WorldWideScience

Sample records for bactec radiometric system

  1. Multicenter evaluation of fully automated BACTEC Mycobacteria Growth Indicator Tube 960 system for susceptibility testing of Mycobacterium tuberculosis.

    Science.gov (United States)

    Bemer, Pascale; Palicova, Frantiska; Rüsch-Gerdes, Sabine; Drugeon, Henri B; Pfyffer, Gaby E

    2002-01-01

    The reliability of the BACTEC Mycobacteria Growth Indicator Tube (MGIT) 960 system for testing of Mycobacterium tuberculosis susceptibility to the three front-line drugs (isoniazid [INH], rifampin [RIF], and ethambutol [EMB]) plus streptomycin (STR) was compared to that of the BACTEC 460 TB system. The proportion method was used to resolve discrepant results by an independent arbiter. One hundred and ten strains were tested with an overall agreement of 93.5%. Discrepant results were obtained for seven strains (6.4%) with INH (resistant by BACTEC MGIT 960; susceptible by BACTEC 460 TB), for one strain (0.9%) with RIF (resistant by BACTEC MGIT 960; susceptible by BACTEC 460 TB), for seven strains (6.4%) with EMB (six resistant by BACTEC MGIT 960 and susceptible by BACTEC 460 TB; one susceptible by BACTEC MGIT 960 and resistant by BACTEC 460 TB), and for 19 strains (17.3%) with STR (resistant by BACTEC MGIT 960 and susceptible by BACTEC 460 TB). After resolution of discrepant results, the sensitivity of the BACTEC MGIT 960 system was 100% for all four drugs and specificity ranged from 89.8% for STR to 100% for RIF. Turnaround times were 4.6 to 11.7 days (median, 6.5 days) for BACTEC MGIT 960 and 4.0 to 10.0 days (median, 7.0 days) for BACTEC 460 TB. These data demonstrate that the fully automated and nonradiometric BACTEC MGIT 960 system is an accurate method for rapid susceptibility testing of M. tuberculosis.

  2. Comparison of Mycobacterium tuberculosis susceptibility testing performed with BACTEC 460TB (Becton Dickinson) and MB/BacT (Organon Teknika) systems.

    Science.gov (United States)

    Tortoli, E; Mattei, R; Savarino, A; Bartolini, L; Beer, J

    2000-10-01

    The recently introduced automated culture systems MB/BacT (Organon Teknika, Belgium) was compared with radiometric BACTEC 460TB (Becton Dickinson, USA) to test antimicrobial susceptibility of Mycobacterium tuberculosis to first line drugs. On 113 strains 97.5% agreement was obtained, with the difference being not significant. Concordance was practically complete for the most important drugs, isoniazid and rifampin. The two methods however significantly differed for the time needed to complete the test; in fact MB/BacT required on the average five days more than BACTEC 460TB. Despite the delay in the completion of the test, the excellent reliability along with the elimination of radioactivity and full automation make MB/BacT an attractive alternative for susceptibility testing of M. tuberculosis.

  3. Isolation of mycobacteria by Bactec 460 TB system from clinical specimens

    Directory of Open Access Journals (Sweden)

    Lakshmi V

    2006-01-01

    Full Text Available This article reports our experience with the BACTEC 460 TB system in the past five years and its performance characteristics and its advantages over the conventional LJ medium for mycobacterial culture. Clinical specimens (3597 from patients suspected to have tuberculosis were submitted for mycobacterial culture between May 2000 and August 2005 and were processed using the BACTEC 460 TB system. Pulmonary samples were 1568 while the extra pulmonary samples were 2029. BACTEC achieved detection of 681 (18.93% M. tuberculosis cases (499- pulmonary, 182- extrapulmonary with a recovery time shorter by 13.2 days compared to conventional method, while 577 (84.7% were non-tuberculosis mycobacteria. Automated systems can have a great impact and thrust on an early diagnosis of tuberculosis allowing an early and appropriate management of the patient and thereby a better disease outcome.

  4. Poor performance of BACTEC NR 730 blood culture system in early detection of Neisseria meningitidis.

    Science.gov (United States)

    Schnur, E R; Azimi, P H; Belchis, D A

    1989-04-01

    During an 8-month period at Children's Hospital, Oakland, Calif., a 9% rate for positive blood culture for children with Neisseria meningitidis meningitis was identified. The blood culture system used in each case was the BACTEC NR 730. This rate seemed significantly lower than previous rates (33 to 55%) (P.R. Dodge and M.N. Swartz, N. Engl. J. Med. 272:1003-1010, 1965; A.L. Hoyne and R.H. Brown, Ann. Intern. Med. 28:248-259, 1948; S. Levin and M.B. Painter, Ann. Intern. Med. 64:1049-1057, 1966). The low rate prompted our study. With 14 test strains, anaerobic and aerobic BACTEC bottles were evaluated for their ability to support and detect the growth of N. meningitidis. Sodium polyanetholesufonate (SPS) and inoculum size, two factors thought to affect the growth of N. meningitidis, were controlled for by use of bottles with and without SPS and by inoculum sizes simulating the magnitudes of bacteremia previously described for children infected with N. meningitidis (L.J. La Scolea, Jr., D. Dryja, T.D. Sullivan, L. Mosovich, N. Ellerstein, and E. Neter, J. Clin. Microbiol. 13:478-482, 1981). BACTEC failed to detect growth in aerobic bottles after 6 h of incubation, while 76 of 80 bottles (95%) showed growth when subcultured. At 24 h, BACTEC detected growth in only 29 of 80 bottles (36%); when subcultured, all 80 cultures grew confluently. At 48 h, BACTEC detected growth in the remaining 53 bottles. BACTEC failed to detect growth in anaerobic bottles at 6 h and at 1, 2, 4, and 5 days of incubation despite growth in subculture. Subcultures from bottles with tryptic soy broth with and without SPS showed growth in 63 to 76 bottles in 6 h and in all bottles after 24 h. The presence of SPS in BACTEC bottles had no effect on growth detection. On the basis of these studies and our clinical experience, we find the NR 730 system to be insensitive and unsuitable for detection of N.meningitidis in

  5. Airborne microwave radiometric imaging system

    Science.gov (United States)

    Guo, Wei; Li, Futang; Zhang, Zuyin

    1999-09-01

    A dual channel Airborne Microwave Radiometric Imaging system (AMRI) was designed and constructed for regional environment mapping. The system operates at 35GHz, which collects radiation at horizontal and vertical polarized channels. It runs at mechanical conical scanning with 45 degrees incidence angle. Two Cassegrain antennas with 1.5 degrees beamwidth scan the scene alternately and two pseudo- color images of two channels are displayed on the screen of PC in real time. Simultaneously, all parameters of flight and radiometric data are sorted in hard disk for post- processing. The sensitivity of the radiometer (Delta) T equals 0.16K. A new displaying method, unequal size element arc displaying method, is used in image displaying. Several experiments on mobile tower were carried out and the images demonstrate that the AMRI is available to work steadily and accurately.

  6. Growth detection failures by the nonradiometric Bactec MGIT 960 mycobacterial culture system.

    Science.gov (United States)

    Peña, Jeremy A; Ferraro, Mary Jane; Hoffman, Colleen G; Branda, John A

    2012-06-01

    Mycobacterial growth in liquid culture can go undetected by automated, nonradiometric growth detection systems. In our laboratory, instrument-negative tubes from the Bactec MGIT 960 system are inspected visually for clumps suggestive of mycobacterial growth, which (if present) are examined by acid-fast smear analysis. A 3-year review demonstrated that ∼1% of instrument-negative MGIT cultures contained mycobacterial growth and that 10% of all cultures yielding mycobacteria were instrument negative. Isolates from instrument-negative MGIT cultures included both tuberculous and nontuberculous mycobacteria.

  7. Poor performance of BACTEC NR 730 blood culture system in early detection of Neisseria meningitidis.

    OpenAIRE

    1989-01-01

    During an 8-month period at Children's Hospital, Oakland, Calif., a 9% rate for positive blood culture for children with Neisseria meningitidis meningitis was identified. The blood culture system used in each case was the BACTEC NR 730. This rate seemed significantly lower than previous rates (33 to 55%) (P.R. Dodge and M.N. Swartz, N. Engl. J. Med. 272:1003-1010, 1965; A.L. Hoyne and R.H. Brown, Ann. Intern. Med. 28:248-259, 1948; S. Levin and M.B. Painter, Ann. Intern. Med. 64:1049-1057, 19...

  8. High prevalence of Kingella kingae in joint fluid from children with septic arthritis revealed by the BACTEC blood culture system.

    Science.gov (United States)

    Yagupsky, P; Dagan, R; Howard, C W; Einhorn, M; Kassis, I; Simu, A

    1992-05-01

    In an effort to improve detection of fastidious organisms, joint fluid aspirates of pediatric patients were inoculated into BACTEC 460 aerobic blood culture bottles, in addition to cultures on solid media. Culture records for the 1988 to 1991 period were reviewed to compare the performance of both methods for the recovery of pathogens. Overall, 216 children underwent a diagnostic joint tap, and 63 specimens grew significant organisms, including Kingella kingae in 14. While both methods were comparable for recovery of usual pathogens, with a single exception, K. kingae isolates were detected by the BACTEC system only. K. kingae appears to be a more common cause of septic arthritis in children than has been previously recognized. The BACTEC blood culture system enhances the recovery of K. kingae from joint fluid and improves bacteriologic diagnosis of pediatric septic arthritis.

  9. Direct Susceptibility Testing of Mycobacterium tuberculosis for Pyrazinamide by Use of the Bactec MGIT 960 System.

    Science.gov (United States)

    Demers, Anne-Marie; Venter, Amour; Friedrich, Sven O; Rojas-Ponce, Gabriel; Mapamba, Daniel; Jugheli, Levan; Sasamalo, Mohammed; Almeida, Deepak; Dorasamy, Afton; Jentsch, Ute; Gibson, Mara; Everitt, Daniel; Eisenach, Kathleen D; Diacon, Andreas H

    2016-05-01

    Pyrazinamide (PZA) is a key antituberculosis drug, yet no rapid susceptibility test is commercially available. PZA drug susceptibility testing (DST) was performed directly on sputum samples from 327 patients and compared with the indirect method by using the Bactec MGIT 960 system in the context of patient screening for participation in a drug trial. Compared to standard indirect PZA DST, direct DST was successful in only 59% of cases, but results obtained were highly accurate and available faster. Agreement between the direct and indirect methods varied from 90 to 100% in each laboratory. The median times for obtaining PZA results from the time when the specimen was collected ranged from 11 to 16 days for the direct test and 18 to 95 days for the indirect test across laboratories. The direct method is accurate and reproducible across laboratories. It can be expected to accelerate results in >50% of cases, but it cannot replace indirect DST for PZA. Phenotypic methods remain the gold standard for DST in drug trials. If future studies can optimize the method to decrease the number of uninterpretable results, direct MGIT DST could be the new phenotypic DST standard for clinical trials, providing more rapid detection of resistance to new drugs in experimental regimens.

  10. Direct Susceptibility Testing of Mycobacterium tuberculosis for Pyrazinamide by Use of the Bactec MGIT 960 System

    Science.gov (United States)

    Demers, Anne-Marie; Venter, Amour; Friedrich, Sven O.; Rojas-Ponce, Gabriel; Mapamba, Daniel; Jugheli, Levan; Sasamalo, Mohammed; Almeida, Deepak; Dorasamy, Afton; Jentsch, Ute; Gibson, Mara; Everitt, Daniel; Diacon, Andreas H.

    2016-01-01

    Pyrazinamide (PZA) is a key antituberculosis drug, yet no rapid susceptibility test is commercially available. PZA drug susceptibility testing (DST) was performed directly on sputum samples from 327 patients and compared with the indirect method by using the Bactec MGIT 960 system in the context of patient screening for participation in a drug trial. Compared to standard indirect PZA DST, direct DST was successful in only 59% of cases, but results obtained were highly accurate and available faster. Agreement between the direct and indirect methods varied from 90 to 100% in each laboratory. The median times for obtaining PZA results from the time when the specimen was collected ranged from 11 to 16 days for the direct test and 18 to 95 days for the indirect test across laboratories. The direct method is accurate and reproducible across laboratories. It can be expected to accelerate results in >50% of cases, but it cannot replace indirect DST for PZA. Phenotypic methods remain the gold standard for DST in drug trials. If future studies can optimize the method to decrease the number of uninterpretable results, direct MGIT DST could be the new phenotypic DST standard for clinical trials, providing more rapid detection of resistance to new drugs in experimental regimens. PMID:26912751

  11. Analysis of positive result of blood culture with BACTEC FX automatic blood culture system and its application%BACTEC FX 全自动血培养仪阳性结果分析及应用评价

    Institute of Scientific and Technical Information of China (English)

    麦珍; 朱雄; 陈海; 李欢; 黎元莉; 黎礼达

    2014-01-01

    目的:对美国BD公司 BACTEC FX全自动血培养仪进行血培养结果分析,并对其临床应用进行评价。方法收集2011年10月-2012年11月医院收治怀疑血流感染患者的血液标本,血培养及鉴定采用美国BD公司BACTEC FX全自动血培养仪和BD Phoenix l00自动细菌鉴定仪。结果2590份血液标本中实际检出阳性标本264份,阳性率10.2%,假阳性率0.15%;264株病原菌中,最快检出时间为2.7 h ,有26.9%在12 h内检出,51.1%在24 h内检出,86.0%在48 h内检出,95.8%在72 h内检出;有40.5%标本厌氧瓶先报警、需氧瓶后报警,34.5%标本需氧瓶先报警、厌氧瓶后报警,11.8%标本需氧瓶先报警、但厌氧瓶不报警。结论美国BD公司BACTEC FX全自动血培养仪操作简便、灵敏度高,提高了细菌检出的阳性率及种类,检出速度更快捷、更准确,为治疗患者赢得了宝贵的时间。%OBJECTIVE To analyze the result of blood culture with BACTEC FX automatic blood culture system of BD company of America and evaluate the clinical application .METHODS The blood specimens were collected from the patients with suspected bloodstream infections who were treated in the hospital from Oct 2011 to Nov 2012 , then the blood culture and the identification of bacteria were performed with the use of BACTEC FX automatic blood culture system of BD company of America and the BD Phoenix l00 automatic bacteria identification system . RESULTS Of the 2 590 blood specimens ,264 were actually cultured positive with the positive rate of 10 .2% and the false positive rate of 0 .15% .Among the 264 strains of isolated pathogens ,the rapidest detection time was 2 .7 hours ,26 .9% of the pathogens were detected within 12 hours ,51 .1% detected within 24 hours ,86 .0% detected within 48 hours ,95 .8% detected within 72 hours .40 .5% of the specimens firstly alarmed in the anaerobic bottles then in the aerobic bottles

  12. BACTEC MGIT960系统在分枝杆菌属菌种初步鉴定及药敏中的应用%Application of BACTEC MGIT 960 system in preliminary identification of mycobacterium and antimicrobial susceptibility test

    Institute of Scientific and Technical Information of China (English)

    孙美兰; 陈晓; 华永川

    2011-01-01

    目的 评价BACTEC MGIT 960系统在分枝杆菌属菌种鉴定及药敏中的应用价值.方法 显微镜观察BACTEC MGIT 960系统分离的162株分枝杆菌在液体培养基中的形态,传统生化和核酸检测法同时鉴定分枝杆菌属菌种,分析细菌形态与菌种之间的关系;应用BACTEC MGIT 960系统对分离的141株结核分枝杆菌进行药敏试验.结果 162株分枝杆菌属在MGIT液体培养基中呈索条状、分枝状、点粒状和分散状4种形态;呈索条状132株分枝杆菌属均为结核分枝杆菌,呈点粒状10株和分散状6株分枝杆菌属均为非结核分枝杆菌;对链霉素、异烟肼、利福平和乙胺丁醇的耐药率分别为9.9%、14.2%、9.2%和6.4%,总耐药率18.4%,同时耐利福平和异烟肼的为8.5%;药敏平均检测时间为9.3 d.结论 BACTEC MGIT960系统可快速将分枝杆菌属初步鉴定为结核分枝杆菌和非结核分枝杆菌,能快速准确获得临床一线抗结核药物的药敏结果.%OBJECTIVE To evaluate the application of BACTEC MGIT 960 system in mycobacterium identification and antimicrobial susceptibility test. METHODS The growth forms of 162 strains in liquid media were observed with microscope. Mycobacterium strains were identified by real-time PCR and traditional biochemistry method.The relation between bacteria form and strain categarly was analyzed. The susceptibility testing of Mycobacterium tuberculosis of 4 major antituberculosis drugs were detected with BACTEC MGIT 960 system. RESULTS Four growth forms of cording, clump and branch, load and scatter, and coccoid form were observed from 162 strains in liquid media. Among these, 132 strains of cording form were all M. tuberculosis, 10 strains of coccoid and 6 strains of load and scatter form were all nontuberculosis mycobacteria. Of the 141 strains mycobacterium tuberculosis complex, the rate of multi-drug resistance (MDR)-TB was 8. 5%, the drug resistance rate of streptomycin, isoniazid, rifampicin and

  13. Addi-Chek filtration, BACTEC, and 10-ml culture methods for recovery of microorganisms from dialysis effluent during episodes of peritonitis.

    Science.gov (United States)

    Males, B M; Walshe, J J; Garringer, L; Koscinski, D; Amsterdam, D

    1986-02-01

    The Addi-Chek (filtration; Millipore Corp., Bedford, Mass.) and BACTEC (radiometric detection of growth in culture media; Johnston Laboratories, Inc., Towson, Md.) systems were compared with the 10-ml culture (centrifugation) method for the recovery of microorganisms from peritoneal dialysate collected from patients with clinical evidence of peritonitis and containing greater than or equal to 200 leukocytes per mm3. Both alternate methods were comparable, and results were not significantly different from those of the conventional 10-ml culture method. All systems were adversely affected in their capacity to recover organisms when dialysates had been collected during periods of antimicrobial therapy.

  14. Optimum Detection Times for Bacteria and Yeast Species with the BACTEC 9120 Aerobic Blood Culture System: Evaluation for a 5-Year Period in a Turkish University Hospital

    Science.gov (United States)

    Durmaz, Gül; Us, Tercan; Aydinli, Aydin; Kiremitci, Abdurrahman; Kiraz, Nuri; Akgün, Yurdanur

    2003-01-01

    We tracked and documented the time of positivity of blood cultures by using the BACTEC 9120 (Becton Dickinson Diagnostic Instrument Systems) blood culture system over a 5-year study period. A 7-day protocol of the incubation period was selected, and a total of 11,156 blood cultures were evaluated. The clinically significant microorganisms (32.95%) were isolated in 3,676 specimens. Gram-positive and -negative bacterial isolation rates were found to be 41.07 and 44.88%, respectively. Yeasts were found in 14.03% of all pathogens. Both the false-positivity and -negativity rates were very low (0.1 and 0.3%, respectively). The mean detection times for all of the pathogens were determined to be 19.45 h. Yeasts, nonfermentative gram-negative bacteria, and Brucella melitensis strains were isolated within 5 days. By taking these data into account, we decided to establish a 5-day-incubation protocol in our laboratory instead of the 7 days that are commonly used. PMID:12574291

  15. Optimum detection times for bacteria and yeast species with the BACTEC 9120 aerobic blood culture system: evaluation for a 5-year period in a Turkish university hospital.

    Science.gov (United States)

    Durmaz, Gül; Us, Tercan; Aydinli, Aydin; Kiremitci, Abdurrahman; Kiraz, Nuri; Akgün, Yurdanur

    2003-02-01

    We tracked and documented the time of positivity of blood cultures by using the BACTEC 9120 (Becton Dickinson Diagnostic Instrument Systems) blood culture system over a 5-year study period. A 7-day protocol of the incubation period was selected, and a total of 11156 blood cultures were evaluated. The clinically significant microorganisms (32.95%) were isolated in 3676 specimens. Gram-positive and -negative bacterial isolation rates were found to be 41.07 and 44.88%, respectively. Yeasts were found in 14.03% of all pathogens. Both the false-positivity and -negativity rates were very low (0.1 and 0.3%, respectively). The mean detection times for all of the pathogens were determined to be 19.45 h. Yeasts, nonfermentative gram-negative bacteria, and Brucella melitensis strains were isolated within 5 days. By taking these data into account, we decided to establish a 5-day-incubation protocol in our laboratory instead of the 7 days that are commonly used.

  16. Selection of chemotherapy for patient treatment utilizing a radiometric versus a cloning system.

    Science.gov (United States)

    Von Hoff, D D; Forseth, B J; Turner, J N; Clark, G M; Warfel, L E

    1986-01-01

    From the 1950s to the 1970s, a number of in vitro systems that measured inhibition of glucose metabolism were used to predict the responsiveness of patients' tumors to chemotherapy. In vitro-in vivo correlations were excellent, with true positive predictions ranging from 68% to 96% and true negative predictions of 95% to 100%. The radiometric system is a new in vitro technique that measures the conversion of 14C-glucose to 14CO2. The system already has been utilized to screen prospective new antineoplastic agents for cytotoxicity. The present study was undertaken to determine if the radiometric system might be used to predict correctly the responsiveness of an individual patient's tumor to single-agent or combination-agent chemotherapy. Fifty-six tumor specimens were divided and tested for drug sensitivity in the radiometric system and a conventional human tumor clonning system. Overall, there was a significant correlation between in vitro and in vivo results for the conventional cloning system (P = 0.03). However, there was no significant relationship between in vitro and in vivo results for the radiometric system. The radiometric system consistently failed to predict the tumor's clinical sensitivity to single agents. A radiometric system is not useful in predicting the responsiveness of a patient's tumor to single agent chemotherapy and is not a replacement for the more biologically attractive human tumor cloning system.

  17. Evaluation of Capilia TB assay for rapid identification of Mycobacterium tuberculosis complex in BACTEC MGIT 960 and BACTEC 9120 blood cultures

    Directory of Open Access Journals (Sweden)

    Muchwa Christopher

    2012-01-01

    Full Text Available Abstract Background Capilia TB is a simple immunochromatographic assay based on the detection of MPB64 antigen specifically secreted by the Mycobacterium tuberculosis complex (MTC. Capilia TB was evaluated for rapid identification of MTC from BACTEC MGIT 960 and BACTEC 9120 systems in Kampala, Uganda. Since most studies have mainly dealt with respiratory samples, the performance of Capilia TB on blood culture samples was also evaluated. Methods One thousand samples from pulmonary and disseminated tuberculosis (TB suspects admitted to the JCRC clinic and the TB wards at Old Mulago hospital in Kampala, Uganda, were cultured in automated BACTEC MGIT 960 and BACTEC 9120 blood culture systems. BACTEC-positive samples were screened for purity by sub-culturing on blood agar plates. Two hundred and fifty three (253 samples with Acid fast bacilli (AFB, 174 BACTEC MGIT 960 and 79 BACTEC 9120 blood cultures were analyzed for presence of MTC using Capilia TB and in-house PCR assays. Results The overall Sensitivity, Specificity, Positive and Negative Predictive values, and Kappa statistic for Capilia TB assay for identification of MTC were 98.4%, 97.6%, 97.7%, 98.4% and 0.96, respectively. Initially, the performance of in-house PCR on BACTEC 9120 blood cultures was poor (Sensitivity, Specificity, PPV, NPV and Kappa statistic of 100%, 29.3%,7%, 100% and 0.04, respectively but improved upon sub-culturing on solid medium (Middlebrook 7H10 to 100%, 95.6%, 98.2%, 100% and 0.98, respectively. In contrast, the Sensitivity and Specificity of Capilia TB assay was 98.4% and 97.9%, respectively, both with BACTEC blood cultures and Middlebrook 7H10 cultured samples, revealing that Capilia was better than in-house PCR for identification of MTC in blood cultures. Additionally, Capilia TB was cheaper than in-house PCR for individual samples ($2.03 vs. $12.59, respectively, and was easier to perform with a shorter turnaround time (20 min vs. 480 min, respectively

  18. An Infrared Focal Plane Array Camera System for Stereo-based Radiometric Imaging

    Science.gov (United States)

    1999-01-01

    Plane Array Calibrated System ( FPACS ) utilizes several features to help ensure radiometric accuracy. Some features help minimize unwanted radiation...possible, and beyond that, the FPACS design ensures that the operator is made aware when operating conditions may lead to radiometric inaccuracies. Primary...components of FPACS are illustrated in Fig. 1. Components are 1) Optics, 2) FPA/Dewar, 3) Camera Electronics, 4) Pan & Tilt platform, and 4) Windows

  19. Evaluation of direct inoculation of the BD PHOENIX system from positive BACTEC blood cultures for both Gram-positive cocci and Gram-negative rods

    Directory of Open Access Journals (Sweden)

    Wolffs Petra FG

    2011-06-01

    Full Text Available Abstract Background Rapid identification (ID and antibiotic susceptibility testing (AST of the causative micro-organism of bloodstream infections result in earlier targeting of antibiotic therapy. In order to obtain results of ID and AST up to 24 hours earlier, we evaluated the accuracy of direct inoculation of the Phoenix system from positive blood cultures (BACTEC by using Serum Separator Tubes to harvest bacteria from positive blood cultures. Results were compared to those of standard Phoenix procedure. Discrepancies between the two methods were resolved by using the API system, E-test or microbroth dilution. Results ID with the direct method was correct for 95.2% of all tested Enterobacteriaceae (n = 42 and 71.4% of Pseudomonas aeruginosa strains (n = 7. AST with the direct method showed a categorical agreement for Gram-negative rods (GNR of 99.0%, with 0.7% minor errors, 0.3% very major errors and no major errors. All antibiotics showed an agreement of >95%. The direct method for AST of Staphylococcus (n = 81 and Enterococcus (n = 3 species showed a categorical agreement of 95.4%, with a minor error rate of 1.1%, a major error rate of 3.1% and a very major error rate of 0.4%. All antibiotics showed an agreement of >90%, except for trimethoprim-sulfamethoxazole and erythromycin. Conclusions Inoculation of Phoenix panels directly from positive blood cultures can be used to report reliable results of AST of GNR a day earlier, as well as ID-results of Enterobacteriaceae. For Staphylococcus and Enterococcus species, results of AST can also be reported a day earlier for all antibiotics, except for erythromycin and trimethoprim-sulfamethoxazole.

  20. Detection of Bacterial and Yeast Species with the Bactec 9120 Automated System with Routine Use of Aerobic, Anaerobic, and Fungal Media▿

    Science.gov (United States)

    Chiarini, Alfredo; Palmeri, Angelo; Amato, Teresa; Immordino, Rita; Distefano, Salvatore; Giammanco, Anna

    2008-01-01

    During the period 2006 and 2007, all blood cultures required by four units at high infective risk and most of those required by other units of the University Hospital of Palermo, Palermo, Italy were performed using a Bactec 9120 automated blood culture system with a complete set of Plus Aerobic/F, Plus Anaerobic/F, and Mycosis IC/F bottles. The aim of the study was to enable the authors to gain firsthand experience of the culture potentialities of the three different media, to obtain information regarding the overall and specific recovery of bacteria and yeasts from blood cultures in the hospital, and to reach a decision as to whether and when to utilize anaerobic and fungal bottles. Although very few bloodstream infections (1.8%) were associated with obligate anaerobes, the traditional routine use of anaerobic bottles was confirmed because of their usefulness, not only in the detection of anaerobes, but also in that of gram-positive cocci and fermentative gram-negative bacilli. In this study, Mycosis IC/F bottles detected 77.4% of all the yeast isolates, 87.0% of yeasts belonging to the species Candida albicans, and 45.7% of nonfermentative gram-negative bacilli resistant to chloramphenicol and tobramycin. In order to improve the diagnosis of fungemia in high-risk patients, the additional routine use of fungal bottles was suggested when, as occurred in the intensive-care unit and in the hematology unit of the University Hospital of Palermo, high percentages of bloodstream infections are associated with yeasts, and/or antibiotic-resistant bacteria and/or multiple bacterial isolates capable of inhibiting yeast growth in aerobic bottles. PMID:18923011

  1. Comparison of BACTEC MYCO/F LYTIC and WAMPOLE ISOLATOR 10 (lysis-centrifugation) systems for detection of bacteremia, mycobacteremia, and fungemia in a developing country.

    Science.gov (United States)

    Archibald, L K; McDonald, L C; Addison, R M; McKnight, C; Byrne, T; Dobbie, H; Nwanyanwu, O; Kazembe, P; Reller, L B; Jarvis, W R

    2000-08-01

    In less-developed countries, studies of bloodstream infections (BSI) have been hindered because of the difficulty and costs of culturing blood for bacteria, mycobacteria, and fungi. During two study periods (study period I [1997] and study period II [1998]), we cultured blood from patients in Malawi by using the BACTEC MYCO/F LYTIC (MFL), ISOLATOR 10 (Isolator), Septi-Chek AFB (SC-AFB), and Septi-Chek bacterial (SC-B) systems. During study period I, blood was inoculated at 5 ml into an MFL bottle, 10 ml into an Isolator tube for lysis and centrifugation, and 10 ml into an SC-B bottle. Next, 0.5-ml aliquots of Isolator concentrate were inoculated into an SC-AFB bottle and onto Middlebrook 7H11 agar slants, chocolate agar slants, and Inhibitory Mold Agar (IMA) slants. During study period II, the SC-B and chocolate agar cultures were discontinued. MFL growth was detected by fluorescence caused by shining UV light (lambda = 365 nm) onto the indicator on the bottom of the bottle. During study period I, 251 blood cultures yielded 44 bacterial isolates. For bacteremia, the MFL was similar to the Isolator concentrate on chocolate agar (34 of 44 versus 27 of 44; P, not significant [NS]), but more sensitive than the SC-B bottle (34 of 44 versus 24 of 44; P = 0.05). For both study periods combined, 486 blood cultures yielded 37 mycobacterial and 13 fungal isolates. For mycobacteremia, the sensitivities of the MFL and Isolator concentrate in the SC-AFB bottle were similar (30 of 37 versus 29 of 37; P, NS); the MFL bottle was more sensitive than the concentrate on Middlebrook agar (30 of 37 versus 15 of 37; P = 0.002). For fungemia, the MFL bottle was as sensitive as the SC-B bottle or Isolator concentrate on chocolate agar or IMA slants. We conclude that the MFL bottle, inoculated with just 5 ml of blood and examined under UV light, provides a sensitive and uncomplicated method for comprehensive detection of BSI in less-developed countries.

  2. A new automatic system for angular measurement and calibration in radiometric instruments.

    Science.gov (United States)

    Marquez, Jose Manuel Andujar; Bohórquez, Miguel Ángel Martínez; Garcia, Jonathan Medina; Nieto, Francisco Jose Aguilar

    2010-01-01

    This paper puts forward the design, construction and testing of a new automatic system for angular-response measurement and calibration in radiometric instruments. Its main characteristics include precision, speed, resolution, noise immunity, easy programming and operation. The developed system calculates the cosine error of the radiometer under test by means of a virtual instrument, from the measures it takes and through a mathematical procedure, thus allowing correcting the radiometer with the aim of preventing cosine error in its measurements.

  3. A New Automatic System for Angular Measurement and Calibration in Radiometric Instruments

    Directory of Open Access Journals (Sweden)

    Jose Manuel Andujar Marquez

    2010-04-01

    Full Text Available This paper puts forward the design, construction and testing of a new automatic system for angular-response measurement and calibration in radiometric instruments. Its main characteristics include precision, speed, resolution, noise immunity, easy programming and operation. The developed system calculates the cosine error of the radiometer under test by means of a virtual instrument, from the measures it takes and through a mathematical procedure, thus allowing correcting the radiometer with the aim of preventing cosine error in its measurements.

  4. Algorithms for Relative Radiometric Correction in Earth Observing Systems Resource-P and Canopus-V

    Science.gov (United States)

    Zenin, V. A.; Eremeev, V. V.; Kuznetcov, A. E.

    2016-06-01

    The present paper has considered two algorithms of the relative radiometric correction of information obtained from a multimatrix imagery instrument of the spacecraft "Resource-P" and frame imagery systems of the spacecraft "Canopus-V". The first algorithm is intended for elimination of vertical stripes on the image that are caused by difference in transfer characteristics of CCD matrices and CCD detectors. Correction coefficients are determined on the basis of analysis of images that are homogeneous by brightness. The second algorithm ensures an acquisition of microframes homogeneous by brightness from which seamless images of the Earth surface are synthesized. Examples of practical usage of the developed algorithms are mentioned.

  5. Analysis of Properties of Reflectance Reference Targets for Permanent Radiometric Test Sites of High Resolution Airborne Imaging Systems

    Directory of Open Access Journals (Sweden)

    Eero Ahokas

    2010-08-01

    Full Text Available Reliable and optimal exploitation of rapidly developing airborne imaging methods requires geometric and radiometric quality assurance of production systems in operational conditions. Permanent test sites are the most promising approach for cost-efficient performance assessment. Optimal construction of permanent radiometric test sites for high resolution airborne imaging systems is an unresolved issue. The objective of this study was to assess the performance of commercially available gravels and painted and unpainted concrete targets for permanent, open-air radiometric test sites under sub-optimal climate conditions in Southern Finland. The reflectance spectrum and reflectance anisotropy and their stability were characterized during the summer of 2009. The management of reflectance anisotropy and stability were shown to be the key issues for better than 5% reflectance accuracy.

  6. Comparison of the conventional diagnostic modalities, bactec culture and polymerase chain reaction test for diagnosis of tuberculosis

    Directory of Open Access Journals (Sweden)

    Negi S

    2005-01-01

    Full Text Available PURPOSE: To evaluate the performance of 65 kDa antigen based PCR assay in clinical samples obtained from pulmonary and extrapulmonary cases of tuberculosis. METHODS: One hundred and fifty six samples were processed for detection of Mycobacterium tuberculosis by ZN smear examination, LJ medium culture, BACTEC radiometric culture and PCR tests. RESULTS: A significant difference was seen in the sensitivities of different tests, the figures being 74.4% for PCR test, 33.79% for ZN smear examination, 48.9% for LJ culture and 55.8% for BACTEC culture (P0.05 as far as specificity of different tests was concerned. PCR test sensitivity in pulmonary and extrapulmonary clinical samples were 72.7% and 75.9% respectively and found to be significantly higher (PM.tuberculosis was 24.03 days by LJ medium culture, 12.89 days by BACTEC culture and less than one day by PCR test. CONCLUSIONS: PCR is a rapid and sensitive method for the early diagnosis of pulmonary and extrapulmonary tuberculosis.

  7. 自动BACTEC 960系统检测结核分枝杆菌药物敏感性的多中心评估分析%Multicentre evaluation of an automated BACTEC 960 system for susceptibility testing of Mycobacterium tuberculosis

    Institute of Scientific and Technical Information of China (English)

    C.M.S.Giampaglia; L.de Souza Fonseca; A.Kritski; 尚美; M.C.Martins; G.B.de Oliveira Vieira; S.A.Vinhas; M.A.da Silva Telles; M.Palaci; A.G.Marsico; D.J.Hadad; F.C.Q.Mello

    2008-01-01

    地点:巴西东南部3个分枝杆菌参比实验室.目的:评估自动化分枝杆菌生长指示管(MGIT)检测结核分枝杆菌药物敏感性的能力.设计:用自动BECTEC MGIT 960(M960)对95份结核分枝杆菌临床分离株进行链霉素(SM),异烟肼(INH)、利福平(RMP)、乙胺丁醇(EMB)的敏感性检测,并与BACTEC 460(B460)、比例法(PM)、抗性比率法(RRM)的检测结果进行比较,其中88株以BACTEC 460、比例法、抗性比率法中的至少两种方法获得一致结果作为最终结果,并与M960的结果相比较.结果:M960与B460的符合率为95.2%,与PM为96.6%,与RRM为93.4%;其中与RRM在SM上符合率最低,与B460在EMB上符合率最低.M960结果与最终结果的符合率为97.9%,INH与RMP的符合率为99.2 0A,SM与EMB的符合率分别为96.2%和96.9%,M960报告结果的平均时间为6.9 d.结论:与比例法和抗性比率法相比,M960显示出了极大的优势,并且有助于患者的治疗.

  8. Radiometric compensation for cooperative distributed multi-projection system through 2-DOF distributed control.

    Science.gov (United States)

    Tsukamoto, Jun; Iwai, Daisuke; Kashima, Kenji

    2015-11-01

    This paper proposes a novel radiometric compensation technique for cooperative projection system based-on distributed optimization. To achieve high scalability and robustness, we assume cooperative projection environments such that 1. each projector does not have information about other projectors as well as target images, 2. the camera does not have information about the projectors either, while having the target images, and 3. only a broadcast communication from the camera to the projectors is allowed to suppress the data transfer bandwidth. To this end, we first investigate a distributed optimization based feedback mechanism that is suitable for the required decentralized information processing environment. Next, we show that this mechanism works well for still image projection, however not necessary for moving images due to the lack of dynamic responsiveness. To overcome this issue, we propose to implement an additional feedforward mechanism. Such a 2 Degree Of Freedom (2-DOF) control structure is well-known in control engineering community as a typical method to enhance not only disturbance rejection but also reference tracking capability, simultaneously. We theoretically guarantee and experimentally demonstrate that this 2-DOF structure yields the moving image projection accuracy that is overwhelming the best achievable performance only by the distributed optimization mechanisms.

  9. Application of Fluorescent Real-time PCR and BACTEC MGIT 960 Rapid Cultivation System in Diagnosis of Sputum Smear-negative Pulmonary Tuberculosis Without History of Antituberculous Treatment%实时荧光PCR与BACTEC MGIT960快速培养在初治痰涂片阴性未受抗结核治疗的肺结核诊断中的应用

    Institute of Scientific and Technical Information of China (English)

    蔡常辉; 梁连辉; 曾桂云; 王锦萍

    2012-01-01

    目的:探讨实时荧光PCR与BACTEC MGIT 960分枝杆菌快速培养(快速培养法)准确诊断初治痰涂片阴性(涂阴)且未经受抗结核治疗的肺结核可能性.方法:实验组:368份临床诊断活动性肺结核患者的初治涂片阴性痰标本;对照组:55份非结核性肺部疾病患者的痰液标本.用FQ-PCR技术、快速培养法及改良罗氏培养参考法对两组标本进行分析,观察指标为TB-DNA和结核菌阳性率.结果:实验组和对照标本中FQ-PCR技术、快速培养法和改良罗氏培养参考法检测的TB-DNA或结核菌阳性率分别为:16.85%、23.37%、22.01%和1%、0%、0%.三种方法分别平均耗时3h、9.6d和28d.以改良罗氏培养参考法为参照,FQ-PCR法和快速培养法的敏感性分别为69.1%和100%;特异性分别为91.2%和98.6%.结论:FQ-PCR和快速培养法均能提高初治涂阴肺结核患者的早期确诊率,但FQ-PCR的敏感性尚需进一步提高.%Objective To study on the possibility to improve the rapid diagnosis rate of smear negative pulmonary tuberculosis without history of antituberculous treatment by the fluorescent real-time PCR ( FQ-PCR) and BACTEC MGIT 960 branch bacili rapid detection system (fast cultivation method).Methods The experimental group: 368 sputum samples from patients with smear negative active pulmonary tuberculosis without history of antituberculous treatment g the control group g 55 sputum samples from patients with pulmonary diseases other than tuberculosis.The positive rates of TB-DNA or Mycobacterium tuberculosis were detected using FQ-PCR, fast cultivation or modified Roche reference method.Results The positive rates of TB-DNA or tuberculosis bacterium of the experimental and control groups detecting by FQ-PCR technology, fast cultivation or modified Roche reference method were 16.85% , 23.37% , 22.01% and 1% , 0% , 0% , respectively.The average time-consuming were 3 hours, 9.8 days and 28 days.When the modified Roche reference method was

  10. Challenges in the implementation of a quality management system applied to radiometric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Danila C.S.; Bonifacio, Rodrigo L.; Nascimento, Marcos R.L.; Silva, Nivaldo C. da; Taddei, Maria Helena T., E-mail: danilacdias@gmail.com [Comissao Nacional de Energia Nuclear (LAPOC/CNEN-MG), Pocos de Caldas, MG (Brazil). Laboratorio de Pocos de Caldas

    2015-07-01

    The concept of quality in laboratories has been well established as an essential factor in the search for reliable results. Since its first version published (1999), the ISO/IEC 17025 has been applied in the industrial and research fields, in a wide range of laboratorial analyses. However, the implementation of a Quality Management System still poses great challenges to institutions and companies. The purpose of this work is to expose the constraints related to the implementation of ISO/IEC 17025 applied to analytical assays of radionuclides, accomplished by studying the case of the Pocos de Caldas Laboratory of the Brazilian Commission for Nuclear Energy. In this lab, a project of accreditation of techniques involving determination of radionuclides in water, soil, sediment and food samples has been conducted since 2011. The challenges presented by this project arise from the administrative view, where the governmental nature of the institution translates into unlevelled availability resources and the organizational view, whereas QMS requires inevitable changes in the organizational culture. It is important to point out that when it comes to accreditation of analysis involving radioactive elements, many aspects must be treated carefully due to the their very particular nature. Among these concerns are the determination of analysis uncertainties, accessibility to international proficiency studies, international radioactive samples and CRM transportation, the study of parameters on the validation of analytical methods and the lack of documentation and specialized personnel regarding quality at radiometric measurements. Through an effective management system, the institution is overcoming these challenges, moving toward the ISO/IEC 17025 accreditation. (author)

  11. Statistical synthesis of multiantenna ultrawideband radiometric complexes

    Science.gov (United States)

    Volosyuk, V. K.; Kravchenko, V. F.; Pavlikov, V. V.; Pustovoit, V. I.

    2016-04-01

    An optimum signal processing algorithm of radiometric imaging has been synthesized for the first time using multiantenna ultrawideband (UWB) radiometric complexes (RMCs). Radiometric images (RMI) are interpreted physically as intensity depending on the angular coordinates or the spectral radio brightness averaged in the operation frequency band. In accordance with the synthesized algorithm, a structural scheme of ultrawideband radiometric complexes has been developed. An analytical expression for the ambiguity function of radiometric complexes has been obtained. The ambiguity function is modeled in the case of processing narrowband and ultrawideband radiometric signals. As follows from the analysis of the results, new elements of the theory of optimum processing of UWB radiometric signals with the involvement of multielement antenna systems are an important tool in creating highly accurate, biologically and ecologically safe complexes for studying various media and objects.

  12. Evaluación comparativa del método automatizado BACTEC MGIT 960 con el método de las proporciones para determinar susceptibilidad a drogas antituberculosas en Chile Comparative evaluation of automated BACTEC MGIT 960 for testing susceptibility of Mycobacterium tuberculosis to antituberculous drugs in Chile

    Directory of Open Access Journals (Sweden)

    Silvana Piffardi F.

    2004-07-01

    Full Text Available Se comparó el método automatizado BACTEC MGIT 960 con el método de las proporciones (MP para la determinación de la susceptibilidad a drogas anti tuberculosas de 275 cepas de Mycobacterium tuberculosis aisladas de 270 pacientes en Chile entre 2001 y 2003. La concordancia del BACTEC MGIT 960 con el MP según las drogas estudiadas fue de: 97,0% para estreptomicina, 98,9% para rifampicina, 97,4% para isoniazida y 98,1% para etambutol. Los porcentajes globales de resistencia a drogas anti-TBC de las 275 cepas de M. tuberculosis estudiadas, determinados por el BACTEC MGIT960 y el MP fueron de 25,1% y 20,4% respectivamente. Esta diferencia no fue estadísticamente significativa. El BACTEC MGIT 960 dió como resistentes 17 cepas que fueron sensibles por el MP, sobrestimándose por este método la información de cepas resistentes. El BACTEC MGIT 960 en nuestra experiencia presentó una muy buena concordancia con el MP permitiendo un notable acortamiento en el tiempo de obtención de los resultados. Sin embargo, la mayor determinación de cepas resistentes por parte de este método requiere de nuevos análisis que permitan conocer los factores que inciden en este fenómenoThe automated BACTEC MGIT 960 system was compared with the method of proportion (MP for testing susceptibility of Mycobacterium tuberculosis to antituberculous drugs. 275 strains of M. tuberculosis isolated in Chile from 270 patients between 2001 and 2003 were tested. Concordance of BACTEC MGIT 960 with MP depending on the antituberculous drug tested was the following: 97.0% for streptomycin, 98,9% for rifampicin, 97,4% for isoniazid and 98,1% for ethambutol. Total resistance to antituberculous drugs of the 275 strains of M. tuberculosis tested varied from 20.4 % assessed by MP to 25.1% evaluated by BACTEC MGIT 960. These differences were not significant (p: ns; t test. BACTEC MGIT 960 yielded 17 strains as resistant. These same 17 strains were detected as sensitives by MP

  13. Vicarious Radiometric Calibration of a Multispectral Camera on Board an Unmanned Aerial System

    Directory of Open Access Journals (Sweden)

    Susana Del Pozo

    2014-02-01

    Full Text Available Combinations of unmanned aerial platforms and multispectral sensors are considered low-cost tools for detailed spatial and temporal studies addressing spectral signatures, opening a broad range of applications in remote sensing. Thus, a key step in this process is knowledge of multi-spectral sensor calibration parameters in order to identify the physical variables collected by the sensor. This paper discusses the radiometric calibration process by means of a vicarious method applied to a high-spatial resolution unmanned flight using low-cost artificial and natural covers as control and check surfaces, respectively.

  14. Alaska Radiometric Ages

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Alaska Radiometric Age file is a database of radiometric ages of rocks or minerals sampled from Alaska. The data was collected from professional publications...

  15. Hierarchical Bayesian Data Analysis in Radiometric SAR System Calibration: A Case Study on Transponder Calibration with RADARSAT-2 Data

    Directory of Open Access Journals (Sweden)

    Björn J. Döring

    2013-12-01

    Full Text Available A synthetic aperture radar (SAR system requires external absolute calibration so that radiometric measurements can be exploited in numerous scientific and commercial applications. Besides estimating a calibration factor, metrological standards also demand the derivation of a respective calibration uncertainty. This uncertainty is currently not systematically determined. Here for the first time it is proposed to use hierarchical modeling and Bayesian statistics as a consistent method for handling and analyzing the hierarchical data typically acquired during external calibration campaigns. Through the use of Markov chain Monte Carlo simulations, a joint posterior probability can be conveniently derived from measurement data despite the necessary grouping of data samples. The applicability of the method is demonstrated through a case study: The radar reflectivity of DLR’s new C-band Kalibri transponder is derived through a series of RADARSAT-2 acquisitions and a comparison with reference point targets (corner reflectors. The systematic derivation of calibration uncertainties is seen as an important step toward traceable radiometric calibration of synthetic aperture radars.

  16. Improved Thermal-Vacuum Compatible Flat Plate Radiometric Souce for System-Level Testing of Optical Sensors

    Science.gov (United States)

    Schwarz, Mark A.; Kent, Craig J.; Bousquet, Robert; Brown, Steven W.

    2015-01-01

    This work describes the development of an improved vacuum compatible flat plate radiometric source used for characterizing and calibrating remote optical sensors, in situ, throughout their testing period. The original flat plate radiometric source was developed for use by the VIIRS instrument during the NPOESS Preparatory Project (NPP). Following this effort, the FPI has had significant upgrades in order to improve both the radiometric throughput and uniformity. Results of the VIIRS testing with the reconfigured FPI are reported and discussed.

