WorldWideScience

Sample records for bacteria expressing dsrna

  1. Use of bacterially expressed dsRNA to downregulate Entamoeba histolytica gene expression.

    Directory of Open Access Journals (Sweden)

    Carlos F Solis

    Full Text Available BACKGROUND: Modern RNA interference (RNAi methodologies using small interfering RNA (siRNA oligonucleotide duplexes or episomally synthesized hairpin RNA are valuable tools for the analysis of gene function in the protozoan parasite Entamoeba histolytica. However, these approaches still require time-consuming procedures including transfection and drug selection, or costly synthetic molecules. PRINCIPAL FINDINGS: Here we report an efficient and handy alternative for E. histolytica gene down-regulation mediated by bacterial double-stranded RNA (dsRNA targeting parasite genes. The Escherichia coli strain HT115 which is unable to degrade dsRNA, was genetically engineered to produce high quantities of long dsRNA segments targeting the genes that encode E. histolytica beta-tubulin and virulence factor KERP1. Trophozoites cultured in vitro were directly fed with dsRNA-expressing bacteria or soaked with purified dsRNA. Both dsRNA delivery methods resulted in significant reduction of protein expression. In vitro host cell-parasite assays showed that efficient downregulation of kerp1 gene expression mediated by bacterial dsRNA resulted in significant reduction of parasite adhesion and lytic capabilities, thus supporting a major role for KERP1 in the pathogenic process. Furthermore, treatment of trophozoites cultured in microtiter plates, with a repertoire of eighty-five distinct bacterial dsRNA segments targeting E. histolytica genes with unknown function, led to the identification of three genes potentially involved in the growth of the parasite. CONCLUSIONS: Our results showed that the use of bacterial dsRNA is a powerful method for the study of gene function in E. histolytica. This dsRNA delivery method is also technically suitable for the study of a large number of genes, thus opening interesting perspectives for the identification of novel drug and vaccine targets.

  2. Evaluation of deoxynivalenol production in dsRNA Carrying and Cured Fusarium graminearum isolates by AYT1 expressing transformed tobacco

    Directory of Open Access Journals (Sweden)

    Samira Shahbazi

    2015-12-01

    Full Text Available Introduction: Fusarium head blight (FHB, is the most destructive disease of wheat, producing the mycotoxin deoxynivalenol, a protein synthesis inhibitor, which is harmful to humans and livestock. dsRNAmycoviruses-infected-isolates of Fusariumgraminearum, showed changes in morphological and pathogenicity phenotypes including reduced virulence towards wheat and decreased production of trichothecene mycotoxin (deoxynivalenol: DON. Materials and methods: Previous studies indicated that over expression of yeast acetyl transferase gene (ScAYT1 encoding a 3-O trichothecene acetyl transferase that converts deoxynivalenol to a less toxic acetylated form, leads to suppression of the deoxynivalenol sensitivity in pdr5 yeast mutants. To identify whether ScAYT1 over-expression in transgenic tobacco plants can deal with mycotoxin (deoxynivalenol in fungal extract and studying the effect of dsRNA contamination on detoxification and resistance level, we have treated T1 AYT1 transgenic tobacco seedlings with complete extraction of normal F. graminearum isolate carrying dsRNA metabolites. First, we introduced AYT1into the model tobacco plants through Agrobacterium-mediated transformation in an attempt to detoxify deoxynivalenol. Results: In vitro tests with extraction of dsRNA carrying and cured isolates of F. graminearum and 10 ppm of deoxynivalenol indicated variable resistance levels in transgenic plants. Discussion and conclusion: The results of this study indicate that the transgene expression AYT1 and Fusarium infection to dsRNA can induce tolerance to deoxynivalenol, followed by increased resistance to Fusarium head blight disease of wheat.

  3. Improvement of pest resistance in transgenic tobacco plants expressing dsRNA of an insect-associated gene EcR.

    Science.gov (United States)

    Zhu, Jin-Qi; Liu, Shumin; Ma, Yao; Zhang, Jia-Qi; Qi, Hai-Sheng; Wei, Zhao-Jun; Yao, Qiong; Zhang, Wen-Qing; Li, Sheng

    2012-01-01

    The adoption of pest-resistant transgenic plants to reduce yield loss and pesticide utilization has been successful in the past three decades. Recently, transgenic plant expressing double-stranded RNA (dsRNA) targeting pest genes emerges as a promising strategy for improving pest resistance in crops. The steroid hormone, 20-hydroxyecdysone (20E), predominately controls insect molting via its nuclear receptor complex, EcR-USP. Here we report that pest resistance is improved in transgenic tobacco plants expressing dsRNA of EcR from the cotton bollworm, Helicoverpa armigera, a serious lepidopteran pest for a variety of crops. When H. armigera larvae were fed with the whole transgenic tobacco plants expressing EcR dsRNA, resistance to H. armigera was significantly improved in transgenic plants. Meanwhile, when H. armigera larvae were fed with leaves of transgenic tobacco plants expressing EcR dsRNA, its EcR mRNA level was dramatically decreased causing molting defects and larval lethality. In addition, the transgenic tobacco plants expressing H. armigera EcR dsRNA were also resistant to another lepidopteran pest, the beet armyworm, Spodoptera exigua, due to the high similarity in the nucleotide sequences of their EcR genes. This study provides additional evidence that transgenic plant expressing dsRNA targeting insect-associated genes is able to improve pest resistance. PMID:22685585

  4. Improvement of pest resistance in transgenic tobacco plants expressing dsRNA of an insect-associated gene EcR.

    Directory of Open Access Journals (Sweden)

    Jin-Qi Zhu

    Full Text Available The adoption of pest-resistant transgenic plants to reduce yield loss and pesticide utilization has been successful in the past three decades. Recently, transgenic plant expressing double-stranded RNA (dsRNA targeting pest genes emerges as a promising strategy for improving pest resistance in crops. The steroid hormone, 20-hydroxyecdysone (20E, predominately controls insect molting via its nuclear receptor complex, EcR-USP. Here we report that pest resistance is improved in transgenic tobacco plants expressing dsRNA of EcR from the cotton bollworm, Helicoverpa armigera, a serious lepidopteran pest for a variety of crops. When H. armigera larvae were fed with the whole transgenic tobacco plants expressing EcR dsRNA, resistance to H. armigera was significantly improved in transgenic plants. Meanwhile, when H. armigera larvae were fed with leaves of transgenic tobacco plants expressing EcR dsRNA, its EcR mRNA level was dramatically decreased causing molting defects and larval lethality. In addition, the transgenic tobacco plants expressing H. armigera EcR dsRNA were also resistant to another lepidopteran pest, the beet armyworm, Spodoptera exigua, due to the high similarity in the nucleotide sequences of their EcR genes. This study provides additional evidence that transgenic plant expressing dsRNA targeting insect-associated genes is able to improve pest resistance.

  5. Efifciency of Different Methods for dsRNA Delivery in Cotton Bollworm (Helicoverpa armigera)

    Institute of Scientific and Technical Information of China (English)

    YANG Jing; HAN Zhao-jun

    2014-01-01

    RNAi trigged by dsRNA not only facilitates the development of molecular biology, but also initiates a new way for pest control by silence of fatal genes. However, one of the key limitations in pest control is lack of the convenient and efifcient method for dsRNA delivery. In this study, different dsRNA delivery methods at their own optimum conditions were evaluated comparatively for their efifciency with Helicoverpa armigera as test animal. It was found that the popular one-time injection of larvae with dsRNA could reduce the pupation rate by 43.0%and enhance larva mortality by 11.7%. One-time ingestion of dsRNA did not result in any signiifcant effect on phenotype. Continuous ingestion of in vitro synthesized dsRNA by refreshing the bait diet every day caused 40.4% decrease in successful pupation and 10.0% increase in larval mortality, which was similar as one-time injection. The most efifcient method was found to be the continuous ingestion of the bacteria containing dsRNA expressed, which reduced the rate of pupation by 68.7%and enhanced the larval mortality by 34.1%. Further analysis found that dsRNA was degraded faster in midgut juice than in hemolymph. However, the cell of bacteria could protect dsRNA and delay the degradation in the midgut juice of H. armigera. These results throw light on the application of dsRNA in pest management with proper ways.

  6. RNA interference in Colorado potato beetle: steps toward development of dsRNA as a commercial insecticide

    OpenAIRE

    Palli, Subba Reddy

    2014-01-01

    Colorado potato beetle (CPB) is a notorious pest on potatoes and has a remarkable ability to detoxify plant chemicals and develop resistance against insecticides. dsRNA targeting CPB genes could be expressed in potato plants to control this pest. However, previous attempts at introducing transgenic potato plants to control CPB were not highly successful. Recent studies showed that feeding dsRNA expressed in bacteria works very well to kill CPB. To realize the potential of RNAi to control this...

  7. The effect of silencing 20E biosynthesis relative genes by feeding bacterially expressed dsRNA on the larval development of Chilo suppressalis.

    Science.gov (United States)

    Zhu, Jian; Dong, Yong-Cheng; Li, Ping; Niu, Chang-Ying

    2016-01-01

    RNA interference (RNAi) is a robust tool to study gene functions as well as potential for insect pest control. Finding suitable target genes is the key step in the development of an efficient RNAi-mediated pest control technique. Based on the transcriptome of Chilo suppressalis, 24 unigenes which putatively associated with insect hormone biosynthesis were identified. Amongst these, four genes involved in ecdysteroidogenesis i.e., ptth, torso, spook and nm-g were evaluated as candidate targets for function study. The partial cDNA of these four genes were cloned and their bacterially expressed dsRNA were fed to the insects. Results revealed a significant reduction in mRNA abundance of target genes after 3 days. Furthermore, knocked down of these four genes resulted in abnormal phenotypes and high larval mortality. After 15 days, the survival rates of insects in dsspook, dsptth, dstorso, and dsnm-g groups were significantly reduced by 32%, 38%, 56%, and 67% respectively, compared with control. Moreover, about 80% of surviving larvae showed retarded development in dsRNA-treated groups. These results suggest that oral ingestion of bacterially expressed dsRNA in C. suppressalis could silence ptth, torso, spook and nm-g. Oral delivery of bacterially expressed dsRNA provides a simple and potential management scheme against C. suppressalis. PMID:27352880

  8. The effect of silencing 20E biosynthesis relative genes by feeding bacterially expressed dsRNA on the larval development of Chilo suppressalis

    Science.gov (United States)

    Zhu, Jian; Dong, Yong-Cheng; Li, Ping; Niu, Chang-Ying

    2016-01-01

    RNA interference (RNAi) is a robust tool to study gene functions as well as potential for insect pest control. Finding suitable target genes is the key step in the development of an efficient RNAi-mediated pest control technique. Based on the transcriptome of Chilo suppressalis, 24 unigenes which putatively associated with insect hormone biosynthesis were identified. Amongst these, four genes involved in ecdysteroidogenesis i.e., ptth, torso, spook and nm-g were evaluated as candidate targets for function study. The partial cDNA of these four genes were cloned and their bacterially expressed dsRNA were fed to the insects. Results revealed a significant reduction in mRNA abundance of target genes after 3 days. Furthermore, knocked down of these four genes resulted in abnormal phenotypes and high larval mortality. After 15 days, the survival rates of insects in dsspook, dsptth, dstorso, and dsnm-g groups were significantly reduced by 32%, 38%, 56%, and 67% respectively, compared with control. Moreover, about 80% of surviving larvae showed retarded development in dsRNA-treated groups. These results suggest that oral ingestion of bacterially expressed dsRNA in C. suppressalis could silence ptth, torso, spook and nm-g. Oral delivery of bacterially expressed dsRNA provides a simple and potential management scheme against C. suppressalis. PMID:27352880

  9. Triggering of the dsRNA sensors TLR3, MDA5, and RIG-I induces CD55 expression in synovial fibroblasts.

    Directory of Open Access Journals (Sweden)

    Olga N Karpus

    Full Text Available BACKGROUND: CD55 (decay-accelerating factor is a complement-regulatory protein highly expressed on fibroblast-like synoviocytes (FLS. CD55 is also a ligand for CD97, an adhesion-type G protein-coupled receptor abundantly present on leukocytes. Little is known regarding the regulation of CD55 expression in FLS. METHODS: FLS isolated from arthritis patients were stimulated with pro-inflammatory cytokines and Toll-like receptor (TLR ligands. Transfection with polyinosinic-polycytidylic acid (poly(I:C and 5'-triphosphate RNA were used to activate the cytoplasmic double-stranded (dsRNA sensors melanoma differentiation-associated gene 5 (MDA5 and retinoic acid-inducible gene-I (RIG-I. CD55 expression, cell viability, and binding of CD97-loaded beads were quantified by flow cytometry. RESULTS: CD55 was expressed at equal levels on FLS isolated from patients with rheumatoid arthritis (RA, osteoarthritis, psoriatic arthritis and spondyloarthritis. CD55 expression in RA FLS was significantly induced by IL-1β and especially by the TLR3 ligand poly(I:C. Activation of MDA5 and RIG-I also enhanced CD55 expression. Notably, activation of MDA5 dose-dependently induced cell death, while triggering of TLR3 or RIG-I had a minor effect on viability. Upregulation of CD55 enhanced the binding capacity of FLS to CD97-loaded beads, which could be blocked by antibodies against CD55. CONCLUSIONS: Activation of dsRNA sensors enhances the expression of CD55 in cultured FLS, which increases the binding to CD97. Our findings suggest that dsRNA promotes the interaction between FLS and CD97-expressing leukocytes.

  10. dsRNA expression in the mouse elicits RNAi in oocytes and low adenosine deamination in somatic cells

    Czech Academy of Sciences Publication Activity Database

    Nejepínská, Jana; Malík, Radek; Filkowski, J.; Flemr, Matyáš; Filipowicz, W.; Svoboda, Petr

    2012-01-01

    Roč. 40, č. 1 (2012), s. 399-413. ISSN 0305-1048 R&D Projects: GA ČR GA204/09/0085 Grant ostatní: EMBO SDIG(XE) 1483 Institutional research plan: CEZ:AV0Z50520514 Keywords : dsRNA * RNAi * interferon Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 8.278, year: 2012

  11. Reporters Transiently Transfected into Mammalian Cells Are Highly Sensitive to Translational Repression Induced by dsRNA Expression

    Czech Academy of Sciences Publication Activity Database

    Nejepínská, Jana; Malík, Radek; Wagner, Susan; Svoboda, Petr

    2014-01-01

    Roč. 9, č. 1 (2014), e87517. E-ISSN 1932-6203 R&D Projects: GA ČR GA204/09/0085; GA ČR(CZ) GBP305/12/G034 Grant ostatní: EMBO(DE) 1483 Institutional research plan: CEZ:AV0Z50520514 Institutional support: RVO:68378050 ; RVO:61388971 Keywords : DOUBLE-STRANDED-RNA * INITIATION FACTOR-II * PROTEIN-KINASE PKR * GENE-EXPRESSION * MOUSE OOCYTES * MESSENGER-RNAS * HAIRPIN RNA * PHOSPHORYLATION * TRANSCRIPTION * INTERFERENCE Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.234, year: 2014

  12. Inactivated E. coli transformed with plasmids that produce dsRNA against infectious salmon anemia virus hemagglutinin show antiviral activity when added to infected ASK cells.

    Directory of Open Access Journals (Sweden)

    Katherine eGarcía

    2015-04-01

    Full Text Available Infectious salmon anemia virus (ISAV has caused great losses to the Chilean salmon industry, and the success of prevention and treatment strategies is uncertain. The use of RNA interference (RNAi is a promising approach because during the replication cycle, the ISAV genome must be transcribed to mRNA in the cytoplasm. We explored the capacity of E. coli transformed with plasmids that produce double-stranded RNA (dsRNA to induce antiviral activity when added to infected ASK cells. We transformed the non-pathogenic Escherichia coli HT115 (DE3 with plasmids that expressed highly conserved regions of the ISAV genes encoding the nucleoprotein (NP, fusion (F, hemagglutinin (HE and matrix (M proteins as dsRNA, which is the precursor of the RNAi mechanism. The inactivated transformed bacteria carrying dsRNA were tested for their capacity to silence the target ISAV genes, and the dsRNA that were able to inhibit gene expression were subsequently tested for their ability to attenuate the cytopathic effect (CPE and reduce the viral load. Of the four target genes tested, inactivated E. coli transformed with plasmids producing dsRNA targeting HE showed antiviral activity when added to infected ASK cells.

  13. A Transformed Bacterium Expressing Double-Stranded RNA Specific to Integrin β1 Enhances Bt Toxin Efficacy against a Polyphagous Insect Pest, Spodoptera exigua.

    Directory of Open Access Journals (Sweden)

    Eunseong Kim

    Full Text Available Oral toxicity of double-stranded RNA (dsRNA specific to integrin β1 subunit (SeINT was known in a polyphagous insect pest, Spodoptera exigua. For an application of the dsRNA to control the insect pest, this study prepared a transformed Escherichia coli expressing dsRNA specific to SeINT.The dsRNA expression was driven by T7 RNA polymerase overexpressed by an inducer in the transformed E. coli. The produced dsRNA amount was proportional to the number of the cultured bacteria. The transformed bacteria gave a significant oral toxicity to S. exigua larvae with a significant reduction of the SeINT expression. The resulting insect mortality increased with the fed number of the bacteria. Pretreatment with an ultra-sonication to disrupt bacterial cell wall/membrane significantly increased the insecticidal activity of the transformed bacteria. The larvae treated with the transformed bacteria suffered tissue damage in the midgut epithelium, which exhibited a marked loss of cell-cell contacts and underwent a remarkable cell death. Moreover, these treated larvae became significantly susceptible to a Cry toxin derived from Bacillus thuringiensis (Bt.This study provides a novel and highly efficient application technique to use dsRNA specific to an integrin gene by mixing with a biopesticide, Bt.

  14. Exposure to low-dose X-rays promotes peculiar autophagic cell death in Drosophila melanogaster, an effect that can be regulated by the inducible expression of Hml dsRNA

    International Nuclear Information System (INIS)

    We previously reported that to induce an early emergence effect with low-dose X-irradiation in Drosophila, exposure during the prepupae stage is necessary. The present study examined the mechanism by which low-dose radiation rapidly eliminates larval cells and activates the formation of the imaginal discs during metamorphosis. Upon exposure to 0.5 Gy X-rays at 2 h after puparium formation (APF), the larval salivary glands swelled and were surrounded by remarkably thick structures containing an acid phosphatase (Acph) enzyme, implicating a peculiar autophagic cell death. TUNEL staining revealed the presence of DNA fragmentations compared with cells from sham controls which remained unchanged until 12 h APF. Additionally, the salivary glands of exposed flies were completely destroyed by 10 h APF. Furthermore, exposure to 0.5 Gy X-rays also facilitated the activity of the engulfment function of dendritic cells (DCs); they were generated in the larval salivary glands, engulfed the cell corpses and finally moved to the fat body. Data from an experiment demonstrating the inducible expression of Hml double-stranded RNA (dsRNA) indicate that a slow rate of engulfment of larval cells results in a longer time to emergence. Thus, the animals subjected to low-dose X-rays activated autophagic processes, resulting in significantly faster adult eclosion

  15. Temporal and Tissue-Specific Control of Gene Expression in the Peri-Implantation Mouse Embryo Through Electroporation of dsRNA

    Science.gov (United States)

    Soares, Miguel L.; Torres-Padilla, Maria-Elena

    The delivery of nucleic acids into embryos — either DNA molecules for transient expression or double-stranded RNA for gene silencing by RNA interference (RNAi) — remains a challenging aspect of functional studies on live organisms. Electroporation has long been a standard method for the active transfer of the nega tively charged nucleic acids into mammalian cells (Andreason and Evans, 1988). This technique employs electric pulses to create transient pores in the cytoplasmic membrane through which the nucleic acids are actively delivered. It was not until the conditions for culture of whole embryos became consistent, however, that it has been applied successfully for transfection of mouse concepti.

  16. Predictable tuning of protein expression in bacteria

    DEFF Research Database (Denmark)

    Bonde, Mads; Pedersen, Margit; Klausen, Michael Schantz;

    2016-01-01

    We comprehensively assessed the contribution of the Shine-Dalgarno sequence to protein expression and used the data to develop EMOPEC (Empirical Model and Oligos for Protein Expression Changes; http://emopec.biosustain.dtu.dk). EMOPEC is a free tool that makes it possible to modulate the expressi...

  17. Impact of Solar Radiation on Gene Expression in Bacteria

    Directory of Open Access Journals (Sweden)

    Sabine Matallana-Surget

    2013-07-01

    Full Text Available Microorganisms often regulate their gene expression at the level of transcription and/or translation in response to solar radiation. In this review, we present the use of both transcriptomics and proteomics to advance knowledge in the field of bacterial response to damaging radiation. Those studies pertain to diverse application areas such as fundamental microbiology, water treatment, microbial ecology and astrobiology. Even though it has been demonstrated that mRNA abundance is not always consistent with the protein regulation, we present here an exhaustive review on how bacteria regulate their gene expression at both transcription and translation levels to enable biomarkers identification and comparison of gene regulation from one bacterial species to another.

  18. Knockdown of RNA Interference Pathway Genes in Western Corn Rootworms (Diabrotica virgifera virgifera Le Conte) Demonstrates a Possible Mechanism of Resistance to Lethal dsRNA.

    Science.gov (United States)

    Vélez, Ana María; Khajuria, Chitvan; Wang, Haichuan; Narva, Kenneth E; Siegfried, Blair D

    2016-01-01

    RNA interference (RNAi) is being developed as a potential tool for insect pest management. Increased understanding of the RNAi pathway in target insect pests will provide information to use this technology effectively and to inform decisions related to resistant management strategies for RNAi based traits. Dicer 2 (Dcr2), an endonuclease responsible for formation of small interfering RNA's and Argonaute 2 (Ago2), an essential catalytic component of the RNA-induced silencing complex (RISC) have both been associated with the RNAi pathway in a number of different insect species including the western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). We identified both genes from a transcriptome library generated from different tissues and developmental stages of the western corn rootworm, an important target pest for transgenic plants expressing dsRNA targeting essential genes. The expression of these genes was suppressed by more than 90% after injecting gene specific dsRNA into adult rootworms. The injected beetles were then fed vATPase A dsRNA which has previously been demonstrated to cause mortality in western corn rootworm adults. The suppression of both RNAi pathway genes resulted in reduced mortality after subsequent exposure to lethal concentrations of vATPase A dsRNA as well as increased vATPase A expression relative to control treatments. Injections with dsRNA for a non-lethal target sequence (Laccase 2) did not affect mortality or expression caused by vATPase A dsRNA indicating that the results observed with Argo and Dicer dsRNA were not caused by simple competition among different dsRNA's. These results confirm that both genes play an important role in the RNAi pathway for western corn rootworms and indicate that selection pressures that potentially affect the expression of these genes may provide a basis for future studies to understand potential mechanisms of resistance. PMID:27310918

  19. Knockdown of RNA Interference Pathway Genes in Western Corn Rootworms (Diabrotica virgifera virgifera Le Conte Demonstrates a Possible Mechanism of Resistance to Lethal dsRNA.

    Directory of Open Access Journals (Sweden)

    Ana María Vélez

    Full Text Available RNA interference (RNAi is being developed as a potential tool for insect pest management. Increased understanding of the RNAi pathway in target insect pests will provide information to use this technology effectively and to inform decisions related to resistant management strategies for RNAi based traits. Dicer 2 (Dcr2, an endonuclease responsible for formation of small interfering RNA's and Argonaute 2 (Ago2, an essential catalytic component of the RNA-induced silencing complex (RISC have both been associated with the RNAi pathway in a number of different insect species including the western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae. We identified both genes from a transcriptome library generated from different tissues and developmental stages of the western corn rootworm, an important target pest for transgenic plants expressing dsRNA targeting essential genes. The expression of these genes was suppressed by more than 90% after injecting gene specific dsRNA into adult rootworms. The injected beetles were then fed vATPase A dsRNA which has previously been demonstrated to cause mortality in western corn rootworm adults. The suppression of both RNAi pathway genes resulted in reduced mortality after subsequent exposure to lethal concentrations of vATPase A dsRNA as well as increased vATPase A expression relative to control treatments. Injections with dsRNA for a non-lethal target sequence (Laccase 2 did not affect mortality or expression caused by vATPase A dsRNA indicating that the results observed with Argo and Dicer dsRNA were not caused by simple competition among different dsRNA's. These results confirm that both genes play an important role in the RNAi pathway for western corn rootworms and indicate that selection pressures that potentially affect the expression of these genes may provide a basis for future studies to understand potential mechanisms of resistance.

  20. DsRNA as a stimulator of cell pacemaker activity

    International Nuclear Information System (INIS)

    The authors study the action of double-stranded RNAs (dsRNA) on the characteristics of neuron pacemaker activity which permits prediction of the character of action of dsRNA on the pacemaker activity of cells and organs, and takes the investigators closer to an understanding of the membrane mechanisms underlying the action of dsRNA on the cell. The methods for isolating and fractionating dsRNA from yeasts and the intracellular recording of the electrical activity of the snail giant neuron have been described by the authors earlier. The authors determined the dependence of Ca2+ entry upon dsRNA concentration using the isotope 45Ca. Preweighed ganglia were incubated five each for an hour in 2 ml Ringer's solution containing dsRNA and 5 microliters 45CaCl2 of 12.5 mCi activity. After incubation, the ganglia were rinsed three times for 8 min each time in normal Ringers solution. The washed ganglia were dissolved for one day in KOH. The amount of isotope entering was counted using Brav's scintillator and an RGT counter tuned to the 45Ca isotope. The physiological saline used for the isolated ganglion contained 85 mmole NaCl, 4 mmole KCl, 8 mmole CaCl2, 10 mmole MgCl2, 10 mmole Tris-HCl, and 5 mmole glucose

  1. Recombinant baculovirus mediates dsRNA specific to rr2 delivery and its protective efficacy against WSSV infection.

    Science.gov (United States)

    Rattanarojpong, Triwit; Khankaew, Suthiwat; Khunrae, Pongsak; Vanichviriyakit, Rapeepun; Poomputsa, Kanokwan

    2016-07-10

    White spot syndrome virus (WSSV) is a major causative agent in shrimp farming. Consequently, RNAi technology is an effective strategy to prevent WSSV infection in shrimp especially dsRNA targeting to rr2 of WSSV. In an effort to develop dsRNA expression in shrimp for control of WSSV infection, we developed a recombinant baculovirus expressing recombinant VP28 as the gene delivery system to carry a gene encoding dsRNA specific to rr2 for triggering the RNAi process in shrimp. The results showed that the recombinant baculovirus harboring VP28 was able to express VP28 indicated by Western blot with polyclonal antibody specific to VP28. VP28 transcript was detected in shrimp hemocytes after co-culture hemocytes with the recombinant baculovirus displaying VP28. In addition, we found that shrimp injected with the recombinant baculovirus displaying VP28 and encoding dsRNA synthetic gene specific to rr2 (Bac-VP28-dsrr2) showed the lowest cumulative mortality (33%) at 14days post infection (dpi) when compared to shrimp injected with baculovirus displaying VP28 (Bac-VP28) (64% cumulative mortality) (pBac-VP28-dsrr2 also showed significantly lower WSSV copies than shrimp injected with Bac-VP28 (pBac-VP28-dsrr2 was effective in prevention of WSSV infection. Therefore, the results obtained here can be applied to the prevention of WSSV infection by mixing the recombinant baculovirus with shrimp feed in the future. PMID:27164257

  2. Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase

    OpenAIRE

    Gonzalez-Ruiz Gloriene; Alvarez Derry; Ruiz Oscar N; Torres Cesar

    2011-01-01

    Abstract Background The use of transgenic bacteria has been proposed as a suitable alternative for mercury remediation. Ideally, mercury would be sequestered by metal-scavenging agents inside transgenic bacteria for subsequent retrieval. So far, this approach has produced limited protection and accumulation. We report here the development of a transgenic system that effectively expresses metallothionein (mt-1) and polyphosphate kinase (ppk) genes in bacteria in order to provide high mercury r...

  3. Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase

    Directory of Open Access Journals (Sweden)

    Gonzalez-Ruiz Gloriene

    2011-08-01

    Full Text Available Abstract Background The use of transgenic bacteria has been proposed as a suitable alternative for mercury remediation. Ideally, mercury would be sequestered by metal-scavenging agents inside transgenic bacteria for subsequent retrieval. So far, this approach has produced limited protection and accumulation. We report here the development of a transgenic system that effectively expresses metallothionein (mt-1 and polyphosphate kinase (ppk genes in bacteria in order to provide high mercury resistance and accumulation. Results In this study, bacterial transformation with transcriptional and translational enhanced vectors designed for the expression of metallothionein and polyphosphate kinase provided high transgene transcript levels independent of the gene being expressed. Expression of polyphosphate kinase and metallothionein in transgenic bacteria provided high resistance to mercury, up to 80 μM and 120 μM, respectively. Here we show for the first time that metallothionein can be efficiently expressed in bacteria without being fused to a carrier protein to enhance mercury bioremediation. Cold vapor atomic absorption spectrometry analyzes revealed that the mt-1 transgenic bacteria accumulated up to 100.2 ± 17.6 μM of mercury from media containing 120 μM Hg. The extent of mercury remediation was such that the contaminated media remediated by the mt-1 transgenic bacteria supported the growth of untransformed bacteria. Cell aggregation, precipitation and color changes were visually observed in mt-1 and ppk transgenic bacteria when these cells were grown in high mercury concentrations. Conclusion The transgenic bacterial system described in this study presents a viable technology for mercury bioremediation from liquid matrices because it provides high mercury resistance and accumulation while inhibiting elemental mercury volatilization. This is the first report that shows that metallothionein expression provides mercury resistance and

  4. Integrative food grade expression system for lactic acid bacteria.

    Science.gov (United States)

    Douglas, Grace L; Goh, Yong Jun; Klaenhammer, Todd R

    2011-01-01

    Lactobacillus acidophilus NCFM is a probiotic microbe with the ability to survive passage to the -gastrointestinal tract, interact intimately with the host and induce immune responses. The genome of NCFM has been determined and the bacterium is genetically accessible. Therefore, L. acidophilus has excellent potential for use as a vaccine delivery vehicle to express antigens at mucosal surfaces. Plasmids, commonly used to carry antigen encoding genes, are inherently unstable and require constant selection by antibiotics, which can be problematic for in vivo studies and clinical trials. Chromosomal expression of gene cassettes encoding antigens offers enhanced genetic stability by eliminating requirements for marker selection. This work illustrates the integration and inducible expression of the reporter gene gusA3, -encoding a β-glucuronidase (GusA3), in the L. acidophilus chromosome. A previously described upp-counterselectable gene replacement system was used to direct insertion of the gusA3 gene into an intergenic chromosomal location downstream of lacZ (LBA1462), encoding a β-galactosidase. The transcriptional activity of integrated gusA3 was evaluated by GUS activity assays using 4-methyl-umbelliferyl-β-D: -glucuronide (MUG) and was determined to be one to two orders of magnitude higher than the GusA3-negative parent, NCK1909. The successful chromosomal integration and expression of GusA3 demonstrate the potential of this method for higher levels of inducible gene expression in L. acidophilus. PMID:21815104

  5. Expression of streptavidin gene in bacteria and plants

    International Nuclear Information System (INIS)

    Six biotin-containing proteins are present in plants, representing at least four different biotin enzymes. The physiological function of these biotin enzymes is not understood. Streptavidin, a protein from Streptomyces avidinii, binds tightly and specifically to biotin causing inactivation of biotin enzymes. One approach to elucidating the physiological function of biotin enzymes in plant metabolism is to create transgenic plants expressing the streptavidin gene. A plasmid containing a fused streptavidin-beta-galactosidase gene has been expressed in E. coli. We also have constructed various fusion genes that include an altered CaMV 35S promoter, signal peptides to target the streptavidin protein to specific organelles, and the streptavidin coding gene. We are examining the expression of these genes in cells of carrot

  6. Inhibition of BmNPV replication in Bombyx mori cell by dsRNA triggered RNA interference

    Institute of Scientific and Technical Information of China (English)

    XU Ying; ZHU Chenggang; JIN Yongfeng; ZHANG Yaozhou

    2004-01-01

    RNA interference (RNAi) causes degradation of targeted endogenous RNA in many diverse organisms, To investigate the effect of dsRNA on silkworm cells, we transfected three kinds of synthetic dsRNAs of 435 bp(Ap1), 300bp(Ape) and 399 bp(Au) in length against the various regions of BmNPV's DNA polymerase gene and DNA helicase gene,which are indispensable for viral replication in silkworm cells by TransMessengerTM transfection Reagent. Results indicated that in the experiment where silkworm cells were infected with wild-strain BmNPV of the three dsRNAs, Ap2 and AH can effectively suppress the replication of virus, but Ap1 had no effect on the inhibition of viral replication. Ap2 and Au can reduce the infective titer of BmNPV with a peak change of approximately 3-4 logs on day 4 post-infection.The results of reverse transcript polylnerase chain reaction (RT-PCR) and DNA dot blotting also indicated that the expression level of the two target genes and the quantity of viral DNA both distinctly decreased under the influence of Ap2 or Au. Furthermore, using fluorescence microscopy we analyzed the distribution patterns of dsRNA. Our studies revealed that a majority of dsRNA was localized in the nuclear periphery discontinuously after 24 h of transfection.

  7. A empiric expression to interpret the approximation of λ cI phages to E. coli C600 bacteria

    International Nuclear Information System (INIS)

    In general the process of adsorption of phages to bacteria is considered in the bibliography as an statistical process. In this work we use an empiric expression which allows to interpret the approximation of λcI pages to E. coli C600 bacteria. This expression introduces some changes respect to a pure statistical description of the approximation process. (Author) 26 refs

  8. A synthetic dsRNA, as a TLR3 pathwaysynergist, combined with sorafenib suppresses HCC in vitro and in vivo

    International Nuclear Information System (INIS)

    Recent studies have demonstrated that synthetic dsRNAs may produce therapeutic effects in a target-independent manner through stimulation of the toll-like receptor-3 (TLR3)/interferon pathway; as a result, angiogenesis and proliferation of tumor cells are inhibited. Thus, this pathway may become a potential target of dsRNA in tumor suppression. In this study, we evaluated the role of synthetic dsRNA as a TLR3 synergist and by combining with sorafenib in anti-hepatocellular carcinoma (HCC) in vitro and in vivo. Four dsRNAs were designed and synthesized. One of them that was capable of activating TLR3 most effectively in human HCC cell line (HepG2.2.15) was selected as a TLR3 synergist (called BM-06). Subsequently, the expression of proteins relating to TLR3 signaling pathway, such as NF-κB, caspase 8 survivin, bcl-2 and PCNA affected by BM-06, sorafenib alone or in combination, was compared. The migration, proliferation and apoptosis of HepG2.2.15 cells were evaluated in presence of BM-06, sorafenib alone or in combination of both. The similar treatments were also applied in an SD rat primary HCC model. qRT-PCR data showed that the expression of TLR3 and NF-κB in HepG2.2.15 cells was enhanced. BM-06 was selected as a TLR3 synergist capable of activating the TLR3/interferon pathway most effective among 4 synthetic dsRNAs. The migration and proliferation were significantly inhibited in treated HepG2.2.15 cells with BM-06 or Sorafenib alone as compared with PBS-sham control (P < 0.01). However, the role of combination BM-06 with Sorafenib was the most prominent. Tumor cell apoptotic rate was increased by BM-06 or combination when compared to PBS or poly(I:C) (P < 0.05). Similarly, in orthotopic HCC SD rats, the effect of the combination was superior to either agent alone on the inhibition of tumor growth and induction of HCC cell apoptosis (P < 0.05). dsRNA alone was capable of inhibiting the proliferation of HepG2.2.15 cells and tumor growth of orthotopic HCC SD

  9. Isolation and Identification of Virus dsRNA from Strawberry Plants

    Institute of Scientific and Technical Information of China (English)

    LI He; DAI Hong-yan; ZHANG Zhi-hong; GAO Xiu-yan; DU Guo-dong; ZHANG Xin-yu

    2007-01-01

    The analysis of virus genome is based on nucleic acid isolation. The aims of this study were to develop a method for isolation and identification of virus double-stranded ribonucleic acid (dsRNA) and to elucidate the nucleotide sequences of strawberry virus. Using the modified method, virus dsRNA was extracted from strawberry virus indicator plants and cultivated strawberry plants and detected using agarose gel electrophoresis with ethidium bromide staining and reverse transcription-polymerase chain reaction (RT-PCR). The quantity of virus dsRNA varied among strawberry cultivars. The quantity of dsRNA from in vitro plantlets was higher than that from the young leaves of field plants. For the field-grown plants, there was more dsRNA in the young leaves. Virus dsRNA extracted from strawberry plants was resistant to deoxyribonuclease Ⅰ (DNase Ⅰ ), but evidently, it became resistant to ribonuclease A (RNase A) only in the presence of 0.5 M NaCl. Its bands in agarose gel could be readily recycled using an agarose gel DNA purification kit. With RT-PCR, the segments of both strawberry mottle virus and Strawberry mild yellow edge virus genomes were amplified by using the virus dsRNA recycled from gel or treated with DNase Ⅰ /RNase A as templates. The system developed for dsRNA isolation and identification in strawberry plants laid a sound foundation for the work on genome analysis of strawberry virus isolates in China.

  10. Initiation of RNA Polymerization and Polymerase Encapsidation by a Small dsRNA Virus.

    Directory of Open Access Journals (Sweden)

    Aaron M Collier

    2016-04-01

    Full Text Available During the replication cycle of double-stranded (ds RNA viruses, the viral RNA-dependent RNA polymerase (RdRP replicates and transcribes the viral genome from within the viral capsid. How the RdRP molecules are packaged within the virion and how they function within the confines of an intact capsid are intriguing questions with answers that most likely vary across the different dsRNA virus families. In this study, we have determined a 2.4 Å resolution structure of an RdRP from the human picobirnavirus (hPBV. In addition to the conserved polymerase fold, the hPBV RdRP possesses a highly flexible 24 amino acid loop structure located near the C-terminus of the protein that is inserted into its active site. In vitro RNA polymerization assays and site-directed mutagenesis showed that: (1 the hPBV RdRP is fully active using both ssRNA and dsRNA templates; (2 the insertion loop likely functions as an assembly platform for the priming nucleotide to allow de novo initiation; (3 RNA transcription by the hPBV RdRP proceeds in a semi-conservative manner; and (4 the preference of virus-specific RNA during transcription is dictated by the lower melting temperature associated with the terminal sequences. Co-expression of the hPBV RdRP and the capsid protein (CP indicated that, under the conditions used, the RdRP could not be incorporated into the recombinant capsids in the absence of the viral genome. Additionally, the hPBV RdRP exhibited higher affinity towards the conserved 5'-terminal sequence of the viral RNA, suggesting that the RdRP molecules may be encapsidated through their specific binding to the viral RNAs during assembly.

  11. Initiation of RNA Polymerization and Polymerase Encapsidation by a Small dsRNA Virus.

    Science.gov (United States)

    Collier, Aaron M; Lyytinen, Outi L; Guo, Yusong R; Toh, Yukimatsu; Poranen, Minna M; Tao, Yizhi J

    2016-04-01

    During the replication cycle of double-stranded (ds) RNA viruses, the viral RNA-dependent RNA polymerase (RdRP) replicates and transcribes the viral genome from within the viral capsid. How the RdRP molecules are packaged within the virion and how they function within the confines of an intact capsid are intriguing questions with answers that most likely vary across the different dsRNA virus families. In this study, we have determined a 2.4 Å resolution structure of an RdRP from the human picobirnavirus (hPBV). In addition to the conserved polymerase fold, the hPBV RdRP possesses a highly flexible 24 amino acid loop structure located near the C-terminus of the protein that is inserted into its active site. In vitro RNA polymerization assays and site-directed mutagenesis showed that: (1) the hPBV RdRP is fully active using both ssRNA and dsRNA templates; (2) the insertion loop likely functions as an assembly platform for the priming nucleotide to allow de novo initiation; (3) RNA transcription by the hPBV RdRP proceeds in a semi-conservative manner; and (4) the preference of virus-specific RNA during transcription is dictated by the lower melting temperature associated with the terminal sequences. Co-expression of the hPBV RdRP and the capsid protein (CP) indicated that, under the conditions used, the RdRP could not be incorporated into the recombinant capsids in the absence of the viral genome. Additionally, the hPBV RdRP exhibited higher affinity towards the conserved 5'-terminal sequence of the viral RNA, suggesting that the RdRP molecules may be encapsidated through their specific binding to the viral RNAs during assembly. PMID:27078841

  12. Polymorphism of viral dsRNA in Xanthophyllomyces dendrorhous strains isolated from different geographic areas

    Directory of Open Access Journals (Sweden)

    Libkind Diego

    2009-10-01

    Full Text Available Abstract Background Strains of the astaxanthin producing yeast Xanthophyllomyces dendrorhous have been isolated from different cold regions around the earth, and the presence of double stranded RNA (dsRNA elements was described in some isolates. This kind of viruses is widely distributed among yeasts and filamentous fungi and, although generally are cryptic in function, their studies have been a key factor in the knowledge of important fungi. In this work, the characterization and genetic relationships among dsRNA elements were determined in strains representatives of almost all regions of the earth where X. dendrorhous have been isolated. Results Almost all strains of X. dendrorhous analyzed carry one, two or four dsRNA elements, of molecular sizes in the range from 0.8 to 5.0 kb. Different dsRNA-patterns were observed in strains with different geographic origin, being L1 (5.0 kb the common dsRNA element. By hybridization assays a high genomic polymorphism was observed among L1 dsRNAs of different X. dendrorhous strains. Contrary, hybridization was observed between L1 and L2 dsRNAs of strains from same or different regions, while the dsRNA elements of minor sizes (M, S1, and S2 present in several strains did not show hybridization with neither L1 or L2 dsRNAs. Along the growth curve of UCD 67-385 (harboring four dsRNAs an increase of L2 relative to L1 dsRNA was observed, whiles the S1/L1 ratio remains constant, as well as the M/L1 ratio of Patagonian strain. Strains cured of S2 dsRNA were obtained by treatment with anisomycin, and comparison of its dsRNA contents with uncured strain, revealed an increase of L1 dsRNA while the L2 and S1 dsRNA remain unaltered. Conclusion The dsRNA elements of X. dendrorhous are highly variable in size and sequence, and the dsRNA pattern is specific to the geographic region of isolation. Each L1 and L2 dsRNA are viral elements able to self replicate and to coexist into a cell, and L1 and S2 dsRNAs elements could

  13. Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays.

    Science.gov (United States)

    Polen, Tino; Wendisch, Volker F

    2004-01-01

    DNA microarray technology has become an important research tool for biotechnology and microbiology. It is now possible to characterize genetic diversity and gene expression in a genomewide manner. DNA microarrays have been applied extensively to study the biology of many bacteria including Escherichia coli, but only recently have they been developed for the Gram-positive Corynebacterium glutamicum. Both bacteria are widely used for biotechnological amino acid production. In this article, in addition to the design and generation of microarrays as well as their use in hybridization experiments and subsequent data analysis, we describe recent applications of DNA microarray technology regarding amino acid production in C. glutamicum and E. coli. We also discuss the impact of functional genomics studies on fundamental as well as applied aspects of amino acid production with C. glutamicum and E. coli. PMID:15304751

  14. Structural basis for dsRNA recognition and interferon antagonism by Ebola VP35

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Daisy W.; Prins, Kathleen C.; Borek, Dominika M.; Farahbakhsh, Mina; Tufariello, JoAnn M.; Ramanan, Parameshwaran; Nix, Jay C.; Helgeson, Luke A.; Otwinowski, Zbyszek; Honzatko, Richard B.; Basler, Christopher F.; Amarasinghe, Gaya K. (Sinai); (Iowa State); (LBNL); (UTSMC)

    2010-03-12

    Ebola viral protein 35 (VP35), encoded by the highly pathogenic Ebola virus, facilitates host immune evasion by antagonizing antiviral signaling pathways, including those initiated by RIG-I-like receptors. Here we report the crystal structure of the Ebola VP35 interferon inhibitory domain (IID) bound to short double-stranded RNA (dsRNA), which together with in vivo results reveals how VP35-dsRNA interactions contribute to immune evasion. Conserved basic residues in VP35 IID recognize the dsRNA backbone, whereas the dsRNA blunt ends are 'end-capped' by a pocket of hydrophobic residues that mimic RIG-I-like receptor recognition of blunt-end dsRNA. Residues critical for RNA binding are also important for interferon inhibition in vivo but not for viral polymerase cofactor function of VP35. These results suggest that simultaneous recognition of dsRNA backbone and blunt ends provides a mechanism by which Ebola VP35 antagonizes host dsRNA sensors and immune responses.

  15. FLDS: A Comprehensive dsRNA Sequencing Method for Intracellular RNA Virus Surveillance

    OpenAIRE

    Urayama, Syun-ichi; Takaki, Yoshihiro; Nunoura, Takuro

    2016-01-01

    Knowledge of the distribution and diversity of RNA viruses is still limited in spite of their possible environmental and epidemiological impacts because RNA virus-specific metagenomic methods have not yet been developed. We herein constructed an effective metagenomic method for RNA viruses by targeting long double-stranded (ds)RNA in cellular organisms, which is a hallmark of infection, or the replication of dsRNA and single-stranded (ss)RNA viruses, except for retroviruses. This novel dsRNA ...

  16. Gene expression system in green sulfur bacteria by conjugative plasmid transfer.

    Directory of Open Access Journals (Sweden)

    Chihiro Azai

    Full Text Available Gene transfer and expression systems in green sulfur bacteria were established by bacterial conjugation with Escherichia coli. Conjugative plasmid transfer from E. coli S17-1 to a thermophilic green sulfur bacterium, Chlorobaculum tepidum (formerly Chlorobium tepidum WT2321, was executed with RSF1010-derivative broad-host-range plasmids, named pDSK5191 and pDSK5192, that confer erythromycin and streptomycin/spectinomycin resistance, respectively. The transconjugants harboring these plasmids were reproducibly obtained at a frequency of approximately 10(-5 by selection with erythromycin and a combination of streptomycin and spectinomycin, respectively. These plasmids were stably maintained in C. tepidum cells in the presence of these antibiotics. The plasmid transfer to another mesophilic green sulfur bacterium, C. limnaeum (formerly Chlorobium phaeobacteroides RK-j-1, was also achieved with pDSK5192. The expression plasmid based on pDSK5191 was constructed by incorporating the upstream and downstream regions of the pscAB gene cluster on the C. tepidum genome, since these regions were considered to include a constitutive promoter and a ρ-independent terminator, respectively. Growth defections of the ∆cycA and ∆soxB mutants were completely rescued after introduction of pDSK5191-cycA and -soxB that were designed to express their complementary genes. On the other hand, pDSK5191-6xhis-pscAB, which incorporated the gene cluster of 6xhis-pscA and pscB, produced approximately four times more of the photosynthetic reaction center complex with His-tagged PscA as compared with that expressed in the genome by the conventional natural transformation method. This expression system, based on conjugative plasmid, would be applicable to general molecular biological studies of green sulfur bacteria.

  17. Food-grade bacteria expressing elafin protect against inflammation and restore colon homeostasis.

    Science.gov (United States)

    Motta, Jean-Paul; Bermúdez-Humarán, Luis G; Deraison, Céline; Martin, Laurence; Rolland, Corinne; Rousset, Perrine; Boue, Jérôme; Dietrich, Gilles; Chapman, Kevin; Kharrat, Pascale; Vinel, Jean-Pierre; Alric, Laurent; Mas, Emmanuel; Sallenave, Jean-Michel; Langella, Philippe; Vergnolle, Nathalie

    2012-10-31

    Elafin, a natural protease inhibitor expressed in healthy intestinal mucosa, has pleiotropic anti-inflammatory properties in vitro and in animal models. We found that mucosal expression of Elafin is diminished in patients with inflammatory bowel disease (IBD). This defect is associated with increased elastolytic activity (elastase-like proteolysis) in colon tissue. We engineered two food-grade strains of lactic acid bacteria (LAB) to express and deliver Elafin to the site of inflammation in the colon to assess the potential therapeutic benefits of the Elafin-expressing LAB. In mouse models of acute and chronic colitis, oral administration of Elafin-expressing LAB decreased elastolytic activity and inflammation and restored intestinal homeostasis. Furthermore, when cultures of human intestinal epithelial cells were treated with LAB secreting Elafin, the inflamed epithelium was protected from increased intestinal permeability and from the release of cytokines and chemokines, both of which are characteristic of intestinal dysfunction associated with IBD. Together, these results suggest that oral delivery of LAB secreting Elafin may be useful for treating IBD in humans. PMID:23115353

  18. The expression and antigenicity identification of recombinant rat TGF-β1 n bacteria

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to study structure-function details of TGF-β1,the recombinant mature form of rat TGF-β1 was expressed in bacteria.Synthesis of the 112 amino-acid carboxyl-terminal part of TGF-β1(amino acid 279390)was controlled by an inducible gene expression system based on bacteriophage T7 RNA polymerase.This system allowed an active and selective synthesis of recombinant TGF-β1.The molecular weight of expressed TGF-β1 monomer determined on SDS-polyacrylamide gel under reducing conditions was about 13 kD.Serial detergent washes combined with a single gel-filtration purification step were sufficient to purify the expression product to homogeneity.Amino-terminal sequencing revealed that the N-terminal of the recombinant protein was identical to the published data.In Western blot analysis the recombinant polypeptide showed excellent antigenicity against polyclonal TGF-β1 antibody.The mature recombinant rat TGF-β1 expressed in this study provides a useful tool for future detailed structural and functional studies.

  19. The Human dsRNA binding protein PACT is unable to functionally substitute for the Drosophila dsRNA binding protein R2D2 [v1; ref status: indexed, http://f1000r.es/201

    Directory of Open Access Journals (Sweden)

    Benjamin K Dickerman

    2013-10-01

    Full Text Available The primary function of the dsRNA binding protein (dsRBP PACT/RAX is to activate the dsRNA dependent protein kinase PKR in response to stress signals.  Additionally, it has been identified as a component of the small RNA processing pathway.  A role for PACT/RAX in this pathway represents an important interplay between two modes of post-transcriptional gene regulation.  The function of PACT/RAX in this context is poorly understood.  Thus, additional models are required to clarify the mechanism by which PACT/RAX functions.  In this study, Drosophila melanogaster was employed to identify functionally orthologous dsRNA-binding proteins.  Transgenic Drosophila expressing human PACT were generated to determine whether PACT is capable of functionally substituting for the Drosophila dsRBP R2D2, which has a well-defined role in small RNA biogenesis.  Results presented here indicate that PACT is unable to substitute for R2D2 at the whole organism level.

  20. Structural Basis for dsRNA Recognition by NS1 Protein of Influenza A Virus

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, A.; Wong, S; Yuan, Y

    2009-01-01

    Influenza A viruses are important human pathogens causing periodic pandemic threats. Nonstructural protein 1 (NS1) protein of influenza A virus (NS1A) shields the virus against host defense. Here, we report the crystal structure of NS1A RNA-binding domain (RBD) bound to a double-stranded RNA (dsRNA) at 1.7A. NS1A RBD forms a homodimer to recognize the major groove of A-form dsRNA in a length-independent mode by its conserved concave surface formed by dimeric anti-parallel alpha-helices. dsRNA is anchored by a pair of invariable arginines (Arg38) from both monomers by extensive hydrogen bonds. In accordance with the structural observation, isothermal titration calorimetry assay shows that the unique Arg38-Arg38 pair and two Arg35-Arg46 pairs are crucial for dsRNA binding, and that Ser42 and Thr49 are also important for dsRNA binding. Agrobacterium co-infiltration assay further supports that the unique Arg38 pair plays important roles in dsRNA binding in vivo.

  1. Interference with virus and bacteria replication by the tissue specific expression of antibodies and interfering molecules.

    Science.gov (United States)

    Enjuanes, L; Sola, I; Izeta, A; Sánchez-Morgado, J M; González, J M; Alonso, S; Escors, D; Sánchez, C M

    1999-01-01

    Historically, protection against virus infections has relied on the use of vaccines, but the induction of an immune response requires several days and in certain situations, like in newborn animals that may be infected at birth and die in a few days, there is not sufficient time to elicit a protective immune response. Immediate protection in new born could be provided either by vectors that express virus-interfering molecules in a tissue specific form, or by the production of animals expressing resistance to virus replication. The mucosal surface is the largest body surface susceptible to virus infection that can serve for virus entry. Then, it is of high interest to develop strategies to prevent infections of these areas. Virus growth can be interfered intracellularly, extracellularly or both. The antibodies neutralize virus intra- and extracellularly and their molecular biology is well known. In addition, antibodies efficiently neutralize viruses in the mucosal areas. The autonomy of antibody molecules in virus neutralization makes them functional in cells different from those that produce the antibodies and in the extracellular medium. These properties have identified antibodies as very useful molecules to be expressed by vectors or in transgenic animals to provide resistance to virus infection. A similar role could be played by antimicrobial peptides in the case of bacteria. Intracellular interference with virus growth (intracellular immunity) can be mediated by molecules of very different nature: (i) full length or single chain antibodies; (ii) mutant viral proteins that strongly interfere with the replication of the wild type virus (dominant-negative mutants); (iii) antisense RNA and ribozyme sequences; and (iv) the product of antiviral genes such as the Mx proteins. All these molecules inhibiting virus replication may be used to obtain transgenic animals with resistance to viral infection built in their genomes. We have developed two strategies to target

  2. Expression of yellow jacket and wasp venom Ag5 allergens in bacteria and in yeast.

    Science.gov (United States)

    Monsalve, R I; Lu, G; King, T P

    1999-01-01

    Antigen 5 (Ag5), of unknown biological function, is one of the major venom allergens of vespids and fire ants. We have compared the expression of Ag5 in bacteria and in yeast. Recombinant Ag5 from bacteria formed an insoluble intracellular product, which was not properly folded, but that produced in Pichia pastoris was secreted to the extracellular medium. Immunochemical characterizations showed the secreted Ag5 to have the native structure of the natural protein. This is of interest since the B cell epitopes of Ag5 are mainly of the discontinuous type. These studies were made with Ag5s from yellow jacket (Vespula vulgaris) and paper wasp (Polistes annularis), and with hybrid Ag5 molecules that contained partial sequences of these two species. In vitro allergenicity studies with sera from yellow jacket-sensitive patients showed that some of these hybrid molecules had a greatly reduced allergenicity but retained the immunogenicity of the natural allergen. This could be of importance for immunotherapy of this type of allergy. PMID:11487873

  3. Expression in bacteria of gB-glycoprotein-coding sequences of Herpes simplex virus type 2.

    Science.gov (United States)

    Person, S; Warner, S C; Bzik, D J; Debroy, C; Fox, B A

    1985-01-01

    A plasmid with an insert that encodes the glycoprotein B(gB) gene of Herpes simplex virus type 2 (HSV-2) has been isolated. DNA sequences coding for a portion of the HSV-2 gB peptide were cloned into a bacterial lacZ alpha expression vector and used to transform Escherichia coli. Upon induction of lacZpo-promoted transcription, some of the bacteria became filamentous and produced inclusion bodies containing a large amount of a 65-kDal peptide that was shown to be precipitated by broad-spectrum antibodies to HSV-2 and HSV-1. The HSV-2 insert of one of these clones specifies amino acid residues corresponding to 135 through 629 of the gB of HSV-1 [Bzik et al., Virology 133 (1984) 301-314]. PMID:2412940

  4. Intracellular delivery of poly(I:C) induces apoptosis of fibroblast-like synoviocytes via an unknown dsRNA sensor.

    Science.gov (United States)

    Karpus, Olga N; Hsiao, Cheng-Chih; de Kort, Hanneke; Tak, Paul P; Hamann, Jörg

    2016-08-26

    Fibroblast-like synoviocytes (FLS) express functional membranous and cytoplasmic sensors for double-stranded (ds)RNA. Notably, FLS undergo apoptosis upon transfection with the synthetic dsRNA analog poly(I:C). We here studied the mechanism of intracellular poly(I:C) recognition and subsequent cell death in FLS. FLS responded similarly to poly(I:C) or 3pRNA transfection; however, only intracellular delivery of poly(I:C) induced significant cell death, accompanied by upregulation of pro-apoptotic proteins Puma and Noxa, caspase 3 cleavage, and nuclear segregation. Knockdown of the DExD/H-box helicase MDA5 did not affect the response to intracellular poly(I:C); in contrast, knockdown of RIG-I abrogated the response to 3pRNA. Knockdown of the downstream adaptor proteins IPS, STING, and TRIF or inhibition of TBK1 did not affect the response to intracellular poly(I:C), while knockdown of IFNAR blocked intracellular poly(I:C)-mediated signaling and cell death. We conclude that a so far unknown intracellular sensor recognizes linear dsRNA and induces apoptosis in FLS. PMID:27343555

  5. Construction of carrier state viruses with partial genomes of the segmented dsRNA bacteriophages

    International Nuclear Information System (INIS)

    The cystoviridae are bacteriophages with genomes of three segments of dsRNA enclosed within a polyhedral capsid. Two members of this family, PHI6 and PHI8, have been shown to form carrier states in which the virus replicates as a stable episome in the host bacterium while expressing reporter genes such as kanamycin resistance or lacα. The carrier state does not require the activity of all the genes necessary for phage production. It is possible to generate carrier states by infecting cells with virus or by electroporating nonreplicating plasmids containing cDNA copies of the viral genomes into the host cells. We have found that carrier states in both PHI6 and PHI8 can be formed at high frequency with all three genomic segments or with only the large and small segments. The large genomic segment codes for the proteins that constitute the inner core of the virus, which is the structure responsible for the packaging and replication of the genome. In PHI6, a carrier state can be formed with the large and middle segment if mutations occur in the gene for the major structural protein of the inner core. In PHI8, carrier state formation requires the activity of genes 8 and 12 of segment S

  6. Chemical communication between bacteria and cell-free gene expression systems within linear chains of emulsion droplets.

    Science.gov (United States)

    Schwarz-Schilling, M; Aufinger, L; Mückl, A; Simmel, F C

    2016-04-18

    Position-dependent gene expression in gradients of morphogens is one of the key processes involved in cellular differentiation during development. Here, we study a simple artificial differentiation process, which is based on the diffusion of genetic inducers within one-dimensional arrangements of 50 μm large water-in-oil droplets. The droplets are filled with either bacteria or cell-free gene expression systems, both equipped with genetic constructs that produce inducers or respond to them via expression of a fluorescent protein. We quantitatively study the coupled diffusion-gene expression process and demonstrate that gene expression can be made position-dependent both within bacteria-containing and cell-free droplets. By generating diffusing quorum sensing signals in situ, we also establish communication between artificial cell-free sender cells and bacterial receivers, and vice versa. PMID:26778746

  7. Regulation by gut commensal bacteria of carcinoembryonic antigen-related cell adhesion molecule expression in the intestinal epithelium.

    Science.gov (United States)

    Kitamura, Yasuaki; Murata, Yoji; Park, Jung-Ha; Kotani, Takenori; Imada, Shinya; Saito, Yasuyuki; Okazawa, Hideki; Azuma, Takeshi; Matozaki, Takashi

    2015-07-01

    Carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 1 and CEACAM20, immunoglobulin superfamily members, are predominantly expressed in intestinal epithelial cells (IECs) and co-localized at the apical surface of these cells. We here showed that the expression of mouse CEACAM1 and CEACAM20 at both mRNA and protein levels was markedly reduced in IECs of the small intestine by the treatment of mice with antibiotics against Gram-positive bacteria. The expression of both proteins was also decreased in IECs of the small intestine from germ-free mice, compared with that from control specific-pathogen-free mice. Exposure of intestinal organoids to IFN-γ markedly increased the expression of either CEACAM1 or CEACAM20, whereas the exposure to TNF-α increased the expression of the former protein, but not that of the latter. In contrast, the expression of CEACAM20, but not of CEACAM1, in intestinal organoids was markedly increased by exposure to butyrate, a short-chain fatty acid produced by bacterial fermentation in the intestine. Collectively, our results suggest that Gram-positive bacteria promote the mRNA expression of CEACAM1 or CEACAM20 in the small intestine. Inflammatory cytokines or butyrate likely participates in such effects of commensal bacteria. PMID:25908210

  8. Ebolavirus VP35 uses a bimodal strategy to bind dsRNA for innate immune suppression

    Energy Technology Data Exchange (ETDEWEB)

    Kimberlin, Christopher R.; Bornholdt, Zachary A.; Li, Sheng; Woods, Jr., Virgil L.; MacRae, Ian J.; Saphire, Erica Ollmann (Scripps); (UCSD)

    2010-03-12

    Ebolavirus causes a severe hemorrhagic fever and is divided into five distinct species, of which Reston ebolavirus is uniquely nonpathogenic to humans. Disease caused by ebolavirus is marked by early immunosuppression of innate immune signaling events, involving silencing and sequestration of double-stranded RNA (dsRNA) by the viral protein VP35. Here we present unbound and dsRNA-bound crystal structures of the dsRNA-binding domain of Reston ebolavirus VP35. The structures show that VP35 forms an unusual, asymmetric dimer on dsRNA binding, with each of the monomers binding dsRNA in a different way: one binds the backbone whereas the other caps the terminus. Additional SAXS, DXMS, and dsRNA-binding experiments presented here support a model of cooperative dsRNA recognition in which binding of the first monomer assists binding of the next monomer of the oligomeric VP35 protein. This work illustrates how ebolavirus VP35 could mask key recognition sites of molecules such as RIG-I, MDA-5, and Dicer to silence viral dsRNA in infection.

  9. Surface expression of protein A on magnetosomes and capture of pathogenic bacteria by magnetosome/ antibody complexes

    Directory of Open Access Journals (Sweden)

    JieshengTian

    2014-04-01

    Full Text Available Magnetosomes are membrane-enclosed magnetite nanocrystals synthesized by magnetotactic bacteria (MTB. They display chemical purity, narrow size ranges, and species-specific crystal morphologies. Specific transmembrane proteins are sorted to the magnetosome membrane (MM. MamC is the most abundant MM protein of Magnetospirillum gryphiswaldense strain MSR-1. MamF is the second most abundant MM protein of MSR-1 and forms stable oligomers. We expressed staphylococcal protein A (SPA, an immunoglobulin-binding protein from the cell wall of Staphylococcus aureus, on MSR-1 magnetosomes by fusion with MamC or MamF. The resulting recombinant magnetosomes were capable of self-assembly with the Fc region of mammalian antibodies (Abs and were therefore useful for functionalization of magnetosomes. Recombinant plasmids pBBR-mamC-spa and pBBR-mamF-spa were constructed by fusing spa (the gene that encodes SPA with mamC and mamF, respectively. Recombinant magnetosomes with surface expression of SPA were generated by introduction of these fusion genes into wild-type MSR-1 or a mamF mutant strain. Studies with a Zeta Potential Analyzer showed that the recombinant magnetosomes had hydrated radii significantly smaller than those of WT magnetosomes and zeta potentials less than -30 mV, indicating that the magnetosome colloids were relatively stable. Observed conjugation efficiencies were as high as 71.24 µg Ab per mg recombinant magnetosomes, and the conjugated Abs retained most of their activity. Numbers of Vibrio parahaemolyticus (a common pathogenic bacterium in seafood captured by recombinant magnetosome/ Ab complexes were measured by real-time fluorescence-based quantitative PCR. One mg of complex was capable of capturing as many as 1.74×107 Vibrio cells. The surface expression system described here will be useful for design of functionalized magnetosomes from MSR-1 and other MTB.

