing broad lytic spectra, was able to lyse the cells of A. radiotolerans and four radioresistant micrococci, and the radioresistant bacteria showed relatively high SOD activity except M. sp. 248. It is well known that superoxide anions are generated by aerobic irradiation, and are toxic to microbial cells. (Kako, I.)

  5. Cell lysis and superoxide dismutase activities of highly radioresistant bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinaka, T; Yano, K; Yamaguchi, H [Tokyo Univ. (Japan). Faculty of Agriculture

    1976-01-01

    The highly radioresistant bacterium, Arthrobacter radiotolerans, has been isolated from the radioactive hot spring of Misasa, and it does not sporulate, it is Gram-positive, and its color is pink to red. This bacterium shows the highest resistance to gamma-ray among Gram-positive resistants, but the lytic enzyme capable of lysing the cells of strong radioresistants and the surface structure of the cells are little known except those about Micrococcus radiodurans. The cells of the M. radiodurans can be lysed by Achramobacter lyticus enzyme, and electron microscopic observation and chemical analysis revealed the mutilayered surface structure of the cells consisting of an inner membrane, a mucopeptide wall layer and a very outer layer. The superoxide dismutase (SOD) activity of aerobic and anaerobic bacteria was studied, and the relatively high SOD activity of the M. radiodurans was found. The SOD function acts against the threat posed by the reactive superoxide radical being generated biologically, photochemically and radiochemically in the presence of molecular oxygen. In this paper, it is reported that the lytic enzyme No.2 obtained from Cytophaga sp., containing N-acetyl-muramyl-L-alanine amidase, peptidase and endopeptidase, and showing broad lytic spectra, was able to lyse the cells of A. radiotolerans and four radioresistant micrococci, and the radioresistant bacteria showedrelatively high SOD activity except M. sp. 248. It is well known that superoxide anions are generated by aerobic irradiation, and are toxic to microbial cells.

  6. A super-family of transcriptional activators regulates bacteriophage packaging and lysis in Gram-positive bacteria

    Science.gov (United States)

    Quiles-Puchalt, Nuria; Tormo-Más, María Ángeles; Campoy, Susana; Toledo-Arana, Alejandro; Monedero, Vicente; Lasa, Íñigo; Novick, Richard P.; Christie, Gail E.; Penadés, José R.

    2013-01-01

    The propagation of bacteriophages and other mobile genetic elements requires exploitation of the phage mechanisms involved in virion assembly and DNA packaging. Here, we identified and characterized four different families of phage-encoded proteins that function as activators required for transcription of the late operons (morphogenetic and lysis genes) in a large group of phages infecting Gram-positive bacteria. These regulators constitute a super-family of proteins, here named late transcriptional regulators (Ltr), which share common structural, biochemical and functional characteristics and are unique to this group of phages. They are all small basic proteins, encoded by genes present at the end of the early gene cluster in their respective phage genomes and expressed under cI repressor control. To control expression of the late operon, the Ltr proteins bind to a DNA repeat region situated upstream of the terS gene, activating its transcription. This involves the C-terminal part of the Ltr proteins, which control specificity for the DNA repeat region. Finally, we show that the Ltr proteins are the only phage-encoded proteins required for the activation of the packaging and lysis modules. In summary, we provide evidence that phage packaging and lysis is a conserved mechanism in Siphoviridae infecting a wide variety of Gram-positive bacteria. PMID:23771138

  7. Concerning the role of cell lysis-cryptic growth in anaerobic side-stream reactors: the single-cell analysis of viable, dead and lysed bacteria.

    Science.gov (United States)

    Foladori, P; Velho, V F; Costa, R H R; Bruni, L; Quaranta, A; Andreottola, G

    2015-05-01

    In the Anaerobic Side-Stream Reactor (ASSR), part of the return sludge undergoes alternating aerobic and anaerobic conditions with the aim of reducing sludge production. In this paper, viability, enzymatic activity, death and lysis of bacterial cells exposed to aerobic and anaerobic conditions for 16 d were investigated at single-cell level by flow cytometry, with the objective of contributing to the understanding of the mechanisms of sludge reduction in the ASSR systems. Results indicated that total and viable bacteria did not decrease during the anaerobic phase, indicating that anaerobiosis at ambient temperature does not produce a significant cell lysis. Bacteria decay and lysis occurred principally under aerobic conditions. The aerobic decay rate of total bacteria (bTB) was considered as the rate of generation of lysed bacteria. Values of bTB of 0.07-0.11 d(-1) were measured in anaerobic + aerobic sequence. The enzymatic activity was not particularly affected by the transition from anaerobiosis to aerobiosis. Large solubilisation of COD and NH4(+) was observed only under anaerobic conditions, as a consequence of hydrolysis of organic matter, but not due to cell lysis. The observations supported the proposal of two independent mechanisms contributing equally to sludge reduction: (1) under anaerobic conditions: sludge hydrolysis of non-bacterial material, (2) under aerobic conditions: bacterial cell lysis and oxidation of released biodegradable compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Maintenance, endogeneous, respiration, lysis, decay and predation

    DEFF Research Database (Denmark)

    loosdrecht, Marc C. M. Van; Henze, Mogens

    1999-01-01

    mechanism is microbiologically correct. The lysis/decay model mechanism is a strongly simplified representation of reality. This paper tries to review the processes grouped under endogenous respiration in activated sludge models. Mechanisms and processes such as maintenance, lysis, internal and external...... decay, predation and death-regeneration are discussed. From recent microbial research it has become evident that cells do not die by themselves. Bacteria are however subject to predation by protozoa. Bacteria store reserve polymers that in absence of external substrate are used for growth...

  9. Artificial intelligence versus statistical modeling and optimization of continuous bead milling process for bacterial cell lysis

    Directory of Open Access Journals (Sweden)

    Shafiul Haque

    2016-11-01

    Full Text Available AbstractFor a commercially viable recombinant intracellular protein production process, efficient cell lysis and protein release is a major bottleneck. The recovery of recombinant protein, cholesterol oxidase (COD was studied in a continuous bead milling process. A full factorial Response Surface Model (RSM design was employed and compared to Artificial Neural Networks coupled with Genetic Algorithm (ANN-GA. Significant process variables, cell slurry feed rate (A, bead load (B, cell load (C and run time (D, were investigated and optimized for maximizing COD recovery. RSM predicted an optimum of feed rate of 310.73 mL/h, bead loading of 79.9% (v/v, cell loading OD600 nm of 74, and run time of 29.9 min with a recovery of ~3.2 g/L. ANN coupled with GA predicted a maximum COD recovery of ~3.5 g/L at an optimum feed rate (mL/h: 258.08, bead loading (%, v/v: 80%, cell loading (OD600 nm: 73.99, and run time of 32 min. An overall 3.7-fold increase in productivity is obtained when compared to a batch process. Optimization and comparison of statistical vs. artificial intelligence techniques in continuous bead milling process has been attempted for the very first time in our study. We were able to successfully represent the complex non-linear multivariable dependence of enzyme recovery on bead milling parameters. The quadratic second order response functions are not flexible enough to represent such complex non-linear dependence. ANN being a summation function of multiple layers are capable to represent complex non-linear dependence of variables in this case; enzyme recovery as a function of bead milling parameters. Since GA can even optimize discontinuous functions present study cites a perfect example of using machine learning (ANN in combination with evolutionary optimization (GA for representing undefined biological functions which is the case for common industrial processes involving biological moieties.

  10. Lysis from without

    Science.gov (United States)

    2011-01-01

    In this commentary I consider use of the term “lysis from without” (LO) along with the phenomenon's biological relevance. LO originally described an early bacterial lysis induced by high-multiplicity virion adsorption and that occurs without phage production (here indicated as LOV). Notably, this is more than just high phage multiplicities of adsorption leading to bacterial killing. The action on bacteria of exogenously supplied phage lysin, too, has been described as a form of LO (here, LOL). LOV has been somewhat worked out mechanistically for T4 phages, has been used to elucidate various phage-associated phenomena including discovery of the phage eclipse, may be relevant to phage ecology, and, with resistance to LO (LOR), is blocked by certain phage gene products. Speculation as to the impact of LOV on phage therapy also is fairly common. Since LOV assays are relatively easily performed and not all phages are able to induce LOV, a phage's potential to lyse bacteria without first infecting should be subject to at least in vitro experimental confirmation before the LOV label is applied. The term “abortive infection” may be used more generally to describe non-productive phage infections that kill bacteria. PMID:21687534

  11. Bacteria and fluorescent organic matter: processing and production.

    Science.gov (United States)

    Fox, B. G.; Thorn, R. M. S.; Reynolds, D. M.

    2017-12-01

    There is a need for a greater understanding of the importance of aquatic organic matter (OM) within global biogeochemical cycling. This need has prompted characterisation of OM using fluorescence spectroscopy. The origin, transformation and fate of fluorescent organic matter (FOM) is not fully understood within freshwater systems. This work demonstrates the importance of microbial processing in the creation and transformation of FOM, highlighting the dynamics of microbial-FOM interactions, using a model system. The FOM signature of different bacterial species common to surface freshwaters were analysed using a non-fluorescent media; Escherichia coli, Bacillus subtilis and Pseudomonas aeruginosa. By undertaking bacterial growth curves, alongside fluorescence spectroscopy, we have been able to determine FOM development in relation to population growth. Within this, we have identified that FOM peaks are associated with different species and driven by bacterial processes, such as cell multiplication or as metabolic by-products. The intracellular and extracellular fluorescence signature of each species has also been analysed to better understand how the microbial community structure may impact the FOM signal in aquatic systems. For example, Peak T develops within the growth curves of all the cultured species and has been identified as both intracellular and extracellular FOM. Whilst Peak T has been termed `microbially-derived' previously, other fluorescence peaks associated with terrestrial high molecular weight compounds, e.g. Peak C, have also been shown to be produced by bacteria throughout growth stages. Additionally, the notion that cell lysis is responsible for the presence of larger FOM compounds was also explored. Our work highlights the capacity of bacteria to not only utilise and process OM but to actively be a source of both labile and recalcitrant OM in situ. The bacteria fluorescence signatures seen are complex with comparable fluorescence peaks to those

  12. Same day identification and full panel antimicrobial susceptibility testing of bacteria from positive blood culture bottles made possible by a combined lysis-filtration method with MALDI-TOF VITEK mass spectrometry and the VITEK2 system.

    Directory of Open Access Journals (Sweden)

    Alexandra Machen

    Full Text Available Rapid identification and antimicrobial susceptibility testing of microorganisms causing bloodstream infections or sepsis have the potential to improve patient care. This proof-of-principle study evaluates the Lysis-Filtration Method for identification as well as antimicrobial susceptibility testing of bacteria directly from positive blood culture bottles in a clinical setting. A total of 100 non-duplicated positive blood cultures were tested and 1012 microorganism-antimicrobial combinations were assessed. An aliquot of non-charcoal blood culture broth was incubated with lysis buffer briefly before being filtered and washed. Microorganisms recovered from the filter membrane were first identified by using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight VITEK® Mass Spectrometry (VITEK MS. After quick identification from VITEK MS, filtered microorganisms were inoculated to VITEK®2 system for full panel antimicrobial susceptibility testing analysis. Of 100 bottles tested, the VITEK MS resulted in 94.0% correct organism identification to the species level. Compared to the conventional antimicrobial susceptibility testing methods, direct antimicrobial susceptibility testing from VITEK®2 resulted in 93.5% (946/1012 category agreement of antimicrobials tested, with 3.6% (36/1012 minor error, 1.7% (7/1012 major error, and 1.3% (13/1012 very major error of antimicrobials. The average time to identification and antimicrobial susceptibility testing was 11.4 hours by using the Lysis-Filtration method for both VITEK MS and VITEK®2 compared to 56.3 hours by using conventional methods (p<0.00001. Thus, the same-day results of microorganism identification and antimicrobial susceptibility testing directly from positive blood culture can be achieved and can be used for appropriate antibiotic therapy and antibiotic stewardship.

  13. Same Day Identification and Full Panel Antimicrobial Susceptibility Testing of Bacteria from Positive Blood Culture Bottles Made Possible by a Combined Lysis-Filtration Method with MALDI-TOF VITEK Mass Spectrometry and the VITEK2 System

    Science.gov (United States)

    Machen, Alexandra; Drake, Tim; Wang, Yun F. (Wayne)

    2014-01-01

    Rapid identification and antimicrobial susceptibility testing of microorganisms causing bloodstream infections or sepsis have the potential to improve patient care. This proof-of-principle study evaluates the Lysis-Filtration Method for identification as well as antimicrobial susceptibility testing of bacteria directly from positive blood culture bottles in a clinical setting. A total of 100 non-duplicated positive blood cultures were tested and 1012 microorganism-antimicrobial combinations were assessed. An aliquot of non-charcoal blood culture broth was incubated with lysis buffer briefly before being filtered and washed. Microorganisms recovered from the filter membrane were first identified by using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight VITEK® Mass Spectrometry (VITEK MS). After quick identification from VITEK MS, filtered microorganisms were inoculated to VITEK®2 system for full panel antimicrobial susceptibility testing analysis. Of 100 bottles tested, the VITEK MS resulted in 94.0% correct organism identification to the species level. Compared to the conventional antimicrobial susceptibility testing methods, direct antimicrobial susceptibility testing from VITEK®2 resulted in 93.5% (946/1012) category agreement of antimicrobials tested, with 3.6% (36/1012) minor error, 1.7% (7/1012) major error, and 1.3% (13/1012) very major error of antimicrobials. The average time to identification and antimicrobial susceptibility testing was 11.4 hours by using the Lysis-Filtration method for both VITEK MS and VITEK®2 compared to 56.3 hours by using conventional methods (p<0.00001). Thus, the same-day results of microorganism identification and antimicrobial susceptibility testing directly from positive blood culture can be achieved and can be used for appropriate antibiotic therapy and antibiotic stewardship. PMID:24551067

  14. Same day identification and full panel antimicrobial susceptibility testing of bacteria from positive blood culture bottles made possible by a combined lysis-filtration method with MALDI-TOF VITEK mass spectrometry and the VITEK2 system.

    Science.gov (United States)

    Machen, Alexandra; Drake, Tim; Wang, Yun F Wayne

    2014-01-01

    Rapid identification and antimicrobial susceptibility testing of microorganisms causing bloodstream infections or sepsis have the potential to improve patient care. This proof-of-principle study evaluates the Lysis-Filtration Method for identification as well as antimicrobial susceptibility testing of bacteria directly from positive blood culture bottles in a clinical setting. A total of 100 non-duplicated positive blood cultures were tested and 1012 microorganism-antimicrobial combinations were assessed. An aliquot of non-charcoal blood culture broth was incubated with lysis buffer briefly before being filtered and washed. Microorganisms recovered from the filter membrane were first identified by using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight VITEK® Mass Spectrometry (VITEK MS). After quick identification from VITEK MS, filtered microorganisms were inoculated to VITEK®2 system for full panel antimicrobial susceptibility testing analysis. Of 100 bottles tested, the VITEK MS resulted in 94.0% correct organism identification to the species level. Compared to the conventional antimicrobial susceptibility testing methods, direct antimicrobial susceptibility testing from VITEK®2 resulted in 93.5% (946/1012) category agreement of antimicrobials tested, with 3.6% (36/1012) minor error, 1.7% (7/1012) major error, and 1.3% (13/1012) very major error of antimicrobials. The average time to identification and antimicrobial susceptibility testing was 11.4 hours by using the Lysis-Filtration method for both VITEK MS and VITEK®2 compared to 56.3 hours by using conventional methods (pdirectly from positive blood culture can be achieved and can be used for appropriate antibiotic therapy and antibiotic stewardship.

  15. Factors influencing lysis time stochasticity in bacteriophage λ

    Directory of Open Access Journals (Sweden)

    Dennehy John J

    2011-08-01

    Full Text Available Abstract Background Despite identical genotypes and seemingly uniform environments, stochastic gene expression and other dynamic intracellular processes can produce considerable phenotypic diversity within clonal microbes. One trait that provides a good model to explore the molecular basis of stochastic variation is the timing of host lysis by bacteriophage (phage. Results Individual lysis events of thermally-inducible λ lysogens were observed using a temperature-controlled perfusion chamber mounted on an inverted microscope. Both mean lysis time (MLT and its associated standard deviation (SD were estimated. Using the SD as a measure of lysis time stochasticity, we showed that lysogenic cells in controlled environments varied widely in lysis times, and that the level of lysis time stochasticity depended on allelic variation in the holin sequence, late promoter (pR' activity, and host growth rate. In general, the MLT was positively correlated with the SD. Both lower pR' activities and lower host growth rates resulted in larger SDs. Results from premature lysis, induced by adding KCN at different time points after lysogen induction, showed a negative correlation between the timing of KCN addition and lysis time stochasticity. Conclusions Taken together with results published by others, we conclude that a large fraction of λ lysis time stochasticity is the result of random events following the expression and diffusion of the holin protein. Consequently, factors influencing the timing of reaching critical holin concentrations in the cell membrane, such as holin production rate, strongly influence the mean lysis time and the lysis time stochasticity.

  16. Spontaneous Tumor Lysis Syndrome

    Directory of Open Access Journals (Sweden)

    Alicia C. Weeks MD

    2015-08-01

    Full Text Available Tumor lysis syndrome (TLS is a known complication of malignancy and its treatment. The incidence varies on malignancy type, but is most common with hematologic neoplasms during cytotoxic treatment. Spontaneous TLS is thought to be rare. This case study is of a 62-year-old female admitted with multisystem organ failure, with subsequent diagnosis of aggressive B cell lymphoma. On admission, laboratory abnormalities included renal failure, elevated uric acid (20.7 mg/dL, and 3+ amorphous urates on urinalysis. Oliguric renal failure persisted despite aggressive hydration and diuretic use, requiring initiation of hemodialysis prior to chemotherapy. Antihyperuricemic therapy and hemodialysis were used to resolve hyperuricemia. However, due to multisystem organ dysfunction syndrome with extremely poor prognosis, the patient ultimately expired in the setting of a terminal ventilator wean. Although our patient did not meet current TLS criteria, she required hemodialysis due to uric acid nephropathy, a complication of TLS. This poses the clinical question of whether adequate diagnostic criteria exist for spontaneous TLS and if the lack of currently accepted guidelines has resulted in the underestimation of its incidence. Allopurinol and rasburicase are commonly used for prevention and treatment of TLS. Although both drugs decrease uric acid levels, allopurinol mechanistically prevents formation of the substrate rasburicase acts to solubilize. These drugs were administered together in our patient, although no established guidelines recommend combined use. This raises the clinical question of whether combined therapy is truly beneficial or, conversely, detrimental to patient outcomes.

  17. Processing ruminal ingesta to release bacteria attached to feed ...

    African Journals Online (AJOL)

    A comparison was made of different methods of processing ingesta to release bacteria attached to solid particles, prior to making viable counts. Initially processing was performed under a stream of anaerobic gas and counts were made using the roll tube technique. Later, processing was done in an anaerobic cabinet and ...

  18. Tumor lysis syndrome in children

    International Nuclear Information System (INIS)

    Suarez, Amaranto

    2004-01-01

    Tumor lysis syndrome is a metabolic emergency characterized by electrolyte alteration with or without acute renal failure. It occurs mainly in patients with malignant tumors that have a high growth fraction, or after cytotoxic therapy, as a result of the massive degradation of malignant cells and the release of high amounts of intracellular elements that exceed the capacity of renal excretion. The objective of the treatment is the prevention of nephropathy due to uric acid deposits, and the correction of metabolic acidosis and electrolyte alterations. This paper reviews the incidence, the physiopathology, and the treatment of tumor lysis syndrome in children

  19. Synthesis and functioning of the colicin E1 lysis protein: Comparison with the colicin A lysis protein

    International Nuclear Information System (INIS)

    Cavard, D.

    1991-01-01

    The colicin E1 lysis protein, CelA, was identified as a 3-kDa protein in induced cells of Escherichia coli K-12 carrying pColE1 by pulse-chase labeling with either [ 35 S]cysteine or [ 3 H]lysine. This 3-kDa protein was acylated, as shown by [2- 3 H]glycerol labeling, and seemed to correspond to the mature CelA protein. The rate of modification and processing of CelA was different from that observed for Cal, the colicin A lysis protein. In contrast to Cal, no intermediate form was detected for CelA, no signal peptide accumulated, and no modified precursor form was observed after globomycin treatment. Thus, the rate of synthesis would not be specific to lysis proteins. Solubilization in sodium dodecyl sulfate of the mature forms of both CelA and Cal varied similarly at the time of colicin release, indicating a change in lysis protein structure. This particular property would play a role in the mechanism of colicin export. The accumulation of the signal peptide seems to be a factor determining the toxicity of the lysis proteins since CelA provoked less cell damage than Cal. Quasi-lysis and killing due to CelA were higher in degP mutants than in wild-type cells. They were minimal in pldA mutants

  20. Direct Cellular Lysis/Protein Extraction Protocol for Soil Metaproteomics

    Energy Technology Data Exchange (ETDEWEB)

    Chourey, Karuna [ORNL; Jansson, Janet [Lawrence Berkeley National Laboratory (LBNL); Verberkmoes, Nathan C [ORNL; Shah, Manesh B [ORNL; Chavarria, Krystle L. [Lawrence Berkeley National Laboratory (LBNL); Tom, Lauren M [Lawrence Berkeley National Laboratory (LBNL); Brodie, Eoin L. [Lawrence Berkeley National Laboratory (LBNL); Hettich, Robert {Bob} L [ORNL

    2010-01-01

    We present a novel direct protocol for deep proteome characterization of microorganisms in soil. The method employs thermally assisted detergent-based cellular lysis (SDS) of soil samples, followed by TCA precipitation for proteome extraction/cleanup prior to liquid chromatography-mass spectrometric characterization. This approach was developed and optimized using different soils inoculated with genome-sequenced bacteria (Gram-negative Pseudomonas putida or Gram-positive Arthrobacter chlorophenolicus). Direct soil protein extraction was compared to protein extraction from cells isolated from the soil matrix prior to lysis (indirect method). Each approach resulted in identification of greater than 500 unique proteins, with a wide range in molecular mass and functional categories. To our knowledge, this SDS-TCA approach enables the deepest proteome characterizations of microbes in soil to date, without significant biases in protein size, localization, or functional category compared to pure cultures. This protocol should provide a powerful tool for ecological studies of soil microbial communities.

  1. Miniaturized bead-beating device to automate full DNA sample preparation processes for gram-positive bacteria.

    Science.gov (United States)

    Hwang, Kyu-Youn; Kwon, Sung Hong; Jung, Sun-Ok; Lim, Hee-Kyun; Jung, Won-Jong; Park, Chin-Sung; Kim, Joon-Ho; Suh, Kahp-Yang; Huh, Nam

    2011-11-07

    We have developed a miniaturized bead-beating device to automate nucleic acids extraction from Gram-positive bacteria for molecular diagnostics. The microfluidic device was fabricated by sandwiching a monolithic flexible polydimethylsiloxane (PDMS) membrane between two glass wafers (i.e., glass-PDMS-glass), which acted as an actuator for bead collision via its pneumatic vibration without additional lysis equipment. The Gram-positive bacteria, S. aureus and methicillin-resistant S. aureus, were captured on surface-modified glass beads from 1 mL of initial sample solution and in situ lyzed by bead-beating operation. Then, 10 μL or 20 μL of bacterial DNA solution was eluted and amplified successfully by real-time PCR. It was found that liquid volume fraction played a crucial role in determining the cell lysis efficiency in a confined chamber by facilitating membrane deflection and bead motion. The miniaturized bead-beating operation disrupted most of S. aureus within 3 min, which turned out to be as efficient as the conventional benchtop vortexing machine or the enzyme-based lysis technique. The effective cell concentration was significantly enhanced with the reduction of initial sample volume by 50 or 100 times. Combination of such analyte enrichment and in situ bead-beating lysis provided an excellent PCR detection sensitivity amounting to ca. 46 CFU even for the Gram-positive bacteria. The proposed bead-beating microdevice is potentially useful as a nucleic acid extraction method toward a PCR-based sample-to-answer system. This journal is © The Royal Society of Chemistry 2011

  2. Reagentless mechanical cell lysis by nanoscale barbs in microchannels for sample preparation.

    Science.gov (United States)

    Di Carlo, Dino; Jeong, Ki-Hun; Lee, Luke P

    2003-11-01

    A highly effective, reagentless, mechanical cell lysis device integrated in microfluidic channels is reported. Sample preparation, specifically cell lysis, is a critical element in 'lab-on-chip' applications. However, traditional methods of cell lysis require purification steps or complicated fabrication steps that a simple mechanical method of lysis may avoid. A simple and effective mechanical cell lysis system is designed, microfabricated, and characterized to quantify the efficiency of cell lysis and biomolecule accessibility. The device functionality is based on a microfluidic filter region with nanostructured barbs created using a modified deep reactive ion etching process. Mechanical lysis is characterized by using a membrane impermeable dye. Three main mechanisms of micro-mechanical lysis are described. Quantitative measurements of accessible protein as compared to a chemically lysed sample are acquired with optical absorption measurements at 280 and 414 nm. At a flow rate of 300 microL min(-1) within the filter region total protein and hemoglobin accessibilities of 4.8% and 7.5% are observed respectively as compared to 1.9% and 3.2% for a filter without nanostructured barbs.

  3. Chemical Cell Lysis System Applicable to Lab-on-a-Disc.

    Science.gov (United States)

    Lim, Dayeseul; Yoo, Jae Chern

    2017-09-01

    The design and fabrication of a heating system has been a significant challenge in implementing chemical lysis on a lab-on-a-disc (LOD). The proposed system contains a sample inlet, phase change material (PCM) array, heating chamber, and valve in a single disc, providing cost-effective, rapid, and fully automated chemical cell lysis. Compared to the conventional cell lysis system, our cell lysis system has many advantages, such as a compact structure that is easily integrated into the LOD and reduced processing time and labor. The experiments are conducted with Salmonella typhimurium strains to demonstrate the performance. The experimental results show that the proposed approach is greatly effective in realizing a chemical cell lysis system on an LOD with higher throughput in terms of purity and yield of DNA.

  4. Stretching single fibrin fibers hampers their lysis.

    Science.gov (United States)

    Li, Wei; Lucioni, Tomas; Li, Rongzhong; Bonin, Keith; Cho, Samuel S; Guthold, Martin

    2017-09-15

    Blood clots, whose main structural component is a mesh of microscopic fibrin fibers, experience mechanical strain from blood flow, clot retraction and interactions with platelets and other cells. We developed a transparent, striated and highly stretchable substrate made from fugitive glue (a styrenic block copolymer) to investigate how mechanical strain affects lysis of single, suspended fibrin fibers. In this suspended fiber assay, lysis manifested itself by fiber elongation, thickening (disassembly), fraying and collapse. Stretching single fibrin fibers significantly hampered their lysis. This effect was seen in uncrosslinked and crosslinked fibers. Crosslinking (without stretching) also hampered single fiber lysis. Our data suggest that strain is a novel mechanosensitive factor that regulates blood clot dissolution (fibrinolysis) at the single fiber level. At the molecular level of single fibrin molecules, strain may distort, or hinder access to, plasmin cleavage sites and thereby hamper lysis. Fibrin fibers are the major structural component of a blood clot. We developed a highly stretchable substrate made from fugitive glue and a suspended fibrin fiber lysis assay to investigate the effect of stretching on single fibrin fibers lysis. The key findings from our experiments are: 1) Fibers thicken and elongate upon lysis; 2) stretching strongly reduces lysis; 3) this effect is more pronounced for uncrosslinked fibers; and 4) stretching fibers has a similar effect on reducing lysis as crosslinking fibers. At the molecular level, strain may distort plasmin cleavage sites, or restrict access to those sites. Our results suggest that strain may be a novel mechanobiological factor that regulates fibrinolysis. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Computer processing of microscopic images of bacteria : morphometry and fluorimetry

    NARCIS (Netherlands)

    Wilkinson, Michael H.F.; Jansen, Gijsbert J.; Waaij, Dirk van der

    1994-01-01

    Several techniques that use computer analysis of microscopic images have been developed to study the complicated microbial flora in the human intestine, including measuring the shape and fluorescence intensity of bacteria. These techniques allow rapid assessment of changes in the intestinal flora

  6. Low-Cost Energy-Efficient 3-D Nano-Spikes-Based Electric Cell Lysis Chips

    KAUST Repository

    Riaz, Kashif

    2017-05-04

    Electric cell lysis (ECL) is a promising technique to be integrated with portable lab-on-a-chip without lysing agent due to its simplicity and fast processing. ECL is usually limited by the requirements of high power/voltage and costly fabrication. In this paper, we present low-cost 3-D nano-spikes-based ECL (NSP-ECL) chips for efficient cell lysis at low power consumption. Highly ordered High-Aspect-Ratio (HAR). NSP arrays with controllable dimensions were fabricated on commercial aluminum foils through scalable and electrochemical anodization and etching. The optimized multiple pulse protocols with minimized undesirable electrochemical reactions (gas and bubble generation), common on micro parallel-plate ECL chips. Due to the scalability of fabrication process, 3-D NSPs were fabricated on small chips as well as on 4-in wafers. Phase diagram was constructed by defining critical electric field to induce cell lysis and for cell lysis saturation Esat to define non-ECL and ECL regions for different pulse parameters. NSP-ECL chips have achieved excellent cell lysis efficiencies ηlysis (ca 100%) at low applied voltages (2 V), 2~3 orders of magnitude lower than that of conventional systems. The energy consumption of NSP-ECL chips was 0.5-2 mJ/mL, 3~9 orders of magnitude lower as compared with the other methods (5J/mL-540kJ/mL). [2016-0305

  7. Microfluidic device for acoustic cell lysis

    Science.gov (United States)

    Branch, Darren W.; Cooley, Erika Jane; Smith, Gennifer Tanabe; James, Conrad D.; McClain, Jaime L.

    2015-08-04

    A microfluidic acoustic-based cell lysing device that can be integrated with on-chip nucleic acid extraction. Using a bulk acoustic wave (BAW) transducer array, acoustic waves can be coupled into microfluidic cartridges resulting in the lysis of cells contained therein by localized acoustic pressure. Cellular materials can then be extracted from the lysed cells. For example, nucleic acids can be extracted from the lysate using silica-based sol-gel filled microchannels, nucleic acid binding magnetic beads, or Nafion-coated electrodes. Integration of cell lysis and nucleic acid extraction on-chip enables a small, portable system that allows for rapid analysis in the field.

  8. Fed-Batch Production of Bacterial Ghosts Using Dielectric Spectroscopy for Dynamic Process Control

    Directory of Open Access Journals (Sweden)

    Andrea Meitz

    2016-03-01

    Full Text Available The Bacterial Ghost (BG platform technology evolved from a microbiological expression system incorporating the ϕX174 lysis gene E. E-lysis generates empty but structurally intact cell envelopes (BGs from Gram-negative bacteria which have been suggested as candidate vaccines, immunotherapeutic agents or drug delivery vehicles. E-lysis is a highly dynamic and complex biological process that puts exceptional demands towards process understanding and control. The development of a both economic and robust fed-batch production process for BGs required a toolset capable of dealing with rapidly changing concentrations of viable biomass during the E-lysis phase. This challenge was addressed using a transfer function combining dielectric spectroscopy and soft-sensor based biomass estimation for monitoring the rapid decline of viable biomass during the E-lysis phase. The transfer function was implemented to a feed-controller, which followed the permittivity signal closely and was capable of maintaining a constant specific substrate uptake rate during lysis phase. With the described toolset, we were able to increase the yield of BG production processes by a factor of 8–10 when compared to currently used batch procedures reaching lysis efficiencies >98%. This provides elevated potentials for commercial application of the Bacterial Ghost platform technology.

  9. Inhibitory effect of self-generated extracellular dissolved organic carbon on carbon dioxide fixation in sulfur-oxidizing bacteria during a chemoautotrophic cultivation process and its elimination.

    Science.gov (United States)

    Wang, Ya-Nan; Tsang, Yiu Fai; Wang, Lei; Fu, Xiaohua; Hu, Jiajun; Li, Huan; Le, Yiquan

    2018-03-01

    The features of extracellular dissolved organic carbon (EDOC) generation in two typical aerobic sulfur-oxidizing bacteria (Thiobacillus thioparus DSM 505 and Halothiobacillus neapolitanus DSM 15147) and its impact on CO 2 fixation during chemoautotrophic cultivation process were investigated. The results showed that EDOC accumulated in both strains during CO 2 fixation process. Large molecular weight (MW) EDOC derived from cell lysis and decay was dominant during the entire process in DSM 505, whereas small MW EDOC accounted for a large proportion during initial and middle stages of DSM 15147 as its cytoskeleton synthesis rate did not keep up with CO 2 assimilation rate. The self-generated EDOC feedback repressed cbb gene transcription and thus decreased total bacterial cell number and CO 2 fixation yield in both strains, but DSM 505 was more sensitive to this inhibition effect. Moreover, the membrane bioreactor effectively decreased the EDOC/TOC ratio and improved carbon fixation yield of DSM 505. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Increased Resistance to osmotic lysis of sickled erythrocytes ...

    African Journals Online (AJOL)

    treated with CNw had significantly reduced osmotic lysis when compared with the untreated set (P<0.05, respectively) at various hypotonic NaCl concentrations. Various Hb genotypes exhibited a graded increase in osmotic pressure lysis in ...

  11. Comparison of lysis-centrifugation with lysis-filtration and a conventional unvented bottle for blood cultures.

    OpenAIRE

    Gill, V J; Zierdt, C H; Wu, T C; Stock, F; Pizzo, P A; MacLowry, J D

    1984-01-01

    Evaluation of a commercially available lysis-centrifugation blood culture system (Isolator, DuPont Co., Wilmington, Del.) and a lysis-filtration blood culture system for 3,111 cultures showed that both methods had comparable recoveries (73 and 68%, respectively) of significant aerobic and facultatively anaerobic isolates. The unvented conventional blood culture bottle had a recovery rate of 59%. Although the lysis-centrifugation and lysis-filtration systems had comparable recoveries of pathog...

  12. Miniature acoustic wave lysis system and uses thereof

    Science.gov (United States)

    Branch, Darren W.; Vreeland, Erika Cooley; Smith, Gennifer Tanabe

    2016-12-06

    The present invention relates to an acoustic lysis system including a disposable cartridge that can be reversibly coupled to a platform having a small, high-frequency piezoelectric transducer array. In particular, the system releases viable DNA, RNA, and proteins from human or bacterial cells, without chemicals or additional processing, to enable high-speed sample preparation for clinical point-of-care medical diagnostics and use with nano/microfluidic cartridges. Also described herein are methods of making and using the system of the invention.

  13. STUDIES ON THE BACTERIOPHAGE OF D'HERELLE : IX. EVIDENCE OF HYDROLYSIS OF BACTERIAL PROTEIN DURING LYSIS.

    Science.gov (United States)

    Hetler, D M; Bronfenbrenner, J

    1928-07-31

    1. During the process of lysis by bacteriophage, there is an appreciable increase in the amount of free amino acid present in the culture. 2. The increase of free amino acid is due to hydrolysis of bacterial protein.

  14. Degradation of plant wastes by anaerobic process using rumen bacteria.

    Science.gov (United States)

    Seon, J; Creuly, C; Duchez, D; Pons, A; Dussap, C G

    2003-01-01

    An operational reactor has been designed for the fermentation of a pure culture of Fibrobacter succinogenes with the constraints of strict anaerobic condition. The process is controlled by measurements of pH, redox, temperature and CO2 pressure; it allows an efficient degradation (67%) of lignocellulosic wastes such as a mixture of wheat straw, soya bean cake and green cabbage.

  15. Micro Corona Ionizer as an Ozone Source for Bacterial Cell Lysis

    Science.gov (United States)

    Lee, Eun-Hee; Lim, Hyun Jeong; Chua, Beelee; Son, Ahjeong

    2015-04-01

    DNA extraction is a critical process of DNA assays including polymerase chain reaction (PCR), microarrays, molecular cloning, and DNA hybridization which has been well established and can be implemented by commercial kits. DNA extraction involves cell lysis, precipitation, and purification through the combination of physical and chemical processes. Cell lysis is essential to high DNA recovery yield which can be achieved via a variety of physical, chemical, and enzymatic methods. However, these methods were originally developed for bioassays that were labor intensive, time consuming, and vulnerable to contamination and inhibition. Here, we proposed to employ a micro corona ionizer as an ozone source to lyse bacterial cells. Ozone has been well known and used as a disinfectant which allows cell lysis and DNA extraction. Previously, we have shown that a micro corona ionizer is capable of generating a significant amount of ozone. In this study, we employed the micro corona ionizer for the bacterial cell lysis which consists of a 50 μm diameter cantilever wire as the discharge cathode and a 50 μm thick copper foil as anode. Applied voltages varied from 1900 to 2200 V with corresponding corona currents from 16 to 28 μA. The resultant ozone (concentration > 0.14 ppm) generated from the micro corona ionizer was bubbled into the sample via a miniature pump. We demonstrated the cell lysis of Pseudomonas putida as the target bacterium using the micro corona ionizer. At a flow rate of 38 ml/min and applied corona voltage of 2000 V, 98.5 ± 0.2% lysis (normalized to sonication result) was achieved after 10 min. In comparison, untreated and air-treated samples showed normalized % lysis of 11.9 ± 2.4 and 36.1 ± 1.7%, respectively. We also showed that the cell lysis efficiency could be significantly increased by increasing the flow rate and the applied corona voltage. By comparing the experimental results for continuous and pulsed treatment, we verified that the percentage of

  16. [Comparison of transformation of four processed rhubarb aqueous extracts in intestinal bacteria in vitro].

    Science.gov (United States)

    Song, Rui; Tian, Yuan; Zhang, Zunjian

    2012-06-01

    To compare the metabolic transformation of four processed rhubarb aqueous extracts in rat intestinal bacteria in vitro. Rat intestinal bacteria test solution and each of four processed rhubarb aqueous extracts were incubated under anaerobic conditions at 37 degrees C. High-performance liquid chromatography with diode-array detection (HPLC-DAD) and tandem mass spectrometry (HPLC-MS/MS) was used for the qualitative analysis on the components that can be bio-transformed by rat intestinal bacteria as well as the trend of metabolic transformation of each parent compounds according to the changes in chromatographic peak areas in different incubation times. Anthraquinones, glucose gallates and naphthalenes glucosides could be bio-transformed by rat intestinal bacteria. Of them, anthraquinones were undoubtedly the most prevalent parent compounds, as 12 out of the 17 metabolites were tentatively assigned as metabolites transformed from anthraquinones. Besides, it was also found that each parent compound in four processed rhubarb extract were diverse from each other with the incubation time. The preparations change composition and proportional relationship of ingredients contained in rhubarb and thus impacting their transformation effect in intestinal bacteria.

  17. The euglobulin clot lysis time to assess the impact of nanoparticles on fibrinolysis

    Energy Technology Data Exchange (ETDEWEB)

    Minet, Valentine, E-mail: valentine.minet@unamur.be; Alpan, Lutfiye; Mullier, François [University of Namur – UNamur, Department of Pharmacy, Namur Thrombosis and Hemostasis Center (NTHC), Namur Nanosafety Center (NNC), NAmur Research Institute for Life Sciences NARILIS (Belgium); Toussaint, Olivier [Laboratory of Cellular Biochemistry and Biology (URBC) (Belgium); Lucas, Stéphane [University of Namur (UNamur), Research Centre for the Physics of Matter and Radiation (PMR-LARN), Namur Nanosafety Center NNC, NAmur Research Institute for Life Sciences NARILIS (Belgium); Dogné, Jean-Michel; Laloy, Julie, E-mail: julie.laloy@unamur.be [University of Namur – UNamur, Department of Pharmacy, Namur Thrombosis and Hemostasis Center (NTHC), Namur Nanosafety Center (NNC), NAmur Research Institute for Life Sciences NARILIS (Belgium)

    2015-07-15

    Nanoparticles (NPs) are developed for many applications in various fields, including nanomedicine. The NPs used in nanomedicine may disturb homeostasis in blood. Secondary hemostasis (blood coagulation) and fibrinolysis are complex physiological processes regulated by activators and inhibitors. An imbalance of this system can either lead to the development of hemorrhages or thrombosis. No data are currently available on the impact of NPs on fibrinolysis. The objectives of this study are (1) to select a screening test to study ex vivo the impact of NPs on fibrinolysis and (2) to test NPs with different physicochemical properties. Euglobulin clot lysis time test was selected to screen the impact of some NPs on fibrinolysis using normal pooled plasma. A dose-dependent decrease in the lysis time was observed with silicon dioxide and silver NPs without disturbing the fibrin network. Carbon black, silicon carbide, and copper oxide did not affect the lysis time at the tested concentrations.

  18. Bacterial Infochemicals are Drivers of Algal Lysis

    Science.gov (United States)

    Whalen, K.; Deering, R.; Rowley, D. C.; El Gamal, A.; Schorn, M.; Moore, B. S.; Johnson, M. D.; Mincer, T. J.; Harvey, E.

    2016-02-01

    Processing of organic matter by bacteria forces oceanic biogeochemical cycles, food web structure and ultimately environmental stoichiometry. A newly emerging picture of the microbial loop suggests that bacteria are not merely passive recipients of dissolved organic matter (DOM) from phytoplankton exudate. Rather, heterotrophic bacteria can mediate the flow of DOM by actively producing soluble algicidal compounds. However, deciphering those chemical signals that determine these interactions has remained a challenge. Here, we report the isolation of 2-heptyl-4-quinolone (HHQ), released by Pseudoalteromonas piscicida, a marine gamma-proteobacteria isolated from plastic debris in the North Atlantic. Both 2-heptyl-3-hydroxy-4-quinolone and its immediate precursor, HHQ are known to function as antibiotics and quorum sensing signaling molecules with crucial roles in virulence, and apoptosis in eukaryotic cells (e.g. fungi and mammalian cells). Our ecologically-relevant screening of live cells and filtrate from P. piscicida cultures caused a significant decrease in the growth rate of the bloom-forming coccolithophore, Emiliania huxleyi. Bioassay-guided fraction of P. piscicida extracellular crude extracts identified HHQ, which induced mortality in three strains of E. huxleyi with an IC50 in the nanomolar range. In contrast, the marine chlorophyte, Dunaliella tertiolecta and diatom, Phaeodactylum tricornutum were unaffected by HHQ exposures (IC50 > 10 micromolar), but were susceptible to extracts of P. piscicida, indicating this bacterium may produce a cocktail of algicidal compounds specific to different phytoplankton guilds. The ability of HHQ to influence phytoplankton growth suggests that alkylquinolone-signaling molecules play a fundamental role in interkingdom interactions, ultimately influencing shifts in phytoplankton population dynamics. This study implicates a new role for HHQ beyond its importance in quorum sensing.

  19. Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change.

    Science.gov (United States)

    Lladó, Salvador; López-Mondéjar, Rubén; Baldrian, Petr

    2017-06-01

    The ecology of forest soils is an important field of research due to the role of forests as carbon sinks. Consequently, a significant amount of information has been accumulated concerning their ecology, especially for temperate and boreal forests. Although most studies have focused on fungi, forest soil bacteria also play important roles in this environment. In forest soils, bacteria inhabit multiple habitats with specific properties, including bulk soil, rhizosphere, litter, and deadwood habitats, where their communities are shaped by nutrient availability and biotic interactions. Bacteria contribute to a range of essential soil processes involved in the cycling of carbon, nitrogen, and phosphorus. They take part in the decomposition of dead plant biomass and are highly important for the decomposition of dead fungal mycelia. In rhizospheres of forest trees, bacteria interact with plant roots and mycorrhizal fungi as commensalists or mycorrhiza helpers. Bacteria also mediate multiple critical steps in the nitrogen cycle, including N fixation. Bacterial communities in forest soils respond to the effects of global change, such as climate warming, increased levels of carbon dioxide, or anthropogenic nitrogen deposition. This response, however, often reflects the specificities of each studied forest ecosystem, and it is still impossible to fully incorporate bacteria into predictive models. The understanding of bacterial ecology in forest soils has advanced dramatically in recent years, but it is still incomplete. The exact extent of the contribution of bacteria to forest ecosystem processes will be recognized only in the future, when the activities of all soil community members are studied simultaneously. Copyright © 2017 American Society for Microbiology.

  20. Pressure-mediated reduction of ultrasonically induced cell lysis

    International Nuclear Information System (INIS)

    Ciaravino, V.E.; Miller, M.W.; Carstensen, E.L.

    1981-01-01

    Chinese hamster V-79 cells, exposed in polystyrene tubes for 5 min to 1-MHz continuous-wave ultrasound, were lysed more by a 10 than a 5 W/cm 2 intensity. Higher atmospheric pressure was needed to eliminate lysis with the former relative to the latter intensity, but lysis by 10 W/cm 2 was completely climinated with 2 atm of hydrostatic pressure. The reduction in lysis per unit increase in atmospheric pressure was comparable for both ultrasound intensities

  1. Managing the potential risks of using bacteria-laden water in mineral processing to protect freshwater.

    Science.gov (United States)

    Liu, Wenying; Moran, Chris J; Vink, Sue

    2013-06-18

    The minerals industry is being driven to access multiple water sources and increase water reuse to minimize freshwater withdrawal. Bacteria-laden water, such as treated effluent, has been increasingly used as an alternative to freshwater for mineral processing, in particular flotation, where conditions are favorable for bacterial growth. However, the risk posed by bacteria to flotation efficiency is poorly understood. This could be a barrier to the ongoing use of this water source. This study tested the potential of a previously published risk-based approach as a management tool to both assist mine sites in quantifying the risk from bacteria, and finding system-wide cost-effective solutions for risk mitigation. The result shows that the solution of adjusting the flotation chemical regime could only partly control the risk. The second solution of using tailings as an absorbent was shown to be effective in the laboratory in reducing bacterial concentration and thus removing the threat to flotation recovery. The best solution is likely to combine internal and external approaches, that is, inside and outside processing plants. Findings in this study contribute possible methods applicable to managing the risk from water-borne bacteria to plant operations that choose to use bacteria-containing water, when attempting to minimize freshwater use, and avoiding the undesirable consequences of increasing its use.

  2. Solubilization of proteins: the importance of lysis buffer choice.

    Science.gov (United States)

    Peach, Mandy; Marsh, Noelle; Miskiewicz, Ewa I; MacPhee, Daniel J

    2015-01-01

    The efficient extraction of proteins of interest from cells and tissues is not always straightforward. Here we demonstrate the differences in extraction of the focal adhesion protein Kindlin-2 from choriocarcinoma cells using NP-40 and RIPA lysis buffer. Furthermore, we demonstrate the use of a more denaturing urea/thiourea lysis buffer for solubilization, by comparing its effectiveness for solubilization of small heat-shock proteins from smooth muscle with the often utilized RIPA lysis buffer. Overall, the results demonstrate the importance of establishing the optimal lysis buffer for specific protein solubilization within the experimental workflow.

  3. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect

    International Nuclear Information System (INIS)

    Mishra, Debaraj; Kim, Dong J.; Ralph, David E.; Ahn, Jong G.; Rhee, Young H.

    2008-01-01

    Bioleaching of metals from hazardous spent hydro-processing catalysts was attempted in the second stage after growing the bacteria with sulfur in the first stage. The first stage involved transformation of elemental sulfur particles to sulfuric acid through an oxidation process by acidophilic bacteria. In the second stage, the acidic medium was utilized for the leaching process. Nickel, vanadium and molybdenum contained within spent catalyst were leached from the solid materials to liquid medium by the action of sulfuric acid that was produced by acidophilic leaching bacteria. Experiments were conducted varying the reaction time, amount of spent catalysts, amount of elemental sulfur and temperature. At 50 g/L spent catalyst concentration and 20 g/L elemental sulfur, 88.3% Ni, 46.3% Mo, and 94.8% V were recovered after 7 days. Chemical leaching with commercial sulfuric acid of the similar amount that produced by bacteria was compared. Thermodynamic parameters were calculated and the nature of reaction was found to be exothermic. Leaching kinetics of the metals was represented by different reaction kinetic equations, however, only diffusion controlled model showed the best correlation here. During the whole process Mo showed low dissolution because of substantiate precipitation with leach residues as MoO 3 . Bioleach residues were characterized by EDX and XRD

  4. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Debaraj [Mineral and Material Processing Division, Korea Institute of Geosciences and Mineral Resources, Daejeon 305-350 (Korea, Republic of); Department of Microbiology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, Dong J. [Mineral and Material Processing Division, Korea Institute of Geosciences and Mineral Resources, Daejeon 305-350 (Korea, Republic of)], E-mail: djkim@kigam.re.kr; Ralph, David E. [AJ Parker CRC for Hydrometallurgy, Murdoch University, South Street Murdoch, Perth 6153 (Australia); Ahn, Jong G. [Mineral and Material Processing Division, Korea Institute of Geosciences and Mineral Resources, Daejeon 305-350 (Korea, Republic of); Rhee, Young H. [Department of Microbiology, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2008-04-15

    Bioleaching of metals from hazardous spent hydro-processing catalysts was attempted in the second stage after growing the bacteria with sulfur in the first stage. The first stage involved transformation of elemental sulfur particles to sulfuric acid through an oxidation process by acidophilic bacteria. In the second stage, the acidic medium was utilized for the leaching process. Nickel, vanadium and molybdenum contained within spent catalyst were leached from the solid materials to liquid medium by the action of sulfuric acid that was produced by acidophilic leaching bacteria. Experiments were conducted varying the reaction time, amount of spent catalysts, amount of elemental sulfur and temperature. At 50 g/L spent catalyst concentration and 20 g/L elemental sulfur, 88.3% Ni, 46.3% Mo, and 94.8% V were recovered after 7 days. Chemical leaching with commercial sulfuric acid of the similar amount that produced by bacteria was compared. Thermodynamic parameters were calculated and the nature of reaction was found to be exothermic. Leaching kinetics of the metals was represented by different reaction kinetic equations, however, only diffusion controlled model showed the best correlation here. During the whole process Mo showed low dissolution because of substantiate precipitation with leach residues as MoO{sub 3}. Bioleach residues were characterized by EDX and XRD.

  5. Low-Cost Energy-Efficient 3-D Nano-Spikes-Based Electric Cell Lysis Chips

    KAUST Repository

    Riaz, Kashif; Leung, Siu; Fan, Zhiyong; Lee, Yi-Kuen

    2017-01-01

    Electric cell lysis (ECL) is a promising technique to be integrated with portable lab-on-a-chip without lysing agent due to its simplicity and fast processing. ECL is usually limited by the requirements of high power/voltage and costly fabrication

  6. Microfluidic systems and methods for transport and lysis of cells and analysis of cell lysate

    Science.gov (United States)

    Culbertson, Christopher T [Oak Ridge, TN; Jacobson, Stephen C [Knoxville, TN; McClain, Maxine A [Knoxville, TN; Ramsey, J Michael [Knoxville, TN

    2008-09-02

    Microfluidic systems and methods are disclosed which are adapted to transport and lyse cellular components of a test sample for analysis. The disclosed microfluidic systems and methods, which employ an electric field to rupture the cell membrane, cause unusually rapid lysis, thereby minimizing continued cellular activity and resulting in greater accuracy of analysis of cell processes.

  7. Metagenomics as a tool to obtain full genomes of process-critical bacteria in engineered systems

    DEFF Research Database (Denmark)

    Albertsen, Mads; Hugenholtz, Philip; Tyson, Gene W.

    of the community. The assembled genomes include many of the process-critical bacteria involved in wastewater treatment, such as Competibacter, Tetrasphaera and TM7. The approach is not limited to different extraction methods, but can be applied to any treatment that results in different relative abundance......Bacteria play a pivotal role in engineered systems such as wastewater treatment plants. Obtaining genomes of the bacteria provides the genetic potential of the system and also allows studies of in situ functions through transcriptomics and proteomics. Hence, it enables correlations of operational......, the sequencing of bulk genomic DNA from environmental samples, has the potential to provide genomes of this uncultured majority. However, so far only few bacterial genomes have been obtained from metagenomic data. In this study we present a new approach to obtain individual genomes from metagenomes. We deeply...

  8. Comparison of the lysis centrifugation method with the conventional blood culture method in cases of sepsis in a tertiary care hospital.

    Science.gov (United States)

    Parikh, Harshal R; De, Anuradha S; Baveja, Sujata M

    2012-07-01

    Physicians and microbiologists have long recognized that the presence of living microorganisms in the blood of a patient carries with it considerable morbidity and mortality. Hence, blood cultures have become critically important and frequently performed test in clinical microbiology laboratories for diagnosis of sepsis. To compare the conventional blood culture method with the lysis centrifugation method in cases of sepsis. Two hundred nonduplicate blood cultures from cases of sepsis were analyzed using two blood culture methods concurrently for recovery of bacteria from patients diagnosed clinically with sepsis - the conventional blood culture method using trypticase soy broth and the lysis centrifugation method using saponin by centrifuging at 3000 g for 30 minutes. Overall bacteria recovered from 200 blood cultures were 17.5%. The conventional blood culture method had a higher yield of organisms, especially Gram positive cocci. The lysis centrifugation method was comparable with the former method with respect to Gram negative bacilli. The sensitivity of lysis centrifugation method in comparison to conventional blood culture method was 49.75% in this study, specificity was 98.21% and diagnostic accuracy was 89.5%. In almost every instance, the time required for detection of the growth was earlier by lysis centrifugation method, which was statistically significant. Contamination by lysis centrifugation was minimal, while that by conventional method was high. Time to growth by the lysis centrifugation method was highly significant (P value 0.000) as compared to time to growth by the conventional blood culture method. For the diagnosis of sepsis, combination of the lysis centrifugation method and the conventional blood culture method with trypticase soy broth or biphasic media is advocable, in order to achieve faster recovery and a better yield of microorganisms.

  9. 21 CFR 864.7275 - Euglobulin lysis time tests.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Euglobulin lysis time tests. 864.7275 Section 864.7275 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7275 Euglobulin lysis...

  10. Culture-independent detection of 'TM7' bacteria in a streptomycin-resistant acidophilic nitrifying process

    International Nuclear Information System (INIS)

    Kurogi, T.; Linh, N. T. T.; Kuroki, T.; Yamada, T.; Hiraishi, A.

    2014-01-01

    Nitrification in biological wastewater treatment processes has been believed for long time to take place under neutral conditions and is inhibited under acidic conditions. However, we previously constructed acidophilic nitrifying sequencing-batch reactors (ANSBRs) being capable of nitrification at −1 was added. In all reactors, the pH varied between 2.7 and 4.0, and ammonium was completely converted to nitrate in every batch cycle. PCR-aided denaturing gradient gel electrophoresis (DGGE) targeting 16S rRNA genes revealed that some major clones assigned to TM7 bacteria and Gammaproteobacteria were constantly present during the overall period of operation. Fluorescence in situ hybridization (FISH) with specific oligonucleotide probes also showed that TM7 bacteria predominated in all SRAN reactors, accounting for 58% of the total bacterial population on average. Although the biological significance of the TM7 bacteria in the SRAN reactors are unknown, our results suggest that these bacteria are possibly streptomycin-resistant and play some important roles in the acidophilic nitrifying process

  11. Metabolic and process engineering for biodesulfurization in Gram-negative bacteria.

    Science.gov (United States)

    Martínez, I; El-Said Mohamed, M; Santos, V E; García, J L; García-Ochoa, F; Díaz, E

    2017-11-20

    Microbial desulfurization or biodesulfurization (BDS) is an attractive low-cost and environmentally friendly complementary technology to the hydrotreating chemical process based on the potential of certain bacteria to specifically remove sulfur from S-heterocyclic compounds of crude fuels that are recalcitrant to the chemical treatments. The 4S or Dsz sulfur specific pathway for dibenzothiophene (DBT) and alkyl-substituted DBTs, widely used as model S-heterocyclic compounds, has been extensively studied at the physiological, biochemical and genetic levels mainly in Gram-positive bacteria. Nevertheless, several Gram-negative bacteria have been also used in BDS because they are endowed with some properties, e.g., broad metabolic versatility and easy genetic and genomic manipulation, that make them suitable chassis for systems metabolic engineering strategies. A high number of recombinant bacteria, many of which are Pseudomonas strains, have been constructed to overcome the major bottlenecks of the desulfurization process, i.e., expression of the dsz operon, activity of the Dsz enzymes, retro-inhibition of the Dsz pathway, availability of reducing power, uptake-secretion of substrate and intermediates, tolerance to organic solvents and metals, and other host-specific limitations. However, to attain a BDS process with industrial applicability, it is necessary to apply all the knowledge and advances achieved at the genetic and metabolic levels to the process engineering level, i.e., kinetic modelling, scale-up of biphasic systems, enhancing mass transfer rates, biocatalyst separation, etc. The production of high-added value products derived from the organosulfur material present in oil can be regarded also as an economically viable process that has barely begun to be explored. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Comparison of the lysis-centrifugation and agitated biphasic blood culture systems for detection of fungemia.

    Science.gov (United States)

    Murray, P R

    1991-01-01

    Although the detection of fungemia has been improved by the use of vented or biphasic blood culture bottles, the best recovery and earliest detection have been reported in the Isolator lysis-centrifugation system. It was recently demonstrated that improved detection of both bacteria and fungi was accomplished by mechanically agitating blood culture bottles for the first 24 h of incubation. In this study the detection of fungemia by use of the Isolator system was compared with that of an agitated biphasic system. A total of 182 fungi were isolated from blood specimens inoculated into both culture systems. No difference in the overall recovery of fungi or individual species of yeasts was observed between the two systems. However, all seven isolates of Histoplasma capsulatum were recovered in the Isolator system only. The time required to detect fungemia with each of the two systems was also compared. No statistically significant difference was observed. From the data collected during this 18-month study, it can be concluded that the overall recovery and time of detection of yeasts are equivalent in the lysis-centrifugation system and the agitated biphasic blood culture system. The lysis-centrifugation system is still superior for the detection of filamentous fungi such as H. capsulatum. PMID:1993772

  13. A self-lysis pathway that enhances the virulence of a pathogenic bacterium.

    Science.gov (United States)

    McFarland, Kirsty A; Dolben, Emily L; LeRoux, Michele; Kambara, Tracy K; Ramsey, Kathryn M; Kirkpatrick, Robin L; Mougous, Joseph D; Hogan, Deborah A; Dove, Simon L

    2015-07-07

    In mammalian cells, programmed cell death (PCD) plays important roles in development, in the removal of damaged cells, and in fighting bacterial infections. Although widespread among multicellular organisms, there are relatively few documented instances of PCD in bacteria. Here we describe a potential PCD pathway in Pseudomonas aeruginosa that enhances the ability of the bacterium to cause disease in a lung infection model. Activation of the system can occur in a subset of cells in response to DNA damage through cleavage of an essential transcription regulator we call AlpR. Cleavage of AlpR triggers a cell lysis program through de-repression of the alpA gene, which encodes a positive regulator that activates expression of the alpBCDE lysis cassette. Although this is lethal to the individual cell in which it occurs, we find it benefits the population as a whole during infection of a mammalian host. Thus, host and pathogen each may use PCD as a survival-promoting strategy. We suggest that activation of the Alp cell lysis pathway is a disease-enhancing response to bacterial DNA damage inflicted by the host immune system.

  14. Alginate-Based Edible Films Delivering Probiotic Bacteria to Sliced Ham Pretreated with High Pressure Processing

    Directory of Open Access Journals (Sweden)

    Foteini Pavli

    2017-08-01

    Full Text Available The aim of the present work was to evaluate the efficacy of Na-alginate edible films as vehicles for delivering probiotic bacteria to sliced ham with or without pretreatment using high pressure processing (HPP. Three strains of probiotic bacteria were incorporated in Na-alginate forming solution. Ham slices (with or without pretreatment using HPP at 500 MPa for 2 min were packed under vacuum in contact with the films and then stored at 4, 8 and 12 °C for 66, 47 and 40 days, respectively. Microbiological analysis was performed in parallel with pH and color measurements. Sensory characteristics were assessed, while the presence and the relative abundance of each probiotic strain during storage was evaluated using pulsed field gel electrophoresis. In ham slices without HPP treatment, probiotic bacteria were enumerated above 106 CFU/g during storage at all temperatures. Same results were obtained in cases of HPP treated samples, but pH measurements showed differences with the latter ones exhibiting higher values. Sensory evaluation revealed that probiotic samples had a more acidic taste and odor than the control ones, however these characteristics were markedly compromised in samples treated with HPP. Overall, the results of the study are promising since probiotic bacteria were successfully delivered in the products by edible films regardless of the HPP treatment.

  15. Alginate-Based Edible Films Delivering Probiotic Bacteria to Sliced Ham Pretreated with High Pressure Processing.

    Science.gov (United States)

    Pavli, Foteini; Kovaiou, Ioanna; Apostolakopoulou, Georgia; Kapetanakou, Anastasia; Skandamis, Panagiotis; Nychas, George-John E; Tassou, Chrysoula; Chorianopoulos, Nikos

    2017-08-29

    The aim of the present work was to evaluate the efficacy of Na-alginate edible films as vehicles for delivering probiotic bacteria to sliced ham with or without pretreatment using high pressure processing (HPP). Three strains of probiotic bacteria were incorporated in Na-alginate forming solution. Ham slices (with or without pretreatment using HPP at 500 MPa for 2 min) were packed under vacuum in contact with the films and then stored at 4, 8 and 12 °C for 66, 47 and 40 days, respectively. Microbiological analysis was performed in parallel with pH and color measurements. Sensory characteristics were assessed, while the presence and the relative abundance of each probiotic strain during storage was evaluated using pulsed field gel electrophoresis. In ham slices without HPP treatment, probiotic bacteria were enumerated above 10⁶ CFU/g during storage at all temperatures. Same results were obtained in cases of HPP treated samples, but pH measurements showed differences with the latter ones exhibiting higher values. Sensory evaluation revealed that probiotic samples had a more acidic taste and odor than the control ones, however these characteristics were markedly compromised in samples treated with HPP. Overall, the results of the study are promising since probiotic bacteria were successfully delivered in the products by edible films regardless of the HPP treatment.

  16. Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change

    Czech Academy of Sciences Publication Activity Database

    Lladó, Salvador; López-Mondéjar, Rubén; Baldrian, Petr

    2017-01-01

    Roč. 81, č. 2 (2017), s. 1-27, č. článku e00063. ISSN 1092-2172 R&D Projects: GA ČR(CZ) GP14-09040P; GA MŠk(CZ) LD15086 Institutional support: RVO:61388971 Keywords : bacteria * decomposition * ecosystem processes Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 14.533, year: 2016

  17. Quantitative analyses of the behavior of exogenously added bacteria during an acidulocomposting process.

    Science.gov (United States)

    Suematsu, Takatoshi; Yamashita, Satoshi; Hemmi, Hisashi; Yoshinari, Ayaka; Shimoyama, Takefumi; Nakayama, Toru; Nishino, Tokuzo

    2012-07-01

    The behavior of adventitious bacteria during an acidulocomposting process was quantitatively analyzed in garbage-free trials. The numbers of the added Bacillus subtilis and Pseudomonas putida cells diminished in a first-order manner with t(1/2) values of 0.45d and 0.79d, respectively, consistent with the observed stability of the acidulocomposting function. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Hygiene Aspects of the Biogas Process with Emphasis on Spore-Forming Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Bagge, Elisabeth

    2009-07-01

    Biogas is a renewable source of energy which can be obtained from processing of biowaste. The digested residues can be used as fertiliser. Biowaste intended for biogas production contains pathogenic micro-organisms. A pre-pasteurisation step at 70 deg C for 60 min before anaerobic digestion reduces non spore-forming bacteria such as Salmonella spp. To maintain the standard of the digested residues it must be handled in a strictly hygienic manner to avoid recontamination and re-growth of bacteria. The risk of contamination is particularly high when digested residues are transported in the same vehicles as the raw material. However, heat treatment at 70 deg C for 60 min will not reduce spore-forming bacteria such as Bacillus spp. and Clostridium spp. Spore-forming bacteria, including those that cause serious diseases, can be present in substrate intended for biogas production. The number of species and the quantity of Bacillus spp. and Clostridium spp. in manure, slaughterhouse waste and in samples from different stages during the biogas process were investigated. The number of species of clostridia seemed to decrease following digestion, likewise the quantity. However, Bacillus spp. seemed to pass unaffected through the biogas process. In laboratory-scale experiments the effects on clostridia during pasteurisation and digestion were investigated. Pathogenic clostridia were inoculated in substrates from homogenisation tanks and digester tanks. The inoculated clostridia remained after pasteurisation, but the impacts of digestion differ between different species. Culture followed by identification of C. chauvoei by PCR in samples from cattle died from blackleg, is faster and safer than culture followed by biochemical identification of C. chauvoei. However, for environmental samples the PCR method is not practically applicable for detection of C. chauvoei. To avoid spreading of diseases via biogas plants when digested residues are spread on arable land, a pasteurisation

  19. Study of the impact of environmental bacteria ob uranium speciation in order to engage bioremediation process

    International Nuclear Information System (INIS)

    Untereiner, G.

    2008-11-01

    Uranium is both a radiological and a chemical toxic. Its concentration in the environment is low except when human activities have caused pollution. Uranium is a heavy reactive element, and thus it is easily complexed with soil component like minerals or organic molecules. These different complexes can be more or less bioavailable for microorganisms and plants, and then get in the human food chain. The knowledge and the understanding of transfer mechanisms and also the fate of toxic elements in the biosphere are a key issue to estimate health and ecological hazards. The knowledge of the speciation is very important for bioremediation processes. Here, we focused on the microorganisms effects onto uranium speciation in environment. Bacteria can accumulate and/or transform uranium depending on the initial form of the element. Thus, its bioavailability could be changed. The species used in this work are Cupriavidus metallidurans CH34, which is an environmental bacteria with a high resistance to heavy metal, Deinococcus radiodurans R1, which is known for his radiological resistance, and Rhodopseudomonas palustris, which is a purple photo-trophic bacteria capable of degrading aromatic compounds. Two forms of uranium were used with these bacteria, a mineral one, uranyl carbonate, and an organic one, uranyl citrate. In a first step, the growth media were modified in order to stabilize uranium complexes thanks to a simulation program. Then, the capacity of the bacteria to accumulate or transform uranium was studied. We saw a difference between minimal inhibition concentrations of these two speciation which is due to a difference between phosphate bioavailability. No accumulation was observed with environmental pH but uranium precipitation was observed with acidic pH (pH 1). Uranium speciation seemed to be well controlled in the growth media and the precipitates were uranyl phosphate. (author)

  20. Halotolerant bacteria in the São Paulo Zoo composting process and their hydrolases and bioproducts

    Science.gov (United States)

    Oliveira, Lilian C.G.; Ramos, Patricia Locosque; Marem, Alyne; Kondo, Marcia Y.; Rocha, Rafael C.S.; Bertolini, Thiago; Silveira, Marghuel A.V.; da Cruz, João Batista; de Vasconcellos, Suzan Pantaroto; Juliano, Luiz; Okamoto, Debora N.

    2015-01-01

    Halophilic microorganisms are able to grow in the presence of salt and are also excellent source of enzymes and biotechnological products, such as exopolysaccharides (EPSs) and polyhydroxyalkanoates (PHAs). Salt-tolerant bacteria were screened in the Organic Composting Production Unit (OCPU) of São Paulo Zoological Park Foundation, which processes 4 ton/day of organic residues including plant matter from the Atlantic Rain Forest, animal manure and carcasses and mud from water treatment. Among the screened microorganisms, eight halotolerant bacteria grew at NaCl concentrations up to 4 M. These cultures were classified based on phylogenetic characteristics and comparative partial 16S rRNA gene sequence analysis as belonging to the genera Staphylococcus, Bacillus and Brevibacterium. The results of this study describe the ability of these halotolerant bacteria to produce some classes of hydrolases, namely, lipases, proteases, amylases and cellulases, and biopolymers. The strain characterized as of Brevibacterium avium presented cellulase and amylase activities up to 4 M NaCl and also produced EPSs and PHAs. These results indicate the biotechnological potential of certain microorganisms recovered from the composting process, including halotolerant species, which have the ability to produce enzymes and biopolymers, offering new perspectives for environmental and industrial applications. PMID:26273248

  1. Squamous cell carcinoma complicating an hereditary epidermo-lysis bullosa

    International Nuclear Information System (INIS)

    Mseddi, M.; Turki, H.; Marrekchi, S.; Abdelmaksoud, W.; Masmoudi, A.; Bouassida, S.; Zahaf, A.

    2004-01-01

    The dystrophic form of hereditary epidermo-lysis bullosa is associated with an increased frequency of squamous cell carcinoma. We report a new case. An 18-year-old patient, carrying a Hallopeau Siemens hereditary epidermo-lysis bullosa, presented a subcutaneous nodular lesion, for 1 year that ulcerated and budded with inguinal lymphadenopathy. The histological study ted to the conclusion of a well differentiated squamous cell carcinoma. The patient was treated surgically. Tumor and metastatic lymph nodes were excised. A radiotherapy was decided but the postoperative course was fatal due to an infection and to a deterioration of her general condition. Squamous cell carcinoma frequently occurs on the cicatricial lesion of hereditary epidermo-lysis bullosa and usually affects males with recessive hereditary epidermo-lysis bullosa. Metastases are frequent, precocious and multiple. The treatment may be surgical. The particularities of our observation are the young age of patient and the localization. (author)

  2. Streptomyces lunalinharesii Strain 235 Shows the Potential to Inhibit Bacteria Involved in Biocorrosion Processes

    Directory of Open Access Journals (Sweden)

    Juliana Pacheco da Rosa

    2013-01-01

    Full Text Available Four actinomycete strains previously isolated from Brazilian soils were tested for their antimicrobial activity against Bacillus pumilus LF-4 and Desulfovibrio alaskensis NCIMB 13491, bacteria that are well known to be involved in biofilm formation and biocorrosion. Strain 235, belonging to the species Streptomyces lunalinharesii, inhibited the growth of both bacteria. The antimicrobial activity was seen over a wide range of pH, and after treatment with several chemicals and heat but not with proteinase K and trypsin. The antimicrobial substances present in the concentrated supernatant from growth media were partially characterized by SDS-PAGE and extracellular polypeptides were seen. Bands in the size range of 12 to 14.4 kDa caused antimicrobial activity. Transmission electron microscopy of D. alaskensis cells treated with the concentrated supernatant containing the antimicrobial substances revealed the formation of prominent bubbles, the spherical double-layered structures on the cell membrane, and the periplasmic space completely filled with electron-dense material. This is the first report on the production of antimicrobial substances by actinomycetes against bacteria involved in biocorrosion processes, and these findings may be of great relevance as an alternative source of biocides to those currently employed in the petroleum industry.

  3. Streptomyces lunalinharesii strain 235 shows the potential to inhibit bacteria involved in biocorrosion processes.

    Science.gov (United States)

    Pacheco da Rosa, Juliana; Korenblum, Elisa; Franco-Cirigliano, Marcella Novaes; Abreu, Fernanda; Lins, Ulysses; Soares, Rosângela M A; Macrae, Andrew; Seldin, Lucy; Coelho, Rosalie R R

    2013-01-01

    Four actinomycete strains previously isolated from Brazilian soils were tested for their antimicrobial activity against Bacillus pumilus LF-4 and Desulfovibrio alaskensis NCIMB 13491, bacteria that are well known to be involved in biofilm formation and biocorrosion. Strain 235, belonging to the species Streptomyces lunalinharesii, inhibited the growth of both bacteria. The antimicrobial activity was seen over a wide range of pH, and after treatment with several chemicals and heat but not with proteinase K and trypsin. The antimicrobial substances present in the concentrated supernatant from growth media were partially characterized by SDS-PAGE and extracellular polypeptides were seen. Bands in the size range of 12 to 14.4 kDa caused antimicrobial activity. Transmission electron microscopy of D. alaskensis cells treated with the concentrated supernatant containing the antimicrobial substances revealed the formation of prominent bubbles, the spherical double-layered structures on the cell membrane, and the periplasmic space completely filled with electron-dense material. This is the first report on the production of antimicrobial substances by actinomycetes against bacteria involved in biocorrosion processes, and these findings may be of great relevance as an alternative source of biocides to those currently employed in the petroleum industry.

  4. Urea enhances cell lysis of Schizosaccharomyces pombe ura4 mutants.

    Science.gov (United States)

    Nishino, Kohei; Kushima, Misaki; Kaino, Tomohiro; Matsuo, Yasuhiro; Kawamukai, Makoto

    2017-07-01

    Cell lysis is induced in Schizosaccharomyces pombe ∆ura4 cells grown in YPD medium, which contains yeast extract, polypeptone, and glucose. To identify the medium components that induce cell lysis, we first tested various kinds of yeast extracts from different suppliers. Cell lysis of ∆ura4 cells on YE medium was observed when yeast extracts from OXOID, BD, Oriental, and Difco were used, but not when using yeast extract from Kyokuto. To determine which compounds induced cell lysis, we subjected yeast extract and polypeptone to GC-MS analysis. Ten kinds of compounds were detected in OXOID and BD yeast extracts, but not in Kyokuto yeast extract. Among them was urea, which was also present in polypeptone, and it clearly induced cell lysis. Deletion of the ure2 gene, which is responsible for utilizing urea, abolished the lytic effect of urea. The effect of urea was suppressed by deletion of pub1, and a similar phenotype was observed in the presence of polypeptone. Thus, urea is an inducer of cell lysis in S. pombe ∆ura4 cells.

  5. Performance of Electrocoagulation Process in the Removal of Total Coliform and Hetrotrophic Bacteria from Surface Water

    Directory of Open Access Journals (Sweden)

    Jamshid Derayat

    2015-03-01

    Full Text Available Electrocoagulation is an electrochemical method for the treatment of water and wastewater. The present cross-sectional study was designed to investigate the removal efficiency of total coliform and heterotrophic bacteria from surface water using the process. For this purpose, water samples were taken from the drinking water intake at Suleiman-Shahsonghur Dam. The electrocoagulation process was carried out in a Plexiglas reactor in the batch mode with Al and Fe used electrodes. The experiment design was carried out using the Design Expert Software (Stat-Ease Inc., Ver. 6.0.6. After each run, the values of metals dissolved due to anode electrode dissolution were measured using the Inductively Coupled Plasma (ICP and the results were analyzed using the RSM model. Results revealed maximum removal efficiencies of 100% and 89.1% for total coliform and heterotrophic bacteria using the Al electrode, respectively. Also, maximum removal efficiencies using the Fe electrode for the same pollutants were 100% and 76.1%. The measurements clearly indicate that the quantities of Al and Fe released in water were higher than the recommended values. While the electrocoagulation process showed to be effective in removing microbial agents from surface waters, the high concentrations of dissolved metals due to the dissolution of the anode electrode seem to remain a health problem that requires optimal conditions to be determined for acheiving standard concentrations of the dissolved metals.