  17. MSFIA-LOV system for {sup 226}Ra isolation and pre-concentration from water samples previous radiometric detection

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Rogelio [Environmental Radioactivity Laboratory (LaboRA), University of the Balearic Islands, Cra. Valldemossa km 7.5, 07122, Palma (Spain); Environment and Energy Department, Advanced Materials Research Center (CIMAV) S.C., Miguel de Cervantes 120, Chihuahua, Chih. 31136 (Mexico); Borràs, Antoni [Environmental Radioactivity Laboratory (LaboRA), University of the Balearic Islands, Cra. Valldemossa km 7.5, 07122, Palma (Spain); Leal, Luz [Environment and Energy Department, Advanced Materials Research Center (CIMAV) S.C., Miguel de Cervantes 120, Chihuahua, Chih. 31136 (Mexico); Cerdà, Víctor [Department of Chemistry, University of the Balearic Islands, Cra. Valldemossa km 7.5, 07122, Palma (Spain); Ferrer, Laura, E-mail: laura.ferrer@uib.es [Environmental Radioactivity Laboratory (LaboRA), University of the Balearic Islands, Cra. Valldemossa km 7.5, 07122, Palma (Spain)

    2016-03-10

    An automatic system based on multisyringe flow injection analysis (MSFIA) and lab-on-valve (LOV) flow techniques for separation and pre-concentration of {sup 226}Ra from drinking and natural water samples has been developed. The analytical protocol combines two different procedures: the Ra adsorption on MnO{sub 2} and the BaSO{sub 4} co-precipitation, achieving more selectivity especially in water samples with low radium levels. Radium is adsorbed on MnO{sub 2} deposited on macroporous of bead cellulose. Then, it is eluted with hydroxylamine to transform insoluble MnO{sub 2} to soluble Mn(II) thus freeing Ra, which is then coprecipitated with BaSO{sub 4}. The {sup 226}Ra can be directly detected in off-line mode using a low background proportional counter (LBPC) or through a liquid scintillation counter (LSC), after performing an on-line coprecipitate dissolution. Thus, the versatility of the proposed system allows the selection of the radiometric detection technique depending on the detector availability or the required response efficiency (sample number vs. response time and limit of detection). The MSFIA-LOV system improves the precision (1.7% RSD), and the extraction frequency (up to 3 h{sup −1}). Besides, it has been satisfactorily applied to different types of water matrices (tap, mineral, well and sea water). The {sup 226}Ra minimum detectable activities (LSC: 0.004 Bq L{sup −1}; LBPC: 0.02 Bq L{sup −1}) attained by this system allow to reach the guidance values proposed by the relevant international agencies e.g. WHO, EPA and EC. - Highlights: • Automatic, rapid and selective method for {sup 226}Ra extraction/pre-concentration from water. • MSFIA-LOV system performs a sample clean-up prior to {sup 226}Ra radiometric detection. • {sup 226}Ra sample preparation allows using two radiometric detectors (LBPC and LSC). • Environmental levels of {sup 226}Ra are easily quantified. • High sensitivity and selectivity are achieved, reaching the

  18. Acridine orange staining as a replacement for subculturing of false-positive blood cultures with the BACTEC NR 660.

    OpenAIRE

    Hunter, J.S.

    1993-01-01

    Despite the customization of growth index thresholds within individual laboratories, use of the BACTEC NR 660 automated blood culture system results in a number of false-positive cultures. The results of Gram staining, acridine orange staining, and subculturing to agar media were evaluated on 210 false-positive blood cultures over a 6-month period. Inclusion of acridine orange staining in the routine workup of false-positive blood cultures can eliminate the need for subculturing.

  19. Comparison of radiometric scaling laws and detailed wave-optics simulations for designing ground-based laser satellite-illumination and receiver systems

    Science.gov (United States)

    Bush, Keith A.

    2002-12-01

    Ground-based optical transmitter and receiver systems designed for active imaging, active tracking and laser ranging of satellites in Earth orbit are very sensitive to physical conditions limiting the radiometric returns for achieving these measurements. The initial design of these systems is often based on simple radiometric scaling laws that provide estimates of average radiometric returns and are derived from experimental data or from more complex theoretical calculations. While these laws are quite useful, it is often easy to lose sight of the initial assumptions made in their formulation, and hence, the limits of their accuracy for designing certain systems. The objective of this paper is to review some of the commonly used radiometric scaling laws for active systems and to establish guidelines for their use based on comparisons of their predictions with results from detailed wave-optics simulations for different system design requirements and physical conditions. The combined effects of laser and transmitter beam parameters, wave-front aberrations, atmospheric turbulence, and satellite optical cross-section are considered.

  20. XRTD: An X-Windows based, real-time radiometric display and analysis system

    Science.gov (United States)

    Pollmeier, Vincent M.

    1993-01-01

    XRTD is a graphical user interface (GUI) based tool for monitoring real time radiometric spacecraft data. The tool is designed to allow the navigation analyst to both view and analyze the characteristics of Doppler and ranging data. This capability is critical if ground personnel wish to verify the correct performance of ongoing maneuvers. The raw tracking data is transferred from Deep Space Network (DSN) computers to a local workstation, where the predicted value for the observable is subtracted from the actual observed value to create a residual. The tool then allows the navigation analyst to rescale and replot the data using simple GUI techniques. The navigator may then perform a number of data analysis and modeling techniques on the resulting residuals to allow for the real time characterization of spacecraft events. These techniques include the modeling of maneuvers, the compression and differencing of data, and Fast Fourier transforms of the data. This tool has shortened the amount of time required for initial characterization of spacecraft maneuvers from several hours to a few minutes.

  1. Improved thermal-vacuum compatible flat plate radiometric source for system-level testing of remote optical sensors

    Science.gov (United States)

    Schwarz, Mark A.; Kent, Craig J.; Bousquet, Robert; Brown, Steven W.

    2016-09-01

    In this work, we describe an improved thermal-vacuum compatible flat plate radiometric source which has been developed and utilized for the characterization and calibration of remote optical sensors. This source is unique in that it can be used in situ, in both ambient and thermal-vacuum environments, allowing it to follow the sensor throughout its testing cycle. The performance of the original flat plate radiometric source was presented at the 2009 SPIE1. Following the original efforts, design upgrades were incorporated into the source to improve both radiometric throughput and uniformity. The pre-thermal-vacuum (pre-TVAC) testing results of a spacecraft-level optical sensor with the improved flat plate illumination source, both in ambient and vacuum environments, are presented. We also briefly discuss potential FPI configuration changes in order to improve its radiometric performance. Keywords: Calibration, radiometry, remote sensing, source.

  2. RADIOMETRIC PROPERTIES OFAGRICULTURAL PERMEABLE COVERINGS

    Directory of Open Access Journals (Sweden)

    Sergio Castellano

    2010-06-01

    Full Text Available Nets are commonly used for agricultural applications. However, only little is known about the radiometric properties of net types and how to influence them. In order to investigate the influence of net construction parameters on their radiometric properties, a set of radiometric tests were performed on 45 types of agricultural nets. Laboratory tests on large size net samples was performed using a large and a small integrating sphere. Open field radiometric test were carried out by means of an experimental set up (120x120x50 cm and a full scale shade house. Small differences (less than 5% occurred between laboratory and open field tests. Results highlighted that the porosity and the mesh size, combined with the colour and secondarily, with the fabric and the kind of threads of the net influenced the shading performance of the net. The colour influenced the spectral distribution of the radiation passing through the net absorbing its complementary colours. Since nets are three-dimensional structures the transmissivity of direct light under different angles of incident of solar radiation changes when installed in the warp or weft direction. Transmissivity could be considered one of the main parameters involved in the agronomic performances of the netting system.

  3. Survey of emissivity measurement by radiometric methods.

    Science.gov (United States)

    Honner, M; Honnerová, P

    2015-02-01

    A survey of the state of the art in the field of spectral directional emissivity measurements by using radiometric methods is presented. Individual quantity types such as spectral, band, or total emissivity are defined. Principles of emissivity measurement by various methods (direct and indirect, and calorimetric and radiometric) are discussed. The paper is focused on direct radiometric methods. An overview of experimental setups is provided, including the design of individual parts such as the applied reference sources of radiation, systems of sample clamping and heating, detection systems, methods for the determination of surface temperature, and procedures for emissivity evaluation.

  4. MSFIA-LOV system for (226)Ra isolation and pre-concentration from water samples previous radiometric detection.

    Science.gov (United States)

    Rodríguez, Rogelio; Borràs, Antoni; Leal, Luz; Cerdà, Víctor; Ferrer, Laura

    2016-03-10

    An automatic system based on multisyringe flow injection analysis (MSFIA) and lab-on-valve (LOV) flow techniques for separation and pre-concentration of (226)Ra from drinking and natural water samples has been developed. The analytical protocol combines two different procedures: the Ra adsorption on MnO2 and the BaSO4 co-precipitation, achieving more selectivity especially in water samples with low radium levels. Radium is adsorbed on MnO2 deposited on macroporous of bead cellulose. Then, it is eluted with hydroxylamine to transform insoluble MnO2 to soluble Mn(II) thus freeing Ra, which is then coprecipitated with BaSO4. The (226)Ra can be directly detected in off-line mode using a low background proportional counter (LBPC) or through a liquid scintillation counter (LSC), after performing an on-line coprecipitate dissolution. Thus, the versatility of the proposed system allows the selection of the radiometric detection technique depending on the detector availability or the required response efficiency (sample number vs. response time and limit of detection). The MSFIA-LOV system improves the precision (1.7% RSD), and the extraction frequency (up to 3 h(-1)). Besides, it has been satisfactorily applied to different types of water matrices (tap, mineral, well and sea water). The (226)Ra minimum detectable activities (LSC: 0.004 Bq L(-1); LBPC: 0.02 Bq L(-1)) attained by this system allow to reach the guidance values proposed by the relevant international agencies e.g. WHO, EPA and EC.

  5. Usefulness of systematic in situ gamma-ray surveys in the radiometric characterization of natural systems with poorly contrasting geological features (examples from NE of Portugal)

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Pedro [Instituto Tecnologico e Nuclear, Unidade de Proteccao e Seguranca Radiologica, Estrada Nacional no10, Apartado 21, 2686-953 Sacavem (Portugal); Departamento de Geologia e CeGUL, Faculdade de Ciencias da Universidade de Lisboa, Campo Grande, Edificio C6, 1749-016 Lisboa (Portugal); Mateus, Antonio [Departamento de Geologia e CeGUL, Faculdade de Ciencias da Universidade de Lisboa, Campo Grande, Edificio C6, 1749-016 Lisboa (Portugal); Paiva, Isabel, E-mail: ipaiva@itn.p [Instituto Tecnologico e Nuclear, Unidade de Proteccao e Seguranca Radiologica, Estrada Nacional no10, Apartado 21, 2686-953 Sacavem (Portugal); Trindade, Romao [Instituto Tecnologico e Nuclear, Unidade de Proteccao e Seguranca Radiologica, Estrada Nacional no10, Apartado 21, 2686-953 Sacavem (Portugal); Santos, Pedro [Instituto Tecnologico e Nuclear, Unidade de Proteccao e Seguranca Radiologica, Estrada Nacional no10, Apartado 21, 2686-953 Sacavem (Portugal); Departamento de Geologia e CeGUL, Faculdade de Ciencias da Universidade de Lisboa, Campo Grande, Edificio C6, 1749-016 Lisboa (Portugal)

    2011-02-15

    This paper focuses on the starting point of various studies that are being carried out in two possible locations being considered to host a hypothetical site for a repository for low and intermediate level radioactive waste (LILW) produced in Portugal in compliance with international requirements on the long-term safety of this kind of repository. Previous studies concerning the geology of the much larger geographical areas where these locations are included were fundamental in the choice of these locations and for the design of the survey strategy. One of the fundamental assessment studies during the site-selection is the overall radiological characterization of the locations and its relation to the geology. This paper pretends to show the adequability of using a fast and reasonably inexpensive survey technique such as in situ gamma-ray portable detectors, to access the radiometric response of the systems in study by providing the radiometric mapping of the areas. The existence of adequate radiometric maps represents a critical pre-requisite to constrain both the number and spatial distribution of samples to be collected for further analysis, sustaining as well the subsequent extrapolation of results needed to fully characterise the surveyed system. Both areas were surveyed using portable gamma-ray spectrometers with NaI(Tl) detectors. In situ gamma-ray measurements have clearly shown not only the poorly contrasting geological features, but also their differences representing: (i) a deformed/metamorphosed ophiolite complex and (ii) a monotonous meta-sedimentary sequence. The radiometric maps obtained have show heterogeneities that reflect mostly changes in rock-forming mineral assemblages, even in the presence of small variations of gamma radiation. These maps support objective criteria about the number/distribution of samples to be collected for subsequent comprehensive studies and reinforce the valuable contribution of in situ gamma spectrometry to assess, in

  6. Determination of in vitro susceptibility of Mycobacterium tuberculosis to cephalosporins by radiometric and conventional methods

    Energy Technology Data Exchange (ETDEWEB)

    Heifets, L.B.; Iseman, M.D.; Cook, J.L.; Lindholm-Levy, P.J.; Drupa, I.

    1985-01-01

    Among eight cephalosporins and cephamycins tested in preliminary in vitro screening against Mycobacterium tuberculosis, the most promising for further study was found to be ceforanide, followed by ceftizoxime, cephapirin, and cefotaxime. Moxalactam, cefoxitin, cefamandole, and cephalothin were found to be not active enough against M. tuberculosis to be considered for further in vitro studies. The antibacterial activity of various ceforanide concentrations was investigated by three methods: (i) the dynamics of radiometric readings (growth index) in 7H12 broth; (ii) the number of CFU in the same medium; and (iii) the proportion method on 7H11 agar plates. There was a good correlation among the results obtained with these methods. The MIC for most strains ranged from 6.0 to 25.0 micrograms/ml. The BACTEC radiometric method is a reliable, rapid, and convenient method for preliminary screening and determination of the level of antibacterial activity of drugs not commonly used against M. tuberculosis.

  7. Radiometric instrumentation and measurements guide for photovoltaic performance testing

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D.

    1997-04-01

    The Photovoltaic Module and Systems Performance and Engineering Project at the National Renewable Energy Laboratory performs indoor and outdoor standardization, testing, and monitoring of the performance of a wide range of photovoltaic (PV) energy conversion devices and systems. The PV Radiometric Measurements and Evaluation Team (PVSRME) within that project is responsible for measurement and characterization of natural and artificial optical radiation which stimulates the PV effect. The PV manufacturing and research and development community often approaches project members for technical information and guidance. A great area of interest is radiometric instrumentation, measurement techniques, and data analysis applied to understanding and improving PV cell, module, and system performance. At the Photovoltaic Radiometric Measurements Workshop conducted by the PVSRME team in July 1995, the need to communicate knowledge of solar and optical radiometric measurements and instrumentation, gained as a result of NREL`s long-term experiences, was identified as an activity that would promote improved measurement processes and measurement quality in the PV research and manufacturing community. The purpose of this document is to address the practical and engineering need to understand optical and solar radiometric instrument performance, selection, calibration, installation, and maintenance applicable to indoor and outdoor radiometric measurements for PV calibration, performance, and testing applications. An introductory section addresses radiometric concepts and definitions. Next, concepts essential to spectral radiometric measurements are discussed. Broadband radiometric instrumentation and measurement concepts are then discussed. Each type of measurement serves as an important component of the PV cell, module, and system performance measurement and characterization process.

  8. Development and validation of a liquid medium (M7H9C) for routine culture of Mycobacterium avium subsp. paratuberculosis to replace modified Bactec 12B medium.

    Science.gov (United States)

    Whittington, Richard J; Whittington, Ann-Michele; Waldron, Anna; Begg, Douglas J; de Silva, Kumi; Purdie, Auriol C; Plain, Karren M

    2013-12-01

    Liquid culture of Mycobacterium avium subsp. paratuberculosis from clinical samples, such as feces, is the most sensitive antemortem test for the diagnosis of Johne's disease in ruminants. In Australia, New Zealand, the United States, and some other countries, the Bactec 460 system with modified Bactec 12B medium (Becton, Dickinson) has been the most commonly used liquid culture system, but it was discontinued in 2012. In this study, a new liquid culture medium, M7H9C, was developed. It consists of a Middlebrook 7H9 medium base with added Casitone, albumin, dextrose, catalase, egg yolk, mycobactin J, and a cocktail of antibiotics. We found that polyoxyethylene stearate (POES) was not essential for the cultivation of M. avium subsp. paratuberculosis in either the Bactec 12B or the M7H9C medium. The limit of detection determined using pure cultures of the C and S strains of M. avium subsp. paratuberculosis was 7 bacilli per 50 μl inoculum in the two media. The new medium was validated using 784 fecal and tissue samples from sheep and cattle, >25% of which contained viable M. avium subsp. paratuberculosis. Discrepant results for the clinical samples between the two media were mostly associated with samples that contained <10 viable bacilli per gram, but these results were relatively uncommon, and the performances of the two media were not significantly different. M7H9C medium was less than half the cost of the Bactec 12B medium and did not require regular examination during incubation, but a confirmatory IS900 PCR test had to be performed on every culture after the predetermined incubation period.

  9. Radiometric Dating Does Work!

    Science.gov (United States)

    Dalrymple, G. Brent

    2000-01-01

    Discusses the accuracy of dating methods and creationist arguments that radiometric dating does not work. Explains the Manson meteorite impact and the Pierre shale, the ages of meteorites, the K-T tektites, and dating the Mount Vesuvius eruption. (Author/YDS)

  10. Photovoltaics radiometric issues and needs

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D.R. [National Renewable Energy Laboratory, Golden, CO (United States)

    1995-11-01

    This paper presents a summary of issues discussed at the photovoltaic radiometric measurements workshop. Topics included radiometric measurements guides, the need for well-defined goals, documentation, calibration checks, accreditation of testing laboratories and methods, the need for less expensive radiometric instrumentation, data correlations, and quality assurance.

  11. The Influence of Colour on Radiometric Performances of Agricultural Nets

    NARCIS (Netherlands)

    Castellano, S.; Hemming, S.; Russo, G.

    2008-01-01

    The whole construction parameters of the net, combined with the shape of the structure, the position of the sun and the sky conditions affect the radiometric performance of the permeable covering system. The radiometric properties of the permeable membrane influence the quality of the agricultural p

  12. Radiometric studies of Mycobacterium lepraemurium.

    Science.gov (United States)

    Camargo, E E; Larson, S M; Tepper, B S; Wagner, H N

    1976-01-01

    The radiometric method has been applied for studying the metabolism of M. lepraemurium and the conditions which might force or inhibit its metabolic activity in vitro. These organisms assimilate and oxidize (U-14C) glycerol, and (U-14C) acetate, but are unable to oxidize (U-14C) glucose, (U-14C) pyruvate, (U-14C) glycine and 14C-formate. When incubated at 30 degrees C M. lepraemurium oxidizes (U-14C) acetate to 14CO2 faster than 37 degrees C. The smae effect was observed with increasing concentrations of polysorbate 80 (Tween 80), or the 14C-substrate. No change in metabolic rate was observed when the organisms were kept at -20 degrees C for 12 days. Although tried several times, it was not possible to demonstrate any "inhibitors" of bacterial metabolism in the reaction system. The radiometric method seems to be an important tool for studying metabolic pathways and the influence of physical and biochemical factors on the metabolism of M. lepraemurium in vitro.

  13. Radiometric studies of mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Edwaldo E. Camargo

    1987-02-01

    Full Text Available An in vitro assay system that included automated radiometric quantification of 14CO2 released as a result of oxidation of 14C- substrates was applied for studying the metabolic activity of M. tuberculosis under various experimental conditions. These experiments included the study of a mtabolic pathways, b detection times for various inoculum sizes, c effect of filtration on reproducibility of results, d influence of stress environment e minimal inhibitory concentrations for isoniazid, streptomycin, ethambutol and rifampin, and f generation times of M. tuberculosis and M. bovis. These organisms were found to metabolize 14C-for-mate, (U-14C acetate, (U-14C glycerol, (1-14C palmitic acid, 1-14C lauric acid, (U-14C L-malic acid, (U-14C D-glucose, and (U-14C D-glucose, but not (1-14C L-glucose, (U-14C glycine, or (U-14C pyruvate to 14CO2. By using either 14C-for-mate, (1-14C palmitic acid, or (1-14C lauric acid, 10(7 organisms/vial could be detected within 24 48 hours and as few as 10 organisms/vial within 16-20 days. Reproducible results could be obtained without filtering the bacterial suspension, provided that the organisms were grown in liquid 7H9 medium with 0.05% polysorbate 80 and homogenized prior to the study. Drugs that block protein synthesis were found to have lower minimal inhibitory concentrations with the radiometric method when compared to the conventional agar dilution method. The mean generation time obtained for M. bovis and different strains of M. tuberculosis with various substrates was 9 ± 1 hours.

  14. Early detection of Mycobacterium tuberculosis complex in BACTEC MGIT cultures using nucleic acid amplification.

    Science.gov (United States)

    Lin, S Y; Hwang, S C; Yang, Y C; Wang, C F; Chen, Y H; Chen, T C; Lu, P L

    2016-06-01

    We evaluated the application of nucleic acid amplification (NAA) in liquid cultures for the early detection of Mycobacterium tuberculosis. The Cobas TaqMan MTB test, IS6110 real-time PCR, and hsp65 PCR-restriction fragment length polymorphism (RFLP) analysis were used to detect BACTEC MGIT 960 (MGIT) cultures on days 3, 5, 7, and 14. The procedure was initially tested with a reference strain, H37Rv (ATCC 27294). Subsequently, 200 clinical specimens, including 150 Acid Fast bacillus (AFB) smear-positive and 50 AFB smear-negative samples, were examined. The Cobas TaqMan MTB test and IS6110-based PCR analysis were able to detect M. tuberculosis after 1 day when the inoculum of H37Rv was >3 x 10(-2) CFU/ml. After a 5-day incubation in the MGIT system, all three NAA assays had a positive detection regardless of the inoculum size. After a 1-day incubation of the clinical specimens in the MGIT system, the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for the Cobas TaqMan MTB assay were 70.2%, 100%, 100%, and 82.3% respectively. For IS6110-based PCR analysis, these values were 63.1%, 100%, 100%, and 78.9%, and were 88.1%, 100%, 100%, and 92.1% respectively for hsp65 PCR-RFLP analysis. After a 3-day incubation, the specificity and PPV were 100% for all three NAA tests; the Cobas TaqMan MTB assay had the best sensitivity (97.6%) and NPV (98.3%). The sensitivity, specificity, PPV, and NPV for conventional culture analysis were 98.8%, 100%, 100%, and 99.1%. Thus, NAA may be useful for the early detection of M. tuberculosis after 3 days in MGIT.

  15. A data format 'EUMELDAT: European Material, Energetic and Luminous Data' for luminous and radiometric properties of daylighting systems; EUMELDAT ''Ein europaeisches Datenformat fuer strahlungsphysikalische und lichttechnische Kennzahlen von Tageslichtsystemen

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, B.; Rosemann, A.; Aydinli, S.; Kaase, H. [Technische Univ. Berlin (Germany). Fachgebiet Lichttechnik

    2003-07-01

    This paper describes a data format (EUMELDAT: European Material, Energetic and Luminous Data) for luminous and radiometric properties of daylighting systems for different light incidences and observer directions. The data format is based on a coordinate system whose properties and advantages are discussed in this paper. The technical description of the data format can be found on the web page of the lighting institute (http://ntife.ee.tu-berlin.de/Lichttechnik/Eumeldat.html). (orig.)

  16. Mise en pratique for the definition of the candela and associated derived units for photometric and radiometric quantities in the International System of Units (SI)

    Science.gov (United States)

    Zwinkels, Joanne; Sperling, Armin; Goodman, Teresa; Campos Acosta, Joaquin; Ohno, Yoshi; Rastello, Maria Luisa; Stock, Michael; Woolliams, Emma

    2016-06-01

    The purpose of this mise en pratique, prepared by the Consultative Committee for Photometry and Radiometry (CCPR) of the International Committee for Weights and Measures (CIPM) and formally adopted by the CIPM, is to provide guidance on how the candela and related units used in photometry and radiometry can be realized in practice. The scope of the mise en pratique recognizes the fact that the two fields of photometry and radiometry and their units are closely related through the current definition of the SI base unit for the photometric quantity, luminous intensity: the candela. The previous version of the mise en pratique was applied only to the candela whereas this updated version covers the realization of the candela and other related units used for photometric and radiometric quantities. Recent advances in the generation and manipulation of individual photons show great promise of producing radiant fluxes with a well-established number of photons. Thus, this mise en pratique also includes information on the practical realization of units for photometric and radiometric quantities using photon-number-based techniques. In the following, for units used for photometric and radiometric quantities, the shorter term, photometric and radiometric units, is generally used. Section 1 describes the definition of the candela which introduces a close relationship between photometric and radiometric units. Sections 2 and 3 describe the practical realization of radiometric and photon-number-based units, respectively. Section 4.1 explains how, in general, photometric units are derived from radiometric units. Sections 4.2-4.5 deal with the particular geometric conditions for the specific photometric units. Section 5 deals very briefly with the topic of determination of measurement uncertainties in photometry.

  17. Production of UC-labeled gas in BACTEC Neisseria Differentiation kits by Neisseria cinerea

    Energy Technology Data Exchange (ETDEWEB)

    Boyce, J.M.; Mitchell, E.B. Jr.; Knapp, J.S.; Buttke, T.M.

    1985-09-01

    Six strains of Neisseria cinerea were tested in BACTEC Neisseria Differentiation kits (Johnston Laboratories, Inc., Towson, Md.), and all yielded positive glucose growth indices and negative maltose and fructose growth indices. These results were similar to those achieved with Neisseria gonorrhoeae. However, most of the N. cinerea isolates tested yielded 3-h glucose growth indices that were lower than those obtained with gonococci. UC-labeled gas was produced significantly faster by N. gonorrhoeae than by N. cinerea. Additional studies suggested that the UC-labeled gas produced by N. cinerea was carbon dioxide. N. cinerea strains were similar to Branhamella catarrhalis strains because both species failed to produce detectable acid from glucose, maltose, sucrose, fructose, and lactose in cysteine-tryptic agar media. However, in contrast to N. cinerea strains, B. catarrhalis strains did not metabolize glucose in BACTEC Neisseria Differentiation kits.

  18. Production of 14C-labeled gas in BACTEC Neisseria Differentiation kits by Neisseria cinerea.

    Science.gov (United States)

    Boyce, J M; Mitchell, E B; Knapp, J S; Buttke, T M

    1985-09-01

    Six strains of Neisseria cinerea were tested in BACTEC Neisseria Differentiation kits (Johnston Laboratories, Inc., Towson, Md.), and all yielded positive glucose growth indices and negative maltose and fructose growth indices. These results were similar to those achieved with Neisseria gonorrhoeae. However, most of the N. cinerea isolates tested yielded 3-h glucose growth indices that were lower than those obtained with gonococci. 14C-labeled gas was produced significantly faster (P less than 0.02) by N. gonorrhoeae than by N. cinerea. Additional studies suggested that the 14C-labeled gas produced by N. cinerea was carbon dioxide. N. cinerea strains were similar to Branhamella catarrhalis strains because both species failed to produce detectable acid from glucose, maltose, sucrose, fructose, and lactose in cysteine-tryptic agar media. However, in contrast to N. cinerea strains, B. catarrhalis strains did not metabolize glucose in BACTEC Neisseria Differentiation kits.

  19. Production of 14C-labeled gas in BACTEC Neisseria Differentiation kits by Neisseria cinerea.

    OpenAIRE

    Boyce, J M; Mitchell, E B; Knapp, J S; Buttke, T M

    1985-01-01

    Six strains of Neisseria cinerea were tested in BACTEC Neisseria Differentiation kits (Johnston Laboratories, Inc., Towson, Md.), and all yielded positive glucose growth indices and negative maltose and fructose growth indices. These results were similar to those achieved with Neisseria gonorrhoeae. However, most of the N. cinerea isolates tested yielded 3-h glucose growth indices that were lower than those obtained with gonococci. 14C-labeled gas was produced significantly faster (P less tha...

  20. Intracellular fate of Mycobacterium avium subspecies paratuberculosis in monocytes from normal and infected, interferon-responsive cows as determined by a radiometric method.

    Science.gov (United States)

    Zhao, B Y; Czuprynski, C J; Collins, M T

    1999-01-01

    The ability of Mycobacterium avium subsp. paratuberculosis to survive in bovine monocytes was studied using radiometric (BACTEC) culture, standard plate counting and microscopic counting of acid-fast stained monocyte monolayers. Results of microscopic counts sharply contrasted with results of viable counts determined both by plate counting and radiometric counting. We observed an early phase (the first 6 d after in vitro infection) of intracellular bacillary growth, followed by a later phase of mycobacteriostasis or killing (up to 12 d after in vitro infection) in monocytes from non-infected cows. The data suggest that multiplication and death of M. avium subsp. paratuberculosis occur simultaneously in bovine monocytes infected in vitro. Using the BACTEC method, we compared the ability of bovine monocytes from normal cows and cows infected with M. avium subsp. paratuberculosis and showing evidence of a strong Thl-like cellular immune response to ingest and inhibit the intracellular growth of M. avium subsp. paratuberculosis. There was a trend toward greater phagocytosis and faster killing of Mycobacterium avium subsp. paratuberculosis by monocytes from the infected, immune responder cows. However, the observed numbers of viable M. avium subsp. paratuberculosis at each time after monocyte infection were not significantly different between normal and infected cows.

  1. Radiometric force in dusty plasmas

    CERN Document Server

    Ignatov, A M

    2000-01-01

    A radiofrequency glow discharge plasma, which is polluted with a certain number of dusty grains, is studied. In addition to various dusty plasma phenomena, several specific colloidal effects should be considered. We focus on radiometric forces, which are caused by inhomogeneous temperature distribution. Aside from thermophoresis, the role of temperature distribution in dusty plasmas is an open question. It is shown that inhomogeneous heating of the grain by ion flows results in a new photophoresis like force, which is specific for dusty discharges. This radiometric force can be observable under conditions of recent microgravity experiments.

  2. Evidence of cracks in austenitic pipe weldings with a radiometric inspection system; Nachweis von Rissen in austenitischen Rohrleitungsnaehten mit einem radiometrischen Pruefsystem

    Energy Technology Data Exchange (ETDEWEB)

    Maier, H.J.; Wuensch, W. [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt

    1999-08-01

    The paper reports the development of a radiometric prototype device and its application to inspection of austenitic weldings with intercrystalline crack defects. The device initially was intended to be used for supplemental inspection for clarification of contradictory or unclear testing results, but the results obtained justify to consider the possibility of using it as an independent, full-scope testing instrument. (orig./CB) [Deutsch] Berichtet wird ueber die Entwicklung eines Prototypes eines Radiometrie-Geraetes zur Pruefung von austenitischen Schweissnaehten mit interkristalliner Rissbildung, zunaechst als Entscheidungshilfe bei unklaren bzw. sich widersprechenden Pruefresultaten. Zwischenzeitlich wird auch daran gedacht, ein solches Geraet fuer eine vollstaendige Pruefung weiter zu entwickeln. (orig./DGE)

  3. The Landsat Data Continuity Mission Operational Land Imager (OLI) Radiometric Calibration

    Science.gov (United States)

    Markham, Brian L.; Dabney, Philip W.; Murphy-Morris, Jeanine E.; Knight, Edward J.; Kvaran, Geir; Barsi, Julia A.

    2010-01-01

    The Operational Land Imager (OLI) on the Landsat Data Continuity Mission (LDCM) has a comprehensive radiometric characterization and calibration program beginning with the instrument design, and extending through integration and test, on-orbit operations and science data processing. Key instrument design features for radiometric calibration include dual solar diffusers and multi-lamped on-board calibrators. The radiometric calibration transfer procedure from NIST standards has multiple checks on the radiometric scale throughout the process and uses a heliostat as part of the transfer to orbit of the radiometric calibration. On-orbit lunar imaging will be used to track the instruments stability and side slither maneuvers will be used in addition to the solar diffuser to flat field across the thousands of detectors per band. A Calibration Validation Team is continuously involved in the process from design to operations. This team uses an Image Assessment System (IAS), part of the ground system to characterize and calibrate the on-orbit data.

  4. Automated radioanalytical system incorporating microwave-assisted sample preparation, chemical separation, and online radiometric detection for the monitoring of total 99Tc in nuclear waste processing streams.

    Science.gov (United States)

    Egorov, Oleg B; O'Hara, Matthew J; Grate, Jay W

    2012-04-03

    An automated fluidic instrument is described that rapidly determines the total (99)Tc content of aged nuclear waste samples, where the matrix is chemically and radiologically complex and the existing speciation of the (99)Tc is variable. The monitor links microwave-assisted sample preparation with an automated anion exchange column separation and detection using a flow-through solid scintillator detector. The sample preparation steps acidify the sample, decompose organics, and convert all Tc species to the pertechnetate anion. The column-based anion exchange procedure separates the pertechnetate from the complex sample matrix, so that radiometric detection can provide accurate measurement of (99)Tc. We developed a preprogrammed spike addition procedure to automatically determine matrix-matched calibration. The overall measurement efficiency that is determined simultaneously provides a self-diagnostic parameter for the radiochemical separation and overall instrument function. Continuous, automated operation was demonstrated over the course of 54 h, which resulted in the analysis of 215 samples plus 54 hly spike-addition samples, with consistent overall measurement efficiency for the operation of the monitor. A sample can be processed and measured automatically in just 12.5 min with a detection limit of 23.5 Bq/mL of (99)Tc in low activity waste (0.495 mL sample volume), with better than 10% RSD precision at concentrations above the quantification limit. This rapid automated analysis method was developed to support nuclear waste processing operations planned for the Hanford nuclear site.

  5. Relative Radiometric Normalization of Multitemporal images

    Directory of Open Access Journals (Sweden)

    Andrés Castillo Sanz

    2010-12-01

    Full Text Available A correct radiometric normalization between both images is fundamental for change detection. MAD method and its IR-MAD extension in an implementation on multisprectral aerial images is described in this paper

  6. Lansat MSS, Radiometric Processing Improvement

    Science.gov (United States)

    Saunier, Sebastien; Salgues, Germain; Gascon, Ferran; Biaasutti, Roberto

    2016-08-01

    The reprocessing campaigns of Landsat European Space Agency (ESA) data archive have been initiated since 3 years [1]. As part of this project, the processing algorithms have been upgraded. This article focuses on the radiometric processing of historical data observed with the Multi Spectral Scanner (MSS) instruments on board Landsat 1, 2, 3, 4 and 5.The Landsat MSS data have been recorded data from 1972 up to 1990. The MSS instruments have been designed with four visible bands covering the near / infrared regions of the electromagnetic spectrum, allowing the spatial sampling of our Earth surface at 60 meter.The current calibration method has shown some limitations in case of data observed out of mid latitude areas, where the Earth surface is bright because of desert or snow. The resulting image data suffers from saturations and is not fit for the potential application purposes.Although, when saturation exist, further investigations have shown that the radiometry of the raw data involved in the production of the Level 1 images is generally correct. As consequences, experiments have been undertaken to adapt the current processing in order to produce image data saturation free products.

  7. Radiometric Methods for Rapid Diagnosis of Viral Infection.

    Science.gov (United States)

    1975-11-01

    4, 6, 24, 48, and 72 hours postinfection, infection time beginning when the 14C-labeled medium was added. Nucleic acid sT, thesis system. Stationary...coccus epidermidis, Pseudomonas aeruginosa, and Acinetobacter caloaceticus var. anitratus) had no effect on the DNA synthesis of HSV-1 infected or...7 UNCLASS 41 RADIOMETRIC METHODS FOR RAPID DIAGNIS F VIRA ~ /fl INFECTION (U) JOHNS HOPKINS UNIV BALTIMORE MDUNC . IFEDH N WAG ER FT AL. NOV 75

  8. Radiometric surveys in underground environment

    Science.gov (United States)

    Bochiolo, Massimo; Chiozzi, Paolo; Verdoya, Massimo; Pasquale, Vincenzo

    2010-05-01

    Due to their ability to travel through the air for several metres, gamma-rays emitted from natural radioactive elements can be successfully used in surveys carried out both with airborne and ground equipments. Besides the concentration of the radio-elements contained in rocks and soils and the intrinsic characteristics of the gamma-ray detector, the detected count rate depends on the solid angle around the spectrometer. On a flat outcrop, ground spectrometry detects the radiation ideally produced by a cylindrical mass of rock of about two metres in diameter and thickness of about half a meter. Under these geometrical conditions, the natural radioactivity can be easily evaluated. With operating conditions different from the standard ones, such as at the edge of an escarpment, the count rate halves because of the missing material, whereas in the vicinity of a rock wall the count rate will increase. In underground environment, the recorded count rate may even double and the in situ assessment of the concentration of radio-elements may be rather difficult, even if the ratios between the different radio-elements may not be affected. We tested the applicability of gamma-ray spectrometry for rapid assessment of the potential hazard levels related to radon and radiation dose rate in underground environment. A mine shaft, located in a zone of uranium enrichment in Liguria (Italy), has been investigated. A preliminary ground radiometric survey was carried out to define the extent of the ore deposit. Then, the radiometric investigation was focussed on the mine shaft. Due to rock mass above the shaft vault, the background gamma radiation can be considered of negligible influence on measurements. In underground surveys, besides deviations from a flat geometry, factors controlling radon exhalation, emanation and stagnation, such as fractures, water leakage and the presence of ventilation, should be carefully examined. We attempted to evaluate these control factors and collected

  9. SLC-off Landsat-7 ETM+ reflective band radiometric calibration

    Science.gov (United States)

    Markham, B.L.; Barsi, J.A.; Thome, K.J.; Barker, J.L.; Scaramuzza, P.L.; Helder, D.L.; ,

    2005-01-01

    Since May 31, 2003, when the scan line corrector (SLC) on the Landsat-7 ETM+ failed, the primary foci of Landsat-7 ETM+ analyses have been on understanding and attempting to fix the problem and later on developing composited products to mitigate the problem. In the meantime, the Image Assessment System personnel and vicarious calibration teams have continued to monitor the radiometric performance of the ETM+ reflective bands. The SLC failure produced no measurable change in the radiometric calibration of the ETM+ bands. No trends in the calibration are definitively present over the mission lifetime, and, if present, are less than 0.5% per year. Detector 12 in Band 7 dropped about 0.5% in response relative to the rest of the detectors in the band in May 2004 and recovered back to within 0.1% of its initial relative gain in October 2004.

  10. The Radiometric Bode's Law and Extrasolar Planets

    CERN Document Server

    Lazio, T J W; Dietrick, J; Greenlees, E; Hogan, E; Jones, C; Hennig, L A

    2004-01-01

    We predict the radio flux densities of the extrasolar planets in the current census, making use of an empirical relation--the radiometric Bode's Law--determined from the five ``magnetic'' planets in the solar system (Earth and the four gas giants). Radio emission from these planets results from solar-wind powered electron currents depositing energy in the magnetic polar regions. We find that most of the known extrasolar planets should emit in the frequency range 10--1000 MHz and, under favorable circumstances, have typical flux densities as large as 1 mJy. We also describe an initial, systematic effort to search for radio emission in low radio frequency images acquired with the Very Large Array. The limits set by the VLA images (~ 300 mJy) are consistent with, but do not provide strong constraints on, the predictions of the model. Future radio telescopes, such as the Low Frequency Array (LOFAR) and the Square Kilometer Array (SKA), should be able to detect the known extrasolar planets or place austere limits ...

  11. Spectrally and Radiometrically Stable, Wideband, Onboard Calibration Source

    Science.gov (United States)

    Coles, James B.; Richardson, Brandon S.; Eastwood, Michael L.; Sarture, Charles M.; Quetin, Gregory R.; Porter, Michael D.; Green, Robert O.; Nolte, Scott H.; Hernandez, Marco A.; Knoll, Linley A.

    2013-01-01

    The Onboard Calibration (OBC) source incorporates a medical/scientific-grade halogen source with a precisely designed fiber coupling system, and a fiber-based intensity-monitoring feedback loop that results in radiometric and spectral stabilities to within less than 0.3 percent over a 15-hour period. The airborne imaging spectrometer systems developed at the Jet Propulsion Laboratory incorporate OBC sources to provide auxiliary in-use system calibration data. The use of the OBC source will provide a significant increase in the quantitative accuracy, reliability, and resulting utility of the spectral data collected from current and future imaging spectrometer instruments.

  12. RADIOMETRIC TECHNIQUES IN HEAVY MINERAL EXPLORATION AND EXPLOITATION

    NARCIS (Netherlands)

    DEMEIJER, RJ; TANCZOS, IC; STAPEL, C

    1994-01-01

    In recent years the Environmental Research Group of the KVI has been developing a number of radiometric techniques that may be employed in mineral sand exploration. These techniques involve: radiometric fingerprinting for assessing sand provenances and mineralogical composition; thermoluminescence f

  13. English/Russian terminology on radiometric calibration of space-borne optoelectronic sensors

    Science.gov (United States)

    Privalsky, V.; Zakharenkov, V.; Humpherys, T.; Sapritsky, V.; Datla, R.

    The efficient use of data acquired through exo-atmospheric observations of the Earth within the framework of existing and newly planned programs requires a unique understanding of respective terms and definitions. Yet, the last large-scale document on the subject - The International Electrotechnical Vocabulary - had been published 18 years ago. This lack of a proper document, which would reflect the changes that had occurred in the area since that time, is especially detrimental to the developing international efforts aimed at global observations of the Earth from space such as the Global Earth Observations Program proposed by the U.S.A. at the 2003 WMO Congress. To cover this gap at least partially, a bi-lingual explanatory dictionary of terms and definitions in the area of radiometric calibration of space-borne IR sensors is developed. The objectives are to produce a uniform terminology for the global space-borne observations of the Earth, establish a unique understanding of terms and definitions by the radiometric communities, including a correspondence between the Russian and American terms and definitions, and to develop a formal English/Russian reference dictionary for use by scientists and engineers involved in radiometric observations of the Earth from space. The dictionary includes close to 400 items covering basic concepts of geometric, wave and corpuscular optics, remote sensing technologies, and ground-based calibration as well as more detailed treatment of terms and definitions in the areas of radiometric quantities, symbols and units, optical phenomena and optical properties of objects and media, and radiometric systems and their properties. The dictionary contains six chapters: Basic Concepts, Quantities, Symbols, and Units, Optical phenomena, Optical characteristics of surfaces and media, Components of Radiometric Systems, Characteristics of radiometric system components, plus English/Russian and Russian/Inglish indices.

  14. Evaluation of indirect susceptibility testing of Mycobacterium tuberculosis to the first- and second-line, and alternative drugs by the newer MB/BacT system

    Directory of Open Access Journals (Sweden)

    Barreto Angela Maria Werneck

    2003-01-01

    Full Text Available In order to evaluate the Organon Teknika MB/BacT system used for testing indirect susceptibility to the alternative drugs ofloxacin (OFLO, amikacin (AMI, and rifabutin (RIF, and to the usual drugs of standard treatment regimes such as rifampin (RMP, isoniazid (INH, pyrazinamide (PZA, streptomycin (SM, ethambutol (EMB, and ethionamide (ETH, cultures of clinical specimens from 117 patients with pulmonary tuberculosis under multidrug-resistant investigation, admitted sequentially for examination from 2001 to 2002, were studied. Fifty of the Mycobacterium tuberculosis cultures were inoculated into the gold-standard BACTEC 460 TB (Becton Dickinson for studying resistance to AMI, RIF, and OFLO, and the remaining 67 were inoculated into Lowenstein Jensen (LJ medium (the gold standard currently used in Brazil for studying resistance to RMP, INH, PZA, SM, EMB, and ETH. We observed 100% sensitivity for AMI (80.8-100, RIF (80.8-100, and OFLO (78.1-100; and 100% specificity for AMI (85.4-100, RIF (85.4-100, and OFLO (86.7-100 compared to the BACTEC system. Comparing the results obtained in LJ we observed 100% sensitivity for RMP (80-100, followed by INH - 95% (81.8-99.1, EMB - 94.7% (71.9-99.7, and 100% specificity for all drugs tested except for PZA - 98.3 (89.5-99.9 at 95% confidence interval. The results showed a high level of accuracy and demonstrated that the fully automated, non-radiometric MB/BacT system is indicated for routine use in susceptibility testing in public health laboratories.

  15. Experimental methods of indoor millimeter-wave radiometric imaging for personnel concealed contraband detection

    Science.gov (United States)

    Hu, Taiyang; Xiao, Zelong; Li, Hao; Lv, Rongchuan; Lu, Xuan

    2014-11-01

    The increasingly emerging terrorism attacks and violence crimes around the world have posed severe threats to public security, so carrying out relevant research on advanced experimental methods of personnel concealed contraband detection is crucial and meaningful. All of the advantages of imaging covertly, avoidance of interference with other systems, intrinsic property of being safe to persons under screening , and the superior ability of imaging through natural or manmade obscurants, have significantly combined to enable millimeter-wave (MMW) radiometric imaging to offer great potential in personnel concealed contraband detection. Based upon the current research status of MMW radiometric imaging and urgent demands of personnel security screening, this paper mainly focuses on the experimental methods of indoor MMW radiometric imaging. The reverse radiation noise resulting from super-heterodyne receivers seriously affects the image experiments carried out at short range, so both the generation mechanism and reducing methods of this noise are investigated. Then, the benefit of sky illumination no longer exists for the indoor radiometric imaging, and this leads to the decrease in radiometric temperature contrast between target and background. In order to enhance the radiometric temperature contrast for improving indoor imaging performance, the noise illumination technique is adopted in the indoor imaging scenario. In addition, the speed and accuracy of concealed contraband detection from acquired MMW radiometric images are usually restricted to the deficiencies in traditional artificial interpretation by security inspectors, thus an automatic recognition and location algorithm by integrating improved Fuzzy C-means clustering with moment invariants is put forward. A series of original results are also presented to demonstrate the significance and validity of these methods.

  16. RADIOMETRIC CALIBRATION OF MARS HiRISE HIGH RESOLUTION IMAGERY BASED ON FPGA

    Directory of Open Access Journals (Sweden)

    Y. Hou

    2016-06-01

    Full Text Available Due to the large data amount of HiRISE imagery, traditional radiometric calibration method is not able to meet the fast processing requirements. To solve this problem, a radiometric calibration system of HiRISE imagery based on field program gate array (FPGA is designed. The montage gap between two channels caused by gray inconsistency is removed through histogram matching. The calibration system is composed of FPGA and DSP, which makes full use of the parallel processing ability of FPGA and fast computation as well as flexible control characteristic of DSP. Experimental results show that the designed system consumes less hardware resources and the real-time processing ability of radiometric calibration of HiRISE imagery is improved.

  17. Radiometric Correction of Multitemporal Satellite Imagery

    Directory of Open Access Journals (Sweden)

    S. G. Biday,

    2010-01-01

    Full Text Available Problem statement: Repeated observation of a given area over time yields potential for many forms of change detection analysis. These repeated observations are confounded in terms of radiometric consistency due to changes in sensor calibration over time, differences in illumination, observation angles and variation in atmospheric effects. Also major problem with satellite images is that regions below clouds are not covered by sensor. Cloud detection, removal and data prediction in cloudy region is essential for image interpretation. Approach: This study demonstrated applicability of empirical relative radiometric normalization methods to a set of multitemporal cloudy images acquired by Resourcesat-1 LISS III sensor. Objective of this study was to detect and remove cloud cover and normalize an image radiometrically. Cloud detection was achieved by using Average Brightness Threshold (ABT algorithm. The detected cloud removed and replaced with data from another images of the same area. We proposed a new method in which cloudy pixels are replaced with predicted pixel values obtained by regression. After cloud removal, the proposed normalization method was applied to reduce the radiometric influence caused by non surface factors. This process identified landscape elements whose reflectance values are nearly constant over time, i.e., the subset of non-changing pixels are identified using frequency based correlation technique. Further, we proposed another method of radiometric correction in frequency domain, Pseudo-Invariant Feature regression and this process removed landscape elements such as vegetation whose reflectance values are not constant over time. It takes advantage of vegetation being typically high frequency area, can be removed by low pass filter. Results: The quality of radiometric normalization is statistically assessed by R2 value and Root Mean Square Error (RMSE between each pair of analogous band. Further we verified that difference

  18. Long Island Sound Coastal Observatory: Assessment of Above-Water Radiometric Measurement Uncertainties Using Collocated Multi and Hyper-Spectral Systems

    Science.gov (United States)

    2011-10-14

    multispectral SeaPRISM system ( CIMEL ELECTRONIQUE, France) which is now part of the AERONET Ocean Color Network [13,15,20], with a collocated hyperspectral...to Emmanuelle Cluset and Marius Canini from CIMEL Electronique. Andre Morel and Bernard Gentili are thanked for providing the look-up tables for

  19. Radiometric consistency assessment of hyperspectral infrared sounders

    OpenAIRE

    Wang, L.; Y. Han; Jin, X.; Y. Chen; D. A. Tremblay

    2015-01-01

    The radiometric and spectral consistency among the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) is fundamental for the creation of long-term infrared (IR) hyperspectral radiance benchmark datasets for both inter-calibration and climate-related studies. In this study, the CrIS radiance measurements on Suomi National Polar-orbiting Partnership (SNPP) satellite are directly com...