  10. Knocking-down Meloidogyne incognita proteases by plant-delivered dsRNA has negative pleiotropic effect on nematode vigor.

    Directory of Open Access Journals (Sweden)

    José Dijair Antonino de Souza Júnior

    Full Text Available The root-knot nematode Meloidogyne incognita causes serious damage and yield losses in numerous important crops worldwide. Analysis of the M. incognita genome revealed a vast number of proteases belonging to five different catalytic classes. Several reports indicate that M. incognita proteases could play important roles in nematode parasitism, besides their function in ordinary digestion of giant cell contents for feeding. The precise roles of these proteins during parasitism however are still unknown, making them interesting targets for gene silencing to address protein function. In this study we have knocked-down an aspartic (Mi-asp-1, a serine (Mi-ser-1 and a cysteine protease (Mi-cpl-1 by RNAi interference to get an insight into the function of these enzymes during a host/nematode interaction. Tobacco lines expressing dsRNA for Mi-ser-1 (dsSER, Mi-cpl-1 (dsCPL and for the three genes together (dsFusion were generated. Histological analysis of galls did not show clear differences in giant cell morphology. Interestingly, nematodes that infected plants expressing dsRNA for proteases produced a reduced number of eggs. In addition, nematode progeny matured in dsSER plants had reduced success in egg hatching, while progeny resulting from dsCPL and dsFusion plants were less successful to infect wild-type host plants. Quantitative PCR analysis confirmed a reduction in transcripts for Mi-cpl-1 and Mi-ser-1 proteases. Our results indicate that these proteases are possibly involved in different processes throughout nematode development, like nutrition, reproduction and embryogenesis. A better understanding of nematode proteases and their possible role during a plant-nematode interaction might help to develop new tools for phytonematode control.

  11. Differential and coordinated expression of defensins and cytokines by gingival epithelial cells and dendritic cells in response to oral bacteria

    Directory of Open Access Journals (Sweden)

    Clark Edward A

    2010-07-01

    Full Text Available Abstract Background Epithelial cells and dendritic cells (DCs both initiate and contribute to innate immune responses to bacteria. However, much less is known about the coordinated regulation of innate immune responses between GECs and immune cells, particularly DCs in the oral cavity. The present study was conducted to investigate whether their responses are coordinated and are bacteria-specific in the oral cavity. Results The β-defensin antimicrobial peptides hBD1, hBD2 and hBD3 were expressed by immature DCs as well as gingival epithelial cells (GECs. HBD1, hBD2 and hBD3 are upregulated in DCs while hBD2 and hBD3 are upregulated in GECs in response to bacterial stimulation. Responses of both cell types were bacteria-specific, as demonstrated by distinctive profiles of hBDs mRNA expression and secreted cytokines and chemokines in response to cell wall preparations of various bacteria of different pathogenicity: Fusobacterium nucleatum, Actinomyces naeslundii and Porphyromonas gingivalis. The regulation of expression of hBD2, IL-8, CXCL2/GROβ and CCL-20/MIP3α by GECs was greatly enhanced by conditioned medium from bacterially activated DCs. This enhancement was primarily mediated via IL-1β, since induction was largely attenuated by IL-1 receptor antagonist. In addition, the defensins influence DCs by eliciting differential cytokine and chemokine secretion. HBD2 significantly induced IL-6, while hBD3 induced MCP-1 to approximately the same extent as LPS, suggesting a unique role in immune responses. Conclusions The results suggest that cytokines, chemokines and β-defensins are involved in interaction of these two cell types, and the responses are bacteria-specific. Differential and coordinated regulation between GECs and DCs may be important in regulation of innate immune homeostasis and response to pathogens in the oral cavity.

  12. Gene Expression, Bacteria Viability and Survivability Following Spray Drying of Mycobacterium smegmatis

    Directory of Open Access Journals (Sweden)

    Elizabeth Hunter Lauten

    2010-04-01

    Full Text Available We find that Mycobacterium smegmatis survives spray drying and retains cell viability in accelerated temperature stress (40 °C conditions with a success rate that increases with increasing thermal, osmotic, and nutrient-restriction stresses applied to the mycobacterium prior to spray drying. M.smegmatis that are spray dried during log growth phase, where they suffer little or no nutrient-reduction stress, survive for less than 7 days in the dry powder state at accelerated temperature stress conditions, whereas M. smegmatis that are spray dried during stationary phase, where cells do suffer nutrient reduction, survive for up to 14 days. M. smegmatis that are spray dried from stationary phase, subjected to accelerated temperature stress conditions, regrown to stationary phase, spray dried again, and resubmitted to this same process four consecutive times, display, on the fourth spray drying iteration, an approximate ten-fold increase in stability during accelerated temperature stress testing, surviving up to 105 days. Microarray tests revealed significant differences in genetic expression of M. smegmatis between log phase and stationary phase conditions, between naïve (non spray-dried and multiply cycled dried M. smegmatis (in log and stationary phase, and between M. smegmatis in the dry powder state following a single spray drying operation and after four consecutive spray drying operations. These differences, and other phenotypical differences, point to the carotenoid biosynthetic pathway as a probable pathway contributing to bacteria survival in the spray-dried state and suggests strategies for spray drying that may lead to significantly greater room-temperature stability of mycobacteria, including mycobacterium bovis bacille Calmette-Guerin (BCG, the current TB vaccine.

  13. Production and application of long dsRNA in mammalian cells

    Czech Academy of Sciences Publication Activity Database

    Chalupníková, Kateřina; Nejepínská, Jana; Svoboda, Petr

    2013-01-01

    Roč. 942, 20.2.2013 (2013), s. 291-314. ISSN 1940-6029 Institutional support: RVO:68378050 Keywords : dsRNA * RNAi * IFN response * transgenic RNAi * OAS (2′5′-oligoadenylate synthetase) Subject RIV: EB - Genetics ; Molecular Biology

  14. Unstable infectivity and sedimentable ds-RNA associated with lettuce speckles mottle virus.

    Science.gov (United States)

    Falk, B W; Morris, T J; Duffus, J E

    1979-07-15

    Infectivity associated with extracts of lettuce speckles mottle virus (LSMV)-infected tissues is unstable and is susceptible to short periods of aging in vitro or low concentrations of RNase. Infected leaves extracted using phenol yielded greater infectivity than comparable tissue extracted with buffer. No typical virus particles were observed in infected tissues or clarified preparations, but 50- to 70-nm spherical membranous particles were observed associated with the tonoplast in vacuoles of infected cells. Polyacrylamide gel electrophoresis of nucleic acids from infected tissue and LSMV-clarified preparations revealed abundant double-stranded RNA (ds-RNA) in both preparations. A species of LSMV-specific single-stranded RNA (ss-RNA) was also present in LSMV bentonite-clarified preparations. Infectivity was associated only with the ss-RNA fraction. Quantitative isolation of ds-RNA from whole tissue and clarified preparations showed the majority of the ds-RNA was recovered from the bentonite-clarified fractions, and this RNA appeared to be associated with a relatively small structure of a low buoyant density. These data suggest that LSMV lacks a functional coat protein and the sedimentable dsRNA fraction from LSMV-infected tissues more likely contains a viral-specific replication site and not true virus particles. PMID:18631594

  15. Roles of RNA silencing in mammalian cells: Sources and effects on long dsRNA

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Petr

    Vídeň : IMBA, 2007. ---. [Microsymposium on Small RNA s /2./. 21.05.2007-23.05.2007, Vídeň] R&D Projects: GA AV ČR IAA501110701 Institutional research plan: CEZ:AV0Z50520514 Keywords : dsRNA * RNA i * L1 Subject RIV: EB - Genetics ; Molecular Biology

  16. FLDS: A Comprehensive dsRNA Sequencing Method for Intracellular RNA Virus Surveillance.

    Science.gov (United States)

    Urayama, Syun-Ichi; Takaki, Yoshihiro; Nunoura, Takuro

    2016-03-26

    Knowledge of the distribution and diversity of RNA viruses is still limited in spite of their possible environmental and epidemiological impacts because RNA virus-specific metagenomic methods have not yet been developed. We herein constructed an effective metagenomic method for RNA viruses by targeting long double-stranded (ds)RNA in cellular organisms, which is a hallmark of infection, or the replication of dsRNA and single-stranded (ss)RNA viruses, except for retroviruses. This novel dsRNA targeting metagenomic method is characterized by an extremely high recovery rate of viral RNA sequences, the retrieval of terminal sequences, and uniform read coverage, which has not previously been reported in other metagenomic methods targeting RNA viruses. This method revealed a previously unidentified viral RNA diversity of more than 20 complete RNA viral genomes including dsRNA and ssRNA viruses associated with an environmental diatom colony. Our approach will be a powerful tool for cataloging RNA viruses associated with organisms of interest. PMID:26877136

  17. Effect of Sucrose Intake and Growth Conditions on Numbers of Dental Plaque Bacteria Expressing Pro teolytic Activity

    OpenAIRE

    Mikkelsen, L

    2011-01-01

    Proteolytic enzymes in dental plaque are important elements in the pathophysiology of periodontal disease and are putative virulence factors. The effect of sucrose intake versus a sucrose-free diet (substituting glucose for sucrose) on numbers of isolates from early dental plaque expressing extracellular proteolytic enzymes able to hydrolyse gelatin and azocoll was studied. The bacteria were isolated from 0-3 d dental plaque formed on the buccal surface of a lower premolar in six subjects. A ...

  18. Effect of dsRNA on growth rate and reproductive potential of Monosporascus cannonballus.

    Science.gov (United States)

    Armengol, Josep; Alaniz, Sandra; Vicent, Antonio; Beltrán, Roberto; Abad-Campos, Paloma; Pérez-Sierra, Ana; García-Jiménez, José; Ben Salem, Ibtissem; Souli, Mounira; Boughalleb, Naima

    2011-03-01

    The effect of double stranded RNA (dsRNA) infection on growth rate and the reproductive potential of Monosporascus cannonballus was studied in 21 isolates collected in cucurbit growing areas of Spain and Tunisia. The isolates were incubated on potato dextrose agar (PDA) under different conditions of temperature, pH, and water potential (Ψ(s)). They showed optimal growth temperatures over the range of 27-34°C and perithecia formation was obtained mainly at 25 and 30°C, although some isolates were able to produce perithecia at 35°C. All isolates were able to produce perithecia in a broad range of pHs (4-8). Regarding the effect of Ψ(s,) the isolates were more tolerant to grow on KCl than on NaCl. For each solute, radial growth decreased progressively as Ψ(s) decreased and was severely limited at -5.0 to -6.0MPa. Perithecia formation was highest at -0.5MPa, decreased at -1.0MPa and occurred just in some isolates at -2.0MPa. Nine of the M. cannonballus isolates harboured dsRNA with 2-6 bands each and a size range of 1.9-18.0Kb. Phenotypical data were subjected to multivariate factorial analysis. Most of the isolates clustered in two groups corresponding with the presence/absence of dsRNA elements. Isolates without detectable dsRNA produced more perithecia. However, isolates with dsRNA produced lower number of perithecia depending on the pH, Ψ(s,) or solute used. These results improve our understanding of the behaviour and growth of this pathogen in soil, and can be useful to implement effective disease control. PMID:21354530

  19. Use of endophytic diazotrophic bacteria as a vector to express the cry3A gene from Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Salles Joana Falcão

    2000-01-01

    Full Text Available The goal of this study was to evaluate the potential of endophytic diazotrophic bacteria as a vector to express a cry gene from Bacillus thuringiensis, envisaging the control of pests that attack sugarcane plants. The endophytic nitrogen-fixing bacteria Gluconacetobacter diazotrophicus strain BR11281 and Herbaspirillum seropedicae strain BR11335 were used as models. The cry3A gene was transferred by conjugation using a suicide plasmid and the recombinant strains were selected by their ability to fix nitrogen in semi-solid N-free medium. The presence of the cry gene was detected by Southern-blot using an internal fragment of 1.0 kb as a probe. The production of delta-endotoxin by the recombinant H. seropedicae strain was detected by dot blot while for G. diazotrophicus the Western-blot technique was used. In both cases, a specific antibody raised against the B. thuringiensis toxin was applied. The delta-endotoxin production showed by the G. diazotrophicus recombinant strain was dependent on the nitrogen fixing conditions since the cry3A gene was fused to a nif promoter. In the case of H. seropedicae the delta-endotoxin expression was not affected by the promoter (rhi used. These results suggest that endophytic diazotrophic bacteria can be used as vectors to express entomopathogenic genes envisaging control of sugarcane pests.

  20. Expressions of recombinant venom allergen, antigen 5 of yellowjacket (Vespula vulgaris) and paper wasp (Polistes annularis), in bacteria or yeast.

    Science.gov (United States)

    Monsalve, R I; Lu, G; King, T P

    1999-08-01

    Antigen 5 is a major allergen of vespid venom. It has partial sequence identity with proteins from diverse sources. The biologic function of Ag 5 and its related proteins is not known. We are interested in the expression of Ag 5 with the native conformation of the natural protein since its B cell epitopes are mainly of the discontinuous type. When expressed in bacteria, recombinant Ag 5 formed an insoluble intracellular product, and it did not translocate from cytoplasm to periplasm by the addition of a pelB leader sequence to the cloned protein. When expressed in yeast Pichia pastoris, Ag 5 was secreted because the cloned protein contained a yeast alpha signal leader sequence. Recombinant Ag 5 from yeast was shown to have the native structure of the natural protein and the recombinant Ag 5 from bacteria did not. This was shown by comparison of their solubility, electrophoretic behavior, disulfide bond content, CD spectrum, and binding of IgE antibodies from allergic patients and IgG antibodies from mice immunized with natural Ag 5 or recombinant Ag 5s from yeast or bacteria. These studies were made with Ag 5s from yellowjacket (Vespula vulgaris) and paper wasp (Polistes annularis). PMID:10425162

  1. 'Trade-off' in Antarctic bacteria: limnetic psychrotrophs concede multiple enzyme expressions for multiple metal resistance

    Digital Repository Service at National Institute of Oceanography (India)

    DeSouza, M.J.B.D.; LokaBharathi, P.A.; Nair, S.; Chandramohan, D.

    The present study examines the metal and antibiotic resistant bacteria in ice and water from lakes east and west of the Indian base camp (Maitri) in Antarctica. The isolates from western and eastern lakes showed distinct geographical differences...

  2. dsRNA-protein interactions studied by molecular dynamics techniques. Unravelling dsRNA recognition by DCL1.

    Science.gov (United States)

    Drusin, Salvador I; Suarez, Irina P; Gauto, Diego F; Rasia, Rodolfo M; Moreno, Diego M

    2016-04-15

    Double stranded RNA (dsRNA) participates in several biological processes, where RNA molecules acquire secondary structure inside the cell through base complementarity. The double stranded RNA binding domain (dsRBD) is one of the main protein folds that is able to recognize and bind to dsRNA regions. The N-terminal dsRBD of DCL1 in Arabidopsis thaliana (DCL1-1), in contrast to other studied dsRBDs, lacks a stable structure, behaving as an intrinsically disordered protein. DCL1-1 does however recognize dsRNA by acquiring a canonical fold in the presence of its substrate. Here we present a detailed modeling and molecular dynamics study of dsRNA recognition by DCL1-1. We found that DCL1-1 forms stable complexes with different RNAs and we characterized the residues involved in binding. Although the domain shows a binding loop substantially shorter than other homologs, it can still interact with the dsRNA and results in bending of the dsRNA A-type helix. Furthermore, we found that R8, a non-conserved residue located in the first dsRNA binding region, recognizes preferentially mismatched base pairs. We discuss our findings in the context of the function of DCL1-1 within the microRNA processing complex. PMID:26987516

  3. Mycobacterium tuberculosis RNA Expression Patterns in Sputum Bacteria Indicate Secreted Esx Factors Contributing to Growth are Highly Expressed in Active Disease

    OpenAIRE

    Bukka, Archana; Christopher T D Price; Kernodle, Douglas S.; Graham, James E.

    2012-01-01

    To identify factors contributing to the ability of tubercle bacilli to grow in the lung during active infection, we analyzed RNA expression patterns in bacteria present in patient sputum. Prominent among bacterial transcripts identified were those encoding secreted peptides of the Esat-6 subfamily that includes EsxK and EsxL (Rv1197 and Rv1198). H37Rv esxKL and esxJI transcripts were differentially expressed under different growth conditions, and disruption of these genes altered growth phase...

  4. Variable carbon isotope fractionation expressed by aerobic CH 4-oxidizing bacteria

    Science.gov (United States)

    Templeton, Alexis S.; Chu, Kung-Hui; Alvarez-Cohen, Lisa; Conrad, Mark E.

    2006-04-01

    Carbon isotope fractionation factors reported for aerobic bacterial oxidation of CH 4(α) range from 1.003 to 1.039. In a series of experiments designed to monitor changes in the carbon isotopic fractionation of CH 4 by Type I and Type II methanotrophic bacteria, we found that the magnitude of fractionation was largely due to the first oxidation step catalyzed by methane monooxygenase (MMO). The most important factor that modulates the (α) is the fraction of the total CH 4 oxidized per unit time, which strongly correlates to the cell density of the growth cultures under constant flow conditions. At cell densities of less than 0.1 g/L, fractionation factors greater than 1.03 were observed, whereas at cell densities greater than 0.5 g/L the fractionation factors decreased to as low as 1.002. At low cell densities, low concentrations of MMO limit the amount of CH 4 oxidized, while at higher cell densities, the overall rates of CH 4 oxidation increase sufficiently that diffusion of CH 4 from the gaseous to dissolved state and into the cells is likely the rate-determining step. Thus, the residual CH 4 is more fractionated at low cell densities, when only a small fraction of the total CH 4 has been oxidized, than at high cell densities, when up to 40% of the influent CH 4 has been utilized. Therefore, since Rayleigh distillation behavior is not observed, δ 13C values of the residual CH 4 cannot be used to infer the amount oxidized in either laboratory or field-studies. The measured (α) was the same for both Type I and Type II methanotrophs expressing particulate or soluble MMO. However, large differences in the δ 13C values of biomass produced by the two types of methanotrophs were observed. Methylosinus trichosporium OB3b (Type II) produced biomass with δ 13C values about 15‰ higher than the dissimilated CO 2, whereas Methylomonas methanica (Type I) produced biomass with δ 13C values only about 6‰ higher than the CO 2. These effects were independent of the

  5. Overcoming the toxicity of membrane peptide expression in bacteria by upstream insertion of Asp-Pro sequence.

    Science.gov (United States)

    Montigny, Cédric; Penin, François; Lethias, Claire; Falson, Pierre

    2004-01-28

    Transmembrane (TM) peptides often induce toxic effects when expressed in bacteria, probably due to membrane destabilization. We report here that in the case of the TM domains of hepatitis C virus (HCV) E1 and E2 envelope proteins, which are both particularly toxic for the bacteria, the insertion of the Asp-Pro (DP) sequence dramatically reduced their toxicities and promoted their expressions when produced as glutathione S-transferase (GST) GST-DP-TM chimeras. Subcellular fractionation showed that these chimeras co-sediment with the membrane fraction and contain active GST that could be solubilized with a mild detergent. Surprisingly, immuno-gold electron microscopy clearly showed that such chimeras are not localized in the membrane but in the cytosol. We thus postulate that they likely form proteo-lipidic aggregates, which prevent the bacteria from toxicity by sequestering the TM part of the chimeras. The reduction of toxicity in the presence of the Asp-Pro sequence is possibly due to Asp's negative charge that probably disadvantages the binding of the TM peptides to the membrane. In addition, the structural features of Pro residue could promote the formation of chimera aggregates. PMID:14757220

  6. Using bacteria to express and display anti-Plasmodium molecules in the mosquito midgut.

    Science.gov (United States)

    Riehle, Michael A; Moreira, Cristina K; Lampe, David; Lauzon, Carol; Jacobs-Lorena, Marcelo

    2007-05-01

    Bacteria capable of colonizing mosquito midguts are attractive vehicles for delivering anti-malaria molecules. We genetically engineered Escherichia coli to display two anti-Plasmodium effector molecules, SM1 and phospholipase-A(2), on their outer membrane. Both molecules significantly inhibited Plasmodium berghei development when engineered bacteria were fed to mosquitoes 24h prior to an infective bloodmeal (SM1=41%, PLA2=23%). Furthermore, prevalence and numbers of engineered bacteria increased dramatically following a bloodmeal. However, E. coli survived poorly in mosquitoes. Therefore, Enterobacter agglomerans was isolated from mosquitoes and selected for midgut survival by multiple passages through mosquitoes. After four passages, E. agglomerans survivorship increased from 2 days to 2 weeks. Since E. agglomerans is non-pathogenic and widespread, it is an excellent candidate for paratransgenic control strategies. PMID:17224154

  7. Quantitative monitoring of the Chlamydia trachomatis developmental cycle using GFP-expressing bacteria, microscopy and flow cytometry.

    Directory of Open Access Journals (Sweden)

    François Vromman

    Full Text Available Chlamydiae are obligate intracellular bacteria. These pathogens develop inside host cells through a biphasic cycle alternating between two morphologically distinct forms, the infectious elementary body and the replicative reticulate body. Recently, C. trachomatis strains stably expressing fluorescent proteins were obtained. The fluorochromes are expressed during the intracellular growth of the microbe, allowing bacterial visualization by fluorescence microscopy. Whether they are also present in the infectious form, the elementary body, to a detectable level has not been studied. Here, we show that a C. trachomatis strain transformed with a plasmid expressing the green fluorescent protein (GFP accumulates sufficient quantities of the probe in elementary bodies for detection by microscopy and flow cytometry. Adhesion of single bacteria was detected. The precise kinetics of bacterial entry were determined by microscopy using automated procedures. We show that during the intracellular replication phase, GFP is a convenient read-out for bacterial growth with several advantages over current methods. In particular, infection rates within a non-homogenous cell population are easily quantified. Finally, in spite of their small size, individual elementary bodies are detected by flow cytometers, allowing for direct enumeration of a bacterial preparation. In conclusion, GFP-expressing chlamydiae are suitable to monitor, in a quantitative manner, progression throughout the developmental cycle. This will facilitate the identification of the developmental steps targeted by anti-chlamydial drugs or host factors.

  8. Inducible gene expression and environmentally regulated genes in lactic acid bacteria

    NARCIS (Netherlands)

    Kok, Jan

    1996-01-01

    Relatively recently, a number of genes and operons have been identified in lactic acid bacteria that are inducible and respond to environmental factors. Some of these genes/operons had been isolated and analysed because of their importance in the fermentation industry and, consequently, their transc

  9. Selection and characterization of a promoter for expression of single-copy recombinant genes in Gram-positive bacteria

    Directory of Open Access Journals (Sweden)

    Manganelli Riccardo

    2005-01-01

    Full Text Available Abstract Background In the past ten years there has been a growing interest in engineering Gram-positive bacteria for biotechnological applications, including vaccine delivery and production of recombinant proteins. Usually, bacteria are manipulated using plasmid expression vectors. The major limitation of this approach is due to the fact that recombinant plasmids are often lost from the bacterial culture upon removal of antibiotic selection. We have developed a genetic system based on suicide vectors on conjugative transposons allowing stable integration of recombinant DNA into the chromosome of transformable and non-transformable Gram-positive bacteria. Results The aim of this work was to select a strong chromosomal promoter from Streptococcus gordonii to improve this genetic system making it suitable for expression of single-copy recombinant genes. To achieve this task, a promoterless gene encoding a chloramphenicol acetyltransferase (cat, was randomly integrated into the S. gordonii chromosome and transformants were selected for chloramphenicol resistance. Three out of eighteen chloramphenicol resistant transformants selected exhibited 100% stability of the phenotype and only one of them, GP215, carried the cat gene integrated as a single copy. A DNA fragment of 600 base pairs exhibiting promoter activity was isolated from GP215 and sequenced. The 5' end of its corresponding mRNA was determined by primer extention analysis and the putative -10 and a -35 regions were identified. To study the possibility of using this promoter (PP for single copy heterologous gene expression, we created transcriptional fusions of PP with genes encoding surface recombinant proteins in a vector capable of integrating into the conjugative transposon Tn916. Surface recombinant proteins whose expression was controlled by the PP promoter were detected in Tn916-containing strains of S. gordonii and Bacillus subtilis after single copy chromosomal integration of the

  10. Polymorphism of viral dsRNA in Xanthophyllomyces dendrorhous strains isolated from different geographic areas

    OpenAIRE

    Libkind Diego; Oviedo Vicente; Flores Oriana; Sanhueza Mario; Baeza Marcelo; Cifuentes Víctor

    2009-01-01

    Abstract Background Strains of the astaxanthin producing yeast Xanthophyllomyces dendrorhous have been isolated from different cold regions around the earth, and the presence of double stranded RNA (dsRNA) elements was described in some isolates. This kind of viruses is widely distributed among yeasts and filamentous fungi and, although generally are cryptic in function, their studies have been a key factor in the knowledge of important fungi. In this work, the characterization and genetic re...

  11. Non-Invasive Delivery of dsRNA into De-Waxed Tick Eggs by Electroporation.

    Directory of Open Access Journals (Sweden)

    Newton Ruiz

    Full Text Available RNA interference-mediated gene silencing was shown to be an efficient tool for validation of targets that may become anti-tick vaccine components. Here, we demonstrate the application of this approach in the validation of components of molecular signaling cascades, such as the Protein Kinase B (AKT/Glycogen Synthase Kinase (GSK axis during tick embryogenesis. It was shown that heptane and hypochlorite treatment of tick eggs can remove wax, affecting corium integrity and but not embryo development. Evidence of AKT and GSK dsRNA delivery into de-waxed eggs of via electroporation is provided. Primers designed to amplify part of the dsRNA delivered into the electroporated eggs dsRNA confirmed its entry in eggs. In addition, it was shown that electroporation is able to deliver the fluorescent stain, 4',6-diamidino-2-phenylindole (DAPI. To confirm gene silencing, a second set of primers was designed outside the dsRNA sequence of target gene. In this assay, the suppression of AKT and GSK transcripts (approximately 50% reduction in both genes was demonstrated in 7-day-old eggs. Interestingly, silencing of GSK in 7-day-old eggs caused 25% reduction in hatching. Additionally, the effect of silencing AKT and GSK on embryo energy metabolism was evaluated. As expected, knockdown of AKT, which down regulates GSK, the suppressor of glycogen synthesis, decreased glycogen content in electroporated eggs. These data demonstrate that electroporation of de-waxed R. microplus eggs could be used for gene silencing in tick embryos, and improve the knowledge about arthropod embryogenesis.

  12. Predictive and Interpretive Simulation of Green Fluorescent Protein Expression in Reporter Bacteria

    OpenAIRE

    Leveau, Johan H. J.; Lindow, Steven E.

    2001-01-01

    We have formulated a numerical model that simulates the accumulation of green fluorescent protein (GFP) in bacterial cells from a generic promoter-gfp fusion. The model takes into account the activity of the promoter, the time it takes GFP to mature into its fluorescent form, the susceptibility of GFP to proteolytic degradation, and the growth rate of the bacteria. From the model, we derived a simple formula with which promoter activity can be inferred easily and quantitatively from actual me...

  13. The Bacillus subtilis and Lactic Acid Bacteria Probiotics Influences Intestinal Mucin Gene Expression, Histomorphology and Growth Performance in Broilers.

    Science.gov (United States)

    Aliakbarpour, H R; Chamani, M; Rahimi, G; Sadeghi, A A; Qujeq, D

    2012-09-01

    The aim of the present study was to evaluate the effect of commercial monostrain and multistrain probiotics in diets on growth performance, intestinal morphology and mucin gene (MUC2) expression in broiler chicks. Three hundred seventy-eight 1-d-old male Arian broiler chicks were allocated in 3 experimental groups for 6 wk. The birds were fed on a corn-soybean based diet and depending on the addition were labeled as follows: control-unsupplemented (C), birds supplemented with Bacillus subtilis (BS) and lactic acid bacteria (LAB) based probiotics. Each treatment had 6 replicates of 21 broilers each. Treatment effects on body weight, feed intake, feed conversion ratio and biomarkers such as intestinal goblet cell density, villus length, villus width, and mucin gene expression were determined. Total feed intake did not differ significantly between control birds and those fed a diet with probiotics (p>0.05). However, significant differences in growth performance were found. Final body weight at 42 d of age was higher in birds fed a diet with probiotics compared to those fed a diet without probiotic (pfeed conversion rate (FCR) compared with control birds (p<0.05). No differences in growth performance were observed in birds fed different types of probiotic supplemented diets. Inclusion of lactic acid bacteria based probiotic in the diets significantly increased goblet cell number and villus length (p<0.05). Furthermore, diets with Bacillus subtilis based probiotics significantly increased gene expression (p<0.05), with higher intestinal MUC2 mRNA in birds fed diet with probiotics compared to those fed the control diet. In BS and LAB probiotic fed chicks, higher growth performance may be related to higher expression of the MUC2 gene in goblet cells and/or morphological change of small intestinal tract. The higher synthesis of the mucin gene after probiotic administration may positively affect bacterial interactions in the intestinal digestive tract, intestinal mucosal

  14. Intercellular and intracellular signalling systems that globally control the expression of virulence genes in plant pathogenic bacteria.

    Science.gov (United States)

    Ham, Jong Hyun

    2013-04-01

    Plant pathogenic bacteria utilize complex signalling systems to control the expression of virulence genes at the cellular level and within populations. Quorum sensing (QS), an important intercellular communication mechanism, is mediated by different types of small molecules, including N-acyl homoserine lactones (AHLs), fatty acids and small proteins. AHL-mediated signalling systems dependent on the LuxI and LuxR family proteins play critical roles in the virulence of a wide range of Gram-negative plant pathogenic bacteria belonging to the Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria. Xanthomonas spp. and Xylella fastidiosa, members of the Gammaproteobacteria, however, possess QS systems that are mediated by fatty acid-type diffusible signal factors (DSFs). Recent studies have demonstrated that Ax21, a 194-amino-acid protein in Xanthomonas oryzae pv. oryzae, plays dual functions in activating a rice innate immune pathway through binding to the rice XA21 pattern recognition receptor and in regulating bacterial virulence and biofilm formation as a QS signal molecule. In xanthomonads, DSF-mediated QS systems are connected with the signalling pathways mediated by cyclic diguanosine monophosphate (c-di-GMP), which functions as a second messenger for the control of virulence gene expression in these bacterial pathogens. PMID:23186372

  15. Nisin-induced Expression of Pediocin in Dairy Lactic Acid Bacteria

    Science.gov (United States)

    To test if a single vector, nisin-controlled expression (NICE) system could be used to regulate expression of the pediocin operon in Streptococcus thermophilus, Lactococcus lactis subsp. lactis and Lactobacillus casei, the intact pediocin operon was cloned into pMSP3535 immediately down stream of th...

  16. Analysis of the Microprocessor in Dictyostelium: The Role of RbdB, a dsRNA Binding Protein

    Science.gov (United States)

    Buttlar, Jann; Friedrich, Michael; Zenk, Fides; Boesler, Benjamin; Hammann, Christian; Nellen, Wolfgang

    2016-01-01

    We identified the dsRNA binding protein RbdB as an essential component in miRNA processing in Dictyostelium discoideum. RbdB is a nuclear protein that accumulates, together with Dicer B, in nucleolar foci reminiscent of plant dicing bodies. Disruption of rbdB results in loss of miRNAs and accumulation of primary miRNAs. The phenotype can be rescued by ectopic expression of RbdB thus allowing for a detailed analysis of domain function. The lack of cytoplasmic dsRBD proteins involved in miRNA processing, suggests that both processing steps take place in the nucleus thus resembling the plant pathway. However, we also find features e.g. in the domain structure of Dicer which suggest similarities to animals. Reduction of miRNAs in the rbdB- strain and their increase in the Argonaute A knock out allowed the definition of new miRNAs one of which appears to belong to a new non-canonical class. PMID:27272207

  17. Analysis of the Microprocessor in Dictyostelium: The Role of RbdB, a dsRNA Binding Protein.

    Directory of Open Access Journals (Sweden)

    Doreen Meier

    2016-06-01

    Full Text Available We identified the dsRNA binding protein RbdB as an essential component in miRNA processing in Dictyostelium discoideum. RbdB is a nuclear protein that accumulates, together with Dicer B, in nucleolar foci reminiscent of plant dicing bodies. Disruption of rbdB results in loss of miRNAs and accumulation of primary miRNAs. The phenotype can be rescued by ectopic expression of RbdB thus allowing for a detailed analysis of domain function. The lack of cytoplasmic dsRBD proteins involved in miRNA processing, suggests that both processing steps take place in the nucleus thus resembling the plant pathway. However, we also find features e.g. in the domain structure of Dicer which suggest similarities to animals. Reduction of miRNAs in the rbdB- strain and their increase in the Argonaute A knock out allowed the definition of new miRNAs one of which appears to belong to a new non-canonical class.

  18. Predictive and interpretive simulation of green fluorescent protein expression in reporter bacteria.

    Science.gov (United States)

    Leveau, J H; Lindow, S E

    2001-12-01

    We have formulated a numerical model that simulates the accumulation of green fluorescent protein (GFP) in bacterial cells from a generic promoter-gfp fusion. The model takes into account the activity of the promoter, the time it takes GFP to mature into its fluorescent form, the susceptibility of GFP to proteolytic degradation, and the growth rate of the bacteria. From the model, we derived a simple formula with which promoter activity can be inferred easily and quantitatively from actual measurements of GFP fluorescence in growing bacterial cultures. To test the usefulness of the formula, we determined the activity of the LacI-repressible promoter P(A1/O4/O3) in response to increasing concentrations of the inducer IPTG (isopropyl-beta-D-thiogalactopyranoside) and were able to predict cooperativity between the LacI repressors on each of the two operator sites within P(A1/O4/O3). Aided by the model, we also quantified the proteolytic degradation of GFP[AAV], GFP[ASV], and GFP[LVA], which are popular variants of GFP with reduced stability in bacteria. Best described by Michaelis-Menten kinetics, the rate at which these variants were degraded was a function of the activity of the promoter that drives their synthesis: a weak promoter yielded proportionally less GFP fluorescence than a strong one. The degree of disproportionality is species dependent: the effect was more pronounced in Erwinia herbicola than in Escherichia coli. This phenomenon has important implications for the interpretation of fluorescence from bacterial reporters based on these GFP variants. The model furthermore predicted a significant effect of growth rate on the GFP content of individual bacteria, which if not accounted for might lead to misinterpretation of GFP data. In practice, our model will be helpful for prior testing of different combinations of promoter-gfp fusions that best fit the application of a particular bacterial reporter strain, and also for the interpretation of actual GFP

  19. Mycobacterium tuberculosis RNA expression patterns in sputum bacteria indicate secreted Esx factors contributing to growth are highly expressed in active disease

    Directory of Open Access Journals (Sweden)

    Archana eBukka

    2012-01-01

    Full Text Available To identify factors contributing to the ability of tubercle bacilli to grow in the lung during active infection, we analyzed RNA expression patterns in bacteria present in patient sputum. Prominent among bacterial transcripts identified were those encoding secreted peptides of the Esat-6 subfamily that includes EsxK and EsxL (Rv1197 and Rv1198. H37Rv esxKL and esxJI transcripts were differentially expressed under different growth conditions, and disruption of these genes altered growth phase kinetics in typical laboratory batch broth cultures. These growth defects, including the reduced intracellular growth of an ΔesxKL mutant in primary human macrophages, were reversed by either low multiplicity co-infection or co-culture with wild-type bacteria, demonstrating the ability of the secreted factors to rescue isogenic mutants. Complementing either only esxL or esxI alone (Rv1198 or Rv1037c also reduced observed growth defects, indicating these genes encode factors capable of contributing to growth. Our studies indicate that the M. tuberculosis Mtb9.9 family secreted factors EsxL and EsxI can act in trans to modulate growth of intracellular bacteria, and are highly expressed during active human lung infection. EsxL (Rv1197 and Rv1198. The H37Rv genome contains 4 additional and nearly identical pairs of co-linear open reading frames designated esx JI, esx MN, esx PO, and esxWV. These ORFs show little sequence similarity to esxBA (Cfp10-Esat-6, other than encoding 2 short ~100 residue peptides with the 5’ ORF encoding a variant carboxyl-terminal 'QILSS' motif and the 3’ encoding the Mtb9.9 family of secreted T-cell antigens. All contain a central ‘WXG100’ esx family structural motif, and are thought to encode effectors of an uncharacterized ESX-5 transport system. esxKL and esxJI transcripts were differentially expressed under different growth conditions, and disruption of these genes altered different growth phase kinetics in typical

  20. Research in Undergraduate Instruction: A Biotech Lab Project for Recombinant DNA Protein Expression in Bacteria

    Science.gov (United States)

    Brockman, Mark; Ordman, Alfred B.; Campbell, A. Malcolm

    1996-06-01

    In the sophomore-level Molecular Biology and Biotechnology course at Beloit College, students learn basic methods in molecular biology in the context of pursuing a semester-long original research project. We are exploring how DNA sequence affects expression levels of proteins. A DNA fragment encoding all or part of the guanylate monokinase (gmk) sequence is cloned into pSP73 and expressed in E. coli. A monoclonal antibody is made to gmk. The expression level of gmk is determined by SDS gel elctrophoresis, a Western blot, and an ELISA assay. Over four years, an increase in enrollment in the course from 9 to 34 students, the 85% of majors pursuing advanced degrees, and course evaluations all support the conclusion that involving students in research during undergraduate courses encourages them to pursue careers in science.

  1. Nuclear Factor 90, a cellular dsRNA binding protein inhibits the HIV Rev-export function

    Directory of Open Access Journals (Sweden)

    St-Laurent Georges

    2006-11-01

    Full Text Available Abstract Background The HIV Rev protein is known to facilitate export of incompletely spliced and unspliced viral transcripts to the cytoplasm, a necessary step in virus life cycle. The Rev-mediated nucleo-cytoplasmic transport of nascent viral transcripts, dependents on interaction of Rev with the RRE RNA structural element present in the target RNAs. The C-terminal variant of dsRNA-binding nuclear protein 90 (NF90ctv has been shown to markedly attenuate viral replication in stably transduced HIV-1 target cell line. Here we examined a mechanism of interference of viral life cycle involving Rev-NF90ctv interaction. Results Since Rev:RRE complex formations depend on protein:RNA and protein:protein interactions, we investigated whether the expression of NF90ctv might interfere with Rev-mediated export of RRE-containing transcripts. When HeLa cells expressed both NF90ctv and Rev protein, we observed that NF90ctv inhibited the Rev-mediated RNA transport. In particular, three regions of NF90ctv protein are involved in blocking Rev function. Moreover, interaction of NF90ctv with the RRE RNA resulted in the expression of a reporter protein coding sequences linked to the RRE structure. Moreover, Rev influenced the subcellular localization of NF90ctv, and this process is leptomycin B sensitive. Conclusion The dsRNA binding protein, NF90ctv competes with HIV Rev function at two levels, by competitive protein:protein interaction involving Rev binding to specific domains of NF90ctv, as well as by its binding to the RRE-RNA structure. Our results are consistent with a model of Rev-mediated HIV-1 RNA export that envisions Rev-multimerization, a process interrupted by NF90ctv.

  2. Structural Analysis of dsRNA Binding to Anti-viral Pattern Recognition Receptors LGP2 and MDA5.

    Science.gov (United States)

    Uchikawa, Emiko; Lethier, Mathilde; Malet, Hélène; Brunel, Joanna; Gerlier, Denis; Cusack, Stephen

    2016-05-19

    RIG-I and MDA5 sense virus-derived short 5'ppp blunt-ended or long dsRNA, respectively, causing interferon production. Non-signaling LGP2 appears to positively and negatively regulate MDA5 and RIG-I signaling, respectively. Co-crystal structures of chicken (ch) LGP2 with dsRNA display a fully or semi-closed conformation depending on the presence or absence of nucleotide. LGP2 caps blunt, 3' or 5' overhang dsRNA ends with 1 bp longer overall footprint than RIG-I. Structures of 1:1 and 2:1 complexes of chMDA5 with short dsRNA reveal head-to-head packing rather than the polar head-to-tail orientation described for long filaments. chLGP2 and chMDA5 make filaments with a similar axial repeat, although less co-operatively for chLGP2. Overall, LGP2 resembles a chimera combining a MDA5-like helicase domain and RIG-I like CTD supporting both stem and end binding. Functionally, RNA binding is required for LGP2-mediated enhancement of MDA5 activation. We propose that LGP2 end-binding may promote nucleation of MDA5 oligomerization on dsRNA. PMID:27203181

  3. Hairpin dsRNA does not trigger RNA interference in Candida albicans cells

    OpenAIRE

    Staab, Janet F.; White, Theodore C.; Marr, Kieren A.

    2010-01-01

    RNA interference/silencing mechanisms triggered by double-stranded RNA (dsRNA) have been described in many eukaryotes, including fungi. These mechanisms have in common small RNA molecules (siRNAs or microRNAs) originating from dsRNAs that, together with the effector protein Argonaute, mediate silencing. The genome of the fungal pathogen Candida albicans harbours a well-conserved Argonaute and a non-canonical Dicer, essential members of silencing pathways. Prototypical siRNAs are detected as m...

  4. A empiric expression to interpret the approximation of {lambda} cI phages to E. coli C{sub 6}00 bacteria; Determinacion experimental de la cinetica de laproximacion del fago /{lambda}cl a la bacteria E. coli C{sub 6}00 Expression empirica interpretativa del proceso

    Energy Technology Data Exchange (ETDEWEB)

    Garces, F.; Vidania, R. de

    1984-07-01

    In general the process of adsorption of phages to bacteria is considered in the bibliography as an statistical process. In this work we use an empiric expression which allows to interpret the approximation of {lambda}cI pages to E. coli C{sub 6}00 bacteria. This expression introduces some changes respect to a pure statistical description of the approximation process. (Author) 26 refs.

  5. Effects of dsRNA on proliferative reaction and UDS of splenocytes in X-irradiated mice

    International Nuclear Information System (INIS)

    The effects of different concentrations of dsRNA on proliferative reaction of splenocytes induced by ConA and LPS and on UDS of splenocytes in 1.5 Gy X-irradiated mice are reported. The results show that the proliferative reaction of splenocytes induced by ConA and LPS in experimental groups increased significantly compared with that in positive group, and show that UDS in experimental groups was also much enhanced compared with that in positive group when concentration of dsRNA was higher than 6.25 mg/kg body weight. It is suggested that dsRNA increases proliferative reaction of splenocytes induced by ConA and LPA and inhibits decrease of UDS induced by X-rays

  6. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria

    DEFF Research Database (Denmark)

    Andersen, Jens Bo; Sternberg, Claus; Poulsen, Lars K.;

    1998-01-01

    Use of the green fluorescent protein (Gfp) from the jellyfish Aequorea victoria ia is a powerful method for nondestructive in situ monitoring, since expression of green fluorescence does not require any substrate addition. To expand the use of Gfp as a reporter protein, new variants have been...... constructed by the addition of short peptide sequences to the C-terminal end of intact Gfp. This rendered the Gfp susceptible to the action of indigenous housekeeping proteases, resulting in protein variants with half-lives ranging from 40 min to a few hours when synthesized in Escherichia coli...

  7. Effect of PEG biofunctional spacers and TAT peptide on dsRNA loading on gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, Vanesa; Conde, Joao; Hernandez, Yulan [Universidad de Zaragoza, Instituto de Nanociencia de Aragon (Spain); Baptista, Pedro V. [Universidade Nova de Lisboa, Departamento de Ciencias da Vida, Faculdade de Ciencias e Tecnologia, Centro de Investigacao em Genetica Molecular Humana (Portugal); Ibarra, M. R.; Fuente, Jesus M. de la, E-mail: jmfuente@unizar.es [Universidad de Zaragoza, Instituto de Nanociencia de Aragon (Spain)

    2012-06-15

    The surface chemistry of gold nanoparticles (AuNPs) plays a critical role in the self-assembly of thiolated molecules and in retaining the biological function of the conjugated biomolecules. According to the well-established gold-thiol interaction the undefined ionic species on citrate-reduced gold nanoparticle surface can be replaced with a self-assembled monolayer of certain thiolate derivatives and other biomolecules. Understanding the effect of such derivatives in the functionalization of several types of biomolecules, such as PEGs, peptides or nucleic acids, has become a significant challenge. Here, an approach to attach specific biomolecules to the AuNPs ({approx}14 nm) surface is presented together with a study of their effect in the functionalization with other specific derivatives. The effect of biofunctional spacers such as thiolated poly(ethylene glycol) (PEG) chains and a positive peptide, TAT, in dsRNA loading on AuNPs is reported. Based on the obtained data, we hypothesize that loading of oligonucleotides onto the AuNP surface may be controlled by ionic and weak interactions positioning the entry of the oligo through the PEG layer. We demonstrate that there is a synergistic effect of the TAT peptide and PEG chains with specific functional groups on the enhancement of dsRNA loading onto AuNPs.

  8. Effect of PEG biofunctional spacers and TAT peptide on dsRNA loading on gold nanoparticles

    International Nuclear Information System (INIS)

    The surface chemistry of gold nanoparticles (AuNPs) plays a critical role in the self-assembly of thiolated molecules and in retaining the biological function of the conjugated biomolecules. According to the well-established gold–thiol interaction the undefined ionic species on citrate-reduced gold nanoparticle surface can be replaced with a self-assembled monolayer of certain thiolate derivatives and other biomolecules. Understanding the effect of such derivatives in the functionalization of several types of biomolecules, such as PEGs, peptides or nucleic acids, has become a significant challenge. Here, an approach to attach specific biomolecules to the AuNPs (∼14 nm) surface is presented together with a study of their effect in the functionalization with other specific derivatives. The effect of biofunctional spacers such as thiolated poly(ethylene glycol) (PEG) chains and a positive peptide, TAT, in dsRNA loading on AuNPs is reported. Based on the obtained data, we hypothesize that loading of oligonucleotides onto the AuNP surface may be controlled by ionic and weak interactions positioning the entry of the oligo through the PEG layer. We demonstrate that there is a synergistic effect of the TAT peptide and PEG chains with specific functional groups on the enhancement of dsRNA loading onto AuNPs.

  9. Discovery of a dsRNA virus infecting the marine photosynthetic protist Micromonas pusilla

    International Nuclear Information System (INIS)

    We report the isolation of the first double-stranded (ds) RNA virus in the family Reoviridae that infects a protist (microalga Micromonas pusilla, Prasinophyceae). The dsRNA genome was composed of 11 segments ranging between 0.8 and 5.8 kb, with a total size of approximately 25.5 kb. The virus (MpRNAV-01B) could not be assigned to the genus level because host type, genome size, and number of segments smaller than 2 kb did not correspond to either of the two existing 11-segmented dsRNA genera Rotavirus and Aquareovirus. MpRNAV-01B has a particle size of 65-80 nm, a narrow host range, a latent period of 36 h, and contains five major proteins (120, 95, 67, 53, and 32 kDa). MpRNAV-01B was stable to freeze-thawing, resistant to chloroform, ether, nonionic detergents, chelating and reducing agents. The virus was inactivated at temperatures above 35 deg. C and by ionic detergent, ethanol, acetone, and acidic conditions (pH 2-5)

  10. Operator Sequence Alters Gene Expression Independently of Transcription Factor Occupancy in Bacteria

    Directory of Open Access Journals (Sweden)

    Hernan G. Garcia

    2012-07-01

    Full Text Available A canonical quantitative view of transcriptional regulation holds that the only role of operator sequence is to set the probability of transcription factor binding, with operator occupancy determining the level of gene expression. In this work, we test this idea by characterizing repression in vivo and the binding of RNA polymerase in vitro in experiments where operators of various sequences were placed either upstream or downstream from the promoter in Escherichia coli. Surprisingly, we find that operators with a weaker binding affinity can yield higher repression levels than stronger operators. Repressor bound to upstream operators modulates promoter escape, and the magnitude of this modulation is not correlated with the repressor-operator binding affinity. This suggests that operator sequences may modulate transcription by altering the nature of the interaction of the bound transcription factor with the transcriptional machinery, implying a new layer of sequence dependence that must be confronted in the quantitative understanding of gene expression.

  11. Nuclear Factor 90 uses an ADAR2-like binding mode to recognize specific bases in dsRNA

    OpenAIRE

    Jayachandran, Uma; Grey, Heather; Cook, Atlanta

    2016-01-01

    Nuclear factors 90 and 45 (NF90 and NF45) form a protein complex involved in the posttranscriptional control of many genes in vertebrates. NF90 is a member of the dsRNA binding domain (dsRBD) family of proteins. RNA binding partners identified so far include elements in 3' untranslated regions of specific mRNAs and several noncoding RNAs. In NF90, a tandem pair of dsRBDs separated by a natively unstructured segment confers dsRNA binding activity. We determined a crystal structure of the tande...

  12. Nuclear factor 90 uses an ADAR2-like binding mode to recognize specific bases in dsRNA

    OpenAIRE

    Jayachandran, Uma; Grey, Heather; Cook, Atlanta

    2015-01-01

    Nuclear factors 90 and 45 (NF90 and NF45) form a protein complex involved in the post-transcriptional control of many genes in vertebrates. NF90 is a member of the dsRNA binding domain (dsRBD) family of proteins. RNA binding partners identified so far include elements in 3′ untranslated regions of specific mRNAs and several non-coding RNAs. In NF90, a tandem pair of dsRBDs separated by a natively unstructured segment confers dsRNA binding activity. We determined a crystal structure of the tan...

  13. Studying Gene Expression: Database Searches and Promoter Fusions to Investigate Transcriptional Regulation in Bacteria

    Directory of Open Access Journals (Sweden)

    Betsy M. Martinez- Vaz

    2010-04-01

    Full Text Available A laboratory project was designed to illustrate how to search biological databases and utilize the information provided by these resources to investigate transcriptional regulation in Escherichia coli. The students searched several databases (NCBI Genomes, RegulonDB and EcoCyc to learn about gene function, regulation, and the organization of transcriptional units. A fluorometer and GFP promoter fusions were used to obtain fluorescence data and measure changes in transcriptional activity. The class designed and performed experiments to investigate the regulation of genes necessary for biosynthesis of amino acids and how expression is affected by environmental signals and transcriptional regulators. Assessment data showed that this activity enhanced students’ knowledge of databases, reporter genes and transcriptional regulation.

  14. The Effect of Oral Administration of dsRNA on Viral Replication and Mortality in Bombus terrestris

    Directory of Open Access Journals (Sweden)

    Niels Piot

    2015-06-01

    Full Text Available Israeli acute paralysis virus (IAPV, a single-stranded RNA virus, has a worldwide distribution and affects honeybees as well as other important pollinators. IAPV infection in honeybees has been successfully repressed by exploiting the RNA interference (RNAi pathway of the insect’s innate immune response with virus-specific double stranded RNA (dsRNA. Here we investigated the effect of IAPV infection in the bumblebee Bombus terrestris and its tissue tropism. B. terrestris is a common pollinator of wild flowers in Europe and is used for biological pollination in agriculture. Infection experiments demonstrated a similar pathology and tissue tropism in bumblebees as reported for honeybees. The effect of oral administration of virus-specific dsRNA was examined and resulted in an effective silencing of the virus, irrespective of the length. Interestingly, we observed that non-specific dsRNA was also efficient against IAPV. However further study is needed to clarify the precise mechanism behind this effect. Finally we believe that our data are indicative of the possibility to use dsRNA for a broad range viral protection in bumblebees.

  15. The Effect of Oral Administration of dsRNA on Viral Replication and Mortality in Bombus terrestris.

    Science.gov (United States)

    Piot, Niels; Snoeck, Simon; Vanlede, Maarten; Smagghe, Guy; Meeus, Ivan

    2015-06-01

    Israeli acute paralysis virus (IAPV), a single-stranded RNA virus, has a worldwide distribution and affects honeybees as well as other important pollinators. IAPV infection in honeybees has been successfully repressed by exploiting the RNA interference (RNAi) pathway of the insect's innate immune response with virus-specific double stranded RNA (dsRNA). Here we investigated the effect of IAPV infection in the bumblebee Bombus terrestris and its tissue tropism. B. terrestris is a common pollinator of wild flowers in Europe and is used for biological pollination in agriculture. Infection experiments demonstrated a similar pathology and tissue tropism in bumblebees as reported for honeybees. The effect of oral administration of virus-specific dsRNA was examined and resulted in an effective silencing of the virus, irrespective of the length. Interestingly, we observed that non-specific dsRNA was also efficient against IAPV. However further study is needed to clarify the precise mechanism behind this effect. Finally we believe that our data are indicative of the possibility to use dsRNA for a broad range viral protection in bumblebees. PMID:26110584

  16. Interaction of packaging motor with the polymerase complex of dsRNA bacteriophage

    International Nuclear Information System (INIS)

    Many viruses employ molecular motors to package their genomes into preformed empty capsids (procapsids). In dsRNA bacteriophages the packaging motor is a hexameric ATPase P4, which is an integral part of the multisubunit procapsid. Structural and biochemical studies revealed a plausible RNA-translocation mechanism for the isolated hexamer. However, little is known about the structure and regulation of the hexamer within the procapsid. Here we use hydrogen-deuterium exchange and mass spectrometry to delineate the interactions of the P4 hexamer with the bacteriophage phi12 procapsid. P4 associates with the procapsid via its C-terminal face. The interactions also stabilize subunit interfaces within the hexamer. The conformation of the virus-bound hexamer is more stable than the hexamer in solution, which is prone to spontaneous ring openings. We propose that the stabilization within the viral capsid increases the packaging processivity and confers selectivity during RNA loading

  17. Heavy metal pollution exerts reduction/adaptation in the diversity and enzyme expression profile of heterotrophic bacteria in Cochin estuary, India

    Energy Technology Data Exchange (ETDEWEB)

    Jose, Jiya; Giridhar, Rajesh; Anas, Abdulaziz [National Institute of Oceanography (CSIR), Regional Centre, PB 1913, Cochin, Kerala 682018 (India); Loka Bharathi, P.A. [National Institute of Oceanography (CSIR), Dona Paula, Goa 403004 (India); Nair, Shanta, E-mail: shanta@nio.org [National Institute of Oceanography (CSIR), Dona Paula, Goa 403004 (India)

    2011-10-15

    Over the past three decades heavy metal pollution has increased substantially in Cochin estuary, south west coast of India. Here we studied the distribution, diversity and enzyme expression profile of culturable microbial population along a pollution gradient. The distribution of resistance against 5 mM concentration of Zn, Co, Ni and Cu was observed among 90-100% of bacterial isolates retrieved from highly polluted Eloor, whereas it was less than 40% in Vypin and Munambam. Similarly, there was a difference in the distribution and diversity of bacterial phyla with predominance of Proteobacteria in Eloor and Firmicutes in Munambam and Vypin. We observed that 75-100% of the organisms retrieved from Eloor had low levels of expression for hydrolytic enzyme. In conclusion, the heavy metal pollution in Cochin estuary brought in reduction/adaptation in the distribution, diversity and enzyme expression profile of bacteria, which may impart adverse impacts on ecosystem functioning. - Highlights: > Substantial proliferation of heavy metal pollution in Cochin estuary. > 90-100% of bacteria were resistant against heavy metals. > Proteobacteria dominated in the hot spot sites. > Low Enzyme expression profile among microorganisms in hot spot sites. - Heavy metal pollution exerts pressure on the diversity and enzyme expression profile of estuarine bacteria.

  18. Heavy metal pollution exerts reduction/adaptation in the diversity and enzyme expression profile of heterotrophic bacteria in Cochin estuary, India

    International Nuclear Information System (INIS)

    Over the past three decades heavy metal pollution has increased substantially in Cochin estuary, south west coast of India. Here we studied the distribution, diversity and enzyme expression profile of culturable microbial population along a pollution gradient. The distribution of resistance against 5 mM concentration of Zn, Co, Ni and Cu was observed among 90-100% of bacterial isolates retrieved from highly polluted Eloor, whereas it was less than 40% in Vypin and Munambam. Similarly, there was a difference in the distribution and diversity of bacterial phyla with predominance of Proteobacteria in Eloor and Firmicutes in Munambam and Vypin. We observed that 75-100% of the organisms retrieved from Eloor had low levels of expression for hydrolytic enzyme. In conclusion, the heavy metal pollution in Cochin estuary brought in reduction/adaptation in the distribution, diversity and enzyme expression profile of bacteria, which may impart adverse impacts on ecosystem functioning. - Highlights: → Substantial proliferation of heavy metal pollution in Cochin estuary. → 90-100% of bacteria were resistant against heavy metals. → Proteobacteria dominated in the hot spot sites. → Low Enzyme expression profile among microorganisms in hot spot sites. - Heavy metal pollution exerts pressure on the diversity and enzyme expression profile of estuarine bacteria.

  19. Marburg virus VP35 can both fully coat the backbone and cap the ends of dsRNA for interferon antagonism.

    Directory of Open Access Journals (Sweden)

    Shridhar Bale

    2012-09-01

    Full Text Available Filoviruses, including Marburg virus (MARV and Ebola virus (EBOV, cause fatal hemorrhagic fever in humans and non-human primates. All filoviruses encode a unique multi-functional protein termed VP35. The C-terminal double-stranded (dsRNA-binding domain (RBD of VP35 has been implicated in interferon antagonism and immune evasion. Crystal structures of the VP35 RBD from two ebolaviruses have previously demonstrated that the viral protein caps the ends of dsRNA. However, it is not yet understood how the expanses of dsRNA backbone, between the ends, are masked from immune surveillance during filovirus infection. Here, we report the crystal structure of MARV VP35 RBD bound to dsRNA. In the crystal structure, molecules of dsRNA stack end-to-end to form a pseudo-continuous oligonucleotide. This oligonucleotide is continuously and completely coated along its sugar-phosphate backbone by the MARV VP35 RBD. Analysis of dsRNA binding by dot-blot and isothermal titration calorimetry reveals that multiple copies of MARV VP35 RBD can indeed bind the dsRNA sugar-phosphate backbone in a cooperative manner in solution. Further, MARV VP35 RBD can also cap the ends of the dsRNA in solution, although this arrangement was not captured in crystals. Together, these studies suggest that MARV VP35 can both coat the backbone and cap the ends, and that for MARV, coating of the dsRNA backbone may be an essential mechanism by which dsRNA is masked from backbone-sensing immune surveillance molecules.

  20. Comparative in vivo gene expression of the closely related bacteria Photorhabdus temperata and Xenorhabdus koppenhoeferi upon infection of the same insect host, Rhizotrogus majalis

    OpenAIRE

    Sreevatsan Srinand; An Ruisheng; Grewal Parwinder S

    2009-01-01

    Abstract Background Photorhabdus and Xenorhabdus are Gram-negative, phylogenetically related, enterobacteria, forming mutualism with the entomopathogenic nematodes Heterorhabditis and Steinernema, respectively. The mutualistic bacteria living in the intestines of the nematode infective juveniles are pathogenic to the insect upon release by the nematodes into the insect hemolymph. Such a switch needs activation of genes that promote bacterial virulence. We studied in vivo gene expression in Ph...

  1. Dendritic Cell Activation and Cytokine Production Induced by Group B Neisseria meningitidis: Interleukin-12 Production Depends on Lipopolysaccharide Expression in Intact Bacteria

    OpenAIRE

    Dixon, Garth L. J.; Newton, Phillippa J.; Chain, Benjamin M; Katz, David; Andersen, Svein Rune; Wong, Simon; van der Ley, Peter; Klein, Nigel; Callard, Robin E.

    2001-01-01

    Interactions between dendritic cells (DCs) and microbial pathogens are fundamental to the generation of innate and adaptive immune responses. Upon stimulation with bacteria or bacterial components such as lipopolysaccharide (LPS), immature DCs undergo a maturation process that involves expression of costimulatory molecules, HLA molecules, and cytokines and chemokines, thus providing critical signals for lymphocyte development and differentiation. In this study, we investigated the response of...

  2. The approaches to mathematical modeling of recA, umuD genes expression in bacteria Escherichia coli after UV-irradiation

    International Nuclear Information System (INIS)

    The modern data of recA, umuD genes expression of the system of SOS-repair at classical object of radiation genetic researches - bacteria Escherichia coli, after ultraviolet irradiation are presented. Essentially a new method of analysis of SOS-genes expression is considered. It was shown that using this method it is possible to determine the character of induction of some SOS-genes more precisely. The possible approach to the mathematical description of SOS-response of cells by construction of the system of the differential equations is presented

  3. Post-transcriptional suppression of gene expression in Xenopus embryos by small interfering RNA

    OpenAIRE

    Zhou, Yuan; Ching, Yick-Pang; Kok, Kin Hang; Kung, Hsiang-fu; Jin, Dong-Yan

    2002-01-01

    Double-stranded RNA (dsRNA) induces gene-specific silencing in organisms from fungi to animals, a phenomenon known as RNA interference (RNAi). RNAi represents an evolutionarily conserved system to protect against aberrant expression of genes and a powerful tool for gene manipulation. Despite reports that RNAi can be induced in vertebrates, severe sequence-non-specific effects of long dsRNA have been documented in various systems. It has recently been shown in cultured mammalian cells that sma...

  4. Seed-borne viral dsRNA elements in three cultivated Raphanus and Brassica plants suggest three cryptoviruses.

    Science.gov (United States)

    Li, Liqiang; Liu, Jianning; Zhang, Qiong; Fu, Runying; Zhu, Xiwu; Li, Chao; Chen, Jishuang

    2016-04-01

    Since the 1970s, several dsRNA viruses, including Radish yellow edge virus, Raphanus sativus virus 1, Raphanus sativus virus 2, and Raphanus sativus virus 3, have been identified and reported as infecting radish. In the present study, in conjunction with a survey of seed-borne viruses in cultivated Brassica and Raphanus using the dsRNA diagnostic method, we discovered 3 novel cryptoviruses that infect Brassica and Raphanus: Raphanus sativus partitivirus 1, which infects radish (Raphanus sativus); Sinapis alba cryptic virus 1, which infects Sinapis alba; and Brassica rapa cryptic virus 1 (BrCV1), which infects Brassica rapa. The genomic organization of these cryptoviruses was analyzed and characterized. BrCV1 might represent the first plant partitivirus found in Gammapartitivirus. Additionally, the evolutionary relationships among all of the partitiviruses reported in Raphanus and Brassica were analyzed. PMID:26974503

  5. 外源基因在乳酸菌中的表达%Heterologous Genes Expressed in Lactic Acid Bacteria

    Institute of Scientific and Technical Information of China (English)

    阮孟斌; 周鹏

    2003-01-01

    乳酸菌(lactic acid bacteria,LAB)表达系统是近几年发展起来的一种高效表达系统,由于许多乳酸茵本身具有益生菌(probiotic)的特点,该系统已被广泛用于多种外源基因的表达.