  6. Improved methane removal in exhaust gas from biogas upgrading process using immobilized methane-oxidizing bacteria.

    Science.gov (United States)

    Sun, Meng-Ting; Yang, Zhi-Man; Fu, Shan-Fei; Fan, Xiao-Lei; Guo, Rong-Bo

    2018-05-01

    Methane in exhaust gas from biogas upgrading process, which is a greenhouse gas, could cause global warming. The biofilter with immobilized methane-oxidizing bacteria (MOB) is a promising approach for methane removal, and the selections of inoculated MOB culture and support material are vital for the biofilter. In this work, five MOB consortia were enriched at different methane concentrations. The MOB-20 consortium enriched at the methane concentration of 20.0% (v/v) was then immobilized on sponge and two particle sizes of volcanic rock in biofilters to remove methane in exhaust gas from biogas upgrading process. Results showed that the immobilized MOB performed more admirable methane removal capacity than suspended cells. The immobilized MOB on sponge reached the highest methane removal efficiency (RE) of 35%. The rough surface, preferable hydroscopicity, appropriate pore size and particle size of support material might favor the MOB immobilization and accordingly methane removal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Electrical lysis: dynamics revisited and advances in On-chip operation.

    Science.gov (United States)

    Morshed, Bashir; Shams, Maitham; Mussivand, Tofy

    2013-01-01

    Electrical lysis (EL) is the process of breaking the cell membrane to expose the internal contents under an applied high electric field. Lysis is an important phenomenon for cellular analysis, medical treatment, and biofouling control. This paper aims to review, summarize, and analyze recent advancements on EL. Major databases including PubMed, Ei Engineering Village, IEEE Xplore, and Scholars Portal were searched using relevant keywords. More than 50 articles published in English since 1997 are cited in this article. EL has several key advantages compared to other lysis techniques such as chemical, mechanical, sonication, or laser, including rapid speed of operation, ability to control, miniaturization, low cost, and low power requirement. A variety of cell types have been investigated for including protoplasts, E. coli, yeasts, blood cells, and cancer cells. EL has been developed and applied for decontamination, cytology, genetics, single-cell analysis, cancer treatment, and other applications. On-chip EL is a promising technology for multiplexed automated implementation of cell-sample preparation and processing with micro- or nanoliter reagents.

  8. The Increasing Interest of ANAMMOX Research in China: Bacteria, Process Development, and Application

    Directory of Open Access Journals (Sweden)

    Mohammad Ali

    2013-01-01

    Full Text Available Nitrogen pollution created severe environmental problems and increasingly has become an important issue in China. Since the first discovery of ANAMMOX in the early 1990s, this related technology has become a promising as well as sustainable bioprocess for treating strong nitrogenous wastewater. Many Chinese research groups have concentrated their efforts on the ANAMMOX research including bacteria, process development, and application during the past 20 years. A series of new and outstanding outcomes including the discovery of new ANAMMOX bacterial species (Brocadia sinica, sulfate-dependent ANAMMOX bacteria (Anammoxoglobus sulfate and Bacillus benzoevorans, and the highest nitrogen removal performance (74.3–76.7 kg-N/m3/d in lab scale granule-based UASB reactors around the world were achieved. The characteristics, structure, packing pattern and floatation mechanism of the high-rate ANAMMOX granules in ANAMMOX reactors were also carefully illustrated by native researchers. Nowadays, some pilot and full-scale ANAMMOX reactors were constructed to treat different types of ammonium-rich wastewater including monosodium glutamate wastewater, pharmaceutical wastewater, and leachate. The prime objective of the present review is to elucidate the ongoing ANAMMOX research in China from lab scale to full scale applications, comparative analysis, and evaluation of significant findings and to set a design to usher ANAMMOX research in culmination.

  9. Biomineralization processes of calcite induced by bacteria isolated from marine sediments.

    Science.gov (United States)

    Wei, Shiping; Cui, Hongpeng; Jiang, Zhenglong; Liu, Hao; He, Hao; Fang, Nianqiao

    2015-06-01

    Biomineralization is a known natural phenomenon associated with a wide range of bacterial species. Bacterial-induced calcium carbonate precipitation by marine isolates was investigated in this study. Three genera of ureolytic bacteria, Sporosarcina sp., Bacillus sp. and Brevundimonas sp. were observed to precipitate calcium carbonate minerals. Of these species, Sporosarcina sp. dominated the cultured isolates. B. lentus CP28 generated higher urease activity and facilitated more efficient precipitation of calcium carbonate at 3.24 ± 0.25 × 10(-4) mg/cell. X-ray diffraction indicated that the dominant calcium carbonate phase was calcite. Scanning electron microscopy showed that morphologies of the minerals were dominated by cubic, rhombic and polygonal plate-like crystals. The dynamic process of microbial calcium carbonate precipitation revealed that B. lentus CP28 precipitated calcite crystals through the enzymatic hydrolysis of urea, and that when ammonium ion concentrations reached 746 mM and the pH reached 9.6, that favored calcite precipitation at a higher level of 96 mg/L. The results of this research provide evidence that a variety of marine bacteria can induce calcium carbonate precipitation, and may influence the marine carbonate cycle in natural environments.

  10. The Increasing Interest of ANAMMOX Research in China: Bacteria, Process Development, and Application

    Science.gov (United States)

    Chai, Li-Yuan; Tang, Chong-Jian; Zheng, Ping; Min, Xiao-Bo; Yang, Zhi-Hui; Song, Yu-Xia

    2013-01-01

    Nitrogen pollution created severe environmental problems and increasingly has become an important issue in China. Since the first discovery of ANAMMOX in the early 1990s, this related technology has become a promising as well as sustainable bioprocess for treating strong nitrogenous wastewater. Many Chinese research groups have concentrated their efforts on the ANAMMOX research including bacteria, process development, and application during the past 20 years. A series of new and outstanding outcomes including the discovery of new ANAMMOX bacterial species (Brocadia sinica), sulfate-dependent ANAMMOX bacteria (Anammoxoglobus sulfate and Bacillus benzoevorans), and the highest nitrogen removal performance (74.3–76.7 kg-N/m3/d) in lab scale granule-based UASB reactors around the world were achieved. The characteristics, structure, packing pattern and floatation mechanism of the high-rate ANAMMOX granules in ANAMMOX reactors were also carefully illustrated by native researchers. Nowadays, some pilot and full-scale ANAMMOX reactors were constructed to treat different types of ammonium-rich wastewater including monosodium glutamate wastewater, pharmaceutical wastewater, and leachate. The prime objective of the present review is to elucidate the ongoing ANAMMOX research in China from lab scale to full scale applications, comparative analysis, and evaluation of significant findings and to set a design to usher ANAMMOX research in culmination. PMID:24381935

  11. Study of a novel cell lysis method with titanium dioxide for Lab-on-a-Chip devices.

    Science.gov (United States)

    Wan, Weijie; Yeow, John T W

    2011-06-01

    In this paper, a novel method is proposed and demonstrated to be able to lyse gram-negative (E. coli) bacteria cells for Lab-on-a-Chip applications. The proposed method incorporates using titanium dioxide particles as photocatalysts and a miniaturized UV LED array as an excitation light source to perform cell lysis on microchips. The experimental result demonstrates the feasibility of the proposed prototype device. The working device suggests an inexpensive, easy to be fabricated and effective way for microchip cell lysis. The miniaturized UV LED array and the microchip with a reaction chamber can be easily integrated with other functional components to form a customized whole Lab-on-a-Chip system.

  12. Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria.

    Science.gov (United States)

    Domínguez-Escobar, Julia; Chastanet, Arnaud; Crevenna, Alvaro H; Fromion, Vincent; Wedlich-Söldner, Roland; Carballido-López, Rut

    2011-07-08

    The peptidoglycan cell wall and the actin-like MreB cytoskeleton are major determinants of cell shape in rod-shaped bacteria. The prevailing model postulates that helical, membrane-associated MreB filaments organize elongation-specific peptidoglycan-synthesizing complexes along sidewalls. We used total internal reflection fluorescence microscopy to visualize the dynamic relation between MreB isoforms and cell wall synthesis in live Bacillus subtilis cells. During exponential growth, MreB proteins did not form helical structures. Instead, together with other morphogenetic factors, they assembled into discrete patches that moved processively along peripheral tracks perpendicular to the cell axis. Patch motility was largely powered by cell wall synthesis, and MreB polymers restricted diffusion of patch components in the membrane and oriented patch motion.

  13. Rapid kinetics of lysis in human natural cell-mediated cytotoxicity: some implications

    International Nuclear Information System (INIS)

    Bloom, E.T.; Babbitt, J.T.

    1983-01-01

    The entire lytic process of natural cell-mediated cytotoxicity against sensitive target cells can occur rapidly, within minutes. This was demonstrated by 51 chromium release and in single-cell assays. At the cellular level, most of the target cell lysis occurred within 15-30 min after binding to effector cells. The enriched natural killer cell subpopulation of lymphocytes obtained by Percoll density gradient centrifugation (containing greater than 70% large granular lymphocytes (LGL)) was the most rapidly lytic population by 51 chromium release. However, in the single-cell assay, the rate of lysis of bound target cells was quite similar for the LGL-enriched effector subpopulation and the higher density subpopulation of effector cells recognized previously. Both the light and dense effector cells contained similar numbers of target binding cells. Therefore, that the light subpopulation effected lysis more rapidly and to a greater extent than the dense subpopulation suggested that the low-density effector cells probably recycled more rapidly than those of higher density. This was corroborated by the finding that when conjugates were formed at 29 degrees C for the single-cell assay, a significant number of dead unconjugated targets could be observed only on the slides made with the LGL-enriched effector cells but not on those made with dense effector cell. Lysis continued to increase in the chromium-release assay probably because of recycling, recruitment, and/or heterogeneity of the effector cells, and/or because of heterogeneity or delayed death of the target cells

  14. Role of the SRRz/Rz1 lambdoid lysis cassette in the pathoadaptive evolution of Shigella.

    Science.gov (United States)

    Leuzzi, Adriano; Grossi, Milena; Di Martino, Maria Letizia; Pasqua, Martina; Micheli, Gioacchino; Colonna, Bianca; Prosseda, Gianni

    2017-06-01

    Shigella, the etiological agent of bacillary dysentery (shigellosis), is a highly adapted human pathogen. It evolved from an innocuous ancestor resembling the Escherichia coli strain by gain and loss of genes and functions. While the gain process concerns the acquisition of the genetic determinants of virulence, the loss is related to the adaptation of the genome to the new pathogenic status and occurs by pathoadaptive mutation of antivirulence genes. In this study, we highlight that the SRRz/Rz 1 lambdoid lysis cassette, even though stably adopted in E. coli K12 by virtue of its beneficial effect on cell physiology, has undergone a significant decay in Shigella. Moreover, we show the antivirulence nature of the SRRz/Rz 1 lysis cassette in Shigella. In fact, by restoring the SRRz/Rz 1 expression in this pathogen, we observe an increased release of peptidoglycan fragments, causing an unbalance in the fine control exerted by Shigella on host innate immunity and a mitigation of its virulence. This strongly affects the virulence of Shigella and allows to consider the loss of SRRz/Rz 1 lysis cassette as another pathoadaptive event in the life of Shigella. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Image processing for identification and quantification of filamentous bacteria in in situ acquired images.

    Science.gov (United States)

    Dias, Philipe A; Dunkel, Thiemo; Fajado, Diego A S; Gallegos, Erika de León; Denecke, Martin; Wiedemann, Philipp; Schneider, Fabio K; Suhr, Hajo

    2016-06-11

    In the activated sludge process, problems of filamentous bulking and foaming can occur due to overgrowth of certain filamentous bacteria. Nowadays, these microorganisms are typically monitored by means of light microscopy, commonly combined with staining techniques. As drawbacks, these methods are susceptible to human errors, subjectivity and limited by the use of discontinuous microscopy. The in situ microscope appears as a suitable tool for continuous monitoring of filamentous bacteria, providing real-time examination, automated analysis and eliminating sampling, preparation and transport of samples. In this context, a proper image processing algorithm is proposed for automated recognition and measurement of filamentous objects. This work introduces a method for real-time evaluation of images without any staining, phase-contrast or dilution techniques, differently from studies present in the literature. Moreover, we introduce an algorithm which estimates the total extended filament length based on geodesic distance calculation. For a period of twelve months, samples from an industrial activated sludge plant were weekly collected and imaged without any prior conditioning, replicating real environment conditions. Trends of filament growth rate-the most important parameter for decision making-are correctly identified. For reference images whose filaments were marked by specialists, the algorithm correctly recognized 72 % of the filaments pixels, with a false positive rate of at most 14 %. An average execution time of 0.7 s per image was achieved. Experiments have shown that the designed algorithm provided a suitable quantification of filaments when compared with human perception and standard methods. The algorithm's average execution time proved its suitability for being optimally mapped into a computational architecture to provide real-time monitoring.

  16. Isolation and Expression of the Lysis Genes of Actinomyces naeslundii Phage Av-1

    Science.gov (United States)

    Delisle, Allan L.; Barcak, Gerard J.; Guo, Ming

    2006-01-01

    Like most gram-positive oral bacteria, Actinomyces naeslundii is resistant to salivary lysozyme and to most other lytic enzymes. We are interested in studying the lysins of phages of this important oral bacterium as potential diagnostic and therapeutic agents. To identify the Actinomyces phage genes encoding these species-specific enzymes in Escherichia coli, we constructed a new cloning vector, pAD330, that can be used to enrich for and isolate phage holin genes, which are located adjacent to the lysin genes in most phage genomes. Cloned holin insert sequences were used to design sequencing primers to identify nearby lysin genes by using whole phage DNA as the template. From partial digestions of A. naeslundii phage Av-1 genomic DNA we were able to clone, in independent experiments, inserts that complemented the defective λ holin in pAD330, as evidenced by extensive lysis after thermal induction. The DNA sequence of the inserts in these plasmids revealed that both contained the complete lysis region of Av-1, which is comprised of two holin-like genes, designated holA and holB, and an endolysin gene, designated lysA. We were able to subclone and express these genes and determine some of the functional properties of their gene products. PMID:16461656

  17. A mathematical model for expected time to extinction of pathogenic bacteria through antibiotic

    Science.gov (United States)

    Ghosh, M. K.; Nandi, S.; Roy, P. K.

    2016-04-01

    Application of antibiotics in human system to prevent bacterial diseases like Gastritis, Ulcers, Meningitis, Pneumonia and Gonorrhea are indispensable. Antibiotics saved innumerable lives and continue to be a strong support for therapeutic application against pathogenic bacteria. In human system, bacterial diseases occur when pathogenic bacteria gets into the body and begin to reproduce and crowd out healthy bacteria. In this process, immature bacteria releases enzyme which is essential for bacterial cell-wall biosynthesis. After complete formation of cell wall, immature bacteria are converted to mature or virulent bacteria which are harmful to us during bacterial infections. Use of antibiotics as drug inhibits the bacterial cell wall formation. After application of antibiotics within body, the released bacterial enzyme binds with antibiotic molecule instead of its functional site during the cell wall synthesis in a competitive inhibition approach. As a consequence, the bacterial cell-wall formation as well as maturation process of pathogenic bacteria is halted and the disease is cured with lysis of bacterial cells. With this idea, a mathematical model has been developed in the present research investigation to review the inhibition of biosynthesis of bacterial cell wall by the application of antibiotics as drug in the light of enzyme kinetics. This approach helps to estimate the expected time to extinction of the pathogenic bacteria. Our mathematical approach based on the enzyme kinetic model for finding out expected time to extinction contributes favorable results for understanding of disease dynamics. Analytical and numerical results based on simulated findings validate our mathematical model.

  18. Performance and dye-degrading bacteria isolation of a hybrid membrane process

    Energy Technology Data Exchange (ETDEWEB)

    You, Sheng-Jie, E-mail: sjyou@cycu.edu.tw [Department of Bioenvironmental Engineering and R and D Center for Membrane Technology, Chung Yuan Christian University, No. 200, Rd. Chung-Pei, Chungli 320, Taiwan (China); Teng, Jun-Yu, E-mail: nickprometheus@yahoo.com.tw [Department of Civil Engineering, Chung Yuan Christian University, Chungli 320, Taiwan (China)

    2009-12-15

    Textile dyeing wastewater contains harmful compounds, which are toxic to both marine organisms and human beings if it discharged into an aquatic environmental without suitable treatment. In this study, the wastewater containing the azo dye, Reactive Black 5 (RB5), was partially treated in an anaerobic sequencing batch reactor which was further treated either in an aerobic membrane bioreactors (AOMBR) or in combined aerobic membrane bioreactor/reverse osmosis (AOMBR/RO) process. The results showed that in the anaerobic sequencing batch reactor the RB5 dye was degraded to form aromatic amine intermediate metabolites, which were further mineralized in the AOMBR. It was also observed that although all effluents from the AOMBR and AOMBR/RO processes met the Taiwan EPA's effluent criteria, irrespective of which membranes were used in the aerobic tank, the effluent from the AOMBR/RO process met the criteria for reuse for toilet flushing, landscaping, irrigation, and cooling water purposes, where as the AOMBR effluent only met the criteria for cooling water due to incomplete color removal. Five anaerobic high dye-degrading bacteria were isolated, which were identified to be the same species of Lactococcus lactis by 16S rRNA sequencing. The L. lactis showed complete degradation of RB5 and further studies showed that it can also able to degrade Reactive Red 120 and Reactive Yellow 84 efficiently within 6 h.

  19. Performance and dye-degrading bacteria isolation of a hybrid membrane process

    International Nuclear Information System (INIS)

    You, Sheng-Jie; Teng, Jun-Yu

    2009-01-01

    Textile dyeing wastewater contains harmful compounds, which are toxic to both marine organisms and human beings if it discharged into an aquatic environmental without suitable treatment. In this study, the wastewater containing the azo dye, Reactive Black 5 (RB5), was partially treated in an anaerobic sequencing batch reactor which was further treated either in an aerobic membrane bioreactors (AOMBR) or in combined aerobic membrane bioreactor/reverse osmosis (AOMBR/RO) process. The results showed that in the anaerobic sequencing batch reactor the RB5 dye was degraded to form aromatic amine intermediate metabolites, which were further mineralized in the AOMBR. It was also observed that although all effluents from the AOMBR and AOMBR/RO processes met the Taiwan EPA's effluent criteria, irrespective of which membranes were used in the aerobic tank, the effluent from the AOMBR/RO process met the criteria for reuse for toilet flushing, landscaping, irrigation, and cooling water purposes, where as the AOMBR effluent only met the criteria for cooling water due to incomplete color removal. Five anaerobic high dye-degrading bacteria were isolated, which were identified to be the same species of Lactococcus lactis by 16S rRNA sequencing. The L. lactis showed complete degradation of RB5 and further studies showed that it can also able to degrade Reactive Red 120 and Reactive Yellow 84 efficiently within 6 h.

  20. Process for Generation of Hydrogen Gas from Various Feedstocks Using Thermophilic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Ooteghem Van, Suellen

    2005-09-13

    A method for producing hydrogen gas is provided comprising selecting a bacteria from the Order Thermotogales, subjecting the bacteria to a feedstock and to a suitable growth environment having an oxygen concentration below the oxygen concentration of water in equilibrium with air; and maintaining the environment at a predetermined pH and at a temperature of at least approximately 45 degrees C. for a time sufficient to allow the bacteria to metabolize the feedstock.

  1. Inhibition of pneumococcal autolysis in lysis-centrifugation blood culture.

    OpenAIRE

    Lehtonen, O P

    1986-01-01

    The recovery of Streptococcus pneumoniae from the Isolator lysis-centrifugation blood culture has been low in many studies. The poor survival of pneumococci was not due to toxicity of the Isolator medium but to autolysis before plating. This autolysis was completely inhibited by adding 10 mM phosphorylcholine to the Isolator medium.

  2. The influence of protruding filamentous bacteria on floc stability and solid-liquid separation in the activated sludge process.

    Science.gov (United States)

    Burger, Wilhelm; Krysiak-Baltyn, Konrad; Scales, Peter J; Martin, Gregory J O; Stickland, Anthony D; Gras, Sally L

    2017-10-15

    Filamentous bacteria can impact on the physical properties of flocs in the activated sludge process assisting solid-liquid separation or inducing problems when bacteria are overabundant. While filamentous bacteria within the flocs are understood to increase floc tensile strength, the relationship between protruding external filaments, dewatering characteristics and floc stability is unclear. Here, a quantitative methodology was applied to determine the abundance of filamentous bacteria in activated sludge samples from four wastewater treatment plants. An automated image analysis procedure was applied to identify filaments and flocs and calculate the length of the protruding filamentous bacteria (PFB) relative to the floc size. The correlation between PFB and floc behavior was then assessed. Increased filament abundance was found to increase interphase drag on the settling flocs, as quantified by the hindered settling function. Additionally, increased filament abundance was correlated with a lower gel point concentration leading to poorer sludge compactability. The floc strength factor, defined as the relative change in floc size upon shearing, correlated positively with filament abundance. This influence of external protruding filamentous bacteria on floc stability is consistent with the filamentous backbone theory, where filamentous bacteria within flocs increase floc resistance to shear-induced breakup. A qualitative correlation was also observed between protruding and internal filamentous structure. This study confirms that filamentous bacteria are necessary to enhance floc stability but if excessively abundant will adversely affect solid-liquid separation. The tools developed here will allow quantitative analysis of filament abundance, which is an improvement on current qualitative methods and the improved method could be used to assist and optimize the operation of waste water treatment plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Synergies of carvacrol and 1,8-cineole to inhibit bacteria associated with minimally processed vegetables.

    Science.gov (United States)

    de Sousa, Jossana Pereira; de Azerêdo, Geíza Alves; de Araújo Torres, Rayanne; da Silva Vasconcelos, Margarida Angélica; da Conceição, Maria Lúcia; de Souza, Evandro Leite

    2012-03-15

    This study assessed the occurrence of an enhancing inhibitory effect of the combined application of carvacrol and 1,8-cineole against bacteria associated with minimally processed vegetables using the determination of Fractional Inhibitory Concentration (FIC) index, time-kill assay in vegetable broth and application in vegetable matrices. Their effects, individually and in combination, on the sensory characteristics of the vegetables were also determined. Carvacrol and 1,8-cineole displayed Minimum Inhibitory Concentration (MIC) in a range of 0.6-2.5 and 5-20 μL/mL, respectively, against the organisms studied. FIC indices of the combined application of the compounds were 0.25 against Listeria monocytogenes, Aeromonas hydrophila and Pseudomonas fluorescens, suggesting a synergic interaction. Application of carvacrol and 1,8-cineole alone (MIC) or in a mixture (1/8 MIC+1/8 MIC or 1/4 MIC+1/4 MIC) in vegetable broth caused a significant decrease (pvegetable broth and in experimentally inoculated fresh-cut vegetables. A similar efficacy was observed in the reduction of naturally occurring microorganisms in vegetables. Sensory evaluation revealed that the scores of the most-evaluated attributes fell between "like slightly" and "neither like nor dislike." The combination of carvacrol and 1,8-cineole at sub-inhibitory concentrations could constitute an interesting approach to sanitizing minimally processed vegetables. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Elimination of methane in exhaust gas from biogas upgrading process by immobilized methane-oxidizing bacteria.

    Science.gov (United States)

    Wu, Ya-Min; Yang, Jing; Fan, Xiao-Lei; Fu, Shan-Fei; Sun, Meng-Ting; Guo, Rong-Bo

    2017-05-01

    Biogas upgrading is essential for the comprehensive utilization of biogas as substitute of natural gas. However, the methane in the biogas can be fully recovered during the upgrading process of biogas, and the exhaust gas produced during biogas upgrading may contain a very low concentration of methane. If the exhaust gas with low concentration methane releases to atmosphere, it will be harmful to environment. In addition, the utilization of large amounts of digestate produced from biogas plant is another important issue for the development of biogas industry. In this study, solid digestate was used to produce active carbon, which was subsequently used as immobilized material for methane-oxidizing bacteria (MOB) in biofilter. Biofilter with MOB immobilized on active carbon was used to eliminate the methane in exhaust gas from biogas upgrading process. Results showed porous active carbon was successfully made from solid digestate. The final methane elimination capacity of immobilized MOB reached about 13molh -1 m -3 , which was more 4 times higher than that of MOB without immobilization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Tracking spore-forming bacteria in food: from natural biodiversity to selection by processes.

    Science.gov (United States)

    Postollec, Florence; Mathot, Anne-Gabrielle; Bernard, Muriel; Divanac'h, Marie-Laure; Pavan, Sonia; Sohier, Danièle

    2012-08-01

    Sporeforming bacteria are ubiquitous in the environment and exhibit a wide range of diversity leading to their natural prevalence in foodstuff. The state of the art of sporeformer prevalence in ingredients and food was investigated using a multiparametric PCR-based tool that enables simultaneous detection and identification of various genera and species mostly encountered in food, i.e., Alicyclobacillus, Anoxybacillus flavithermus, Bacillus, B. cereus group, B. licheniformis, B. pumilus, B. sporothermodurans, B. subtilis, Brevibacillus laterosporus, Clostridium, Geobacillus stearothermophilus, Moorella and Paenibacillus species. In addition, 16S rDNA sequencing was used to extend identification to other possibly present contaminants. A total of 90 food products, with or without visible trace of spoilage were analysed, i.e., 30 egg-based products, 30 milk and dairy products and 30 canned food and ingredients. Results indicated that most samples contained one or several of the targeted genera and species. For all three tested food categories, 30 to 40% of products were contaminated with both Bacillus and Clostridium. The percentage of contaminations associated with Clostridium or Bacillus represented 100% in raw materials, 72% in dehydrated ingredients and 80% in processed foods. In the last two product types, additional thermophilic contaminants were identified (A. flavithermus, Geobacillus spp., Thermoanaerobacterium spp. and Moorella spp.). These results suggest that selection, and therefore the observed (re)-emergence of unexpected sporeforming contaminants in food might be favoured by the use of given food ingredients and food processing technologies. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Phenols in anaerobic digestion processes and inhibition of ammonia oxidising bacteria (AOB) in soil

    International Nuclear Information System (INIS)

    Leven, Lotta; Nyberg, Karin; Korkea-aho, Lena; Schnuerer, Anna

    2006-01-01

    This study focuses on the presence of phenols in digestate from seven Swedish large-scale anaerobic digestion processes and their impact on the activity of ammonia oxidising bacteria (AOB) in soil. In addition, the importance of feedstock composition and phenol degradation capacity for the occurrence of phenols in the digestate was investigated in the same processes. The results revealed that the content of phenols in the digestate was related to the inhibition of the activity of AOB in soil (EC 5 = 26 μg phenols g -1 d.w. soil). In addition, five pure phenols (phenol, o-, p-, m-cresol and 4-ethylphenol) inhibited the AOB to a similar extent (EC 5 = 43-110 μg g -1 d.w. soil). The phenol content in the digestate was mainly dependent on the composition of the feedstock, but also to some extent by the degradation capacity in the anaerobic digestion process. Swine manure in the feedstock resulted in digestate containing higher amounts of phenols than digestate from reactors with less or no swine manure in the feedstock. The degradation capacity of phenol and p-cresol was studied in diluted small-scale batch cultures and revealed that anaerobic digestion at mesophilic temperatures generally exhibited a higher degradation capacity compared to digestion at thermophilic temperature. Although phenol, p-cresol and 4-ethylphenol were quickly degraded in soil, the phenols added with the digestate constitute an environmental risk according to the guideline values for contaminated soils set by the Swedish Environmental Protection Agency. In conclusion, the management of anaerobic digestion processes is of decisive importance for the production of digestate with low amounts of phenols, and thereby little risks for negative effects of the phenols on the soil ecosystem

  7. effect of natural blue-green algal cells lysis on freshwater quality

    African Journals Online (AJOL)

    Compaq

    released into water due to algal cells lysis was performed by placing samples in two ... Keywords; Algae, cells lysis, Fatty acids, gas chromatography time-of-flight mass spectrometry, water quality ... Factors such as municipal and industrial.

  8. Culture-independent detection of 'TM7' bacteria in a streptomycin-resistant acidophilic nitrifying process

    Energy Technology Data Exchange (ETDEWEB)

    Kurogi, T.; Linh, N. T. T.; Kuroki, T.; Yamada, T. [Department of Environmental and Life Science, Toyohashi University of Technology, Toyohashi 441-8580 (Japan); Hiraishi, A. [Department of Environmental and Life Science, Toyohashi University of Technology, Toyohashi 441-8580, Japan and Electronics-inspired Interdisciplinary Institute (EIIRIS), Toyohashi University of Technology, Toyohashi 441-8580 (Japan)

    2014-02-20

    Nitrification in biological wastewater treatment processes has been believed for long time to take place under neutral conditions and is inhibited under acidic conditions. However, we previously constructed acidophilic nitrifying sequencing-batch reactors (ANSBRs) being capable of nitrification at < pH 4 and harboring bacteria of the candidate phylum 'TM7' as the major constituents of the microbial community. In light of the fact that the 16S rRNA of TM7 bacteria has a highly atypical base substitution possibly responsible for resistance to streptomycin at the ribosome level, this study was undertaken to construct streptomycin-resistant acidophilic nitrifying (SRAN) reactors and to demonstrate whether TM7 bacteria are abundant in these reactors. The SRAN reactors were constructed by seeding with nitrifying sludge from an ANSBR and cultivating with ammonium-containing mineral medium (pH 4.0), to which streptomycin at a concentration of 10, 30 and 50 mg L{sup −1} was added. In all reactors, the pH varied between 2.7 and 4.0, and ammonium was completely converted to nitrate in every batch cycle. PCR-aided denaturing gradient gel electrophoresis (DGGE) targeting 16S rRNA genes revealed that some major clones assigned to TM7 bacteria and Gammaproteobacteria were constantly present during the overall period of operation. Fluorescence in situ hybridization (FISH) with specific oligonucleotide probes also showed that TM7 bacteria predominated in all SRAN reactors, accounting for 58% of the total bacterial population on average. Although the biological significance of the TM7 bacteria in the SRAN reactors are unknown, our results suggest that these bacteria are possibly streptomycin-resistant and play some important roles in the acidophilic nitrifying process.

  9. Sulfate reducing bacteria and their activities in oil sands process-affected water biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hong; Yu, Tong, E-mail: tong.yu@ualberta.ca; Liu, Yang, E-mail: yang.liu@ualberta.ca

    2015-12-01

    Biofilm reactors were constructed to grow stratified multispecies biofilm in oil sands process-affected water (OSPW) supplemented with growth medium. The development of sulfate reducing bacteria (SRB) within the biofilm and the biofilm treatment of OSPW were evaluated. The community structure and potential activity of SRB in the biofilm were investigated with H{sub 2}S microsensor measurements, dsrB gene-based denaturing gradient gel electrophoresis (DGGE), and the real time quantitative polymerase chain reaction (qPCR). Multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H{sub 2}S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the stratified biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. The study expands current knowledge of biofilm treatment of OSPW and the function of anaerobic SRB in OSPW biofilm, and thus provides information for future bioreactor development in the reclamation of OSPW. - Graphical abstract: The development of sulfate reducing bacteria (SRB) within Oil Sands Process-affected Water (OSPW) biofilm and the biofilm treatment of OSPW were evaluated by Liu and coworkers. Combined microsensor and molecular biology techniques were utilized in this study. Their results demonstrated that multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H{sub 2}S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. - Highlights: • Biofilm in oil sands wastewater was developed on engineered biocarriers. • Bacterial community and in situ activity of SRB were studied in the

  10. Sulfate reducing bacteria and their activities in oil sands process-affected water biofilm

    International Nuclear Information System (INIS)

    Liu, Hong; Yu, Tong; Liu, Yang

    2015-01-01

    Biofilm reactors were constructed to grow stratified multispecies biofilm in oil sands process-affected water (OSPW) supplemented with growth medium. The development of sulfate reducing bacteria (SRB) within the biofilm and the biofilm treatment of OSPW were evaluated. The community structure and potential activity of SRB in the biofilm were investigated with H 2 S microsensor measurements, dsrB gene-based denaturing gradient gel electrophoresis (DGGE), and the real time quantitative polymerase chain reaction (qPCR). Multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H 2 S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the stratified biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. The study expands current knowledge of biofilm treatment of OSPW and the function of anaerobic SRB in OSPW biofilm, and thus provides information for future bioreactor development in the reclamation of OSPW. - Graphical abstract: The development of sulfate reducing bacteria (SRB) within Oil Sands Process-affected Water (OSPW) biofilm and the biofilm treatment of OSPW were evaluated by Liu and coworkers. Combined microsensor and molecular biology techniques were utilized in this study. Their results demonstrated that multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H 2 S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. - Highlights: • Biofilm in oil sands wastewater was developed on engineered biocarriers. • Bacterial community and in situ activity of SRB were studied in the biofilm.

  11. THE STUDY OF DIRECTED FERMENTATION PROCESS USING STRAINS OF LACTIC ACID BACTERIA FOR OBTAINING VEGETABLE PRODUCTS OF STABLE QUALITY

    Directory of Open Access Journals (Sweden)

    V. V. Kondratenko

    2016-01-01

    Full Text Available The objective of the research was to study the process of directed fermentation of whitehead cabbage variety ‘Slava’, using strains of lactic acid bacteria and their consortium with the degree of their mutual influence. As strains of lactic acid bacteria, we have chosen the following: VCR 536 Lactobacillus casei, Lactobacillus plantarum VKM V-578. To obtain comparable results, all experiments were performed on model mediums. For the first time we studied the dynamics of changes in quality indicators at the process of directed fermentation using strains of lactic acid bacteria (LAB including their consortiums. The mathematical model developed adequately describes the degree of destruction of glucose and fructose in the fermentation process. The raw material was undergone to homogenization and sterilization with the aim to create optimal conditionsfor the development of the target microorganisms and to detect the degree of  restruction of fructose and glucose by different strains of microorganisms. The mathematical model developed adequately described the degree of destruction of fructose and glucose in the treatment process. The use of a consortium of lactic acid bacteria (L. plantarum+L. casei to this culture medium is shown to be impractical. The addition of fructose in quantity 0.5% to weight of the model medium enabled to intensify significantly the process of white cabbage fermentation.

  12. Interspecies interactions result in enhanced biofilm formation by co-cultures of bacteria isolated from a food processing environment

    DEFF Research Database (Denmark)

    Røder, Henriette Lyng; Raghupathi, Prem Krishnan; Herschend, Jakob

    2015-01-01

    Bacterial attachment and biofilm formation can lead to poor hygienic conditions in food processing environments. Furthermore, interactions between different bacteria may induce or promote biofilm formation. In this study, we isolated and identified a total of 687 bacterial strains from seven......-culture biofilm production with high relevance for food safety and food production facilities....

  13. Streptomyces lunalinharesii Strain 235 Shows the Potential to Inhibit Bacteria Involved in Biocorrosion Processes

    OpenAIRE

    Pacheco da Rosa, Juliana; Korenblum, Elisa; Franco-Cirigliano, Marcella Novaes; Abreu, Fernanda; Lins, Ulysses; Soares, Rosângela M. A.; Macrae, Andrew; Seldin, Lucy; Coelho, Rosalie R. R.

    2013-01-01

    Four actinomycete strains previously isolated from Brazilian soils were tested for their antimicrobial activity against Bacillus pumilus LF-4 and Desulfovibrio alaskensis NCIMB 13491, bacteria that are well known to be involved in biofilm formation and biocorrosion. Strain 235, belonging to the species Streptomyces lunalinharesii, inhibited the growth of both bacteria. The antimicrobial activity was seen over a wide range of pH, and after treatment with several chemicals and heat but not with...

  14. Surgical treatment of bilateral nondisplaced isthmic lysis by interlaminar fixation device

    Directory of Open Access Journals (Sweden)

    Keyvan Mostofi

    2017-01-01

    Full Text Available Study Design: Spondylolysis is a defect in the portion of pars interarticularis. The latter affects approximately 6% of the population. It is caused by repetitive trauma in hyperextension. Low back pain is the most common symptom. Methods: We implanted interspinous process devices in 12 patients with isthmic lysis without spondylolisthesis for low back pain. The purpose of the surgery was to conduct a minimally invasive procedure. Results: In eight cases, patients became asymptomatic. In two cases, there has been a considerable improvement. In two cases, no change had been noted. Conclusion: This good result motivates us to consider this approach a part of therapeutic arsenal for some cases of spondylolysis.

  15. Increased production of outer membrane vesicles by cultured freshwater bacteria in response to ultraviolet radiation.

    Science.gov (United States)

    Gamalier, Juliana P; Silva, Thiago P; Zarantonello, Victor; Dias, Felipe F; Melo, Rossana C N

    2017-01-01

    Secretion of membrane vesicles is an important biological process of both eukaryotic and prokaryotic cells. This process has been characterized in pathogenic bacteria, but is less clear in non-pathogenic bacteria from aquatic ecosystems. Here, we investigated, for the first time, the process of formation of outer membranes vesicles (OMVs), nanoscale vesicles extruded from the outer membrane (OM) of gram-negative bacteria, in cultures of freshwater bacteria after exposure or not to ultraviolet radiation (UVR) as an environmental stressor. Non-axenic cultures of freshwater bacteria isolated from a Brazilian aquatic ecosystem (Funil reservoir) were exposed or not to UVR (UVA+UVB) over a 3h period, during which cell density, viability and ultrastructure were analyzed. First, we showed that UVR induce bacterial death. UVR triggered significant negative effect on cell density after 3h of UVR treatment. This decrease was directly associated with cell death as revealed by a cell viability fluorescent probe that enables the distinction of live/dead bacteria. Transmission electron microscopy (TEM) revealed changes indicative of cell death after 3h of UVR exposure, with significant increase of damaged cells compared to the control group. Second, we demonstrated that gram-negative bacteria release OMVs during normal growth and after UVR exposure. OMVs were clearly identified as round, membrane-bound vesicles budding off from the bacterial OM as isolated or clustered vesicles or free in the extracellular medium. Remarkably, quantitative TEM analyses showed that bacteria respond to UVR with increased formation of OMVs. Moreover, while OMVs numbers per intact or damaged cell did not differ in the untreated group, UVR led to a higher vesiculation by bacteria in process of death. This means that degenerating bacteria release OMVs before lysis and that this secretion might be an adaptive/protective response to rapid changes in environmental conditions such as UV radiation. Copyright

  16. Dark membrane lysis and photosensitization by 3-carbethoxypsoralen

    Energy Technology Data Exchange (ETDEWEB)

    Muller-Runkel, R.; Grossweiner, L.I. (Illinois Inst. of Tech., Chicago (USA). Dept. of Physics)

    1981-03-01

    Aqueous solutions of 3-carbethoxypsoralen (3-CPs) induced lysis of egg lecithin liposomes and whole human erythrocytes in the dark. Near-UV irradiation of 3-CPs sensitized the inactivation of lysozyme attributed to the production of reactive radical intermediates. The implications of these findings for the use of 3-CPs as a sensitizer in psoralen + UV-A (PUVA) therapy of psoriasis are discussed.

  17. Dark membrane lysis and photosensitization by 3-carbethoxypsoralen

    International Nuclear Information System (INIS)

    Muller-Runkel, R.; Grossweiner, L.I.

    1981-01-01

    Aqueous solutions of 3-carbethoxypsoralen (3-CPs) induced lysis of egg lecithin liposomes and whole human erythrocytes in the dark. Near-UV irradiation of 3-CPs sensitized the inactivation of lysozyme attributed to the production of reactive radical intermediates. The implications of these findings for the use of 3-CPs as a sensitizer in psoralen + UV-A (PUVA) therapy of psoriasis are discussed. (author)

  18. Sulfur-oxidizing bacteria dominate the microbial diversity shift during the pyrite and low-grade pyrolusite bioleaching process.

    Science.gov (United States)

    Han, Yifan; Ma, Xiaomei; Zhao, Wei; Chang, Yunkang; Zhang, Xiaoxia; Wang, Xingbiao; Wang, Jingjing; Huang, Zhiyong

    2013-10-01

    The microbial ecology of the pyrite-pyrolusite bioleaching system and its interaction with ore has not been well-described. A 16S rRNA gene clone library was created to evaluate changes in the microbial community at different stages of the pyrite-pyrolusite bioleaching process in a shaken flask. The results revealed that the bacterial community was disturbed after 5 days of the reaction. Phylogenetic analysis of 16S rRNA sequences demonstrated that the predominant microorganisms were members of a genus of sulfur-oxidizing bacteria, Thiomonas sp., that subsequently remained dominant during the bioleaching process. Compared with iron-oxidizing bacteria, sulfur-oxidizing bacteria were more favorable to the pyrite-pyrolusite bioleaching system. Decreased pH due to microbial acid production was an important condition for bioleaching efficiency. Iron-oxidizing bacteria competed for pyrite reduction power with Mn(IV) in pyrolusite under specific conditions. These results extend our knowledge of microbial dynamics during pyrite-pyrolusite bioleaching, which is a key issue to improve commercial applications. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Microbial impact on metallic corrosion processes: case of iron reducing bacteria

    International Nuclear Information System (INIS)

    Esnault, Loic; Jullien, Michel; Libert, Marie; Mustin, Christian

    2010-01-01

    corrosion product alteration, magnetite and hematite mainly (c). For that, an optimised method of H2 measure at weak pressure has been realised by gaseous phase chromatography coupled with a sensitive pressure captor. - H 2 + Fe 3+ magnetite → Fe 2+ solution + 2H + (c) The interest of this study is to determine and to understand the reactivity of one model microbe species, the ferric-reducing bacterium 'Schewanella oneidensis strain MR-1', on a Fe(0) corrosion and these corrosion products (magnetite, hematite mainly) in presence or not of clay minerals (bentonite MX80). The introduction of short-term experiments in the scattered environment (batch) over reactivity Iron-bacteria with or without clay mineral is here studied through a kinetic study of H 2 bio-consumed or product, chemical analysis in solution, and by use a crystallo-chemistry tool (XRD and SEM). The main results are bio-alteration of corrosion products with development of ferri-reducing bacterial community. This microbial alteration entails an increase of aqueous corrosion by consumption of corrosion products (passivation layer). In such condition, corrosion process could be reactivated. (authors)

  20. Characterization of probiotic bacteria involved in fermented milk processing enriched with folic acid.

    Science.gov (United States)

    Wu, Zhen; Wu, Jing; Cao, Pei; Jin, Yifeng; Pan, Daodong; Zeng, Xiaoqun; Guo, Yuxing

    2017-06-01

    Yogurt products fermented with probiotic bacteria are a consumer trend and a challenge for functional food development. So far, limited research has focused on the behavior of the various probiotic strains used in milk fermentation. In the present study, we characterized folic acid production and the sensory and textural characteristics of yogurt products fermented with probiotic bacteria. Yogurt fermented with Lactobacillus plantarum had improved nutrient content and sensory and textural characteristics, but the presence of L. plantarum significantly impaired the growth and survival of Lactobacillus delbrueckii ssp. bulgaricus during refrigerated storage. Overall, L. plantarum was a good candidate for probiotic yogurt fermentation; further studies are needed to understand the major metabolite path of lactic acid bacteria in complex fermentation. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Evaluation of three sample preparation methods for the direct identification of bacteria in positive blood cultures by MALDI-TOF

    OpenAIRE

    Tanner, Hannah; Evans, Jason T.; Gossain, Savita; Hussain, Abid

    2017-01-01

    Background Patient mortality is significantly reduced by rapid identification of bacteria from sterile sites. MALDI-TOF can identify bacteria directly from positive blood cultures and multiple sample preparation methods are available. We evaluated three sample preparation methods and two MALDI-TOF score cut-off values. Positive blood culture bottles with organisms present in Gram stains were prospectively analysed by MALDI-TOF. Three lysis reagents (Saponin, SDS, and SepsiTyper lysis bufer) w...

  2. Information processing in bacteria: memory, computation, and statistical physics: a key issues review

    International Nuclear Information System (INIS)

    Lan, Ganhui; Tu, Yuhai

    2016-01-01

    preserving information, it does not reveal the underlying mechanism that leads to the observed input-output relationship, nor does it tell us much about which information is important for the organism and how biological systems use information to carry out specific functions. To do that, we need to develop models of the biological machineries, e.g. biochemical networks and neural networks, to understand the dynamics of biological information processes. This is a much more difficult task. It requires deep knowledge of the underlying biological network—the main players (nodes) and their interactions (links)—in sufficient detail to build a model with predictive power, as well as quantitative input-output measurements of the system under different perturbations (both genetic variations and different external conditions) to test the model predictions to guide further development of the model. Due to the recent growth of biological knowledge thanks in part to high throughput methods (sequencing, gene expression microarray, etc) and development of quantitative in vivo techniques such as various florescence technology, these requirements are starting to be realized in different biological systems. The possible close interaction between quantitative experimentation and theoretical modeling has made systems biology an attractive field for physicists interested in quantitative biology. In this review, we describe some of the recent work in developing a quantitative predictive model of bacterial chemotaxis, which can be considered as the hydrogen atom of systems biology. Using statistical physics approaches, such as the Ising model and Langevin equation, we study how bacteria, such as E. coli, sense and amplify external signals, how they keep a working memory of the stimuli, and how they use these data to compute the chemical gradient. In particular, we will describe how E. coli cells avoid cross-talk in a heterogeneous receptor cluster to keep a ligand-specific memory. We will also

  3. Information processing in bacteria: memory, computation, and statistical physics: a key issues review

    Science.gov (United States)

    Lan, Ganhui; Tu, Yuhai

    2016-05-01

    preserving information, it does not reveal the underlying mechanism that leads to the observed input-output relationship, nor does it tell us much about which information is important for the organism and how biological systems use information to carry out specific functions. To do that, we need to develop models of the biological machineries, e.g. biochemical networks and neural networks, to understand the dynamics of biological information processes. This is a much more difficult task. It requires deep knowledge of the underlying biological network—the main players (nodes) and their interactions (links)—in sufficient detail to build a model with predictive power, as well as quantitative input-output measurements of the system under different perturbations (both genetic variations and different external conditions) to test the model predictions to guide further development of the model. Due to the recent growth of biological knowledge thanks in part to high throughput methods (sequencing, gene expression microarray, etc) and development of quantitative in vivo techniques such as various florescence technology, these requirements are starting to be realized in different biological systems. The possible close interaction between quantitative experimentation and theoretical modeling has made systems biology an attractive field for physicists interested in quantitative biology. In this review, we describe some of the recent work in developing a quantitative predictive model of bacterial chemotaxis, which can be considered as the hydrogen atom of systems biology. Using statistical physics approaches, such as the Ising model and Langevin equation, we study how bacteria, such as E. coli, sense and amplify external signals, how they keep a working memory of the stimuli, and how they use these data to compute the chemical gradient. In particular, we will describe how E. coli cells avoid cross-talk in a heterogeneous receptor cluster to keep a ligand-specific memory. We will also

  4. Information processing in bacteria: memory, computation, and statistical physics: a key issues review.

    Science.gov (United States)

    Lan, Ganhui; Tu, Yuhai

    2016-05-01

    preserving information, it does not reveal the underlying mechanism that leads to the observed input-output relationship, nor does it tell us much about which information is important for the organism and how biological systems use information to carry out specific functions. To do that, we need to develop models of the biological machineries, e.g. biochemical networks and neural networks, to understand the dynamics of biological information processes. This is a much more difficult task. It requires deep knowledge of the underlying biological network-the main players (nodes) and their interactions (links)-in sufficient detail to build a model with predictive power, as well as quantitative input-output measurements of the system under different perturbations (both genetic variations and different external conditions) to test the model predictions to guide further development of the model. Due to the recent growth of biological knowledge thanks in part to high throughput methods (sequencing, gene expression microarray, etc) and development of quantitative in vivo techniques such as various florescence technology, these requirements are starting to be realized in different biological systems. The possible close interaction between quantitative experimentation and theoretical modeling has made systems biology an attractive field for physicists interested in quantitative biology. In this review, we describe some of the recent work in developing a quantitative predictive model of bacterial chemotaxis, which can be considered as the hydrogen atom of systems biology. Using statistical physics approaches, such as the Ising model and Langevin equation, we study how bacteria, such as E. coli, sense and amplify external signals, how they keep a working memory of the stimuli, and how they use these data to compute the chemical gradient. In particular, we will describe how E. coli cells avoid cross-talk in a heterogeneous receptor cluster to keep a ligand-specific memory. We will also

  5. Mortality of fecal bacteria in seawater

    International Nuclear Information System (INIS)

    Garcia-Lara, J.; Menon, P.; Servais, P.; Billen, G.

    1991-01-01

    The authors propose a method for determining the mortality rate for allochthonous bacteria released in aquatic environments without interference due to the loss of culturability in specific culture media. This method consists of following the disappearance of radioactivity from the trichloracetic acid-insoluble fraction in water samples to which [ 3 H]thymidine-prelabeled allochthonous bacteria have been added. In coastal seawater, they found that the actual rate of disappearance of fecal bacteria was 1 order of magnitude lower than the rate of loss of culturability on specific media. Minor adaptation of the procedure may facilitate assessment of the effect of protozoan grazing and bacteriophage lysis on the overall bacterial mortality rate

  6. Impaired respiration elicits SrrAB-dependent programmed cell lysis and biofilm formation in Staphylococcus aureus

    Science.gov (United States)

    Mashruwala, Ameya A; van de Guchte, Adriana; Boyd, Jeffrey M

    2017-01-01

    Biofilms are communities of microorganisms attached to a surface or each other. Biofilm-associated cells are the etiologic agents of recurrent Staphylococcus aureus infections. Infected human tissues are hypoxic or anoxic. S. aureus increases biofilm formation in response to hypoxia, but how this occurs is unknown. In the current study we report that oxygen influences biofilm formation in its capacity as a terminal electron acceptor for cellular respiration. Genetic, physiological, or chemical inhibition of respiratory processes elicited increased biofilm formation. Impaired respiration led to increased cell lysis via divergent regulation of two processes: increased expression of the AtlA murein hydrolase and decreased expression of wall-teichoic acids. The AltA-dependent release of cytosolic DNA contributed to increased biofilm formation. Further, cell lysis and biofilm formation were governed by the SrrAB two-component regulatory system. Data presented support a model wherein SrrAB-dependent biofilm formation occurs in response to the accumulation of reduced menaquinone. DOI: http://dx.doi.org/10.7554/eLife.23845.001 PMID:28221135

  7. Reduction of aerobic and lactic acid bacteria in dairy desludge using an integrated compressed CO2 and ultrasonic process.

    Science.gov (United States)

    Overton, Tim W; Lu, Tiejun; Bains, Narinder; Leeke, Gary A

    Current treatment routes are not suitable to reduce and stabilise bacterial content in some dairy process streams such as separator and bactofuge desludges which currently present a major emission problem faced by dairy producers. In this study, a novel method for the processing of desludge was developed. The new method, elevated pressure sonication (EPS), uses a combination of low frequency ultrasound (20 kHz) and elevated CO 2 pressure (50 to 100 bar). Process conditions (pressure, sonicator power, processing time) were optimised for batch and continuous EPS processes to reduce viable numbers of aerobic and lactic acid bacteria in bactofuge desludge by ≥3-log fold. Coagulation of proteins present in the desludge also occurred, causing separation of solid (curd) and liquid (whey) fractions. The proposed process offers a 10-fold reduction in energy compared to high temperature short time (HTST) treatment of milk.

  8. Self-bioremediation of cork-processing wastewaters by (chloro)phenol-degrading bacteria immobilised onto residual cork particles.

    Science.gov (United States)

    del Castillo, I; Hernández, P; Lafuente, A; Rodríguez-Llorente, I D; Caviedes, M A; Pajuelo, E

    2012-04-15

    Cork manufacturing is a traditional industry in Southern Europe, being the main application of this natural product in wine stoppers and insulation. Cork processing begins at boiling the raw material. As a consequence, great volumes of dark wastewaters, with elevated concentrations of chlorophenols, are generated, which must be depurated through costly physicochemical procedures before discarding them into public water courses. This work explores the potential of bacteria, isolated from cork-boiling waters storage ponds, in bioremediation of the same effluent. The bacterial population present in cork-processing wastewaters was analysed by DGGE; low bacterial biodiversity was found. Aerobic bacteria were isolated and investigated for their tolerance against phenol and two chlorophenols. The most tolerant strains were identified by sequencing 16S rDNA. The phenol-degrading capacity was investigated by determining enzyme activities of the phenol-degrading pathway. Moreover, the capacity to form biofilms was analysed in a microtitre plate assay. Finally, the capacity to form biofilms onto the surface of residual small cork particles was evaluated by acridine staining followed by epifluorescence microscopy and by SEM. A low-cost bioremediation system, using phenol-degrading bacteria immobilised onto residual cork particles (a by-product of the industry) is proposed for the remediation of this industrial effluent (self-bioremediation). Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Aggregate Formation During the Viral Lysis of a Marine Diatom

    Directory of Open Access Journals (Sweden)

    Yosuke Yamada

    2018-05-01

    Full Text Available Recent studies have suggested that the viral lysis of microbes not only facilitates the conversion of particulate organic matter into dissolved organic matter, but also promotes the formation of organic aggregates, which enhance the export of organic carbon from the surface ocean to the deep sea. However, experimental data supporting this proposition are limited. Here, we tested the hypothesis that the viral infection of marine diatoms enhances aggregate formation. We used a model system consisting of Chaetoceros tenuissimus, a bloom-forming diatom with an approximate cell size of 3–10 μm, and a DNA virus, CtenDNAV type II, which replicates in the nucleus of C. tenuissimus. The volume of large particles (50–400 μm in equivalent spherical diameters, determined from photographic images was measured over time (up to 15 days in the diatom-alone control and a virus-added diatom culture. We also determined the concentrations of Coomassie-stainable particles (CSP, proteinaceous particles and transparent exopolymeric particles (TEP, acid-polysaccharide-rich particles with colorimetric methods. The total volume of large particles was significantly higher (5–59 fold in the virus-added diatoms than in the diatom-alone control during the period in which the viral lysis of the diatoms proceeded. One class of large particles produced in the virus-added diatoms was flake-shaped. The flakes were tightly packed and dense, and sank rapidly, possibly playing an important role in the vertical delivery of materials from the surface to the deep sea. The bulk CSP concentrations tended to be higher in the virus-added diatoms than in the diatom-alone control, whereas the reverse was true for the TEP. These results suggest that proteinaceous polymers are involved in aggregate formation. Our data support the emerging notion that the viral lysis of microbes facilitates aggregate formation and the export of organic carbon in the ocean.

  10. A novel clot lysis assay for recombinant plasminogen activator.

    Science.gov (United States)

    Jamialahmadi, Oveis; Fazeli, Ahmad; Hashemi-Najafabadi, Sameereh; Fazeli, Mohammad Reza

    2015-03-01

    Recombinant plasminogen activator (r-PA, reteplase) is an engineered variant of alteplase. When expressed in E. coli, it appears as inclusion bodies that require refolding to recover its biological activity. An important step following refolding is to determine the activity of refolded protein. Current methods for enzymatic activity of thrombolytic drugs are costly and complex. Here a straightforward and low-cost clot lysis assay was developed. It quantitatively measures the activity of the commercial reteplase and is also capable of screening refolding conditions. As evidence for adequate accuracy and sensitivity of the current assay, r-PA activity measurements are shown to be comparable to those obtained from chromogenic substrate assay.

  11. Differentiation in the microbial ecology and activity of suspended and attached bacteria in a nitritation-anammox process.

    Science.gov (United States)

    Park, Hongkeun; Sundar, Suneethi; Ma, Yiwei; Chandran, Kartik

    2015-02-01

    A directed differentiation between the biofilm and suspension was observed in the molecular microbial ecology and gene expression of different bacteria in a biofilm nitritation-anammox process operated at varying hydraulic residence times (HRT) and nitrogen loading rates (NLR). The highest degree of enrichment observed in the biofilm was of anaerobic ammonia-oxidizing bacteria (AMX) followed by that of Nitrospira spp. related nitrite-oxidizing bacteria (NOB). For AMX, a major shift from Candidatus "Brocadia fulgida" to Candidatus "Kuenenia stuttgartiensis" in both suspension and biofilm was observed with progressively shorter HRT, using discriminatory biomarkers targeting the hydrazine synthase (hzsA) gene. In parallel, expression of the hydrazine oxidoreductase gene (hzo), a functional biomarker for AMX energy metabolism, became progressively prominent in the biofilm. A marginal but statistically significant enrichment in the biofilm was observed for Nitrosomonas europaea related ammonia-oxidizing bacteria (AOB). In direct contrast to AMX, the gene expression of ammonia monooxygenase subunit A (amoA), a functional biomarker for AOB energy metabolism, progressively increased in suspension. Using gene expression and biomass concentration measures in conjunction, it was determined that signatures of AOB metabolism were primarily present in the biofilm throughout the study. On the other hand, AMX metabolism gradually shifted from being uniformly distributed in both the biofilm and suspension to primarily the biofilm at shorter HRTs and higher NLRs. These results therefore highlight the complexity and key differences in the microbial ecology, gene expression and activity between the biofilm and suspension of a nitritation-anammox process and the biokinetic and metabolic drivers for such niche segregation. © 2014 Wiley Periodicals, Inc.

  12. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria.

    Science.gov (United States)

    Sand, Wolfgang; Gehrke, Tilman

    2006-01-01

    Extracellular polymeric substances seem to play a pivotal role in biocorrosion of metals and bioleaching, biocorrosion of metal sulfides for the winning of precious metals as well as acid rock drainage. For better control of both processes, the structure and function of extracellular polymeric substances of corrosion-causing or leaching bacteria are of crucial importance. Our research focused on the extremophilic bacteria Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, because of the "simplicity" and knowledge about the interactions of these bacteria with their substrate/substratum and their environment. For this purpose, the composition of the corresponding extracellular polymeric substances and their functions were analyzed. The extracellular polymeric substances of both species consist mainly of neutral sugars and lipids. The functions of the exopolymers seem to be: (i) to mediate attachment to a (metal) sulfide surface, and (ii) to concentrate iron(III) ions by complexation through uronic acids or other residues at the mineral surface, thus, allowing an oxidative attack on the sulfide. Consequently, dissolution of the metal sulfide is enhanced, which may result in an acceleration of 20- to 100-fold of the bioleaching process over chemical leaching. Experiments were performed to elucidate the importance of the iron(III) ions complexed by extracellular polymeric substances for strain-specific differences in oxidative activity for pyrite. Strains of A. ferrooxidans with a high amount of iron(III) ions in their extracellular polymeric substances possess greater oxidation activity than those with fewer iron(III) ions. These data provide insight into the function of and consequently the advantages that extracellular polymeric substances provide to bacteria. The role of extracellular polymeric substances for attachment under the conditions of a space station and resulting effects like biofouling, biocorrosion, malodorous gases, etc. will be discussed.

  13. Evaluation of Lysis Methods for the Extraction of Bacterial DNA for Analysis of the Vaginal Microbiota.

    Directory of Open Access Journals (Sweden)

    Christina Gill

    Full Text Available Recent studies on the vaginal microbiota have employed molecular techniques such as 16S rRNA gene sequencing to describe the bacterial community as a whole. These techniques require the lysis of bacterial cells to release DNA before purification and PCR amplification of the 16S rRNA gene. Currently, methods for the lysis of bacterial cells are not standardised and there is potential for introducing bias into the results if some bacterial species are lysed less efficiently than others. This study aimed to compare the results of vaginal microbiota profiling using four different pretreatment methods for the lysis of bacterial samples (30 min of lysis with lysozyme, 16 hours of lysis with lysozyme, 60 min of lysis with a mixture of lysozyme, mutanolysin and lysostaphin and 30 min of lysis with lysozyme followed by bead beating prior to chemical and enzyme-based DNA extraction with a commercial kit.After extraction, DNA yield did not significantly differ between methods with the exception of lysis with lysozyme combined with bead beating which produced significantly lower yields when compared to lysis with the enzyme cocktail or 30 min lysis with lysozyme only. However, this did not result in a statistically significant difference in the observed alpha diversity of samples. The beta diversity (Bray-Curtis dissimilarity between different lysis methods was statistically significantly different, but this difference was small compared to differences between samples, and did not affect the grouping of samples with similar vaginal bacterial community structure by hierarchical clustering.An understanding of how laboratory methods affect the results of microbiota studies is vital in order to accurately interpret the results and make valid comparisons between studies. Our results indicate that the choice of lysis method does not prevent the detection of effects relating to the type of vaginal bacterial community one of the main outcome measures of

  14. Evaluation of Lysis Methods for the Extraction of Bacterial DNA for Analysis of the Vaginal Microbiota.

    Science.gov (United States)

    Gill, Christina; van de Wijgert, Janneke H H M; Blow, Frances; Darby, Alistair C

    2016-01-01

    Recent studies on the vaginal microbiota have employed molecular techniques such as 16S rRNA gene sequencing to describe the bacterial community as a whole. These techniques require the lysis of bacterial cells to release DNA before purification and PCR amplification of the 16S rRNA gene. Currently, methods for the lysis of bacterial cells are not standardised and there is potential for introducing bias into the results if some bacterial species are lysed less efficiently than others. This study aimed to compare the results of vaginal microbiota profiling using four different pretreatment methods for the lysis of bacterial samples (30 min of lysis with lysozyme, 16 hours of lysis with lysozyme, 60 min of lysis with a mixture of lysozyme, mutanolysin and lysostaphin and 30 min of lysis with lysozyme followed by bead beating) prior to chemical and enzyme-based DNA extraction with a commercial kit. After extraction, DNA yield did not significantly differ between methods with the exception of lysis with lysozyme combined with bead beating which produced significantly lower yields when compared to lysis with the enzyme cocktail or 30 min lysis with lysozyme only. However, this did not result in a statistically significant difference in the observed alpha diversity of samples. The beta diversity (Bray-Curtis dissimilarity) between different lysis methods was statistically significantly different, but this difference was small compared to differences between samples, and did not affect the grouping of samples with similar vaginal bacterial community structure by hierarchical clustering. An understanding of how laboratory methods affect the results of microbiota studies is vital in order to accurately interpret the results and make valid comparisons between studies. Our results indicate that the choice of lysis method does not prevent the detection of effects relating to the type of vaginal bacterial community one of the main outcome measures of epidemiological studies

  15. Bacteria and archaea communities in full-scale thermophilic and mesophilic anaerobic digesters treating food wastewater: Key process parameters and microbial indicators of process instability.

    Science.gov (United States)

    Lee, Joonyeob; Shin, Seung Gu; Han, Gyuseong; Koo, Taewoan; Hwang, Seokhwan

    2017-12-01

    In this study, four different mesophilic and thermophilic full-scale anaerobic digesters treating food wastewater (FWW) were monitored for 1-2years in order to investigate: 1) microbial communities underpinning anaerobic digestion of FWW, 2) significant factors shaping microbial community structures, and 3) potential microbial indicators of process instability. Twenty-seven bacterial genera were identified as abundant bacteria underpinning the anaerobic digestion of FWW. Methanosaeta harundinacea, M. concilii, Methanoculleus bourgensis, M. thermophilus, and Methanobacterium beijingense were revealed as dominant methanogens. Bacterial community structures were clearly differentiated by digesters; archaeal community structures of each digester were dominated by one or two methanogen species. Temperature, ammonia, propionate, Na + , and acetate in the digester were significant factors shaping microbial community structures. The total microbial populations, microbial diversity, and specific bacteria genera showed potential as indicators of process instability in the anaerobic digestion of FWW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Anaerobic bacteria

    Science.gov (United States)

    Anaerobic bacteria are bacteria that do not live or grow when oxygen is present. In humans, these bacteria ... Brook I. Diseases caused by non-spore-forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman-Cecil ...

  17. Culture-free, highly sensitive, quantitative detection of bacteria from minimally processed samples using fluorescence imaging by smartphone.

    Science.gov (United States)

    Shrivastava, Sajal; Lee, Won-Il; Lee, Nae-Eung

    2018-06-30

    A critical unmet need in the diagnosis of bacterial infections, which remain a major cause of human morbidity and mortality, is the detection of scarce bacterial pathogens in a variety of samples in a rapid and quantitative manner. Herein, we demonstrate smartphone-based detection of Staphylococcus aureus in a culture-free, rapid, quantitative manner from minimally processed liquid samples using aptamer-functionalized fluorescent magnetic nanoparticles. The tagged S. aureus cells were magnetically captured in a detection cassette, and then fluorescence was imaged using a smartphone camera with a light-emitting diode as the excitation source. Our results showed quantitative detection capability with a minimum detectable concentration as low as 10 cfu/ml by counting individual bacteria cells, efficiently capturing S. aureus cells directly from a peanut milk sample within 10 min. When the selectivity of detection was investigated using samples spiked with other pathogenic bacteria, no significant non-specific detection occurred. Furthermore, strains of S. aureus from various origins showed comparable results, ensuring that the approach can be widely adopted. Therefore, the quantitative fluorescence imaging platform on a smartphone could allow on-site detection of bacteria, providing great potential assistance during major infectious disease outbreaks in remote and resource-limited settings. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Vertical distribution of bacteria and intensity of microbiological processes in two stratified gypsum Karst Lakes in Lithuania

    Directory of Open Access Journals (Sweden)

    Krevs A.

    2011-08-01

    Full Text Available Physical-chemical parameters and the vertical distribution of bacteria and organic matter production-destruction processes were studied during midsummer stratification in two karst lakes (Kirkilai and Ramunelis located in northern Lithuania. The lakes were characterized by high sulfate concentrations (369–1248 mg·L-1. The O2/H2S intersection zone formed at 2–3 m depth. In Lake Kirkilai, the highest bacterial densities (up to 8.7 × 106 cell·mL-1 occurred at the O2/H2S intersection zone, whereas in Lake Ramunelis the highest densities were observed in the anoxic hypolimnion (up to 11 × 106 cell·mL-1. Pigment analysis revealed that green sulfur bacteria dominated in the microaerobic–anaerobic water layers in both lakes. The most intensive development of sulfate-reducing bacteria was observed in the anaerobic layer. Photosynthetic production of organic matter was highest in the upper layer. Rates of sulfate reduction reached 0.23 mg S2−·dm3·d-1 in the microaerobic-anaerobic water layer and 1.97 mg S2−·dm3·d-1 in sediments. Karst lakes are very sensitive to organic pollution, because under such impact in the presence of high sulfate amounts, sulfate reduction may become very intensive and, consequently, the increase in hydrogen sulfide and development of sulfur cycle bacteria may reduce the variety of other hydrobionts.

  19. Lactic acid bacteria stress response to preservation processes in the beverage and juice industry.

    Science.gov (United States)

    Bucka-Kolendo, Joanna; Sokołowska, Barbara

    2017-01-01

    In this review we summarize stress factors that affect the lactic acid bacteria (LAB) and cause different molecular stress responses. LAB belong to a group of bacteria that is very widespread in food and beverages. They are present, and desired, in fermented products like yogurts, cheese, vegetables, meat or wine. In most of them, LAB are providing positive sensory and nutritive features. However, as harmless and desired microbes in one product, LAB can cause spoilage and a bad taste of others, especially in juices and beverages. LAB are resistant to many stress factors which allows them to survive in harsh environments. The most common stress factors they have to deal with are: heat, cold, acidity, NaCl and high hydrostatic pressure (HHP). Their ability to survive depends on their skills to cope with stress factors. Under stress conditions, LAB activate mechanisms that allow them to adjust to the new conditions, which can influence their viability and technological properties. This ability to adapt to different stress conditions may come from the cross-protection systems they have, as resistance to one factor may help them to deal with the other stress effectors. LAB are highly valuable for the food industry and that is why it is important to understand their stress response mechanisms.

  20. Polymer Coatings in 3D-Printed Fluidic Device Channels for Improved Cellular Adherence Prior to Electrical Lysis.

    Science.gov (United States)

    Gross, Bethany C; Anderson, Kari B; Meisel, Jayda E; McNitt, Megan I; Spence, Dana M

    2015-06-16

    This paper describes the design and fabrication of a polyjet-based three-dimensional (3D)-printed fluidic device where poly(dimethylsiloxane) (PDMS) or polystyrene (PS) were used to coat the sides of a fluidic channel within the device to promote adhesion of an immobilized cell layer. The device was designed using computer-aided design software and converted into an .STL file prior to printing. The rigid, transparent material used in the printing process provides an optically transparent path to visualize endothelial cell adherence and supports integration of removable electrodes for electrical cell lysis in a specified portion of the channel (1 mm width × 0.8 mm height × 2 mm length). Through manipulation of channel geometry, a low-voltage power source (500 V max) was used to selectively lyse adhered endothelial cells in a tapered region of the channel. Cell viability was maintained on the device over a 5 day period (98% viable), though cell coverage decreased after day 4 with static media delivery. Optimal lysis potentials were obtained for the two fabricated device geometries, and selective cell clearance was achieved with cell lysis efficiencies of 94 and 96%. The bottleneck of unknown surface properties from proprietary resin use in fabricating 3D-printed materials is overcome through techniques to incorporate PDMS and PS.

  1. Synechococcus growth in the ocean may depend on the lysis of heterotrophic bacteria

    Czech Academy of Sciences Publication Activity Database

    Weinbauer, M.G.; Bonilla-Findji, O.; Chan, A.M.; Dolan, J. R.; Short, S.M.; Šimek, Karel; Wilhelm, S. W.; Suttle, C.A.

    2011-01-01

    Roč. 33, č. 10 (2011), s. 1465-1476 ISSN 0142-7873 R&D Projects: GA ČR(CZ) GA206/08/0015 Institutional research plan: CEZ:AV0Z60170517 Keywords : viruses * growth control of cyanobacteria * heterotrophic bacterioplankton Subject RIV: EE - Microbiology, Virology Impact factor: 2.079, year: 2011

  2. Lab-on-a-Disc Platform for Automated Chemical Cell Lysis.

    Science.gov (United States)

    Seo, Moo-Jung; Yoo, Jae-Chern

    2018-02-26

    Chemical cell lysis is an interesting topic in the research to Lab-on-a-Disc (LOD) platforms on account of its perfect compatibility with the centrifugal spin column format. However, standard procedures followed in chemical cell lysis require sophisticated non-contact temperature control as well as the use of pressure resistant valves. These requirements pose a significant challenge thereby making the automation of chemical cell lysis on an LOD extremely difficult to achieve. In this study, an LOD capable of performing fully automated chemical cell lysis is proposed, where a combination of chemical and thermal methods has been used. It comprises a sample inlet, phase change material sheet (PCMS)-based temperature sensor, heating chamber, and pressure resistant valves. The PCMS melts and solidifies at a certain temperature and thus is capable of indicating whether the heating chamber has reached a specific temperature. Compared to conventional cell lysis systems, the proposed system offers advantages of reduced manual labor and a compact structure that can be readily integrated onto an LOD. Experiments using Salmonella typhimurium strains were conducted to confirm the performance of the proposed cell lysis system. The experimental results demonstrate that the proposed system has great potential in realizing chemical cell lysis on an LOD whilst achieving higher throughput in terms of purity and yield of DNA thereby providing a good alternative to conventional cell lysis systems.

  3. Lab-on-a-Disc Platform for Automated Chemical Cell Lysis

    Directory of Open Access Journals (Sweden)

    Moo-Jung Seo

    2018-02-01

    Full Text Available Chemical cell lysis is an interesting topic in the research to Lab-on-a-Disc (LOD platforms on account of its perfect compatibility with the centrifugal spin column format. However, standard procedures followed in chemical cell lysis require sophisticated non-contact temperature control as well as the use of pressure resistant valves. These requirements pose a significant challenge thereby making the automation of chemical cell lysis on an LOD extremely difficult to achieve. In this study, an LOD capable of performing fully automated chemical cell lysis is proposed, where a combination of chemical and thermal methods has been used. It comprises a sample inlet, phase change material sheet (PCMS-based temperature sensor, heating chamber, and pressure resistant valves. The PCMS melts and solidifies at a certain temperature and thus is capable of indicating whether the heating chamber has reached a specific temperature. Compared to conventional cell lysis systems, the proposed system offers advantages of reduced manual labor and a compact structure that can be readily integrated onto an LOD. Experiments using Salmonella typhimurium strains were conducted to confirm the performance of the proposed cell lysis system. The experimental results demonstrate that the proposed system has great potential in realizing chemical cell lysis on an LOD whilst achieving higher throughput in terms of purity and yield of DNA thereby providing a good alternative to conventional cell lysis systems.

  4. Isolation of Mycobacterium chelonei with the lysis-centrifugation blood culture technique.

    OpenAIRE

    Fojtasek, M F; Kelly, M T

    1982-01-01

    Mycobacterium chelonei was isolated from a patient by the lysis-centrifugation and the conventional two-bottle blood culture methods. The lysis-centrifugation method was significantly more sensitive and rapid than the conventional method in detecting and isolating this organism; quantitations done by this method were useful for monitoring response to therapy.

  5. Large-scale clinical comparison of the lysis-centrifugation and radiometric systems for blood culture

    International Nuclear Information System (INIS)

    Brannon, P.; Kiehn, T.E.