  20. Revised landsat-5 thematic mapper radiometric calibration

    Science.gov (United States)

    Chander, G.; Markham, B.L.; Barsi, J.A.

    2007-01-01

    Effective April 2, 2007, the radiometric calibration of Landsat-5 (L5) Thematic Mapper (TM) data that are processed and distributed by the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) will be updated. The lifetime gain model that was implemented on May 5, 2003, for the reflective bands (1-5, 7) will be replaced by a new lifetime radiometric-calibration curve that is derived from the instrument's response to pseudoinvariant desert sites and from cross calibration with the Landsat-7 (L7) Enhanced TM Plus (ETM+). Although this calibration update applies to all archived and future L5 TM data, the principal improvements in the calibration are for the data acquired during the first eight years of the mission (1984-1991), where the changes in the instrument-gain values are as much as 15%. The radiometric scaling coefficients for bands 1 and 2 for approximately the first eight years of the mission have also been changed. Users will need to apply these new coefficients to convert the calibrated data product digital numbers to radiance. The scaling coefficients for the other bands have not changed. ?? 2007 IEEE.

  1. Geometric and Radiometric Evaluation of Rasat Images

    Science.gov (United States)

    Cam, Ali; Topan, Hüseyin; Oruç, Murat; Özendi, Mustafa; Bayık, Çağlar

    2016-06-01

    RASAT, the second remote sensing satellite of Turkey, was designed and assembled, and also is being operated by TÜBİTAK Uzay (Space) Technologies Research Institute (Ankara). RASAT images in various levels are available free-of-charge via Gezgin portal for Turkish citizens. In this paper, the images in panchromatic (7.5 m GSD) and RGB (15 m GSD) bands in various levels were investigated with respect to its geometric and radiometric characteristics. The first geometric analysis is the estimation of the effective GSD as less than 1 pixel for radiometrically processed level (L1R) of both panchromatic and RGB images. Secondly, 2D georeferencing accuracy is estimated by various non-physical transformation models (similarity, 2D affine, polynomial, affine projection, projective, DLT and GCP based RFM) reaching sub-pixel accuracy using minimum 39 and maximum 52 GCPs. The radiometric characteristics are also investigated for 8 bits, estimating SNR between 21.8-42.2, and noise 0.0-3.5 for panchromatic and MS images for L1R when the sea is masked to obtain the results for land areas. The analysis show that RASAT images satisfies requirements for various applications. The research is carried out in Zonguldak test site which is mountainous and partly covered by dense forest and urban areas.

  2. GEOMETRIC AND RADIOMETRIC EVALUATION OF RASAT IMAGES

    Directory of Open Access Journals (Sweden)

    A. Cam

    2016-06-01

    Full Text Available RASAT, the second remote sensing satellite of Turkey, was designed and assembled, and also is being operated by TÜBİTAK Uzay (Space Technologies Research Institute (Ankara. RASAT images in various levels are available free-of-charge via Gezgin portal for Turkish citizens. In this paper, the images in panchromatic (7.5 m GSD and RGB (15 m GSD bands in various levels were investigated with respect to its geometric and radiometric characteristics. The first geometric analysis is the estimation of the effective GSD as less than 1 pixel for radiometrically processed level (L1R of both panchromatic and RGB images. Secondly, 2D georeferencing accuracy is estimated by various non-physical transformation models (similarity, 2D affine, polynomial, affine projection, projective, DLT and GCP based RFM reaching sub-pixel accuracy using minimum 39 and maximum 52 GCPs. The radiometric characteristics are also investigated for 8 bits, estimating SNR between 21.8-42.2, and noise 0.0-3.5 for panchromatic and MS images for L1R when the sea is masked to obtain the results for land areas. The analysis show that RASAT images satisfies requirements for various applications. The research is carried out in Zonguldak test site which is mountainous and partly covered by dense forest and urban areas.

  3. A Review of LIDAR Radiometric Processing: From Ad Hoc Intensity Correction to Rigorous Radiometric Calibration

    Directory of Open Access Journals (Sweden)

    Alireza G. Kashani

    2015-11-01

    Full Text Available In addition to precise 3D coordinates, most light detection and ranging (LIDAR systems also record “intensity”, loosely defined as the strength of the backscattered echo for each measured point. To date, LIDAR intensity data have proven beneficial in a wide range of applications because they are related to surface parameters, such as reflectance. While numerous procedures have been introduced in the scientific literature, and even commercial software, to enhance the utility of intensity data through a variety of “normalization”, “correction”, or “calibration” techniques, the current situation is complicated by a lack of standardization, as well as confusing, inconsistent use of terminology. In this paper, we first provide an overview of basic principles of LIDAR intensity measurements and applications utilizing intensity information from terrestrial, airborne topographic, and airborne bathymetric LIDAR. Next, we review effective parameters on intensity measurements, basic theory, and current intensity processing methods. We define terminology adopted from the most commonly-used conventions based on a review of current literature. Finally, we identify topics in need of further research. Ultimately, the presented information helps lay the foundation for future standards and specifications for LIDAR radiometric calibration.

  4. Direct Urease Test and Acridine Orange Staining on Bactec Blood Culture for Rapid Presumptive Diagnosis of Brucellosis

    Directory of Open Access Journals (Sweden)

    P Maleknejad

    2005-08-01

    Full Text Available Brucellosis is one of the most common zoonotic diseases in Iran and human brucellosis is endemic in all parts of the country. Growth of Brucella is slow and blood culture of these bacteria by use of classical methods is time-consuming. Furthermore, in endemic area culture is required for definitive diagnosis. In the present study, direct urease test and acridine orange staining were tried on the BACTEC blood culture broths for early presumptive identification of Brucella growth. Blood cultures were attempted in 102 seropositive patients. In the forty one blood cultures positive for Brucella, coccobacilli were seen in broth smears stained with acridine orange stain, and also were urease test positive, thus providing presumptive identification of Brucella growth. Urease test was negative and bacteria were not seen in the broth smears of the remaining 61 broths negative for Brucella growth. Because of simplicity, reliability and reproducibility, these tests can be routinely incorporated in the laboratory for diagnosis of brucellosis.

  5. Off-line radiometric analysis of Planck-LFI data

    Energy Technology Data Exchange (ETDEWEB)

    Tomasi, M; Mennella, A; Bersanelli, M [Dipartimento di Fisica, Universita degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Galeotta, S; Maris, M [LFI-DPC INAF-OATs, Via Tiepolo 11, 34131 Trieste (Italy); Lowe, S R [Jodrell Bank Centre for Astrophysics, The University of Manchester, Manchester, M13 9PL (United Kingdom); Mendes, L [Planck Science Office, European Space Agency, ESAC, P.O. box 78, 28691 Villanueva de la Canada, Madrid (Spain); Leonardi, R; Meinhold, P [Department of Physics, University of California, Santa Barbara, CA 93106-9530 (United States); Villa, F; Sandri, M; Cuttaia, F; Terenzi, L; Valenziano, L; Butler, R C [INAF-IASF Bologna, Via Gobetti, 101, 40129, Bologna (Italy); Cappellini, B [INAF-IASF Milano, Via E. Bassini 15, 20133 Milano (Italy); Gregorio, A [Department of Physics, University of Trieste, Via Valerio, 2 Trieste I-34127 (Italy); Salmon, M J [Departamento de IngenierIa de Comunicaciones, Universidad de Cantabria, Avenida de los Castros s/n. 39005 Santander (Spain); Binko, P [ISDC Data Centre for Astrophysics, University of Geneva, ch. d' Ecogia 16, 1290 Versoix (Switzerland); D' Arcangelo, O, E-mail: tomasi@lambrate.inaf.i [IFP-CNR, Via Cozzi 53, Milano (Italy)

    2009-12-15

    The Planck Low Frequency Instrument (LFI) is an array of 22 pseudo-correlation radiometers on-board the Planck satellite to measure temperature and polarization anisotropies in the Cosmic Microwave Background (CMB) in three frequency bands (30, 44 and 70 GHz). To calibrate and verify the performances of the LFI, a software suite named LIFE has been developed. Its aims are to provide a common platform to use for analyzing the results of the tests performed on the single components of the instrument (RCAs, Radiometric Chain Assemblies) and on the integrated Radiometric Array Assembly (RAA). Moreover, its analysis tools are designed to be used during the flight as well to produce periodic reports on the status of the instrument. The LIFE suite has been developed using a multi-layered, cross-platform approach. It implements a number of analysis modules written in RSI IDL, each accessing the data through a portable and heavily optimized library of functions written in C and C++. One of the most important features of LIFE is its ability to run the same data analysis codes both using ground test data and real flight data as input. The LIFE software suite has been successfully used during the RCA/RAA tests and the Planck Integrated System Tests. Moreover, the software has also passed the verification for its in-flight use during the System Operations Verification Tests, held in October 2008.

  6. Preparation of a new autonomous instrumented radiometric calibration site: Gobabeb, Namib Desert

    Science.gov (United States)

    Greenwell, Claire; Bialek, Agnieszka; Marks, Amelia; Woolliams, Emma; Berthelot, Béatrice; Meygret, Aimé; Marcq, Sébastien; Bouvet, Marc; Fox, Nigel

    2015-10-01

    A new permanently instrumented radiometric calibration site for high/medium resolution imaging satellite sensors is currently under development, focussing on the visible and near infra-red parts of the spectrum. The site will become a European contribution to the Committee on Earth Observation Satellites (CEOS) initiative RadCalNet (Radiometric Calibration Network). The exact location of the permanent monitoring instrumentation will be defined following the initial site characterisation. The new ESA/CNES RadCalNet site will have a robust uncertainty budget and its data fully SI traceable through detailed characterisation and calibration by NPL of the instruments and artefacts to be used on the site. This includes a CIMEL sun photometer (the permanent instrumentation) an ASD FieldSpec spectroradiometer, Gonio Radiometric Spectrometer System (GRASS), and reference reflectance standards.

  7. The radiometric characteristics of KOMPSAT-3A by using reference radiometric tarps and ground measurement

    Science.gov (United States)

    Yeom, Jong-Min

    2016-09-01

    In this study, we performed the vicarious radiometric calibration of KOMPSAT-3A multispectral bands by using 6S radiative transfer model, radiometric tarps, MFRSR measurements. Furthermore, to prepare the accurate input parameter, we also did experiment work to measure the BRDF of radiometric tarps based on hyperspectral gonioradiometer to compensate the observation geometry difference between satellite and ASD Fieldspec 3. Also, we measured point spread function (PSF) by using the bright star and corrected multispectral bands based on the Wiener filter. For accurate atmospheric constituent effects such as aerosol optical depth, column water, and total ozone, we used MFRSR instrument and estimated related optical depth of each gases. Based on input parameters for 6S radiative transfer model, we simulated top of atmosphere (TOA) radiance by observed by KOMPSAT-3A and matched-up the digital number. Consequently, DN to radiance coefficients was determined based on aforementioned methods and showed reasonable statistics results.

  8. Microwave radiometric signatures of temperature anomalies in tissue

    Science.gov (United States)

    Kelly, Patrick; Sobers, Tamara; St. Peter, Benjamin; Siqueira, Paul; Capraro, Geoffrey

    2012-03-01

    Because of its ability to measure the temperature-dependent power of electromagnetic radiation emitted from tissue down to several centimeters beneath the skin, microwave radiometry has long been of interest as a means for identifying the internal tissue temperature anomalies that arise from abnormalities in physiological parameters such as metabolic and blood perfusion rates. However, the inherent lack of specificity and resolution in microwave radiometer measurements has limited the clinical usefulness of the technique. The idea underlying this work is to make use of information (assumed to be available from some other modality) about the tissue configuration in the volume of interest to study and improve the accuracy of anomaly detection and estimation from radiometric data. In particular, knowledge of the specific anatomy and the properties of the overall measurement system enable determination of the signatures of localized physiological abnormalities in the radiometry data. These signatures are used to investigate the accuracy with which the location of an anomaly can be determined from radiometric measurements. Algorithms based on matches to entries in a signature dictionary are developed for anomaly detection and estimation. The accuracy of anomaly identification is improved when the coupling of power from the body to the sensor is optimized. We describe the design of a radiometer waveguide having dielectric properties appropriate for biomedical applications.

  9. a Comparison of LIDAR Reflectance and Radiometrically Calibrated Hyperspectral Imagery

    Science.gov (United States)

    Roncat, A.; Briese, C.; Pfeifer, N.

    2016-06-01

    In order to retrieve results comparable under different flight parameters and among different flight campaigns, passive remote sensing data such as hyperspectral imagery need to undergo a radiometric calibration. While this calibration, aiming at the derivation of physically meaningful surface attributes such as a reflectance value, is quite cumbersome for passively sensed data and relies on a number of external parameters, the situation is by far less complicated for active remote sensing techniques such as lidar. This fact motivates the investigation of the suitability of full-waveform lidar as a "single-wavelength reflectometer" to support radiometric calibration of hyperspectral imagery. In this paper, this suitability was investigated by means of an airborne hyperspectral imagery campaign and an airborne lidar campaign recorded over the same area. Criteria are given to assess diffuse reflectance behaviour; the distribution of reflectance derived by the two techniques were found comparable in four test areas where these criteria were met. This is a promising result especially in the context of current developments of multi-spectral lidar systems.

  10. INTRABAND RADIOMETRIC PERFORMANCE OF THE LANDSAT 4 THEMATIC MAPPER.

    Science.gov (United States)

    Kieffer, Hugh H.; Eliason, Eric M.; Chavez, Pat S.; ,

    1985-01-01

    This preliminary report examines those radiometric characteristics of the Landsat 4 Thematic Mapper (TM) that can be established without absolute calibration of spectral data. Analysis is based largely on radiometrically raw (B type) data of three daytime and two nighttime scenes; in most scenes, a set of 512 lines were examined on an individual-detector basis. Subscenes selected for uniform-radiance were used to characterize subtle radiometric differences and noise problems.

  11. Evaluation on Radiometric Capability of Chinese Optical Satellite Sensors

    Science.gov (United States)

    Yang, Aixia; Zhong, Bo; Wu, Shanlong; Liu, Qinhuo

    2017-01-01

    The radiometric capability of on-orbit sensors should be updated on time due to changes induced by space environmental factors and instrument aging. Some sensors, such as Moderate Resolution Imaging Spectroradiometer (MODIS), have onboard calibrators, which enable real-time calibration. However, most Chinese remote sensing satellite sensors lack onboard calibrators. Their radiometric calibrations have been updated once a year based on a vicarious calibration procedure, which has affected the applications of the data. Therefore, a full evaluation of the sensors’ radiometric capabilities is essential before quantitative applications can be made. In this study, a comprehensive procedure for evaluating the radiometric capability of several Chinese optical satellite sensors is proposed. In this procedure, long-term radiometric stability and radiometric accuracy are the two major indicators for radiometric evaluation. The radiometric temporal stability is analyzed by the tendency of long-term top-of-atmosphere (TOA) reflectance variation; the radiometric accuracy is determined by comparison with the TOA reflectance from MODIS after spectrally matching. Three Chinese sensors including the Charge-Coupled Device (CCD) camera onboard Huan Jing 1 satellite (HJ-1), as well as the Visible and Infrared Radiometer (VIRR) and Medium-Resolution Spectral Imager (MERSI) onboard the Feng Yun 3 satellite (FY-3) are evaluated in reflective bands based on this procedure. The results are reasonable, and thus can provide reliable reference for the sensors’ application, and as such will promote the development of Chinese satellite data. PMID:28117745

  12. Absolute Radiometric Calibration of KOMPSAT-3A

    Science.gov (United States)

    Ahn, H. Y.; Shin, D. Y.; Kim, J. S.; Seo, D. C.; Choi, C. U.

    2016-06-01

    This paper presents a vicarious radiometric calibration of the Korea Multi-Purpose Satellite-3A (KOMPSAT-3A) performed by the Korea Aerospace Research Institute (KARI) and the Pukyong National University Remote Sensing Group (PKNU RSG) in 2015.The primary stages of this study are summarized as follows: (1) A field campaign to determine radiometric calibrated target fields was undertaken in Mongolia and South Korea. Surface reflectance data obtained in the campaign were input to a radiative transfer code that predicted at-sensor radiance. Through this process, equations and parameters were derived for the KOMPSAT-3A sensor to enable the conversion of calibrated DN to physical units, such as at-sensor radiance or TOA reflectance. (2) To validate the absolute calibration coefficients for the KOMPSAT-3A sensor, we performed a radiometric validation with a comparison of KOMPSAT-3A and Landsat-8 TOA reflectance using one of the six PICS (Libya 4). Correlations between top-of-atmosphere (TOA) radiances and the spectral band responses of the KOMPSAT-3A sensors at the Zuunmod, Mongolia and Goheung, South Korea sites were significant for multispectral bands. The average difference in TOA reflectance between KOMPSAT-3A and Landsat-8 image over the Libya 4, Libya site in the red-green-blue (RGB) region was under 3%, whereas in the NIR band, the TOA reflectance of KOMPSAT-3A was lower than the that of Landsat-8 due to the difference in the band passes of two sensors. The KOMPSAT-3Aensor includes a band pass near 940 nm that can be strongly absorbed by water vapor and therefore displayed low reflectance. Toovercome this, we need to undertake a detailed analysis using rescale methods, such as the spectral bandwidth adjustment factor.

  13. Enhanced Amplified Mycobacterium Tuberculosis Direct Test for Detection of Mycobacterium tuberculosis Complex in Positive BACTEC 12B Broth Cultures of Respiratory Specimens

    OpenAIRE

    1999-01-01

    The reliability of the Gen-Probe enhanced Amplified Mycobacterium Tuberculosis Direct Test (MTD) for identification of Mycobacterium tuberculosis complex (MTBC) in BACTEC 12B broth cultures of respiratory specimens was evaluated by testing aliquots from 268 bottles with a growth index of ≥50. MTD results were compared to those obtained by usual laboratory protocol, whereby MTBC was identified by DNA probe (Gen-Probe, Inc.) testing sediment from broth samples or colonies on a solid medium. For...

  14. Landsat-7 ETM+ radiometric calibration status

    Science.gov (United States)

    Barsi, Julia A.; Markham, Brian L.; Czapla-Myers, Jeffrey S.; Helder, Dennis L.; Hook, Simon J.; Schott, John R.; Haque, Md. Obaidul

    2016-09-01

    Now in its 17th year of operation, the Enhanced Thematic Mapper + (ETM+), on board the Landsat-7 satellite, continues to systematically acquire imagery of the Earth to add to the 40+ year archive of Landsat data. Characterization of the ETM+ on-orbit radiometric performance has been on-going since its launch in 1999. The radiometric calibration of the reflective bands is still monitored using on-board calibration devices, though the Pseudo-Invariant Calibration Sites (PICS) method has proven to be an effective tool as well. The calibration gains were updated in April 2013 based primarily on PICS results, which corrected for a change of as much as -0.2%/year degradation in the worst case bands. A new comparison with the SADE database of PICS results indicates no additional degradation in the updated calibration. PICS data are still being tracked though the recent trends are not well understood. The thermal band calibration was updated last in October 2013 based on a continued calibration effort by NASA/Jet Propulsion Lab and Rochester Institute of Technology. The update accounted for a 0.036 W/m2 sr μm or 0.26K at 300K bias error. The updated lifetime trend is now stable to within +/- 0.4K.

  15. ROSCAM: a 95-GHz radiometric one-second camera

    Science.gov (United States)

    Smith, Roger M.; Sundstrom, Bryce M.; Belcher, Byron W.; Ewen, Doc

    1998-08-01

    The ability to obtain millimeter wave images under a variety of environmental conditions, such as rain, snow, fog, smoke, dust, etc., has numerous DoD as well as commercial applications. The demonstrated ability to look through doors, walls and clothing has recently extended potential millimeter wave applications to contraband detection and surveillance within buildings. Though the phenomenology supports the generation of high quality millimeter wave images, present-day frame time capabilities limit the use of millimeter wave cameras. Several solutions to frame time reduction are currently being investigated within government and industry. Two popular approaches include: (1) Electronic scanning focal plane arrays (FPA); (2) Mechanical raster scanning of a single antenna beam. One significant difference between the two approaches noted above is the number of receiving channels required. This is important because camera cost is driven by the number of receiver channels used in a camera, as well as the added complexities associated with inter-channel gain stability. There are a number of applications that do not require a motion picture capability. Images obtained sequentially at a nominal rate of one per second would satisfy the needs of a wide range of applications. It is evident, however, that the motion picture quality of a starring FPA may ultimately reduce the market for one-second cameras. In the interim, the one-second camera fills an important need. The goal of the Radiometric One Second Camera (ROSCAM) investigation is to demonstrate a practical millimeter-wave imaging (MMWI) camera, with a frame time of approximately one second. The approach combines a high-speed mechanical raster scanning antenna system with a single-channel radiometric receiving system. For baseline comparison, it is assumed that the scene is comprised of 1,000 pixels, each sampled for one millisecond, to generate a single frame in one second. The ROSCAM is based on combining a state

  16. Effects of agrochemicals, ultra violet stabilisers and solar radiation on the radiometric properties of greenhouse films

    Directory of Open Access Journals (Sweden)

    Giuliano Vox

    2013-10-01

    Full Text Available Agrochemicals, based on iron, sulphur and chlorine, generate by products that lead to a degradation of greenhouse films together with a decrease in their mechanical and physical properties. The degradation due to agrochemicals depends on their active principles, method and frequency of application, and greenhouse ventilation. The aim of the research was to evaluate how agrochemical contamination and solar radiation influence the radiometric properties of ethylene-vinyl acetate copolymer greenhouse films by means of laboratory and field tests. The films, manufactured on purpose with the addition of different light stabiliser systems, were exposed to natural outdoor weathering at the experimental farm of the University of Bari (Italy; 41° 05’ N in the period from 2006 to 2008. Each film was tested for two low tunnels: one low tunnel was sprayed from inside with the agrochemicals containing iron, chlorine and sulphur while the other one was not sprayed and served as control. Radiometric laboratory tests were carried out on the new films and on samples taken at the end of the trials. The experimental tests showed that both the natural weathering together with the agrochemicals did not modify significantly the radiometric properties of the films in the solar and in the photosynthetically active radiation wavelength range. Within six months of experimental field tests the variations in these radiometric characteristics were at most 10%. Significant variations, up to 70% of the initial value, were recorded for the stabilised films in the long-wave infrared radiation wavelength range.

  17. Adjustments to the MODIS Terra Radiometric Calibration and Polarization Sensitivity in the 2010 Reprocessing

    Science.gov (United States)

    Meister, Gerhard; Franz, Bryan A.

    2011-01-01

    The Moderate-Resolution Imaging Spectroradiometer (MODIS) on NASA s Earth Observing System (EOS) satellite Terra provides global coverage of top-of-atmosphere (TOA) radiances that have been successfully used for terrestrial and atmospheric research. The MODIS Terra ocean color products, however, have been compromised by an inadequate radiometric calibration at the short wavelengths. The Ocean Biology Processing Group (OBPG) at NASA has derived radiometric corrections using ocean color products from the SeaWiFS sensor as truth fields. In the R2010.0 reprocessing, these corrections have been applied to the whole mission life span of 10 years. This paper presents the corrections to the radiometric gains and to the instrument polarization sensitivity, demonstrates the improvement to the Terra ocean color products, and discusses issues that need further investigation. Although the global averages of MODIS Terra ocean color products are now in excellent agreement with those of SeaWiFS and MODIS Aqua, and image quality has been significantly improved, the large corrections applied to the radiometric calibration and polarization sensitivity require additional caution when using the data.

  18. GIFTS SM EDU Radiometric and Spectral Calibrations

    Science.gov (United States)

    Tian, J.; Reisse, R. a.; Johnson, D. G.; Gazarik, J. J.

    2007-01-01

    The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) Sensor Module (SM) Engineering Demonstration Unit (EDU) is a high resolution spectral imager designed to measure infrared (IR) radiance using a Fourier transform spectrometer (FTS). The GIFTS instrument gathers measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The raw interferogram measurements are radiometrically and spectrally calibrated to produce radiance spectra, which are further processed to obtain atmospheric profiles via retrieval algorithms. This paper describes the processing algorithms involved in the calibration. The calibration procedures can be subdivided into three categories: the pre-calibration stage, the calibration stage, and finally, the post-calibration stage. Detailed derivations for each stage are presented in this paper.

  19. JPSS-1 VIIRS pre-launch radiometric performance

    Science.gov (United States)

    Oudrari, Hassan; McIntire, Jeff; Xiong, Xiaoxiong; Butler, James; Efremova, Boryana; Ji, Qiang; Lee, Shihyan; Schwarting, Tom

    2015-09-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) on-board the first Joint Polar Satellite System (JPSS) completed its sensor level testing on December 2014. The JPSS-1 (J1) mission is scheduled to launch in December 2016, and will be very similar to the Suomi-National Polar-orbiting Partnership (SNPP) mission. VIIRS instrument was designed to provide measurements of the globe twice daily. It is a wide-swath (3,040 km) cross-track scanning radiometer with spatial resolutions of 370 and 740 m at nadir for imaging and moderate bands, respectively. It covers the wavelength spectrum from reflective to long-wave infrared through 22 spectral bands [0.412 μm to 12.01 μm]. VIIRS observations are used to generate 22 environmental data products (EDRs). This paper will briefly describe J1 VIIRS characterization and calibration performance and methodologies executed during the pre-launch testing phases by the independent government team, to generate the at-launch baseline radiometric performance, and the metrics needed to populate the sensor data record (SDR) Look-Up-Tables (LUTs). This paper will also provide an assessment of the sensor pre-launch radiometric performance, such as the sensor signal to noise ratios (SNRs), dynamic range, reflective and emissive bands calibration performance, polarization sensitivity, bands spectral performance, response-vs-scan (RVS), near field and stray light responses. A set of performance metrics generated during the pre-launch testing program will be compared to the SNPP VIIRS pre-launch performance.

  20. Verification of the radiometric map of the Czech Republic.

    Science.gov (United States)

    Matolín, Milan

    2017-01-01

    The radiometric map of the Czech Republic is based on uniform regional airborne radiometric total count measurements (1957-1959) which covered 100% of the country. The airborne radiometric instrument was calibrated to a (226)Ra point source. The calibration facility for field gamma-ray spectrometers, established in the Czech Republic in 1975, significantly contributed to the subsequent radiometric data standardization. In the 1990's, the original analogue airborne radiometric data were digitized and using the method of back-calibration (IAEA, 2003) converted to dose rate. The map of terrestrial gamma radiation expressed in dose rate (nGy/h) was published on the scale 1:500,000 in 1995. Terrestrial radiation in the Czech Republic, formed by magmatic, sedimentary and metamorphic rocks of Proterozoic to Quaternary age, ranges mostly from 6 to 245 nGy/h, with a mean of 65.6 ± 19.0 nGy/h. The elevated terrestrial radiation in the Czech Republic, in comparison to the global dose rate average of 54 nGy/h, reflects an enhanced content of natural radioactive elements in the rocks. The 1995 published radiometric map of the Czech Republic was successively studied and verified by additional ground gamma-ray spectrometric measurements and by comparison to radiometric maps of Germany, Poland and Slovakia in border zones. A ground dose rate intercomparison measurement under participation of foreign and domestic professional institutions revealed mutual dose rate deviations about 20 nGy/h and more due to differing technical parameters of applied radiometric instruments. Studies and verification of the radiometric map of the Czech Republic illustrate the magnitude of current deviations in dose rate data. This gained experience can assist in harmonization of dose rate data on the European scale.

  1. Digital Airborne Photogrammetry—A New Tool for Quantitative Remote Sensing?—A State-of-the-Art Review On Radiometric Aspects of Digital Photogrammetric Images

    Directory of Open Access Journals (Sweden)

    Nikolaj Veje

    2009-09-01

    Full Text Available The transition from film imaging to digital imaging in photogrammetric data capture is opening interesting possibilities for photogrammetric processes. A great advantage of digital sensors is their radiometric potential. This article presents a state-of-the-art review on the radiometric aspects of digital photogrammetric images. The analysis is based on a literature research and a questionnaire submitted to various interest groups related to the photogrammetric process. An important contribution to this paper is a characterization of the photogrammetric image acquisition and image product generation systems. The questionnaire revealed many weaknesses in current processes, but the future prospects of radiometrically quantitative photogrammetry are promising.

  2. Data acquisition and processing - helicopter radiometric survey, Krageroe, 1998

    CERN Document Server

    Beard, L P

    2000-01-01

    On 07 October 1998 a helicopter radiometric survey was flown in the vicinity of Krageroe municipality. The purpose of the survey was to provide radiometric information to help assess radon hazard from radioactive rocks in the area. A total of 60 line-kilometres of radiometric data were acquired in a single flight, covering an area of approximately 3 square km with a 50-m line spacing. The data were collected by Geological Survey of Norway (NGU) personnel and processed at NGU. Radiometric data were reduced using the three-channel procedure recommended by the International Atomic Energy Association. All data were gridded using square cells with 30-m sides and geophysical maps were produced at a scale of 1:5000. This report covers aspects of data acquisition and processing (Author)

  3. Spectral and Radiometric Calibration using Tunable Lasers Project

    Data.gov (United States)

    National Aeronautics and Space Administration —  SIRCUS-based calibration relies on a set of monitoring radiometers and tunable laser sources to provide an absolute radiometric calibration that can approach...

  4. MISR radiometric camera-by-camera Cloud Mask V004

    Data.gov (United States)

    National Aeronautics and Space Administration — This file contains the Radiometric camera-by-camera Cloud Mask dataset. It is used to determine whether a scene is classified as clear or cloudy. A new parameter has...

  5. PHASS99: A software program for retrieving and decoding the radiometric ages of igneous rocks from the international database IGBADAT

    Science.gov (United States)

    Al-Mishwat, Ali T.

    2016-05-01

    PHASS99 is a FORTRAN program designed to retrieve and decode radiometric and other physical age information of igneous rocks contained in the international database IGBADAT (Igneous Base Data File). In the database, ages are stored in a proprietary format using mnemonic representations. The program can handle up to 99 ages in an igneous rock specimen and caters to forty radiometric age systems. The radiometric age alphanumeric strings assigned to each specimen description in the database consist of four components: the numeric age and its exponential modifier, a four-character mnemonic method identification, a two-character mnemonic name of analysed material, and the reference number in the rock group bibliography vector. For each specimen, the program searches for radiometric age strings, extracts them, parses them, decodes the different age components, and converts them to high-level English equivalents. IGBADAT and similarly-structured files are used for input. The output includes three files: a flat raw ASCII text file containing retrieved radiometric age information, a generic spreadsheet-compatible file for data import to spreadsheets, and an error file. PHASS99 builds on the old program TSTPHA (Test Physical Age) decoder program and expands greatly its capabilities. PHASS99 is simple, user friendly, fast, efficient, and does not require users to have knowledge of programing.

  6. FPGA-based data processing module design of on-board radiometric calibration in visible/near infrared bands

    Science.gov (United States)

    Zhou, Guoqing; Li, Chenyang; Yue, Tao; Liu, Na; Jiang, Linjun; Sun, Yue; Li, Mingyan

    2015-12-01

    FPGA technology has long been applied to on-board radiometric calibration data processing however the integration of FPGA program is not good enough. For example, some sensors compressed remote sensing images and transferred to ground station to calculate the calibration coefficients. It will affect the timeliness of on-board radiometric calibration. This paper designs an integrated flow chart of on-board radiometric calibration. Building FPGA-based radiometric calibration data processing modules uses system generator. Thesis focuses on analyzing the calculation accuracy of FPGA-based two-point method and verifies the feasibility of this method. Calibration data was acquired by hardware platform which was built using integrating sphere, CMOS camera (canon 60d), ASD spectrometers and light filter (center wavelength: 690nm, bandwidth: 45nm). The platform can simulate single-band on-board radiometric calibration data acquisition in visible/near infrared band. Making an experiment of calibration coefficients calculation uses obtained data and FPGA modules. Experimental results show that: the camera linearity is above 99% meeting the experimental requirement. Compares with MATLAB the calculation accuracy of two-point method by FPGA are as follows: the error of gain value is 0.0053%; the error of offset value is 0.00038719%. Those results meet experimental accuracy requirement.

  7. Radiometric dating of the Siloam Tunnel, Jerusalem.

    Science.gov (United States)

    Frumkin, Amos; Shimron, Aryeh; Rosenbaum, Jeff

    2003-09-11

    The historical credibility of texts from the Bible is often debated when compared with Iron Age archaeological finds (refs. 1, 2 and references therein). Modern scientific methods may, in principle, be used to independently date structures that seem to be mentioned in the biblical text, to evaluate its historical authenticity. In reality, however, this approach is extremely difficult because of poor archaeological preservation, uncertainty in identification, scarcity of datable materials, and restricted scientific access into well-identified worship sites. Because of these problems, no well-identified Biblical structure has been radiometrically dated until now. Here we report radiocarbon and U-Th dating of the Siloam Tunnel, proving its Iron Age II date; we conclude that the Biblical text presents an accurate historic record of the Siloam Tunnel's construction. Being one of the longest ancient water tunnels lacking intermediate shafts, dating the Siloam Tunnel is a key to determining where and when this technological breakthrough took place. Siloam Tunnel dating also refutes a claim that the tunnel was constructed in the second century bc.

  8. Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement

    Science.gov (United States)

    2013-09-30

    Radiometric Measurement Lian Shen Department of Mechanical Engineering & St. Anthony Falls Laboratory University of Minnesota Minneapolis, MN...information if it does not display a currently valid OMB control number. 1. REPORT DATE 30 SEP 2013 2. REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00...2013 4. TITLE AND SUBTITLE Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  9. Evaluation of the HB&L System for the Microbiological Screening of Storage Medium for Organ-Cultured Corneas

    Directory of Open Access Journals (Sweden)

    D. Camposampiero

    2013-01-01

    Full Text Available Aims. To compare HB&L and BACTEC systems for detecting the microorganisms contaminating the corneal storage liquid preserved at 31°C. Methods. Human donor corneas were stored at 4°C followed by preservation at 31°C. Samples of the storage medium were inoculated in BACTEC Peds Plus/F (aerobic microorganisms, BACTEC Plus Anaerobic/F (anaerobic microorganisms, and HB&L bottles. The tests were performed (a after six days of storage, (b end of storage, and (c after 24 hours of preservation in deturgescent liquid sequentially. 10,655 storage and deturgescent media samples were subjected to microbiological control using BACTEC (6-day incubation and HB&L (24-hour incubation systems simultaneously. BACTEC positive/negative refers to both/either aerobic and anaerobic positives/negatives, whereas HB&L can only detect the aerobic microbes, and therefore the positives/negatives depend on the presence/absence of aerobic microorganisms. Results. 147 (1.38% samples were identified positive with at least one of the two methods. 127 samples (134 identified microorganisms were positive with both HB&L and BACTEC. 14 HB&L+/BACTEC− and 6 BACTEC+/HB&L− were identified. Sensitivity (95.5%, specificity (99.8%, and positive (90.1% and negative predictive values (99.9% were high with HB&L considering a 3.5% annual contamination rate. Conclusion. HB&L is a rapid system for detecting microorganisms in corneal storage medium in addition to the existing methods.

  10. Landsat-7 ETM+ radiometric stability and absolute calibration

    Science.gov (United States)

    Markham, B.L.; Barker, J.L.; Barsi, J.A.; Kaita, E.; Thome, K.J.; Helder, D.L.; Palluconi, Frank Don; Schott, J.R.; Scaramuzza, P.; ,

    2002-01-01

    Launched in April 1999, the Landsat-7 ETM+ instrument is in its fourth year of operation. The quality of the acquired calibrated imagery continues to be high, especially with respect to its three most important radiometric performance parameters: reflective band instrument stability to better than ??1%, reflective band absolute calibration to better than ??5%, and thermal band absolute calibration to better than ??0.6 K. The ETM+ instrument has been the most stable of any of the Landsat instruments, in both the reflective and thermal channels. To date, the best on-board calibration source for the reflective bands has been the Full Aperture Solar Calibrator, which has indicated changes of at most -1.8% to -2.0% (95% C.I.) change per year in the ETM+ gain (band 4). However, this change is believed to be caused by changes in the solar diffuser panel, as opposed to a change in the instrument's gain. This belief is based partially on ground observations, which bound the changes in gain in band 4 at -0.7% to +1.5%. Also, ETM+ stability is indicated by the monitoring of desert targets. These image-based results for four Saharan and Arabian sites, for a collection of 35 scenes over the three years since launch, bound the gain change at -0.7% to +0.5% in band 4. Thermal calibration from ground observations revealed an offset error of +0.31 W/m 2 sr um soon after launch. This offset was corrected within the U. S. ground processing system at EROS Data Center on 21-Dec-00, and since then, the band 6 on-board calibration has indicated changes of at most +0.02% to +0.04% (95% C.I.) per year. The latest ground observations have detected no remaining offset error with an RMS error of ??0.6 K. The stability and absolute calibration of the Landsat-7 ETM+ sensor make it an ideal candidate to be used as a reference source for radiometric cross-calibrating to other land remote sensing satellite systems.

  11. A procedure for radiometric recalibration of Landsat 5 TM reflective-band data

    Science.gov (United States)

    Chander, G.; Haque, M.O.; Micijevic, E.; Barsi, J.A.

    2010-01-01

    From the Landsat program's inception in 1972 to the present, the Earth science user community has been benefiting from a historical record of remotely sensed data. The multispectral data from the Landsat 5 (L5) Thematic Mapper (TM) sensor provide the backbone for this extensive archive. Historically, the radiometric calibration procedure for the L5 TM imagery used the detectors' response to the internal calibrator (IC) on a scene-by-scene basis to determine the gain and offset for each detector. The IC system degraded with time, causing radiometric calibration errors up to 20%. In May 2003, the L5 TM data processed and distributed by the U.S. Geological Survey (USGS) Earth Resources Observation and Science Center through the National Landsat Archive Production System (NLAPS) were updated to use a lifetime lookup-table (LUT) gain model to radiometrically calibrate TM data instead of using scene-specific IC gains. Further modification of the gain model was performed in 2007. The L5 TM data processed using IC prior to the calibration update do not benefit from the recent calibration revisions. A procedure has been developed to give users the ability to recalibrate their existing level-1 products. The best recalibration results are obtained if the work-order report that was included in the original standard data product delivery is available. However, if users do not have the original work-order report, the IC trends can be used for recalibration. The IC trends were generated using the radiometric gain trends recorded in the NLAPS database. This paper provides the details of the recalibration procedure for the following: 1) data processed using IC where users have the work-order file; 2) data processed using IC where users do not have the work-order file; 3) data processed using prelaunch calibration parameters; and 4) data processed using the previous version of the LUT (e.g., LUT03) that was released before April 2, 2007.

  12. Clinical comparison of the Bactec Mycosis IC/F, BacT/Alert FA, and BacT/Alert FN blood culture vials for the detection of candidemia.

    Science.gov (United States)

    Ericson, Eva-Lena; Klingspor, Lena; Ullberg, Måns; Ozenci, Volkan

    2012-06-01

    The present study analyzed the performance of Bactec Mycosis IC/F, BacT/Alert FA, and BacT/Alert FN vials in detection and time to detection (TTD) of Candida spp. in 179 simultaneous blood cultures. The Mycosis IC/F, BacT/Alert FA, and BacT/Alert FN vials could detect Candida spp. in 144 (80.45%) of 179, 149 (83.24%) of 179, and 8 (4.47%) of 179 samples, respectively. With the presence of antifungal therapy, the numbers of positive vials were higher in BacT/Alert FA compared to Mycosis IC/F, 87/99 versus 73/99, respectively (P IC/F than in BacT/Alert FA vials without antifungal therapy, 20.89 (9.33) versus 28.26 (9.77), respectively (P IC/F than in BacT/Alert FA vials, 28/30 and 19/30, respectively (P = 0.01). The present data show that the use of Bactec Mycosis IC/F together with BacT/Alert FA vials might improve the detection of Candida spp.

  13. Outdoor relative radiometric calibration method using gray scale targets

    Institute of Scientific and Technical Information of China (English)

    DUAN; YiNi; YAN; Lei; YANG; Bin; JING; Xin; CHEN; Wei

    2013-01-01

    The radiometric calibration of remote sensors is a basis and prerequisite of information quantification in remote sensing. This paper proposes a method for outdoor relative radiometric calibration using gray scale targets. In this method, the idea of two substitutions is adopted. Sunlight is used to replace the integrating sphere light source, and gray scale targets are used to re-place the diffuser. In this way, images at different radiance levels obtained outdoors can calculate the relative radiometric cali-bration coefficients using the least square method. The characteristics of this method are as follows. Firstly, compared with la-boratory calibration, it greatly reduces the complexity of the calibration method and the test cost. Secondly, compared with the existing outdoor relative radiometric calibration of a single radiance level, it uses test images of different radiance levels to re-duce errors. Thirdly, it is easy to operate with fewer environmental requirements, has obvious advantages in the rapid calibra-tion of airborne remote sensors before or after flight and is practical in engineering. This paper theoretically and experimental-ly proves the feasibility of this method. Calibration experiments were conducted on the wide-view multispectral imager (WVMI) using this method, and the precision of this method was evaluated by analyzing the corrected images of large uniform targets on ground. The experiment results have demonstrated that the new method is effective and its precision meets the re-quirement of the absolute radiometric calibration.

  14. Radiometric Study of Soil Profiles in the Infrared Band

    Science.gov (United States)

    Ponomareva, T. V.; Ponomarev, E. I.

    2016-02-01

    The applicability of radiometric survey of soil profiles in the infrared range for the analysis of soil physical properties was studied. Radiometric data were obtained for different dates of the growing season for a number of soil profiles. The specificity of temperature profiles of texture-differentiated soils (Luvisols and Retisols) as related to weather conditions of the growing season was examined. The correlation analysis showed a close relationship between the air and surface soil temperatures and between the radiometric and thermodynamic soil temperatures in the upper 10 cm. In the studied profiles, the gradient of radiometric temperatures reached 0.5-0.8°C/cm in the humus horizons and sharply decreased at the depth of more than 15-20 cm. The gradient analysis of radiometric images made it possible to outline the boundaries of soil horizons. For the texture-differentiated soils, the most distinct boundaries were established between the gray-humus AY horizon and the underlying eluvial EL horizon in podzolic soils and between the AY horizon and the underlying humus-eluvial AEL horizon in gray soils.

  15. NERO: General concept of a NEO radiometric observatory

    Science.gov (United States)

    Cellino, A.; Somma, R.; Tommasi, L.; Paolinetti, R.; Muinonen, K.; Virtanen, J.; Tedesco, E. F.

    NERO (Near-Earth Objects Radiometric Observatory) is one of the six studies for possible missions dedicated to near-Earth objects, that were funded by the ESA in 2002-2003. NERO is a further development of previous studies already submitted to ESA (Sysiphos,Spaceguard-1). The general concept is that a small satellite equipped with both a CCD for visible wavelengths and an array for thermal IR measurements around 10 microns would be an ideal platform for simultaneously obtaining two of the major objectives of current NEO science, namely the physical characterization of the objects and the discovery of NEOs which are difficult to detect because they have orbits entirely or partly interior to the Earth's orbit. The NERO study included a comprehensive analysis of the advantages and drawbacks of different orbital options for the satellite (including L2 of Earth and L2 of Venus) and a preliminary simulation of the effectiveness in deriving reliable orbits of the newly detected objects. The main results of this study, including also a preliminary design of the payload (optics, detectors, cooling system, etc.) are briefly summarized.

  16. High-speed radiometric imaging with a gated, intensified, digitally controlled camera

    Science.gov (United States)

    Ross, Charles C.; Sturz, Richard A.

    1997-05-01

    The development of an advanced instrument for real-time radiometric imaging of high-speed events is described. The Intensified Digitally-Controlled Gated (IDG) camera is a microprocessor-controlled instrument based on an intensified CCD that is specifically designed to provide radiometric optical data. The IDG supports a variety of camera- synchronous and camera-asynchronous imaging tasks in both passive imaging and active laser range-gated applications. It features both automatic and manual modes of operation, digital precision and repeatability, and ease of use. The IDG produces radiometric imagery by digitally controlling the instrument's optical gain and exposure duration, and by encoding and annotating the parameters necessary for radiometric analysis onto the resultant video signal. Additional inputs, such as date, time, GPS, IRIG-B timing, and other data can also be encoded and annotated. The IDG optical sensitivity can be readily calibrated, with calibration data tables stored in the camera's nonvolatile flash memory. The microprocessor then uses this data to provide a linear, calibrated output. The IDG possesses both synchronous and asynchronous imaging modes in order to allow internal or external control of exposure, timing, and direct interface to external equipment such as event triggers and frame grabbers. Support for laser range-gating is implemented by providing precise asynchronous CCD operation and nanosecond resolution of the intensifier photocathode gate duration and timing. Innovative methods used to control the CCD for asynchronous image capture, as well as other sensor and system considerations relevant to high-speed imaging are discussed in this paper.

  17. Reduction of Striping Noise in Overlapping LIDAR Intensity Data by Radiometric Normalization

    Science.gov (United States)

    Yan, Wai Yeung; Shaker, Ahmed

    2016-06-01

    To serve seamless mapping, airborne LiDAR data are usually collected with multiple parallel strips with one or two cross strip(s). Nevertheless, the overlapping regions of LiDAR data strips are usually found with unbalanced intensity values, resulting in the appearance of stripping noise. Despite that physical intensity correction methods are recently proposed, some of the system and environmental parameters are assumed as constant or not disclosed, leading to such an intensity discrepancy. This paper presents a new normalization technique to adjust the radiometric misalignment found in the overlapping LiDAR data strips. The normalization technique is built upon a second-order polynomial function fitted on the joint histogram plot, which is generated with a set of pairwise closest data points identified within the overlapping region. The method was tested on Teledyne Optech's Gemini dataset (at 1064 nm wavelength), where the LiDAR intensity data were first radiometrically corrected based on the radar (range) equation. Five land cover features were selected to evaluate the coefficient of variation (cv) of the intensity values before and after implementing the proposed method. Reduction of cv was found by 19% to 59% in the Gemini dataset, where the striping noise was significantly reduced in the radiometrically corrected and normalized intensity data. The Gemini dataset was also used to conduct land cover classification, and the overall accuracy yielded a notable improvement of 9% to 18%. As a result, LiDAR intensity data should be pre-processed with radiometric correction and normalization prior to any data manipulation.

  18. Radiometric rectification - Toward a common radiometric response among multidate, multisensor images

    Science.gov (United States)

    Hall, F. G.; Strebel, D. E.; Nickeson, J. E.; Goetz, S. J.