  6. Distinct expression of alkaline phosphatase activity in epilimnetic bacteria: Implication for persistent DOC consumption in a P-limited reservoir

    Science.gov (United States)

    Tseng, Y.; Kao, S.; Shiah, F.

    2013-12-01

    In a P-deficient system, P availability usually controls the microbial activity and thus the ecosystem function. Thingstad et al. (1997) first addressed a 'Malfunctioning Microbial-loop' theory, which stated that low bacterial production (BP) caused by insufficient nutrient supply would result in DOC accumulation in an oligotrophic ecosystem. In this study we re-examined the theory by conducting seasonal patterns and correlations among soluble reactive phosphate (SRP) and DOC, microbial abundances (picocyanobacteria, bacteria, and heterotrophic nanoflagellate; HNF) and activities (primary production, bacterial production, and alkaline phosphatase activity; APA) coupled with enzyme-labeled fluorescence (ELF) assays on bacterioplankton in a subtropical reservoir sharing the common features, nitrate-replete and P-deficient, with most natural freshwater system during Oct 2007-Oct 2008. Persistently high APA was recorded during most of time, implying that the system was P-deficient. Size fractionated APA and ELF assay revealed that bacteria were the major APA contributor. However, significantly low epilimnion DOC was recorded during the stratified summer season accompanying with high BP and APA as well as high PP, implying that heterotrophic bacteria can well sustain in P-deficient system by utilizing DOP to rapidly lower down DOC under relatively high PP. Such findings oppose the 'Malfunctioning Microbial-loop' theory. On the other hand, strong epilimnetic DOC accumulation occurred in Oct 2007 under low light and low PP condition accompanying with high abundance of HNF, implying that HNF grazing may contribute to a certain degree of DOC accumulation. Correlation matrix supported our suggestions. This study testified the DOC dynamics in P-deficient ecosystem are tightly coupled with the source (PP and grazing) and sink (BP). We also suggested that in SRP-limited freshwater systems bacteria are capable of breaking down autochthonous DOC to reduce the chance of DOC

  7. Comparative in vivo gene expression of the closely related bacteria Photorhabdus temperata and Xenorhabdus koppenhoeferi upon infection of the same insect host, Rhizotrogus majalis

    Directory of Open Access Journals (Sweden)

    Sreevatsan Srinand

    2009-09-01

    Full Text Available Abstract Background Photorhabdus and Xenorhabdus are Gram-negative, phylogenetically related, enterobacteria, forming mutualism with the entomopathogenic nematodes Heterorhabditis and Steinernema, respectively. The mutualistic bacteria living in the intestines of the nematode infective juveniles are pathogenic to the insect upon release by the nematodes into the insect hemolymph. Such a switch needs activation of genes that promote bacterial virulence. We studied in vivo gene expression in Photorhabdus temperata and Xenorhabdus koppenhoeferi upon infection of the white grub Rhizotrogus majalis using selective capture of transcribed sequences technique. Results A total of 40 genes in P. temperata and 39 in X. koppenhoeferi were found to be upregulated in R. majalis hemolymph at 24 h post infection. Genomic presence or upregulation of these genes specific in either one of the bacterium was confirmed by the assay of comparative hybridization, and the changes of randomly selected genes were further validated by quantitative real-time PCR. The identified genes could be broadly divided into seven functional groups including cell surface structure, regulation, virulence and secretion, stress response, intracellular metabolism, nutrient scavenging, and unknown. The two bacteria shared more genes in stress response category than any other functional group. More than 60% of the identified genes were uniquely induced in either bacterium suggesting vastly different molecular mechanisms of pathogenicity to the same insect host. In P. temperata lysR gene encoding transcriptional activator was induced, while genes yijC and rseA encoding transcriptional repressors were induced in X. koppenhoeferi. Lipopolysaccharide synthesis gene lpsE was induced in X. koppenhoeferi but not in P. temperata. Except tcaC and hemolysin related genes, other virulence genes were different between the two bacteria. Genes involved in TCA cycle were induced in P. temperata whereas

  8. The dsRNA Virus Papaya Meleira Virus and an ssRNA Virus Are Associated with Papaya Sticky Disease.

    Directory of Open Access Journals (Sweden)

    Tathiana Ferreira Sá Antunes

    Full Text Available Papaya sticky disease, or "meleira", is one of the major diseases of papaya in Brazil and Mexico, capable of causing complete crop loss. The causal agent of sticky disease was identified as an isometric virus with a double stranded RNA (dsRNA genome, named papaya meleira virus (PMeV. In the present study, PMeV dsRNA and a second RNA band of approximately 4.5 kb, both isolated from latex of papaya plants with severe symptoms of sticky disease, were deep-sequenced. The nearly complete sequence obtained for PMeV dsRNA is 8,814 nucleotides long and contains two putative ORFs; the predicted ORF1 and ORF2 display similarity to capsid proteins and RdRp's, respectively, from mycoviruses tentatively classified in the family Totiviridae. The sequence obtained for the second RNA is 4,515 nucleotides long and contains two putative ORFs. The predicted ORFs 1 and 2 display 48% and 73% sequence identity, respectively, with the corresponding proteins of papaya virus Q, an umbravirus recently described infecting papaya in Ecuador. Viral purification in a sucrose gradient allowed separation of particles containing each RNA. Mass spectrometry analysis indicated that both PMeV and the second RNA virus (named papaya meleira virus 2, PMeV2 were encapsidated in particles formed by the protein encoded by PMeV ORF1. The presence of both PMeV and PMeV2 was confirmed in field plants showing typical symptoms of sticky disease. Interestingly, PMeV was detected alone in asymptomatic plants. Together, our results indicate that sticky disease is associated with double infection by PMeV and PMeV2.

  9. The dsRNA Virus Papaya Meleira Virus and an ssRNA Virus Are Associated with Papaya Sticky Disease.

    Science.gov (United States)

    Sá Antunes, Tathiana Ferreira; Amaral, Raquel J Vionette; Ventura, José Aires; Godinho, Marcio Tadeu; Amaral, Josiane G; Souza, Flávia O; Zerbini, Poliane Alfenas; Zerbini, Francisco Murilo; Fernandes, Patricia Machado Bueno

    2016-01-01

    Papaya sticky disease, or "meleira", is one of the major diseases of papaya in Brazil and Mexico, capable of causing complete crop loss. The causal agent of sticky disease was identified as an isometric virus with a double stranded RNA (dsRNA) genome, named papaya meleira virus (PMeV). In the present study, PMeV dsRNA and a second RNA band of approximately 4.5 kb, both isolated from latex of papaya plants with severe symptoms of sticky disease, were deep-sequenced. The nearly complete sequence obtained for PMeV dsRNA is 8,814 nucleotides long and contains two putative ORFs; the predicted ORF1 and ORF2 display similarity to capsid proteins and RdRp's, respectively, from mycoviruses tentatively classified in the family Totiviridae. The sequence obtained for the second RNA is 4,515 nucleotides long and contains two putative ORFs. The predicted ORFs 1 and 2 display 48% and 73% sequence identity, respectively, with the corresponding proteins of papaya virus Q, an umbravirus recently described infecting papaya in Ecuador. Viral purification in a sucrose gradient allowed separation of particles containing each RNA. Mass spectrometry analysis indicated that both PMeV and the second RNA virus (named papaya meleira virus 2, PMeV2) were encapsidated in particles formed by the protein encoded by PMeV ORF1. The presence of both PMeV and PMeV2 was confirmed in field plants showing typical symptoms of sticky disease. Interestingly, PMeV was detected alone in asymptomatic plants. Together, our results indicate that sticky disease is associated with double infection by PMeV and PMeV2. PMID:27166626

  10. Genetic susceptibility to S. aureus mastitis in sheep: differential expression of mammary epithelial cells in response to live bacteria or supernatant.

    Science.gov (United States)

    Bonnefont, Cécile M D; Rainard, Pascal; Cunha, Patricia; Gilbert, Florence B; Toufeer, Mehdi; Aurel, Marie-Rose; Rupp, Rachel; Foucras, Gilles

    2012-04-01

    Staphylococcus aureus is a prevalent pathogen for mastitis in dairy ruminants and is responsible for both clinical and subclinical mastitis. Mammary epithelial cells (MEC) represent not only a physical barrier against bacterial invasion but are also active players of the innate immune response permitting infection clearance. To decipher their functions in general and in animals showing different levels of genetic predisposition to Staphylococcus in particular, MEC from ewes undergoing a divergent selection on milk somatic cell count were stimulated by S. aureus. MEC response was also studied according to the stimulation condition with live bacteria or culture supernatant. The early MEC response was studied during a 5 h time course by microarray to identify differentially expressed genes with regard to the host genetic background and as a function of the conditions of stimulation. In both conditions of stimulation, metabolic processes were altered, the apoptosis-associated pathways were considerably modified, and inflammatory and immune responses were enhanced with the upregulation of il1a, il1b, and tnfa and several chemokines known to enhance neutrophil (cxcl8) or mononuclear leukocyte (ccl20) recruitment. Genes associated with oxidative stress were increased after live bacteria stimulation, whereas immune response-related genes were higher after supernatant stimulation in the early phase. Only 20 genes were differentially expressed between Staphylococcus spp-mastitis resistant and susceptible animals without any clearly defined role on the control of infection. To conclude, this suggests that MEC may not represent the cell type at the origin of the difference of mastitis susceptibility, at least as demonstrated in our genetic model. Supernatant or heat-killed S. aureus produce biological effects that are essentially different from those induced by live bacteria. PMID:22337903

  11. Antibacterial Activities of Selected Cameroonian Plants and Their Synergistic Effects with Antibiotics against Bacteria Expressing MDR Phenotypes

    Directory of Open Access Journals (Sweden)

    Stephen T. Lacmata

    2012-01-01

    Full Text Available The present work was designed to assess the antibacterial properties of the methanol extracts of some Cameroonian medicinal plants and the effect of their associations with currently used antibiotics on multidrug resistant (MDR Gram-negative bacteria overexpressing active efflux pumps. The antibacterial activities of twelve methanol extracts of medicinal plants were evaluated using broth microdilution. The results of this test showed that three extracts Garcinia lucida with the minimal inhibitory concentrations (MIC varying from 128 to 512 μg/mL, Garcinia kola (MIC of 256 to 1024 μg/mL, and Picralima nitida (MIC of 128 to 1024 μg/mL were active on all the twenty-nine studied bacteria including MDR phenotypes. The association of phenylalanine arginine β-naphthylamide (PAβN or efflux pumps inhibitor to different extracts did not modify their activities. At the concentration of MIC/2 and MIC/5, the extracts of P. nitida and G. kola improved the antibacterial activities of some commonly used antibiotics suggesting their synergistic effects with the tested antibiotics. The results of this study suggest that the tested plant extracts and mostly those from P. nitida, G. lucida and G. kola could be used alone or in association with common antibiotics in the fight of bacterial infections involving MDR strains.

  12. Establishment of tolerance to commensal bacteria requires a complex microbiota and is accompanied by decreased intestinal chemokine expression

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Metzdorff, S. B.; Zeuthen, Louise; Nellemann, Christine Lydia; Kristensen, Matilde Bylov; Licht, Tine Rask; Frøkiær, H.

    2012-01-01

    spleen displaying downregulation of Cxcl2 compared with germ-free animals on day 1 after birth. Colonization reduced the expression of genes involved in antigen presentation in the intestine-draining mesenteric lymph nodes, but not in the popliteal lymph nodes, as evidenced by gene expression on day 23...... after birth. We propose that microbial detection systems in the intestine are upregulated by colonization with a diverse microbiota, whereas expression of proinflammatory chemokines is reduced to avoid excess recruitment of immune cells to the maturing intestine....

  13. Intranasal Administration of dsRNA Analog Poly(I:C) Induces Interferon-α Receptor-Dependent Accumulation of Antigen Experienced T Cells in the Airways

    OpenAIRE

    McNally, Beth; Willette, Meredith; Ye, Fang; Partida-Sanchez, Santiago; Flaño, Emilio

    2012-01-01

    Polyriboinosinic-polyribocytoidylic acid (pIC), a synthetic dsRNA, acts as an adjuvant that boosts immune responses and protection. Intranasal (IN) administration of pIC has recently been used to adjuvant influenza virus vaccines; however, the effects of IN pIC administration on pulmonary T cell responses remain unclear. Here we show that a single IN administered dose of dsRNA into mice induced local Th1 chemokine production in the lungs and airways, and generated a biphasic and sustained mig...

  14. Lactic Acid Bacteria Improves Peyer's Patch Cell-Mediated Immunoglobulin A and Tight-Junction Expression in a Destructed Gut Microbial Environment.

    Science.gov (United States)

    Kim, Sung Hwan; Jeung, Woonhee; Choi, Il-Dong; Jeong, Ji-Woong; Lee, Dong Eun; Huh, Chul-Sung; Kim, Geun-Bae; Hong, Seong Soo; Shim, Jae-Jung; Lee, Jung Lyoul; Sim, Jae-Hun; Ahn, Young-Tae

    2016-06-28

    To evaluate the effects of lactic acid bacteria (LAB) on Peyer's patch cells, mice were treated with a high dose of kanamycin to disturb the gut microbial environment. The overarching goal was to explore the potential of LAB for use as a dietary probiotic that buffers the negative consequences of antibiotic treatment. In vitro, LAB stimulated the production of immunoglobulin A (IgA) from isolated Peyer's patch cells. Inflammation-related genes (TNF-α, IL-1β, and IL-8) were up-regulated in Caco-2 cells stimulated with lipopolysaccharide (LPS), while tight-junction-related genes (ZO-1 and occludin) were down-regulated; the effects of LPS on inflammatory gene and tight-junction gene expression were reversed by treatment with LAB. Mice treated with a high dose of kanamycin showed increased serum IgE levels and decreases in serum IgA and fecal IgA levels; the number of Peyer's patch cells decreased with kanamycin treatment. However, subsequent LAB treatment was effective in reducing the serum IgE level and recovering the serum IgA and fecal IgA levels, as well as the number of Peyer's patch cells. In addition, ZO-1 and occludin mRNA levels were up-regulated in the ileum tissues of mice receiving LAB treatment. Lactic acid bacteria can enhance the intestinal immune system by improving the integrity of the intestinal barrier and increasing the production of IgA in Peyer's patches. Lactic acid bacteria should be considered a potential probiotic candidate for improving intestinal immunity, particularly in mitigating the negative consequences of antibiotic use. PMID:26975767

  15. Incorporation of nisI-mediated nisin immunity improves vector-based nisin-controlled gene expression in lactic acid bacteria.

    Science.gov (United States)

    Oddone, Gian M; Mills, David A; Block, David E

    2009-05-01

    Lactic acid bacteria (LAB) have been used successfully to express a wide variety of recombinant proteins, ranging from flavor-active proteins to antibiotic peptides and oral vaccines. The nisin-controlled expression (NICE) system is the most prevalent of the systems for production of heterologous proteins in LAB. Previous optimization of the NICE system has revealed a strong limit on the concentration of the inducer nisin that can be tolerated by the culture of host cells. In this work, the nisin immunity gene, nisI, has been inserted into the recently reported pMSP3535H2 vector that contains the complete NICE system on a high-copy Escherichia coli-LAB shuttle vector. Fed-batch fermentation data show that Lactococcus lactis IL1403 cells transformed with the new vector, pMSP3535H3, tolerate a 5-fold increase in the concentration of the inducer nisin, and, at this elevated concentration, produce a 1.8-fold increased level of green fluorescent protein (GFP), a model recombinant protein. Therefore, the incorporation of nisI in the pMSP3535H3 NICE system described here unveils new ranges of induction parameters to be studied in the course of optimizing recombinant protein expression in LAB. PMID:19141301

  16. Transfer of herpes simplex virus thymidine kinase synthesized in bacteria by a high-expression plasmid to tissue culture cells by protoplast fusion

    International Nuclear Information System (INIS)

    The introduction of a protein into living tissue culture cells may permit the in vivo study of functions of the protein. The authors have previously described a high-efficiency-expression plasmid, pHETK2, containing the herpes simplex virus type 1 thymidine kinase (TK) gene which, upon temperature induction, causes TK to be synthesized as greater than 4% of the bacterial protein. In this report it is shown that enzymatically active TK was transferred to mouse Ltk- cells by polyethylene glycol-mediated fusion with protoplasts prepared from bacteria containing induced levels of TK. The presence of TK in the Ltk- cells was detected by the incorporation of [3H]thymidine into cell nuclei as measured by autoradiography

  17. Antibiotic resistance and multidrug-resistant efflux pumps expression in lactic acid bacteria isolated from pozol, a nonalcoholic Mayan maize fermented beverage.

    Science.gov (United States)

    Wacher-Rodarte, Maria Del Carmen; Trejo-Muñúzuri, Tanya Paulina; Montiel-Aguirre, Jesús Fernando; Drago-Serrano, Maria Elisa; Gutiérrez-Lucas, Raúl L; Castañeda-Sánchez, Jorge Ismael; Sainz-Espuñes, Teresita

    2016-05-01

    Pozol is a handcrafted nonalcoholic Mayan beverage produced by the spontaneous fermentation of maize dough by lactic acid bacteria. Lactic acid bacteria (LAB) are carriers of chromosomal encoded multidrug-resistant efflux pumps genes that can be transferred to pathogens and/or confer resistance to compounds released during the fermentation process causing food spoiling. The aim of this study was to evaluate the antibiotic sensibility and the transcriptional expression of ABC-type efflux pumps in LAB isolated from pozol that contributes to multidrug resistance. Analysis of LAB and Staphylococcus (S.) aureus ATCC 29213 and ATCC 6538 control strains to antibiotic susceptibility, minimal inhibitory concentration (MIC), and minimal bactericidal concentration (MBC) to ethidium bromide were based in "standard methods" whereas the ethidium bromide efflux assay was done by fluorometric assay. Transcriptional expression of efflux pumps was analyzed by RT-PCR. LAB showed antibiotic multiresistance profiles, moreover, Lactococcus (L.) lactis and Lactobacillus (L.) plantarum displayed higher ethidium bromide efflux phenotype than S. aureus control strains. Ethidium bromide resistance and ethidium bromide efflux phenotypes were unrelated with the overexpression of lmrD in L. lactics, or the underexpression of lmrA in L. plantarum and norA in S. aureus. These findings suggest that, moreover, the analyzed efflux pumps genes, other unknown redundant mechanisms may underlie the antibiotic resistance and the ethidium bromide efflux phenotype in L. lactis and L. plantarum. Phenotypic and molecular drug multiresistance assessment in LAB may improve a better selection of the fermentation starter cultures used in pozol, and to control the antibiotic resistance widespread and food spoiling for health safety. PMID:27247772

  18. Abundance of ruminal bacteria, epithelial gene expression, and systemic biomarkers of metabolism and inflammation are altered during the peripartal period in dairy cows.

    Science.gov (United States)

    Minuti, A; Palladino, A; Khan, M J; Alqarni, S; Agrawal, A; Piccioli-Capelli, F; Hidalgo, F; Cardoso, F C; Trevisi, E; Loor, J J

    2015-12-01

    membrane transporters MCT1 and UTB to peak levels at 28 DIM reflected the higher intake and fermentability of the lactation diet. In addition, those changes in the diet after calving resulted in an increase of butyrate and a decrease of ruminal pH and acetate, which partly explain the increase of Anaerovibrio lipolytica, Prevotella bryantii, and Megasphaera elsdenii and the decrease of fibrolytic bacteria (Fibrobacter succinogenes, Butyrivibrio proteoclasticus). Overall, these multitier changes revealed important features associated with the transition into lactation. Alterations in ruminal epithelium gene expression could be driven by nutrient intake-induced changes in microbes; microbial metabolism; and the systemic metabolic, hormonal, and immune changes. Understanding causes and mechanisms driving the interaction among ruminal bacteria and host immunometabolic responses merits further study. PMID:26409956

  19. A multipurpose vector system for the screening of libraries in bacteria, insect and mammalian cells and expression in vivo

    OpenAIRE

    Laitinen, Olli H.; Airenne, Kari J; Hytönen, Vesa P; Peltomaa, Erik; Mähönen, Anssi J.; Wirth, Thomas; Lind, Miia M.; Mäkelä, Kari A.; Toivanen, Pyry I.; Schenkwein, Diana; Heikura, Tommi; Nordlund, Henri R.; Kulomaa, Markku S.; Ylä-Herttuala, Seppo

    2005-01-01

    We have constructed a novel tetra-promoter vector (pBVboostFG) system that enables screening of gene/cDNA libraries for functional genomic studies. The vector enables an all-in-one strategy for gene expression in mammalian, bacterial and insect cells and is also suitable for direct use in vivo. Virus preparation is based on an improved mini Tn7 transpositional system allowing easy and fast production of recombinant baculoviruses with high diversity and negligible background. Cloning of the de...

  20. A Single RNaseIII Domain Protein from Entamoeba histolytica Has dsRNA Cleavage Activity and Can Help Mediate RNAi Gene Silencing in a Heterologous System.

    Directory of Open Access Journals (Sweden)

    Justine M Pompey

    Full Text Available Dicer enzymes process double-stranded RNA (dsRNA into small RNAs that target gene silencing through the RNA interference (RNAi pathway. Dicer enzymes are complex, multi-domain RNaseIII proteins, however structural minimalism of this protein has recently emerged in parasitic and fungal systems. The most minimal Dicer, Saccharomyces castellii Dicer1, has a single RNaseIII domain and two double stranded RNA binding domains. In the protozoan parasite Entamoeba histolytica 27nt small RNAs are abundant and mediate silencing, yet no canonical Dicer enzyme has been identified. Although EhRNaseIII does not exhibit robust dsRNA cleavage in vitro, it can process dsRNA in the RNAi-negative background of Saccharomyces cerevisiae, and in conjunction with S. castellii Argonaute1 can partially reconstitute the RNAi pathway. Thus, although EhRNaseIII lacks the domain architecture of canonical or minimal Dicer enzymes, it has dsRNA processing activity that contributes to gene silencing via RNAi. Our data advance the understanding of small RNA biogenesis in Entamoeba as well as broaden the spectrum of non-canonical Dicer enzymes that contribute to the RNAi pathway.

  1. A Single RNaseIII Domain Protein from Entamoeba histolytica Has dsRNA Cleavage Activity and Can Help Mediate RNAi Gene Silencing in a Heterologous System.

    Science.gov (United States)

    Pompey, Justine M; Foda, Bardees; Singh, Upinder

    2015-01-01

    Dicer enzymes process double-stranded RNA (dsRNA) into small RNAs that target gene silencing through the RNA interference (RNAi) pathway. Dicer enzymes are complex, multi-domain RNaseIII proteins, however structural minimalism of this protein has recently emerged in parasitic and fungal systems. The most minimal Dicer, Saccharomyces castellii Dicer1, has a single RNaseIII domain and two double stranded RNA binding domains. In the protozoan parasite Entamoeba histolytica 27nt small RNAs are abundant and mediate silencing, yet no canonical Dicer enzyme has been identified. Although EhRNaseIII does not exhibit robust dsRNA cleavage in vitro, it can process dsRNA in the RNAi-negative background of Saccharomyces cerevisiae, and in conjunction with S. castellii Argonaute1 can partially reconstitute the RNAi pathway. Thus, although EhRNaseIII lacks the domain architecture of canonical or minimal Dicer enzymes, it has dsRNA processing activity that contributes to gene silencing via RNAi. Our data advance the understanding of small RNA biogenesis in Entamoeba as well as broaden the spectrum of non-canonical Dicer enzymes that contribute to the RNAi pathway. PMID:26230096

  2. Expression of the bitter receptor T2R38 in pancreatic cancer: localization in lipid droplets and activation by a bacteria-derived quorum-sensing molecule

    Science.gov (United States)

    Gaida, Matthias M.; Mayer, Christine; Dapunt, Ulrike; Stegmaier, Sabine; Schirmacher, Peter; Wabnitz, Guido H.; Hänsch, G. Maria

    2016-01-01

    T2R38 belongs to the family of bitter receptors and was initially detected in cells of the oral cavity. We now describe expression of T2R38 in tumor cells in patients with pancreatic cancer and in tumor-derived cell lines. T2R38 is localized predominantly intracellular in association with lipid droplets, particularly with the lipid droplet membrane. The receptor can be activated by the bona fide ligand for T2R38, phenylthiourea (PTU), and by N-acetyl-dodecanoyl homoserine (AHL-12), a quorum sensing molecule of Pseudomonas aeruginosa, the latter is the only known natural ligand for T2R38. In response to PTU or AHL-12, key transcription factors are activated including phosphorylation of the MAP kinases p38 and ERK1/2, and upregulation of NFATc1. Moreover, we found increased expression of the multi-drug resistance protein 1 (also known as ABCB1), a transmembrane transporter molecule, participating in shuttling of a plethora of drugs, such as chemotherapeutics or antibiotics. In conclusion, our data indicate a new, additional function of the taste receptor T2R38 beyond sensing ‘bitter’. Moreover, because T2R38 can be stimulated by a bacteria-derived signaling molecule the receptor could link microbiota and cancer. PMID:26862855

  3. Methanotrophic bacteria.

    OpenAIRE

    Hanson, R S; Hanson, T. E.

    1996-01-01

    Methane-utilizing bacteria (methanotrophs) are a diverse group of gram-negative bacteria that are related to other members of the Proteobacteria. These bacteria are classified into three groups based on the pathways used for assimilation of formaldehyde, the major source of cell carbon, and other physiological and morphological features. The type I and type X methanotrophs are found within the gamma subdivision of the Proteobacteria and employ the ribulose monophosphate pathway for formaldehy...

  4. Eimeria tenella: a novel dsRNA virus in E. tenella and its complete genome sequence analysis.

    Science.gov (United States)

    Wu, Bin; Zhang, Xichen; Gong, Pengtao; Li, Mingying; Ding, He; Xin, Caiyan; Zhao, Na; Li, Jianhua

    2016-04-01

    Protozoa double-stranded (ds) RNA viruses have been described in Trichomonas, Giardia, and Leishmania. In this study, dsRNA and virus-like particles (approximately 30 nm in diameter) were discovered in Eimeria tenella sporulated oocysts. The complete genome of this novel dsRNA virus was sequenced using a three-step strategy. The sequencing results showed that the complete genome sequence was 6006 bp containing two open reading frames (ORFs) (2367 bp for ORF1 and 3216 bp for ORF2) with a five-nucleotide overlap (UGA/UG). The predicted ORF1 and ORF2 encoded a putative capsid protein of 788 amino acids (84.922 kDa) and a putative RNA-dependent RNA polymerase (RdRp) protein of 1071 amino acids (118.190 kDa). BLASTp analysis showed that the amino acid sequences for the E. tenella virus shared similarity with the E. brunetti RNA virus, with 29% homology in capsid proteins and 36% in RDRP proteins. The two untranslated regions were 349 bp (5' UTR) and 78 bp (3' UTR). The complete genome sequence of the E. tenella virus resembled characteristics of the Totiviridae family, indicating that this virus was a novel member of Totiviridae. Surprisingly, phylogenetic analysis showed that the E. tenella virus, E. brunetti RNA virus 1, and Mycoviruses were clustered into the genus Victorivirus and separated from the reported protozoa viruses, strongly suggesting a novel Eimeriaviruses subgenus. To the best of our knowledge, this is the first report for the complete genome sequence of the E. tenella virus. Using the nomenclature generally adopted for viruses, this new isolate was named E. tenella RNA virus 1. This study provides a foundation basis for further research on the biological characteristics of Eimeriaviruses. PMID:26873407

  5. Differential effect of immune cells on non-pathogenic Gram-negative bacteria-induced nuclear factor-kappaB activation and pro-inflammatory gene expression in intestinal epithelial cells

    DEFF Research Database (Denmark)

    Haller, D.; Holt, L.; Parlesak, Alexandr;

    2004-01-01

    We have previously shown that non-pathogenic Gram negative bacteria induce RelA phosphorylation, nuclear factor (NF)-kappaB transcriptional activity and pro-inflammatory gene expression in intestinal epithelial cells (IEC) in vivo and in vitro. In this study, we investigated the molecular mechanism...

  6. Big bacteria

    DEFF Research Database (Denmark)

    Schulz, HN; Jørgensen, BB

    2001-01-01

    A small number of prokaryotic species have a unique physiology or ecology related to their development of unusually large size. The biomass of bacteria varies over more than 10 orders of magnitude, from the 0.2 mum wide nanobacteria to the largest cells of the colorless sulfur bacteria......, Thiomargarita namibiensis, with a diameter of 750 mum. All bacteria, including those that swim around in the environment, obtain their food molecules by molecular diffusion. Only the fastest and largest swimmers known, Thiovulum majus, are able to significantly increase their food supply by motility and by...... actively creating an advective flow through the entire population. Diffusion limitation generally restricts the maximal size of prokaryotic cells and provides a selective advantage for mum-sized cells at the normally low substrate concentrations in the environment. The largest heterotrophic bacteria, the...

  7. Anaerobic bacteria

    Science.gov (United States)

    Brook I, Goldstein EJ. Diseases caused by non-spore forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2015:chap 297. Stedman's Online ...

  8. Rhipicephalus (Boophilus) microplus tick in vitro feeding methods for functional (dsRNA) and vaccine candidate (antibody) screening.

    Science.gov (United States)

    Lew-Tabor, Ala E; Bruyeres, Anthea G; Zhang, Bing; Rodriguez Valle, Manuel

    2014-09-01

    Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) ticks cause economic losses for cattle industries throughout tropical and subtropical regions of the world estimated at $US2.5 billion annually. Lack of access to efficacious long-lasting vaccination regimes and increases in tick acaricide resistance have led to the investigation of targets for the development of novel tick vaccines and treatments. In vitro tick feeding has been used for many tick species to study the effect of new acaricides on the transmission of tick-borne pathogens. Few studies have reported the use of in vitro feeding for functional genomic studies using RNA interference and/or the effect of specific anti-tick antibodies. In particular, in vitro feeding reports for the cattle tick are limited due to its relatively short hypostome. Previously published methods were further modified to broaden optimal tick sizes/weights, feeding sources including bovine and ovine serum, optimisation of commercially available blood anti-coagulant tubes, and IgG concentrations for effective antibody delivery. Ticks are fed overnight and monitored for ∼5-6 weeks to determine egg output and success of larval emergence using a humidified incubator. Lithium-heparin blood tubes provided the most reliable anti-coagulant for bovine blood feeding compared with commercial citrated (CPDA) and EDTA tubes. Although >30mg semi-engorged ticks fed more reliably, ticks as small as 15mg also fed to repletion to lay viable eggs. Ticks which gained less than ∼10mg during in vitro feeding typically did not lay eggs. One mg/ml IgG from Bm86-vaccinated cattle produced a potent anti-tick effect in vitro (83% efficacy) similar to that observed in vivo. Alternatively, feeding of dsRNA targeting Bm86 did not demonstrate anti-tick effects (11% efficacy) compared with the potent effects of ubiquitin dsRNA. This study optimises R. microplus tick in vitro feeding methods which support the development of cattle tick vaccines and

  9. Rotavirus structural proteins and dsRNA are required for the human primary plasmacytoid dendritic cell IFNalpha response.

    Directory of Open Access Journals (Sweden)

    Emily M Deal

    Full Text Available Rotaviruses are the leading cause of severe dehydrating diarrhea in children worldwide. Rotavirus-induced immune responses, especially the T and B cell responses, have been extensively characterized; however, little is known about innate immune mechanisms involved in the control of rotavirus infection. Although increased levels of systemic type I interferon (IFNalpha and beta correlate with accelerated resolution of rotavirus disease, multiple rotavirus strains, including rhesus rotavirus (RRV, have been demonstrated to antagonize type I IFN production in a variety of epithelial and fibroblast cell types through several mechanisms, including degradation of multiple interferon regulatory factors by a viral nonstructural protein. This report demonstrates that stimulation of highly purified primary human peripheral plasmacytoid dendritic cells (pDCs with either live or inactivated RRV induces substantial IFNalpha production by a subset of pDCs in which RRV does not replicate. Characterization of pDC responses to viral stimulus by flow cytometry and Luminex revealed that RRV replicates in a small subset of human primary pDCs and, in this RRV-permissive small subset, IFNalpha production is diminished. pDC activation and maturation were observed independently of viral replication and were enhanced in cells in which virus replicates. Production of IFNalpha by pDCs following RRV exposure required viral dsRNA and surface proteins, but neither viral replication nor activation by trypsin cleavage of VP4. These results demonstrate that a minor subset of purified primary human peripheral pDCs are permissive to RRV infection, and that pDCs retain functionality following RRV stimulus. Additionally, this study demonstrates trypsin-independent infection of primary peripheral cells by rotavirus, which may allow for the establishment of extraintestinal viremia and antigenemia. Importantly, these data provide the first evidence of IFNalpha induction in primary

  10. Evolutionary genomics of mycovirus-related dsRNA viruses reveals cross-family horizontal gene transfer and evolution of diverse viral lineages

    OpenAIRE

    Liu Huiquan; Fu Yanping; Xie Jiatao; Cheng Jiasen; Ghabrial Said A; Li Guoqing; Peng Youliang; Yi Xianhong; Jiang Daohong

    2012-01-01

    Abstract Background Double-stranded (ds) RNA fungal viruses are typically isometric single-shelled particles that are classified into three families, Totiviridae, Partitiviridae and Chrysoviridae, the members of which possess monopartite, bipartite and quadripartite genomes, respectively. Recent findings revealed that mycovirus-related dsRNA viruses are more diverse than previously recognized. Although an increasing number of viral complete genomic sequences have become available, the evoluti...

  11. Understanding the distinguishable structural and functional features in zebrafish TLR3 and TLR22, and their binding modes with fish dsRNA viruses: an exploratory structural model analysis.

    Science.gov (United States)

    Sahoo, Bikash Ranjan; Dikhit, Manas Ranjan; Bhoi, Gopal Krushna; Maharana, Jitendra; Lenka, Santosh Kumar; Dubey, Praveen Kumar; Tiwari, Dharmendra Kumar

    2015-02-01

    Viral infections are one of the major challenges in aquaculture production, and considered as the potential threat for fish farming. Toll-like receptor (TLR) 3 and TLR22 are highly specialized innate immune receptors that recognize double-stranded (ds)-RNA of viruses resulting in the induction of innate immunity. The existence of TLR3 and TLR22 only in aquatic animals indicates their distinctive characteristics in viral infection; however, the studies in exploring their structural features and dsRNA binding mechanism are still elusive. Here, we studied the structural and functional differentiations of TLR3 and TLR22 in zebrafish by employing comparative modeling and molecular dynamics simulation. Comparative structural analysis revealed a distinct spatial arrangement of TLR22 ectodomain with a flattened horseshoe-shape conformation as compared to other TLRs. Essential dynamics studies showed that unlike TLR3, TLR22 possessed a prominent motion, elasticity and twisting at both terminus separated by a distance equivalent to the length of a short-sized dsRNA. Interaction analysis of polyinosinic:polycytidylic acid (poly I:C) and dsRNA depicted leucine-rich-repeats (LRR)2-3 and LRR18-19 (in TLR3) and LRRNT-LRR3 and LRR22-24 (in TLR22) as the potential binding sites. The short-sized dsRNA binds tightly across its full-length with TLR22-monomer, and suggested that TLR22 dimer may sense long-sized dsRNA. Binding energy (BE) calculation using MM/PBSA method from the TLR3- and TLR22-ligand complexes revealed an adequate binding affinity between TLR22-monomer and dsRNA as like as TLR3-dimer-dsRNA complex. Mutagenesis and BE computation of key residues suggested their involvement in dsRNA recognition. These findings can be helpful for therapeutic applications against viral diseases in fish. PMID:25488424

  12. Influence of Bxpel1 Gene Silencing by dsRNA Interference on the Development and Pathogenicity of the Pine Wood Nematode, Bursaphelenchus xylophilus.

    Science.gov (United States)

    Qiu, Xiu-Wen; Wu, Xiao-Qin; Huang, Lin; Ye, Jian-Ren

    2016-01-01

    As the causal agent of pine wilt disease (PWD), the pine wood nematode (PWN), Bursaphelenchus xylophilus, causes huge economic losses by devastating pine forests worldwide. The pectate lyase gene is essential for successful invasion of their host plants by plant-parasitic nematodes. To demonstrate the role of pectate lyase gene in the PWD process, RNA interference (RNAi) is used to analyze the function of the pectate lyase 1 gene in B. xylophilus (Bxpel1). The efficiency of RNAi was detected by real-time PCR. The result demonstrated that the quantity of B. xylophilus propagated with control solution treatment was 62 times greater than that soaking in double-stranded RNA (dsRNA) after B. xylophilus inoculation in Botrytis cinerea for the first generation (F1). The number of B. xylophilus soaking in control solution was doubled compared to that soaking in Bxpel1 dsRNA four days after inoculation in Pinus thunbergii. The quantity of B. xylophilus was reduced significantly (p control solution treatment. Bxpel1 dsRNAi reduced the migration speed and reproduction of B. xylophilus in pine trees. The pathogenicity to P. thunbergii seedling of B. xylophilus was weaker after soaking in dsRNA solution compared with that after soaking in the control solution. Our results suggest that Bxpel1 gene is a significant pathogenic factor in the PWD process and this basic information may facilitate a better understanding of the molecular mechanism of PWD. PMID:26797602

  13. Exposure to the viral by-product dsRNA or Coxsackievirus B5 triggers pancreatic beta cell apoptosis via a Bim / Mcl-1 imbalance.

    Directory of Open Access Journals (Sweden)

    Maikel L Colli

    2011-09-01

    Full Text Available The rise in type 1 diabetes (T1D incidence in recent decades is probably related to modifications in environmental factors. Viruses are among the putative environmental triggers of T1D. The mechanisms regulating beta cell responses to viruses, however, remain to be defined. We have presently clarified the signaling pathways leading to beta cell apoptosis following exposure to the viral mimetic double-stranded RNA (dsRNA and a diabetogenic enterovirus (Coxsackievirus B5. Internal dsRNA induces cell death via the intrinsic mitochondrial pathway. In this process, activation of the dsRNA-dependent protein kinase (PKR promotes eIF2α phosphorylation and protein synthesis inhibition, leading to downregulation of the antiapoptotic Bcl-2 protein myeloid cell leukemia sequence 1 (Mcl-1. Mcl-1 decrease results in the release of the BH3-only protein Bim, which activates the mitochondrial pathway of apoptosis. Indeed, Bim knockdown prevented both dsRNA- and Coxsackievirus B5-induced beta cell death, and counteracted the proapoptotic effects of Mcl-1 silencing. These observations indicate that the balance between Mcl-1 and Bim is a key factor regulating beta cell survival during diabetogenic viral infections.

  14. Occurrence of dsRNA Mycovirus (LeV-FMRI0339 in the Edible Mushroom Lentinula edodes and Meiotic Stability of LeV-FMRI0339 among Monokaryotic Progeny

    Directory of Open Access Journals (Sweden)

    Jung-Mi Kim

    2013-12-01

    Full Text Available dsRNA was found in malformed cultures of Lentinula edodes strain FMRI0339, one of the three most popular sawdust cultivated commercial strains of shiitake, and was also found in healthy-looking fruiting bodies and actively growing mycelia. Cloning of the partial genome of the dsRNA revealed the presence of the RdRp sequence of a novel L. edodes mycovirus (LeV, and sequence comparison of the cloned amplicon showed identical sequences sequence to known RNA-dependent RNA polymerase genes of LeV found in strain HKA. The meiotic stability of dsRNA was examined by measuring the ratio of the presence of dsRNA among sexual monokaryotic progeny. More than 40% of the monokaryotic progeny still contained the dsRNA, indicating the persistence of dsRNA during sexual reproduction. Comparing the mycelia growth of monokaryotic progeny suggested that there appeared to be a tendency toward a lower frequency of virus incidence in actively growing progeny.

  15. Gene expression profiling of Gram-negative bacteria-induced inflammation in human whole blood: The role of complement and CD14-mediated innate immune response.

    Science.gov (United States)

    Lau, Corinna; Olstad, Ole Kristoffer; Holden, Marit; Nygård, Ståle; Fure, Hilde; Lappegård, Knut Tore; Brekke, Ole-Lars; Espevik, Terje; Hovig, Eivind; Mollnes, Tom Eirik

    2015-09-01

    Non-sterile pathogen-induced sepsis and sterile inflammation like in trauma or ischemia-reperfusion injury may both coincide with the life threatening systemic inflammatory response syndrome and multi-organ failure. Consequently, there is an urgent need for specific biomarkers in order to distinguish sepsis from sterile conditions. The overall aim of this study was to uncover putative sepsis biomarkers and biomarker pathways, as well as to test the efficacy of combined inhibition of innate immunity key players complement and Toll-like receptor co-receptor CD14 as a possible therapeutic regimen for sepsis. We performed whole blood gene expression analyses using microarray in order to profile Gram-negative bacteria-induced inflammatory responses in an ex vivo human whole blood model. The experiments were performed in the presence or absence of inhibitors of complement proteins (C3 and CD88 (C5a receptor 1)) and CD14, alone or in combination. In addition, we used blood from a C5-deficient donor. Anti-coagulated whole blood was challenged with heat-inactivated Escherichia coli for 2 h, total RNA was isolated and microarray analyses were performed on the Affymetrix GeneChip Gene 1.0 ST Array platform. The initial experiments were performed in duplicates using blood from two healthy donors. C5-deficiency is very rare, and only one donor could be recruited. In order to increase statistical power, a technical replicate of the C5-deficient samples was run. Subsequently, log2-transformed intensities were processed by robust multichip analysis and filtered using a threshold of four. In total, 73 microarray chips were run and analyzed. The normalized and filtered raw data have been deposited in NCBI's Gene Expression Omnibus (GEO) and are accessible with GEO Series accession number GSE55537. Linear models for microarray data were applied to estimate fold changes between data sets and the respective multiple testing adjusted p-values (FDR q-values). The interpretation of the

  16. Gene expression profiling of Gram-negative bacteria-induced inflammation in human whole blood: The role of complement and CD14-mediated innate immune response

    Directory of Open Access Journals (Sweden)

    Corinna Lau

    2015-09-01

    Full Text Available Non-sterile pathogen-induced sepsis and sterile inflammation like in trauma or ischemia–reperfusion injury may both coincide with the life threatening systemic inflammatory response syndrome and multi-organ failure. Consequently, there is an urgent need for specific biomarkers in order to distinguish sepsis from sterile conditions. The overall aim of this study was to uncover putative sepsis biomarkers and biomarker pathways, as well as to test the efficacy of combined inhibition of innate immunity key players complement and Toll-like receptor co-receptor CD14 as a possible therapeutic regimen for sepsis. We performed whole blood gene expression analyses using microarray in order to profile Gram-negative bacteria-induced inflammatory responses in an ex vivo human whole blood model. The experiments were performed in the presence or absence of inhibitors of complement proteins (C3 and CD88 (C5a receptor 1 and CD14, alone or in combination. In addition, we used blood from a C5-deficient donor. Anti-coagulated whole blood was challenged with heat-inactivated Escherichia coli for 2 h, total RNA was isolated and microarray analyses were performed on the Affymetrix GeneChip Gene 1.0 ST Array platform. The initial experiments were performed in duplicates using blood from two healthy donors. C5-deficiency is very rare, and only one donor could be recruited. In order to increase statistical power, a technical replicate of the C5-deficient samples was run. Subsequently, log2-transformed intensities were processed by robust multichip analysis and filtered using a threshold of four. In total, 73 microarray chips were run and analyzed. The normalized and filtered raw data have been deposited in NCBI's Gene Expression Omnibus (GEO and are accessible with GEO Series accession number GSE55537. Linear models for microarray data were applied to estimate fold changes between data sets and the respective multiple testing adjusted p-values (FDR q-values. The

  17. Research progress in proteolysis system of lactic acid bacteria and related gene expression%乳酸菌蛋白水解体系及相关基因表达的研究进展

    Institute of Scientific and Technical Information of China (English)

    杜越欧; 侯俊财

    2013-01-01

    乳酸菌的蛋白水解体系包括胞外酶、转运系统和多种胞内酶.它们将外源蛋白质逐步水解成能被乳酸菌直接利用的游离氨基酸,弥补了因乳酸菌自身不能直接利用外源无机氯和蛋白质的缺陷,对于乳酸菌的正常生长具有非常重要的意义.目前,国内外正在研究利用现代分子技术,从基因表达层面检测不同菌株之间或菌株经过不同处理前后关键蛋白水解酶的表达水平差异,筛选出蛋白酶高表达量的菌株,从而得到蛋白水解能力强的优质乳酸菌发酵剂菌株.本文将对乳酸菌的蛋白水解体系及近几年乳酸菌蛋白水解体系中相关基因表达情况的研究进展进行综述,以期为乳酸菌蛋白质代谢的进一步研究提供参考.%The proteolytic system of lactic acid bacteria which hydrolyzes exogenous protein into free amino acid were consists of extracellular peptidases,the peptide transport systems and a variety of intracellular peptidases. That makes up of the deficiency that lactic acid bacteria can not directly use inorganic nitrogen and protein. Therefore the proteolytic system has very important significance for the normal growth of lactic acid bacteria. Currently some scientists use the modern molecular techniques to study the gene expression levels of the key proteolytic enzymes of the different strains or the strains after different treatments in order to screen out the strains in which the genes of proteinases has high expression level and obtain the high-quality starter lactic acid bacteria strams.The proteolytic system of lactic acid bacteria and the advances in the expression level of genes related to the proteolytic system of lactic acid bacteria were reviewed in this paper with the hope of providing reference materials for the further study on protein metabolism of lactic acid bacteria.

  18. Re-engineering bacteria for ethanol production

    Science.gov (United States)

    Yomano, Lorraine P; York, Sean W; Zhou, Shengde; Shanmugam, Keelnatham; Ingram, Lonnie O

    2014-05-06

    The invention provides recombinant bacteria, which comprise a full complement of heterologous ethanol production genes. Expression of the full complement of heterologous ethanol production genes causes the recombinant bacteria to produce ethanol as the primary fermentation product when grown in mineral salts medium, without the addition of complex nutrients. Methods for producing the recombinant bacteria and methods for producing ethanol using the recombinant bacteria are also disclosed.

  19. 缬氨酸转氨酶工程菌的构建及表达条件的优化%Construction and Optimization of Engineering Bacteria to Express Valine Aminotransferase

    Institute of Scientific and Technical Information of China (English)

    纪铁鹏; 王海峰

    2012-01-01

    [目的]构建缬氨酸转氨酶基因(avtA)的大肠杆菌工程菌,并优化其表达条件.[方法]将avtA基因插入到载体pET32a中,构建表达质粒pET32a-avtA,通过纸层析检测酶活性,SDS-PAGE凝胶电泳检测目的蛋白,并通过考察培养基中蛋白胨浓度、IPTG诱导浓度和诱导时间来优化其表达条件.[结果]成功构建了缬氧酸转氨酶基因的大肠杆菌工程菌,其最佳表达条件为:培养基中蛋白胨浓度为12g/L,IPTG浓度为0.4 mmol/L,诱导时间为8h.[结论]缬氨酸转氨酶工程菌具有良好的应用前景.%[Objective] To construct E. Coli engineering bacteria expressing valine aminotransferase and optimize the expression conditions. [ Method] The avtA gene was inserted into expression vector pET32a and the expression plasmid pET32a-avtA was constructed. Valine aminotransferase of enzyme activity was detected by paper chromatography. The expression product of avtA gene was identified by SDS-PAGE, and the expression condition was optimized through inspecting the peptone concentration, IPTG concentration and induction time. [Result] An E. Coli engineering bacteria to express valine aminotransferase was successfully established. The optimum expression conditions were established as follows : 12 g/L of peptone, 0.4 mmol/L of IPTG and 8 h induction time. [Conclusion] Valine transaminase engineered bacteria had a good prospect.

  20. Influence of Bxpel1 Gene Silencing by dsRNA Interference on the Development and Pathogenicity of the Pine Wood Nematode, Bursaphelenchus xylophilus

    Directory of Open Access Journals (Sweden)

    Xiu-Wen Qiu

    2016-01-01

    Full Text Available As the causal agent of pine wilt disease (PWD, the pine wood nematode (PWN, Bursaphelenchus xylophilus, causes huge economic losses by devastating pine forests worldwide. The pectate lyase gene is essential for successful invasion of their host plants by plant-parasitic nematodes. To demonstrate the role of pectate lyase gene in the PWD process, RNA interference (RNAi is used to analyze the function of the pectate lyase 1 gene in B. xylophilus (Bxpel1. The efficiency of RNAi was detected by real-time PCR. The result demonstrated that the quantity of B. xylophilus propagated with control solution treatment was 62 times greater than that soaking in double-stranded RNA (dsRNA after B. xylophilus inoculation in Botrytis cinerea for the first generation (F1. The number of B. xylophilus soaking in control solution was doubled compared to that soaking in Bxpel1 dsRNA four days after inoculation in Pinus thunbergii. The quantity of B. xylophilus was reduced significantly (p < 0.001 after treatment with dsRNAi compared with that using a control solution treatment. Bxpel1 dsRNAi reduced the migration speed and reproduction of B. xylophilus in pine trees. The pathogenicity to P. thunbergii seedling of B. xylophilus was weaker after soaking in dsRNA solution compared with that after soaking in the control solution. Our results suggest that Bxpel1 gene is a significant pathogenic factor in the PWD process and this basic information may facilitate a better understanding of the molecular mechanism of PWD.

  1. Effects of exogenous double-stranded RNA on the basonuclin gene expression in mouse oocytes

    Institute of Scientific and Technical Information of China (English)

    马峻; 周红林; 苏雷; 季维智

    2002-01-01

    In plants and less-advanced animal species, such as C.elegans, introduction of exogenous double-stranded RNA (dsRNA) into cells would trigger degradation of the mRNA with homologous sequence and interfere with the endogenous gene expression. It might represent an ancient anti-virus response which could prevent the mutation in the genome that was caused by virus infection or mobile DNA elements insertion. This phenomenon was named RNA interference, or RNAi. In this study, RNAi was used to investigate the function of basonuclin gene during oogenesis. Microinjection of dsRNA directed towards basonuclin into mouse germinal-vesicle-in- tact (GV) oocytes brought down the abundance of the cognate mRNA effectively in a time- and concentration-dependent manner. This reduction effect was sequence-specific and showed no negative effect on other non-homologous gene expression in oocytes, which indicated that dsRNA can recognize and cause the degradation of the transcriptional products of endogenous basonuclin gene in a sequence-specific manner. Immunofluorescence results showed that RNAi could reduce the concentration of basonuclin protein to some extent, but the effect was less efficient than the dsRNA targeting towards tPA and cMos which was also expressed in oocytes. This result might be due to the long half life of basonuclin protein in oocytes and the short reaction time which was posed by the limited life span of GV oocytes cultured in vitro. In summary, dsRNA could inhibit the expression of the cognate gene in oocytes at both mRNA and protein levels. The effect was similar to Knock-out technique which was based on homologous recombination. Furthermore, hairpin-style dsRNA targeting basonuclin gene could be produced by transcription from a recombinant plasmid and worked efficiently to deplete the cognate mRNA in oocytes. This finding offered a new way to study the function of basonuclin in the early stage of oogenesis by infection of primordial oocytes with the plasmid

  2. Lipoprotein sorting in bacteria.

    Science.gov (United States)

    Okuda, Suguru; Tokuda, Hajime

    2011-01-01

    Bacterial lipoproteins are synthesized as precursors in the cytoplasm and processed into mature forms on the cytoplasmic membrane. A lipid moiety attached to the N terminus anchors these proteins to the membrane surface. Many bacteria are predicted to express more than 100 lipoproteins, which play diverse functions on the cell surface. The Lol system, composed of five proteins, catalyzes the localization of Escherichia coli lipoproteins to the outer membrane. Some lipoproteins play vital roles in the sorting of other lipoproteins, lipopolysaccharides, and β-barrel proteins to the outer membrane. On the basis of results from biochemical, genetic, and structural studies, we discuss the biogenesis of lipoproteins in bacteria, their importance in cellular functions, and the molecular mechanisms underlying efficient sorting of hydrophobic lipoproteins to the outer membrane through the hydrophilic periplasm. PMID:21663440

  3. Rumen bacteria

    International Nuclear Information System (INIS)

    The rumen is the most extensively studied gut community and is characterized by its high population density, wide diversity and complexity of interactions. This complex, mixed microbial culture is comprised of prokaryote organisms including methane-producing archaebacteria, eukaryote organisms, such as ciliate and flagellate protozoa, anaerobic phycomycete fungi and bacteriophage. Bacteria are predominant (up to 1011 viable cells per g comprising 200 species) but a variety of ciliate protozoa occur widely (104-106/g distributed over 25 genera). The anaerobic fungi are also widely distributed (zoospore population densities of 102-104/g distributed over 5 genera). The occurrence of bacteriophage is well documented (107-109 particles/g). This section focuses primarily on the widely used methods for the cultivation and the enumeration of rumen microbes, especially bacteria, which grow under anaerobic conditions. Methods that can be used to measure hydrolytic enzymes (cellulases, xylanases, amylases and proteinases) are also described, along with cell harvesting and fractionation procedures. Brief reference is also made to fungi and protozoa, but detailed explanations for culturing and enumerating these microbes is presented in Chapters 2.4 and 2.5

  4. Avances y limitaciones en el uso de los dsRNA como estrategias de control y prevención de enfermedades virales en sistemas acuícolas

    Directory of Open Access Journals (Sweden)

    Ljubomir Papic

    2015-07-01

    Full Text Available El desarrollo de la acuicultura sustentable es acorde con la demanda creciente de nuevas metodologías que aseguren la salud de las diversas especies acuícolas. Dentro de ellas, el uso de terapias revolucionarias basadas en RNA de doble cadena (dsRNA ha abierto una amplia gama de posibilidades en el progreso de las estrategias de control y prevención de enfermedades. El sistema de silenciamiento génico mediante RNA de interferencia (RNAi presenta un interesante potencial para el control de enfermedades infecciosas en sistemas de acuicultura. Por otro lado, se ha visto que los dsRNA pueden tener un importante efecto inmunomodulador en células de peces activando mecanismos de defensa inmune innata. La definición de un adecuado sistema de suministro para asegurar el ingreso de los dsRNA a la célula objetivo ha resultado en pruebas medianamente exitosas. Sin embargo, el cómo suministrar el dsRNA para asegurar el ingreso al organismo en su hábitat natural, se presenta como la principal dificultad de esta tecnología. Este trabajo presenta una completa revisión del potencial del silenciamiento post-transcripcional mediado por dsRNA, como estrategia antiviral en peces de cultivo y de su potencial uso como inmunoestimulante, enfatizando la necesidad de buscar metodologías que permitan suministrar el dsRNA al organismo objetivo, considerando las limitaciones y particularidades de un sistema de cultivo intensivo.

  5. Expression

    Directory of Open Access Journals (Sweden)

    Wang-Xia Wang

    2014-02-01

    Full Text Available The miR-15/107 family comprises a group of 10 paralogous microRNAs (miRNAs, sharing a 5′ AGCAGC sequence. These miRNAs have overlapping targets. In order to characterize the expression of miR-15/107 family miRNAs, we employed customized TaqMan Low-Density micro-fluid PCR-array to investigate the expression of miR-15/107 family members, and other selected miRNAs, in 11 human tissues obtained at autopsy including the cerebral cortex, frontal cortex, primary visual cortex, thalamus, heart, lung, liver, kidney, spleen, stomach and skeletal muscle. miR-103, miR-195 and miR-497 were expressed at similar levels across various tissues, whereas miR-107 is enriched in brain samples. We also examined the expression patterns of evolutionarily conserved miR-15/107 miRNAs in three distinct primary rat brain cell preparations (enriched for cortical neurons, astrocytes and microglia, respectively. In primary cultures of rat brain cells, several members of the miR-15/107 family are enriched in neurons compared to other cell types in the central nervous system (CNS. In addition to mature miRNAs, we also examined the expression of precursors (pri-miRNAs. Our data suggested a generally poor correlation between the expression of mature miRNAs and their precursors. In summary, we provide a detailed study of the tissue and cell type-specific expression profile of this highly expressed and phylogenetically conserved family of miRNA genes.

  6. Innate Recognition of Bacteria in Human Milk Is Mediated by a Milk-Derived Highly Expressed Pattern Recognition Receptor, Soluble Cd14

    OpenAIRE

    Labéta, Mario O; Vidal, Karine; Nores, Julia E. Rey; Arias, Mauricio; Vita, Natalio; Morgan, B. Paul; Guillemot, Jean Claude; Loyaux, Denis; Ferrara, Pascual; Schmid, Daniel; Affolter, Michael; Borysiewicz, Leszek K.; Donnet-Hughes, Anne; Schiffrin, Eduardo J.

    2000-01-01

    Little is known about innate immunity to bacteria after birth in the hitherto sterile fetal intestine. Breast-feeding has long been associated with a lower incidence of gastrointestinal infections and inflammatory and allergic diseases. We found in human breast milk a 48-kD polypeptide, which we confirmed by mass spectrometry and sequencing to be a soluble form of the bacterial pattern recognition receptor CD14 (sCD14). Milk sCD14 (m-sCD14) concentrations were up to 20-fold higher than serum ...

  7. Programmed survival of soil bacteria

    DEFF Research Database (Denmark)

    Jensen, Lars Bogø; Molin, Søren; Sternberg, Claus;

    Biological containment systems have been developed for Pseudomonas putida and related soil bacteria. The systems are based on combinations of lethal genes and regulated gene expression. Two types of killing function have been employed: 1) A membrane protein interfering with the membrane potential...

  8. Heterologous Expression of Lactose- and Galactose-Utilizing Pathways from Lactic Acid Bacteria in Corynebacterium glutamicum for Production of Lysine in Whey

    OpenAIRE

    Barrett, Eoin; Stanton, Catherine; Zelder, Oskar; Fitzgerald, Gerald; Ross, R. Paul

    2004-01-01

    The genetic determinants for lactose utilization from Lactobacillus delbrueckii subsp. bulgaricus ATCC 11842 and galactose utilization from Lactococcus lactis subsp. cremoris MG 1363 were heterologously expressed in the lysine-overproducing strain Corynebacterium glutamicum ATCC 21253. The C. glutamicum strains expressing the lactose permease and β-galactosidase genes of L. delbrueckii subsp. bulgaricus exhibited β-galactosidase activity in excess of 1,000 Miller units/ml of cells and were ab...

  9. Back To Bacteria.

    Science.gov (United States)

    Flannery, Maura C.

    1997-01-01

    Explores new research about bacteria. Discusses bacterial genomes, archaea, unusual environments, evolution, pathogens, bacterial movement, biofilms, bacteria in the body, and a bacterial obsession. Contains 29 references. (JRH)

  10. Quorum sensing in gram-negative bacteria

    DEFF Research Database (Denmark)

    Wu, H.; Song, Z.J.; Høiby, N.; Givskov, Michael Christian

    2004-01-01

    Bacteria can communicate with each other by means of signal molecules to coordinate the behavior of the entire community, and the mechanism is referred to as quorum sensing (QS). Signal systems enable bacteria to sense the size of their densities by monitoring the concentration of the signal...... molecules. Among Gram-negative bacteria N-acyl-L-homoserine lactone (acyl-HSL)-dependent quorum sensing systems are particularly widespread. These systems are used to coordinate expression of phenotypes that are fundamental to the interaction of bacteria with each other and with their environment and...

  11. EXPRESS

    International Nuclear Information System (INIS)

    This paper presents EXPRESS, an expert system developed for the automation of reliability studies. The first part consists in the description of the method for static thermohydraulic systems. In this step, the authors define the knowledge representation based on the two inference engines - ALOUETTE and LCR developed by EDF. They explain all the process to construct a fault tree from a topological and functional description of the system. Numerous examples are exhibited in illustration of the method. This is followed by the lessons derived from the studies performed on some safety systems of the PALUEL nuclear plant. The development of the same approach for electric power systems is described, insisting on the difference resulting from the sequential nature of these systems. Finally, they show the main advantages identified during the studies

  12. The Transcriptome of Bathymodiolus azoricus Gill Reveals Expression of Genes from Endosymbionts and Free-Living Deep-Sea Bacteria

    Directory of Open Access Journals (Sweden)

    Raul Bettencourt

    2012-08-01

    Full Text Available Deep-sea environments are largely unexplored habitats where a surprising number of species may be found in large communities, thriving regardless of the darkness, extreme cold, and high pressure. Their unique geochemical features result in reducing environments rich in methane and sulfides, sustaining complex chemosynthetic ecosystems that represent one of the most surprising findings in oceans in the last 40 years. The deep-sea Lucky Strike hydrothermal vent field, located in the Mid Atlantic Ridge, is home to large vent mussel communities where Bathymodiolus azoricus represents the dominant faunal biomass, owing its survival to symbiotic associations with methylotrophic or methanotrophic and thiotrophic bacteria. The recent transcriptome sequencing and analysis of gill tissues from B. azoricus revealed a number of genes of bacterial origin, hereby analyzed to provide a functional insight into the gill microbial community. The transcripts supported a metabolically active microbiome and a variety of mechanisms and pathways, evidencing also the sulfur and methane metabolisms. Taxonomic affiliation of transcripts and 16S rRNA community profiling revealed a microbial community dominated by thiotrophic and methanotrophic endosymbionts of B. azoricus and the presence of a Sulfurovum-like epsilonbacterium.

  13. Cloning and gene expression of allograft inflammatory factor-1 (AIF-1) provide new insights into injury and bacteria response of the sea cucumber Apostichopus japonicus (Selenka, 1867).

    Science.gov (United States)

    Ji, Nanjing; Chang, Yaqing; Zhao, Chong; Pang, Zhengguo; He, Zhou

    2014-06-01

    Allograft inflammatory factor-1 (AIF-1) is an interferon (IFN)-γ-inducible Ca(2+)-binding cytokine that associates with the immune defense and inflammatory response. In this study, we reported AIF-1 gene in sea cucumber Apostichopus japonicus (AjAIF-1). The full-length cDNA of AjAIF-1 is 1541 bp with an open reading frame (ORF) of 477 bp encoding 158 amino acids. Two EF-hand Ca(2+)-binding motifs were found in the deduced AjAIF-1. AjAIF-1 was widely expressed in all tested tissues (body wall, intestine, respiratory tree, tube feet, coelomocytes and longitudinal muscle), with the highest expression in respiratory tree. After Vibrio splendidus challenge and physical injury, AjAIF-1 transcripts were significantly upregulated in coelomocytes. The mRNA expression level of AjAIF-1 in coelomocytes reached to the highest value at 4 h (3.38-folds vs. the PBS control, P japonicus. PMID:24704420

  14. Lactic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    ToddKlaenhammer

    2013-04-01

    Full Text Available Lactic acid bacteria (LAB are a diverse group of Gram-positive bacteria found in a vast array of environments including dairy products and the human gastrointestinal tract. In both niches, surface proteins play a crucial role in mediating interactions with the surrounding environment. The sortase enzyme is responsible for covalently coupling a subset of surface dependent proteins (SDPs to the cell wall of Gram-positive organisms through recognition of a conserved C-terminal LPXTG motif. Genomic sequencing of LAB and annotation has allowed for the identification of sortase and SDPs. Historically, sortase and SDPs were predominately investigated for their role in mediating pathogenesis. Identification of these proteins in LAB has shed light on their important roles in mediating nutrient acquisition through proteinase P as well as positive probiotic attributes including adhesion, mucus barrier function, and immune signaling. Furthermore, sortase expression signals in LAB have been exploited as a means to develop oral vaccines targeted to the gastrointestinal tract. In this review, we examine the collection of studies which evaluate sortase and SDPs in select species of dairy associated and health promoting LAB.