    1985-01-01

    The Isolator 10 lysis-centrifugation blood culture system (E. I. du Pont de Nemours and Co., Inc., Wilmington, Del.) was compared with the BACTEC radiometric method (Johnston Laboratories, Inc., Towson, Md.) with 6B and 7D broth media for the recovery of bacteria and yeasts. From 11,000 blood cultures, 1,174 clinically significant organisms were isolated. The Isolator system recovered significantly more total organisms, members of the family Enterobacteriaceae, Staphylococcus spp., and yeasts. The BACTEC system recovered significantly more Pseudomonas spp., Streptococcus spp., and anaerobes. Of the Isolator colony counts, 87% measured less than 11 CFU/ml of blood. Organisms, on an average, were detected the same day from each of the two culture systems. Only 13 of the 975 BACTEC isolates (0.01%) were recovered by subculture of growth-index-negative bottles, and 12 of the 13 were detected in another broth blood culture taken within 24 h. Contaminants were recovered from 4.8% of the Isolator 10 and 2.3% of the BACTEC cultures

  6. Droplet Microfluidics for Compartmentalized Cell Lysis and Extension of DNA from Single-Cells

    Science.gov (United States)

    Zimny, Philip; Juncker, David; Reisner, Walter

    Current single cell DNA analysis methods suffer from (i) bias introduced by the need for molecular amplification and (ii) limited ability to sequence repetitive elements, resulting in (iii) an inability to obtain information regarding long range genomic features. Recent efforts to circumvent these limitations rely on techniques for sensing single molecules of DNA extracted from single-cells. Here we demonstrate a droplet microfluidic approach for encapsulation and biochemical processing of single-cells inside alginate microparticles. In our approach, single-cells are first packaged inside the alginate microparticles followed by cell lysis, DNA purification, and labeling steps performed off-chip inside this microparticle system. The alginate microparticles are then introduced inside a micro/nanofluidic system where the alginate is broken down via a chelating buffer, releasing long DNA molecules which are then extended inside nanofluidic channels for analysis via standard mapping protocols.

  7. Clot formation and lysis in platelet rich plasma of healthy donors and patients with resistant hypertension

    Directory of Open Access Journals (Sweden)

    I. I. Patalakh

    2018-04-01

    Full Text Available Hemostatic balance in blood is affected by numerous factors, including coagulation and fibrinolytic proteins, the wide spectrum of their inhibitors, and blood cells. Since platelets can participate in contradictory processes, they significantly complicate the whole picture. Therefore, nowadays the development of global assays of hemostasis, which can reflect the physiological process of hemostasis and can be used for point-of-care diagnosis of thrombosis, is crucial. This paper outlines a new approach we used to analyze the capabilities of clot waveform analysis tools to distinguish the response of platelet-rich plasma from healthy donors and patients with arterial hypertension caused by stimulation of coagulation and lysis (with exogenous thrombin and recombinant tissue-type plasminogen activator, respectively. In donor plasma, when the clot degradation was accompanied by 40 IU/ml of recombinant tissue-type plasminogen activator, platelets potentiated fibrinolysis more than coagulation, which ultimately shifts the overall balance to a profibrinolytic state. At the same time, for patients with hypertension, platelets, embedded in clot obtained from platelet-rich plasma, showed a weaker ability to stimulate fibrinolysis. The obtained data gives the evidence that platelets can act not only as procoagulants but also as profibrinolytics. By simultaneously amplifying coagulation and fibrinolysis, making their rates comparable, platelets would control plasma procoagulant activity, thereby regulating local hemostatic balance, the size and lifetime of the clot. Moreover, clot waveform analysis may be used to distinguish the effects of platelet-rich plasma on clotting or lysis of fibrin clots in healthy donors and patients with essential hypertension.

  8. Hydrogen from food processing wastes via photofermentation using Purple Non-sulfur Bacteria (PNSB) – A review

    International Nuclear Information System (INIS)

    Ghosh, Shiladitya; Dairkee, Umme Kulsoom; Chowdhury, Ranjana; Bhattacharya, Pinaki

    2017-01-01

    Highlights: • Food processing wastes/wastewaters are potential feedstocks for PNSB-bioH_2 systems. • Several bottlenecks exist in efficient usage of food processing wastes/wastewaters by PNSBs. • Pretreatment of feedstocks is a challenging issue. • Genetic modification significantly enhances the H_2 outcome of PNSBs. • Food waste/wastewater - PNSB is a sustainable combination for production of H_2. - Abstract: Purple non-sulfur bacteria (PNSB) mediated production of biohydrogen utilizing solid food waste and food processing wastewater possess enormous potential to be implemented as an ideal “green energy technology”. This paper reviews the current state-of-the-art utilization of solid wastes and wastewaters of several food and beverage processing industries in photofermentative H_2 production systems. Detailed accounts of the complex composition of various solid food wastes and food processing wastewaters along with the pretreatments used for enhancement of H_2 production by PNSBs have been presented. Factors like compositional complexity, presence of inhibitory compounds and resistance to light penetration are identified as the prime bottlenecks hindering the efficient utilization of food waste and wastewaters in photofermentative H_2 production. Genetic manipulation of the PNSBs to overcome the inherent metabolic complications has been discussed as a probable amelioration strategy for enhancement of H_2 yield. Based on profound discussions the scopes for upgradation of the photofermentative biohydrogen systems using food waste/wastewater have been highlighted and recommended for the overall enhancement of the sustainability of the processes.

  9. Tumor lysis syndrome in a patient with metastatic colon cancer after treatment with oxaliplatin and 5-Fu

    Directory of Open Access Journals (Sweden)

    Ruo-Han Tseng

    2016-12-01

    Full Text Available Tumor lysis syndrome in solid tumors is a rare occurrence, with a poor prognosis. We present the case of a patient of recurrent colon cancer who received chemotherapy with FOLFOX regimen (lencovorin, fluorouracil, and oxaliplatin with subsequent tumor lysis. We present a recurrent rectal cancer patient suffered from tumor lysis syndrome after salvage FOLFOX regimen. After treat with CVVH with improved conscious status. In this case report, we had review the tumor lysis in solid tumor.

  10. Influence of environmental variation on the bacterioplankton community and its loss to viral lysis in the Curonian Lagoon

    Science.gov (United States)

    Šulčius, Sigitas; Reunamo, Anna; Paškauskas, Ričardas; Leskinen, Piia

    2018-05-01

    Coastal lagoons are continuously exposed to strong environmental gradients that determine the distribution and trophic interactions of microbial communities. Therefore, in this study we assessed whether and how environmental changes influence the bacterial community and its vulnerability to viral infection and lysis along the major environmental gradient in the Curonian Lagoon. We found significant differences in bacterial community profiles, their richness and evenness between the riverine, freshwater southern part and the Baltic Sea water intrusion-influenced northern part of the lagoon, suggesting strong environmental control of the structure of bacterial communities. Viruses were found to be play an important role in bacterial mortality in the Curonian Lagoon, being responsible for the removal of 20-50% of the bacterial standing stock. We observed differences in virioplankton decay rates and virus burst sizes between the northern and southern parts of the lagoon. However, no relationships were found between viral activity and bacterial communities within the lagoon ecosystem. The frequency of infected cells and virus-mediated bacterial mortality (VMBM) remained constant among the sampling sites irrespective of differences in bacteria community assemblages and environmental conditions. The results indicate that factors determining changes in bacterial diversity are different from the factors limiting their vulnerability to viral infection and lysis. This study also suggests that under changing environmental conditions, virus-bacteria interactions are more stable than the interacting viral and bacterial communities themselves. These findings are important for understanding the functioning of the coastal ecosystems under the rapidly changing local (spatial and temporal) and global (e.g. eutrophication, climate change) conditions.

  11. Manganese effect over the bacteria activity on the active mires process; Efecto del Manganeso sobre la actividad bacteriana en procesos de fangos activos

    Energy Technology Data Exchange (ETDEWEB)

    Simon Andreu, P. J.; Lardin Mifsud, C.; Martinez Muro, M. A.; Vicente Gonzalez, J. A.; Sanchez Beltran, A. V.; Gonzalez Herrero, R.; Llosa Llacer, C.

    2009-07-01

    With this assay, it has been determined the incidence of manganese (Mn (II) in the metabolic activity of bacteria involved in biological processes in a WWTP. It has been observed the function of Mn (II) as an enzymatic co-factor and its influence on the increase of bacteria oxidative capacity. Besides, it has been studied the effect of Mn (II) as a metabolic uncoupler and its influence on biomass production decreases. (Author)

  12. Lysis of Chlamydomonas reinhardtii by high-intensity focused ultrasound as a function of exposure time.

    Science.gov (United States)

    Bigelow, Timothy A; Xu, Jin; Stessman, Dan J; Yao, Linxing; Spalding, Martin H; Wang, Tong

    2014-05-01

    Efficient lysis of microalgae for lipid extraction is an important concern when processing biofuels. Historically, ultrasound frequencies in the range of 10-40 kHz have been utilized for this task. However, greater efficiencies might be achievable if higher frequencies could be used. In our study, we evaluated the potential of using 1.1 MHz ultrasound to lyse microalgae for biofuel production while using Chlamydomonas reinhardtii as a model organism. The ultrasound was generated using a spherically focused transducer with a focal length of 6.34 cm and an active diameter of 6.36 cm driven by 20 cycle sine-wave tone bursts at a pulse repetition frequency of 2 kHz (3.6% duty cycle). The time-average acoustic power output was 26.2 W while the spatial-peak-pulse-average intensity (ISPPA) for each tone burst was 41 kW/cm(2). The peak compressional and rarefactional pressures at the focus were 102 and 17 MPa, respectively. The exposure time was varied for the different cases in the experiments from 5s to 9 min and cell lysis was assessed by quantifying the percentage of protein and chlorophyll release into the supernate as well as the lipid extractability. Free radical generation and lipid oxidation for the different ultrasound exposures were also determined. We found that there was a statistically significant increase in lipid extractability for all of the exposures compared to the control. The longer exposures also completely fragmented the cells releasing almost all of the protein and chlorophyll into the supernate. The cavitation activity did not significantly increase lipid oxidation while there was a minor trend of increased free radical production with increased ultrasound exposure. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. APPLICATION OF RESPIROMETRIC TESTS FOR ASSESSMENT OF METHANOGENIC BACTERIA ACTIVITY IN WASTEWATER SLUDGE PROCESSING

    Directory of Open Access Journals (Sweden)

    Małgorzata Cimochowicz-Rybicka

    2013-07-01

    Full Text Available Production of a methane-rich gas (‘biogas’ is contemporary popular sludges processing technology which allows to generate thermal and/or electric energy. Formal requirements issued by the European Union to promote so called renewable energy resources made these process more attractive leading to its application in WWTPs which were designed based on different sludge handling processes. Authors (as active design engineers noted that dimensioning sludge digestion chamber is usually based on SRT assessment without any emphasis on sludge characteristics. Bio-mass characteristics and the estimation of its activity with respect to methane production are of great importance, from both scientific and practical points of view, as anaerobic digestion appears to be one of crucial processes in municipal wastewater handling and disposal. The authors propose respirometric tests to estimate a biomass potential to produce ‘a biogas’ and several years’ laboratory and full scale experience proved its usefulness and reliability both as a measurement and a design tool applicable in sludge handling. Dimensioning method proposed by authors, allows to construct and optimize operation of digestion chambers based on a methanogenic activity.

  14. Evaluation of conventional castaneda and lysis centrifugation blood culture techniques for diagnosis of human brucellosis.

    Science.gov (United States)

    Mantur, Basappa G; Mangalgi, Smita S

    2004-09-01

    We investigated the role of the lysis centrifugation blood culture technique over the conventional Castaneda technique for the diagnosis of human brucellosis. The lysis centrifugation technique has been found to be more sensitive in both acute (20% higher sensitivity; P centrifugation was in the mean detection time, which was only 2.4 days in acute and 2.7 days in chronic cases, with 103 out of 110 (93.6%) and 17 out of 20 (85%) cultures from acute and chronic brucellosis, respectively, detected before the conventional culture was positive. Our results confirmed the potential usefulness of the lysis technique in diagnosis and institution of appropriate antibiotic therapy.

  15. Rare incidence of tumor lysis syndrome in metastatic prostate cancer following treatment with docetaxel.

    Science.gov (United States)

    Bhardwaj, Sharonlin; Varma, Seema

    2018-03-01

    Tumor lysis syndrome is a serious and sometimes lethal complication of cancer treatment that is comprised of a set of metabolic disturbances along with clinical manifestations. Initiating chemotherapy in bulky, rapidly proliferating tumors causes rapid cell turnover that in turn releases metabolites into circulation that give rise to metabolic derangements that can be dangerous. This syndrome is usually seen in high-grade hematological malignancies. Less commonly, tumor lysis syndrome can present in solid tumors and even rarely in genitourinary tumors. In this report, the authors describe a specific case of tumor lysis syndrome in a patient with metastatic prostate cancer following treatment with docetaxel.

  16. Nucleation of holin domains and holes optimizes lysis timing of E. coli by phage λ

    Science.gov (United States)

    Ryan, Gillian; Rutenberg, Andrew

    2007-03-01

    Holin proteins regulate the precise scheduling of Escherichia coli lysis during infection by bacteriophage λ. Inserted into the host bacterium's inner membrane during infection, holins aggregate to form rafts and then holes within those rafts. We present a two-stage nucleation model of holin action, with the nucleation of condensed holin domains followed by the nucleation of holes within these domains. Late nucleation of holin rafts leads to a weak dependence of lysis timing on host cell size, though both nucleation events contribute equally to timing errors. Our simulations recover the accurate scheduling observed experimentally, and also suggest that phage-λ lysis of E.coli is optimized.

  17. Mineralization Process of Biocemented Sand and Impact of Bacteria and Calcium Ions Concentrations on Crystal Morphology

    Directory of Open Access Journals (Sweden)

    Guobin Xu

    2017-01-01

    Full Text Available Microbial-induced calcite precipitation (MICP is a sustainable technique used to improve sandy soil. Analysis of the mineralization process, as well as different bacterial suspensions and calcium concentrations on the crystal morphology, revealed that the mineralization process included four stages: self-organised hydrolysis of microorganisms, molecular recognition and interface interaction, growth modulation, and epitaxial growth. By increasing bacterial suspensions and calcium concentrations, the crystal morphology changed from hexahedron to oblique polyhedron to ellipsoid; the best crystal structure occurs at OD600 = 1.0 and [Ca2+] = 0.75 mol/l. It should be noted that interfacial hydrogen bonding is the main force that binds the loose sand particles. These results will help in understanding the mechanism of MICP.

  18. Susceptibility of Salmonella Biofilm and Planktonic Bacteria to Common Disinfectant Agents Used in Poultry Processing.

    Science.gov (United States)

    Chylkova, Tereza; Cadena, Myrna; Ferreiro, Aura; Pitesky, Maurice

    2017-07-01

    Poultry contaminated with Salmonella enterica subsp. enterica are a major cause of zoonotic foodborne gastroenteritis. Salmonella Heidelberg is a common serotype of Salmonella that has been implicated as a foodborne pathogen associated with the consumption of improperly prepared chicken. To better understand the effectiveness of common antimicrobial disinfectants (i.e., peroxyacetic acid [PAA], acidified hypochlorite [aCH], and cetylpyridinium chloride [CPC]), environmental isolates of nontyphoidal Salmonella were exposed to these agents under temperature, concentration, and contact time conditions consistent with poultry processing. Under simulated processing conditions (i.e., chiller tank and dipping stations), the bacteriostatic and bactericidal effects of each disinfectant were assessed against biofilm and planktonic cultures of each organism in a disinfectant challenge. Log reductions, planktonic MICs, and mean biofilm eradication concentrations were computed. The biofilms of each Salmonella isolate were more resistant to the disinfectants than were their planktonic counterparts. Although PAA was bacteriostatic and bactericidal against the biofilm and planktonic Salmonella isolates tested at concentrations up to 64 times the concentrations commonly used in a chiller tank during poultry processing, aCH was ineffective against the same isolates under identical conditions. At the simulated 8-s dipping station, CPC was bacteriostatic against all seven and bactericidal against six of the seven Salmonella isolates in their biofilm forms at concentrations within the regulatory range. These results indicate that at the current contact times and concentrations, aCH and PAA are not effective against these Salmonella isolates in their biofilm state. The use of CPC should be considered as a tool for controlling Salmonella biofilms in poultry processing environments.

  19. Viral lysis of Phaeocystis pouchetii: implications for algal population dynamics and heterotrophic C, N and P cycling

    DEFF Research Database (Denmark)

    Haaber, Jakob Brandt Borup; Middelboe, Mathias

    2009-01-01

    in the microbial food web was associated with significant N and P mineralization, supporting the current view that viral lysates can be an important source of inorganic nutrients in marine systems. In the presence of R. salina, the generated NH(4)(+) supported 11% of the observed R. salina growth. Regrowth...... of virus-resistant P. pouchetii following cell lysis was observed in long-term incubations (150 days), and possibly influenced by nutrient availability and competition from R. salina. The observed impact of viral activity on autotrophic and heterotrophic processes provides direct experimental evidence...

  20. Ecology of Indigenous Lactic Acid Bacteria along Different Winemaking Processes of Tempranillo Red Wine from La Rioja (Spain

    Directory of Open Access Journals (Sweden)

    Lucía González-Arenzana

    2012-01-01

    Full Text Available Ecology of the lactic acid bacteria (LAB during alcoholic fermentation (AF and spontaneous malolactic fermentation (MLF of Tempranillo wines from four wineries of La Rioja has been studied analyzing the influence of the winemaking method, processing conditions, and geographical origin. Five different LAB species were isolated during AF, while, during MLF, only Oenococcus oeni was detected. Although the clonal diversity of O. oeni strains was moderate, mixed populations were observed, becoming at least one strain with distinct PFGE profile the main responsible for MLF. Neither the winemaking method nor the cellar situation was correlated with the LAB diversity. However, processing conditions influenced the total number of isolates and the percentage of each isolated species and strains. The winemaking method could cause that genotypes found in semicarbonic maceration did not appear in other wineries. Four genotypes of O. oeni were isolated in more than one of the rest wineries. These four together with other dominant strains might be included in a future selection process.

  1. The Importance of Endospore-Forming Bacteria Originating from Soil for Contamination of Industrial Food Processing

    International Nuclear Information System (INIS)

    Heyndrickx, M

    2011-01-01

    Specific endo spore formers have become important contaminants in industrial food processing. The direct or indirect soil route of contamination or dispersal is the start of events or processes in the agrofood chain that eventually leads to important problems or concerns for food safety and/or quality. Three important food sectors are discussed in this paper. In the dairy sector, Bacillus cereus, the most important pathogen or spoilage organism in this sector, and Clostridium tyrobutyricum, the most important spoiler in certain cheeses, both contaminate pasteurized milk through the faecal and/or (at least for B. cereus) the direct soil route. In the fruit juice industry, Alicyclobacillus acidoterrestris, present on raw fruits, has become a major quality-target organism. In the ready-to-eat food sector, B. cereus and other aerobic endo spore formers are introduced via vegetables, fruits, or herbs and spices, while anaerobic spore formers like non proteolytic Clostridium botulinum and Clostridium estertheticum pose safety and spoilage risks in chilled packaged foods, respectively

  2. The Importance of Endospore-Forming Bacteria Originating from Soil for Contamination of Industrial Food Processing

    Directory of Open Access Journals (Sweden)

    Marc Heyndrickx

    2011-01-01

    Full Text Available Specific endospore formers have become important contaminants in industrial food processing. The direct or indirect soil route of contamination or dispersal is the start of events or processes in the agrofood chain that eventually leads to important problems or concerns for food safety and/or quality. Three important food sectors are discussed in this paper. In the dairy sector, Bacillus cereus, the most important pathogen or spoilage organism in this sector, and Clostridium tyrobutyricum, the most important spoiler in certain cheeses, both contaminate pasteurized milk through the faecal and/or (at least for B. cereus the direct soil route. In the fruit juice industry, Alicyclobacillus acidoterrestris, present on raw fruits, has become a major quality-target organism. In the ready-to-eat food sector, B. cereus and other aerobic endospore formers are introduced via vegetables, fruits, or herbs and spices, while anaerobic spore formers like nonproteolytic Clostridium botulinum and Clostridium estertheticum pose safety and spoilage risks in chilled packaged foods, respectively.

  3. Compost biofortification with diazotrophic and P-solubilizing bacteria improves maturation process and P availability.

    Science.gov (United States)

    Busato, Jader G; Zandonadi, Daniel B; Mól, Alan R; Souza, Rafaela S; Aguiar, Kamilla P; Júnior, Fábio B Reis; Olivares, Fábio L

    2017-02-01

    Phosphorus-containing fertilizers play an important role in tropical agriculture owing to the well documented shortage of plant-available P in soils. Traditional P fertilizer production is based on chemical processing of insoluble rock phosphate (RP), which includes an acid treatment at high temperature. Processing the RP increases fertilizer costs, making it unavailable for undercapitalized and typically family-based farmers. Biotechnological methods have been proposed as an alternative to increase phosphate availability in RP. In this study, Burkholderia silvatlantica and Herbaspirillum seropedicae were co-inoculated into an RP-enriched compost with the aim of determining the effects of this technology on the levels of phosphatase activities and release of plant-available P. Inoculation of both microorganisms resulted in higher organic matter decomposition and higher humic acid formation in composting. Herbaspirillum seropedicae was the most promising microorganism for the production of acid and alkaline phosphatase enzymes. Both microorganisms presented potential to increase the supply of P from poorly soluble sources owing to increased levels of water-soluble P and citric acid P. Burkholderia silvatlantica and H. seropedicae in RP-enriched compost may represent an important biotechnological tool to reduce the overall time required for composting and increase the supply of P from poorly soluble sources. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. Making soy sauce from defatted soybean meal without the mejus process by submerged cultivation using thermophilic bacteria.

    Science.gov (United States)

    Hur, Jeong Min; Park, Doo Hyun

    2015-08-01

    The diversity of thermophilic bacteria was not significantly altered while growing in a defatted soybean meal (DFSM) slurry at 60 °C for 10, 20, and 30 days. Five species of thermophilic bacteria, which belong to the genera Aeribacillus (temperature gradient gel electrophoresis [TGGE] band no. 1), Saccharococcus (TGGE band no. 2), Geobacillus (TGGE band no. 3), Bacillus (TGGE band no. 4), and Anoxybacillus (TGGE band no. 5), were detected in the fermenting DFSM slurry. The cell-free culture fluid obtained from the fermenting DFSM slurry on day 14 hydrolyzed starch and soy protein at 60 °C but not at 30 °C. Soy sauce (test soy sauce) was prepared from the fermented DFSM slurry after a 30 day cultivation at 60 °C and a 60 day ripening at 45 °C. Free amino acid (AA) and organic acid contents in the soy sauce increased in proportion to the fermentation period, whereas ammonium decreased proportionally. Mg and Ca contained in the soy sauce decreased proportionally during fermentation and were lower than those in the non-fermented DFSM extract (control). Spectral absorbance of soy sauce prepared from the fermented DFSM slurry was maximal at 430 nm and increased slightly in proportion to the fermentation period. The aroma and flavor of the test soy sauce were significantly different from those of traditional Korean soy sauce. Conclusively, soy sauce may be prepared directly from the fermented DFSM slurry without meju-preparing process and fermentation period may be a factor for control of soy sauce quality.

  5. Prevalence of bacteria resistant to antibiotics and/or biocides on meat processing plant surfaces throughout meat chain production.

    Science.gov (United States)

    Lavilla Lerma, Leyre; Benomar, Nabil; Gálvez, Antonio; Abriouel, Hikmate

    2013-02-01

    In order to investigate the prevalence of resistant bacteria to biocides and/or antibiotics throughout meat chain production from sacrifice till end of production line, samples from various surfaces of a goat and lamb slaughterhouse representative of the region were analyzed by the culture dependent approach. Resistant Psychrotrophs (n=255 strains), Pseudomonas sp. (n=166 strains), E. coli (n=23 strains), Staphylococcus sp. (n=17 strains) and LAB (n=82 represented mainly by Lactobacillus sp.) were isolated. Resistant psychrotrophs and pseudomonads (47 and 29%, respectively) to different antimicrobials were frequently detected in almost all areas of meat processing plant regardless the antimicrobial used, although there was a clear shift in the spectrum of other bacterial groups and for this aim such resistance was determined according to several parameters: antimicrobial tested, sampling zone and the bacterial group. Correlation of different parameters was done using a statistical tool "Principal component analysis" (PCA) which determined that quaternary ammonium compounds and hexadecylpyridinium were the most relevant biocides for resistance in Pseudomonas sp., while ciprofloxacin and hexachlorophene were more relevant for psychrotrophs, LAB, and in lesser extent Staphylococcus sp. and Escherichia coli. On the other hand, PCA of sampling zones determined that sacrifice room (SR) and cutting room (CR) considered as main source of antibiotic and/or biocide resistant bacteria showed an opposite behaviour concerning relevance of antimicrobials to determine resistance being hexadecylpyridinium, cetrimide and chlorhexidine the most relevant in CR, while hexachlorophene, oxonia 6P and PHMG the most relevant in SR. In conclusion, rotational use of the relevant biocides as disinfectants in CR and SR is recommended in an environment which is frequently disinfected. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Catheter placement for lysis of spontaneous intracerebral hematomas: does a catheter position in the core of the hematoma allow more effective and faster hematoma lysis?

    Science.gov (United States)

    Malinova, Vesna; Schlegel, Anna; Rohde, Veit; Mielke, Dorothee

    2017-07-01

    For the fibrinolytic therapy of intracerebral hematomas (ICH) using recombinant tissue plasminogen activator (rtPA), a catheter position in the core of the hematoma along the largest clot diameter was assumed to be optimal for an effective clot lysis. However, it never had been proven that core position indeed enhances clot lysis if compared with less optimal catheter positions. In this study, the impact of the catheter position on the effectiveness and on the time course of clot lysis was evaluated. We analyzed the catheter position using a relative error calculating the distance perpendicular to the catheter's center in relation to hematoma's diameter and evaluated the relative hematoma volume reduction (RVR). The correlation of the RVR with the catheter position was evaluated. Additionally, we tried to identify patterns of clot lysis with different catheter positions. The patient's outcome at discharge was evaluated using the Glasgow outcome score. A total of 105 patients were included in the study. The mean hematoma volume was 56 ml. The overall RVR was 62.7 %. In 69 patients, a catheter position in the core of the clot was achieved. We found no significant correlation between catheter position and hematoma RVR (linear regression, p = 0.14). Core catheter position leads to more symmetrical hematoma RVR. Faster clot lysis happens in the vicinity of the catheter openings. We found no significant difference in the patient's outcome dependent on the catheter position (linear regression, p = 0.90). The catheter position in the core of the hematoma along its largest diameter does not significantly influence the effectiveness of clot lysis after rtPA application.

  7. Hypochlorite- and hypobromite-mediated radical formation and its role in cell lysis

    DEFF Research Database (Denmark)

    Hawkins, C L; Brown, B E; Davies, Michael Jonathan

    2001-01-01

    . In this study it is shown that HOBr induces red blood cell lysis at approximately 10-fold lower concentrations than HOCl, whereas with monocyte (THP1) and macrophage (J774) cells HOCl and HOBr induce lysis at similar concentrations. The role of radical formation during lysis has been investigated by EPR spin...... trapping, and it is shown that reaction of both oxidants with each cell type generates cell-derived radicals. Red blood cells exposed to nonlytic doses of HOCl generate novel nitrogen-centered radicals whose formation is GSH dependent. In contrast, HOBr gives rise to nitrogen-centered, membrane......-derived protein radicals. With lytic doses of either oxidant, protein (probably hemoglobin)-derived, nitrogen-centered radicals are observed. Unlike the red blood cells, treatment of monocytes and macrophages with HOCl gives significant radical formation only under conditions where cell lysis occurs concurrently...

  8. Mycobacterium tuberculosis bacteremia detected by the Isolator lysis-centrifugation blood culture system.

    OpenAIRE

    Kiehn, T E; Gold, J W; Brannon, P; Timberger, R J; Armstrong, D

    1985-01-01

    Mycobacterium tuberculosis was detected by the Isolator lysis-centrifugation blood culture system from the blood of a patient with tuberculosis of the breast. The organism also grew on conventional laboratory media inoculated with pleural fluid from the patient.

  9. Identification of bacteria used for microbial enhanced oil recovery process by fluorescence in situ hybridization technique

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, K.; Tanaka, S.; Otsuka, M. [Kansai Research Institute, Kyoto (Japan). Lifescience Lab.; Yonebayashi, H. [Japan National Oil Corp., Chiba (Japan). Tech. Research Center; Enomoto, H. [Tohoku University, Sendai (Japan). Dept. of Geoscience and Tech.

    2000-01-01

    A fluorescence in situ hybridization (FISH) technique using 16S rRNA-targeted oligonucleotide probes was developed for rapid detection of microorganisms for use in the microbial enhancement of oil recovery (MEOR) process. Two microorganisms, Enterobacter cloacae TRC-322 and Bacillus licheniformis TRC-18-2-a, were selected from a collection of Enterobacter sp. and Bacillus sp. which were screened in previous studies as candidate microorganisms for injection, and were used for this experiment. Oligonucleotide probes, design based on specific sequences in the 16S rRNA gene were labeled with either fluorescein isothiocyanate (FITC), or 6-car-boxy-X-rhodamine (ROX), and were allowed to hybridize with fixed cells of the two microorganisms noted above. The fluorescence signal emitted from each microorganism cells could clearly be detected by an epifluorescence microscope. Moreover, E. cloacae TRC-322 and B, licheniformis TRC-18-2-a, suspended in actual reservoir brine, including inorganic salts, oil and aboriginal cells of the reservoir brine, could be detected directly by this hybridization method, without the need for cultivation and isolation. (author)

  10. Intestinal bacteria in bioaerosols and factors affecting their survival in two oxidation ditch process municipal wastewater treatment plants located in different regions.

    Science.gov (United States)

    Wang, Yanjie; Li, Lin; Han, Yunping; Liu, Junxin; Yang, Kaixiong

    2018-06-15

    Samples from two oxidation ditch process municipal wastewater treatment plants (MWTPs) (HJK and GXQ) in two regions of China were analysed for bacteria, particles, total organic carbon, and water-soluble ions in bioaerosols. Diversity and potential pathogen populations were evaluated by high-throughput sequencing. Bioaerosol sources, factors affecting intestinal bacterial survival, and the relationship between bioaerosols and water were analysed by Source tracker and partial least squares-discriminant, principal component, and canonical correspondence analyses. Culturable bacteria concentrations were 110-846 and 27-579 CFU/m 3 at HJK and GXQ, respectively. Intestinal bacteria constituted 6-33% of bacteria. Biochemical reaction tank, sludge dewatering house (SDH), and fine screen samples showed the greatest contribution to bioaerosol contamination. Enterobacter aerogenes was the main intestinal bacteria (> 99.5%) in HJK and detected at each sampling site. Enterobacter aerogenes (98.67% in SDH), Aeromonas sp. (76.3% in biochemical reaction tank), and Acinetobacter baumannii (99.89% in fine screens) were the main intestinal bacteria in GXQ. Total suspended particulate masses in SDH were 229.46 and 141.6 μg/m 3 in HJK and GXQ, respectively. Percentages of insoluble compounds in total suspended particulates decreased as height increased. The main soluble ions in bioaerosols were Ca 2+ , Na + , Cl - , and SO 4 2- , which ranged from 3.8 to 27.55 μg/m 3 in the MWTPs. Water was a main source of intestinal bacteria in bioaerosols from the MWTPs. Bioaerosols in HJK but not in GXQ were closely related. Relative humidity and some ions positively influenced intestinal bacteria in bioaerosols, while wind speed and solar illumination had a negative influence. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Effects of copper, organic mercury and a mixture of the two on glycerol lysis of erythrocytes.

    OpenAIRE

    宮地,芳之

    1987-01-01

    The effects of copper, organic mercury and a mixture of the two on glycerol lysis of erythrocytes were examined. Copper ion and organic mercury (EMP; ethylmercury phosphate, and PCMB; sodium p-chloromercuricbenzoate) inhibited glycerol lysis of erythrocytes. The inhibitory effects was dependent on the incubation period. An equimolor solution of copper ion and EMP showed between copper ion and EMP. Similar results were obtained with copper and PCMB.

  12. The role of hydrogenotrophic iron-reducing bacteria on the corrosion process in the context of geological disposal

    International Nuclear Information System (INIS)

    Kerber-Schutz, Marta

    2013-01-01

    The nuclear industry must to demonstrate the feasibility and safety of high level nuclear waste (HLNW) disposal. The generally recognised strategy for HLNW disposal is based on a multi-barrier system made by metallic packages surrounded by geological formation. The nuclear waste repository will be water re-saturated with time, and then the metallic corrosion process will take place. The aqueous corrosion will produce dihydrogen (H 2 ) that represents a new energetic source (electron donor) for microbial development. Moreover, the formation of Fe(II,III) solid corrosion products, such as magnetite (Fe 3 O 4 ), will provide electron acceptors favoring the development of iron-reducing bacteria (IRB). The activity of hydrogenotrophic and IRB can potentially alter the protective properties of passivating oxide layers (i.e. magnetite) which could reactivate corrosion. The main objective of this study is to evaluate the role of hydrogenotrophic and IRB activities on anoxic corrosion process by using geochemical indicators. Shewanella oneidensis strain MR-1 was chosen as model organism, and both abiotic and biotic conditions were investigated. In a first setup of experiments, our results indicate that synthetic magnetite is destabilized in the presence of hydrogenotrophic IRB due to structural Fe(III) reduction coupled to H 2 oxidation. The extent of Fe(III) bioreduction is notably enhanced with the increase in the H 2 concentration in the system: 4% H 2 ≤ 10% H 2 ≤ 60% H 2 . In a second setup of experiments, our results indicate that corrosion extent changes according to the solution composition and the surface of metallic sample (iron powder and carbon steel coupon). Moreover, the solid corrosion products are different for each sample: vivianite, siderite and chukanovite are the main mineral phases identified in the experiments with iron powder, while vivianite and magnetite are identified with carbon steel coupons. Our results demonstrate that corrosion rate is

  13. Regulated programmed lysis of recombinant Salmonella in host tissues to release protective antigens and confer biological containment.

    Science.gov (United States)

    Kong, Wei; Wanda, Soo-Young; Zhang, Xin; Bollen, Wendy; Tinge, Steven A; Roland, Kenneth L; Curtiss, Roy

    2008-07-08

    We have devised and constructed a biological containment system designed to cause programmed bacterial cell lysis with no survivors. We have validated this system, using Salmonella enterica serovar Typhimurium vaccines for antigen delivery after colonization of host lymphoid tissues. The system is composed of two parts. The first component is Salmonella typhimurium strain chi8937, with deletions of asdA and arabinose-regulated expression of murA, two genes required for peptidoglycan synthesis and additional mutations to enhance complete lysis and antigen delivery. The second component is plasmid pYA3681, which encodes arabinose-regulated murA and asdA expression and C2-regulated synthesis of antisense asdA and murA mRNA transcribed from the P22 P(R) promoter. An arabinose-regulated c2 gene is present in the chromosome. chi8937(pYA3681) exhibits arabinose-dependent growth. Upon invasion of host tissues, an arabinose-free environment, transcription of asdA, murA, and c2 ceases, and concentrations of their gene products decrease because of cell division. The drop in C2 concentration results in activation of P(R), driving synthesis of antisense mRNA to block translation of any residual asdA and murA mRNA. A highly antigenic alpha-helical domain of Streptococcus pneumoniae Rx1 PspA was cloned into pYA3681, resulting in pYA3685 to test antigen delivery. Mice orally immunized with chi8937(pYA3685) developed antibody responses to PspA and Salmonella outer membrane proteins. No viable vaccine strain cells were detected in host tissues after 21 days. This system has potential applications with other Gram-negative bacteria in which biological containment would be desirable.

  14. Selection of Lactic Acid Bacteria with Probiotic Potential Isolated from the Fermentation Process of "Cupuaçu" (Theobroma grandiflorum).

    Science.gov (United States)

    Ornellas, Roberta Maria Santos; Santos, Tiza Teles; Arcucio, Leonardo Borges; Sandes, Sávio Henrique Cicco; Oliveira, Mayara Messias; Dias, Cristiano Villela; de Carvalho Silva, Samuel; Uetanabaro, Ana Paula Trovatti; Vinderola, Gabriel; Nicoli, Jacques Robert

    2017-01-01

    In the present study, nine lactic acid bacteria isolated from the fermentation process of "cupuaçu" (Theobroma grandiflorum) were selected for probiotic use. In vitro (resistance to gastrointestinal environment, in vitro antagonism and co-aggregation with pathogens) and in vivo (intestinal colonization and ex vivo antagonism in germ-free mice, cumulative mortality, translocation to liver and spleen, histopathological examination of liver and ileum and mRNA cytokine gene expression during an experimental infection with S. Typhimurium) assays were used. Among the nine Lactobacillus strains isolated from the "cupuaçu" fermentation, L. plantarum 81 and L. plantarum 90 were selected as potential probiotics based on better results obtained in in vitro evaluations (production of diffusible inhibitory compounds and co-aggregation) as well as in vivo experiments (resistance to gastrointestinal environment, ex vivo antagonism, higher survival after enteropathogen challenge, lower hepatic translocation of enteropathogen, lower histopathological lesions in ileum and liver and anti-inflammatory pattern of immunological response). Concluding, L. plantarum 81 and L. plantarum 90 showed in vitro and in vivo capacities for probiotic use through different mechanisms of protection and its origin would allow an easier adaptation in an alimentary matrix for its administration.

  15. Bioaugmentation of anaerobic sludge digestion with iron-reducing bacteria: process and microbial responses to variations in hydraulic retention time.

    Science.gov (United States)

    Baek, Gahyun; Kim, Jaai; Shin, Seung Gu; Lee, Changsoo

    2016-01-01

    Although anaerobic digestion (AD) is a widely used option to manage waste activated sludge (WAS), there are some drawbacks related to its slow reaction rate and low energy productivity. This study examined an anaerobic WAS digester, augmented with an iron-reducing microbial consortium, relative to changes in microbial community structure and process performance at decreasing hydraulic retention times (HRTs) of 20 to 10 days. The enhanced methanation performance (approximately 40 % increase in methane yield) by the bioaugmentation was sustained until the HRT was decreased to 12.5 days, under Fe(3+)-rich conditions (ferric oxyhydroxide, 20 mM Fe). Enhanced iron-reducing activity was evidenced by the increased Fe(2+) to total Fe ratio maintained above 50 % during the stable operational phases. A further decrease in HRT to 10 days resulted in a significant performance deterioration, along with a drop in the Fe(2+) to total Fe ratio to bacteria (IRBs) was identified by denaturing gradient gel electrophoresis (DGGE), with Spirochaetaceae- and Thauera-related organisms being dominant members, and clear dominance shifts among them with respect to decrease in HRT were observed. Lowering HRT led to evident shifts in bacterial community structure likely associated with washout of IRBs, leading to decreases in iron respiration activity and AD performance at a lower HRT. The bacterial community structure shifted dynamically over phases, and the community transitions correlated well with the changes in process performance. Overall, the combined biostimulation and bioaugmentation investigated in this study proved effective for enhanced methane recovery from anaerobic WAS digestion, which suggests an interesting potential for high-rate AD.

  16. Modeling of kinetics of the inducible protein complexes of the SOS system in bacteria E. coli which realize TLS process

    International Nuclear Information System (INIS)

    Belov, O.V.

    2008-01-01

    The mathematical model describing kinetics of the inducible genes of the protein complexes, formed during SOS response in bacteria Escherichia coli is developed. Within the bounds of developed approaches the auxiliary mathematical model describing changes in concentrations of the dimers, which are the components of final protein complexes, is developed. The solutions of both models are based on the experimental data concerning expression of the basic genes of the SOS system in bacteria Escherichia coli

  17. Evaluation of cell lysis procedures and use of a micro fluidic system for an automated DNA-based cell identification in interplanetary missions

    Science.gov (United States)

    Hall, J. A.; Felnagle, E.; Fries, M.; Spearing, S.; Monaco, L.; Steele, A.

    2006-12-01

    A Modular Assay System for Solar System Exploration (MASSE) is being developed to include sample handling, pre-treatment, separation and analysis of biological target compounds by both DNA and protein microarrays. To better design sensitive and accurate initial upstream sample handling of the MASSE instrument, experiments investigating the sensitivity and potential extraction bias of commercially available DNA extraction kits between classes of environmentally relevant prokaryotes such as gram-negative bacteria ( Escherichia coli), gram-positive bacteria ( Bacillus megatarium), and Archaea ( Haloarcula marismortui) were performed. For extractions of both planktonic cultures and spiked Mars simulated regolith, FTA ® paper demonstrated the highest sensitivity, with detection as low as ˜1×10 1 cells and ˜3.3×10 2 cells, respectively. In addition to the highest sensitivity, custom modified application of FTA ® paper extraction protocol is the simplest in terms of incorporation into MASSE and displayed little bias in sensitivity with respect to prokaryotic cell type. The implementation of FTA paper for environmental microbiology investigations appears to be a viable and effective option potentially negating the need for other pre-concentration steps such as filtration and negating concerns regarding extraction efficiency of cells. In addition to investigations on useful technology for upstream sample handling in MASSE, we have also evaluated the potential for μTAS to be employed in the MASSE instrument by employing proprietary lab-on-a-chip development technology to investigate the potential for microfluidic cell lysis of different prokaryotic cells employing both chemical and biological lysis agents. Real-time bright-field microscopy and quantitative PMT detection indicated that that gram positive, gram negative and archaeal cells were effectively lyzed in a few seconds using the microfluidic chip protocol developed. This included employing a lysis buffer with

  18. Taxonomic structure of the yeasts and lactic acid bacteria microbiota of pineapple (Ananas comosus L. Merr.) and use of autochthonous starters for minimally processing.

    Science.gov (United States)

    Di Cagno, Raffaella; Cardinali, Gainluigi; Minervini, Giovanna; Antonielli, Livio; Rizzello, Carlo Giuseppe; Ricciuti, Patrizia; Gobbetti, Marco

    2010-05-01

    Pichia guilliermondii was the only identified yeast in pineapple fruits. Lactobacillus plantarum and Lactobacillus rossiae were the main identified species of lactic acid bacteria. Typing of lactic acid bacteria differentiated isolates depending on the layers. L. plantarum 1OR12 and L. rossiae 2MR10 were selected within the lactic acid bacteria isolates based on the kinetics of growth and acidification. Five technological options, including minimal processing, were considered for pineapple: heating at 72 degrees C for 15 s (HP); spontaneous fermentation without (FP) or followed by heating (FHP), and fermentation by selected autochthonous L. plantarum 1OR12 and L. rossiae 2MR10 without (SP) or preceded by heating (HSP). After 30 days of storage at 4 degrees C, HSP and SP had a number of lactic acid bacteria 1000 to 1,000,000 times higher than the other processed pineapples. The number of yeasts was the lowest in HSP and SP. The Community Level Catabolic Profiles of processed pineapples indirectly confirmed the capacity of autochthonous starters to dominate during fermentation. HSP and SP also showed the highest antioxidant activity and firmness, the better preservation of the natural colours and were preferred for odour and overall acceptability. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  19. [A comparative study of blood culture conventional method vs. a modified lysis/centrifugation technique for the diagnosis of fungemias].

    Science.gov (United States)

    Santiago, Axel Rodolfo; Hernández, Betsy; Rodríguez, Marina; Romero, Hilda

    2004-12-01

    The purpose of this work was to compare the efficacy of blood culture conventional method vs. a modified lysis/centrifugation technique. Out of 450 blood specimens received in one year, 100 where chosen for this comparative study: 60 from patients with AIDS, 15 from leukemic patients, ten from febrile neutropenic patients, five from patients with respiratory infections, five from diabetics and five from septicemic patients. The specimens were processed, simultaneously, according to the above mentioned methodologies with daily inspections searching for fungal growth in order to obtain the final identification of the causative agent. The number (40) of isolates recovered was the same using both methods, which included; 18 Candida albicans (45%), ten Candida spp. (25%), ten Histoplasma capsulatum (25%), and two Cryptococcus neoformans (5%). When the fungal growth time was compared by both methods, growth was more rapid when using the modified lysis/centrifugation technique than when using the conventional method. Statistical analysis revealed a significant difference (pcentrifugation technique showed to be more efficacious than the conventional one, and therefore the implementation of this methodology is highly recommended for the isolation of fungi from blood.

  20. Radiation-induced enhancement of enzymatic cell lysis of Micrococcus radiodurans

    International Nuclear Information System (INIS)

    Watanabe, H.; Takehisa, M.; Iizuka, H.

    1981-01-01

    The intact cells of M. radiodurans were rendered sensitive to the action of lytic enzyme (P2-2 enzyme) by irradiation. The radiation-induced enhancement of cell lysis with P2-2 enzyme was completely prevented by the addition of t-butanol and irradiation at liquid nitrogen temperature. These results indicate that the enhancement is due to indirect action resulting from OH radicals. Cell lysis by lysozyme was enhanced only when the cells were irradiated under N 2 O. The enhancement of cell lysis with lysozyme was also prevented by adding alcohols. On the other hand, when lipid components in cells were removed by extraction with n-butanol, the radiation-induced enhancement of cell lysis with P2-2 enzyme and lysozyme was not observed. From these results it is concluded that the enhancement of enzymatic cell lysis by irradiation is attributable to alteration in the lipid-rich layer of the cell wall caused by OH radicals

  1. Radiation-induced enhancement of enzymatic cell lysis of Micrococcus radiodurans

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, H.; Takehisa, M. [Japan Atomic Energy Research Inst., Takasaki, Gunma, Takasaki Radiation Chemistry Research Establishment (Japan); Iizuka, H.

    1981-10-15

    The intact cells of M. radiodurans were rendered sensitive to the action of lytic enzyme (P2-2 enzyme) by irradiation. The radiation-induced enhancement of cell lysis with P2-2 enzyme was completely prevented by the addition of t-butanol and irradiation at liquid nitrogen temperature. These results indicate that the enhancement is due to indirect action resulting from OH radicals. Cell lysis by lysozyme was enhanced only when the cells were irradiated under N{sub 2}O. The enhancement of cell lysis with lysozyme was also prevented by adding alcohols. On the other hand, when lipid components in cells were removed by extraction with n-butanol, the radiation-induced enhancement of cell lysis with P2-2 enzyme and lysozyme was not observed. From these results it is concluded that the enhancement of enzymatic cell lysis by irradiation is attributable to alteration in the lipid-rich layer of the cell wall caused by OH radicals.

  2. Listeria monocytogenes strains show large variations in competitive growth in mixed culture biofilms and suspensions with bacteria from food processing environments.

    Science.gov (United States)

    Heir, Even; Møretrø, Trond; Simensen, Andreas; Langsrud, Solveig

    2018-06-20

    Interactions and competition between resident bacteria in food processing environments could affect their ability to survive, grow and persist in microhabitats and niches in the food industry. In this study, the competitive ability of L. monocytogenes strains grown together in separate culture mixes with other L. monocytogenes (L. mono mix), L. innocua (Listeria mix), Gram-negative bacteria (Gram- mix) and with a multigenera mix (Listeria + Gram- mix) was investigated in biofilms on stainless steel and in suspensions at 12 °C. The mixed cultures included resident bacteria from processing surfaces in meat and salmon industry represented by L. monocytogenes (n = 6), L. innocua (n = 5) and Gram-negative bacteria (n = 6; Acinetobacter sp., Pseudomonas fragi, Pseudomonas fluorescens, Serratia liquefaciens, Stenotrophomonas maltophilia). Despite hampered in growth in mixed cultures, L. monocytogenes established in biofilms with counts at day nine between 7.3 and 9.0 log per coupon with the lowest counts in the Listeria + G- mix that was dominated by Pseudomonas. Specific L. innocua inhibited growth of L. monocytogenes strains differently; inhibition that was further enhanced by the background Gram-negative microbiota. In these multispecies and multibacteria cultures, the growth competitive effects lead to the dominance of a strong competitor L. monocytogenes strain that was only slightly inhibited by L. innocua and showed strong competitive abilities in mixed cultures with resident Gram-negative bacteria. The results indicates complex patterns of bacterial interactions and L. monocytogenes inhibition in the multibacteria cultures that only partially depend on cell contact and likely involve various antagonistic and bacterial tolerance mechanisms. The study indicates large variations among L. monocytogenes in their competitiveness under multibacterial culture conditions that should be considered in further studies towards understanding of L

  3. Do Bacteria Age?

    Indian Academy of Sciences (India)

    Bacteria are thought to be examples of organisms that do not age. They divide by .... carry genetic material to the next generation through the process of reproduction; they are also .... molecules, and modified proteins. This report revealed that ...

  4. [Treatment of surface burns with proteolytic enzymes: mathematic description of lysis kinetics].

    Science.gov (United States)

    Domogatskaia, A S; Domogatskiĭ, S P; Ruuge, E K

    2003-01-01

    The lysis of necrotic tissue by a proteolytic enzyme applied to the surface of a burn wound was studied. A mathematical model was proposed, which describes changes in the thickness of necrotic tissue as a function of the proteolytic activity of the enzyme. The model takes into account the inward-directed diffusion of the enzyme, the counterflow of interstitial fluid (exudates) containing specific inhibitors, and the extracellular matrix proteolysis. It was shown in terms of the quasi-stationary approach that the thickness of the necrotic tissue layer decreases exponentially with time; i.e., the lysis slows down as the thickness of the necrotic tissue layer decreases. The dependence of the characteristic time of this decrease on enzyme concentration was obtained. It was shown that, at high enzyme concentrations (more than 5 mg/ml), the entire time of lysis (after the establishment of quasi-stationary equilibrium) is inversely proportional to the concentration of the enzyme.

  5. Lysis-deficient phages as novel therapeutic agents for controlling bacterial infection

    Directory of Open Access Journals (Sweden)

    Kempashanaiah Nanjundappa

    2011-08-01

    Full Text Available Abstract Background Interest in phage therapy has grown over the past decade due to the rapid emergence of antibiotic resistance in bacterial pathogens. However, the use of bacteriophages for therapeutic purposes has raised concerns over the potential for immune response, rapid toxin release by the lytic action of phages, and difficulty in dose determination in clinical situations. A phage that kills the target cell but is incapable of host cell lysis would alleviate these concerns without compromising efficacy. Results We developed a recombinant lysis-deficient Staphylococcus aureus phage P954, in which the endolysin gene was rendered nonfunctional by insertional inactivation. P954, a temperate phage, was lysogenized in S. aureus strain RN4220. The native endolysin gene on the prophage was replaced with an endolysin gene disrupted by the chloramphenicol acetyl transferase (cat gene through homologous recombination using a plasmid construct. Lysogens carrying the recombinant phage were detected by growth in presence of chloramphenicol. Induction of the recombinant prophage did not result in host cell lysis, and the phage progeny were released by cell lysis with glass beads. The recombinant phage retained the endolysin-deficient genotype and formed plaques only when endolysin was supplemented. The host range of the recombinant phage was the same as that of the parent phage. To test the in vivo efficacy of the recombinant endolysin-deficient phage, immunocompromised mice were challenged with pathogenic S. aureus at a dose that results in 80% mortality (LD80. Treatment with the endolysin-deficient phage rescued mice from the fatal S. aureus infection. Conclusions A recombinant endolysin-deficient staphylococcal phage has been developed that is lethal to methicillin-resistant S. aureus without causing bacterial cell lysis. The phage was able to multiply in lytic mode utilizing a heterologous endolysin expressed from a plasmid in the propagation host

  6. Tumor lysis syndrome following endoscopic radiofrequency interstitial thermal ablation of colorectal liver metastases.

    LENUS (Irish Health Repository)

    Barry, B D

    2012-02-03

    Radiofrequency interstitial thermal ablation (RITA) provides a palliative option for patients suffering from metastatic liver disease. This procedure can be performed using a laparoscopic approach with laparoscopic ultrasound used to position the RITA probe. We describe a case of laparoscopic RITA performed for colorectal liver metastasis that was complicated by tumor lysis syndrome (TLS) following treatment. We consider RITA to be a safe procedure, as supported by the literature, but where intracorporal tumor lysis is the treatment goal we believe that the systemic release of tumor products can overwhelm the excretory capacity; therefore, TLS is an inevitable consequence in some patients.

  7. Nitrogen source effects on the denitrifying anaerobic methane oxidation culture and anaerobic ammonium oxidation bacteria enrichment process.

    Science.gov (United States)

    Fu, Liang; Ding, Jing; Lu, Yong-Ze; Ding, Zhao-Wei; Zeng, Raymond J

    2017-05-01

    The co-culture system of denitrifying anaerobic methane oxidation (DAMO) and anaerobic ammonium oxidation (Anammox) has a potential application in wastewater treatment plant. This study explored the effects of permutation and combination of nitrate, nitrite, and ammonium on the culture enrichment from freshwater sediments. The co-existence of NO 3 - , NO 2 - , and NH 4 + shortened the enrichment time from 75 to 30 days and achieved a total nitrogen removal rate of 106.5 mg/L/day on day 132. Even though ammonium addition led to Anammox bacteria increase and a higher nitrogen removal rate, DAMO bacteria still dominated in different reactors with the highest proportion of 64.7% and the maximum abundance was 3.07 ± 0.25 × 10 8 copies/L (increased by five orders of magnitude) in the nitrite reactor. DAMO bacteria showed greater diversity in the nitrate reactor, and one was similar to M. oxyfera; DAMO bacteria in the nitrite reactor were relatively unified and similar to M. sinica. Interestingly, no DAMO archaea were found in the nitrate reactor. This study will improve the understanding of the impact of nitrogen source on DAMO and Anammox co-culture enrichment.

  8. Complement lysis activity in autologous plasma is associated with lower viral loads during the acute phase of HIV-1 infection.

    Directory of Open Access Journals (Sweden)

    Michael Huber

    2006-11-01

    Full Text Available BACKGROUND: To explore the possibility that antibody-mediated complement lysis contributes to viremia control in HIV-1 infection, we measured the activity of patient plasma in mediating complement lysis of autologous primary virus. METHODS AND FINDINGS: Sera from two groups of patients-25 with acute HIV-1 infection and 31 with chronic infection-were used in this study. We developed a novel real-time PCR-based assay strategy that allows reliable and sensitive quantification of virus lysis by complement. Plasma derived at the time of virus isolation induced complement lysis of the autologous virus isolate in the majority of patients. Overall lysis activity against the autologous virus and the heterologous primary virus strain JR-FL was higher at chronic disease stages than during the acute phase. Most strikingly, we found that plasma virus load levels during the acute but not the chronic infection phase correlated inversely with the autologous complement lysis activity. Antibody reactivity to the envelope (Env proteins gp120 and gp41 were positively correlated with the lysis activity against JR-FL, indicating that anti-Env responses mediated complement lysis. Neutralization and complement lysis activity against autologous viruses were not associated, suggesting that complement lysis is predominantly caused by non-neutralizing antibodies. CONCLUSIONS: Collectively our data provide evidence that antibody-mediated complement virion lysis develops rapidly and is effective early in the course of infection; thus it should be considered a parameter that, in concert with other immune functions, steers viremia control in vivo.

  9. Mechanisms of fever production and lysis: lessons from experimental LPS fever.

    Science.gov (United States)

    Roth, Joachim; Blatteis, Clark M

    2014-10-01

    Fever is a cardinal symptom of infectious or inflammatory insults, but it can also arise from noninfectious causes. The fever-inducing agent that has been used most frequently in experimental studies designed to characterize the physiological, immunological and neuroendocrine processes and to identify the neuronal circuits that underlie the manifestation of the febrile response is lipopolysaccharide (LPS). Our knowledge of the mechanisms of fever production and lysis is largely based on this model. Fever is usually initiated in the periphery of the challenged host by the immediate activation of the innate immune system by LPS, specifically of the complement (C) cascade and Toll-like receptors. The first results in the immediate generation of the C component C5a and the subsequent rapid production of prostaglandin E2 (PGE2). The second, occurring after some delay, induces the further production of PGE2 by induction of its synthesizing enzymes and transcription and translation of proinflammatory cytokines. The Kupffer cells (Kc) of the liver seem to be essential for these initial processes. The subsequent transfer of the pyrogenic message from the periphery to the brain is achieved by neuronal and humoral mechanisms. These pathways subserve the genesis of early (neuronal signals) and late (humoral signals) phases of the characteristically biphasic febrile response to LPS. During the course of fever, counterinflammatory factors, "endogenous antipyretics," are elaborated peripherally and centrally to limit fever in strength and duration. The multiple interacting pro- and antipyretic signals and their mechanistic effects that underlie endotoxic fever are the subjects of this review.

  10. Clot lysis time in platelet-rich plasma: method assessment, comparison with assays in platelet-free and platelet-poor plasmas, and response to tranexamic acid.

    Science.gov (United States)

    Panes, Olga; Padilla, Oslando; Matus, Valeria; Sáez, Claudia G; Berkovits, Alejandro; Pereira, Jaime; Mezzano, Diego

    2012-01-01

    Fibrinolysis dysfunctions cause bleeding or predisposition to thrombosis. Platelets contain several factors of the fibrinolytic system, which could up or down regulate this process. However, the temporal relationship and relative contributions of plasma and platelet components in clot lysis are mostly unknown. We developed a clot lysis time (CLT) assay in platelet-rich plasma (PRP-CLT, with and without stimulation) and compared it to a similar one in platelet-free plasma (PFP) and to another previously reported test in platelet-poor plasma (PPP). We also studied the differential effects of a single dose of tranexamic acid (TXA) on these tests in healthy subjects. PFP- and PPP-CLT were significantly shorter than PRP-CLT, and the three assays were highly correlated (p plasma PAI-1, von Willebrand factor, fibrinogen, LDL-cholesterol, and triglycerides (p platelet aggregation/secretion, platelet counts, and pro-coagulant tests to explore factor X activation by platelets, PRP clotting time, and thrombin generation in PRP. Among all the studied variables, PFP-CLT was independently associated with plasma PAI-1, LDL-cholesterol, and triglycerides and, additionally, stimulated PRP-CLT was also independently associated with plasma fibrinogen. A single 1 g dose of TXA strikingly prolonged all three CLTs, but in contrast to the results without the drug, the lysis times were substantially shorter in non-stimulated or stimulated PRP than in PFP and PPP. This standardized PRP-CLT may become a useful tool to study the role of platelets in clot resistance and lysis. Our results suggest that initially, the platelets enmeshed in the clot slow down the fibrinolysis process. However, the increased clot resistance to lysis induced by TXA is overcome earlier in platelet-rich clots than in PFP or PPP clots. This is likely explained by the display of platelet pro-fibrinolytic effects. Focused research is needed to disclose the mechanisms for the relationship between CLT and plasma

  11. Processing of humic-rich riverine dissolved organic matter by estuarine bacteria: effects of predegradation and inorganic nutrients

    DEFF Research Database (Denmark)

    Asmala, E.; Autio, R.; Kaartokallio, H.

    2014-01-01

    The bioavailability of predegraded dissolved organic matter (DOM) from a humic-rich, boreal river to estuarine bacteria from the Baltic Sea was studied in 39-day bioassays. The river waters had been exposed to various degrees of bacterial degradation by storing them between 0 and 465 days in dark...... prior to the bioassay. The resulting predegraded DOM was inoculated with estuarine bacteria and the subsequent changes in DOM quantity and quality measured. During the incubations, dissolved organic carbon (DOC) and oxygen concentrations decreased, indicating heterotrophic activity. Coloured DOM...... was degraded less than DOC, indicating a selective utilization of DOM, and humic-like fluorescence components increased during the incubations. The amount of DOC degraded was not affected by the length of DOM predegradation. The percentage of bioavailable DOC (%BDOC) was higher in experiment units with added...

  12. Distribution of bacteria and associated minerals in the gill chamber of the vent shrimp Rimicaris exoculata and related biogeochemical processes

    Science.gov (United States)

    Zbinden, M.; Le Bris, N.; Compere, P.; Gaill, F.

    2004-12-01

    The shrimp Rimicaris exoculata dominates the megafauna of some mid-Atlantic Ridge hydrothermal vent fields. This species harbors a rich bacterial epibiosis inside its gill chamber. At the Rainbow vent field, the epibionts are associated with iron oxide deposits. Investigation of both bacteria and minerals by scanning electron microscopy (SEM) and X-ray microanalysis (EDX) shows the occurrence of three distinct compartments in the gill chamber: (1) the lower pre-branchial chamber, housing bacteria, but devoid of minerals, (2) the "true" branchial chamber that contains the gills and remains free of both bacteria and minerals, and (3) the upper pre-branchial chamber housing the main ectosymbiotic bacterial community and associated iron oxides. According to our chemical and temperature data, abiotic iron oxidation appears to be kinetically inhibited in the environment of the shrimps and this would explain the lack of iron oxide deposits in the first two areas. We propose that, in the third area, iron oxidation is microbially promoted. The discrepancy between the spatial distribution of bacteria and minerals suggests that different bacterial metabolisms are involved in the two compartments. A possible explanation lies in the modification of physico-chemical conditions downstream of the gills, that would reduce the oxygen content and favor the development of bacterial iron-oxidizers in this Fe II-rich environment. A potential role of such iron-oxidizing symbionts in the shrimp diet is suggested. This would be unusual for hydrothermal ecosystems, where most previously described symbioses rely on sulphide or methane as an energy source.

  13. Plasma Clot Lysis Time and Its Association with Cardiovascular Risk Factors in Black Africans

    NARCIS (Netherlands)

    Z. de Lange (Zelda); M. Pieters (Marlien); J.C. Jerling (Johann); A. Kruger (Annamarie); D.C. Rijken (Dingeman)

    2012-01-01

    textabstractStudies in populations of European descent show longer plasma clot lysis times (CLT) in patients with cardiovascular disease (CVD) than in controls. No data are available on the association between CVD risk factors and fibrinolytic potential in black Africans, a group undergoing rapid

  14. Changes in bacterial and eukaryotic community structure after mass lysis of filamentous cyanobacteria associated with viruses

    NARCIS (Netherlands)

    Hannen, E.J. van; Zwart, G.; Agterveld, M.P. van; Gons, H.J.; Ebert, J.; Laanbroek, H.J.

    1999-01-01

    During an experiment in two laboratory-scale enclosures filled with lake water (130 liters each) we noticed the almost-complete lysis of the cyanobacterial population. Based on electron microscopic observations of viral particles inside cyanobacterial filaments and counts of virus-like particles,

  15. Changes in bacterial and eukaryotic community structure after mass lysis of filamentous cyanobacteria associated with viruses

    NARCIS (Netherlands)

    Van Hannen, E.J.; Zwart, G.; Van Agterveld, M.P.; Gons, H.J.; Ebert, J.; Laanbroek, H.J.

    1999-01-01

    During an experiment in two laboratory-scale enclosures filled with lake water (130 liters each) we noticed the almost-complete lysis of the cyanobacterial population. Based on electron microscopic observations of viral particles inside cyanobacterial filaments and counts of virus-like particles, we

  16. Quantifying enzymatic lysis: estimating the combined effects of chemistry, physiology and physics

    International Nuclear Information System (INIS)

    Mitchell, Gabriel J; Weitz, Joshua S; Nelson, Daniel C

    2010-01-01

    The number of microbial pathogens resistant to antibiotics continues to increase even as the rate of discovery and approval of new antibiotic therapeutics steadily decreases. Many researchers have begun to investigate the therapeutic potential of naturally occurring lytic enzymes as an alternative to traditional antibiotics. However, direct characterization of lytic enzymes using techniques based on synthetic substrates is often difficult because lytic enzymes bind to the complex superstructure of intact cell walls. Here we present a new standard for the analysis of lytic enzymes based on turbidity assays which allow us to probe the dynamics of lysis without preparing a synthetic substrate. The challenge in the analysis of these assays is to infer the microscopic details of lysis from macroscopic turbidity data. We propose a model of enzymatic lysis that integrates the chemistry responsible for bond cleavage with the physical mechanisms leading to cell wall failure. We then present a solution to an inverse problem in which we estimate reaction rate constants and the heterogeneous susceptibility to lysis among target cells. We validate our model given simulated and experimental turbidity assays. The ability to estimate reaction rate constants for lytic enzymes will facilitate their biochemical characterization and development as antimicrobial therapeutics

  17. A simple and novel modification of comet assay for determination of bacteriophage mediated bacterial cell lysis.

    Science.gov (United States)

    Khairnar, Krishna; Sanmukh, Swapnil; Chandekar, Rajshree; Paunikar, Waman

    2014-07-01

    The comet assay is the widely used method for in vitro toxicity testing which is also an alternative to the use of animal models for in vivo testing. Since, its inception in 1984 by Ostling and Johansson, it is being modified frequently for a wide range of application. In spite of its wide applicability, unfortunately there is no report of its application in bacteriophages research. In this study, a novel application of comet assay for the detection of bacteriophage mediated bacterial cell lysis was described. The conventional methods in bacteriophage research for studying bacterial lysis by bacteriophages are plaque assay method. It is time consuming, laborious and costly. The lytic activity of bacteriophage devours the bacterial cell which results in the release of bacterial genomic material that gets detected by ethidium bromide staining method by the comet assay protocol. The objective of this study was to compare efficacy of comet assay with different assay used to study phage mediated bacterial lysis. The assay was performed on culture isolates (N=80 studies), modified comet assay appear to have relatively higher sensitivity and specificity than other assay. The results of the study showed that the application of comet assay can be an economical, time saving and less laborious alternative to conventional plaque assay for the detection of bacteriophage mediated bacterial cell lysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Lysis of fresh human solid tumors by autologous lymphocytes activated in vitro with lectins

    International Nuclear Information System (INIS)

    Mazumder, A.; Grimm, E.A.; Zhang, H.Z.; Rosenberg, S.A.

    1982-01-01

    Human peripheral blood lymphocytes (PBL), obtained from patients with a variety of cancers, were incubated in vitro with phytohemagglutinin, concanavalin A, and crude or lectin-free T-cell growth factors. The lectin-activated PBL of nine patients were capable of lysing fresh autologous tumor during a 4-hr 51Cr release assay. Multiple metastases from the same patient were equivalently lysed by these activated autologous PBL. No lysis of fresh PBL or lectin-induced lymphoblast cell targets was seen, although tumor, PBL, and lymphoblast cells were shown to be equally lysable using allosensitized cells. The activated cells could be expanded without loss of cytotoxicity in crude or lectin-free T-cell growth factors. The generation of cells lytic to fresh autologous tumor was dependent on the presence of adherent cells, although the lytic cell itself was not adherent. Proliferation was not involved in the induction of lytic cells since equal lysis was induced in irradiated and nonirradiated lymphocytes. Lectin was not required in the lytic assay, and the addition of alpha-methyl-D-mannoside to concanavalin A-activated lymphoid cells did not increase the lysis of fresh tumor cells. Activation by lectin for 3 days appears to be an efficient and convenient method for generating human cells lytic to fresh autologous tumor. These lytic cells may be of value for studies of the cell-mediated lysis of human tumor and possibly for tumor immunotherapy as well

  19. Quantifying enzymatic lysis: estimating the combined effects of chemistry, physiology and physics.

    Science.gov (United States)

    Mitchell, Gabriel J; Nelson, Daniel C; Weitz, Joshua S

    2010-10-04

    The number of microbial pathogens resistant to antibiotics continues to increase even as the rate of discovery and approval of new antibiotic therapeutics steadily decreases. Many researchers have begun to investigate the therapeutic potential of naturally occurring lytic enzymes as an alternative to traditional antibiotics. However, direct characterization of lytic enzymes using techniques based on synthetic substrates is often difficult because lytic enzymes bind to the complex superstructure of intact cell walls. Here we present a new standard for the analysis of lytic enzymes based on turbidity assays which allow us to probe the dynamics of lysis without preparing a synthetic substrate. The challenge in the analysis of these assays is to infer the microscopic details of lysis from macroscopic turbidity data. We propose a model of enzymatic lysis that integrates the chemistry responsible for bond cleavage with the physical mechanisms leading to cell wall failure. We then present a solution to an inverse problem in which we estimate reaction rate constants and the heterogeneous susceptibility to lysis among target cells. We validate our model given simulated and experimental turbidity assays. The ability to estimate reaction rate constants for lytic enzymes will facilitate their biochemical characterization and development as antimicrobial therapeutics.

  20. Lysis of typhus-group rickettsia-infected targets by lymphokine activated killers

    International Nuclear Information System (INIS)

    Carl, M.; Dasch, G.A.

    1986-01-01

    The authors recently described a subset of OKT8, OKT3-positive lymphocytes from typhus-group rickettsia immune individuals which were capable of lysing autologous PHA-blasts or Epstein-Barr virus transformed B cells (LCL) infected with typhus-group rickettsiae. In order to determine if killing by these effectors was HLA-restricted, they stimulated peripheral blood mononuclear cells (PBMC) from typhus-group rickettsia immune individuals in vitro with typhus-group rickettsia-derived antigen for one week and then measured lysis of autologous LCL or HLA-mismatched LCL in a 4-6 hour Cr 51 -release assay. There was significant lysis of both the autologous and the HLA-mismatched infected targets as compared to the corresponding uninfected targets. Since this suggested that the effectors were lymphokine activated killers (LAK) rather than cytotoxic T lymphocytes, they then tested this hypothesis by stimulating PBMC from both immune and non-immune individuals in vitro for one week with purified interleukin 2 and measuring lysis of infected, autologous LCL. PBMC thus treated, from both immune and non-immune individuals, were capable of significantly lysing autologous, infected LCL as compared to the non-infected control. They therefore conclude that targets infected with typhus-group rickettsiae are susceptible to lysis to LAK

  1. Electrochemical lysis at the stage of endoresection for large posterior intraocular tumors

    Directory of Open Access Journals (Sweden)

    Yu. A. Belyy

    2012-01-01

    Full Text Available Purpose: to design the new combined technique of endoresection with intraoperative intraocular electrochemical lysis at the tumor destruction stage for large posterior intraocular tumors.Methods: 3 patients (3 eyes with large choroidal melanomas t3N0M0 (tumor thickness — 8-10 mm, base diameter — 13-15 mm, juxtapapillary localization. Mean age was 55.4 years old. Endoresection with intraoperational intraocular electrochemical lysis of the tumor was performed. Electrochemical lysis was performed with use of the technical unit ECU 300 (Soering, Germany and the original method of combined intratumoral positioning of two platinum electrodes: anode and cathode.Results: the tumor was removal completely in all 3 cases. the anatomical retinal reattachment was reached in all patients. Sclera was safe in all 3 cases. Visual acuity was not changed (NLP. At the place of the removal tumor a surgical choroidal coloboma without pigmentation all over scleral bed and periphery was shown in all cases in distant postoperative period (from 1.5 to 3 years. No local recurrences or metastasis were revealed in all patients.Conclusion: Further investigations in clinical group are necessarily to determinate the real possibilities of the combined method and the indications for endoresection with intraoperative intraocular electrochemical lysis for large intraocular tumors. 

  2. Gene expression correlates with process rates quantified for sulfate- and Fe(III-reducing bacteria in U(VI-contaminated sediments

    Directory of Open Access Journals (Sweden)

    Denise M Akob

    2012-08-01

    Full Text Available Though iron- and sulfate-reducing bacteria are well known for mediating uranium(VI reduction in contaminated subsurface environments, quantifying the in situ activity of the microbial groups responsible remains a challenge. The objective of this study was to demonstrate the use of quantitative molecular tools that target mRNA transcripts of key genes related to Fe(III and sulfate reduction pathways in order to monitor these processes during in situ U(VI remediation in the subsurface. Expression of the Geobacteraceae-specific citrate synthase gene (gltA and the dissimilatory (bisulfite reductase gene (dsrA, were correlated with the activity of iron- or sulfate-reducing microorganisms, respectively, under stimulated bioremediation conditions in microcosms of sediments sampled from the U.S. Department of Energy’s Oak Ridge Integrated Field Research Challenge (OR-IFRC site at Oak Ridge, Tennessee. In addition, Geobacteraceae-specific gltA and dsrA transcript levels were determined in parallel with the predominant electron acceptors present in moderately and highly contaminated subsurface sediments from the OR-IFRC. Phylogenetic analysis of the cDNA generated from dsrA mRNA, sulfate-reducing bacteria-specific 16S rRNA, and gltA mRNA identified activity of specific microbial groups. Active sulfate reducers were members of the Desulfovibrio, Desulfobacterium, and Desulfotomaculum genera. Members of the subsurface Geobacter clade, closely related to uranium-reducing Geobacter uraniireducens and Geobacter daltonii, were the metabolically-active iron-reducers in biostimulated microcosms and in situ core samples. Direct correlation of transcripts and process rates demonstrated evidence of competition between the functional guilds in subsurface sediments. We further showed that active populations of Fe(III-reducing bacteria and sulfate-reducing bacteria are present in OR-IFRC sediments and are good potential targets for in situ bioremediation.

  3. Lipopolysaccharides in diazotrophic bacteria

    OpenAIRE

    Serrato, Rodrigo V.

    2014-01-01

    Biological nitrogen fixation (BNF) is a process in which the atmospheric nitrogen (N2) is transformed into ammonia (NH3) by a select group of nitrogen-fixing organisms, or diazotrophic bacteria. In order to furnish the biologically useful nitrogen to plants, these bacteria must be in constant molecular communication with their host plants. Some of these molecular plant-microbe interactions are very specific, resulting in a symbiotic relationship between the diazotroph and the host. Others are...

  4. Fractalkine expression induces endothelial progenitor cell lysis by natural killer cells.

    Directory of Open Access Journals (Sweden)

    Dilyana Todorova

    Full Text Available BACKGROUND: Circulating CD34(+ cells, a population that includes endothelial progenitors, participate in the maintenance of endothelial integrity. Better understanding of the mechanisms that regulate their survival is crucial to improve their regenerative activity in cardiovascular and renal diseases. Chemokine-receptor cross talk is critical in regulating cell homeostasis. We hypothesized that cell surface expression of the chemokine fractalkine (FKN could target progenitor cell injury by Natural Killer (NK cells, thereby limiting their availability for vascular repair. METHODOLOGY/PRINCIPAL FINDINGS: We show that CD34(+-derived Endothelial Colony Forming Cells (ECFC can express FKN in response to TNF-α and IFN-γ inflammatory cytokines and that FKN expression by ECFC stimulates NK cell adhesion, NK cell-mediated ECFC lysis and microparticles release in vitro. The specific involvement of membrane FKN in these processes was demonstrated using FKN-transfected ECFC and anti-FKN blocking antibody. FKN expression was also evidenced on circulating CD34(+ progenitor cells and was detected at higher frequency in kidney transplant recipients, when compared to healthy controls. The proportion of CD34(+ cells expressing FKN was identified as an independent variable inversely correlated to CD34(+ progenitor cell count. We further showed that treatment of CD34(+ circulating cells isolated from adult blood donors with transplant serum or TNF-α/IFN-γ can induce FKN expression. CONCLUSIONS: Our data highlights a novel mechanism by which FKN expression on CD34(+ progenitor cells may target their NK cell mediated killing and participate to their immune depletion in transplant recipients. Considering the numerous diseased contexts shown to promote FKN expression, our data identify FKN as a hallmark of altered progenitor cell homeostasis with potential implications in better evaluation of vascular repair in patients.