    1991-01-01

    A method is developed for relating scene digital counts among several images of the same scene by identifying radiometric control sets with mean reflectances that are basically constant. The average digital-count values of the control sets are utilized to compute linear transforms that relate digital count values between images. Two Landsat TM images are studied by means of the technique using simulations of a wide range of atmospheric conditions. In the visible and near-IR bands the algorithm effectively adjusts the surface reflectance for the effects of relative atmospheric differences to within 1 percent. The proposed method is found to be an effective relative correction procedure that can be used when atmospheric optical-depth data and calibration coefficients are not available.

  19. Calibrating Late Quaternary terrestrial climate signals: radiometrically dated pollen evidence from the southern Sierra Nevada, USA

    Science.gov (United States)

    Litwin, Ronald J.; Smoot, Joseph P.; Durika, Nancy J.; Smith, George I.

    1999-01-01

    We constructed a radiometrically calibrated proxy record of Late Pleistocene and Holocene climate change exceeding 230,000 yr duration, using pollen profiles from two cores taken through age-equivalent dry lakes - one core having greater age control (via 230Th alpha mass-spectrometry) and the other having greater stratigraphic completeness. The better dated of these two serial pollen records (Searles Lake) served as a reference section for improving the effective radiometric age control in a nearby and more complete pollen record (Owens Lake) because they: (1) are situated ~90 km apart in the same drainage system (on, and immediately leeward of, the eastern flank of the Sierra Nevada), and (2) preserved strikingly similar pollen profiles and concordant sequences of sedimentological changes. Pollen assemblages from both lakes are well preserved and diverse, and document serial changes in Late Pleistocene and Holocene plant zone distribution and composition in the westernmost Great Basin; they consist of taxa now inhabiting montane forest, woodland, steppe, and desert-scrub environments. The studied core intervals are interpreted here to be the terrestrial equivalent of marine δ18O stages 1 through 9; these pollen profiles now appear to be among the best radiometrically dated Late Pleistocene records of terrestrial climate change known.

  20. Radiometric Methods for Rapid Diagnosis of Viral Infection.

    Science.gov (United States)

    2014-09-26

    6/ NL IL 1-2 1-N6 U..V. -- V-- 1** ’~r I Ii’sW - -Kw RADIOMETRIC METHODS FOR RAPID DIAGNOSIS OF VIRAL INFECTION o Annual Report Min-Fu Tsan, M.D...REPORT DATE Command November 22, 1976 *U. S.. Army Medical Research and Development/ 13 NUMBER OF P!AGES Fort Detrick, Frederick, MD1 21701,5012 21...by black number) , Radiometric methods Virus r; fV 20. AISSY fRACT (Continue on, reverse sie it nwc. urr and ldvntity by block nuaibe,) -Vrtwo

  1. Thermal-structure coupled deformation in an optical-mechanical system for radiometric calibration of satellite IR remote sensor%卫星红外遥感器辐射定标光机系统热-结构耦合变形分析

    Institute of Scientific and Technical Information of China (English)

    肖庆生; 杨林华; 赵寿根

    2011-01-01

    The thermal deformation of a radiometric calibration optical-structure system under simulated space environments would cause a great damage to the imaging quality of the system, and reduce the precision of the calibration test eventually.In this paper, a finite element model of such a system is built.Based on the model, with the temperature values at nodes obtained in the radiometric calibration test for the satellite multi-spectral scanner, the distribution of the thermal-structure coupling deformation is calculated and analyzed.The results show that the thermal distortion of the optical bracket would cause rigid displacements of the primary mirror and the primary reflector,making them off the axis or acclivitous and the black body off the focus, and changing the focal distance of the system in a non-uniform steady-state Iow temperature condition.But the root-mean-square (RMS) values of deformation of the anamorphic mirrors are both less than one fortieth of the wave length, within the actual surface shape accuracy requirements of the optical system.%辐射定标光机系统在模拟空间环境下的热变形直接影响定标光学系统成像质量,并决定星载遥感器辐射定标试验精度.文章建立的辐射定标光机系统有限元模型,以某卫星多光谱扫描仪辐射定标试验中的实测温度变化作为温度载荷,计算和研究了该系统在真空低温环境下的热-结构耦合变形的分布情况和分布规律.结果表明:在非均匀稳态低温环境下,该系统光学支架热变形使主镜及主反射镜发生刚性位移,引起垂轴方向位移、倾斜,黑体的离焦和光学系统焦距变化;反射镜表面畸变RMS值均为1/40波长以下,可以满足实际光学系统的面形准确度要求.

  2. [VMTBB-Based Spectral Radiometric Calibration of NIR Fiber Coupled Spectrometer].

    Science.gov (United States)

    Zheng, Feng; Liu, Li-ying; Liu, Xiao-xi; Li, Ye; Shi, Xiao-guang; Zhang, Guo-yu; Huan, Ke-wei

    2015-09-01

    The medium temperature black body (MTBB) is conventional high precision equipment used as spectral radiometric scale in infrared spectral region. However, in near-infrared (NIR) spectral region, there are few papers about spectral radiometric calibration by using MTBB, that is because NIR spectral region is the borderland of its effective spectral region. The main research of this paper is spectral radiometric calibration method by using MTBB in NIR spectral region. Accordingly, this paper is devoted mostly to a discussion of how the calibration precision could be affected by selecting different structural parameters of calibration model. The purpose of this paper is to present the results of research and provide technical reference for improving the traceability in NIR spectral radiometric calibration. In this paper, a NIR fiber coupled spectrometer, whose wavelength range covers from 950 to 1700 nm, has been calibrated by a MTBB with adjustable temperature range from 50 to 1050 °C. Concentrating on calibration process, two key points have been discussed. For one thing, the geometric factors of radiation transfer model of the calibration systems have been compared between traditional structure and fiber direct-coupled structure. Because the fiber direct-coupled model is simple and effective, it has been selected instead of traditional model based on the radiation transfer between two coaxial discs. So, it is an advantaged radiation transfer model for radiometric calibration of fiber coupled spectrometer. For another thing, the relation between calibration accuracy and structural parameters of calibration model has been analyzed intensively. The root cause is scale feature of attribute of calibration data itself, which is the nonlinear structure in scales of spectral data. So, the high precision calibration needs nonlinear calibration model, and the uniform sampling for scale feature is also very important. Selecting sample is an inevitable problem when the

  3. A Kalman Approach to Lunar Surface Navigation using Radiometric and Inertial Measurements

    Science.gov (United States)

    Chelmins, David T.; Welch, Bryan W.; Sands, O. Scott; Nguyen, Binh V.

    2009-01-01

    Future lunar missions supporting the NASA Vision for Space Exploration will rely on a surface navigation system to determine astronaut position, guide exploration, and return safely to the lunar habitat. In this report, we investigate one potential architecture for surface navigation, using an extended Kalman filter to integrate radiometric and inertial measurements. We present a possible infrastructure to support this technique, and we examine an approach to simulating navigational accuracy based on several different system configurations. The results show that position error can be reduced to 1 m after 5 min of processing, given two satellites, one surface communication terminal, and knowledge of the starting position to within 100 m.

  4. Radiometric dating by alpha spectrometry on uranium series nuclides

    NARCIS (Netherlands)

    Wijk, Albert van der

    1987-01-01

    De Engelse titel van dit proegschrift \\"Radiometric Dating by Alpha Spectometry on Uranium Series Nuclides\\" kan in het Nederlands wellicht het best worden weergegeven door \\"ouderdomsdbepalingen door stralingsmeting aan kernen uit de uraniumreeks met behulp van alfaspectometrie\\". In dit laatste ho

  5. Reintroducing radiometric surface temperature into the Penman-Monteith formulation

    DEFF Research Database (Denmark)

    Mallick, Kaniska; Bøgh, Eva; Trebs, Ivonne;

    2015-01-01

    Here we demonstrate a novel method to physically integrate radiometric surface temperature (TR) into the Penman-Monteith (PM) formulation for estimating the terrestrial sensible and latent heat fluxes (H and λE) in the framework of a modified Surface Temperature Initiated Closure (STIC). It combi...

  6. Results of radiometric ash-content measurements at the Dudar coal mine, Hungary

    Energy Technology Data Exchange (ETDEWEB)

    Csoti, T. (Veszpremi Szenbanyak Dudari Banyauezeme, Dudar (Hungary))

    1983-12-01

    The regression analysis of the results of calorimetric and radiometric ash-content measurements of 1239 coal samples have shown that the calorific values which cannot be measured easily with traditional means can be approximated reasonably from the more easily measured radiometric data. The introduction of the radiometric measurements can be recommended for coal deposits. 6 refs.

  7. An Overview of MODIS Radiometric Calibration and Characterization

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the key instruments for NASA's Earth Observing System (EOS), currently operating on both the Terra and Aqua satellites. The MODIS is a major advance over the previous generation of sensors in terms of its spectral, spatial, and temporal resolutions. It has 36 spectral bands: 20 reflective solar bands (RSB) with center wavelengths from 0.41 to 2.1μm and 16 thermal emissive bands (TEB) with center wavelengths from 3.7 to 14.4μm,making observations at three spatial resolutions: 250 m (bands 1-2), 500 m (bands 3-7), and 1km (bands 8-36). MODIS is a cross-track scanning radiometer with a wide field-of-view, providing a complete global coverage of the Earth in less than 2 days. Both Terra and Aqua MODIS went through extensive pre-launch calibration and characterization at various levels. In orbit, the calibration and characterization tasks are performed using its on-board calibrators (OBCs) that include a solar diffuser (SD) and a solar diffuser stability monitor (SDSM), a v-grooved flat panel blackbody (BB), and a spectro-radiometric calibration assembly (SRCA). In this paper, we present an overview of MODIS calibration and characterization activities, methodologies, and lessons learned from pre-launch characterization and in-orbit operation. Key issues discussed in this paper include in-orbit efforts of monitoring the noise characteristics of the detectors,tracking the solar diffuser and optics degradations, and updating the sensor's response versus scan angle.The experiences and lessons learned through MODIS have played and will continue to play major roles in the design and characterization of future sensors.

  8. A novel solution for car traffic control based on radiometric microwave devices

    Science.gov (United States)

    Soldovieri, Francesco; Denisov, Alexander; Speziale, Victor

    2014-05-01

    The significant problem of traffic in big cities, connected with huge and building up quantity of automobile cars, demands for novel strategies, based on nonconventional solutions, in order to improve system traffic control, especially at crossroads. As well known, the usual solution is based on the time relay, which requires the installation of a fixed traffic interval (signal light switching) at a crossroad; this solution is low cost, but does not account for the actual traffic conditions. Therefore, in the recent years, attention is towards to new designs, where the monitoring of the and control of traffic is carried out by using various methods including, optical, the infrared, magnetic, radar tracking, acoustical ones. In this work, we discuss the deployment of high sensitivity radiometric systems and radiometers(sensor) in the microwave range [1, 2]. In fact, the radiometer as "sensor" can provide an always updated information about the car traffic in any weather condition and in absence or low visibility conditions. In fact, the radiometric sensor detects the cars thanks to the different behavior of the car roofs which reflect the cold sky whereas the road asphalt is visible as warm object (at around outside temperature). [1] A. G. Denisov, V. P. Gorishnyak, S. E. Kuzmin et al., "Some experiments concerning resolution of 32 sensors passive 8mm wave imaging system," in Proceedings of the International Symposium on Space Terahertz Technology (ISSTT '09), Charlottesville, Va, USA, April 2009. [2] F. Soldovieri, A. Natale, V. Gorishnyak, A. Pavluchenko, A. Denisov, and L. Chen, "Radiometric Imaging for Monitoring and Surveillance Issues," International Journal of Antennas and Propagation, vol. 2013, Article ID 272561, 8 pages, 2013. doi:10.1155/2013/272561.

  9. L5 TM radiometric recalibration procedure using the internal calibration trends from the NLAPS trending database

    Science.gov (United States)

    Chander, G.; Haque, Md. O.; Micijevic, E.; Barsi, J.A.

    2008-01-01

    From the Landsat program's inception in 1972 to the present, the earth science user community has benefited from a historical record of remotely sensed data. The multispectral data from the Landsat 5 (L5) Thematic Mapper (TM) sensor provide the backbone for this extensive archive. Historically, the radiometric calibration procedure for this imagery used the instrument's response to the Internal Calibrator (IC) on a scene-by-scene basis to determine the gain and offset for each detector. The IC system degraded with time causing radiometric calibration errors up to 20 percent. In May 2003 the National Landsat Archive Production System (NLAPS) was updated to use a gain model rather than the scene acquisition specific IC gains to calibrate TM data processed in the United States. Further modification of the gain model was performed in 2007. L5 TM data that were processed using IC prior to the calibration update do not benefit from the recent calibration revisions. A procedure has been developed to give users the ability to recalibrate their existing Level-1 products. The best recalibration results are obtained if the work order report that was originally included in the standard data product delivery is available. However, many users may not have the original work order report. In such cases, the IC gain look-up table that was generated using the radiometric gain trends recorded in the NLAPS database can be used for recalibration. This paper discusses the procedure to recalibrate L5 TM data when the work order report originally used in processing is not available. A companion paper discusses the generation of the NLAPS IC gain and bias look-up tables required to perform the recalibration.

  10. Microwave Radiometric Measurement of Sea Surface Salinity.

    Science.gov (United States)

    1984-04-01

    potential problems of polution and urban water sup- plies. Although salinity can be measured from a surface vessel, economic consider- ations advocate...Washington, DC 20350 Commander Naval Sea System Commandaa ComAinder ATTN: Mr. C. Smith, NAVSEA 63R* Nval Air Development Center "’-’. "Washington, DC...20362 ATTN: Mr. R. Bollard, Code 2062% .’* Warminster, PA 18974 • .’.Commander CNaval Sea System CommandCoimCander Headquarters Naval Air Systems

  11. The OLI Radiometric Scale Realization Round Robin Measurement Campaign

    Science.gov (United States)

    Cutlip, Hansford; Cole,Jerold; Johnson, B. Carol; Maxwell, Stephen; Markham, Brian; Ong, Lawrence; Hom, Milton; Biggar, Stuart

    2011-01-01

    A round robin radiometric scale realization was performed at the Ball Aerospace Radiometric Calibration Laboratory in January/February 2011 in support of the Operational Land Imager (OLI) Program. Participants included Ball Aerospace, NIST, NASA Goddard Space Flight Center, and the University of Arizona. The eight day campaign included multiple observations of three integrating sphere sources by nine radiometers. The objective of the campaign was to validate the radiance calibration uncertainty ascribed to the integrating sphere used to calibrate the OLI instrument. The instrument level calibration source uncertainty was validated by quatnifying: (1) the long term stability of the NIST calibrated radiance artifact, (2) the responsivity scale of the Ball Aerospace transfer radiometer and (3) the operational characteristics of the large integrating sphere.

  12. Radiometric microbiologic assay for the biologically active forms of niacin

    Energy Technology Data Exchange (ETDEWEB)

    Kertcher, J.A.; Guilarte, T.R.; Chen, M.F.; Rider, A.A.; McIntyre, P.A.

    1979-05-01

    A radiometric microbiologic assay has been developed for the determination of niacin in biologic fluids. Lactobacillus plantarum produced /sup 14/CO/sub 2/ from L-(U-/sup 14/C) malic acid in quantities proportional to the amount of niacin present. The assay is specific for the biologically active forms of niacin in humans. Thirty normal hemolysates were analyzed and the values ranged from 13.0 to 17.8 ..mu..g niacin/ml RBC (mean = 15.27 +- 1.33 s.d.). Good recovery and reproducibility studies were obtained with this assay. On thirty blood samples, correlation was excellent between the radiometric and the conventional turbidimetric assays.

  13. Radiometric model for the stereo camera STC onboard the BepiColombo ESA mission

    Science.gov (United States)

    Da Deppo, Vania; Martellato, Elena; Simioni, Emanuele; Naletto, Giampiero; Cremonese, Gabriele

    2016-08-01

    The STereoscopic imaging Channel (STC) is one of the instruments on-board the BepiColombo mission, which is an ESA/JAXA Cornerstone mission dedicated to the investigation of the Mercury planet. STC is part of the Spectrometers and Imagers for MPO BepiColombo Integrated Observatory SYStem (SIMBIO-SYS) suite. STC main scientific objective is the 3D global mapping of the entire surface of Mercury with a mean scale factor of 55 m per pixel at periherm. To determine the design requirements and to model the on-ground and in-flight performance of STC, a radiometric model has been developed. In particular, STC optical characteristics have been used to define the instrument response function. As input for the model, different sources can be taken into account depending on the applications, i.e. to simulate the in-flight or on-ground performances. Mercury expected radiance, the measured Optical Ground Support Equipment (OGSE) integrating sphere radiance, or calibrated stellar fluxes can be considered. Primary outputs of the model are the expected signal per pixel expressed in function of the integration time and its signal-to-noise ratio (SNR). These outputs allow then to calculate the most appropriate integration times to be used during the different phases of the mission; in particular for the images taken during the calibration campaign on-ground and for the in-flight ones, i.e. surface imaging along the orbit around Mercury and stellar calibration acquisitions. This paper describes the radiometric model structure philosophy, the input and output parameters and presents the radiometric model derived for STC. The predictions of the model will be compared with some measurements obtained during the Flight Model (FM) ground calibration campaign. The results show that the model is valid, in fact the foreseen simulated values are in good agreement with the real measured ones.

  14. Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurements

    Science.gov (United States)

    2015-03-31

    2. REPORT DATE 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 6. AUTHOR(S) 7. PERFORMING ORGANIZATION NAME(S) AND...WORK UNIT NUMBER 1. REPORT DATE (DD-MM-YYYY) 16. SECURITY CLASSIFICATION OF: PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 31-03-2015...Final March 2013 -- February 2015 Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurements N00014-13-1-0352 Yue, Dick K.P

  15. Radiometric dating by alpha spectrometry on uranium series nuclides

    OpenAIRE

    Wijk, Albert van der

    1987-01-01

    De Engelse titel van dit proegschrift \\"Radiometric Dating by Alpha Spectometry on Uranium Series Nuclides\\" kan in het Nederlands wellicht het best worden weergegeven door \\"ouderdomsdbepalingen door stralingsmeting aan kernen uit de uraniumreeks met behulp van alfaspectometrie\\". In dit laatste hoofdstuk wil ik proberen om op beknopte, ook voor de niet gespecialiseerde lezer, de inhoud en achtergrond van het onderzoek samen te vatten. Aan het eind van de vorige eeuw werd het verschijnsel ra...

  16. The Radiometric Bode’s law and Extrasolar Planets

    Science.gov (United States)

    2004-09-01

    THE RADIOMETRIC BODE’S LAW AND EXTRASOLAR PLANETS T. Joseph, W. Lazio Naval Research Laboratory, Code 7213, Washington, DC 20375-5351; joseph.lazio...the magnetic polar regions. We find that most of the known extrasolar planets should emit in the frequency range 10–1000 MHz and, under favorable...detect the known extrasolar planets or place austere limits on their radio emission. Planets with masses much lower than those in the current census

  17. Novel techniques for the analysis of the TOA radiometric uncertainty

    Science.gov (United States)

    Gorroño, Javier; Banks, Andrew; Gascon, Ferran; Fox, Nigel P.; Underwood, Craig I.

    2016-10-01

    In the framework of the European Copernicus programme, the European Space Agency (ESA) has launched the Sentinel-2 (S2) Earth Observation (EO) mission which provides optical high spatial -resolution imagery over land and coastal areas. As part of this mission, a tool (named S2-RUT, from Sentinel-2 Radiometric Uncertainty Tool) estimates the radiometric uncertainties associated to each pixel using as input the top-of-atmosphere (TOA) reflectance factor images provided by ESA. The initial version of the tool has been implemented — code and user guide available1 — and integrated as part of the Sentinel Toolbox. The tool required the study of several radiometric uncertainty sources as well as the calculation and validation of the combined standard uncertainty in order to estimate the TOA reflectance factor uncertainty per pixel. Here we describe the recent research in order to accommodate novel uncertainty contributions to the TOA reflectance uncertainty estimates in future versions of the tool. The two contributions that we explore are the radiometric impact of the spectral knowledge and the uncertainty propagation of the resampling associated to the orthorectification process. The former is produced by the uncertainty associated to the spectral calibration as well as the spectral variations across the instrument focal plane and the instrument degradation. The latter results of the focal plane image propagation into the provided orthoimage. The uncertainty propagation depends on the radiance levels on the pixel neighbourhood and the pixel correlation in the temporal and spatial dimensions. Special effort has been made studying non-stable scenarios and the comparison with different interpolation methods.

  18. A Radiometric Uncertainty Tool for the Sentinel 2 Mission

    Directory of Open Access Journals (Sweden)

    Javier Gorroño

    2017-02-01

    Full Text Available In the framework of the European Copernicus programme, the European Space Agency (ESA has launched the Sentinel-2 (S2 Earth Observation (EO mission which provides optical high spatial resolution imagery over land and coastal areas. As part of this mission, a tool (named S2-RUT, from Sentinel-2 Radiometric Uncertainty Tool has been developed. The tool estimates the radiometric uncertainty associated with each pixel in the top-of-atmosphere (TOA reflectance factor images provided by ESA. This paper describes the design and development process of the initial version of the S2-RUT tool. The initial design step describes the S2 radiometric model where a set of uncertainty contributors are identified. Each of the uncertainty contributors is specified by reviewing the pre- and post-launch characterisation. The identified uncertainty contributors are combined following the guidelines in the ‘Guide to Expression of Uncertainty in Measurement’ (GUM model and this combination model is further validated by comparing the results to a multivariate Monte Carlo Method (MCM. In addition, the correlation between the different uncertainty contributions and the impact of simplifications in the combination model have been studied. The software design of the tool prioritises an efficient strategy to read the TOA reflectance factor images, extract the auxiliary information from the metadata in the satellite products and the codification of the resulting uncertainty image. This initial version of the tool has been implemented and integrated as part of the Sentinels Application Platform (SNAP.

  19. Analysis of airborne radiometric data. Volume 2. Description, listing, and operating instructions for the code DELPHI/MAZAS. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sperling, M.; Shreve, D.C.

    1978-12-01

    The computer code DELPHI is an interactive English language command system for the analysis of airborne radiometric data. The code includes modules for data reduction, data simulation, time filtering, data adjustment and graphical presentation of the results. DELPHI is implemented in FORTRAN on a DEC-10 computer. This volume gives a brief set of operations instructions, samples of the output obtained from hard copies of the display on a Tektronix terminal and finally a listing of the code.

  20. Methods for LWIR Radiometric Calibration and Characterization

    Science.gov (United States)

    Ryan, Robert; Pagnutti, Mary; Zanoni, Vicki; Harrington, Gary; Howell, Dane; Stewart, Randy

    2002-01-01

    The utility of a thermal remote sensing system increases with it's ability to retrieve surface temperature or radiance accurately. The radiometer measures the water surface radiant temperature. Combining these measurements with atmospheric pressure, temperature, and water vapor profiles, a top-of-the-atmosphere tradiance estimate can be caluclated with a radiativer transfer code to compare to trhe sensor's output. A novel approach has been developed using an uncooled infrared camera mounted on a boom, to quantify buoy effects.

  1. The importance of geoprocessing tools in radiometric monitoring of large areas

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Danila Carrijo da Silva [Universidade Federal de Alfenas (UNIFAL), Pocos de Caldas, MG (Brazil); Comissao Nacional de Energia Nuclear (LAPOC/CNEN-MG), Pocos de Caldas, MG (Brazil). Lab. de Pocos de Caldas; Silva, Nivaldo Carlos da; Alberti, Heber Luiz Caponi; Guerrero, Eder Tadeu Zenun, E-mail: ncsilva@cnen.gov.b, E-mail: heber@cnen.gov.b, E-mail: edertzg@cnen.gov.b [Comissao Nacional de Energia Nuclear (LAPOC/CNEN-MG), Pocos de Caldas, MG (Brazil). Lab. de Pocos de Caldas

    2011-07-01

    Throughout history, the natural tendency of men to physically characterize their different surroundings has played an important role on the evolution of societies. Today, that tendency combined to the development of computer technologies, has allowed the accelerated growth of the Geographical Information Systems, which permits the analysis and manipulation of spatial data from diverse sources, producing geo referenced databases. The gamma radiation, one of the main contributors of human exposure to natural radiation, is known for its high penetration energy. Today, the environmental gamma radiation is measured through radiometric tracking mobile units, allowing large scale samplings and precise assessments. As a geo processing case study, a radiometric monitoring work was conducted in the town of Aguas da Prata-SP using a tracking mobile system, composed by a scintillator detector, a GPS and a computer, all installed in a vehicle. The data made of collected points and their respective doses and geographical references were captured and stored in a computer software and then inserted and treated in a GIS environment. After a cartographic base was created using a digitalized map of Aguas da Prata, the sampled points were plotted and interpolated with the cartographic base, producing two maps that demonstrate the tracking route and the gamma radiation dose range throughout the monitored area. Geo processing tools have shown great efficiency in this study, allowing agile manipulation and management of a large quantity of data, thus promoting a spatial analysis of natural radiation levels in the studied region. (author)

  2. MODIS Radiometric Calibration Program, Methods and Results

    Science.gov (United States)

    Xiong, Xiaoxiong; Guenther, Bruce; Angal, Amit; Barnes, William; Salomonson, Vincent; Sun, Junqiang; Wenny, Brian

    2012-01-01

    As a key instrument for NASA s Earth Observing System (EOS), the Moderate Resolution Imaging Spectroradiometer (MODIS) has made significant contributions to the remote sensing community with its unprecedented amount of data products continuously generated from its observations and freely distributed to users worldwide. MODIS observations, covering spectral regions from visible (VIS) to long-wave infrared (LWIR), have enabled a broad range of research activities and applications for studies of the earth s interactive system of land, oceans, and atmosphere. In addition to extensive pre-launch measurements, developed to characterize sensor performance, MODIS carries a set of on-board calibrators (OBC) that can be used to track on-orbit changes of various sensor characteristics. Most importantly, dedicated and continuous calibration efforts have been made to maintain sensor data quality. This paper provides an overview of the MODIS calibration program, on-orbit calibration activities, methods, and performance. Key calibration results and lessons learned from the MODIS calibration effort are also presented in this paper.

  3. A Radiometric All-Sky Infrared Camera (RASICAM) for DES/CTIO

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Peter M.; Rogers, Howard; Schindler, Rafe H.; /SLAC

    2010-08-25

    A novel radiometric all-sky infrared camera [RASICAM] has been constructed to allow automated real-time quantitative assessment of night sky conditions for the Dark Energy Camera [DECam] located on the Blanco Telescope at the Cerro Tololo Inter-American Observatory in Chile. The camera is optimized to detect the position, motion and optical depth of thin, high (8-10km) cirrus clouds and contrails by measuring their apparent temperature above the night sky background. The camera system utilizes a novel wide-field equiresolution catadioptic mirror system that provides sky coverage of 2{pi} azimuth and 14-90{sup o} from zenith. Several new technological and design innovations allow the RASICAM system to provide unprecedented cloud detection and IR-based photometricity quantification. The design of the RASICAM system is presented.

  4. JPSS-1 VIIRS Radiometric Characterization and Calibration Based on Pre-Launch Testing

    Directory of Open Access Journals (Sweden)

    Hassan Oudrari

    2016-01-01

    Full Text Available The Visible Infrared Imaging Radiometer Suite (VIIRS on-board the first Joint Polar Satellite System (JPSS completed its sensor level testing on December 2014. The JPSS-1 (J1 mission is scheduled to launch in December 2016, and will be very similar to the Suomi-National Polar-orbiting Partnership (SNPP mission. VIIRS instrument has 22 spectral bands covering the spectrum between 0.4 and 12.6 μm. It is a cross-track scanning radiometer capable of providing global measurements twice daily, through observations at two spatial resolutions, 375 m and 750 m at nadir for the imaging and moderate bands, respectively. This paper will briefly describe J1 VIIRS characterization and calibration performance and methodologies executed during the pre-launch testing phases by the government independent team to generate the at-launch baseline radiometric performance and the metrics needed to populate the sensor data record (SDR Look-Up-Tables (LUTs. This paper will also provide an assessment of the sensor pre-launch radiometric performance, such as the sensor signal to noise ratios (SNRs, radiance dynamic range, reflective and emissive bands calibration performance, polarization sensitivity, spectral performance, response-vs-scan (RVS, and scattered light response. A set of performance metrics generated during the pre-launch testing program will be compared to both the VIIRS sensor specification and the SNPP VIIRS pre-launch performance.

  5. Combining mobile terrestrial laser scanning geometric and radiometric data to eliminate accessories in circular metro tunnels

    Science.gov (United States)

    Tan, Kai; Cheng, Xiaojun; Ju, Qiaoqiao

    2016-07-01

    Terrestrial laser scanning (TLS) is a noninvasive technique to monitor surface conditions and morphological characteristics of structures and has been successfully introduced to the regular inspection and maintenance of metro tunnels. To accurately analyze the deformation and structural conditions of a metro tunnel, nonliner points (e.g., outliers and accessories) should be detected and eliminated. Nevertheless, the accessories are attached very closely to the liner and cannot be thoroughly eliminated by three-dimensional (3D) geometric information. This study proposes to separate the liner and accessories by combining TLS geometric and radiometric information. A refitted mobile Faro Focus3D X330 system is used for data collection of a new-built metro tunnel in Hangzhou, China. The results show that the corrected intensity data are an effective physical criterion and a complementary data source to remove accessories that cannot be eliminated by geometric data. After the removal of accessories by geometric and radiometric data, the remaining liner points can accurately reflect the actual structural and deformation conditions of metro tunnels.

  6. Measurements and analysis of solar direct irradiance-meter on Dunhuang radiometric calibration sites

    Science.gov (United States)

    Liu, En-chao; Li, Xin; Zhang, Yan-na; Zheng, Xiao-bing; Yan, Jing

    2016-10-01

    In order to realize the quantitative application of satellite remote sensing data and adapt to the demand of field calibration of hyper-spectral remote sensors, the solar direct spectral irradiance-meter was developed. According to the sampling principle of spectral irradiance, the irradiance-meter was designed with some technical improvements, the radiometric calibration based on system-level detector were adopted. Irradiance-meter took part in field calibration experiment on Dunhuang radiometric calibration sites and the correct data results were collected. The measurement results of spectral irradiance were consistent with simulated ground irradiance by MODTRAN model. The relative deviation of atmospheric optical depth(AOD) compared with solar radiometer CE318 was less than 4.84%. The whole day results of the irradiance observations and atmospheric transmission in the data applications were collected, the local atmosphere mode and the change of environment were reflected accurately, the input information of the atmospheric parameter were provided for the study of atmospheric properties and field calibration of remote sensors.

  7. Temporal dynamics of sand dune bidirectional reflectance characteristics for absolute radiometric calibration of optical remote sensing data

    Science.gov (United States)

    Coburn, Craig A.; Logie, Gordon; Beaver, Jason

    2016-09-01

    The use of Pseudo Invariant Calibration Sites (PICS) for establishing the radiometric trending of optical remote sensing systems has a long history of successful implementation. Past studies have shown that the PICS method is useful for evaluating the trend of sensors over time or cross-calibration of sensors but was not considered until recently for deriving absolute calibration. Current interest in using this approach to establish absolute radiometric calibration stems from recent research that indicates that with empirically derived models of the surface properties and careful atmospheric characterisation Top of Atmosphere (TOA) reflectance values can be predicted and used for absolute sensor radiometric calibration. Critical to the continued development of this approach is the accurate characterization of the Bidirectional Reflectance Distribution Function (BRDF) of PICS sites. This paper presents BRDF data collected by a high-performance portable goniometer system in order to develop a temporal BRDF model for the Algodones Dunes in California. The results demonstrated that the BRDF of a reasonably simple sand surface was complex with changes in anisotropy taking place in response to changing solar zenith angles. The nature of these complex interactions would present challenges to future model development.

  8. Prospective study of the clinical performance of three BACTEC media in a modern emergency department: Plus Aerobic/F, Plus Anaerobic/F, and Anaerobic Lytic/F.

    Science.gov (United States)

    Rocchetti, Andrea; Di Matteo, Luigi; Bottino, Paolo; Foret, Benjamin; Gamalero, Elisa; Calabresi, Alessandra; Guido, Gianluca; Casagranda, Ivo

    2016-11-01

    The performance of 3 blood culture bottles (BACTEC Plus Aerobic/F, Plus Anaerobic/F, and Anaerobic Lytic/F) were analyzed with clinical specimens collected from 688 Emergency Department patients. A total of 270 strains belonging to 33 species were identified, with E. coli and S. aureus as the most frequently detected. Overall recovery rate (RR) of bacteria and yeast was equivalent in the Plus Aerobic/F vials (208 of 270 isolates; 77.0%) and Anaerobic Lytic/F vials (206 isolates; 76.3%) and significantly better than in the Plus Anaerobic/F vials (189 isolates; 70.0%). Median time to detection (TTD) was earliest with the Anaerobic Lytic/F vials (12.0h) compared with the Plus Aerobic/F (14.6h) and Plus Anaerobic/F vials (15.4h). Positivity rate (PR) was similar for Anaerobic Lytic/F vials (76.9%) and Plus Aerobic/F vials (76.5%), but better if compared with Plus Anaerobic/F vials (69.4%). The PR and TTD for the combination of Plus Aerobic/F with Anaerobic Lytic/F (94.5% and 12.3h, respectively) was significantly better than with Plus Aerobic/F with Plus Anaerobic/F (87.8% and 14.1h).

  9. Site characterization for calibration of radiometric sensors using vicarious method

    Science.gov (United States)

    Parihar, Shailesh; Rathore, L. S.; Mohapatra, M.; Sharma, A. K.; Mitra, A. K.; Bhatla, R.; Singh, R. S.; Desai, Yogdeep; Srivastava, Shailendra S.

    2016-05-01

    Radiometric performances of earth observation satellite/sensors vary from ground pre-launch calibration campaign to post launch period extended to lifetime of the satellite due to launching vibrations. Therefore calibration is carried out worldwide through various methods throughout satellite lifetime. In India Indian Space Research Organization (ISRO) calibrates the sensor of Resourcesat-2 satellite by vicarious method. One of these vicarious calibration methods is the reflectance-based approach that is applied in this study for radiometric calibration of sensors on-board Resouresat-2 satellite. The results of ground-based measurement of atmospheric conditions and surface reflectance are made at Bap, Rajasthan Calibration/Validation (Cal/Val) site. Cal/Val observations at site were carried out with hyper-spectral Spectroradiometer covering spectral range of 350nm- 2500nm for radiometric characterization of the site. The Sunphotometer/Ozonometer for measuring the atmospheric parameters has also been used. The calibrated radiance is converted to absolute at-sensor spectral reflectance and Top-Of-Atmosphere (TOA) radiance. TOA radiance was computed using radiative transfer model `Second simulation of the satellite signal in the solar spectrum' (6S), which can accurately simulate the problems introduced by the presence of the atmosphere along the path from Sun to target (surface) to Sensor. The methodology for band averaged reflectance retrieval and spectral reflectance fitting process are described. Then the spectral reflectance and atmospheric parameters are put into 6S code to predict TOA radiance which compare with Resourcesat-2 radiance. Spectral signature and its reflectance ratio indicate the uniformity of the site. Thus the study proves that the selected site is suitable for vicarious calibration of sensor of Resourcesat-2. Further the study demonstrates the procedure for similar exercise for site selection for Cal/Val analysis of other satellite over India

  10. A definitive calibration record for the Landsat-5 thematic mapper anchored to the Landsat-7 radiometric scale

    Science.gov (United States)

    Teillet, P.M.; Helder, D.L.; Ruggles, T.A.; Landry, R.; Ahern, F.J.; Higgs, N.J.; Barsi, J.; Chander, G.; Markham, B.L.; Barker, J.L.; Thome, K.J.; Schott, J.R.; Palluconi, Frank Don

    2004-01-01

    A coordinated effort on the part of several agencies has led to the specification of a definitive radiometric calibration record for the Landsat-5 thematic mapper (TM) for its lifetime since launch in 1984. The time-dependent calibration record for Landsat-5 TM has been placed on the same radiometric scale as the Landsat-7 enhanced thematic mapper plus (ETM+). It has been implemented in the National Landsat Archive Production Systems (NLAPS) in use in North America. This paper documents the results of this collaborative effort and the specifications for the related calibration processing algorithms. The specifications include (i) anchoring of the Landsat-5 TM calibration record to the Landsat-7 ETM+ absolute radiometric calibration, (ii) new time-dependent calibration processing equations and procedures applicable to raw Landsat-5 TM data, and (iii) algorithms for recalibration computations applicable to some of the existing processed datasets in the North American context. The cross-calibration between Landsat-5 TM and Landsat-7 ETM+ was achieved using image pairs from the tandem-orbit configuration period that was programmed early in the Laridsat-7 mission. The time-dependent calibration for Landsat-5 TM is based on a detailed trend analysis of data from the on-board internal calibrator. The new lifetime radiometric calibration record for Landsat-5 will overcome problems with earlier product generation owing to inadequate maintenance and documentation of the calibration over time and will facilitate the quantitative examination of a continuous, near-global dataset at 30-m scale that spans almost two decades.

  11. Radiometric Calibration of Fluorescence Detection System with Different Gain Settings%溢油荧光光谱探测系统不同增益下的光谱定标

    Institute of Scientific and Technical Information of China (English)

    杨俊; 亓洪兴

    2011-01-01

    A spectral irradiance calibration method for UV-induced fluorescence spectra detection of oil spill was presented. A CC-3-UV cosine corrector was used to correct the calibrate curve. The method uses two standard light sources . deuterium lamp and halogen lamp instead of one light source. which could overcome the hard to calibrate (250-400) nm band problem caused by the weak ultraviolet response of most spectral radiometer and poor signal-noise ratio. The calibration curve is tested under the condition of fixed integration time and different MCP gains and the relationship of the response and the MCP gain is studied. The response characteristics under deferent gain levels of detection system can be used as a reference in designing auto gain adjustment algorithm for oil detection. Fluorescence detection system calibrated by this method is used in lubricating and diesel oil detection experiments and the spectra obtaines indicates that there is fluorescence wave crest around 360 nm which could be used as the character of oil spill on the water.%提出了一种采用氘灯、卤钨灯双标准光源对溢油荧光光谱探测系统进行光谱辐照度定标的方法,并使用光纤耦合余弦校准器对光谱仪的定标数据做了余弦校正.用于紫外-可见光波段溢油紫外光诱导荧光光谱的探测,解决了卤钨灯在(250-400)nm波段辐射强度弱和大多数光谱仪器在紫外波段响应较差而导致的定标困难问题.对增强型CCD不同的增益情况下分别进行了光谱仪辐射定标,分析了光谱探测信噪比对定标系数与增益之间的线性关系的影响.为荧光光谱探测的自动增益控制系统提供了有效的参考数据.使用定标后的光谱仪获取了柴油和润滑油经宽谱段紫外灯激发的诱导荧光光谱,其紫外光诱导荧光在360nm处附近存在响应峰值,可以用于水面溢油监测.

  12. 被动毫米波成像系统探测碳纤维复合材料研究%Detection Carbon Fiber Composites Using Passive Millimeter-Wave Radiometric Imaging System

    Institute of Scientific and Technical Information of China (English)

    尹艳华; 王春芳; 赵京磊; 孙健

    2013-01-01

    To improve the effect of detecting base materials by using passive millimeter wave imaging system (PMMW),the man-made chemical coated carbon fiber were added in detected materials and the composites were tested.Test results show that,for silver-nickel-coating carbon fiber (ANCF),copper-nickel-coating carbon fiber (CNCF) and nickel coated carbon fiber (NCF),the detected comparative voltage is decreased successively,but then the imaging distinguishing effect is improved accordingly.For base materials detected by PMMW,the esters or flour has little effect on imaging,while the graphite has slight one.After adding NCF with 0.3 % weight into the above three base materials,the images are improved greatly in PMMW.%为提高基质材料在被动毫米波成像系统(PMMW)的检出率,向基质材料内添加自制碳纤维化学镀材料.实验结果表明:镀银镍碳纤维(ANCF)、镀铜镍碳纤维(CNCF)、镀镍碳纤维(NCF)在PMMW中显示的相对电压值依次降低,成像效果依次增强;单纯基质材料矿酯和面粉几乎不能成像,石墨粉稍有成像,添加质量分数为0.3%的镀镍碳纤维(NCF)后,3种基质成像效果均明显提高.

  13. Off-line radiometric analysis of Planck/LFI data

    CERN Document Server

    Tomasi, M; Galeotta, S; Lowe, S R; Mendes, L; Leonardi, R; Villa, F; Cappellini, B; Gregorio, A; Meinhold, P; Sandri, M; Cuttaia, F; Terenzi, L; Maris, M; Valenziano, L; Salmon, M J; Bersanelli, M; Binko, P; Butler, R C; D'Arcangelo, O; Fogliani, S; Frailis, M; Franceschi, E; Gasparo, F; Maggio, G; Maino, D; Malaspina, M; Mandolesi, N; Manzato, P; Meharga, M; Morgante, G; Morisset, N; Pasian, F; Perrotta, F; Rohlfs, R; Turler, M; Zacchei, A; Zonca, A; 10.1088/1748-0221/4/12/T12020

    2009-01-01

    The Planck Low Frequency Instrument (LFI) is an array of 22 pseudo-correlation radiometers on-board the Planck satellite to measure temperature and polarization anisotropies in the Cosmic Microwave Background (CMB) in three frequency bands (30, 44 and 70 GHz). To calibrate and verify the performances of the LFI, a software suite named LIFE has been developed. Its aims are to provide a common platform to use for analyzing the results of the tests performed on the single components of the instrument (RCAs, Radiometric Chain Assemblies) and on the integrated Radiometric Array Assembly (RAA). Moreover, its analysis tools are designed to be used during the flight as well to produce periodic reports on the status of the instrument. The LIFE suite has been developed using a multi-layered, cross-platform approach. It implements a number of analysis modules written in RSI IDL, each accessing the data through a portable and heavily optimized library of functions written in C and C++. One of the most important features ...

  14. Reduction of Radiometric Miscalibration—Applications to Pushbroom Sensors

    Directory of Open Access Journals (Sweden)

    Sigrid Roessner

    2011-06-01

    Full Text Available The analysis of hyperspectral images is an important task in Remote Sensing. Foregoing radiometric calibration results in the assignment of incident electromagnetic radiation to digital numbers and reduces the striping caused by slightly different responses of the pixel detectors. However, due to uncertainties in the calibration some striping remains. This publication presents a new reduction framework that efficiently reduces linear and nonlinear miscalibrations by an image-driven, radiometric recalibration and rescaling. The proposed framework—Reduction Of Miscalibration Effects (ROME—considering spectral and spatial probability distributions, is constrained by specific minimisation and maximisation principles and incorporates image processing techniques such as Minkowski metrics and convolution. To objectively evaluate the performance of the new approach, the technique was applied to a variety of commonly used image examples and to one simulated and miscalibrated EnMAP (Environmental Mapping and Analysis Program scene. Other examples consist of miscalibrated AISA/Eagle VNIR (Visible and Near Infrared and Hawk SWIR (Short Wave Infrared scenes of rural areas of the region Fichtwald in Germany and Hyperion scenes of the Jalal-Abad district in Southern Kyrgyzstan. Recovery rates of approximately 97% for linear and approximately 94% for nonlinear miscalibrated data were achieved, clearly demonstrating the benefits of the new approach and its potential for broad applicability to miscalibrated pushbroom sensor data.

  15. Peat Mapping Associations of Airborne Radiometric Survey Data

    Directory of Open Access Journals (Sweden)

    David Beamish

    2014-01-01

    Full Text Available This study considers recent airborne radiometric (gamma ray survey data, obtained at high-resolution, across various regions of the UK. The datasets all display a very evident attenuation of signal in association with peat, and intra-peat variations are observed. The geophysical response variations are examined in detail using example data sets across lowland areas (raised bogs, meres, fens and afforested peat and upland areas of blanket bog, together with associated wetland zones. The radiometric data do not map soils per se. The bedrock (the radiogenic parent provides a specific amplitude level. Attenuation of this signal level is then controlled by moisture content in conjunction with the density and porosity of the soil cover. Both soil and bedrock variations need to be jointly assessed. The attenuation theory, reviewed here, predicts that the behaviour of wet peat is distinct from most other soil types. Theory also predicts that the attenuation levels observed across wet peatlands cannot be generally used to map variations in peat thickness. Four survey areas at various scales, across England, Scotland, Wales and Ireland are used to demonstrate the ability of the airborne data to map peat zones. A 1:50 k national mapping of deep peat is used to provide control although variability in the definition of peat zones across existing databases is also demonstrated.

  16. RADIOMETRIC AND GEOMETRIC ACCURACY ANALYSIS OF RASAT PAN IMAGERY

    Directory of Open Access Journals (Sweden)

    S. Kocaman

    2016-06-01

    Full Text Available RASAT is the second Turkish Earth Observation satellite which was launched in 2011. It operates with pushbroom principle and acquires panchromatic and MS images with 7.5 m and 15 m resolutions, respectively. The swath width of the sensor is 30 km. The main aim of this study is to analyse the radiometric and geometric quality of RASAT images. A systematic validation approach for the RASAT imagery and its products is being applied. RASAT image pair acquired over Kesan city in Edirne province of Turkey are used for the investigations. The raw RASAT data (L0 are processed by Turkish Space Agency (TUBITAK-UZAY to produce higher level image products. The image products include radiometrically processed (L1, georeferenced (L2 and orthorectified (L3 data, as well as pansharpened images. The image quality assessments include visual inspections, noise, MTF and histogram analyses. The geometric accuracy assessment results are only preliminary and the assessment is performed using the raw images. The geometric accuracy potential is investigated using 3D ground control points extracted from road intersections, which were measured manually in stereo from aerial images with 20 cm resolution and accuracy. The initial results of the study, which were performed using one RASAT panchromatic image pair, are presented in this paper.

  17. Evaluating Radiometric Measurements Using a Fixed 45 Degrees Responsivity and Zenith Angle Dependent Responsivities (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, M.; Habte, A.; Reda, I.; Sengupta, M.; Gotseff, P.; Andreas, A.; Anderberg, M.

    2014-03-01

    This poster seeks to demonstrate the importance and application of an existing but unused approach that ultimately reduces the uncertainty of radiometric measurements. Current radiometric data is based on a single responsivity value that introduces significant uncertainty to the data, however, through using responsivity as a function of solar zenith angle, the uncertainty could be decreased by 50%.

  18. Microwave radiometric system for biomedical 'true temperature' and emissivity measurements.

    Science.gov (United States)

    Lüdeke, K M; Köhler, J

    1983-09-01

    A novel type of radiometer is described, which solves the problem of emissivity-(mismatch)-independent noise temperature measurements by simultaneous registration of an object's apparent temperature and its reflectivity with just one microwave receiver and real-time calculation of the object's emissivity and its actual temperature.

  19. Pre-Launch Radiometric Characterization of JPSS-1 VIIRS Thermal Emissive Bands

    Directory of Open Access Journals (Sweden)

    Jeff McIntire

    2016-01-01

    Full Text Available Pre-launch characterization and calibration of the thermal emissive spectral bands on the Joint Polar Satellite System (JPSS-1 Visible Infrared Imaging Radiometer Suite (VIIRS is critical to ensure high quality data products for environmental and climate data records post-launch. A comprehensive test program was conducted at the Raytheon El Segundo facility in 2013–2014, including extensive environmental testing. This work is focused on the thermal band radiometric performance and stability, including evaluation of a number of sensor performance metrics and estimation of uncertainties. Analysis has shown that JPSS-1 VIIRS thermal bands perform very well in relation to their design specifications, and comparisons to the Suomi National Polar-orbiting Partnership (SNPP VIIRS instrument have shown their performance to be comparable.