  15. Expression of genes involved in the uptake of inorganic carbon in the gill of a deep-sea vesicomyid clam harboring intracellular thioautotrophic bacteria.

    Science.gov (United States)

    Hongo, Yuki; Ikuta, Tetsuro; Takaki, Yoshihiro; Shimamura, Shigeru; Shigenobu, Shuji; Maruyama, Tadashi; Yoshida, Takao

    2016-07-10

    Deep-sea vesicomyid clams, including the genus Phreagena (formerly Calyptogena), harbor thioautotrophic bacterial symbionts in the host symbiosome, which consists of cytoplasmic vacuoles in gill epithelial cells called bacteriocytes. The symbiont requires inorganic carbon (Ci), such as CO2, HCO3(-), and CO3(2-), to synthesize organic compounds, which are utilized by the host clam. The dominant Ci in seawater is HCO3(-), which is impermeable to cell membranes. Within the bacteriocyte, cytoplasmic carbonic anhydrase (CA) from the host, which catalyzes the inter-conversion between CO2 and HCO3(-), has been shown to be abundant and is thought to supply intracellular CO2 to symbionts in the symbiosome. However, the mechanism of Ci uptake by the host gill from seawater is poorly understood. To elucidate the influx pathway of Ci into the bacteriocyte, we isolated the genes related to Ci uptake via the pyrosequencing of cDNA from the gill of Phreagena okutanii, and investigated their expression patterns. Using phylogenetic and amino acid sequence analyses, three solute carrier family 4 (SLC4) bicarbonate transporters (slc4co1, slc4co2, and slc4co4) and two membrane-associated CAs (mcaco1 and mcaco2) were identified as candidate genes for Ci uptake. In an in situ hybridization analysis of gill sections, the expression of mcaco1 and mcaco2 was detected in the bacteriocytes and asymbiotic non-ciliated cells, respectively, and the expression of slc4co1 and slc4co2 was detected in the asymbiotic cells, including the intermediate cells of the inner area and the non-ciliated cells of the external area. Although subcellular localizations of the products of these genes have not been fully elucidated, they may play an important role in the uptake of Ci into the bacteriocytes. These findings will improve our understanding of the Ci transport system in the symbiotic relationships of chemosynthetic bivalves. PMID:27016297

  16. Bacteria isolated from amoebae/bacteria consortium

    Science.gov (United States)

    Tyndall, Richard L.

    1995-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  17. Bleach vs. Bacteria

    Science.gov (United States)

    ... Articles | Inside Life Science Home Page Bleach vs. Bacteria By Sharon Reynolds Posted April 2, 2014 Your ... hypochlorous acid to help kill invading microbes, including bacteria. Researchers funded by the National Institutes of Health ...

  18. Bacteria and lignin degradation

    Institute of Scientific and Technical Information of China (English)

    Jing LI; Hongli YUAN; Jinshui YANG

    2009-01-01

    Lignin is both the most abundant aromatic (phenolic) polymer and the second most abundant raw material.It is degraded and modified by bacteria in the natural world,and bacteria seem to play a leading role in decomposing lignin in aquatic ecosystems.Lignin-degrading bacteria approach the polymer by mechanisms such as tunneling,erosion,and cavitation.With the advantages of immense environmental adaptability and biochemical versatility,bacteria deserve to be studied for their ligninolytic potential.

  19. Ectopic Expression in Arabidopsis thaliana of an NB-ARC Encoding Putative Disease Resistance Gene from Wild Chinese Vitis pseudoreticulata Enhances Resistance to Phytopathogenic Fungi and Bacteria

    Directory of Open Access Journals (Sweden)

    Zhifeng eWen

    2015-12-01

    Full Text Available Plant resistance proteins mediate pathogen recognition and activate innate immune responses to restrict pathogen proliferation. One common feature of these proteins is an NB-ARC domain. In this study, we characterized a gene encoding a protein with an NB-ARC domain from wild Chinese grapevine Vitis pseudoreticulata accession Baihe-35-1, which was identified in a transcriptome analysis of the leaves following inoculation with Erysiphe necator (Schw., a causal agent of powdery mildew. Transcript levels of this gene, designated VpCN (GenBank accession number KT265084, increased strongly after challenge of grapevine leaves with E. necator. The deduced amino acid sequence was predicted to contain an NB-ARC domain in the C-terminus and an RxCC-like domain similar to CC domain of Rx protein in the N-terminus. Ectopic expression of VpCN in Arabidopsis thaliana resulted in either a wild-type phenotype or a dwarf phenotype. The phenotypically normal transgenic A. thaliana showed enhance resistance to A. thaliana powdery mildew Golovinomyces cichoracearum, as well as to a virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000. Moreover, promoter::GUS (β-glucuronidase analysis revealed that powdery mildew infection induced the promoter activity of VpCN in grapevine leaves. Finally, a promoter deletion analysis showed that TC rich repeat elements likely play an important role in the response to E. necator infection. Taken together, our results suggest that VpCN contribute to powdery mildew disease resistant in grapevine.

  20. Novel 5'/3'RACE Method for Amplification and Determination of Single-Stranded RNAs Through Double-Stranded RNA (dsRNA) Intermediates.

    Science.gov (United States)

    Pankovics, Péter; Boros, Ákos; Reuter, Gábor

    2015-12-01

    To acquire the full-length sequences and to determine the 5'/3'ends of the RNA genomes and mRNA transcripts using the rapid amplification of cDNA ends (RACE) protocols-via cDNA or mRNA templates-are a great challenge. This 4-steps RNA-based RACE method uses different ways to determine the RNA ends through a double-stranded (ds) RNA intermediate (dsRNA-RACE). In the first step a complementary RNA strand is synthesised by Phi6 RNA replicase enzyme next to the template ssRNA forming a dsRNA intermediate. The following steps include adapter ligation, nucleic acid purification and two classical methods with minor modifications reverse transcription and polymerase chain reaction. The dsRNA-RACE protocol could be used in wide variety of ssRNA (cellular, viral, bacterial, etc.) templates in the field of microbiology and cellular biology and suitable for the amplification of full-length RNAs including the 5'/3'ends. This is a novel, expansively utilizable molecular tool with fewer disadvantages than the existing 5'/3'RACE approaches. PMID:26315976

  1. Dose-dependent Inhibition of Gynecophoral Canal Protein Gene Expression in Vitro in the Schistosome (Schistosomajaponicum) by RNA Interference

    Institute of Scientific and Technical Information of China (English)

    Guo-Feng CHENG; Jiao-Jiao LIN; Yi SHI; You-Xin JIN; Zhi-Qiang FU; Ya-Mei JIN; Yuan-Cong ZHOU; You-Min CAI

    2005-01-01

    The gynecophoral canal protein gene SjGCP of Schistosoma japonicum that is necessary for the pairing between the male and female worms is specifically expressed in the adult male worm. This protein is widely distributed in the adult female worm after pairing. Reverse transcription-polymerase chain reaction (RT-PCR) and immunofluorescence were employed to analyze the relationship between the RNAi effect and dsRNA dosage in the parasites. The results revealed that the inhibition of SjGCP expression by siRNA is dose-dependent. RT-PCR analysis showed that the SjGCP transcript level was reduced by 75%when 100 nM dsRNA was applied.

  2. Genomics of Probiotic Bacteria

    Science.gov (United States)

    O'Flaherty, Sarah; Goh, Yong Jun; Klaenhammer, Todd R.

    Probiotic bacteria from the Lactobacillus and Bifidobacterium species belong to the Firmicutes and the Actinobacteria phylum, respectively. Lactobacilli are members of the lactic acid bacteria (LAB) group, a broadly defined family of microorganisms that ferment various hexoses into primarily lactic acid. Lactobacilli are typically low G + C gram-positive species which are phylogenetically diverse, with over 100 species documented to date. Bifidobacteria are heterofermentative, high G + C content bacteria with about 30 species of bifidobacteria described to date.

  3. Learning Chemistry from Bacteria

    OpenAIRE

    Clardy, Jon

    2013-01-01

    Dr. Jon Clardy Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University All animals, including humans, originated and evolved on a planet already teeming with bacteria, and the two kingdoms of life have been competing and cooperating through their joint history. Although bacteria are most familiar as pathogens, some bacteria produce small molecules that are essential for the biology of animals and other eukaryotes. This lecture explores some of...

  4. Quorum sensing in Gram-negative bacteria

    Institute of Scientific and Technical Information of China (English)

    WU Hong; SONG Zhijun; Niels HФIBY; Michael GIVSKOV

    2004-01-01

    Bacteria can communicate with each other by means of signal molecules to coordinate the behavior of the entire community,and the mechanism is referred to as quorum sensing (QS).Signal systems enable bacteria to sense the size of their densities by monitoring the concentration of the signal molecules.Among Gram-negative bacteria N-acyl-L-homoserine lactone (acyl-HSL)-dependent quorum sensing systems are particularly widespread.These systems are used to coordinate expression of phenotypes that are fundamental to the interaction of bacteria with each other and with their environment and particularly higher organisms,covering a variety of functions ranging from pathogenic to symbiotic interactions.The detailed knowledge of these bacterial communication systems has opened completely new perspectives for controlling undesired microbial activities.

  5. Influence of copper on expression of nirS, norB and nosZ and the transcription and activity of NIR, NOR and N2 OR in the denitrifying soil bacteria Pseudomonas stutzeri.

    Science.gov (United States)

    Black, Amanda; Hsu, Pei-Chun L; Hamonts, Kelly E; Clough, Tim J; Condron, Leo M

    2016-05-01

    Reduction of the potent greenhouse gas nitrous oxide (N2 O) occurs in soil environments by the action of denitrifying bacteria possessing nitrous oxide reductase (N2 OR), a dimeric copper (Cu)-dependent enzyme producing environmentally benign dinitrogen (N2 ). We examined the effects of increasing Cu concentrations on the transcription and activity of nitrite reductase (NIR), nitric oxide reductase (NOR) and N2 OR in Pseudomonas stutzeri grown anaerobically in solution over a 10-day period. Gas samples were taken on a daily basis and after 6 days, bacterial RNA was recovered to determine the expression of nirS, norB and nosZ encoding NIR, NOR and N2 OR respectively. Results revealed that 0.05 mM Cu caused maximum conversion of N2 O to N2 via bacterial reduction of N2 O. As soluble Cu generally makes up less than 0.001% of total soil Cu, extrapolation of 0.05 mg l(-l) soluble Cu would require soils to have a total concentration of Cu in the range of, 150-200 μg g(-1) to maximize the proportion of N2 O reduced to N2 . Given that many intensively farmed agricultural soils are deficient in Cu in terms of plant nutrition, providing a sufficient concentration of biologically accessible Cu could provide a potentially useful microbial-based strategy of reducing agricultural N2 O emissions. PMID:26935976

  6. Aerobic Anoxygenic Phototrophic Bacteria

    OpenAIRE

    Yurkov, Vladimir V.; Beatty, J. Thomas

    1998-01-01

    The aerobic anoxygenic phototrophic bacteria are a relatively recently discovered bacterial group. Although taxonomically and phylogenetically heterogeneous, these bacteria share the following distinguishing features: the presence of bacteriochlorophyll a incorporated into reaction center and light-harvesting complexes, low levels of the photosynthetic unit in cells, an abundance of carotenoids, a strong inhibition by light of bacteriochlorophyll synthesis, and the inability to grow photosynt...

  7. Metallization of bacteria cells

    Institute of Scientific and Technical Information of China (English)

    LI; Xiangfeng; (黎向锋); LI; Yaqin; (李雅芹); CAI; Jun; (蔡军); ZHANG; Deyuan; (张德远)

    2003-01-01

    Bacteria cells with different standard shapes are well suited for use as templates for the fabrication of magnetic and electrically conductive microstructures. In this paper, metallization of bacteria cells is demonstrated by an electroless deposition technique of nickel-phosphorus initiated by colloid palladium-tin catalyst on the surfaces of Citeromyces matritensis and Bacillus cereus. The activated and metallized bacteria cells have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD). Results showed that both Citeromyces matritensis and Bacillus cereus had no deformation in shape after metallization; the metallized films deposited on the surfaces of bacteria cells are homogeneous in thickness and noncrystalline in phase structure. The kinetics of colloid palladium-tin solution and electroless plating on bacteria cells is discussed.

  8. Revolutionizing membrane protein overexpression in bacteria

    OpenAIRE

    Schlegel, Susan; Klepsch, Mirjam; Gialama, Dimitra; Wickström, David; Slotboom, Dirk Jan; De Gier, Jan‐Willem

    2010-01-01

    Summary The bacterium Escherichia coli is the most widely used expression host for overexpression trials of membrane proteins. Usually, different strains, culture conditions and expression regimes are screened for to identify the optimal overexpression strategy. However, yields are often not satisfactory, especially for eukaryotic membrane proteins. This has initiated a revolution of membrane protein overexpression in bacteria. Recent studies have shown that it is feasible to (i) engineer or ...

  9. Peptide conversations in Gram-positive bacteria.

    Science.gov (United States)

    Monnet, Véronique; Juillard, Vincent; Gardan, Rozenn

    2016-05-01

    Within Gram-positive bacteria, the expression of target genes is controlled at the population level via signaling peptides, also known as pheromones. Pheromones control a wide range of functions, including competence, virulence, and others that remain unknown. Until now, their role in bacterial gene regulation has probably been underestimated; indeed, bacteria are able to produce, by ribosomal synthesis or surface protein degradation, an extraordinary variety of peptides which are released outside bacteria and among which, some are pheromones that mediate cell-to-cell communication. The review aims at giving an updated overview of these peptide-dependant communication pathways. More specifically, it follows the whole peptide circuit from the peptide production and secretion in the extracellular medium to its interaction with sensors at bacterial surface or re-import into the bacteria where it plays its regulation role. In recent years, as we have accumulated more knowledge about these systems, it has become apparent that they are more complex than they first appeared. For this reason, more research on peptide-dependant pathways is needed to develop new strategies for controlling functions of interest in Gram-positive bacteria. In particular, such research could lead to alternatives to the use of antibiotics against pathogenic bacteria. In perspective, the review identifies new research questions that emerge in this field and that have to be addressed. PMID:25198780

  10. Indicator For Pseudomonas Bacteria

    Science.gov (United States)

    Margalit, Ruth

    1990-01-01

    Characteristic protein extracted and detected. Natural protein marker found in Pseudomonas bacteria. Azurin, protein containing copper readily extracted, purified, and used to prepare antibodies. Possible to develop simple, fast, and accurate test for marker carried out in doctor's office.

  11. Controlled overproduction of proteins by lactic acid bacteria

    OpenAIRE

    Kuipers, Oscar P; Ruyter, Pascalle G.G.A. de; Kleerebezem, Michiel; de Vos, Willem M

    1997-01-01

    Lactic acid bacteria are widely used in industrial food fermentations, contributing to flavour, texture and preservation of the fermented products. Here we describe recent advances in the development of controlled gene expression systems, which allow the regulated overproduction of any desirable protein by lactic acid bacteria. Some systems benefit from the fact that the expression vectors, marker genes and inducing factors can be used directly in food applications since they are all derived ...

  12. Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity.

    Science.gov (United States)

    Chen, Zhongyi; Guo, Lilu; Zhang, Yongqin; Walzem, Rosemary L; Pendergast, Julie S; Printz, Richard L; Morris, Lindsey C; Matafonova, Elena; Stien, Xavier; Kang, Li; Coulon, Denis; McGuinness, Owen P; Niswender, Kevin D; Davies, Sean S

    2014-08-01

    Metabolic disorders, including obesity, diabetes, and cardiovascular disease, are widespread in Westernized nations. Gut microbiota composition is a contributing factor to the susceptibility of an individual to the development of these disorders; therefore, altering a person's microbiota may ameliorate disease. One potential microbiome-altering strategy is the incorporation of modified bacteria that express therapeutic factors into the gut microbiota. For example, N-acylphosphatidylethanolamines (NAPEs) are precursors to the N-acylethanolamide (NAE) family of lipids, which are synthesized in the small intestine in response to feeding and reduce food intake and obesity. Here, we demonstrated that administration of engineered NAPE-expressing E. coli Nissle 1917 bacteria in drinking water for 8 weeks reduced the levels of obesity in mice fed a high-fat diet. Mice that received modified bacteria had dramatically lower food intake, adiposity, insulin resistance, and hepatosteatosis compared with mice receiving standard water or control bacteria. The protective effects conferred by NAPE-expressing bacteria persisted for at least 4 weeks after their removal from the drinking water. Moreover, administration of NAPE-expressing bacteria to TallyHo mice, a polygenic mouse model of obesity, inhibited weight gain. Our results demonstrate that incorporation of appropriately modified bacteria into the gut microbiota has potential as an effective strategy to inhibit the development of metabolic disorders. PMID:24960158

  13. The talking language in some major Gram-negative bacteria.

    Science.gov (United States)

    Banerjee, Goutam; Ray, Arun Kumar

    2016-08-01

    Cell-cell interaction or quorum sensing (QS) is a vital biochemical/physiological process in bacteria that is required for various physiological functions, including nutrient uptake, competence development, biofilm formation, sporulation, as well as for toxin secretion. In natural environment, bacteria live in close association with other bacteria and interaction among them is crucial for survival. The QS-regulated gene expression in bacteria is a cell density-dependent process and the initiation process depends on the threshold level of the signaling molecule, N-acyl-homoserine lactone (AHL). The present review summarizes the QS signal and its respective circuit in Gram-negative bacteria. Most of the human pathogens belong to Gram-negative group, and only a few of them cause disease through QS system. Thus, inhibition of pathogenic bacteria is important. Use of antibiotics creates a selective pressure (antibiotics act as natural selection factor to promote one group of bacteria over another group) for emerging multidrug-resistant bacteria and will not be suitable for long-term use. The alternative process of inhibition of QS in bacteria using different natural and synthetic molecules is called quorum quenching. However, in the long run, QS inhibitors or blockers may also develop resistance, but obviously it will solve some sort of problems. In this review, we also have stated the mode of action of quorum-quenching molecule. The understanding of QS network in pathogenic Gram-negative bacteria will help us to solve many health-related problems in future. PMID:27062655

  14. Oil eating bacteria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The article discusses the unusual technology of using oil-eating bacteria to increase oil recovery. The background for the discovery that bacteria injection into the reservoirs may increase the oil recovery is the study of microbial action in breaking down oil pollution. About 20 per cent of the organisms living naturally in the sea can eat oil. But they need water to grow. In the absence of water, the bacteria produce enzymes to make the oil water soluble and allow them to extract nutrients from them. Oil does not vanish upon being eaten, but enzymes from the digestive process act as effective detergents to wash away the oil, which is then easier to recover.

  15. Immunity to intracellular bacteria

    OpenAIRE

    Stefan H. E. Kaufmann; Follows, George A.; Martin E. Munik

    1992-01-01

    Immunity to intracellular bacteria including Mycobacterium tuberculosis. Mycobacterium leprae, and Listeria monocytogenes depends on specific T cells. Evidence to be described suggests that CD4 (alpha/beta)T cells which interact with each other and with macrophages contribute to acquired resistence against as well as pathogenesis of intracellular bacterial infections.

  16. Immunity to intracellular bacteria

    Directory of Open Access Journals (Sweden)

    Stefan H. E. Kaufmann

    1992-01-01

    Full Text Available Immunity to intracellular bacteria including Mycobacterium tuberculosis. Mycobacterium leprae, and Listeria monocytogenes depends on specific T cells. Evidence to be described suggests that CD4 (alpha/betaT cells which interact with each other and with macrophages contribute to acquired resistence against as well as pathogenesis of intracellular bacterial infections.

  17. Evolution of transcriptional regulatory circuits in bacteria

    OpenAIRE

    Perez, J. Christian; Groisman, Eduardo A.

    2009-01-01

    Related organisms typically respond to a given cue by altering the level or activity of orthologous transcription factors, which, paradoxically, often regulate expression of distinct gene sets. Although promoter rewiring of shared genes is primarily responsible for regulatory differences among related eukaryotic species, in bacteria, species-specific genes are often controlled by ancestral transcription factors and regulatory circuit evolution has been further shaped by horizontal gene transf...

  18. Can bacteria save the planet?

    OpenAIRE

    Hunter, Philip

    2010-01-01

    Bacteria might just hold the key to preserving the environment for our great grandchildren. Philip Hunter explores some of the novel ways in which systems biology and biotechnology are harnessing bacteria to produce renewable energy and clean up pollution.

  19. Cable Bacteria in Freshwater Sediments

    OpenAIRE

    Risgaard-Petersen, Nils; Kristiansen, Michael; Frederiksen, Rasmus B.; Dittmer, Anders Lindequist; Bjerg, Jesper Tataru; Trojan, Daniela; Schreiber, Lars; Damgaard, Lars Riis; Schramm, Andreas; Nielsen, Lars Peter

    2015-01-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the fre...

  20. Manufacture of Probiotic Bacteria

    Science.gov (United States)

    Muller, J. A.; Ross, R. P.; Fitzgerald, G. F.; Stanton, C.

    Lactic acid bacteria (LAB) have been used for many years as natural biopreservatives in fermented foods. A small group of LAB are also believed to have beneficial health effects on the host, so called probiotic bacteria. Probiotics have emerged from the niche industry from Asia into European and American markets. Functional foods are one of the fastest growing markets today, with estimated growth to 20 billion dollars worldwide by 2010 (GIA, 2008). The increasing demand for probiotics and the new food markets where probiotics are introduced, challenges the industry to produce high quantities of probiotic cultures in a viable and stable form. Dried concentrated probiotic cultures are the most convenient form for incorporation into functional foods, given the ease of storage, handling and transport, especially for shelf-stable functional products. This chapter will discuss various aspects of the challenges associated with the manufacturing of probiotic cultures.

  1. Exopolysaccharides from Marine Bacteria

    Institute of Scientific and Technical Information of China (English)

    CHI Zhenming; FANG Yan

    2005-01-01

    Microbial polysaccharides represent a class of important products of growing interest for many sectors of industry. In recent years, there has been a growing interest in isolating new exopolysaccharides (EPSs)-producing bacteria from marine environments, particularly from various extreme marine environments. Many new marine microbial EPSs with novel chemical compositions, properties and structures have been found to have potential applications in fields such as adhesives,textiles, pharmaceuticals and medicine for anti-cancer, food additives, oil recovery and metal removal in mining and industrial waste treatments, etc This paper gives a brief summary of the information about the EPSs produced by marine bacteria,including their chemical compositions, properties and structures, together with their potential applications in industry.

  2. Bacteria, Phages and Septicemia

    OpenAIRE

    Gaidelytė, Aušra; Vaara, Martti; Bamford, Dennis H.

    2007-01-01

    The use of phages is an attractive option to battle antibiotic resistant bacteria in certain bacterial infections, but the role of phage ecology in bacterial infections is obscure. Here we surveyed the phage ecology in septicemia, the most severe type of bacterial infection. We observed that the majority of the bacterial isolates from septicemia patients spontaneously secreted phages active against other isolates of the same bacterial strain, but not to the strain causing the disease. Such ph...

  3. Bacteria, food, and cancer

    OpenAIRE

    Rooks, Michelle G.; Garrett, Wendy S.

    2011-01-01

    Gut microbes are essential components of the human organism—helping us metabolize food into energy, produce micronutrients, and shape our immune systems. Having a particular pattern of gut microbes is also increasingly being linked to medical conditions including obesity, inflammatory bowel disease, and diabetes. Recent studies now indicate that our resident intestinal bacteria may also play a critical role in determining one's risk of developing cancer, ranging from protection against cancer...

  4. Lethal Mutagenesis of Bacteria

    OpenAIRE

    Bull, James J; Wilke, Claus O.

    2008-01-01

    Lethal mutagenesis, the killing of a microbial pathogen with a chemical mutagen, is a potential broad-spectrum antiviral treatment. It operates by raising the genomic mutation rate to the point that the deleterious load causes the population to decline. Its use has been limited to RNA viruses because of their high intrinsic mutation rates. Microbes with DNA genomes, which include many viruses and bacteria, have not been considered for this type of treatment because their low intrinsic mutatio...

  5. Bacteria are not Lamarckian

    OpenAIRE

    Danchin, Antoine

    2007-01-01

    Instructive influence of environment on heredity has been a debated topic for centuries. Darwin's identification of natural selection coupled to chance variation as the driving force for evolution, against a formal interpretation proposed by Lamarck, convinced most scientists that environment does not specifically instruct evolution in an oriented direction. This is true for multicellular organisms. In contrast, bacteria were long thought of as prone to receive oriented influences from their ...

  6. Denitrification by extremely halophilic bacteria

    Science.gov (United States)

    Hochstein, L. I.; Tomlinson, G. A.

    1985-01-01

    Extremely halophilic bacteria were isolated from widely separated sites by anaerobic enrichment in the presence of nitrate. The anaerobic growth of several of these isolates was accompanied by the production of nitrite, nitrous oxide, and dinitrogen. These results are a direct confirmation of the existence of extremely halophilic denitrifying bacteria, and suggest that such bacteria may be common inhabitants of hypersaline environments.

  7. Enhanced whitefly resistance in transgenic tobacco plants expressing double stranded RNA of v-ATPase A gene.

    Directory of Open Access Journals (Sweden)

    Nidhi Thakur

    Full Text Available BACKGROUND: Expression of double strand RNA (dsRNA designed against important insect genes in transgenic plants have been shown to give protection against pests through RNA interference (RNAi, thus opening the way for a new generation of insect-resistant crops. We have earlier compared the efficacy of dsRNAs/siRNAs, against a number of target genes, for interference in growth of whitefly (Bemisia tabaci upon oral feeding. The v-ATPase subunit A (v-ATPaseA coding gene was identified as a crucial target. We now report the effectiveness of transgenic tobacco plants expressing siRNA to silence v-ATPaseA gene expression for the control of whitefly infestation. METHODOLOGY/PRINCIPAL FINDINGS: Transgenic tobacco lines were developed for the expression of long dsRNA precursor to make siRNA and knock down the v-ATPaseA mRNA in whitefly. Molecular analysis and insecticidal properties of the transgenic plants established the formation of siRNA targeting the whitefly v-ATPaseA, in the leaves. The transcript level of v-ATPaseA in whiteflies was reduced up to 62% after feeding on the transgenic plants. Heavy infestation of whiteflies on the control plants caused significant loss of sugar content which led to the drooping of leaves. The transgenic plants did not show drooping effect. CONCLUSIONS/SIGNIFICANCE: Host plant derived pest resistance was achieved against whiteflies by genetic transformation of tobacco which generated siRNA against the whitefly v-ATPaseA gene. Transgenic tobacco lines expressing dsRNA of v-ATPaseA, delivered sufficient siRNA to whiteflies feeding on them, mounting a significant silencing response, leading to their mortality. The transcript level of the target gene was reduced in whiteflies feeding on transgenic plants. The strategy can be taken up for genetic engineering of plants to control whiteflies in field crops.

  8. Pepsin homologues in bacteria

    Directory of Open Access Journals (Sweden)

    Bateman Alex

    2009-09-01

    Full Text Available Abstract Background Peptidase family A1, to which pepsin belongs, had been assumed to be restricted to eukaryotes. The tertiary structure of pepsin shows two lobes with similar folds and it has been suggested that the gene has arisen from an ancient duplication and fusion event. The only sequence similarity between the lobes is restricted to the motif around the active site aspartate and a hydrophobic-hydrophobic-Gly motif. Together, these contribute to an essential structural feature known as a psi-loop. There is one such psi-loop in each lobe, and so each lobe presents an active Asp. The human immunodeficiency virus peptidase, retropepsin, from peptidase family A2 also has a similar fold but consists of one lobe only and has to dimerize to be active. All known members of family A1 show the bilobed structure, but it is unclear if the ancestor of family A1 was similar to an A2 peptidase, or if the ancestral retropepsin was derived from a half-pepsin gene. The presence of a pepsin homologue in a prokaryote might give insights into the evolution of the pepsin family. Results Homologues of the aspartic peptidase pepsin have been found in the completed genomic sequences from seven species of bacteria. The bacterial homologues, unlike those from eukaryotes, do not possess signal peptides, and would therefore be intracellular acting at neutral pH. The bacterial homologues have Thr218 replaced by Asp, a change which in renin has been shown to confer activity at neutral pH. No pepsin homologues could be detected in any archaean genome. Conclusion The peptidase family A1 is found in some species of bacteria as well as eukaryotes. The bacterial homologues fall into two groups, one from oceanic bacteria and one from plant symbionts. The bacterial homologues are all predicted to be intracellular proteins, unlike the eukaryotic enzymes. The bacterial homologues are bilobed like pepsin, implying that if no horizontal gene transfer has occurred the duplication

  9. Memory and fitness optimization of bacteria under fluctuating environments.

    OpenAIRE

    Guillaume Lambert; Edo Kussell

    2014-01-01

    Bacteria prudently regulate their metabolic phenotypes by sensing the availability of specific nutrients, expressing the required genes for their metabolism, and repressing them after specific metabolites are depleted. It is unclear, however, how genetic networks maintain and transmit phenotypic states between generations under rapidly fluctuating environments. By subjecting bacteria to fluctuating carbon sources (glucose and lactose) using microfluidics, we discover two types of non-genetic ...

  10. Bacteria counting method based on polyaniline/bacteria thin film.

    Science.gov (United States)

    Zhihua, Li; Xuetao, Hu; Jiyong, Shi; Xiaobo, Zou; Xiaowei, Huang; Xucheng, Zhou; Tahir, Haroon Elrasheid; Holmes, Mel; Povey, Malcolm

    2016-07-15

    A simple and rapid bacteria counting method based on polyaniline (PANI)/bacteria thin film was proposed. Since the negative effects of immobilized bacteria on the deposition of PANI on glass carbon electrode (GCE), PANI/bacteria thin films containing decreased amount of PANI would be obtained when increasing the bacteria concentration. The prepared PANI/bacteria film was characterized with cyclic voltammetry (CV) technique to provide quantitative index for the determination of the bacteria count, and electrochemical impedance spectroscopy (EIS) was also performed to further investigate the difference in the PANI/bacteria films. Good linear relationship of the peak currents of the CVs and the log total count of bacteria (Bacillus subtilis) could be established using the equation Y=-30.413X+272.560 (R(2)=0.982) over the range of 5.3×10(4) to 5.3×10(8)CFUmL(-1), which also showed acceptable stability, reproducibility and switchable ability. The proposed method was feasible for simple and rapid counting of bacteria. PMID:26921555

  11. Beneficial bacteria inhibit cachexia.

    Science.gov (United States)

    Varian, Bernard J; Goureshetti, Sravya; Poutahidis, Theofilos; Lakritz, Jessica R; Levkovich, Tatiana; Kwok, Caitlin; Teliousis, Konstantinos; Ibrahim, Yassin M; Mirabal, Sheyla; Erdman, Susan E

    2016-03-15

    Muscle wasting, known as cachexia, is a debilitating condition associated with chronic inflammation such as during cancer. Beneficial microbes have been shown to optimize systemic inflammatory tone during good health; however, interactions between microbes and host immunity in the context of cachexia are incompletely understood. Here we use mouse models to test roles for bacteria in muscle wasting syndromes. We find that feeding of a human commensal microbe, Lactobacillus reuteri, to mice is sufficient to lower systemic indices of inflammation and inhibit cachexia. Further, the microbial muscle-building phenomenon extends to normal aging as wild type animals exhibited increased growth hormone levels and up-regulation of transcription factor Forkhead Box N1 [FoxN1] associated with thymus gland retention and longevity. Interestingly, mice with a defective FoxN1 gene (athymic nude) fail to inhibit sarcopenia after L. reuteri therapy, indicating a FoxN1-mediated mechanism. In conclusion, symbiotic bacteria may serve to stimulate FoxN1 and thymic functions that regulate inflammation, offering possible alternatives for cachexia prevention and novel insights into roles for microbiota in mammalian ontogeny and phylogeny. PMID:26933816

  12. Interaction between Chlorella vulgaris and bacteria:interference and resource competition

    Institute of Scientific and Technical Information of China (English)

    QU Liang; WANG Renjun; ZHAO Peng; CHEN Ruinan; ZHOU Wenli; TANG Liuqing; TANG Xuexi

    2014-01-01

    Research of interaction mechanism between Chlorella vulgaris and two bacterial strains (Z-QD08 and Z-QS01) were conducted under laboratory conditions. Growth rates of bacteria and C. vulgaris were tested under co-culture conditions to evaluate the effects of concentrations of C. vulgaris and bacteria on their interactions. To test whether the availability of inorganic nutrients, vitamins and trace metals affects the interactions between C. vulgaris and bacteria, experiments were performed with or without the culture medium filtrate of C. vulgaris or bacteria. The results showed that the growth of C. vulgaris was promot-ed at low concentrations of bacteria (5×106 cells/ml), and expressed a positive correlation with the bacteria density, whereas opposite trend was observed for treatments with high bacteria density (10×106 cells/ml and 20×106 cells/ml). The growth rate of bacteria decreased with the increasing concentrations of C. vul-garis. The growth of bacteria Z-QD08 was inhibited by C. vulgaris through interference competition, while the mechanism for interaction between bacteria Z-QS01 and C. vulgaris was resource competition. The influence of cell density on the interaction between microalgae and bacteria was also discussed. These ex-periments confirm some elements of published theory on interactions between heterotrophic bacteria and microalgae and suggest that heterotrophic bacteria play an important role in the development of blooms in natural waters.

  13. Tumour targeting with systemically administered bacteria.

    LENUS (Irish Health Repository)

    Morrissey, David

    2012-01-31

    Challenges for oncology practitioners and researchers include specific treatment and detection of tumours. The ideal anti-cancer therapy would selectively eradicate tumour cells, whilst minimising side effects to normal tissue. Bacteria have emerged as biological gene vectors with natural tumour specificity, capable of homing to tumours and replicating locally to high levels when systemically administered. This property enables targeting of both the primary tumour and secondary metastases. In the case of invasive pathogenic species, this targeting strategy can be used to deliver genes intracellularly for tumour cell expression, while non-invasive species transformed with plasmids suitable for bacterial expression of heterologous genes can secrete therapeutic proteins locally within the tumour environment (cell therapy approach). Many bacterial genera have been demonstrated to localise to and replicate to high levels within tumour tissue when intravenously (IV) administered in rodent models and reporter gene tagging of bacteria has permitted real-time visualisation of this phenomenon. Live imaging of tumour colonising bacteria also presents diagnostic potential for this approach. The nature of tumour selective bacterial colonisation appears to be tumour origin- and bacterial species- independent. While originally a correlation was drawn between anaerobic bacterial colonisation and the hypoxic nature of solid tumours, it is recently becoming apparent that other elements of the unique microenvironment within solid tumours, including aberrant neovasculature and local immune suppression, may be responsible. Here, we consider the pre-clinical data supporting the use of bacteria as a tumour-targeting tool, recent advances in the area, and future work required to develop it into a beneficial clinical tool.

  14. Cable Bacteria in Freshwater Sediments

    DEFF Research Database (Denmark)

    Risgaard-Petersen, Nils; Kristiansen, Michael; Frederiksen, Rasmus;

    2015-01-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable...... bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures and...... marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary...

  15. Immunomodulatory properties of probiotic bacteria

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen

    2007-01-01

    Certain lactic acid bacteria (LAB) are part of the commensal intestinal flora and considered beneficial for health, as they compete with pathogens for adhesion sites in the intestine and ferment otherwise indigestible compounds. Another important property of these so-called probiotic bacteria is...... cytokines when stimulated with bacteria, and the cytokine pattern induced by specific bacteria resembled the pattern induced in MoDC, except for TNF-alpha and IL-6, which were induced in response to different bacteria in blood DC/monocytes and monocyte-derived DC. Autologous NK cells produced IFN-gamma when...... cultured with blood DC, monocytes and monocyte-derived DC and IL-12-inducing bacteria, whereas only DC induced IFN-gamma production in allogeneic T cells. In vitro-generated DC is a commonly used model of tissue DC, but they differ in certain aspects from intestinal DC, which are in direct contact with the...

  16. Interactions between Diatoms and Bacteria

    OpenAIRE

    Amin, Shady A.; Parker, Micaela S.; Armbrust, E. Virginia

    2012-01-01

    Summary: Diatoms and bacteria have cooccurred in common habitats for hundreds of millions of years, thus fostering specific associations and interactions with global biogeochemical consequences. Diatoms are responsible for one-fifth of the photosynthesis on Earth, while bacteria remineralize a large portion of this fixed carbon in the oceans. Through their coexistence, diatoms and bacteria cycle nutrients between oxidized and reduced states, impacting bioavailability and ultimately feeding hi...

  17. Radiation-resistant asporogenic bacteria

    International Nuclear Information System (INIS)

    This paper reports the biological and ecological examinations on the radiation-resistant asporogenic bacteria (mainly concerning Micrococcus radiodurans). Radiation-resistant asporogenic bacteria were isolated from the irradiated areas of the natural world as well as from the general areas and from the Rn waters in the Misasa hot spring. The acquiring of the tolerance to radiation in bacteria was also examined. In addition, the future problems of microbiological treatment with irradiation were mentioned. (Tsukamoto, Y.)

  18. The interplay between Entamoeba and enteropathogenic bacteria modulates epithelial cell damage.

    Directory of Open Access Journals (Sweden)

    José Manuel Galván-Moroyoqui

    Full Text Available BACKGROUND: Mixed intestinal infections with Entamoeba histolytica, Entamoeba dispar and bacteria with exacerbated manifestations of disease are common in regions where amoebiasis is endemic. However, amoeba-bacteria interactions remain largely unexamined. METHODOLOGY: Trophozoites of E. histolytica and E. dispar were co-cultured with enteropathogenic bacteria strains Escherichia coli (EPEC, Shigella dysenteriae and a commensal Escherichia coli. Amoebae that phagocytosed bacteria were tested for a cytopathic effect on epithelial cell monolayers. Cysteine proteinase activity, adhesion and cell surface concentration of Gal/GalNAc lectin were analyzed in amoebae showing increased virulence. Structural and functional changes and induction of IL-8 expression were determined in epithelial cells before and after exposure to bacteria. Chemotaxis of amoebae and neutrophils to human IL-8 and conditioned culture media from epithelial cells exposed to bacteria was quantified. PRINCIPAL FINDINGS: E. histolytica digested phagocytosed bacteria, although S. dysenteriae retained 70% viability after ingestion. Phagocytosis of pathogenic bacteria augmented the cytopathic effect of E. histolytica and increased expression of Gal/GalNAc lectin on the amoebic surface and increased cysteine proteinase activity. E. dispar remained avirulent. Adhesion of amoebae and damage to cells exposed to bacteria were increased. Additional increases were observed if amoebae had phagocytosed bacteria. Co-culture of epithelial cells with enteropathogenic bacteria disrupted monolayer permeability and induced expression of IL-8. Media from these co-cultures and human recombinant IL-8 were similarly chemotactic for neutrophils and E. histolytica. CONCLUSIONS: Epithelial monolayers exposed to enteropathogenic bacteria become more susceptible to E. histolytica damage. At the same time, phagocytosis of pathogenic bacteria by amoebae further increased epithelial cell damage. SIGNIFICANCE

  19. Expression of alkane monooxygenase (alkB) genes by plant-associated bacteria in the rhizosphere and endosphere of Italian ryegrass (Lolium multiflorum L.) grown in diesel contaminated soil

    International Nuclear Information System (INIS)

    For phytoremediation of organic contaminants, plants have to host an efficiently degrading microflora. To assess the role of endophytes in alkane degradation, Italian ryegrass was grown in sterile soil with 0, 1 or 2% diesel and inoculated either with an alkane degrading bacterial strain originally derived from the rhizosphere of Italian ryegrass or with an endophyte. We studied plant colonization of these strains as well as the abundance and expression of alkane monooxygenase (alkB) genes in the rhizosphere, shoot and root interior. Results showed that the endophyte strain better colonized the plant, particularly the plant interior, and also showed higher expression of alkB genes suggesting a more efficient degradation of the pollutant. Furthermore, plants inoculated with the endophyte were better able to grow in the presence of diesel. The rhizosphere strain colonized primarily the rhizosphere and showed low alkB gene expression in the plant interior. - Bacterial alkane degradation genes are expressed in the rhizosphere and in the plant interior.

  20. Expression of alkane monooxygenase (alkB) genes by plant-associated bacteria in the rhizosphere and endosphere of Italian ryegrass (Lolium multiflorum L.) grown in diesel contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Andria, Verania [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria); Reichenauer, Thomas G. [AIT Austrian Institute of Technology GmbH, Unit of Environmental Resources and Technologies, A-2444 Seibersdorf (Austria); Sessitsch, Angela, E-mail: angela.sessitsch@ait.ac.a [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria)

    2009-12-15

    For phytoremediation of organic contaminants, plants have to host an efficiently degrading microflora. To assess the role of endophytes in alkane degradation, Italian ryegrass was grown in sterile soil with 0, 1 or 2% diesel and inoculated either with an alkane degrading bacterial strain originally derived from the rhizosphere of Italian ryegrass or with an endophyte. We studied plant colonization of these strains as well as the abundance and expression of alkane monooxygenase (alkB) genes in the rhizosphere, shoot and root interior. Results showed that the endophyte strain better colonized the plant, particularly the plant interior, and also showed higher expression of alkB genes suggesting a more efficient degradation of the pollutant. Furthermore, plants inoculated with the endophyte were better able to grow in the presence of diesel. The rhizosphere strain colonized primarily the rhizosphere and showed low alkB gene expression in the plant interior. - Bacterial alkane degradation genes are expressed in the rhizosphere and in the plant interior.

  1. Bacteria, phages and septicemia.

    Directory of Open Access Journals (Sweden)

    Ausra Gaidelyte

    Full Text Available The use of phages is an attractive option to battle antibiotic resistant bacteria in certain bacterial infections, but the role of phage ecology in bacterial infections is obscure. Here we surveyed the phage ecology in septicemia, the most severe type of bacterial infection. We observed that the majority of the bacterial isolates from septicemia patients spontaneously secreted phages active against other isolates of the same bacterial strain, but not to the strain causing the disease. Such phages were also detected in the initial blood cultures, indicating that phages are circulating in the blood at the onset of sepsis. The fact that most of the septicemic bacterial isolates carry functional prophages suggests an active role of phages in bacterial infections. Apparently, prophages present in sepsis-causing bacterial clones play a role in clonal selection during bacterial invasion.

  2. Bacteriophages of methanotrophic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Tyutikow, F.M. (All-Union Research Inst. for Genetics and Selection of Industrial Microorganisms, Moscow, USSR); Bespalova, I.A.; Rebentish, B.A.; Aleksandrushkina, N.N.; Krivisky, A.S.

    1980-10-01

    Bacteriophages of methanotrophic bacteria have been found in 16 out of 88 studied samples (underground waters, pond water, soil, gas and oil installation waters, fermentor cultural fluids, bacterial paste, and rumen of cattle) taken in different geographic zones of the Soviet Union. Altogether, 23 phage strains were isolated. By fine structure, the phages were divided into two types (with very short or long noncontractile tails); by host range and serological properties, they fell into three types. All phages had guanine- and cytosine-rich double-stranded deoxyribonucleic acid consisting of common nitrogen bases. By all of the above-mentioned properties, all phages within each of the groups were completely identical to one another, but differed from phages of other groups.

  3. Enhanced Whitefly Resistance in Transgenic Tobacco Plants Expressing Double Stranded RNA of v-ATPase A Gene

    OpenAIRE

    Thakur, Nidhi; Upadhyay, Santosh Kumar; Verma, Praveen C.; Chandrashekar, Krishnappa; Tuli, Rakesh; Singh, Pradhyumna K.

    2014-01-01

    Background Expression of double strand RNA (dsRNA) designed against important insect genes in transgenic plants have been shown to give protection against pests through RNA interference (RNAi), thus opening the way for a new generation of insect-resistant crops. We have earlier compared the efficacy of dsRNAs/siRNAs, against a number of target genes, for interference in growth of whitefly (Bemisia tabaci) upon oral feeding. The v-ATPase subunit A (v-ATPaseA) coding gene was identified as a cr...

  4. Pea (Pisum sativum) genes involved in symbiosis with nitrogen-fixing bacteria.1.Analysis of the expression of the early nodulin gene ENOD12 using the polymerase chain-reaction

    OpenAIRE

    Zalenskii, A.O.; Kozik, A.V.; Scheres, B.J.G.; Bisseling, A.; Tikhonovich, I.A.

    1991-01-01

    The polymerase chain reaction (PCR) was used to detect the transcription products of the early nodulin gene in the pea. Single-stranded DNA copies were prepared using a primer corresponding to the terminal part of a previously sequenced cDNA clone and a total RNA isolate. The presence of amplification products was detected using Southern hybridization. Expression of the ENOD12 gene was found to occur at the earliest developmental stages of the symbiosis between the pea and nitrogenfixing bact...

  5. Broad Specificity Efflux pumps and Their Role in Multidrug Resistance of Gram Negative Bacteria

    OpenAIRE

    Nikaido, Hiroshi; Pagès, Jean-Marie

    2011-01-01

    Antibiotic resistance mechanisms reported in Gram-negative bacteria are producing a worldwide health problem. The continuous dissemination of «multi-drug resistant» (MDR) bacteria drastically reduces the efficacy of our antibiotic “arsenal” and consequently increases the frequency of therapeutic failure. In MDR bacteria, the over-expression of efflux pumps that expel structurally-unrelated drugs contributes to the reduced susceptibility by decreasing the intracellular concentration of antibio...

  6. Robust RNAi-based resistance to mixed infection of three viruses in soybean plants expressing separate short hairpins from a single transgene.

    Science.gov (United States)

    Zhang, Xiuchun; Sato, Shirley; Ye, Xiaohong; Dorrance, Anne E; Morris, T Jack; Clemente, Thomas E; Qu, Feng

    2011-11-01

    Transgenic plants expressing double-stranded RNA (dsRNA) of virus origin have been previously shown to confer resistance to virus infections through the highly conserved RNA-targeting process termed RNA silencing or RNA interference (RNAi). In this study we applied this strategy to soybean plants and achieved robust resistance to multiple viruses with a single dsRNA-expressing transgene. Unlike previous reports that relied on the expression of one long inverted repeat (IR) combining sequences of several viruses, our improved strategy utilized a transgene designed to express several shorter IRs. Each of these short IRs contains highly conserved sequences of one virus, forming dsRNA of less than 150 bp. These short dsRNA stems were interspersed with single-stranded sequences to prevent homologous recombination during the transgene assembly process. Three such short IRs with sequences of unrelated soybean-infecting viruses (Alfalfa mosaic virus, Bean pod mottle virus, and Soybean mosaic virus) were assembled into a single transgene under control of the 35S promoter and terminator of Cauliflower mosaic virus. Three independent transgenic lines were obtained and all of them exhibited strong systemic resistance to the simultaneous infection of the three viruses. These results demonstrate the effectiveness of this very straight forward strategy for engineering RNAi-based virus resistance in a major crop plant. More importantly, our strategy of construct assembly makes it easy to incorporate additional short IRs in the transgene, thus expanding the spectrum of virus resistance. Finally, this strategy could be easily adapted to control virus problems of other crop plants. PMID:21999157

  7. Platelets and Infections – Complex Interactions with Bacteria

    OpenAIRE

    Hamzeh-Cognasse, Hind; Damien, Pauline; Chabert, Adrien; Pozzetto, Bruno; Cognasse, Fabrice; Garraud, Olivier

    2015-01-01

    Platelets can be considered sentinels of vascular system due to their high number in the circulation and to the range of functional immunoreceptors they express. Platelets express a wide range of potential bacterial receptors, including complement receptors, FcγRII, Toll-like receptors but also integrins conventionally described in the hemostatic response, such as GPIIb–IIIa or GPIb. Bacteria bind these receptors either directly, or indirectly via fibrinogen, fibronectin, the first complement...

  8. Biophysical Evaluation of Food Decontamination Effects on Tissue and Bacteria

    DEFF Research Database (Denmark)

    Andersen, Ann Zahle; Duelund, Lars; Brewer, Jonathan;

    2011-01-01

    employ differential scanning calorimetry, second harmonics generation imaging microscopy, two-photon fluorescence microscopy, and green fluorescence protein-expressing bacteria and compare our results with those obtained by traditional methods of food quality and safety evaluations. Our results show that...

  9. Post-transcriptional silencing of the SGE1 gene induced by a dsRNA hairpin in Fusarium oxysporum f. sp cubense, the causal agent of Panama disease.

    Science.gov (United States)

    Fernandes, J S; Angelo, P C S; Cruz, J C; Santos, J M M; Sousa, N R; Silva, G F

    2016-01-01

    Fusarium oxysporum f. sp cubense (Foc), the causal agent of Panama disease, is responsible for economic losses in banana crops worldwide. The identification of genes that effectively act on pathogenicity and/or virulence may contribute to the development of different strategies for disease control and the production of resistant plants. The objective of the current study was to analyze the importance of SGE1 gene expression in Foc virulence through post-transcriptional silencing using a double-stranded RNA hairpin. Thirteen transformants were selected based on different morphological characteristics, and sporulation in these transformants was significantly reduced by approximately 95% (P < 0.05) compared to that of the wild-type strain. The relative SGE1 expression levels in the transformant strains were reduced by 27 to 47% compared to those in the wild-type strain. A pathogenicity analysis revealed that the transformants were able to reach the rhizomes and pseudostems of the inoculated banana plants. However, the transformants induced initial disease symptoms in the banana plants approximately 10 days later than that by the wild-type Foc, and initial disease symptoms persisted even at 45 days after inoculation. These results indicate that the SGE1 gene is directly involved in the virulence of Foc. Therefore, SGE1 may be a potential candidate for host-induced gene silencing in banana plants. PMID:27173186

  10. Probiotic Lactic Acid Bacteria and Skin Health.

    Science.gov (United States)

    Jeong, Ji Hye; Lee, Chang Y; Chung, Dae Kyun

    2016-10-25

    Human skin is the first defense barrier against the external environment, especially microbial pathogens and physical stimulation. Many studies on skin health with Lactic acid bacteria (LAB) have been published for many years, including prevention of skin disease and improvement of skin conditions. LAB, a major group of gram-positive bacteria, are known to be beneficial to human health by acting as probiotics. Recent studies have shown that LAB and their extracts have beneficial effects on maintenance and improvement of skin health. Oral administration of Lactobacillus delbrueckii inhibits the development of atopic disease. In addition, LAB and LAB extracts are known to have beneficial effects on intestinal diseases, with Lactobacillus plantarum having been shown to attenuate IL-10 deficient colitis. In addition to intestinal health, L. plantarum also has beneficial effects on skin. pLTA, which is lipoteichoic acid isolated from L. plantarum, has anti-photoaging effects on human skin cells by regulating the expression matrix meralloprotionase-1 (MMP-1) expression. While several studies have proposed a relationship between diseases of the skin and small intestines, there are currently no published reviews of the effects of LAB for skin health through regulation of intestinal conditions and the immune system. In this review, we discuss recent findings on the effects of LAB on skin health and its potential applications in beauty foods. PMID:26287529

  11. Beer spoilage bacteria and hop resistance

    NARCIS (Netherlands)

    Sakamoto, K; Konings, WN

    2003-01-01

    For brewing industry, beer spoilage bacteria have been problematic for centuries. They include some lactic acid bacteria such as Lactobacillus brevis, Lactobacillus lindneri and Pediococcus damnosus, and some Gram-negative bacteria such as Pectinatus cerevisiiphilus, Pectinatus frisingensis and Mega

  12. Sampling bacteria with a laser

    Science.gov (United States)

    Schwarzwälder, Kordula; Rutschmann, Peter

    2014-05-01

    Water quality is a topic of high interest and it's getting more and more important due to climate change and the implementation of European Water Framework Directive (WFD). One point of interest here is the inflow of bacteria into a river caused by combined sewer overflows which lead untreated wastewater including bacteria directly into a river. These bacteria remain in the river for a certain time, they settle down and can be remobilised again. In our study we want to investigate these processes of sedimentation and resuspension and use the results for the development of a software module coupled with the software Flow3D. Thereby we should be able to simulate and therefore predict the water quality influenced by combined sewer overflows. Hence we need to get information about the bacteria transport and fate. We need to know about the size of the bacteria or of the bacteria clumps and the size of the particles the bacteria are attached to. The agglomerates lead to different characteristics and velocities of settlement. The timespan during this bacteria can be detected in the bulk phase depends on many factors like the intensity of UV light, turbidity of the water, the temperature of the water, if there are grazers and a lot more. The size, density and composition of the agglomerates is just a part of all these influencing factors, but it is extremely difficult to differ between the other effects if we have no information about the simple sedimentation in default of these basic information. However we have a big problem getting the data. The chaining between bacteria or bacteria and particles is not too strong, so filtering the water to get a sieving curve may destroy these connections. We did some experiments similar to PIV (particle image velocimetry) measurements and evaluated the pictures with a macro written for the software ImageJ. Doing so we were able to get the concentration of bacteria in the water and collect information about the size of the bacteria. We

  13. Screening of aspartate dehydrogenase of bacteria

    OpenAIRE

    Fukuda, Shoko; Okamura, Tokumitsu; Yasumasa, Izumi; Takeno, Tomomi; Ohsugi, Masahiro

    2001-01-01

    Fifty-two strains of bacteria cultured under aerobic conditions and 12 strains of bacteria cultured under anaerobic conditions demonstrated high activity staining of aspartate dehydrogenase with NAD^+. Four strains of bacteria cultured under aerobic conditions and 7 strains of bacteria cultured under anaerobic conditions demonstrated high activity staining of aspartate dehydrogenase with NADP^+. Seven strains of bacteria cultured under aerobic conditions and 4 strains of bacteria cultured und...

  14. Sewage-pollution indicator bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.; Rodrigues, V.; Alwares, E.; Rodrigues, C.; Baksh, R.; Jayan, S.; Mohandass, C.

    increased. It is only recently that sewage from major cities like Panaji, Goa, India is treated before disposing into the estuary. It is therefore of interest to determine what the levels of pollution indicator bacteria due to sewage disposal...

  15. Platelets and infections—complex interactions with bacteria

    Directory of Open Access Journals (Sweden)

    Hind eHAMZEH-COGNASSE

    2015-02-01

    Full Text Available Platelets can be considered sentinels of vascular system due to their high number in the circulation and to the range of functional immunoreceptors they express. Platelets express a wide range of potential bacterial receptors, including complement receptors, FcγRII, Toll-Like Receptors but also integrins conventionally described in the hemostatic response, such as GPIIb-IIIa or GPIb. Bacteria bind these receptors either directly, or indirectly via fibrinogen, fibronectin, the first complement C1q, the von Willebrand Factor, etc. The fate of platelet bound bacteria is questioned. Several studies reported the ability of activated platelets to internalize bacteria such as Staphylococcus aureus or Porphyromonas gingivalis, though there is no clue on what happens thereafter. Are they sheltered from the immune system in the cytoplasm of platelets or are they lysed? Indeed, while the presence of phagolysosome has not been demonstrated in platelets, they contain antimicrobial peptides that were shown to be efficient on S. aureus. Besides, the fact that bacteria can bind to platelets via receptors involved in hemostasis suggests that they may induce aggregation; this has indeed been described for Streptococcus sanguinis, S. epidermidis or C. pneumoniae. On the other hand, platelets are able to display an inflammatory response to an infectious triggering. We, and others, have shown that platelet release soluble immunomodulatory factors upon stimulation by bacterial components. Moreover, interactions between bacteria and platelets are not limited to only these two partners. Indeed, platelets are also essential for the formation of Neutrophil Extracellular Traps by neutrophils, resulting in bacterial clearance by trapping bacteria and concentrating antibacterial factors but in enhancing thrombosis. In conclusion, the platelet-bacteria interplay is a complex game; its fine analysis is complicated by the fact that the inflammatory component adds to the

  16. Thymidine kinase diversity in bacteria

    DEFF Research Database (Denmark)

    Sandrini, Michael; Clausen, A.R.; Munch-Petersen, B.;

    2006-01-01

    Thymidine kinases (TKs) appear to be almost ubiquitous and are found in nearly all prokaryotes, eukaryotes, and several viruses. They are the key enzymes in thymidine salvage and activation of several anti-cancer and antiviral drugs. We show that bacterial TKs can be subdivided into 2 groups. The...... TKs from Gram-positive bacteria are more closely related to the eukaryotic TK1 enzymes than are TKs from Gram-negative bacteria....

  17. LACTIC ACID BACTERIA: PROBIOTIC APPLICATIONS

    OpenAIRE

    NEENA GARG

    2015-01-01

    Lactic acid bacteria (LAB) is a heterotrophic Gram-positive bacteria which under goes lactic acid fermentations and leads to production of lactic acid as an end product. LAB includes Lactobacillus, Leuconostoc, Pediococcus, Lactococcus and Streptococcus which are grouped together in the family lactobacillaceae. LAB shows numerous antimicrobial activities due to production of antibacterial and antifungal compounds such as organic acids, bacteriocins, diacetyl, hydrogen peroxide and reutrin. LA...

  18. Adherention ability of intestinal bacteria

    OpenAIRE

    Morgensternová, Tereza

    2014-01-01

    Probiotics are live microorganisms that provide positive health benefits. Bacteria of the genus Bifidobacterium belong to this group. These bacteria have to meet a number of criteria so that they could be considered for probiotic. These include the ability to survive, grow, and be metabolically active in the gastrointestinal tract of the recipient. Probiotics protect the intestinal mucus from the adhesion of pathogenic organisms. The aim of this thesis was to test the ability of different ...

  19. Thymidine kinase diversity in bacteria

    DEFF Research Database (Denmark)

    Sandrini, Michael; Clausen, A.R.; Munch-Petersen, B.; Piskur, Jure

    Thymidine kinases (TKs) appear to be almost ubiquitous and are found in nearly all prokaryotes, eukaryotes, and several viruses. They are the key enzymes in thymidine salvage and activation of several anti-cancer and antiviral drugs. We show that bacterial TKs can be subdivided into 2 groups. The...... TKs from Gram-positive bacteria are more closely related to the eukaryotic TK1 enzymes than are TKs from Gram-negative bacteria....

  20. A comparative effect of 3 disinfectants on heterotrophic bacteria, iron bacteria and sulfate-reducing bacteria

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The disinfection effect of chlorine dioxide, chlorine and their mixture on heterotrophic bacteria, iron bacteria and sulfate-reducing bacteria in circulating cooling water was studied. The results of the test indicated that high purity chlorine dioxide was the most effective biocide in the 3 disinfectants, and with a dosage of 0.5mg/L, chlorine dioxide could obtain perfect effect. High purity chloride dioxide could have the excellent effect with the pH value of 6 to 10, and could keep it within 72 h. Chlorine and their mixture couldn't reach the effect of chlorine dioxide.

  1. Cable Bacteria in Freshwater Sediments.

    Science.gov (United States)

    Risgaard-Petersen, Nils; Kristiansen, Michael; Frederiksen, Rasmus B; Dittmer, Anders Lindequist; Bjerg, Jesper Tataru; Trojan, Daniela; Schreiber, Lars; Damgaard, Lars Riis; Schramm, Andreas; Nielsen, Lars Peter

    2015-09-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures and electric fields indicated electron transfer between vertically separated anodic and cathodic half-reactions. Fluorescence in situ hybridization revealed the presence of Desulfobulbaceae filaments. In addition, in situ measurements of oxygen, pH, and electric potential distributions in the waterlogged banks of Giber Å demonstrated the presence of distant electric redox coupling in naturally occurring freshwater sediment. At the same site, filamentous Desulfobulbaceae with cable bacterium morphology were found to be present. Their 16S rRNA gene sequence placed them as a distinct sister group to the known marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary origin of the cable phenotype within Desulfobulbaceae with subsequent diversification into a freshwater and a marine lineage. PMID:26116678

  2. Bioreporter bacteria for landmine detection

    Energy Technology Data Exchange (ETDEWEB)

    Burlage, R.S. [Oak Ridge National Lab., TN (United States); Youngblood, T. [Frisby Technologies, Aiken, SC (United States); Lamothe, D. [American Technologies, Inc., Huntsville, AL (United States). Ordnance/Explosives Environmental Services Div.

    1998-04-01

    Landmines (and other UXO) gradually leak explosive chemicals into the soil at significant concentrations. Bacteria, which have adapted to scavenge low concentrations of nutrients, can detect these explosive chemicals. Uptake of these chemicals results in the triggering of specific bacterial genes. The authors have created genetically recombinant bioreporter bacteria that detect small concentrations of energetic chemicals. These bacteria are genetically engineered to produce a bioluminescent signal when they contact specific explosives. A gene for a brightly fluorescent compound can be substituted for increased sensitivity. By finding the fluorescent bacteria, you find the landmine. Detection might be accomplished using stand-off illumination of the minefield and GPS technology, which would result in greatly reduced risk to the deminers. Bioreporter technology has been proven at the laboratory scale, and will be tested under field conditions in the near future. They have created a bacterial strain that detects sub-micromolar concentrations of o- and p-nitrotoluene. Related bacterial strains were produced using standard laboratory protocols, and bioreporters of dinitrotoluene and trinitrotoluene were produced, screening for activity with the explosive compounds. Response time is dependent on the growth rate of the bacteria. Although frill signal production may require several hours, the bacteria can be applied over vast areas and scanned quickly, producing an equivalent detection speed that is very fast. This technology may be applicable to other needs, such as locating buried explosives at military and ordnance/explosive manufacturing facilities.

  3. Isolation and Identification of Concrete Environment Bacteria

    Science.gov (United States)

    Irwan, J. M.; Anneza, L. H.; Othman, N.; Husnul, T.; Alshalif, A. F.

    2016-07-01

    This paper presents the isolation and molecular method for bacteria identification through PCR and DNA sequencing. Identification of the bacteria species is required in order to fully utilize the bacterium capability for precipitation of calcium carbonate in concrete. This process is to enable the addition of suitable catalyst according to the bacterium enzymatic pathway that is known through the bacteria species used. The objective of this study is to isolate, enriched and identify the bacteria species. The bacteria in this study was isolated from fresh urine and acid mine drainage water, Kota Tinggi, Johor. Enrichment of the isolated bacteria was conducted to ensure the bacteria survivability in concrete. The identification of bacteria species was done through polymerase chain reaction (PCR) and rRDNA sequencing. The isolation and enrichment of the bacteria was done successfully. Whereas, the results for bacteria identification showed that the isolated bacteria strains are Bacillus sp and Enterococus faecalis.