  5. Big bacteria

    DEFF Research Database (Denmark)

    Schulz, HN; Jørgensen, BB

    2001-01-01

    A small number of prokaryotic species have a unique physiology or ecology related to their development of unusually large size. The biomass of bacteria varies over more than 10 orders of magnitude, from the 0.2 mum wide nanobacteria to the largest cells of the colorless sulfur bacteria......, Thiomargarita namibiensis, with a diameter of 750 mum. All bacteria, including those that swim around in the environment, obtain their food molecules by molecular diffusion. Only the fastest and largest swimmers known, Thiovulum majus, are able to significantly increase their food supply by motility...... and by actively creating an advective flow through the entire population. Diffusion limitation generally restricts the maximal size of prokaryotic cells and provides a selective advantage for mum-sized cells at the normally low substrate concentrations in the environment. The largest heterotrophic bacteria...

  6. Big bacteria

    DEFF Research Database (Denmark)

    Schulz, HN; Jørgensen, BB

    2001-01-01

    A small number of prokaryotic species have a unique physiology or ecology related to their development of unusually large size. The biomass of bacteria varies over more than 10 orders of magnitude, from the 0.2 mum wide nanobacteria to the largest cells of the colorless sulfur bacteria...... and by actively creating an advective flow through the entire population. Diffusion limitation generally restricts the maximal size of prokaryotic cells and provides a selective advantage for mum-sized cells at the normally low substrate concentrations in the environment. The largest heterotrophic bacteria......, the 80 x 600 mum large Epulopiscium sp. from the gut of tropical fish, are presumably living in a very nutrient-rich medium. Many large bacteria contain numerous inclusions in the cells that reduce the volume of active cytoplasm. The most striking examples of competitive advantage from large cell size...

  7. Magnetic Bacteria.

    Science.gov (United States)

    Nelson, Jane Bray; Nelson, Jim

    1992-01-01

    Describes the history of Richard Blakemore's discovery of magnetotaxic organisms. Discusses possible reasons why the magnetic response in bacteria developed. Proposes research experiments integrating biology and physics in which students investigate problems using cultures of magnetotaxic organisms. (MDH)

  8. A mechanism of acquired resistance to complement-mediated lysis by Entamoeba histolytica.

    Science.gov (United States)

    Gutiérrez-Kobeh, L; Cabrera, N; Pérez-Montfort, R

    1997-04-01

    Some Entamoeba histolytica strains resist complement-mediated lysis by serum. Susceptible and resistant strains activate the complement system equivalently, but resistant amebas evade killing by membrane attack complexes. Our objective was to determine the mechanism by which trophozoites of E. histolytica resist lysis by human serum. Amebas were made resistant to lysis by incubation with increasing concentrations of normal human serum. The possibility that resistant cells ingest membrane attack complexes was explored by subcellular fractionation of susceptible and resistant trophozoites treated with sublytic concentrations of human serum containing radiolabeled C9. In both cases, most of the label was in the fractions containing plasma membrane. The susceptible strain consistently showed more label associated with these fractions than the resistant strain. Thus, the possibility that the membrane attack complexes were released to the medium was explored. Both resistant and susceptible trophozoites release to the medium similar amounts of material excluded by Sepharose CL-2B in the presence or absence of normal human serum. Labeled C9 elutes together with the main bulk of proteins from the medium: this indicates that it is not in vesicles or high molecular weight aggregates. Coincubation of susceptible amebas with lysates of resistant trophozoites confers resistance to susceptible cells within 30 min. Resistance to lysis by serum can also be acquired by susceptible amebas after coincubation with lysates from human erythrocytes or after feeding them with whole human red blood cells. Resistant but not susceptible trophozoites show intense immunofluorescent staining on their surface with anti-human erythrocytic membrane antibody. These results suggest that amebas acquire resistance to lysis by serum by incorporating into their membranes complement regulatory proteins.

  9. Method and apparatus for iterative lysis and extraction of algae

    Science.gov (United States)

    Chew, Geoffrey; Boggs, Tabitha; Dykes, Jr., H. Waite H.; Doherty, Stephen J.

    2015-12-01

    A method and system for processing algae involves the use of an ionic liquid-containing clarified cell lysate to lyse algae cells. The resulting crude cell lysate may be clarified and subsequently used to lyse algae cells. The process may be repeated a number of times before a clarified lysate is separated into lipid and aqueous phases for further processing and/or purification of desired products.

  10. DNA isolation protocols affect the detection limit of PCR approaches of bacteria in samples from the human gastrointestinal tract

    NARCIS (Netherlands)

    Zoetendal, E.G.; Ben-Amor, K.; Akkermans, A.D.L.; Abee, T.; Vos, de W.M.

    2001-01-01

    A major concern in molecular ecological studies is the lysis efficiency of different bacteria in a complex ecosystem. We used a PCR-based 16S rDNA approach to determine the effect of two DNA isolation protocols (i.e. the bead beating and Triton-X100 method) on the detection limit of seven

  11. Infection processes of xylem-colonizing pathogenic bacteria: possible explanations for the scarcity of qualitative disease resistance genes against them in crops.

    Science.gov (United States)

    Bae, Chungyun; Han, Sang Wook; Song, Yu-Rim; Kim, Bo-Young; Lee, Hyung-Jin; Lee, Je-Min; Yeam, Inhwa; Heu, Sunggi; Oh, Chang-Sik

    2015-07-01

    Disease resistance against xylem-colonizing pathogenic bacteria in crops. Plant pathogenic bacteria cause destructive diseases in many commercially important crops. Among these bacteria, eight pathogens, Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, Erwinia amylovora, Pantoea stewartii subsp. stewartii, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. actinidiae, and Xylella fastidiosa, infect their host plants through different infection sites and paths and eventually colonize the xylem tissues of their host plants, resulting in wilting symptoms by blocking water flow or necrosis of xylem tissues. Noticeably, only a relatively small number of resistant cultivars in major crops against these vascular bacterial pathogens except X. oryzae pv. oryzae have been found or generated so far, although these pathogens threaten productivity of major crops. In this review, we summarize the lifestyles of major xylem-colonizing bacterial pathogens and then discuss the progress of current research on disease resistance controlled by qualitative disease resistance genes or quantitative trait loci against them. Finally, we propose infection processes of xylem-colonizing bacterial pathogens as one of possible reasons for why so few qualitative disease resistance genes against these pathogens have been developed or identified so far in crops.

  12. Inhibiting mild steel corrosion from sulfate-reducing bacteria using antimicrobial-producing biofilms in Three-Mile-Island process water.

    Science.gov (United States)

    Zuo, R; Ornek, D; Syrett, B C; Green, R M; Hsu, C-H; Mansfeld, F B; Wood, T K

    2004-04-01

    Biofilms were used to produce gramicidin S (a cyclic decapeptide) to inhibit corrosion-causing, sulfate-reducing bacteria (SRB). In laboratory studies these biofilms protected mild steel 1010 continuously from corrosion in the aggressive, cooling service water of the AmerGen Three-Mile-Island (TMI) nuclear plant, which was augmented with reference SRB. The growth of both reference SRB (Gram-positive Desulfosporosinus orientis and Gram-negative Desulfovibrio vulgaris) was shown to be inhibited by supernatants of the gramicidin-S-producing bacteria as well as by purified gramicidin S. Electrochemical impedance spectroscopy and mass loss measurements showed that the protective biofilms decreased the corrosion rate of mild steel by 2- to 10-fold when challenged with the natural SRB of the TMI process water supplemented with D. orientis or D. vulgaris. The relative corrosion inhibition efficiency was 50-90% in continuous reactors, compared to a biofilm control which did not produce the antimicrobial gramicidin S. Scanning electron microscope and reactor images also revealed that SRB attack was thwarted by protective biofilms that secrete gramicidin S. A consortium of beneficial bacteria (GGPST consortium, producing gramicidin S and other antimicrobials) also protected the mild steel.

  13. Optimal control of aerobic bacteria fermentaion by dynamic programming method. Doteki keikakuho ni yoru kokisei saikin hakko process no saiteki seigyo

    Energy Technology Data Exchange (ETDEWEB)

    Kidoushi, H; Murayama, S; Shiomi, S [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan); Haneda, K; Yamada, Y [Asahi Chemical Industry Co. Ltd., Tokyo (Japan)

    1991-05-10

    A dynamic programing method was applied for maximizing a production yield in controlling the process of aerobic bacteria fermentation. An optimal control was carried out by air flow rate under a sufficient sugar supply condition, using the bacteria amount as a state variable and the air flow rate as an operation variable, under conditions where the sugar consuming rate is not a limiting factor. The growth and production were modelled, and the relationship of both the specific growth rate and the specific production rate to the specific respiration rate was was expressed as functional tables. A simulation was carried out, which provided an optimum air flow pattern. This relationship between the bacteria amount and the optimum air flow rate was mapped to perform a map control. Conditions other than the air flow pattern were made to agree with the previous empirical cultivation method, and experiments were conducted using a cultivation tank of 0.03 m {sup 3}. A yield increase of 13.6% over the conventional method was attained, thus the reasonability of the modelling was verified. It was found that there are portions where the width of the optimum air flow control is wide and narrow, and it is possible to reduce the number of maps if this this is taken into account. 4 refs., 8 figs., 2 tabs.

  14. Meat Processing Plant Microbiome and Contamination Patterns of Cold-Tolerant Bacteria Causing Food Safety and Spoilage Risks in the Manufacture of Vacuum-Packaged Cooked Sausages.

    Science.gov (United States)

    Hultman, Jenni; Rahkila, Riitta; Ali, Javeria; Rousu, Juho; Björkroth, K Johanna

    2015-10-01

    Refrigerated food processing facilities are specific man-made niches likely to harbor cold-tolerant bacteria. To characterize this type of microbiota and study the link between processing plant and product microbiomes, we followed and compared microbiota associated with the raw materials and processing stages of a vacuum-packaged, cooked sausage product affected by a prolonged quality fluctuation with occasional spoilage manifestations during shelf life. A total of 195 samples were subjected to culturing and amplicon sequence analyses. Abundant mesophilic psychrotrophs were detected within the microbiomes throughout the different compartments of the production plant environment. However, each of the main genera of food safety and quality interest, e.g., Leuconostoc, Brochothrix, and Yersinia, had their own characteristic patterns of contamination. Bacteria from the genus Leuconostoc, commonly causing spoilage of cold-stored, modified-atmosphere-packaged foods, were detected in high abundance (up to >98%) in the sausages studied. The same operational taxonomic units (OTUs) were, however, detected in lower abundances in raw meat and emulsion (average relative abundance of 2%±5%), as well as on the processing plant surfaces (food safety concerns related to their resilient existence on surfaces. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Effect of brine marination on survival and growth of spoilage and pathogenic bacteria during processing and subsequent storage of ready-to-eat shrimp (Pandalus borealis)

    DEFF Research Database (Denmark)

    Mejlholm, Ole; Devitt, Tina D.; Dalgaard, Paw

    2012-01-01

    The effect of brine marination at chill temperatures on survival and growth of spoilage and pathogenic bacteria during processing and subsequent storage of ready-to-eat cold water shrimp was studied. Survival and growth of Lactobacillus sakei, Listeria monocytogenes, Salmonella, Staphylococcus...... aureus and Vibrio parahaemolyticus were examined. The effect of brine composition and pH was determined in 12 screening experiments without addition of shrimp. Sixteen challenge tests with shrimp were then carried out to examine the effect of brine composition and storage temperature on survival...

  16. Superiority of SDS lysis over saponin lysis for direct bacterial identification from positive blood culture bottle by MALDI-TOF MS.

    Science.gov (United States)

    Caspar, Yvan; Garnaud, Cécile; Raykova, Mariya; Bailly, Sébastien; Bidart, Marie; Maubon, Danièle

    2017-05-01

    Fast species diagnosis has an important health care impact, as rapid and specific antibacterial therapy is of clear benefit for patient's outcome. Here, a new protocol for species identification directly from positive blood cultures is proposed. Four in-house protocols for bacterial identification by MS directly from clinical positive blood cultures evaluating two lytic agents, SDS and saponin, and two protein extraction schemes, fast (FP) and long (LP) are compared. One hundred and sixty-eight identification tests are carried out on 42 strains. Overall, there are correct identifications to the species level in 90% samples for the SDS-LP, 60% for the SDS-FP, 48% for the saponin LP, and 43% for the saponin FP. Adapted scores allowed 92, 86, 72, and 53% identification for SDS-LP, SDS-FP, saponin LP, and saponin FP, respectively. Saponin lysis is associated with a significantly lower score compared to SDS (0.87 [0.83-0.92], p-value saponin lysis and the application of this rapid and cost-effective protocol in daily routine for microbiological agents implicated in septicemia. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Spontaneous tumour lysis syndrome in a case of multiple myeloma – A rare occurrence

    Directory of Open Access Journals (Sweden)

    Kavitha Saravu

    2013-03-01

    Full Text Available We describe a case of a 40-year-old male patient who was found to have multiple myeloma with spontaneous tumour lysis syndrome (TLS, following a compression fracture of the L–2 vertebrae. Multiple myeloma was confirmed by bone marrow analysis and the M–band on serum protein electrophoresis. Hyperuricaemia (26.2 mg/dL, hyperkalaemia (> 7.0 mEq/L, hyperphosphatemia (16.2 mg of phosphorus/dL, normocalcemia and acute kidney injury, prior to anticancer treatment suggested spontaneous TLS. Inciting events for tumour lysis, such as chemotherapy, dehydration and exposure to steroids were absent. Patient received hydration, hypourecemic drugs and haemodialysis. This case report highlights the rare presentation of multiple myeloma with spontaneous TLS.

  18. A case of cetuximab-related tumour lysis syndrome in metastatic rectal carcinoma

    Science.gov (United States)

    Haroon, Muhammad; Kwong, Whye Yan; Cantwell, Brian; Walker, Frank

    2010-01-01

    A 60-year-old man was diagnosed with a moderately differentiated adenocarcinoma in November 2006. The computed tomography (CT), magnetic resonance imaging (MRI) and whole-body positron emission tomography–CT (PET–CT) scan showed the presence of multiple liver metastases which were confined to its right lobe. He had the first session of a combined therapy with cetuximab and 5-fluorouracil (5-FU) in March 2009; however, soon afterwards, he presented with the symptoms, signs and biochemistry suggestive of tumour lysis syndrome. Our unusual case highlights that tumour lysis syndrome can also develop in ‘low risk’ category tumours, and that clinicians should be vigilant in identifying at-risk patients. PMID:28657052

  19. Mass entrapment and lysis of Mesodinium rubrum cells in mucus threads observed in cultures with Dinophysis

    DEFF Research Database (Denmark)

    Ojamäe, Karin; Hansen, Per Juel; Lips, Inga

    2016-01-01

    The entrapment and death of the ciliate Mesodinium rubrum in the mucus threads in cultures with Dinophysis is described and quantified. Feeding experiments with different concentrations and predator–prey ratios of Dinophysis acuta, Dinophysis acuminata and M. rubrum to study the motility loss...... and aggregate formation of the ciliates and the feeding behaviour of Dinophysis were carried out. In cultures of either Dinophysis species, the ciliates became entrapped in the mucus, which led to the formation of immobile aggregates of M. rubrum and subsequent cell lysis. The proportion of entrapped ciliates...... was influenced by the concentration of Dinophysis and the ratio of predator and prey in the cultures. At high cell concentrations of prey (136 cells mL−1) and predator (100 cells mL−1), a maximum of 17% of M. rubrum cells became immobile and went through cell lysis. Ciliates were observed trapped in the mucus...

  20. Lipopolysaccharides in diazotrophic bacteria.

    Science.gov (United States)

    Serrato, Rodrigo V

    2014-01-01

    Biological nitrogen fixation (BNF) is a process in which the atmospheric nitrogen (N2) is transformed into ammonia (NH3) by a select group of nitrogen-fixing organisms, or diazotrophic bacteria. In order to furnish the biologically useful nitrogen to plants, these bacteria must be in constant molecular communication with their host plants. Some of these molecular plant-microbe interactions are very specific, resulting in a symbiotic relationship between the diazotroph and the host. Others are found between associative diazotrophs and plants, resulting in plant infection and colonization of internal tissues. Independent of the type of ecological interaction, glycans, and glycoconjugates produced by these bacteria play an important role in the molecular communication prior and during colonization. Even though exopolysaccharides (EPS) and lipochitooligosaccharides (LCO) produced by diazotrophic bacteria and released onto the environment have their importance in the microbe-plant interaction, it is the lipopolysaccharides (LPS), anchored on the external membrane of these bacteria, that mediates the direct contact of the diazotroph with the host cells. These molecules are extremely variable among the several species of nitrogen fixing-bacteria, and there are evidences of the mechanisms of infection being closely related to their structure.

  1. Cell-density-dependent lysis and sporulation of Myxococcus xanthus in agarose microbeads.

    OpenAIRE

    Rosenbluh, A; Nir, R; Sahar, E; Rosenberg, E

    1989-01-01

    Vegetative cells of Myxococcus xanthus were immobilized in 25-microns-diameter agarose microbeads and incubated in either growth medium or sporulation buffer. In growth medium, the cells multiplied, glided to the periphery, and then filled the beads. In sporulation buffer, up to 90% of the cells lysed and ca. 50% of the surviving cells formed resistant spores. A strong correlation between sporulation and cell lysis was observed; both phenomena were cell density dependent. Sporulation proficie...

  2. [Intraoperative lysis and neurostimulation as added therapy in surgery of popliteal artery aneurysm].

    Science.gov (United States)

    Peiper, C; Heye, K; Ktenidis, K; Horsch, S

    1997-01-01

    Additional therapy of symptomatic popliteal artery aneurysm includes intraoperative lysis for the treatment of the descending thrombosis and spinal cord stimulation for cases of chronic deterioration of the peripheral perfusion state. Between 1989 and 1996, we treated 50 patients with 55 symptomatic aneurysms using this concept, 18 of them as emergency cases. We reached a postoperative amputation rate of 12.7% and good long-term functional results in 34 of 37 patients.

  3. Arthroscopic lysis and lavage in patients with temporomandibular anterior disc displacement without reduction

    Czech Academy of Sciences Publication Activity Database

    Machoň, V.; Šedý, Jiří; Klíma, K.; Hirjak, D.; Foltán, R.

    2012-01-01

    Roč. 41, č. 1 (2012), s. 109-113 ISSN 0901-5027 R&D Projects: GA MŠk(CZ) LC554; GA ČR GAP304/10/0320 Grant - others:GA MŠk(CZ) 1M0538 Program:1M Institutional research plan: CEZ:AV0Z50390703 Keywords : temporomandibular joint * arthroscopic lysis * arthroscopic lavage Subject RIV: FJ - Surgery incl. Transplants Impact factor: 1.521, year: 2012

  4. Normal human serum (HS) prevents oxidant-induced lysis of cultured endothelial cells (ECs)

    International Nuclear Information System (INIS)

    Callahan, K.S.; Harlan, J.M.

    1986-01-01

    Most studies demonstrating oxidant lysis of cultured ECs are performed in serum-free media or media containing low concentrations of bovine serum. The authors found that HS protects human and bovine ECs from lysis caused by reagent H 2 O 2 or glucose/glucose oxidase (GO)-generated H 2 O 2 . EC injury was assessed by 51 Cr release, cell detachment, or trypan blue dye exclusion. Protective HS activity was dose-dependent with concentrations greater than or equal to 25% preventing lethal injury. Cytotoxicity at 24 hrs, induced by 20 mU/ml GO, was 90.1 +/- 5.2% without HS vs 1.7 +/- 4.6% with 25% HS present (20 exp). Similar protection was observed with heparinized plasma. Of note, comparable concentrations of bovine serum were devoid of protective activity. Addition of fatty acid-free albumin to the media was also without protective effect. Preliminary characterization showed HS activity was stable to 60 0 C for 30 min, non-dialyzable at 25,000 MW cutoff, and retained in delipidated serum. The HS protection was not merely due to scavenging of exogenous H 2 O 2 as A23187-induced EC lysis was also prevented by HS. Protective activity was not reproduced by purified cerruloplasmin or transferrin. In conclusion, unidentified factor(s) present in HS protect cultured ECs from oxidant-induced lysis. Since endothelium is normally exposed to 100% plasma, the authors suggest that in vitro studies of oxidant-mediated injury be performed in the presence of HS. Factor(s) in HS may play an important role in modulating oxidant-induced vascular injury in vivo

  5. Molecular identification of potential denitrifying bacteria and use of D-optimal mixture experimental design for the optimization of denitrification process.

    Science.gov (United States)

    Ben Taheur, Fadia; Fdhila, Kais; Elabed, Hamouda; Bouguerra, Amel; Kouidhi, Bochra; Bakhrouf, Amina; Chaieb, Kamel

    2016-04-01

    Three bacterial strains (TE1, TD3 and FB2) were isolated from date palm (degla), pistachio and barley. The presence of nitrate reductase (narG) and nitrite reductase (nirS and nirK) genes in the selected strains was detected by PCR technique. Molecular identification based on 16S rDNA sequencing method was applied to identify positive strains. In addition, the D-optimal mixture experimental design was used to optimize the optimal formulation of probiotic bacteria for denitrification process. Strains harboring denitrification genes were identified as: TE1, Agrococcus sp LN828197; TD3, Cronobacter sakazakii LN828198 and FB2, Pedicoccus pentosaceus LN828199. PCR results revealed that all strains carried the nirS gene. However only C. sakazakii LN828198 and Agrococcus sp LN828197 harbored the nirK and the narG genes respectively. Moreover, the studied bacteria were able to form biofilm on abiotic surfaces with different degree. Process optimization showed that the most significant reduction of nitrate was 100% with 14.98% of COD consumption and 5.57 mg/l nitrite accumulation. Meanwhile, the response values were optimized and showed that the most optimal combination was 78.79% of C. sakazakii LN828198 (curve value), 21.21% of P. pentosaceus LN828199 (curve value) and absence (0%) of Agrococcus sp LN828197 (curve value). Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Design and Modelling of a Microfluidic Electro-Lysis Device with Controlling Plates

    Science.gov (United States)

    Jenkins, A.; Chen, C. P.; Spearing, S.; Monaco, L. A.; Steele, A.; Flores, G.

    2006-04-01

    Many Lab-on-Chip applications require sample pre-treatment systems. Using electric fields to perform cell lysis in bio-MEMS systems has provided a powerful tool which can be integrated into Lab-on-a- Chip platforms. The major design considerations for electro-lysis devices include optimal geometry and placement of micro-electrodes, cell concentration, flow rates, optimal electric field (e.g. pulsed DC vs. AC), etc. To avoid electrolysis of the flowing solution at the exposed electrode surfaces, magnitudes and the applied voltages and duration of the DC pulse, or the AC frequency of the AC, have to be optimized for a given configuration. Using simulation tools for calculation of electric fields has proved very useful, for exploring alternative configurations and operating conditions for achieving electro cell-lysis. To alleviate the problem associated with low electric fields within the microfluidics channel and the high voltage demand on the contact electrode strips, two ''control plates'' are added to the microfluidics configuration. The principle of placing the two controlling plate-electrodes is based on the electric fields generated by a combined insulator/dielectric (glass/water) media. Surface charges are established at the insulator/dielectric interface. This paper discusses the effects of this interface charge on the modification of the electric field of the flowing liquid/cell solution.

  7. Effect of ultrasonic frequency on the mechanism of formic acid sono-lysis

    International Nuclear Information System (INIS)

    Chave, T.; Nikitenko, S.I.; Navarro, N.M.; Pochon, P.; Bisel, I.

    2011-01-01

    The kinetics and mechanism of formic acid sono-chemical degradation were studied at ultrasonic frequencies of 20, 200, and 607 kHz under argon atmosphere. Total yield of HCOOH sono-chemical degradation increases approximately 6-8-fold when the frequency increased from 20 to 200 or to 607 kHz. At low ultrasonic frequencies, HCOOH degradation has been attributed to oxidation with OH . radicals from water sono-lysis and to the HCOOH decarboxylation occurring at the cavitation bubble-liquid interface. With high-frequency ultrasound, the sono-chemical reaction is also influenced by HCOOH dehydration. Whatever the ultrasonic frequency, the sono-lysis of HCOOH yielded H 2 and CO 2 in the gas phase as well as trace, amounts of oxalic acid and formaldehyde in the liquid phase. However, CO and CH 4 formations were only detected under high frequency ultrasound. The most striking difference between low frequency and high frequency ultrasound is that the sono-lysis of HCOOH at high ultrasonic frequencies initiates Fischer-Tropsch hydrogenation of carbon monoxide. (authors)

  8. Blood culture bottles are superior to lysis-centrifugation tubes for bacteriological diagnosis of spontaneous bacterial peritonitis.

    OpenAIRE

    Siersema, P D; de Marie, S; van Zeijl, J H; Bac, D J; Wilson, J H

    1992-01-01

    The conventional method of ascitic fluid culturing was compared with the bedside inoculation of ascites into blood culture bottles and into lysis-centrifugation tubes. The conventional culture method was compared with the blood culture bottle method in 31 episodes of spontaneous bacterial peritonitis (SBP). Cultures were positive with the conventional culture method in 11 (35%) episodes and with the blood culture bottle method in 26 (84%) episodes (P less than 0.001). The lysis-centrifugation...

  9. Water-based binary polyol process for the controllable synthesis of silver nanoparticles inhibiting human and foodborne pathogenic bacteria

    Science.gov (United States)

    The polyol process is a widely used strategy for producing nanoparticles from various reducible metallic precursors; however it requires a bulk polyol liquid reaction with additional protective agents at high temperatures. Here, we report a water-based binary polyol process using low concentrations ...

  10. Direct identification of microorganisms from positive blood cultures using the lysis-filtration technique and matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS): a multicentre study.

    Science.gov (United States)

    Farina, Claudio; Arena, Fabio; Casprini, Patrizia; Cichero, Paola; Clementi, Massimo; Cosentino, Marina; Degl'Innocenti, Roberto; Giani, Tommaso; Luzzaro, Francesco; Mattei, Romano; Mauri, Carola; Nardone, Maria; Rossolini, Gian Maria; Serna Ortega, Paula Andrea; Vailati, Francesca

    2015-04-01

    Microbial identification from blood cultures is essential to institute optimal antibiotic therapy and improve survival possibilities. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been successfully applied to identify bacteria and yeasts from positive blood cultures broths. The aim of this multicentre study was to evaluate the reliability of the lysis-filtration technique associated with MALDI-TOF MS to directly identify microorganisms from 765 positive blood cultures collected in six Italian hospitals. Overall, 675/765 (78.1%) blood isolates were correctly identified at the species level, with significant differences between Gram-negative and Gram-positive bacteria (92.6%, and 69.8%, respectively). Some difficulties arise in identifying Streptococcus pneumoniae, Staphylococcus aureus, yeasts and anaerobes. The lysis-filtration protocol is a suitable procedure in terms of performance in identifying microorganisms, but it is quite expensive and technically time-consuming since the time of filtration is not regular for all the samples. The application of the MALDI-TOF MS technique to the direct microbial identification from positive blood cultures is a very promising approach, even if more experience must be gained to minimize errors and costs.

  11. [Effect of short-time drought process on denitrifying bacteria abundance and N2O emission in paddy soil].

    Science.gov (United States)

    Lu, Jing; Liu, Jin-Bo; Sheng, Rong; Liu, Yi; Chen, An-Lei; Wei, Wen-Xue

    2014-10-01

    In order to investigate the impact of drying process on greenhouse gas emissions and denitrifying microorganisms in paddy soil, wetting-drying process was simulated in laboratory conditions. N2O flux, redox potential (Eh) were monitored and narG- and nosZ-containing denitrifiers abundances were determined by real-time PCR. N2O emission was significantly increased only 4 h after drying process began, and it was more than 6 times of continuous flooding (CF) at 24 h. In addition, narG and nosZ gene abundances were increased rapidly with the drying process, and N2O emission flux was significantly correlated with narG gene abundance (P driving microorganisms which caused the N2O emission in the short-time drought process in paddy soil.

  12. Infection dynamic of symbiotic bacteria in the pea aphid Acyrthosiphon pisum gut and host immune response at the early steps in the infection process.

    Directory of Open Access Journals (Sweden)

    François Renoz

    Full Text Available In addition to its obligatory symbiont Buchnera aphidicola, the pea aphid Acyrthosiphon pisum can harbor several facultative bacterial symbionts which can be mutualistic in the context of various ecological interactions. Belonging to a genus where many members have been described as pathogen in invertebrates, Serratia symbiotica is one of the most common facultative partners found in aphids. The recent discovery of strains able to grow outside their host allowed us to simulate environmental acquisition of symbiotic bacteria by aphids. Here, we performed an experiment to characterize the A. pisum response to the ingestion of the free-living S. symbiotica CWBI-2.3T in comparison to the ingestion of the pathogenic Serratia marcescens Db11 at the early steps in the infection process. We found that, while S. marcescens Db11 killed the aphids within a few days, S. symbiotica CWBI-2.3T did not affect host survival and colonized the whole digestive tract within a few days. Gene expression analysis of immune genes suggests that S. symbiotica CWBI-2.3T did not trigger an immune reaction, while S. marcescens Db11 did, and supports the hypothesis of a fine-tuning of the host immune response set-up for fighting pathogens while maintaining mutualistic partners. Our results also suggest that the lysosomal system and the JNK pathway are possibly involved in the regulation of invasive bacteria in aphids and that the activation of the JNK pathway is IMD-independent in the pea aphid.

  13. Infection dynamic of symbiotic bacteria in the pea aphid Acyrthosiphon pisum gut and host immune response at the early steps in the infection process.

    Science.gov (United States)

    Renoz, François; Noël, Christine; Errachid, Abdelmounaim; Foray, Vincent; Hance, Thierry

    2015-01-01

    In addition to its obligatory symbiont Buchnera aphidicola, the pea aphid Acyrthosiphon pisum can harbor several facultative bacterial symbionts which can be mutualistic in the context of various ecological interactions. Belonging to a genus where many members have been described as pathogen in invertebrates, Serratia symbiotica is one of the most common facultative partners found in aphids. The recent discovery of strains able to grow outside their host allowed us to simulate environmental acquisition of symbiotic bacteria by aphids. Here, we performed an experiment to characterize the A. pisum response to the ingestion of the free-living S. symbiotica CWBI-2.3T in comparison to the ingestion of the pathogenic Serratia marcescens Db11 at the early steps in the infection process. We found that, while S. marcescens Db11 killed the aphids within a few days, S. symbiotica CWBI-2.3T did not affect host survival and colonized the whole digestive tract within a few days. Gene expression analysis of immune genes suggests that S. symbiotica CWBI-2.3T did not trigger an immune reaction, while S. marcescens Db11 did, and supports the hypothesis of a fine-tuning of the host immune response set-up for fighting pathogens while maintaining mutualistic partners. Our results also suggest that the lysosomal system and the JNK pathway are possibly involved in the regulation of invasive bacteria in aphids and that the activation of the JNK pathway is IMD-independent in the pea aphid.

  14. Constraints on mechanisms and rates of anaerobic oxidation of methane by microbial consortia: process-based modeling of ANME-2 archaea and sulfate reducing bacteria interactions

    Directory of Open Access Journals (Sweden)

    B. Orcutt

    2008-11-01

    Full Text Available Anaerobic oxidation of methane (AOM is the main process responsible for the removal of methane generated in Earth's marine subsurface environments. However, the biochemical mechanism of AOM remains elusive. By explicitly resolving the observed spatial arrangement of methanotrophic archaea and sulfate reducing bacteria found in consortia mediating AOM, potential intermediates involved in the electron transfer between the methane oxidizing and sulfate reducing partners were investigated via a consortium-scale reaction transport model that integrates the effect of diffusional transport with thermodynamic and kinetic controls on microbial activity. Model simulations were used to assess the impact of poorly constrained microbial characteristics such as minimum energy requirements to sustain metabolism and cell specific rates. The role of environmental conditions such as the influence of methane levels on the feasibility of H2, formate and acetate as intermediate species, and the impact of the abundance of intermediate species on pathway reversal were examined. The results show that higher production rates of intermediates via AOM lead to increased diffusive fluxes from the methane oxidizing archaea to sulfate reducing bacteria, but the build-up of the exchangeable species can cause the energy yield of AOM to drop below that required for ATP production. Comparison to data from laboratory experiments shows that under the experimental conditions of Nauhaus et al. (2007, none of the potential intermediates considered here is able to support metabolic activity matching the measured rates.

  15. Ecophysiology of the Anammox Bacteria

    NARCIS (Netherlands)

    Kartal, M.B.

    2008-01-01

    Anaerobic ammonium oxidizing (anammox) bacteria oxidize ammonium to dinitrogen gas with nitrite as the electron acceptor. These bacteria are the key players in the global nitrogen cycle, responsible for the most of nitrogen production in natural ecosystems. The anammox process is also a

  16. Bacterial contaminants from frozen puff pastry production process and their growth inhibition by antimicrobial substances from lactic acid bacteria.

    Science.gov (United States)

    Rumjuankiat, Kittaporn; Keawsompong, Suttipun; Nitisinprasert, Sunee

    2017-05-01

    Seventy-five bacterial contaminants which still persisted to cleaning system from three puff pastry production lines (dough forming, layer and filling forming, and shock freezing) were identified using 16S rDNA as seven genera of Bacillus , Corynebacterium , Dermacoccus , Enterobacter , Klebsiella, Pseudomonas , and Staphylococcus with detection frequencies of 24.00, 2.66, 1.33, 37.33, 1.33, 2.66, and 30.66, respectively. Seventeen species were discovered while only 11 species Bacillus cereus, B. subtilis, B. pumilus, Corynebacterium striatum , Dermacoccus barathri , Enterobacter asburiae, Staphylococcus kloosii, S. haemolyticus, S. hominis, S. warneri , and S. aureus were detected at the end of production. Based on their abundance, the highest abundance of E. asburiae could be used as a biomarker for product quality. While a low abundance of the mesophile pathogen C. striatum , which causes respiratory and nervous infection and appeared only at the shock freezing step was firstly reported for its detection in bakery product. Six antimicrobial substances (AMSs) from lactic acid bacteria, FF1-4, FF1-7, PFUR-242, PFUR-255, PP-174, and nisin A were tested for their inhibition activities against the contaminants. The three most effective were FF1-7, PP-174, and nisin A exhibiting wide inhibition spectra of 88.00%, 85.33%, and 86.66%, respectively. The potential of a disinfectant solution containing 800 AU/ml of PP-174 and nisin A against the most resistant strains of Enterobacter , Staphylococcus , Bacillus and Klebsiella was determined on artificially contaminated conveyor belt coupons at 0, 4, 8, 12, and 16 hr. The survival levels of the test strains were below 1 log CFU/coupon at 0 hr. The results suggested that a combined solution of PP-174 and nisin A may be beneficial as a sanitizer to inhibit bacterial contaminants in the frozen puff pastry industry.

  17. Mycorrhiza helper bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Deveau, Aurelie [French National Insitute for Agricultural Research (INRA); Labbe, Jessy [ORNL

    2016-10-01

    This chapter focuses on the Mycorrhiza Helper Bacteria (MHB), a generic name given to bacteria which stimulate the formation of mycorrhizal symbiosis. By extension, some bacterial strains that positively impact the functioning of mycorrhizal symbiosis are also called MHB. These bacteria have applicative interests, as they indirectly improve the health and growth of tree seedlings. MHB are not restricted to a specific type of ecosystem, but are rather generalist in the way that they associate with both herbaceous and woody mycorrhizal plants from boreal, temperate, arid and tropical ecosystems. However, understanding the molecular mechanisms and their specificities will help us to know more about the ecology of the MHB. The process of acquisition varies between fungal species; while ectomycorrhizal fungi most probably recurrently acquire them from the environment, the association between bacterial endosymbionts and Glomeromycota probably dates back to very ancient times, and has since been vertically transmitted.

  18. Lactic acid bacteria and natural antimicrobials to improve the safety and shelf-life of minimally processed sliced apples and lamb's lettuce.

    Science.gov (United States)

    Siroli, Lorenzo; Patrignani, Francesca; Serrazanetti, Diana I; Tabanelli, Giulia; Montanari, Chiara; Gardini, Fausto; Lanciotti, Rosalba

    2015-05-01

    Outbreaks of food-borne disease associated with the consumption of fresh and minimally processed fruits and vegetables have increased dramatically over the last few years. Traditional chemical sanitizers are unable to completely eradicate or kill the microorganisms on fresh produce. These conditions have stimulated research to alternative methods for increasing food safety. The use of protective cultures, particularly lactic acid bacteria (LAB), has been proposed for minimally processed products. However, the application of bioprotective cultures has been limited at the industrial level. From this perspective, the main aims of this study were to select LAB from minimally processed fruits and vegetables to be used as biocontrol agents and then to evaluate the effects of the selected strains, alone or in combination with natural antimicrobials (2-(E)-hexenal/hexanal, 2-(E)-hexenal/citral for apples and thyme for lamb's lettuce), on the shelf-life and safety characteristics of minimally processed apples and lamb's lettuce. The results indicated that applying the Lactobacillus plantarum strains CIT3 and V7B3 to apples and lettuce, respectively, increased both the safety and shelf-life. Moreover, combining the selected strains with natural antimicrobials produced a further increase in the shelf-life of these products without detrimental effects on the organoleptic qualities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Optimization of Electrical Methods for Sub -surface Monitoring of Biological Contamination: From Micro-scale to Macroscopic one through Sub-micrometric Topographic and Electrochemical Studies of Oxydation/Reduction Processes Provoked by Bacteria

    Science.gov (United States)

    Dhahri, S.; Marliere, C.

    2012-12-01

    The presence of biological matter (bacteria) in deep geological sites for storage of, for instance, radioactive elements or groundwater in aquifers was clearly proved. That biomass triggers physical and chemical processes which greatly modify the durability and the sustainability of the storage sites. These processes, mainly from oxidative/reductive reactions, are poorly understood. This is mainly due to the fact that former studies were done at the macroscopic level far away from the micrometric scale where relevant processes induced by bacteria take place. Investigations at microscopic level are needed. Thus, we developed an experimental set -up based on the combined use of optical microscopy (epifluorescence and transmission), atomic force microscopy (AFM) and scanning electro -chemical microscopy (SECM) in order to get simultaneous information on topographic and electro -chemical processes at different length scales. The first highly sensitive step was to use AFM and optical microscopy with biological samples in liquid environment: We will present a new, non -perturbative method for imaging bacteria in their natural liquid environment using AFM. No immobilization protocol, neither chemical nor mechanical, is needed, contrary to what has been regarded till now as essential. Furthermore we were able to follow the natural gliding movements of bacteria, directly proving their living state during the AFM investigation: we thus directly prove the low impact of these breakthrough AFM observations on the native behavior of the bacteria. The second delicate step was to combine AFM and optical measurements with electrical ones. We mounted a new experimental set-up coupling real -time (i) monitoring of optical properties as the optical density (OD) evolution related to bulk bacterial growth in liquid or as the counting of number of bacteria adhering on the surface of the sample as well and (ii) electrical and electrochemical measurements. We thus will present results on

  20. Leukocyte Lysis and Cytokine Induction by the Human Sexually Transmitted Parasite Trichomonas vaginalis.

    Directory of Open Access Journals (Sweden)

    Frances Mercer

    2016-08-01

    Full Text Available Trichomonas vaginalis (Tv is an extracellular protozoan parasite that causes the most common non-viral sexually transmitted infection: trichomoniasis. While acute symptoms in women may include vaginitis, infections are often asymptomatic, but can persist and are associated with medical complications including increased HIV susceptibility, infertility, pre-term labor, and higher incidence of cervical cancer. Heightened inflammation resulting from Tv infection could account for these complications. Effective cellular immune responses to Tv have not been characterized, and re-infection is common, suggesting a dysfunctional adaptive immune response. Using primary human leukocyte components, we have established an in vitro co-culture system to assess the interaction between Tv and the cells of the human immune system. We determined that in vitro, Tv is able to lyse T-cells and B-cells, showing a preference for B-cells. We also found that Tv lysis of lymphocytes was mediated by contact-dependent and soluble factors. Tv lysis of monocytes is far less efficient, and almost entirely contact-dependent. Interestingly, a common symbiont of Tv, Mycoplasma hominis, did not affect cytolytic activity of the parasite, but had a major impact on cytokine responses. M. hominis enabled more diverse inflammatory cytokine secretion in response to Tv and, of the cytokines tested, Tv strains cleared of M. hominis induced only IL-8 secretion from monocytes. The quality of the adaptive immune response to Tv is therefore likely influenced by Tv symbionts, commensals, and concomitant infections, and may be further complicated by direct parasite lysis of effector immune cells.

  1. Leukocyte Lysis and Cytokine Induction by the Human Sexually Transmitted Parasite Trichomonas vaginalis

    Science.gov (United States)

    Mercer, Frances; Diala, Fitz Gerald I.; Chen, Yi-Pei; Molgora, Brenda M.; Ng, Shek Hang; Johnson, Patricia J.

    2016-01-01

    Trichomonas vaginalis (Tv) is an extracellular protozoan parasite that causes the most common non-viral sexually transmitted infection: trichomoniasis. While acute symptoms in women may include vaginitis, infections are often asymptomatic, but can persist and are associated with medical complications including increased HIV susceptibility, infertility, pre-term labor, and higher incidence of cervical cancer. Heightened inflammation resulting from Tv infection could account for these complications. Effective cellular immune responses to Tv have not been characterized, and re-infection is common, suggesting a dysfunctional adaptive immune response. Using primary human leukocyte components, we have established an in vitro co-culture system to assess the interaction between Tv and the cells of the human immune system. We determined that in vitro, Tv is able to lyse T-cells and B-cells, showing a preference for B-cells. We also found that Tv lysis of lymphocytes was mediated by contact-dependent and soluble factors. Tv lysis of monocytes is far less efficient, and almost entirely contact-dependent. Interestingly, a common symbiont of Tv, Mycoplasma hominis, did not affect cytolytic activity of the parasite, but had a major impact on cytokine responses. M. hominis enabled more diverse inflammatory cytokine secretion in response to Tv and, of the cytokines tested, Tv strains cleared of M. hominis induced only IL-8 secretion from monocytes. The quality of the adaptive immune response to Tv is therefore likely influenced by Tv symbionts, commensals, and concomitant infections, and may be further complicated by direct parasite lysis of effector immune cells. PMID:27529696

  2. Rumen bacteria

    International Nuclear Information System (INIS)

    McSweeney, C.S.; Denman, S.E.; Mackie, R.I.

    2005-01-01

    The rumen is the most extensively studied gut community and is characterized by its high population density, wide diversity and complexity of interactions. This complex, mixed microbial culture is comprised of prokaryote organisms including methane-producing archaebacteria, eukaryote organisms, such as ciliate and flagellate protozoa, anaerobic phycomycete fungi and bacteriophage. Bacteria are predominant (up to 10 11 viable cells per g comprising 200 species) but a variety of ciliate protozoa occur widely (10 4 -10 6 /g distributed over 25 genera). The anaerobic fungi are also widely distributed (zoospore population densities of 10 2 -10 4 /g distributed over 5 genera). The occurrence of bacteriophage is well documented (10 7 -10 9 particles/g). This section focuses primarily on the widely used methods for the cultivation and the enumeration of rumen microbes, especially bacteria, which grow under anaerobic conditions. Methods that can be used to measure hydrolytic enzymes (cellulases, xylanases, amylases and proteinases) are also described, along with cell harvesting and fractionation procedures. Brief reference is also made to fungi and protozoa, but detailed explanations for culturing and enumerating these microbes is presented in Chapters 2.4 and 2.5

  3. Efficiency of RNA extraction from selected bacteria in the context of biogas production and metatranscriptomics.

    Science.gov (United States)

    Stark, Lucy; Giersch, Tina; Wünschiers, Röbbe

    2014-10-01

    Understanding the microbial population in anaerobic digestion is an essential task to increase efficient substrate use and process stability. The metabolic state, represented e.g. by the transcriptome, of a fermenting system can help to find markers for monitoring industrial biogas production to prevent failures or to model the whole process. Advances in next-generation sequencing make transcriptomes accessible for large-scale analyses. In order to analyze the metatranscriptome of a mixed-species sample, isolation of high-quality RNA is the first step. However, different extraction methods may yield different efficiencies in different species. Especially in mixed-species environmental samples, unbiased isolation of transcripts is important for meaningful conclusions. We applied five different RNA-extraction protocols to nine taxonomic diverse bacterial species. Chosen methods are based on various lysis and extraction principles. We found that the extraction efficiency of different methods depends strongly on the target organism. RNA isolation of gram-positive bacteria was characterized by low yield whilst from gram-negative species higher concentrations can be obtained. Transferring our results to mixed-species investigations, such as metatranscriptomics with biofilms or biogas plants, leads to the conclusion that particular microorganisms might be over- or underrepresented depending on the method applied. Special care must be taken when using such metatranscriptomics data for, e.g. process modeling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Tumor Lysis Syndrome (TLS following intrathecal chemotherapy in a child with acute myelogenous leukemia (AML

    Directory of Open Access Journals (Sweden)

    Chana L. Glasser, MD

    2017-01-01

    Full Text Available Tumor Lysis Syndrome (TLS is a well-known complication of induction therapy for hematologic malignancies. It is characterized by rapid breakdown of malignant white blood cells (WBCs leading to metabolic derangements and serious morbidity if left untreated. Most commonly, TLS is triggered by systemic chemotherapy, however, there have been case reports of TLS following intrathecal (IT chemotherapy, all in patients with acute lymphoblastic leukemia (ALL/lymphoma. Here, we report the first case of a patient with acute myelogenous leukemia (AML who developed TLS following a single dose of IT cytosine arabinoside (Ara-C.

  5. Lysis of Gymnodinium breve by cultures of the green alga Nannochloris eucaryotum.

    Science.gov (United States)

    Pérez, E; Sawyers, W G; Martin, D F

    2001-01-01

    Laboratory cultures of Florida's red tide organism, Gymnodinium breve, were killed by the green alga Nannochloris eucaryotum. Studies involved organism-organism interaction as well as organism-cell-free culture (N. eucaryotum) interaction. Both studies demonstrated that N. eucaryotum adversely affected Florida's red tide organism. The lysis has been attributed to compounds called APONINs (apparent oceanic naturally occurring cytolins). N. eucaryotum crude APONIN was extracted from cell-free cultures, partially purified and fractionated. The fractions were bioassayed against G. breve, and 'fingerprints' of the deleterious fractions were obtained.

  6. Inactivation of pathogenic bacteria in food matrices: high pressure processing, photodynamic inactivation and pressure-assisted photodynamic inactivation

    Science.gov (United States)

    Cunha, A.; Couceiro, J.; Bonifácio, D.; Martins, C.; Almeida, A.; Neves, M. G. P. M. S.; Faustino, M. A. F.; Saraiva, J. A.

    2017-09-01

    Traditional food processing methods frequently depend on the application of high temperature. However, heat may cause undesirable changes in food properties and often has a negative impact on nutritional value and organoleptic characteristics. Therefore, reducing the microbial load without compromising the desirable properties of food products is still a technological challenge. High-pressure processing (HPP) can be classified as a cold pasteurization technique, since it is a non-thermal food preservation method that uses hydrostatic pressure to inactivate spoilage microorganisms. At the same time, it increases shelf life and retains the original features of food. Photodynamic inactivation (PDI) is also regarded as promising approach for the decontamination of food matrices. In this case, the inactivation of bacterial cells is achieved by the cytotoxic effects of reactive oxygens species (ROS) produced from the combined interaction of a photosensitizer molecule, light and oxygen. This short review examines some recent developments on the application of HPP and PDI with food-grade photosensitizers for the inactivation of listeriae, taken as a food pathogen model. The results of a proof-of-concept trial of the use of high-pressure as a coadjutant to increase the efficiency of photodynamic inactivation of bacterial endospores is also addressed.

  7. Investigation of an optimal cell lysis method for the study of the zinc metalloproteome of Histoplasma capsulatum.

    Science.gov (United States)

    Donnell, Anna M; Lewis, Stephanie; Abraham, Sami; Subramanian, Kavitha; Figueroa, Julio Landero; Deepe, George S; Vonderheide, Anne P

    2017-10-01

    This work sought to assess optimal extraction conditions in the study of the metalloproteome of the dimorphic fungus Histoplasma capsulatum. One of the body's responses to H. capsulatum infection is sequestration of zinc within host macrophage (MØ), as reported by Vignesh et al. (Immunity 39:697-710, 2013) and Vignesh et al. (PLOS Pathog 9:E1003815, 2013). Thus, metalloproteins containing zinc were of greatest interest as it plays a critical role in survival of the fungus. One challenge in metalloproteomics is the preservation of the native structure of proteins to retain non-covalently bound metals. Many of the conventional cell lysis, separation, and identification techniques in proteomics are carried out under conditions that could lead to protein denaturation. Various cell lysis techniques were investigated in an effort to both maintain the metalloproteins during lysis and subsequent analysis while, at the same time, serving to be strong enough to break the cell wall, allowing access to cytosolic metalloproteins. The addition of 1% Triton x-100, a non-ionic detergent, to the lysis buffer was also studied. Seven lysis methods were considered and these included: Glass Homogenizer (H), Bead Beater (BB), Sonication Probe (SP), Vortex with 1% Triton x-100 (V, T), Vortex with no Triton x-100 (V, NT), Sonication Bath, Vortex, and 1% Triton x-100 (SB, V, T) and Sonication Bath, Vortex, and no Triton x-100 (SB, V, NT). A Qubit® Assay was used to compare total protein concentration and inductively coupled plasma-mass spectrometry (ICP-MS) was utilized for total metal analysis of cell lysates. Size exclusion chromatography coupled to ICP-MS (SEC-HPLC-ICP-MS) was used for separation of the metalloproteins in the cell lysate and the concentration of Zn over a wide molecular weight range was examined. Additional factors such as potential contamination sources were also considered. A cell lysis method involving vortexing H. capsulatum yeast cells with 500 μm glass beads

  8. Contribution of midgut bacteria to blood digestion and egg production in aedes aegypti (diptera: culicidae (L.

    Directory of Open Access Journals (Sweden)

    Pimenta Paulo FP

    2011-06-01

    Full Text Available Abstract Background The insect gut harbors a variety of microorganisms that probably exceed the number of cells in insects themselves. These microorganisms can live and multiply in the insect, contributing to digestion, nutrition, and development of their host. Recent studies have shown that midgut bacteria appear to strengthen the mosquito's immune system and indirectly enhance protection from invading pathogens. Nevertheless, the physiological significance of these bacteria for mosquitoes has not been established to date. In this study, oral administration of antibiotics was employed in order to examine the contribution of gut bacteria to blood digestion and fecundity in Aedes aegypti. Results The antibiotics carbenicillin, tetracycline, spectinomycin, gentamycin and kanamycin, were individually offered to female mosquitoes. Treatment of female mosquitoes with antibiotics affected the lysis of red blood cells (RBCs, retarded the digestion of blood proteins and reduced egg production. In addition, antibiotics did not affect the survival of mosquitoes. Mosquito fertility was restored in the second gonotrophic cycle after suspension of the antibiotic treatment, showing that the negative effects of antibiotics in blood digestion and egg production in the first gonotrophic cycle were reversible. Conclusions The reduction of bacteria affected RBC lysis, subsequently retarded protein digestion, deprived mosquito from essential nutrients and, finally, oocyte maturation was affected, resulting in the production of fewer viable eggs. These results indicate that Ae. aegypti and its midgut bacteria work in synergism to digest a blood meal. Our findings open new possibilities to investigate Ae. aegypti-associated bacteria as targets for mosquito control strategies.

  9. Electrochemically Obtained TiO2/CuxOy Nanotube Arrays Presenting a Photocatalytic Response in Processes of Pollutants Degradation and Bacteria Inactivation in Aqueous Phase

    Directory of Open Access Journals (Sweden)

    Magda Kozak

    2018-06-01

    Full Text Available TiO2/CuxOy nanotube (NT arrays were synthesized using the anodization method in the presence of ethylene glycol and different parameters applied. The presence, morphology, and chemical character of the obtained structures was characterized using a variety of methods—SEM (scanning electron microscopy, XPS (X-ray photoelectron spectroscopy, XRD (X-ray crystallography, PL (photoluminescence, and EDX (energy-dispersive X-ray spectroscopy. A p-n mixed oxide heterojunction of Ti-Cu was created with a proved response to the visible light range and the stable form that were in contact with Ti. TiO2/CuxOy NTs presented the appearance of both Cu2O (mainly and CuO components influencing the dimensions of the NTs (1.1–1.3 µm. Additionally, changes in voltage have been proven to affect the NTs’ length, which reached a value of 3.5 µm for Ti90Cu10_50V. Degradation of phenol in the aqueous phase was observed in 16% of Ti85Cu15_30V after 1 h of visible light irradiation (λ > 420 nm. Scavenger tests for phenol degradation process in presence of NT samples exposed the responsibility of superoxide radicals for degradation of organic compounds in Vis light region. Inactivation of bacteria strains Escherichia coli (E. coli, Bacillus subtilis (B. subtilis, and Clostridium sp. in presence of obtained TiO2/CuxOy NT photocatalysts, and Vis light has been studied showing a great improvement in inactivation efficiency with a response rate of 97% inactivation for E. coli and 98% for Clostridium sp. in 60 min. Evidently, TEM (transmission electron microscopy images confirmed the bacteria cells’ damage.

  10. Resistance of some leukemic blasts to lysis by lymphokine activated killer (LAK) cells

    Energy Technology Data Exchange (ETDEWEB)

    Panayotides, P; Sjoegren, A -M; Reizenstein, P; Porwit, A. Immunopathology Lab., Dept. of Pathology, Karolinska Hospital, Stockholm; Wasserman, J

    1988-01-01

    Peripheral blood mononuclear cells (PBMC) from healthy donors and AML patients in remission were stimulated with phytohemagglutinin (PHA) and recombinant interleukin-2 (IL-2). These stimulated cells (lymphokine activated killer (LAK) cells) showed increased DNA synthesis as measured by /sup 3/H-Thymidine uptake. A synergistic effect of PHA and IL-2 was found. LAK cells' ability to kill acute myeloid leukemia (AML) blasts was investigated by the /sup 51/Cr release assay. LAK cells showed a cytotoxicity (over 10% specific /sup 51/Cr release) against 9/12 leukemic blasts, even at effector/target (E/T) ratios as low as 5:1. However, on average only 22.2% (SD 11.8) and 36.5% (SD 12.5) /sup 51/Cr release were obtained in 4- and 18-hour cytotoxicity assays, respectively, at an E/T ratio of 20:1. Leukemic blasts in 3/12 AML cases and normal PBMC were entirely resistant to lysis, even at an E/T ratio of 80:1. Susceptibility to lysis was not correlated to peanut-agglutinin receptor expression. LAK cells were more cytotoxic towards the K-562 cell line (natural killer activity) than unstimulated PBMC.

  11. Capacity of tumor necrosis factor to augment lymphocyte-mediated tumor cell lysis of malignant mesothelioma

    International Nuclear Information System (INIS)

    Bowman, R.V.; Manning, L.S.; Davis, M.R.; Robinson, B.W.

    1991-01-01

    Recombinant human tumor necrosis factor (rHuTNF) was evaluated both for direct anti-tumor action against human malignant mesothelioma and for its capacity to augment the generation and lytic phases of lymphocyte-mediated cytotoxicity against this tumor. rHuTNF was directly toxic by MTT assay to one of two mesothelioma cell lines evaluated, but had no effect on susceptibility to subsequent lymphocyte-mediated lysis of either line. TNF alone was incapable of generating anti-mesothelioma lymphokine-activated killer cell (LAK) activity. Furthermore, it did not augment the degree or LAK activity produced by submaximal interleukin-2 (IL-2) concentrations nor did it augment lysis of mesothelioma cells by natural killer (NK) or LAK effector cells during the 4-hr 51chromium release cytolytic reaction. The studies also suggest that mesothelioma targets are less responsive to TNF plus submaximal IL-2 concentrations than the standard LAK sensitive target Daudi, raising the possibility that intermediate LAK sensitive tumors such as mesothelioma may require separate and specific evaluation in immunomodulation studies. This in vitro study indicates that use of low-dose rHuTNF and IL-2 is unlikely to be an effective substitute for high-dose IL-2 in generation and maintenance of LAK activity in adoptive immunotherapy for mesothelioma

  12. Biological activity analysis of native and recombinant streptokinase using clot lysis and chromogenic substrate assay.

    Science.gov (United States)

    Mahboubi, Arash; Sadjady, Seyyed Kazem; Mirzaei Saleh Abadi, Mohammad; Azadi, Saeed; Solaimanian, Roya

    2012-01-01

    DETERMINATION OF STREPTOKINASE ACTIVITY IS USUALLY ACCOMPLISHED THROUGH TWO ASSAY METHODS: a) Clot lysis, b) Chromogenic substrate assay. In this study the biological activity of two streptokinase products, namely Streptase®, which is a native product and Heberkinasa®, which is a recombinant product, was determined against the third international reference standard using the two forementioned assay methods. The results indicated that whilst the activity of Streptase® was found to be 101 ± 4% and 97 ± 5% of the label claim with Clot lysis and Chromogenic substrate assay respectively, for Heberkinasa® the potency values obtained were 42 ± 5% and 92.5 ± 2% of the label claim respectively. To shed some light on the reason for this finding, the n-terminal sequence of the streptokinase molecules present in the two products was determined. The results showed slight differences in the amino acid sequence of the recombinant product in comparison to the native one at the amino terminus. This finding supports those of other workers who found that n-terminal sequence of the streptokinase molecule can have significant effect on the activity of this protein.

  13. HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells.

    Science.gov (United States)

    Gornalusse, Germán G; Hirata, Roli K; Funk, Sarah E; Riolobos, Laura; Lopes, Vanda S; Manske, Gabriel; Prunkard, Donna; Colunga, Aric G; Hanafi, Laïla-Aïcha; Clegg, Dennis O; Turtle, Cameron; Russell, David W

    2017-08-01

    Polymorphisms in the human leukocyte antigen (HLA) class I genes can cause the rejection of pluripotent stem cell (PSC)-derived products in allogeneic recipients. Disruption of the Beta-2 Microglobulin (B2M) gene eliminates surface expression of all class I molecules, but leaves the cells vulnerable to lysis by natural killer (NK) cells. Here we show that this 'missing-self' response can be prevented by forced expression of minimally polymorphic HLA-E molecules. We use adeno-associated virus (AAV)-mediated gene editing to knock in HLA-E genes at the B2M locus in human PSCs in a manner that confers inducible, regulated, surface expression of HLA-E single-chain dimers (fused to B2M) or trimers (fused to B2M and a peptide antigen), without surface expression of HLA-A, B or C. These HLA-engineered PSCs and their differentiated derivatives are not recognized as allogeneic by CD8 + T cells, do not bind anti-HLA antibodies and are resistant to NK-mediated lysis. Our approach provides a potential source of universal donor cells for applications where the differentiated derivatives lack HLA class II expression.

  14. HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells

    Science.gov (United States)

    Gornalusse, Germán G.; Hirata, Roli K.; Funk, Sarah; Riolobos, Laura; Lopes, Vanda S.; Manske, Gabriel; Prunkard, Donna; Colunga, Aric G.; Hanafi, Laïla-Aïcha; Clegg, Dennis O.; Turtle, Cameron; Russell, David W.

    2017-01-01

    Polymorphisms in the human leukocyte antigen (HLA) class I genes can cause the rejection of pluripotent stem cell (PSC)-derived products in allogeneic recipients. Disruption of the Beta-2 Microglobulin (B2M) gene eliminates surface expression of all class I molecules, but leaves the cells vulnerable to lysis by natural killer (NK) cells. Here we show that this ‘missing self’ response can be prevented by forced expression of minimally polymorphic HLA-E molecules. We use adeno-associated virus (AAV)-mediated gene editing to knock in HLA-E genes at the B2M locus in human PSCs in a manner that confers inducible, regulated, surface expression of HLA-E single-chain dimers (fused to B2M) or trimers (fused to B2M and a peptide antigen), without surface expression of HLA-A, B or C. These HLA-engineered PSCs and their differentiated derivatives are not recognized as allogeneic by CD8+ T cells, do not bind anti-HLA antibodies, and are resistant to NK-mediated lysis. Our approach provides a potential source of universal donor cells for applications where the differentiated derivatives lack HLA class II expression. PMID:28504668

  15. Clotrimazole enhances lysis of human erythrocytes induced by t-BHP.

    Science.gov (United States)

    Lisovskaya, Irene L; Shcherbachenko, Irina M; Volkova, Rimma I; Ataullakhanov, Fazoil I

    2009-08-14

    Clotrimazole (CLT) is an antifungal and antimalarial agent also effective as a Gardos channel inhibitor. In addition, CLT possesses antitumor properties. Recent data provide evidence that CLT forms a complex with heme (hemin), which produces a more potent lytic effect than heme alone. This study addressed the effect of CLT on the lysis of normal human erythrocytes induced by tert-butyl hydroperoxide (t-BHP). For the first time, it was shown that 10 microM CLT significantly enhanced the lytic effect of t-BHP on erythrocytes in both Ca(2+)-containing and Ca(2+)-free media, suggesting that the effect is not related to Gardos channels. CLT did not affect the rate of free radical generation, the kinetics of GSH degradation, methemoglobin formation and TBARS generation; therefore, we concluded that CLT does not cause additional oxidative damage to erythrocytes treated with t-BHP. It is tempted to speculate that CLT enhances t-BHP-induced changes in erythrocyte volume and lysis largely by forming a complex with hemin released during hemoglobin oxidation in erythrocytes: the CLT-hemin complex destabilizes the cell membrane more potently than hemin alone. If so, the effect of CLT on cell membrane damage during free-radical oxidation may be used to increase the efficacy of antitumor therapy.

  16. Revisiting bistability in the lysis/lysogeny circuit of bacteriophage lambda.

    Directory of Open Access Journals (Sweden)

    Michael Bednarz

    Full Text Available The lysis/lysogeny switch of bacteriophage lambda serves as a paradigm for binary cell fate decision, long-term maintenance of cellular state and stimulus-triggered switching between states. In the literature, the system is often referred to as "bistable." However, it remains unclear whether this term provides an accurate description or is instead a misnomer. Here we address this question directly. We first quantify transcriptional regulation governing lysogenic maintenance using a single-cell fluorescence reporter. We then use the single-cell data to derive a stochastic theoretical model for the underlying regulatory network. We use the model to predict the steady states of the system and then validate these predictions experimentally. Specifically, a regime of bistability, and the resulting hysteretic behavior, are observed. Beyond the steady states, the theoretical model successfully predicts the kinetics of switching from lysogeny to lysis. Our results show how the physics-inspired concept of bistability can be reliably used to describe cellular phenotype, and how an experimentally-calibrated theoretical model can have accurate predictive power for cell-state switching.

  17. Predicting the concentration of verotoxin-producing Escherichia coli bacteria during processing and storage of fermented raw-meat sausages.

    Science.gov (United States)

    Quinto, E J; Arinder, P; Axelsson, L; Heir, E; Holck, A; Lindqvist, R; Lindblad, M; Andreou, P; Lauzon, H L; Marteinsson, V Þ; Pin, C

    2014-05-01

    A model to predict the population density of verotoxigenic Escherichia coli (VTEC) throughout the elaboration and storage of fermented raw-meat sausages (FRMS) was developed. Probabilistic and kinetic measurement data sets collected from publicly available resources were completed with new measurements when required and used to quantify the dependence of VTEC growth and inactivation on the temperature, pH, water activity (aw), and concentration of lactic acid. Predictions were compared with observations in VTEC-contaminated FRMS manufactured in a pilot plant. Slight differences in the reduction of VTEC were predicted according to the fermentation temperature, 24 or 34°C, with greater inactivation at the highest temperature. The greatest reduction was observed during storage at high temperatures. A population decrease greater than 6 decimal logarithmic units was observed after 66 days of storage at 25°C, while a reduction of only ca. 1 logarithmic unit was detected at 12°C. The performance of our model and other modeling approaches was evaluated throughout the processing of dry and semidry FRMS. The greatest inactivation of VTEC was predicted in dry FRMS with long drying periods, while the smallest reduction was predicted in semidry FMRS with short drying periods. The model is implemented in a computing tool, E. coli SafeFerment (EcSF), freely available from http://www.ifr.ac.uk/safety/EcoliSafeFerment. EcSF integrates growth, probability of growth, and thermal and nonthermal inactivation models to predict the VTEC concentration throughout FRMS manufacturing and storage under constant or fluctuating environmental conditions.

  18. Formation of double-strand breaks in DNA of γ-irradiated bacteria depending on the function of fast repair processes of DNA single-strand breaks

    International Nuclear Information System (INIS)

    Petrov, S.I.; Gaziev, A.I.

    1980-01-01

    The formation of double-strand breaks in DNA of γ-irradiated ( 60 Co)Ex coli bacteria depending on the function of fast repair processes of DNA single-strand breaks, is investigated. The profiles of sedimentation of DNA Ex coli cells, irradiated at 0-2 deg C in the salt medium and in EDTA-borate buffer, are presented. It is shown that when irradiating cells in EDTA-borate buffer, the output of single- and double strand breaks in DNA is much higher than in the case of their irradiation in the minimum salt medium. The dependence of output of single-strand and double-strand breaks depending on the radiatier doze of E coli cells in the salt medium and EDTA-borate buffer, is studied. The supposition is made on the presence of a regulative interaction between the accumulation of DNA single-breaks and their repair with the formation of double-strand breaks. The functionating of fast and superfast repair processes considerably affects the formation of double-strand breaks in DNA of a bacterium cell. A considerable amount of double-breaks registered immediately after irradiation forms due to a close position of single-strand breaks on the opposite DNA strands

  19. Phages of lactic acid bacteria: The role of genetics in understanding phage-host interactions and their co-evolutionary processes

    International Nuclear Information System (INIS)

    Mahony, Jennifer; Ainsworth, Stuart; Stockdale, Stephen; Sinderen, Douwe van

    2012-01-01

    Dairy fermentations are among the oldest food processing applications, aimed at preservation and shelf-life extension through the use of lactic acid bacteria (LAB) starter cultures, in particular strains of Lactococcus lactis, Streptococcus thermophilus, Lactobacillus spp. and Leuconostoc spp. Traditionally this was performed by continuous passaging of undefined cultures from a finished fermentation to initiate the next fermentation. More recently, consumer demands on consistent and desired flavours and textures of dairy products have led to a more defined approach to such processes. Dairy (starter) companies have responded to the need to define the nature and complexity of the starter culture mixes, and dairy fermentations are now frequently based on defined starter cultures of low complexity, where each starter component imparts specific technological properties that are desirable to the product. Both mixed and defined starter culture approaches create the perfect environment for the proliferation of (bacterio)phages capable of infecting these LAB. The repeated use of the same starter cultures in a single plant, coupled to the drive towards higher and consistent production levels, increases the risk and negative impact of phage infection. In this review we will discuss recent advances in tracking the adaptation of phages to the dairy industry, the advances in understanding LAB phage-host interactions, including evolutionary and genomic aspects.

  20. Phages of lactic acid bacteria: The role of genetics in understanding phage-host interactions and their co-evolutionary processes

    Energy Technology Data Exchange (ETDEWEB)

    Mahony, Jennifer, E-mail: j.mahony@ucc.ie [Department of Microbiology, University College Cork, Western Road, Cork (Ireland); Ainsworth, Stuart; Stockdale, Stephen [Department of Microbiology, University College Cork, Western Road, Cork (Ireland); Sinderen, Douwe van, E-mail: d.vansinderen@ucc.ie [Department of Microbiology, University College Cork, Western Road, Cork (Ireland); Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Western Road, Cork (Ireland)

    2012-12-20

    Dairy fermentations are among the oldest food processing applications, aimed at preservation and shelf-life extension through the use of lactic acid bacteria (LAB) starter cultures, in particular strains of Lactococcus lactis, Streptococcus thermophilus, Lactobacillus spp. and Leuconostoc spp. Traditionally this was performed by continuous passaging of undefined cultures from a finished fermentation to initiate the next fermentation. More recently, consumer demands on consistent and desired flavours and textures of dairy products have led to a more defined approach to such processes. Dairy (starter) companies have responded to the need to define the nature and complexity of the starter culture mixes, and dairy fermentations are now frequently based on defined starter cultures of low complexity, where each starter component imparts specific technological properties that are desirable to the product. Both mixed and defined starter culture approaches create the perfect environment for the proliferation of (bacterio)phages capable of infecting these LAB. The repeated use of the same starter cultures in a single plant, coupled to the drive towards higher and consistent production levels, increases the risk and negative impact of phage infection. In this review we will discuss recent advances in tracking the adaptation of phages to the dairy industry, the advances in understanding LAB phage-host interactions, including evolutionary and genomic aspects.

  1. All-in-one nanowire-decorated multifunctional membrane for rapid cell lysis and direct DNA isolation.

    KAUST Repository

    So, Hongyun

    2014-11-24

    This paper describes a handheld device that uses an all-in-one membrane for continuous mechanical cell lysis and rapid DNA isolation without the assistance of power sources, lysis reagents, and routine centrifugation. This nanowire-decorated multifunctional membrane was fabricated to isolate DNA by selective adsorption to silica surface immediately after disruption of nucleus membranes by ultrasharp tips of nanowires for a rapid cell lysis, and it can be directly assembled with commercial syringe filter holders. The membrane was fabricated by photoelectrochemical etching to create microchannel arrays followed by hydrothermal synthesis of nanowires and deposition of silica. The proposed membrane successfully purifies high-quality DNA within 5 min, whereas a commercial purification kit needs more than an hour.

  2. All-in-one nanowire-decorated multifunctional membrane for rapid cell lysis and direct DNA isolation.

    KAUST Repository

    So, Hongyun; Lee, Kunwoo; Murthy, Niren; Pisano, Albert P

    2014-01-01

    This paper describes a handheld device that uses an all-in-one membrane for continuous mechanical cell lysis and rapid DNA isolation without the assistance of power sources, lysis reagents, and routine centrifugation. This nanowire-decorated multifunctional membrane was fabricated to isolate DNA by selective adsorption to silica surface immediately after disruption of nucleus membranes by ultrasharp tips of nanowires for a rapid cell lysis, and it can be directly assembled with commercial syringe filter holders. The membrane was fabricated by photoelectrochemical etching to create microchannel arrays followed by hydrothermal synthesis of nanowires and deposition of silica. The proposed membrane successfully purifies high-quality DNA within 5 min, whereas a commercial purification kit needs more than an hour.

  3. Analysis of five streptokinase formulations using the euglobulin lysis test and the plasminogen activation assay

    Directory of Open Access Journals (Sweden)

    Couto L.T.

    2004-01-01

    Full Text Available Streptokinase, a 47-kDa protein isolated and secreted by most group A, C and G ß-hemolytic streptococci, interacts with and activates human protein plasminogen to form an active complex capable of converting other plasminogen molecules to plasmin. Our objective was to compare five streptokinase formulations commercially available in Brazil in terms of their activity in the in vitro tests of euglobulin clot formation and of the hydrolysis of the plasmin-specific substrate S-2251(TM. Euglobulin lysis time was determined using a 96-well microtiter plate. Initially, human thrombin (10 IU/ml and streptokinase were placed in individual wells, clot formation was initiated by the addition of plasma euglobulin, and turbidity was measured at 340 nm every 30 s. In the second assay, plasminogen activation was measured using the plasmin-specific substrate S-2251(TM. Streptase(TM was used as the reference formulation because it presented the strongest fibrinolytic activity in the euglobulin lysis test. The Unitinase(TM and Solustrep(TM formulations were the weakest, showing about 50% activity compared to the reference formulation. All streptokinases tested activated plasminogen but significant differences were observed. In terms of total S-2251(TM activity per vial, Streptase(TM (75.7 ± 5.0 units and Streptonase(TM (94.7 ± 4.6 units had the highest activity, while Unitinase(TM (31.0 ± 2.4 units and Strek(TM (32.9 ± 3.3 units had the weakest activity. Solustrep(TM (53.3 ± 2.7 units presented intermediate activity. The variations among the different formulations for both euglobulin lysis test and chromogenic substrate hydrolysis correlated with the SDS-PAGE densitometric results for the amount of 47-kDa protein. These data show that the commercially available clinical streptokinase formulations vary significantly in their in vitro activity. Whether these differences have clinical implications needs to be investigated.

  4. A single lysis solution for the analysis of tissue samples by different proteomic technologies

    DEFF Research Database (Denmark)

    Gromov, P.; Celis, J.E.; Gromova, I.

    2008-01-01

    -based proteomics (reverse-phase lysate arrays or direct antibody arrays), allowing the direct comparison of qualitative and quantitative data yielded by these technologies when applied to the same samples. The usefulness of the CLB1 solution for gel-based proteomics was further established by 2D PAGE analysis...... dissease, is driving scientists to increasingly use clinically relevant samples for biomarker and target discovery. Tissues are heterogeneous and as a result optimization of sample preparation is critical for generating accurate, representative, and highly reproducible quantitative data. Although a large...... number of protocols for preparation of tissue lysates has been published, so far no single recipe is able to provide a "one-size fits all" solubilization procedure that can be used to analyse the same lysate using different proteomics technologies. Here we present evidence showing that cell lysis buffer...

  5. Hyphal growth of phagocytosed Fusarium oxysporum causes cell lysis and death of murine macrophages.

    Directory of Open Access Journals (Sweden)

    Katja Schäfer

    Full Text Available Fusarium oxysporum is an important plant pathogen and an opportunistic pathogen of humans. Here we investigated phagocytosis of F. oxysporum by J774.1 murine cell line macrophages using live cell video microscopy. Macrophages avidly migrated towards F. oxysporum germlings and were rapidly engulfed after cell-cell contact was established. F. oxysporum germlings continued hyphal growth after engulfment by macrophages, leading to associated macrophage lysis and escape. Macrophage killing depended on the multiplicity of infection. After engulfment, F. oxysporum inhibited macrophages from completing mitosis, resulting in large daughter cells fused together by means of a F. oxysporum hypha. These results shed new light on the initial stages of Fusarium infection and the innate immune response of the mammalian host.