  20. Microwave and Millimeter-Wave Radiometric Studies of Temperature, Water Vapor and Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Westwater, Edgeworth

    2011-05-06

    The importance of accurate measurements of column amounts of water vapor and cloud liquid has been well documented by scientists within the Atmospheric Radiation Measurement (ARM) Program. At the North Slope of Alaska (NSA), both microwave radiometers (MWR) and the MWRProfiler (MWRP), been used operationally by ARM for passive retrievals of the quantities: Precipitable Water Vapor (PWV) and Liquid Water Path (LWP). However, it has been convincingly shown that these instruments are inadequate to measure low amounts of PWV and LWP. In the case of water vapor, this is especially important during the Arctic winter, when PWV is frequently less than 2 mm. For low amounts of LWP (< 50 g/m{sup 2}), the MWR and MWRP retrievals have an accuracy that is also not acceptable. To address some of these needs, in March-April 2004, NOAA and ARM conducted the NSA Arctic Winter Radiometric Experiment - Water Vapor Intensive Operational Period at the ARM NSA/Adjacent Arctic Ocean (NSA/AAO) site. After this experiment, the radiometer group at NOAA moved to the Center for Environmental Technology (CET) of the Department of Electrical and Computer Engineering of the University of Colorado at Boulder. During this 2004 experiment, a total of 220 radiosondes were launched, and radiometric data from 22.235 to 380 GHz were obtained. Primary instruments included the ARM MWR and MWRP, a Global Positioning System (GPS), as well as the CET Ground-based Scanning Radiometer (GSR). We have analyzed data from these instruments to answer several questions of importance to ARM, including: (a) techniques for improved water vapor measurements; (b) improved calibration techniques during cloudy conditions; (c) the spectral response of radiometers to a variety of conditions: clear, liquid, ice, and mixed phase clouds; and (d) forward modeling of microwave and millimeter wave brightness temperatures from 22 to 380 GHz. Many of these results have been published in the open literature. During the third year of

  1. LFI Radiometric Chain Assembly (RCA) data handling "Rachel"

    CERN Document Server

    Malaspina, M; Battaglia, P; Binko, P; Butler, R C; D'Arcangelo, O; Fogliani, S; Frailis, M; Franceschet, C; Galeotta, S; Gasparo, F; Gregorio, A; Lapolla, M; Leonardi, R; Maggio, G; Mandolesi, N; Manzato, P; Maris, M; Meharga, M; Meinhold, P; Morisset, N; Pasian, F; Perrotta, F; Rohlfs, R; Sandri, M; Tomasi, M; Turler, M; Zacchei, A; Zonca, A; 10.1088/1748-0221/4/12/T12017

    2009-01-01

    This paper is part of the Prelaunch status LFI papers published on JINST (http://www.iop.org/EJ/journal/-page=extra.proc5/1748-0221). Planck's Low Frequency Instrument is an array of 22 pseudo-correlation radiometers at 30, 44, and 70 GHz. Before integrating the overall array assembly, a first set of tests has been performed for each radiometer chain assembly (RCA), consisting of two radiometers. In this paper, we describe Rachel, a software application which has been purposely developed and used during the RCA test campaign to carry out both near-realtime on-line data analysis and data storage (in FITS format) of the raw output from the radiometric chains.

  2. New Sentinel-2 radiometric validation approaches (SEOM program)

    Science.gov (United States)

    Bruniquel, Véronique; Lamquin, Nicolas; Ferron, Stéphane; Govaerts, Yves; Woolliams, Emma; Dilo, Arta; Gascon, Ferran

    2016-04-01

    SEOM is an ESA program element whose one of the objectives aims at launching state-of-the-art studies for the scientific exploitation of operational missions. In the frame of this program, ESA awarded ACRI-ST and its partners Rayference and National Physical Laboratory (NPL) early 2016 for a R&D study on the development and intercomparison of algorithms for validating the Sentinel-2 radiometric L1 data products beyond the baseline algorithms used operationally in the frame of the S2 Mission Performance Centre. In this context, several algorithms have been proposed and are currently in development: The first one is based on the exploitation of Deep Convective Cloud (DCC) observations over ocean. This method allows an inter-band radiometry validation from the blue to the NIR (typically from B1 to B8a) from a reference band already validated for example with the well-known Rayleigh method. Due to their physical properties, DCCs appear from the remote sensing point of view to have bright and cold tops and they can be used as invariant targets to monitor the radiometric response degradation of reflective solar bands. The DCC approach is statistical i.e. the method shall be applied on a large number of measurements to derive reliable statistics and decrease the impact of the perturbing contributors. The second radiometric validation method is based on the exploitation of matchups combining both concomitant in-situ measurements and Sentinel-2 observations. The in-situ measurements which are used here correspond to measurements acquired in the frame of the RadCalNet networks. The validation is performed for the Sentinel-2 bands similar to the bands of the instruments equipping the validation site. The measurements from the Cimel CE 318 12-filters BRDF Sun Photometer installed recently in the Gobabeb site near the Namib desert are used for this method. A comprehensive verification of the calibration requires an analysis of MSI radiances over the full dynamic range

  3. Radiometric Calibrations, Measurements, and Standards Development at NREL: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D. R.; Andreas, A.; Stoffel, T.; Reda, I.; Wilcox, S.; Gotseff, P.; Kay, B.

    2001-10-01

    Presented at the 2001 NCPV Program Review Meeting: Radiometric calibrations, measurements, and standards development at NREL. We describe proposed revisions to current reference standard spectral distributions used to evaluate photovoltaic device performance and durability of materials. Improvements in broadband outdoor radiometer calibrations reduce uncertainties in broadband radiometer calibrations. We report a method to quantify the rate of change of broadband radiometer responsivities as a function of integrated exposure to irradiance and thermal energy. The results of applying a vector of calibration factors or responsivities to field data to remove zenith-angle dependent errors in global solar radiation measurements are shown. We report on the relative sensitivity of radiometers to daily versus biweekly cleaning.

  4. Simulation study of element plastic migration from radiometric measurements

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, Faena M.L.; Manzoli, Jose Eduardo; Saiki, Mitiko [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Soares, Eufemia Paez [Escola SENAI Fundacao Zerrenner, Sao Paulo, SP (Brazil)], E-mail: eufemia@sp.senai.br

    2007-07-01

    Element migration from plastic packaging to either foodstuffs or medicine is a serious public health. Many conventional experimental techniques such as chromatography-mass spectrometry, atomic absorption spectroscopy, inductively coupled plasma spectroscopy or calorimetric methods are used to measure total and specific migration of components from plastic packaging. The radiometric method is also used to measure the element migration. In this study a numerical technique was employed to simulate the experimental migration results obtained from measurements of elements from dairy product polymeric packages into 3% acetic acid solution which is a normative food simulant. This numerical technique can be used as complementary tool for the experimental measurements, allowing for a better understanding of the diffusion process and to estimate element migration situations not experimentally measured. (author)

  5. [In-flight absolute radiometric calibration of UAV multispectral sensor].

    Science.gov (United States)

    Chen, Wei; Yan, Lei; Gou, Zhi-Yang; Zhao, Hong-Ying; Liu, Da-Ping; Duan, Yi-Ni

    2012-12-01

    Based on the data of the scientific experiment in Urad Front Banner for UAV Remote Sensing Load Calibration Field project, with the help of 6 hyperspectral radiometric targets with good Lambertian property, the wide-view multispectral camera in UAV was calibrated adopting reflectance-based method. The result reveals that for green, red and infrared channel, whose images were successfully captured, the linear correlation coefficients between the DN and radiance are all larger than 99%. In final analysis, the comprehensive error is no more than 6%. The calibration results demonstrate that the hyperspectral targets equipped by the calibration field are well suitable for air-borne multispectral load in-flight calibration. The calibration result is reliable and could be used in the retrieval of geophysical parameters.

  6. Inter-Band Radiometric Comparison and Calibration of ASTER Visible and Near-Infrared Bands

    Directory of Open Access Journals (Sweden)

    Kenta Obata

    2015-11-01

    Full Text Available The present study evaluates inter-band radiometric consistency across the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER visible and near-infrared (VNIR bands and develops an inter-band calibration algorithm to improve radiometric consistency. Inter-band radiometric comparison of current ASTER data shows a root mean square error (RMSE of 3.8%–5.7% among radiance outputs of spectral bands due primarily to differences between calibration strategies of the NIR band for nadir-looking (Band 3N and the other two bands (green and red bands, corresponding to Bands 1 and 2. An algorithm for radiometric calibration of Bands 2 and 3N with reference to Band 1 is developed based on the band translation technique and is used to obtain new radiometric calibration coefficients (RCCs for sensor sensitivity degradation. The systematic errors between radiance outputs are decreased by applying the derived RCCs, which result in reducing the RMSE from 3.8%–5.7% to 2.2%–2.9%. The remaining errors are approximately equal to or smaller than the intrinsic uncertainties of inter-band calibration derived by sensitivity analysis. Improvement of the radiometric consistency would increase the accuracy of band algebra (e.g., vegetation indices and its application. The algorithm can be used to evaluate inter-band radiometric consistency, as well as for the calibration of other sensors.

  7. Radiometric Normalization of Large Airborne Image Data Sets Acquired by Different Sensor Types

    Science.gov (United States)

    Gehrke, S.; Beshah, B. T.

    2016-06-01

    Generating seamless mosaics of aerial images is a particularly challenging task when the mosaic comprises a large number of im-ages, collected over longer periods of time and with different sensors under varying imaging conditions. Such large mosaics typically consist of very heterogeneous image data, both spatially (different terrain types and atmosphere) and temporally (unstable atmo-spheric properties and even changes in land coverage). We present a new radiometric normalization or, respectively, radiometric aerial triangulation approach that takes advantage of our knowledge about each sensor's properties. The current implementation supports medium and large format airborne imaging sensors of the Leica Geosystems family, namely the ADS line-scanner as well as DMC and RCD frame sensors. A hierarchical modelling - with parameters for the overall mosaic, the sensor type, different flight sessions, strips and individual images - allows for adaptation to each sensor's geometric and radiometric properties. Additional parameters at different hierarchy levels can compensate radiome-tric differences of various origins to compensate for shortcomings of the preceding radiometric sensor calibration as well as BRDF and atmospheric corrections. The final, relative normalization is based on radiometric tie points in overlapping images, absolute radiometric control points and image statistics. It is computed in a global least squares adjustment for the entire mosaic by altering each image's histogram using a location-dependent mathematical model. This model involves contrast and brightness corrections at radiometric fix points with bilinear interpolation for corrections in-between. The distribution of the radiometry fixes is adaptive to each image and generally increases with image size, hence enabling optimal local adaptation even for very long image strips as typi-cally captured by a line-scanner sensor. The normalization approach is implemented in HxMap software. It has been

  8. Patch Antenna for Measuring the Internal Temperature of Biological Objects Using the Near-Field Microwave Radiometric Method

    Science.gov (United States)

    Ubaichin, A.; Bespalko, A.; Filatov, A.; Alexeev, E.; Zhuk, G.

    2016-01-01

    The near-field microwave antenna with central frequency of 2.23 GHz has been designed and manufactured to be used as a part of the medical microwave radiometric system. Experimental studies of the reflection coefficient in different parts of the human body were conducted using the developed antenna. The experimental studies were carried out in a group of volunteers with normal somatic growth. The results of the experiments were used to perform the analysis of the potential errors in the measurements obtained via the developed antenna.

  9. Simultaneous Inflight Spectral and Radiometric Calibration Validation of AVRIS and HYDICE Over Lunar Lake, Nevada

    Science.gov (United States)

    Chrien, Thomas; Green, Robert; Chovit, Chris; Faust, Jessica; Johnson, Howell; Basedow, Robert; Zalewski, Edward; Colwell, John

    1995-01-01

    An experiment to check the spectral and radiometric calibration of two sensors--the airborne visible/infrared imaging spectromenter (AVRIS) and the Hyperspectral digital image collection experiment (HYDICE)--is described.

  10. MISR FIRSTLOOK radiometric camera-by-camera Cloud Mask V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This file contains the FIRSTLOOK Radiometric camera-by-camera Cloud Mask (RCCM) dataset produced using ancillary inputs (RCCT) from the previous time period. It is...

  11. Radiometric dating of sediment records in European mountain lakes

    Directory of Open Access Journals (Sweden)

    Peter G. APPLEBY

    2000-09-01

    Full Text Available Sediment cores from seven European mountain lakes collected as part of a study of palaeolimnogical records of climate change (the MOLAR project were dated radiometrically by 210Pb. In spite of the remote locations, only one site recorded more or less uniform sediment accumulation throughout the past 150 years. At three further sites the 210Pb record indicated uniform sedimentation up until ca 1950 but significant increases since then. Stratigraphic dates based on records of fallout 137Cs and 241Am showed that 210Pb supply rates to these core sites had nonetheless remained relatively constant and that the sediments could be dated by the CRS model. At the remaining sites there were indications of episodic changes in both sedimentation rates and 210Pb supply rates. Since the changes were not in proportion, neither of the simple dating models (CRS or CIC was applicable. Using the 137Cs and 241Am stratigraphic dates as reference points it was however possible to construct a realistic chronology for these cores by applying the CRS model piecewise to each time-bounded section.

  12. Landsat-8 Operational Land Imager Radiometric Calibration and Stability

    Directory of Open Access Journals (Sweden)

    Brian Markham

    2014-12-01

    Full Text Available The Landsat-8 Operational Land Imager (OLI was radiometrically calibrated prior to launch in terms of spectral radiance, using an integrating sphere source traceable to National Institute of Standards and Technology (NIST standards of spectral irradiance. It was calibrated on-orbit in terms of reflectance using diffusers characterized prior to launch using NIST traceable standards. The radiance calibration was performed with an uncertainty of ~3%; the reflectance calibration to an uncertainty of ~2%. On-orbit, multiple calibration techniques indicate that the sensor has been stable to better than 0.3% to date, with the exception of the shortest wavelength band, which has degraded about 1.0%. A transfer to orbit experiment conducted using the OLI’s heliostat-illuminated diffuser suggests that some bands increased in sensitivity on transition to orbit by as much as 5%, with an uncertainty of ~2.5%. On-orbit comparisons to other instruments and vicarious calibration techniques show the radiance (without a transfer to orbit adjustment, and reflectance calibrations generally agree with other instruments and ground measurements to within the uncertainties. Calibration coefficients are provided with the data products to convert to either radiance or reflectance units.

  13. Optimized mapping of radiometric quantities into OpenGL

    Science.gov (United States)

    Lorenzo, Maximo; Jacobs, Eddie L.; Moulton, J. R., Jr.; Liu, Jesse

    1999-07-01

    Physically realistic synthesis of FLIR imagery requires intensive phenomenology calculations of the spectral band thermal emission and reflection from scene elements in the database. These calculations predict the heat conduction, convection, and radiation exchange between scene elements and the environment. Balancing this requirement is the need for imagery to be presented to a display in a timely fashion, often in real time. In order to support these conflicting requirements, some means of overcoming the gap between real time and high fidelity must be achieved. Over the past several years, the US Army Night Vision and Electronic Sensors Directorate (NVESD) has been developing a real-time forward looking infrared sensor simulation known as Paint the Night (PTN). As part of this development, NVESD has explored schemes for optimizing signature models and for mapping model radiometric output into parameters compatible with OpenGL, real-time rendering architectures. Relevant signature and mapping optimization issues are discussed, and a current NVESD PTN real-time implementation scheme is presented.

  14. Radiometric Measurements of Slant Path Attenuation in the V/W Bands

    Science.gov (United States)

    2014-09-01

    MM-YYYY) SEPTEMBER 2014 2. REPORT TYPE INTERIM TECHNICAL REPORT 3. DATES COVERED (From - To) AUG 2012 – APR 2014 4. TITLE AND SUBTITLE RADIOMETRIC ... RADIOMETRIC MEASUREMENTS OF SLANT PATH ATTENUATION IN THE V/W BANDS SEPTEMBER 2014 INTERIM TECHNICAL REPORT APPROVED...information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD

  15. Ground-Based Radiometric Measurements of Slant Path Attenuation in the V/W Bands

    Science.gov (United States)

    2016-04-01

    this in-house final report we discuss the use of radiometric techniques to determine V and W band slant-path attenuation cumulative distribution...GROUND-BASED RADIOMETRIC MEASUREMENTS OF SLANT PATH ATTENUATION IN THE V/W BANDS APRIL 2016 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE...manufacture, use, or sell any patented invention that may relate to them. This report was cleared for public release by the 88th ABW, Wright

  16. Rapid presumptive identification of the Mycobacterium tuberculosis-bovis complex by radiometric determination of heat stable urease

    Energy Technology Data Exchange (ETDEWEB)

    Gandy, J.H.; Pruden, E.L.; Cox, F.R.

    1983-12-01

    Simple and rapid Bactec methodologies for the determination of neat (unaltered) and heat stable urease activity of mycobacteria are presented. Clinical isolates (63) and stock cultures (32)--consisting of: M. tuberculosis (19), M. bovis (5), M. kansasii (15), M. marinum (4), M. simiae (3), M. scrofulaceum (16), M. gordonae (6), M. szulgai (6), M. flavescens (1), M. gastri (1), M. intracellulare (6), M. fortuitum-chelonei complex (12), and M. smegmatis (1)--were tested for neat urease activity by Bactec radiometry. Mycobacterial isolates (50-100 mg wet weight) were incubated at 35 degrees C for 30 minutes with microCi14C-urea. Urease-positive mycobacteria gave Bactec growth index (GI) values greater than 100 units, whereas urease-negative species gave values less than 10 GI units. Eighty-three isolates possessing neat urease activity were heated at 80 degrees C for 30 minutes followed by incubation at 35 degrees C for 30 minutes with 1 microCi14C-urea. Mycobacterium tuberculosis-bovis complex demonstrated heat-stable urease activity (GI more than 130 units) and could be distinguished from mycobacteria other than tuberculosis (MOTT), which gave GI values equal to or less than 40 units.

  17. Evaluation of relative radiometric correction techniques on Landsat 8 OLI sensor data

    Science.gov (United States)

    Novelli, Antonio; Caradonna, Grazia; Tarantino, Eufemia

    2016-08-01

    The quality of information derived from processed remotely sensed data may depend upon many factors, mostly related to the extent data acquisition is influenced by atmospheric conditions, topographic effects, sun angle and so on. The goal of radiometric corrections is to reduce such effects in order enhance the performance of change detection analysis. There are two approaches to radiometric correction: absolute and relative calibrations. Due to the large amount of free data products available, absolute radiometric calibration techniques may be time consuming and financially expensive because of the necessary inputs for absolute calibration models (often these data are not available and can be difficult to obtain). The relative approach to radiometric correction, known as relative radiometric normalization, is preferred with some research topics because no in situ ancillary data, at the time of satellite overpasses, are required. In this study we evaluated three well known relative radiometric correction techniques using two Landsat 8 - OLI scenes over a subset area of the Apulia Region (southern Italy): the IR-MAD (Iteratively Reweighted Multivariate Alteration Detection), the HM (Histogram Matching) and the DOS (Dark Object Subtraction). IR-MAD results were statistically assessed within a territory with an extremely heterogeneous landscape and all computations performed in a Matlab environment. The panchromatic and thermal bands were excluded from the comparisons.

  18. Radiometric and Geometric Analysis of Hyperspectral Imagery Acquired from an Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Nancy F. Glenn

    2012-09-01

    Full Text Available In the summer of 2010, an Unmanned Aerial Vehicle (UAV hyperspectral calibration and characterization experiment of the Resonon PIKA II imaging spectrometer was conducted at the US Department of Energy’s Idaho National Laboratory (INL UAV Research Park. The purpose of the experiment was to validate the radiometric calibration of the spectrometer and determine the georegistration accuracy achievable from the on-board global positioning system (GPS and inertial navigation sensors (INS under operational conditions. In order for low-cost hyperspectral systems to compete with larger systems flown on manned aircraft, they must be able to collect data suitable for quantitative scientific analysis. The results of the in-flight calibration experiment indicate an absolute average agreement of 96.3%, 93.7% and 85.7% for calibration tarps of 56%, 24%, and 2.5% reflectivity, respectively. The achieved planimetric accuracy was 4.6 m (based on RMSE with a flying height of 344 m above ground level (AGL.

  19. Research on BD BACTEC 9120 blood culture instrument combined with serum PCT in diagnosis of bloodstream infections%BD BACTEC 9120血培养仪联合血清降钙素原在血流感染诊断中的应用

    Institute of Scientific and Technical Information of China (English)

    郭盼; 马萍; 王海龙; 董彬; 尚晓泓

    2015-01-01

    目的:比较革兰阳性(G+)菌和革兰阴性(G-)菌血流感染(BSI)的血清降钙素原(PCT)水平,探讨血培养与PCT联合检测在临床诊断中的意义。方法:采用BD BACTEC9120型全自动血培养仪对199例住院发热患者的血液标本进行细菌培养,同时检测PCT水平,比较PCT浓度水平在血培养阳性与阴性之间以及革兰阳性细菌与阴性细菌之间的差异。结果:①筛选出检测PCT的99例血培养阳性标本中分别检出18种细菌,其中表皮葡萄球菌构成比最大(占17.2%);其余依次为大肠埃希菌(占16.2%)和鲍曼不动杆菌(占10.1%);②血培养阳性与血培养阴性标本PCT结果比较差异有统计学意义;③血培养革兰阳性菌与革兰阴性菌PCT结果比较无明显差异,但如果将革兰阳性菌组金黄色葡萄球菌的结果去除,再与革兰阴性菌相比差异有统计学意义。结论:PCT对革兰阴性菌与革兰阳性菌感染有一定的判别作用,配合血培养检测能辅助临床的快速诊断,提示临床初步抗生素的使用方向,减少用药的盲目性和耐药菌株的出现。%Objective: Compare gram-positive (G+)bacteria and gram-negative bacteria (G-) bloodstream infections of serum procalcitonin(PCT) original level, to explore the clinical significance of blood culture and PCT joint detection. Methods: One hundred and ninty nine cases were selected, by using BD BACTEC 9120 type automatic blood culture instrument to detect the bacterial culture and at the same time the PCT results, comparative PCT concentration in blood cultures between positive and negative results and gram-positive bacteria and gram-negative bacteria. Results:(1)Screening detection of PCT were detected in 99 cases of specimens of blood culture positive for 18 species of bacteria including staphylococcus epidermis form than most, by 17.2%;The second is the e. coli were 16.2%and 10.1%acinetobacter baumannii. (2)blood culture positive for

  20. Radiometric Cross-Calibration of GF-4 in Multispectral Bands

    Directory of Open Access Journals (Sweden)

    Aixia Yang

    2017-03-01

    Full Text Available The GaoFen-4 (GF-4, launched at the end of December 2015, is China’s first high-resolution geostationary optical satellite. A panchromatic and multispectral sensor (PMS is onboard the GF-4 satellite. Unfortunately, the GF-4 has no onboard calibration assembly, so on-orbit radiometric calibration is required. Like the charge-coupled device (CCD onboard HuanJing-1 (HJ or the wide field of view sensor (WFV onboard GaoFen-1 (GF-1, GF-4 also has a wide field of view, which provides challenges for cross-calibration with narrow field of view sensors, like the Landsat series. A new technique has been developed and used to calibrate HJ-1/CCD and GF-1/WFV, which is verified viable. The technique has three key steps: (1 calculate the surface using the bi-directional reflectance distribution function (BRDF characterization of a site, taking advantage of its uniform surface material and natural topographic variation using Landsat Enhanced Thematic Mapper Plus (ETM+/Operational Land Imager (OLI imagery and digital elevation model (DEM products; (2 calculate the radiance at the top-of-the atmosphere (TOA with the simulated surface reflectance using the atmosphere radiant transfer model; and (3 fit the calibration coefficients with the TOA radiance and corresponding Digital Number (DN values of the image. This study attempts to demonstrate the technique is also feasible to calibrate GF-4 multispectral bands. After fitting the calibration coefficients using the technique, extensive validation is conducted by cross-validation using the image pairs of GF-4/PMS and Landsat-8/OLI with similar transit times and close view zenith. The validation result indicates a higher accuracy and frequency than that given by the China Centre for Resources Satellite Data and Application (CRESDA using vicarious calibration. The study shows that the new technique is also quite feasible for GF-4 multispectral bands as a routine long-term procedure.

  1. Initial Radiometric Characteristics of KOMPSAT-3A Multispectral Imagery Using the 6S Radiative Transfer Model, Well-Known Radiometric Tarps, and MFRSR Measurements

    Directory of Open Access Journals (Sweden)

    Jong-Min Yeom

    2017-02-01

    Full Text Available On-orbit radiometric characterization of the multispectral (MS imagery of the Korea Aerospace Research Institute (KARI’s Korea Multi-Purpose Satellite-3A (KOMPSAT-3A, which was launched on 25 March 2015, was conducted to provide quantitative radiometric information about KOMPSAT-3A. During the in-orbit test (IOT, vicarious radiometric calibration of KOMPSAT-3A was performed using the Second Simulation of a Satellite Signal in the Solar Spectrum (6S radiative transfer model. The characteristics of radiometric tarps, the atmospheric optical depth from multi-filter rotating shadowband radiometer (MFRSR measurements, and sun–sensor–geometry were carefully considered, in order to calculate the exact top of atmosphere (TOA radiance received by KOMPSAT-3A MS bands. In addition, the bidirectional reflectance distribution function (BRDF behaviors of the radiometric tarps were measured in the laboratory with a two-dimensional hyperspectral gonioradiometer, to compensate for the geometry discrepancy between the satellite and the ASD FieldSpec® 3 spectroradiometer. The match-up datasets between the TOA radiance and the digital number (DN from KOMPSAT-3A were used to determine DN-to-radiance conversion factors, based on linear least squares fitting for two field campaigns. The final results showed that the R2 values between the observed and simulated radiances for the blue, green, red, and near-infrared (NIR bands, are greater than 0.998. An approximate error budget analysis for the vicarious calibration of KOMPSAT-3A showed an error of less than 6.8%. When applying the laboratory-based BRDF correction to the case of higher viewing zenith angle geometry, the gain ratio was improved, particularly for the blue (1.3% and green (1.2% bands, which exhibit high sensitivity to the BRDF of radiometric tarps during the backward-scattering phase. The calculated gain ratio between the first and second campaigns showed a less than 5% discrepancy, indicating that

  2. Gravity, magnetic, and radiometric data for Newberry Volcano, Oregon, and vicinity

    Science.gov (United States)

    Wynn, Jeff

    2014-01-01

    Newberry Volcano in central Oregon is a 3,100-square-kilometer (1,200-square-mile) shield-shaped composite volcano, occupying a location east of the main north-south trend of the High Cascades volcanoes and forming a transition between the High Lava Plains subprovince of the Basin and Range Province to the east and the Cascade Range to the west. Magnetic, gravity, and radiometric data have been gathered and assessed for the region around the volcano. These data have widely varying quality and resolution, even within a given dataset, and these limitations are evaluated and described in this release. Publicly available gravity data in general are too sparse to permit detailed modeling except along a few roads with high-density coverage. Likewise, magnetic data are also unsuitable for all but very local modeling, primarily because available data consist of a patchwork of datasets with widely varying line-spacing. Gravity data show only the broadest correlation with mapped geology, whereas magnetic data show moderate correlation with features only in the vicinity of Newberry Caldera. At large scales, magnetic data correlate poorly with both geologic mapping and gravity data. These poor correlations are largely due to the different sensing depths of the two potential fields methods, which respond to physical properties deeper than the surficial geology. Magnetic data derive from rocks no deeper than the Curie-point isotherm depth (10 to 15 kilometers, km, maximum), whereas gravity data reflect density-contrasts to 100 to 150 km depths. Radiometric data from the National Uranium Resource Evaluation (NURE) surveys of the 1980s have perhaps the coarsest line-spacing of all (as much as 10 km between lines) and are extremely “noisy” for several reasons inherent to this kind of data. Despite its shallow-sensing character, only a few larger anomalies in the NURE data correlate well with geologic mapping. The purpose of this data series release is to collect and place the

  3. Review of Terra MODIS thermal emissive band L1B radiometric performance

    Science.gov (United States)

    Moeller, Chris; Menzel, W. P.; Quinn, Greg

    2014-09-01

    The MODerate-resolution Imaging Spectroradiometer (MODIS) on NASA's Earth Observing System Terra satellite, launched into orbit on 18 December 1999, will have a "first light" 15th anniversary on 24 February 2015. For nearly 15 years the MODIS instrument has provided radiances in all spectral bands. Though some detectors have fallen below SNR thresholds, the vast majority of spectral bands continue to provide high quality L1B measurements for use in L2 science algorithms supporting global climate research. Radiometric accuracy of the Terra MODIS thermal emissive bands (TEBs) in the C6 L1B product has been assessed using various approaches over the nearly 15 year Terra MODIS data record, including comparisons with instruments on the ground, in aircraft under-flights, and on other satellites. All of these approaches contribute to the understanding of the Terra MODIS radiometric L1B performance. Early in the lifetime of Terra, ground-based measurements and NASA ER-2 aircraft under-flights revealed that TEBs in the infrared window ("window" bands) are well calibrated and performing within accuracy specifications. The ER-2 under-flights also suggested that many atmospheric bands may be performing outside of specification, especially LWIR CO2 sensitive bands that are subject to optical crosstalk, although analysis uncertainties are larger for atmospheric bands. Beginning in 2007, MetOp-A IASI observations were used to evaluate Terra MODIS TEB performance through Simultaneous Nadir Overpass (SNO) comparisons. These inter-satellite comparisons largely affirm the early aircraft and ground-based evaluations, showing that all Terra MODIS window bands have small biases, minimal trending, and minor detector and mirror side striping over the 2007-2013 timeframe. Most atmospheric bands are performing satisfactorily near to specification; however, biases, striping and trending are large and significantly out of specification in the water vapor sensitive band 27 and ozone sensitive

  4. Making SAR Data Accessible - ASF's ALOS PALSAR Radiometric Terrain Correction Project

    Science.gov (United States)

    Meyer, F. J.; Arko, S. A.; Gens, R.

    2015-12-01

    While SAR data have proven valuable for a wide range of geophysical research questions, so far, largely only the SAR-educated science communities have been able to fully exploit the information content of internationally available SAR archives. The main issues that have been preventing a more widespread utilization of SAR are related to (1) the diversity and complexity of SAR data formats, (2) the complexity of the processing flows needed to extract geophysical information from SAR, (3) the lack of standardization and automation of these processing flows, and (4) the often ignored geocoding procedures, leaving the data in image coordinate space. In order to improve upon this situation, ASF's radiometric terrain-correction (RTC) project is generating uniformly formatted and easily accessible value-added products from the ASF Distributed Active Archive Center's (DAAC) five-year archive of JAXA's ALOS PALSAR sensor. Specifically, the project applies geometric and radiometric corrections to SAR data to allow for an easy and direct combination of obliquely acquired SAR data with remote sensing imagery acquired in nadir observation geometries. Finally, the value-added data is provided to the user in the broadly accepted Geotiff format, in order to support the easy integration of SAR data into GIS environments. The goal of ASF's RTC project is to make SAR data more accessible and more attractive to the broader SAR applications community, especially to those users that currently have limited SAR expertise. Production of RTC products commenced October 2014 and will conclude late in 2015. As of July 2015, processing of 71% of ASF's ALOS PALSAR archive was completed. Adding to the utility of this dataset are recent changes to the data access policy that allow the full-resolution RTC products to be provided to the public, without restriction. In this paper we will introduce the processing flow that was developed for the RTC project and summarize the calibration and validation

  5. Long-Wave Infrared (LWIR) Polarimetric and Radiometric Analysis for a Variety of Thermal and Electromagnetic Suppressing Materials

    Science.gov (United States)

    2014-08-01

    Final 3. DATES COVERED (From - To) January 2014 4. TITLE AND SUBTITLE Long-Wave Infrared (LWIR) Polarimetric and Radiometric Analysis for a...Long-Wave Infrared (LWIR) Polarimetric and Radiometric Analysis for a Variety of Thermal and Electromagnetic Suppressing Materials by...Army Research Laboratory Adelphi, MD 20783-1138 ARL-TR-7009 August 2014 Long-Wave Infrared (LWIR) Polarimetric and Radiometric

  6. Vicarious absolute radiometric calibration of GF-2 PMS2 sensor using permanent artificial targets in China

    Science.gov (United States)

    Liu, Yaokai; Li, Chuanrong; Ma, Lingling; Wang, Ning; Qian, Yonggang; Tang, Lingli

    2016-10-01

    GF-2, launched on August 19 2014, is one of the high-resolution land resource observing satellite of the China GF series satellites plan. The radiometric performance evaluation of the onboard optical pan and multispectral (PMS2) sensor of GF-2 satellite is very important for the further application of the data. And, the vicarious absolute radiometric calibration approach is one of the most useful way to monitor the radiometric performance of the onboard optical sensors. In this study, the traditional reflectance-based method is used to vicarious radiometrically calibrate the onboard PMS2 sensor of GF-2 satellite using three black, gray and white reflected permanent artificial targets located in the AOE Baotou site in China. Vicarious field calibration campaign were carried out in the AOE-Baotou calibration site on 22 April 2016. And, the absolute radiometric calibration coefficients were determined with in situ measured atmospheric parameters and surface reflectance of the permanent artificial calibration targets. The predicted TOA radiance of a selected desert area with our determined calibrated coefficients were compared with the official distributed calibration coefficients. Comparison results show a good consistent and the mean relative difference of the multispectral channels is less than 5%. Uncertainty analysis was also carried out and a total uncertainty with 3.87% is determined of the TOA radiance.

  7. Radiometric calibration stability of the EO-1 advanced land imager: 5 years on-orbit

    Science.gov (United States)

    Markham, B.L.; Ong, L.; Barsi, J.A.; Mendenhall, J.A.; Lencioni, D.E.; Helder, D.L.; Hollaren, D.M.; Morfitt, R.

    2006-01-01

    The Advanced Land Imager (ALI) was developed as a prototype sensor for follow on missions to Landsat-7. It was launched in November 2000 on the Earth Observing One (EO-1) satellite as a nominal one-year technology demonstration mission. As of this writing, the sensor has continued to operate in excess of 5 years. Six of the ALl's nine multi-spectral (MS) bands and the panchromatic band have similar spectral coverage as those on the Landsat-7 ETM+. In addition to on-board lamps, which have been significantly more stable than the lamps on ETM+, the ALI has a solar diffuser and has imaged the moon monthly since launch. This combined calibration dataset allows understanding of the radiometric stability of the ALI system, its calibrators and some differentiation of the sources of the changes with time. The solar dataset is limited as the mechanism controlling the aperture to the solar diffuser failed approximately 18 months after launch. Results over 5 years indicate that: the shortest wavelength band (443 nm) has degraded in response about 2%; the 482 nm and 565 nm bands decreased in response about 1%; the 660 nm, 790 nm and 868 nm bands each degraded about 5%; the 1250 nm and 1650 nm bands did not change significantly and the 2215 nm band increased in response about 2%.

  8. NERO: General concept of a Near-Earth object Radiometric Observatory

    Science.gov (United States)

    Cellino, A.; Somma, R.; Tommasi, L.; Paolinetti, R.; Muinonen, K.; Virtanen, J.; Tedesco, E. F.; Delbò, M.

    Near-Earth objects Radiometric Observatory (NERO) is one of the six studies for possible missions dedicated to near-Earth objects, that were funded by the European Space Agency (ESA) in 2002 2003. It is a further development of some previous studies already submitted to ESA (Sysiphos, Spaceguard-1). The general concept is that a small satellite equipped with both a detector for visible wavelengths and an array for thermal IR measurements around 10 μm would be an ideal platform to obtain simultaneously two of the major objectives of current NEO science, namely the physical characterization of the objects and the discovery of those NEOs that are difficult to detect from the ground because their orbits are entirely or partly inside the Earth’s orbit. The NERO study includes a comprehensive analysis of the advantages and drawbacks of different orbital options for the satellite (including L2 of Earth and L2 of Venus) and a preliminary simulation of the effectiveness of orbit determination based on NERO observations of newly detected objects. The main results of this study, including also a preliminary sketch of the payload design (optics, detectors, cooling system, etc.) are briefly summarized.

  9. Radiometric Short-Term Fourier Transform analysis of photonic Doppler velocimetry recordings and detectivity limit

    Science.gov (United States)

    Prudhomme, G.; Berthe, L.; Bénier, J.; Bozier, O.; Mercier, P.

    2017-01-01

    Photonic Doppler Velocimetry is a plug-and-play and versatile diagnostic used in dynamic physic experiments to measure velocities. When signals are analyzed using a Short-Time Fourier Transform, multiple velocities can be distinguished: for example, the velocities of moving particle-cloud appear on spectrograms. In order to estimate the back-scattering fluxes of target, we propose an original approach "PDV Radiometric analysis" resulting in an expression of time-velocity spectrograms coded in power units. Experiments involving micron-sized particles raise the issue of detection limit; particle-size limit is very difficult to evaluate. From the quantification of noise sources, we derive an estimation of the spectrogram noise leading to a detectivity limit, which may be compared to the fraction of the incoming power which has been back-scattered by the particle and then collected by the probe. This fraction increases with their size. At last, some results from laser-shock accelerated particles using two different PDV systems are compared: it shows the improvement of detectivity with respect to the Effective Number of Bits (ENOB) of the digitizer.

  10. Inflight Radiometric Calibration of New Horizons' Multispectral Visible Imaging Camera (MVIC)

    CERN Document Server

    Howett, C J A; Olkin, C B; Reuter, D C; Ennico, K; Grundy, W M; Graps, A L; Harrison, K P; Throop, H B; Buie, M W; Lovering, J R; Porter, S B; Weaver, H A; Young, L A; Stern, S A; Beyer, R A; Binzell, R P; Buratti, B J; Cheng, A F; Cook, J C; Cruikshank, D P; Ore, C M Dalle; Earle, A M; Jennings, D E; Linscott, I R; Lunsford, A W; Parker, J Wm; Phillippe, S; Protopapa, S; Quirico, E; Schenk, P M; Schmitt, B; Singer, K N; Spencer, J R; Stansberry, J A; Tsang, C C C; Weigle, G E; Verbiscer, A J

    2016-01-01

    We discuss two semi-independent calibration techniques used to determine the in-flight radiometric calibration for the New Horizons' Multi-spectral Visible Imaging Camera (MVIC). The first calibration technique compares the observed stellar flux to modeled values. The difference between the two provides a calibration factor that allows the observed flux to be adjusted to the expected levels for all observations, for each detector. The second calibration technique is a channel-wise relative radiometric calibration for MVIC's blue, near-infrared and methane color channels using observations of Charon and scaling from the red channel stellar calibration. Both calibration techniques produce very similar results (better than 7% agreement), providing strong validation for the techniques used. Since the stellar calibration can be performed without a color target in the field of view and covers all of MVIC's detectors, this calibration was used to provide the radiometric keywords delivered by the New Horizons project...

  11. Absolute Radiometric Calibration of ALS Intensity Data: Effects on Accuracy and Target Classification

    Directory of Open Access Journals (Sweden)

    Anssi Krooks

    2011-11-01

    Full Text Available Radiometric calibration of airborne laser scanning (ALS intensity data aims at retrieving a value related to the target scattering properties, which is independent on the instrument or flight parameters. The aim of a calibration procedure is also to be able to compare results from different flights and instruments, but practical applications are sparsely available, and the performance of calibration methods for this purpose needs to be further assessed. We have studied the radiometric calibration with data from three separate flights and two different instruments using external calibration targets. We find that the intensity data from different flights and instruments can be compared to each other only after a radiometric calibration process using separate calibration targets carefully selected for each flight. The calibration is also necessary for target classification purposes, such as separating vegetation from sand using intensity data from different flights. The classification results are meaningful only for calibrated intensity data.

  12. Evaluation of Two Absolute Radiometric Normalization Algorithms for Pre-processing of Landsat Imagery

    Institute of Scientific and Technical Information of China (English)

    Xu Hanqiu

    2006-01-01

    In order to evaluate radiometric normalization techniques, two image normalization algorithms for absolute radiometric correction of Landsat imagery were quantitatively compared in this paper, which are the Illumination Correction Model proposed by Markham and Irish and the Illumination and Atmospheric Correction Model developed by the Remote Sensing and GIS Laboratory of the Utah State University. Relative noise, correlation coefficient and slope value were used as the criteria for the evaluation and comparison, which were derived from pseudo-invariant features identified from multitemtween the normalized multitemporal images were significantly reduced when the seasons of multitemporal images were different. However, there was no significant difference between the normalized and unnormalized images with a similar seasonal condition. Furthermore, the correction results of two algorithms are similar when the images are relatively clear with a uniform atmospheric condition. Therefore, the radiometric normalization procedures should be carried out if the multitemporal images have a significant seasonal difference.

  13. Radiometric-microbiologic assay of niacin using Kloeckera brevis: analysis of human blood and food

    Energy Technology Data Exchange (ETDEWEB)

    Guilarte, T.R.; Pravlik, K.

    1983-12-01

    Kloeckera brevis, a yeast, was used as the test organism for the development of a radiometric-microbiologic (RMA) assay for niacin. The assay was determined to be sensitive to the 2 ng niacin per vial level and specific for the biologically active forms of this vitamin. The method was shown to be simple, accurate, and precise in the analysis of niacin in human blood and food. The application of the radiometric technique eliminates some of the problems encountered with conventional turbidimetric-microbiologic assay.

  14. Radiometric 81Kr dating identifies 120,000-year-old ice at Taylor Glacier, Antarctica

    OpenAIRE

    Buizert, Christo; Baggenstos, Daniel; Jiang, Wei; Purtschert, Roland; Petrenko, Vasilii V.; Lu, Zheng-Tian; Müller, Peter; Kuhl, Tanner; Lee, James,; Severinghaus, Jeffrey P.; Brook, Edward J.

    2014-01-01

    We present the first successful 81Kr-Kr radiometric dating of ancient polar ice. Krypton was extracted from the air bubbles in four ~350 kg polar ice samples from Taylor Glacier in the McMurdo Dry Valleys, Antarctica, and dated using Atom Trap Trace Analysis (ATTA). The 81Kr radiometric ages agree with independent age estimates obtained from stratigraphic dating techniques with a mean absolute age offset of 6 +/- 2.5 ka. Our experimental methods and sampling strategy are validated by 1) 85Kr ...

  15. Radiometric survey in mammography: problems and challenges; Levantamento radiometrico em mamografia: problemas e desafios

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, M.V.T.; Navarro, V.C.C.; Garcia, I.F.M.; Ferreira, M.J.; Macedo, E.M., E-mail: navarro@ifba.edu.br [Instituto Federal da Bahia (LABPROSAUD/IFBA), Salvador, BA (Brazil). Laboratorio de Produtos para a Saude

    2015-07-01

    In addition to being mandatory, the radiometric survey is a necessity, especially in the Brazilian reality with the construction of smaller and smaller rooms. However, calibration conditions, the instrumentation and its use, can produce underestimated factors. Measures made at Labprosaud/IFBA, with five different instruments and the ISO N 25 radiation quality, show the possibility of the values presented in the radiometric surveys are underestimated by up to 10 times. The results indicate the need for meters to be calibrated in ISO N qualities, in mammography energy range, in integrated dose mode and exposure times shorter or equal to 1 s. (author)

  16. Calibrated, multiband radiometric measurements of the optical radiation from lightning

    Science.gov (United States)

    Quick, Mason G.

    Calibrated, multiband radiometric measurements of the optical radiation emitted by rocket-triggered lightning (RTL) have been made in the ultraviolet (UV, 200-360 nm), the visible and near infrared (VNIR, 400-1000 nm), and the long wave infrared (LWIR, 8-12 microm) spectral bands. Measurements were recorded from a distance of 198 m at the University of Florida International Center for Lightning Research and Testing (ICLRT) during the summers of 2011 and 2012. The ICLRT provided time-correlated measurements of the current at the base of the RTL channels. Following the onset of a return stroke, the dominant mechanism for the initial rise of the UV and VNIR waveforms was the geometrical growth of the channel in the field-of-view of the sensors. The UV emissions peaked about 0.7 micros after the current peak, with a peak spectral power emitted by the source per unit length of channel of 10 +/- 7 kW/(nm-m) in the UV. The VNIR emissions peaked 0.9 micros after the current peak, with a spectral power of at 7 +/- 4 kW/(nm-m). The LWIR emissions peaked 30-50 micros after the current peak, and the mean peak spectral power was 940 +/- 380 mW/(nm-m), a value that is about 4 orders of magnitude lower than the other spectral band emissions. In some returns strokes the LWIR peak coincides with a secondary maximum in the VNIR band that occurs during a steady decrease in channel current. Examples of the optical waveforms in each spectral band are shown as a function of time and are discussed in the context of the current measured at the channel base. Source power estimates in the VNIR band have a mean and standard deviation of 2.5 +/- 2.2 MW/m and are in excellent agreement with similar estimates of the emission from natural subsequent strokes that remain in a pre-existing channel which have a mean and standard deviation of 2.3 +/- 3.4 MW/m. The peak optical power emitted by RTL in the UV and VNIR bands are observed to be proportional to the square of the peak current at the

  17. A Sounding Rocket Mission Concept to Acquire High-Resolution Radiometric Spectra Spanning the 9 nm - 31 nm Wavelength Range

    Science.gov (United States)

    Krause, L. Habash; Cirtain, Jonathan; McGuirck, Michael; Pavelitz, Steven; Weber, Ed.; Winebarger, Amy

    2012-01-01

    When studying Solar Extreme Ultraviolet (EUV) emissions, both single-wavelength, two- dimensional (2D) spectroheliograms and multi-wavelength, one-dimensional (1D) line spectra are important, especially for a thorough understanding of the complex processes in the solar magnetized plasma from the base of the chromosphere through the corona. 2D image data are required for a detailed study of spatial structures, whereas radiometric (i.e., spectral) data provide information on relevant atomic excitation/ionization state densities (and thus temperature). Using both imaging and radiometric techniques, several satellite missions presently study solar dynamics in the EUV, including the Solar Dynamics Observatory (SDO), Hinode, and the Solar-Terrestrial Relations Observatory (STEREO). The EUV wavelengths of interest typically span 9 nm to 31 nm, with the shorter wavelengths being associated with the hottest features (e.g., intense flares and bright points) and the longer wavelengths associated with cooler features (e.g., coronal holes and filaments). Because the optical components of satellite instruments degrade over time, it is not uncommon to conduct sounding rocket underflights for calibration purposes. The authors have designed a radiometric sounding rocket payload that could serve as both a calibration underflight for and a complementary scientific mission to the upcoming Solar Ultraviolet Imager (SUVI) mission aboard the GOES-R satellite (scheduled for a 2015 launch). The challenge to provide quality radiometric line spectra over the 9-31 nm range covered by SUVI was driven by the multilayer coatings required to make the optical components, including mirrors and gratings, reflective over the entire range. Typically, these multilayers provide useful EUV reflectances over bandwidths of a few nm. Our solution to this problem was to employ a three-telescope system in which the optical components were coated with multilayers that spanned three wavelength ranges to cover

  18. Millimeter-wave radiometric measurements of a treeline and building for aircraft obstacle avoidance

    Science.gov (United States)

    Wikner, David A.