  4. RNA interference of four genes in adult Bactrocera dorsalis by feeding their dsRNAs.

    Directory of Open Access Journals (Sweden)

    Xiaoxue Li

    Full Text Available BACKGROUND: RNA interference (RNAi is a powerful method to inhibit gene expression in a sequence specific manner. Recently silencing the target gene through feeding has been successfully carried out in many insect species. METHODOLOGY/PRINCIPAL FINDINGS: Escherichia coli strain HT115 was genetically engineered to express dsRNA targeting genes that encode ribosomal protein Rpl19, V type ATPase D subunit, the fatty acid elongase Noa and a small GTPase Rab11. qRT-PCR showed that mRNA level of four target genes was reduced compared to ds-egfp control by feeding either engineered bacteria or dsRNAs. The maximum down-regulation of each gene varied from 35% to 100%. Tissue specific examination indicated that RNAi could be observed not only in midgut but also in other tissues like the ovary, nervous system and fat body. Silencing of rab11 through ingestion of dsRNA killed 20% of adult flies. Egg production was affected through feeding ds-noa and ds-rab11 compared to ds-egfp group. Adult flies were continuously fed with dsRNA and bacteria expressing dsRNA for 14 days and up-regulations of target genes were observed during this process. The transcripts of noa showed up-regulation compared to ds-egfp control group in four tissues on day 7 after continuous feeding either dsRNA or engineered bacteria. The maximum over-expression is 21 times compared to ds-egfp control group. Up-regulation of rab11 mRNA level could be observed in testes on day 7 after continuous bacteria treatment and in midgut on day 2 after ds-rab11 treatment. This phenomenon could also be observed in rpl19 groups. CONCLUSIONS: Our results suggested that it is feasible to silence genes by feeding dsRNA and bacteria expressing dsRNA in Bactrocera dorsalis. Additionally the over-expression of the target gene after continuously feeding dsRNA or bacteria was observed.

  5. Role of HIF-1 on phosphofructokinase and fructose 1, 6-bisphosphatase expression during hypoxia in the white shrimp Litopenaeus vannamei.

    Science.gov (United States)

    Cota-Ruiz, Keni; Leyva-Carrillo, Lilia; Peregrino-Uriarte, Alma B; Valenzuela-Soto, Elisa M; Gollas-Galván, Teresa; Gómez-Jiménez, Silvia; Hernández, Jesús; Yepiz-Plascencia, Gloria

    2016-08-01

    HIF-1 is a transcription factor that controls a widespread range of genes in metazoan organisms in response to hypoxia and is composed of α and β subunits. In shrimp, phosphofructokinase (PFK) and fructose bisphosphatase (FBP) are up-regulated in hypoxia. We hypothesized that HIF-1 is involved in the regulation of PFK and FBP genes in shrimp hepatopancreas under hypoxia. Long double stranded RNA (dsRNA) intramuscular injection was utilized to silence simultaneously both HIF-1 subunits, and then, we measured the relative expression of PFK and FBP, as well as their corresponding enzymatic activities in hypoxic shrimp hepatopancreas. The results indicated that HIF-1 participates in the up-regulation of PFK transcripts under short-term hypoxia since the induction caused by hypoxia (~1.6 and ~4.2-fold after 3 and 48h, respectively) is significantly reduced in the dsRNA animals treated. Moreover, PFK activity was significantly ~2.8-fold augmented after 3h in hypoxia alongside to an ~1.9-fold increment in lactate. However, when animals were dsRNA treated, both were significantly reduced. On the other hand, FBP transcripts were ~5.3-fold up-regulated in long-term hypoxic conditions (48h). HIF-1 is involved in this process since FBP transcripts were not induced by hypoxia when HIF-1 was silenced. Conversely, the FBP activity was not affected by hypoxia, which suggests its possible regulation at post-translational level. Taken together, these results position HIF-1 as a prime transcription factor in coordinating glucose metabolism through the PFK and FBP genes among others, in shrimp under low oxygen environments. PMID:27032338

  6. Validation of reference housekeeping genes for gene expression studies in western corn rootworm (Diabrotica virgifera virgifera.

    Directory of Open Access Journals (Sweden)

    Thaís Barros Rodrigues

    Full Text Available Quantitative Real-time PCR (qRT-PCR is a powerful technique to investigate comparative gene expression. In general, normalization of results using a highly stable housekeeping gene (HKG as an internal control is recommended and necessary. However, there are several reports suggesting that regulation of some HKGs is affected by different conditions. The western corn rootworm (WCR, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae, is a serious pest of corn in the United States and Europe. The expression profile of target genes related to insecticide exposure, resistance, and RNA interference has become an important experimental technique for study of western corn rootworms; however, lack of information on reliable HKGs under different conditions makes the interpretation of qRT-PCR results difficult. In this study, four distinct algorithms (Genorm, NormFinder, BestKeeper and delta-CT and five candidate HKGs to genes of reference (β-actin; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; β-tubulin; RPS9, ribosomal protein S9; EF1a, elongation factor-1α were evaluated to determine the most reliable HKG under different experimental conditions including exposure to dsRNA and Bt toxins and among different tissues and developmental stages. Although all the HKGs tested exhibited relatively stable expression among the different treatments, some differences were noted. Among the five candidate reference genes evaluated, β-actin exhibited highly stable expression among different life stages. RPS9 exhibited the most similar pattern of expression among dsRNA treatments, and both experiments indicated that EF1a was the second most stable gene. EF1a was also the most stable for Bt exposure and among different tissues. These results will enable researchers to use more accurate and reliable normalization of qRT-PCR data in WCR experiments.

  7. Lipopolysaccharide modification in Gram-negative bacteria during chronic infection.

    Science.gov (United States)

    Maldonado, Rita F; Sá-Correia, Isabel; Valvano, Miguel A

    2016-07-01

    The Gram-negative bacterial lipopolysaccharide (LPS) is a major component of the outer membrane that plays a key role in host-pathogen interactions with the innate immune system. During infection, bacteria are exposed to a host environment that is typically dominated by inflammatory cells and soluble factors, including antibiotics, which provide cues about regulation of gene expression. Bacterial adaptive changes including modulation of LPS synthesis and structure are a conserved theme in infections, irrespective of the type or bacteria or the site of infection. In general, these changes result in immune system evasion, persisting inflammation and increased antimicrobial resistance. Here, we review the modifications of LPS structure and biosynthetic pathways that occur upon adaptation of model opportunistic pathogens (Pseudomonas aeruginosa, Burkholderia cepacia complex bacteria, Helicobacter pylori and Salmonella enterica) to chronic infection in respiratory and gastrointestinal sites. We also discuss the molecular mechanisms of these variations and their role in the host-pathogen interaction. PMID:27075488

  8. Biophysical Evaluation of Food Decontamination Effects on Tissue and Bacteria

    DEFF Research Database (Denmark)

    Andersen, Ann Zahle; Duelund, Lars; Brewer, Jonathan R.;

    2011-01-01

    Traditionally, the effects and efficiency of food surface decontamination processes, such as chlorine washing, radiation, or heating, have been evaluated by sensoric analysis and colony-forming unit (CFU) counts of surface swabs or carcass rinses. These methods suffice when determining probable...... both food surface and bacteria upon surface decontamination by SonoSteam®. SonoSteam® is a recently developed method of food surface decontamination, which employs steam and ultrasound for effective heat transfer and short treatment times, resulting in significant reduction in surface bacteria. We...... employ differential scanning calorimetry, second harmonics generation imaging microscopy, two-photon fluorescence microscopy, and green fluorescence protein-expressing bacteria and compare our results with those obtained by traditional methods of food quality and safety evaluations. Our results show that...

  9. Bacteria as vectors for gene therapy of cancer.

    LENUS (Irish Health Repository)

    Baban, Chwanrow K

    2012-01-31

    Anti-cancer therapy faces major challenges, particularly in terms of specificity of treatment. The ideal therapy would eradicate tumor cells selectively with minimum side effects on normal tissue. Gene or cell therapies have emerged as realistic prospects for the treatment of cancer, and involve the delivery of genetic information to a tumor to facilitate the production of therapeutic proteins. However, there is still much to be done before an efficient and safe gene medicine is achieved, primarily developing the means of targeting genes to tumors safely and efficiently. An emerging family of vectors involves bacteria of various genera. It has been shown that bacteria are naturally capable of homing to tumors when systemically administered resulting in high levels of replication locally. Furthermore, invasive species can deliver heterologous genes intra-cellularly for tumor cell expression. Here, we review the use of bacteria as vehicles for gene therapy of cancer, detailing the mechanisms of action and successes at preclinical and clinical levels.

  10. IDENTIFICATION OF BACTERIA IN LATEX PAINTS

    Directory of Open Access Journals (Sweden)

    Rojas, J.

    2008-01-01

    Full Text Available The bacteria are prokaryote organisms with a high capacity to colonize many types of habits. This research was developed with the object to identify extremophiles bacteria presents in latex paint. The bacteria were cultivated in culture mediums TSA, Blood Agar, Mc Conkey and finally the biochemical proof API-NF® for bacteria's isolation and identification, respectively. Characterization showed bacterial profile of Pasteurella sp. Hypothesis that could be found extremophiles bacteria in latex paint were demonstrated.

  11. Electron transport chains of lactic acid bacteria

    OpenAIRE

    Brooijmans, R.J.W.

    2008-01-01

    Lactic acid bacteria are generally considered facultative anaerobic obligate fermentative bacteria. They are unable to synthesize heme. Some lactic acid bacteria are unable to form menaquinone as well. Both these components are cofactors of respiratory (electron transport) chains of prokaryotic bacteria. Lactococcus lactis, and several other lactic acid bacteria, however respond to the addition of heme in aerobic growth conditions. This response includes increased biomass and robustness. In t...

  12. Chitin Degradation In Marine Bacteria

    DEFF Research Database (Denmark)

    Paulsen, Sara; Machado, Henrique; Gram, Lone

    2015-01-01

    Introduction: Chitin is the most abundant polymer in the marine environment and the second most abundant in nature. Chitin does not accumulate on the ocean floor, because of microbial breakdown. Chitin degrading bacteria could have potential in the utilization of chitin as a renewable carbon and...... nitrogen source in the fermentation industry.Methods: Here, whole genome sequenced marine bacteria were screened for chitin degradation using phenotypic and in silico analyses.Results: The in silico analyses revealed the presence of three to nine chitinases in each strain, however the number of chitinases...... chitin regulatory system.Conclusions: This study has provided insight into the ecology of chitin degradation in marine bacteria. It also served as a basis for choosing a more efficient chitin degrading production strain e.g. for the use of chitin waste for large-scale fermentations....

  13. Methylotrophic bacteria in sustainable agriculture.

    Science.gov (United States)

    Kumar, Manish; Tomar, Rajesh Singh; Lade, Harshad; Paul, Diby

    2016-07-01

    Excessive use of chemical fertilizers to increase production from available land has resulted in deterioration of soil quality. To prevent further soil deterioration, the use of methylotrophic bacteria that have the ability to colonize different habitats, including soil, sediment, water, and both epiphytes and endophytes as host plants, has been suggested for sustainable agriculture. Methylotrophic bacteria are known to play a significant role in the biogeochemical cycle in soil ecosystems, ultimately fortifying plants and sustaining agriculture. Methylotrophs also improve air quality by using volatile organic compounds such as dichloromethane, formaldehyde, methanol, and formic acid. Additionally, methylotrophs are involved in phosphorous, nitrogen, and carbon cycling and can help reduce global warming. In this review, different aspects of the interaction between methylotrophs and host plants are discussed, including the role of methylotrophs in phosphorus acquisition, nitrogen fixation, phytohormone production, iron chelation, and plant growth promotion, and co-inoculation of these bacteria as biofertilizers for viable agriculture practices. PMID:27263015

  14. Parotitis due to anaerobic bacteria.

    Science.gov (United States)

    Matlow, A; Korentager, R; Keystone, E; Bohnen, J

    1988-01-01

    Although Staphylococcus aureus remains the pathogen most commonly implicated in acute suppurative parotitis, the pathogenic role of gram-negative facultative anaerobic bacteria and strict anaerobic organisms in this disease is becoming increasingly recognized. This report describes a case of parotitis due to Bacteroides disiens in an elderly woman with Sjögren's syndrome. Literature reports on seven additional cases of suppurative parotitis due to anaerobic bacteria are reviewed. Initial therapy of acute suppurative parotitis should include coverage for S. aureus and, in a very ill patient, coverage of gram-negative facultative organisms with antibiotics such as cloxacillin and an aminoglycoside. A failure to respond clinically to such a regimen or isolation of anaerobic bacteria should lead to the consideration of the addition of clindamycin or penicillin. PMID:3287567

  15. Transcriptome analysis of Sinorhizobium meliloti nodule bacteria in nifA mutant background

    Institute of Scientific and Technical Information of China (English)

    TIAN Zhexian; WANG Yiping; ZOU Huasong; LI Jian; ZHANG Yuantao; LIU Ying; YU Guanqiao; ZHU Jiabi; R(U)BERG Silvia; BECKER Anke

    2006-01-01

    Gene expression profiles of a Sinorhizobium meliloti 1021 nifA mutant and wild type nodule bacteria were compared using whole genome microarrays. The results revealed a large scale alteration of gene expression (601 genes) in the nifA minus background. The loss of NifA altered the expression of many functional groups of genes (macromolecular metabolism, TCA cycle and respiration,nodulation and nitrogen fixation) and may lead to quite different life stages of the nodule bacteria.Upregulation of fixK and its associated genes was observed in the nifA mutant nodule bacteria. Additional quantitative real-time PCR experiments revealed that the transcript levels of fixLJ were significantly upshifted in the nifA mutant nodule bacteria.Putative NifA binding sites were predicted by a statistical method in the upstream sequences of 13 differentially regulated genes from the nifA- transcriptome.

  16. A distinct pathway for tetrahymanol synthesis in bacteria

    Science.gov (United States)

    Banta, Amy B.; Wei, Jeremy H.; Welander, Paula V.

    2015-11-01

    Tetrahymanol is a polycyclic triterpenoid lipid first discovered in the ciliate Tetrahymena pyriformis whose potential diagenetic product, gammacerane, is often used as a biomarker for water column stratification in ancient ecosystems. Bacteria are also a potential source of tetrahymanol, but neither the distribution of this lipid in extant bacteria nor the significance of bacterial tetrahymanol synthesis for interpreting gammacerane biosignatures is known. Here we couple comparative genomics with genetic and lipid analyses to link a protein of unknown function to tetrahymanol synthesis in bacteria. This tetrahymanol synthase (Ths) is found in a variety of bacterial genomes, including aerobic methanotrophs, nitrite-oxidizers, and sulfate-reducers, and in a subset of aquatic and terrestrial metagenomes. Thus, the potential to produce tetrahymanol is more widespread in the bacterial domain than previously thought. However, Ths is not encoded in any eukaryotic genomes, nor is it homologous to eukaryotic squalene-tetrahymanol cyclase, which catalyzes the cyclization of squalene directly to tetrahymanol. Rather, heterologous expression studies suggest that bacteria couple the cyclization of squalene to a hopene molecule by squalene-hopene cyclase with a subsequent Ths-dependent ring expansion to form tetrahymanol. Thus, bacteria and eukaryotes have evolved distinct biochemical mechanisms for producing tetrahymanol.

  17. Role of Bacteria in Oncogenesis

    OpenAIRE

    Chang, Alicia H; Parsonnet, Julie

    2010-01-01

    Summary: Although scientific knowledge in viral oncology has exploded in the 20th century, the role of bacteria as mediators of oncogenesis has been less well elucidated. Understanding bacterial carcinogenesis has become increasingly important as a possible means of cancer prevention. This review summarizes clinical, epidemiological, and experimental evidence as well as possible mechanisms of bacterial induction of or protection from malignancy.

  18. Engineering robust lactic acid bacteria

    NARCIS (Netherlands)

    Bron, P.A.; Bokhorst-van de Veen, van H.; Wels, M.; Kleerebezem, M.

    2011-01-01

    For centuries, lactic acid bacteria (LAB) have been industrially exploited as starter cultures in the fermentation of foods and feeds for their spoilage-preventing and flavor-enhancing characteristics. More recently, the health-promoting effects of LAB on the consumer have been widely acknowledged,

  19. Constitutive and Inducible Green Fluorescent Protein Expression in Bartonella henselae

    OpenAIRE

    Lee, Anthea K.; Falkow, Stanley

    1998-01-01

    The green fluorescent protein (GFP) gene was expressed on a plasmid in B. henselae, and GFP-expressing bacteria were visualized by fluorescence microscopy. HEp-2 cells infected with GFP-expressing bacteria were separated from uninfected cells with a fluorescence activated cell sorter. Promoter fusions of B. henselae chromosomal DNA to gfp were examined by flow cytometry, and a B. henselae groEL promoter fusion which induced expression at 37°C was isolated.

  20. Fuzzy species among recombinogenic bacteria

    Directory of Open Access Journals (Sweden)

    Fraser Christophe

    2005-03-01

    Full Text Available Abstract Background It is a matter of ongoing debate whether a universal species concept is possible for bacteria. Indeed, it is not clear whether closely related isolates of bacteria typically form discrete genotypic clusters that can be assigned as species. The most challenging test of whether species can be clearly delineated is provided by analysis of large populations of closely-related, highly recombinogenic, bacteria that colonise the same body site. We have used concatenated sequences of seven house-keeping loci from 770 strains of 11 named Neisseria species, and phylogenetic trees, to investigate whether genotypic clusters can be resolved among these recombinogenic bacteria and, if so, the extent to which they correspond to named species. Results Alleles at individual loci were widely distributed among the named species but this distorting effect of recombination was largely buffered by using concatenated sequences, which resolved clusters corresponding to the three species most numerous in the sample, N. meningitidis, N. lactamica and N. gonorrhoeae. A few isolates arose from the branch that separated N. meningitidis from N. lactamica leading us to describe these species as 'fuzzy'. Conclusion A multilocus approach using large samples of closely related isolates delineates species even in the highly recombinogenic human Neisseria where individual loci are inadequate for the task. This approach should be applied by taxonomists to large samples of other groups of closely-related bacteria, and especially to those where species delineation has historically been difficult, to determine whether genotypic clusters can be delineated, and to guide the definition of species.

  1. Physico-chemical factors and bacteria in fish ponds

    OpenAIRE

    Jun, X.; Xiuzheng, F.; Tongbing, Y.

    2000-01-01

    Analyses of pond water and mud samples show that nitrifying bacteria (including ammonifying bacteria, nitrite bacteria, nitrobacteria and denitrifying bacteria) are in general closely correlated with various physico-chemical factors, ammonifying bacteria are mainly correlated with dissolved oxygen; denitrifying bacteria are inversely correlated with phosphorus; nitrite bacteria are closely correlated with nitrites, nitrobacteria are inversely correlated with ammoniac nitrogen. The nitrifying ...

  2. Genetics of Bacteria That Oxidize On-Carbon Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Richard S.

    2001-01-01

    Facultative methanol oxidizing bacteria contain large amounts of methanol dehydrogenase which is expressed only in the presence of methanol. This technical report describes two-two component regulatory systems encoding histidine kinases and response regulators and another response regulator all of which are required for the expression of mxaF, the open reading frame encoding methanol dehydrogenase. The response regulators bind to sequences upstream of the mxaF when phosphoryled in a reaction catalyzed by the histidine kinases. The binding of the response regulators is required for the transcription of mxaF.

  3. Smokeless Tobacco May Contain Potentially Harmful Bacteria

    Science.gov (United States)

    ... 160769.html Smokeless Tobacco May Contain Potentially Harmful Bacteria Infections, diarrhea and vomiting are possible consequences, FDA ... products can harbor several species of potentially harmful bacteria, researchers warn. Two types in particular -- Bacillus licheniformis ...

  4. Killer Pigments in Bacteria: An Ecological Nightmare.

    Science.gov (United States)

    Benathen, Isaiah A.; Saccardi, Marion

    2000-01-01

    Describes an alternative to teaching ecology by using bacteria to test competitor survival. Students observe a time-dependent selective killing of other unrelated bacteria by Pseudomonas aeruginosa. (SAH)

  5. Hydroxysteroid dehydrogenases (HSDs) in bacteria: a bioinformatic perspective.

    Science.gov (United States)

    Kisiela, Michael; Skarka, Adam; Ebert, Bettina; Maser, Edmund

    2012-03-01

    Steroidal compounds including cholesterol, bile acids and steroid hormones play a central role in various physiological processes such as cell signaling, growth, reproduction, and energy homeostasis. Hydroxysteroid dehydrogenases (HSDs), which belong to the superfamily of short-chain dehydrogenases/reductases (SDR) or aldo-keto reductases (AKR), are important enzymes involved in the steroid hormone metabolism. HSDs function as an enzymatic switch that controls the access of receptor-active steroids to nuclear hormone receptors and thereby mediate a fine-tuning of the steroid response. The aim of this study was the identification of classified functional HSDs and the bioinformatic annotation of these proteins in all complete sequenced bacterial genomes followed by a phylogenetic analysis. For the bioinformatic annotation we constructed specific hidden Markov models in an iterative approach to provide a reliable identification for the specific catalytic groups of HSDs. Here, we show a detailed phylogenetic analysis of 3α-, 7α-, 12α-HSDs and two further functional related enzymes (3-ketosteroid-Δ(1)-dehydrogenase, 3-ketosteroid-Δ(4)(5α)-dehydrogenase) from the superfamily of SDRs. For some bacteria that have been previously reported to posses a specific HSD activity, we could annotate the corresponding HSD protein. The dominating phyla that were identified to express HSDs were that of Actinobacteria, Proteobacteria, and Firmicutes. Moreover, some evolutionarily more ancient microorganisms (e.g., Cyanobacteria and Euryachaeota) were found as well. A large number of HSD-expressing bacteria constitute the normal human gastro-intestinal flora. Another group of bacteria were originally isolated from natural habitats like seawater, soil, marine and permafrost sediments. These bacteria include polycyclic aromatic hydrocarbons-degrading species such as Pseudomonas, Burkholderia and Rhodococcus. In conclusion, HSDs are found in a wide variety of microorganisms including

  6. IDENTIFICATION OF BACTERIA IN LATEX PAINTS

    OpenAIRE

    Rojas, J

    2008-01-01

    The bacteria are prokaryote organisms with a high capacity to colonize many types of habits. This research was developed with the object to identify extremophiles bacteria presents in latex paint. The bacteria were cultivated in culture mediums TSA, Blood Agar, Mc Conkey and finally the biochemical proof API-NF® for bacteria's isolation and identification, respectively. Characterization showed bacterial profile of Pasteurella sp. Hypothesis that could be found extremophiles bac...

  7. Genetics of Lactic Acid Bacteria

    Science.gov (United States)

    Zagorec, Monique; Anba-Mondoloni, Jamila; Coq, Anne-Marie Crutz-Le; Champomier-Vergès, Marie-Christine

    Many meat (or fish) products, obtained by the fermentation of meat originating from various animals by the flora that naturally contaminates it, are part of the human diet since millenaries. Historically, the use of bacteria as starters for the fermentation of meat, to produce dry sausages, was thus performed empirically through the endogenous micro-biota, then, by a volunteer addition of starters, often performed by back-slopping, without knowing precisely the microbial species involved. It is only since about 50 years that well defined bacterial cultures have been used as starters for the fermentation of dry sausages. Nowadays, the indigenous micro-biota of fermented meat products is well identified, and the literature is rich of reports on the identification of lactic acid bacteria (LAB) present in many traditional fermented products from various geographical origin, obtained without the addition of commercial starters (See Talon, Leroy, & Lebert, 2007, and references therein).

  8. Aggregation Patterns in Stressed Bacteria

    CERN Document Server

    Tsimring, L S; Aranson, I S; Ben-Jacob, E; Cohen, I; Shochet, O; Tsimring, Lev; Levine, Herbert; Aranson, Igor; Ben-Jacob, Eshel; Cohen, Inon; Shochet, Ofer

    1995-01-01

    We study the formation of spot patterns seen in a variety of bacterial species when the bacteria are subjected to oxidative stress due to hazardous byproducts of respiration. Our approach consists of coupling the cell density field to a chemoattractant concentration as well as to nutrient and waste fields. The latter serves as a triggering field for emission of chemoattractant. Important elements in the proposed model include the propagation of a front of motile bacteria radially outward form an initial site, a Turing instability of the uniformly dense state and a reduction of motility for cells sufficiently far behind the front. The wide variety of patterns seen in the experiments is explained as being due the variation of the details of the initiation of the chemoattractant emission as well as the transition to a non-motile phase.

  9. LACTIC ACID BACTERIA: PROBIOTIC APPLICATIONS

    Directory of Open Access Journals (Sweden)

    NEENA GARG

    2015-10-01

    Full Text Available Lactic acid bacteria (LAB is a heterotrophic Gram-positive bacteria which under goes lactic acid fermentations and leads to production of lactic acid as an end product. LAB includes Lactobacillus, Leuconostoc, Pediococcus, Lactococcus and Streptococcus which are grouped together in the family lactobacillaceae. LAB shows numerous antimicrobial activities due to production of antibacterial and antifungal compounds such as organic acids, bacteriocins, diacetyl, hydrogen peroxide and reutrin. LAB are used as starter culture, consortium members and bioprotective agents in food industry that improve food quality, safety and shelf life. A variety of probiotic LAB species are available including Lactobacillus acidophilus, L. bulgaricus, L. lactis, L. plantarum, L. rhamnosus, L. reuteri, L. fermentum, Bifidobacterium longum, B. breve, B. bifidum, B. esselnsis, B. lactis, B. infantis that are currently recommended for development of functional food products with health-promoting capacities.

  10. Dissipative Shocks behind Bacteria Gliding

    CERN Document Server

    Virga, Epifanio G

    2014-01-01

    Gliding is a means of locomotion on rigid substrates utilized by a number of bacteria includingmyxobacteria and cyanobacteria. One of the hypotheses advanced to explain this motility mechanism hinges on the role played by the slime filaments continuously extruded from gliding bacteria. This paper solves in full a non-linear mechanical theory that treats as dissipative shocks both the point where the extruded slime filament comes in contact with the substrate, called the filament's foot, and the pore on the bacterium outer surface from where the filament is ejected. We prove that kinematic compatibility for shock propagation requires that the bacterium uniform gliding velocity (relative to the substrate) and the slime ejecting velocity (relative to the bacterium) must be equal, a coincidence that seems to have already been observed.

  11. Box-shaped halophilic bacteria.

    OpenAIRE

    Javor, B; Requadt, C; Stoeckenius, W

    1982-01-01

    Three morphologically similar strains of halophilic, box-shaped procaryotes have been isolated from brines collected in the Sinai, Baja California (Mexico), and southern California (United States). Although the isolates in their morphology resemble Walsby's square bacteria, which are a dominant morphological type in the Red Sea and Baja California brines, they are probably not identical to them. The cells show the general characteristics of extreme halophiles and archaebacteria. They contain ...

  12. Folate Production by Probiotic Bacteria

    OpenAIRE

    Stefano Raimondi; Alberto Amaretti; Maddalena Rossi

    2011-01-01

    Probiotic bacteria, mostly belonging to the genera Lactobacillus and Bifidobacterium, confer a number of health benefits to the host, including vitamin production. With the aim to produce folate-enriched fermented products and/or develop probiotic supplements that accomplish folate biosynthesis in vivo within the colon, bifidobacteria and lactobacilli have been extensively studied for their capability to produce this vitamin. On the basis of physiological studies and genome analysis, wild-typ...

  13. Magnetotactic Bacteria from Extreme Environments

    OpenAIRE

    Lefèvre, Christopher T; Dennis A. Bazylinski

    2013-01-01

    Magnetotactic bacteria (MTB) represent a diverse collection of motile prokaryotes that biomineralize intracellular, membrane-bounded, tens-of-nanometer-sized crystals of a magnetic mineral called magnetosomes. Magnetosome minerals consist of either magnetite (Fe3O4) or greigite (Fe3S4) and cause cells to align along the Earth’s geomagnetic field lines as they swim, a trait called magnetotaxis. MTB are known to mainly inhabit the oxic–anoxic interface (OAI) in water columns or sediments of aqu...

  14. Bacteria interfere with A-actinomycetemcomitans colonization

    OpenAIRE

    Teughels, Wim; Haake, S. Kinder; Sliepen, Isabelle; Pauwels, Martine; Van Eldere, Johan; Cassiman, Jean-Jacques; Quirynen, Marc

    2007-01-01

    It is known that beneficial bacteria can suppress the emergence of pathogenic bacteria, particularly in the gastrointestinal tract. This study examined the potential for a similar suppression of Aggregatibacter (formerly Actinobacillus) actinomycetemcomitans colonization of epithelial cells, due to its potential relevance in periodontal diseases. Seven presumed beneficial bacteria were examined for their ability to interfere, exclude, or displace A. actinomycetemcomitans from epithelial cells...

  15. Laser-Based Identification of Pathogenic Bacteria

    Science.gov (United States)

    Rehse, Steven J.

    2009-01-01

    Bacteria are ubiquitous in our world. From our homes, to our work environment, to our own bodies, bacteria are the omnipresent although often unobserved companions to human life. Physicists are typically untroubled professionally by the presence of these bacteria, as their study usually falls safely outside the realm of our typical domain. In the…

  16. Magnetotactic bacteria at the geomagnetic equator

    International Nuclear Information System (INIS)

    Magnetotatic bacteria are observed in freshwater and marine sediments of Fortaleza, Brazil, situated close to the geomagnetic equator. Both South-seeking and North-seeking bacteria are present in roughly equal numbers in the same samples. This observation is consistent with the hypothesis that the vertical component of the geomagnetic field selects the predominant polarity type among magnetotactic bacteria in natural environments. (Author)

  17. Drosophila lifespan enhancement by exogenous bacteria

    OpenAIRE

    Brummel, Ted; Ching, Alisa; Seroude, Laurent; Simon, Anne F.; Benzer, Seymour

    2004-01-01

    We researched the lifespan of Drosophila under axenic conditions compared with customary procedure. The experiments revealed that the presence of bacteria during the first week of adult life can enhance lifespan, despite unchanged food intake. Later in life, the presence of bacteria can reduce lifespan. Certain long-lived mutants react in different ways, indicating an interplay between bacteria and longevity-enhancing genes.

  18. Different cytokine response of primary colonic epithelial cells to commensal bacteria

    Institute of Scientific and Technical Information of China (English)

    Jing-Gang Lan; Sheena Margaret Cruickshank; Joy Carmelina Indira Singh; Mark Farrar; James Peter Alan Lodge; Peter John Felsburg; Simon Richard Carding

    2005-01-01

    AIM: To determine if primary murine colonic epithelial cells (CEC) respond to commensal bacteria and discriminate between different types of bacteria. METHODS: A novel CEC: bacteria co-culture system was used to compare the ability of the colonic commensal bacteria, Bacteroides ovatus, E. coli (SLF) and Lactobacillusrhamnosus (LGG) to modulate production of different cytokines (n = 15) by primary CEC. Antibody staining and flow cytometry were used to investigate Toil-like receptor (TLR) expression by CEC directly ex vivo and TLR responsiveness was determined by examining the ability of TLR ligands to influence CEC cytokine production. RESULTS: Primary CEC constitutively expressed functional TLR2 and TLR4. Cultured in complete medium alone, CECsecreted IL-6, MCP-1 and IP-10 the levels of which were significantly increased upon addition of the TLR ligands peptidoglycan (PGN) and lipopolysaccharide (LPS).Exposure to the commensal bacteria induced or upregulated different patterns of cytokine production and secretion. E. coli induced production of MIP-1α/β and β defensin3 whereas B. ovatus and L. rhamnosus exclusively induced MCP-1 and MIP-2α expression, respectively. TNFα, RANTES and MEC were induced or up-regulated in response to some but not all of the bacteria whereas ENA78 and IP-10 were up-regulated in response to all bacteria. Evidence of bacterial interference and suppression of cytokine production was obtained from mixed bacterial: CEC co-cultures. Probiotic LGG suppressed E. coli- andB. ovatus-induced cytokine mRNA accumulation and protein secretion.CONCLUSION: These observations demonstrate the ability of primary CEC to respond to and discriminate between different strains of commensal bacteria and identify a mechanism by which probiotic bacteria (LGG) may exert anti-inflammatory effects in vivo.

  19. Reducing COD level on oily effluent by utilizing biosurfactant-producing bacteria

    OpenAIRE

    Daniela Franco Carvalho Jacobucci; Maria Raquel de Godoy Oriani; Lucia Regina Durrant

    2009-01-01

    Two bacteria isolated from crude oil contaminated soil, Pantoea agglomerans and Planococcus citreus, produced biosurfactants utilizing 1.5% of kerosene and olive oil as the sole carbon sources, respectively. The bacteria and the biosurfactants produced were introduced to oily effluent, arising from margarine and soap industry. Emulsification activities were determined by increases in the absorbance of the oil-in-water emulsions at 610 nm, whereas the water-in-oil emulsions were expressed as t...

  20. Acetylene degradation by new isolates of aerobic bacteria and comparison of acetylene hydratase enzymes

    OpenAIRE

    Rosner, Bettina M; Rainey, Frederick A.; Kroppenstedt, Reiner M.; Schink, Bernhard

    1997-01-01

    Aerobic acetylene-degrading bacteria were isolated from soil samples. Two isolates were assigned to the species Rhodococcus opacus, two others to Rhodococcus ruber and Gordona sp. They were compared with known strains of aerobic acetylene-, cyanide-, or nitrile-utilizing bacteria. The acetylene hydratases of R. opacus could be measured in cell-free extracts only in the presence of a strong reductant like titanium(III) citrate. Expression of these enzymes was molybdenum-dependent. Acetylene hy...

  1. Quorum sensing signal-response systems in Gram-negative bacteria.

    Science.gov (United States)

    Papenfort, Kai; Bassler, Bonnie L

    2016-08-11

    Bacteria use quorum sensing to orchestrate gene expression programmes that underlie collective behaviours. Quorum sensing relies on the production, release, detection and group-level response to extracellular signalling molecules, which are called autoinducers. Recent work has discovered new autoinducers in Gram-negative bacteria, shown how these molecules are recognized by cognate receptors, revealed new regulatory components that are embedded in canonical signalling circuits and identified novel regulatory network designs. In this Review we examine how, together, these features of quorum sensing signal-response systems combine to control collective behaviours in Gram-negative bacteria and we discuss the implications for host-microbial associations and antibacterial therapy. PMID:27510864

  2. Antibacterial and biofilm inhibitory activities of bacteria associated with polychaetes

    Directory of Open Access Journals (Sweden)

    Chellamnadar Vaikundavasagom Sunjaiy Shankar

    2015-06-01

    Full Text Available Objective: To study the antibacterial and antibiofilm activities expressed by epibiotic bacteria associated with the polychaetes Platynereis dumerilii and Syllis sp. Methods: A total of 32 cultivable bacterial strains were isolated from the two polychaete species. The crude extracts were tested for antibacterial activity and biofilm inhibitory activity against pathogenic and biofilm-forming bacterial strains. Extracts of the strains which showed strong activity were analyzed by thin-layer chromatography (TLC and the bacterial strains were identified based on 16S rRNA gene sequencing. Results: Extracts of 13 bacterial strains showed inhibitory activity against pathogenic and biofilm-forming bacteria. The crude extracts also affected the synthesis of extracellular polymeric substances and cell surface hydrophobicity of the Alteromonas sp. isolated from marine biofilm. The adhesion of Alteromonas sp. on glass surface showed significant variation between surface-associated bacterial crude extract treatment and control groups. Among the 13 bacteria, two strains PA8 and PA19 were further analyzed for bioactive fractions. Thinlayer chromatography indicated the presence of a single active fraction in the crude extract of both the bacterial strains. The epibiotic bacterial strains P8 and P19 were identified as Exiguobacterium sp. and Actinobacterium sp. respectively based on 16S rRNA gene sequencing. Conclusions: The present study indicates that bacteria associated with marine invertebrates inhabiting the coastal waters could be used as a potential source for the isolation of bioactive metabolites.

  3. Use of genetically modified bacteria to modulate adaptive immunity.

    Science.gov (United States)

    Bueno, Susan M; González, Pablo A; Kalergis, Alexis M

    2009-06-01

    Infectious diseases caused by virulent bacteria are a significant cause of morbidity and mortality worldwide, especially in developing countries. However, attenuated strains derived from pathogenic bacteria, such as Salmonella, are highly immunogenic and can be used as vaccines to promote immunity against parental pathogenic bacteria strains. Further, they can be genetically manipulated to either express foreign antigens or deliver exogenous DNA, in order to induce immunity against other pathogens or antigens. Contrarily, specific structural modifications in attenuated Salmonella have allowed the generation of strains that can be well tolerated by the immune system and reduce inflammatory responses. It is thought that those strains could be considered as vectors to promote specific immune tolerance for certain auto-antigens or allergens and reduce unwanted or self-reactive immune responses. In addition, some structural features of Salmonella can contribute to defining the nature and type of polarization of the adaptive immune response induced after immunization, which can be considered as a tool to modulate antigen-specific immunity. In this article we discuss recent advances in the understanding of immune system modulation by molecular components of bacteria and their exploitation for the rational induction of pathogen immunity or antigen-specific tolerance. PMID:19519362

  4. Role of bacteria in the etiopathogenesis of inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Increased numbers of mucosa-associated Escherichia coli are observed in both of the major inflammatory bowel diseases, Crohn's disease (CD) and ulcerative colitis (DC). A potential pathophysiological link between the presence of pathogenic invasive bacteria and genetic host susceptibility of patients with ileal CD is suspected. In CD patients, with increased ileal expression of the CEACAM6 molecule acting as a receptor recognized by type 1 pilus bacterial adhesin, and with the identification of mutations in the NOD2-encoding gene, the presence of pathogenic invasive bacteria could be the link between abnormal ileal bacterial colonization and innate immune responses to invasive bacteria. In a susceptible host, the sequential etiological steps of the disease induced by adherent-invasive E. Coli (AIEC) are: (1) abnormal colonization via binding to the CEACAM6 receptor, which is overexpressed in the ileal mucosa of CD patients; (2) ability to adhere to and to invade intestinal epithelial cells, which allows bacteria to cross the mucosal barrier; (3) survival and replication within infected macrophages in the lamina propria; and (4) induction of tumor necrosis factor-a secretion and granuloma formation.

  5. 家蚕肠道产淀粉酶细菌的分离鉴定及其酶基因的克隆与表达%Isolation and Identification of the Amylase-producing Bacteria in Silkworm Intestine and Cloning and Expression of Their Amylase Genes

    Institute of Scientific and Technical Information of China (English)

    杨文静; 王在贵; 刘朝良; 魏国清; 朱保建; 邹昌瑞

    2011-01-01

    从家蚕(Bombyx mori L.)5龄幼虫肠道分离鉴定产淀粉酶细菌菌株以用作微生态制剂的研究,并对该菌α-淀粉酶基因进行克隆、序列分析及在大肠杆菌中原核表达.通过含淀粉NA培养基筛选分离得到产淀粉酶菌,通过形态学观察及16S rDNA序列分析鉴定其种属,DNS法测定酶活,并设计了淀粉酶基因引物进行克隆,构建了DZ-a号菌淀粉酶基因的原核表达载体,经酶切鉴定后转化到大肠杆菌Transetta(DE3)中并诱导表达.共分离得到2株产淀粉酶细菌菌株,将其PCR扩增得到的165 rDNA序列分别与GenBank上已有序列进行比对,均与芽孢杆菌属蜡样芽孢杆菌Bacillus cereus有99%的同源性,DZ-a号菌和DZ-h号菌的产酶能力分别为20.5 U/mL和24.2 U/mL.产淀粉酶基因片段测序结果表明两株菌的克隆基因片段长度分别为3 414 bp和3 378 bp,均包括完整的编码区序列,可编码586个氨基酸,SDS-PAGE分析得到大小约66 kD的目的蛋白.鉴定该2株菌DZ-a、DZ-h号菌均属于芽孢杆菌属蜡样芽孢杆菌,克隆测序所得序列为完整的蜡样芽孢杆菌α-淀粉酶基因序列,并成功表达.为进一步纯化和鉴定目的蛋白及研究其功能奠定了试验基础.%Amylase-producing bacterias in larval guts of the Bombyx mori L.at 5th year phase were isolated and identified to application for probiotics.Cloning, sequences analysis and prokaryotic expression in Escherichia coli of this amylase gene was conducted.NA starch medium was used to isolate amylase-producing bacterias.Strains identification which was on 16S rDNA sequences analysis and morphology was carried out.Enzymatic activity of them was measured by DNS method.Primers of amylase genes were designed to clone the genes.The full-length open reading frame of the amylase gene from strain DZ-a was fused into the prokaryotic expression vector pET28a and was introduced into E.Coli Transetta ( DE3 )cells.As a result, two amylase-producing strains

  6. Potential role of bacteria packaging by protozoa in the persistence and transmission of pathogenic bacteria

    OpenAIRE

    Alix M Denoncourt; Paquet, Valérie E.; Charette, Steve J.

    2014-01-01

    Many pathogenic bacteria live in close association with protozoa. These unicellular eukaryotic microorganisms are ubiquitous in various environments. A number of protozoa such as amoebae and ciliates ingest pathogenic bacteria, package them usually in membrane structures, and then release them into the environment. Packaged bacteria are more resistant to various stresses and are more apt to survive than free bacteria. New evidence indicates that protozoa and not bacteria control the packaging...

  7. The Preliminary Report on Rumen Protozoa Grazing Rate on Bacteria with a Fluorescence-Labeled Technique

    Institute of Scientific and Technical Information of China (English)

    WANG Meng-zhi; WANG Hong-rong; LI Guo-xiang; CAO Heng-chun; LU Zhan-jun

    2008-01-01

    Studies on the bacterial predation rate by rumen protozoa were carried out under laboratory conditions using a technique of fluorescence-labeled bacteria (FLB). Four Xuhuai goats were used in this experiment to obtain rumen protozoa and bacteria. Two groups were designed as follows: One group was the whole bacteria which were labeled using fluorescence through removing free bacteria from rumen fluid (WFLB); the other group was the bacteria which were labeled using fluorescence without removing free bacteria from rumen fluid (FLB). The result indicated that the bacterial predation rates of rumen Protozoa was 398.4 cells/(cell h) for the group WFLB, 230.4 cells/(cell h) for the group FLB, when the corresponding values expressed as bacteria-N, they were 2.15Pg N/(cell h) for the group WFLB, and 1.24Pg N/(cell h) for the group FLB, respectively. Extrapolating the assimilation quantity of nitrogen by ciliates on bacteria of Xuhuai goat, there were 103.2mg N/(d capita) for the group WFLB, and 59.5mg N/(d capita) for the group FLB, respectively. It was estimated that protein losses due to microbial recycling were 0.645g pro/(d capita) for the group WFLB and 0.372g pro/(d capita) for the group FLB, respectively. In addition, the fluorescence-labeled technique would be a potential assay for the determination of bacterial predation rate by rumen protozoa.

  8. Bacteria and vampirism in cinema.

    Science.gov (United States)

    Castel, O; Bourry, A; Thévenot, S; Burucoa, C

    2013-09-01

    A vampire is a non-dead and non-alive chimerical creature, which, according to various folklores and popular superstitions, feeds on blood of the living to draw vital force. Vampires do not reproduce by copulation, but by bite. Vampirism is thus similar to a contagious disease contracted by intravascular inoculation with a suspected microbial origin. In several vampire films, two real bacteria were staged, better integrated than others in popular imagination: Yersinia pestis and Treponema pallidum. Bacillus vampiris was created for science-fiction. These films are attempts to better define humans through one of their greatest fears: infectious disease. PMID:23916557

  9. Turning Bacteria Suspensions into Superfluids

    Science.gov (United States)

    López, Héctor Matías; Gachelin, Jérémie; Douarche, Carine; Auradou, Harold; Clément, Eric

    2015-07-01

    The rheological response under simple shear of an active suspension of Escherichia coli is determined in a large range of shear rates and concentrations. The effective viscosity and the time scales characterizing the bacterial organization under shear are obtained. In the dilute regime, we bring evidence for a low-shear Newtonian plateau characterized by a shear viscosity decreasing with concentration. In the semidilute regime, for particularly active bacteria, the suspension displays a "superfluidlike" transition where the viscous resistance to shear vanishes, thus showing that, macroscopically, the activity of pusher swimmers organized by shear is able to fully overcome the dissipative effects due to viscous loss.

  10. DMTB: the magnetotactic bacteria database

    Science.gov (United States)

    Pan, Y.; Lin, W.

    2012-12-01

    Magnetotactic bacteria (MTB) are of interest in biogeomagnetism, rock magnetism, microbiology, biomineralization, and advanced magnetic materials because of their ability to synthesize highly ordered intracellular nano-sized magnetic minerals, magnetite or greigite. Great strides for MTB studies have been made in the past few decades. More than 600 articles concerning MTB have been published. These rapidly growing data are stimulating cross disciplinary studies in such field as biogeomagnetism. We have compiled the first online database for MTB, i.e., Database of Magnestotactic Bacteria (DMTB, http://database.biomnsl.com). It contains useful information of 16S rRNA gene sequences, oligonucleotides, and magnetic properties of MTB, and corresponding ecological metadata of sampling sites. The 16S rRNA gene sequences are collected from the GenBank database, while all other data are collected from the scientific literature. Rock magnetic properties for both uncultivated and cultivated MTB species are also included. In the DMTB database, data are accessible through four main interfaces: Site Sort, Phylo Sort, Oligonucleotides, and Magnetic Properties. References in each entry serve as links to specific pages within public databases. The online comprehensive DMTB will provide a very useful data resource for researchers from various disciplines, e.g., microbiology, rock magnetism and paleomagnetism, biogeomagnetism, magnetic material sciences and others.

  11. Improving the biodegradative capacity of subsurface bacteria

    International Nuclear Information System (INIS)

    The continual release of large volumes of synthetic materials into the environment by agricultural and industrial sources over the last few decades has resulted in pollution of the subsurface environment. Cleanup has been difficult because of the relative inaccessibility of the contaminants caused by their wide dispersal in the deep subsurface, often at low concentrations and in large volumes. As a possible solution for these problems, interest in the introduction of biodegradative bacteria for in situ remediation of these sites has increased greatly in recent years (Timmis et al. 1988). Selection of biodegradative microbes to apply in such cleanup is limited to those strains that can survive among the native bacterial and predator community members at the particular pH, temperature, and moisture status of the site (Alexander, 1984). The use of microorganisms isolated from subsurface environments would be advantageous because the organisms are already adapted to the subsurface conditions. The options are further narrowed to strains that are able to degrade the contaminant rapidly, even in the presence of highly recalcitrant anthropogenic waste mixtures, and in conditions that do not require addition of further toxic compounds for the expression of the biodegradative capacity (Sayler et al. 1990). These obstacles can be overcome by placing the genes of well-characterized biodegradative enzymes under the control of promoters that can be regulated by inexpensive and nontoxic external factors and then moving the new genetic constructs into diverse groups of subsurface microbes. ne objective of this research is to test this hypothesis by comparing expression of two different toluene biodegradative enzymatic pathways from two different regulatable promoters in a variety of subsurface isolates

  12. Improving the biodegradative capacity of subsurface bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Romine, M.F.; Brockman, F.J.

    1993-04-01

    The continual release of large volumes of synthetic materials into the environment by agricultural and industrial sources over the last few decades has resulted in pollution of the subsurface environment. Cleanup has been difficult because of the relative inaccessibility of the contaminants caused by their wide dispersal in the deep subsurface, often at low concentrations and in large volumes. As a possible solution for these problems, interest in the introduction of biodegradative bacteria for in situ remediation of these sites has increased greatly in recent years (Timmis et al. 1988). Selection of biodegradative microbes to apply in such cleanup is limited to those strains that can survive among the native bacterial and predator community members at the particular pH, temperature, and moisture status of the site (Alexander, 1984). The use of microorganisms isolated from subsurface environments would be advantageous because the organisms are already adapted to the subsurface conditions. The options are further narrowed to strains that are able to degrade the contaminant rapidly, even in the presence of highly recalcitrant anthropogenic waste mixtures, and in conditions that do not require addition of further toxic compounds for the expression of the biodegradative capacity (Sayler et al. 1990). These obstacles can be overcome by placing the genes of well-characterized biodegradative enzymes under the control of promoters that can be regulated by inexpensive and nontoxic external factors and then moving the new genetic constructs into diverse groups of subsurface microbes. ne objective of this research is to test this hypothesis by comparing expression of two different toluene biodegradative enzymatic pathways from two different regulatable promoters in a variety of subsurface isolates.

  13. Methods for Identification and Characterization of Protein Unexpectedly Expressed in Escherichia Coli:A Case Study Involvingβ-Lactamase Observed during the Expression of Zinc Finger 2-8 of NRSF/REST%原核表达过程中非目标蛋白质识别与确认的方法:NRSF/REST蛋白功能结构域ZnF2-8原核表达过程中β-内酰胺酶的确认

    Institute of Scientific and Technical Information of China (English)

    张岩; 赵玢; 杨中正; 申杰; 胡伟; 蓝文贤; 吴厚铭; 曹春阳

    2015-01-01

    Escherichia coli (E. coli) is often used to produce recombinant proteins rapidly with high yield. However, the bacteria expresses non-target proteins unexpectedly in many cases, some of which may later be proven useful. Full characterization of these unpredicted proteins are usually expensive and time-consuming. In this study, we used E. coli to express neuron-restrictive silencer factor/RE1-silencing transcription factor (NRSF/REST) functional motif ZnF2-8, which is involved in the interaction of NRSF/REST with neuron-restrictive silencer element (NRSE/RE1) dsDNA or small non-coding dsRNA for neuron gene transcriptional repression or activation. Overexpression of a non-target protein was observed. Two-dimensional 1H-15N HSQC NMR spectroscopy, X-ray crystallography and other biochemical assays were used in combination to characterize the non-target protein to beb-lactamase.%大肠杆菌常被用来大量快速制备重组蛋白质。但是,在原核表达目标蛋白质时非目标蛋白质经常会意外表达。有时这些非目标蛋白质也非常有使用价值,但是最终确认这些非目标蛋白质的过程昂贵又及其耗时。基于此,该文发展了一个新的基于二维核磁共振波谱技术、X-单晶衍射技术、结合其他生物化学方法,确认在原核表达神经限制性沉默因子 NRSF/REST 蛋白(该蛋白能够特异性识别神经限制性沉默因子 RE1 dsDNA及神经限制性激活因子dsRNA,以调节神经元干细胞的发育)功能结构域ZnF2-8时非目标蛋白b-内酰胺酶(b-lactamase)。

  14. Sulfur metabolism in phototrophic sulfur bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Dahl, Christiane

    2008-01-01

    Phototrophic sulfur bacteria are characterized by oxidizing various inorganic sulfur compounds for use as electron donors in carbon dioxide fixation during anoxygenic photosynthetic growth. These bacteria are divided into the purple sulfur bacteria (PSB) and the green sulfur bacteria (GSB). They...... utilize various combinations of sulfide, elemental sulfur, and thiosulfate and sometimes also ferrous iron and hydrogen as electron donors. This review focuses on the dissimilatory and assimilatory metabolism of inorganic sulfur compounds in these bacteria and also briefly discusses these metabolisms in...... other types of anoxygenic phototrophic bacteria. The biochemistry and genetics of sulfur compound oxidation in PSB and GSB are described in detail. A variety of enzymes catalyzing sulfur oxidation reactions have been isolated from GSB and PSB (especially Allochromatium vinosum, a representative of the...

  15. Biotechnical Microbiology, yeast and bacteria

    DEFF Research Database (Denmark)

    Villadsen, Ingrid Stampe

    1999-01-01

    This section contains the following single lecture notes: Eukaryotic Cell Biology. Kingdom Fungi. Cell Division. Meiosis and Recombination. Genetics of Yeast. Organisation of the Chromosome. Organization and genetics of the mitochondrial Geneme. Regulatio of Gene Expression. Intracellular Compart...

  16. Transformation of gram positive bacteria by sonoporation

    Science.gov (United States)

    Yang, Yunfeng; Li, Yongchao

    2014-03-11

    The present invention provides a sonoporation-based method that can be universally applied for delivery of compounds into Gram positive bacteria. Gram positive bacteria which can be transformed by sonoporation include, for example, Bacillus, Streptococcus, Acetobacterium, and Clostridium. Compounds which can be delivered into Gram positive bacteria via sonoporation include nucleic acids (DNA or RNA), proteins, lipids, carbohydrates, viruses, small organic and inorganic molecules, and nano-particles.

  17. Mortality of fecal bacteria in seawater.

    OpenAIRE

    Garcia-Lara, J.; Menon, P.; Servais, P; Billen, G.

    1991-01-01

    We propose a method for determining the mortality rate for allochthonous bacteria released in aquatic environments without interference due to the loss of culturability in specific culture media. This method consists of following the disappearance of radioactivity from the trichloroacetic acid-insoluble fraction in water samples to which [3H]thymidine-prelabeled allochthonous bacteria have been added. In coastal seawater, we found that the actual rate of disappearance of fecal bacteria was 1 ...

  18. Utilization of xylooligosaccharides by selected ruminal bacteria.

    OpenAIRE

    Cotta, M A

    1993-01-01

    The ability of ruminal bacteria to utilize xylooligosaccharides was examined. Xylooligosaccharides were prepared by partially hydrolyzing oat spelt xylan in phosphoric acid. This substrate solution was added (0.2%, wt/vol) to a complex medium containing yeast extract and Trypticase that was inoculated with individual species of ruminal bacteria, and growth and utilization were monitored over time. All of the xylanolytic bacteria examined were able to utilize this oligosaccharide mixture as a ...

  19. QUANTATITIVE PCR ASSAY FOR MARINE BACTERIA

    OpenAIRE

    Brunk, Clifford F.

    2003-01-01

    Monitoring the bacterial flora in coastal marine waters by conventional techniques has been difficult as most of the bacteria do not readily grow on culture plates and their morphologies are virtually identical in the microscope. Molecular techniques, particularly characterizing bacteria using polymerase chain reaction (PCR) amplification of their small subunit ribosomal RNA (SSU rRNA) genes, has dramatically improved the ability to identify bacteria from environmental samples. Identificatio...

  20. Selection-Driven Gene Loss in Bacteria

    OpenAIRE

    Koskiniemi, Sanna; Sun, Song; Berg, Otto; Andersson, Dan I.

    2012-01-01

    Gene loss by deletion is a common evolutionary process in bacteria, as exemplified by bacteria with small genomes that have evolved from bacteria with larger genomes by reductive processes. The driving force(s) for genome reduction remains unclear, and here we examined the hypothesis that gene loss is selected because carriage of superfluous genes confers a fitness cost to the bacterium. In the bacterium Salmonella enterica, we measured deletion rates at 11 chromosomal positions and the fitne...

  1. Pathogenic bacteria and timing of laying

    OpenAIRE

    Moller, Anders P.; Soler, Juan J; Nielsen, J T; Galván, Ismael

    2015-01-01

    Pathogenic bacteria constitute a serious threat to viability of many organisms. Because growth of most bacteria is favored by humid and warm environmental conditions, earlier reproducers in seasonal environments should suffer less from the negative consequences of pathogenic bacteria. These relationships, and the effects on reproductive success, should be particularly prominent in predators because they are frequently exposed to pathogenic microorganisms from sick prey. Here, we presented and...

  2. Bacteria cell properties and grain size impact on bacteria transport and deposition in porous media.

    Science.gov (United States)

    Bai, Hongjuan; Cochet, Nelly; Pauss, André; Lamy, Edvina

    2016-03-01

    The simultaneous role of bacteria cell properties and porous media grain size on bacteria transport and deposition behavior was investigated in this study. Transport column experiments and numerical HYDRUS-1D simulations of three bacteria with different cell properties (Escherichia coli, Klebsiella oxytoca, and Rhodococcus rhodochrous) were carried out on two sandy media with different grain sizes, under saturated steady state flow conditions. Each bacterium was characterized by cell size and shape, cell motility, electrophoretic mobility, zeta potential, hydrophobicity and potential of interaction with the sand surface. Cell characteristics affected bacteria transport behavior in the fine sand, but similar bacteria breakthroughs and retardation factors observed in the coarse sand, indicated that bacteria transport was more depended on grain size than on bacteria cell properties. Retention decreased with increasing hydrophobicity and increased with increasing electrophoretic mobility of bacteria for both sand. The increasing sand grain size resulted in a decrease of bacteria retention, except for the motile E. coli, indicating that retention of this strain was more dependent on cell motility than on the sand grain size. Bacteria deposition coefficients obtained from numerical simulations of the retention profiles indicated that straining was an important mechanism affecting bacteria deposition of E. coli and Klebsiella sp., in the fine sand, but the attachment had the same importance as straining for R. rhodochrous. The results obtained in the coarse sand did not permit to discriminate the predominant mechanism of bacteria deposition and the relative implication of bacteria cell properties of this process. PMID:26705829

  3. In vitro susceptibility testing of anaerobic bacteria.

    Science.gov (United States)

    Washington, J A

    1979-01-01

    In vitro susceptibility testing of anaerobic bacteria should be limited to isolates from persistent or recurrent infections that have been treated adequately and appropriately with antimicrobial agents and, in reference centers, to collections of isolates in order to monitor alterations in susceptibility of species to various antimicrobial agents. An agar dilution reference method is being evaluated currently; however, practicality limits sporadic testing of single isolates to disk elution or broth dilution techniques. No single disk diffusion method has yet been found to be acceptable for testing anaerobic bacteria, and the results obtained with standardized procedures for aerobic and facultatively anaerobic bacteria are not applicable to anaerobic bacteria. PMID:288163

  4. Cell Size Regulation in Bacteria

    Science.gov (United States)

    Amir, Ariel

    2014-05-01

    Various bacteria such as the canonical gram negative Escherichia coli or the well-studied gram positive Bacillus subtilis divide symmetrically after they approximately double their volume. Their size at division is not constant, but is typically distributed over a narrow range. Here, we propose an analytically tractable model for cell size control, and calculate the cell size and interdivision time distributions, as well as the correlations between these variables. We suggest ways of extracting the model parameters from experimental data, and show that existing data for E. coli supports partial size control, and a particular explanation: a cell attempts to add a constant volume from the time of initiation of DNA replication to the next initiation event. This hypothesis accounts for the experimentally observed correlations between mother and daughter cells as well as the exponential dependence of size on growth rate.

  5. Single Bacteria as Turing Machines

    Science.gov (United States)

    Bos, Julia; Zang, Qiucen; Vyawahare, Saurabh; Austin, Robert

    2014-03-01

    In Allan Turing's famous 1950 paper on Computing Machinery and Intelligence, he started with the provocative statement: ``I propose to consider the question, `Can machines think?' This should begin with definitions of the meaning of the terms `machine' and `think'.'' In our own work on exploring the way that organisms respond to stress and evolve, it seems at times as if they come to remarkably fast solutions to problems, indicating some sort of very clever computational machinery. I'll discuss how it would appear that bacteria can indeed create a form of a Turing Machine, the first example of a computer, and how they might use this algorithm to do rapid evolution to solve a genomics problem.

  6. Sterol synthesis in diverse bacteria

    Directory of Open Access Journals (Sweden)

    Jeremy H Wei

    2016-06-01

    Full Text Available Sterols are essential components of eukaryotic cells whose biosynthesis and function has been studied extensively. Sterols are also recognized as the diagenetic precursors of steranes preserved in sedimentary rocks where they can function as geological proxies for eukaryotic organisms and/or aerobic metabolisms and environments. However, production of these lipids is not restricted to the eukaryotic domain as a few bacterial species also synthesize sterols. Phylogenomic studies have identified genes encoding homologs of sterol biosynthesis proteins in the genomes of several additional species, indicating that sterol production may be more widespread in the bacterial domain than previously thought. Although the occurrence of sterol synthesis genes in a genome indicates the potential for sterol production, it provides neither conclusive evidence of sterol synthesis nor information about the composition and abundance of basic and modified sterols that are actually being produced. Here, we coupled bioinformatics with lipid analyses to investigate the scope of bacterial sterol production. We identified oxidosqualene cyclase (Osc, which catalyzes the initial cyclization of oxidosqualene to the basic sterol structure, in 34 bacterial genomes from 5 phyla (Bacteroidetes, Cyanobacteria, Planctomycetes, Proteobacteria and Verrucomicrobia and in 176 metagenomes. Our data indicate that bacterial sterol synthesis likely occurs in diverse organisms and environments and also provides evidence that there are as yet uncultured groups of bacterial sterol producers. Phylogenetic analysis of bacterial and eukaryotic Osc sequences confirmed a complex evolutionary history of sterol synthesis in this domain. Finally, we characterized the lipids produced by Osc-containing bacteria and found that we could generally predict the ability to synthesize sterols. However, predicting the final modified sterol based on our current knowledge of sterol synthesis was difficult

  7. Ingested plant miRNAs regulate gene expression in animals

    Institute of Scientific and Technical Information of China (English)

    Hervé Vaucheret; Yves Chupeau

    2012-01-01

    The incidence of genetic material or epigenetic information transferred from one organism to another is an important biological question.A recent study demonstrated that plant small RNAs acquired orally through food intake directly influence gene expression in animals after migration through the plasma and delivery to specific organs.Non-protein coding RNAs,and in particular small RNAs,were recently revealed as master chief regulators of gene expression in all organisms.Endogenous small RNAs come in different flavors,depending on their mode of biogenesis.Most microRNAs (miRNA)and short interferring RNAs (siRNA)derive from long double-stranded RNA (dsRNA) precursors that are processed into small RNA duplexes,20 to 25-nt long,by RNaselll enzymes called Dicer [1].One strand of small RNA duplexes is loaded onto an Argonaute protein that executes silencing by cleaving or repressing the translation of homologous mRNA [2].In certain species,RNA cleavage is followed by DNA methylation and/or histone modification,leading to heritable epigenetic modification [3].

  8. Progress in Research of Bacteria Fertilizer Strengthening Resistance of Plants

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Bacteria fertilizer is used most widely among all kinds of microbial fertilizers. We summarize the research headway of bacteria fertilizer. It mainly focuses on bacteria fertilizer improving the stress resistance of plant. Then we can offer basis to research and exploit bacteria fertilizer. These bacteria include azotobacter, photosynthetic bacteria, Bacillus mucilaginosus siliceous, phosphorus bacteria, plant growth-promoting rhizobacteria(PGPR), effective microorganism(EM).

  9. Sponge-associated bacteria: general overview and special aspects of bacteria associated with Halichondria panicea.

    Science.gov (United States)

    Imhoff, J F; Stöhr, R

    2003-01-01

    Increasing evidence is accumulating that highlights the important role of bacteria in bacteria-sponge associations. It appears to be equally important to analyse the specific association of bacteria with sponges, to realise the biological function of biologically active substances produced by sponge-associated bacteria, and to consider the relationship between bacteria and sponges in the search for new pharmaceutical products. In this chapter the current knowledge on bacteria-sponge associations is briefly reviewed. Results are summarised that were obtained by three major methodological approaches: (1) classical microscope observations, (2) investigations attempting to characterise sponge-associated bacteria by describing pure culture isolates, and (3) the rapidly growing evidence from genetic analyses of sponge-associated bacteria. Special emphasis is given to the evidence of possible symbiotic interactions between bacteria and sponges and to the synthesis of natural products by bacteria isolated from or associated with marine sponges. Case studies including morphological and genetic studies together with results from pure culture studies have been performed with bacteria from the sponges Rhodopaloeides odorabile, Aplysina cavernicola, and Halichondria panicea. In addition, new results on bacteria associated with Halichondria panicea are also presented. PMID:15825639

  10. Rapid methods for detection of bacteria

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Andersen, B.Ø.; Miller, M.; Ursin, C.; Arvin, Erik; Albrechtsen, Hans-Jørgen

    Traditional methods for detection of bacteria in drinking water e.g. Heterotrophic Plate Counts (HPC) or Most Probable Number (MNP) take 48-72 hours to give the result. New rapid methods for detection of bacteria are needed to protect the consumers against contaminations. Two rapid methods...