  6. Hyphal growth of phagocytosed Fusarium oxysporum causes cell lysis and death of murine macrophages.

    Science.gov (United States)

    Schäfer, Katja; Bain, Judith M; Di Pietro, Antonio; Gow, Neil A R; Erwig, Lars P

    2014-01-01

    Fusarium oxysporum is an important plant pathogen and an opportunistic pathogen of humans. Here we investigated phagocytosis of F. oxysporum by J774.1 murine cell line macrophages using live cell video microscopy. Macrophages avidly migrated towards F. oxysporum germlings and were rapidly engulfed after cell-cell contact was established. F. oxysporum germlings continued hyphal growth after engulfment by macrophages, leading to associated macrophage lysis and escape. Macrophage killing depended on the multiplicity of infection. After engulfment, F. oxysporum inhibited macrophages from completing mitosis, resulting in large daughter cells fused together by means of a F. oxysporum hypha. These results shed new light on the initial stages of Fusarium infection and the innate immune response of the mammalian host.

  7. Abundance and diversity of ammonia-oxidizing archaea and bacteria on granular activated carbon and their fates during drinking water purification process.

    Science.gov (United States)

    Niu, Jia; Kasuga, Ikuro; Kurisu, Futoshi; Furumai, Hiroaki; Shigeeda, Takaaki; Takahashi, Kazuhiko

    2016-01-01

    Ammonia is a precursor to trichloramine, which causes an undesirable chlorinous odor. Granular activated carbon (GAC) filtration is used to biologically oxidize ammonia during drinking water purification; however, little information is available regarding the abundance and diversity of ammonia-oxidizing archaea (AOA) and bacteria (AOB) associated with GAC. In addition, their sources and fates in water purification process remain unknown. In this study, six GAC samples were collected from five full-scale drinking water purification plants in Tokyo during summer and winter, and the abundance and community structure of AOA and AOB associated with GAC were studied in these two seasons. In summer, archaeal and bacterial amoA genes on GACs were present at 3.7 × 10(5)-3.9 × 10(8) gene copies/g-dry and 4.5 × 10(6)-4.2 × 10(8) gene copies/g-dry, respectively. In winter, archaeal amoA genes remained at the same level, while bacterial amoA genes decreased significantly for all GACs. No differences were observed in the community diversity of AOA and AOB from summer to winter. Phylogenetic analysis revealed high AOA diversity in group I.1a and group I.1b in raw water. Terminal-restriction fragment length polymorphism analysis of processed water samples revealed that AOA diversity decreased dramatically to only two OTUs in group I.1a after ozonation, which were identical to those detected on GAC. It suggests that ozonation plays an important role in determining AOA diversity on GAC. Further study on the cell-specific activity of AOA and AOB is necessary to understand their contributions to in situ nitrification performance.

  8. Continuous nucleus extraction by optically-induced cell lysis on a batch-type microfluidic platform.

    Science.gov (United States)

    Huang, Shih-Hsuan; Hung, Lien-Yu; Lee, Gwo-Bin

    2016-04-21

    The extraction of a cell's nucleus is an essential technique required for a number of procedures, such as disease diagnosis, genetic replication, and animal cloning. However, existing nucleus extraction techniques are relatively inefficient and labor-intensive. Therefore, this study presents an innovative, microfluidics-based approach featuring optically-induced cell lysis (OICL) for nucleus extraction and collection in an automatic format. In comparison to previous micro-devices designed for nucleus extraction, the new OICL device designed herein is superior in terms of flexibility, selectivity, and efficiency. To facilitate this OICL module for continuous nucleus extraction, we further integrated an optically-induced dielectrophoresis (ODEP) module with the OICL device within the microfluidic chip. This on-chip integration circumvents the need for highly trained personnel and expensive, cumbersome equipment. Specifically, this microfluidic system automates four steps by 1) automatically focusing and transporting cells, 2) releasing the nuclei on the OICL module, 3) isolating the nuclei on the ODEP module, and 4) collecting the nuclei in the outlet chamber. The efficiency of cell membrane lysis and the ODEP nucleus separation was measured to be 78.04 ± 5.70% and 80.90 ± 5.98%, respectively, leading to an overall nucleus extraction efficiency of 58.21 ± 2.21%. These results demonstrate that this microfluidics-based system can successfully perform nucleus extraction, and the integrated platform is therefore promising in cell fusion technology with the goal of achieving genetic replication, or even animal cloning, in the near future.

  9. Stabilizing additives added during cell lysis aid in the solubilization of recombinant proteins.

    Directory of Open Access Journals (Sweden)

    David J Leibly

    Full Text Available Insoluble recombinant proteins are a major issue for both structural genomics and enzymology research. Greater than 30% of recombinant proteins expressed in Escherichia coli (E. coli appear to be insoluble. The prevailing view is that insolubly expressed proteins cannot be easily solubilized, and are usually sequestered into inclusion bodies. However, we hypothesize that small molecules added during the cell lysis stage can yield soluble protein from insoluble protein previously screened without additives or ligands. We present a novel screening method that utilized 144 additive conditions to increase the solubility of recombinant proteins expressed in E. coli. These selected additives are natural ligands, detergents, salts, buffers, and chemicals that have been shown to increase the stability of proteins in vivo. We present the methods used for this additive solubility screen and detailed results for 41 potential drug target recombinant proteins from infectious organisms. Increased solubility was observed for 80% of the recombinant proteins during the primary and secondary screening of lysis with the additives; that is 33 of 41 target proteins had increased solubility compared with no additive controls. Eleven additives (trehalose, glycine betaine, mannitol, L-Arginine, potassium citrate, CuCl(2, proline, xylitol, NDSB 201, CTAB and K(2PO(4 solubilized more than one of the 41 proteins; these additives can be easily screened to increase protein solubility. Large-scale purifications were attempted for 15 of the proteins using the additives identified and eight (40% were prepared for crystallization trials during the first purification attempt. Thus, this protocol allowed us to recover about a third of seemingly insoluble proteins for crystallography and structure determination. If recombinant proteins are required in smaller quantities or less purity, the final success rate may be even higher.

  10. Prediction of recurrent venous thromboembolism by clot lysis time: a prospective cohort study.

    Science.gov (United States)

    Traby, Ludwig; Kollars, Marietta; Eischer, Lisbeth; Eichinger, Sabine; Kyrle, Paul A

    2012-01-01

    Venous thromboembolism (VTE) is a chronic disease, which tends to recur. Whether an abnormal fibrinolytic system is associated with an increased risk of VTE is unclear. We assessed the relationship between fibrinolytic capacity (reflected by clot lysis time [CLT]) and risk of recurrent VTE. We followed 704 patients (378 women; mean age 48 yrs) with a first unprovoked VTE for an average of 46 months after anticoagulation withdrawal. Patients with natural coagulation inhibitor deficiency, lupus anticoagulant, cancer, homozygosity for factor V Leiden or prothrombin mutation, or requirement for indefinite anticoagulation were excluded. Study endpoint was symptomatic recurrent VTE. For measurement of CLT, a tissue factor-induced clot was lysed by adding tissue-type plasminogen activator. Time between clot formation and lysis was determined by measuring the turbidity. 135 (19%) patients had recurrent VTE. For each increase in CLT of 10 minutes, the crude relative risk (RR) of recurrence was 1.13 (95% CI 1.02-1.25; p = 0.02) and was 1.08 (95% CI 0.98-1.20; p = 0.13) after adjustment for age and sex. For women only, the adjusted RR was 1.14 (95% CI, 0.91-1.42, p = 0.22) for each increase in CLT of 10 minutes. CLT values in the 4(th) quartile of the female patient population, as compared to values in the 1(st) quartile, conferred a risk of recurrence of 3.28 (95% CI, 1.07-10.05; p = 0.04). No association between CLT and recurrence risk was found in men. Hypofibrinolysis as assessed by CLT confers a moderate increase in the risk of recurrent VTE. A weak association between CLT and risk of recurrence was found in women only.

  11. Prediction of recurrent venous thromboembolism by clot lysis time: a prospective cohort study.

    Directory of Open Access Journals (Sweden)

    Ludwig Traby

    Full Text Available Venous thromboembolism (VTE is a chronic disease, which tends to recur. Whether an abnormal fibrinolytic system is associated with an increased risk of VTE is unclear. We assessed the relationship between fibrinolytic capacity (reflected by clot lysis time [CLT] and risk of recurrent VTE. We followed 704 patients (378 women; mean age 48 yrs with a first unprovoked VTE for an average of 46 months after anticoagulation withdrawal. Patients with natural coagulation inhibitor deficiency, lupus anticoagulant, cancer, homozygosity for factor V Leiden or prothrombin mutation, or requirement for indefinite anticoagulation were excluded. Study endpoint was symptomatic recurrent VTE. For measurement of CLT, a tissue factor-induced clot was lysed by adding tissue-type plasminogen activator. Time between clot formation and lysis was determined by measuring the turbidity. 135 (19% patients had recurrent VTE. For each increase in CLT of 10 minutes, the crude relative risk (RR of recurrence was 1.13 (95% CI 1.02-1.25; p = 0.02 and was 1.08 (95% CI 0.98-1.20; p = 0.13 after adjustment for age and sex. For women only, the adjusted RR was 1.14 (95% CI, 0.91-1.42, p = 0.22 for each increase in CLT of 10 minutes. CLT values in the 4(th quartile of the female patient population, as compared to values in the 1(st quartile, conferred a risk of recurrence of 3.28 (95% CI, 1.07-10.05; p = 0.04. No association between CLT and recurrence risk was found in men. Hypofibrinolysis as assessed by CLT confers a moderate increase in the risk of recurrent VTE. A weak association between CLT and risk of recurrence was found in women only.

  12. Biological variation in tPA-induced plasma clot lysis time.

    Science.gov (United States)

    Talens, Simone; Malfliet, Joyce J M C; Rudež, Goran; Spronk, Henri M H; Janssen, Nicole A H; Meijer, Piet; Kluft, Cornelis; de Maat, Moniek P M; Rijken, Dingeman C

    2012-10-01

    Hypofibrinolysis is a risk factor for venous and arterial thrombosis, and can be assessed by using a turbidimetric tPA-induced clot lysis time (CLT) assay. Biological variation in clot lysis time may affect the interpretation and usefulness of CLT as a risk factor for thrombosis. Sufficient information about assay variation and biological variation in CLT is not yet available. Thus, this study aimed to determine the analytical, within-subject and between-subject variation in CLT. We collected blood samples from 40 healthy individuals throughout a period of one year (average 11.8 visits) and determined the CLT of each plasma sample in duplicate. The mean (± SD) CLT was 83.8 (± 11.1) minutes. The coefficients of variation for total variation, analytical variation, within-subject variation and between-subject variation were 13.4%, 2.6%, 8.2% and 10.2%, respectively. One measurement can estimate the CLT that does not deviate more than 20% from its true value. The contribution of analytical variation to the within-subject variation was 5.0%, the index of individuality was 0.84 and the reference change value was 23.8%. The CLT was longer in the morning compared to the afternoon and was slightly longer in older individuals (> 40 years) compared to younger (≤40 years) individuals. There was no seasonal variation in CLT and no association with air pollution. CLT correlated weakly with fibrinogen, C-reactive protein, prothrombin time and thrombin generation. This study provides insight into the biological variation of CLT, which can be used in future studies testing CLT as a potential risk factor for thrombosis.

  13. Symbiotic interaction of endophytic bacteria with arbuscular mycorrhizal fungi and its antagonistic effect on Ganoderma boninense.

    Science.gov (United States)

    Sundram, Shamala; Meon, Sariah; Seman, Idris Abu; Othman, Radziah

    2011-08-01

    Endophytic bacteria (Pseudomonas aeruginosa UPMP3 and Burkholderia cepacia UMPB3), isolated from within roots of oil palm (Elaeis guineensis Jacq.) were tested for their presymbiotic effects on two arbuscular mcorrhizal fungi, Glomus intraradices UT126 and Glomus clarum BR152B). These endophytic bacteria were also tested for antagonistic effects on Ganoderma boninense PER 71, a white wood rot fungal pathogen that causes a serious disease in oil palm. Spore germination and hyphal length of each arbuscular mycorrhizal fungal (AMF) pairing with endophytic bacteria was found to be significantly higher than spores plated in the absence of bacteria. Scanning electron microscopy (SEM) showed that the endophytic bacteria were scattered, resting or embedded on the surface hyaline layer or on the degraded walls of AMF spores, possibly feeding on the outer hyaline spore wall. The antagonistic effect of the endophytic bacteria was expressed as severe morphological abnormalities in the hyphal structures of G. boninense PER 71. The effects of the endophytic bacteria on G. boninense PER 71 hyphal structures were observed clearly under SEM. Severe inter-twisting, distortion, lysis and shriveling of the hyphal structures were observed. This study found that the effect of endophytic bacteria on G. intraradices UT126 and G. clarum BR152B resembled that of a mycorrhiza helper bacteria (MHB) association because the association significantly promoted AMF spore germination and hyphal length. However, the endophytic bacteria were extremely damaging to G. boninense PER 71.

  14. Antibacterial Activities of Endophytic Bacteria Isolated from Taxus brevifolia Against Foodborne Pathogenic Bacteria.

    Science.gov (United States)

    Islam, Nurul; Choi, Jaehyuk; Baek, Kwang-Hyun

    2018-05-01

    Endophytes are a potential source of novel bioactive compounds with medicinal properties. In this study, 41 endophytic bacteria (EB) were isolated from tissues of a medicinally important plant Taxus brevifolia (Pacific yew). The objective was to screen all the EB isolates for their antibacterial effects against five foodborne pathogenic bacteria: Bacillus cereus ATCC10876, Staphylococcus aureus ATCC12600, Listeria monocytogenes ATCC19115, Escherichia coli ATCC43890, and Salmonella Typhimurium ATCC19585. Among the EB isolates, T. brevifolia seed (TbS)-8, T. brevifolia fleshy part of fruit (TbFl)-10, T. brevifolia leaf (TbL)-22, TbS-29, and TbL-34 exerted significant antibacterial activity against the tested foodborne pathogens. Especially TbFl-10 showed the highest antibacterial activity against all the tested bacteria and was identified as Paenibacillus kribbensis (Pk). Furthermore, an ethyl acetate extract of Pk-TbFl-10 possessed antibacterial activities against the tested five foodborne pathogenic bacteria, with zones of inhibition from 15.71 ± 2.85 to 13.01 ± 2.12 mm. Scanning electron microscopy analysis revealed ruptured, lysed, shrunk, and swollen cells of all the tested foodborne pathogens treated with the ethyl acetate extract of Pk-TbFl-10, suggesting that a metabolite(s) of Pk-TbFl-10 penetrates the cell membrane and causes cell lysis leading to cell death. Our results indicate that Pk-TbFl-10 isolated from T. brevifolia can serve as a novel source of natural antibacterial agents against foodborne pathogenic bacteria, with potential applications in the pharmaceutical industry.

  15. Role of adrenal hormones and prostaglandins in the control of mouse thymocytes lysis.

    Science.gov (United States)

    Durant, S; Seillan, C; Duval, D; Homo-Delarche, F

    1984-01-01

    The cytolytic actions of glucocorticoids and of agents increasing cyclic AMP were studied in vitro in thymocyte suspensions isolated from adrenalectomized or hydrocortisone-treated mice. Although considered as corticoresistant cells, the thymocytes isolated from hydrocortisone-treated mice were lysed to the same extent although more slowly in vitro by dexamethasone than whole thymocyte populations (i.e. corticosensitive cells). Moreover, these two cell populations were shown to contain comparable amounts of glucocorticoid receptors and to be almost equally sensitive to the metabolic effects of glucocorticoids when measured by inhibition of RNA and DNA synthesis. Studies performed with corticosensitive cells showed that prostaglandin E2, isoproterenol and dibutyrilcyclic AMP were also able to induce cell lysis and that, isoproterenol and dexamethasone exerted additive cytolytic action in vitro. In vivo experiments showed also an additive effect of steroids and isoproterenol on thymus atrophy. In contrast, cells isolated from hydrocortisone-treated animals were not sensitive to the cytotoxic action of prostaglandin E2, isoproterenol and dibutyril cyclic AMP. This difference between the two populations was not associated with any difference in the responsiveness of adenylate cyclase as determined following isoproterenol-induced accumulation of cyclic AMP. The cytolytic action of dexamethasone but also that of prostaglandin E2 and isoproterenol, could be blocked in the presence of cycloheximide, an inhibitor of protein synthesis, thus suggesting that glucocorticoids and agents increasing cyclic AMP control the synthesis of some proteins involved in the triggering of cell lysis. Among the hypotheses proposed to explain the differences between in vitro and in vivo sensitivity of lymphoid cell to glucocorticoids, it was suggested that the drug may in vivo indirectly control the viability or the proliferation of thymocytes through the release of other mediators. We have

  16. Investigation of the non-photochemical processes in photosynthetic bacteria and higher plants using interference of coherent radiation - a new approach

    Czech Academy of Sciences Publication Activity Database

    Roháček, Karel; Kloz, M.; Bína, David; Batysta, F.; Vácha, František

    2007-01-01

    Roč. 91, 2-3 (2007), s. 301 ISSN 0166-8595. [International Congress of Photosynthesis/14./. 22.07.2007-27.07.2007, Glasgow] Institutional research plan: CEZ:AV0Z50510513 Keywords : photosynthetic bacteria Subject RIV: CE - Biochemistry

  17. Features of target cell lysis by class I and class II MHC restricted cytolytic T lymphocytes

    International Nuclear Information System (INIS)

    Maimone, M.M.; Morrison, L.A.; Braciale, V.L.; Braciale, T.J.

    1986-01-01

    The lytic activity of influenza virus-specific muvine cytolytic T lymphocyte (CTL) clones that are restricted by either H-2K/D (class I) or H-2I (class II) major histocompatibility (MHC) locus products was compared on an influenza virus-infected target cell expressing both K/D and I locus products. With the use of two in vitro measurements of cytotoxicity, conventional 51 Cr release, and detergent-releasable radiolabeled DNA (as a measure of nuclear disintegration in the early post-lethal hit period), the authors found no difference between class I and class II MHC-restricted CTL in the kinetics of target cell destruction. In addition, class II MHC-restricted antiviral CTL failed to show any lysis of radiolabeled bystander cells. Killing of labeled specific targets by these class II MHC-restricted CTL was also efficiently inhibited by unlabeled specific competitor cells in a cold target inhibition assay. In sum, these data suggest that class I and class II MHC-restricted CTL mediate target cell destruction by an essentially similar direct mechanism

  18. Plasma clot lysis time and its association with cardiovascular risk factors in black Africans.

    Directory of Open Access Journals (Sweden)

    Zelda de Lange

    Full Text Available Studies in populations of European descent show longer plasma clot lysis times (CLT in patients with cardiovascular disease (CVD than in controls. No data are available on the association between CVD risk factors and fibrinolytic potential in black Africans, a group undergoing rapid urbanisation with increased CVD prevalence. We investigated associations between known CVD risk factors and CLT in black Africans and whether CLTs differ between rural and urban participants in light of differences in CVD risk.Data from 1000 rural and 1000 urban apparently healthy black South Africans (35-60 years were cross-sectionally analysed.Increased PAI-1(act, BMI, HbA1c, triglycerides, the metabolic syndrome, fibrinogen concentration, CRP, female sex and positive HIV status were associated with increased CLTs, while habitual alcohol consumption associated with decreased CLT. No differences in CLT were found between age and smoking categories, contraceptive use or hyper- and normotensive participants. Urban women had longer CLT than rural women while no differences were observed for men.CLT was associated with many known CVD risk factors in black Africans. Differences were however observed, compared to data from populations of European descent available in the literature, suggesting possible ethnic differences. The effect of urbanisation on CLT is influenced by traditional CVD risk factors and their prevalence in urban and rural communities.

  19. Floor of the nose mucosa lysis and labial abscess caused by a bee sting.

    Science.gov (United States)

    Alemán Navas, Ramón Manuel; Martínez Mendoza, María Guadalupe; Herrera, Henry; Herrera, Helen Piccolo de

    2009-01-01

    Hymenoptera order includes bees, which have a stinging apparatus at the tail capable of delivering venom to the affected tissues. Myocardial infarction, acute renal failure, Necrotizing fasciitis, fatal infection and hemifacial asymmetry, are some of the unusual reactions reported following hymenoptera stings. This paper reports a case of bee sting in the right floor of the nose that mimicked an odontogenic infection affecting the upper lip, canine space and nasal cavity such as in cases of infection secondary to pulpal or periodontal pathology of the anterior teeth. After a thorough clinical and radiographic examination, odontogenic infection was discarded and the diagnosis of floor of the nose mucosal lysis and lip abscess secondary to a bee sting was made. This case was successfully managed with adequate incision, drainage and antibiotics without any further complication. There are several reports of unusual reactions following hymenoptera stings. However, just a few of them referred to infections of local reactions and none of them related to the anatomic location affected in the patient of the present case. Early diagnosis and treatment prevented infection dissemination and the likelihood of tissue necrosis as in previously reported cases of Necrotizing fasciitis.

  20. Characterization of cell lysis in Pseudomonas putida induced upon expression of heterologous killing genes

    DEFF Research Database (Denmark)

    Ronchel, M.C.; Molina, L.; Witte, A.

    1998-01-01

    Active biological containment systems are based on the controlled expression of killing genes. These systems are of interest for the Pseudomonadaceae because of the potential applications of these microbes as bioremediation agents and biopesticides, The physiological effects that lead to cell dea...... protein was the killing agent. In both cases, cell death occurred as a result of impaired respiration, altered membrane permeability, and the release of some cytoplasmic contents to the extracellular medium.......Active biological containment systems are based on the controlled expression of killing genes. These systems are of interest for the Pseudomonadaceae because of the potential applications of these microbes as bioremediation agents and biopesticides, The physiological effects that lead to cell death......, respectively. Expression of the killing genes is controlled by the LacI protein, whose expression is initiated from the XylS-dependent Pm promoter. Under induced conditions, killing of P. putida CMC12 cells mediated by phi X174 lysis protein E was faster than that observed for P. putida CMC4, for which the Gef...

  1. Plasma clot lysis time and its association with cardiovascular risk factors in black Africans.

    Science.gov (United States)

    de Lange, Zelda; Pieters, Marlien; Jerling, Johann C; Kruger, Annamarie; Rijken, Dingeman C

    2012-01-01

    Studies in populations of European descent show longer plasma clot lysis times (CLT) in patients with cardiovascular disease (CVD) than in controls. No data are available on the association between CVD risk factors and fibrinolytic potential in black Africans, a group undergoing rapid urbanisation with increased CVD prevalence. We investigated associations between known CVD risk factors and CLT in black Africans and whether CLTs differ between rural and urban participants in light of differences in CVD risk.Data from 1000 rural and 1000 urban apparently healthy black South Africans (35-60 years) were cross-sectionally analysed.Increased PAI-1(act), BMI, HbA1c, triglycerides, the metabolic syndrome, fibrinogen concentration, CRP, female sex and positive HIV status were associated with increased CLTs, while habitual alcohol consumption associated with decreased CLT. No differences in CLT were found between age and smoking categories, contraceptive use or hyper- and normotensive participants. Urban women had longer CLT than rural women while no differences were observed for men.CLT was associated with many known CVD risk factors in black Africans. Differences were however observed, compared to data from populations of European descent available in the literature, suggesting possible ethnic differences. The effect of urbanisation on CLT is influenced by traditional CVD risk factors and their prevalence in urban and rural communities.

  2. Tumour lysis syndrome: A rare acute presentation of locally advanced testicular cancer – Case report and review of literature

    Directory of Open Access Journals (Sweden)

    Marcus Chow

    2016-01-01

    Full Text Available Tumour lysis syndrome (TLS is a potentially fatal complication of malignancy or its treatment. This uncommon syndrome comprises laboratory findings of hyperuricaemia, hypocalcaemia, hyperkalaemia and hyperphosphataemia. A literature search revealed a total of eight patients, with testicular cancer, who had TLS. All these patients had metastatic disease. We present a unique case of a 47-year-old gentleman we saw in clinic, who presented with a rapidly growing right groin mass and acute breathlessness, and discuss the diagnosis and management of TLS. TLS is extremely rare in testicular cancer but necessitates the awareness of urologists. TLS can occur spontaneously in testicular malignancy. Cell lysis in a rapidly proliferating germ cell tumour is a possible mechanism. The prompt identification and institution of management for TLS is crucial to improve clinical outcomes.

  3. Sulfolobus turreted icosahedral virus c92 protein responsible for the formation of pyramid-like cellular lysis structures.

    Science.gov (United States)

    Snyder, Jamie C; Brumfield, Susan K; Peng, Nan; She, Qunxin; Young, Mark J

    2011-07-01

    Host cells infected by Sulfolobus turreted icosahedral virus (STIV) have been shown to produce unusual pyramid-like structures on the cell surface. These structures represent a virus-induced lysis mechanism that is present in Archaea and appears to be distinct from the holin/endolysin system described for DNA bacteriophages. This study investigated the STIV gene products required for pyramid formation in its host Sulfolobus solfataricus. Overexpression of STIV open reading frame (ORF) c92 in S. solfataricus alone is sufficient to produce the pyramid-like lysis structures in cells. Gene disruption of c92 within STIV demonstrates that c92 is an essential protein for virus replication. Immunolocalization of c92 shows that the protein is localized to the cellular membranes forming the pyramid-like structures.

  4. Potential role of bacteria packaging by protozoa in the persistence and transmission of pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Alix M Denoncourt

    2014-05-01

    Full Text Available Many pathogenic bacteria live in close association with protozoa. These unicellular eukaryotic microorganisms are ubiquitous in various environments. A number of protozoa such as amoebae and ciliates ingest pathogenic bacteria, package them usually in membrane structures, and then release them into the environment. Packaged bacteria are more resistant to various stresses and are more apt to survive than free bacteria. New evidence indicates that protozoa and not bacteria control the packaging process. It is possible that packaging is more common than suspected and may play a major role in the persistence and transmission of pathogenic bacteria. To confirm the role of packaging in the propagation of infections, it is vital that the molecular mechanisms governing the packaging of bacteria by protozoa be identified as well as elements related to the ecology of this process in order to determine whether packaging acts as a Trojan Horse.

  5. Regulated programmed lysis of recombinant Salmonella in host tissues to release protective antigens and confer biological containment

    OpenAIRE

    Kong, Wei; Wanda, Soo-Young; Zhang, Xin; Bollen, Wendy; Tinge, Steven A.; Roland, Kenneth L.; Curtiss, Roy

    2008-01-01

    We have devised and constructed a biological containment system designed to cause programmed bacterial cell lysis with no survivors. We have validated this system, using Salmonella enterica serovar Typhimurium vaccines for antigen delivery after colonization of host lymphoid tissues. The system is composed of two parts. The first component is Salmonella typhimurium strain χ8937, with deletions of asdA and arabinose-regulated expression of murA, two genes required for peptidoglycan synthesis a...

  6. RNA integrity as a quality indicator during the first steps of RNP purifications : A comparison of yeast lysis methods

    Directory of Open Access Journals (Sweden)

    Jansen Ralf-Peter

    2004-10-01

    Full Text Available Abstract Background The completion of several genome-sequencing projects has increased our need to assign functions to newly identified genes. The presence of a specific protein domain has been used as the determinant for suggesting a function for these new genes. In the case of proteins that are predicted to interact with mRNA, most RNAs bound by these proteins are still unknown. In yeast, several protocols for the identification of protein-protein interactions in high-throughput analyses have been developed during the last years leading to an increased understanding of cellular proteomics. If any of these protocols or similar approaches shall be used for the identification of mRNA-protein complexes, the integrity of mRNA is a critical factor. Results We compared the effect of different lysis protocols on RNA integrity. We report dramatic differences in RNA stability depending on the method used for yeast cell lysis. Glass bead milling and French Press lead to degraded mRNAs even in the presence of RNase inhibitors. Thus, they are not suitable to purify intact mRNP complexes or to identify specific mRNAs bound to proteins. Conclusion We suggest a novel protocol, grinding deep-frozen cells, for the preparation of protein extracts that contain intact RNAs, as lysis method for the purification of mRNA-protein complexes from yeast cells.

  7. Determining Human Clot Lysis Time (in vitro with Plasminogen/Plasmin from Four Species (Human, Bovine, Goat, and Swine

    Directory of Open Access Journals (Sweden)

    Omaira Cañas Bermúdez

    2015-05-01

    Full Text Available Cardiovascular disease is the leading cause of death worldwide, including failures in the plasminogen/plasmin system which is an important factor in poor lysis of blood clots. This article studies the fibrinolytic system in four species of mammals, and it identifies human plasminogen with highest thrombolysis efficiency. It examines plasminogen from four species (human, bovine, goat, and swine and identifies the most efficient one in human clot lysis in vitro. All plasminogens were identically purified by affinity chromatography. Human fibrinogen was purified by fractionation with ethanol. The purification of both plasminogen and fibrinogen was characterized by one-dimensional SDS-PAGE (10%. Human clot formation in vitro and its dissolution by plasminogen/plasmin consisted of determining lysis time from clot formation to its dilution. Purification of proteins showed greater than 95% purity, human plasminogen showed greater ability to lyse clot than animal plasminogen. The article concludes that human plasminogen/plasmin has the greatest catalysis and efficiency, as it dissolves human clot up to three times faster than that of irrational species.

  8. [Ultrasound dynamics lysis apex thrombus as an objective criterion of effectiveness of anticoagulation therapy in venous thrombosis].

    Science.gov (United States)

    Kalinin, R E; Suchkov, I A; Pshennikov, A S; Agapov, A B

    2016-01-01

    To assess the effectiveness of anticoagulant therapy (ACT) for the treatment of patients with deep venous thrombosis (DVT) of the lower extremities. The study considered ultrasonic characteristics of lysis of the proximal part of thrombus: localization and nature of venous thrombosis, the length and diameter of the proximal floating part of the thrombus, and duration of the venous thrombosis. Depending on the ACT options patients were divided into 3 groups: Group 1 (18 patients) received rivaroxaban, group 2 (19 patients) received enoxaparin sodium with subsequent transition to warfarin, and 3 group (19 patietns) received enoxaparin sodium, followed by administration of rivaroxaban. Treatment with rivaroxaban was preferable over standard ACT with enoxaparin/warfarin with regards to the lysis of thrombus when duration of thrombosis did not exceed 10 days. In 10.5% of patients who received warfarin flotation of thrombi remained for 14 days; the length of the floating part of the thrombi did not exceed 3 cm. Such circumstances and inability to reach a therapeutic INR value required cava filter placement. Treatment with enoxaparin sodium followed by the administration of rivaroxaban was found to be the most efficient ACT regimen as there was no negative dynamics of ultrasound characteristics of lysis of thrombi at any duration of the disease.

  9. Comparison of clot lysis activity and biochemical properties of originator tenecteplase (Metalyse® with those of an alleged biosimilar

    Directory of Open Access Journals (Sweden)

    Werner eKliche

    2014-02-01

    Full Text Available The bioengineered tissue plasminogen activator tenecteplase is an important treatment modality of acute myocardial infarction recommended by international guidelines. Following introduction of originator tenecteplase (brand names Metalyse® and TNKase®, a ‘biosimilar’ tenecteplase became available for commercial use in India under the brand name Elaxim® in the absence of Indian biosimilar guidelines which came into force from September 15th, 2012. Based on a report of biochemical and fibrinolytical differences between Metalyse and Elaxim, we have systematically compared them in a range of routine quality testing assays. As compared to Metalyse, Elaxim exhibited less clot lysis activity and contained less of the two-chain form of tenecteplase. Even upon full in vitro conversion to the two-chain form Elaxim exhibited less clot lysis activity. This was linked to differences in sialic acid content and glycosylation pattern with Elaxim exhibiting less bi- and more tetra-antennary glycosylation, leading to different charge heterogeneity profile. Regarding purity, Elaxim contained more tenecteplase aggregates and, in contrast to Metalyse, considerable amounts of Chinese hamster ovary cell protein. Taken together these data demonstrate that Metalyse and Elaxim differ considerably in clot lysis activity and biochemical properties. These data question whether Elaxim indeed can be considered a ‘biosimilar’ of Metalyse, i.e. whether and to which extent the clinical efficacy and safety properties of Metalyse can be extrapolated to Elaxim in the absence of comparative clinical data.

  10. Sulfolobus Turreted Icosahedral Virus c92 Protein Responsible for the Formation of Pyramid-Like Cellular Lysis Structures

    DEFF Research Database (Denmark)

    Snyder, Jamie C; Brumfield, Susan K; Peng, Nan

    2011-01-01

    Host cells infected by Sulfolobus turreted icosahedral virus (STIV) have been shown to produce unusual pyramid-like structures on the cell surface. These structures represent a virus-induced lysis mechanism that is present in Archaea and appears to be distinct from the holin/endolysin system desc...... disruption of c92 within STIV demonstrates that c92 is an essential protein for virus replication. Immunolocalization of c92 shows that the protein is localized to the cellular membranes forming the pyramid-like structures.......Host cells infected by Sulfolobus turreted icosahedral virus (STIV) have been shown to produce unusual pyramid-like structures on the cell surface. These structures represent a virus-induced lysis mechanism that is present in Archaea and appears to be distinct from the holin/endolysin system...... described for DNA bacteriophages. This study investigated the STIV gene products required for pyramid formation in its host Sulfolobus solfataricus. Overexpression of STIV open reading frame (ORF) c92 in S. solfataricus alone is sufficient to produce the pyramid-like lysis structures in cells. Gene...

  11. Bleach vs. Bacteria

    Science.gov (United States)

    ... Articles | Inside Life Science Home Page Bleach vs. Bacteria By Sharon Reynolds Posted April 2, 2014 Your ... hypochlorous acid to help kill invading microbes, including bacteria. Researchers funded by the National Institutes of Health ...

  12. Prevalence of β-lactamase genes in domestic washing machines and dishwashers and the impact of laundering processes on antibiotic-resistant bacteria.

    Science.gov (United States)

    Rehberg, L; Frontzek, A; Melhus, Å; Bockmühl, D P

    2017-12-01

    To investigate the prevalence of β-lactamase genes in domestic washing machines and dishwashers, and the decontamination efficacy of laundering. For the first investigation, swab samples from washing machines (n = 29) and dishwashers (n = 24) were analysed by real-time quantitative PCR to detect genes encoding β-lactamases. To test the impact of laundering on resistant bacteria, cotton test swatches were artificially contaminated with susceptible and resistant strains of Pseudomonas aeruginosa, Klebsiella pneumoniae and Staphylococcus aureus within a second investigation. They were washed in a domestic washing machine with or without activated oxygen bleach (AOB)-containing detergent at 20-50°C. β-Lactamase genes (most commonly of the AmpC- and OXA-type) were detected in 79% of the washing machines and in 96% of the dishwashers and Pseudomonadaceae dominated the microbiota. The level of bacterial reduction after laundering was ≥80% for all Ps. aeruginosa and Kl. pneumoniae strains, while it was only 37-61% for the methicillin-resistant Staph. aureus outbreak strain. In general, the reduction was tendentially higher for susceptible bacteria than for the resistant outbreak strains, especially for Staph. aureus. β-Lactamase genes seem to be frequently present in domestic appliances and may pose a potential risk for cross-contamination and horizontal transfer of genes encoding resistance against clinically important β-lactams. In general, higher temperatures and the use of AOB can improve the reduction of antibiotic-resistant bacteria, including Staph. aureus which appears to be less susceptible to the decontamination effect of laundering. Data on the presence of antibiotic-resistant bacteria in the domestic environment are limited. This study suggests that β-lactamase genes in washing machines and dishwashers are frequent, and that antibiotic-resistant strains are generally more resistant to the used washing conditions. © 2017 The Society for

  13. Relative efficacy of the argon green, argon blue-green, and krypton red lasers for 10-0 nylon subconjunctival laser suture lysis.

    Science.gov (United States)

    Mudgil, A V; To, K W; Balachandran, R M; Janigian, R H; Tsiaras, W G

    1999-01-01

    To determine the optimal wavelength for subconjunctival laser suture lysis. 130 black monofilament 10-0 nylon sutures were sewn subconjunctivally into the bare sclera of enucleated rabbit globes. The lowest energy levels facilitating laser suture lysis were determined for the argon green (514.5 NM), argon blue-green (488.0 NM, 514.5 NM), and krypton red (647.1 NM) wavelengths. In addition, absorption spectroscopy was performed on the suture material and conjunctiva using the Perkin Elmer W/VIS Lambda 2 spectrometer. Krypton red produced the fewest buttonhole defects, and it was also the most efficient energy source for suture lysis (P = 0.0001) under nontenectomized conjunctiva. Absorbance spectra studies revealed peak absorbance at 628 NM for the 10-0 nylon suture material. Based on animal and absorption spectroscopy studies, krypton red may be a safer and more efficient wavelength for subconjunctival laser suture lysis.

  14. Bacteria and lignin degradation

    Institute of Scientific and Technical Information of China (English)

    Jing LI; Hongli YUAN; Jinshui YANG

    2009-01-01

    Lignin is both the most abundant aromatic (phenolic) polymer and the second most abundant raw material.It is degraded and modified by bacteria in the natural world,and bacteria seem to play a leading role in decomposing lignin in aquatic ecosystems.Lignin-degrading bacteria approach the polymer by mechanisms such as tunneling,erosion,and cavitation.With the advantages of immense environmental adaptability and biochemical versatility,bacteria deserve to be studied for their ligninolytic potential.

  15. Virus-specific HLA-restricted lysis of herpes simplex virus-infected human monocytes and macrophages mediated by cytotoxic T lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Torpey, D.J. III

    1987-01-01

    Freshly-isolated peripheral blood human monocytes and 5 day in vitro cultured macrophages were infected with herpes simplex virus type 1 (HSV-1), labeled with /sup 51/Cr, and used as target cells in a 12-14 hour cell-mediated cytotoxicity assay. Mononuclear leukocytes (MNL) from HSV-1 non-immune individuals, whether unstimulated or stimulated with HSV-1 antigen, did not mediate significant lysis of either target cell. HSV-immune MNL, both freshly-isolated and cultured for 5 days without antigen, demonstrated only low levels of natural killer (NK) cell-mediate lysis. MNL from HSV-immune individuals incubated for 5 days in vitro with HSV-1 antigen mediated significant virus-specific lysis of both target cells. Mean virus-specific lysis of autologous monocytes was 8.5(/+-/2.0)% compared to a three-fold greater virus-specific lysis of autologous macrophages. Greater than 70% of this lytic activity was mediated by Leu-11-negative, T3-positive cytotoxic T lymphocytes (CTL). Allogeneic target cells lacking a common HLA determinant were not significantly lysed while T8-positive CTL mediated infrequent lysis of target cells sharing a common HLA-A and/or HLA-B determinant. T4-positive lymphocytes were demonstrated to be the predominant cell mediating lysis of autologous target cells and allogeneic target cells sharing both HLA-A and/or HLA-B plus HLA-DR determinants with the CTL; the T4-positive cell was the sole CTL mediator of lysis of allogeneic target cells having a common HLA-DR determinant.

  16. Virus-specific HLA-restricted lysis of herpes simplex virus-infected human monocytes and macrophages mediated by cytotoxic T lymphocytes

    International Nuclear Information System (INIS)

    Torpey, D.J. III.

    1987-01-01

    Freshly-isolated peripheral blood human monocytes and 5 day in vitro cultured macrophages were infected with herpes simplex virus type 1 (HSV-1), labeled with 51 Cr, and used as target cells in a 12-14 hour cell-mediated cytotoxicity assay. Mononuclear leukocytes (MNL) from HSV-1 non-immune individuals, whether unstimulated or stimulated with HSV-1 antigen, did not mediate significant lysis of either target cell. HSV-immune MNL, both freshly-isolated and cultured for 5 days without antigen, demonstrated only low levels of natural killer (NK) cell-mediate lysis. MNL from HSV-immune individuals incubated for 5 days in vitro with HSV-1 antigen mediated significant virus-specific lysis of both target cells. Mean virus-specific lysis of autologous monocytes was 8.5(/+-/2.0)% compared to a three-fold greater virus-specific lysis of autologous macrophages. Greater than 70% of this lytic activity was mediated by Leu-11-negative, T3-positive cytotoxic T lymphocytes (CTL). Allogeneic target cells lacking a common HLA determinant were not significantly lysed while T8-positive CTL mediated infrequent lysis of target cells sharing a common HLA-A and/or HLA-B determinant. T4-positive lymphocytes were demonstrated to be the predominant cell mediating lysis of autologous target cells and allogeneic target cells sharing both HLA-A and/or HLA-B plus HLA-DR determinants with the CTL; the T4-positive cell was the sole CTL mediator of lysis of allogeneic target cells having a common HLA-DR determinant

  17. Local lysis with Alteplase for the treatment of acute embolic leg ischemia following the use of the Duett trademark closure device: preliminary results

    International Nuclear Information System (INIS)

    Schuermann, K.; Buecker, A.; Wingen, M.; Tacke, J.; Wein, B.; Guenther, R.W.; Janssens, U.

    2004-01-01

    Purpose: To analyze retrospectively the result of the alteplase lysis therapy of embolic complications following the use of the Duett closure device. Methods and Materials: For 3.5 years, the Duett closure device was used in 1,398 angiographies to close the femoral puncture site. The Duett device consists of a balloon and a liquid procoagulant containing collagen and thrombin, which is injected into the puncture tract under endovascular balloon protection of the arterial puncture site. In 9 patients (0.64%), the procoagulant was incidentally injected into the femoral artery causing acute leg ischemia. Eight patients received local lysis therapy with alteplase via a contralateral femoral access. One patient underwent surgery. On average, 21 mg alteplase (4-35 mg) were administered within 14 h (4-21 h). The course of the lysis was followed angiographyically and clinically. All patients were inteerviewed by telephone 23 months (4-35 months) later.Results: In 3 patients, lysis was complete. In 5 patients, only little thrombotic material remained. In all patients, symptoms of ischemia resolved completely within the first hours after initiation of lysis. In 5 cases, bleeding occurred at the puncture site closed with the Duett device during lysis, including development of a false aneurysm in 2 cases. Complications led to premature termination (n=2) or interruption of the lysis (n=3). All complications were treated conservatively. Clinically, long-term sequelae were paresthesia and hypoesthesia in the lower leg and foot in 2 patients treated with lysis, and in the patient who underwent surgery. (orig.) [de

  18. Functional amyloids in bacteria.

    Science.gov (United States)

    Romero, Diego; Kolter, Roberto

    2014-06-01

    The term amyloidosis is used to refer to a family of pathologies altering the homeostasis of human organs. Despite having a name that alludes to starch content, the amyloid accumulations are made up of proteins that polymerize as long and rigid fibers. Amyloid proteins vary widely with respect to their amino acid sequences but they share similarities in their quaternary structure; the amyloid fibers are enriched in β-sheets arranged perpendicular to the axis of the fiber. This structural feature provides great robustness, remarkable stability, and insolubility. In addition, amyloid proteins specifically stain with certain dyes such as Congo red and thioflavin-T. The aggregation into amyloid fibers, however, it is not restricted to pathogenic processes, rather it seems to be widely distributed among proteins and polypeptides. Amyloid fibers are present in insects, fungi and bacteria, and they are important in maintaining the homeostasis of the organism. Such findings have motivated the use of the term "functional amyloid" to differentiate these amyloid proteins from their toxic siblings. This review focuses on systems that have evolved in bacteria that control the expression and assembly of amyloid proteins on cell surfaces, such that the robustness of amyloid proteins are used towards a beneficial end. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  19. Evaluation of three sample preparation methods for the direct identification of bacteria in positive blood cultures by MALDI-TOF.

    Science.gov (United States)

    Tanner, Hannah; Evans, Jason T; Gossain, Savita; Hussain, Abid

    2017-01-18

    Patient mortality is significantly reduced by rapid identification of bacteria from sterile sites. MALDI-TOF can identify bacteria directly from positive blood cultures and multiple sample preparation methods are available. We evaluated three sample preparation methods and two MALDI-TOF score cut-off values. Positive blood culture bottles with organisms present in Gram stains were prospectively analysed by MALDI-TOF. Three lysis reagents (Saponin, SDS, and SepsiTyper lysis bufer) were applied to each positive culture followed by centrifugation, washing and protein extraction steps. Methods were compared using the McNemar test and 16S rDNA sequencing was used to assess discordant results. In 144 monomicrobial cultures, using ≥2.000 as the cut-off value, species level identifications were obtained from 69/144 (48%) samples using Saponin, 86/144 (60%) using SDS, and 91/144 (63%) using SepsiTyper. The difference between SDS and SepsiTyper was not statistically significant (P = 0.228). Differences between Saponin and the other two reagents were significant (P direct MALDI-TOF identification were observed in monomicrobial cultures. In 32 polymicrobial cultures, MALDI-TOF identified one organism in 34-75% of samples depending on the method. This study demonstrates two inexpensive in-house detergent lysis methods are non-inferior to a commercial kit for analysis of positive blood cultures by direct MALDI-TOF in a clinical diagnostic microbiology laboratory.

  20. Viral lysis of photosynthesizing microbes as a mechanism for calcium carbonate nucleation in seawater

    Science.gov (United States)

    Lisle, John T.; Robbins, Lisa L.

    2016-01-01

    Removal of carbon through the precipitation and burial of calcium carbonate in marine sediments constitutes over 70% of the total carbon on Earth and is partitioned between coastal and pelagic zones. The precipitation of authigenic calcium carbonate in seawater, however, has been hotly debated because despite being in a supersaturated state, there is an absence of persistent precipitation. One of the explanations for this paradox is the geochemical conditions in seawater cannot overcome the activation energy barrier for the first step in any precipitation reaction; nucleation. Here we show that virally induced rupturing of photosynthetic cyanobacterial cells releases cytoplasmic-associated bicarbonate at concentrations ~23-fold greater than in the surrounding seawater, thereby shifting the carbonate chemistry toward the homogenous nucleation of one or more of the calcium carbonate polymorphs. Using geochemical reaction energetics, we show the saturation states (Ω) in typical seawater for calcite (Ω = 4.3), aragonite (Ω = 3.1), and vaterite (Ω = 1.2) are significantly elevated following the release and diffusion of the cytoplasmic bicarbonate (Ωcalcite = 95.7; Ωaragonite = 68.5; Ωvaterite = 25.9). These increases in Ω significantly reduce the activation energy for nuclei formation thresholds for all three polymorphs, but only vaterite nucleation is energetically favored. In the post-lysis seawater, vaterite's nuclei formation activation energy is significantly reduced from 1.85 × 10−17 J to 3.85 × 10−20 J, which increases the nuclei formation rate from highly improbable (nucleation of calcium carbonate in seawater describes a mechanism through which the initial step in the production of carbonate sediments may proceed. It also presents an additional role of photosynthesizing microbes and their viruses in marine carbon cycles and reveals these microorganisms are a collective repository for concentrated and reactive dissolved inorganic carbon (DIC

  1. Mingled Mortality: the Interplay Between Protist Grazing and Viral Lysis on Emiliania huxleyi Cell Fate

    Science.gov (United States)

    Harvey, E.; Bidle, K. D.; Johnson, M. D.

    2016-02-01

    The coccolithophore, Emiliania huxleyi plays a prominent role in global carbon cycling, as their calcite coccoliths account for a third of all oceanic calcite production. Mortality due to grazing by microzooplankton is the largest contributor to phytoplankton loss in the marine environment. However, viral infection of E. huxleyi is now thought to be as important as grazing pressure in contributing to its mortality. To understand the influence of viral infection on grazing dynamics, we examined the response of the dinoflagellate predator, Oxyrrhis marina to E. huxleyi infected with four different strains of the E. huxleyi virus (EhV). Grazing rate was significantly slower on E. huxleyi cultures that had been infected for 48 h compared to an uninfected control and this reduction in grazing rate was dependent on the strain identity of infecting EhVs. Additional experimentation indicated that grazing was the primary source of E. huxleyi loss ( 78-98%) during the first 24 h of exposure to both predator and virus. However, as viral infection progressed into the late lytic phase (48 h hour post infection), the relative contribution of grazing to total E. huxleyi mortality decreased ( 5-60%). These results suggest that mortality is partitioned along a gradient between predator-based consumption and virus-induced cell lysis, dependent on the timing of infection. Deciphering the relative importance and interactive nature of these alga-predator-viral interactions will help to elucidate the mechanisms that drive bulk measurements of phytoplankton loss, a necessary understanding to interpret and predict phytoplankton population dynamics and associated biogeochemical cycling.

  2. Chitosan as coagulant on cyanobacteria in lake restoration management may cause rapid cell lysis.

    Science.gov (United States)

    Mucci, Maíra; Noyma, Natalia Pessoa; de Magalhães, Leonardo; Miranda, Marcela; van Oosterhout, Frank; Guedes, Iamê Alves; Huszar, Vera L M; Marinho, Marcelo Manzi; Lürling, Miquel

    2017-07-01

    Combining coagulant and ballast to remove cyanobacteria from the water column is a promising restoration technique to mitigate cyanobacterial nuisance in surface waters. The organic, biodegradable polymer chitosan has been promoted as a coagulant and is viewed as non-toxic. In this study, we show that chitosan may rapidly compromise membrane integrity and kill certain cyanobacteria leading to release of cell contents in the water. A strain of Cylindrospermopsis raciborskii and one strain of Planktothrix agardhii were most sensitive. A 1.3 h exposure to a low dose of 0.5 mg l -1 chitosan already almost completely killed these cultures resulting in release of cell contents. After 24 h, reductions in PSII efficiencies of all cyanobacteria tested were observed. EC50 values varied from around 0.5 mg l -1 chitosan for the two sensitive strains, via about 5 mg l -1 chitosan for an Aphanizomenon flos-aquae strain, a toxic P. agardhii strain and two Anabaena cylindrica cultures, to more than 8 mg l -1 chitosan for a Microcystis aeruginosa strain and another A. flos-aquae strain. Differences in sensitivity to chitosan might be related to polymeric substances that surround cyanobacteria. Rapid lysis of toxic strains is likely and when chitosan flocking and sinking of cyanobacteria is considered in lake restoration, flocculation efficacy studies should be complemented with investigation on the effects of chitosan on the cyanobacteria assemblage being targeted. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Phenotypic variations in osmotic lysis of Sahel goat erythrocytes in non-ionic glucose media.

    Science.gov (United States)

    Igbokwe, Nanacha Afifi; Igbokwe, Ikechukwu Onyebuchi

    2016-03-01

    Erythrocyte osmotic lysis in deionised glucose media is regulated by glucose influx, cation efflux, and changes in cell volume after water diffusion. Transmembrane fluxes may be affected by varied expression of glucose transporter protein and susceptibility of membrane proteins to glucose-induced glycosylation and oxidation in various physiologic states. Variations in haemolysis of Sahel goat erythrocytes after incubation in hyposmotic non-ionic glucose media, associated with sex, age, late pregnancy, and lactation, were investigated. The osmotic fragility curve in glucose media was sigmoidal with erythrocytes from goats in late pregnancy (PRE) or lactation (LAC) or from kid (KGT) or middle-aged (MGT) goats. Non-sigmoidal phenotype occurred in yearlings (YGT) and old (OGT) goats. The composite fragility phenotype for males and non-pregnant dry (NPD) females was non-sigmoidal. Erythrocytes with non-sigmoidal curves were more stable than those with sigmoidal curves because of inflectional shift of the curve to the left. Erythrocytes tended to be more fragile with male than female sex, KGT and MGT than YGT and OGT, and LAC and PRE than NPD. Thus, sex, age, pregnancy, and lactation affected the haemolytic pattern of goat erythrocytes in glucose media. The physiologic state of the goat affected the in vitro interaction of glucose with erythrocytes, causing variations in osmotic stability with variants of fragility phenotype. Variations in the effect of high extracellular glucose concentrations on the functions of membrane-associated glucose transporter, aquaporins, and the cation cotransporter were presumed to be relevant in regulating the physical properties of goat erythrocytes under osmotic stress.

  4. Viral lysis of photosynthesizing microbes as a mechanism for calcium carbonate nucleation in seawater

    Science.gov (United States)

    Lisle, John T.; Robbins, Lisa L.

    2016-01-01

    Removal of carbon through the precipitation and burial of calcium carbonate in marine sediments constitutes over 70% of the total carbon on Earth and is partitioned between coastal and pelagic zones. The precipitation of authigenic calcium carbonate in seawater, however, has been hotly debated because despite being in a supersaturated state, there is an absence of persistent precipitation. One of the explanations for this paradox is the geochemical conditions in seawater cannot overcome the activation energy barrier for the first step in any precipitation reaction; nucleation. Here we show that virally induced rupturing of photosynthetic cyanobacterial cells releases cytoplasmic-associated bicarbonate at concentrations ~23-fold greater than in the surrounding seawater, thereby shifting the carbonate chemistry toward the homogenous nucleation of one or more of the calcium carbonate polymorphs. Using geochemical reaction energetics, we show the saturation states (Ω) in typical seawater for calcite (Ω = 4.3), aragonite (Ω = 3.1), and vaterite (Ω = 1.2) are significantly elevated following the release and diffusion of the cytoplasmic bicarbonate (Ωcalcite = 95.7; Ωaragonite = 68.5; Ωvaterite = 25.9). These increases in Ω significantly reduce the activation energy for nuclei formation thresholds for all three polymorphs, but only vaterite nucleation is energetically favored. In the post-lysis seawater, vaterite's nuclei formation activation energy is significantly reduced from 1.85 × 10−17 J to 3.85 × 10−20 J, which increases the nuclei formation rate from highly improbable (seawater describes a mechanism through which the initial step in the production of carbonate sediments may proceed. It also presents an additional role of photosynthesizing microbes and their viruses in marine carbon cycles and reveals these microorganisms are a collective repository for concentrated and reactive dissolved inorganic carbon (DIC) that is currently not accounted for

  5. Large Gastric Perforation Sealed by Splenic Lysis: Emphasis on Indirect Signs – A Rare Case Report

    International Nuclear Information System (INIS)

    Garg, Lalit; Jain, Mansi; Taori, Kishor; Patil, Ajinky; Hatgaonkar, Anand; Rathod, Jawhar; Shah, Swenil; Patwa, Darshan; Kasat, Akshat

    2015-01-01

    Gastric perforation is a life-threatening condition, requiring early and reliable discovery. The delay before surgical treatment is a strong determinant of poor outcome, associated complications and hospitalization costs. By using ultrasound and multi-detector computed tomography (MDCT) we can further evaluate undiagnosed cases of silent gastric perforations presenting with non-specific acute abdomen. Here we bring forth the role of a radiologist in cases of perforation which present with indirect signs involving the organs forming the stomach bed, like the spleen, pancreas and kidney. A 25-year-old male patient presented with an acute onset of severe upper abdominal pain radiating to the back and vomiting. MDCT of the abdomen was done which revealed atrophic pancreas with organized collection in the sub-capsular location indenting the superior pole of the left kidney. Spleen was not visualized. The most striking imaging finding in that case was destruction of the splenic parenchyma with protrusion of the remaining tissue into the stomach lumen. The hypothesis behind this was a cascade of events which started with gastric perforation, spillage of highly destructive gastric juice over the stomach bed and finally becoming silent with rapid sealing of the defect by the omentum and the spleen. Acute abdomen is a diagnostic challenge to a clinician and radiologist with gastric perforation being a great mimicker of other urgent abdominal pathologies. To avoid a delayed diagnosis or a misdiagnosis, familiarity with typical and atypical imaging features is essential as in our case of splenic lysis. It acted as the 2 nd policeman and provided a great clue to solve the diagnostic dilemma

  6. Antibacterial Activity and Action Mechanism of the Essential Oil from Enteromorpha linza L. against Foodborne Pathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Jayanta Kumar Patra

    2016-03-01

    Full Text Available Foodborne illness and disease caused by foodborne pathogenic bacteria is continuing to increase day by day and it has become an important topic of concern among various food industries. Many types of synthetic antibacterial agents have been used in food processing and food preservation; however, they are not safe and have resulted in various health-related issues. Therefore, in the present study, essential oil from an edible seaweed, Enteromorpha linza (AEO, was evaluated for its antibacterial activity against foodborne pathogens, along with the mechanism of its antibacterial action. AEO at 25 mg/disc was highly active against Bacillus cereus (12.3–12.7 mm inhibition zone and Staphylococcus aureus (12.7–13.3 mm inhibition zone. The minimum inhibitory concentration and minimum bactericidal concentration values of AEO ranged from 12.5–25 mg/mL. Further investigation of the mechanism of action of AEO revealed its strong impairing effect on the viability of bacterial cells and membrane permeability, as indicated by a significant increase in leakage of 260 nm absorbing materials and K+ ions from the cell membrane and loss of high salt tolerance. Taken together, these data suggest that AEO has the potential for use as an effective antibacterial agent that functions by impairing cell membrane permeability via morphological alternations, resulting in cellular lysis and cell death.

  7. Screening of antibiotic susceptibility to β-lactam-induced elongation of Gram-negative bacteria based on dielectrophoresis.

    Science.gov (United States)

    Chung, Cheng-Che; Cheng, I-Fang; Chen, Hung-Mo; Kan, Heng-Chuan; Yang, Wen-Horng; Chang, Hsien-Chang

    2012-04-03

    We demonstrate a rapid antibiotic susceptibility test (AST) based on the changes in dielectrophoretic (DEP) behaviors related to the β-lactam-induced elongation of Gram-negative bacteria (GNB) on a quadruple electrode array (QEA). The minimum inhibitory concentration (MIC) can be determined within 2 h by observing the changes in the positive-DEP frequency (pdf) and cell length of GNB under the cefazolin (CEZ) treatment. Escherichia coli and Klebsiella pneumoniae and the CEZ are used as the sample bacteria and antibiotic respectively. The bacteria became filamentous due to the inhibition of cell wall synthesis and cell division and cell lysis occurred for the higher antibiotic dose. According to the results, the pdfs of wild type bacteria decrease to hundreds of kHz and the cell length is more than 10 μm when the bacterial growth is inhibited by the CEZ treatment. In addition, the growth of wild type bacteria and drug resistant bacteria differ significantly. There is an obvious decrease in the number of wild type bacteria but not in the number of drug resistant bacteria. Thus, the drug resistance of GNB to β-lactam antibiotics can be rapidly assessed. Furthermore, the MIC determined using dielectrophoresis-based AST (d-AST) was consistent with the results of the broth dilution method. Utilizing this approach could reduce the time needed for bacteria growth from days to hours, help physicians to administer appropriate antibiotic dosages, and reduce the possibility of the occurrence of multidrug resistant (MDR) bacteria.

  8. Use of UV-irradiated bacteriophage T6 to kill extracellular bacteria in tissue culture infectivity assays

    International Nuclear Information System (INIS)

    Shaw, D.R.; Maurelli, A.T.; Goguen, J.D.; Straley, S.C.; Curtiss, R. III

    1983-01-01

    The authors have utilized 'lysis from without' mediated by UV-inactivated bacteriophage T6 to eliminate extracellular bacteria in experiments measuring the internalization, intracellular survival and replication of Yersinia pestis within mouse peritoneal macrophages and of Shigella flexneri within a human intestinal epithelial cell line. The technique described has the following characteristics: (a) bacterial killing is complete within 15 min at 37 0 C, with a >10 3 -fold reduction in colony-forming units (CFU); (b) bacteria within cultured mammalian cells are protected from killing by UV-inactivated T6; (c) the mammalian cells are not observably affected by exposure to UV-inactivated T6. This technique has several advantages over the use of antibiotics to eliminate extracellular bacteria and is potentially widely applicable in studies of the interactions between pathogenic bacteria and host phagocytic cells as well as other target tissues. (Auth.)

  9. Genomics of Probiotic Bacteria

    Science.gov (United States)

    O'Flaherty, Sarah; Goh, Yong Jun; Klaenhammer, Todd R.

    Probiotic bacteria from the Lactobacillus and Bifidobacterium species belong to the Firmicutes and the Actinobacteria phylum, respectively. Lactobacilli are members of the lactic acid bacteria (LAB) group, a broadly defined family of microorganisms that ferment various hexoses into primarily lactic acid. Lactobacilli are typically low G + C gram-positive species which are phylogenetically diverse, with over 100 species documented to date. Bifidobacteria are heterofermentative, high G + C content bacteria with about 30 species of bifidobacteria described to date.

  10. How honey kills bacteria

    NARCIS (Netherlands)

    Kwakman, Paulus H. S.; te Velde, Anje A.; de Boer, Leonie; Speijer, Dave; Vandenbroucke-Grauls, Christina M. J. E.; Zaat, Sebastian A. J.

    2010-01-01

    With the rise in prevalence of antibiotic-resistant bacteria, honey is increasingly valued for its antibacterial activity. To characterize all bactericidal factors in a medical-grade honey, we used a novel approach of successive neutralization of individual honey bactericidal factors. All bacteria

  11. A Simple Method for DNA Extraction from Mature Date Palm Leaves: Impact of Sand Grinding and Composition of Lysis Buffer

    Science.gov (United States)

    Arif, Ibrahim A.; Bakir, Mohammad A.; Khan, Haseeb A.; Ahamed, Anis; Al Farhan, Ahmad H.; Al Homaidan, Ali A.; Al Sadoon, Mohammad; Bahkali, Ali H.; Shobrak, Mohammad

    2010-01-01

    Molecular marker techniques have been widely used for cultivar identification of inbred date palms (Phoenix dactylifera L.; Arecaceae) and biodiversity conservation. Isolation of highly pure DNA is the prerequisite for PCR amplification and subsequent use such as DNA fingerprinting and sequencing of genes that have recently been developed for barcoding. To avoid problems related to the preservation and use of liquid nitrogen, we examined sterile sand for grinding the date palm leaves. Individual and combined effects of sodium chloride (NaCl), polyvinylpyrrolidone (PVP) and lithium chloride (LiCl) with the cetyltrimethylammonium bromide (CTAB) method for a DNA yield of sufficient purity and PCR amplification were evaluated in this study. Presence of LiCl and PVP alone or together in the lysis buffer did not significantly improve the DNA yield and purity compared with the addition of NaCl. Our study suggested that grinding of date palm leaf with sterile sand and inclusion of NaCl (1.4 M) in the lysis buffer without the costly use of liquid nitrogen, PVP and LiCl, provides a DNA yield of sufficient purity, suitable for PCR amplification. PMID:20957085

  12. Studies on cytotoxic and clot lysis activity of probiotically fermented cocktail juice prepared using Camellia sinensis and Punica grantum

    Science.gov (United States)

    Biswas, Ananya; Deori, Meenakshi; Nivetha, A.; Mohansrinivasan, V.

    2017-11-01

    In the current research the effect of probiotic microorganisms viz; Lactococcus lactis and Lactobacillus plantarum on fermentation of Camellia sinensis and Punica grantum was studied. In vitro test were done to analyze the anticancer, antioxidant and atherosclerosis (clot lysis) properties of fermented juice. The juice was fermented for 48 and 96h, during which concentration of phenolic content, total acid content and free radical scavenging activity of the sample was analyzed by DPPH assay (α, α-diphenyl-β-picrylhydrazyl). Dropping of pH was observed after 48 h of fermentation. The clot lysis activity was found to be 80 % in 100μl concentration of fermented cocktail juice. The 96 h fermented sample has shown around 70% inhibition against colon cancer cell lines. Analytical study of HPLC proves the organic acid production such as ascorbic acid in superior amount for 96h of fermented sample, Based on the retention time, the corresponding peaks were detected at 4.919 and 4.831 min.

  13. Enhanced lysis of herpes simplex virus type 1-infected mouse cell lines by NC and NK effectors

    Energy Technology Data Exchange (ETDEWEB)

    Colmenares, C.; Lopez, C.

    1986-05-01

    Spontaneously cytotoxic murine lymphocytes lysed certain cell types infected by herpes simplex virus type 1 (HSV-1) better than uninfected cells. Although HSV-1 adsorbed to the surface of all the target cells, those in which the virus replicated more efficiently were lysed to a greater extent. As targets, the authors used cell lines that, when uninfected, were spontaneously lysed by NK cells (YAC-1) or by NC cells (WEHI-164). They also used a fibroblastoid cell line (M50) and a monocytic tumor line (PU51R), which were not spontaneously killed. NK cells lysed HSV-1-infected YAC cells better than uninfected cells, and an NC-like activity selectively lysed HSV-1-infected WEHI cells. These findings were consistent with the results of experiments performed to define the role of interferon in induction of virus-augmented cytolysis. Increased lysis of YAC-HSV and PU51R-HSV was entirely due to interferon activation and was completely abolished by performing the /sup 51/Cr-release assay in the presence of anti-interferon serum. The data show that HSV-1 infection of NK/NC targets induces increased cytotoxity, but the effector cell responsible for lysis is determined by the uninfected target, or by an interaction between the virus and target cell, rather than by a viral determinant alone.

  14. Organic and Inorganic Nitrogen Impact Chlorella variabilis Productivity and Host Quality for Viral Production and Cell Lysis.

    Science.gov (United States)

    Cheng, Yu-Shen; Labavitch, John; VanderGheynst, Jean S

    2015-05-01

    Microalgae have been proposed as a potential feedstock for biofuel production; however, cell disruption is usually required for collection and utilization of cytoplasmic polysaccharides and lipids. Virus infection might be one approach to disrupt the cell wall. The concentration of yeast extract and presence of KNO3 in algae cultivation media were investigated to observe their effects on Chlorella variabilis NC64A physiology and composition and the subsequent effect on production of Chlorella virus and disruption of infected cells. Cytoplasmic starch accumulation increased from 5% to approximately 35% of the total dry weight when yeast extract decreased from 1 to 0.25 g L(-1). When cells were cultured with the lowest nitrogen levels, the total polysaccharide accounted for more than 50% of the cell wall, which was 1.7 times higher than the content in cells cultured with the highest nitrogen levels. The C/N ratio of the algal biomass decreased by a factor of approximately 2 when yeast extract increased from 0.25 to 1 g L(-1). After virus infection, cells with a low C/N ratio produced a 7.6 times higher burst size than cells with a high C/N ratio, suggesting that the nitrogen content in C. variabilis has a large influence on viral production and cell lysis. The results have implications on management of nitrogen for both the synthesis of products from algae and product recovery via viral lysis.

  15. Effects of bacterially produced precipitates on the metabolism of sulfate reducing bacteria during the bio-treatment process of copper-containing wastewater

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A large volume of bacterially produced precipitates are generated during the bio-treatment of heavy metal wastewater.The composition of the bacterially produced precipitates and its effects on sulfate reducing bacteria (SRB) in copper-containing waste stream were evaluated in this study.The elemental composition of the microbial precipitate was studied using electrodispersive X-ray spectroscopy (EDX),and it was found that the ratio of S:Cu was 1.12.Combining with the results of copper distribution in the SRB metabolism culture,which was analyzed by the sequential extraction procedure,copper in the precipitates was determined as covellite (CuS).The bacterially produced precipitates caused a decrease of the sulfate reduction rate,and the more precipitates were generated,the lower the sulfate reduction rate was.The particle sizes of bacterially generated covellite were ranging from 0.03 to 2 m by particles size distribution (PSD) analysis,which was smaller than that of the SRB cells.Transmission electron microscopy (TEM) analysis showed that the microbial covellite was deposited on the surface of the cell.The effects of the microbial precipitate on SRB metabolism were found to be weakened by increasing the precipitation time and adding microbial polymeric substances in later experiments.These results provided direct evidence that the SRB activity was inhibited by the bacterially produced covellite,which enveloped the bacterium and thus affected the metabolism of SRB on mass transfer.

  16. Effects of C/N ratio on nitrate removal and floc morphology of autohydrogenotrophic bacteria in a nitrate-containing wastewater treatment process.

    Science.gov (United States)

    Nguyen, Tran Ngoc Phu; Chao, Shu-Ju; Chen, Pei-Chung; Huang, Chihpin

    2018-07-01

    The effects of C/N ratio of a nitrate-containing wastewater on nitrate removal performed by autohydrogenotrophic bacteria as well as on the morphological parameters of floc such as floc morphology, floc number distribution, mean particle size (MPS), aspect ratio and transparency were examined in this study. The results showed that the nitrate reduction rate increased with increasing C/N ratio from 0.5 to 10 and that the nitrogen removal of up to 95% was found at the C/N ratios of higher than 5 (between 0.5-10). Besides, high C/N ratio values reflected a corresponding high nitrite accumulation after 12-hr operation, and a fast decreasing rate of nitrite in the rest of operational time. The final pH values increased with the C/N ratio increasing from 0.5 to 2.5, but decreased with the C/N ratio increasing from 2.5 to 10. There were no significant changes in floc morphology with the MPSs ranging from 35 to 40μm. Small and medium-sized flocs were dominant in the sludge suspension, and the number of flocs increased with the increasing C/N ratios. Furthermore, the highest apparent frequency of 10% was observed at aspect ratios of 0.5 and 0.6, while the transparency of flocs changed from 0.1 to 0.7. Copyright © 2017. Published by Elsevier B.V.

  17. Urate oxidase for the prevention and treatment of tumour lysis syndrome in children with cancer.

    Science.gov (United States)

    Cheuk, Daniel Kl; Chiang, Alan Ks; Chan, Godfrey Cf; Ha, Shau Yin

    2017-03-08

    Tumour lysis syndrome (TLS) is a serious complication of malignancies and can result in renal failure or death. Previous reviews did not find clear evidence of benefit of urate oxidase in children with cancer. This review is the second update of a previously published Cochrane review. To assess the effects and safety of urate oxidase for the prevention and treatment of TLS in children with malignancies. In March 2016 we searched CENTRAL, MEDLINE, Embase, and CINAHL. In addition, we searched the reference lists of all identified relevant papers, trials registers and other databases. We also screened conference proceedings and we contacted experts in the field and the manufacturer of rasburicase, Sanofi-aventis. Randomised controlled trials (RCT) and controlled clinical trials (CCT) of urate oxidase for the prevention or treatment of TLS in children under 18 years with any malignancy. Two review authors independently extracted trial data and assessed individual trial quality. We used risk ratios (RR) for dichotomous data and mean difference (MD) for continuous data. We included seven trials, involving 471 participants in the treatment groups and 603 participants in the control groups. No new studies were identified in the update. One RCT and five CCTs compared urate oxidase and allopurinol. Three trials tested Uricozyme, and three trials tested rasburicase for the prevention of TLS.The RCT did not evaluate the primary outcome (incidence of clinical TLS). It showed no clear evidence of a difference in mortality (both all-cause mortality (Fisher's exact test P = 0.23) and mortality due to TLS (no deaths in either group)), renal failure (Fisher's exact test P = 0.46), and adverse effects between the treatment and the control groups (Fisher's exact test P = 1.0). The frequency of normalisation of uric acid at four hours (10 out of 10 participants in the treatment group versus zero out of nine participants in the control group, Fisher's exact test P oxidase (RR 9.10, 95

  18. Comparison of Different Sample Preparation Protocols Reveals Lysis Buffer-Specific Extraction Biases in Gram-Negative Bacteria and Human Cells.

    Science.gov (United States)

    Glatter, Timo; Ahrné, Erik; Schmidt, Alexander

    2015-11-06

    We evaluated different in-solution and FASP-based sample preparation strategies for absolute protein quantification. Label-free quantification (LFQ) was employed to compare different sample preparation strategies in the bacterium Pseudomonas aeruginosa and human embryonic kidney cells (HEK), and organismal-specific differences in general performance and enrichment of specific protein classes were noted. The original FASP protocol globally enriched for most proteins in the bacterial sample, whereas the sodium deoxycholate in-solution strategy was more efficient with HEK cells. Although detergents were found to be highly suited for global proteome analysis, higher intensities were obtained for high-abundant nucleic acid-associated protein complexes, like the ribosome and histone proteins, using guanidine hydrochloride. Importantly, we show for the first time that the observable total proteome mass of a sample strongly depends on the sample preparation protocol, with some protocols resulting in a significant underestimation of protein mass due to incomplete protein extraction of biased protein groups. Furthermore, we demonstrate that some of the observed abundance biases can be overcome by incorporating a nuclease treatment step or, alternatively, a correction factor for complementary sample preparation approaches.

  19. Cell wall elongation mode in Gram-negative bacteria is determined by peptidoglycan architecture.

    Science.gov (United States)

    Turner, Robert D; Hurd, Alexander F; Cadby, Ashley; Hobbs, Jamie K; Foster, Simon J

    2013-01-01

    Cellular integrity and morphology of most bacteria is maintained by cell wall peptidoglycan, the target of antibiotics essential in modern healthcare. It consists of glycan strands, cross-linked by peptides, whose arrangement determines cell shape, prevents lysis due to turgor pressure and yet remains dynamic to allow insertion of new material, and hence growth. The cellular architecture and insertion pattern of peptidoglycan have remained elusive. Here we determine the peptidoglycan architecture and dynamics during growth in rod-shaped Gram-negative bacteria. Peptidoglycan is made up of circumferentially oriented bands of material interspersed with a more porous network. Super-resolution fluorescence microscopy reveals an unexpected discontinuous, patchy synthesis pattern. We present a consolidated model of growth via architecture-regulated insertion, where we propose only the more porous regions of the peptidoglycan network that are permissive for synthesis.

  20. Functional bacteria and process metabolism of the Denitrifying Sulfur conversion-associated Enhanced Biological Phosphorus Removal (DS-EBPR) system: An investigation by operating the system from deterioration to restoration.