    2003-08-01

    Passive millimeter-wave (MMW) imagers have the potential to be used on low-flying aircraft for terrain-following / terrain-avoidance during low-visibility conditions. This potential exists because of the inherent nature of MMW radiation that allows it to penetrate many visible and IR obscurants such as fog, clouds, and smoke. The phenomenology associated with this application, however, has not been fully explored. Specifically, the radiometric signatures of the various obstacles that might be encountered during a low-altitude flight need to be thoroughly understood. The work described in this paper explores the 93-GHz passive signature of a deciduous treeline and a concrete/glass building. The data were taken from the roof of a 4-story building to simulate the view of a low-flying aircraft. The data were collected over many months with an ARL-built Stokes-vector radiometer. This radiometer is a single-beam system that raster scans over a scene to collect a calibrated 93-GHz image. The data show the effects of weather and tree lifecycle on the 93-GHz brightness temperature contrast between the horizon sky and the obstacles. For the case of trees, it is shown that the horizon sky brightness temperature is greater than that of the trees when the leaves are on because of the reflective properties of the leaves. This made the trees quite detectable to our system during the late spring, summer, and early fall. Concrete buildings are inherently low-contrast obstacles because their vertical nature reflects the horizon behind the sensor and can easily mimic the forward horizon sky. Solar loading can have a large effect on building signatures.

  19. CSP parabolic trough and power tower performance analysis through the Southern African universities radiometric network (SAURAN) data

    Science.gov (United States)

    Pidaparthi, A. S.; Dall, E. P.; Hoffmann, J. E.; Dinter, F.

    2016-05-01

    The objective of this paper is to analyse the performance of parabolic trough and power tower technologies by selecting two radiometric stations in different geographic locations, with approximately equal annual direct normal irradiance (DNI) values, but with different monthly DNI distributions. The two stations chosen for this study are situated at the University of Free State, Bloemfontein, Free State Province and in Vanrhynsdorp, Western Cape Province. The annual measured DNI values for both these locations in South Africa are in the range of 2500-2700 kWh/m2. The comparison between the different monthly DNI distributions of these selected sites includes an assessment of annual hourly data in order to study the performance analysis of the most mature concentrating solar power (CSP) technologies, namely parabolic trough and power tower plants. The weather data has been obtained from the Southern African Universities Radiometric Network (SAURAN). A comparison between the different monthly DNI distributions of these selected sites includes the assessment of hourly data. Selection of these radiometric stations has also been done on the basis that they have been operational for at least one year. The first year that most SAURAN stations have been online for at least one year is 2014, thus data from this year has been considered. The annual performance analysis shows that parabolic trough plants have a higher energy yield in Vanrhynsdorp while power tower plants seem to be more suitable for Bloemfontein. Power tower plants in both the locations have a higher annual energy yield when compared with parabolic trough plants. A parabolic trough power plant in Vanrhynsdorp in the Western Cape Province has very low monthly electricity generation in the winter months of May, June, July and August. This is partly due to the higher cosine losses in the parabolic trough `one-axis' tracking systems and lower DNI values in the winter months. However, a power tower plant in

  20. Multispectral Radiometric Analysis of Façades to Detect Pathologies from Active and Passive Remote Sensing

    Directory of Open Access Journals (Sweden)

    Susana Del Pozo

    2016-01-01

    Full Text Available This paper presents a radiometric study to recognize pathologies in façades of historical buildings by using two different remote sensing technologies covering part of the visible and very near infrared spectrum (530–905 nm. Building materials deteriorate over the years due to different extrinsic and intrinsic agents, so assessing these affections in a non-invasive way is crucial to help preserve them since in many cases they are valuable and some have been declared monuments of cultural interest. For the investigation, passive and active remote acquisition systems were applied operating at different wavelengths. A 6-band Mini-MCA multispectral camera (530–801 nm and a FARO Focus3D terrestrial laser scanner (905 nm were used with the dual purpose of detecting different materials and damages on building façades as well as determining which acquisition system and spectral range is more suitable for this kind of studies. The laser scan points were used as base to create orthoimages, the input of the two different classification processes performed. The set of all orthoimages from both sensors was classified under supervision. Furthermore, orthoimages from each individual sensor were automatically classified to compare results from each sensor with the reference supervised classification. Higher overall accuracy with the FARO Focus3D, 74.39%, was obtained with respect to the Mini MCA6, 66.04%. Finally, after applying the radiometric calibration, a minimum improvement of 24% in the image classification results was obtained in terms of overall accuracy.

  1. New radiometric and petrological constraints on the evolution of the Pichincha volcanic complex (Ecuador)

    NARCIS (Netherlands)

    Robin, Claude; Samaniego, Pablo; Le Pennec, Jean-Luc; Fornari, Michel; Mothes, Patricia; van der Plicht, Johannes; Stix, J.

    2010-01-01

    Fieldwork, radiometric ((40)Ar/(39)Ar and (14)C) ages and whole-rock geochemistry allow a reconstruction of eruptive stages at the active, mainly dacitic, Pichincha Volcanic Complex (PVC), whose eruptions have repeatedly threatened Quito, most recently from 1999 to 2001. After the emplacement of bas

  2. Development of a five-hour radiometric serum antibacterial assay for gram-positive cocci

    Energy Technology Data Exchange (ETDEWEB)

    Beckwith, D.G.; Guidon, P.T. Jr.

    1981-03-01

    A preliminary report on a 5-hr radiometric serum antibacterial assay (ABA) for Gram-positive cocci is presented. The method agreed within +- one twofold dilution with static ABA endpoints in 24/26 (92%) of the assays and with cidal ABA end-points in 23/26 (88%) of the assays performed.

  3. Automatic Radiometric Normalization of Multitemporal Satellite Imagery with the Iteratively Re-weighted MAD Transformation

    DEFF Research Database (Denmark)

    Canty, Morton John; Nielsen, Allan Aasbjerg

    2008-01-01

    A recently proposed method for automatic radiometric normalization of multi- and hyper-spectral imagery based on the invariance property of the Multivariate Alteration Detection (MAD) transformation and orthogonal linear regression is extended by using an iterative re-weighting scheme involving no...

  4. Landsat-8 Operational Land Imager (OLI) radiometric performance on-orbit

    Science.gov (United States)

    Morfitt, Ron; Barsi, Julia A.; Levy, Raviv; Markham, Brian L.; Micijevic, Esad; Ong, Lawrence; Scaramuzza, Pat; Vanderwerff, Kelly

    2015-01-01

    Expectations of the Operational Land Imager (OLI) radiometric performance onboard Landsat-8 have been met or exceeded. The calibration activities that occurred prior to launch provided calibration parameters that enabled ground processing to produce imagery that met most requirements when data were transmitted to the ground. Since launch, calibration updates have improved the image quality even more, so that all requirements are met. These updates range from detector gain coefficients to reduce striping and banding to alignment parameters to improve the geometric accuracy. This paper concentrates on the on-orbit radiometric performance of the OLI, excepting the radiometric calibration performance. Topics discussed in this paper include: signal-to-noise ratios that are an order of magnitude higher than previous Landsat missions; radiometric uniformity that shows little residual banding and striping, and continues to improve; a dynamic range that limits saturation to extremely high radiance levels; extremely stable detectors; slight nonlinearity that is corrected in ground processing; detectors that are stable and 100% operable; and few image artifacts.

  5. Landsat-8 Operational Land Imager (OLI Radiometric Performance On-Orbit

    Directory of Open Access Journals (Sweden)

    Ron Morfitt

    2015-02-01

    Full Text Available Expectations of the Operational Land Imager (OLI radiometric performance onboard Landsat-8 have been met or exceeded. The calibration activities that occurred prior to launch provided calibration parameters that enabled ground processing to produce imagery that met most requirements when data were transmitted to the ground. Since launch, calibration updates have improved the image quality even more, so that all requirements are met. These updates range from detector gain coefficients to reduce striping and banding to alignment parameters to improve the geometric accuracy. This paper concentrates on the on-orbit radiometric performance of the OLI, excepting the radiometric calibration performance. Topics discussed in this paper include: signal-to-noise ratios that are an order of magnitude higher than previous Landsat missions; radiometric uniformity that shows little residual banding and striping, and continues to improve; a dynamic range that limits saturation to extremely high radiance levels; extremely stable detectors; slight nonlinearity that is corrected in ground processing; detectors that are stable and 100% operable; and few image artifacts.

  6. Observations of the moon by the global ozone monitoring experiment: radiometric calibration and lunar albedo

    NARCIS (Netherlands)

    Dobber, M.R.; Goede, A.P.H.; Burrows, J.P.

    1998-01-01

    The Global Ozone Monitoring Experiment (GOME) is a new instrument, which was launched aboard the second European Remoting Sensing satellite ESA-ERS2 in 1995. For its long-term radiometric and spectral calibration the GOME observes the sun and less frequently the moon on a regular basis. These measur

  7. Establishing metrological traceability for radiometric calibration of earth observation sensor in Malaysia

    Science.gov (United States)

    Ng, S. W.; Zulkifli, A.

    2016-10-01

    The space borne earth observation (EO) sensor provides a continuous large spatial coverage over the earth at relatively low cost (cost-effective) and can be practically accessible worldwide. The daily synoptic view offered by instrument in earth orbit is tremendously useful in various applications, particularly long term global monitoring that needs multi-disciplinary, multi-temporal and multi-sensor data. Due to the indirect measurement nature of the EO sensor, calibration and validation (cal/val) are essentially required to establish the linkage between the acquired raw data and the actual target of interest. Ultimately, EO sensor provider must strive to deliver “the right information, at the right time, to the right people”. This paper is authored with the main aim to report the process of establishing metrological traceability for radiometric calibration of EO sensor at Optical Calibration Laboratory (OCL), National Space Agency of Malaysia (ANGKASA). The paper is structured into six sections. The first section introduces the context of EO and background of radiometric calibration. The next section discusses the requirements for metrological traceability in radiometric calibration while the following third section outlines ANGKASA efforts in setting up the metrological traceability laboratory in radiometric calibration. Meanwhile, the uncertainty estimation results is reported in the fourth section and the fifth section explains some of the continuous efforts made in order to improve the current metrological traceability set up. Lastly, the summary of this paper is provided in the last section.

  8. Evaluation of direct inoculation of the BD PHOENIX system from positive BACTEC blood cultures for both Gram-positive cocci and Gram-negative rods

    NARCIS (Netherlands)

    J. Beuving (Judith); C.F. van der Donk (Christina); C.F. Linssen (Catharina F.); P. Wolffs (Petra); A. Verbon (Annelies)

    2011-01-01

    textabstractBackground: Rapid identification (ID) and antibiotic susceptibility testing (AST) of the causative micro-organism of bloodstream infections result in earlier targeting of antibiotic therapy. In order to obtain results of ID and AST up to 24 hours earlier, we evaluated the accuracy of dir

  9. ANALYZING SPECTRAL CHARACTERISTICS OF SHADOW AREA FROM ADS-40 HIGH RADIOMETRIC RESOLUTION AERIAL IMAGES

    Directory of Open Access Journals (Sweden)

    Y.-T. Hsieh

    2016-06-01

    Full Text Available The shadows in optical remote sensing images are regarded as image nuisances in numerous applications. The classification and interpretation of shadow area in a remote sensing image are a challenge, because of the reduction or total loss of spectral information in those areas. In recent years, airborne multispectral aerial image devices have been developed 12-bit or higher radiometric resolution data, including Leica ADS-40, Intergraph DMC. The increased radiometric resolution of digital imagery provides more radiometric details of potential use in classification or interpretation of land cover of shadow areas. Therefore, the objectives of this study are to analyze the spectral properties of the land cover in the shadow areas by ADS-40 high radiometric resolution aerial images, and to investigate the spectral and vegetation index differences between the various shadow and non-shadow land covers. According to research findings of spectral analysis of ADS-40 image: (i The DN values in shadow area are much lower than in nonshadow area; (ii DN values received from shadowed areas that will also be affected by different land cover, and it shows the possibility of land cover property retrieval as in nonshadow area; (iii The DN values received from shadowed regions decrease in the visible band from short to long wavelengths due to scattering; (iv The shadow area NIR of vegetation category also shows a strong reflection; (v Generally, vegetation indexes (NDVI still have utility to classify the vegetation and non-vegetation in shadow area. The spectral data of high radiometric resolution images (ADS-40 is potential for the extract land cover information of shadow areas.

  10. Analyzing Spectral Characteristics of Shadow Area from ADS-40 High Radiometric Resolution Aerial Images

    Science.gov (United States)

    Hsieh, Yi-Ta; Wu, Shou-Tsung; Chen, Chaur-Tzuhn; Chen, Jan-Chang

    2016-06-01

    The shadows in optical remote sensing images are regarded as image nuisances in numerous applications. The classification and interpretation of shadow area in a remote sensing image are a challenge, because of the reduction or total loss of spectral information in those areas. In recent years, airborne multispectral aerial image devices have been developed 12-bit or higher radiometric resolution data, including Leica ADS-40, Intergraph DMC. The increased radiometric resolution of digital imagery provides more radiometric details of potential use in classification or interpretation of land cover of shadow areas. Therefore, the objectives of this study are to analyze the spectral properties of the land cover in the shadow areas by ADS-40 high radiometric resolution aerial images, and to investigate the spectral and vegetation index differences between the various shadow and non-shadow land covers. According to research findings of spectral analysis of ADS-40 image: (i) The DN values in shadow area are much lower than in nonshadow area; (ii) DN values received from shadowed areas that will also be affected by different land cover, and it shows the possibility of land cover property retrieval as in nonshadow area; (iii) The DN values received from shadowed regions decrease in the visible band from short to long wavelengths due to scattering; (iv) The shadow area NIR of vegetation category also shows a strong reflection; (v) Generally, vegetation indexes (NDVI) still have utility to classify the vegetation and non-vegetation in shadow area. The spectral data of high radiometric resolution images (ADS-40) is potential for the extract land cover information of shadow areas.

  11. Updated radiometric calibration for the Landsat-5 thematic mapper reflective bands

    Science.gov (United States)

    Helder, D.L.; Markham, B.L.; Thome, K.J.; Barsi, J.A.; Chander, G.; Malla, R.

    2008-01-01

    The Landsat-5 Thematic Mapper (TM) has been the workhorse of the Landsat system. Launched in 1984, it continues collecting data through the time frame of this paper. Thus, it provides an invaluable link to the past history of the land features of the Earth's surface, and it becomes imperative to provide an accurate radiometric calibration of the reflective bands to the user community. Previous calibration has been based on information obtained from prelaunch, the onboard calibrator, vicarious calibration attempts, and cross-calibration with Landsat-7. Currently, additional data sources are available to improve this calibration. Specifically, improvements in vicarious calibration methods and development of the use of pseudoinvariant sites for trending provide two additional independent calibration sources. The use of these additional estimates has resulted in a consistent calibration approach that ties together all of the available calibration data sources. Results from this analysis indicate a simple exponential, or a constant model may be used for all bands throughout the lifetime of Landsat-5 TM. Where previously time constants for the exponential models were approximately one year, the updated model has significantly longer time constants in bands 1-3. In contrast, bands 4, 5, and 7 are shown to be best modeled by a constant. The models proposed in this paper indicate calibration knowledge of 5% or better early in life, decreasing to nearly 2% later in life. These models have been implemented at the U.S. Geological Survey Earth Resources Observation and Science (EROS) and are the default calibration used for all Landsat TM data now distributed through EROS. ?? 2008 IEEE.

  12. Absolute radiometric calibration of Landsat using a pseudo invariant calibration site

    Science.gov (United States)

    Helder, D.; Thome, K.J.; Mishra, N.; Chander, G.; Xiong, Xiaoxiong; Angal, A.; Choi, Tae-young

    2013-01-01

    Pseudo invariant calibration sites (PICS) have been used for on-orbit radiometric trending of optical satellite systems for more than 15 years. This approach to vicarious calibration has demonstrated a high degree of reliability and repeatability at the level of 1-3% depending on the site, spectral channel, and imaging geometries. A variety of sensors have used this approach for trending because it is broadly applicable and easy to implement. Models to describe the surface reflectance properties, as well as the intervening atmosphere have also been developed to improve the precision of the method. However, one limiting factor of using PICS is that an absolute calibration capability has not yet been fully developed. Because of this, PICS are primarily limited to providing only long term trending information for individual sensors or cross-calibration opportunities between two sensors. This paper builds an argument that PICS can be used more extensively for absolute calibration. To illustrate this, a simple empirical model is developed for the well-known Libya 4 PICS based on observations by Terra MODIS and EO-1 Hyperion. The model is validated by comparing model predicted top-of-atmosphere reflectance values to actual measurements made by the Landsat ETM+ sensor reflective bands. Following this, an outline is presented to develop a more comprehensive and accurate PICS absolute calibration model that can be Système international d'unités (SI) traceable. These initial concepts suggest that absolute calibration using PICS is possible on a broad scale and can lead to improved on-orbit calibration capabilities for optical satellite sensors.

  13. New radiometric dates for the Prehistory of Northwestern Iberia: Valdavara Cave (Becerreá, Lugo

    Directory of Open Access Journals (Sweden)

    Vaquero Rodríguez, Manuel

    2009-06-01

    Full Text Available The goal of this paper is to make known the first results of the excavations in Valdavara Cave (Becerreá, Lugo, paying special attention to the radiometric dating that places this cave among the few Galician sites with Upper Palaeolithic dates. During the excavation carried out in 2007, two archaeological locations were documented in the same karstic system (Valdavara 1 and Valdavara 2. The test pit initiated in Valdavara 1 allowed us to identify so far two stratigraphic units: an upper unit corresponding to Recent Prehistory and a lower unit (level 4 that yielded the Upper Palaeolithic dates. An assemblage of human remains from the Bronze Age was found in Valdavara 2.

    El objetivo de este artículo es dar a conocer los primeros resultados de las excavaciones en la cueva de Valdavara (Becerreá, Lugo, prestando especial atención a las dataciones radiométricas que la sitúan entre los pocos yacimientos gallegos que han arrojado fechas correspondientes al Paleolítico Superior. La excavación realizada en el año 2007 permitió documentar dos localizaciones arqueológicas en el marco del mismo sistema cárstico (Valdavara 1 y Valdavara 2. El sondeo iniciado en Valdavara 1 ha permitido identificar hasta el momento dos conjuntos estratigráficos: un conjunto superior correspondiente a la Prehistoria reciente y un conjunto inferior (nivel 4 en el que se han obtenido las fechas del Paleolítico Superior final. En Valdavara 2 se encontró un conjunto de restos humanos de la Edad del Bronce.

  14. Lunar Spectral Irradiance and Radiance (LUSI): New Instrumentation to Characterize the Moon as a Space-Based Radiometric Standard.

    Science.gov (United States)

    Smith, Allan W; Lorentz, Steven R; Stone, Thomas C; Datla, Raju V

    2012-01-01

    The need to understand and monitor climate change has led to proposed radiometric accuracy requirements for space-based remote sensing instruments that are very stringent and currently outside the capabilities of many Earth orbiting instruments. A major problem is quantifying changes in sensor performance that occur from launch and during the mission. To address this problem on-orbit calibrators and monitors have been developed, but they too can suffer changes from launch and the harsh space environment. One solution is to use the Moon as a calibration reference source. Already the Moon has been used to remove post-launch drift and to cross-calibrate different instruments, but further work is needed to develop a new model with low absolute uncertainties capable of climate-quality absolute calibration of Earth observing instruments on orbit. To this end, we are proposing an Earth-based instrument suite to measure the absolute lunar spectral irradiance to an uncertainty(1) of 0.5 % (k=1) over the spectral range from 320 nm to 2500 nm with a spectral resolution of approximately 0.3 %. Absolute measurements of lunar radiance will also be acquired to facilitate calibration of high spatial resolution sensors. The instruments will be deployed at high elevation astronomical observatories and flown on high-altitude balloons in order to mitigate the effects of the Earth's atmosphere on the lunar observations. Periodic calibrations using instrumentation and techniques available from NIST will ensure traceability to the International System of Units (SI) and low absolute radiometric uncertainties.

  15. 传感器交叉辐射定标综述%Review of radiometric cross-calibration

    Institute of Scientific and Technical Information of China (English)

    高彩霞; 姜小光; 马灵玲; 霍红元

    2013-01-01

    With the development of quantitative remote sensing, interest in the radiometric calibration aspects of terrestrial remote sensing has been on the rise, and significant resources are being devoted to the relevant areas of research and development. The radiometric calibration of those sensors is a contributing factor to the success of application of remote sensing data. The calibration of sensors has relied on the preflight laboratory work as well as on in-flight techniques. At present, three kinds of in-flight radiometric calibration methods have been developed and widely used, namely, on-board calibration, in-situ calibration and cross-calibration. On-board calibrators, such as solar diffuser (SD) and solar diffuser stability monitor (SDSM) , can be used for operational calibration; however, some satellites are not equipped with these due to power, weight, and space restrictions. In order to compensate for the limitations of on-board calibration systems, many methods have been proposed and used for in-flight radiometric calibration, such as in-situ calibration and cross-calibration. The problem with in-situ calibration is that it could be labor intensive, costly and time consuming. This typically limits the number of calibrations that can be performed. Cross-calibration is an alternative and potentially easier technique that can be used to acquire post-launch calibration coefficients. In comparison to in-situ calibration, cross-calibration can circumvent the strict requirements of atmospheric and surface variables; it is a cost-effective and convenient mean of calibration without the need of accurate synchronous in-situ measurements, compensating for the deficiencies of in-situ calibration. To date, many cross-calibration methods have been proposed with the same goal but different application conditions, advantages and limitations. Therefore, this paper aims to review these cross-calibration methods and to provide technical assistance for in-flight calibration

  16. Post-launch Radiometric and Spectral Calibration Assessment of NPP/CrIS by Comparing CrIS with VIIRS, AIRS, and IASI

    OpenAIRE

    Wang, Likun; Han, Yong; Tremblay, Denis; Goldberg, Mitch

    2012-01-01

    The Cross-track Infrared Sounder (CrIS) on the newly-launched Suomi National Polar-orbiting Partnership (Suomi NPP) and future Joint Polar Satellite System (JPSS) is a Fourier transform spectrometer that provides soundings of the atmosphere with 1305 spectral channels, over 3 wavelength ranges: LWIR (9.14 - 15.38um); MWIR (5.71 - 8.26um); and SWIR (3.92 - 4.64 um). An accurate spectral and radiometric calibration is fundamental for CrIS radiance Sensor Data Records (SDRs). In this study, thro...

  17. Spectrally and Radiometrically Stable Wide-Band on Board Calibration Source for In-Flight Data Validation in Imaging Spectroscopy Applications

    Science.gov (United States)

    Coles, J. B.; Richardson, Brandon S.; Eastwood, Michael L.; Sarture, Charles M.; Quetin, Gregory R.; Hernandez, Marco A.; Kroll, Linley A.; Nolte, Scott H.; Porter, Michael D.; Green, Robert O.

    2011-01-01

    The quality of the quantitative spectral data collected by an imaging spectrometer instrument is critically dependent upon the accuracy of the spectral and radiometric calibration of the system. In order for the collected spectra to be scientifically useful, the calibration of the instrument must be precisely known not only prior to but during data collection. Thus, in addition to a rigorous in-lab calibration procedure, the airborne instruments designed and built by the NASA/JPL Imaging Spectroscopy Group incorporate an on board calibrator (OBC) system with the instrument to provide auxiliary in-use system calibration data. The output of the OBC source illuminates a target panel on the backside of the foreoptics shutter both before and after data collection. The OBC and in-lab calibration data sets are then used to validate and post-process the collected spectral image data. The resulting accuracy of the spectrometer output data is therefore integrally dependent upon the stability of the OBC source. In this paper we describe the design and application of the latest iteration of this novel device developed at NASA/JPL which integrates a halogen-cycle source with a precisely designed fiber coupling system and a fiber-based intensity monitoring feedback loop. The OBC source in this Airborne Testbed Spectrometer was run over a period of 15 hours while both the radiometric and spectral stabilities of the output were measured and demonstrated stability to within 1% of nominal.

  18. HJ-1A HSI on-orbit radiometric calibration and validation research

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The calibration experiment data at Dunhuang radiometric calibration site in October, 2008 were used to achieve the on-orbit radiometric calibration for HJ-1A hyper spectral imager (HSI). Two other field experiments data were used to validate the Dunhuang calibration results. One field experiment took place in Inner-Mongolia, China in September, 2008, and the other field experiment took place in Lake Frome, Australia in February, 2009. Finally, the ‘confidence interval of calibration error’ concept was put forward for quantitatively computing the calibration coefficient error confidence interval. The results showed that the Dunhuang calibration results in 2008 had high reliability. The confidence intervals of calibration error for all HSI channels were between 2% to 12%, which could satisfy the requirement of the HSI quantitative applications.

  19. Contact sensitivity in mice evaluated by means of ear swelling and a radiometric test

    Energy Technology Data Exchange (ETDEWEB)

    Baeck, O.; Larsen, A.

    1982-04-01

    Contact sensitivity to picryl chloride was investigated by means of the ear swelling test and a radiometric test in order to establish optimal experimental conditions for these assays. Contact sensitivity was demonstrated as soon as 2 days after sensitization, with a maximum reaction 3-4 days after sensitization, when a 48 hr test reaction was registered. The test reaction was followed for 72 hr and maximum was arrived at after 24 hr and 48 hr for the ear swelling test and the radiometric test, respectively. Optimal sensitization was reached with a 7% solution of picryl chloride and a maximum test reaction was found with 0.75-1.0% picryl chloride. It is concluded that both assays measure contact sensitivity in quantitative terms and a future replacement of the guinea pig maximization test is discussed.

  20. An information theory characterization of radar images and a new definition for radiometric resolution

    Science.gov (United States)

    Frost, V. S.; Shanmugan, K. S.; Holtzman, J. C.

    1982-01-01

    The noise properties of the radar image formation process are used in the present modeling of a communication channel in which the desired target properties are the information transmitted, and the final image represents the received signal. The average information rate over this communication channel is calculated together with appropriate bounds and approximations, and is found to be small on a per-sample basis. As a result, many samples must be averaged to allow for the discrimination, or classification, of several levels of target reflectivity. These information rate properties are consistent with known results concerning target detection and image quality in speckle, and the rate is applicable to the definition of radar image radiometric resolution. Radiometric resolution is functionally related to the degree of noncoherent averaging performed by the sensor.

  1. Mississippi exploration field trials using microbial, radiometrics, free soil gas, and other techniques

    Energy Technology Data Exchange (ETDEWEB)

    Moody, J.S.; Brown, L.R.; Thieling, S.C.

    1995-12-31

    The Mississippi Office of Geology has conducted field trials using the surface exploration techniques of geomicrobial, radiometrics, and free soil gas. The objective of these trials is to determine if Mississippi oil and gas fields have surface hydrocarbon expression resulting from vertical microseepage migration. Six fields have been surveyed ranging in depth from 3,330 ft to 18,500 ft. The fields differ in trapping styles and hydrocarbon type. The results so far indicate that these fields do have a surface expression and that geomicrobial analysis as well as radiometrics and free soil gas can detect hydrocarbon microseepage from pressurized reservoirs. All three exploration techniques located the reservoirs independent of depth, hydrocarbon type, or trapping style.

  2. Determination of Cloud Ice Water Content and Geometrical Thickness Using Microwave and Infrared Radiometric Measurements.

    Science.gov (United States)

    Wu, Man-Li C.

    1987-08-01

    Cloud ice water content and cloud geometrical thickness have been determined using a combination of near-infrared, thermal infrared and thermal microwave radiometric measurements. The radiometric measurements are from a Multispectral Cloud Radiometer, which has seven channels ranging from visible to thermal infrared, and an Advanced Microwave Moisture Sounder, which has four channels ranging from 90 to 183 GHz. Studies indicate that the microwave brightness temperatures depend not only on the amount of ice water content but also on the vertical distribution of ice water content. Studies also show that the low brightness temperature at 92 GHz for large ice water content is due to cloud reflection which reflects most of the irradiance incident at the cloud base downward. Therefore the 92 GHz channel detects a low brightness temperature at the cloud top.

  3. Extreme Ultraviolet Variability Experiment (EVE) Multiple EUV Grating Spectrographs (MEGS): Radiometric Calibrations and Results

    Science.gov (United States)

    Hock, R. A.; Woods, T. N.; Crotser, D.; Eparvier, F. G.; Woodraska, D. L.; Chamberlin, P. C.; Woods, E. C.

    2010-01-01

    The NASA Solar Dynamics Observatory (SDO), scheduled for launch in early 2010, incorporates a suite of instruments including the Extreme Ultraviolet Variability Experiment (EVE). EVE has multiple instruments including the Multiple Extreme ultraviolet Grating Spectrographs (MEGS) A, B, and P instruments, the Solar Aspect Monitor (SAM), and the Extreme ultraviolet SpectroPhotometer (ESP). The radiometric calibration of EVE, necessary to convert the instrument counts to physical units, was performed at the National Institute of Standards and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF III) located in Gaithersburg, Maryland. This paper presents the results and derived accuracy of this radiometric calibration for the MEGS A, B, P, and SAM instruments, while the calibration of the ESP instrument is addressed by Didkovsky et al. . In addition, solar measurements that were taken on 14 April 2008, during the NASA 36.240 sounding-rocket flight, are shown for the prototype EVE instruments.

  4. Development of absolute radiometric response functions for HyPlant & G-LiHT using SIRCUS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to provide absolute radiometric and cross-calibrated spectral characterizations for G-LiHT and HyPlant.  The objectives are: (i) to...

  5. Improving Ocean Color Data Products using a Purely Empirical Approach: Reducing the Requirement for Radiometric Calibration Accuracy

    Science.gov (United States)

    Gregg, Watson

    2008-01-01

    Radiometric calibration is the foundation upon which ocean color remote sensing is built. Quality derived geophysical products, such as chlorophyll, are assumed to be critically dependent upon the quality of the radiometric calibration. Unfortunately, the goals of radiometric calibration are not typically met in global and large-scale regional analyses, and are especially deficient in coastal regions. The consequences of the uncertainty in calibration are very large in terms of global and regional ocean chlorophyll estimates. In fact, stability in global chlorophyll requires calibration uncertainty much greater than the goals, and outside of modern capabilities. Using a purely empirical approach, we show that stable and consistent global chlorophyll values can be achieved over very wide ranges of uncertainty. Furthermore, the approach yields statistically improved comparisons with in situ data, suggesting improved quality. The results suggest that accuracy requirements for radiometric calibration cab be reduced if alternative empirical approaches are used.

  6. A new relative radiometric consistency processing method for change detection based on wavelet transform and a low-pass filter

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The research purpose of this paper is to show the limitations of the existing radiometric normalization approaches and their disadvantages in change detection of artificial objects by comparing the existing approaches,on the basis of which a preprocessing approach to radiometric consistency,based on wavelet transform and a spatial low-pass filter,has been devised.This approach first separates the high frequency information and low frequency information by wavelet transform.Then,the processing of relative radiometric consistency based on a low-pass filter is conducted on the low frequency parts.After processing,an inverse wavelet transform is conducted to obtain the results image.The experimental results show that this approach can substantially reduce the influence on change detection of linear or nonlinear radiometric differences in multi-temporal images.

  7. Impact of the cameras radiometric resolution on the accuracy of determining spectral reflectance coefficients

    Science.gov (United States)

    Orych, A.; Walczykowski, P.; Jenerowicz, A.; Zdunek, Z.

    2014-11-01

    Nowadays remote sensing plays a very important role in many different study fields, i.e. environmental studies, hydrology, mineralogy, ecosystem studies, etc. One of the key areas of remote sensing applications is water quality monitoring. Understanding and monitoring of the water quality parameters and detecting different water contaminants is an important issue in water management and protection of whole environment and especially the water ecosystem. There are many remote sensing methods to monitor water quality and detect water pollutants. One of the most widely used method for substance detection with remote sensing techniques is based on usage of spectral reflectance coefficients. They are usually acquired using discrete methods such as spectrometric measurements. These however can be very time consuming, therefore image-based methods are used more and more often. In order to work out the proper methodology of obtaining spectral reflectance coefficients from hyperspectral and multispectral images, it is necessary to verify the impact of cameras radiometric resolution on the accuracy of determination of them. This paper presents laboratory experiments that were conducted using two monochromatic XEVA video sensors (400-1700 nm spectral data registration) with two different radiometric resolutions (12 and 14 bits). In view of determining spectral characteristics from images, the research team used set of interferometric filters. All data collected with multispectral digital video cameras were compared with spectral reflectance coefficients obtained with spectroradiometer. The objective of this research is to find the impact of cameras radiometric resolution on reflectance values in chosen wavelength. The main topic of this study is the analysis of accuracy of spectral coefficients from sensors with different radiometric resolution. By comparing values collected from images acquired with XEVA sensors and with the curves obtained with spectroradiometer it

  8. Prime candidate earth targets for the post-launch radiometric calibration of space-based optical imaging instruments

    Science.gov (United States)

    Teillet, P.M.; Barsi, J.A.; Chander, G.; Thome, K.J.

    2007-01-01

    This paper provides a comprehensive list of prime candidate terrestrial targets for consideration as benchmark sites for the post-launch radiometric calibration of space-based instruments. The key characteristics of suitable sites are outlined primarily with respect to selection criteria, spatial uniformity, and temporal stability. The establishment and utilization of such benchmark sites is considered an important element of the radiometric traceability of satellite image data products for use in the accurate monitoring of environmental change.

  9. Radiometric 81Kr dating identifies 120,000 year old ice at Taylor Glacier, Antarctica

    CERN Document Server

    Buizert, Christo; Jiang, Wei; Purtschert, Roland; Petrenko, Vasilii V; Lu, Zheng-Tian; Mueller, Peter; Kuhl, Tanner; Lee, James; Severinghaus, Jeffrey P; Brook, Edward J

    2014-01-01

    We present the first successful 81Kr-Kr radiometric dating of ancient polar ice. Krypton was extracted from the air bubbles in four ~350 kg polar ice samples from Taylor Glacier in the McMurdo Dry Valleys, Antarctica, and dated using Atom Trap Trace Analysis (ATTA). The 81Kr radiometric ages agree with independent age estimates obtained from stratigraphic dating techniques with a mean absolute age offset of 6 +/- 2.5 ka. Our experimental methods and sampling strategy are validated by 1) 85Kr and 39Ar analyses that show the samples to be free of modern air contamination, and 2) air content measurements that show the ice did not experience gas loss. We estimate the error in the 81Kr ages due to past geomagnetic variability to be below 3 ka. We show that ice from the previous interglacial period (MIS 5e, 130-115 ka before present) can be found in abundance near the surface of Taylor Glacier. Our study paves the way for reliable radiometric dating of ancient ice in blue ice areas and margin sites where large samp...

  10. Radiometric 81Kr dating identifies 120,000-year-old ice at Taylor Glacier, Antarctica.

    Science.gov (United States)

    Buizert, Christo; Baggenstos, Daniel; Jiang, Wei; Purtschert, Roland; Petrenko, Vasilii V; Lu, Zheng-Tian; Müller, Peter; Kuhl, Tanner; Lee, James; Severinghaus, Jeffrey P; Brook, Edward J

    2014-05-13

    We present successful (81)Kr-Kr radiometric dating of ancient polar ice. Krypton was extracted from the air bubbles in four ∼350-kg polar ice samples from Taylor Glacier in the McMurdo Dry Valleys, Antarctica, and dated using Atom Trap Trace Analysis (ATTA). The (81)Kr radiometric ages agree with independent age estimates obtained from stratigraphic dating techniques with a mean absolute age offset of 6 ± 2.5 ka. Our experimental methods and sampling strategy are validated by (i) (85)Kr and (39)Ar analyses that show the samples to be free of modern air contamination and (ii) air content measurements that show the ice did not experience gas loss. We estimate the error in the (81)Kr ages due to past geomagnetic variability to be below 3 ka. We show that ice from the previous interglacial period (Marine Isotope Stage 5e, 130-115 ka before present) can be found in abundance near the surface of Taylor Glacier. Our study paves the way for reliable radiometric dating of ancient ice in blue ice areas and margin sites where large samples are available, greatly enhancing their scientific value as archives of old ice and meteorites. At present, ATTA (81)Kr analysis requires a 40-80-kg ice sample; as sample requirements continue to decrease, (81)Kr dating of ice cores is a future possibility.

  11. Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar

    Science.gov (United States)

    Li, Zhan; Jupp, David L. B.; Strahler, Alan H.; Schaaf, Crystal B.; Howe, Glenn; Hewawasam, Kuravi; Douglas, Ewan S.; Chakrabarti, Supriya; Cook, Timothy A.; Paynter, Ian; Saenz, Edward J.; Schaefer, Michael

    2016-01-01

    Radiometric calibration of the Dual-Wavelength Echidna® Lidar (DWEL), a full-waveform terrestrial laser scanner with two simultaneously-pulsing infrared lasers at 1064 nm and 1548 nm, provides accurate dual-wavelength apparent reflectance (ρapp), a physically-defined value that is related to the radiative and structural characteristics of scanned targets and independent of range and instrument optics and electronics. The errors of ρapp are 8.1% for 1064 nm and 6.4% for 1548 nm. A sensitivity analysis shows that ρapp error is dominated by range errors at near ranges, but by lidar intensity errors at far ranges. Our semi-empirical model for radiometric calibration combines a generalized logistic function to explicitly model telescopic effects due to defocusing of return signals at near range with a negative exponential function to model the fall-off of return intensity with range. Accurate values of ρapp from the radiometric calibration improve the quantification of vegetation structure, facilitate the comparison and coupling of lidar datasets from different instruments, campaigns or wavelengths and advance the utilization of bi- and multi-spectral information added to 3D scans by novel spectral lidars. PMID:26950126

  12. Radiometric Calibration of a Dual-Wavelength, Full-Waveform Terrestrial Lidar.

    Science.gov (United States)

    Li, Zhan; Jupp, David L B; Strahler, Alan H; Schaaf, Crystal B; Howe, Glenn; Hewawasam, Kuravi; Douglas, Ewan S; Chakrabarti, Supriya; Cook, Timothy A; Paynter, Ian; Saenz, Edward J; Schaefer, Michael

    2016-03-02

    Radiometric calibration of the Dual-Wavelength Echidna(®) Lidar (DWEL), a full-waveform terrestrial laser scanner with two simultaneously-pulsing infrared lasers at 1064 nm and 1548 nm, provides accurate dual-wavelength apparent reflectance (ρ(app)), a physically-defined value that is related to the radiative and structural characteristics of scanned targets and independent of range and instrument optics and electronics. The errors of ρ(app) are 8.1% for 1064 nm and 6.4% for 1548 nm. A sensitivity analysis shows that ρ(app) error is dominated by range errors at near ranges, but by lidar intensity errors at far ranges. Our semi-empirical model for radiometric calibration combines a generalized logistic function to explicitly model telescopic effects due to defocusing of return signals at near range with a negative exponential function to model the fall-off of return intensity with range. Accurate values of ρ(app) from the radiometric calibration improve the quantification of vegetation structure, facilitate the comparison and coupling of lidar datasets from different instruments, campaigns or wavelengths and advance the utilization of bi- and multi-spectral information added to 3D scans by novel spectral lidars.

  13. Absolute Radiometric Calibration of the GÖKTÜRK-2 Satellite Sensor Using Tuz GÖLÜ (landnet Site) from Ndvi Perspective

    Science.gov (United States)

    Sakarya, Ufuk; Hakkı Demirhan, İsmail; Seda Deveci, Hüsne; Teke, Mustafa; Demirkesen, Can; Küpçü, Ramazan; Feray Öztoprak, A.; Efendioğlu, Mehmet; Fehmi Şimşek, F.; Berke, Erdinç; Zübeyde Gürbüz, Sevgi

    2016-06-01

    TÜBİTAK UZAY has conducted a research study on the use of space-based satellite resources for several aspects of agriculture. Especially, there are two precision agriculture related projects: HASSAS (Widespread application of sustainable precision agriculture practices in Southeastern Anatolia Project Region (GAP) Project) and AKTAR (Smart Agriculture Feasibility Project). The HASSAS project aims to study development of precision agriculture practice in GAP region. Multi-spectral satellite imagery and aerial hyperspectral data along with ground measurements was collected to analyze data in an information system. AKTAR aims to develop models for irrigation, fertilization and spectral signatures of crops in Inner Anatolia. By the end of the project precision agriculture practices to control irrigation, fertilization, pesticide and estimation of crop yield will be developed. Analyzing the phenology of crops using NDVI is critical for the projects. For this reason, absolute radiometric calibration of the Red and NIR bands in space-based satellite sensors is an important issue. The Göktürk-2 satellite is an earth observation satellite which was designed and built in Turkey and was launched in 2012. The Göktürk-2 satellite sensor has a resolution 2.5 meters in panchromatic and 5 meters in R/G/B/NIR bands. The absolute radiometric calibration of the Göktürk-2 satellite sensor was performed via the ground-based measurements - spectra-radiometer, sun photometer, and meteorological station- in Tuz Gölü cal/val site in 2015. In this paper, the first ground-based absolute radiometric calibration results of the Göktürk-2 satellite sensor using Tuz Gölü is demonstrated. The absolute radiometric calibration results of this paper are compared with the published cross-calibration results of the Göktürk-2 satellite sensor utilizing Landsat 8 imagery. According to the experimental comparison results, the Göktürk-2 satellite sensor coefficients for red and NIR bands

  14. ABSOLUTE RADIOMETRIC CALIBRATION OF THE GÖKTÜRK-2 SATELLITE SENSOR USING TUZ GÖLÜ (LANDNET SITE FROM NDVI PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    U. Sakarya

    2016-06-01

    Full Text Available TÜBİTAK UZAY has conducted a research study on the use of space-based satellite resources for several aspects of agriculture. Especially, there are two precision agriculture related projects: HASSAS (Widespread application of sustainable precision agriculture practices in Southeastern Anatolia Project Region (GAP Project and AKTAR (Smart Agriculture Feasibility Project. The HASSAS project aims to study development of precision agriculture practice in GAP region. Multi-spectral satellite imagery and aerial hyperspectral data along with ground measurements was collected to analyze data in an information system. AKTAR aims to develop models for irrigation, fertilization and spectral signatures of crops in Inner Anatolia. By the end of the project precision agriculture practices to control irrigation, fertilization, pesticide and estimation of crop yield will be developed. Analyzing the phenology of crops using NDVI is critical for the projects. For this reason, absolute radiometric calibration of the Red and NIR bands in space-based satellite sensors is an important issue. The Göktürk-2 satellite is an earth observation satellite which was designed and built in Turkey and was launched in 2012. The Göktürk-2 satellite sensor has a resolution 2.5 meters in panchromatic and 5 meters in R/G/B/NIR bands. The absolute radiometric calibration of the Göktürk-2 satellite sensor was performed via the ground-based measurements - spectra-radiometer, sun photometer, and meteorological station- in Tuz Gölü cal/val site in 2015. In this paper, the first ground-based absolute radiometric calibration results of the Göktürk-2 satellite sensor using Tuz Gölü is demonstrated. The absolute radiometric calibration results of this paper are compared with the published cross-calibration results of the Göktürk-2 satellite sensor utilizing Landsat 8 imagery. According to the experimental comparison results, the Göktürk-2 satellite sensor coefficients for

  15. Radiometric calibration status of Landsat-7 and Landsat-5

    Science.gov (United States)

    Barsi, J.A.; Markham, B.L.; Helder, D.L.; Chander, G.

    2007-01-01

    Launched in April 1999, Landsat-7 ETM+ continues to acquire data globally. The Scan Line Corrector in failure in 2003 has affected ground coverage and the recent switch to Bumper Mode operations in April 2007 has degraded the internal geometric accuracy of the data, but the radiometry has been unaffected. The best of the three on-board calibrators for the reflective bands, the Full Aperture Solar Calibrator, has indicated slow changes in the ETM+, but this is believed to be due to contamination on the panel rather then instrument degradation. The Internal Calibrator lamp 2, though it has not been used regularly throughout the whole mission, indicates smaller changes than the FASC since 2003. The changes indicated by lamp 2 are only statistically significant in band 1, circa 0.3% per year, and may be lamp as opposed to instrument degradations. Regular observations of desert targets in the Saharan and Arabian deserts indicate the no change in the ETM+ reflective band response, though the uncertainty is larger and does not preclude the small changes indicated by lamp 2. The thermal band continues to be stable and well-calibrated since an offset error was corrected in late-2000. Launched in 1984, Landsat-5 TM also continues to acquire global data; though without the benefit of an on-board recorder, data can only be acquired where a ground station is within range. Historically, the calibration of the TM reflective bands has used an onboard calibration system with multiple lamps. The calibration procedure for the TM reflective bands was updated in 2003 based on the best estimate at the time, using only one of the three lamps and a cross-calibration with Landsat-7 ETM+. Since then, the Saharan desert sites have been used to validate this calibration model. Problems were found with the lamp based model of up to 13% in band 1. Using the Saharan data, a new model was developed and implemented in the US processing system in April 2007. The TM thermal band was found to have a

  16. Landsat-8 Thermal Infrared Sensor (TIRS Vicarious Radiometric Calibration

    Directory of Open Access Journals (Sweden)

    Julia A. Barsi

    2014-11-01

    Full Text Available Launched in February 2013, the Landsat-8 carries on-board the Thermal Infrared Sensor (TIRS, a two-band thermal pushbroom imager, to maintain the thermal imaging capability of the Landsat program. The TIRS bands are centered at roughly 10.9 and 12 μm (Bands 10 and 11 respectively. They have 100 m spatial resolution and image coincidently with the Operational Land Imager (OLI, also on-board Landsat-8. The TIRS instrument has an internal calibration system consisting of a variable temperature blackbody and a special viewport with which it can see deep space; a two point calibration can be performed twice an orbit. Immediately after launch, a rigorous vicarious calibration program was started to validate the absolute calibration of the system. The two vicarious calibration teams, NASA/Jet Propulsion Laboratory (JPL and the Rochester Institute of Technology (RIT, both make use of buoys deployed on large water bodies as the primary monitoring technique. RIT took advantage of cross-calibration opportunity soon after launch when Landsat-8 and Landsat-7 were imaging the same targets within a few minutes of each other to perform a validation of the absolute calibration. Terra MODIS is also being used for regular monitoring of the TIRS absolute calibration. The buoy initial results showed a large error in both bands, 0.29 and 0.51 W/m2·sr·μm or −2.1 K and −4.4 K at 300 K in Band 10 and 11 respectively, where TIRS data was too hot. A calibration update was recommended for both bands to correct for a bias error and was implemented on 3 February 2014 in the USGS/EROS processing system, but the residual variability is still larger than desired for both bands (0.12 and 0.2 W/m2·sr·μm or 0.87 and 1.67 K at 300 K. Additional work has uncovered the source of the calibration error: out-of-field stray light. While analysis continues to characterize the stray light contribution, the vicarious calibration work proceeds. The additional data have not changed

  17. A waveguide-coupled thermally-isolated radiometric source

    CERN Document Server

    Rostem, Karwan; Lourie, Nathan P; Voellmer, George M; Wollack, Edward J

    2013-01-01

    The design and validation of a dual polarization source for waveguide-coupled millimeter and sub-millimeter wave cryogenic sensors is presented. The thermal source is a waveguide mounted absorbing conical dielectric taper. The absorber is thermally isolated with a kinematic suspension that allows the guide to be heat sunk to the lowest bath temperature of the cryogenic system. This approach enables the thermal emission from the metallic waveguide walls to be subdominant to that from the source. The use of low thermal conductivity Kevlar threads for the kinematic mount effectively decouples the absorber from the sensor cold stage. Hence, the absorber can be heated to significantly higher temperatures than the sensor with negligible conductive loading. The kinematic suspension provides high mechanical repeatability and reliability with thermal cycling. A 33-50 GHz blackbody source demonstrates an emissivity of 0.999 over the full waveguide band where the dominant deviation from unity arrises from the waveguide ...