  11. Lactic Acid Bacteria in the Gut

    NARCIS (Netherlands)

    Stolaki, M.; Vos, de W.M.; Kleerebezem, M.; Zoetendal, E.G.

    2012-01-01

    From all bacterial groups, the lactic acid bacteria (LAB) are probably the group of bacteria that is most associated with human lifestyle. The term LAB mainly refers to the ability of these organisms to convert sugars to lactic acid. The LAB comprise non-sporing, aerotolerant, coccus or rod-shaped,

  12. Sabine Kacunko. Bacteria, Art and other Bagatelles

    DEFF Research Database (Denmark)

    Kacunko, Slavko

    This book appears on the occasion of the project INVINCIBLE – a Big Bacteria project for Colosseum, Rome (17.–19.09.2015), which is being granted UNESCO-patronage in the context of the International Year of Light and Light-Based Technologies 2015. With Sabine Kacunko’s bacteria art in mind, alleged...

  13. Rapid methods for detection of bacteria

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Andersen, B.Ø.; Miller, M.;

    2006-01-01

    Traditional methods for detection of bacteria in drinking water e.g. Heterotrophic Plate Counts (HPC) or Most Probable Number (MNP) take 48-72 hours to give the result. New rapid methods for detection of bacteria are needed to protect the consumers against contaminations. Two rapid methods...

  14. Metabolismo de isoflavonas por bacterias intestinales

    OpenAIRE

    Delgado, Susana; Guadamuro, Lucía; Flórez García, Ana Belén; Mayo Pérez, Baltasar

    2014-01-01

    Trabajo presentado en la 8ª Reunión de la Red Temática BAL (Red Española de Bacterias Lácticas), "Participación de las Bacterias Lácticas en la Salud Humana y en la Calidad Alimentaria", celebrada en San Adrián (Navarra) el 25 de junio de 2014.

  15. Bacteria dispersal by hitchhiking on zooplankton

    DEFF Research Database (Denmark)

    Grossart, Hans-Peter; Dziallas, Claudia; Leunert, Franziska;

    2010-01-01

    impenetrable for bacteria in both upward and downward directions (conveyor-belt hypothesis). The strength of our experiments is to permit quantitative estimation of transport and release of associated bacteria: vertical migration of Daphnia magna yielded an average dispersal rate of 1.3 x 10(5) x cells x...

  16. Research Advances in Bacteria-based Microrobot.

    Science.gov (United States)

    Liang, Yao-Jie; Sun, Jun-Zhong

    2016-08-01

    The concept of bacteria-based microrobot has been well recognized. It has shown great advantages and potentials for the early diagnosis and early treatment of malignant tumor and in reducing chemotherapy toxicities. In this article we review the concept,structure,and potential clinical applications of bacteria-based microrobot. PMID:27594160

  17. Comparative genomics of the lactic acid bacteria

    Science.gov (United States)

    Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacter...

  18. Method of dispersing a hydrocarbon using bacteria

    Science.gov (United States)

    Tyndall, Richard L.

    1996-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  19. Mimicking Seawater For Culturing Marine Bacteria

    DEFF Research Database (Denmark)

    Rygaard, Anita Mac; Sonnenschein, Eva; Gram, Lone;

    2015-01-01

    Only about 1% of marine bacteria have been brought into culture using traditional techniques. The purpose of this study was to investigate if mimicking the natural bacterial environment can increase culturability.We used marine substrates containing defined algal polymers or gellan gum as...... solidifying agents, and enumerated bacteria from seawater and algal exudates. We tested if culturability could be influenced by addition of quorum sensing signals (AHLs). All plates were incubated at 15°C. Bacterial counts (CFU/g) from algal exudates from brown algae were highest on media containing algal...... polymers. In general, bacteria isolated from algal exudates preferred more rich media than bacteria isolated from seawater. Overall, culturability ranged from 0.01 to 0.8% as compared to total cell count. Substitution of agar with gellan gum increased the culturability of seawater bacteria approximately...

  20. Coryneform bacteria associated with canine otitis externa

    DEFF Research Database (Denmark)

    Aalbæk, Bent; Bemis, David A.; Schjærff, Mette;

    2010-01-01

    This study aims to investigate the occurrence of coryneform bacteria in canine otitis externa. A combined case series and case-control study was carried out to improve the current knowledge on frequency and clinical significance of coryneform bacteria in samples from canine otitis externa. A total...... of 16 cases of otitis externa with involvement of coryneform bacteria were recorded at two referral veterinary hospitals in Denmark and the US, respectively. Coryneform bacteria were identified by partial 16S rRNA gene sequencing. Corynebacterium auriscanis was the most common coryneform species (10...... cases). Small colony variants of this species were also observed. Other coryneform isolates were identified as Corynebacterium amycolatum (3 cases), Corynebacterium freneyi (2 cases) and an Arcanobacterium-like species (1 case). The coryneform bacteria were in all cases isolated together with other...

  1. Chryseobacterium indologenes, novel mannanase-producing bacteria

    Directory of Open Access Journals (Sweden)

    Surachai Rattanasuk

    2009-10-01

    Full Text Available Mannanase is a mannan degrading enzyme which is produced by microorganisms, including bacteria. This enzyme can be used in many industrial processes as well as for improving the quality of animal feeds. The aim of the present study was toscreen and characterize the mannanase-producing bacteria. Two genera of bacteria were isolated from Thai soil samples,fermented coconut, and fertilizer. Screening was carried out on agar plates containing mannan stained with iodine solution.The bacteria were identified by partial 16S rRNA gene sequence, biochemical test and morphology, respectively. The mannanase activity was determined by zymogram and DNS method. Two strains of bacteria with mannanase activity were identified as Bacillus and Chryseobacterium. This is the first report of mannanase-producing Chryseobacterium.

  2. HYDROCARBON-DEGRADING BACTERIA AND SURFACTANT ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R; Topher Berry, T; Grazyna A. Plaza, G; jacek Wypych, j

    2006-08-15

    Fate of benzene ethylbenzene toluene xylenes (BTEX) compounds through biodegradation was investigated using two different bacteria, Ralstonia picketti (BP-20) and Alcaligenes piechaudii (CZOR L-1B). These bacteria were isolated from extremely polluted petroleum hydrocarbon contaminated soils. PCR and Fatty Acid Methyl Ester (FAME) were used to identify the isolates. Biodegradation was measured using each organism individually and in combination. Both bacteria were shown to degrade each of the BTEX compounds. Alcaligenes piechaudii biodegraded BTEXs more efficiently while mixed with BP-20 and individually. Biosurfactant production was observed by culture techniques. In addition 3-hydroxy fatty acids, important in biosurfactant production, was observed by FAME analysis. In the all experiments toluene and m+p- xylenes were better growth substrates for both bacteria than the other BTEX compounds. In addition, the test results indicate that the bacteria could contribute to bioremediation of aromatic hydrocarbons (BTEX) pollution increase biodegradation through the action by biosurfactants.

  3. Lactic Acid Bacteria Inducing a Weak Interleukin-12 and Tumor Necrosis Alpha Response in Human Dendritic Cells Inhibit Strongly Stimulating Lactic Acid Bacteria but Act Synergistically with Gram-Negative Bacteria

    DEFF Research Database (Denmark)

    Zeuthen, Louise Hjerrild; Christensen, Hanne Risager; Frøkiær, Hanne

    2006-01-01

    The development and maintenance of immune homeostasis indispensably depend on signals from the gut flora. Lactic acid bacteria (LAB), which are gram-positive (G+) organisms, are plausible significant players and have received much attention. Gram-negative (G-) commensals, such as members of the...... family Enterobacteriaceae, may, however, be immunomodulators that are as important as G+ organisms but tend to be overlooked. Dendritic cells (DCs) are crucial immune regulators, and therefore, the present study aimed at investigating differences among human gut flora-derived LAB and G- bacteria in their...... patterns of DC polarization. Human monocyte-derived DCs were exposed to UV-killed bacteria, and cytokine secretion and surface marker expression were analyzed. Profound differences in the DC polarization patterns were found among the strains. While strains of LAB varied greatly in their capacity to induce...

  4. Therapeutic Properties of Probiotic Bacteria

    Directory of Open Access Journals (Sweden)

    Nathanon Trachoo

    2006-01-01

    Full Text Available In spite of its long history, public consciousness of probiotics has shifted dramatically in recent years. This is due to a number of factors, including an increased concern about the potential generation of antibiotic resistant bacterial strains due to widespread antibacterial use, and also to the spreading realization that one`s health can be, not simply maintained, but actually improved with proper nutrition. Combined, these factors have stimulated a surge in probiotic research in the past decade, resulting in increasingly refined studies. Indeed, after Elie Metchnikov first printed his work suggesting a positive correlation between human longevity and the consumption of fermented milk, information on probiotics is leaving the realm of the anecdotal as recent, double-blind, placebo controlled randomized tests support beneficial probiotic activity. Concurrently, more is being learned about their activities in vivo. While much work remains to be done before a detailed understanding of probiotics can be achieved, there is mounting evidence that probiotics, when used in proper conditions, may indeed have prophylactic or preventative effects on a broad array of human and animal diseases. This article briefly surveys probiotic history and discusses recent research with a special emphasis on lactic acid bacteria probiotics. Finally, it discusses the inherent difficulties of their study and suggestions for standards for future work.

  5. Mycelial bacteria of saline soils

    Science.gov (United States)

    Zvyagintsev, D. G.; Zenova, G. M.; Oborotov, G. V.

    2008-10-01

    The actinomycetal complexes of saline soils comprise the representatives of the Streptomyces and Micromonospora genera, the number of which are hundreds and thousands of CFU/g soil. Complexes of mycelial bacteria in saline soils are poorer in terms of number (by 1-3 orders of magnitude) and taxonomic composition than the complexes of the zonal soil types. A specific feature of the actinomycetal complexes of saline soils is the predominance of halophilic, alkaliphilic, and haloalkaliphilic streptomycetes that well grow at pH 8-9 and concentrations of NaCl close to 5%. Actinomycetes in saline soils grow actively, and the length of their mycelium reaches 140 m in 1 gram of soil. The haloalkaliphilic streptomycetes grow fast and inhibit the formation of spores at pH 9 and high concentrations of salts (Na2SO4 and MgCl2, 5%) as compared to their behavior on a neutral medium with a salt concentration of 0.02%. They are characterized by the maximal radial growth rate of colonies on an alkaline medium with 5% NaCl.

  6. Comparative cytotoxicity of periodontal bacteria

    International Nuclear Information System (INIS)

    The direct cytotoxicity of sonic extracts (SE) from nine periodontal bacteria for human gingival fibroblasts (HGF) was compared. Equivalent dosages (in terms of protein concentration) of SE were used to challenge HGF cultures. The cytotoxic potential of each SE was assessed by its ability to (1) inhibit HGF proliferation, as measured by direct cell counts; (2) inhibit 3H-thymidine incorporation in HGF cultures; or (3) cause morphological alterations of the cells in challenged cultures. The highest concentration (500 micrograms SE protein/ml) of any of the SEs used to challenge the cells was found to be markedly inhibitory to the HGFs by all three of the criteria of cytotoxicity. At the lowest dosage tested (50 micrograms SE protein/ml); only SE from Actinobacillus actinomycetemcomitans, Bacteroides gingivalis, and Fusobacterium nucleatum caused a significant effect (greater than 90% inhibition or overt morphological abnormalities) in the HGFs as determined by any of the criteria employed. SE from Capnocytophaga sputigena, Eikenella corrodens, or Wolinella recta also inhibited cell proliferation and thymidine incorporation at this dosage; however, the degree of inhibition (5-50%) was consistently, clearly less than that of the first group of three organisms named above. The SE of the three other organisms tested (Actinomyces odontolyticus, Bacteroides intermedius, and Streptococcus sanguis) had little or no effect (0-10% inhibition) at this concentration. The data suggest that the outcome of the interaction between bacterial components and normal resident cells of the periodontium is, at least in part, a function of the bacterial species

  7. H2 from hot bacteria

    International Nuclear Information System (INIS)

    This paper reports that a surprisingly large number of bacteria either oxidize or evolve molecular hydrogen (H2) in their natural environments. In such organisms, the reversible activation of H2 is catalyzed by an enzyme turned hydrogenase that can cause electrons provided by an electron donor with protons to evolve H2. The enzyme may oxidize H2 in the presence of a suitable electron acceptor. Hydrogenase will also catalyze an isotope exchange reaction between deuterium (D2) or tritium (T2) gas and water. Few enzymes have as many potential biotechnological applications as hydrogenase. H2 is a versatile and efficient energy carrier, considered the fuel of the future by some, and is an important intermediate in a variety of chemical and petrochemical processes. Hydrogenase has also been proposed to replace platinum in H/D and H/T separations in the nuclear power industry and to activate H2 for electrode-based processes. Indeed, H2 is considered one of the most abundant substrates for the future chemical synthesis industry and the enzyme-catalyzed production of organic chemicals from H2 and CO2 has been described. a complete understanding of how hydrogenases catalyze the reversible activation of H2 might therefore have farreaching consequences in both applied and basic research

  8. Potential role of bacteria packaging by protozoa in the persistence and transmission of pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Alix M Denoncourt

    2014-05-01

    Full Text Available Many pathogenic bacteria live in close association with protozoa. These unicellular eukaryotic microorganisms are ubiquitous in various environments. A number of protozoa such as amoebae and ciliates ingest pathogenic bacteria, package them usually in membrane structures, and then release them into the environment. Packaged bacteria are more resistant to various stresses and are more apt to survive than free bacteria. New evidence indicates that protozoa and not bacteria control the packaging process. It is possible that packaging is more common than suspected and may play a major role in the persistence and transmission of pathogenic bacteria. To confirm the role of packaging in the propagation of infections, it is vital that the molecular mechanisms governing the packaging of bacteria by protozoa be identified as well as elements related to the ecology of this process in order to determine whether packaging acts as a Trojan Horse.

  9. An antibacterial assay of aqueous extract of garlic against anaerobic/microaerophilic and aerobic bacteria

    OpenAIRE

    Elsom, Giles K.; Hide, Denis; Salmon, David M.

    2011-01-01

    Both the minimum inhibitory and minimum bactericidal concentration (expressed in terms of thiosulphinate concentration) of an aqueous extract of garlic was determined against nine species of bacteria. Helicobacter pylori proved to be extremely sensitive to garlic extract, whilst Bacteroides fragilis, Clostridium perfringens, Enterobacter cloacae, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhimurium and Staphylococcus aureus all were moderately sensitive to the garlic extract treat...

  10. Chemical Talking with Living Systems: Molecular Switches Steer Quorum Sensing in Bacteria.

    Science.gov (United States)

    Schweighauser, Luca; Wegner, Hermann A

    2015-08-17

    New avenues in bacterial engineering: An azobenzene molecular switch has been incorporated into an autoinducer for quorum sensing (QS) in bacteria. The authors demonstrated that irradiation with different wavelengths of light influences the QS system thereby controlling gene expression as well as the phenotype, as exemplified by pyocyanin production. PMID:26078043

  11. Using a Microbial Physiologic and Genetic Approach to Investigate How Bacteria Sense Physical Stimuli

    Science.gov (United States)

    Mussi, María Alejandra; Actis, Luis A.; de Mendoza, Diego; Cybulski, Larisa E.

    2014-01-01

    A laboratory exercise was designed to illustrate how physical stimuli such as temperature and light are sensed and processed by bacteria to elaborate adaptive responses. In particular, we use the well-characterized Des pathway of "Bacillus subtilis" to show that temperature modulates gene expression, resulting ultimately in modification…

  12. Bacteria as computers making computers

    OpenAIRE

    Danchin, Antoine

    2008-01-01

    Various efforts to integrate biological knowledge into networks of interactions have produced a lively microbial systems biology. Putting molecular biology and computer sciences in perspective, we review another trend in systems biology, in which recursivity and information replace the usual concepts of differential equations, feedback and feedforward loops and the like. Noting that the processes of gene expression separate the genome from the cell machinery, we analyse the role of the separa...

  13. Enhanced virus resistance in transgenic maize expressing a dsRNA-specific endoribonuclease gene from E. coli.

    Directory of Open Access Journals (Sweden)

    Xiuling Cao

    Full Text Available Maize rough dwarf disease (MRDD, caused by several Fijiviruses in the family Reoviridae, is a global disease that is responsible for substantial yield losses in maize. Although some maize germplasm have low levels of polygenic resistance to MRDD, highly resistant cultivated varieties are not available for agronomic field production in China. In this work, we have generated transgenic maize lines that constitutively express rnc70, a mutant E. coli dsRNA-specific endoribonuclease gene. Transgenic lines were propagated and screened under field conditions for 12 generations. During three years of evaluations, two transgenic lines and their progeny were challenged with Rice black-streaked dwarf virus (RBSDV, the causal agent of MRDD in China, and these plants exhibited reduced levels of disease severity. In two normal years of MRDD abundance, both lines were more resistant than non-transgenic plants. Even in the most serious MRDD year, six out of seven progeny from one line were resistant, whereas non-transgenic plants were highly susceptible. Molecular approaches in the T12 generation revealed that the rnc70 transgene was integrated and expressed stably in transgenic lines. Under artificial conditions permitting heavy virus inoculation, the T12 progeny of two highly resistant lines had a reduced incidence of MRDD and accumulation of RBSDV in infected plants. In addition, we confirmed that the RNC70 protein could bind directly to RBSDV dsRNA in vitro. Overall, our data show that RNC70-mediated resistance in transgenic maize can provide efficient protection against dsRNA virus infection.

  14. Bacteria classification using Cyranose 320 electronic nose

    Directory of Open Access Journals (Sweden)

    Gardner Julian W

    2002-10-01

    Full Text Available Abstract Background An electronic nose (e-nose, the Cyrano Sciences' Cyranose 320, comprising an array of thirty-two polymer carbon black composite sensors has been used to identify six species of bacteria responsible for eye infections when present at a range of concentrations in saline solutions. Readings were taken from the headspace of the samples by manually introducing the portable e-nose system into a sterile glass containing a fixed volume of bacteria in suspension. Gathered data were a very complex mixture of different chemical compounds. Method Linear Principal Component Analysis (PCA method was able to classify four classes of bacteria out of six classes though in reality other two classes were not better evident from PCA analysis and we got 74% classification accuracy from PCA. An innovative data clustering approach was investigated for these bacteria data by combining the 3-dimensional scatter plot, Fuzzy C Means (FCM and Self Organizing Map (SOM network. Using these three data clustering algorithms simultaneously better 'classification' of six eye bacteria classes were represented. Then three supervised classifiers, namely Multi Layer Perceptron (MLP, Probabilistic Neural network (PNN and Radial basis function network (RBF, were used to classify the six bacteria classes. Results A [6 × 1] SOM network gave 96% accuracy for bacteria classification which was best accuracy. A comparative evaluation of the classifiers was conducted for this application. The best results suggest that we are able to predict six classes of bacteria with up to 98% accuracy with the application of the RBF network. Conclusion This type of bacteria data analysis and feature extraction is very difficult. But we can conclude that this combined use of three nonlinear methods can solve the feature extraction problem with very complex data and enhance the performance of Cyranose 320.

  15. Antibacterial activity of aquatic gliding bacteria.

    Science.gov (United States)

    Sangnoi, Yutthapong; Anantapong, Theerasak; Kanjana-Opas, Akkharawit

    2016-01-01

    The study aimed to screen and isolate strains of freshwater aquatic gliding bacteria, and to investigate their antibacterial activity against seven common pathogenic bacteria. Submerged specimens were collected and isolated for aquatic gliding bacteria using four different isolation media (DW, MA, SAP2, and Vy/2). Gliding bacteria identification was performed by 16S rRNA gene sequencing and phylogenetic analysis. Crude extracts were obtained by methanol extraction. Antibacterial activity against seven pathogenic bacteria was examined by agar-well diffusion assay. Five strains of aquatic gliding bacteria including RPD001, RPD008, RPD018, RPD027 and RPD049 were isolated. Each submerged biofilm and plastic specimen provided two isolates of gliding bacteria, whereas plant debris gave only one isolate. Two strains of gliding bacteria were obtained from each DW and Vy/2 isolation medium, while one strain was obtained from the SAP2 medium. Gliding bacteria strains RPD001, RPD008 and RPD018 were identified as Flavobacterium anhuiense with 96, 82 and 96 % similarity, respectively. Strains RPD049 and RPD027 were identified as F. johnsoniae and Lysobacter brunescens, respectively, with similarity equal to 96 %. Only crude extract obtained from RPD001 inhibited growth of Listeria monocytogenes (MIC 150 µg/ml), Staphylococcus aureus (MIC 75 µg/ml) and Vibrio cholerae (MIC 300 µg/ml), but showed weak inhibitory effect on Salmonella typhimurium (MIC > 300 µg/ml). Gliding bacterium strain RPD008 should be considered to a novel genus separate from Flavobacterium due to its low similarity value. Crude extract produced by RPD001 showed potential for development as a broad antibiotic agent. PMID:26885469

  16. A Convenient and General Expression Platform for the Production of Secreted Proteins from Human Cells

    OpenAIRE

    AYDIN, Halil; Azimi, Farshad C.; Jonathan D Cook; Lee, Jeffrey E.

    2012-01-01

    Recombinant protein expression in bacteria, typically E. coli, has been the most successful strategy for milligram quantity expression of proteins. However, prokaryotic hosts are often not as appropriate for expression of human, viral or eukaryotic proteins due to toxicity of the foreign macromolecule, differences in the protein folding machinery, or due to the lack of particular co- or post-translational modifications in bacteria. Expression systems based on yeast (P. pastoris or S. cerevisi...

  17. AlgU controls expression of virulence genes in Pseudomonas syringae pv. tomato DC3000

    Science.gov (United States)

    Plant pathogenic bacteria are able to integrate information about their environment and adjust gene expression to provide adaptive functions. AlgU, an ECF sigma factor encoded by Pseudomonas syringae, controls expression of genes for alginate biosynthesis and is active while the bacteria are associa...

  18. Stop the Spread of Superbugs: Help Fight Drug Resistant Bacteria

    Science.gov (United States)

    ... the Spread of Superbugs Help Fight Drug-Resistant Bacteria For nearly a century, bacteria-fighting drugs known as antibiotics have helped to control and destroy many of the harmful bacteria that can make us sick. But in recent ...

  19. Birefringence Determination of Magnetic Moments of Magnetotactic Bacteria

    OpenAIRE

    Rosenblatt, Charles; de Araujo, F. Flavio Torres; Frankel, Richard B.

    1982-01-01

    A birefringence technique is used to determine the average magnetic moments of magnetotactic bacteria in culture. Differences in are noted between live and dead bacteria, as well as between normal density and high density samples of live bacteria.

  20. Potentially probiotic bacteria induce efficient maturation but differential cytokine production in human monocyte-derived dendritic cells

    Institute of Scientific and Technical Information of China (English)

    Sinikka Latvala; Taija E Pietil(a); Ville Veckman; Riina A Kekkonen; Soile Tynkkynen; Riitta Korpela; Ilkka Julkunen

    2008-01-01

    MM: To analyze the ability of nine different potentially probiotic bacteria to induce maturation and cytokine production in human monocyLe-derived dendritic cells (moDCs).METHODS: Cytokine production and maturation of moDCs in response to bacterial stimulation was analyzed with enzyme-linked immunosorbent assay (ELISA) and flow cytometric analysis (FACS),respectively.The kinetics of mRNA expression of cytokine genes was determined by Northern blotting.The involvement of different signaling pathways in cytokine gene expression was studied using specific pharmacological signaling inhibitors.RESULTS: All studied bacteria induced the maturation of moDCs in a dose-dependent manner.More detailed analysis with S.thermophilus THS,B.breve Bb99,and L.lactis subsp,cremoris ARH74 indicated that these bacteria induced the expression of moDC maturation markers HLA class II and CD86 as efficiently as pathogenic bacteria.However,these bacteria differed in their ability to induce moDC cytokine gene expression.S.therrnophilus induced the expression of pro-inflammatory (TNF-a,IL-12,IL-6,and CCL20)and Th1 type (IL-12 and IFN-y) cytokines,while B.breve and L.lactis were also potent inducers of antiinflammatory IL-10.Mitogen-activated protein kinase (MAPK) p38,phosphatidylinositol 3 (PI3) kinase,and nuclear factor-kappa B (NF-κB) signaling pathways were shown to be involved in bacteria-induced cytokine production.CONCLUSION: Our results indicate that potentially probiotic bacteria are able to induce moDC maturation,but their ability to induce cytokine gene expression varies significantly from one bacterial strain to another.

  1. Folate Production by Probiotic Bacteria

    Directory of Open Access Journals (Sweden)

    Stefano Raimondi

    2011-01-01

    Full Text Available Probiotic bacteria, mostly belonging to the genera Lactobacillus and Bifidobacterium, confer a number of health benefits to the host, including vitamin production. With the aim to produce folate-enriched fermented products and/or develop probiotic supplements that accomplish folate biosynthesis in vivo within the colon, bifidobacteria and lactobacilli have been extensively studied for their capability to produce this vitamin. On the basis of physiological studies and genome analysis, wild-type lactobacilli cannot synthesize folate, generally require it for growth, and provide a negative contribution to folate levels in fermented dairy products. Lactobacillus plantarum constitutes an exception among lactobacilli, since it is capable of folate production in presence of para-aminobenzoic acid (pABA and deserves to be used in animal trials to validate its ability to produce the vitamin in vivo. On the other hand, several folate-producing strains have been selected within the genus Bifidobacterium, with a great variability in the extent of vitamin released in the medium. Most of them belong to the species B. adolescentis and B. pseudocatenulatum, but few folate producing strains are found in the other species as well. Rats fed a probiotic formulation of folate-producing bifidobacteria exhibited increased plasma folate level, confirming that the vitamin is produced in vivo and absorbed. In a human trial, the same supplement raised folate concentration in feces. The use of folate-producing probiotic strains can be regarded as a new perspective in the specific use of probiotics. They could more efficiently confer protection against inflammation and cancer, both exerting the beneficial effects of probiotics and preventing the folate deficiency that is associated with premalignant changes in the colonic epithelia.

  2. Magnetotactic Bacteria from Extreme Environments

    Science.gov (United States)

    Bazylinski, Dennis A.; Lefèvre, Christopher T.

    2013-01-01

    Magnetotactic bacteria (MTB) represent a diverse collection of motile prokaryotes that biomineralize intracellular, membrane-bounded, tens-of-nanometer-sized crystals of a magnetic mineral called magnetosomes. Magnetosome minerals consist of either magnetite (Fe3O4) or greigite (Fe3S4) and cause cells to align along the Earth’s geomagnetic field lines as they swim, a trait called magnetotaxis. MTB are known to mainly inhabit the oxic–anoxic interface (OAI) in water columns or sediments of aquatic habitats and it is currently thought that magnetosomes function as a means of making chemotaxis more efficient in locating and maintaining an optimal position for growth and survival at the OAI. Known cultured and uncultured MTB are phylogenetically associated with the Alpha-, Gamma- and Deltaproteobacteria classes of the phylum Proteobacteria, the Nitrospirae phylum and the candidate division OP3, part of the Planctomycetes-Verrucomicrobia-Chlamydiae (PVC) bacterial superphylum. MTB are generally thought to be ubiquitous in aquatic environments as they are cosmopolitan in distribution and have been found in every continent although for years MTB were thought to be restricted to habitats with pH values near neutral and at ambient temperature. Recently, however, moderate thermophilic and alkaliphilic MTB have been described including: an uncultured, moderately thermophilic magnetotactic bacterium present in hot springs in northern Nevada with a probable upper growth limit of about 63 °C; and several strains of obligately alkaliphilic MTB isolated in pure culture from different aquatic habitats in California, including the hypersaline, extremely alkaline Mono Lake, with an optimal growth pH of >9.0. PMID:25369742

  3. Magnetotactic Bacteria from Extreme Environments

    Science.gov (United States)

    Bazylinski, Dennis A.; Lefère, Christopher T.

    2013-03-01

    Magnetotactic bacteria (MTB) represent a diverse collection of motile prokaryotes that biomineralize intracellular, membrane-bounded, tens-of-nanometer-sized crystals of a magnetic mineral called magnetosomes. Magnetosome minerals consist of either magnetite (Fe3O4) or greigite (Fe3S4) and cause cells to align along the Earth's geomagnetic field lines as they swim, a trait called magnetotaxis. MTB are known to mainly inhabit the oxic-anoxic interface (OAI) in water columns or sediments of aquatic habitats and it is currently thought that magnetosomes function as a means of making chemotaxis more efficient in locating and maintaining an optimal position for growth and survival at the OAI. Known cultured and uncultured MTB are phylogenetically associated with the Alpha-, Gamma- and Deltaproteobacteria classes of the phylum Proteobacteria, the Nitrospirae phylum and the candidate division OP3, part of the Planctomycetes-Verrucomicrobia-Chlamydiae (PVC) bacterial superphylum. MTB are generally thought to be ubiquitous in aquatic environments as they are cosmopolitan in distribution and have been found in every continent although for years MTB were thought to be restricted to habitats with pH values near neutral and at ambient temperature. Recently, however, moderate thermophilic and alkaliphilic MTB have been described including: an uncultured, moderately thermophilic magnetotactic bacterium present in hot springs in northern Nevada with a probable upper growth limit of about 63 °C; and several strains of obligately alkaliphilic MTB isolated in pure culture from different aquatic habitats in California, including the hypersaline, extremely alkaline Mono Lake, with an optimal growth pH of >9.0.

  4. Magnetotactic Bacteria from Extreme Environments

    Directory of Open Access Journals (Sweden)

    Christopher T. Lefèvre

    2013-03-01

    Full Text Available Magnetotactic bacteria (MTB represent a diverse collection of motile prokaryotes that biomineralize intracellular, membrane-bounded, tens-of-nanometer-sized crystals of a magnetic mineral called magnetosomes. Magnetosome minerals consist of either magnetite (Fe3O4 or greigite (Fe3S4 and cause cells to align along the Earth’s geomagnetic field lines as they swim, a trait called magnetotaxis. MTB are known to mainly inhabit the oxic–anoxic interface (OAI in water columns or sediments of aquatic habitats and it is currently thought that magnetosomes function as a means of making chemotaxis more efficient in locating and maintaining an optimal position for growth and survival at the OAI. Known cultured and uncultured MTB are phylogenetically associated with the Alpha-, Gamma- and Deltaproteobacteria classes of the phylum Proteobacteria, the Nitrospirae phylum and the candidate division OP3, part of the Planctomycetes-Verrucomicrobia-Chlamydiae (PVC bacterial superphylum. MTB are generally thought to be ubiquitous in aquatic environments as they are cosmopolitan in distribution and have been found in every continent although for years MTB were thought to be restricted to habitats with pH values near neutral and at ambient temperature. Recently, however, moderate thermophilic and alkaliphilic MTB have been described including: an uncultured, moderately thermophilic magnetotactic bacterium present in hot springs in northern Nevada with a probable upper growth limit of about 63 °C; and several strains of obligately alkaliphilic MTB isolated in pure culture from different aquatic habitats in California, including the hypersaline, extremely alkaline Mono Lake, with an optimal growth pH of >9.0.

  5. Effects of thermoradiation on bacteria

    International Nuclear Information System (INIS)

    A 60Co source was used to determine the effects of thermoradiation on Achromobacter aquamarinus, Staphylococcus aureus, and vegetative and spore cells of Bacillus subtilis var. globigii. The rate of inactivation of these cultures, except vegetative-cell populations of B. subtilis, was exponential and in direct proportion to temperature. The D10 (dose that inactivates 90 percent of the microbial population) value for A. aquamarinus was 8.0 Krad at 25 degrees C and 4.9 Krad at 35 degrees C. For S. aureus, D10 was 9.8 and 5.3 Krad at 35 and 45 degrees C, respectively. Vegetative cells of B. subtilis demonstrated a rapid initial inactivation followed by a steady but decreased exponential rate. The D10 at 25 degrees C was 10.3 Krad, but at 35 and 45 degrees C this value was 6.2 and 3.8 Krad, respectively. Between 0 and 95 Krad, survival curves for B. subtilis spores at 75 degrees C showed slight inactivation, increasing in rat at and above 85 degrees C. The D10 values for spores at 85 and 90 degrees C were 129 and 92 Krad, respectively. Significant synergism between heat and irradiation was noted at 35 degrees C for A. aquamarinus and 45 degrees C for S. aureus. The presence of 0.1 mM cysteine in suspending media afforded protection to both cultures at these critical temperatures. On the other hand, cysteine sensitized B. subtilis spores at radiation doses greater than 100 Krad. The combined effect of heat and irradiation was more destructive to bacteria than either method alone

  6. Clustering of Marine Bacteria in Seawater Enrichments

    OpenAIRE

    Mitchell, J.G.; Pearson, L; Dillon, S.

    1996-01-01

    Seawater enrichments of marine bacteria clustered in 20- to 50-(mu)m-wide bands near air-water interfaces. The cells within the band travelled at up to 212 (mu)m s(sup-1) and at an average speed of 163 (mu)m s(sup-1). Mean cell speeds peaked mid-run at 187 (mu)m s(sup-1). At the end of the run, bacteria reversed direction rather than randomly reorienting. The duration of the stops during reversal was estimated at 18 ms, six to seven times shorter than that found in enteric bacteria. Cells hun...

  7. The Microworld of Marine-Bacteria

    DEFF Research Database (Denmark)

    JØRGENSEN, BB

    1995-01-01

    Microsensor studies show that the marine environment in the size scale of bacteria is physically and chemically very different from the macroenvironment. The microbial world of the sediment-water interface is thus dominated by water viscosity and steep diffusion gradients. Because of the diverse...... metabolism types, bacteria in the mostly anoxic sea floor play an important role in the major element cycles of the ocean. The communities of giant, filamentous sulfur bacteria that live in the deep-sea hydrothermal vents or along the Pacific coast of South America are presented here as examples....

  8. Acidophilic, Heterotrophic Bacteria of Acidic Mine Waters

    OpenAIRE

    Wichlacz, Paul L.; Unz, Richard F.

    1981-01-01

    Obligately acidophilic, heterotrophic bacteria were isolated both from enrichment cultures developed with acidic mine water and from natural mine drainage. The bacteria were grouped by the ability to utilize a number of organic acids as sole carbon sources. None of the strains were capable of chemolithotrophic growth on inorganic reduced iron and sulfur compounds. All bacteria were rod shaped, gram negative, nonencapsulated, motile, capable of growth at pH 2.6 but not at pH 6.0, catalase and ...

  9. Effects of bacterial host and dichloromethane dehalogenase on the competitiveness of methylotrophic bacteria growing with dichloromethane.

    Science.gov (United States)

    Gisi, D; Willi, L; Traber, H; Leisinger, T; Vuilleumier, S

    1998-04-01

    Methylobacterium sp. strain DM4 and Methylophilus sp. strain DM11 can grow with dichloromethane (DCM) as the sole source of carbon and energy by virtue of homologous glutathione-dependent DCM dehalogenases with markedly different kinetic properties (the kcat values of the enzymes of these strains are 0.6 and 3.3 S-1, respectively, and the Km values are 9 and 59 microM, respectively). These strains, as well as transconjugant bacteria expressing the DCM dehalogenase gene (dcmA) from DM11 or DM4 on a broad-host-range plasmid in the background of dcmA mutant DM4-2cr, were investigated by growing them under growth-limiting conditions and in the presence of an excess of DCM. The maximal growth rates and maximal levels of dehalogenase for chemostat-adapted bacteria were higher than the maximal growth rates and maximal levels of dehalogenase for batch-grown bacteria. The substrate saturation constant of strain DM4 was much lower than the Km of its associated dehalogenase, suggesting that this strain is adapted to scavenge low concentrations of DCM. Strains and transconjugants expressing the DCM dehalogenase from strain DM11, on the other hand, had higher growth rates than bacteria expressing the homologous dehalogenase from strain DM4. Competition experiments performed with pairs of DCM-degrading strains revealed that a strain expressing the dehalogenase from DM4 had a selective advantage in continuous culture under substrate-limiting conditions, while strains expressing the DM11 dehalogenase were superior in batch culture when there was an excess of substrate. Only DCM-degrading bacteria with a dcmA gene similar to that from strain DM4, however, were obtained in batch enrichment cultures prepared with activated sludge from sewage treatment plants. PMID:9546153

  10. Molecular Structure of Endotoxins from Gram-negative Marine Bacteria: An Update

    Directory of Open Access Journals (Sweden)

    Antonio Molinaro

    2007-09-01

    Full Text Available Marine bacteria are microrganisms that have adapted, through millions of years, to survival in environments often characterized by one or more extreme physical or chemical parameters, namely pressure, temperature and salinity. The main interest in the research on marine bacteria is due to their ability to produce several biologically active molecules, such as antibiotics, toxins and antitoxins, antitumor and antimicrobial agents. Nonetheless, lipopolysaccharides (LPSs, or their portions, from Gram-negative marine bacteria, have often shown low virulence, and represent potential candidates in the development of drugs to prevent septic shock. Besides, the molecular architecture of such molecules is related to the possibility of thriving in marine habitats, shielding the cell from the disrupting action of natural stress factors. Over the last few years, the depiction of a variety of structures of lipids A, core oligosaccharides and O-specific polysaccharides from LPSs of marine microrganisms has been given. In particular, here we will examine the most recently encountered structures for bacteria belonging to the genera Shewanella, Pseudoalteromonas and Alteromonas, of the γ-Proteobacteria phylum, and to the genera Flavobacterium, Cellulophaga, Arenibacter and Chryseobacterium, of the Cytophaga- Flavobacterium-Bacteroides phylum. Particular attention will be paid to the chemical features expressed by these structures (characteristic monosaccharides, non-glycidic appendages, phosphate groups, to the typifying traits of LPSs from marine bacteria and to the possible correlation existing between such features and the adaptation, over years, of bacteria to marine environments.

  11. A prebiotic role of Ecklonia cava improves the mortality of Edwardsiella tarda-infected zebrafish models via regulating the growth of lactic acid bacteria and pathogen bacteria.

    Science.gov (United States)

    Lee, WonWoo; Oh, Jae Young; Kim, Eun-A; Kang, Nalae; Kim, Kil-Nam; Ahn, Ginnae; Jeon, You-Jin

    2016-07-01

    In this study, the beneficial prebiotic roles of Ecklonia cava (E. cava, EC) were evaluated on the growth of lactic acid bacteria (LAB) and pathogen bacteria and the mortality of pathogen-bacteria infected zebrafish model. The result showed that the original E. cava (EC) led to the highest growth effects on three LABs (Lactobacillus brevis, L. brevis; Lactobacillus pentosus, L. pentosus; Lactobacillus plantarum; L. plantarum) and it was dose-dependent manners. Also, EC, its Celluclast enzymatic (ECC) and 100% ethanol extracts (ECE) showed the anti-bacterial activities on the fish pathogenic bacteria such as (Edwardsiella tarda; E. tarda, Streptococcus iniae; S. iniae, and Vibrio harveyi; V. harveyi). Interestingly, EC induced the higher production of the secondary metabolites from L. plantarum in MRS medium. The secondary metabolites produced by EC significantly inhibited the growth of pathogen bacteria. In further in vivo study, the co-treatment of EC and L. plantarum improved the growth and mortality of E. tarda-infected zebrafish as regulating the expression of inflammatory molecules such as iNOS and COX2. Taken together, our present study suggests that the EC plays an important role as a potential prebiotic and has a protective effect against the infection caused by E. tarda injection in zebrafish. Also, our conclusion from this evidence is that EC can be used and applied as a useful prebiotic. PMID:27192145

  12. Is ingestion of milk-associated bacteria by premature infants fed raw human milk controlled by routine bacteriologic screening?

    OpenAIRE

    Law, B J; Urias, B A; Lertzman, J; Robson, D.; Romance, L

    1989-01-01

    Expressed human milk is often used to feed premature infants. Raw milk contains bacteria which may be a source of infection. Milk banks have developed screening programs which combine periodic quantitative milk cultures with arbitrary rules specifying limits of bacterial concentration. It is unknown whether such programs succeed in preventing infants from being fed milk containing bacteria. At the Health Sciences Centre (Winnipeg, Manitoba, Canada), milk is screened once weekly. When a woman'...

  13. Modeling of kinetics of the inducible protein complexes of the SOS system in bacteria E. coli which realize TLS process

    International Nuclear Information System (INIS)

    The mathematical model describing kinetics of the inducible genes of the protein complexes, formed during SOS response in bacteria Escherichia coli is developed. Within the bounds of developed approaches the auxiliary mathematical model describing changes in concentrations of the dimers, which are the components of final protein complexes, is developed. The solutions of both models are based on the experimental data concerning expression of the basic genes of the SOS system in bacteria Escherichia coli

  14. Comparative genomics of the lactic acid bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Makarova, K.; Slesarev, A.; Wolf, Y.; Sorokin, A.; Mirkin, B.; Koonin, E.; Pavlov, A.; Pavlova, N.; Karamychev, V.; Polouchine, N.; Shakhova, V.; Grigoriev, I.; Lou, Y.; Rokhsar, D.; Lucas, S.; Huang, K.; Goodstein, D. M.; Hawkins, T.; Plengvidhya, V.; Welker, D.; Hughes, J.; Goh, Y.; Benson, A.; Baldwin, K.; Lee, J. -H.; Diaz-Muniz, I.; Dosti, B.; Smeianov, V; Wechter, W.; Barabote, R.; Lorca, G.; Altermann, E.; Barrangou, R.; Ganesan, B.; Xie, Y.; Rawsthorne, H.; Tamir, D.; Parker, C.; Breidt, F.; Broadbent, J.; Hutkins, R.; O' Sullivan, D.; Steele, J.; Unlu, G.; Saier, M.; Klaenhammer, T.; Richardson, P.; Kozyavkin, S.; Weimer, B.; Mills, D.

    2006-06-01

    Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacteria encode a broad repertoire of transporters for efficient carbon and nitrogen acquisition from the nutritionally rich environments they inhabit and reflect a limited range of biosynthetic capabilities that indicate both prototrophic and auxotrophic strains. Phylogenetic analyses, comparison of gene content across the group, and reconstruction of ancestral gene sets indicate a combination of extensive gene loss and key gene acquisitions via horizontal gene transfer during the coevolution of lactic acid bacteria with their habitats.

  15. DECONTAMINATION OF HEAVY METALS WITH BACTERIA

    Science.gov (United States)

    OBJECTIVES: To discover, improve, understand the mechanisms and use naturally occurring bacteria to decontiminate in situ heavy metals from the soils, sediments and waters to protect human health and the environment. ABSTRACT: Our laboratory (Vesper et al. ...

  16. Distribution of phytopathogenic bacteria in infested seeds

    Science.gov (United States)

    Populations of phytopathogenic bacteria representing five host-pathogen combinations were assessed to determine if there was a mathematical relationship common across seedborne bacterial diseases. Bacterial populations were estimated from naturally-infested seeds of cowpea (Vigna unguiculata), peppe...

  17. Protection of probiotic bacteria in synbiotic matrices

    Science.gov (United States)

    Probiotics, like Lactobacillus acidophilus, Lactobacillus reuteri, Bifidobacterium breve, Bifidobacterium longum, when encapsulated with prebiotic fibers such as fructo-oligosaccharides (FOS), inulin (I) and pectic-oligosaccharides (POS), formed a synbiotic matrix system that protected the bacteria ...

  18. Effect of leukocyte hydrolases on bacteria

    International Nuclear Information System (INIS)

    Leukocyte extracts, trypsin, and lysozyme are all capable of releasing the bulk of the LPS from S. typhi, S. typhimurium, and E. coli. Bacteria which have been killed by heat, ultraviolet irradiation, or by a variety of metabolic inhibitors and antibiotics which affect protein, DNA, RNA, and cell wall synthesis no longer yield soluble LPS following treatment with the releasing agents. On the other hand, bacteria which are resistant to certain of the antibiotics yield nearly the full amount of soluble LPS following treatment, suggesting that certain heatabile endogenous metabolic pathways collaborate with the releasing agents in the release of LPS from the bacteria. It is suggested that some of the beneficial effects of antibiotics on infections with gram-negative bacteria may be the prevention of massive release of endotoxin by leukocyte enzymes in inflammatory sites

  19. Genome-wide transcriptional changes induced by phagocytosis or growth on bacteria in Dictyostelium

    Directory of Open Access Journals (Sweden)

    Peracino Barbara

    2008-06-01

    Full Text Available Abstract Background Phagocytosis plays a major role in the defense of higher organisms against microbial infection and provides also the basis for antigen processing in the immune response. Cells of the model organism Dictyostelium are professional phagocytes that exploit phagocytosis of bacteria as the preferred way to ingest food, besides killing pathogens. We have investigated Dictyostelium differential gene expression during phagocytosis of non-pathogenic bacteria, using DNA microarrays, in order to identify molecular functions and novel genes involved in phagocytosis. Results The gene expression profiles of cells incubated for a brief time with bacteria were compared with cells either incubated in axenic medium or growing on bacteria. Transcriptional changes during exponential growth in axenic medium or on bacteria were also compared. We recognized 443 and 59 genes that are differentially regulated by phagocytosis or by the different growth conditions (growth on bacteria vs. axenic medium, respectively, and 102 genes regulated by both processes. Roughly one third of the genes are up-regulated compared to macropinocytosis and axenic growth. Functional annotation of differentially regulated genes with different tools revealed that phagocytosis induces profound changes in carbohydrate, aminoacid and lipid metabolism, and in cytoskeletal components. Genes regulating translation and mitochondrial biogenesis are mostly up-regulated. Genes involved in sterol biosynthesis are selectively up-regulated, suggesting a shift in membrane lipid composition linked to phagocytosis. Very few changes were detected in genes required for vesicle fission/fusion, indicating that the intracellular traffic machinery is mostly in common between phagocytosis and macropinocytosis. A few putative receptors, including GPCR family 3 proteins, scaffolding and adhesion proteins, components of signal transduction and transcription factors have been identified, which could

  20. Electrical Cable Bacteria Save Marine Life

    DEFF Research Database (Denmark)

    Nielsen, Lars Peter

    2016-01-01

    Animals at the bottomof the sea survive oxygen depletion surprisingly often, and a new study identifies cable bacteria in the sediment as the saviors. The bacterial electrical activity creates an iron ‘carpet’, trapping toxic hydrogen sulfide.......Animals at the bottomof the sea survive oxygen depletion surprisingly often, and a new study identifies cable bacteria in the sediment as the saviors. The bacterial electrical activity creates an iron ‘carpet’, trapping toxic hydrogen sulfide....

  1. Ecology: Electrical Cable Bacteria Save Marine Life

    DEFF Research Database (Denmark)

    Nielsen, Lars Peter

    2016-01-01

    Animals at the bottom of the sea survive oxygen depletion surprisingly often, and a new study identifies cable bacteria in the sediment as the saviors. The bacterial electrical activity creates an iron 'carpet', trapping toxic hydrogen sulfide.......Animals at the bottom of the sea survive oxygen depletion surprisingly often, and a new study identifies cable bacteria in the sediment as the saviors. The bacterial electrical activity creates an iron 'carpet', trapping toxic hydrogen sulfide....

  2. Microgravity effects on pathogenicity of bacteria

    OpenAIRE

    Wang, Ya-Juan; Liu, Chang-Ting

    2013-01-01

    Microgravity is one of the important environmental conditions during spaceflight. A series of studies have shown that many kinds of bacteria could be detected in space station and space shuttle. Space environment or simulated microgravity may throw a certain influence on those opportunistic pathogens and lead to some changes on their virulence, biofilm formation and drug tolerance. The mechanism of bacteria response to space environment or simulated microgravity has not been defined. However,...

  3. Interactions between ectomycorrhizal associations and bacteria

    OpenAIRE

    Marupakula, Srisailam

    2016-01-01

    Boreal forest podzol soils have vertically stratified horizons with different physico-chemical characteristics and high microbial diversity. Ectomycorrhizal fungi play key roles in accessing nutrients from both organic and mineral substrates. The role of associated bacteria in these processes is still poorly understood. The aim of the studies described in this thesis was to improve understanding of the distribution, diversity and community structure of fungi and bacteria on roots and in soil ...

  4. Magnetization processes in magnetotactic bacteria systems

    Czech Academy of Sciences Publication Activity Database

    Polyakova, T.; Zablotskyy, Vitaliy A.

    2005-01-01

    Roč. 293, - (2005), s. 365-370. ISSN 0304-8853. [International Conference on Scientific and Clinical Aplications of Magnetic Carriers. Lyon, 20.05.04-22.05.04] Grant ostatní: MCF: Nanomag-Lab(XE) N 2004-003177 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetotactic bacteria * magnetization process * chemotaxis * bacteria * magnetosomes * chain formation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.985, year: 2005

  5. Bacteria in goat meat: Biological danger

    OpenAIRE

    Ivanović S.; Pavlović I.; Žujović M.; Tomić Z.; Memiši N.

    2011-01-01

    In the world, especially in China, India, Pаkistаn and Nigeria goat meat represents an important foodstuff in nutrition of people. Goat meat is being increasingly consumed in Serbia owing to its distinctive taste and desirable chemical composition. As many other types of meat, goat meat can be the source of pathogenic bacteria. Bacteria can find their way into meat of healthy goats or goats with no clinical symptoms premortally (infection) or postmortally (...

  6. Study of Lactobacillus as Probiotic Bacteria

    OpenAIRE

    J. Nowroozi; Mirzaii, M; M. Norouzi

    2004-01-01

    Because of inhibitory effect, selected probiotic lactobacilli may be used as biological preservative, so, the aim of this study was to present some data on lactobacillus as probiotic bacteria. Lactic acid bacteria were isolated from sausage. Each isolate of lactobacillus species was identified by biochemical tests and comparing their sugar fermentation pattern. Antibacterial activities were done by an agar spot, well diffusion and blank disk method. Enzyme sensitivity of supernatant fluid and...

  7. How Bacteria Turn Fiber into Food

    OpenAIRE

    Martens, Eric C.; Lowe, Elisabeth C.; Chiang, Herbert; Nicholas A Pudlo; Wu, Meng; McNulty, Nathan P.; Abbott, D Wade; Henrissat, Bernard; Gilbert, Harry J.; Bolam, David N.; Jeffrey I Gordon

    2011-01-01

    Symbiotic bacteria inhabiting the human gut have evolved under intense pressure to utilize complex carbohydrates, primarily plant cell wall glycans in our diets. These polysaccharides are not digested by human enzymes, but are processed to absorbable short chain fatty acids by gut bacteria. The Bacteroidetes, one of two dominant bacterial phyla in the adult gut, possess broad glycan-degrading abilities. These species use a series of membrane protein complexes, termed Sus-like systems, for cat...

  8. Bacteria under SOS evolve anticancer phenotypes

    OpenAIRE

    Weitao Tao; Dallo Shatha F

    2010-01-01

    Abstract Background The anticancer drugs, such as DNA replication inhibitors, stimulate bacterial adhesion and induce the bacterial SOS response. As a variety of bacterial mutants can be generated during SOS, novel phenotypes are likely to be selected under the drug pressure. Presentation of the hypothesis Bacteria growing with cancer cells in the presence of the replication inhibitors undergo the SOS response and evolve advantageous phenotypes for the bacteria to invade the cancer cells in o...

  9. Characterization of (per)chlorate-reducing bacteria

    OpenAIRE

    Wolterink, A.F.W.M.

    2004-01-01

    Some bacteria can use (per)chlorateas terminal electron acceptor for growth. These bacteria convert perchlorate via chlorate and chlorite into chloride and molecular oxygen. Oxygen formation in microbial respiration is unique. In this study two chlorate-reducing strains belonging to the species Pseudomonas chloritidismutans and a (per)chlorate-reducing strain Dechloromonas hortensis were isolated. The characterization of the chlorate-reducing strain AW-1, which was isolated from a bioreactor ...

  10. Quorum sensing mechanism in lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Hatice Yılmaz - Yıldıran

    2015-04-01

    and detection occurs as a consecution it is hard to understand their QS mechanism. In this review, connection between QS mechanism and some characteristics of lactic acid bacteria are evaluated such as concordance with its host, inhibition of pathogen development and colonization in gastrointestinal system, bacteriocin production, acid and bile resistance, adhesion to epithelium cells. Understanding QS mechanism of lactic acid bacteria will be useful to design metabiotics which is defined as novel probiotics.

  11. Quorum sensing mechanism in lactic acid bacteria

    OpenAIRE

    Hatice Yılmaz - Yıldıran; Aynur Gül Karahan; Gülden Başyiğit - Kılıç

    2015-01-01

    For a long time, microorganisms were considered as just multiplying, finding nutrients and living by themselves organisms. But that belief changed 50 years ago along with the discovery of bacteria communication with each other and environment by microbiologists. The language used in the communication consists of signal molecules and these molecules are generally called 'auto inducer'. Bacteria are capable of measuring density of these molecules and by this way they are able to detect amoun...

  12. Molecular Evolution of Threonine Dehydratase in Bacteria

    OpenAIRE

    Yu, Xuefei; Li, Ye; Wang, Xiaoyuan

    2013-01-01

    Threonine dehydratase converts L-threonine to 2-ketobutyrate. Several threonine dehydratases exist in bacteria, but their origins and evolutionary pathway are unknown. Here we analyzed all the available threonine dehydratases in bacteria and proposed an evolutionary pathway leading to the genes encoding three different threonine dehydratases CTD, BTD1 and BTD2. The ancestral threonine dehydratase might contain only a catalytic domain, but one or two ACT-like subdomains were fused during the e...

  13. Keratinolytic activity of cutaneous and oral bacteria.

    OpenAIRE

    Mikx, F H; De Jong, M H

    1987-01-01

    A test was developed to measure the keratinolytic activity of cutaneous and oral bacteria. Keratin, labeled with fluorescein isothiocyanate, was used in a phosphate buffer (pH 7.2) with 1 mM dithiothreitol. The degradation of keratin was estimated by measuring the fluorescence of the degradation products in the supernatant of the reaction mixtures in a luminescence spectrometer. Several oral and cutaneous bacteria were investigated: Bacteroides gingivalis, Bacteroides intermedius, Treponema d...

  14. Molecular genetic studies on obligate anaerobic bacteria

    International Nuclear Information System (INIS)

    Molecular genetic studies on obligate anaerobic bacteria have lagged behind similar studies in aerobes. However, the current interest in biotechnology, the involvement of anaerobes in disease and the emergence of antibioticresistant strains have focused attention on the genetics of anaerobes. This article reviews molecular genetic studies in Bacteroides spp., Clostridium spp. and methanogens. Certain genetic systems in some anaerobes differ from those in aerobes and illustrate the genetic diversity among bacteria

  15. Distribution of coliform bacteria in waste water

    OpenAIRE

    Dau Lal Bohra; Vikas Modasiya; Chandan Kumar Bahura

    2012-01-01

    Biological activity of water can be apparently judged by the colonization of bacteria (microbes). In order to find out the extent of pollution and the relationship between inorganic matters and microbiota, a quantitative and qualitative analysis of bacteria in various types of sewage waters, namely sewage water by the residential colonies (group I), industrial waste water (group II), sewage treatment hub (group III), unorganized collected waste water (group IV) and old residential waste colle...

  16. Horizontal gene transfer between bacteria and animals

    OpenAIRE

    Dunning Hotopp, Julie C.

    2011-01-01

    Horizontal gene transfer is increasingly described between bacteria and animals. Such transfers that are vertically inherited have the potential to influence the evolution of animals. One classic example is the transfer of DNA from mitochondria and chloroplasts to the nucleus after the acquisition of these organelles by eukaryotes. Even today, many of the described instances of bacteria to animal transfer occur as part of intimate relationships like those of endosymbionts and their invertebra...

  17. Indigenous oil-degrading bacteria in crude oil-contaminated seawater of the Yellow sea, China.

    Science.gov (United States)

    Wang, Wanpeng; Zhang, Rongqiu; Zhong, Rongqiu; Shan, Dapeng; Shao, Zongze

    2014-08-01

    Indigenous oil-degrading bacteria play an important role in efficient remediation of polluted marine environments. In this study, we investigated the diversity and abundance of indigenous oil-degrading bacteria and functional genes in crude oil-contaminated seawater of the Dalian coast. The gene copy number bacterial 16S rRNA in total were determined to be about 10(10) copies L(-1) in contaminated seawater and 10(9) copies L(-1) in uncontaminated seawater. Bacteria of Alcanivorax, Marinobacter, Novosphingobium, Rhodococcus, and Pseudoalteromonas were found to be predominant oil-degrading bacteria in the polluted seawater in situ. In addition, bacteria belonging to Algoriphagus, Aestuariibacter, Celeribacter, Fabibacter, Zobellia, Tenacibaculum, Citreicella, Roseivirga, Winogradskyella, Thioclava, Polaribacter, and Pelagibaca were confirmed to be the first time as an oil-degrading bacterium. The indigenous functional enzymes, including AlkB or polycyclic aromatic hydrocarbons ring-hydroxylating dioxygenases α (PAH-RHDα) coding genes from Gram-positive (GP) and Gram-negative bacteria (GN), were revealed and quite diverse. About 10(10) to 10(11) copies L(-1) for the expression of alkB genes were recovered and showed that the two-thirds of all the AlkB sequences were closely related to widely distributed Alcanivorax and Marinobacter isolates. About 10(9) copies L(-1) seawater for the expression of RHDαGN genes in contaminated seawater and showed that almost all RHDαGN sequences were closely related to an uncultured bacterium; however, RHDαGP genes represented only about 10(5) copies L(-1) seawater for the expression of genes in contaminated seawater, and the naphthalene dioxygenase sequences from Rhodococcus and Mycobacterium species were most abundant. Together, their data provide evidence that there exists an active aerobic microbial community indigenous to the coastal area of the Yellow sea that is capable of degrading petroleum hydrocarbons. PMID:24866944

  18. Study of Lactobacillus as Probiotic Bacteria

    Directory of Open Access Journals (Sweden)

    J Nowroozi

    2004-07-01

    Full Text Available Because of inhibitory effect, selected probiotic lactobacilli may be used as biological preservative, so, the aim of this study was to present some data on lactobacillus as probiotic bacteria. Lactic acid bacteria were isolated from sausage. Each isolate of lactobacillus species was identified by biochemical tests and comparing their sugar fermentation pattern. Antibacterial activities were done by an agar spot, well diffusion and blank disk method. Enzyme sensitivity of supernatant fluid and concentrated cell free culture after treatment with α-amylase, lysozyme and trypsin was determined. The isolated bacteria were Lacto. plantarum, Lacto delbruekii, Lacto. acidophilus, Lacto. brevis. The isolated bacteria had strong activity against indicator strains. The antibacterial activity was stable at 100ºC for 10 min and at 56ºC for 30 min, but activity was lost after autoclaving. The maximum production of plantaricin was obtained at 25 - 30ºC at pH 6.5. Because, lactobacilli that used to process sausage fermentation are producing antimicrobial activity with heat stability bacteriocin, so, these bacteria may be considered to be a healthy probiotic diet. Lactobacilli originally isolated from meat products are the best condidates as probiotic bacteria to improve the microbiological safety of these foods.

  19. How methylglyoxal kills bacteria: An ultrastructural study.

    Science.gov (United States)

    Rabie, Erika; Serem, June Cheptoo; Oberholzer, Hester Magdalena; Gaspar, Anabella Regina Marques; Bester, Megan Jean

    2016-01-01

    Antibacterial activity of honey is due to the presence of methylglyoxal (MGO), H2O2, bee defensin as well as polyphenols. High MGO levels in manuka honey are the main source of antibacterial activity. Manuka honey has been reported to reduce the swarming and swimming motility of Pseudomonas aeruginosa due to de-flagellation. Due to the complexity of honey it is unknown if this effect is directly due to MGO. In this ultrastructural investigation the effects of MGO on the morphology of bacteria and specifically the structure of fimbriae and flagella were investigated. MGO effectively inhibited Gram positive (Bacillus subtilis; MIC 0.8 mM and Staphylococcus aureus; MIC 1.2 mM) and Gram negative (P. aeruginosa; MIC 1.0 mM and Escherichia coli; MIC 1.2 mM) bacteria growth. The ultrastructural effects of 0.5, 1.0 and 2 mM MGO on B. substilis and E. coli morphology was then evaluated. At 0.5 mM MGO, bacteria structure was unaltered. For both bacteria at 1 mM MGO fewer fimbriae were present and the flagella were less or absent. Identified structures appeared stunted and fragile. At 2 mM MGO fimbriae and flagella were absent while the bacteria were rounded with shrinkage and loss of membrane integrity. Antibacterial MGO causes alterations in the structure of bacterial fimbriae and flagella which would limit bacteria adherence and motility. PMID:26986806

  20. Molecular probe technology detects bacteria without culture

    Directory of Open Access Journals (Sweden)

    Hyman Richard W

    2012-03-01

    Full Text Available Abstract Background Our ultimate goal is to detect the entire human microbiome, in health and in disease, in a single reaction tube, and employing only commercially available reagents. To that end, we adapted molecular inversion probes to detect bacteria using solely a massively multiplex molecular technology. This molecular probe technology does not require growth of the bacteria in culture. Rather, the molecular probe technology requires only a sequence of forty sequential bases unique to the genome of the bacterium of interest. In this communication, we report the first results of employing our molecular probes to detect bacteria in clinical samples. Results While the assay on Affymetrix GenFlex Tag16K arrays allows the multiplexing of the detection of the bacteria in each clinical sample, one Affymetrix GenFlex Tag16K array must be used for each clinical sample. To multiplex the clinical samples, we introduce a second, independent assay for the molecular probes employing Sequencing by Oligonucleotide Ligation and Detection. By adding one unique oligonucleotide barcode for each clinical sample, we combine the samples after processing, but before sequencing, and sequence them together. Conclusions Overall, we have employed 192 molecular probes representing 40 bacteria to detect the bacteria in twenty-one vaginal swabs as assessed by the Affymetrix GenFlex Tag16K assay and fourteen of those by the Sequencing by Oligonucleotide Ligation and Detection assay. The correlations among the assays were excellent.

  1. Competition for hydrogen by human faecal bacteria: evidence for the predominance of methane producing bacteria.

    OpenAIRE

    Strocchi, A; Furne, J K; Ellis, C J; Levitt, M D

    1991-01-01

    Studies of sludge have shown that some species of sulphate reducing bacteria outcompete methane producing bacteria for the common substrate H2. A similar competition may exist in human faeces where the methane (CH4) producing status of an individual depends on the faecal concentration of sulphate reducing bacteria. To determine if non-methanogenic faeces outcompete CH4 producing faeces for H2, aliquots of each type of faeces were incubated alone or mixed together, with or without addition of ...

  2. Effective Targeted Photothermal Ablation of Multidrug Resistant Bacteria and Their Biofilms with NIR-Absorbing Gold Nanocrosses.