    Science.gov (United States)

    Guo, Gang; Wu, Di; Hao, Tianwei; Mackey, Hamish Robert; Wei, Li; Wang, Haiguang; Chen, Guanghao

    2016-05-15

    A sulfur conversion-associated Enhanced Biological Phosphorus (P) Removal (EBPR) system is being developed to cater for the increasing needs to treat saline/brackish wastewater resulting from seawater intrusion into groundwater and sewers and frequent use of sulfate coagulants during drinking water treatment, as well as to meet the demand for eutrophication control in warm climate regions. However, the major functional bacteria and metabolism in this emerging biological nutrient removal system are still poorly understood. This study was thus designed to explore the functional microbes and metabolism in this new EBPR system by manipulating the deterioration, failure and restoration of a lab-scale system. This was achieved by changing the mixed liquor suspended solids (MLSS) concentration to monitor and evaluate the relationships among sulfur conversion (including sulfate reduction and sulfate production), P removal, variation in microbial community structures, and stoichiometric parameters. The results show that the stable Denitrifying Sulfur conversion-associated EBPR (DS-EBPR) system was enriched by sulfate-reducing bacteria (SRB) and sulfide-oxidizing bacteria (SOB). These bacteria synergistically participated in this new EBPR process, thereby inducing an appropriate level of sulfur conversion crucial for achieving a stable DS-EBPR performance, i.e. maintaining sulfur conversion intensity at 15-40 mg S/L, corresponding to an optimal sludge concentration of 6.5 g/L. This range of sulfur conversion favors microbial community competition and various energy flows from internal polymers (i.e. polysulfide or elemental sulfur (poly-S(2-)/S(0)) and poly-β-hydroxyalkanoates (PHA)) for P removal. If this range was exceeded, the system might deteriorate or even fail due to enrichment of glycogen-accumulating organisms (GAOs). Four methods of restoring the failed system were investigated: increasing the sludge concentration, lowering the salinity or doubling the COD

  1. Antibiotics from predatory bacteria

    Directory of Open Access Journals (Sweden)

    Juliane Korp

    2016-03-01

    Full Text Available Bacteria, which prey on other microorganisms, are commonly found in the environment. While some of these organisms act as solitary hunters, others band together in large consortia before they attack their prey. Anecdotal reports suggest that bacteria practicing such a wolfpack strategy utilize antibiotics as predatory weapons. Consistent with this hypothesis, genome sequencing revealed that these micropredators possess impressive capacities for natural product biosynthesis. Here, we will present the results from recent chemical investigations of this bacterial group, compare the biosynthetic potential with that of non-predatory bacteria and discuss the link between predation and secondary metabolism.

  2. Application of Doehlert experimental design in the optimization of experimental variables for the Pseudozyma sp. (CCMB 306 and Pseudozyma sp. (CCMB 300 cell lysis

    Directory of Open Access Journals (Sweden)

    Amanda Reges de Sena

    2012-12-01

    Full Text Available This study aimed to verify the influence of pH and temperature on the lysis of yeast using experimental design. In this study, the enzymatic extract containing β-1,3-glucanase and chitinase, obtained from the micro-organism Moniliophthora perniciosa, was used. The experiment showed that the best conditions for lysis of Pseudozyma sp. (CCMB 306 and Pseudozyma sp. (CCMB 300 by lytic enzyme were pH 4.9 at 37 ºC and pH 3.9 at 26.7 ºC, respectively. The lytic enzyme may be used for obtaining various biotechnology products from yeast.

  3. Very High Throughput Electrical Cell Lysis and Extraction of Intracellular Compounds Using 3D Carbon Electrodes in Lab-on-a-Chip Devices

    Directory of Open Access Journals (Sweden)

    Philippe Renaud

    2012-08-01

    Full Text Available Here we present an electrical lysis throughput of 600 microliters per minute at high cell density (108 yeast cells per ml with 90% efficiency, thus improving the current common throughput of one microliter per minute. We also demonstrate the extraction of intracellular luciferase from mammalian cells with efficiency comparable to off-chip bulk chemical lysis. The goal of this work is to develop a sample preparation module that can act as a stand-alone device or be integrated to other functions already demonstrated in miniaturized devices, including sorting and analysis, towards a true lab-on-a-chip.

  4. Porphyromonas gingivalis as a Model Organism for Assessing Interaction of Anaerobic Bacteria with Host Cells.

    Science.gov (United States)

    Wunsch, Christopher M; Lewis, Janina P

    2015-12-17

    Anaerobic bacteria far outnumber aerobes in many human niches such as the gut, mouth, and vagina. Furthermore, anaerobic infections are common and frequently of indigenous origin. The ability of some anaerobic pathogens to invade human cells gives them adaptive measures to escape innate immunity as well as to modulate host cell behavior. However, ensuring that the anaerobic bacteria are live during experimental investigation of the events may pose challenges. Porphyromonas gingivalis, a Gram-negative anaerobe, is capable of invading a variety of eukaryotic non-phagocytic cells. This article outlines how to successfully culture and assess the ability of P. gingivalis to invade human umbilical vein endothelial cells (HUVECs). Two protocols were developed: one to measure bacteria that can successfully invade and survive within the host, and the other to visualize bacteria interacting with host cells. These techniques necessitate the use of an anaerobic chamber to supply P. gingivalis with an anaerobic environment for optimal growth. The first protocol is based on the antibiotic protection assay, which is largely used to study the invasion of host cells by bacteria. However, the antibiotic protection assay is limited; only intracellular bacteria that are culturable following antibiotic treatment and host cell lysis are measured. To assess all bacteria interacting with host cells, both live and dead, we developed a protocol that uses fluorescent microscopy to examine host-pathogen interaction. Bacteria are fluorescently labeled with 2',7'-Bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester (BCECF-AM) and used to infect eukaryotic cells under anaerobic conditions. Following fixing with paraformaldehyde and permeabilization with 0.2% Triton X-100, host cells are labeled with TRITC phalloidin and DAPI to label the cell cytoskeleton and nucleus, respectively. Multiple images taken at different focal points (Z-stack) are obtained for temporal

  5. Dual-species biofilms formation by Escherichia coli O157:H7 and environmental bacteria isolated from fresh-cut processing plants

    Science.gov (United States)

    Biofilm formation is a mechanism adapted by many microorganisms that enhances the survival in stressful environments. In food processing facilities, bacterial strains with strong biofilm forming capacities are more likely to survive the daily cleaning and disinfection. Foodborne bacterial pathogens,...

  6. Extracellular communication in bacteria

    DEFF Research Database (Denmark)

    Chhabra, S.R.; Philipp, B.; Eberl, L.

    2005-01-01

    molecules, in different Gram-positive and Gram-negative bacteria they control pathogenicity, secondary metabolite production, biofilm differentiation, DNA transfer and bioluminescence. The development of biosensors for the detection of these signal molecules has greatly facilitated their subsequent chemical...

  7. Social Behaviour in Bacteria

    Indian Academy of Sciences (India)

    Administrator

    the recipient. • Social behaviours can be categorized according to the fitness ... is actually the flagella of symbiotic spirochete bacteria that helps it to swim around .... Normal population. Responsive switching. (Environmental stress). Stochastic.

  8. [Darwin and bacteria].

    Science.gov (United States)

    Ledermann D, Walter

    2009-02-01

    As in 2009 the scientific world celebrates two hundreds years from the birthday of Charles Darwin and one hundred and fifty from the publication of The Origin of Species, an analysis of his complete work is performed, looking for any mention of bacteria. But it seems that the great naturahst never took knowledge about its existence, something rather improbable in a time when the discovery of bacteria shook the medical world, or he deliberately ignored them, not finding a place for such microscopic beings into his theory of evolution. But the bacteria badly affected his familiar life, killing scarlet fever one of his children and worsening to death the evolution of tuberculosis of his favourite Annie. Darwin himself could suffer the sickness of Chagas, whose etiological agent has a similar level to bacteria in the scale of evolution.

  9. RASCAL [Radiological Assessment System for Consequence AnaLysis]: A screening model for estimating doses from radiological accidents

    International Nuclear Information System (INIS)

    Sjoreen, A.L.; Athey, G.F.; Sakenas, C.A.; McKenna, T.J.

    1988-01-01

    The Radiological Assessment System for Consequence AnaLysis (RASCAL) is a new MS-DOS-based dose assessment model which has been written for the US Nuclear Regulatory Commission for use during response to radiological emergencies. RASCAL is designed to provide crude estimates of the effects of an accident while the accident is in progress and only limited information is available. It has been designed to be very simple to use and to run quickly. RASCAL is unique in that it estimates the source term based on fundamental plant conditions and does not rely solely on release rate estimation (e.g., Ci/sec of I-131). Therefore, it can estimate consequences of accidents involving unmonitored pathways or projected failures. RASCAL will replace the older model, IRDAM. 6 refs

  10. Detection of fungal DNA in lysis-centrifugation blood culture for the diagnosis of invasive candidiasis in neonatal patients.

    Science.gov (United States)

    Trovato, L; Betta, P; Romeo, M G; Oliveri, S

    2012-03-01

    We report data concerning the detection of fungal DNA directly from lysis-centrifugation blood culture to assess its value in the detection of fungaemia in 86 of the 347 patients admitted to the neonatal intensive-care unit between January 2009 and December 2010. The sensitivity and specificity of the PCR were 87.5% and 98.5%, respectively, with a positive predictive value of 93.3% and a negative predictive value of 97.1%. Detection of fungal DNA directly from blood culture Isolator 1.5 microbial tubes, without prior cultivation, is a promising approach for the rapid detection of Candida spp. in neonates with suspected candidaemia. © 2011 The Authors. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases.

  11. Modelling and predicting the simultaneous growth of Listeria monocytogenes and psychrotolerant lactic acid bacteria in processed seafood and mayonnaise-based seafood salads

    DEFF Research Database (Denmark)

    Mejlholm, Ole; Dalgaard, Paw

    2015-01-01

    . using the classical Jameson effect to model microbial interaction. Maximum population density (MPD) values of L. monocytogenes were accurately predicted in processed seafood with a known initial cell concentration of Lactobacillus spp. For these experiments, average MPD values of 4.5 and 4.3 log (cfu...

  12. The fecal bacteria

    Science.gov (United States)

    Sadowsky, Michael J.; Whitman, Richard L.

    2011-01-01

    The Fecal Bacteria offers a balanced, integrated discussion of fecal bacteria and their presence and ecology in the intestinal tract of mammals, in the environment, and in the food supply. This volume covers their use in examining and assessing water quality in order to offer protection from illnesses related to swimming in or ingesting contaminated water, in addition to discussing their use in engineering considerations of water quality, modeling, monitoring, and regulations. Fecal bacteria are additionally used as indicators of contamination of ready-to-eat foods and fresh produce. The intestinal environment, the microbial community structure of the gut microbiota, and the physiology and genomics of this broad group of microorganisms are explored in the book. With contributions from an internationally recognized group of experts, the book integrates medicine, public health, environmental, and microbiological topics in order to provide a unique, holistic understanding of fecal bacteria. Moreover, it shows how the latest basic science and applied research findings are helping to solve problems and develop effective management strategies. For example, readers will discover how the latest tools and molecular approaches have led to our current understanding of fecal bacteria and enabled us to improve human health and water quality. The Fecal Bacteria is recommended for microbiologists, clinicians, animal scientists, engineers, environmental scientists, food safety experts, water quality managers, and students. It will help them better understand fecal bacteria and use their knowledge to protect human and environmental health. They can also apply many of the techniques and molecular tools discussed in this book to the study of a broad range of microorganisms in a variety of habitats.

  13. Synthesis of CdS Nanocrystals by Employing the By-Products of the Anaerobic Respiratory Process of Desulfovibrio alaskensis 6SR Bacteria

    Directory of Open Access Journals (Sweden)

    L. G. Rangel-Chávez

    2015-01-01

    Full Text Available A novel methodology for the direct synthesis of CdS nanoparticles, using a biological agent that avoids the extracellular processing, and the results of the characterization of CdS nanocrystals are presented. The by-products of the anaerobic respiratory process of Desulfovibrio alaskensis 6SR along with aqueous solutions of Cd salts were successfully employed to produce CdS nanocrystals with mixed cubic and hexagonal phases. Nanocrystal size has a narrow size distribution with little dependence on the Cd concentration. Both the presence of the crystallographic cubic phase and the crystalline order decrease as Cd concentration increases. The band gap values obtained from optical transmission measurements are lower than those of the bulk crystal. Raman spectroscopy characterization agrees with electron transmission microscopy images and X-ray diffraction results indicating that the method promotes the formation of high structural quality nanocrystals when low concentrations of the Cd salt are used.

  14. Bacteria-mediated bisphenol A degradation.

    Science.gov (United States)

    Zhang, Weiwei; Yin, Kun; Chen, Lingxin

    2013-07-01

    Bisphenol A (BPA) is an important monomer in the manufacture of polycarbonate plastics, food cans, and other daily used chemicals. Daily and worldwide usage of BPA and BPA-contained products led to its ubiquitous distribution in water, sediment/soil, and atmosphere. Moreover, BPA has been identified as an environmental endocrine disruptor for its estrogenic and genotoxic activity. Thus, BPA contamination in the environment is an increasingly worldwide concern, and methods to efficiently remove BPA from the environment are urgently recommended. Although many factors affect the fate of BPA in the environment, BPA degradation is mainly depended on the metabolism of bacteria. Many BPA-degrading bacteria have been identified from water, sediment/soil, and wastewater treatment plants. Metabolic pathways of BPA degradation in specific bacterial strains were proposed, based on the metabolic intermediates detected during the degradation process. In this review, the BPA-degrading bacteria were summarized, and the (proposed) BPA degradation pathway mediated by bacteria were referred.

  15. A new apparatus to induce lysis of planktonic microbial cells by shock compression, cavitation and spray

    Science.gov (United States)

    Schiffer, A.; Gardner, M. N.; Lynn, R. H.; Tagarielli, V. L.

    2017-03-01

    Experiments were conducted on an aqueous growth medium containing cultures of Escherichia coli (E. coli) XL1-Blue, to investigate, in a single experiment, the effect of two types of dynamic mechanical loading on cellular integrity. A bespoke shock tube was used to subject separate portions of a planktonic bacterial culture to two different loading sequences: (i) shock compression followed by cavitation, and (ii) shock compression followed by spray. The apparatus allows the generation of an adjustable loading shock wave of magnitude up to 300 MPa in a sterile laboratory environment. Cultures of E. coli were tested with this apparatus and the spread-plate technique was used to measure the survivability after mechanical loading. The loading sequence (ii) gave higher mortality than (i), suggesting that the bacteria are more vulnerable to shear deformation and cavitation than to hydrostatic compression. We present the results of preliminary experiments and suggestions for further experimental work; we discuss the potential applications of this technique to sterilize large volumes of fluid samples.

  16. Lysis of cells infected with typhus group rickettsiae by a human cytotoxic T cell clone

    International Nuclear Information System (INIS)

    Carl, M.; Robbins, F.; Hartzman, R.J.; Dasch, G.A.

    1987-01-01

    Cytolytic human T cells clones generated in response to the intracellular bacterium Rickettsia typhi were characterized. Growing clones were tested for their ability to proliferate specifically in response to antigens derived from typhus group rickettsiae or to lyse targets infected with R. typhi or Rickettsia prowazekii, as measured by 51 Cr-release from target cells. Two clones were able to lyse targets infected with typhus group rickettsiae. One of these clones was more fully characterized because of its rapid growth characteristics. This cytolytic clone was capable of lysing an autologous infected target as well as a target matched for class I and II histocompatibility leukocyte antigens (HLA). It was not capable, however, of lysing either a target mismatched for both class I and II HLA or a target partially matched for class I HLA. In addition, the clone exhibited specificity in that it was able to lyse an autologous target infected with typhus group rickettsiae, but did not lyse an autologous target infected with an antigenically distinct rickettsial species, Rickettsia tsutsugamushi. These results demonstrate, for the first time, that cells infected with intracellular bacteria can be lysed by human cytotoxic T lymphocytes

  17. Polycyclic aromatic hydrocarbon-contaminated soils: bioaugmentation of autochthonous bacteria and toxicological assessment of the bioremediation process by means of Vicia faba L.

    Science.gov (United States)

    Ruffini Castiglione, Monica; Giorgetti, Lucia; Becarelli, Simone; Siracusa, Giovanna; Lorenzi, Roberto; Di Gregorio, Simona

    2016-04-01

    Two bacterial strains, Achromobacter sp. (ACH01) and Sphingomonas sp. (SPH01), were isolated from a heavily polycyclic aromatic hydrocarbon (PAH)-contaminated soil (5431.3 ± 102.3 ppm) for their capacity to use a mixture of anthracene, pyrene, phenanthrene and fluorene as sole carbon sources for growth and for the capacity to produce biosurfactants. The two strains were exploited for bioaugmentation in a biopile pilot plant to increase the bioavailability and the degradation of the residual PAH contamination (99.5 ± 7.1 ppm) reached after 9 months of treatment. The denaturing gel gradient electrophoresis (DGGE) profile of the microbial ecology of the soil during the experimentation showed that the bioaugmentation approach was successful in terms of permanence of the two strains in the soil in treatment. The bioaugmentation of the two bacterial isolates positively correlated with the PAH depletion that reached 7.9 ± 2 ppm value in 2 months of treatment. The PAH depletion was assessed by the loss of the phyto-genotoxicity of soil elutriates on the model plant Vicia faba L., toxicological assessment adopted also to determine the minimum length of the decontamination process for obtaining both the depletion of the PAH contamination and the detoxification of the soil at the end of the process. The intermediate phases of the bioremediation process were the most significant in terms of toxicity, inducing genotoxic effects and selective DNA fragmentation in the stem cell niche of the root tip. The selective DNA fragmentation can be related to the selective induction of cell death of mutant stem cells that can compromise offsprings.

  18. Using SPIRAL (Single Pollen Isotope Ratio AnaLysis) to estimate C 3- and C 4-grass abundance in the paleorecord

    Science.gov (United States)

    Nelson, David M.; Hu, Feng Sheng; Scholes, Daniel R.; Joshi, Neeraj; Pearson, Ann

    2008-05-01

    C 3 and C 4 grasses differ greatly in their responses to environmental controls and influences on biogeochemical processes (e.g. water, carbon, and nutrient cycling). Difficulties in distinguishing between these two functional groups of grasses have hindered paleoecological studies of grass-dominated ecosystems. Stable carbon isotopic analysis of individual grains of grass pollen using a spooling-wire microcombustion device interfaced with an isotope-ratio mass spectrometer holds promise for improving C 3 and C 4 grass reconstructions. This technique, SPIRAL (Single Pollen Isotope Ratio AnaLysis), has only been evaluated using pollen of known C 3 and C 4 grasses. To test the ability of SPIRAL to reproduce the abundance of C 3 and C 4 grasses on the landscape, we measured δ13C values of > 1500 individual grains of grass pollen isolated from the surface sediments of ten lakes in areas that span a large gradient of C 3- and C 4-grass abundance, as determined from vegetation surveys. Results indicate a strong positive correlation between the δ13C-based estimates of % C 4-grass pollen and the abundance of C 4 grasses on the landscape. The % C 4-grass pollen slightly underestimates the actual abundance of C 4 grasses at sites with high proportions of C 4 grasses, which can be corrected using regression analysis. Comparison of the % C 4-grass pollen with C/N and δ13C measurements of bulk organic matter illustrates the distinct advantages of grass-pollen δ13C as a proxy for distinguishing C 3 and C 4 shifts within the grass family. Thus SPIRAL promises to advance our understanding of grassland ecology and evolution.

  19. Direct identification of bacteria in positive blood culture bottles by matrix-assisted laser desorption ionisation time-of-flight mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Bernard La Scola

    Full Text Available BACKGROUND: With long delays observed between sampling and availability of results, the usefulness of blood cultures in the context of emergency infectious diseases has recently been questioned. Among methods that allow quicker bacterial identification from growing colonies, matrix-assisted laser desorption ionisation time-of-flight (MALDI-TOF mass spectrometry was demonstrated to accurately identify bacteria routinely isolated in a clinical biology laboratory. In order to speed up the identification process, in the present work we attempted bacterial identification directly from blood culture bottles detected positive by the automate. METHODOLOGY/PRINCIPAL FINDINGS: We prospectively analysed routine MALDI-TOF identification of bacteria detected in blood culture by two different protocols involving successive centrifugations and then lysis by trifluoroacetic acid or formic acid. Of the 562 blood culture broths detected as positive by the automate and containing one bacterial species, 370 (66% were correctly identified. Changing the protocol from trifluoroacetic acid to formic acid improved identification of Staphylococci, and overall correct identification increased from 59% to 76%. Lack of identification was observed mostly with viridans streptococci, and only one false positive was observed. In the 22 positive blood culture broths that contained two or more different species, only one of the species was identified in 18 samples, no species were identified in two samples and false species identifications were obtained in two cases. The positive predictive value of bacterial identification using this procedure was 99.2%. CONCLUSIONS/SIGNIFICANCE: MALDI-TOF MS is an efficient method for direct routine identification of bacterial isolates in blood culture, with the exception of polymicrobial samples and viridans streptococci. It may replace routine identification performed on colonies, provided improvement for the specificity of blood culture

  20. Direct identification of bacteria in positive blood culture bottles by matrix-assisted laser desorption ionisation time-of-flight mass spectrometry.

    Science.gov (United States)

    La Scola, Bernard; Raoult, Didier

    2009-11-25

    With long delays observed between sampling and availability of results, the usefulness of blood cultures in the context of emergency infectious diseases has recently been questioned. Among methods that allow quicker bacterial identification from growing colonies, matrix-assisted laser desorption ionisation time-of-flight (MALDI-TOF) mass spectrometry was demonstrated to accurately identify bacteria routinely isolated in a clinical biology laboratory. In order to speed up the identification process, in the present work we attempted bacterial identification directly from blood culture bottles detected positive by the automate. We prospectively analysed routine MALDI-TOF identification of bacteria detected in blood culture by two different protocols involving successive centrifugations and then lysis by trifluoroacetic acid or formic acid. Of the 562 blood culture broths detected as positive by the automate and containing one bacterial species, 370 (66%) were correctly identified. Changing the protocol from trifluoroacetic acid to formic acid improved identification of Staphylococci, and overall correct identification increased from 59% to 76%. Lack of identification was observed mostly with viridans streptococci, and only one false positive was observed. In the 22 positive blood culture broths that contained two or more different species, only one of the species was identified in 18 samples, no species were identified in two samples and false species identifications were obtained in two cases. The positive predictive value of bacterial identification using this procedure was 99.2%. MALDI-TOF MS is an efficient method for direct routine identification of bacterial isolates in blood culture, with the exception of polymicrobial samples and viridans streptococci. It may replace routine identification performed on colonies, provided improvement for the specificity of blood culture broths growing viridans streptococci is obtained in the near future.

  1. Biological control of potato black scurf by rhizosphere associated bacteria

    Directory of Open Access Journals (Sweden)

    Mohsin Tariq

    2010-06-01

    Full Text Available The present work was carried out to study the potential of plant rhizosphere associated bacteria for the biocontrol of potato black scurf disease caused by Rhizoctonia solani Khun AG-3. A total of twenty-eight bacteria isolated from diseased and healthy potato plants grown in the soil of Naran and Faisalabad, Pakistan were evaluated for their antagonistic potential. Nine bacterial strains were found to be antagonistic in vitro, reduced the fungal growth and caused the lysis of sclerotia of R. solani in dual culture assay as well as in extracellular metabolite efficacy test. The selected antagonistic strains were further tested for the production and efficacy of volatile and diffusible antibiotics, lytic enzymes and siderophores against R. solani. Selected antagonistic bacteria were also characterized for growth promoting attributes i.e., phosphate solubilization, nitrogen fixation and indole acetic acid production. Biocontrol efficacy and percent yield increase by these antagonists was estimated in greenhouse experiment. Statistical analysis showed that two Pseudomonas spp. StT2 and StS3 were the most effective with 65.1 and 73.9 percent biocontrol efficacy, as well as 87.3 and 98.3 percent yield increase, respectively. Potential antagonistic bacterial strain StS3 showed maximum homology to Pseudomonas sp. as determined by 16S rRNA gene sequencing. These results suggest that bacterial isolates StS3 and StT2 have excellent potential to be used as effective biocontrol agents promoting plant growth with reduced disease incidence.

  2. Communication among Oral Bacteria

    Science.gov (United States)

    Kolenbrander, Paul E.; Andersen, Roxanna N.; Blehert, David S.; Egland, Paul G.; Foster, Jamie S.; Palmer, Robert J.

    2002-01-01

    Human oral bacteria interact with their environment by attaching to surfaces and establishing mixed-species communities. As each bacterial cell attaches, it forms a new surface to which other cells can adhere. Adherence and community development are spatiotemporal; such order requires communication. The discovery of soluble signals, such as autoinducer-2, that may be exchanged within multispecies communities to convey information between organisms has emerged as a new research direction. Direct-contact signals, such as adhesins and receptors, that elicit changes in gene expression after cell-cell contact and biofilm growth are also an active research area. Considering that the majority of oral bacteria are organized in dense three-dimensional biofilms on teeth, confocal microscopy and fluorescently labeled probes provide valuable approaches for investigating the architecture of these organized communities in situ. Oral biofilms are readily accessible to microbiologists and are excellent model systems for studies of microbial communication. One attractive model system is a saliva-coated flowcell with oral bacterial biofilms growing on saliva as the sole nutrient source; an intergeneric mutualism is discussed. Several oral bacterial species are amenable to genetic manipulation for molecular characterization of communication both among bacteria and between bacteria and the host. A successful search for genes critical for mixed-species community organization will be accomplished only when it is conducted with mixed-species communities. PMID:12209001

  3. PATHOGENICITY OF BIOFILM BACTERIA

    Science.gov (United States)

    There is a paucity of information concerning any link between the microorganisms commonly found in biofilms of drinking water systems and their impacts on human health. For bacteria, culture-based techniques detect only a limited number of the total microorganisms associated wit...

  4. Bacteria-surface interactions.

    Science.gov (United States)

    Tuson, Hannah H; Weibel, Douglas B

    2013-05-14

    The interaction of bacteria with surfaces has important implications in a range of areas, including bioenergy, biofouling, biofilm formation, and the infection of plants and animals. Many of the interactions of bacteria with surfaces produce changes in the expression of genes that influence cell morphology and behavior, including genes essential for motility and surface attachment. Despite the attention that these phenotypes have garnered, the bacterial systems used for sensing and responding to surfaces are still not well understood. An understanding of these mechanisms will guide the development of new classes of materials that inhibit and promote cell growth, and complement studies of the physiology of bacteria in contact with surfaces. Recent studies from a range of fields in science and engineering are poised to guide future investigations in this area. This review summarizes recent studies on bacteria-surface interactions, discusses mechanisms of surface sensing and consequences of cell attachment, provides an overview of surfaces that have been used in bacterial studies, and highlights unanswered questions in this field.

  5. Antifreeze Proteins of Bacteria

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 12. Antifreeze Proteins of Bacteria. M K Chattopadhyay. General Article Volume 12 Issue 12 December 2007 pp 25-30. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/012/12/0025-0030 ...

  6. Role of cell surface composition and lysis in static biofilm formation by Lactobacillus plantarum WCFS1

    NARCIS (Netherlands)

    Fernández Ramírez, Mónica D.; Nierop Groot, Masja N.; Smid, Eddy J.; Hols, Pascal; Kleerebezem, Michiel; Abee, Tjakko

    2018-01-01

    Next to applications in fermentations, Lactobacillus plantarum is recognized as a food spoilage organism, and its dispersal from biofilms in food processing environments might be implicated in contamination or recontamination of food products. This study provides new insights into biofilm

  7. Copper, gold, and silver decorated magnetic core-polymeric shell nanostructures for destruction of pathogenic bacteria

    Science.gov (United States)

    Padervand, Mohsen; Karanji, Ahmad Kiani; Elahifard, Mohammad Reza

    2017-05-01

    Fe3O4 magnetic nanoparticles (MNPs) were prepared by co-precipitation method. The nanoparticles were silica coated using TEOS, and then modified by the polymeric layers of polypropylene glycol (PPG) and polyethylene glycol (PEG). Finally, the core-shell samples were decorated with Ag, Au, and Cu nanoparticles. The products were characterized by vibrating sample magnetometry (VSM), TGA, SEM, XRD, and FTIR methods. The antibacterial activity of the prepared samples was evaluated in inactivation of E. coli and S. aureus microorganisms, representing the Gram-negative and Gram-positive species, respectively. The effect of solid dosage, bacteria concentration and type of polymeric modifier on the antibacterial activity was investigated. TEM images of the bacteria were recorded after the treatment time and according to the observed changes in the cell wall, the mechanism of antibacterial action was discussed. The prepared nanostructures showed high antibacterial activity against both Gram-negative and Gram-positive bacteria. This was due to the leaching of metal ions which subsequently led to the lysis of bacteria. A theoretical investigation was also done by studying the interaction of loaded metals with the nucleotide components of the microorganism DNA, and the obtained results were used to explain the experimental data. Finally, based on the observed inactivation curves, we explain the antibacterial behavior of the prepared nanostructures mathematically.

  8. Role of granular activated carbon in the microalgal cultivation from bacteria contamination.

    Science.gov (United States)

    Ni, Zhi-Yi; Li, Jing-Ya; Xiong, Zhao-Zhao; Cheng, Li-Hua; Xu, Xin-Hua

    2018-01-01

    Microalgal wastewater treatment has been considered as one of the most promising measures to treat nitrogen and phosphorus in the municipal wastewater. While the municipal wastewater provides sufficient nitrogen and phosphorus for microalgal growth, the microalgae still faces serious biological contamination caused by bacteria in wastewater. In this study, the commercial granular activated carbon (GAC) was added into the simulated municipal wastewater to avoid the influence of bacteria on the growth of microalgae. The extracellular organic matter (EOM) in microalgal broth was then characterized to enlighten the role of GAC in reducing the bioavailability of EOM. The results showed that the GAC addition could increase the dry weight of microalgae from 0.06mgL -1 to 0.46mgL -1 under the condition of bacterial inoculation. The GAC could mitigate bacterial contamination mainly due to its adsorption of both bacteria and EOM that might contain algicidal extracellular substances. Moreover, compared to the control group, the GAC addition could mitigate the microalgal lysis caused by bacteria and thus greatly reduce the bioavailability of EOM from 2.80mgL -1 to 0.61mgL -1 , which was beneficial for the improvement of biostability and reuse of effluent after the microalgal harvesting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Overlapping riboflavin supply pathways in bacteria.

    Science.gov (United States)

    García-Angulo, Víctor Antonio

    2017-03-01

    Riboflavin derivatives are essential cofactors for a myriad of flavoproteins. In bacteria, flavins importance extends beyond their role as intracellular protein cofactors, as secreted flavins are a key metabolite in a variety of physiological processes. Bacteria obtain riboflavin through the endogenous riboflavin biosynthetic pathway (RBP) or by the use of importer proteins. Bacteria frequently encode multiple paralogs of the RBP enzymes and as for other micronutrient supply pathways, biosynthesis and uptake functions largely coexist. It is proposed that bacteria shut down biosynthesis and would rather uptake riboflavin when the vitamin is environmentally available. Recently, the overlap of riboflavin provisioning elements has gained attention and the functions of duplicated paralogs of RBP enzymes started to be addressed. Results point towards the existence of a modular structure in the bacterial riboflavin supply pathways. Such structure uses subsets of RBP genes to supply riboflavin for specific functions. Given the importance of riboflavin in intra and extracellular bacterial physiology, this complex array of riboflavin provision pathways may have developed to contend with the various riboflavin requirements. In riboflavin-prototrophic bacteria, riboflavin transporters could represent a module for riboflavin provision for particular, yet unidentified processes, rather than substituting for the RBP as usually assumed.

  10. The friendly bacteria within us Commensal bacteria of the intestine ...

    Indian Academy of Sciences (India)

    Balance of bacterial species in the gut · Immunosensory detection of intestinal bacteria · Pathogenic bacteria release interleukin-8 from HT-29 cells · Lactobacillus GG prevents the IL-8 release in response to pathogens · Effect of probiotic bacteria on chemokine response of epithelia to pathogens · PCR array studies in colon ...

  11. Olive oil glycero lysis with the immobilized lipase Candida antarctica in a solvent free system

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A. K.; Mukhopadhyay, M.

    2012-11-01

    In the present work, the solvent free lipase glycerolysis of olive oil for the production of monoglyceride (MG) and diglyceride (DG) with an immobilized Lipase B Candida antarctica was studied. The experiments were performed in batch mode by varying different process parameters. The Results showed that the MG and DG yields were dependent on operating conditions such as time, temperature, glycerol/ oil molar ratio, enzyme concentration and the water content in glycerol. The optimum operating time for maximum MG, 26 wt% and DG, 30 wt% production was 3h. The initial reaction rate was studied by varying different process parameters for 1h. The initial reaction rate increased at 30 degree centigrade temperature, 2:1 glycerol/oil molar ratio, 3.5% (w/w) water content in glycerol and 0.015g of enzyme loading. Comparative data for MG and DG yields for different oils and enzyme combinations were presented.

  12. Manufacture of Probiotic Bacteria

    Science.gov (United States)

    Muller, J. A.; Ross, R. P.; Fitzgerald, G. F.; Stanton, C.

    Lactic acid bacteria (LAB) have been used for many years as natural biopreservatives in fermented foods. A small group of LAB are also believed to have beneficial health effects on the host, so called probiotic bacteria. Probiotics have emerged from the niche industry from Asia into European and American markets. Functional foods are one of the fastest growing markets today, with estimated growth to 20 billion dollars worldwide by 2010 (GIA, 2008). The increasing demand for probiotics and the new food markets where probiotics are introduced, challenges the industry to produce high quantities of probiotic cultures in a viable and stable form. Dried concentrated probiotic cultures are the most convenient form for incorporation into functional foods, given the ease of storage, handling and transport, especially for shelf-stable functional products. This chapter will discuss various aspects of the challenges associated with the manufacturing of probiotic cultures.

  13. Sub-apoptotic dosages of pro-oxidant vitamin cocktails sensitize human melanoma cells to NK cell lysis.

    Science.gov (United States)

    Tremante, Elisa; Santarelli, Lory; Lo Monaco, Elisa; Sampaoli, Camilla; Ingegnere, Tiziano; Guerrieri, Roberto; Tomasetti, Marco; Giacomini, Patrizio

    2015-10-13

    Alpha-tocopheryl succinate (αTOS), vitamin K3 (VK3) and vitamin C (ascorbic acid, AA) were previously shown to synergistically promote different death pathways in carcinoma cells, depending on their concentrations and combinations. Similar effects were observed herein in melanoma cells, although αTOS behaved as an antagonist. Interestingly, suboptimal cell death-inducing concentrations (1.5 μM αTOS/20 μM AA/0.2 μM VK3) effectively up-regulated activating Natural Killer (NK) cell ligands, including MICA (the stress-signaling ligand of the NKG2D receptor), and/or the ligands of at least one of the natural cytotoxicity receptors (NKp30, NKp44 and NKp46) in 5/6 melanoma cell lines. Only an isolated MICA down-regulation was seen. HLA class I, HLA class II, ULBP1, ULBP2, ULBP3, Nectin-2, and PVR displayed little, if any, change in expression. Ligand up-regulation resulted in improved lysis by polyclonal NK cells armed with the corresponding activating receptors. These results provide the first evidence for concerted induction of cell death by cell-autonomous and extrinsic (immune) mechanisms. Alarming the immune system much below the cell damage threshold may have evolved as a sensitive readout of neoplastic transformation and oxidative stress. Cocktails of vitamin analogues at slightly supra-physiological dosages may find application as mild complements of melanoma treatment, and in chemoprevention.

  14. Early postnatal diagnosis of hereditary spherocytosis by combining light microscopy, acidified glycerol lysis test and eosin-5'-maleimide binding assay.

    Science.gov (United States)

    Andres, Oliver; Eber, Stefan; Speer, Christian P

    2015-12-01

    Exact diagnosis of hereditary spherocytosis (HS) is widely considered unreliable around birth. However, early postnatal diagnosis at the beginning of congenital hemolysis may be essential for managing neonatal anemia and hemolytic icterus, identifying those at high risk for severe hyperbilirubinemia, irreversible kernicterus, or sudden need for red cell transfusion. We analyzed 37 blood samples from neonates or infants up to six weeks of life that had been collected in-house or shipped to our laboratory due to suspected red cell membrane disorder. By combining assessment of red cell morphology, acidified glycerol lysis test (AGLT), and eosin-5'-maleimide (EMA) binding assay, we were able to clearly exclude HS in 22 and confirm HS in 10 patients, of which one had undergone red cell transfusion prior to blood sampling. Assessment of red cell morphology and normal test results allowed diagnosis of infantile pyknocytosis or Heinz body anemia in three neonates. Re-evaluation of five patients with inconsistent results of AGLT and EMA binding led to confirmation of HS in two cases. Automated analysis of hematologic parameters revealed elevated proportion of hyperdense cells to be a highly significant indicator for HS in neonatal infants. We showed that assessment of red cell morphology in combination with AGLT and EMA binding assay is a reliable basis for confirming or rejecting suspected diagnosis of HS even in neonates. Our data underline the necessity for blood sampling and laboratory exploration in suspected red cell membrane or enzyme defects at the earliest occasion.

  15. High-intensity focused ultrasound sonothrombolysis: the use of perfluorocarbon droplets to achieve clot lysis at reduced acoustic power.

    Science.gov (United States)

    Pajek, Daniel; Burgess, Alison; Huang, Yuexi; Hynynen, Kullervo

    2014-09-01

    The purpose of this study was to evaluate use of intravascular perfluorocarbon droplets to reduce the sonication power required to achieve clot lysis with high-intensity focused ultrasound. High-intensity focused ultrasound with droplets was initially applied to blood clots in an in vitro flow apparatus, and inertial cavitation thresholds were determined. An embolic model for ischemic stroke was used to illustrate the feasibility of this technique in vivo. Recanalization with intravascular droplets was achieved in vivo at 24 ± 5% of the sonication power without droplets. Recanalization occurred in 71% of rabbits that received 1-ms pulsed sonications during continuous intravascular droplet infusion (p = 0.041 vs controls). Preliminary experiments indicated that damage was confined to the ultrasonic focus, suggesting that tolerable treatments would be possible with a more tightly focused hemispheric array that allows the whole focus to be placed inside of the main arteries in the human brain. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  16. Thrombin activatable fibrinolysis inhibitor and clot lysis time in pregnant patients with antiphospholipid syndrome: relationship with pregnancy outcome and thrombosis.

    Science.gov (United States)

    Martinez-Zamora, Maria Angeles; Tassies, Dolors; Carmona, Francisco; Espinosa, Gerard; Cervera, Ricard; Reverter, Juan Carlos; Balasch, Juan

    2009-12-01

    Antiphospholipid syndrome (APS) pregnancies are associated with thrombotic obstetric complications, despite treatment. This study evaluated Thrombin Activatable Fibrinolysis Inhibitor (TAFI) levels, TAFI gene polymorphisms and Clot Lysis Time (CLT) in pregnant patients with APS in relation to pregnancy outcome and thrombosis. Group 1 consisted of 67 pregnant patients with APS. Group 2 included 66 pregnant patients with uneventful term pregnancies and delivery. Patients were sampled during each trimester and at baseline. TAFI antigen and CLT and two polymorphisms of the TAFI gene, Ala147Thr and +1542C/G, were determined. Significantly prolonged CLT was found at baseline in Group 1. Allele distribution of the TAFI gene polymorphisms was similar in both groups. Basal TAFI and CLT in patients with APS having an adverse or a good obstetrical outcome were similar. Comparison of TAFI and CLT baseline levels in patients with APS with or without previous thrombosis showed no statistical differences. Patients with APS have impairment in fibrinolysis evidenced by prolonged CLT at baseline. TAFI and CLT do not seem to be useful as markers of obstetric outcome or risk of thrombosis in patients with APS.

  17. Genome scan of clot lysis time and its association with thrombosis in a protein C deficient kindred

    Science.gov (United States)

    Meltzer, M.E.; Hasstedt, S.J.; Vossen, C.Y.; Callas, P.W.; de Groot, Ph.G.; Rosendaal, F.R.; Lisman, T.; Bovill, E.G.

    2011-01-01

    Summary Background Previously we found increased clot lysis time (CLT), as measured with a plasma-based assay, to increase the risk of venous thrombosis in two population-based case-control studies. Genes influencing CLT are yet unknown. Objectives and Patients/Methods We tested CLT as risk factor for venous thrombosis in Kindred Vermont II (n=346), a pedigree suffering from a high thrombosis risk, partially attributable to a type I protein C deficiency. Furthermore we tested for quantitative trait loci (QTL) for CLT using variance component linkage analysis. Results Protein C deficient family members had shorter CLT than non-deficient members (median CLT 67 versus 75 minutes). One standard deviation increase in CLT increased risk of venous thrombosis 2.4-fold in non-deficient family members. Protein C deficiency without elevated CLT increased risk 6.9-fold. Combining both risk factors yielded a 27.8-fold increased risk. Heritability of CLT was 42-52%. We found suggestive evidence of linkage on chromosome 11 (62 cM), partly explained by the prothrombin 20210A mutation, and on chromosome 13 (52 cM). Thrombin Activatable Fibrinolysis Inhibitor genotypes did not explain the variation in CLT. Conclusion Hypofibrinolysis appears to increase thrombosis risk in this family especially in combination with protein C deficiency. Protein C deficiency is associated with short CLT. CLT is partly genetically regulated. Suggestive QTL were found on chromosome 11 and 13. PMID:21575129

  18. Solvent-tolerant bacteria in biocatalysis.

    NARCIS (Netherlands)

    Bont, de J.A.M.

    1998-01-01

    The toxicity of fine chemicals to the producer organism is a problem in several biotechnological production processes. In several instances, an organic phase can be used to extract the toxic product from the aqueous phase during a fermentation. With the discovery of solvent-tolerant bacteria, more

  19. Development and implementation of tPA clot lysis activity assay using ACL TOP™ hemeostasis testing system in QC laboratories

    Directory of Open Access Journals (Sweden)

    Lichun Huang

    2017-12-01

    Full Text Available This report describes the design, development, validation and long-term performance of tPA clot lysis activity assay using Advanced Chemistry Line Total Operational Performance (ACL TOP™ Homeostasis Testing System. The results of the study demonstrated robust and stable performance of the analytical method. The accuracy of the assay, expressed by percent recovery is 98–99%. The intermediate precision and repeatability precision, expressed as Relative Standard Deviation (RSD, was 3% and less than 2% respectively. The validated range is from 70% to 130% of the target potency of 5.8 × 105 IU/mg. The linearity of this range, expressed in correlation coefficient, is 0.997. After the assay is transferred to a QC laboratory, the assay retained high accuracy and precision with a success rate of >99%. Keywords: Potency assay, Clot lysis, Comparability, Automation

  20. Evaluación del molibdato y nitrato sobre bacterias sulfato-reductoras asociadas a procesos de corrosión en sistemas industriales Evaluation of molybdate and nitrate on sulphate-reducing bacteria related to corrosion processes in industrial systems

    Directory of Open Access Journals (Sweden)

    J. R. Torrado Rincón

    2008-03-01

    Full Text Available Se estudió la cinética de crecimiento de bacterias sulfato-reductoras (BSR y la biotransformación de sulfato a sulfuro de hidrógeno bajo condiciones de laboratorio, para establecer el efecto inhibitorio de sales de molibdato y nitrato de sodio. Los microorganismos estudiados fueron aislados del agua de producción contenida en un sistema de transporte de gas natural, donde se encontraban relacionados con procesos de corrosión influenciada microbiológicamente. Con 5 mM de molibdato se obtuvo una reducción de células libres a niveles no detectables y de seis órdenes de magnitud en las biopelículas, con una disminución del sulfuro de alrededor del 100%. Con 75 mM de nitrato se observó una reducción de cuatro y dos órdenes de magnitud en las células libres y en las adheridas en forma de biopelículas, respectivamente, con una disminución del sulfuro de alrededor del 80%. La reducción de la tasa de corrosión observada sustenta la posibilidad de emplear estas sales como biocidas no convencionales no contaminantes del medio ambiente, para el control y mitigación efectiva de los procesos de biocorrosión interna de tanques de almacenamiento y de líneas de transporte en sistemas industriales de gas natural y petróleo.The sulfate-reducing bacteria growth kinetics and the biotransformation of sulfate into hydrogen sulfide were studied under laboratory conditions, using batch and continuous assays to determine the effect of molybdate and nitrate as metabolic inhibitors. The microorganisms were isolated from water coming from a natural gas dehydration plant, where they were associated with Microbiologically Influenced Corrosion (MIC processes, and later cultured in planktonic and sessile states. The addition of 5 mM molybdate showed a growth reduction to levels of non - detectable floating cells and a six order of magnitude reduction in biofilms, concomitant with a sulfide decrease of around 100% in all cultures inhibited by this

  1. Soil pretreatment and fast cell lysis for direct polymerase chain reaction from forest soils for terminal restriction fragment length polymorphism analysis of fungal communities

    Directory of Open Access Journals (Sweden)

    Fei Cheng

    Full Text Available Abstract Humic substances in soil DNA samples can influence the assessment of microbial diversity and community composition. Using multiple steps during or after cell lysis adds expenses, is time-consuming, and causes DNA loss. A pretreatment of soil samples and a single step DNA extraction may improve experimental results. In order to optimize a protocol for obtaining high purity DNA from soil microbiota, five prewashing agents were compared in terms of their efficiency and effectiveness in removing soil contaminants. Residual contaminants were precipitated by adding 0.6 mL of 0.5 M CaCl2. Four cell lysis methods were applied to test their compatibility with the pretreatment (prewashing + Ca2+ flocculation and to ultimately identify the optimal cell lysis method for analyzing fungal communities in forest soils. The results showed that pretreatment with TNP + Triton X-100 + skim milk (100 mM Tris, 100 mM Na4P2O7, 1% polyvinylpyrrolidone, 100 mM NaCl, 0.05% Triton X-100, 4% skim milk, pH 10.0 removed most soil humic contaminants. When the pretreatment was combined with Ca2+ flocculation, the purity of all soil DNA samples was further improved. DNA samples obtained by the fast glass bead-beating method (MethodFGB had the highest purity. The resulting DNA was successfully used, without further purification steps, as a template for polymerase chain reaction targeting fungal internal transcribed spacer regions. The results obtained by terminal restriction fragment length polymorphism analysis indicated that the MethodFGB revealed greater fungal diversity and more distinctive community structure compared with the other methods tested. Our study provides a protocol for fungal cell lysis in soil, which is fast, convenient, and effective for analyzing fungal communities in forest soils.

  2. Comparison of the Lysis Centrifugation Method with the Conventional Blood Culture Method in Cases of Sepsis in a Tertiary Care Hospital

    OpenAIRE

    Parikh, Harshal R; De, Anuradha S; Baveja, Sujata M

    2012-01-01

    Introduction : Physicians and microbiologists have long recognized that the presence of living microorganisms in the blood of a patient carries with it considerable morbidity and mortality. Hence, blood cultures have become critically important and frequently performed test in clinical microbiology laboratories for diagnosis of sepsis. Objectives: To compare the conventional blood culture method with the lysis centrifugation method in cases of sepsis. Materials and Methods: Two hundred ...

  3. Hyperphosphatemia during spontaneous tumor lysis syndrome culminate in severe hyphosphatemia at the time of blast crisis of Phneg CML to acute myelomoncytic leukemia

    Directory of Open Access Journals (Sweden)

    Salomon Ophira

    2012-08-01

    Full Text Available Abstract Extreme swing of phosphor from severe hyperphosphatemia to severe hypophosphatemia in a patient with blast crisis of myeloid origin was the result of imbalance between massive apoptosis of leukemic cells in the context of spontaneous tumor lysis syndrome and massive production of leukemic cells with only 1% of blast in peripheral blood. The mutated p53 protein suggested acting as oncogene in the presented case and possibly affecting phosphor status.

  4. Magnetosome chain superstructure in uncultured magnetotactic bacteria

    International Nuclear Information System (INIS)

    Abraçado, Leida G; Farina, Marcos; Abreu, Fernanda; Keim, Carolina N; Lins, Ulysses; Campos, Andrea P C

    2010-01-01

    Magnetotactic bacteria produce magnetosomes, which are magnetic particles enveloped by biological membranes, in a highly controlled mineralization process. Magnetosomes are used to navigate in magnetic fields by a phenomenon called magnetotaxis. Two levels of organization and control are recognized in magnetosomes. First, magnetotactic bacteria create a spatially distinct environment within vesicles defined by their membranes. In the vesicles, the bacteria control the size, composition and purity of the mineral content of the magnetic particles. Unique crystal morphologies are produced in magnetosomes as a consequence of this bacterial control. Second, magnetotactic bacteria organize the magnetosomes in chains within the cell body. It has been shown in a particular case that the chains are positioned within the cell body in specific locations defined by filamentous cytoskeleton elements. Here, we describe an additional level of organization of the magnetosome chains in uncultured magnetotactic cocci found in marine and freshwater sediments. Electron microscopy analysis of the magnetosome chains using a goniometer showed that the magnetic crystals in both types of bacteria are not oriented at random along the crystal chain. Instead, the magnetosomes have specific orientations relative to the other magnetosomes in the chain. Each crystal is rotated either 60°, 180° or 300° relative to their neighbors along the chain axis, causing the overlapping of the (1 1 1) and (1-bar 1-bar 1-bar) capping faces of neighboring crystals. We suggest that genetic determinants that are not present or active in bacteria with magnetosomes randomly rotated within a chain must be present in bacteria that organize magnetosomes so precisely. This particular organization may also be used as an indicative biosignature of magnetosomes in the study of magnetofossils in the cases where this symmetry is observed

  5. Pepsin homologues in bacteria

    Directory of Open Access Journals (Sweden)

    Bateman Alex

    2009-09-01

    Full Text Available Abstract Background Peptidase family A1, to which pepsin belongs, had been assumed to be restricted to eukaryotes. The tertiary structure of pepsin shows two lobes with similar folds and it has been suggested that the gene has arisen from an ancient duplication and fusion event. The only sequence similarity between the lobes is restricted to the motif around the active site aspartate and a hydrophobic-hydrophobic-Gly motif. Together, these contribute to an essential structural feature known as a psi-loop. There is one such psi-loop in each lobe, and so each lobe presents an active Asp. The human immunodeficiency virus peptidase, retropepsin, from peptidase family A2 also has a similar fold but consists of one lobe only and has to dimerize to be active. All known members of family A1 show the bilobed structure, but it is unclear if the ancestor of family A1 was similar to an A2 peptidase, or if the ancestral retropepsin was derived from a half-pepsin gene. The presence of a pepsin homologue in a prokaryote might give insights into the evolution of the pepsin family. Results Homologues of the aspartic peptidase pepsin have been found in the completed genomic sequences from seven species of bacteria. The bacterial homologues, unlike those from eukaryotes, do not possess signal peptides, and would therefore be intracellular acting at neutral pH. The bacterial homologues have Thr218 replaced by Asp, a change which in renin has been shown to confer activity at neutral pH. No pepsin homologues could be detected in any archaean genome. Conclusion The peptidase family A1 is found in some species of bacteria as well as eukaryotes. The bacterial homologues fall into two groups, one from oceanic bacteria and one from plant symbionts. The bacterial homologues are all predicted to be intracellular proteins, unlike the eukaryotic enzymes. The bacterial homologues are bilobed like pepsin, implying that if no horizontal gene transfer has occurred the duplication

  6. Deployable micro-traps to sequester motile bacteria

    Science.gov (United States)

    di Giacomo, Raffaele; Krödel, Sebastian; Maresca, Bruno; Benzoni, Patrizia; Rusconi, Roberto; Stocker, Roman; Daraio, Chiara

    2017-04-01

    The development of strategies to reduce the load of unwanted bacteria is a fundamental challenge in industrial processing, environmental sciences and medical applications. Here, we report a new method to sequester motile bacteria from a liquid, based on passive, deployable micro-traps that confine bacteria using micro-funnels that open into trapping chambers. Even in low concentrations, micro-traps afford a 70% reduction in the amount of bacteria in a liquid sample, with a potential to reach >90% as shown by modelling improved geometries. This work introduces a new approach to contain the growth of bacteria without chemical means, an advantage of particular importance given the alarming growth of pan-drug-resistant bacteria.

  7. The bacteriological safety and antimicrobial susceptibility of bacteria ...

    African Journals Online (AJOL)

    In developing countries the major sources of food-borne illnesses are street vended foods. The aim of this study was thus to assess the prevalence and antibiogram of bacteria from white lupin in Bahir Dar Town. METHODS: A total of 40 samples were processed for detection of indicator bacteria and pathogens from ...

  8. Reduction of excess sludge in a sequencing batch reactor by lysis-cryptic growth using quick lime for disintegration under low temperature.

    Science.gov (United States)

    Lv, Xiao-Mei; Song, Ju-Sheng; Li, Ji; Zhai, Kun

    2017-08-01

    In the present study, quick-lime-based thermal-alkaline sludge disintegration (SD) under low temperature was combined with cryptic growth to investigate the excess sludge reduction efficiency in the sequencing batch reactor (SBR). The optimized condition of SD was as follows: T = 80℃, pH = 11, t = 180 min, and the SD rate was about 42.1%. With 65.6% of excess sludge disintegrated and returned to the SBR, the system achieved sludge reduction rate of about 40.1%. The lysis-cryptic growth still obtained satisfactory sludge reduction efficiency despite the comparative low SD rate, which suggested that disintegration rate might not be the decisive factor for cryptic-growth-based sludge reduction. Lysis-cryptic growth did not impact the effluent quality, yet the phosphorus removal performance was enhanced, with effluent total phosphorus concentration decreased by 0.3 mg/L (33%). Crystal compounds of calcium phosphate precipitate were detected in the system by Fourier transform infrared spectroscopy and X-ray diffraction, which indicated the phosphorus removal potential of SD using lime. Moreover, endogenous dehydrogenase activity of activated sludge in the lysis-cryptic system was enhanced, which was beneficial for sludge reduction. SD and cryptic growth in the present study demonstrates an economical and effective approach for sludge reduction.

  9. Leukocyte function-associated antigen-1-dependent lysis of Fas+ (CD95+/Apo-1+) innocent bystanders by antigen-specific CD8+ CTL.

    Science.gov (United States)

    Kojima, H; Eshima, K; Takayama, H; Sitkovsky, M V

    1997-09-15

    Exquisite specificity toward Ag-bearing cells (cognate targets) is one of the most important properties of CD8+ CTL-mediated cytotoxicity. Using highly Ag-specific CD8+ CTL lines and clones, which spare noncognate, Ag-free targets, we found that in the presence of Ag-bearing targets the CTL acquire the ability to lyse noncognate target cells (bystanders). It is shown that the unexpectedly rapid and efficient lysis of bystanders by Ag-activated CTL is mediated by a Fas ligand (FasL)/Fas-based mechanism and does not depend on perforin. The CTL lysed Fas-expressing bystanders, but spared the Fas-negative or anti-Fas mAb-resistant bystander cells. Accordingly, the FasL-deficient gld/gld CTL did not kill bystanders, while perforin-deficient CTL did. Unlike anti-Fas mAb-induced cell death, the lysis of bystanders was not only FasL/Fas dependent but also required adhesion molecule LFA-1 on the surface of the activated CTL. Lysis of bystanders is viewed as acceptable "collateral" damage, but the persistent presence of activated CTL could result in immunopathologies involving functional Fas-expressing tissues.

  10. Demonstration of NK cell-mediated lysis of varicella-zoster virus (VZV)-infected cells: characterization of the effector cells

    Energy Technology Data Exchange (ETDEWEB)

    Tilden, A.B.; Cauda, R.; Grossi, C.E.; Balch, C.M.; Lakeman, A.D.; Whitley, R.J.

    1986-06-01

    Infection with varicella-zoster virus (VZV) rendered RAJI cells more susceptible to lysis by non-adherent blood lymphocytes. At an effector to target ratio of 80:1 the mean percentage of /sup 51/Cr release of VZV-infected RAJI cells was 41 +/- 12%, whereas that of uninfected RAJI cells was 15 +/- 6%. The increased susceptibility to lysis was associated with increased effector to target conjugate formation in immunofluorescence binding assays. The effector cells cytotoxic for VZV-infected RAJI cells were predominantly Leu-11a/sup +/ Leu-4/sup -/ granular lymphocytes as demonstrated by fluorescence-activated cell sorting. The effector cell active against VZV-infected RAJI cells appeared similar to those active against herpes simplex virus (HSV)-infected cells, because in cold target competition experiments the lysis of /sup 51/Cr-labeled VZV-infected RAJI cells was efficiently inhibited by either unlabeled VZV-infected RAJI cells (mean 71% inhibition, 2:1 ratio unlabeled to labeled target) or HSV-infected RAJI cells (mean 69% inhibition) but not by uninfected RAJI cells (mean 10% inhibition). In contrast, competition experiments revealed donor heterogeneity in the overlap between effector cells for VZV- or HSV-infected RAJI vs K-562 cells.

  11. A mathematical model and analytical solution for the fixation of bacteria in biogrout

    NARCIS (Netherlands)

    Van Wijngaarden, W.K.; Vermolen, F.J.; Van Meurs, G.A.M.; Vuik, C.

    2012-01-01

    Biogrout is a new method for soil reinforcement, which is based on microbialinduced carbonate precipitation. Bacteria and reactants are flushed through the soil, resulting in calcium carbonate precipitation and consequent soil reinforcement. Bacteria are crucially important in the Biogrout process

  12. [Cloning and gene expression in lactic acid bacteria].

    Science.gov (United States)

    Bondarenko, V M; Beliavskaia, V A

    2000-01-01

    The possibility of using the genera Lactobacillus and Lactococcus as vector representatives is widely discussed at present. The prospects of the construction of recombinant bacteria are closely connected with the solution of a number of problems: the level of the transcription of cloned genes, the effectiveness of the translation of heterologous mRNA, the stability of protein with respect to bacterial intracellular proteases, the method by protein molecules leave the cell (by secretion or as the result of lysis). To prevent segregation instability, the construction of vector molecules on the basis of stable cryptic plasmids found in wild strains of lactic acid bacteria was proposed. High copying plasmids with low molecular weight were detected in L. plantarum and L. pentosus strains. Several plasmids with molecular weights of 1.7, 1.8 and 2.3 kb were isolated from bacterial cells to be used as the basis for the construction of vector molecules. Genes of chloramphenicol- and erythromycin-resistance from Staphylococcus aureus plasmids were used as marker genes ensuring cell transformation. The vector plasmids thus constructed exhibited high transformation activity in the electroporation of different strains, including L. casei, L. plantarum, L. acidophilus, L. fermentum and L. brevis which could be classified with the replicons of a wide circle of hosts. But the use of these plasmids was limited due to the risk of the uncontrolled dissemination of recombinant plasmids. L. acidophilus were also found to have strictly specific plasmids with good prospects of being used as the basis for the creation of vectors, incapable of dissemination. In addition to the search of strain-specific plasmids, incapable of uncontrolled gene transmission, the use of chromosome-integrated heterologous genes is recommended in cloning to ensure the maximum safety.

  13. Rapid separation of bacteria from blood - Chemical aspects.

    Science.gov (United States)

    Alizadeh, Mahsa; Wood, Ryan L; Buchanan, Clara M; Bledsoe, Colin G; Wood, Madison E; McClellan, Daniel S; Blanco, Rae; Ravsten, Tanner V; Husseini, Ghaleb A; Hickey, Caroline L; Robison, Richard A; Pitt, William G

    2017-06-01

    To rapidly diagnose infectious organisms causing blood sepsis, bacteria must be rapidly separated from blood, a very difficult process considering that concentrations of bacteria are many orders of magnitude lower than concentrations of blood cells. We have successfully separated bacteria from red and white blood cells using a sedimentation process in which the separation is driven by differences in density and size. Seven mL of whole human blood spiked with bacteria is placed in a 12-cm hollow disk and spun at 3000rpm for 1min. The red and white cells sediment more than 30-fold faster than bacteria, leaving much of the bacteria in the plasma. When the disk is slowly decelerated, the plasma flows to a collection site and the red and white cells are trapped in the disk. Analysis of the recovered plasma shows that about 36% of the bacteria is recovered in the plasma. The plasma is not perfectly clear of red blood cells, but about 94% have been removed. This paper describes the effects of various chemical aspects of this process, including the influence of anticoagulant chemistry on the separation efficiency and the use of wetting agents and platelet aggregators that may influence the bacterial recovery. In a clinical scenario, the recovered bacteria can be subsequently analyzed to determine their species and resistance to various antibiotics. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Síndrome de lise tumoral: uma revisão abrangente da literatura Acute tumor lysis syndrome: a comprehensive review

    Directory of Open Access Journals (Sweden)

    Michael Darmon

    2008-09-01

    égias baseadas no risco dos pacientes são necessários para limitar a alta morbidade e mortalidade desta complicação.Tumor lysis syndrome is characterized by the massive destruction of malignant cells and the release in the extra-cellular space of their content. While Tumor lysis syndrome may occur spontaneously before treatment, it usually develops shortly after the initiation of cytotoxic chemotherapy. These metabolites can overwhelm the homeostatic mechanisms with development of hyperuricaemia, hyperkalaemia, hyperphosphataemia, and hypocalcaemia. These biological manifestations may lead to clinical manifestations including, acute kidney injury, seizure, or sudden death that require intensive care. Since clinical tumor lysis syndrome is associated with a poor prognosis both prevention of tumor lysis syndrome and prevention of clinical consequences of tumor lysis syndrome are mandatory. The objective of this review is to describe pathophysiological mechanisms, biological and clinical manifestations of tumor Lysis syndrome, and to provide upto-date guidelines to ensure prevention of tumor lysis syndrome. Review of selected studies on tumor lysis syndrome published at the PubMed database www.pubmed.gov during the last 20 years. Additional references were retrieved from the studies initially selected. Tumor lysis syndrome is a frequent and life-threatening complication of the newly diagnosed malignancies. Preventive measures, including hydration, uricolytic agents, eviction of factors predisposing to acute kidney injury and, in the more severe patients, on prophylactic renal replacement therapy, are required to prevent or limit clinical consequences of Tumor lysis syndrome. However optimal timing and modalities of prevention remains unknown and may be modified by the changing spectrum of patients at risk of tumor lysis syndrome. Development and validation of risk based strategies is required to limit the high morbidity and mortality of this complication.

  15. Hyperuricemia and tumor lysis syndrome in children with non-Hodgkin’s lymphoma and acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Betül Sevinir

    2011-03-01

    Full Text Available Objective: This study aimed to examine the incidence, clinical characteristics, and outcome of hyperuricemia and tumor lysis syndrome (TLS in children with non-Hodgkin’s lymphoma (NHL and acute lymphoblastic leukemia (ALL.Materials and Methods: This retrospective study included data from 327 patients (113 NHL and 214 ALL.Results: Hyperuricemia occurred in 26.5% and 12.6% of the patients with NHL and ALL, respectively. The corresponding figures for TLS were 15.9% and 0.47% (p=0.001. All hyperuricemic NHL patients had advanced disease and renal involvement was present in 53%. All hyperuricemic ALL patients had a leukocyte count >50,000 mm3 at the time of diagnosis. Among the hyperuricemic NHL and ALL patients, 96.6% and 66.6% had LDH ≥500 UI/L, respectively. Treatment consisted of hydration and allopurinol; none of the patients received urate oxidase. Among the patients that developed TLS, 26.3% had laboratory TLS, 42.1% had grade I or II TLS, and 31.6% had grade III or IV TLS. Uric acid levels returned to normal after a mean period of 3.5±2.5 and 3.05±0.8 d in NHL and ALL groups, respectively. In all, 7% of the patients with hyperuricemia required hemodialysis. None of the patients died.Conclusion: In this series the factors associated with a high-risk for TLS were renal involvement in NHL and high leucocyte count in ALL. Management with allopurinol and hydration was effective in this group of patients with high tumor burden.

  16. Genome scan of clot lysis time and its association with thrombosis in a protein C-deficient kindred.

    Science.gov (United States)

    Meltzer, M E; Hasstedt, S J; Vossen, C Y; Callas, P W; DE Groot, Ph G; Rosendaal, F R; Lisman, T; Bovill, E G

    2011-07-01

     Previously, we found increased clot-lysis time (CLT), as measured with a plasma-based assay, to increase the risk of venous thrombosis in two population-based case-control studies. The genes influencing CLT are as yet unknown.  We tested CLT as risk factor for venous thrombosis in Kindred Vermont II (n = 346), a pedigree suffering from a high thrombosis risk, partially attributable to a type I protein C deficiency. Furthermore, we tested for quantitative trait loci (QTLs) for CLT, using variance component linkage analysis.  Protein C-deficient family members had shorter CLTs than non-deficient members (median CLT 67 min vs. 75 min). One standard deviation increase in CLT increased the risk of venous thrombosis 2.4-fold in non-deficient family members. Protein C deficiency without elevated CLT increased the risk 6.9-fold. Combining both risk factors yielded a 27.8-fold increased risk. The heritability of CLT was 42-52%. We found suggestive evidence of linkage on chromosome 11 (62 cM), partly explained by the prothrombin 20210A mutation, and on chromosome 13 (52 cM). Thrombin-activatable fibrinolysis inhibitor genotypes did not explain the variation in CLT. Hypofibrinolysis appears to increase thrombosis risk in this family, especially in combination with protein C deficiency. Protein C deficiency is associated with short CLT. CLT is partly genetically regulated. Suggestive QTLs were found on chromosomes 11 and 13. © 2011 International Society on Thrombosis and Haemostasis.

  17. Host lysozyme-mediated lysis of Lactococcus lactis facilitates delivery of colitis-attenuating superoxide dismutase to inflamed colons

    Science.gov (United States)

    Ballal, Sonia A.; Veiga, Patrick; Fenn, Kathrin; Michaud, Monia; Kim, Jason H.; Gallini, Carey Ann; Glickman, Jonathan N.; Quéré, Gaëlle; Garault, Peggy; Béal, Chloé; Derrien, Muriel; Courtin, Pascal; Kulakauskas, Saulius; Chapot-Chartier, Marie-Pierre; van Hylckama Vlieg, Johan; Garrett, Wendy S.

    2015-01-01

    Beneficial microbes that target molecules and pathways, such as oxidative stress, which can negatively affect both host and microbiota, may hold promise as an inflammatory bowel disease therapy. Prior work showed that a five-strain fermented milk product (FMP) improved colitis in T-bet−/− Rag2−/− mice. By varying the number of strains used in the FMP, we found that Lactococcus lactis I-1631 was sufficient to ameliorate colitis. Using comparative genomic analyses, we identified genes unique to L. lactis I-1631 involved in oxygen respiration. Respiration of oxygen results in reactive oxygen species (ROS) generation. Also, ROS are produced at high levels during intestinal inflammation and cause tissue damage. L. lactis I-1631 possesses genes encoding enzymes that detoxify ROS, such as superoxide dismutase (SodA). Thus, we hypothesized that lactococcal SodA played a role in attenuating colitis. Inactivation of the sodA gene abolished L. lactis I-1631’s beneficial effect in the T-bet−/− Rag2−/− model. Similar effects were obtained in two additional colonic inflammation models, Il10−/− mice and dextran sulfate sodium-treated mice. Efforts to understand how a lipophobic superoxide anion (O2−) can be detoxified by cytoplasmic lactoccocal SodA led to the finding that host antimicrobial-mediated lysis is a prerequisite for SodA release and SodA’s extracytoplasmic O2− scavenging. L. lactis I-1631 may represent a promising vehicle to deliver antioxidant, colitis-attenuating SodA to the inflamed intestinal mucosa, and host antimicrobials may play a critical role in mediating SodA’s bioaccessibility. PMID:26056274

  18. Thermophilic, lignocellulolytic bacteria for ethanol production: current state and perspectives

    DEFF Research Database (Denmark)

    Chang, Tinghong; Yao, Shuo

    2011-01-01

    of cellulolytic and saccharolytic thermophilic bacteria for lignocellulosic ethanol production because of their unique properties. First of all, thermophilic bacteria possess unique cellulolytic and hemicellulolytic systems and are considered as potential sources of highly active and thermostable enzymes...... for efficient biomass hydrolysis. Secondly, thermophilic bacteria ferment a broad range of carbohydrates into ethanol, and some of them display potential for ethanologenic fermentation at high yield. Thirdly, the establishment of the genetic tools for thermophilic bacteria has allowed metabolic engineering......, in particular with emphasis on improving ethanol yield, and this facilitates their employment for ethanol production. Finally, different processes for second-generation ethanol production based on thermophilic bacteria have been proposed with the aim to achieve cost-competitive processes. However, thermophilic...

  19. Comparison of Lactobacillus crispatus isolates from Lactobacillus-dominated vaginal microbiomes with isolates from microbiomes containing bacterial vaginosis-associated bacteria

    Science.gov (United States)

    Abdelmaksoud, Abdallah A.; Koparde, Vishal N.; Sheth, Nihar U.; Serrano, Myrna G.; Glascock, Abigail L.; Fettweis, Jennifer M.; Strauss, Jerome F.; Buck, Gregory A.

    2016-01-01

    Vaginal lactobacilli can inhibit colonization by and growth of other bacteria, thereby preventing development of bacterial vaginosis (BV). Amongst the lactobacilli, Lactobacillus crispatus appears to be particularly effective at inhibiting growth of BV-associated bacteria. Nonetheless, some women who are colonized with this species can still develop clinical BV. Therefore, we sought to determine whether strains of L. crispatus that colonize women with lactobacilli-dominated vaginal microbiomes are distinct from strains that colonize women who develop BV. The genomes of L. crispatus isolates from four women with lactobacilli-dominated vaginal microbiomes ( bacteria (>12 % 16S rRNA reads from bacterial taxa associated with BV) were sequenced and compared. Lactic acid production by the different strains was quantified. Phage induction in the strains was also analysed. There was considerable genetic diversity between strains, and several genes were exclusive to either the strains from Lactobacillus-dominated microbiomes or those containing BV-associated bacteria. Overall, strains from microbiomes dominated by lactobacilli did not differ from strains from microbiomes containing BV-associated bacteria with respect to lactic acid production. All of the strains contained multiple phage, but there was no clear distinction between the presence or absence of BV-associated bacteria with respect to phage-induced lysis. Genes found to be exclusive to the Lactobacillus-dominated versus BV-associated bacteria-containing microbiomes could play a role in the maintenance of vaginal health and the development of BV, respectively. PMID:26747455

  20. DEPENDENCE BETWEEN ACYLATION DEGREE AND SPECIFIC LYSIS ACTITIVY OF THE PSEUDOMONAS AERUGINOSA М6 BACTERIOPHAGE

    Directory of Open Access Journals (Sweden)

    Martynov A. V.

    2016-06-01

    Full Text Available Introduction. The purpose of this work is to study the influence of various degrees of protein’s acylation on lytic activity and other biological properties of Pseudomonas M6 bacteriophage. Materials and methods. The subject of the study were samples of the Pseudomonas O 12 bacteriophage, hereinafter named the M6 phage. Pure phage lines were obtained from individual standard-morphology phage plaques (plaque-forming units, or PFUs after ten passes over the indicator strain. In subsequent experiments, M6 phage samples were selected that had a sufficient level of purity (homogeneous in the morphology of virions that inactivated the homologic antiphage serum by no less than 99.0% and the heterologic antibacterial serum by no more than 1%, and a titer no lower than 10 PFU per ml (PFU/ml. Titration of the phages was conducted using the standard bilayer agar. The crude protein content in the phage suspensions was determined using the spectroscopic method (at 280 and 260 nm. Succinylation of the phage samples was conducted according to the method developed by T.J. Molenaar. The phage’s lytic activity spectrum was determined through spot tests on 224 strains of the Pseudomonas genus and 106 strains of other genera (correspondingly, of strains Enterobacter -40, Escherichia -10, Citrobacter -8, Hafnia -7, Serratia -6, Shigella -10, Salmonella -8, Proteus -7 through the use of a phage suspension containing 10 5 - 10 6 PFU/ml. (This concentration of infectious phage corpuscles corresponds with the critical distribution of the M6 phage. The results of the research were subjected to statistical processing using single-factor dispersion analysis. Results and discussion. One hundred percent phage protein acylation leads to a loss of adsorption ability on sensitive cells and is accompanied by a significant (more than 103 times decrease in the level of specific lytic activity in the phage preparations. The succinylation type being studied does not cause

  1. Anaerobic bacteria in wastewater treatment plant.

    Science.gov (United States)

    Cyprowski, Marcin; Stobnicka-Kupiec, Agata; Ławniczek-Wałczyk, Anna; Bakal-Kijek, Aleksandra; Gołofit-Szymczak, Małgorzata; Górny, Rafał L

    2018-03-28

    The objective of this study was to assess exposure to anaerobic bacteria released into air from sewage and sludge at workplaces from a wastewater treatment plant (WWTP). Samples of both sewage and sludge were collected at six sampling points and bioaerosol samples were additionally collected (with the use of a 6-stage Andersen impactor) at ten workplaces covering different stages of the technological process. Qualitative identification of all isolated strains was performed using the biochemical API 20A test. Additionally, the determination of Clostridium pathogens was carried out using 16S rRNA gene sequence analysis. The average concentration of anaerobic bacteria in the sewage samples was 5.49 × 10 4 CFU/mL (GSD = 85.4) and in sludge-1.42 × 10 6 CFU/g (GSD = 5.1). In turn, the average airborne bacterial concentration was at the level of 50 CFU/m 3 (GSD = 5.83) and the highest bacterial contamination (4.06 × 10 3  CFU/m 3 ) was found in winter at the bar screens. In total, 16 bacterial species were determined, from which the predominant strains belonged to Actinomyces, Bifidobacterium, Clostridium, Propionibacterium and Peptostreptococcus genera. The analysis revealed that mechanical treatment processes were responsible for a substantial emission of anaerobic bacteria into the air. In both the sewage and air samples, Clostridium perfringens pathogen was identified. Anaerobic bacteria were widely present both in the sewage and in the air at workplaces from the WWTP, especially when the technological process was performed in closed spaces. Anaerobic bacteria formed small aggregates with both wastewater droplets and dust particles of sewage sludge origin and as such may be responsible for adverse health outcomes in exposed workers.