  18. Study on a mean radiant temperature measure tool based on an almost spherical array of radiometric sensors.

    Science.gov (United States)

    Fontana, L

    2012-11-01

    Mean radiant temperature has significant influence on indoor thermal comfort conditions. It has gained greater importance with the wider application of heating and cooling systems based on the use of large surfaces with a temperature slightly higher or lower than the indoor temperature (hot/cold floors or ceilings), because these systems operate through the radiant temperature control. The most used tool to measure radiant temperature, the globe thermometer, still has large margins of error, most of all due to the uncertainty in the evaluation of the convection heat exchanges between the globe surface and the indoor air. The feasibility of a device to measure mean radiant temperature in indoor condition, alternative to the globe-thermometer (obtained placing radiometric sensors (thermopiles) on the sides of different geometric regular solids), is proposed. The behavior has been investigated for different regular solids, such as the residual error and its dependence on walls average temperature, non-uniformity magnitude, orientation and position of the solid in the enclosure, room shape, non-uniformity temperature distribution. Icosahedron shape shows an excellent behavior, with errors lower than 0.1 K in all the examined conditions.

  19. Calibration chain design based on integrating sphere transfer radiometer for SI-traceable on-orbit spectral radiometric calibration and its uncertainty analysis

    Science.gov (United States)

    Zhao, Wei-Ning; Fang, Wei; Sun, Li-Wei; Cui, Li-Hong; Wang, Yu-Peng

    2016-09-01

    In order to satisfy the requirement of SI-traceable on-orbit absolute radiation calibration transfer with high accuracy for satellite remote sensors, a transfer chain consisting of a fiber coupling monochromator (FBM) and an integrating sphere transfer radiometer (ISTR) was designed in this paper. Depending on the Sun, this chain based on detectors provides precise spectral radiometric calibration and measurement to spectrometers in the reflective solar band (RSB) covering 300-2500 nm with a spectral bandwidth of 0.5-6 nm. It shortens the traditional chain based on lamp source and reduces the calibration uncertainty from 5% to 0.5% by using the cryogenic radiometer in space as a radiometric benchmark and trap detectors as secondary standard. This paper also gives a detailed uncertainty budget with reasonable distribution of each impact factor, including the weak spectral signal measurement with uncertainty of 0.28%. According to the peculiar design and comprehensive uncertainty analysis, it illustrates that the spectral radiance measurement uncertainty of the ISTR system can reach to 0.48%. The result satisfies the requirements of SI-traceable on-orbit calibration and has wider significance for expanding the application of the remote sensing data with high-quality. Project supported by the National Natural Science Foundation of China (Grant No. 41474161) and the National High-Technology Program of China (Grant No. 2015AA123703).

  20. Influence of Lossy Compressed DEM on Radiometric Correction for Land Cover Classification of Remote Sensing Images

    Science.gov (United States)

    Moré, G.; Pesquer, L.; Blanes, I.; Serra-Sagristà, J.; Pons, X.

    2012-12-01

    World coverage Digital Elevation Models (DEM) have progressively increased their spatial resolution (e.g., ETOPO, SRTM, or Aster GDEM) and, consequently, their storage requirements. On the other hand, lossy data compression facilitates accessing, sharing and transmitting large spatial datasets in environments with limited storage. However, since lossy compression modifies the original information, rigorous studies are needed to understand its effects and consequences. The present work analyzes the influence of DEM quality -modified by lossy compression-, on the radiometric correction of remote sensing imagery, and the eventual propagation of the uncertainty in the resulting land cover classification. Radiometric correction is usually composed of two parts: atmospheric correction and topographical correction. For topographical correction, DEM provides the altimetry information that allows modeling the incidence radiation on terrain surface (cast shadows, self shadows, etc). To quantify the effects of the DEM lossy compression on the radiometric correction, we use radiometrically corrected images for classification purposes, and compare the accuracy of two standard coding techniques for a wide range of compression ratios. The DEM has been obtained by resampling the DEM v.2 of Catalonia (ICC), originally having 15 m resolution, to the Landsat TM resolution. The Aster DEM has been used to fill the gaps beyond the administrative limits of Catalonia. The DEM has been lossy compressed with two coding standards at compression ratios 5:1, 10:1, 20:1, 100:1 and 200:1. The employed coding standards have been JPEG2000 and CCSDS-IDC; the former is an international ISO/ITU-T standard for almost any type of images, while the latter is a recommendation of the CCSDS consortium for mono-component remote sensing images. Both techniques are wavelet-based followed by an entropy-coding stage. Also, for large compression ratios, both techniques need a post processing for correctly

  1. Results from the radiometric validation of Sentinel-3 optical sensors using natural targets

    Science.gov (United States)

    Fougnie, Bertrand; Desjardins, Camille; Besson, Bruno; Bruniquel, Véronique; Meskini, Naceur; Nieke, Jens; Bouvet, Marc

    2016-09-01

    The recently launched SENTINEL-3 mission measures sea surface topography, sea/land surface temperature, and ocean/land surface colour with high accuracy. The mission provides data continuity with the ENVISAT mission through acquisitions by multiple sensing instruments. Two of them, OLCI (Ocean and Land Colour Imager) and SLSTR (Sea and Land Surface Temperature Radiometer) are optical sensors designed to provide continuity with Envisat's MERIS and AATSR instruments. During the commissioning, in-orbit calibration and validation activities are conducted. Instruments are in-flight calibrated and characterized primarily using on-board devices which include diffusers and black body. Afterward, vicarious calibration methods are used in order to validate the OLCI and SLSTR radiometry for the reflective bands. The calibration can be checked over dedicated natural targets such as Rayleigh scattering, sunglint, desert sites, Antarctica, and tentatively deep convective clouds. Tools have been developed and/or adapted (S3ETRAC, MUSCLE) to extract and process Sentinel-3 data. Based on these matchups, it is possible to provide an accurate checking of many radiometric aspects such as the absolute and interband calibrations, the trending correction, the calibration consistency within the field-of-view, and more generally this will provide an evaluation of the radiometric consistency for various type of targets. Another important aspect will be the checking of cross-calibration between many other instruments such as MERIS and AATSR (bridge between ENVISAT and Sentinel-3), MODIS (bridge to the GSICS radiometric standard), as well as Sentinel-2 (bridge between Sentinel missions). The early results, based on the available OLCI and SLSTR data, will be presented and discussed.

  2. Spatial and radiometric characterization of multi-spectrum satellite images through multi-fractal analysis

    Science.gov (United States)

    Alonso, Carmelo; Tarquis, Ana M.; Zúñiga, Ignacio; Benito, Rosa M.

    2017-03-01

    Several studies have shown that vegetation indexes can be used to estimate root zone soil moisture. Earth surface images, obtained by high-resolution satellites, presently give a lot of information on these indexes, based on the data of several wavelengths. Because of the potential capacity for systematic observations at various scales, remote sensing technology extends the possible data archives from the present time to several decades back. Because of this advantage, enormous efforts have been made by researchers and application specialists to delineate vegetation indexes from local scale to global scale by applying remote sensing imagery. In this work, four band images have been considered, which are involved in these vegetation indexes, and were taken by satellites Ikonos-2 and Landsat-7 of the same geographic location, to study the effect of both spatial (pixel size) and radiometric (number of bits coding the image) resolution on these wavelength bands as well as two vegetation indexes: the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI). In order to do so, a multi-fractal analysis of these multi-spectral images was applied in each of these bands and the two indexes derived. The results showed that spatial resolution has a similar scaling effect in the four bands, but radiometric resolution has a larger influence in blue and green bands than in red and near-infrared bands. The NDVI showed a higher sensitivity to the radiometric resolution than EVI. Both were equally affected by the spatial resolution. From both factors, the spatial resolution has a major impact in the multi-fractal spectrum for all the bands and the vegetation indexes. This information should be taken in to account when vegetation indexes based on different satellite sensors are obtained.

  3. On-Orbit Radiometric Performance of the Landsat 8 ThermalInfrared Sensor

    Directory of Open Access Journals (Sweden)

    Matthew Montanaro

    2014-11-01

    Full Text Available The Thermal Infrared Sensor (TIRS requirements for noise, stability, and uniformity were designed to ensure the radiometric integrity of the data products. Since the launch of Landsat 8 in February 2013, many of these evaluations have been based on routine measurements of the onboard calibration sources, which include a variable-temperature blackbody and a deep space view port. The noise equivalent change in temperature (NEdT of TIRS data is approximately 0.05 K @ 300 K in both bands, exceeding requirements by about a factor of 8 and Landsat 7 ETM+ performance by a factor of 3. Coherent noise is not readily apparent in TIRS data. No apparent change in the detector linearization has been observed. The radiometric stability of the TIRS instrument over the period between radiometric calibrations (about 40 min is less than one count of dark current and the variation in terms of radiance is less than 0.015 \\(W/m^2/sr/\\mu m\\ (or 0.13 K at 300 K, easily meeting the short term stability requirements. Long term stability analysis has indicated a degradation of about 0.2% or less per year. The operational calibration is only updated using the biases taken every orbit, due to the fundamental stability of the instrument. By combining the data from two active detector rows per band, 100% detector operability is maintained for the instrument. No trends in the noise, operability, or short term radiometric stability are apparent over the mission life. The uniformity performance is more difficult to evaluate as scene-varying banding artifacts have been observed in Earth imagery. Analyses have shown that stray light is affecting the recorded signal from the Earth and inducing the banding depending on the content of the surrounding Earth surface. As the stray light effects are stronger in the longer wavelength TIRS band11 (12.0 \\(\\mu m\\, the uniformity is better in the shorter wavelength band10 (10.9 \\(\\mu m\\. Both bands have exceptional noise and

  4. CrIS Sensor Temperature Effects on CrIS Radiometric Performance

    OpenAIRE

    Esplin, Mark; Zavyalov, Vladimir; Grant, Kevin; Scott, Deron

    2012-01-01

    The Cross-track Infrared Sounder (CrIS) sensor was launched on the Suomi NPP spacecraft October 28, 2011. The CrIS sensor is a Michelson interferometer with a 3 x 3 detectors for each of three spectral bands: LWIR 650-1095 wavenumbers, MWIR 1210-1750 wavenumbers and SWIR 2155-2550 wavenumbers. The CrIS sensor is performing very well and is generally exceeding the noise, radiometric and spectral performance requirements for its primary weather sensing mission. However, for climate change appli...

  5. Radiometric and spectral calibrations of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) using principle component analysis

    Science.gov (United States)

    Tian, Jialin; Smith, William L.; Gazarik, Michael J.

    2008-10-01

    The ultimate remote sensing benefits of the high resolution Infrared radiance spectrometers will be realized with their geostationary satellite implementation in the form of imaging spectrometers. This will enable dynamic features of the atmosphere's thermodynamic fields and pollutant and greenhouse gas constituents to be observed for revolutionary improvements in weather forecasts and more accurate air quality and climate predictions. As an important step toward realizing this application objective, the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) Engineering Demonstration Unit (EDU) was successfully developed under the NASA New Millennium Program, 2000-2006. The GIFTS-EDU instrument employs three focal plane arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The raw GIFTS interferogram measurements are radiometrically and spectrally calibrated to produce radiance spectra, which are further processed to obtain atmospheric profiles via retrieval algorithms. The radiometric calibration is achieved using internal blackbody calibration references at ambient (260 K) and hot (286 K) temperatures. The absolute radiometric performance of the instrument is affected by several factors including the FPA off-axis effect, detector/readout electronics induced nonlinearity distortions, and fore-optics offsets. The GIFTS-EDU, being the very first imaging spectrometer to use ultra-high speed electronics to readout its large area format focal plane array detectors, operating at wavelengths as large as 15 microns, possessed non-linearity's not easily removable in the initial calibration process. In this paper, we introduce a refined calibration technique that utilizes Principle Component (PC) analysis to compensate for instrument distortions and artifacts remaining after the initial radiometric calibration process, thus, further enhance the absolute calibration accuracy. This method is

  6. Analysis of radiometric signal in sedimentating suspension flow in open channel

    Directory of Open Access Journals (Sweden)

    Zych Marcin

    2015-01-01

    Full Text Available The article discusses issues related to the estimation of the sedimentating solid particles average flow velocity in an open channel using radiometric methods. Due to the composition of the compound, which formed water and diatomite, received data have a very weak signal to noise ratio. In the process analysis the known determining of the solid phase transportation time delay the classical cross-correlation function is the most reliable method. The use of advanced frequency analysis based on mutual spectral density function and wavelet transform of recorded signals allows a reduction of the noise contribution.

  7. Analysis of radiometric signal in sedimentating suspension flow in open channel

    Science.gov (United States)

    Zych, Marcin; Hanus, Robert; Petryka, Leszek; Świsulski, Dariusz; Doktor, Marek; Mastej, Wojciech

    2015-05-01

    The article discusses issues related to the estimation of the sedimentating solid particles average flow velocity in an open channel using radiometric methods. Due to the composition of the compound, which formed water and diatomite, received data have a very weak signal to noise ratio. In the process analysis the known determining of the solid phase transportation time delay the classical cross-correlation function is the most reliable method. The use of advanced frequency analysis based on mutual spectral density function and wavelet transform of recorded signals allows a reduction of the noise contribution.

  8. Titan Density Reconstruction Using Radiometric and Cassini Attitude Control Flight Data

    Science.gov (United States)

    Andrade, Luis G., Jr.; Burk, Thomas A.

    2015-01-01

    This paper compares three different methods of Titan atmospheric density reconstruction for the Titan 87 Cassini flyby. T87 was a unique flyby that provided independent Doppler radiometric measurements on the ground throughout the flyby including at Titan closest approach. At the same time, the onboard accelerometer provided an independent estimate of atmospheric drag force and density during the flyby. These results are compared with the normal method of reconstructing atmospheric density using thruster on-time and angular momentum accumulation. Differences between the estimates are analyzed and a possible explanation for the differences is evaluated.

  9. Radiometric assay for cytochrome P-450-catalyzed progesterone 16 alpha-hydroxylation and determination of an apparent isotope effect

    Energy Technology Data Exchange (ETDEWEB)

    Osawa, Y.; Coon, M.J.

    1987-08-01

    In the course of studies on the oxygenation of steroids by purified P-450 cytochromes, particularly rabbit liver microsomal cytochrome P-450 form 3b, a rapid and reliable radiometric assay has been devised for progesterone 16 alpha-hydroxylation. In view of the lack of a commercially available, suitably tritiated substrate, (1,2,6,7,16,17-3H)progesterone was treated with alkali to remove the label from potential hydroxylation sites other than the 16 alpha position. The resulting (1,7,16-3H)progesterone was added to a reconstituted enzyme system containing cytochrome P-450 form 3b, NADPH-cytochrome P-450 reductase, and NADPH, and the rate of 16 alpha-hydroxylation was measured by the formation of /sup 3/H/sub 2/O. This reaction was shown to be linear with respect to time and to the cytochrome P-450 concentration. An apparent tritium isotope effect of 2.1 was observed by comparison of the rates of formation of tritium oxide and 16 alpha-hydroxyprogesterone, and the magnitude of the isotope effect was confirmed by an isotope competition assay in which a mixture of (1,7,16-/sup 3/H)progesterone and (4-14C)progesterone was employed.

  10. Investigating the influence of radiometric calibration on tree species determination based on small footprint full-waveform airborne LiDAR

    Science.gov (United States)

    Mücke, W.; Briese, C.; Hollaus, M.; Pfeifer, N.; Wagner, W.

    2013-12-01

    Small footprint airborne LiDAR is a well-established measurement technique in forestry, where cost- and time efficient wide-area data acquisition of the vegetation structure is required. Gathering stand-based information about tree species composition is of particular interest for forestry applications. Modern LiDAR systems provide, next to the acquired 3D (i.e. geometric) information, also a quantification of the signal strength of each echo. In order to utilize this information for tree species determination independently from different overlapping LiDAR swaths, different LiDAR sensors or acquisition times, radiometric calibration is a necessity. This contribution summarises the theoretical background of radiometric LiDAR data calibration on the physical basis of the radar equation. Using LiDAR observations of reference targets with known reflectivity the so-called calibration constant is computed. It accounts for sensor specific parameters, as well as atmospheric attenuation of the laser signal. Hence the backscatter properties of the laser echoes can be determined and physical observables characterizing the reflectivity of the scanned surface can be estimated. A practical calibration workflow is demonstrated on the example of a single wavelength full-waveform LiDAR data set from a mixed woodland in Austria. Subsequently, an automated method for tree species determination that is based on the laser light scattering mechanisms in the forest canopy is applied on both (calibrated and un-calibrated) data sets. First, an edge-based segmentation approach is used to aggregate LiDAR echoes to segments representing single tree crowns. Second, metrics are computed for each tree crown describing radiometric and geometric features that are related to foliage composition. Third, these metrics are used in a knowledge-based fuzzy classification scheme for the determination of segments representing coniferous and deciduous trees. Influences of the radiometric calibration on the

  11. Extreme Ultraviolet Variability Experiment (EVE) Multiple EUV Grating Spectrographs (MEGS): Radiometric Calibrations and Results

    Science.gov (United States)

    Hock, R. A.; Chamberlin, P. C.; Woods, T. N.; Crotser, D.; Eparvier, F. G.; Woodraska, D. L.; Woods, E. C.

    2012-01-01

    The NASA Solar Dynamics Observatory (SDO), scheduled for launch in early 2010, incorporates a suite of instruments including the Extreme Ultraviolet Variability Experiment (EVE). EVE has multiple instruments including the Multiple Extreme ultraviolet Grating Spectrographs (MEGS) A, B, and P instruments, the Solar Aspect Monitor (SAM), and the Extreme ultraviolet SpectroPhotometer (ESP). The radiometric calibration of EVE, necessary to convert the instrument counts to physical units, was performed at the National Institute of Standards and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF III) located in Gaithersburg, Maryland. This paper presents the results and derived accuracy of this radiometric calibration for the MEGS A, B, P, and SAM instruments, while the calibration of the ESP instrument is addressed by Didkovsky et al. ( Solar Phys., 2010, doi:10.1007/s11207-009-9485-8). In addition, solar measurements that were taken on 14 April 2008, during the NASA 36.240 sounding-rocket flight, are shown for the prototype EVE instruments.

  12. Radiometric Mapping for Naturally Occurring Radioactive Materials (NORM Assessment in Mamuju, West Sulawesi

    Directory of Open Access Journals (Sweden)

    H. Syaeful

    2014-04-01

    Full Text Available Mamuju has been known to have high radiation dose rate which comes from NORM in rock and soil. Major concern is due to its location which is near inhabitant settlement area. Preliminary research has been done by environmental team which is limited to main access road only, while some remote area has left untouched. The purpose of the research is to delineate the location and distribution of thorium and uranium anomaly in Mamuju, and also to provide adequate information regarding the anomaly and high dose rate area to decision makers and stakeholders in neither local nor central government. Method applied is radiometric mapping using spectrometer RS-125 with NaI(Tl detector in the area of interest Geological Formation of Adang Volcanic, which is more than 800 square km in size. The radiometric mapping method is widely used in uranium/thorium exploration, and now has been added with the measurement of radiation dose rate which is appropriate to environmental surveys. The mapping has been successfully delineated the area of NORM or the area with thorium and uranium anomaly. Thorium and uranium anomaly are related with multi-geological-process resulting the increase of grade into several fold from its original state

  13. Sensible and latent heat flux from radiometric surface temperatures at the regional scale: methodology and validation

    Directory of Open Access Journals (Sweden)

    F. Miglietta

    2009-02-01

    Full Text Available The CarboEurope Regional Experiment Strategy (CERES was designed to develop and test a range of methodologies to assess regional surface energy and mass exchange of a large study area in the south-western part of France. This paper describes a methodology to estimate sensible and latent heat fluxes on the basis of net radiation, surface radiometric temperature measurements and information obtained from available products derived from the Meteosat Second Generation (MSG geostationary meteorological satellite, weather stations and ground-based eddy covariance towers. It is based on a simplified bulk formulation of sensible heat flux that considers the degree of coupling between the vegetation and the atmosphere and estimates latent heat as the residual term of net radiation. Estimates of regional energy fluxes obtained in this way are validated at the regional scale by means of a comparison with direct flux measurements made by airborne eddy-covariance. The results show an overall good matching between airborne fluxes and estimates of sensible and latent heat flux obtained from radiometric surface temperatures that holds for different weather conditions and different land use types. The overall applicability of the proposed methodology to regional studies is discussed.

  14. Progress in the determination of some astronomical constants from radiometric observations of planets and spacecraft

    Science.gov (United States)

    Pitjeva, E. V.

    2001-05-01

    Modern radiometric observations of planets, beginning in 1961, make it possible to determine and improve a broad set of astronomical constants from the value of the astronomical unit (AU) to parameters of PPN formalism. Three main factors that influence the progress in the determination of astronomical constants - 1) reductions of the observational data, 2) dynamical models of planet motion, 3) observational data themselves - are demonstrated in this paper. The reduction of the measurements included all relevant corrections, including the modeling of the topography of Mercury and Venus which reduced the rms residuals for observations by 14.5% and 23% correspondingly. The formal standard deviations of the solution elements of the planets and the AU are improved by 30-50% using the DE405 or EPM2000 ephemerides constructed in IAA (Russia) instead of DE200. It was shown that including the measurements of the Viking and Pathfinder landers, being free from the uncertainties due to planetary topography, into the observational data reduces the uncertainties of adjusted parameters by 1-2 orders. The astronomical constants obtained in the fitting process of the DE405 and EPM2000 ephemerides to data totaling more 80 000 radiometric observations of planets and spacecraft are given.

  15. Assessment of the short-term radiometric stability between Terra MODIS and Landsat 7 ETM+ sensors

    Science.gov (United States)

    Choi, Taeyoung; Xiong, Xiaoxiong; Chander, Gyanesh; Angal, A.

    2009-01-01

    Short-term radiometric stability was evaluated using continuous ETM+ scenes within a single orbit (contact period) and the corresponding MODIS scenes for the four matching solar reflective visible and near-infrared (VNIR) band pairs between the two sensors. The near-simultaneous earth observations were limited by the smaller swath size of ETM+ (183 km) compared to MODIS (2330 km). Two sets of continuous granules for Terra MODIS and Landsat 7 ETM+ were selected and mosaicked based on pixel geolocation information for noncloudy pixels over the African continent. The matching pixel pairs were resampled from a fine to a coarse pixel resolution, and the at-sensor spectral radiance values for a wide dynamic range of the sensors were compared and analyzed, covering various surface types. The following study focuses on radiometric stability analysis from the VNIR band-pairs of ETM+ and MODIS. The Libya-4 desert target was included in the path of this continuous orbit, which served as a verification point between the short-term and the long-term trending results from previous studies. MODTRAN at-sensor spectral radiance simulation is included for a representative desert surface type to evaluate the consistency of the results.

  16. METHOD OF RADIOMETRIC DISTORTION CORRECTION OF MULTISPECTRAL DATA FOR THE EARTH REMOTE SENSING

    Directory of Open Access Journals (Sweden)

    A. N. Grigoriev

    2015-07-01

    Full Text Available The paper deals with technologies of ground secondary processing of heterogeneous multispectral data. The factors of heterogeneous data include uneven illumination of objects on the Earth surface caused by different properties of the relief. A procedure for the image restoration of spectral channels by means of terrain distortion compensation is developed. The object matter of this paper is to improve the quality of the results during image restoration of areas with large and medium landforms. Methods. Researches are based on the elements of the digital image processing theory, statistical processing of the observation results and the theory of multi-dimensional arrays. Main Results. The author has introduced operations on multidimensional arrays: concatenation and elementwise division. Extended model description for input data about the area is given. The model contains all necessary data for image restoration. Correction method for multispectral data radiometric distortions of the Earth remote sensing has been developed. The method consists of two phases: construction of empirical dependences for spectral reflectance on the relief properties and restoration of spectral images according to semiempirical data. Practical Relevance. Research novelty lies in developme nt of the application theory of multidimensional arrays with respect to the processing of multispectral data, together with data on the topography and terrain objects. The results are usable for development of radiometric data correction tools. Processing is performed on the basis of a digital terrain model without carrying out ground works connected with research of the objects reflective properties.

  17. Analysis of aerosol properties derived from sun photometer and lidar over Dunhuang radiometric calibration site

    Science.gov (United States)

    Chen, Lin; Jing, Yingying; Zhang, Peng; Hu, Xiuqing

    2016-05-01

    Duhuang site has been selected as China Radiation Calibration Site (CRCS) for Remote Sensing Satellite Sensors since 1996. With the economic development of Dunhuang city, the ambient of the radiation calibration field has changed in recent years. Taking into account the key role of aerosol in radiometric calibration, it is essential to investigate the aerosol optical properties over Dunhuang radiometric calibration site. In this paper, the CIMEL sun photometer (CE-318) and Mie-scattering Lidar are simultaneously used to measure aerosol optical properties in Dunhuang site. Data from aerosol-bands of sun photometer are used in a Langley method to determine spectral optical depths of aerosol. And Lidar is utilized to obtain information of vertical profile and integrated aerosol optical depths at different heights. The results showed that the aerosol optical depth at 500 nm wavelength during the in-situ measurement campaigns varied from 0.1 to 0.3 in Dunhuang site. And the observation results also indicated that high aerosol concentration layer mostly located at the height of about 2~4 km. These results implies that the aerosol concentration of atmosphere in Dunhuang was relatively small and suitable for in-flight calibration for remote sensing satellite sensors.

  18. [In-flight absolute radiometric calibration of UAV hyperspectral camera and its validation analysis].

    Science.gov (United States)

    Gou, Zhi-yang; Yan, Lei; Chen, Wei; Jing, Xin; Yin, Zhong-yi; Duan, Yi-ni

    2012-02-01

    With the data in Urad Front Banner, Inner Mongolia on November 14th, 2010, hyper-spectral camera on UAV was calibrated adopting reflectance-based method. During the in-flight absolute radiometric calibration, 6 hyper-spectral radiometric gray-scale targets were arranged in the validation field. These targets' reflectances are 4.5%, 20%, 30%, 40%, 50% and 60% separately. To validate the calibration result, four extra hyper-spectral targets with sharp-edge spectrum were arranged to simulate the reflection and absorption peaks in natural objectives. With these peaks, the apparent radiance calculated by radiation transfer model and that calculated through calibration coefficients are much different. The result shows that in the first 15 bands (blue bands), errors are somewhat huge due to the noises of equipment. In the rest bands with quite even spectrum, the errors are small, most of which are less than 10%. For those bands with sharp changes in spectral curves, the errors are quite considerable, varying from 10% to 25%.

  19. Radiometric assay of red cell and plasma cholinesterase in pesticide appliers from Minnesota.

    Science.gov (United States)

    Potter, W T; Garry, V F; Kelly, J T; Tarone, R; Griffith, J; Nelson, R L

    1993-03-01

    In this study we demonstrate the uses of radiometric assay to detect anticholinesterases in a human population (N = 80) exposed to a broad spectrum of pesticides. The assay is nondilutional. Therefore, anticholinesterase (AChE) agents with low binding affinity can be detected. Our initial results show statistically significant exposure-related decreases in either red cell (AChE) or plasma cholinesterase activity ((butyrl)cholinesterase; BuChE) occurred not only among pesticide appliers who use organophosphates, but also among appliers of the fumigant phosphine. These data extend earlier observations made in laboratory animals exposed to this fumigant. Significant exposure-related decreases in AChE activity were seen in herbicide appliers and appear to be associated with exposure to the herbicide 2-methoxy-3,6-dichlorobenzoic acid. There was no evidence of exposure-related decreases in BuChE activity in herbicide appliers. Our in vivo data, coupled with preliminary in vitro studies of phosphine (50% AChE inhibition, 10 ppm) and 2-methoxy-3,6-chlorobenzoic acid (50% AChE and BuChE inhibition, 70 ppm), suggest that the radiometric assay may be used to detect a broader spectrum of biologically active anticholinesterase agents.

  20. The moon as a radiometric reference source for on-orbit sensor stability calibration

    Science.gov (United States)

    Stone, T.C.

    2009-01-01

    The wealth of data generated by the world's Earth-observing satellites, now spanning decades, allows the construction of long-term climate records. A key consideration for detecting climate trends is precise quantification of temporal changes in sensor calibration on-orbit. For radiometer instruments in the solar reflectance wavelength range (near-UV to shortwave-IR), the Moon can be viewed as a solar diffuser with exceptional stability properties. A model for the lunar spectral irradiance that predicts the geometric variations in the Moon's brightness with ???1% precision has been developed at the U.S. Geological Survey in Flagstaff, AZ. Lunar model results corresponding to a series of Moon observations taken by an instrument can be used to stabilize sensor calibration with sub-percent per year precision, as demonstrated by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). The inherent stability of the Moon and the operational model to utilize the lunar irradiance quantity provide the Moon as a reference source for monitoring radiometric calibration in orbit. This represents an important capability for detecting terrestrial climate change from space-based radiometric measurements.

  1. Imager-to-radiometer inflight cross calibration: RSP radiometric comparison with airborne and satellite sensors

    Directory of Open Access Journals (Sweden)

    J. McCorkel

    2015-10-01

    Full Text Available This work develops a method to compare the radiometric calibration between a radiometer and imagers hosted on aircraft and satellites. The radiometer is the airborne Research Scanning Polarimeter (RSP that takes multi-angle, photo-polarimetric measurements in several spectral channels. The RSP measurements used in this work were coincident with measurements made by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS, which was on the same aircraft. These airborne measurements were also coincident with an overpass of the Landsat 8 Operational Land Imager (OLI. First we compare the RSP and OLI radiance measurements to AVIRIS since the spectral response of the multispectral instruments can be used to synthesize a spectrally equivalent signal from the imaging spectrometer data. We then explore a method that uses AVIRIS as a transfer between RSP and OLI to show that radiometric traceability of a satellite-based imager can be used to calibrate a radiometer despite differences in spectral channel sensitivities. This calibration transfer shows agreement within the uncertainty of both the various instruments for most spectral channels.

  2. VNIR, MWIR, and LWIR source assemblies for optical quality testing and spectro-radiometric calibration of earth observation satellites

    Science.gov (United States)

    Compain, Eric; Maquet, Philippe; Leblay, Pierrick; Gavaud, Eric; Marque, Julien; Glastre, Wilfried; Cortese, Maxime; Sugranes, Pierre; Gaillac, Stephanie; Potheau, Hervé

    2015-09-01

    This document presents several original OGSEs, Optical Ground Support Equipment, specifically designed and realized for the optical testing and calibration of earth observation satellites operating in a large spectral band from 0.4μm to 14.7μm. This work has been mainly supported by recent development dedicated to MTG, Meteosat Third Generation, the ESA next generation of meteorological satellites. The improved measurement capabilities of this new satellite generation has generated new challenging requirements for the associated optical test equipments. These improvements, based on design and component innovation will be illustrated for the MOTA, the GICS and the DEA OGSEs. MOTA and GICS are dedicated to the AIT, Assembly Integration and Test, of FCI, the Flexible Combined Imager of the imaging satellite MTG-I. DEA OGSE is dedicated to the AIT of the DEA, Detection Electronics Assembly, which is part of IRS instrument, an IR sounder part of MTG-S satellite. From an architectural point of view, the presented original designs enable to run many optical tests with a single system thanks to a limited configuration effort. Main measurement capabilities are optical quality testing (MTF based mainly on KEF measurement), Line of Sight (LoS) stability measurement, straylight analyses, VNIR-MWIR-LWIR focal plane array co-registration, and broadband large dynamic spectro-radiometric calibration. Depending on the AIT phase of the satellite, these source assemblies are operated at atmospheric pressure or under secondary vacuum. In operation, they are associated with an opto-mechanical projection system that enables to conjugate the image of the source assembly with the focal plane of the satellite instruments. These conjugation systems are usually based on high resolution, broadband collimator, and are optionally mounted on hexapod to address the entire field of instruments.

  3. OCRA radiometric cloud fractions for GOME-2 on MetOp-A/B

    Directory of Open Access Journals (Sweden)

    R. Lutz

    2015-12-01

    Full Text Available This paper describes an approach for cloud parameter retrieval (radiometric cloud fraction estimation using the polarization measurements of the Global Ozone Monitoring Experiment-2 (GOME-2 on-board the MetOp-A/B satellites. The core component of the Optical Cloud Recognition Algorithm (OCRA is the calculation of monthly cloud-free reflectances for a global grid (resolution of 0.2° in longitude and 0.2° in latitude and to derive radiometric cloud fractions. These cloud fractions will serve as a priori information for the retrieval of cloud top height (CTH, cloud top pressure (CTP, cloud top albedo (CTA and cloud optical thickness (COT with the Retrieval Of Cloud Information using Neural Networks (ROCINN algorithm. This approach is already being implemented operationally for the GOME/ERS-2 and SCIAMACHY/ENVISAT sensors and here we present version 3.0 of the OCRA algorithm applied to the GOME-2 sensors. Based on more than six years of GOME-2A data (February 2007–June 2013, reflectances are calculated for ≈ 35 000 orbits. For each measurement a degradation correction as well as a viewing angle dependent and latitude dependent correction is applied. In addition, an empirical correction scheme is introduced in order to remove the effect of oceanic sun glint. A comparison of the GOME-2A/B OCRA cloud fractions with co-located AVHRR geometrical cloud fractions shows a general good agreement with a mean difference of −0.15±0.20. From operational point of view, an advantage of the OCRA algorithm is its extremely fast computational time and its straightforward transferability to similar sensors like OMI (Ozone Monitoring Instrument, TROPOMI (TROPOspheric Monitoring Instrument on Sentinel 5 Precursor, as well as Sentinel 4 and Sentinel 5. In conclusion, it is shown that a robust, accurate and fast radiometric cloud fraction estimation for GOME-2 can be achieved with OCRA by using the polarization measurement devices (PMDs.

  4. OCRA radiometric cloud fractions for GOME-2 on MetOp-A/B

    Science.gov (United States)

    Lutz, Ronny; Loyola, Diego; Gimeno García, Sebastián; Romahn, Fabian

    2016-05-01

    This paper describes an approach for cloud parameter retrieval (radiometric cloud-fraction estimation) using the polarization measurements of the Global Ozone Monitoring Experiment-2 (GOME-2) onboard the MetOp-A/B satellites. The core component of the Optical Cloud Recognition Algorithm (OCRA) is the calculation of monthly cloud-free reflectances for a global grid (resolution of 0.2° in longitude and 0.2° in latitude) to derive radiometric cloud fractions. These cloud fractions will serve as a priori information for the retrieval of cloud-top height (CTH), cloud-top pressure (CTP), cloud-top albedo (CTA) and cloud optical thickness (COT) with the Retrieval Of Cloud Information using Neural Networks (ROCINN) algorithm. This approach is already being implemented operationally for the GOME/ERS-2 and SCIAMACHY/ENVISAT sensors and here we present version 3.0 of the OCRA algorithm applied to the GOME-2 sensors. Based on more than five years of GOME-2A data (April 2008 to June 2013), reflectances are calculated for ≈ 35 000 orbits. For each measurement a degradation correction as well as a viewing-angle-dependent and latitude-dependent correction is applied. In addition, an empirical correction scheme is introduced in order to remove the effect of oceanic sun glint. A comparison of the GOME-2A/B OCRA cloud fractions with colocated AVHRR (Advanced Very High Resolution Radiometer) geometrical cloud fractions shows a general good agreement with a mean difference of -0.15 ± 0.20. From an operational point of view, an advantage of the OCRA algorithm is its very fast computational time and its straightforward transferability to similar sensors like OMI (Ozone Monitoring Instrument), TROPOMI (TROPOspheric Monitoring Instrument) on Sentinel 5 Precursor, as well as Sentinel 4 and Sentinel 5. In conclusion, it is shown that a robust, accurate and fast radiometric cloud-fraction estimation for GOME-2 can be achieved with OCRA using polarization measurement devices (PMDs).

  5. Local-scale flood mapping on vegetated floodplains from radiometrically calibrated airborne LiDAR data

    Science.gov (United States)

    Malinowski, Radosław; Höfle, Bernhard; Koenig, Kristina; Groom, Geoff; Schwanghart, Wolfgang; Heckrath, Goswin

    2016-09-01

    Knowledge about the magnitude of localised flooding of riverine areas is crucial for appropriate land management and administration at regional and local levels. However, detection and delineation of localised flooding with remote sensing techniques are often hampered on floodplains by the presence of herbaceous vegetation. To address this problem, this study presents the application of full-waveform airborne laser scanning (ALS) data for detection of floodwater extent. In general, water surfaces are characterised by low values of backscattered energy due to water absorption of the infrared laser shots, but the exact strength of the recorded laser pulse depends on the area covered by the targets located within a laser pulse footprint area. To account for this we analysed the physical quantity of radiometrically calibrated ALS data, the backscattering coefficient, in relation to water and vegetation coverage within a single laser footprint. The results showed that the backscatter was negatively correlated to water coverage, and that of the three distinguished classes of water coverage (low, medium, and high) only the class with the largest extent of water cover (>70%) had relatively distinct characteristics that can be used for classification of water surfaces. Following the laser footprint analysis, three classifiers, namely AdaBoost with Decision Tree, Naïve Bayes and Random Forest, were utilised to classify laser points into flooded and non-flooded classes and to derive the map of flooding extent. The performance of the classifiers is highly dependent on the set of laser points features used. Best performance was achieved by combining radiometric and geometric laser point features. The accuracy of flooding maps based solely on radiometric features resulted in overall accuracies of up to 70% and was limited due to the overlap of the backscattering coefficient values between water and other land cover classes. Our point-based classification methods assure a high

  6. AERONET-OC: Strengths and Weaknesses of a Network for the Validation of Satellite Coastal Radiometric Products

    Science.gov (United States)

    Zibordi, Giuseppe; Holben, Brent; Slutsker, Ilya; Giles, David; D'Alimonte, Davide; Melin, Frederic; Berthon, Jean-Francois; Vandemark, Doug; Feng, Hui; Schuster, Gregory; Fabbri, Bryan E.; Kaitala, Seppo; Seppala, Jukka

    2008-01-01

    The Ocean Color component of the Aerosol Robotic Network (AERONET-OC) has been implemented to support long-term satellite ocean color investigations through cross-site consistent and accurate measurements collected by autonomous radiometer systems deployed on offshore fixed platforms. The ultimate purpose of AERONET-OC is the production of standardized measurements performed at different sites with identical measuring systems and protocols, calibrated using a single reference source and method, and processed with the same code. The AERONET-OC primary data product is the normalized water leaving radiance determined at center-wavelengths of interest for satellite ocean color applications, with an uncertainty lower than 5% in the blue-green spectral regions and higher than 8% in the red. Measurements collected at 6 sites counting the northern Adriatic Sea, the Baltic Proper, the Gulf of Finland, the Persian Gulf, and, the northern and southern margins of the Middle Atlantic Bay, have shown the capability of producing quality assured data over a wide range of bio-optical conditions including Case-2 yellow substance- and sedimentdominated waters. This work briefly introduces network elements like: deployment sites, measurement method, instrument calibration, processing scheme, quality-assurance, uncertainties, data archive and products accessibility. Emphases is given to those elements which underline the network strengths (i.e., mostly standardization of any network element) and its weaknesses (i.e., the use of consolidated, but old-fashioned technology). The work also addresses the application of AERONET-OC data to the validation of primary satellite radiometric products over a variety of complex coastal waters and finally provides elements for the identification of new deployment sites most suitable to support satellite ocean color missions.

  7. Application of a radiometric method for evaluation of loss of salicylic acid during isolation from biologic material.

    Science.gov (United States)

    Ostrowski, A

    1983-01-01

    A radiometric method for evaluation of loss of salicylic acid in the process of isolation from biologic material is described. According to this study the mean loss during the total process of isolation amounts to 33.59%, the specific values being 19.47% during protein precipitation, 10.68% during extraction, and 3.44% during evaporation of solvent.

  8. The Relationship between Balancing Reactions and Reaction Lifetimes: A Consideration of the Potassium-Argon Radiometric Method for Dating Minerals

    Science.gov (United States)

    Howard, William A.

    2005-01-01

    A detailed examination of a commonly accepted practice in geology offers an example of how to stimulate critical thinking, teaches students how to read reactions, and challenges students to formulate better experiments for determining mineral ages more accurately. A demonstration of a Potassium-Argon radiometric method for dating minerals is…

  9. Radiometric Measurements on Ag/n-Si Composite Films for Detecting Radiation in the Earth’s Atmospheric Windows

    Science.gov (United States)

    2009-02-20

    NAME(S) AND ADDRESS(ES) AFOSR/NE 875 N. Randolph Street Suite 324, room 3112 Arlington VA 22203-1768 Dr. Silversmith 10. SPONSOR/MONITOR’S...008 to 30-11-008 AFOSR Grant # FA9550-08-1-0008 Program Manager - Dr. Donald Silversmith Radiometric Measurements on Ag/n-Si Composite Films for

  10. Radiometric quality of the MODIS bands at 667 and 678nm

    Science.gov (United States)

    Meister, Gerhard; Franz, Bryan A.

    2011-10-01

    The MODIS instruments on Terra and Aqua were designed to allow the measurement of chlorophyll fluorescence effects over ocean. The retrieval algorithm is based on the difference between the water-leaving radiances at 667nm and 678nm. The water-leaving radiances at these wavelengths are usually very low relative to the topof- atmosphere radiances. The high radiometric accuracy needed to retrieve the small fluorescence signal lead to a dual gain design for the 667 and 678nm bands. This paper discusses the benefits obtained from this design choice and provides justification for the use of only one set of gains for global processing of ocean color products. Noise characteristics of the two bands and their related products are compared to other products of bands from 412nm to 2130nm. The impact of polarization on the two bands is discussed. In addition, the impact of stray light on the two bands is compared to other MODIS bands.

  11. DEM-Based SAR Pixel Area Estimation For Enhanced Geocoding Refinement And Radiometric Normalization

    Science.gov (United States)

    Frey, Othmar; Santoro, Maurizio; Werner, Charles L.; Wegmuller, Urs

    2012-01-01

    Precise terrain-corrected georeferencing of SAR images and derived products in range-Doppler coordinates is important with respect to several aspects, such as data interpretation, combination with other geodata products, and transformation of, e.g., terrain heights into SAR geometry as used in DInSAR applications. For georeferencing a look-up table is calculated and refined based on a coregistration of the actual SAR image to a simulated SAR image. The impact of using two different implementations of such a simulator of topography-induced radar brightness, an approach based on angular relationships and a pixel-area based method are discussed in this paper. It is found that the pixel-area-based method leads to considerable improvements with regard to the robustness of georeferencing and also with regard to radiometric normalization in layover- affected areas.

  12. Importance of radiometric survey in radiodiagnosis installationscalculated; Importancia del levantamiento radiometrico en instalaciones de radiodiagnostico

    Energy Technology Data Exchange (ETDEWEB)

    Leyton, Fernando; Alarcon, Luis; Zapata, Victor H.; Ortega, Dulia; Ramirez, Alfredo; Aravena, Gonzalo [Hospital Clinico Universidad de Chile, Santiago (Chile); Ubeda, Carlos [Universidad de Tarapaca, Arica (Chile); Oyarzun, Carlos [Comision Chilena de Energia Nuclear (CCHEN), Santiago (Chile); Inzulza, Alonso [Hospital Juan Noe (Chile)

    2005-07-01

    A radiometric survey was conducted in two services of imaging with a total of 7 evaluated radiology rooms. The Quality Control Protocol methodology was used in Radiology ARCAL (Regional Agreement of cooperation for the promotion of nuclear science and technology in Latin America and the Caribbean) XLIX of the International Atomic Energy Agency (IAEA). The effective dose in different positions of interest rates were calculated, from the point of view of radiation protection. All evaluated rooms have rates of effective doses that meet the values limits set in the Protocol ARCAL XLIX, for 82% of the positions evaluated. However operators located in the position A (controlled area) exceed on average 370% with a range of [1-870] the limit proposed by ARCAL XLIX.

  13. Pilot study of the application of Tellus airborne radiometric and soil geochemical data for radon mapping.

    Science.gov (United States)

    Appleton, J D; Miles, J C H; Green, B M R; Larmour, R

    2008-10-01

    The scope for using Tellus Project airborne gamma-ray spectrometer and soil geochemical data to predict the probability of houses in Northern Ireland having high indoor radon concentrations is evaluated, in a pilot study in the southeast of the province, by comparing these data statistically with in-house radon measurements. There is generally good agreement between radon maps modelled from the airborne radiometric and soil geochemical data using multivariate linear regression analysis and conventional radon maps which depend solely on geological and indoor radon data. The radon maps based on the Tellus Project data identify some additional areas where the radon risk appears to be relatively high compared with the conventional radon maps. One of the ways of validating radon maps modelled on the Tellus Project data will be to carry out additional indoor measurements in these areas.

  14. Experimental results and simulations from aperture synthesis three-dimensional radiometric imaging

    Science.gov (United States)

    Salmon, Neil A.

    2016-10-01

    This paper presents the theory and algorithm of how a three-dimensional (3D) image can be generated using crosscorrelations of radiometric emission from a source measured using antennas in the near field. An example of how the algorithm is used to create 3D images of emission measured from a noise source is presented, indicating the presence of Fresnel noise and aliasing in the experimental data when the source is moved away from the phase centre. Simulations are presented which reproduce the Fresnel noise as generated by a 3x3x3 array of point sources located at the centre of a 2 metre diameter array of antennas representing a security screening portal. Two methods of reducing the Fresnel noise are presented: 1) a software method which makes successive more accurate estimates of the locations and intensities of sources; 2) a hardware method which reduces the coherence length of the radiation by increasing the radiation bandwidth.

  15. SPECTRAL REFLECTANCE MEASUREMENTS AT THE CHINA RADIOMETRIC CALIBRATION TEST SITE FOR THE REMOTE SENSING SATELITE SENSOR

    Institute of Scientific and Technical Information of China (English)

    张玉香; 张广顺; 刘志权; 张立军; 朱顺斌; 戎志国; 邱康睦

    2001-01-01

    A comprehensive field experiment was made with the support of the project of China Radiometric Calibration Site (CRCS) during June-July 1999. Ground reflectance spectra were measured at Dunhuang Calibration Test Site in the experiment. More than two thousands of spectral curves were acquired in a 20 km × 20 km area. The spectral coverage is from 350 nm to 2500 nm. The measurement values show that reflectance is between 10% and 33% at the VISSWIR spectral region. The standard deviation of reflectance is between 1.0% and 2.0% for the spectral range. Optical characteristics and ground reflectance measurements at the Dunhuang test site, result analysis and error source were described. In addition, a comparison of the reflectance obtained in 1999 with those measured in 1994 and 1996 was also made.

  16. Electronic transport characterization of silicon wafers by spatially resolved steady-state photocarrier radiometric imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qian [Institute of Optics and Electronics, Chinese Academy of Sciences, P. O. Box 350, Shuangliu, Chengdu 610209 (China); University of the Chinese Academy of Sciences, Beijing 100039 (China); Li, Bincheng, E-mail: bcli@ioe.ac.cn [Institute of Optics and Electronics, Chinese Academy of Sciences, P. O. Box 350, Shuangliu, Chengdu 610209 (China); School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2015-09-28

    Spatially resolved steady-state photocarrier radiometric (PCR) imaging technique is developed to characterize the electronic transport properties of silicon wafers. Based on a nonlinear PCR theory, simulations are performed to investigate the effects of electronic transport parameters (the carrier lifetime, the carrier diffusion coefficient, and the front surface recombination velocity) on the steady-state PCR intensity profiles. The electronic transport parameters of an n-type silicon wafer are simultaneously determined by fitting the measured steady-state PCR intensity profiles to the three-dimensional nonlinear PCR model. The determined transport parameters are in good agreement with the results obtained by the conventional modulated PCR technique with multiple pump beam radii.

  17. Clouds and the Earth's Radiant Energy System (CERES)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Clouds and the Earth's Radiant Energy System (CERES) is a key component of the Earth Observing System (EOS) program. The CERES instruments provide radiometric...