    Science.gov (United States)

    Teng, Choon Peng; Zhou, Tielin; Ye, Enyi; Liu, Shuhua; Koh, Leng Duei; Low, Michelle; Loh, Xian Jun; Win, Khin Yin; Zhang, Lianhui; Han, Ming-Yong

    2016-08-01

    With the rapid evolution of antibiotic resistance in bacteria, antibiotic-resistant bacteria (in particular, multidrug-resistant bacteria) and their biofilms have been becoming more and more difficult to be effectively treated with conventional antibiotics. As such, there is a great demand to develop a nonantibiotic approach in efficiently eliminating such bacteria. Here, multibranched gold nanocrosses with strong near-infrared absorption falling in the biological window, which heat up quickly under near-infrared-light irradiation are presented. The gold nanocrosses are conjugated to secondary and primary antibodies for targeting PcrV, a type III secretion protein, which is uniquely expressed on the bacteria superbug, Pseudomonas aeruginosa. The conjugated gold nanocrosses are capable of completely destroying P. aeruginosa and its biofilms upon near-infrared-light irradiation for 5 min with an 800 nm laser at a low power density of ≈3.0 W cm(-2) . No bacterial activity is detected after 48 h postirradiation, which indicates that the heat generated from the irradiated plasmonic gold nanocrosses attached to bacteria is effective in eliminating and preventing the re-growth of the bacteria. Overall, the conjugated gold nanocrosses allow targeted and effective photothermal ablation of multidrug-resistant bacteria and their biofilms in the localized region with reduced nonspecific damage to normal tissue. PMID:27336752

  3. The DNA virus white spot syndrome virus uses an internal ribosome entry site for translation of the highly expressed nonstructural protein ICP35.

    Science.gov (United States)

    Kang, Shih-Ting; Wang, Han-Ching; Yang, Yi-Ting; Kou, Guang-Hsiung; Lo, Chu-Fang

    2013-12-01

    Although shrimp white spot syndrome virus (WSSV) is a large double-stranded DNA virus (∼300 kbp), it expresses many polycistronic mRNAs that are likely to use internal ribosome entry site (IRES) elements for translation. A polycistronic mRNA encodes the gene of the highly expressed nonstructural protein ICP35, and here we use a dual-luciferase assay to demonstrate that this protein is translated cap independently by an IRES element located in the 5' untranslated region of icp35. A deletion analysis of this region showed that IRES activity was due to stem-loops VII and VIII. A promoterless assay, a reverse transcription-PCR together with quantitative real-time PCR analysis, and a stable stem-loop insertion upstream of the Renilla luciferase open reading frame were used, respectively, to rule out the possibility that cryptic promoter activity, abnormal splicing, or read-through was contributing to the IRES activity. In addition, a Northern blot analysis was used to confirm that only a single bicistronic mRNA was expressed. The importance of ICP35 to viral replication was demonstrated in a double-stranded RNA (dsRNA) interference knockdown experiment in which the mortality of the icp35 dsRNA group was significantly reduced. Tunicamycin was used to show that the α subunit of eukaryotic initiation factor 2 is required for icp35 IRES activity. We also found that the intercalating drug quinacrine significantly inhibited icp35 IRES activity in vitro and reduced the mortality rate and viral copy number in WSSV-challenged shrimp. Lastly, in Sf9 insect cells, we found that knockdown of the gene for the Spodoptera frugiperda 40S ribosomal protein RPS10 decreased icp35 IRES-regulated firefly luciferase activity but had no effect on cap-dependent translation. PMID:24089551

  4. Influence of Environmental Stressors on the Physiology of Pollutant Degrading Bacteria

    DEFF Research Database (Denmark)

    Svenningsen, Nanna Bygvraa

    compounds. However, soil environments frequently undergo changes, for instance in nutrient and water availability, and microbial cells residing in soils are continuously exposed to various abiotic and biotic insults. Thriving in soil is therefore difficult and conditions are rarely optimal for the microbial...... model degrader bacteria to nutrient- and oxidative stress, two highly relevant stress scenarios in natural environments, and at evaluating the impact of these environmental stress conditions on catabolic gene expression. The results suggest that environmental bacteria, here represented by the toluene...

  5. Antioxidant activity of Sphaerococcus coronopifolius associated bacteria

    Directory of Open Access Journals (Sweden)

    Nádia Fino

    2014-06-01

    Full Text Available Associated bacteria living on macroalgae surfaces are an interesting source of new secondary metabolites with biological activities. The aim of this study was the isolation and identification of epiphytic bacteria from the marine algae Sphaerococcus coronopifolius and the evaluation of the antioxidant activity of the bacteria extracts. The identification of epiphytic bacteria was determined by 16S rRNA gene sequencing. Bacteria extracts were obtained with methanol and dichloromethane (1:1 extraction. Antioxidant activity was evaluated by quantification of total phenolic content (TPC, 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging activity and oxygen radical absorbent capacity (ORAC. The extracts with higher antioxidant activity were tested on MCF-7 and HepG-2 cell lines in oxidative stress conditions induced by H2O2 at 0.2 mM and 0.5 mM, respectively. In total were isolated 21 Sphaerococcus coronopifolius associated bacteria and identified as Vibrio sp. (28.57%, Shewanella sp. (23.81%, Pseudoalteromonas sp. (19.05%, Bacillus sp. (9.52% and Halomonas sp. (9.52%. Two (9.52% of them presented less than 90% Basic Local Alignment Search Tool (BLAST match. The epiphytic bacteria with the most antioxidant potential evaluated by ORAC and DPPH methods were Sp2, Sp12, Sp23, Sp25 and Sp27. The strain Sp4 show high antioxidant activity in all antioxidant methods (ORAC, DPPH and TPC. In oxidative stress conditions on MCF-7 cell line, the extracts of bacteria (1mg.ml-1: 24hours Sp4 (16.15%, Sp25 (17.95% and Sp27 (10.65% prevented the cell death induced by H2O2. In the HepG-2 cell line was the extracts of Sp2 (9.01%, Sp4 (11.21%, Sp12 (7.20% and Sp23 (8.81% bacteria that high prevented the oxidative stress condition induced by H2O2. In conclusion, the Sphaerococcus coronopifolius associated bacteria can be an interesting and excellent source of marine natural compounds with antioxidant activity.

  6. Development of radiation countermeasure using novel radioresistant bacteria

    International Nuclear Information System (INIS)

    Radioresistant bacteria sustain their lives in extreme radiation environment and have capabilities to combat radiation induced oxidative stress. Therefore, factors associated with radioresistancy in bacteria may also provide trans-species radioprotection. To test this hypothesis, present work was initiated at INMAS long back. With this background a novel radioresistant bacterium Bacillus sp. INM-1 isolated and its novel secondary metabolite i.e. Semiquinone Glucoside Derivative (SQGD) carrying radioprotective capabilities was purified. SQGD was evaluated for its free radical scavenging, protein, enzymes, plasmid and biological membranes radioprotection capabilities in vitro. SQGD was also tested for its whole body radioprotective efficacy using oral route of administration. Systemic radioprotection offered by SQGD to gastrointestinal, haematopoietic and male reproductive system was studied. Modulation in endogenous antioxidant enzymes and cytoprotective cytokines expression upon irradiation and SQGD pretreatment was determined. A laboratory process for chemical synthesis of bacterial radioprotective molecule has also been developed (Patent filed No. 2075/DEL/2014). Results of the study demonstrated that SQGD efficiently scavenge free radicals in vitro. SQGD provides excellent protection to structural and functional proteins, plasmid DNA and biomembranes against radiation induced oxidative damage. SQGD was observed to offer ∼ 83% whole body survival to lethally irradiated mice when administered 2h before irradiation by oral route. SQGD was found to ensure significant radioprotection to gastro-intestinal, hematopoietic and male reproductive system of irradiated mice. Protein expression studies revealed that SQGD pretreatment to the irradiated mice significantly increased expression of G-CSF, GM-CSF, MCSF; NFkB, IL-2, IL-12, IL-23, IL-6, PCNA and PARP. In conclusion, present study decisively justified the radioprotective potential of bacterial metabolite SQGD

  7. Contributions of speed and accuracy to translational selection in bacteria.

    Directory of Open Access Journals (Sweden)

    Wenqi Ran

    Full Text Available Among bacteria, we have previously shown that species that are capable of rapid growth have stronger selection on codon usage than slow growing species, and possess higher numbers of rRNA and tRNA genes. This suggests that fast-growers are adapted for fast protein synthesis. There is also considerable evidence that codon usage is influenced by accuracy of translation, and some authors have argued that accuracy is more important than speed. Here we compare the strength of the two effects by studying the codon usages in high and low expression genes and on conserved and variable sites within high expression genes. We introduce a simple statistical method that can be used to assess the significance and the strength of the two types of bias in the same sets of sequences. We compare our statistical measure of codon bias to the common used codon adaptation index, and show that the new measure is preferable for three reasons for the purposes of this analysis. Across a large sample of bacterial genomes, both effects from speed and accuracy are clearly visible, although the speed effect appears to be much stronger than the accuracy effect and is found to be significant in a larger proportion of genomes. It is also difficult to explain the correlation of codon bias in the high expression genes with growth rates and numbers of copies of tRNA and rRNA genes on the basis of selection for accuracy. Hence we conclude that selection for translational speed is a dominant effect in driving codon usage bias in fast-growing bacteria, with selection for accuracy playing a small supplementary role.

  8. The mechanism for microsporidian parasite suppression of the hindgut bacteria of the migratory locust Locusta migratoria manilensis.

    Science.gov (United States)

    Tan, Shu-Qian; Zhang, Kai-Qi; Chen, Hong-Xing; Ge, Yang; Ji, Rong; Shi, Wang-Peng

    2015-01-01

    Locusts aggregate into bands of nymphs and swarms of adults that can pose a major threat to crop. Previous studies have shown that infection by the microsporidian parasite Paranosema locustae prevents locust aggregation behavior and we show that gut bacteria, which produce components of locust aggregation pheromones, are substantially reduced in locusts infected with P. locustae. We found that P. locustae could reduce the diversity, abundance and community composition of Locusta migratoria's gut bacteria. The parasite infection was also shown to interrupt the peroxidase activity of locust hindgut. Genome-wide expression analysis showed that the parasite infection suppressed peroxidase mRNA relative expression of locust hindgut, but had no effects on attacin expression and superoxide dismutase at 16 d post-inoculation with 20,000 P. locustae spores. Our findings reveal the mechanisms by which P. locustae impairs bacterial diversity and community structure of Locusta migratoria's gut bacteria. PMID:26612678

  9. Magnetosome chain superstructure in uncultured magnetotactic bacteria

    International Nuclear Information System (INIS)

    Magnetotactic bacteria produce magnetosomes, which are magnetic particles enveloped by biological membranes, in a highly controlled mineralization process. Magnetosomes are used to navigate in magnetic fields by a phenomenon called magnetotaxis. Two levels of organization and control are recognized in magnetosomes. First, magnetotactic bacteria create a spatially distinct environment within vesicles defined by their membranes. In the vesicles, the bacteria control the size, composition and purity of the mineral content of the magnetic particles. Unique crystal morphologies are produced in magnetosomes as a consequence of this bacterial control. Second, magnetotactic bacteria organize the magnetosomes in chains within the cell body. It has been shown in a particular case that the chains are positioned within the cell body in specific locations defined by filamentous cytoskeleton elements. Here, we describe an additional level of organization of the magnetosome chains in uncultured magnetotactic cocci found in marine and freshwater sediments. Electron microscopy analysis of the magnetosome chains using a goniometer showed that the magnetic crystals in both types of bacteria are not oriented at random along the crystal chain. Instead, the magnetosomes have specific orientations relative to the other magnetosomes in the chain. Each crystal is rotated either 60°, 180° or 300° relative to their neighbors along the chain axis, causing the overlapping of the (1 1 1) and (1-bar 1-bar 1-bar) capping faces of neighboring crystals. We suggest that genetic determinants that are not present or active in bacteria with magnetosomes randomly rotated within a chain must be present in bacteria that organize magnetosomes so precisely. This particular organization may also be used as an indicative biosignature of magnetosomes in the study of magnetofossils in the cases where this symmetry is observed

  10. The Design of Simple Bacterial Microarrays: Development towards Immobilizing Single Living Bacteria on Predefined Micro-Sized Spots on Patterned Surfaces.

    Directory of Open Access Journals (Sweden)

    Nina Bjørk Arnfinnsdottir

    Full Text Available In this paper we demonstrate a procedure for preparing bacterial arrays that is fast, easy, and applicable in a standard molecular biology laboratory. Microcontact printing is used to deposit chemicals promoting bacterial adherence in predefined positions on glass surfaces coated with polymers known for their resistance to bacterial adhesion. Highly ordered arrays of immobilized bacteria were obtained using microcontact printed islands of polydopamine (PD on glass surfaces coated with the antiadhesive polymer polyethylene glycol (PEG. On such PEG-coated glass surfaces, bacteria were attached to 97 to 100% of the PD islands, 21 to 62% of which were occupied by a single bacterium. A viability test revealed that 99% of the bacteria were alive following immobilization onto patterned surfaces. Time series imaging of bacteria on such arrays revealed that the attached bacteria both divided and expressed green fluorescent protein, both of which indicates that this method of patterning of bacteria is a suitable method for single-cell analysis.

  11. Nutritional Interdependence Among Rumen Bacteria During Cellulose Digestion In Vitro

    OpenAIRE

    Miura, Hideki; HORIGUCHI, Masaaki; Ogimoto, Keiji; MATSUMOTO, Tatsuro

    1983-01-01

    A study has been made of the promoting effect of starch on cellulose digestion by mixed rumen bacteria in a cellulose-urea medium. Starch supplementation of the medium promoted the growth of bacteria that required neither amino acids (AA) nor branched-chain fatty acids (BrFA). The growth of these bacteria was followed by the growth of AA-dependent bacteria, AA- or BrFA-dependent bacteria, BrFA-producing bacteria, and finally, BrFA-dependent cellulolytic bacteria. Population changes of these b...

  12. Bacteriophages as potential treatment option for antibiotic resistant bacteria.

    Science.gov (United States)

    Bragg, Robert; van der Westhuizen, Wouter; Lee, Ji-Yun; Coetsee, Elke; Boucher, Charlotte

    2014-01-01

    The world is facing an ever-increasing problem with antibiotic resistant bacteria and we are rapidly heading for a post-antibiotic era. There is an urgent need to investigate alterative treatment options while there are still a few antibiotics left. Bacteriophages are viruses that specifically target bacteria. Before the development of antibiotics, some efforts were made to use bacteriophages as a treatment option, but most of this research stopped soon after the discovery of antibiotics. There are two different replication options which bacteriophages employ. These are the lytic and lysogenic life cycles. Both these life cycles have potential as treatment options. There are various advantages and disadvantages to the use of bacteriophages as treatment options. The main advantage is the specificity of bacteriophages and treatments can be designed to specifically target pathogenic bacteria while not negatively affecting the normal microbiota. There are various advantages to this. However, the high level of specificity also creates potential problems, the main being the requirement of highly specific diagnostic procedures. Another potential problem with phage therapy includes the development of immunity and limitations with the registration of phage therapy options. The latter is driving research toward the expression of phage genes which break the bacterial cell wall, which could then be used as a treatment option. Various aspects of phage therapy have been investigated in studies undertaken by our research group. We have investigated specificity of phages to various avian pathogenic E. coli isolates. Furthermore, the exciting NanoSAM technology has been employed to investigate bacteriophage replication and aspects of this will be discussed. PMID:24619620

  13. Method of Detecting Coliform Bacteria and Escherichia Coli Bacteria from Reflected Light

    Science.gov (United States)

    Vincent, Robert (Inventor)

    2013-01-01

    The present invention relates to a method of detecting coliform bacteria in water from reflected light and a method of detecting Eschericha Coli bacteria in water from reflected light, and also includes devices for the measurement, calculation and transmission of data relating to that method.

  14. Bacteria and plutonium in marine environments

    International Nuclear Information System (INIS)

    Microbes are important in geochemical cycling of many elements. Recent reports emphasize biogenous particulates and bacterial exometabolites as controlling oceanic distribution of plutonium. Bacteria perform oxidation/reduction reactions on metals such as mercury, nickel, lead, copper, and cadmium. Redox transformations or uptake of Pu by marine bacteria may well proceed by similar mechanisms. Profiles of water samples and sediment cores were obtained along the continental shelf off Nova Scotia and in the Gulf of St. Lawrence. Profiles of water samples, and sediment cores were obtained. Epifluorescent microscopy was used to view bacteria (from water or sediment) after concentration on membrane filters and staining with acridine orange. Radiochemical analyses measured Pu in sediments and water samples. Studies of 237Pu uptake used a strain of Leucothrix mucor isolated from a macroalga. Enumeration shows bacteria to range 104 to 105 cells/ml in seawater or 107 to 108 cells/gram of sediment. These numbers are related to the levels and distrbution of Pu in the samples. In cultures of L. mucor amended with Pu atom concentrations approximating those present in open ocean environments, bacterial cells concentrated 237Pu slower and to lower levels than did clay minerals, glass beads, or phytoplankton. These data further clarify the role of marine bacteria in Pu biogeochemistry

  15. Molecular analysis of deep subsurface bacteria

    International Nuclear Information System (INIS)

    Deep sediments samples from site C10a, in Appleton, and sites, P24, P28, and P29, at the Savannah River Site (SRS), near Aiken, South Carolina were studied to determine their microbial community composition, DNA homology and mol %G+C. Different geological formations with great variability in hydrogeological parameters were found across the depth profile. Phenotypic identification of deep subsurface bacteria underestimated the bacterial diversity at the three SRS sites, since bacteria with the same phenotype have different DNA composition and less than 70% DNA homology. Total DNA hybridization and mol %G+C analysis of deep sediment bacterial isolates suggested that each formation is comprised of different microbial communities. Depositional environment was more important than site and geological formation on the DNA relatedness between deep subsurface bacteria, since more 70% of bacteria with 20% or more of DNA homology came from the same depositional environments. Based on phenotypic and genotypic tests Pseudomonas spp. and Acinetobacter spp.-like bacteria were identified in 85 million years old sediments. This suggests that these microbial communities might have been adapted during a long period of time to the environmental conditions of the deep subsurface

  16. Data presenting a modified bacterial expression vector for expressing and purifying Nus solubility-tagged proteins.

    Science.gov (United States)

    Gupta, Nidhi; Wu, Heng; Terman, Jonathan R

    2016-09-01

    Bacteria are the predominant source for producing recombinant proteins but while many exogenous proteins are expressed, only a fraction of those are soluble. We have found that a new actin regulatory enzyme Mical is poorly soluble when expressed in bacteria but the use of a Nus fusion protein tag greatly increases its solubility. However, available vectors containing a Nus tag have been engineered in a way that hinders the separation of target proteins from the Nus tag during protein purification. We have now used recombinant DNA approaches to overcome these issues and reengineer a Nus solubility tag-containing bacterial expression vector. The data herein present a modified bacterial expression vector useful for expressing proteins fused to the Nus solubility tag and separating such target proteins from the Nus tag during protein purification. PMID:27547802

  17. Fossil bacteria in Xuanlong iron ore deposits of Hebei Province

    Institute of Scientific and Technical Information of China (English)

    DAI Yongding; SONG Haiming; SHEN Jiying

    2004-01-01

    Discovered in Early Proterozoic Xuanlong iron ore deposits are six genera of fossil iron bacteria, i. e. sphere (coenobium of) rod-shaped (monomer) Naumanniella, ellipsoid elliptical Ochrobium, sphere spherical Siderocapsa and chain spherical Siderococcus, chain rod-shaped Leptothrix and Lieskeella, and six genera of fossil blue bacteria, namely sphere spherical Gloeocapsa, Synechocystis and Globobacter, chain spherical Anabaena and Nostoc, and constrictive septate tubular Nodularia. The biomineralized monomers and coenobia of the two categories of bacteria, together with hematite plates made up the bacteria pelletal, bacteria silky,bacteria fibrous and clasty bacteria pelletal textural lamina. The bacteria pelletal laminae combined with other bacteria laminae to make up oncolite, stromatolite and laminate. The precipitation of iron oxide was accelerated due to iron and blue bacteria cohabiting on microbial film or mat. The Xuanlong iron ore deposits are microbial binding ore deposits of ocean source.

  18. Inhibition of seafood-borne bacteria in cooked mackerel (Rastrelliger kanagurta) fish meat by lactic acid bacteria

    OpenAIRE

    Kanappan, S.; G. Gopikrishna

    2008-01-01

    Antagonistic activity of lactic acid bacteria (LAB) namely Streptococcus faecalis, Pediococcus cerevisiae and Lactobacillus casei was tested against seafood-borne bacteria such as Staphylococcus aureus, Bacillus cereus, Escherichia coli, Clostridium perfringens and Listeria monocytogenes. Three lactic acid bacteria such as Streptococcus faecalis, Lactobacillus casei and Pediococcus cerevisiae were coated on cooked mackerel meat, individually and in combination against fish-borne bacteria. S. ...

  19. Using Fluorescent Viruses for Detecting Bacteria in Water

    Science.gov (United States)

    Tabacco, Mary Beth; Qian, Xiaohua; Russo, Jaimie A.

    2009-01-01

    A method of detecting water-borne pathogenic bacteria is based partly on established molecular-recognition and fluorescent-labeling concepts, according to which bacteria of a species of interest are labeled with fluorescent reporter molecules and the bacteria can then be detected by fluorescence spectroscopy. The novelty of the present method lies in the use of bacteriophages (viruses that infect bacteria) to deliver the fluorescent reporter molecules to the bacteria of the species of interest.

  20. Applications of Magnetosomes Synthesized by Magnetotactic Bacteria in Medicine

    OpenAIRE

    EdouardAlphandéry

    2014-01-01

    Magnetotactic bacteria belong to a group of bacteria that synthesize iron oxide nanoparticles covered by biological material that are called magnetosomes. These bacteria use the magnetosomes as a compass to navigate in the direction of the earth’s magnetic field. This compass helps the bacteria to find the optimum conditions for their growth and survival. Here, we review several medical applications of magnetotactic bacteria and magnetosomes, such as those in magnetic resonance imaging (MRI),...

  1. Bacteriocins From Lactic Acid Bacteria: Interest For Food Products Biopreservation

    OpenAIRE

    Dortu, C.; Thonart, Philippe

    2009-01-01

    Bacteriocins from lactic acid bacteria: interest for food products biopreservation. Bacteriocins from lactic acid bacteria are low molecular weight antimicrobial peptides. They have inhibitory activity against the bacteria that are closed related to the producer strains and a narrow inhibitory spectrum. Nevertheless, most of them have activity against some food-born pathogenic bacteria as Listeria monocytogenes. The application of bacteriocins or bacteriocin producing lactic acid bacteria in ...

  2. Quantification and Qualification of Bacteria Trapped in Chewed Gum

    OpenAIRE

    Wessel, Stefan W.; van der Mei, Henny C.; Morando, David; Slomp, Anje M.; van de Belt-Gritter, Betsy; Maitra, Amarnath; Busscher, Henk J.

    2015-01-01

    Chewing of gum contributes to the maintenance of oral health. Many oral diseases, including caries and periodontal disease, are caused by bacteria. However, it is unknown whether chewing of gum can remove bacteria from the oral cavity. Here, we hypothesize that chewing of gum can trap bacteria and remove them from the oral cavity. To test this hypothesis, we developed two methods to quantify numbers of bacteria trapped in chewed gum. In the first method, known numbers of bacteria were finger-...

  3. Proteomic Investigation of Photorhabdus Bacteria for Nematode-Host Specificity.

    Science.gov (United States)

    Kumar, Ram; Kushwah, Jyoti; Ganguly, Sudershan; Garg, Veena; Somvanshi, Vishal S

    2016-09-01

    Majority of animals form symbiotic relationships with bacteria. Based on the number of bacterial species associating with an animal, these symbiotic associations can be mono-specific, relatively simple (2-25 bacterial species/animal) or highly complex (>10(2)-10(3) bacterial species/animal). Photorhabdus (family-Enterobacteriaceae) forms a mono-specific symbiotic relationship with the entomopathogenic nematode Heterorhabditis. This system provides a tractable genetic model for animal-microbe symbiosis studies. Here, we investigated the bacterial factors that may be responsible for governing host specificity between nematode and their symbiont bacteria using proteomics approach. Total protein profiles of P. luminescens ssp. laumondii (host nematode- H. bacteriophora) and P. luminescens ssp. akhurstii (host nematode- H. indica) were compared using 2-D gel electrophoresis, followed by identification of differentially expressed proteins by MALDI-TOF MS. Thirty-nine unique protein spots were identified - 24 from P. luminescens ssp. laumondii and 15 from P. luminescens ssp. akhurstii. These included proteins that might be involved in determining host specificity directly (for e.g. pilin FimA, outer membrane protein A), indirectly through effect on bacterial secondary metabolism (for e.g. malate dehydrogenase Mdh, Pyruvate formate-lyase PflA, flavo protein WrbA), or in a yet unknown manner (for e.g. hypothetical proteins, transcription regulators). Further functional validation is needed to establish the role of these bacterial proteins in nematode-host specificity. PMID:27407301

  4. Simultaneous transcriptional profiling of bacteria and their host cells.

    Directory of Open Access Journals (Sweden)

    Michael S Humphrys

    Full Text Available We developed an RNA-Seq-based method to simultaneously capture prokaryotic and eukaryotic expression profiles of cells infected with intracellular bacteria. As proof of principle, this method was applied to Chlamydia trachomatis-infected epithelial cell monolayers in vitro, successfully obtaining transcriptomes of both C. trachomatis and the host cells at 1 and 24 hours post-infection. Chlamydiae are obligate intracellular bacterial pathogens that cause a range of mammalian diseases. In humans chlamydiae are responsible for the most common sexually transmitted bacterial infections and trachoma (infectious blindness. Disease arises by adverse host inflammatory reactions that induce tissue damage & scarring. However, little is known about the mechanisms underlying these outcomes. Chlamydia are genetically intractable as replication outside of the host cell is not yet possible and there are no practical tools for routine genetic manipulation, making genome-scale approaches critical. The early timeframe of infection is poorly understood and the host transcriptional response to chlamydial infection is not well defined. Our simultaneous RNA-Seq method was applied to a simplified in vitro model of chlamydial infection. We discovered a possible chlamydial strategy for early iron acquisition, putative immune dampening effects of chlamydial infection on the host cell, and present a hypothesis for Chlamydia-induced fibrotic scarring through runaway positive feedback loops. In general, simultaneous RNA-Seq helps to reveal the complex interplay between invading bacterial pathogens and their host mammalian cells and is immediately applicable to any bacteria/host cell interaction.

  5. Theory of periodic swarming of bacteria: Application to Proteus mirabilis

    Science.gov (United States)

    Czirók, A.; Matsushita, M.; Vicsek, T.

    2001-03-01

    The periodic swarming of bacteria is one of the simplest examples for pattern formation produced by the self-organized collective behavior of a large number of organisms. In the spectacular colonies of Proteus mirabilis (the most common species exhibiting this type of growth), a series of concentric rings are developed as the bacteria multiply and swarm following a scenario that periodically repeats itself. We have developed a theoretical description for this process in order to obtain a deeper insight into some of the typical processes governing the phenomena in systems of many interacting living units. Our approach is based on simple assumptions directly related to the latest experimental observations on colony formation under various conditions. The corresponding one-dimensional model consists of two coupled differential equations investigated here both by numerical integrations and by analyzing the various expressions obtained from these equations using a few natural assumptions about the parameters of the model. We determine the phase diagram corresponding to systems exhibiting periodic swarming, and discuss in detail how the various stages of the colony development can be interpreted in our framework. We point out that all of our theoretical results are in excellent agreement with the complete set of available observations. Thus the present study represents one of the few examples where self-organized biological pattern formation is understood within a relatively simple theoretical approach, leading to results and predictions fully compatible with experiments.

  6. Horizontal gene transfer—emerging multidrug resistance in hospital bacteria

    Institute of Scientific and Technical Information of China (English)

    SenkaDZIDIC; VladimirBEDEKOVIC

    2003-01-01

    The frequency and spectrum of antibiotic resistant infections have increased worldwide during the past few decades. This increase has been attributed to a combination of microbial characteristics, the selective pressure of antimicrobial use, and social and technical changes that enhance the transmission of resistant organisms. The resistance is acquired by mutational changer or by the acquisition of resistance-encoding genetic material which is transfered from another bacteria. The spread of antibiotic resistance genes may be causally related to the overuse of antibiotics in human health care and in animal feeds, increased use of invasive devices and procedures, a greater number of susceptible hosts, and lapses in infection control practices leading to increased transmission of resistant organisms. The resistance gene sequences are integrated by recombination into several classes of naturally occurring gene expression cassettes and disseminated within the microbial population by horizontal gene transfer mechanisms: transformation, conjugation or transduction. In the hospital, widespread use of antimicrobials in the intensive care units (ICU) and for immunocompromised patients has resulted in the selection of multidrug-resistant organisms. Methicilin-resistant Staphylococci, vancomycin resistant Enterococci and extended-spectrum betalactamase(ESBL) producing Gram negative bacilli are identified as major phoblem in nosocomial infections. Recent surveillance studies have demonstrated trend towares more seriously ill patients suffering from multidrug-resistant nosocomial infections. Emergence of multiresistant bacteria and spread of resistance genes should enforce the aplication of strict prevention strategies, including changes in antibiotic treatment regimens, hygiene measures, infection prevention and control of horizontal nosocomial transmission of organisms.

  7. Quorum-Sensing of Bacteria and Its Application

    Institute of Scientific and Technical Information of China (English)

    JIANG Guoliang; SU Mingxia

    2009-01-01

    Quorum sensing, or auto induction, as a cell density dependent signaling mechanism in many microorganisms, is triggered via auto inducers which passively diffuse across the bacterial envelope and therefore intracellulaly accumulate only at higher bacterial densities to regulate specialized processes such as genetic competence, bioluminescence, virulence and sporulation. N-acyl homoserine lactones are the most common type of signal molecules. Aquaculture is one of the fastest-growing food-producing industries, but disease outbreaks caused by pathogenic bacteria are a significant constraint on the development of the sector worldwide. Many of these pathogens have been found to be controlled by their quorum sensing systems. As there is relevance between the pathogenic bacteria's virulence factor expression and their auto inducers, quorum quenching is a new effective anti-infective strategy to control infections caused by bacterial pathogens in aquaculture. The techniques used to do this mainly include the following: (1) the inhibition of signal molecule biosynthesis, (2) blocking signal transduction, and (3) chemical inactivation and biodegradation of signal molecules. To provide a basis for finding alternative means of controlling aquatic diseases by quorum quenching instead of treatment by antibiotics and disinfectants, we will discuss the examination, purification and identification of auto inducers in this paper.

  8. All ecosystems potentially host electrogenic bacteria.

    Science.gov (United States)

    Chabert, Nicolas; Amin Ali, Oulfat; Achouak, Wafa

    2015-12-01

    Instead of requiring metal catalysts, MFCs utilize bacteria that oxidize organic matter and either transfer electrons to the anode or take electrons from the cathode. These devices are thus based on a wide microbial diversity that can convert a large array of organic matter components into sustainable and renewable energy. A wide variety of explored environments were found to host electrogenic bacteria, including extreme environments. In the present review, we describe how different ecosystems host electrogenic bacteria, as well as the physicochemical, electrochemical and biological parameters that control the currents from MFCs. We also report how using new molecular techniques allowed characterization of electrochemical biofilms and identification of potentially new electrogenic species. Finally we discuss these findings in the context of future research directions. PMID:26298511

  9. Urban ants and transportation of nosocomial bacteria.

    Science.gov (United States)

    Rodovalho, Cynara M; Santos, Ana L; Marcolino, Marcus T; Bonetti, Ana M; Brandeburgo, Malcon A M

    2007-01-01

    Many ant species displaying synanthropic behavior that have successfully dispersed in urban areas can cause problems in hospitals by acting as bacterial vectors. In this study, we encountered bacteria on ants collected at the Universidade Federal de Uberlândia hospital, in the campus and at households nearby. The ants were identified as Tapinoma melanocephalum (Fabricius) and Camponotus vittatus (Forel) (Hymenoptera: Formicidae) and the bacterial strains found here belong to the group of the coagulase-positive staphylococcus, coagulase-negative staphylococcus and gram negative bacilli, including antimicrobial drug-resistant strains. An investigation of the bacteria found in the ants and in the environment revealed that some ants carried non-isolated bacteria from the same environment and with high levels of resistance, evidencing the transmission potential of these insects. PMID:17710329

  10. Expression of geminiviral AC2 RNA silencing suppressor changes sugar and jasmonate responsive gene expression in transgenic tobacco plants

    Directory of Open Access Journals (Sweden)

    Soitamo Arto J

    2012-11-01

    Full Text Available Abstract Background RNA-silencing is a conserved gene regulation and surveillance machinery, which in plants, is also used as major defence mechanism against viruses. Various virus-specific dsRNA structures are recognized by the silencing machinery leading to degradation of the viral RNAs or, as in case of begomoviruses, to methylation of their DNA genomes. Viruses produce specific RNA silencing suppressor (RSS proteins to prevent these host defence mechanisms, and as these interfere with the silencing machinery they also disturb the endogenous silencing reactions. In this paper, we describe how expression of AC2 RSS, derived from African cassava mosaic geminivirus changes transcription profile in tobacco (Nicotiana tabacum leaves and in flowers. Results Expression of AC2 RSS in transgenic tobacco plants induced clear phenotypic changes both in leaves and in flowers. Transcriptomes of these plants were strongly altered, with total of 1118 and 251 differentially expressed genes in leaves and flowers, respectively. The three most up-regulated transcript groups were related to stress, cell wall modifications and signalling, whereas the three most down-regulated groups were related to translation, photosynthesis and transcription. It appears that many of the gene expression alterations appeared to be related to enhanced biosynthesis of jasmonate and ethylene, and consequent enhancement of the genes and pathways that are regulated by these hormones, or to the retrograde signalling caused by the reduced photosynthetic activity and sugar metabolism. Comparison of these results to a previous transcriptional profiling of HC-Pro RSS-expressing plants revealed that some of same genes were induced by both RSSs, but their expression levels were typically higher in AC2 than in HC-Pro RSS expressing plants. All in all, a large number of transcript alterations were found to be specific to each of the RSS expressing transgenic plants. Conclusions AC2 RSS in

  11. Biodegradation of Complex Bacteria on Phenolic Derivatives in River Water

    Institute of Scientific and Technical Information of China (English)

    GUANG-HUA LU; CHAO WANG; ZHE SUN

    2009-01-01

    Objective To isolate, incubate, and identify 4-chlorophenol-degrading complex bacteria, determine the tolerance of these bacteria to phenolic derivatives and study their synergetic metabolism as well as the aboriginal microbes and co-metabolic degradation of mixed chlorophenols in river water. Methods Microbial community of complex bacteria was identified by plate culture observation techniques and Gram stain method. Bacterial growth inhibition test was used to determine the tolerance of complex bacteria to toxicants. Biodegradability of phenolic derivatives was determined by adding 4-chlorophenol-degrading bacteria in river water. Results The complex bacteria were identified as Mycopiana, Alcaligenes, Pseudvmonas, and Flavobacterium. The domesticated complex bacteria were more tolerant to phenolic derivatives than the aboriginal bacteria from Qinhuai River. The biodegradability of chlorophenols, dihydroxybenzenes and nitrophenols under various aquatic conditions was determined and compared. The complex bacteria exhibited a higher metabolic efficiency on chemicals than the aboriginal microbes, and the final removal rate of phenolic derivatives was increased at least by 55% when the complex bacteria were added into river water. The metabolic relationship between dominant mixed bacteria and river bacteria was studied. Conclusion The complex bacteria domesticated by 4-chlorophenol can grow and be metabolized to take other chlorophenols, dihydroxybenzenes and nitrophenols as the sole carbon and energy source. There is a synergetic metabolism of most compounds between the aboriginal microbes in river water and the domesticated complex bacteria. 4-chlorophenol-degrading bacteria can co-metabolize various chlorophenols in river water.

  12. Construction and evaluation of multisite recombinatorial (Gateway cloning vectors for Gram-positive bacteria

    Directory of Open Access Journals (Sweden)

    Rees Catherine ED

    2007-09-01

    Full Text Available Abstract Background The Gateway recombinatorial cloning system allows easy and rapid joining of DNA fragments. Here we report the construction and evaluation of three different Gram-positive vectors that can be used with the Multisite Gateway cloning system to rapidly produce new gene arrangements in plasmid constructs for use in a variety of Gram-positive bacteria. Results Comparison of patterns of reporter gene expression with conventionally constructed clones show that the presence of residual recombination (att sites does not have an effect on patterns of gene expression, although overall levels of gene expression may vary. Rapid construction of these new vectors allowed vector/gene combinations to be optimized following evaluation of plasmid constructs in different bacterial cells and demonstrates the benefits of plasmid construction using Gateway cloning. Conclusion The residual att sites present after Gateway cloning did not affect patterns of promoter induction in Gram-positive bacteria and there was no evidence of differences in mRNA stability of transcripts. However overall levels of gene expression may be reduced, possibly due to some post-transcriptional event. The new vectors described here allow faster, more efficient cloning in range of Gram-positive bacteria.

  13. Modulating immune responses with probiotic bacteria.

    Science.gov (United States)

    Matsuzaki, T; Chin, J

    2000-02-01

    For many years, probiotic bacteria have been known to confer health benefits to the consumer. One possible mechanism for this may be the ability of probiotic bacteria to modulate immune responses. Oral administration of Lactobacillus casei strain Shirota (LcS) has been found to enhance innate immunity by stimulating the activity of splenic NK cells. Oral feeding with killed LcS was able to stimulate the production of Th1 cytokines, resulting in repressed production of IgE antibodies against Ovalbumin in experimental mice. The ability to switch mucosal immune responses towards Th1 with probiotic bacteria provides a strategy for treatment of allergic disorders. Growth of Meth A tumour cells in the lungs was also inhibited by intrapleural injection of LcS. Oral administration of other probiotic bacteria, such as Streptococcus thermophilus (St), Lactobacillus fermentum (Lf) and yeast (Y), elicited different immune responses. Mice that were prefed yeast or Lf followed by feeding with ovalbumin (OVA) responded better to vaccination with OVA than mice not given either probiotic or OVA or mice that had been prefed only OVA. However, antibody responses were significantly suppressed in response to vaccination with OVA in mice that had been prefed yeast followed by yeast and OVA as well as mice prefed Lf followed by Lf and OVA. Prefeeding St followed by OVA feeding enhanced cellular immune responses against ovalbumin. In contrast, mice prefed St followed by St + OVA were hyporesponsive against OVA. While antigen feeding alone appears to prime for an immune response, cofeeding antigen with probiotic bacteria can suppress both antibody and cellular immune responses and may provide an efficacious protocol to attenuate autoimmune diseases, such as experimental allergic encephalomyelitis, by jointly dosing with myelin basic protein and probiotic bacteria. PMID:10651931

  14. Rewiring Riboswitches to Create New Genetic Circuits in Bacteria.

    Science.gov (United States)

    Robinson, C J; Medina-Stacey, D; Wu, M-C; Vincent, H A; Micklefield, J

    2016-01-01

    Riboswitches are RNA elements that control the expression of genes through a variety of mechanisms in response to the specific binding of small-molecule ligands. Since their discovery, riboswitches have shown promise for the artificial control of transcription or translation of target genes, be it for industrial biotechnology, protein expression, metabolic engineering, antimicrobial target validation, or gene function discovery. However, natural riboswitches are often unsuitable for these purposes due to their regulation by small molecules which are already present within the cell. For this reason, research has focused on creating riboswitches that respond to alternative biologically inert ligands or to molecules which are of interest for biosensing. Here we present methods for the development of artificial riboswitches in Gram-negative and Gram-positive bacteria. These methods are based on reengineering natural aptamers to change their ligand specificity toward molecules which do not bind the original aptamer (ie, that are orthogonal to the original). The first approach involves targeted mutagenesis of native riboswitches to change their specificity toward rationally designed synthetic ligand analogs. The second approach involves the fusion of previously validated orthogonal aptamers with native expression platforms to create novel chimeric riboswitches for the microbial target. We establish the applicability of these methods both for the control of exogenous genes as well as for the control of native genes. PMID:27417935

  15. Bacteria Provide Cleanup of Oil Spills, Wastewater

    Science.gov (United States)

    2010-01-01

    Through Small Business Innovation Research (SBIR) contracts with Marshall Space Flight Center, Micro-Bac International Inc., of Round Rock, Texas, developed a phototrophic cell for water purification in space. Inside the cell: millions of photosynthetic bacteria. Micro-Bac proceeded to commercialize the bacterial formulation it developed for the SBIR project. The formulation is now used for the remediation of wastewater systems and waste from livestock farms and food manufacturers. Strains of the SBIR-derived bacteria also feature in microbial solutions that treat environmentally damaging oil spills, such as that resulting from the catastrophic 2010 Deepwater Horizon oil rig explosion in the Gulf of Mexico.

  16. Bacteria-Triggered Release of Antimicrobial Agents

    DEFF Research Database (Denmark)

    Komnatnyy, Vitaly V.; Chiang, Wen-Chi; Tolker-Nielsen, Tim;

    2014-01-01

    Medical devices employed in healthcare practice are often susceptible to microbial contamination. Pathogenic bacteria may attach themselves to device surfaces of catheters or implants by formation of chemically complex biofilms, which may be the direct cause of device failure. Extracellular...... material is demonstrated by the bacteria‐triggered release of antibiotics to control bacterial populations and signaling molecules to modulate quorum sensing. The self‐regulating system provides the basis for the development of device‐relevant polymeric materials, which only release antibiotics in...... dependency of the titer of bacteria surrounding the medical device....

  17. Degradation of monomethylhydrazine by two soil bacteria

    International Nuclear Information System (INIS)

    It has been reported that three heterotrophic soil bacteria had the capacity to degrade hydrazine. One of these organisms, Achromobacter sp., degraded hydrazine to N2 gas. Furthermore, it was reported that monomethylhydrazine (MMH) in Arredondo fine sand was mineralized to CO2, and that such degradation is microbial. However, microorganisms that degrade MMH have not been reported. MMH and hydrazine are chemically similar to one another. Therefore, this study was initiated to test the capacity of the two hydrazine-degrading bacteria, Achromobacter sp. and Pseudomonas sp., to degrade MMH

  18. Bacterial biofilms. Bacteria Quorum sensing in biofilms

    Directory of Open Access Journals (Sweden)

    E. S. Vorobey

    2012-03-01

    Full Text Available Data on biofilms, their structure and properties, peculiarities of formation and interaction between microorganisms in the film are presented. Information on discovery and study of biofilms, importance of biofilms in the medical and clinical microbiology are offered. The data allow to interpret biofilm as a form of existence of human normal microflora. For the exchange of information within the biofilm between the individual cells of the same or different species bacteria use the signal molecules of the Quorum sensing system. Coordination of bacterial cells activity in the biofilms gives them significant advantages: in the biofilms bacteria are protected from the influence of the host protective factors and the antibacterial drugs.

  19. Functional Encyclopedia of Bacteria and Archaea

    Energy Technology Data Exchange (ETDEWEB)

    Blow, M. J.; Deutschbauer, A. M.; Hoover, C. A.; Lamson, J.; Lamson, J.; Price, M. N.; Waters, J.; Wetmore, K. M.; Bristow, J.; Arkin, A. P.

    2013-03-20

    Bacteria and Archaea exhibit a huge diversity of metabolic capabilities with fundamental importance in the environment, and potential applications in biotechnology. However, the genetic bases of these capabilities remain unclear due largely to an absence of technologies that link DNA sequence to molecular function. To address this challenge, we are developing a pipeline for high throughput annotation of gene function using mutagenesis, growth assays and DNA sequencing. By applying this pipeline to annotate gene function in 50 diverse microbes we hope to discover thousands of new gene functions and produce a proof of principle `Functional Encyclopedia of Bacteria and Archaea?.

  20. Expression of the Salmonella virulence plasmid gene spvB in cultured macrophages and nonphagocytic cells.

    OpenAIRE

    Fierer, J.; Eckmann, L; Fang, F.; Pfeifer, C; Finlay, B B; Guiney, D

    1993-01-01

    Certain serotypes of salmonellae carry virulence plasmids that greatly enhance the pathogenicity of these bacteria in experimentally infected mice. This phenotype is largely attributable to the 8-kb spv regulon. However, spv genes are not expressed while bacteria grow in vitro. We now show that spvB, which is required for virulence, is expressed rapidly after Salmonella dublin is ingested by cultured J774 and murine peritoneal macrophages and that expression is not affected by the alkalinizat...

  1. Sensitivity of detection of bacteria with fluorescent and luminescent phenotypes using different instruments

    Science.gov (United States)

    Brovko, Lubov Y.; Griffiths, Mansel W.

    2000-04-01

    The problem of bacterial enumeration in different samples is of great importance in many fields of research. Construction of recombinant fluorescent and luminescent bacteria that can be easily detected by nondestructive instrumental methods proves us with an opportunity to monitor bacteria in a wide variety of clinical, environmental and food samples in real time. Three different labels were employed: Green Fluorescent Protein (GFP), Bacterial luciferase (BL) and Firefly Luciferase (FFL). Both plasmid and chromosomal transformants of different strains of E. coli, P. putida and S. enteritidis were used. For the detection of the in vivo GFP the Shimadzu RF 540 spectrofluorimeter, Labsystems FL- 500 plate fluorimeter and Night Owl LB 98 CCD-camera from EG and G Berthold supplied with excitation light source and proper spectral filters both in macroscopic and microscopic mode were used. For the detection of in vivo luminescence of BL and FFL, tube luminometer BG-P from GEM Biomedical Inc., luminometric plate reader from BioOrbit, BIQ Bioview CCD camera from Cambridge Imaging Ltd and Night Owl LB 98 CCD camera both in macroscopic and microscopic mode were used. The expression levels of the labels, their stability, stability of the signal and detection limits of tagged bacteria were investigated. The detection limits for GFP tagged bacteria were 5 X 104 - 6 X 106, for BL tagged bacteria 5 X 102 - 2 X 105, and for FFL tagged bacteria - 4 X 103 - 106 CFU/ml, depending on the instrument used. Single bacteria could be detected with the help of the Night Owl in the microscopic mode.

  2. Pyrroloquinoline-quinone: a reactive oxygen species scavenger in bacteria.

    Science.gov (United States)

    Misra, Hari S; Khairnar, Nivedita P; Barik, Atanu; Indira Priyadarsini, K; Mohan, Hari; Apte, Shree K

    2004-12-01

    Transgenic Escherichia coli expressing pyrroloquinoline-quinone (PQQ) synthase gene from Deinococcus radiodurans showed superior survival during Rose Bengal induced oxidative stress. Such cells showed significantly low levels of protein carbonylation as compared to non-transgenic control. In vitro, PQQ reacted with reactive oxygen species with rate constants comparable to other well known antioxidants, producing non-reactive molecular products. PQQ also protected plasmid DNA and proteins from the oxidative damage caused by gamma-irradiation in solution. The data suggest that radioprotective/oxidative stress protective ability of PQQ in bacteria may be consequent to scavenging of reactive oxygen species per se and induction of other free radical scavenging mechanism. PMID:15581610

  3. Extracellular enzymatic activities of cold-adapted bacteria from polar oceans and effect of temperature and salinity on cell growth

    Institute of Scientific and Technical Information of China (English)

    Zeng Yinxin; Yu Yong; Chen Bo; Li Huirong

    2004-01-01

    The potential of 324 bacteria isolated from different habitats in polar oceans to produce a variety of extracellular enzymatic activities at low temperature was investigated. By plate assay, lipase, protease, amylase, gelatinase, agarase, chitinase or cellulase were detected. Lipases were generally present by bacteria living in polar oceans. Protease-producing bacteria held the second highest proportion in culturable isolates. Strains producing amylase kept a relative stable proportion of around 30% in different polar marine habitats. All 50 Arctic sea-ice bacteria producing proteases were cold-adapted strains, however, only 20% were psychrophilic. 98% of them could grow at 3% NaCl, and 56% could grow without NaCl. On the other hand, 98% of these sea-ice bacteria produced extracellular proteases with optimum temperature at or higher than 35℃, well above the upper temperature limit of cell growth. Extracellular enzymes including amylase, agarase, cellulase and lipase released by bacteria from seawater or sediment in polar oceans, most expressed maximum activities between 25 and 35℃. Among extracellular enzymes released by bacterial strain BSw20308, protease expressed maximum activity at 40℃, higher than 35℃ of polysaccharide hydrolases and 25℃ of lipase.

  4. A modified bioautographic method for antibacterial component screening against anaerobic and microaerophilic bacteria.

    Science.gov (United States)

    Kovács, Judit K; Horváth, Györgyi; Kerényi, Monika; Kocsis, Béla; Emődy, Levente; Schneider, György

    2016-04-01

    Direct bioautography is a useful method to identify antimicrobial compounds with potential therapeutic importance. Because of technical limitations till now, it has been applied only for aerobic bacteria. In this work we present the modification of the original method by which antimicrobial screening of bacteria requiring modified atmosphere became feasible by direct bioautography. Here we demonstrate its applicability by testing three anaerobic Clostridium perfringens and three microaerophilic Campylobacter jejuni strains against two essential oils, clove and thyme. Antimicrobial component profiles of clove and thyme essential oils against these two medically important pathogenic bacteria were compared and significant differences were revealed in their inhibition capacities. Linalool, a component of thyme essential oil exerted a more expressed antibacterial activity against C. perfringens than against C. jejuni. Our results demonstrate that direct bioautography is not only suitable for testing aerobic bacteria, but by applying the presently described modified version it can also contribute to the quest to find novel antimicrobial agents against multidrug resistant anaerobic and microaerophilic bacteria. PMID:26853123

  5. An Intracellular Nanotrap Redirects Proteins and Organelles in Live Bacteria

    Science.gov (United States)

    Borg, Sarah; Popp, Felix; Hofmann, Julia; Leonhardt, Heinrich; Rothbauer, Ulrich

    2015-01-01

    ABSTRACT  Owing to their small size and enhanced stability, nanobodies derived from camelids have previously been used for the construction of intracellular “nanotraps,” which enable redirection and manipulation of green fluorescent protein (GFP)-tagged targets within living plant and animal cells. By taking advantage of intracellular compartmentalization in the magnetic bacterium Magnetospirillum gryphiswaldense, we demonstrate that proteins and even entire organelles can be retargeted also within prokaryotic cells by versatile nanotrap technology. Expression of multivalent GFP-binding nanobodies on magnetosomes ectopically recruited the chemotaxis protein CheW1-GFP from polar chemoreceptor clusters to the midcell, resulting in a gradual knockdown of aerotaxis. Conversely, entire magnetosome chains could be redirected from the midcell and tethered to one of the cell poles. Similar approaches could potentially be used for building synthetic cellular structures and targeted protein knockdowns in other bacteria. Importance   Intrabodies are commonly used in eukaryotic systems for intracellular analysis and manipulation of proteins within distinct subcellular compartments. In particular, so-called nanobodies have great potential for synthetic biology approaches because they can be expressed easily in heterologous hosts and actively interact with intracellular targets, for instance, by the construction of intracellular “nanotraps” in living animal and plant cells. Although prokaryotic cells also exhibit a considerable degree of intracellular organization, there are few tools available equivalent to the well-established methods used in eukaryotes. Here, we demonstrate the ectopic retargeting and depletion of polar membrane proteins and entire organelles to distinct compartments in a magnetotactic bacterium, resulting in a gradual knockdown of magneto-aerotaxis. This intracellular nanotrap approach has the potential to be applied in other bacteria for

  6. Selection against spurious promoter motifs correlates withtranslational efficiency across bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Froula, Jeffrey L.; Francino, M. Pilar

    2007-05-01

    Because binding of RNAP to misplaced sites could compromise the efficiency of transcription, natural selection for the optimization of gene expression should regulate the distribution of DNA motifs capable of RNAP-binding across the genome. Here we analyze the distribution of the -10 promoter motifs that bind the {sigma}{sup 70} subunit of RNAP in 42 bacterial genomes. We show that selection on these motifs operates across the genome, maintaining an over-representation of -10 motifs in regulatory sequences while eliminating them from the nonfunctional and, in most cases, from the protein coding regions. In some genomes, however, -10 sites are over-represented in the coding sequences; these sites could induce pauses effecting regulatory roles throughout the length of a transcriptional unit. For nonfunctional sequences, the extent of motif under-representation varies across genomes in a manner that broadly correlates with the number of tRNA genes, a good indicator of translational speed and growth rate. This suggests that minimizing the time invested in gene transcription is an important selective pressure against spurious binding. However, selection against spurious binding is detectable in the reduced genomes of host-restricted bacteria that grow at slow rates, indicating that components of efficiency other than speed may also be important. Minimizing the number of RNAP molecules per cell required for transcription, and the corresponding energetic expense, may be most relevant in slow growers. These results indicate that genome-level properties affecting the efficiency of transcription and translation can respond in an integrated manner to optimize gene expression. The detection of selection against promoter motifs in nonfunctional regions also implies that no sequence may evolve free of selective constraints, at least in the relatively small and unstructured genomes of bacteria.

  7. Modulation of Stat-1 in Human Macrophages Infected with Different Species of Intracellular Pathogenic Bacteria

    Science.gov (United States)

    Dominici, Sabrina; Rinaldi, Laura; Cangiano, Alfonsina Mariarosaria; Brandi, Giorgio; Magnani, Mauro

    2016-01-01

    The infection of human macrophages by pathogenic bacteria induces different signaling pathways depending on the type of cellular receptors involved in the microorganism entry and on their mechanism(s) of survival and replication in the host cell. It was reported that Stat proteins play an important role in this process. In the present study, we investigate the changes in Stat-1 activation (phosphorylation in p-tyr701) after uptake of two Gram-positive (Listeria monocytogenes and Staphylococcus aureus) and two Gram-negative bacteria (Salmonella typhimurium and Legionella pneumophila) characterized by their varying abilities to enter, survive, and replicate in human macrophages. Comparing the results obtained with Gram-negative and Gram-positive bacteria, Stat-1 activation in macrophages does not seem to be related to LPS content. The p-tyr701Stat-1 expression levels were found to be independent of the internalized bacterial number and IFN-γ release. On the contrary, Jak/Stat-1 pathway activation only occurs when an active infection has been established in the host macrophage, and it is plausible that the differences in the expression levels of p-tyr701Stat-1 could be due to different survival mechanisms or to differences in bacteria life cycles within macrophages. PMID:27437406

  8. Activation of type III interferon genes by pathogenic bacteria in infected epithelial cells and mouse placenta.

    Directory of Open Access Journals (Sweden)

    Hélène Bierne

    Full Text Available Bacterial infections trigger the expression of type I and II interferon genes but little is known about their effect on type III interferon (IFN-λ genes, whose products play important roles in epithelial innate immunity against viruses. Here, we studied the expression of IFN-λ genes in cultured human epithelial cells infected with different pathogenic bacteria and in the mouse placenta infected with Listeria monocytogenes. We first showed that in intestinal LoVo cells, induction of IFN-λ genes by L. monocytogenes required bacterial entry and increased further during the bacterial intracellular phase of infection. Other Gram-positive bacteria, Staphylococcus aureus, Staphylococcus epidermidis and Enterococcus faecalis, also induced IFN-λ genes when internalized by LoVo cells. In contrast, Gram-negative bacteria Salmonella enterica serovar Typhimurium, Shigella flexneri and Chlamydia trachomatis did not substantially induce IFN-λ. We also found that IFN-λ genes were up-regulated in A549 lung epithelial cells infected with Mycobacterium tuberculosis and in HepG2 hepatocytes and BeWo trophoblastic cells infected with L. monocytogenes. In a humanized mouse line permissive to fetoplacental listeriosis, IFN-λ2/λ3 mRNA levels were enhanced in placentas infected with L. monocytogenes. In addition, the feto-placental tissue was responsive to IFN-λ2. Together, these results suggest that IFN-λ may be an important modulator of the immune response to Gram-positive intracellular bacteria in epithelial tissues.

  9. Bacteria in crude oil survived autoclaving and stimulated differentially by exogenous bacteria.

    Science.gov (United States)

    Gong, Xiao-Cui; Liu, Ze-Shen; Guo, Peng; Chi, Chang-Qiao; Chen, Jian; Wang, Xing-Biao; Tang, Yue-Qin; Wu, Xiao-Lei; Liu, Chun-Zhong

    2012-01-01

    Autoclaving of crude oil is often used to evaluate the hydrocarbon-degrading abilities of bacteria. This may be potentially useful for bioaugmentation and microbial enhanced oil recovery (MEOR). However, it is not entirely clear if "endogenous" bacteria (e.g., spores) in/on crude oil survive the autoclaving process, or influence subsequent evaluation of the hydrocarbon-degradation abilities of the "exogenous" bacterial strains. To test this, we inoculated autoclaved crude oil medium with six exogenous bacterial strains (three Dietzia strains, two Acinetobacter strains, and one Pseudomonas strain). The survival of the spore-forming Bacillus and Paenibacillus and the non-spore-forming mesophilic Pseudomonas, Dietzia, Alcaligenes, and Microbacterium was detected using a 16S rRNA gene clone library and terminal restriction fragment length polymorphism (T-RFLP) analysis. However, neither bacteria nor bacterial activity was detected in three controls consisting of non-inoculated autoclaved crude oil medium. These results suggest that detection of endogenous bacteria was stimulated by the six inoculated strains. In addition, inoculation with Acinetobacter spp. stimulated detection of Bacillus, while inoculation with Dietzia spp. and Pseudomonas sp. stimulated the detection of more Pseudomonas. In contrast, similar exogenous bacteria stimulated similar endogenous bacteria at the genus level. Based on these results, special emphasis should be applied to evaluate the influence of bacteria capable of surviving autoclaving on the hydrocarbon-degrading abilities of exogenous bacteria, in particular, with regard to bioaugmentation and MEOR. Bioaugmentation and MEOR technologies could then be developed to more accurately direct the growth of specific endogenous bacteria that may then improve the efficiency of treatment or recovery of crude oil. PMID:23028421

  10. Bacteria in crude oil survived autoclaving and stimulated differentially by exogenous bacteria.

    Directory of Open Access Journals (Sweden)

    Xiao-Cui Gong

    Full Text Available Autoclaving of crude oil is often used to evaluate the hydrocarbon-degrading abilities of bacteria. This may be potentially useful for bioaugmentation and microbial enhanced oil recovery (MEOR. However, it is not entirely clear if "endogenous" bacteria (e.g., spores in/on crude oil survive the autoclaving process, or influence subsequent evaluation of the hydrocarbon-degradation abilities of the "exogenous" bacterial strains. To test this, we inoculated autoclaved crude oil medium with six exogenous bacterial strains (three Dietzia strains, two Acinetobacter strains, and one Pseudomonas strain. The survival of the spore-forming Bacillus and Paenibacillus and the non-spore-forming mesophilic Pseudomonas, Dietzia, Alcaligenes, and Microbacterium was detected using a 16S rRNA gene clone library and terminal restriction fragment length polymorphism (T-RFLP analysis. However, neither bacteria nor bacterial activity was detected in three controls consisting of non-inoculated autoclaved crude oil medium. These results suggest that detection of endogenous bacteria was stimulated by the six inoculated strains. In addition, inoculation with Acinetobacter spp. stimulated detection of Bacillus, while inoculation with Dietzia spp. and Pseudomonas sp. stimulated the detection of more Pseudomonas. In contrast, similar exogenous bacteria stimulated similar endogenous bacteria at the genus level. Based on these results, special emphasis should be applied to evaluate the influence of bacteria capable of surviving autoclaving on the hydrocarbon-degrading abilities of exogenous bacteria, in particular, with regard to bioaugmentation and MEOR. Bioaugmentation and MEOR technologies could then be developed to more accurately direct the growth of specific endogenous bacteria that may then improve the efficiency of treatment or recovery of crude oil.

  11. Heterotrophic bacteria in drinking water distribution system: a review.

    Science.gov (United States)

    Chowdhury, Shakhawat

    2012-10-01

    The microbiological quality of drinking water in municipal water distribution systems (WDS) depends on several factors. Free residual chlorine and/or chloramines are typically used to minimize bacterial recontamination and/or regrowth in WDS. Despite such preventive measures, regrowth of heterotrophic (HPC) and opportunistic bacteria in bulk water and biofilms has yet to be controlled completely. No approach has shown complete success in eliminating biofilms or HPC bacteria from bulk water and pipe surfaces. Biofilms can provide shelter for pathogenic bacteria and protect these bacteria from disinfectants. Some HPC bacteria may be associated with aesthetic and non-life threatening diseases. Research to date has achieved important success in understanding occurrence and regrowth of bacteria in bulk water and biofilms in WDS. To achieve comprehensive understanding and to provide efficient control against bacteria regrowth, future research on bacteria regrowth dynamics and their implications is warranted. In this study, a review was performed on the literature published in this area. The findings and limitations of these papers are summarized. Occurrences of bacteria in WDS, factors affecting bacteria regrowth in bulk water and biofilms, bacteria control strategies, sources of nutrients, human health risks from bacterial exposure, modelling of bacteria regrowth and methods of bacteria sampling and detection and quantification are investigated. Advances to date are noted, and future research needs are identified. Finally, research directions are proposed to effectively control HPC and opportunistic bacteria in bulk water and biofilms in WDS. PMID:22076103

  12. Functional expression of double-stranded RNA-dependent protein kinase in rat intestinal epithelial cells.

    Science.gov (United States)

    Sato, Nagahiro; Morimoto, Hiroyuki; Baba, Ryoko; Nakamata, Junichi; Doi, Yoshiaki; Yamaguchi, Koji

    2010-05-01

    Intestinal epithelial cells (IECs) are exposed to external environment, microbial and viral products, and serve as essential barriers to antigens. Recent studies have shown that IECs express Toll-like receptors (TLRs) and respond to microbial components. The antimicrobial and antiviral barriers consist of many molecules including TLRs. To investigate the further component of this barrier in intestine, we examined the expression of double-stranded RNA-dependent protein kinase (PKR). PKR is a player in the cellular antiviral response and phosphorylates alpha-subunit of the eukaryotic translation initiation factor 2 (eIF-2alpha) to block protein synthesis and induces apoptosis. In this study, we showed that the expression of PKR was restricted to the cytoplasm of absorptive epithelial cells in the intestine of adult rat. We also demonstrated that PKR was expressed in the cultured rat intestinal epithelial cells (IEC-6). The level of PKR protein expression and the activity of alkaline phosphatase (ALP) increased in the cultured IEC-6 cells in a time-dependent manner. Inhibition of PKR by the 2-aminopurine treatment decreased ALP activity in the IEC-6 cells. Treatment of IEC-6 cells with synthetic double-stranded RNA (dsRNA) induced cell death in a dose-dependent manner. The addition of hydrocortisone also provoked suppression of PKR expression and ALP activity. This modulation might be mediated by signal transducers and activators of transcription-1 (STAT-1) protein. We concluded that PKR is expressed in IECs as potent barriers to antigens and is a possible modulator of the differentiation of rat IECs. PMID:20213745

  13. Antimicrobial resistant bacteria in the food chain

    DEFF Research Database (Denmark)

    Wegener, Henrik Caspar

    Antimicrobials are used for treatment and prevention of disease in food animals and as feed additives for growth promotion. All uses lead to the development of resistant bacteria, some of which are pathogenic to humans. Current main concerns are with resistance in Salmonella and Campylobacter to...