  2. The Effect of Alkaloidal Fraction from Annona squamosa L. against Pathogenic Bacteria with Antioxidant Activities

    Directory of Open Access Journals (Sweden)

    Abdulmushin M. Shami

    2017-12-01

    Full Text Available Background: Annona squamosa is used in different places such as India as a general tonic to enrich blood, relieve vomiting, cancer, as a vermicide, for skin complaints and also applied to wounds and ulcers. The purpose of the study was to evaluate the antibacterial and antioxidant properties from of the alkaloidal fraction of A. squamosa. Methods: Well diffusion assay, minimum inhibitory concentration and the minimum bactericidal concentration (MBC were used to evaluate antibacterial activity against Staphylococcus aureus, Escherichia coli, Bacillus cereus, Pseudomonas aeruginosa, MRSA and Helicobacter pylori. DPPH and SOD assays were used to evaluate antioxidant activity. LC-MS analysis was used to identify alkaloids and scanning electron microscopy studies that revealed mode of action. Results: Alkaloidal fraction of A. squamosa exhibited significant inhibition against the tested bacteria. Extracted alkaloids from the leaves of A. squamosa showed high level of antioxidant activities. LC-MS analyses of alkaloids of the plant were identified as corydine, sanjoinine, norlaureline, norcodeine, oxanalobine and aporphine in the leaves of A. squamosa. SEM analysis of the interaction of these substances with the bacteria showed morphological changes of cell wall and lysis of the targeted bacterial cells. Conclusions: It could be concluded that the alkaloids isolated from A. squamosa showed good antibacterial and antioxidant activity. The results suggest the alkaloids can be a new source of antimicrobial agents against pathogenic bacteria and antioxidant source.

  3. Cable Bacteria in Freshwater Sediments

    DEFF Research Database (Denmark)

    Risgaard-Petersen, Nils; Kristiansen, Michael; Frederiksen, Rasmus

    2015-01-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable...... bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures...... marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary...

  4. Immunomodulatory properties of probiotic bacteria

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen

    2007-01-01

    Certain lactic acid bacteria (LAB) are part of the commensal intestinal flora and considered beneficial for health, as they compete with pathogens for adhesion sites in the intestine and ferment otherwise indigestible compounds. Another important property of these so-called probiotic bacteria...... with bacteria, and the cytokine pattern induced by specific bacteria resembled the pattern induced in MoDC, except for TNF-alpha and IL-6, which were induced in response to different bacteria in blood DC/monocytes and monocyte-derived DC. Autologous NK cells produced IFN-gamma when cultured with blood DC......, monocytes and monocyte-derived DC and IL-12-inducing bacteria, whereas only DC induced IFN-gamma production in allogeneic T cells. In vitro-generated DC is a commonly used model of tissue DC, but they differ in certain aspects from intestinal DC, which are in direct contact with the intestinal microbiota...

  5. Screening identification of aerobic denitrification bacteria with high soil desalinization capacity

    Science.gov (United States)

    Jin, H.; Chen, H.; Jin, H.; Qian, Y.; Zhang, K.

    2017-08-01

    In order to study the mechanism of bacteria used in the saline soil remediation process, the aerobic denitrification bacteria were isolated from an agricultural greenhouse soil in a farm in East China’s Zhejiang Province. The identification, nitrogen reducing characteristics and the denitrification effect of bacteria from different soils at various locations were investigated. The results showed that the NO3- removal rate was 91% with bacteria from the greenhouse soil under aerobic conditions in 52 h, and the bacteria were identified as Gram-positive Castellaniella denitrification bacteria.

  6. The Use of Bacteria for Remediation of Mercury Contaminated Groundwater

    Science.gov (United States)

    Many processes of mercury transformation in the environment are bacteria mediated. Mercury properties cause some difficulties of remediation of mercury contaminated environment. Despite the significance of the problem of mercury pollution, methods of large scale bioremediation ...

  7. Nitrogen acquisition in Agave tequilana from degradation of endophytic bacteria.

    Science.gov (United States)

    Beltran-Garcia, Miguel J; White, James F; Prado, Fernanda M; Prieto, Katia R; Yamaguchi, Lydia F; Torres, Monica S; Kato, Massuo J; Medeiros, Marisa H G; Di Mascio, Paolo

    2014-11-06

    Plants form symbiotic associations with endophytic bacteria within tissues of leaves, stems, and roots. It is unclear whether or how plants obtain nitrogen from these endophytic bacteria. Here we present evidence showing nitrogen flow from endophytic bacteria to plants in a process that appears to involve oxidative degradation of bacteria. In our experiments we employed Agave tequilana and its seed-transmitted endophyte Bacillus tequilensis to elucidate organic nitrogen transfer from (15)N-labeled bacteria to plants. Bacillus tequilensis cells grown in a minimal medium with (15)NH4Cl as the nitrogen source were watered onto plants growing in sand. We traced incorporation of (15)N into tryptophan, deoxynucleosides and pheophytin derived from chlorophyll a. Probes for hydrogen peroxide show its presence during degradation of bacteria in plant tissues, supporting involvement of reactive oxygen in the degradation process. In another experiment to assess nitrogen absorbed as a result of endophytic colonization of plants we demonstrated that endophytic bacteria potentially transfer more nitrogen to plants and stimulate greater biomass in plants than heat-killed bacteria that do not colonize plants but instead degrade in the soil. Findings presented here support the hypothesis that some plants under nutrient limitation may degrade and obtain nitrogen from endophytic microbes.

  8. Radiation-resistant asporogenic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Yano, K [Tokyo Univ. (Japan). Faculty of Agriculture

    1975-09-01

    This paper reports the biological and ecological examinations on the radiation-resistant asporogenic bacteria (mainly concerning Micrococcus radiodurans). Radiation-resistant asporogenic bacteria were isolated from the irradiated areas of the natural world as well as from the general areas and from the Rn waters in the Misasa hot spring. The acquiring of the tolerance to radiation in bacteria was also examined. In addition, the future problems of microbiological treatment with irradiation were mentioned.

  9. Radiation-resistant asporogenic bacteria

    International Nuclear Information System (INIS)

    Yano, Keiji

    1975-01-01

    This paper reports the biological and ecological examinations on the radiation-resistant asporogenic bacteria (mainly concerning Micrococcus radiodurans). Radiation-resistant asporogenic bacteria were isolated from the irradiated areas of the natural world as well as from the general areas and from the Rn waters in the Misasa hot spring. The acquiring of the tolerance to radiation in bacteria was also examined. In addition, the future problems of microbiological treatment with irradiation were mentioned. (Tsukamoto, Y.)

  10. Acoustofluidic bacteria separation

    International Nuclear Information System (INIS)

    Li, Sixing; Huang, Tony Jun; Ma, Fen; Zeng, Xiangqun; Bachman, Hunter; Cameron, Craig E

    2017-01-01

    Bacterial separation from human blood samples can help with the identification of pathogenic bacteria for sepsis diagnosis. In this work, we report an acoustofluidic device for label-free bacterial separation from human blood samples. In particular, we exploit the acoustic radiation force generated from a tilted-angle standing surface acoustic wave (taSSAW) field to separate Escherichia coli from human blood cells based on their size difference. Flow cytometry analysis of the E. coli separated from red blood cells shows a purity of more than 96%. Moreover, the label-free electrochemical detection of the separated E. coli displays reduced non-specific signals due to the removal of blood cells. Our acoustofluidic bacterial separation platform has advantages such as label-free separation, high biocompatibility, flexibility, low cost, miniaturization, automation, and ease of in-line integration. The platform can be incorporated with an on-chip sensor to realize a point-of-care sepsis diagnostic device. (paper)

  11. Acoustofluidic bacteria separation

    Science.gov (United States)

    Li, Sixing; Ma, Fen; Bachman, Hunter; Cameron, Craig E.; Zeng, Xiangqun; Huang, Tony Jun

    2017-01-01

    Bacterial separation from human blood samples can help with the identification of pathogenic bacteria for sepsis diagnosis. In this work, we report an acoustofluidic device for label-free bacterial separation from human blood samples. In particular, we exploit the acoustic radiation force generated from a tilted-angle standing surface acoustic wave (taSSAW) field to separate Escherichia coli from human blood cells based on their size difference. Flow cytometry analysis of the E. coli separated from red blood cells shows a purity of more than 96%. Moreover, the label-free electrochemical detection of the separated E. coli displays reduced non-specific signals due to the removal of blood cells. Our acoustofluidic bacterial separation platform has advantages such as label-free separation, high biocompatibility, flexibility, low cost, miniaturization, automation, and ease of in-line integration. The platform can be incorporated with an on-chip sensor to realize a point-of-care sepsis diagnostic device.

  12. Bacteria, phages and septicemia.

    Directory of Open Access Journals (Sweden)

    Ausra Gaidelyte

    Full Text Available The use of phages is an attractive option to battle antibiotic resistant bacteria in certain bacterial infections, but the role of phage ecology in bacterial infections is obscure. Here we surveyed the phage ecology in septicemia, the most severe type of bacterial infection. We observed that the majority of the bacterial isolates from septicemia patients spontaneously secreted phages active against other isolates of the same bacterial strain, but not to the strain causing the disease. Such phages were also detected in the initial blood cultures, indicating that phages are circulating in the blood at the onset of sepsis. The fact that most of the septicemic bacterial isolates carry functional prophages suggests an active role of phages in bacterial infections. Apparently, prophages present in sepsis-causing bacterial clones play a role in clonal selection during bacterial invasion.

  13. What Variables Are Associated With the Outcome of Arthroscopic Lysis and Lavage Surgery for Internal Derangement of the Temporomandibular Joint?

    Science.gov (United States)

    Haeffs, Tyler H; D'Amato, Lindsay N; Khawaja, Shehryar N; Keith, David A; Scrivani, Steven J

    2018-04-26

    Arthroscopic lysis and lavage surgery (AS) is an effective modality that can decrease pain and increase maximum interincisal opening (MIO) in patients with internal derangement (ID) of the temporomandibular joint (TMJ). However, some patients remain in pain or have limited mandibular range of motion despite AS. The purpose of this study was to determine the effectiveness, prevalence of adverse effects, and predictors of response to TMJ AS in patients with TMJ arthralgia and ID. A retrospective cohort study was conducted using data of patients who had undergone AS by a single surgeon (D.A.K.) from September 2010 to April 2015 in the Department of Oral and Maxillofacial Surgery at Massachusetts General Hospital (Boston, MA). Variables, including demographic data, medical history, and clinical presentation, were extracted and analyzed. Criteria for surgical success were defined as a postoperative MIO of at least 35 mm and a postoperative pain level no higher than 3 on an 11-point Likert-type numeric verbal pain rating scale. Appropriate descriptive and analytic statistics were computed and significance was set at a P value less than .05. Of the 247 participants, 226 (91.5%) were women. The mean age of the sample was 38 ± 15.4 years. Successful surgical outcome was achieved in 62.3% of patients. Based on logistic regression analysis, higher initial mean pain score and concurrent use of benzodiazepines were the only variables that predicted an unsuccessful surgical outcome (P < .001; P = .005). Adverse effects were reported by 13.4% of patients, the most common being postoperative increase in pain (13.4%), temporary malocclusion (1.2%), and temporary paresthesia in the preauricular region (0.4%). The results from this study indicate that in patients with ID of the TMJ unresponsive to noninvasive treatments, high initial pain scores and concurrent use of benzodiazepines are correlated with an unsuccessful outcome after AS. Copyright © 2018. Published by

  14. Cell Lysis and Detoxification of Cyanotoxins Using a Novel Combination of Microbubble Generation and Plasma Microreactor Technology for Ozonation

    Directory of Open Access Journals (Sweden)

    Jagroop Pandhal

    2018-04-01

    Full Text Available There has been a steady rise in the incidences of algal blooms globally, and worryingly, there is increasing evidence that changes in the global climate are leading to a shift toward cyanobacterial blooms. Many cyanobacterial genera are harmful, producing several potent toxins, including microcystins, for which there are over 90 described analogues. There are a wide range of negative effects associated with these toxins including gastroenteritis, cytotoxicity, hepatotoxicity and neurotoxicity. Although a variety of oxidation based treatment methods have been described, ozonation and advanced oxidation are acknowledged as most effective as they readily oxidise microcystins to non-toxic degradation products. However, most ozonation technologies have challenges for scale up including high costs and sub-optimum efficiencies, hence, a low cost and scalable ozonation technology is needed. Here we designed a low temperature plasma dielectric barrier discharge (DBD reactor with an incorporated fluidic oscillator for microbubble delivery of ozone. Both technologies have the potential to drastically reduce the costs of ozonation at scale. Mass spectrometry analysis revealed very rapid (<2 min destruction of two pure microcystins (MC-LR and MC-RR, together with removal of by-products even at low flow rate 1 L min−1 where bubble size was 0.56–0.6 mm and the ozone concentration within the liquid was 20 ppm. Toxicity levels were calculated through protein phosphatase inhibition assays and indicated loss of toxicity as well as confirming the by-products were also non-toxic. Finally, treatment of whole Microcystis aeruginosa cells showed that even at these very low ozone levels, cells can be killed and toxins (MC-LR and Desmethyl MC-LR removed. Little change was observed in the first 20 min of treatment followed by rapid increase in extracellular toxins, indicating cell lysis, with most significant release at the higher 3 L min−1 flow rate compared to 1 L

  15. Influence of polymer architecture on antigens camouflage, CD47 protection and complement mediated lysis of surface grafted red blood cells.

    Science.gov (United States)

    Chapanian, Rafi; Constantinescu, Iren; Rossi, Nicholas A A; Medvedev, Nadia; Brooks, Donald E; Scott, Mark D; Kizhakkedathu, Jayachandran N

    2012-11-01

    Hyperbranched polyglycerol (HPG) and polyethylene glycol (PEG) polymers with similar hydrodynamic sizes in solution were grafted to red blood cells (RBCs) to investigate the impact of polymer architecture on the cell structure and function. The hydrodynamic sizes of polymers were calculated from the diffusion coefficients measured by pulsed field gradient NMR. The hydration of the HPG and PEG was determined by differential scanning calorimetry analyses. RBCs grafted with linear PEG had different properties compared to the compact HPG grafted RBCs. HPG grafted RBCs showed much higher electrophoretic mobility values than PEG grafted RBCs at similar grafting concentrations and hydrodynamic sizes indicating differences in the structure of the polymer exclusion layer on the cell surface. PEG grafting impacted the deformation properties of the membrane to a greater degree than HPG. The complement mediated lysis of the grafted RBCs was dependent on the type of polymer, grafting concentration and molecular size of grafted chains. At higher molecular weights and graft concentrations both HPG and PEG triggered complement activation. The magnitude of activation was higher with HPG possibly due to the presence of many hydroxyl groups per molecule. HPG grafted RBCs showed significantly higher levels of CD47 self-protein accessibility than PEG grafted RBCs at all grafting concentrations and molecular sizes. PEG grafted polymers provided, in general, a better shielding and protection to ABO and minor antigens from antibody recognition than HPG polymers, however, the compact HPGs provided greater protection of certain antigens on the RBC surface. Our data showed that HPG 20 kDa and HPG 60 kDa grafted RBCs exhibited properties that are more comparable to the native RBC than PEG 5 kDa and PEG 10 kDa grafted RBCs of comparable hydrodynamic sizes. The study shows that small compact polymers such as HPG 20 kDa have a greater potential in the generation of functional RBC for therapeutic

  16. Uptake of americium-241 by algae and bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Geisy, J P; Paine, D

    1978-01-01

    Algae and bacteria are important factors in the transport and mobilization of elements in the biosphere. These factors may be involved in trophic biomagnification, resulting in a potential human hazard or environmental degradation. Although americium, one of the most toxic elements known, is not required for plant growth, it may be concentrated by algae and bacteria. Therefore, the availability of americium-241 to algae and bacteria was studied to determine their role in the ultimate fate of this element released into the environment. Both algae and bacteria concentrated americium-241 to a high degree, making them important parts of the biomagnification process. The ability to concentrate americium-241 makes algae and bacteria potentially significant factors in cycling this element in the water column. (4 graphs, numerous references, 3 tables)

  17. Isolation of radiation-resistant bacteria without exposure to irradiation

    International Nuclear Information System (INIS)

    Sanders, S.W.; Maxcy, R.B.

    1979-01-01

    Resistance to desiccation was utilized in the selection of highly radiation-resistant asporogenous bacteria from nonirradiated sources. A bacterial suspension in phosphate buffer was dried in a thin film at 25 0 C and 33% relative humidity. Storage under these conditions for 15 days or more reduced the number of radiation-sensitive bacteria. Further selection for radiation-resistant bacteria was obtained by irradiation of bacteria on velveteen in the replication process, therby avoiding the toxic effect of irradiated media. The similarity of radiation resistance and identifying characteristics in irradiated and non-irradiated isolates should allay some concerns that highly radiation-resistance bacteria have been permanently altered by radiation selection

  18. Tape Cassette Bacteria Detection System

    Science.gov (United States)

    1973-01-01

    The design, fabrication, and testing of an automatic bacteria detection system with a zero-g capability and based on the filter-capsule approach is described. This system is intended for monitoring the sterility of regenerated water in a spacecraft. The principle of detection is based on measuring the increase in chemiluminescence produced by the action of bacterial porphyrins (i.e., catalase, cytochromes, etc.) on a luminol-hydrogen peroxide mixture. Since viable as well as nonviable organisms initiate this luminescence, viable organisms are detected by comparing the signal of an incubated water sample with an unincubated control. Higher signals for the former indicate the presence of viable organisms. System features include disposable sealed sterile capsules, each containing a filter membrane, for processing discrete water samples and a tape transport for moving these capsules through a processing sequence which involves sample concentration, nutrient addition, incubation, a 4 Molar Urea wash and reaction with luminol-hydrogen peroxide in front of a photomultiplier tube. Liquids are introduced by means of a syringe needle which pierces a rubber septum contained in the wall of the capsule. Detection thresholds obtained with this unit towards E. coli and S. marcescens assuming a 400 ml water sample are indicated.

  19. Proliferative and phenotypical characteristics of human adipose tissue-derived stem cells: comparison of Ficoll gradient centrifugation and red blood cell lysis buffer treatment purification methods.

    Science.gov (United States)

    Najar, Mehdi; Rodrigues, Robim M; Buyl, Karolien; Branson, Steven; Vanhaecke, Tamara; Lagneaux, Laurence; Rogiers, Vera; De Kock, Joery

    2014-09-01

    Adult human subcutaneous adipose tissue harbors a multipotent stem cell population, the so-called human adipose tissue-derived mesenchymal stromal cells (AT-MSCs). These cells are able to differentiate in vitro into various cell types and possess immunomodulatory features. Yet procedures to obtain AT-MSCs can vary significantly. The two most extensively used AT-MSC purification techniques are (i) density gradient centrifugation using Ficoll and (ii) red blood cell (RBC) lysis buffer treatment of the stromal vascular fraction. In the context of potential clinical cell therapy, the stem cell yield after purification and upon consecutive passages, as well as the purity of the obtained cell population, are of utmost importance. We investigated the expansion capacity and purity of AT-MSCs purified by both procedures immediately after isolation and upon consecutive passages. We also investigated possible purification-dependent differences in their expression of immune-inhibitory factors and cell adhesion molecules. We found that RBC lysis buffer treatment is a more robust and easier method to purify AT-MSCs than density gradient fractionation. However, the resulting AT-MSC-RBC population contains a significantly higher number of CD34(+) cells, particularly during the first passages after plating. From passage 4 onward, no significant differences could be observed between both populations with respect to the immunophenotype, expansion capacity and expression of immune inhibitory factors and cell adhesion molecules. Our data show that RBC lysis buffer treatment may be a good alternative to density fractionation, providing a faster, more robust and easier method to purify AT-MSCs with biologically preserved characteristics. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  20. An improved in-house lysis-filtration protocol for bacterial identification from positive blood culture bottles with high identification rates by MALDI-TOF MS.

    Science.gov (United States)

    Tsuchida, Sachio; Murata, Syota; Miyabe, Akiko; Satoh, Mamoru; Takiwaki, Masaki; Matsushita, Kazuyuki; Nomura, Fumio

    2018-05-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is now a well-established method for identification of microorganisms from positive blood cultures. Pretreatments to effectively remove non-bacterial proteins are a prerequisite for successful identification, and a variety of protocols have been reported. Although commercially available kits, mainly the Sepsityper Kit, are increasingly used, the identification rates reported often are not satisfactory, particularly for Gram-positive isolates. We developed a new, in-house lysis-filtration protocol and prospectively evaluated its performance compared to the Sepsityper kit. The in-house protocol consists of three simple steps: lysis by ammonium chloride, aspiration with a syringe fitted with a 0.45-μm membrane, and centrifugation to collect microbes. The novel protocol requires only 20 min. Performance of the in-house protocol was evaluated using a total of 117 monomicrobial cases of positive blood culture. Medium from blood culture bottles was pretreated by the in-house protocol or the commercial kit, and isolated cells were subjected to direct identification by mass spectrometry fingerprinting in parallel with conventional subculturing for reference identification. The overall MALDI-TOF MS-based identification rates with score > 1.7 and > 2.0 obtained using the in-house protocol were 99.2% and 85.5%, respectively, whereas those obtained using the Sepsityper Kit were 85.4% and 61.5%, respectively. For Gram-positive cases, the in-house protocol yielded scores >1.7 and > 2.0 at 98.5% and 76.1%, respectively, whereas the commercial kit yielded these scores at 76.1% and 43.3%, respectively. Although these are preliminary results, these values suggest that this easy lysis-filtration protocol deserves assessment in a larger-scale test. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. BioNLP Shared Task--The Bacteria Track.

    Science.gov (United States)

    Bossy, Robert; Jourde, Julien; Manine, Alain-Pierre; Veber, Philippe; Alphonse, Erick; van de Guchte, Maarten; Bessières, Philippe; Nédellec, Claire

    2012-06-26

    We present the BioNLP 2011 Shared Task Bacteria Track, the first Information Extraction challenge entirely dedicated to bacteria. It includes three tasks that cover different levels of biological knowledge. The Bacteria Gene Renaming supporting task is aimed at extracting gene renaming and gene name synonymy in PubMed abstracts. The Bacteria Gene Interaction is a gene/protein interaction extraction task from individual sentences. The interactions have been categorized into ten different sub-types, thus giving a detailed account of genetic regulations at the molecular level. Finally, the Bacteria Biotopes task focuses on the localization and environment of bacteria mentioned in textbook articles. We describe the process of creation for the three corpora, including document acquisition and manual annotation, as well as the metrics used to evaluate the participants' submissions. Three teams submitted to the Bacteria Gene Renaming task; the best team achieved an F-score of 87%. For the Bacteria Gene Interaction task, the only participant's score had reached a global F-score of 77%, although the system efficiency varies significantly from one sub-type to another. Three teams submitted to the Bacteria Biotopes task with very different approaches; the best team achieved an F-score of 45%. However, the detailed study of the participating systems efficiency reveals the strengths and weaknesses of each participating system. The three tasks of the Bacteria Track offer participants a chance to address a wide range of issues in Information Extraction, including entity recognition, semantic typing and coreference resolution. We found common trends in the most efficient systems: the systematic use of syntactic dependencies and machine learning. Nevertheless, the originality of the Bacteria Biotopes task encouraged the use of interesting novel methods and techniques, such as term compositionality, scopes wider than the sentence.

  2. Money and transmission of bacteria.

    NARCIS (Netherlands)

    Gedik, H.; Voss, T.A.; Voss, A.

    2013-01-01

    Money is one of the most frequently passed items in the world. The aim of this study was to ascertain the survival status of bacteria including Staphylococcus aureus, Escherichia coli, and Vancomycin- Resistant Enterococci (VRE) on banknotes from different countries and the transmission of bacteria

  3. Chemotactic waves of bacteria at the mesoscale

    OpenAIRE

    Calvez, Vincent

    2016-01-01

    The existence of travelling waves for a model of concentration waves of bacteria is investigated. The model consists in a kinetic equation for the biased motion of cells following a run-and-tumble process, coupled with two reaction-diffusion equations for the chemical signals. Strong mathematical difficulties arise in comparison with the diffusive regime which was studied in a previous work. The cornerstone of the proof consists in establishing monotonicity properties of the spatial density o...

  4. Application of mitomycin C after endoscopic lysis of congenital laryngeal web combined with epiglottic hypoplasia in a middle-aged man.

    Science.gov (United States)

    Roh, Jong-Lyel

    2006-04-01

    Laryngeal webs and epiglottic hypoplasias are uncommon congenital anomalies. Anterior glottic web combined with epiglottic hypoplasia was found in a middle-aged man presenting with hoarseness and dyspnea on exertion. This can be considered as a unique isolated defect of the larynx during early fetal development. The laryngeal web can be successfully treated in a single stage with endoscopic lysis and topical application of mitomycin C for prevention of anterior glottic restenosis. This case and prior reports suggest that the novel approach may be effective in the treatment of laryngeal webs.

  5. Daratumumab-mediated lysis of primary multiple myeloma cells is enhanced in combination with the human anti-KIR antibody IPH2102 and lenalidomide

    DEFF Research Database (Denmark)

    Nijhof, I. S.; Lammerts van Bueren, J. J.; van Kessel, B.

    2015-01-01

    Despite recent treatment improvements, multiple myeloma remains an incurable disease. Since antibody-dependent cell-mediated cytotoxicity is an important effector mechanism of daratumumab, we explored the possibility of improving daratumumab-mediated cell-mediated cytotoxicity by blocking natural...... killer cell inhibitory receptors with the human monoclonal anti-KIR antibody IPH2102, next to activation of natural killer cells with the immune modulatory drug lenalidomide. In 4-hour antibody-dependent cell-mediated cytotoxicity assays, IPH2102 did not induce lysis of multiple myeloma cell lines...... effective treatment strategies can be designed for multiple myeloma by combining daratumumab with agents that independently modulate natural killer cell function....

  6. CTL lysis: there is a hyperbolic relation of killing rate to exocytosable granzyme A for highly cytotoxic murine cytotoxic T lymphocytes.

    Science.gov (United States)

    Poe, M; Wu, J K; Talento, A; Koo, G C

    1996-06-10

    The lysis of susceptible targets by efficient cytotoxic T lymphocytes (CTL) increases both with time and with the ratio of CTL to target. Simple methods for calculating a killing rate constant from the time dependence of killing and for calculating the relation of the killing rate constant to the concentration of exocytosable granzyme A are given. Application of these methods to the killing of target cells by the highly efficient mouse CTL AR1 is presented. AR1 needed granzyme A for efficient killing. AR1 contained sufficient exocytosable granzyme A to kill at about 80% of the rate possible at infinite exocytosable granzyme A.

  7. Changes in clot lysis levels of reteplase and streptokinase following continuous wave ultrasound exposure, at ultrasound intensities following attenuation from the skull bone

    Directory of Open Access Journals (Sweden)

    Roijer Anders

    2008-08-01

    Full Text Available Abstract Background Ultrasound (US has been used to enhance thrombolytic therapy in the treatment of stroke. Considerable attenuation of US intensity is however noted if US is applied over the temporal bone. The aim of this study was therefore to explore possible changes in the effect of thrombolytic drugs during low-intensity, high-frequency continuous-wave ultrasound (CW-US exposure. Methods Clots were made from fresh venous blood drawn from healthy volunteers. Each clot was made from 1.4 ml blood and left to coagulate for 1 hour in a plastic test-tube. The thrombolytic drugs used were, 3600 IU streptokinase (SK or 0.25 U reteplase (r-PA, which were mixed in 160 ml 0.9% NaCl solution. Continuous-wave US exposure was applied at a frequency of 1 MHz and intensities ranging from 0.0125 to 1.2 W/cm2. For each thrombolytic drug (n = 2, SK and r-PA and each intensity (n = 9 interventional clots (US-exposed, n = 6 were submerged in thrombolytic solution and exposed to CW-US while control clots (also submerged in thrombolytic solution, n = 6 were left unexposed to US. To evaluate the effect on clot lysis, the haemoglobin (Hb released from each clot was measured every 20 min for 1 hour (20, 40 and 60 min. The Hb content (mg released was estimated by spectrophotometry at 540 nm. The difference in effect on clot lysis was expressed as the difference in the amount of Hb released between pairs of US-exposed clots and control clots. Statistical analysis was performed using Wilcoxon's signed rank test. Results Continuous-wave ultrasound significantly decreased the effects of SK at intensities of 0.9 and 1.2 W/cm2 at all times (P 2 and at 1.2 W/cm2, following 40 min exposure at 0.3, 0.6, 0.9 and at 1.2 W/cm2, and following 60 min of exposure at 0.05 0.3, 0.6, 0.9 and at 1.2 W/cm2 (all P Conclusion Increasing intensities of CW-US exposure resulted in increased clot lysis of r-PA-treated blood clots, but decreased clot lysis of SK-treated clots.

  8. Transcatheter arterial embolization with trisacryl gelatin microspheres (Embosphere®) leads to life-threatening tumor lysis syndrome in a rectal carcinoid patient with hepatic metastases

    International Nuclear Information System (INIS)

    Lo, Yuan-Hao; Tsai, Ming-Tsun; Kuo, Chen-Yu; Liu, Wen-Sheng; Lee, Rheun-Chuan; Yeh, Yi-Chen; Li, Chung-Pin; Chen, Jinn-Yang; Chao, Yee

    2012-01-01

    The incidence of gastrointestinal carcinoids appears to be increasing, and the rectum is the third most common location. Transcatheter arterial embolization (TAE) with trisacryl gelatin microspheres (Embosphere ® ) has been reported as an effective method for hepatic metastases of rectal carcinoids. Complications are uncommon and usually of minor consequence. We report an unusual case of a 34-year-old man with tumor lysis syndrome following TAE with Embosphere ® in a patient with multiple hepatic metastases of a rectal carcinoid. Early detection and effective treatment are essential for this rare but potentially catastrophic complication

  9. Motility of electric cable bacteria

    DEFF Research Database (Denmark)

    Bjerg, Jesper Tataru; Damgaard, Lars Riis; Holm, Simon Agner

    2016-01-01

    Cable bacteria are filamentous bacteria that electrically couple sulfide oxidation and oxygen reduction at centimeter distances, and observations in sediment environments have suggested that they are motile. By time-lapse microscopy, we found that cable bacteria used gliding motility on surfaces...... with a highly variable speed of 0.50.3 ms1 (meanstandard deviation) and time between reversals of 155108 s. They frequently moved forward in loops, and formation of twisted loops revealed helical rotation of the filaments. Cable bacteria responded to chemical gradients in their environment, and around the oxic......-anoxic interface, they curled and piled up, with straight parts connecting back to the source of sulfide. Thus, it appears that motility serves the cable bacteria in establishing and keeping optimal connections between their distant electron donor and acceptors in a dynamic sediment environment....

  10. Exploring the use of natural antimicrobial agents and pulsed electric fields to control spoilage bacteria during a beer production process Exploración del uso de agentes antimicrobianos naturales y de campos eléctricos pulsantes para el control de bacterias contaminantes durante el proceso de elaboración de cerveza

    Directory of Open Access Journals (Sweden)

    M. A. Galvagno

    2007-09-01

    Full Text Available Different natural antimicrobials affected viability of bacterial contaminants isolated at critical steps during a beer production process. In the presence of 1 mg/ml chitosan and 0.3 mg/ml hops, the viability of Escherichia coli in an all malt barley extract wort could be reduced to 0.7 and 0.1% respectively after 2 hour- incubation at 4 °C. The addition of 0.0002 mg/ml nisin, 0.1 mg/ml chitosan or 0.3 mg/ml hops, selectively inhibited growth of Pediococcus sp. in more than 10,000 times with respect to brewing yeast in a mixed culture. In the presence of 0.1mg ml chitosan in beer, no viable cells of the thermoresistant strain Bacillus megaterium were detected. Nisin, chitosan and hops increased microbiological stability during storage of a local commercial beer inoculated with Lactobacillus plantarum or Pediococcus sp. isolated from wort. Pulsed Electric Field (PEF (8 kV/cm, 3 pulses application enhanced antibacterial activity of nisin and hops but not that of chitosan. The results herein obtained suggest that the use of these antimicrobial compounds in isolation or in combination with PEF would be effective to control bacterial contamination during beer production and storage.Diferentes antimicrobianos naturales disminuyeron la viabilidad de bacterias contaminantes aisladas en etapas críticas del proceso de producción de cerveza. En un extracto de malta, el agregado de 1 mg/ml de quitosano y de 0,3 mg ml de lúpulo permitió reducir la viabilidad de Escherichia coli a 0,7 y 0,1%, respectivamente, al cabo de 2 horas de incubación a 4 °C. El agregado de 0,0002 mg/ml de nisina, 0,1 mg/ml de quitosano o de 0,3 mg/ml de lúpulo inhibió selectivamente (10.000 veces más el crecimiento de Pediococcus sp. respecto de la levadura de cerveza en un cultivo mixto. El agregado de 0,1 mg/ml de quitosano permitió disminuir la viabilidad de una cepa bacteriana termorresistente, Bacillus megaterium, hasta niveles no detectables. Por otra parte, el

  11. Use of thermophilic bacteria for bioremediation of petroleum contaminants

    International Nuclear Information System (INIS)

    Al-Maghrabi, I.M.A.; Bin Aqil, A.O.; Chaalal, O.; Islam, M.R.

    1999-01-01

    Several strains of thermophilic bacteria were isolated from the environment of the United Arab Emirates. These bacteria show extraordinary resistance to heat and have their maximum growth rate around 60--80 C. This article investigates the potential of using these facultative bacteria for both in situ and ex situ bioremediation of petroleum contaminants. In a series of batch experiments, bacterial growth was observed using a computer image analyzer following a recently developed technique. These experiments showed clearly that the growth rate is enhanced in the presence of crude oil. This is coupled with a rapid degradation of the crude oil. These bacteria were found to be ideal for breaking down long-chain organic molecules at a temperature of 40 C, which is the typical ambient temperature of the Persian Gulf region. The same strains of bacteria are also capable of surviving in the presence of the saline environment that can prevail in both sea water and reservoir connate water. This observation prompted further investigation into the applicability of the bacteria in microbial enhanced oil recovery. In the United Arab Emirates, the reservoirs are typically at a temperature of around 85 C. Finally, the performance of the bacteria is tested in a newly developed bioreactor that uses continuous aeration through a transverse slotted pipe. This reactor also uses mixing without damaging the filamentous bacteria. In this process, the mechanisms of bioremediation are identified

  12. Toward Understanding Phage:Host Interactions in the Rumen; Complete Genome Sequences of Lytic Phages Infecting Rumen Bacteria

    Directory of Open Access Journals (Sweden)

    Rosalind A. Gilbert

    2017-12-01

    Full Text Available The rumen is known to harbor dense populations of bacteriophages (phages predicted to be capable of infecting a diverse range of rumen bacteria. While bacterial genome sequencing projects are revealing the presence of phages which can integrate their DNA into the genome of their host to form stable, lysogenic associations, little is known of the genetics of phages which utilize lytic replication. These phages infect and replicate within the host, culminating in host lysis, and the release of progeny phage particles. While lytic phages for rumen bacteria have been previously isolated, their genomes have remained largely uncharacterized. Here we report the first complete genome sequences of lytic phage isolates specifically infecting three genera of rumen bacteria: Bacteroides, Ruminococcus, and Streptococcus. All phages were classified within the viral order Caudovirales and include two phage morphotypes, representative of the Siphoviridae and Podoviridae families. The phage genomes displayed modular organization and conserved viral genes were identified which enabled further classification and determination of closest phage relatives. Co-examination of bacterial host genomes led to the identification of several genes responsible for modulating phage:host interactions, including CRISPR/Cas elements and restriction-modification phage defense systems. These findings provide new genetic information and insights into how lytic phages may interact with bacteria of the rumen microbiome.

  13. Top-down controls on bacterial community structure: microbial network analysis of bacteria, T4-like viruses and protists

    Science.gov (United States)

    Chow, Cheryl-Emiliane T; Kim, Diane Y; Sachdeva, Rohan; Caron, David A; Fuhrman, Jed A

    2014-01-01

    Characterizing ecological relationships between viruses, bacteria and protists in the ocean are critical to understanding ecosystem function, yet these relationships are infrequently investigated together. We evaluated these relationships through microbial association network analysis of samples collected approximately monthly from March 2008 to January 2011 in the surface ocean (0–5 m) at the San Pedro Ocean Time series station. Bacterial, T4-like myoviral and protistan communities were described by Automated Ribosomal Intergenic Spacer Analysis and terminal restriction fragment length polymorphism of the gene encoding the major capsid protein (g23) and 18S ribosomal DNA, respectively. Concurrent shifts in community structure suggested similar timing of responses to environmental and biological parameters. We linked T4-like myoviral, bacterial and protistan operational taxonomic units by local similarity correlations, which were then visualized as association networks. Network links (correlations) potentially represent synergistic and antagonistic relationships such as viral lysis, grazing, competition or other interactions. We found that virus–bacteria relationships were more cross-linked than protist–bacteria relationships, suggestive of increased taxonomic specificity in virus–bacteria relationships. We also found that 80% of bacterial–protist and 74% of bacterial–viral correlations were positive, with the latter suggesting that at monthly and seasonal timescales, viruses may be following their hosts more often than controlling host abundance. PMID:24196323

  14. METHODS FOR DETECTING BACTERIA USING POLYMER MATERIALS

    NARCIS (Netherlands)

    Van Grinsven Bart Robert, Nicolaas; Cleij, Thomas

    2017-01-01

    A method for characterizing bacteria includes passing a liquid containing an analyte comprising a first bacteria and a second bacteria over and in contact with a polymer material on a substrate. The polymer material is formulated to bind to the first bacteria, and the first bacteria binds to the

  15. Determination of Ammonia Oxidizing Bacteria and Nitrate Oxidizing Bacteria in Wastewater and Bioreactors

    Science.gov (United States)

    Francis, Somilez Asya

    2014-01-01

    The process of water purification has many different physical, chemical, and biological processes. One part of the biological process is the task of ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB). Both play critical roles in the treatment of wastewater by oxidizing toxic compounds. The broad term is nitrification, a naturally occurring process that is carried out by AOB and NOB by using oxidation to convert ammonia to nitrite and nitrite to nitrate. To monitor this biological activity, bacterial staining was performed on wastewater contained in inoculum tanks and biofilm samples from bioreactors. Using microscopy and qPCR, the purpose of this experiment was to determine if the population of AOB and NOB in wastewater and membrane bioreactors changed depending on temperature and hibernation conditions to determine the optimal parameters for AOB/NOB culture to effectively clean wastewater.

  16. Effect of Ionizing Radiation on Luminous Bacteria Cells

    International Nuclear Information System (INIS)

    Kudryasheva, N.; Rozhko, T.; Alexandrova, M.; Vasyunkina, E.; Arkhipova, V.

    2011-01-01

    Marine luminous bacteria were used to monitor toxicity of alpha- (Am-241, U-235+238) and beta- (tritium) radionuclide solutions. Increase or inhibition of bacterial luminescence was observed under exposure to radionuclides. Radiation toxicity of Am and chemical toxicity of U were demonstrated. Effects of U were similar to those of stable heavy metals: sensitivity was about 10-5 M. Sensitivity of the bacteria to Am-241 was 300 Bq/L (10 -11 M). Inhibition of bacterial growth was observed under exposure to Am-241 and tritium. Role of peroxides and electron transfer processes in the effects of radionuclides on luminous bacteria is discussed.

  17. Effects of hydrologic, biological, and environmental processes on sources and concentrations of fecal bacteria in the Cuyahoga River, with implications for management of recreational waters in Summit and Cuyahoga Counties, Ohio

    Science.gov (United States)

    Myers, Donna N.; Koltun, G.F.; Francy, Donna S.

    1998-01-01

    Discharges of fecal bacteria (fecal coliform bacteria and Escherichia coli ) to the middle main stem of the Cuyahoga River from storm water, combined sewers, and incompletely disinfected wastewater have resulted in frequent exceedances of bacteriological water-quality standards in a 23-mile reach of the river that flows through the Cuyahoga Valley National Recreation Area. Contamination of the middle main stem of the Cuyahoga River by bacteria of fecal origin and subsequent transport to downstream areas where water-contact recreation is an important use of the river are a concern because of the potential public-health risk from the presence of enteric pathogens. Independent field investigations of bacterial decay, dilution, dispersion, transport, and sources, and bacterial contamination of streambed sediments, were completed in 1991-93 during periods of rainfall and runoff. The highest concentration of fecal coliform bacteria observed in the middle main stem during three transport studies exceeded the single-sample fecal coliform standard applicable to primary-contact recreation by a factor of approximately 1,300 and exceeded the Escherichia coli standard by a factor of approximately 8,000. The geometric-mean concentrations of fecal bacteria in the middle main stem were 6.7 to 12.3 times higher than geometric-mean concentrations in the monitored tributaries, and 1.8 to 7.0 times larger than the geometric-mean concentrations discharged from the Akron Water Pollution Control Station. Decay rates of fecal bacteria measured in field studies in 1992 ranged from 0.0018 per hour to 0.0372 per hour for fecal coliform bacteria and from 0.0022 per hour to 0.0407 per hour for Escherichia coli. Most of the decay rates measured in June and August were significantly higher than decay rates measured in April and October. Results of field studies demonstrated that concentrations of fecal coliform bacteria were 1.2 to 58 times higher in streambed sediments than in the overlying

  18. Fibrin-specific and effective clot lysis requires both plasminogen activators and for them to be in a sequential rather than simultaneous combination.

    Science.gov (United States)

    Pannell, R; Li, S; Gurewich, V

    2017-08-01

    Thrombolysis with tissue plasminogen activator (tPA) has been a disappointment and has now been replaced by an endovascular procedure whenever possible. Nevertheless, thrombolysis remains the only means by which circulation in a thrombosed artery can be restored rapidly. In contrast to tPA monotherapy, endogenous fibrinolysis uses both tPA and urokinase plasminogen activator (uPA), whose native form is a proenzyme, prouPA. This combination is remarkably effective as evidenced by the fibrin degradation product, D-dimer, which is invariably present in plasma. The two activators have complementary mechanisms of plasminogen activation and are synergistic in combination. Since tPA initiates fibrinolysis when released from the vessel wall and prouPA is in the blood, they induce fibrinolysis sequentially. It was postulated that this may be more effective and fibrin-specific. The hypothesis was tested in a model of clot lysis in plasma in which a clot was first exposed to tPA for 5 min, washed and incubated with prouPA. Lysis was compared with that of clots incubated with both activators simultaneously. The sequential combination was almost twice as effective and caused less fibrinogenolysis than the simultaneous combination (p < 0.0001) despite having significantly less tPA, as a result of the wash. A mechanism is described by which this phenomenon can be explained. The findings are believed to have significant therapeutic implications.

  19. A Simple Method for DNA Extraction from Mature Date Palm Leaves: Impact of Sand Grinding and Composition of Lysis Buffer

    Directory of Open Access Journals (Sweden)

    Mohammad Al Sadoon

    2010-09-01

    Full Text Available Molecular marker techniques have been widely used for cultivar identification of inbred date palms (Phoenix dactylifera L.; Arecaceae and biodiversity conservation. Isolation of highly pure DNA is the prerequisite for PCR amplification and subsequent use such as DNA fingerprinting and sequencing of genes that have recently been developed for barcoding. To avoid problems related to the preservation and use of liquid nitrogen, we examined sterile sand for grinding the date palm leaves. Individual and combined effects of sodium chloride (NaCl, polyvinylpyrrolidone (PVP and lithium chloride (LiCl with the cetyltrimethylammonium bromide (CTAB method for a DNA yield of sufficient purity and PCR amplification were evaluated in this study. Presence of LiCl and PVP alone or together in the lysis buffer did not significantly improve the DNA yield and purity compared with the addition of NaCl. Our study suggested that grinding of date palm leaf with sterile sand and inclusion of NaCl (1.4 M in the lysis buffer without the costly use of liquid nitrogen, PVP and LiCl, provides a DNA yield of sufficient purity, suitable for PCR amplification.

  20. TNF induction of EL4 hyposensitivity to lysis by recombinant (soluble) and membrane-associated TNFs: TNF binding, internalization, and degradation.

    Science.gov (United States)

    Fishman, M; Costlow, M

    1994-04-01

    EL4 mouse thymoma cells sensitive to TNF-mediated lysis only in the presence of cycloheximide (S-EL4) or in the presence or absence of cycloheximide (N-EL4) were used in these experiments. Murine tumor cell line (S-EL4) sensitivity to TNF cytotoxicity is augmented when cycloheximide is added together with TNF or when cycloheximide is added 1 hr before or after TNF. No enhanced sensitivity is observed when target cells are incubated with cycloheximide 2-4 hr before or after the addition of TNF. In the absence of cycloheximide, S-EL4 cells preexposed to murine TNF are less susceptible to lysis by TNF and TNF receptor-conjugated TNF but are lysed by integral membrane TNF. TNF-induced hyposensitivity is partially reversed by actinomycin D or by culturing the preexposed cells for 4 hr prior to TNF lytic assay. TNF preincubation of N- and S-EL4 cells results in an immediate decrease in 125I-TNF binding due to TNF receptor occupancy. Recovery of TNF-R occupancy and TNF internalization were subsequently noted.

  1. Review on SERS of Bacteria

    Directory of Open Access Journals (Sweden)

    Pamela A. Mosier-Boss

    2017-11-01

    Full Text Available Surface enhanced Raman spectroscopy (SERS has been widely used for chemical detection. Moreover, the inherent richness of the spectral data has made SERS attractive for use in detecting biological materials, including bacteria. This review discusses methods that have been used to obtain SERS spectra of bacteria. The kinds of SERS substrates employed to obtain SERS spectra are discussed as well as how bacteria interact with silver and gold nanoparticles. The roll of capping agents on Ag/Au NPs in obtaining SERS spectra is examined as well as the interpretation of the spectral data.

  2. Encapsulation of bacteria and viruses in electrospun nanofibres

    International Nuclear Information System (INIS)

    Salalha, W; Kuhn, J; Dror, Y; Zussman, E

    2006-01-01

    Bacteria and viruses were encapsulated in electrospun polymer nanofibres. The bacteria and viruses were suspended in a solution of poly(vinyl alcohol) (PVA) in water and subjected to an electrostatic field of the order of 1 kV cm -1 . Encapsulated bacteria in this work (Escherichia coli, Staphylococcus albus) and bacterial viruses (T7, T4, λ) managed to survive the electrospinning process while maintaining their viability at fairly high levels. Subsequently the bacteria and viruses remain viable during three months at -20 and -55 deg. C without a further decrease in number. The present results demonstrate the potential of the electrospinning process for the encapsulation and immobilization of living biological material

  3. Beer spoilage bacteria and hop resistance

    NARCIS (Netherlands)

    Sakamoto, K; Konings, WN

    2003-01-01

    For brewing industry, beer spoilage bacteria have been problematic for centuries. They include some lactic acid bacteria such as Lactobacillus brevis, Lactobacillus lindneri and Pediococcus damnosus, and some Gram-negative bacteria such as Pectinatus cerevisiiphilus, Pectinatus frisingensis and

  4. Electron transport chains of lactic acid bacteria

    NARCIS (Netherlands)

    Brooijmans, R.J.W.

    2008-01-01

    Lactic acid bacteria are generally considered facultative anaerobic obligate fermentative bacteria. They are unable to synthesize heme. Some lactic acid bacteria are unable to form menaquinone as well. Both these components are cofactors of respiratory (electron transport) chains of prokaryotic

  5. Have sex or not? Lessons from bacteria.

    Science.gov (United States)

    Lodé, T

    2012-01-01

    Sex is one of the greatest puzzles in evolutionary biology. A true meiotic process occurs only in eukaryotes, while in bacteria, gene transcription is fragmentary, so asexual reproduction in this case really means clonal reproduction. Sex could stem from a signal that leads to increased reproductive output of all interacting individuals and could be understood as a secondary consequence of primitive metabolic reactions. Meiotic sex evolved in proto-eukaryotes to solve a problem that bacteria did not have, namely a large amount of DNA material, occurring in an archaic step of proto-cell formation and genetic exchanges. Rather than providing selective advantages through reproduction, sex could be thought of as a series of separate events which combines step-by-step some very weak benefits of recombination, meiosis, gametogenesis and syngamy. Copyright © 2012 S. Karger AG, Basel.

  6. Seeing Streptococcus pneumoniae, a Common Killer Bacteria

    DEFF Research Database (Denmark)

    Kjærgaard, Rikke Schmidt; Andersen, Ebbe Sloth

    2014-01-01

    Look around you. The diversity and complexity of life on earth is overwhelming and data continues to grow. In our desire to understand and explain everything scientifically from molecular evolution to supernovas we depend on visual representations. This paper investigates visual representations...... of the bacteria Streptococcus pneumoniae by use of ink, watercolours and computer graphics. We propose a novel artistic visual rendering of Streptococcus pneumoniae and ask what the value of these kind of representations are compared to traditional scientific data. We ask if drawings and computer......-assisted representations can add to our scientific knowledge about this dangerous bacteria. Is there still a role for the scientific illustrator in the scientific process and synthesis of scientific knowledge?...

  7. Comprehensive study for Anammox process via multistage anaerobic baffled reactors

    Science.gov (United States)

    Ismail, Sherif; Tawfik, Ahmed

    2017-11-01

    Continuous anaerobic ammonia oxidation (Anammox) process in multistage anaerobic baffled (MABR) reactor was investigated. The reactor was operated for approximately 150 days at constant hydraulic retention time (HRT) of 48 h and was fed with synthetic wastewater containing nitrite and ammonium as main substrates. The MABR was inoculated with mixed culture bacteria collected from activated sludge plant (41.6 g MLSS/L and 19.1 g MLVSS/L). The MABR reactor exhibited excellent performance for the start-up of Anammox process within a period of 35 days. The start-up period was divided into four successive phases; cell lysis, lag, activity elevation and steady state. Total inorganic nitrogen (TIN) removal efficiency of 96.8± 0.9% was achieved at steady state conditions, corresponding to nitrogen removal rate (NRR) of 50.2±1.7 mg N/L·d. Moreover, the effect of HRT on the Anammox process was assessed with applying five different HRTs of (48, 38.4, 28.8, 19.2 and 9.6 h). Decreasing HRT from 48 to 9.6 h reduced the removal efficiencies of NH4-N, NO2-N and TIN from 97.7±2.2 to 49.0±9.8%, from 95.7±1.9 to 71.0±8.5% and from 96.8±0.9 to 57.9±9.1%, respectively, that corresponding to reduction in NRR from 50.8±1.2 mg N/L·d at HRT of 48 h to 32.5±5.0 mg N/L·d at HRT of 9.6 h.

  8. Bacteria heap leaching test of a uranium ore

    International Nuclear Information System (INIS)

    Liu Hui; Liu Jinhui; Wu Weirong; Han Wei

    2008-01-01

    Column bioleaching test of a uranium ore was carried out. The optimum acidity, spraying intensity, spray-pause time ratio were determined. The potential, Fe and U concentrations in the leaching process were investigated. The effect of bacteria column leaching was compared with that of acid column leaching. The results show that bacteria column leaching can shorten leaching cycle, and the leaching rate of uranium increases by 9.7%. (authors)

  9. Gut Bacteria Affect Immunotherapy Response

    Science.gov (United States)

    Three new studies have identified intestinal bacteria that appear to influence the response to checkpoint inhibitors. This Cancer Currents blog post explains how the researchers think their findings could be used to improve patients’ responses to these immunotherapy drugs.

  10. hydroxyalkanoate (PHAs) producing bacteria isolated

    African Journals Online (AJOL)

    SERVER

    2007-07-04

    Jul 4, 2007 ... ium (MSM), having inhibitors for Gram positive bacteria and fungi and a mixed ... Two techniques were used for detecting the presence of polymer: staining ... was saline solution at 600 nm wavelength on VARIAN DSM 100.

  11. Image-Based Single Cell Profiling: High-Throughput Processing of Mother Machine Experiments.

    Directory of Open Access Journals (Sweden)

    Christian Carsten Sachs

    Full Text Available Microfluidic lab-on-chip technology combined with live-cell imaging has enabled the observation of single cells in their spatio-temporal context. The mother machine (MM cultivation system is particularly attractive for the long-term investigation of rod-shaped bacteria since it facilitates continuous cultivation and observation of individual cells over many generations in a highly parallelized manner. To date, the lack of fully automated image analysis software limits the practical applicability of the MM as a phenotypic screening tool.We present an image analysis pipeline for the automated processing of MM time lapse image stacks. The pipeline supports all analysis steps, i.e., image registration, orientation correction, channel/cell detection, cell tracking, and result visualization. Tailored algorithms account for the specialized MM layout to enable a robust automated analysis. Image data generated in a two-day growth study (≈ 90 GB is analyzed in ≈ 30 min with negligible differences in growth rate between automated and manual evaluation quality. The proposed methods are implemented in the software molyso (MOther machine AnaLYsis SOftware that provides a new profiling tool to analyze unbiasedly hitherto inaccessible large-scale MM image stacks.Presented is the software molyso, a ready-to-use open source software (BSD-licensed for the unsupervised analysis of MM time-lapse image stacks. molyso source code and user manual are available at https://github.com/modsim/molyso.

  12. Thymidine kinase diversity in bacteria

    DEFF Research Database (Denmark)

    Sandrini, Michael; Clausen, A.R.; Munch-Petersen, B.

    2006-01-01

    Thymidine kinases (TKs) appear to be almost ubiquitous and are found in nearly all prokaryotes, eukaryotes, and several viruses. They are the key enzymes in thymidine salvage and activation of several anti-cancer and antiviral drugs. We show that bacterial TKs can be subdivided into 2 groups. The....... The TKs from Gram-positive bacteria are more closely related to the eukaryotic TK1 enzymes than are TKs from Gram-negative bacteria....

  13. Anaerobic bacteria that dechlorinate perchloroethene.

    Science.gov (United States)

    Fathepure, B Z; Nengu, J P; Boyd, S A

    1987-01-01

    In this study, we identified specific cultures of anaerobic bacteria that dechlorinate perchlorethene (PCE). The bacteria that significantly dechlorinated PCE were strain DCB-1, an obligate anaerobe previously shown to dechlorinate chlorobenzoate, and two strains of Methanosarcina. The rate of PCE dechlorination by DCB-1 compared favorably with reported rates of trichloroethene bio-oxidation by methanotrophs. Even higher PCE dechlorination rates were achieved when DCB-1 was grown in a methanogenic consortium. PMID:3426224

  14. Breaking barriers: expansion of the use of endolysins as novel antibacterials against Gram-negative bacteria.

    Science.gov (United States)

    Briers, Yves; Lavigne, Rob

    2015-01-01

    The emergence and spread of antibiotic-resistant bacteria drives the search for novel classes of antibiotics to replenish our armamentarium against bacterial infections. This is particularly critical for Gram-negative pathogens, which are intrinsically resistant to many existing classes of antibiotics due to the presence of a protective outer membrane. In addition, the antibiotics development pipeline is mainly oriented to Gram-positive pathogens such as methicillin-resistant Staphylococcus aureus. A promising novel class of antibacterials is endolysins. These enzymes encoded by bacterial viruses hydrolyze the peptidoglycan layer with high efficiency, resulting in abrupt osmotic lysis and cell death. Their potential as novel antibacterials to treat Gram-positive bacteria has been extensively demonstrated; however, the Gram-negative outer membrane has presented a formidable barrier for the use of endolysins against Gram-negatives until recently. This review reports on the most recent advances in the development of endolysins to kill Gram-negative species with a special focus on endolysin-engineered Artilysins(®).

  15. Diphtheria toxin- and Pseudomonas A toxin-mediated apoptosis. ADP ribosylation of elongation factor-2 is required for DNA fragmentation and cell lysis and synergy with tumor necrosis factor-alpha.

    Science.gov (United States)

    Morimoto, H; Bonavida, B

    1992-09-15

    We have reported that diphtheria toxin (DTX) mediates target cell lysis and intranucleosomal DNA fragmentation (apoptosis) and also synergizes with TNF-alpha. In this paper, we examined which step in the pathway of DTX-mediated inhibition of protein synthesis was important for induction of cytolytic activity and for synergy. Using a DTX-sensitive tumor cell line, we first examined the activity of the mutant CRM 197, which does not catalyze the ADP ribosylation of elongation factor-2 (EF-2). CRM 197 was not cytolytic for target cells and did not mediate intranucleosomal DNA fragmentation of viable cells. The failure of CRM 197 to mediate target cell lysis suggested that the catalytic activity of DTX is prerequisite for target cell lysis. This was corroborated by demonstrating that MeSAdo, which blocks the biosynthesis of diphthamide, inhibited DTX-mediated protein synthesis inhibition and also blocked target cell lysis. Furthermore, the addition of nicotinamide, which competes with NAD+ on the DTX action site of EF-2, also blocked DTX-mediated lysis. These findings suggest that ADP-ribosylation of EF-2 may be a necessary step in the pathway leading to target cell lysis. In contrast to the sensitive line, the SKOV-3 tumor cell line is sensitive to protein synthesis inhibition by DTX but is not susceptible to cytolysis and apoptosis by DTX. Thus, protein synthesis inhibition by DTX is not sufficient to mediate target cell lysis. The synergy in cytotoxicity obtained with the combination of DTX and TNF-alpha was examined in order to determine the pathway mediated by DTX in synergy. Like the direct lysis by DTX, synergy was significantly reduced by MeSAdo and by nicotinamide. Furthermore, synergy was not observed with combination of CRM 197 and TNF-alpha. These results demonstrate that, in synergy, DTX may utilize the same pathway required for its cytolytic activity. Pseudomonas aeruginosa exotoxin shared most the properties shown for DTX. Altogether, these findings

  16. Bioaccumulation and chemical modification of Tc by soil bacteria

    International Nuclear Information System (INIS)

    Henrot, J.

    1989-01-01

    Bioaccumulation and chemical modification of pertechnetate (TcO 4 -) by aerobically and anaerobically grown soil bacteria and by pure cultures of sulfate-reducing bacteria (Desulfovibrio sp.) were studied to gain insight on the possible mechanisms by which bacteria can affect the solubility of Tc in soil. Aerobically grown bacteria had no apparent effect on TcO 4 -; they did not accumulate Tc nor modify its chemical form. Anaerobically grown bacteria exhibited high bioaccumulation and reduced TcO 4 -, enabling its association with organics of the growth medium. Reduction was a metabolic process and not merely the result of reducing conditions in the growth medium. Association of Tc with bacterial polysaccharides was observed only in cultures of anaerobic bacteria. Sulfate-reducing bacteria efficiently removed Tc from solution and promoted its association with organics. Up to 70% of the total Tc in the growth medium was bioaccumulated and/or precipitated. The remaining Tc in soluble form was entirely associated with organics. Pertechnetate was not reduced by the same mechanism as dissimilatory sulfate reduction, but rather by some reducing agent released in the growth medium. A calculation of the amount of Tc that could be associated with the bacterial biomass present in soil demonstrates that high concentration ratios in cultures do not necessarily imply that bioaccumulation is an important mechanism for long-term retention of Tc in soil

  17. Efficiency of boiling and four other methods for genomic DNA extraction of deteriorating spore-forming bacteria from milk

    Directory of Open Access Journals (Sweden)

    Jose Carlos Ribeiro Junior

    2016-10-01

    Full Text Available The spore-forming microbiota is mainly responsible for the deterioration of pasteurized milk with long shelf life in the United States. The identification of these microorganisms, using molecular tools, is of particular importance for the maintenance of the quality of milk. However, these molecular techniques are not only costly but also labor-intensive and time-consuming. The aim of this study was to compare the efficiency of boiling in conjunction with four other methods for the genomic DNA extraction of sporulated bacteria with proteolytic and lipolytic potential isolated from raw milk in the states of Paraná and Maranhão, Brazil. Protocols based on cellular lysis by enzymatic digestion, phenolic extraction, microwave-heating, as well as the use of guanidine isothiocyanate were used. This study proposes a method involving simple boiling for the extraction of genomic DNA from these microorganisms. Variations in the quality and yield of the extracted DNA among these methods were observed. However, both the cell lysis protocol by enzymatic digestion (commercial kit and the simple boiling method proposed in this study yielded sufficient DNA for successfully carrying out the Polymerase Chain Reaction (PCR of the rpoB and 16S rRNA genes for all 11 strains of microorganisms tested. Other protocols failed to yield sufficient quantity and quality of DNA from all microorganisms tested, since only a few strains have showed positive results by PCR, thereby hindering the search for new microorganisms. Thus, the simple boiling method for DNA extraction from sporulated bacteria in spoiled milk showed the same efficacy as that of the commercial kit. Moreover, the method is inexpensive, easy to perform, and much less time-consuming.

  18. Contaminant bacteria in traditional-packed honey

    Directory of Open Access Journals (Sweden)

    Hening Tjaturina Pramesti

    2007-03-01

    Full Text Available Honey may be contaminated by microorganisms during its harvesting, processing, and packaging. Honey selected for clinical purposes must safe, sterile, and contain antimicrobial activity, so it must be evaluated using laboratory testing. The aim of this descriptive laboratory study was to isolate and identify the bacterial contaminant in the traditional-packed honey dealing with the use of honey for medical purposes. the colony forming units of honey sample cultured on blood agar were counted using Stuart bacterial colony counter. The suspected bacterial colonies were isolated and identified based on cultural morphology characteristics. The isolates of suspected bacterial colonies were stained according to Gram and Klein method and then were examined by the biochemical reaction. The results showed that there were two contaminant bacteria. Gram-positive cocci which were presumptively identified as coagulase-negative Staphylococci and gram-positive rods which were presumptively identified as Bacillus subtilis. In conclusion, the contaminant bacteria were regarded as low pathogen bacteria. The subtilin enzyme of B subtilis may cause an allergic reaction and coagulase-negative Staphylococci, Staphylococcus epidermidis is also an opportunist pathogen. Inevitably, for medical purposes, traditional-packed honey must be well filtered, water content above 18%, and standardized sterilization without loss of an antibacterial activity or change in properties.

  19. Reactivity of the Bacteria-Water Interface: Linking Nutrient Availability to Bacteria-Metal Interactions

    Science.gov (United States)

    Fowle, D. A.; Daughney, C. J.; Riley, J. L.

    2002-12-01

    Identifying and quantifying the controls on metal mobilities in geologic systems is critical in order to understand processes such as global element cycling, metal transport in near-surface water-rock systems, sedimentary diagenesis, and mineral formation. Bacteria are ubiquitous in near-surface water-rock systems, and numerous laboratory and field studies have demonstrated that bacteria can facilitate the formation and dissolution of minerals, and enhance or inhibit contaminant transport. However, despite the growing evidence that bacteria play a key role in many geologic processes in low temperature systems, our understanding of the influence of the local nutrient dynamics of the system of interest on bacteria-metal interactions is limited. Here we present data demonstrating the effectiveness of coupling laboratory experiments with geochemical modeling to isolate the effect of nutrient availability on bacterially mediated proton and metal adsorption reactions. Experimental studies of metal-bacteria interactions were conducted in batch reactors as a function of pH, and solid-solute interactions after growth in a variety of defined and undefined media. Media nutrient composition (C,N,P) was quantified before and after harvesting the cells. Surface complexation models (SCM) for the adsorption reactions were developed by combining sorption data with the results of acid-base titrations, and in some cases zeta potential titrations of the bacterial surface. Our results indicate a clear change in both buffering potential and metal binding capacity of the cell walls of Bacillus subtilis as a function of initial media conditions. Combining current studies with our past studies on the effects of growth phase and others work on temperature dependence on metal adsorption we hope to develop a holistic surface complexation model for quantifying bacterial effects on metal mass transfer in many geologic systems.

  20. Survival of heterotrophic bacteria in water environment under substrate deficiency

    International Nuclear Information System (INIS)

    Toth, D.

    1989-01-01

    The relationship between metabolic changes and survival of bacteria in the water environment under substrate deficiency was studied. The main factors supporting cell survival were cryptic growth, utilization of endogenous reserve substances and reorganization of metabolic activities. Based on the utilization of cell-free extract or lysates from dead bacteria, an Enterobacter aerogenes cell suspension yielded 50% more colonies. Metabolic processes of starved heterotrophic bacteria changed markedly and became stabilized at a lower level depending on species involved. The rate of utilization of endogenous reserve substances as indicated by endogenous respiration was related to the rate of cell mortality. Of the test bacteria, Pseudomonas fluorescens showed the lowest rates of endogenous respiration and mortality while in Enterobacter aerogenes these two rates were the highest. (author). 3 figs., 2 tabs.., 16 refs

  1. Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate oxidizing bacteria

    DEFF Research Database (Denmark)

    Wang, Han; Fotidis, Ioannis; Angelidaki, Irini

    Substrates that contain high ammonia levels can cause inhibition on anaerobic digestion process and unstable biogas production. The aim of the current study was to assess the effects of different ammonia levels on pure strains of (syntrophic acetate oxidizing) SAO bacteria and hydrogenotrophic...... methanogens. Two pure strains of hydrogenotrophic methanogens (i.e: Methanoculleus bourgensis and Methanoculleus thermophiles) and two pure strains of SAO bacteria (i.e: Tepidanaerobacter acetatoxydans and Thermacetogenium phaeum) were inoculated under four different ammonia (0.26, 3, 5 and 7g NH4+-N......, the total incubation periods of hydrogenotrophic methanogens were significantly shorter compared to the SAO bacteria incubation periods. Thus, it seems that hydrogenotrophic methanogens could be equally, if not more, tolerant to high ammonia levels compared to SAO bacteria....

  2. Computation by Bacteria

    Science.gov (United States)

    2011-01-03

    that under well-sturred but stressed conditions the “cheater” strain will replace the wild-type strain. Does the same extinction process occur in a...increased by cohabitation, extinction does NOT occur! This can be seen most dramatically in Fig. 1, which shows how the “cooper- ators” and “cheaters” (a...Bacterial Computation III: Solving the Problems of Topological Forcing Fly traps and bee escapes have been used historically for clearing buildings of

  3. Identification of Lactic Acid Bacteria and Propionic Acid Bacteria using FTIR Spectroscopy and Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Beata Nalepa

    2012-01-01

    Full Text Available In the present study, lactic acid bacteria and propionic acid bacteria have been identified at the genus level with the use of artificial neural networks (ANNs and Fourier transform infrared spectroscopy (FTIR. Bacterial strains of the genera Lactobacillus, Lactococcus, Leuconostoc, Streptococcus and Propionibacterium were analyzed since they deliver health benefits and are routinely used in the food processing industry. The correctness of bacterial identification by ANNs and FTIR was evaluated at two stages. At first stage, ANNs were tested based on the spectra of 66 reference bacterial strains. At second stage, the evaluation involved 286 spectra of bacterial strains isolated from food products, deposited in our laboratory collection, and identified by genus-specific PCR. ANNs were developed based on the spectra and their first derivatives. The most satisfactory results were reported for the probabilistic neural network, which was built using a combination of W5W4W3 spectral ranges. This network correctly identified the genus of 95 % of the lactic acid bacteria and propionic acid bacteria strains analyzed.

  4. Human body may produce bacteria.

    Science.gov (United States)

    Salerian, Alen J

    2017-06-01

    "Human body may produce bacteria" proposes that human body may produce bacteria and represent an independent source of infections contrary to the current paradigm of infectious disorders proposed by Louis Pasteur in 1880. The following observations are consistent with this hypothesis: A. Bidirectional transformations of both living and nonliving things have been commonly observed in nature. B. Complex multicellular organisms harbor the necessary properties to produce bacteria (water, nitrogen and oxygen). C. Physical laws suggest any previously observed phenomenon or action will occur again (life began on earth; a non living thing). D. Animal muscle cells may generate energy (fermentation). E. Sterilized food products (i.e. boiled eggs), may produce bacteria and fungus under special conditions and without any exposure to foreign living cells. "Human body may produce bacteria" may challenge the current medical paradigm that views human infectious disorders as the exclusive causative byproducts of invading foreign cells. It may also introduce new avenues to treat infectious disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Horizontal gene transfer between bacteria.

    Science.gov (United States)

    Heuer, Holger; Smalla, Kornelia

    2007-01-01

    Horizontal gene transfer (HGT) refers to the acquisition of foreign genes by organisms. The occurrence of HGT among bacteria in the environment is assumed to have implications in the risk assessment of genetically modified bacteria which are released into the environment. First, introduced genetic sequences from a genetically modified bacterium could be transferred to indigenous micro-organisms and alter their genome and subsequently their ecological niche. Second, the genetically modified bacterium released into the environment might capture mobile genetic elements (MGE) from indigenous micro-organisms which could extend its ecological potential. Thus, for a risk assessment it is important to understand the extent of HGT and genome plasticity of bacteria in the environment. This review summarizes the present state of knowledge on HGT between bacteria as a crucial mechanism contributing to bacterial adaptability and diversity. In view of the use of GM crops and microbes in agricultural settings, in this mini-review we focus particularly on the presence and role of MGE in soil and plant-associated bacteria and the factors affecting gene transfer.

  6. Lysis to Kill: Evaluation of the Lytic Abilities, and Genomics of Nine Bacteriophages Infective for Gordonia spp. and Their Potential Use in Activated Sludge Foam Biocontrol.

    Directory of Open Access Journals (Sweden)

    Zoe A Dyson

    Full Text Available Nine bacteriophages (phages infective for members of the genus Gordonia were isolated from wastewater and other natural water environments using standard enrichment techniques. The majority were broad host range phages targeting more than one Gordonia species. When their genomes were sequenced, they all emerged as double stranded DNA Siphoviridae phages, ranging from 17,562 to 103,424 bp in size, and containing between 27 and 127 genes, many of which were detailed for the first time. Many of these phage genomes diverged from the expected modular genome architecture of other characterized Siphoviridae phages and contained unusual lysis gene arrangements. Whole genome sequencing also revealed that infection with lytic phages does not appear to prevent spontaneous prophage induction in Gordonia malaquae lysogen strain BEN700. TEM sample preparation techniques were developed to view both attachment and replication stages of phage infection.

  7. Impact of feathers and feather follicles on broiler carcass bacteria.

    Science.gov (United States)

    Cason, J A; Hinton, A; Buhr, R J

    2004-08-01

    Genetically featherless and feathered broiler siblings were used to test the contribution of feathers and feather follicles to the numbers of aerobic bacteria, Escherichia coli, and Campylobacter in whole-carcass rinse samples taken immediately after carcasses were defeathered for 30 or 60 s. Numbers of spoilage bacteria were counted after the same fully processed carcasses were stored for 1 wk at 2 degrees C. In each of 3 replications, twenty-eight 11-wk-old, mixed-sex, genetically featherless or feathered broilers were processed in a laboratory processing facility. Immediately after individual defeathering in a mechanical picker, carcasses were sampled using a carcass rinse technique. Carcasses were eviscerated, immersion chilled at 2 degrees C for 30 min, individually bagged, and stored for 1 wk at 2 degrees C, after which all carcasses were rinsed again, and spoilage bacteria in the rinsate were enumerated. There were no significant differences (P defeathering and no differences between carcasses picked for 30 or 60 s. There were no differences in numbers of spoilage bacteria after 1 wk of refrigeration for any of the feather presence-picking length combinations. Although the defeathering step in poultry processing has been identified as an opportunity for bacterial contamination from the intestinal tract and cross-contamination between carcasses, the presence of feathers and feather follicles does not make a significant difference in carcass bacterial contamination immediately after defeathering or in spoilage bacteria after 1 wk of refrigeration.

  8. In black South Africans from rural and urban communities, the 4G/5G PAI-1 polymorphism influences PAI-1 activity, but not plasma clot lysis time.

    Directory of Open Access Journals (Sweden)

    Zelda de Lange

    Full Text Available Data on genetic and environmental factors influencing PAI-1 levels and their consequent effect on clot lysis in black African populations are limited. We identified polymorphisms in the promoter area of the PAI-1 gene and determined their influence on PAI-1act levels and plasma clot lysis time (CLT. We also describe gene-environment interactions and the effect of urbanisation. Data from 2010 apparently healthy urban and rural black participants from the South African arm of the PURE study were cross-sectionally analysed. The 5G allele frequency of the 4G/5G polymorphism was 0.85. PAI-1act increased across genotypes in the urban subgroup (p = 0.009 but not significantly in the rural subgroup, while CLT did not differ across genotypes. Significant interaction terms were found between the 4G/5G polymorphism and BMI, waist circumference and triglycerides in determining PAI-1act, and between the 4G/5G polymorphism and fibrinogen and fibrinogen gamma prime in determining CLT. The C428T and G429A polymorphisms did not show direct relationships with PAI-1act or CLT but they did influence the association of other environmental factors with PAI-1act and CLT. Several of these interactions differed significantly between rural and urban subgroups, particularly in individuals harbouring the mutant alleles. In conclusion, although the 4G/5G polymorphism significantly affected PAI-1act, it contributed less than 1% to the PAI-1act variance. (Central obesity was the biggest contributor to PAI-1act variance (12.5%. Urbanisation significantly influenced the effect of the 4G/5G polymorphism on PAI-1act as well as gene-environment interactions for the C428T and G429A genotypes in determining PAI-1act and CLT.

  9. In black South Africans from rural and urban communities, the 4G/5G PAI-1 polymorphism influences PAI-1 activity, but not plasma clot lysis time.

    Science.gov (United States)

    de Lange, Zelda; Rijken, Dingeman C; Hoekstra, Tiny; Conradie, Karin R; Jerling, Johann C; Pieters, Marlien

    2013-01-01

    Data on genetic and environmental factors influencing PAI-1 levels and their consequent effect on clot lysis in black African populations are limited. We identified polymorphisms in the promoter area of the PAI-1 gene and determined their influence on PAI-1act levels and plasma clot lysis time (CLT). We also describe gene-environment interactions and the effect of urbanisation. Data from 2010 apparently healthy urban and rural black participants from the South African arm of the PURE study were cross-sectionally analysed. The 5G allele frequency of the 4G/5G polymorphism was 0.85. PAI-1act increased across genotypes in the urban subgroup (p = 0.009) but not significantly in the rural subgroup, while CLT did not differ across genotypes. Significant interaction terms were found between the 4G/5G polymorphism and BMI, waist circumference and triglycerides in determining PAI-1act, and between the 4G/5G polymorphism and fibrinogen and fibrinogen gamma prime in determining CLT. The C428T and G429A polymorphisms did not show direct relationships with PAI-1act or CLT but they did influence the association of other environmental factors with PAI-1act and CLT. Several of these interactions differed significantly between rural and urban subgroups, particularly in individuals harbouring the mutant alleles. In conclusion, although the 4G/5G polymorphism significantly affected PAI-1act, it contributed less than 1% to the PAI-1act variance. (Central) obesity was the biggest contributor to PAI-1act variance (12.5%). Urbanisation significantly influenced the effect of the 4G/5G polymorphism on PAI-1act as well as gene-environment interactions for the C428T and G429A genotypes in determining PAI-1act and CLT.

  10. Chitin Degradation In Marine Bacteria

    DEFF Research Database (Denmark)

    Paulsen, Sara; Machado, Henrique; Gram, Lone

    2015-01-01

    Introduction: Chitin is the most abundant polymer in the marine environment and the second most abundant in nature. Chitin does not accumulate on the ocean floor, because of microbial breakdown. Chitin degrading bacteria could have potential in the utilization of chitin as a renewable carbon...... and nitrogen source in the fermentation industry.Methods: Here, whole genome sequenced marine bacteria were screened for chitin degradation using phenotypic and in silico analyses.Results: The in silico analyses revealed the presence of three to nine chitinases in each strain, however the number of chitinases...... chitin regulatory system.Conclusions: This study has provided insight into the ecology of chitin degradation in marine bacteria. It also served as a basis for choosing a more efficient chitin degrading production strain e.g. for the use of chitin waste for large-scale fermentations....

  11. Methylotrophic bacteria in sustainable agriculture.

    Science.gov (United States)

    Kumar, Manish; Tomar, Rajesh Singh; Lade, Harshad; Paul, Diby

    2016-07-01

    Excessive use of chemical fertilizers to increase production from available land has resulted in deterioration of soil quality. To prevent further soil deterioration, the use of methylotrophic bacteria that have the ability to colonize different habitats, including soil, sediment, water, and both epiphytes and endophytes as host plants, has been suggested for sustainable agriculture. Methylotrophic bacteria are known to play a significant role in the biogeochemical cycle in soil ecosystems, ultimately fortifying plants and sustaining agriculture. Methylotrophs also improve air quality by using volatile organic compounds such as dichloromethane, formaldehyde, methanol, and formic acid. Additionally, methylotrophs are involved in phosphorous, nitrogen, and carbon cycling and can help reduce global warming. In this review, different aspects of the interaction between methylotrophs and host plants are discussed, including the role of methylotrophs in phosphorus acquisition, nitrogen fixation, phytohormone production, iron chelation, and plant growth promotion, and co-inoculation of these bacteria as biofertilizers for viable agriculture practices.

  12. Fermentative Bacteria Influence the Competition between Denitrifiers and DNRA Bacteria

    Directory of Open Access Journals (Sweden)

    Eveline M. van den Berg

    2017-09-01

    Full Text Available Denitrification and dissimilatory reduction to ammonium (DNRA are competing nitrate-reduction processes that entail important biogeochemical consequences for nitrogen retention/removal in natural and man-made ecosystems. The nature of the available carbon source and electron donor have been suggested to play an important role on the outcome of this microbial competition. In this study, the influence of lactate as fermentable carbon source on the competition for nitrate was investigated for varying ratios of lactate and nitrate in the influent (Lac/N ratio. The study was conducted in an open chemostat culture, enriched from activated sludge, under strict anoxia. The mechanistic explanation of the conversions observed was based on integration of results from specific batch tests with biomass from the chemostat, molecular analysis of the biomass enriched, and a computational model. At high Lac/N ratio (2.97 mol/mol both fermentative and respiratory nitrate reduction to ammonium occurred, coupled to partial oxidation of lactate to acetate, and to acetate oxidation respectively. Remaining lactate was fermented to propionate and acetate. At a decreased Lac/N ratio (1.15 mol/mol, the molar percentage of nitrate reduced to ammonium decreased to 58%, even though lactate was supplied in adequate amounts for full ammonification and nitrate remained the growth limiting compound. Data evaluation at this Lac/N ratio suggested conversions were comparable to the higher Lac/N ratio, except for lactate oxidation to acetate that was coupled to denitrification instead of ammonification. Respiratory DNRA on acetate was likely catalyzed by two Geobacter species related to G. luticola and G. lovleyi. Two Clostridiales members were likely responsible for lactate fermentation and partial lactate fermentation to acetate coupled to fermentative DNRA. An organism related to Propionivibrio militaris was identified as the organism likely responsible for denitrification. The

  13. Bacteria transport through porous media. Annual report, December 31, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Yen, T.F.

    1986-09-01

    The following five chapters in this report have been processed separately for inclusion in the Energy Data Base: (1) theoretical model of convective diffusion of motile and non-motile bacteria toward solid surfaces; (2) interfacial electrochemistry of oxide surfaces in oil-bearing sands and sandstones; (3) effects of sodium pyrophosphate additive on the ''huff and puff''/nutrient flooding MEOR process; (4) interaction of Escherichia coli B, B/4, and bacteriophage T4D with Berea sandstone rock in relation to enhanced oil recovery; and (5) transport of bacteria in porous media and its significance in microbial enhanced oil recovery.

  14. Rapid Separation of Bacteria from Blood—Review and Outlook

    Science.gov (United States)

    Alizadeh, Mahsa; Husseini, Ghaleb A.; McClellan, Daniel S.; Buchanan, Clara M.; Bledsoe, Colin G.; Robison, Richard A.; Blanco, Rae; Roeder, Beverly L.; Melville, Madison; Hunter, Alex K.

    2017-01-01

    The high morbidity and mortality rate of bloodstream infections involving antibiotic-resistant bacteria necessitate a rapid identification of the infectious organism and its resistance profile. Traditional methods based on culturing the blood typically require at least 24 h, and genetic amplification by PCR in the presence of blood components has been problematic. The rapid separation of bacteria from blood would facilitate their genetic identification by PCR or other methods so that the proper antibiotic regimen can quickly be selected for the septic patient. Microfluidic systems that separate bacteria from whole blood have been developed, but these are designed to process only microliter quantities of whole blood or only highly diluted blood. However, symptoms of clinical blood infections can be manifest with bacterial burdens perhaps as low as 10 CFU/mL, and thus milliliter quantities of blood must be processed to collect enough bacteria for reliable genetic analysis. This review considers the advantages and shortcomings of various methods to separate bacteria from blood, with emphasis on techniques that can be done in less than 10 min on milliliter-quantities of whole blood. These techniques include filtration, screening, centrifugation, sedimentation, hydrodynamic focusing, chemical capture on surfaces or beads, field-flow fractionation, and dielectrophoresis. Techniques with the most promise include screening, sedimentation, and magnetic bead capture, as they allow large quantities of blood to be processed quickly. Some microfluidic techniques can be scaled up. PMID:27160415

  15. Close Encounters of Lymphoid Cells and Bacteria

    Science.gov (United States)

    Cruz-Adalia, Aranzazu; Veiga, Esteban

    2016-01-01

    During infections, the first reaction of the host against microbial pathogens is carried out by innate immune cells, which recognize conserved structures on pathogens, called pathogen-associated molecular patterns. Afterward, some of these innate cells can phagocytose and destroy the pathogens, secreting cytokines that would modulate the immune response to the challenge. This rapid response is normally followed by the adaptive immunity, more specific and essential for a complete pathogen clearance in many cases. Some innate immune cells, usually named antigen-presenting cells, such as macrophages or dendritic cells, are able to process internalized invaders and present their antigens to lymphocytes, triggering the adaptive immune response. Nevertheless, the traditional boundary of separated roles between innate and adaptive immunity has been blurred by several studies, showing that very specialized populations of lymphocytes (cells of the adaptive immunity) behave similarly to cells of the innate immunity. These “innate-like” lymphocytes include γδ T cells, invariant NKT cells, B-1 cells, mucosal-associated invariant T cells, marginal zone B cells, and innate response activator cells, and together with the newly described innate lymphoid cells are able to rapidly respond to bacterial infections. Strikingly, our recent data suggest that conventional CD4+ T cells, the paradigm of cells of the adaptive immunity, also present innate-like behavior, capturing bacteria in a process called transinfection. Transinfected CD4+ T cells digest internalized bacteria like professional phagocytes and secrete large amounts of proinflammatory cytokines, protecting for further bacterial challenges. In the present review, we will focus on the data showing such innate-like behavior of lymphocytes following bacteria encounter. PMID:27774092

  16. The role of bacteria and mycorrhiza in plant sulfur supply

    Directory of Open Access Journals (Sweden)

    Jacinta Mariea Gahan

    2014-12-01

    Full Text Available Plant growth is highly dependent on bacteria, saprophytic and mycorrhizal fungi which facilitate the cycling and mobilization of nutrients. Over 95% of the sulfur (S in soil is present in an organic form. Sulfate-esters and sulfonates, the major forms of organo-S in soils, arise through deposition of biological material and are transformed through subsequent humification. Fungi and bacteria release S from sulfate-esters using sulfatases, however, release of S from sulfonates is catalyzed by a bacterial multi-component mono-oxygenase system. The asfA gene is used as a key marker in this desulfonation process to study sulfonatase activity in soil bacteria identified as Variovorax, Polaromonas, Acidovorax and Rhodococcus. The rhizosphere is regarded as a hot spot for microbial activity and recent studies indicate that this is also the case for the mycorrhizosphere where bacteria may attach to the fungal hyphae capable of mobilizing organo-S. While current evidence is not showing sulfatase and sulfonatase activity in arbuscular mycorrhiza, their effect on the expression of plant host sulfate transporters is documented. A revision of the role of bacteria, fungi and the interactions between soil bacteria and mycorrhiza in plant S supply was conducted.

  17. The impact of lactic acid bacteria on sourdough fermentation

    Directory of Open Access Journals (Sweden)

    Savić Dragiša S.

    2005-01-01

    Full Text Available The baking of sourdough breads represents one of the oldest biotechnological processes. Despite traditionality, sourdough bread has great potential because of its benefits. Sourdough is a mixture of flour and water that is dominated by a complex microflora composed of yeasts and lactic acid bacteria that are crucial in the preparation of bread dough. Lactic acid bacteria cause acidification by producing lactic acid that increases the shelf life of bread by preventing the growth of undesirable microorganisms and affects the nutritional value of bread by increasing the availability of minerals. In addition to these advantages, the use of sourdough fermentation also improves dough machinability, breadcrumb structure and the characteristic flavour of bread. Lactic acid bacteria in sourdough fermentation are well known representing both homofermentative and heterofermentative bacteria. They may originate from selected natural contaminants in the flour or from a starter culture containing one or more known species of lactic acid bacteria. Sourdough can be cultivated in bakeries or obtained from commercial suppliers. However, many bakeries in Europe still use spontaneously fermented sourdoughs, which have been kept metabolically active for decades by the addition of flour and water at regular intervals. The impact of lactic acid bacteria on sourdough fermentation and their influence on dough and bread quality was discussed on the basis of research and literature data.

  18. Potency of Amylase-producing Bacteria and Optimization Amylase Activities

    Science.gov (United States)

    Indriati, G.; Megahati, R. R. P.; Rosba, E.

    2018-04-01

    Enzymes are capable to act as biocatalyst for a wide variety of chemical reactions. Amylase have potential biotechnological applications in a wide range of industrial processes and account for nearly 30% of the world’s enzyme market. Amylase are extracellular enzymes that catalyze the hydrolysis of internal α-1,4-glycosidic linkages in starch to dextrin, and other small carbohydrate molecules constituted of glucose units. Although enzymes are produced from animal and plant sources, the microbial sources are generally the most suitable for commercial applications. Bacteria from hot springs is widely used as a source of various enzymes, such as amylase. But the amount of amylase-producing bacteria is still very limited. Therefore it is necessary to search sources of amylase-producing bacteria new, such as from hot springs Pariangan. The purpose of this study was to isolation of amylase-producing bacteria from Pariangan hot spring, West Sumatera and amylase activity optimization. The results were obtained 12 isolates of thermophilic bacteria and 5 isolates of amyalse-producing bacteria with the largest amylolytic index of 3.38 mm. The highest amylase activity was obtained at 50°C and pH 7.5.

  19. Sensitive detection of maltose and glucose based on dual enzyme-displayed bacteria electrochemical biosensor.

    Science.gov (United States)

    Liu, Aihua; Lang, Qiaolin; Liang, Bo; Shi, Jianguo

    2017-01-15

    Glucoamylase-displayed bacteria (GA-bacteria) and glucose dehydrogenase-displayed bacteria (GDH-bacteria) were co-immobilized on multi-walled carbon nanotubes (MWNTs) modified glassy carbon electrode (GCE) to construct GA-bacteria/GDH-bacteria/MWNTs/GCE biosensor. The biosensor was developed by optimizing the loading amount and the ratio of GA-bacteria to GDH-bacteria. The as-prepared biosensor exhibited a wide dynamic range of 0.2-10mM and a low detection limit of 0.1mM maltose (S/N=3). The biosensor also had a linear response to glucose in the range of 0.1-2.0mM and a low detection limit of 0.04mM glucose (S/N=3). Interestingly, at the same concentration, glucose was 3.75-fold sensitive than that of maltose at the proposed biosensor. No interferences were observed for other possible mono- and disaccharides. The biosensor also demonstrated good long-term storage stability and repeatability. Further, using both GDH-bacteria/MWNTs/GCE biosensor and GA-bacteria/GDH-bacteria/MWNTs/GCE biosensor, glucose and maltose in real samples can be detected. Therefore, the proposed biosensor is capable of monitoring the food manufacturing and fermentation process. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. ENDOSPORES OF THERMOPHILIC FERMENTATIVE BACTERIA

    DEFF Research Database (Denmark)

    Volpi, Marta

    2016-01-01

    solely based on endospores of sulphate-reducing bacteria (SRB), which presumably constitute only a small fraction of the total thermophilic endospore community reaching cold environments. My PhD project developed an experimental framework for using thermophilic fermentative endospores (TFEs) to trace...

  1. Alternative sources of Legionella bacteria

    NARCIS (Netherlands)

    van Heijnsbergen, H.H.L.

    2017-01-01

    Legionella bacteria can cause Legionnaires’ disease (LD) in humans. Symptoms of LD can range from mild disease to severe pneumonia with sometimes fatal outcome. In the Netherlands, the most important infective agent is Legionella pneumophila. L. pneumophila infection is associated with aquatic

  2. Programmed survival of soil bacteria

    DEFF Research Database (Denmark)

    Jensen, Lars Bogø; Molin, Søren; Sternberg, Claus

    Biological containment systems have been developed for Pseudomonas putida and related soil bacteria. The systems are based on combinations of lethal genes and regulated gene expression. Two types of killing function have been employed: 1) A membrane protein interfering with the membrane potential...

  3. Automated radiometric detection of bacteria

    International Nuclear Information System (INIS)

    Waters, J.R.

    1974-01-01

    A new radiometric method called BACTEC, used for the detection of bacteria in cultures or in supposedly sterile samples, was discussed from the standpoint of methodology, both automated and semi-automated. Some of the results obtained so far were reported and some future applications and development possibilities were described. In this new method, the test sample is incubated in a sealed vial with a liquid culture medium containing a 14 C-labeled substrate. If bacteria are present, they break down the substrate, producing 14 CO 2 which is periodically extracted from the vial as a gas and is tested for radioactivity. If this gaseous radioactivity exceeds a threshold level, it is evidence of bacterial presence and growth in the test vial. The first application was for the detection of bacteria in the blood cultures of hospital patients. Data were presented showing typical results. Also discussed were future applications, such as rapid screening for bacteria in urine industrial sterility testing and the disposal of used 14 C substrates. (Mukohata, S.)

  4. Synthetic Biology in Streptomyces Bacteria

    NARCIS (Netherlands)

    Medema, Marnix H.; Breitling, Rainer; Takano, Eriko

    2011-01-01

    Actinomycete bacteria of the genus Streptomyces are major producers of bioactive compounds for the biotechnology industry. They are the source of most clinically used antibiotics, as well as of several widely used drugs against common diseases, including cancer . Genome sequencing has revealed that

  5. Deodorant bacteria; Des bacteries desodorisantes

    Energy Technology Data Exchange (ETDEWEB)

    Fanlo, J.L. [Ecole Nationale Superieure des Mines, 30 - Ales (France)

    1998-02-01

    Purifying bacteria: if this concept is not new, its application to gases cleansing has only been developed recently. This method allows to eliminate the volatile organic compounds and the gaseous effluents odors which come from industrial sites. Three bioreactors types exist at the present time. Their principles are explained. (O.M.) 6 refs.

  6. Fuzzy species among recombinogenic bacteria

    Directory of Open Access Journals (Sweden)

    Fraser Christophe

    2005-03-01

    Full Text Available Abstract Background It is a matter of ongoing debate whether a universal species concept is possible for bacteria. Indeed, it is not clear whether closely related isolates of bacteria typically form discrete genotypic clusters that can be assigned as species. The most challenging test of whether species can be clearly delineated is provided by analysis of large populations of closely-related, highly recombinogenic, bacteria that colonise the same body site. We have used concatenated sequences of seven house-keeping loci from 770 strains of 11 named Neisseria species, and phylogenetic trees, to investigate whether genotypic clusters can be resolved among these recombinogenic bacteria and, if so, the extent to which they correspond to named species. Results Alleles at individual loci were widely distributed among the named species but this distorting effect of recombination was largely buffered by using concatenated sequences, which resolved clusters corresponding to the three species most numerous in the sample, N. meningitidis, N. lactamica and N. gonorrhoeae. A few isolates arose from the branch that separated N. meningitidis from N. lactamica leading us to describe these species as 'fuzzy'. Conclusion A multilocus approach using large samples of closely related isolates delineates species even in the highly recombinogenic human Neisseria where individual loci are inadequate for the task. This approach should be applied by taxonomists to large samples of other groups of closely-related bacteria, and especially to those where species delineation has historically been difficult, to determine whether genotypic clusters can be delineated, and to guide the definition of species.

  7. Heavy metals detoxification in soil performed by sulfate - reducing bacteria

    International Nuclear Information System (INIS)

    Pado, R.; Pawlowska-Cwiek, L.; Szwagrzyk, J.

    1994-01-01

    The process of sulfate reduction carried out by mixed bacteria cultures in the presence of heavy cations (Fe 2+ , Pb 2+ , Cd 2+ , Zn 2+ , Cu 2+ ) was investigated. The range of harmful metals concentrations responded to the acceptable levels in soil and their multiplications (10-100 times) in contaminated soil. The results show the possibility of detoxicating these metals, especially lead. In the highest lead concentrations (3950 and 7500 ppm), only after one month of activities conducted by bacteria dissimilating hydrogen sulfide, between about 73 and 81 per cent of lead was converted into practically insoluble PbS. It was found that detoxication process with the presence of bacteria from this group prolonged with the increase of metal concentration (Zn 2+ and Cd 2+ in particular. (author). 30 refs, 5 figs, 3 tabs

  8. Method and apparatus for processing algae

    Science.gov (United States)

    Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite; Di Salvo, Roberto

    2012-07-03

    Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells. The lysate separates into at least two layers including a lipid-containing hydrophobic layer and an ionic liquid-containing hydrophilic layer. A salt or salt solution may be used to remove water from the ionic liquid-containing layer before the ionic liquid is reused. The used salt may also be dried and/or concentrated and reused. The method can operate at relatively low lysis, processing, and recycling temperatures, which minimizes the environmental impact of algae processing while providing reusable biofuels and other useful products.

  9. Biotechnological applications of acetic acid bacteria.

    Science.gov (United States)

    Raspor, Peter; Goranovic, Dusan

    2008-01-01

    The acetic acid bacteria (AAB) have important roles in food and beverage production, as well as in the bioproduction of industrial chemicals. In recent years, there have been major advances in understanding their taxonomy, molecular biology, and physiology, and in methods for their isolation and identification. AAB are obligate aerobes that oxidize sugars, sugar alcohols, and ethanol with the production of acetic acid as the major end product. This special type of metabolism differentiates them from all other bacteria. Recently, the AAB taxonomy has been strongly rearranged as new techniques using 16S rRNA sequence analysis have been introduced. Currently, the AAB are classified in ten genera in the family Acetobacteriaceae. AAB can not only play a positive role in the production of selected foods and beverages, but they can also spoil other foods and beverages. AAB occur in sugar- and alcohol-enriched environments. The difficulty of cultivation of AAB on semisolid media in the past resulted in poor knowledge of the species present in industrial processes. The first step of acetic acid production is the conversion of ethanol from a carbohydrate carried out by yeasts, and the second step is the oxidation of ethanol to acetic acid carried out by AAB. Vinegar is traditionally the product of acetous fermentation of natural alcoholic substrates. Depending on the substrate, vinegars can be classified as fruit, starch, or spirit substrate vinegars. Although a variety of bacteria can produce acetic acid, mostly members of Acetobacter, Gluconacetobacter, and Gluconobacter are used commercially. Industrial vinegar manufacturing processes fall into three main categories: slow processes, quick processes, and submerged processes. AAB also play an important role in cocoa production, which represents a significant means of income for some countries. Microbial cellulose, produced by AAB, possesses some excellent physical properties and has potential for many applications. Other

  10. Xenodiagnostico, hemocultura e teste de lise mediada pelo complemento, como critérios de seleção de pacientes chagásicos crônicos para quimioterapia Xenodiagnosis, hemoculture and complement mediated lysis tests as criteria for selection of chronic chagasic patients for chemotherapy

    Directory of Open Access Journals (Sweden)

    Vera Lúcia Pereira

    1989-10-01

    Full Text Available O tratamento etiológico da doença de Chagas é iniciado geralmente apenas quando se dispõe de um diagnóstico parasitológico positivo. Na tentativa de aumentar o número de candidatos assim selecionados para o tratamento específico, estudamos 36 pacientes chagásicos crônicos associando o xenodiagnóstico, a hemocultura e o teste de lise mediada pelo complemento, em duas séries sucessivas, intercaladas de um mínimo de 60 dias. A sensibilidade do xenodiagnóstico e da hemocultura foi respectivamente de 30,5% e de 8,3% na primeira série e de 36,1% e de 19,4% nas duas séries. Foram positivos, em pelo menos uma das duas provas, 17 (47,2% dos pacientes. Destes, entretanto, somente 9 (53,0% mostraram teste de lise constantemente positivo enquanto que em 5 (29,4% o teste foi negativo e 3 (17,6% apresentaram resultados ora positivos, ora negativos. Nos pacientes com provas parasitológicas negativas, o teste de lise foi positivo em 4 (15,8%, negativo em 9 (47,4% e discordante em 6 (31,5%. Assim, o teste de lise mediada pelo complemento não se constitue em bom método de triagem de candidatos ao tratamento. Apesar da baixa sensibilidade, as provas parasitológicas ainda constituem o instrumento mais seguro para o clínico.Normally specific treatment of chronic Chagas' disease begins only after a positive parasitological diagnosis has been established. Xenodiagnosis, hemoculture and complement mediated lysis were associated, and repeated, as an attempt to increase the number of selected candidates for specific treatment. Thirty six chronic chagasic patients were submitted to two series of the above tests, with a minimal interval of 60 days. In the first series of tests sensitivity of xenodiagnosis and hemoculture were 30.5% and 8.3% respectively. Processing of a second sample increased sensitivity to 36.1% (xenodiagnosis and 19.4% (hemoculture; 47.2% were shown to be positive by at least one of these tests. From the positive cases, 29.4% were

  11. Repair by genetic recombination in bacteria: overview

    International Nuclear Information System (INIS)

    Howard-Flanders, P.

    1975-01-01

    DNA molecules that have been damaged in both strands at the same level are not subject to repair by excision but instead can be repaired through recombination with homologous molecules. Examples of two-strand damage include postreplication gaps opposite pyrimidine dimers, two-strand breaks produced by x-rays, and chemically induced interstrand cross-links. In ultraviolet-irradiated bacteria, and newly synthesized DNA is of length equal to the interdimer spacing. With continued incubation, this low-molecular-weight DNA is joined into high-molecular-weight chains (postreplication repair), a process associated with sister exchanges in bacteria. Recombination is initiated by pyrimidine dimers opposite postreplication gaps and by interstrand cross-links that have been cut by excision enzymes. The free ends at the resulting gaps presumably initiate the exchanges. Postreplication repair in Escherichia coli occurs in recB - and recC - but is greatly slowed in recF - mutants. RecB and recC are the structural genes for exonuclease V, which digests two-stranded DNA by releasing oligonucleotides first from one strand and then from the other. The postreplication sister exchanges in ultraviolet-irradiated bacteria result in the distribution of pyrimidine dimers between parental and daughter strands, indicating that long exchanges involving both strands of each duplex occur. The R1 restriction endonuclease from E. coli has been used to cut the DNA of a bacterial drug-resistance transfer factor with one nuclease-sensitive site, and also DNA from the frog Xenopus enriched for ribosomal 18S and 28S genes. The fragments were annealed with the cut plasmid DNA and ligated, producing a new larger plasmid carrying the eukaryotic rDNA and able to infect and replicate in E. coli

  12. Low field orientation magnetic separation methods for magnetotactic bacteria

    International Nuclear Information System (INIS)

    Moeschler, F.D.

    1999-01-01

    Microbial biomineralisation of iron often results in a biomass that is magnetic and can be separated from water systems by the application of a magnetic field. Magnetotactic bacteria form magnetic membrane bound crystals within their structure, generally of magnetite. In nature, this enables magnetotactic bacteria to orientate themselves with respect to the local geomagnetic field. The bacteria then migrate with flagellar driven motion towards their preferred environment. This property has been harnessed to produce a process in which metal loaded magnetotactic bacteria can be recovered from a waste stream. This process is known as orientation magnetic separation. Several methods exist which permit the unique magnetic properties of individual magnetotactic bacteria to be studied, such as U-turn analysis, transmission electron microscopy and single wire cell studies. In this work an extension of U-turn analysis was developed. The bacteria were rendered non-motile by the addition of specific metal ions and the resulting 'flip time' which occurs during a field reversal enabled the magnetic moment of individual bacteria to be determined. This method proved to be much faster and more accurate than previous methods. For a successful process to be developed, large scale culturing of magnetotactic bacteria is required Experiments showed that culture vessel geometry was an important factor for high-density growth. Despite intensive studies reproducible culturing at volumes exceeding one litre was not achieved. This work showed that numerous metal ions rendered magnetotactic bacteria non-motile at concentrations below 10 ppm. Sequential adaptation raised typical levels to in excess of 100 ppm for a number of ions. such as zinc and tin. However, specific ions. such as copper or nickel, remained motility inhibiting at lower concentrations. To achieve separation using orientation magnetic separation, motile, field susceptible MTB are required. Despite successful adaptation, the

  13. EFEKTIVITAS KAPORIT PADA PROSES KLORINASI TERHADAP PENURUNAN BAKTERI Coliform DARI LIMBAH CAIR RUMAH SAKIT X SAMARINDA (The Effectiveness of Calcium Hypochlorite to Chlorination Process in Decreasing the Amount of Coliform Bacteria in the Wastewater of X

    Directory of Open Access Journals (Sweden)

    Muhammad Busyairi

    2016-07-01

    bacteria is calculated by using Most Probable Number (MPN method. Calculation of calcium hypochlorite dose is based on the optimum dose at Breakpoint Chlorination (BPC in order to maintain the residual chlorine from the addition of increasing doses. The research result has an impact on the average of organic substance in wastewater sample, it is about 137,26 ppm, so the dose of calcium hypochlorite needed is between 130-165 ppm. BPC curve occurs at 160 ppm of active chlorine for both contact time 30 and 40 minutes. At the BPC point of 30 minutes contact time obtained a mean percentage reduction of Coliform value is 98.21% which is 2,899 MPN/100 mL with residual chlorine 88 ppm. Besides, at 40 minutes contact time obtained the percentage reduction of Coliform bacteria up to 98.83%, it is from >160,000/100 mL to 1,866.67/100 mL with residual chlorine 97.5 ppm.

  14. Genetics of Lactic Acid Bacteria

    Science.gov (United States)

    Zagorec, Monique; Anba-Mondoloni, Jamila; Coq, Anne-Marie Crutz-Le; Champomier-Vergès, Marie-Christine

    Many meat (or fish) products, obtained by the fermentation of meat originating from various animals by the flora that naturally contaminates it, are part of the human diet since millenaries. Historically, the use of bacteria as starters for the fermentation of meat, to produce dry sausages, was thus performed empirically through the endogenous micro-biota, then, by a volunteer addition of starters, often performed by back-slopping, without knowing precisely the microbial species involved. It is only since about 50 years that well defined bacterial cultures have been used as starters for the fermentation of dry sausages. Nowadays, the indigenous micro-biota of fermented meat products is well identified, and the literature is rich of reports on the identification of lactic acid bacteria (LAB) present in many traditional fermented products from various geographical origin, obtained without the addition of commercial starters (See Talon, Leroy, & Lebert, 2007, and references therein).

  15. Re-engineering bacteria for ethanol production

    Science.gov (United States)

    Yomano, Lorraine P; York, Sean W; Zhou, Shengde; Shanmugam, Keelnatham; Ingram, Lonnie O

    2014-05-06

    The invention provides recombinant bacteria, which comprise a full complement of heterologous ethanol production genes. Expression of the full complement of heterologous ethanol production genes causes the recombinant bacteria to produce ethanol as the primary fermentation product when grown in mineral salts medium, without the addition of complex nutrients. Methods for producing the recombinant bacteria and methods for producing ethanol using the recombinant bacteria are also disclosed.

  16. Oligotrophic bacteria isolated from clinical materials.

    OpenAIRE

    Tada, Y; Ihmori, M; Yamaguchi, J

    1995-01-01

    Oligotrophic bacteria (oligotrophs) are microorganisms that grow in extremely nutritionally deficient conditions in which the concentrations of organic substances are low. Many oligotrophic bacteria were isolated from clinical materials including urine, sputum, swabbings of the throat, vaginal discharges, and others. Seventy-seven strains of oligotrophic bacteria from 871 samples of clinical material were isolated. A relatively higher frequency of isolation of oligotrophic bacteria was shown ...

  17. Geobiology of Marine Magnetotactic Bacteria

    Science.gov (United States)

    2006-06-01

    prokaryotic cells of diverse phylogeny when grown in media containing 45 1mM iron, suggesting some kind of detoxification function . The inclusions were...salt marsh productivity. FISH also showed that aggregates consist of genetically identical cells. QPCR data indicated that populations are finely...my advisor Katrina Edwards for taking a chance on someone who initially knew nothing about magnetotactic bacteria, microbial ecology , or microbiology

  18. Distribution, organization and ecology of bacteria in chronic wounds

    DEFF Research Database (Denmark)

    Kirketerp-Møller, Klaus; Jensen, Peter Ø.; Fazli, Mustafa

    2008-01-01

    Between 1 and 2% of the population in the developed world experiences a nonhealing or chronic wound characterized by an apparent arrest in a stage dominated by inflammatory processes. Lately, research groups have proposed that bacteria might be involved in and contribute to the lack of healing of...

  19. Techniques for Reduction and Biomineralization of Radioactive Uranium by Bacteria

    International Nuclear Information System (INIS)

    Lee, Seung Yeop; Baik, Min Hoon

    2010-12-01

    A new thing revealed by this study was a formation of 'ningyoite', which was made as a new mineral when phosphorus component added into the uranium bioreduction process. In addition, a main sulfide mineral formed by sulfate-reducing bacteria was mackinawite which can incorporate much of uranium as coexisting with metal impurities such as manganese or nickel elements

  20. Antibiotic profiles of bacteria isolated on selective campylobacter media

    Science.gov (United States)

    The objective of this study was to determine antibiotic profiles of non-Campylobacter bacteria recovered on selective Campylobacter media. Broiler carcasses were obtained from a processing facility, and whole-carcass rinses were performed by shaking carcasses in plastic bags with 200 mL of distilled...

  1. Isolation and Characterization of Hydrocarbon-Degrading Bacteria ...

    African Journals Online (AJOL)

    ADOWIE PERE

    June 2017. Vol. 21 (4) 641-645. Full-text Available Online at www.ajol.info and ... ABSTRACT: The isolation of hydrocarbon-degrading bacteria in topsoil and subsoil samples of ... This process whereby microorganisms break down ..... Page 5 ...

  2. Isolation and Characterization of Hydrocarbon-utilizing Bacteria from ...

    African Journals Online (AJOL)

    Isolation and Characterization of Hydrocarbon-utilizing Bacteria from Petroleum Sludge Samples obtained from Crude Oil Processing Facility in Nigeria. ... Journal Home > Vol 21, No 2 (2017) > ... Algeria (5); Benin (2); Botswana (3); Burkina Faso (3); Cameroon (8); Congo, Republic (1); Côte d'Ivoire (4); Egypt, Arab Rep.

  3. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria.

    Science.gov (United States)

    Xu, Dake; Li, Yingchao; Gu, Tingyue

    2016-08-01

    Biocorrosion is also known as microbiologically influenced corrosion (MIC). Most anaerobic MIC cases can be classified into two major types. Type I MIC involves non-oxygen oxidants such as sulfate and nitrate that require biocatalysis for their reduction in the cytoplasm of microbes such as sulfate reducing bacteria (SRB) and nitrate reducing bacteria (NRB). This means that the extracellular electrons from the oxidation of metal such as iron must be transported across cell walls into the cytoplasm. Type II MIC involves oxidants such as protons that are secreted by microbes such as acid producing bacteria (APB). The biofilms in this case supply the locally high concentrations of oxidants that are corrosive without biocatalysis. This work describes a mechanistic model that is based on the biocatalytic cathodic sulfate reduction (BCSR) theory. The model utilizes charge transfer and mass transfer concepts to describe the SRB biocorrosion process. The model also includes a mechanism to describe APB attack based on the local acidic pH at a pit bottom. A pitting prediction software package has been created based on the mechanisms. It predicts long-term pitting rates and worst-case scenarios after calibration using SRB short-term pit depth data. Various parameters can be investigated through computer simulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Laminar flow assisted anisotropic bacteria absorption for chemotaxis delivery of bacteria-attached microparticle

    Science.gov (United States)

    Huh, Keon; Oh, Darong; Son, Seok Young; Yoo, Hyung Jung; Song, Byeonghwa; Cho, Dong-il Dan; Seo, Jong-Mo; Kim, Sung Jae

    2016-12-01

    The concepts of microrobots has been drawn significant attentions recently since its unprecedented applicability in nanotechnology and biomedical field. Bacteria attached microparticles presented in this work are one of pioneering microrobot technology for self-propulsion or producing kinetic energy from ambient for their motions. Microfluidic device, especially utilizing laminar flow characteristics, were employed for anisotropic attachment of Salmonella typhimurium flagellated chemotactic bacteria to 30 um × 30 um and 50 um × 50 um microparticles that made of biodegradable polymer. Any toxic chemicals or harmful treatments were excluded during the attachment process and it finished within 100 s for the anisotropic attachment. The attachments were directly confirmed by fluorescent intensity changes and SEM visualization. Chemotaxis motions were tracked using aspartate and the maximum velocity of the bacteria-attached microrobot was measured to be 5 um/s which is comparable to prior state of art technologies. This reusable and scalable method could play a key role in chemotaxis delivery of functional microparticles such as drug delivery system.

  5. Nitrogen-fixing methane-utilizing bacteria

    NARCIS (Netherlands)

    Bont, de J.A.M.

    1976-01-01

    Methane occurs abundantly in nature. In the presence of oxygen this gas may be metabolized by bacteria that are able to use it as carbon and energy source. Several types of bacteria involved in the oxidation of methane have been described in literature. Methane-utilizing bacteria have in

  6. Laser-Based Identification of Pathogenic Bacteria

    Science.gov (United States)

    Rehse, Steven J.

    2009-01-01

    Bacteria are ubiquitous in our world. From our homes, to our work environment, to our own bodies, bacteria are the omnipresent although often unobserved companions to human life. Physicists are typically untroubled professionally by the presence of these bacteria, as their study usually falls safely outside the realm of our typical domain. In the…

  7. Current strategies for improving food bacteria

    NARCIS (Netherlands)

    Kuipers, O P; Buist, Girbe; Kok, Jan

    2000-01-01

    Novel concepts and methodologies are emerging that hold great promise for the directed improvement of food-related bacteria, specifically lactic acid bacteria. Also, the battle against food spoilage and pathogenic bacteria can now be fought more effectively. Here we describe recent advances in

  8. Ecology of mycophagous collimonas bacteria in soil

    NARCIS (Netherlands)

    Höppener-Ogawa, Sachie

    2008-01-01

    Bacteria belonging to the genus Collimonas consist of soil bacteria that can grow at expense of living fungal hyphae i.e. they are mycophagous. This PhD studies deals with the ecology of mycophagous bacteria in soil using collimonads as model organisms. Collimonads were found to be widely

  9. Long-term preservation of anammox bacteria.

    Science.gov (United States)

    Rothrock, Michael J; Vanotti, Matias B; Szögi, Ariel A; Gonzalez, Maria Cruz Garcia; Fujii, Takao

    2011-10-01

    Deposit of useful microorganisms in culture collections requires long-term preservation and successful reactivation techniques. The goal of this study was to develop a simple preservation protocol for the long-term storage and reactivation of the anammox biomass. To achieve this, anammox biomass was frozen or lyophilized at two different freezing temperatures (-60°C and in liquid nitrogen (-200°C)) in skim milk media (with and without glycerol), and the reactivation of anammox activity was monitored after a 4-month storage period. Of the different preservation treatments tested, only anammox biomass preserved via freezing in liquid nitrogen followed by lyophilization in skim milk media without glycerol achieved stoichiometric ratios for the anammox reaction similar to the biomass in both the parent bioreactor and in the freshly harvested control treatment. A freezing temperature of -60°C alone, or in conjunction with lyophilization, resulted in the partial recovery of the anammox bacteria, with an equal mixture of anammox and nitrifying bacteria in the reactivated biomass. To our knowledge, this is the first report of the successful reactivation of anammox biomass preserved via sub-zero freezing and/or lyophilization. The simple preservation protocol developed from this study could be beneficial to accelerate the integration of anammox-based processes into current treatment systems through a highly efficient starting anammox biomass.

  10. Influence of complement on neutrophil extracellular trap release induced by bacteria

    DEFF Research Database (Denmark)

    Palmer, Lisa Joanne; Damgaard, Christian; Holmstrup, Palle

    2016-01-01

    by Staphylococcus aureus and three oral bacteria: Actinomyces viscosus, Aggregatibacter actinomycetemcomitans and Fusobacterium nucleatum subsp. vincettii. Material and Methods Bacteria-stimulated NET release from the neutrophils of healthy donors was measured fluorometrically. Various complement containing...... In conclusion, complement opsonization promotes NET release induced by a variety of bacteria, including A. actinomycetemcomitans, and CR1 plays a dominant role in the process. Complement consumption or deficiency may compromise NETosis induced by some bacterial species, including A. actinomycetemcomitans....... Within biofilms, the complement-inactivating abilities of some bacteria may protect other species against NETosis, while these are more vulnerable when adopting a planktonic lifestyle....

  11. [Regulating acid stress resistance of lactic acid bacteria--a review].

    Science.gov (United States)

    Wu, Chongde; Huang, Jun; Zhou, Rongqing

    2014-07-04

    As cell factories, lactic acid bacteria are widely used in food, agriculture, pharmaceutical and other industries. Acid stress is one the important survival challenges encountered by lactic acid bacteria both in fermentation process and in the gastrointestinal tract. Recently, the development of systems biology and metabolic engineering brings unprecedented opportunity for further elucidating the acid tolerance mechanisms and improving the acid stress resistance of lactic acid bacteria. This review addresses physiological mechanisms of lactic acid bacteria during acid stress. Moreover, strategies to improve the acid stress resistance of lactic acid were proposed.

  12. AIDS: "it's the bacteria, stupid!".

    Science.gov (United States)

    Broxmeyer, Lawrence; Cantwell, Alan

    2008-11-01

    Acid-fast tuberculous mycobacterial infections are common in AIDS and are regarded as secondary "opportunistic infections." According to the National Institute of Allergy and Infectious Diseases, TB is the major attributable cause of death in AIDS patients. Could such bacteria play a primary or causative role in AIDS? Certainly, In screening tests for HIV, there is frequent, up to 70%, cross-reactivity, between the gag and pol proteins of HIV and patients with mycobacterial infections such as tuberculosis. By 1972, five years before gays started dying in the U.S., Rolland wrote Genital Tuberculosis, a Forgotten Disease? And ironically, in 1979, on the eve of AIDS recognition, Gondzik and Jasiewicz showed that even in the laboratory, genitally infected tubercular male guinea pigs could infect healthy females through their semen by an HIV-compatible ratio of 1 in 6 or 17%, prompting him to warn his patients that not only was tuberculosis a sexually transmitted disease, but also the necessity of the application of suitable contraceptives, such as condoms, to avoid it. Gondzik's solution and date of publication are chilling; his findings significant. Since 1982 Cantwell et al found acid-fast bacteria closely related to tuberculosis (TB) and atypical tuberculosis in AIDS tissue. On the other hand molecular biologist and virologist Duesberg, who originally defined retroviral ultrastructure, has made it clear that HIV is not the cause of AIDS and that the so-called AIDS retrovirus has never been isolated in its pure state. Dr. Etienne de Harven, first to examine retroviruses under the electron, agrees. In 1993 HIV co-discoverer Luc Montagnier reported on cell-wall-deficient (CWD) bacteria which he called "mycoplasma" in AIDS tissue. He suspected these as a necessary "co-factor" for AIDS. Remarkably, Montagnier remained silent on Cantwell's reports of acid-fast bacteria which could simulate "mycoplasma" in AIDS tissue. Mattman makes clear that the differentiation between

  13. Measurement of the heat production of bacteria in the bioreactor. Calorimetric regulation of bio-processes for the production of recombinant proteins; Messung der Waermeproduktion von Bakterien im Bioreaktor. Kalorimetrische Regelung von Bioprozessen zur Herstellung von rekombinanten Proteinen

    Energy Technology Data Exchange (ETDEWEB)

    Biener, Richard [Hochschule Esslingen (Germany); Steinkaempfer, Anne; Horn, Thomas; Hofmann, Johannes

    2012-09-15

    Recombinant proteins such as insulin or interferons are the most important products of the modern biotechnology. Recombinant proteins are produced with genetically engineered organisms. Here, besides microorganisms (E. coli or yeast cells) also animal cell cultures are used. In order to increase the productivity and the reproducibility of the cultivation process, an automated process control is required. The authors of the contribution under consideration report on the regulation of the specific rate of growth of microorganisms during cultivation in a bioreactor using standard calorimetric methods. This automation strategy results in a significant increase in productivity and reproducibility of the process.

  14. Multiple sample flow through immunomagnetic separator for concentrating pathogenic bacteria

    International Nuclear Information System (INIS)

    Rotariu, Ovidiu; Ogden, Iain D; MacRae, Marion; Udrea, Laura Elena; Strachan, Norval J C

    2005-01-01

    The standard method of immunomagnetic separation for isolating pathogenic bacteria from food and environmental matrices processes 1 ml volumes. Pathogens present at low levels ( 97% recovery of polydisperse magnetic particles (diameter range 1 to 8 μm) containing 29-33% w/w Fe 3 O 4 content. Between 70 and 130 times more of the pathogenic bacteria Escherichia coli O157 is recovered from PBS compared with the standard 1 ml method. Also, the recovery of E. coli O157 from beef mince homogenates, after a 4 h incubation at 42 deg. C, is between 80 and 180 times higher than the standard 1 ml method

  15. A empiric expression to interpret the approximation of λ cI phages to E. coli C600 bacteria

    International Nuclear Information System (INIS)

    Garces, F.; Vidania, R. de

    1984-01-01

    In general the process of adsorption of phages to bacteria is considered in the bibliography as an statistical process. In this work we use an empiric expression which allows to interpret the approximation of λcI pages to E. coli C 6 00 bacteria. This expression introduces some changes respect to a pure statistical description of the approximation process. (Author) 26 refs

  16. The effect of nutrient media water purity on LIBS based identification of bacteria

    Science.gov (United States)

    Single pulse laser induced breakdown spectroscopy (LIBS) is used as the basis for discrimination between 3 genera of Gram-negative bacteria and 2 genera of gram-positive bacteria representing pathogenic threats commonly found in poultry processing rinse waters. Because LIBS-based discrimination reli...

  17. MATHEMATICAL SIMULATION OF THE INTERACTIONS AMONG CYANOBACTERIA, PURPLE SULFUR BACTERIA AND CHEMOTROPIC SULFUR BACTERIA IN MICROBIAL MAT COMMUNITIES

    NARCIS (Netherlands)

    DEWIT, R; VANDENENDE, FP; VANGEMERDEN, H

    A deterministic one-dimensional reaction diffusion model was constructed to simulate benthic stratification patterns and population dynamics of cyanobacteria, purple and colorless sulfur bacteria as found in marine microbial mats. The model involves the major biogeochemical processes of the sulfur

  18. The ecological role of type three secretion systems in the interaction of bacteria with fungi in soil and related habitats is diverse and context-dependent

    NARCIS (Netherlands)

    Nazir, Rashid; Mazurier, Sylvie; Yang, Pu; Lemanceau, Philippe; van Elsas, Jan Dirk

    2017-01-01

    Bacteria and fungi constitute important organisms in many ecosystems, in particular terrestrial ones. Both organismal groups contribute significantly to biogeochemical cycling processes. Ecological theory postulates that bacteria capable of receiving benefits from host fungi are likely to evolve

  19. Virus-mediated transfer of nitrogen from heterotrophic bacteria to phytoplankton

    Science.gov (United States)

    Shelford, Emma J.; Suttle, Curtis A.

    2018-02-01

    Lytic infection of bacteria by viruses releases nutrients during cell lysis and stimulates the growth of primary producers, but the path by which these nutrients flow from lysates to primary producers has not been traced. This study examines the remineralisation of nitrogen (N) from Vibrio lysates by heterotrophic bacterioplankton and its transfer to primary producers. In laboratory trials, Vibrio sp. strain PWH3a was infected with a lytic virus (PWH3a-P1) and the resulting 36.0 µmol L-1 of dissolved organic N (DON) in the lysate was added to cultures containing cyanobacteria (Synechococcus sp. strain DC2) and a natural bacterial assemblage. Based on the increase in cyanobacteria, 74 % (26.5 µmol L-1 N) of the DON in the lysate was remineralised and taken up. Lysate from Vibrio sp. strain PWH3a labeled with 15NH4+ was also added to seawater containing natural microbial communities, and in four field experiments, stable isotope analysis indicated that the uptake of 15N was 0.09 to 0.70 µmol N µg-1 of chlorophyll a. The results from these experiments demonstrate that DON from lysate can be efficiently remineralised and transferred to phytoplankton, and they provide further evidence that the viral shunt is an important link in nitrogen recycling in aquatic systems.

  20. Release of Antibiotic Resistant Bacteria by a Waste Treatment Plant from Romania.

    Science.gov (United States)

    Lupan, Iulia; Carpa, Rahela; Oltean, Andreea; Kelemen, Beatrice Simona; Popescu, Octavian

    2017-09-27

    The occurrence and spread of bacterial antibiotic resistance are subjects of great interest, and the role of wastewater treatment plants has been attracting particular interest. These stations are a reservoir of bacteria, have a large range of organic and inorganic substances, and the amount of bacteria released into the environment is very high. The main purpose of the present study was to assess the removal degree of bacteria with resistance to antibiotics and identify the contribution of a wastewater treatment plant to the microbiota of Someşul Mic river water in Cluj county. The resistance to sulfamethoxazole and tetracycline and some of their representative resistance genes: sul1, tet(O), and tet(W) were assessed in this study. The results obtained showed that bacteria resistant to sulphonamides were more abundant than those resistant to tetracycline. The concentration of bacteria with antibiotic resistance changed after the treatment, namely, bacteria resistant to sulfamethoxazole. The removal of all bacteria and antibiotic-resistant bacteria was 98-99% and the degree of removal of bacteria resistant to tetracycline was higher than the bacteria resistant to sulfamethoxazole compared to total bacteria. The wastewater treatment plant not only contributed to elevating ARG concentrations, it also enhanced the possibility of horizontal gene transfer (HGT) by increasing the abundance of the intI1 gene. Even though the treatment process reduced the concentration of bacteria by two orders of magnitude, the wastewater treatment plant in Cluj-Napoca contributed to an increase in antibiotic-resistant bacteria concentrations up to 10 km downstream of its discharge in Someşul Mic river.

  1. 白血病合并肿瘤溶解综合征的诊治%Diagnosis and treatment of tumor lysis syndrome associated with leukemia

    Institute of Scientific and Technical Information of China (English)

    秘营昌

    2011-01-01

    肿瘤溶解综合征(TLS)是血液肿瘤科常见的急症,临床表现主要有高尿酸血症、高钾血症、高磷酸血症、低钙血症等,最终导致肾功能衰竭、心律失常、癫痫、神经系统并发症,甚至死亡.目前对TLS诊断、疾病危险度判断、治疗观点较一致,提高了TLS的诊断、治疗水平.%Tumor lysis syndrome (TLS) is a life-threatening oncological emergency characterized by metabolic abnormalities including hyperuricaernia,hyperphosphataemia,hyperkalaemia and hypocalcaemia. These metabolic complications will eventually lead to a series of complications. Now that the diagnosis of TI.S has been clarified, a panel of TLS experts have offered recommendations for evaluation of risks and prophylaxis of TLS to improve the prognosis of patients with TLS.

  2. Use of conivaptan to allow aggressive hydration to prevent tumor lysis syndrome in a pediatric patient with large-cell lymphoma and SIADH.

    Science.gov (United States)

    Rianthavorn, Pornpimol; Cain, Joan P; Turman, Martin A

    2008-08-01

    The available treatment options for hyponatremia secondary to SIADH are limited and not completely effective. Conivaptan is a vasopressin 1a and 2 receptor antagonist recently approved by the US Food and Drug Administration (FDA) for treating euvolemic and hypervolemic hyponatremia in adult patients. However, data on efficacy and safety of conivaptan in pediatrics are limited. We report a case of a 13-year-old boy with extensively metastasized anaplastic large-cell lymphoma. He also developed hyponatremia due to syndrome of inappropriate antidiuretic hormone secretion (SIADH) prior to chemotherapy initiation. SIADH management in this case was complicated when fluid restriction was not safely attainable. Conivaptan played a significant role in this situation by allowing provision of a large amount of intravenous fluid prior to and during induction chemotherapy. It proved to be an important component in preventing uric acid nephropathy/tumor lysis syndrome. Conivaptan induced free-water clearance as indicated by increased urine output and decreased urine osmolality. The patient responded to conivaptan without any adverse effects.

  3. The challenges of treating paraganglioma patients with 177Lu-DOTATATE PRRT: Catecholamine crises, tumor lysis syndrome and the need for modification of treatment protocols

    International Nuclear Information System (INIS)

    Makis, William; Mccann, Karey; Mcewan, Alexander J. B.

    2015-01-01

    A high percentage of paragangliomas express somatostatin receptors that can be utilized for targeted radioisotope therapy. The aim of this study was to describe and discuss the challenges of treating these tumors with 177 Lu-[DOTA0,Tyr3]octreotate (DOTATATE) radioisotope therapy using established protocols. Three paraganglioma patients were treated with 4–5 cycles of 177 Lu-DOTATATE and were evaluated for side effects and response to therapy. Two of the three patients developed severe adverse reactions following their first 177 Lu-DOTATATE treatment. One patient developed a catecholamine crisis and tumor lysis syndrome within hours of treatment, requiring intensive care unit (ICU) support, and another developed a catecholamine crisis 3 days after treatment, requiring hospitalization. The treatment protocols at our institution were subsequently modified by increasing the radioisotope infusion time from 15 to 30 min, as recommended in the literature, to 2–4 h and by reducing the administered dose of 177 Lu-DOTATATE. Subsequent 177 Lu-DOTATATE treatments utilizing the modified protocols were well tolerated, and response to therapy was achieved in all three patients, resulting in significantly improved quality of life. 177 Lu-DOTATATE is an exciting new therapeutic option in the management of paragangliomas; however, current treatment protocols described in the literature may need to be modified by lengthening the infusion time and/or lowering the initial treatment dose to prevent or reduce the severity of adverse reactions

  4. The challenges of treating paraganglioma patients with {sup 177}Lu-DOTATATE PRRT: Catecholamine crises, tumor lysis syndrome and the need for modification of treatment protocols

    Energy Technology Data Exchange (ETDEWEB)

    Makis, William; Mccann, Karey; Mcewan, Alexander J. B. [Dept. of Diagnostic Imaging, Cross Cancer Institute, Alberta (China)

    2015-09-15

    A high percentage of paragangliomas express somatostatin receptors that can be utilized for targeted radioisotope therapy. The aim of this study was to describe and discuss the challenges of treating these tumors with {sup 177}Lu-[DOTA0,Tyr3]octreotate (DOTATATE) radioisotope therapy using established protocols. Three paraganglioma patients were treated with 4–5 cycles of {sup 177}Lu-DOTATATE and were evaluated for side effects and response to therapy. Two of the three patients developed severe adverse reactions following their first {sup 177}Lu-DOTATATE treatment. One patient developed a catecholamine crisis and tumor lysis syndrome within hours of treatment, requiring intensive care unit (ICU) support, and another developed a catecholamine crisis 3 days after treatment, requiring hospitalization. The treatment protocols at our institution were subsequently modified by increasing the radioisotope infusion time from 15 to 30 min, as recommended in the literature, to 2–4 h and by reducing the administered dose of {sup 177}Lu-DOTATATE. Subsequent {sup 177}Lu-DOTATATE treatments utilizing the modified protocols were well tolerated, and response to therapy was achieved in all three patients, resulting in significantly improved quality of life. {sup 177}Lu-DOTATATE is an exciting new therapeutic option in the management of paragangliomas; however, current treatment protocols described in the literature may need to be modified by lengthening the infusion time and/or lowering the initial treatment dose to prevent or reduce the severity of adverse reactions.

  5. SACCHARIFICATION OF CORNCOB USING CELLULOLYTIC BACTERIA FOR BIOETHANOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    TITI CANDRA SUNARTI

    2010-08-01

    Full Text Available The use of cellulose degrading enzyme (cellulases for hydrolysis of lignocellulosic material is a part of bioethanol production process. In this experiment, delignified corncob, its cellulose fraction and alpha cellulose were used as substrates to produce fermentable sugar by using three local isolates of celluloytic bacteria (C5-1, C4-4, C11-1 and Cmix ; mixed cultures of three isolates, and Saccharomyces cereviseae to produce ethanol. The results showed that all isolates of cellulolytic bacteria can grow on cellulose fraction better than on delignified corncob, and alpha cellulose. The highest hydrolytic activity produced from cellulose fraction was by isolate C4-4, which liberated 3.50 g/l of total sugar. Ethanol can be produced by mixed culture of bacteria and yeast, but because of competitive growth, the fermentation only produced 0.39-0.47 g/l of ethanol.

  6. Transport of Chemotactic Bacteria in Porous Media with Structured Heterogeneity

    Science.gov (United States)

    Ford, R. M.; Wang, M.; Liu, J.; Long, T.

    2008-12-01

    Chemical contaminants that become trapped in low permeability zones (e.g. clay lenses) are difficult to remediate using conventional pump-and-treat approaches. Chemotactic bacteria that are transported by groundwater through more permeable regions may migrate toward these less permeable zones in response to chemical gradients created by contaminant diffusion from the low permeability source, thereby enhancing the remediation process by directing bacteria to the contaminants they degrade. What effect does the heterogeneity associated with coarse- and fine-grained layers that are characteristic of natural groundwater environments have on the transport of microorganisms and their chemotactic response? To address this question experiments were conducted over a range of scales from a single capillary tube to a laboratory- scale column in both static and flowing systems with and without chemoattractant gradients. In static capillary assays, motile bacteria accumulated at the interface between an aqueous solution and a suspension of agarose particulates. In microfluidic devices with an array of staggered cylinders, chemotactic bacteria migrated transverse to flow in response to a chemoattractant gradient. In sand columns packed with a coarse-grained core and surrounded by a fine-grained annulus, chemotactic bacteria migrated preferentially toward a chemoattractant source along the centerline. Mathematical models and computer simulations were developed to analyze the experimental observations in terms of transport parameters from the advection- disperson-sorption equation.

  7. Algae-bacteria interactions: Evolution, ecology and emerging applications.

    Science.gov (United States)

    Ramanan, Rishiram; Kim, Byung-Hyuk; Cho, Dae-Hyun; Oh, Hee-Mock; Kim, Hee-Sik

    2016-01-01

    Algae and bacteria have coexisted ever since the early stages of evolution. This coevolution has revolutionized life on earth in many aspects. Algae and bacteria together influence ecosystems as varied as deep seas to lichens and represent all conceivable modes of interactions - from mutualism to parasitism. Several studies have shown that algae and bacteria synergistically affect each other's physiology and metabolism, a classic case being algae-roseobacter interaction. These interactions are ubiquitous and define the primary productivity in most ecosystems. In recent years, algae have received much attention for industrial exploitation but their interaction with bacteria is often considered a contamination during commercialization. A few recent studies have shown that bacteria not only enhance algal growth but also help in flocculation, both essential processes in algal biotechnology. Hence, there is a need to understand these interactions from an evolutionary and ecological standpoint, and integrate this understanding for industrial use. Here we reflect on the diversity of such relationships and their associated mechanisms, as well as the habitats that they mutually influence. This review also outlines the role of these interactions in key evolutionary events such as endosymbiosis, besides their ecological role in biogeochemical cycles. Finally, we focus on extending such studies on algal-bacterial interactions to various environmental and bio-technological applications. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Polyhydroxyalkanoate biosynthesis by oxalotrophic bacteria from high Andean soil

    Directory of Open Access Journals (Sweden)

    Roger David Castillo-Arteaga

    2018-02-01

    Full Text Available Oxalate is a highly oxidized organic acid anion used as a carbon and energy source by oxalotrophic bacteria. Oxalogenic plants convert atmospheric CO2 into oxalic acid and oxalic salts. Oxalate-salt formation acts as a carbon sink in terrestrial ecosystems via the oxalate-carbonate pathway (OCP. Oxalotrophic bacteria might be implicated in other carbon-storage processes, including the synthesis of polyhydroxyalkanoates (PHAs. More recently, a variety of bacteria from the Andean region of Colombia in Nariño have been reported for their PHA-producing abilities. These species can degrade oxalate and participate in the oxalate-carbonate pathway. The aim of this study was to isolate and characterize oxalotrophic bacteria with the capacity to accumulate PHA biopolymers. Plants of the genus Oxalis were collected and bacteria were isolated from the soil adhering to the roots. The isolated bacterial strains were characterized using biochemical and molecular biological methods. The consumption of oxalate in culture was quantified, and PHA production was monitored in batch fermentation. The polymeric composition was characterized using gas chromatography. Finally, a biosynthetic pathway based on our findings and on those from published sources is proposed. Strains of Bacillus spp. and Serratia sp. were found to metabolize calcium oxalate and synthesize PHA.

  9. Cultivation, detection, and ecophysiology of anaerobic ammonium-oxidizing bacteria.

    Science.gov (United States)

    Kartal, Boran; Geerts, Wim; Jetten, Mike S M

    2011-01-01

    Anaerobic ammonium-oxidizing (anammox) bacteria oxidize ammonium with nitrite under anoxic conditions. The anammox process is currently used to remove ammonium from wastewater and contributes significantly to the loss of fixed nitrogen from the oceans. In this chapter, we focus on the ecophysiology of anammox bacteria and describe new methodologies to grow these microorganisms. Now, it is possible to enrich anammox bacteria up to 95% with a membrane bioreactor that removes forces of selection for fast settling aggregates and facilitates the growth of planktonic cells. The biomass from this system has a high anaerobic ammonium oxidation rate (50 fmol NH(4)(+) · cell(-1) day(-1)) and is suitable for many ecophysiological and molecular experiments. A high throughput Percoll density gradient centrifugation protocol may be applied on this biomass for further enrichment (>99.5%) of anammox bacteria. Furthermore, we provide an up-to-date list of commonly used primers and introduce protocols for quantification and detection of functional genes of anammox bacteria in their natural environment. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Silver enhances antibiotic activity against gram-negative bacteria.

    Science.gov (United States)

    Morones-Ramirez, J Ruben; Winkler, Jonathan A; Spina, Catherine S; Collins, James J

    2013-06-19

    A declining pipeline of clinically useful antibiotics has made it imperative to develop more effective antimicrobial therapies, particularly against difficult-to-treat Gram-negative pathogens. Silver has been used as an antimicrobial since antiquity, yet its mechanism of action remains unclear. We show that silver disrupts multiple bacterial cellular processes, including disulfide bond formation, metabolism, and iron homeostasis. These changes lead to increased production of reactive oxygen species and increased membrane permeability of Gram-negative bacteria that can potentiate the activity of a broad range of antibiotics against Gram-negative bacteria in different metabolic states, as well as restore antibiotic susceptibility to a resistant bacterial strain. We show both in vitro and in a mouse model of urinary tract infection that the ability of silver to induce oxidative stress can be harnessed to potentiate antibiotic activity. Additionally, we demonstrate in vitro and in two different mouse models of peritonitis that silver sensitizes Gram-negative bacteria to the Gram-positive-specific antibiotic vancomycin, thereby expanding the antibacterial spectrum of this drug. Finally, we used silver and antibiotic combinations in vitro to eradicate bacterial persister cells, and show both in vitro and in a mouse biofilm infection model that silver can enhance antibacterial action against bacteria that produce biofilms. This work shows that silver can be used to enhance the action of existing antibiotics against Gram-negative bacteria, thus strengthening the antibiotic arsenal for fighting bacterial infections.

  11. Why bacteria are smaller in the epilimnion than in the hypolimnion? A hypothesis comparing temperate and tropical lakes

    Directory of Open Access Journals (Sweden)

    Roberto Bertoni

    2012-01-01

    Full Text Available Bacterial size and morphology are controlled by several factors including predation, viral lysis, UV radiation, and inorganic nutrients. We observed that bacterial biovolume from the hypolimnion of two oligotrophic lakes is larger than that of bacteria living in the layer from surface to 20 m, roughly corresponding to the euphotic/epilimnetic zone. One lake is located in the temperate region at low altitude (Lake Maggiore, Northern Italy and the other in the tropical region at high altitude (Lake Alchichica, Mexico. The two lakes differ in oxygen, phosphorus and nitrogen concentrations and in the temperature of water column. If we consider the two lakes separately, we risk reducing the explanation of bacterial size variation in the water column to merely regional factors. Comparing the two lakes, can we gather a more general explanation for bacterial biovolume variation. The results showed that small bacteria dominate in the oxygenated, P-limited epilimnetic waters of both lakes, whereas larger cells are more typical of hypolimnetic waters where phosphorus and nitrogen are not limiting. Indeed, temperature per se cannot be invoked as an important factor explaining the different bacterial size in the two zones. Without excluding the top-down control mechanism of bacterial size, our data suggest that the average lower size of bacterial cells in the epilimnion of oligotrophic lakes is controlled by outcompetition over the larger cells at limiting nutrients.

  12. Potential role of bacteria packaging by protozoa in the persistence and transmission of pathogenic bacteria

    OpenAIRE

    Denoncourt, Alix M.; Paquet, Valérie E.; Charette, Steve J.

    2014-01-01

    Many pathogenic bacteria live in close association with protozoa. These unicellular eukaryotic microorganisms are ubiquitous in various environments. A number of protozoa such as amoebae and ciliates ingest pathogenic bacteria, package them usually in membrane structures, and then release them into the environment. Packaged bacteria are more resistant to various stresses and are more apt to survive than free bacteria. New evidence indicates that protozoa and not bacteria control the packaging...

  13. Social behavior of bacteria: from physics to complex organization

    Science.gov (United States)

    Ben-Jacob, E.

    2008-10-01

    I describe how bacteria develop complex colonial patterns by utilizing intricate communication capabilities, such as quorum sensing, chemotactic signaling and exchange of genetic information (plasmids) Bacteria do not store genetically all the information required for generating the patterns for all possible environments. Instead, additional information is cooperatively generated as required for the colonial organization to proceed. Each bacterium is, by itself, a biotic autonomous system with its own internal cellular informatics capabilities (storage, processing and assessments of information). These afford the cell certain plasticity to select its response to biochemical messages it receives, including self-alteration and broadcasting messages to initiate alterations in other bacteria. Hence, new features can collectively emerge during self-organization from the intra-cellular level to the whole colony. Collectively bacteria store information, perform decision make decisions (e.g. to sporulate) and even learn from past experience (e.g. exposure to antibiotics)-features we begin to associate with bacterial social behavior and even rudimentary intelligence. I also take Schrdinger’s’ “feeding on negative entropy” criteria further and propose that, in addition organisms have to extract latent information embedded in the environment. By latent information we refer to the non-arbitrary spatio-temporal patterns of regularities and variations that characterize the environmental dynamics. In other words, bacteria must be able to sense the environment and perform internal information processing for thriving on latent information embedded in the complexity of their environment. I then propose that by acting together, bacteria can perform this most elementary cognitive function more efficiently as can be illustrated by their cooperative behavior.

  14. Sulfate reducing bacteria detection in gas pipelines; Deteccao de bacterias redutoras de sulfato em gasodutos

    Energy Technology Data Exchange (ETDEWEB)

    Lutterbach, Marcia Teresa S.; Oliveira, Ana Lucia C. de; Cavalcanti, Eduardo H. de S. [Instituto Nacional de Tecnologia (INT), Rio de Janeiro, RJ (Brazil). Div. de Corrosao e Degradacao]. E-mails: marciasl@int.gov.br; analucia@int.gov.br; eduardoh@int.gov.br

    2004-07-01

    Microbiology induced corrosion (MIC) process associated with sulfate reducing bacteria (BRS) are one of the most important matter of concern for the oil and gas industry as 77% of failures have been attributed this sort of degradation. Corrosion products found present in gas transportation pipelines, the so-called 'black-powder' problem, are also a nuisance and source of economic losses for the gas industry. According to the literature, the incidence of black-powder can be ascribed to the metabolism of BRS that can be found in the gas environment. Integrity monitoring programs of gas pipelines adopt pigging as an important tool for internal corrosion monitoring. Solid residue such as the black-powder, collected by pigging, as well as the condensed, can be seen as a very valuable samples for microbiological analyses that can be used to detect and quantify bacteria related to the incidence of MIC processes. In the present work results concerning samples collected by pigging and condensed are presented. Small populations of viable BRS have been found in the pipeline. It can be seen that the inclusion of microbiological analyses of solid and liquid residues as a complementary action in the integrity monitoring programs adopted by gas transportation industry can be very helpful on the decision making concerning preventive and corrective actions to be taken in order to maintain the CIM processes under control. (author)

  15. Synthesis of Metal Nanoparticles by Bacteria

    Directory of Open Access Journals (Sweden)

    Fikriye Alev Akçay

    2018-04-01

    Full Text Available Metal particles reduced to nano size by nanotechnological methods are confronted in many different fields such as biomedical and physicochemical, pharmaceutical, electric-electronic, automotive and food industries. Nanoparticles can be produced using chemical, physical and biological methods, of which chemical processes are in common use. However, physical and chemical methods are not environmentally friendly and economical because they require the use of high temperature, high pressure and toxic chemicals. For this reason, interest in the production of metal nanoparticles by biological methods, also called green technology, an environmentally friendly and sustainable approach, has increased in recent years. With some plant extracts and intracellular and extracellular secretions of microorganisms, some reduction reactions take place and metal nanoparticles are produced. Bacteria have been actively involved in nanotechnology in recent years due to their diversity in nature, their ease of isolation, and ease of nanoparticle synthesis. In this article, production and application of metal nanoparticles by using bacterial methods have been reviewed.

  16. Endocarditis caused by anaerobic bacteria.

    Science.gov (United States)

    Kestler, M; Muñoz, P; Marín, M; Goenaga, M A; Idígoras Viedma, P; de Alarcón, A; Lepe, J A; Sousa Regueiro, D; Bravo-Ferrer, J M; Pajarón, M; Costas, C; García-López, M V; Hidalgo-Tenorio, C; Moreno, M; Bouza, E

    2017-10-01

    Infective endocarditis (IE) caused by anaerobic bacteria is a rare and poorly characterized disease. Most data reported in the literature are from case reports [1-3]. Therefore, we assessed the situation of anaerobic IE (AIE) in Spain using the database of the Spanish Collaboration on Endocarditis (GAMES). We performed a prospective study from 2008 to 2016 in 26 Spanish centers. We included 2491 consecutive cases of definite IE (Duke criteria). Anaerobic bacteria caused 22 cases (0.9%) of definite IE. Median age was 66 years (IQR, 56-73), and 19 (86.4%) patients were men. Most patients (14 [63.6%]) had prosthetic valve IE and all episodes were left-sided: aortic valves, 12 (54.5%); and mitral valves, 8 (36.4%). The most common pathogens were Propionibacterium acnes (14 [63.6%]), Lactobacillus spp (3 [13.63%]), and Clostridium spp. (2 [9.0%]), and the infection was mainly odontogenic. Fifteen of the 22 patients (68.2%) underwent cardiac surgery. Mortality was 18.2% during admission and 5.5% after 1 year of follow-up. When patients with AIE were compared with the rest of the cohort, we found that although those with AIE had a similar age and Charlson comorbidity index, they were more likely to have community-acquired IE (86.4% vs. 60.9%, p = 0.01), have undergone cardiac surgery (68.2% vs 48.7% p = 0.06), and have had lower mortality rates during admission (18.2% vs. 27.3%). IE due to anaerobic bacteria is an uncommon disease that affects mainly prosthetic valves and frequently requires surgery. Otherwise, there are no major differences between AIE and IE caused by other microorganisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Bacteria and vampirism in cinema.

    Science.gov (United States)

    Castel, O; Bourry, A; Thévenot, S; Burucoa, C

    2013-09-01

    A vampire is a non-dead and non-alive chimerical creature, which, according to various folklores and popular superstitions, feeds on blood of the living to draw vital force. Vampires do not reproduce by copulation, but by bite. Vampirism is thus similar to a contagious disease contracted by intravascular inoculation with a suspected microbial origin. In several vampire films, two real bacteria were staged, better integrated than others in popular imagination: Yersinia pestis and Treponema pallidum. Bacillus vampiris was created for science-fiction. These films are attempts to better define humans through one of their greatest fears: infectious disease. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  18. Parallel susceptibility testing of bacteria through culture-quantitative PCR in 96-well plates

    Directory of Open Access Journals (Sweden)

    Jun Luo

    2018-05-01

    Full Text Available Objective: The methods combining culture and quantitative PCR(qPCR offer new solutions for rapid antibiotic susceptibility testing(AST. However, the multiple steps of DNA extraction and cold storage of PCR reagents needed make them unsuitable for rapid high throughput AST. In this study, a parallel culture-qPCR method was developed to overcome above problems. Method: In this method, bacteria culture and DNA extraction automatically and simultaneously completed through using a common PCR instrument as a controllable heating device. A lyophilized 16S rDNA targeted qPCR reagent was also developed, which was stable and could be kept at 4 °C for long time and at 37 °C for about two months. Result: Testing of 36 P. aeruginosa isolates and 28 S. aureus isolates showed that the method had good agreements with the standard broth microdilution method, with an overall agreement of 97.22% (95% CI, 85.83–99.51 for P. aeruginosa and 96.43% (95% CI, 79.76–99.81 for S. aureus. This method could test 12 samples against a panel of up to 7 antibiotics simultaneously in two 96-well PCR plates within 4 h, which greatly improves the testing efficiency of the culture-qPCR method. Conclusion: With rapidness to obtain results and the capabilities for automation and multiple-sample testing, the parallel culture-qPCR method would have great potentials in clinical labs. Keywords: Antibiotic susceptibility testing, Thermo-cold lysis, Lyophilized qPCR reagent, Quantitative PCR, Bacteria

  19. High pressure processing of bivalve shellfish and HPP's potential use as a virus intervention

    Science.gov (United States)

    Bivalve shellfish readily bioconcentrate pathogenic microbes and substance, such as algal and dinoflagulate toxins, fecal viruses and bacteria, and naturally present vibrio bacteria. High pressure processing (HPP) is currently used as an intervention for Vibrio vulnificus bacteria within molluscan ...

  20. Produção de protoplastos e lise da parede celular de leveduras utilizando β-1,3 glucanase Protoplasts production and yeast cell wall lysis using β-1,3 glucanase

    Directory of Open Access Journals (Sweden)

    Luciana Francisco Fleuri

    2010-06-01

    Full Text Available O presente trabalho visou a aplicação da β-1,3 glucanase lítica, obtida do microrganismo Cellulosimicrobium cellulans 191, na produção de protoplastos e na lise da parede celular de leveduras. A preparação bruta da enzima foi capaz de lisar as leveduras Kluyveromyces lodderi, Saccharomyces cerevisiae (Fleischmann e Itaiquara, S. cerevisiae KL-88, S. diastaticus NCYC 713, S. cerevisiae NCYC 1001, Candida glabrata NCYC 388, Kluyveromyces marxianus NCYC 587 e Hansenula mrakii NCYC 500. A β-1,3 glucanase purificada foi capaz de lisar as leveduras Saccharomyces cerevisiae KL-88, Saccharomyces capensis, Debaromyces vanriji, Pachysolen tannophillus, Kluyveromyces drosophilarum, Candida glabrata, Hansenula mrakii e Pichia membranaefaciens e formar protoplastos de Saccharomyces cerevisiae KL-88.The aim of this work was the application of lytic β-1,3 glucanase obtained from Cellulosimicrobium cellulans strain 191 in the production of protoplasts and lysis of yeast cell walls. The crude extract demonstrated lysis activity against the yeasts Kluyveromyces lodderi, Saccharomyces cerevisiae (Fleischmann and Itaiquara, S. cerevisiae KL-88, S. diastaticus NCYC 713, S. cerevisiae NCYC 1001, Candida glabrata NCYC 388, Kluyveromyces marxianus NCYC 587, and Hansenula mrakii NCYC 500. The purified β-1,3 glucanase demonstrated lysis activity against the yeasts Saccharomyces cerevisiae KL-88, Saccharomyces capensis, Debaromyces vanriji, Pachysolen tannophillus, Kluyveromyces drosophilarum, Candida glabrata, Hansenula mrakii, and Pichia membranaefaciens, and it was able to produce Saccharomyces cerevisiae KL-88 protoplasts.