  14. Radiographic markers - A reservoir for bacteria?

    Energy Technology Data Exchange (ETDEWEB)

    Tugwell, Jenna, E-mail: jenna.tugwell@googlemail.co [Department of Radiology, Ysbyty Gwynedd Hospital, Bangor, North Wales (United Kingdom); Maddison, Adele [Nuffield Health, Shrewsbury Hospital (United Kingdom)

    2011-05-15

    Introduction: Amongst the most frequently handled objects in the radiology department are radiographic markers. They are personal accessories used with every patient, and are kept in the radiographers pockets when not utilised. Upon enquiry it was discovered that many radiographers disregarded the potential of these accessories to become a vector for cross-contamination thus never or rarely clean them. The aims of this study were therefore to identify if radiographic markers are a reservoir for bacteria and to establish an effective cleaning method for decontaminating them. Methodology: 25 radiographers/student radiographers were selected for this study. Swabbing of their markers prior and post cleaning took place. The microbiology laboratory subsequently analyzed the results by quantifying and identifying the bacteria present. The participants also completed a closed questionnaire regarding their markers (e.g. frequency of cleaning and type of marker) to help specify the results gained from the swabbing procedure. Results: From the sample swabbed, 92% were contaminated with various organisms including Staphylococcus and Bacillus species, the amount of bacteria present ranged from 0 to >50 CFU. There were no significant differences between disinfectant wipes and alcohol gel in decontaminating the markers. Both successfully reduced their bacterial load, with 80% of the markers post cleaning having 0 CFU. Conclusion: The results indicated that radiographic markers can become highly contaminated with various organisms thus serve as a reservoir for bacteria. In addition, the markers need to be cleaned on a regular basis, with either disinfectant wipes or alcohol gel to reduce their bacterial load.

  15. Genetics of proteinases of lactic acid bacteria

    NARCIS (Netherlands)

    Kok, Jan; Venema, Gerhardus

    1988-01-01

    Because it is essential for good growth with concomitant rapid acid production, and for the production of flavorous peptides and amino acids, the proteolytic ability of lactic acid bacteria is of crucial importance for reliable dairy product quality. In view of this importance, considerable research

  16. Control of indigenous pathogenic bacteria in seafood

    DEFF Research Database (Denmark)

    Huss, Hans Henrik

    1997-01-01

    The pathogenic bacteria indigenous to the aquatic and general environment are listed. Their distribution in nature, prevalence in seafood and the possibilities for growth of these organisms in various types of products are outlined These data, combined with what is known regarding the epidemiology...

  17. Filamentous bacteria transport electrons over centimetre distances

    DEFF Research Database (Denmark)

    Pfeffer, Christian; Larsen, Steffen; Song, Jie;

    2012-01-01

    across centimetre-wide zones. Here we present evidence that the native conductors are long, filamentous bacteria. They abounded in sediment zones with electric currents and along their length they contained strings with distinct properties in accordance with a function as electron transporters. Living...

  18. Bacteria in ice may record climate change

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ To many people, bacteria and climate change are like chalk and cheese: the srnallest creature versus one of the biggest phenomena on Earth. Not really.Scientists with the CAS Institute of Tibetan Plateau Research (ITP) and coworkers recently reported that small bugs deposited in ice and snow might tell how our climate has been changing.

  19. [Innovative treatments for multidrug-resistant bacteria].

    Science.gov (United States)

    Pierre, Tattevin; Aurélien, Lorleac'h; Matthieu, Revest

    2014-03-01

    The spread of multidrug-resistant bacteria has accelerated sharply in the last decade. According to the World Health Organization they are responsible for an estimated 25 000 deaths in Europe each year. In addition, few new antibiotics are under development, raising the spectrum of a return to the "pre-antibiotic era". Non antibiotic antibacterial agents have recently attracted renewed interest. The most promising candidates are: i) phages (bacteria-infecting viruses) have been widely used in Eastern European countries since the 1930s but come up against logistic and regulatory obstacles due to the evolutionary nature of these biologic agents, while convincing clinical data are lacking; ii) bacteriocines are smallantibacterialpeptidesproducedby numerous bacteria; some have a rapid bactericidal effect, good tolerability, and a limited impact on the commensal flora; however, clinical use of bacteriocines is complicated by their fragility, poor penetration, and substantial risk of resistance selection ; iii) antisense oligonucleo tides act by inactivating genes through specific interaction with a complementary DNA or RNA fragment, potentially allowing specific inhibition of selected bacterial virulence factors. However, this therapeutic class may be more suitable for viral or genetic diseases than for multidrug-resistant bacterial infections, owing to the difficulty of delivering them inside bacteria. PMID:26427289

  20. Collective Sensing-Capacity of Bacteria Populations

    CERN Document Server

    Einolghozati, Arash; Fekri, Faramarz

    2012-01-01

    The design of biological networks using bacteria as the basic elements of the network is initially motivated by a phenomenon called quorum sensing. Through quorum sensing, each bacterium performs sensing the medium and communicating it to others via molecular communication. As a result, bacteria can orchestrate and act collectively and perform tasks impossible otherwise. In this paper, we consider a population of bacteria as a single node in a network. In our version of biological communication networks, such a node would communicate with one another via molecular signals. As a first step toward such networks, this paper focuses on the study of the transfer of information to the population (i.e., the node) by stimulating it with a concentration of special type of a molecules signal. These molecules trigger a chain of processes inside each bacteria that results in a final output in the form of light or fluorescence. Each stage in the process adds noise to the signal carried to the next stage. Our objective is ...

  1. DISTRIBUTION OF PLASMIDS IN GROUNDWATER BACTERIA

    Science.gov (United States)

    Bacteria isolated from groundwater aquifer core materials of pristine aquifers at Lula and Pickett, Oklahoma, and from a site with a history of aromatic hydrocarbon contamination and natural renovation located at Conroe, Texas, were screened for the presence of plasmid Deoxyribon...

  2. Radiographic markers - A reservoir for bacteria?

    International Nuclear Information System (INIS)

    Introduction: Amongst the most frequently handled objects in the radiology department are radiographic markers. They are personal accessories used with every patient, and are kept in the radiographers pockets when not utilised. Upon enquiry it was discovered that many radiographers disregarded the potential of these accessories to become a vector for cross-contamination thus never or rarely clean them. The aims of this study were therefore to identify if radiographic markers are a reservoir for bacteria and to establish an effective cleaning method for decontaminating them. Methodology: 25 radiographers/student radiographers were selected for this study. Swabbing of their markers prior and post cleaning took place. The microbiology laboratory subsequently analyzed the results by quantifying and identifying the bacteria present. The participants also completed a closed questionnaire regarding their markers (e.g. frequency of cleaning and type of marker) to help specify the results gained from the swabbing procedure. Results: From the sample swabbed, 92% were contaminated with various organisms including Staphylococcus and Bacillus species, the amount of bacteria present ranged from 0 to >50 CFU. There were no significant differences between disinfectant wipes and alcohol gel in decontaminating the markers. Both successfully reduced their bacterial load, with 80% of the markers post cleaning having 0 CFU. Conclusion: The results indicated that radiographic markers can become highly contaminated with various organisms thus serve as a reservoir for bacteria. In addition, the markers need to be cleaned on a regular basis, with either disinfectant wipes or alcohol gel to reduce their bacterial load.

  3. The effects of bacteria on crystalline rock

    International Nuclear Information System (INIS)

    Many reactions involving inorganic minerals at water-rock interfaces have now been recognized to be bacterially mediated; these reactions could have a significant effect in the excavation of vaults for toxic and radioactive waste disposal. To investigate the role that bacteria play in the natural aqueous environment of crystalline rock the microbial growth factors of nutrition, energy and environment are described. Microbial activity has been investigated in Atomic Energy of Canada's Underground Research Laboratory (URL), situated in the Archean granitic Lac du Bonnet Batholith, Winnipeg, Manitoba. Faults, initiated in the Early Proterozoic, and later-formed fractures, provide ground-water pathways. Planktonic bacteria, free-swimming in the groundwater, have been observed in over 100 underground borehole samples. The number of bacteria varied from 103 to 105 mL-1 and appeared to decrease with depth and with increased salinity of the water. However, in the natural environment of deep (100-500 m) crystalline rocks, where nutrition is limited, formation of biofilms by sessile bacteria is a successful survival strategy. Natural biofilms at the URL and biofilms grown in bioreactors have been studied. The biofilms can accumulate different elements, depending upon the local environment. Precipitates of iron have been found in all the biofilms studied, where they are either passively accumulated or utilized as an energy source. Within the biofilm active and extensive biogeochemical immobilization of dissolved elements is controlled by distinct bacterial activities which are sufficiently discrete for hematite and siderite to be precipitated in close proximity

  4. Bioluminescent bacteria: lux genes as environmental biosensors

    OpenAIRE

    Nunes-Halldorson Vânia da Silva; Duran Norma Letícia

    2003-01-01

    Bioluminescent bacteria are widespread in natural environments. Over the years, many researchers have been studying the physiology, biochemistry and genetic control of bacterial bioluminescence. These discoveries have revolutionized the area of Environmental Microbiology through the use of luminescent genes as biosensors for environmental studies. This paper will review the chronology of scientific discoveries on bacterial bioluminescence and the current applications of bioluminescence in env...

  5. DETOXIFICATION BY MAGNETOTACTIC BACTERIA IN SEDIMENTS

    Science.gov (United States)

    The ability of certain bacteria to take up iron in the environment and biosynthesis magnetic materials such as magnetite (Fe3O4) and greigite (Fe3S4) has been recognized (Blakemore, 1982; Bazylinski and Frankel, 2000). Two different mechanisms, biologically induced mineralizat...

  6. Serpins in unicellular Eukarya, Archaea, and Bacteria:

    DEFF Research Database (Denmark)

    Roberts, T.H.; Hejgaard, Jørn; Saunders, N.F.W; Cavicchiolo, R.; Curmi, P.M.G

    2004-01-01

    , where serpins were found in only 4 of 13 genera, and Bacteria, in only 9 of 56 genera. The serpins from unicellular organisms appear to be phylogenetically distinct from all of the clades of higher eukaryotic serpins. Most of the sequences from unicellular organisms have the characteristics of...

  7. Molecular evolution in bacteria: cell division

    OpenAIRE

    Trevors J.T.

    1998-01-01

    Molecular evolution in bacteria is examined with an emphasis on the self-assembly of cells capable of primitive division and growth during early molecular evolution. Also, the possibility that some type of encapsulation structure preceeded biochemical pathways and the assembly of genetic material is examined. These aspects will be considered from an evolutionary perspective.

  8. Emerging Plant Pathogenic Bacteria and Global Warming

    Science.gov (United States)

    Several bacteria, previously classified as non-fluorescent, oxidase positive pseudomonads, Ralstonia, Acidovorax, and Burkholdria have emerged as serious problems world-wide. Perhaps the most destructive is R. solanacearum (RS), a soilborne pathogen with a very wide host range. RS race 3, biovar 2...

  9. Discovering lactic acid bacteria by genomics

    NARCIS (Netherlands)

    Klaenhammer, T; Altermann, E; Arigoni, F; Bolotin, A; Breidt, F; Broadbent, J; Cano, R; Chaillou, S; Deutscher, J; Gasson, M; van de Guchte, M; Guzzo, J; Hartke, A; Hawkins, T; Hols, P; Hutkins, R; Kleerebezem, M; Kok, J; Kuipers, O; Maguin, E; McKay, L; Mills, D; Nauta, A; Overbeek, R; Pel, H; Pridmore, D; Saier, M; van Sinderen, D; Sorokin, A; Steele, J; O'Sullivan, D; de Vos, W; Weimer, B; Zagorec, M; Siezen, R

    2002-01-01

    This review summarizes a collection of lactic acid bacteria that are now undergoing genomic sequencing and analysis. Summaries are presented on twenty different species, with each overview discussing the organisms fundamental and practical significance, environmental habitat, and its role in ferment

  10. Drug efflux proteins in multidrug resistant bacteria

    NARCIS (Netherlands)

    vanVeen, HW; Konings, WN

    1997-01-01

    Bacteria contain an array of transport proteins in their cytoplasmic membrane. Many of these proteins play an important role in conferring resistance to toxic compounds. The multidrug efflux systems encountered in prokaryotic cells are very similar to those observed in eukaryotic cells. Therefore, a

  11. Identification of bacteria using mass spectrometry techniques

    Czech Academy of Sciences Publication Activity Database

    Krásný, Lukáš; Hynek, R.; Hochel, I.

    2013-01-01

    Roč. 353, NOV 2013 (2013), s. 67-79. ISSN 1387-3806 R&D Projects: GA ČR GAP503/10/0664 Institutional support: RVO:61388971 Keywords : Mass spectrometry * Bacteria * Identification Subject RIV: EE - Microbiology, Virology Impact factor: 2.227, year: 2013

  12. Chitinolytic bacteria of the mammal digestive tract

    Czech Academy of Sciences Publication Activity Database

    Šimůnek, Jiří; Hodrová, Blanka; Bartoňová, H.; Kopečný, Jan

    2001-01-01

    Roč. 46, č. 1 (2001), s. 76-78. ISSN 0015-5632 R&D Projects: GA ČR GA525/00/0984; GA AV ČR KSK5052113 Keywords : chitinolytic bacteria Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.776, year: 2001

  13. Comparative activity of ciprofloxacin against anaerobic bacteria.

    OpenAIRE

    Sutter, V L; Kwok, Y Y; Bulkacz, J

    1985-01-01

    The in vitro activity of ciprofloxacin was assessed against 362 strains of anaerobic bacteria and compared with that of cefoxitin, clindamycin, metronidazole, and mezlocillin. Only 31% of the strains tested were susceptible to ciprofloxacin. The other agents were active against most of the strains tested.

  14. Probiotic Bacteria May Become Dormant during Storage

    OpenAIRE

    Lahtinen, Sampo J.; Gueimonde, Miguel; Ouwehand, Arthur C; Reinikainen, Johanna P.; Salminen, Seppo J.

    2005-01-01

    The determination of bacterial viability in probiotic products is of economic, technological, and clinical significance. We compared four methods to enumerate three Bifidobacterium strains in fermented oat products during storage. A subpopulation of nonculturable cells retained a functional cell membrane typical of viable cells, indicating that probiotic bacteria become dormant during storage.

  15. Freeze-drying of lactic acid bacteria.

    Science.gov (United States)

    Fonseca, Fernanda; Cenard, Stéphanie; Passot, Stéphanie

    2015-01-01

    Lactic acid bacteria are of great importance for the food and biotechnology industry. They are widely used as starters for manufacturing food (e.g., yogurt, cheese, fermented meats, and vegetables) and probiotic products, as well as for green chemistry applications. Freeze-drying or lyophilization is a convenient method for preservation of bacteria. By reducing water activity to values below 0.2, it allows long-term storage and low-cost distribution at suprazero temperatures, while minimizing losses in viability and functionality. Stabilization of bacteria via freeze-drying starts with the addition of a protectant solution to the bacterial suspension. Freeze-drying includes three steps, namely, (1) freezing of the concentrated and protected cell suspension, (2) primary drying to remove ice by sublimation, and (3) secondary drying to remove unfrozen water by desorption. In this chapter we describe a method for freeze-drying of lactic acid bacteria at a pilot scale, thus allowing control of the process parameters for maximal survival and functionality recovery. PMID:25428024

  16. Identification and characterization of a constitutively expressed Ctenopharyngodon idella ADAR1 splicing isoform (CiADAR1a).

    Science.gov (United States)

    Liu, Xiancheng; Huang, Keyi; Hou, Qunhao; Sun, Zhicheng; Wang, Binhua; Lin, Gang; Li, Dongming; Liu, Yong; Xu, Xiaowen; Hu, Chengyu

    2016-10-01

    As one member of ADAR family, ADAR1 (adenosine deaminase acting on RNA 1) can convert adenosine to inosine within dsRNA. There are many ADAR1 splicing isoforms in mammals, including an interferon (IFN) inducible ∼150 kD protein (ADAR1-p150) and a constitutively expressed ∼110 kD protein (ADAR1-p110). The structural diversity of ADAR1 splicing isoforms may reflect their multiple functions. ADAR1 splicing isoforms were also found in fish. In our previous study, we have cloned and identified two different grass carp ADAR1 splicing isoforms, i.e. CiADAR1 and CiADAR1-like, both of them are IFN-inducible proteins. In this paper, we identified a novel CiADAR1 splicing isoform gene (named CiADAR1a). CiADAR1a gene contains 15 exons and 14 introns. Its full-length cDNA is comprised of a 5' UTR (359 bp), a 3' UTR (229 bp) and a 2952 bp ORF encoding a polypeptide of 983 amino acids with one Z-DNA binding domain, three dsRNA binding motifs and a highly conserved hydrolytic deamination domain. CiADAR1a was constitutively expressed in Ctenopharyngodon idella kidney (CIK) cells regardless of Poly I:C stimulation by Western blot assay. In normal condition, CiADAR1a was found to be present mainly in the nucleus. After treatment with Poly I:C, it gradually shifted to cytoplasm. To further investigate the mechanism of transcriptional regulation of CiADAR1a, we cloned and identified its promoter sequence. The transcriptional start site of CiADAR1a is mapped within the truncated exon 2. CiADAR1a promoter is 1303 bp in length containing 4 IRF-Es. In the present study, we constructed pcDNA3.1 eukaryotic expression vectors with IRF1 and IRF3 and co-transfected them with pGL3-CiADAR1a promoter into CIK cells. The results showed that neither the over-expression of IRF1 or IRF3 nor Poly I:C stimulation significantly impacted CiADAR1a promoter activity in CIK cells. Together, according to the molecular and expression characteristics, subcellular localization and transcriptional

  17. The interaction of bacteria and metal surfaces

    International Nuclear Information System (INIS)

    This review discusses different examples for the interaction of bacteria and metal surfaces based on work reported previously by various authors and work performed by the author with colleagues at other institutions and with his graduate students at CEEL. Traditionally it has been assumed that the interaction of bacteria with metal surfaces always causes increased corrosion rates ('microbiologically influenced corrosion' (MIC)). However, more recently it has been observed that many bacteria can reduce corrosion rates of different metals and alloys in many corrosive environments. For example, it has been found that certain strains of Shewanella can prevent pitting of Al 2024 in artificial seawater, tarnishing of brass and rusting of mild steel. It has been observed that corrosion started again when the biofilm was killed by adding antibiotics. The mechanism of corrosion protection seems to be different for different bacteria since it has been found that the corrosion potential Ecorr became more negative in the presence of Shewanella ana and algae, but more positive in the presence of Bacillus subtilis. These findings have been used in an initial study of the bacterial battery in which Shewanella oneidensis MR-1 was added to a cell containing Al 2024 and Cu in a growth medium. It was found that the power output of this cell continuously increased with time. In the microbial fuel cell (MFC) bacteria oxidize the fuel and transfer electrons directly to the anode. In initial studies EIS has been used to characterize the anode, cathode and membrane properties for different operating conditions of a MFC that contained Shewanella oneidensis MR-1. Cell voltage (V)-current density (i) curves were obtained using potentiodynamic sweeps. The current output of a MFC has been monitored for different experimental conditions

  18. Label-Free Applications of SERS for Bacteria Analysis

    OpenAIRE

    Zhou, Haibo

    2014-01-01

    In the first part, we report on surface-enhanced Raman scattering (SERS) for living bacteria detection in drinking water by employing a synthesis of silver nanoparticles coating the cell wall of bacteria (Bacteria@AgNPs). In the second part of this thesis, we present a label-free SERS detection of bacteria on microarray at single cell level. In the third part of this thesis, we successfully counted live and dead bacteria with Bacteria@AgNPs method by SERS mapping technique.

  19. Antibacterial activity of silver-killed bacteria: the "zombies" effect

    Science.gov (United States)

    Wakshlak, Racheli Ben-Knaz; Pedahzur, Rami; Avnir, David

    2015-04-01

    We report a previously unrecognized mechanism for the prolonged action of biocidal agents, which we denote as the zombies effect: biocidally-killed bacteria are capable of killing living bacteria. The concept is demonstrated by first killing Pseudomonas aeruginosa PAO1 with silver nitrate and then challenging, with the dead bacteria, a viable culture of the same bacterium: Efficient antibacterial activity of the killed bacteria is observed. A mechanism is suggested in terms of the action of the dead bacteria as a reservoir of silver, which, due to Le-Chatelier's principle, is re-targeted to the living bacteria. Langmuirian behavior, as well as deviations from it, support the proposed mechanism.

  20. Gram-positive pathogenic bacteria induce a common early response in human monocytes

    OpenAIRE

    Ghai Rohit; Tchatalbachev Svetlin; Hossain Hamid; Chakraborty Trinad

    2010-01-01

    Abstract Background We infected freshly isolated human peripheral monocytes with live bacteria of three clinically important gram-positive bacterial species, Staphylococcus aureus, Streptococcus pneumoniae and Listeria monocytogenes and studied the ensuing early transcriptional response using expression microarrays. Thus the observed response was unbiased by signals originating from other helper and effector cells of the host and was not limited to induction by solitary bacterial constituents...

  1. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea

    OpenAIRE

    Marraffini, Luciano A.; Sontheimer, Erik J.

    2010-01-01

    Sequence-directed genetic interference pathways control gene expression and preserve genome integrity in all kingdoms of life. The importance of such pathways is highlighted by the extensive study of RNA interference (RNAi) and related processes in eukaryotes. In many bacteria and most archaea, clustered, regularly interspaced short palindromic repeats (CRISPRs) are involved in a more recently discovered interference pathway that protects cells from bacteriophages and conjugative plasmids. CR...

  2. Construction and evaluation of multisite recombinatorial (Gateway) cloning vectors for Gram-positive bacteria

    OpenAIRE

    Rees Catherine ED; Salisbury Vyvyan; Gaddipati Sanyasi R; Qazi Saara NA; Perehinec Tania M; Hill Philip J

    2007-01-01

    Abstract Background The Gateway recombinatorial cloning system allows easy and rapid joining of DNA fragments. Here we report the construction and evaluation of three different Gram-positive vectors that can be used with the Multisite Gateway cloning system to rapidly produce new gene arrangements in plasmid constructs for use in a variety of Gram-positive bacteria. Results Comparison of patterns of reporter gene expression with conventionally constructed clones show that the presence of resi...

  3. Switching between apparently redundant iron-uptake mechanisms benefits bacteria in changeable environments

    OpenAIRE

    Dumas, Z; Ross-Gillespie, A; Kümmerli, Rolf

    2013-01-01

    Bacteria often possess multiple siderophore-based iron uptake systems for scavenging this vital resource from their environment. However, some siderophores seem redundant, because they have limited iron-binding efficiency and are seldom expressed under iron limitation. Here, we investigate the conundrum of why selection does not eliminate this apparent redundancy. We focus on Pseudomonas aeruginosa, a bacterium that can produce two siderophores— the highly efficient but metabolically expensiv...

  4. The influence of microbial factors on the susceptibility of bacteria to photocatalytic destruction

    OpenAIRE

    Robertson, Jeanette M. C.; Sieberg, Carina; Robertson, Peter K. J.

    2015-01-01

    The role that bacterial factors play in determining how bacteria respond to photocatalytic degradation is becoming increasingly recognised. Fimbriae which are thin, proteinaceous cell surface structures produced by many enterobacteria are generally considered to be important bacterial virulence determinants in the host. Recent studies, however, suggest that their expression may be increased during times of environmental stress to protect them against factors such as nutrient depletion and oxi...

  5. A Novel Fluorescent Protein-Based Biosensor for Gram-Negative Bacteria

    OpenAIRE

    Goh, Yan Y.; Ho, Bow; Ding, Jeak L.

    2002-01-01

    Site-directed mutagenesis of enhanced green fluorescent protein (EGFP) based on rational computational design was performed to create a fluorescence-based biosensor for endotoxin and gram-negative bacteria. EGFP mutants (EGFPi) bearing one (G10) or two (G12) strands of endotoxin binding motifs were constructed and expressed in an Escherichia coli host. The EGFPi proteins were purified and tested for their efficacy as a novel fluorescent biosensor. After efficient removal of lipopolysaccharide...

  6. Bacteria in Crude Oil Survived Autoclaving and Stimulated Differentially by Exogenous Bacteria

    OpenAIRE

    Gong, Xiao-Cui; Liu, Ze-Shen; Guo, Peng; Chi, Chang-Qiao; Chen, Jian; Wang, Xing-Biao; Tang, Yue-Qin; Wu, Xiao-Lei; Liu, Chun-Zhong

    2012-01-01

    Autoclaving of crude oil is often used to evaluate the hydrocarbon-degrading abilities of bacteria. This may be potentially useful for bioaugmentation and microbial enhanced oil recovery (MEOR). However, it is not entirely clear if “endogenous” bacteria (e.g., spores) in/on crude oil survive the autoclaving process, or influence subsequent evaluation of the hydrocarbon-degradation abilities of the “exogenous” bacterial strains. To test this, we inoculated autoclaved crude oil medium with six ...

  7. Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi

    OpenAIRE

    Trias Mansilla, Rosalia; Bañeras Vives, Lluís; Montesinos Seguí, Emilio; Badosa Romañó, Esther

    2008-01-01

    This study evaluated the efficacy of lactic acid bacteria (LAB) isolated from fresh fruits and vegetables as biocontrol agents against the phytopathogenic and spoilage bacteria and fungi, Xanthomonas campestris, Erwinia carotovora, Penicillium expansum, Monilinia laxa, and Botrytis cinerea. The antagonistic activity of 496 LAB strains was tested in vitro and all tested microorganisms except P. expansum were inhibited by at least one isolate. The 496 isolates were also analyzed for the inhibit...

  8. Spray drying of dairy bacteria: New opportunities to improve the viability of bacteria powders

    OpenAIRE

    Dolivet, Anne; Mejean, Serge; Hervé, C.; Jeantet, Romain

    2013-01-01

    The most frequently used technique for dehydration of dairy bacteria is freeze drying. Of the other possible preservation techniques used in the dairy industry to produce large amounts of dairy ingredients at commercially viable processing costs, spray drying is one of the main processing tools and the cost is 10 times lower than that of freeze drying. In this work, some examples are presented for different species of dairy bacteria with respect to spray-drying processes (as an alternative ap...

  9. Assessment of the Levels of Airborne Bacteria, Gram-Negative Bacteria, and Fungi in Hospital Lobbies

    OpenAIRE

    Dong-Uk Park; Jeong-Kwan Yeom; Won Jae Lee; Kyeong-Min Lee

    2013-01-01

    Aims: We assessed the levels of airborne bacteria, Gram-negative bacteria (GNB), and fungi in six hospital lobbies, and investigated the environmental and hospital characteristics that affected the airborne microorganism levels. Methods: An Andersen single-stage sampler equipped with appropriate nutrition plate agar was used to collect the samples. The three types of microorganisms were repeatedly collected at a fixed location in each hospital (assumed to be representative of the entire hospi...

  10. [Transgenic wheat expressing virus-derived hairpin RNA is resistant to Barley yellow dwarf virus].

    Science.gov (United States)

    Yan, Fei; Zhang, Wen-Wei; Xiao, Hong; Li, Shi-Fang; Cheng, Zhuo-Min

    2007-01-01

    An expression vector expected to induce RNA interference against Barley yellow dwarf virus (BYDV), which expressed a composite hpRNA with the dsRNA stem homologous of BYDV GPV replicase gene and the antisense RNA loop homologous of coat protein gene, was designed without marker gene. The vector was transferred into callus cells from wheat (Triticum aestivum L.) immature embryos by particle bombardment. To select the positive transformants as early as possible, a rapid PCR, which does not need extract wheat DNA instead of few leaves, was used at regeneration stage of plantlets. Totally 21 plants proved to contain alien sequence. Antivirus test with high dose infected virus revealed that, 9 plants showed low level of resistance to BVDV, 6 plants showed moderate resistance and 6 plants showed high level of resistance. Interestingly, both low and moderate levels of resistance plants were no symptoms when infected by viruses at low dose. It suggests the dose- dependent effect of the resistance mediated by hpRNA to BYDV-GPV. PMID:17284432

  11. Development of a gene reporter system in moderately halophilic bacteria by employing the ice nucleation gene of Pseudomonas syringae

    OpenAIRE

    Nieto Gutiérrez, Joaquín José; Vargas, C.; Ventosa Ucero, Antonio; Arvanitis, Nikilaos; Tegos, Georgios; Perysinakis, Angelos; Drainas, Constantin

    1995-01-01

    The expression of the ice nucleation gene inaZ of Pseudomonas syringae in several moderate halophiles was investigated to establish its utility as a reporter for promoter activity and gene expression studies in these biotechnologically and environmentally important bacteria. A promoterless version of inaZ was introduced in two different restriction sites and at both orientations in a recombinant plasmid able to replicate in moderate halophiles and, in particular, within the sequence of its pH...

  12. The application of flow cytometry and fluorescent probe technology for detection and assessment of viability of plant pathogenic bacteria

    NARCIS (Netherlands)

    Chitarra, L.G.; Bulk, van den R.W.

    2003-01-01

    Conventional methods to detect and assess the viability of plant pathogenic bacteria are usually based on plating assays or serological techniques. Plating assays provide information about the number of viable cells, expressed as colony-forming units, but are time-consuming and laborious. Serologica

  13. Application of SMRT genome sequencing to reveal the methylomes of bacteria associated with respiratory disease outbreaks in beef cattle

    Science.gov (United States)

    DNA base modification systems are common in bacteria and can modulate gene expression as well as act in defense against invading viruses. Recent advances in the direct identification of modified bases in the genome via Single Molecule Real Time (SMRT) sequencing supports an integrated analytical ap...

  14. Bacteria Experiment May Point Way to Slow Zika's Spread

    Science.gov (United States)

    ... nlm.nih.gov/medlineplus/news/fullstory_158661.html Bacteria Experiment May Point Way to Slow Zika's Spread ... 2016 (HealthDay News) -- Experiments in mosquitoes suggest that bacteria may help curb the spread of the Zika ...

  15. Smoking Triggers Big Changes in Mouth Bacteria, Study Finds

    Science.gov (United States)

    ... 158024.html Smoking Triggers Big Changes in Mouth Bacteria, Study Finds But quitting eventually returns levels to ... research also found that the proper mix of bacteria in the mouth is restored if people quit ...

  16. Environmental pollution detection and bioremediation by marine bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.; De, J.; Iyer, S.R.

    Microorganisms, in particular bacteria, play far more important ecological roles in natural environments than their small sizes would suggest. The environment for bacteria is everything that surrounds and sustains them including air, plant, animal...

  17. Antibiotic-Resistant Bacteria Detected in Sewage Spill

    Science.gov (United States)

    ... medlineplus.gov/news/fullstory_160031.html Antibiotic-Resistant Bacteria Detected in Sewage Spill 'People need to be ... News) -- Sewer line breaks can release antibiotic-resistant bacteria that pose a public health threat, a new ...

  18. Gut Bacteria May Hold Clues to Chronic Fatigue Syndrome

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_159905.html Gut Bacteria May Hold Clues to Chronic Fatigue Syndrome Intestinal ... doctors -- may be influenced by a person's intestinal bacteria -- sometimes called gut microbiome, new research finds. "Patients ...

  19. Molecular and chemical dialogues in bacteria-protozoa interactions

    NARCIS (Netherlands)

    Song, Chunxu; Mazzola, M.; Cheng, Xu; Oetjen, Janina; Alexandrov, Theodore; Dorrestein, Pieter C.; Watrous, Jeramie; van der Voort, Menno; Raaijmakers, Jos

    2015-01-01

    Protozoan predation of bacteria can significantly affect soil microbial community composition and ecosystem functioning. Bacteria possess diverse defense strategies to resist or evade protozoan predation. For soil-dwelling Pseudomonas species, several secondary metabolites were proposed to provide p

  20. Bacteria Experiment May Point Way to Slow Zika's Spread

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_158661.html Bacteria Experiment May Point Way to Slow Zika's Spread Infecting ... 4, 2016 WEDNESDAY, May 4, 2016 (HealthDay News) -- Experiments in mosquitoes suggest that bacteria may help curb ...

  1. Interactions between Paramyxoviruses and Bacteria: Implications for Pathogenesis and Intervention

    NARCIS (Netherlands)

    D.T. Nguyen (Tien)

    2014-01-01

    markdownabstract__Abstract__ Globally, respiratory tract diseases caused by bacteria and viruses are an important burden of disease. Respiratory bacteria (Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis and Staphylococcus aureus) can colonize the upper respiratory tract. The

  2. Frequency of Resistance and Susceptible Bacteria Isolated from Houseflies

    Directory of Open Access Journals (Sweden)

    B Davari

    2010-12-01

    Conclusion: Houseflies collected from hospitals and slaughterhouse may be involved in the spread of drug resistant bacteria and may increase the potential of human exposure to drug resistant bacteria.

  3. Oh What a Tangled Biofilm Web Bacteria Weave

    Science.gov (United States)

    ... Inside Life Science > Oh What a Tangled Biofilm Web Bacteria Weave Inside Life Science View All Articles | Inside Life Science Home Page Oh What a Tangled Biofilm Web Bacteria Weave By Elia Ben-Ari Posted May ...

  4. Heterotrophic bacteria in the northern Adriatic Sea: seasonal changes and ectoenzyme profile.

    Science.gov (United States)

    Zaccone, R; Caruso, G; Calì, C

    2002-01-01

    A seasonal study of the quantitative and qualitative distribution of heterotrophic bacterial community was carried out in the Adriatic Sea between April 1995 and January 1996, in order to evaluate its spatial and temporal variability and metabolic potential in the degradation processes of organic matter. The culturable bacteria (CFU) ranged between 0.1 and 22% of total bacterioplankton with a maximum percentage in surface samples of coastal zones. Their distribution was generally affected by the prevailing hydrological conditions. At the coastal stations about 44-75% of CFU variance could be explained by river runoff. The changes in the composition of heterotrophic bacterial community showed a seasonal succession of main bacterial groups, with a prevalence of Gram negative, non fermenting bacteria in the cold period (April-January) and an increase of Vibrionaccae and pigmented bacteria in summer. The seasonal variations were more important at the stations influenced by rivers than offshore. The bacterial community showed a greater versatility for organic polymers hydrolysis in the offshore station than in the coastal areas. Over 60% of all isolated heterotrophic bacteria expressed peptidase, lipase and phosphatase ectoenzymes activities, in all seasons and showed an increasing trend in warm period (in July October). The alpha- and beta-glucosidase potentials of bacteria were lower (20% on average) and showed different pattern during the year. These results suggest different role of the bacterial community in the decomposition of organic matter in the Adriatic Sea. Since only 20% of bacterial strains expressed glucosidase activity, carbohydrate-rich polymers such as mucilage might accumulate. PMID:12148942

  5. Phylogenetic analysis and development of probes for differentiating methylotrophic bacteria.

    OpenAIRE

    Brusseau, G A; Bulygina, E S; Hanson, R S

    1994-01-01

    Fifteen small-subunit rRNAs from methylotrophic bacteria have been sequenced. Comparisons of these sequences with 22 previously published sequences further defined the phylogenetic relationships among these bacteria and illustrated the agreement between phylogeny and physiological characteristics of the bacteria. Phylogenetic trees were constructed with 16S rRNA sequences from methylotrophic bacteria and representative organisms from subdivisions within the class Proteobacteria on the basis o...

  6. ANTIMICROBIAL ACTIVITY OF MEDICINAL PLANTS AGAINST DIFFERENT STRAINS OF BACTERIA

    OpenAIRE

    Alexander Vatľák; Adriana Kolesárová; Nenad Vukovič; Katarína Rovná; Jana Petrová; Viktória Vimmerová; Lukáš Hleba; Martin Mellen; Miroslava Kačániová

    2014-01-01

    In this study, methanolic extracts of Tilia cordata Mill. and Aesculus hippocastanum which had been described in herbal books, were screened for their antimicrobial activity against gramnegative and grampositive bacteria. The following strains of bacteria for antimicrobial activity were used gramnegative bacteria: Escherichia coli CCM 3988, Listeria ivanovii CCM 5884, Listeria innocua CCM 4030, Pseudomonas aeruginosa CCM 1960, Serratia rubidaea CCM 4684 and grampositive bacteria: Brochothrix ...

  7. New Insight on the Response of Bacteria to Fluoride

    OpenAIRE

    Breaker, R R

    2012-01-01

    Fluoride has been used for decades to prevent caries and it is well established that this anion can inhibit the growth of bacteria. However, the precise effects that fluoride has on bacteria and the mechanisms that bacteria use to overcome fluoride toxicity have largely remained unexplored. Recently, my laboratory reported the discovery of biological systems that bacteria use to sense fluoride and reduce fluoride toxicity. These sensors and their associated genes are very widespread in biolog...

  8. Control of Fusarium Wilt of Chili With Chitinolytic Bacteria

    OpenAIRE

    DWI SURYANTO; SITI PATONAH; ERMAN MUNIR

    2010-01-01

    Biological control of plant disease using antagonistic microorganism has been obtaining much attention and implemented for decades. One of the potential microorganisms used in this strategy is chitinolytic bacteria. Utilization of this bacteria ranges from cell life, enzymes, genes, or other metabolites. In this study, we examined the ability of chitinolytic bacteria as a biocontrol agent of Fusarium wilt of red chili (Capsicum annuum L.) seedlings. The ability of chitinolytic bacteria to sup...

  9. Probiotic bacteria in prevention and treatment of diarrhea

    OpenAIRE

    Jasmina Havranek; Šimun Zamberlin; Iva Dolenčić Špehar; Tamara Prtilo; Milna Tudor; Dubravka Samaržija

    2009-01-01

    Probiotic bacteria have beneficial effects in prevention and treatment of different diseases. The results of preventive and therapeutic effect of probiotic bacteria on diarrhea during last ten years are shown in this paper. The greatest preventive and therapeutic effect of probiotic bacteria was identified for acute diarrhea in children caused by rotaviruses. Significant, but slightly lower effect of probiotic bacteria was proved for antibiotic associated diarrhea. Positive effect in preventi...

  10. Initiation of translation in bacteria by a structured eukaryotic IRES RNA.

    Science.gov (United States)

    Colussi, Timothy M; Costantino, David A; Zhu, Jianyu; Donohue, John Paul; Korostelev, Andrei A; Jaafar, Zane A; Plank, Terra-Dawn M; Noller, Harry F; Kieft, Jeffrey S

    2015-03-01

    The central dogma of gene expression (DNA to RNA to protein) is universal, but in different domains of life there are fundamental mechanistic differences within this pathway. For example, the canonical molecular signals used to initiate protein synthesis in bacteria and eukaryotes are mutually exclusive. However, the core structures and conformational dynamics of ribosomes that are responsible for the translation steps that take place after initiation are ancient and conserved across the domains of life. We wanted to explore whether an undiscovered RNA-based signal might be able to use these conserved features, bypassing mechanisms specific to each domain of life, and initiate protein synthesis in both bacteria and eukaryotes. Although structured internal ribosome entry site (IRES) RNAs can manipulate ribosomes to initiate translation in eukaryotic cells, an analogous RNA structure-based mechanism has not been observed in bacteria. Here we report our discovery that a eukaryotic viral IRES can initiate translation in live bacteria. We solved the crystal structure of this IRES bound to a bacterial ribosome to 3.8 Å resolution, revealing that despite differences between bacterial and eukaryotic ribosomes this IRES binds directly to both and occupies the space normally used by transfer RNAs. Initiation in both bacteria and eukaryotes depends on the structure of the IRES RNA, but in bacteria this RNA uses a different mechanism that includes a form of ribosome repositioning after initial recruitment. This IRES RNA bridges billions of years of evolutionary divergence and provides an example of an RNA structure-based translation initiation signal capable of operating in two domains of life. PMID:25652826

  11. Insight into Dominant Cellulolytic Bacteria from Two Biogas Digesters and Their Glycoside Hydrolase Genes.

    Directory of Open Access Journals (Sweden)

    Yongjun Wei

    Full Text Available Diverse cellulolytic bacteria are essential for maintaining high lignocellulose degradation ability in biogas digesters. However, little was known about functional genes and gene clusters of dominant cellulolytic bacteria in biogas digesters. This is the foundation to understand lignocellulose degradation mechanisms of biogas digesters and apply these gene resource for optimizing biofuel production. A combination of metagenomic and 16S rRNA gene clone library methods was used to investigate the dominant cellulolytic bacteria and their glycoside hydrolase (GH genes in two biogas digesters. The 16S rRNA gene analysis revealed that the dominant cellulolytic bacteria were strains closely related to Clostridium straminisolvens and an uncultured cellulolytic bacterium designated BG-1. To recover GH genes from cellulolytic bacteria in general, and BG-1 in particular, a refined assembly approach developed in this study was used to assemble GH genes from metagenomic reads; 163 GH-containing contigs ≥ 1 kb in length were obtained. Six recovered GH5 genes that were expressed in E. coli demonstrated multiple lignocellulase activities and one had high mannanase activity (1255 U/mg. Eleven fosmid clones harboring the recovered GH-containing contigs were sequenced and assembled into 10 fosmid contigs. The composition of GH genes in the 163 assembled metagenomic contigs and 10 fosmid contigs indicated that diverse GHs and lignocellulose degradation mechanisms were present in the biogas digesters. In particular, a small portion of BG-1 genome information was recovered by PhyloPythiaS analysis. The lignocellulase gene clusters in BG-1 suggested that it might use a possible novel lignocellulose degradation mechanism to efficiently degrade lignocellulose. Dominant cellulolytic bacteria of biogas digester possess diverse GH genes, not only in sequences but also in their functions, which may be applied for production of biofuel in the future.

  12. [RAPD analysis of plant pathogenic coryneform bacteria].

    Science.gov (United States)

    Yin, Yan-Ni; Chen, Yong-Fang; Li, Shi-Mo; Guo, Jian-Hua

    2005-12-01

    RAPD analysis was used for the taxonomy of plant pathogenic coryneform bacteria, especially for the classification of two new pathogens (Curtobacterium flaccumfaciens pv. basellae pv. nov. and Curtobacterium flaccumfaciens pv. beticola pv. nov.). 20 random primers were screened from 50 ones to detect polymorphism among the total strains used. 80.4% were polymorphic bands among the 225 ones produced. The results of pairwise similarity and UPGMA cluster analysis suggest that the two new pathovars of sugar beet (Beta vulgaris var. saccharifera) and malabar spinach (Basella rubra) are genetically close related with Curtobacterium flacumfaciens, and the minimal similarity coefficient is 0.6511. According to the RAPD analysis and previous research, some newly made taxonomic changes of the plant pathogenic coryneform bacteria are discussed. PMID:16496687

  13. Ancient bacteria show evidence of DNA repair

    DEFF Research Database (Denmark)

    Johnson, Sarah Stewart; Hebsgaard, Martin B; Christensen, Torben R;

    2007-01-01

    geological timescales. There has been no direct evidence in ancient microbes for the most likely mechanism, active DNA repair, or for the metabolic activity necessary to sustain it. In this paper, we couple PCR and enzymatic treatment of DNA with direct respiration measurements to investigate long...... this long-term survival is closely tied to cellular metabolic activity and DNA repair that over time proves to be superior to dormancy as a mechanism in sustaining bacteria viability.......-term survival of bacteria sealed in frozen conditions for up to one million years. Our results show evidence of bacterial survival in samples up to half a million years in age, making this the oldest independently authenticated DNA to date obtained from viable cells. Additionally, we find strong evidence that...

  14. Resistant bacteria in stem cell transplant recipients

    Directory of Open Access Journals (Sweden)

    Nucci Marcio

    2002-01-01

    Full Text Available Bacterial infections account for most infections in hematopoietic stem cell transplant recipients. While early mortality reduced dramatically with the introduction of the concept of empirical antibiotic therapy in neutropenic patients, no effect of prophylaxis on the mortality was observed in many studies. On the other hand, antibiotic prophylaxis has resulted in the emergence of resistance among bacteria. In addition, the choice of the antibiotic regimen for empirical therapy and the practices of antibiotic therapy during neutropenia may result in a significant shift in the pattern of bacterial infections. The use of quinolones and vancomycin as prophylaxis, and of carbapenems and vancomycin in the empirical antibiotic therapy, are associated with the appearance of resistant Gram-positive and Gram-negative bacteria. Therefore, hematologists must be aware of the impact of these practices on the emergence of infections due to multi-resistant pathogens, since these infections may be associated with increased mortality.

  15. Horizontal gene transfer between bacteria and animals.

    Science.gov (United States)

    Dunning Hotopp, Julie C

    2011-04-01

    Horizontal gene transfer is increasingly described between bacteria and animals. Such transfers that are vertically inherited have the potential to influence the evolution of animals. One classic example is the transfer of DNA from mitochondria and chloroplasts to the nucleus after the acquisition of these organelles by eukaryotes. Even today, many of the described instances of bacteria-to-animal transfer occur as part of intimate relationships such as those of endosymbionts and their invertebrate hosts, particularly insects and nematodes, while numerous transfers are also found in asexual animals. Both of these observations are consistent with modern evolutionary theory, in particular the serial endosymbiotic theory and Muller's ratchet. Although it is tempting to suggest that these particular lifestyles promote horizontal gene transfer, it is difficult to ascertain given the nonrandom sampling of animal genome sequencing projects and the lack of a systematic analysis of animal genomes for such transfers. PMID:21334091

  16. Quorum sensing in plant-pathogenic bacteria.

    Science.gov (United States)

    Von Bodman, Susanne B; Bauer, W Dietz; Coplin, David L

    2003-01-01

    Quorum sensing (QS) allows bacteria to assess their local population density and/or physical confinement via the secretion and detection of small, diffusible signal molecules. This review describes how phytopathogenic bacteria have incorporated QS mechanisms into complex regulatory cascades that control genes for pathogenicity and colonization of host surfaces. Traits regulated by QS include the production of extracellular polysaccharides, degradative enzymes, antibiotics, siderophores, and pigments, as well as Hrp protein secretion, Ti plasmid transfer, motility, biofilm formation, and epiphytic fitness. Since QS regulatory systems are often required for pathogenesis, interference with QS signaling may offer a means of controlling bacterial diseases of plants. Several bacterial pathogens of plants that have been intensively studied and have revealed information of both fundamental and practical importance are reviewed here: Agrobacterium tumefaciens, Pantoea stewartii, Erwinia carotovora, Ralstonia solanacearum, Pseudomonas syringae, Pseudomonas aeruginosa, and Xanthomonas campestris. PMID:12730390

  17. Bacteria, some permanent tenants Space Station

    International Nuclear Information System (INIS)

    Vacuum cleaners to operate the vacuum or rags with ethanol they are the products of cleaning of the astronauts. Is there tight spaces fully sterilized? It seems not, even in the Space Station International (ISS). When it comes to bacteria, they are able to travel more than 400 kilometers housed in costumes, bodies and interior of the astronauts themselves and settle in a enclosed space where-unlike in a cleanroom 'terrestre- the air is not recycled. A NASA study has found an abundance of bacteria 'opportunists' which, although harmless on Earth, they might derivasen cause infections in inflammations or skin irritations. Not forgetting those fungi that could damage or affect the infrastructure equipment space. (Author)

  18. The Chemical Ecology of Predatory Soil Bacteria.

    Science.gov (United States)

    Findlay, Brandon L

    2016-06-17

    The study of natural products is entering a renaissance, driven by the discovery that the majority of bacterial secondary metabolites are not produced under standard laboratory conditions. Understanding the ecological role of natural products is key to efficiently directing our screening efforts, and to ensuring that each screen efficiently captures the full biosynthetic repertoire of the producing organisms. Myxobacteria represent one of the most common and diverse groups of bacteria, with roughly 2500 strains publically available. Fed largely through predation, the myxobacteria have developed a large repertoire of natural products that target other microorganisms, including bacteria and fungi. Many of these interactions can be observed in predation assays, providing direct evidence for environmental interactions. With a focus on Myxococcus xanthus, this review will highlight how recent advances in myxobacteria are revealing the chemical ecology of bacterial natural products. PMID:27035738

  19. Emerging roles of RNA modifications in bacteria.

    Science.gov (United States)

    Marbaniang, Carmelita Nora; Vogel, Jörg

    2016-04-01

    RNA modifications are known to abound in stable tRNA and rRNA, where they cluster around functionally important regions. However, RNA-seq based techniques profiling entire transcriptomes are now uncovering an abundance of modified ribonucleotides in mRNAs and noncoding RNAs, too. While most of the recent progress in understanding the regulatory influence of these new RNA modifications stems from eukaryotes, there is growing evidence in bacteria for modified nucleotides beyond the stable RNA species, including modifications of small regulatory RNAs. Given their small genome size, good genetic tractability, and ample knowledge of modification enzymes, bacteria offer excellent model systems to decipher cellular functions of RNA modifications in many diverse physiological contexts. This review highlights how new global approaches combining classic analysis with new sequencing techniques may usher in an era of bacterial epitranscriptomics. PMID:26803287

  20. Sulfur-oxidizing bacteria in environmental technology.

    Science.gov (United States)

    Pokorna, Dana; Zabranska, Jana

    2015-11-01

    Hydrogen sulfide is widely known as the most undesirable component of biogas that caused not only serious sensoric and toxic problems, but also corrosion of concrete and steel structures. Many agricultural and industrial waste used in biogas production, may contain a large amount of substances that serve as direct precursors to the formation of sulfide sulfur-sources of hydrogen sulfide in the biogas. Biological desulfurization methods are currently promoted to abiotic methods because they are less expensive and do not produce undesirable materials which must be disposed of. The final products of oxidation of sulfides are no longer hazardous. Biological removal of sulfide from a liquid or gaseous phase is based on the activity of sulfur-oxidizing bacteria. They need an oxidizing agent such as an acceptor of electrons released during the oxidation of sulfides-atmospheric oxygen or oxidized forms of nitrogen. Different genera of sulfur-oxidizing bacteria and their technological application are discussed. PMID:25701621

  1. Hydrocarbonoclastic bacteria: from bioremediation to bioenergy feedstock

    OpenAIRE

    Carvalho, Ana Rita Castro

    2015-01-01

    Tese de Doutoramento em Engenharia Química e Biológica. Bacterial storage lipids are being considered as viable alternative feedstocks for industrial and biotechnological applications, compared to conventional ones. The production of these bacterial compounds can be obtained from different carbon sources, including inexpensive and recalcitrant wastes. This thesis explores the potential of using hydrocarbonoclastic bacteria to obtain lipid reserve substances from hydrocarbon-based wastes, p...

  2. Food preservation using antifungal lactic acid bacteria

    OpenAIRE

    Crowley, Sarah Catherine Mary

    2013-01-01

    Fungal spoilage of food and feed prevails as a major problem for the food industry. The use antifungal-producing lactic acid bacteria (LAB) may represent a safer, natural alternative to the use of chemical preservatives in foods. A large scale screen was undertaken to identify a variety of LAB with antifungal properties from plant, animal and human sources. A total of 6,720 LAB colonies were isolated and screened for antifungal activity against the indicator Penicillium expansum. 94 broad-spe...

  3. RNA-Seq for Plant Pathogenic Bacteria

    OpenAIRE

    Kimbrel, Jeffrey A.; Yanming Di; Cumbie, Jason S.; Chang, Jeff H.

    2011-01-01

    The throughput and single-base resolution of RNA-Sequencing (RNA-Seq) have contributed to a dramatic change in transcriptomic-based inquiries and resulted in many new insights into the complexities of bacterial transcriptomes. RNA-Seq could contribute to similar advances in our understanding of plant pathogenic bacteria but it is still a technology under development with limitations and unknowns that need to be considered. Here, we review some new developments for RNA-Seq and highlight recent...

  4. Plague Bacteria Target Immune Cells During Infection

    OpenAIRE

    Marketon, Melanie M.; DePaolo, R. William; DeBord, Kristin L.; Jabri, Bana; Schneewind, Olaf

    2005-01-01

    The plague is caused by the bacterium Yersinia pestis. Plague bacteria are thought to inject effector Yop proteins into host cells via the type III pathway. The identity of the host cells targeted for injection during plague infection is unknown. We found, using Yop β-lactamase hybrids and fluorescent staining of live cells from plague-infected animals, that Y. pestis selected immune cells for injection. In vivo, dendritic cells, macrophages, and neutrophils were injected most frequently, whe...

  5. Study of fatty acid-bacteria interactions

    International Nuclear Information System (INIS)

    Complete text of publication follows. During our work we investigated fatty acid-bacteria interactions. The antibacterial property of fatty acids was reported by several authors. Despite of them there is not reassuring explanation about the mechanism of the antibacterial activity of these compounds. An effect can considerably change in case of different structured fatty acids. Our earlier studies conduct that small changes in the structures can modify changes in their behavior towards bacteria. The stearic acid does not cause any antibacterial effects during the first few hours of the investigation, may even help the bacterial growth. However, linolic acid (C18:2) shows a strong antibacterial effect during the first hours. After 24 hours this effect wears out and the bacteria have adapted to the stress. We studied the antibacterial activity using direct bioautography. This method has the advantage to allow examining lipophilic compounds. The linoleic acid decomposes in time under different physiological conditions creating numerous oxidized molecules. This may be the reason of its antimicrobial effect. For studying this phenomenon we used infrared and mass spectroscopic methods. We applied infrared spectroscopy for indicating any changes in the spectra of the fatty acids after the interaction of fatty acids with bacteria. So we are able to deduct on what could happen during these process. We paid great attention towards the changes of double bonds, on methylation and demethylation processes. Using mass spectroscopy we searched for oxidized products that may play important role in this process. These studies are only part of our more widespreading investigations, dealing with the antimicrobial properties of fatty acids.

  6. Bacterial biofilms. Bacteria Quorum sensing in biofilms

    OpenAIRE

    E. S. Vorobey; O. S. Voronkova; A. I. Vinnikov

    2012-01-01

    Data on biofilms, their structure and properties, peculiarities of formation and interaction between microorganisms in the film are presented. Information on discovery and study of biofilms, importance of biofilms in the medical and clinical microbiology are offered. The data allow to interpret biofilm as a form of existence of human normal microflora. For the exchange of information within the biofilm between the individual cells of the same or different species bacteria use the signal molec...

  7. Separation and Purification of Bacteria from Soil

    OpenAIRE

    Bakken, Lars R.

    1985-01-01

    Bacteria were released and separated from soil by a simple blending-centrifugation procedure. The percent yield of bacterial cells (microscopic counts) in the supernatants varied over a wide range depending on the soil type. The superantants contained large amounts of noncellular organic material and clay particles. Further purification of the bacterial cells was obtained by centrifugation in density gradients, whereby the clay particles and part of the organic materials sedimented. A large p...

  8. Metabolic Flexibility of Sulfate-Reducing Bacteria

    OpenAIRE

    Plugge, Caroline M.; Zhang, Weiwen; Scholten, Johannes C. M.; Stams, Alfons J. M.

    2011-01-01

    Dissimilatory sulfate-reducing prokaryotes (SRB) are a very diverse group of anaerobic bacteria that are omnipresent in nature and play an imperative role in the global cycling of carbon and sulfur. In anoxic marine sediments sulfate reduction accounts for up to 50% of the entire organic mineralization in coastal and shelf ecosystems where sulfate diffuses several meters deep into the sediment. As a consequence, SRB would be expected in the sulfate-containing upper sediment layers, whereas me...

  9. Electromagnetic low-frequency fields and bacteria

    Czech Academy of Sciences Publication Activity Database

    Foltýn, D.; Čermáková, E.; Kolářová, M.; Bartušek, Karel

    Košice : RVS VLA Košice, 2002 - (Džunda, M.; Brůnová, B.), s. 133 - 137 ISBN 80-7166-034-5. [New trends of development in aviation. Košice (SK), 01.09.2002] Institutional research plan: CEZ:AV0Z2065902 Keywords : low-frequency fields * bacteria Staphylococcus aureus * low-frequency ELM fields Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  10. Biology of Moderately Halophilic Aerobic Bacteria

    OpenAIRE

    Nieto Gutiérrez, Joaquín José; Ventosa Ucero, Antonio; Oren, Aharon

    1998-01-01

    The moderately halophilic heterotrophic aerobic bacteria form a diverse group of microorganisms. The property of halophilism is widespread within the bacterial domain. Bacterial halophiles are abundant in environments such as salt lakes, saline soils, and salted food products. Most species keep their intracellular ionic concentrations at low levels while synthesizing or accumulating organic solutes to provide osmotic equilibrium of the cytoplasm with the surrounding medium. Complex mechanisms...

  11. Bioactive Compounds from Marine Bacteria and Fungi

    OpenAIRE

    Debbab, Abdessamad; Aly, Amal H.; Lin, Wen H.; Proksch, Peter

    2010-01-01

    Summary Marine bacteria and fungi are of considerable importance as new promising sources of a huge number of biologically active products. Some of these marine species live in a stressful habitat, under cold, lightless and high pressure conditions. Surprisingly, a large number of species with high diversity survive under such conditions and produce fascinating and structurally complex natural products. Up till now, only a small number of microorganisms have been investigated for bioactive me...

  12. Ferric Iron Reduction by Acidophilic Heterotrophic Bacteria

    OpenAIRE

    Johnson, D. Barrie; McGinness, Stephen

    1991-01-01

    Fifty mesophilic and five moderately thermophilic strains of acidophilic heterotrophic bacteria were tested for the ability to reduce ferric iron in liquid and solid media under aerobic conditions; about 40% of the mesophiles (but none of the moderate thermophiles) displayed at least some capacity to reduce iron. Both rates and extents of ferric iron reduction were highly strain dependent. No acidophilic heterotroph reduced nitrate or sulfate, and (limited) reduction of manganese(IV) was note...

  13. Quorum Sensing in Gram-Negative Bacteria

    OpenAIRE

    BOŞGELMEZ-TINAZ, Gülgün

    2003-01-01

    It has become increasingly and widely recognised that bacteria do not live as isolated entities but instead exist as communities that exploit elaborate systems of intercellular communication to facilitate their adaptation to changing environmental conditions. A well-characterised example of such intercellular communication is quorum sensing. Quorum sensing depends on the production of diffusible signal molecules termed autoinducers or pheromones, which enable a bacterium to monitor its own ce...

  14. Bacteria Foraging Algorithm in Antenna Design

    OpenAIRE

    Biswa Binayak Mangaraj; Manas Ranjan Jena; Saumendra Kumar Mohanty

    2016-01-01

    A simple design procedure to realize an optimum antenna using bacteria foraging algorithm (BFA) is proposed in this paper. The first antenna considered is imaginary. This antenna is optimized using the BFA along with a suitable fitness function formulated by considering some performance parameters and their best values. To justify the optimum design approach, one 12-element Yagi-Uda antenna is considered for an experiment. The optimized result of this antenna obtained using the optimization a...

  15. Mutation, Selection and Genetic Interactions in Bacteria

    OpenAIRE

    Gordo, I.; Sousa, A.

    2010-01-01

    Mutation is the ultimate source of genetic variation. The rate at whichnew mutations typically occurs, their effects on fitness and the strength and type of genetic interactions between different mutations are key for understanding the evolution of any population. Estimates of these parameters in organisms such as bacteria will have a profound impact on our understanding of their biology, diversity, rate of speciation and in our health. Experimental evolution with bact...

  16. Experimental evolution with bacteria in complex environments

    OpenAIRE

    Hall, Alex R.

    2009-01-01

    Experiments with microbes are a powerful tool for addressing general questions in evolutionary ecology. Microbial evolution is also interesting in its own right, and often clinically relevant. I have used experimental evolution of bacteria (Pseudomonas spp.) in controlled laboratory environments to investigate the role of environmental heterogeneity in the evolution of phenotypic diversity. Some of my results provide insight on general processes, while others are specific to ba...

  17. Cold atmospheric plasma decontamination against nosocomial bacteria

    OpenAIRE

    Klämpfl , Tobias Gabriel

    2014-01-01

    Nosocomial pathogens are a considerable public threat. In order to limit their spread, cold atmospheric plasma (CAP) was investigated as new alternative to common decontamination strategies. During my work I developed a Surface micro-discharge (SMD) electrode system, characterized the CAP generated at ambient air conditions, studied its decontaminating behavior against nosocomial bacteria such as Clostridium difficile endospores and revealed factors influencing the decontamination. All in all...

  18. [Phylogenetic analysis of bacteria of extreme ecosystems].

    Science.gov (United States)

    Romanovskaia, V A; Parfenova, V V; Bel'kova, N L; Sukhanova, E V; Gladka, G V; Tashireva, A A

    2014-01-01

    Phylogenetic analysis of aerobic chemoorganotrophic bacteria of the two extreme regions (Dead Sea and West Antarctic) was performed on the basis of the nucleotide sequences of the 16S rRNA gene. Thermotolerant and halotolerant spore-forming bacteria 7t1 and 7t3 of terrestrial ecosystems Dead Sea identified as Bacillus licheniformis and B. subtilis subsp. subtilis, respectively. Taking into account remote location of thermotolerant strain 6t1 from closely related strains in the cluster Staphylococcus, 6t1 strain can be regarded as Staphylococcus sp. In terrestrial ecosystems, Galindez Island (Antarctic) detected taxonomically diverse psychrotolerant bacteria. From ornithogenic soil were isolated Micrococcus luteus O-1 and Microbacterium trichothecenolyticum O-3. Strains 4r5, 5r5 and 40r5, isolated from grass and lichens, can be referred to the genus Frondihabitans. These strains are taxonomically and ecologically isolated and on the tree diagram form the joint cluster with three isolates Frondihabitans sp., isolated from the lichen Austrian Alps, and psychrotolerant associated with plants F. cladoniiphilus CafT13(T). Isolates from black lichen in the different stationary observation points on the south side of a vertical cliff identified as: Rhodococcus fascians 181n3, Sporosarcina aquimarina O-7, Staphylococcus sp. 0-10. From orange biofilm of fouling on top of the vertical cliff isolated Arthrobacter sp. 28r5g1, from the moss-- Serratia sp. 6r1g. According to the results, Frondihabitans strains most frequently encountered among chemoorganotrophic aerobic bacteria in the Antarctic phytocenoses. PMID:25007437

  19. Cellulose biosynthesis and function in bacteria.

    OpenAIRE

    Ross, P; Mayer, R; Benziman, M

    1991-01-01

    The current model of cellulose biogenesis in plants, as well as bacteria, holds that the membranous cellulose synthase complex polymerizes glucose moieties from UDP-Glc into beta-1,4-glucan chains which give rise to rigid crystalline fibrils upon extrusion at the outer surface of the cell. The distinct arrangement and degree of association of the polymerizing enzyme units presumably govern extracellular chain assembly in addition to the pattern and width of cellulose fibril deposition. Most e...

  20. The growth of bacteria on organic compounds in drinking water

    NARCIS (Netherlands)

    Kooy, van der D.

    1984-01-01

    Growth ("regrowth") of bacteria In drinking water distribution systems results in a deterioration of the water quality. Regrowth of chemoheterotrophic bacteria depends on the presence of organic. compounds that serve as a nutrient source for these bacteria. A batch-culture technique was developed to