  18. RLS Instrument Radiometric Model: Instrument performance theoretical evaluation and experimental checks

    Science.gov (United States)

    Quintana, César; Ramos, Gonzalo; Moral, Andoni; Rodriguez, Jose Antonio; Pérez, Carlos; Hutchinson, Ian; INGLEY, Richard; Rull, Fernando

    2016-10-01

    Raman Laser Spectrometer (RLS) is one of the Pasteur payload instruments located at the Rover of the ExoMars mission and within the ESA's Aurora Exploration Programme. RLS will explore the Mars surface composition through the Raman spectroscopy technique. The instrument is divided into several units: a laser for Raman emission stimulation, an internal optical head (iOH) for sample excitation and for Raman emission recovering, a spectrometer with a CCD located at its output (SPU), the optical harness (OH) for the units connection, from the laser to the excitation path of the iOH and from the iOH reception path to the spectrometer, and the corresponding electronics for the CCD operation.Due to the variability of the samples to be analyzed on Mars, a radiometry prediction for the instrument performance results to be of the critical importance. In such a framework, and taking into account the SNR (signal to noise ratio) required for the achievement of successful results from the scientific point of view (a proper information about the Mars surface composition), a radiometric model has been developed to provide the requirements for the different units, i.e. the laser irradiance, the iOH, OH, and SPU throughputs, and the samples that will be possible to be analyzed in terms of its Raman emission and the relationship of the Raman signal with respect to fluorescence emission, among others.The radiometric model fundamentals (calculations and approximations), as well as the first results obtained during the bread board characterization campaign are here reported on.

  19. Radiometric, geometric, and image quality assessment of ALOS AVNIR-2 and PRISM sensors

    Science.gov (United States)

    Saunier, S.; Goryl, P.; Chander, G.; Santer, R.; Bouvet, M.; Collet, B.; Mambimba, A.; Kocaman, Aksakal S.

    2010-01-01

    The Advanced Land Observing Satellite (ALOS) was launched on January 24, 2006, by a Japan Aerospace Exploration Agency (JAXA) H-IIA launcher. It carries three remote-sensing sensors: 1) the Advanced Visible and Near-Infrared Radiometer type 2 (AVNIR-2); 2) the Panchromatic Remote-Sensing Instrument for Stereo Mapping (PRISM); and 3) the Phased-Array type L-band Synthetic Aperture Radar (PALSAR). Within the framework of ALOS Data European Node, as part of the European Space Agency (ESA), the European Space Research Institute worked alongside JAXA to provide contributions to the ALOS commissioning phase plan. This paper summarizes the strategy that was adopted by ESA to define and implement a data verification plan for missions operated by external agencies; these missions are classified by the ESA as third-party missions. The ESA was supported in the design and execution of this plan by GAEL Consultant. The verification of ALOS optical data from PRISM and AVNIR-2 sensors was initiated 4 months after satellite launch, and a team of principal investigators assembled to provide technical expertise. This paper includes a description of the verification plan and summarizes the methodologies that were used for radiometric, geometric, and image quality assessment. The successful completion of the commissioning phase has led to the sensors being declared fit for operations. The consolidated measurements indicate that the radiometric calibration of the AVNIR-2 sensor is stable and agrees with the Landsat-7 Enhanced Thematic Mapper Plus and the Envisat MEdium-Resolution Imaging Spectrometer calibration. The geometrical accuracy of PRISM and AVNIR-2 products improved significantly and remains under control. The PRISM modulation transfer function is monitored for improved characterization. ?? 2006 IEEE.

  20. Multicenter evaluation of the MB/BACT system for susceptibility testing of Mycobacterium tuberculosis.

    Science.gov (United States)

    Bemer, Pascale; Bodmer, Thomas; Munzinger, Juerg; Perrin, Monique; Vincent, Véronique; Drugeon, Henri

    2004-03-01

    The reliability of the MB/BACT system for susceptibility testing of Mycobacterium tuberculosis to pyrazinamide, rifampin, isoniazid, streptomycin, and ethambutol was compared to the BACTEC 460TB system. The proportion method was used to resolve discrepant results by an independent arbiter. Two interpretative methods were used, with an undiluted control (direct control) and a diluted control (10(-1) control). As no significant difference was observed between the two controls, the method with the direct control was adopted as the most accurate one. One hundred sixty-six strains were tested, with an overall agreement of 98.3%. After resolution of the 18 discrepant results by the proportion method, the sensitivity and specificity of the MB/BACT system were 100% for rifampin, isoniazid, and pyrazinamide. For ethambutol, sensitivity was 92.3% at the critical concentration and 33% at the high concentration, and specificity was 100% at both concentrations. For streptomycin, sensitivity was 100% at the critical concentration and 80% at the high concentration, and specificity was 98.6% at the critical concentration and 100% at the high concentration. The rifampin, isoniazid, streptomycin, and ethambutol susceptibility test results were obtained in 6.6 days with the MB/BACT versus 5 days with the BACTEC 460TB. The pyrazinamide susceptibility test results were obtained in 7.8 days with the MB/BACT, versus 6.7 days with the BACTEC 460TB. These data demonstrate that the fully automated MB/BACT system is a very reliable method for rapid susceptibility testing of M. tuberculosis against rifampin, isoniazid, and pyrazinamide. Sensitivity results have to be improved for ethambutol and streptomycin, especially at the high concentration.

  1. Radiometric Cross-Calibration of the HJ-1B IRS in the Thermal Infrared Spectral Band

    Science.gov (United States)

    Sun, K.

    2012-12-01

    The natural calamities occur continually, environment pollution and destruction in a severe position on the earth presently, which restricts societal and economic development. The satellite remote sensing technology has an important effect on improving surveillance ability of environment pollution and natural calamities. The radiometric calibration is precondition of quantitative remote sensing; which accuracy decides quality of the retrieval parameters. Since the China Environment Satellite (HJ-1A/B) has been launched successfully on September 6th, 2008, it has made an important role in the economic development of China. The satellite has four infrared bands; and one of it is thermal infrared. With application fields of quantitative remote sensing in china, finding appropriate calibration method becomes more and more important. Many kinds of independent methods can be used to do the absolute radiometric calibration. In this paper, according to the characteristic of thermal infrared channel of HJ-1B thermal infrared multi-spectral camera, the thermal infrared spectral band of HJ-1B IRS was calibrated using cross-calibration methods based on MODIS data. Firstly, the corresponding bands of the two sensors were obtained. Secondly, the MONDTRAN was run to analyze the influences of different spectral response, satellite view zenith angle, atmosphere condition and temperature on the match factor. In the end, their band match factor was calculated in different temperature, considering the dissimilar band response of the match bands. Seven images of Lake Qinghai in different time were chosen as the calibration data. On the basis of radiance of MODIS and match factor, the IRS radiance was calculated. And then the calibration coefficients were obtained by linearly regressing the radiance and the DN value. We compared the result of this cross-calibration with that of the onboard blackbody calibration, which consistency was good.The maximum difference of brightness temperature

  2. Parallel algorithms of relative radiometric correction for images of TH-1 satellite

    Science.gov (United States)

    Wang, Xiang; Zhang, Tingtao; Cheng, Jiasheng; Yang, Tao

    2014-05-01

    The first generation of transitive stereo-metric satellites in China, TH-1 Satellite, is able to gain stereo images of three-line-array with resolution of 5 meters, multispectral images of 10 meters, and panchromatic high resolution images of 2 meters. The procedure between level 0 and level 1A of high resolution images is so called relative radiometric correction (RRC for short). The processing algorithm of high resolution images, with large volumes of data, is complicated and time consuming. In order to bring up the processing speed, people in industry commonly apply parallel processing techniques based on CPU or GPU. This article firstly introduces the whole process and each step of the algorithm - that is in application - of RRC for high resolution images in level 0; secondly, the theory and characteristics of MPI (Message Passing Interface) and OpenMP (Open Multi-Processing) parallel programming techniques is briefly described, as well as the superiority for parallel technique in image processing field; thirdly, aiming at each step of the algorithm in application and based on MPI+OpenMP hybrid paradigm, the parallelizability and the strategies of parallelism for three processing steps: Radiometric Correction, Splicing Pieces of TDICCD (Time Delay Integration Charge-Coupled Device) and Gray Level Adjustment among pieces of TDICCD are deeply discussed, and furthermore, deducts the theoretical acceleration rates of each step and the one of whole procedure, according to the processing styles and independence of calculation; for the step Splicing Pieces of TDICCD, two different strategies of parallelism are proposed, which are to be chosen with consideration of hardware capabilities; finally, series of experiments are carried out to verify the parallel algorithms by applying 2-meter panchromatic high resolution images of TH-1 Satellite, and the experimental results are analyzed. Strictly on the basis of former parallel algorithms, the programs in the experiments

  3. Pyrazinamide susceptibility testing: proposed new standard with the BACTECTM MGITTM 960 system.

    Science.gov (United States)

    Piersimoni, C; Mustazzolu, A; Iacobino, A; Giannoni, F; Santoro, G; Gherardi, G; Del Giudice, A; Perna, R; Fattorini, L

    2016-12-01

    The susceptibility of 253 Mycobacterium tuberculosis complex isolates to pyrazinamide (PZA) was assessed using the BACTECTM MGITTM 960 (M960) system. Resistant strains underwent paired repeat testing using 1) a critical concentration of 200 g/ml (PZA-200), and 2) a reduced inoculum of 0.25 ml. They were also examined using the BACTEC 460 (B460) reference method and investigated for pncA mutations. On M960, 37 isolates were resistant. In the PZA-200 assay, 20 of these were resistant and 17 susceptible, while 18 were resistant and 19 susceptible with reduced inoculum. The B460 assay and pncA sequencing confirmed results with reduced inoculum.

  4. Radiometric Cross-calibration of KOMPSAT-3A with Landsat-8

    Science.gov (United States)

    Shin, D. Y.; Ahn, H. Y.; Lee, S. G.; Choi, C. U.; Kim, J. S.

    2016-06-01

    In this study, Cross calibration was conducted at the Libya 4 PICS site on 2015 using Landsat-8 and KOMPSAT-3A. Ideally a cross calibration should be calculated for each individual scene pair because on any given date the TOA spectral profile is influenced by sun and satellite view geometry and the atmospheric conditions. However, using the near-simultaneous images minimizes this effect because the sensors are viewing the same atmosphere. For the cross calibration, the calibration coefficient was calculated by comparing the at sensor spectral radiance for the same location calculated using the Landsat-8 calibration parameters in metadata and the DN of KOMPSAT-3A for the regions of interest (ROI). Cross calibration can be conducted because the satellite sensors used for overpass have a similar bandwidth. However, not all satellites have the same color filter transmittance and sensor reactivity, even though the purpose is to observe the visible bands. Therefore, the differences in the RSR should be corrected. For the cross-calibration, a calibration coefficient was calculated using the TOA radiance and KOMPSAT-3 DN of the Landsat-8 OLI overpassed at the Libya 4 Site, As a result, the accuracy of the calibration coefficient at the site was assumed to be ± 1.0%. In terms of the results, the radiometric calibration coefficients suggested here are thought to be useful for maintaining the optical quality of the KOMPSAT-3A.

  5. Application of gamma-ray spectrometry in a NORM industry for its radiometrical characterization

    Science.gov (United States)

    Mantero, J.; Gázquez, M. J.; Hurtado, S.; Bolívar, J. P.; García-Tenorio, R.

    2015-11-01

    Industrial activities involving Naturally Occurring Radioactive Materials (NORM) are found among the most important industrial sectors worldwide as oil/gas facilities, metal production, phosphate Industry, zircon treatment, etc. being really significant the radioactive characterization of the materials involved in their production processes in order to assess the potential radiological risk for workers or natural environment. High resolution gamma spectrometry is a versatile non-destructive radiometric technique that makes simultaneous determination of several radionuclides possible with little sample preparation. However NORM samples cover a wide variety of densities and composition, as opposed to the standards used in gamma efficiency calibration, which are either water-based solutions or standard/reference sources of similar composition. For that reason self-absorption correction effects (especially in the low energy range) must be considered individually in every sample. In this work an experimental and a semi-empirical methodology of self-absorption correction were applied to NORM samples, and the obtained results compared critically, in order to establish the best practice in relation to the circumstances of an individual laboratory. This methodology was applied in samples coming from a TiO2 factory (NORM industry) located in the south-west of Spain where activity concentration of several radionuclides from the Uranium and Thorium series through the production process was measured. These results will be shown in this work.

  6. New Radiometric Age Constraints for the Matuyama-Bruhnes Reversal and Santa Rosa Excursion

    Science.gov (United States)

    Balbas, A.; Koppers, A. A. P.; Kent, D. V.; Coe, R. S.; Konrad, K.; Clark, P. U.

    2015-12-01

    The coupling of the timing of the virtual geomagnetic pole (VGP) position and the absolute paleointensities for geomagnetic events is vital for understanding the Earth's geodynamo. Here we present new high-precision 40Ar/39Ar age determinations using an ARGUS-VI multi-collector mass spectrometer for lava flows on Floreana Island, Galapagos, and Tahiti Nui, Society Islands. New Galapagos ages (n=6) place the GA-79 lava flow on Floreana Island, which records an excursional VGP from an equatorial region (Cox and Dalrymple, 1966), within the Santa Rosa excursion. This flow contains extremely low paleointesity values of 1.1 x 1022 Am2 (n=11; Wang and Kent, 2013). We also present 52 new ages on 18 lava flows from the Punaruu valley, Tahiti, which record the Matuyama-Bruhnes reversal. The new ages confirm that the lavas record this reversal, but the ages differ from the original stratigraphy presented in Mochizuki et al. (2011). Our new ages using the Kuiper et al. (2008) fish canyon sanidine ages for Punaruu valley lava flows are concordant with previous astronomically tuned ages (Channell et al. 2002, 2009) and represent the highest precision radiometric ages for the most recent reversal. Here we show that paleointensity lows associated with excursional events can be comparable to or less than those associated with reversals. In addition, such field strength reductions can occur in time intervals as short as 3 thousand years.

  7. Analysis of hyperspectral field radiometric data for monitoring nitrogen concentration in rice crops

    Science.gov (United States)

    Stroppiana, D.; Boschetti, M.; Confalonieri, R.; Bocchi, S.; Brivio, P. A.

    2005-10-01

    Monitoring crop conditions and assessing nutrition requirements is fundamental for implementing sustainable agriculture. Rational nitrogen fertilization is of particular importance in rice crops in order to guarantee high production levels while minimising the impact on the environment. In fact, the typical flooded condition of rice fields can be a significant source of greenhouse gasses. Information on plant nitrogen concentration can be used, coupled with information about the phenological stage, to plan strategies for a rational and spatially differentiated fertilization schedule. A field experiment was carried out in a rice field Northern Italy, in order to evaluate the potential of field radiometric measurements for the prediction of rice nitrogen concentration. The results indicate that rice reflectance is influenced by nitrogen supply at certain wavelengths although N concentration cannot be accurately predicted based on the reflectance measured at a given wavelength. Regression analysis highlighted that the visible region of the spectrum is most sensitive to plant nitrogen concentration when reflectance measures are combined into a spectral index. An automated procedure allowed the analysis of all the possible combinations into a Normalized Difference Index (NDI) of the narrow spectral bands derived by spectral resampling of field measurements. The derived index appeared to be least influenced by plant biomass and Leaf Area Index (LAI) providing a useful approach to detect rice nutritional status. The validation of the regressive model showed that the model is able to predict rice N concentration (R2=0.55 [p<0.01] RRMSE=29.4; modelling efficiency close to the optimum value).

  8. Radiometric immunosorbent assay for the detection of anti-hormone-binding protein antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, E.A.; Dame, M.C.; DeLuca, H.F.

    1986-02-15

    A radiometric immunosorbent assay (RISA) for the detection of monoclonal antibodies to hormone-binding proteins has been developed. The assay involves incubating hybridoma supernatants in microtiter wells that have been coated with goat anti-mouse IgG antibodies. Any mouse IgG in the test supernatant is thus specifically retained in the wells. Radioactive ligand-binding protein complexes are then incubated in the wells. The presence of anti-binding protein antibodies in the supernatant is indicated by specific retention of radioactive ligand-binding protein complexes in the wells. Crude antigen preparations, such as tissue homogenates, can be used to detect antibodies. The assay is capable of detecting antibody at concentrations 20 ng/ml (approx. 100 pM IgG). The RISA has been used successfully to screen for monoclonal antibodies to the intracellular receptor for 1,25-dihydroxyvitamin D/sub 3/ and should be useful for the detection of antibodies to ligand-binding proteins in general.

  9. Determining water use of sorghum from two-source energy balance and radiometric temperatures

    Directory of Open Access Journals (Sweden)

    J. M. Sánchez

    2011-10-01

    Full Text Available Estimates of surface actual evapotranspiration (ET can assist in predicting crop water requirements. An alternative to the traditional crop-coefficient methods are the energy balance models. The objective of this research was to show how surface temperature observations can be used, together with a two-source energy balance model, to determine crop water use throughout the different phenological stages of a crop grown. Radiometric temperatures were collected in a sorghum (Sorghum bicolor field as part of an experimental campaign carried out in Barrax, Spain, during the 2010 summer growing season. Performance of the Simplified Two-Source Energy Balance (STSEB model was evaluated by comparison of estimated ET with values measured on a weighing lysimeter. Errors of ±0.14 mm h−1 and ±1.0 mm d−1 were obtained at hourly and daily scales, respectively. Total accumulated crop water use during the campaign was underestimated by 5%. It is then shown that thermal radiometry can provide precise crop water necessities and is a promising tool for irrigation management.

  10. Radiometric in-situ calibration of satelital sensors of Earth observation using a spectroradiometer

    CERN Document Server

    Delgado-Correal, Camilo

    2012-01-01

    By using the satelital information of Earth observation unloaded by a station constructed in the country and reflectances measurements of the soil, we found the total radiation attenuation of the atmosphere for a small region of the Colombian territory. It was necessary to use the Fourier's theory that describes the ideal filters of signals to find the transfer functions between the spectral response of an spectroradiometer and the satelital sensor, whose radiative sign we are going to calibrate. After that, we used the reflectance spectrum of the soil taken with our spectroradiometer, the information in digital numbers (DN) of a pixel of the satelital image of the same region at the same time, and using again the theory of ideal filters we found the transfer function between the responses of both sensors to the radiance of the soil. The relation between both signals provides us the total intensity of the radiation attenuation of the atmosphere for pixel, which is fundamental to do a radiometric calibration o...

  11. A W-Band Radiometer with the Offset Parabolic Antenna for Radiometric Measurements

    Directory of Open Access Journals (Sweden)

    Li Wu

    2016-01-01

    Full Text Available This paper deals with the development of a W-band noise-adding radiometer which combines the millimeter-wave (MMW radiometric measurements with a high-resolution imager. The offset parabolic antenna is presented to achieve an accurate measurement and a high resolution. To reduce the cross-polarization level of the antenna, a multimode feed horn with a multistep structure is proposed to match the focal region fields of the reflector. It has advantages over the corrugated horns in lower mass and easier manufacturing. In addition, due to an unavoidable settling time for the noise-adding radiometer output signal passing through the low-pass filter, a theoretical criterion for the optimum duty cycle determination to reject extraneous contributions from the transient is proposed in this paper. The appropriate duty cycle threshold is 0.33 for the developed W-band radiometer. Also, a geometric correction method is presented to correct the obtained passive image suffering from a distortion for a better image interpretation. Preliminary experimental results are given to illustrate and verify the presented techniques.

  12. Assessment of Infrared Sounder Radiometric Noise from Analysis of Spectral Residuals

    Science.gov (United States)

    Dufour, E.; Klonecki, A.; Standfuss, C.; Tournier, B.; Serio, C.; Masiello, G.; Tjemkes, S.; Stuhlmann, R.

    2016-08-01

    For the preparation and performance monitoring of the future generation of hyperspectral InfraRed sounders dedicated to the precise vertical profiling of the atmospheric state, such as the Meteosat Third Generation hyperspectral InfraRed Sounder, a reliable assessment of the instrument radiometric error covariance matrix is needed.Ideally, an inflight estimation of the radiometrric noise is recommended as certain sources of noise can be driven by the spectral signature of the observed Earth/ atmosphere radiance. Also, unknown correlated noise sources, generally related to incomplete knowledge of the instrument state, can be present, so a caracterisation of the noise spectral correlation is also neeed.A methodology, relying on the analysis of post-retreival spectral residuals, is designed and implemented to derive in-flight the covariance matrix on the basis of Earth scenes measurements. This methodology is successfully demonstrated using IASI observations as MTG-IRS proxy data and made it possible to highlight anticipated correlation structures explained by apodization and micro-vibration effects (ghost). This analysis is corroborated by a parallel estimation based on an IASI black body measurement dataset and the results of an independent micro-vibration model.

  13. Landsat 8 OLI radiometric calibration performance after three years (Conference Presentation)

    Science.gov (United States)

    Morfitt, Ron A.

    2016-09-01

    The Landsat 8 Operational Land Imager (OLI) impressed science users soon after launch in early 2013 with both its radiometric and geometric performance. After three years on-orbit, OLI continues to exceed expectations with its high signal-to-noise ratio, low striping, and stable response. The few artifacts that do exist, such as ghosting, continue to be minimal and show no signs of increasing. The on-board calibration sources showed a small decrease in response during the first six months of operations in the coastal aerosol band, but that decrease has stabilized to less than a half percent per year since that time. The other eight bands exhibit very little change over the past three years and have remained well within a half percent of their initial response to all on-board calibration sources. Analysis of lunar acquisitions also agree with the on-board calibrators. Overall, the OLI on-board the Landsat 8 spacecraft continues to provide exceptional measurements of the Earth's surface to continue the long tradition of Landsat.

  14. New argon-argon (40Ar/39Ar) radiometric age dates from selected subsurface basalt flows at the Idaho National Laboratory, Idaho

    Science.gov (United States)

    Hodges, Mary K.; Turrin, Brent D.; Champion, Duane E.; Swisher, Carl C.

    2015-01-01

    In 2011, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, collected samples for 12 new argon-argon radiometric ages from eastern Snake River Plain olivine tholeiite basalt flows in the subsurface at the Idaho National Laboratory. The core samples were collected from flows that had previously published paleomagnetic data. Samples were sent to Rutgers University for argon-argon radiometric dating analyses.

  15. [In-Flight Radiometric Calibration for ZY-3 Satellite Multispectral Sensor by Modified Reflectance-Based Method].

    Science.gov (United States)

    Han, Jie; Xie, Yong; Gu, Xing-fa; Yu, Tao; Liu, Qi-yue; Gao, Rong-jun

    2015-03-01

    Through integrating multi-spectral sensor characteristics of ZY-3 satellite, a modified reflectance-based method is proposed and used to achieve ZY-3 satellite multispectral sensor in-flight radiometric calibration. This method chooses level 1A image as data source and establishes geometric model to get an accurate observation geometric parameters at calibration site according to the information provided in image auxiliary documentation, which can reduce the influences on the calibration accuracy from image resampling and observation geometry errors. We use two-point and multi-points methods to calculate the absolute radiometric calibration coefficients of ZY-3 satellite multispectral sensor based on the large campaign at Dongying city, Shan Dong province. Compared with ZY-3 official calibration coefficients, multi-points method has higher accuracy than two-point method. Through analyzing the dispersion between each calibration point and the fitting line, we find that the residual error of water calibration site is larger than others, which of green band is approximately 67.39%. Treating water calibration site as an error, we filter it out using 95.4% confidence level as standard and recalculate the calibration coefficients with multi-points method. The final calibration coefficients show that the relative differences of the first three bands are less than 2% and the last band is less than 5%, which manifests that the proposed radiometric calibration method can obtain accurate and reliable calibration coefficients and is useful for other similar satellites in future.

  16. A study of elemental migration from poly(ethylene terephthalate) of food packagings to simulated solutions by radiometric method

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Eufemia Paez [Escola SENAI Fundacao Zerrenner, Sao Paulo, SP (Brazil)]|[Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], E-mail: eufemia@sp.senai.br; Saki, Mitiko; Silva, Leonardo G.A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], E-mail: mitiko@ipen.br, E-mail: lgasilva@ipen.br

    2007-07-01

    Brazilian plastic production for food packagings, in recent years, has grown in the same proportion as food consumption. Considering that the plastic manufacturing involves catalytic processes and the use of additives, when the foods are in direct contact with these materials, the components present in plastics may migrate to the food. The Brazilian Health Surveillance Agency (ANVISA) has established boundary-values of migrants as well as procedures to evaluate migration of elements and substances from plastic packaging to food. In this study elemental composition of poly (ethylene terephthalate) - PET - packaging and results of elemental migration were obtained. Instrumental Neutron Activation Analysis (INAA) was used to determine elemental concentrations in PET packagings and the radiometric method was applied for elemental migration determination. This radiometric method consisted of irradiating the PET samples with neutrons, followed by migration exposition and radioactivity measurement in food-simulated solution. Experimental conditions used for migration were 10 days exposure period at 40 deg C. Migration was evaluated for soft drink, juice and water PET packaging. The analytical results indicated that PET packagings contain Co and Sb and those elements are transferred to the simulated solutions. However, these migration results were lower than the maximum tolerance values established by ANVISA. The migration detection limits also indicated high sensitivity of the radiometric method. (author)

  17. Development of radiometric assays for quantification of enzyme activities of the key enzymes of thyroid hormones metabolism.

    Science.gov (United States)

    Pavelka, S

    2014-01-01

    We newly elaborated and adapted several radiometric enzyme assays for the determination of activities of the key enzymes engaged in the biosynthesis (thyroid peroxidase, TPO) and metabolic transformations (conjugating enzymes and iodothyronine deiodinases, IDs) of thyroid hormones (THs) in the thyroid gland and in peripheral tissues, especially in white adipose tissue (WAT). We also elaborated novel, reliable radiometric methods for extremely sensitive determination of enzyme activities of IDs of types 1, 2 and 3 in microsomal fractions of different rat and human tissues, as well as in homogenates of cultured mammalian cells. The use of optimized TLC separation of radioactive products from the unconsumed substrates and film-less autoradiography of radiochromatograms, taking advantage of storage phosphor screens, enabled us to determine IDs enzyme activities as low as 10(-18) katals. In studies of the interaction of fluoxetine (Fluox) with the metabolism of THs, we applied adapted radiometric enzyme assays for iodothyronine sulfotransferases (ST) and uridine 5'-diphospho-glucuronyltransferase (UDP-GT). Fluox is the most frequently used representative of a new group of non-tricyclic antidepressant drugs--selective serotonin re-uptake inhibitors. We used the elaborated assays for quantification the effects of Fluox and for the assessment of the degree of potential induction of rat liver ST and/or UDP-GT enzyme activities by Fluox alone or in combination with T(3). Furthermore, we studied possible changes in IDs activities in murine adipose tissue under the conditions that promoted either tissue hypertrophy (obesogenic treatment) or involution (caloric restriction), and in response to leptin, using our newly developed radiometric enzyme assays for IDs. Our results suggest that deiodinase D1 has a functional role in WAT, with D1 possibly being involved in the control of adipose tissue metabolism and/or accumulation of the tissue. Significant positive correlation between

  18. Radiometric analysis of farmed fish (sea bass, gilthead bream, and rainbow trout) from Tenerife Island, Spain.

    Science.gov (United States)

    Jalili, A; López-Pérez, M; Karlsson, L; Hernández, F; Rubio, C; Hernández-Armas, J; Hardisson, A

    2009-09-01

    This study analyzed the content of gamma-emitting radionuclides in fish farmed on the island of Tenerife (Canary Islands, Spain). The fish species included in this study were sea bass, gilthead bream, and rainbow trout. The first two species are produced in offshore enclosures, while the third is produced in a freshwater fish farm. All measurements were performed using two high-purity germanium gamma-ray detectors. The content of gamma-emitting radionuclides in the fodder used to feed the different species of farmed fish studied was also determined. The following nuclides were often detected in the analyzed samples: 137Cs, 40K, 235U, 228Ac, 214Bi, 208Tl, 212Pb, and 214Pb. As a complement to this analysis, 210Po concentrations in two fish samples were determined by alpha spectrometry. The nuclide presenting the highest concentration was, as expected, the naturally occurring 40K, with an average concentration of 0.13 +/- 0.01 Bq/g (wet weight) (Bq/gww) in gilthead bream and sea bass and 0.12 +/- 0.01 Bq/gww in rainbow trout. The 235U concentrations determined in the same fish species were 0.6 +/- 0.5, 0.8 +/- 0.7, and 1.6 +/- 1.0 mBq/gww, respectively. This nuclide is seldom reported in fish samples. The concentrations of 137Cs (the only artificial nuclide determined in this study) in gilthead bream and sea bass were 0.026 +/- 0.006 and 0.044 +/- 0.01 mBq/gww, respectively. In addition to the radiometric analysis, the contribution of the analyzed nuclides to the effective dose from the mean daily intake of the fish was calculated. The calculated contribution, in terms of dose per person, produced by intake of the analyzed fish was 0.8 microSv/year. This value does not represent a significant risk to the local population.

  19. In-flight absolute radiometric calibration of MODIS using the irradiance-based method

    Science.gov (United States)

    Wei, Wei; Li, Xin; Zhao, Chun-yan; Qiu, Gang-gang; Zheng, Xiao-bing

    2016-10-01

    In order to reduce the calibration uncertainty of the reflectance-based method brought by the assumption of the aerosol model, the irradiance-based method, known as improved reflectance-based method, was proposed. The irradiance-based method is described in this paper. The radiometric calibration field campaign was performed at Dunhuang test site on 27 August, 2014. A hyperspectral irradiance meter (HSIM) developed by Anhui Institute of Optics and Fine Mechanics (AIOFM) was used to measure the diffuse-to-global spectral irradiance ratio. The irradiance-based method and the reflectance-based method were performed to calibrate the first four bands of Moderate Resolution Imaging Spectroradiometer (MODIS). The results of two methods were compared with result of MODIS on-board calibrator. The comparison shows that the result of irradiance-based method has a good consistency with on-board calibration and reflectance-based method results. The difference of calibration coefficients between irradiance-based and on-board method was less than 1.4%. Due to the limitations of the irradiance-based method, a clear sky and stable atmospheric condition is required for the entire half of the calibration day to provide the data necessary for the extrapolation of diffuse-to-global ratio in viewing direction. A study on the effects of aerosol mode assumption on the final apparent reflectance was performed on both the irradiance-based method and the reflectance-based method by selecting different aerosol modes to predict the apparent reflectance. The results show that aerosol mode assumption has a great effect on the reflectance-based method, however slight effect on the irradiance-based method.

  20. Radiometric evaluation of granite tables in environment public in the city of Recife-PE, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Edilson A.; Amaral, Romilton dos S.; Santos Junior, Jose A. dos; Bezerra, Jairo D., E-mail: accioly.edilson@ufpe.b, E-mail: romilton@ufpe.b, E-mail: jaraujo@ufpe.b, E-mail: jairo.dias@ufpe.b [Universidade Federal de Pernambuco (RAE/DEN/UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear. Grupo de Radioecologia

    2011-07-01

    Granite in Pernambuco has been used as raw-material in several utensils, amongst which, furniture and decoration objects. This granite, besides being traded internally, is also exported to Asia and Europe. Differentiated content of some radionuclides of the ({sup 238}U and {sup 232}Th) and {sup 40}K natural series above average content of other rocks is also commonly found, due to its origin and geological formation. The gamma radiation stems from the decay of the given series, followed by the {sup 40}K, and it should not exceed the 1 mSv.y{sup -1} limit per person of the public, according to the current radiological protection rules (ICRP, 60). This work aimed to radiometrically assess the granite tables used by the public of a well visited restaurant in the city of Recife. It is expected to contribute to the environmental monitoring and to assess the possible health risks for humans. The tables were monitored for a period of about one year. Dosimetric tablets of CaSO{sub 4}:Dy were used. The findings showed doses ranges from the background to 4.7 mSv.y{sup -1}, with general average of dose rate equal to 3.0 mSv.y{sup -1}. Therefore, it was concluded that despite the average dose rates in the different granite objects studied being higher than the recommended rate, the exposure does not offer risks to their users, due to the contact time (meal time) and the levels of radioactive emission found. (author)

  1. Radiometric and spectrophotometric studies of the behavior of chromium(VI) oxide in concentrated perchloric acid

    Energy Technology Data Exchange (ETDEWEB)

    Pezzin, S.H.; Collins, C.H.; Collins, K.E. [Universidade Estadual de Campinas (Brazil). Inst. de Quimica; Archundia, C. [Universidad Nacional Autonoma de Mexico, Mexico City (Mexico). Inst. de Ciencias Nucleares

    1997-11-01

    A study of the behavior of {sup 51}CrO{sub 3} in 70% HClO{sub 4} over the temperature range from 20 to 194 C by means of Cr-51 labelling, UV-VIS spectrophotometry and ion exchange chromatography, shows that the solubility of {sup 51}CrO{sub 3} depends on a competition between the dissolution process and the acid reduction of solution phase Cr(VI). These processes occur simultaneously and are dependent on both the temperature and the concentration of Cr(VI), as shown by comparison between radiometric measurements (where total chromium can be accurately determined) and spectrophotometric measurements (where only the Cr(VI) is detectable at the wavelengths studied). These conclusions are confirmed by PbCrO{sub 4} precipitation of {sup 51}Cr(VI), where at 194 C, 97% of the total chromium appears as Pb{sup 51}CrO{sub 4} while at 86 C only 5% does. Cation exchange chromatography of the solution after brief contact of {sup 51}CrO{sub 3} with concentrated HClO{sub 4} at 20 C shows only traces of {sup 51}Cr(VI), most of the radioactivity eluting as {sup 51}Cr(H{sub 2}O){sup 3+}{sub 6}, with smaller amounts of species with +2 and +1 charges. These results imply serious limitations to the spectrophotometric determination of low concentrations of total chromium in alloys or in biological material which use dissolution in 70% HClO{sub 4} as a primary analytical step. (orig.)

  2. Radiometric reconnaissance in the Garfield and Taylor park quadrangles, Chaffee and Gunnison counties, Colorado

    Science.gov (United States)

    Dings, M.G.; Schafer, Max

    1953-01-01

    During the summer of 1952 most of the mines and prospects in the Garfield and Taylor Park quadrangles of west-central Colorado were examined radiometrically by the U. S. Geological Survey to determine the extent, grade, and mode of occurrence of radioactive substances. The region contains a relatively large number of rock types, chiefly pre-Cambrian schists, gneisses, and granites; large and small isolated areas of sedimentary rocks of Paleozoic and Mesozoic ages; and a great succession of intrusive rocks of Tertiary age that range from andesite to granite and occur as stocks, chonoliths, sills, dikes, and one batholith. The prevailing structures are northwest-trending folds and faults. Ores valued at about $30,000,000 have been produced from this region. Silver, lead, zinc, and gold have accounted for most of this value, but small tonnages of copper, tungsten, and molybdenum have also been produced. The principal ore minerals are sphalerite, silver-bearing galena, cerussite, smithsonite, and gold-bearing pyrite and limonite; they occur chiefly as replacement bodies in limestone and as shoots in pyritic quartz veins. Anomalous radioactivity is uncommon and the four localities at which it is known are widely separated in space. The uranium content of samples from these localities is low. Brannerite, the only uranium-bearing mineral positively identified in the region, occurs sparingly in a few pegmatites and in one quartz-beryl-pyrite vein. Elsewhere radioactivity is associated with (l) black shale seams in the Manitou dolomite, (2) a quartz-pyrite-molybdenite vein, (3) a narrow border zone of oxidized material surrounding a small lead zinc ore body in the Manitou dolomite along a strong fault zone.

  3. Landsat-7 ETM+: 12 years on-orbit reflective-band radiometric performance

    Science.gov (United States)

    Markham, B.L.; Haque, M.O.; Barsi, J.A.; Micijevic, E.; Helder, D.L.; Thome, K.J.; Aaron, D.; Czapla-Myers, J. S.

    2012-01-01

    The Landsat-7 ETM+ sensor has been operating on orbit for more than 12 years, and characterizations of its performance have been ongoing over this period. In general, the radiometric performance of the instrument has been remarkably stable: 1) noise performance has degraded by 2% or less overall, with a few detectors displaying step changes in noise of 2% or less; 2) coherent noise frequencies and magnitudes have generally been stable, though the within-scan amplitude variation of the 20 kHz noise in bands 1 and 8 disappeared with the failure of the scan line corrector and a new similar frequency noise (now about 18 kHz) has appeared in two detectors in band 5 and increased in magnitude with time; 3) bias stability has been better than 0.25 DN out of a normal value of 15 DN in high gain; 4) relative gains, the differences in response between the detectors in the band, have generally changed by 0.1% or less over the mission, with the exception of a few detectors with a step response change of 1% or less; and 5) gain stability averaged across all detectors in a band, which is related to the stability of the absolute calibration, has been more stable than the techniques used to measure it. Due to the inability to confirm changes in the gain (beyond a few detectors that have been corrected back to the band average), ETM+ reflective band data continues to be calibrated with the prelaunch measured gains. In the worst case, some bands may have changed as much as 2% in uncompensated absolute calibration over the 12 years.

  4. Model-aided radiometric determination of photolysis frequencies in a sunlit atmosphere simulation chamber

    Directory of Open Access Journals (Sweden)

    B. Bohn

    2004-10-01

    Full Text Available In this work diurnal and seasonal variations of mean photolysis frequencies for the atmosphere simulation chamber SAPHIR at Forschungszentrum Jülich are calculated. SAPHIR has a complex construction with UV permeable teflon walls allowing natural sunlight to enter the reactor volume. The calculations are based on external measurements of solar spectral actinic flux and a model considering the time-dependent impact of shadows from construction elements as well as the influence of the teflon walls. Overcast and clear-sky conditions are treated in a consistent way and different assumptions concerning diffuse sky radiance distributions are tested. Radiometric measurements inside the chamber are used for an inspection of model predictions. Under overcast conditions we obtain 74% and 67% of external values for photolysis frequencies j(NO2 (NO2+hν→NO+O(3P and j(O1D (O3+hν→O2+O(1D, respectively. On a clear sky summer day these values are time-dependent within ranges 0.65–0.86 and 0.60–0.73, for j(NO2 and j(O1D, respectively. A succeeding paper (Bohn et al., 2004 is dealing with an on-road test of the model approach by comparison with photolysis frequencies from chemical actinometry experiments within SAPHIR.

  5. Evaluation of Verigene Blood Culture Test Systems for Rapid Identification of Positive Blood Cultures.

    Science.gov (United States)

    Kim, Jae-Seok; Kang, Go-Eun; Kim, Han-Sung; Kim, Hyun Soo; Song, Wonkeun; Lee, Kyu Man

    2016-01-01

    The performance of molecular tests using the Verigene Gram-Positive and Gram-Negative Blood Culture nucleic acid tests (BC-GP and BC-GN, resp.; Naosphere, Northbrook, IL, USA) was evaluated for the identification of microorganisms detected from blood cultures. Ninety-nine blood cultures containing Gram-positive bacteria and 150 containing Gram-negative bacteria were analyzed using the BC-GP and BC-GN assays, respectively. Blood cultures were performed using the Bactec blood culture system (BD Diagnostic Systems, Franklin Lakes, NJ, USA) and conventional identification and antibiotic-susceptibility tests were performed using a MicroScan system (Siemens, West Sacramento, CA, USA). When a single strain of bacteria was isolated from the blood culture, Verigene assays correctly identified 97.9% (94/96) of Gram-positive bacteria and 93.8% (137/146) of Gram-negative bacteria. Resistance genes mecA and vanA were correctly detected by the BC-GP assay, while the extended-spectrum β-lactamase CTX-M and the carbapenemase OXA resistance gene were detected from 30 cases cultures by the BC-GN assay. The BC-GP and BC-GN assays showed high agreement with conventional identification and susceptibility tests. These tests are useful for rapid identification of microorganisms and the detection of clinically important resistance genes from positive Bactec blood cultures.

  6. Performance of Gram staining on blood cultures flagged negative by an automated blood culture system.

    Science.gov (United States)

    Peretz, A; Isakovich, N; Pastukh, N; Koifman, A; Glyatman, T; Brodsky, D

    2015-08-01

    Blood is one of the most important specimens sent to a microbiology laboratory for culture. Most blood cultures are incubated for 5-7 days, except in cases where there is a suspicion of infection caused by microorganisms that proliferate slowly, or infections expressed by a small number of bacteria in the bloodstream. Therefore, at the end of incubation, misidentification of positive cultures and false-negative results are a real possibility. The aim of this work was to perform a confirmation by Gram staining of the lack of any microorganisms in blood cultures that were identified as negative by the BACTEC™ FX system at the end of incubation. All bottles defined as negative by the BACTEC FX system were Gram-stained using an automatic device and inoculated on solid growth media. In our work, 15 cultures that were defined as negative by the BACTEC FX system at the end of the incubation were found to contain microorganisms when Gram-stained. The main characteristic of most bacteria and fungi growing in the culture bottles that were defined as negative was slow growth. This finding raises a problematic issue concerning the need to perform Gram staining of all blood cultures, which could overload the routine laboratory work, especially laboratories serving large medical centers and receiving a large number of blood cultures.

  7. Evaluation of Radiometric and Atmospheric Correction Algorithms for Aboveground Forest Biomass Estimation Using Landsat 5 TM Data

    Directory of Open Access Journals (Sweden)

    Pablito M. López-Serrano

    2016-04-01

    Full Text Available Solar radiation is affected by absorption and emission phenomena during its downward trajectory from the Sun to the Earth’s surface and during the upward trajectory detected by satellite sensors. This leads to distortion of the ground radiometric properties (reflectance recorded by satellite images, used in this study to estimate aboveground forest biomass (AGB. Atmospherically-corrected remote sensing data can be used to estimate AGB on a global scale and with moderate effort. The objective of this study was to evaluate four atmospheric correction algorithms (for surface reflectance, ATCOR2 (Atmospheric Correction for Flat Terrain, COST (Cosine of the Sun Zenith Angle, FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes and 6S (Second Simulation of Satellite Signal in the Solar, and one radiometric correction algorithm (for reflectance at the sensor ToA (Apparent Reflectance at the Top of Atmosphere to estimate AGB in temperate forest in the northeast of the state of Durango, Mexico. The AGB was estimated from Landsat 5 TM imagery and ancillary information from a digital elevation model (DEM using the non-parametric multivariate adaptive regression splines (MARS technique. Field reference data for the model training were collected by systematic sampling of 99 permanent forest growth and soil research sites (SPIFyS established during the winter of 2011. The following predictor variables were identified in the MARS model: Band 7, Band 5, slope (β, Wetness Index (WI, NDVI and MSAVI2. After cross-validation, 6S was found to be the optimal model for estimating AGB (R2 = 0.71 and RMSE = 33.5 Mg·ha−1; 37.61% of the average stand biomass. We conclude that atmospheric and radiometric correction of satellite images can be used along with non-parametric techniques to estimate AGB with acceptable accuracy.

  8. The Moon Mineralogy (M3) Imaging Spectrometer: Early Assessment of the Spectral, Radiometric, Spatial and Uniformity Properties

    Science.gov (United States)

    Green, Robert O.; Pieters, C. M.; Boardman, J.; Barr, D.; Bruce, C.; Bousman, J.; Chatterjee, A.; Eastwood, M.; Essandoh, V.; Geier, S.; Glavich, T.; Green, R.; Haemmerle, V.; Hyman, S.; Hovland, L.; Koch, T.; Lee, K.; Lundeen, S.; Motts, E.; Mouroulis, P.; Paulson, S.; Plourde, K.; Racho, C.; Robinson, D.; Rodriquez, J.

    2009-01-01

    The Moon Mineralogy Mapper's (M3) is a high uniformity and high signal-to-noise ratio NASA imaging spectrometer that is a guest instrument on the Indian Chandrayaan-1 Mission to the Moon. The laboratory measured spectral, radiometric, spatial, and uniformity characteristics of the M3 instrument are given. The M3 imaging spectrometer takes advantage of a suite of critical enabling capabilities to achieve its measurement requirement with a mass of 8 kg, power usage of 15 W, and volume of 25X18X12 cm. The M3 detector and spectrometer are cooled by a multi-stage passive cooler. This paper presents early M3 performance assessment results.

  9. Assessment and Correction of on-Orbit Radiometric Calibration for FY-3 VIRR Thermal Infrared Channels

    Directory of Open Access Journals (Sweden)

    Na Xu

    2014-03-01

    Full Text Available FengYun-3 (FY-3 Visible Infrared Radiometer (VIRR, along with its predecessor, Multispectral Visible Infrared Scanning Radiometer (MVISR, onboard FY-1C&D have had continuous global observation more than 14 years. This data record is valuable for weather prediction, climate monitoring, and environment research. Data quality is vital for satellite data assimilations in Numerical Weather Prediction (NWP and quantitative remote sensing applications. In this paper, the accuracies of radiometric calibration for VIRR onboard FY-3A and FY-3B, in thermal infrared (TIR channels, are evaluated using the Low Earth Orbit (LEO-LEO simultaneous nadir overpass intercalibration method. Hyperspectral and high-quality observations from Infrared Atmosphere Sounding Instrument (IASI onboard METOP-A are used as reference. The biases of VIRR measurements with respect to IASI over one-and-a-half years indicate that the TIR calibration accuracy of FY-3B VIRR is better than that of FY-3A VIRR. The brightness temperature (BT measured by FY-3A/VIRR is cooler than that measured by IASI with monthly mean biases ranging from −2 K to −1 K for channel 4 and −1 K to 0.2 K for channel 5. Measurements from FY-3B/VIRR are more consistent with that from IASI, and the annual mean biases are 0.84 ± 0.16 K and −0.66 ± 0.18 K for channels 4 and 5, respectively. The BT biases of FY-3A/VIRR show scene temperature-dependence and seasonal variation, which are not found from FY-3B/VIRR BT biases. The temperature-dependent biases are shown to be attributed to the nonlinearity of detectors. New nonlinear correction coefficients of FY-3A/VIRR TIR channels are reevaluated using various collocation samples. Verification results indicate that the use of the new nonlinear correction can greatly correct the scene temperature-dependent and systematic biases.

  10. Analysis of the topographic effect on the radiometric correction of MERIS images

    Directory of Open Access Journals (Sweden)

    G. Grau

    2014-12-01

    Full Text Available Topography alters the vertical structure of the atmosphere and, therefore, its radiative properties regarding the reflection and transmission of the solar radiation. Also it modifies the conditions of illumination of terrain, with remarkable influence in the remote sensing measures of the terrestrial surface in the optical spectrum. In this work we have applied two models of atmospheric and radiometric correction on an ENVISAT/MERIS image, considering the topography, to analyse the importance of such effects. For this, we have exploited the recent rise of Digital Models of Elevation (MDE sufficiently detailed and precise, available to a global scale, that open new prospects for the topographical corrections of remote sensing data. The results show the adjustment of the conjoint correction model (atmospheric and topographical in the considered case, improving comparison of spectral signatures of similar surfaces independently of the elevation or the conditions of illumination, compensating the relative variations caused by the topography in the reflectivity measured by sensors. Although the remote sensing of the terrestrial surface has tended traditionally to avoid the bands of atmospheric absorption, a peculiarity that presents the ENVISAT/MERIS images is the availability of a band (O2A of absorption of the oxygen, located in the 761.5 nm. This band is used mainly for atmospheric corrections (estimate of the surface’s pressure, elevation of clouds, aerosols effects, etc.. But also it has been employed recently to determine the fluorescence of the vegetation, consequently this band of absorption has received remarkable attention in the last years. Considering that this absorption of the oxygen is strongly affected for topography, the determination of information on the terrestrial surface from this absorption of the oxygen requires a very precise correction of the topographical effects. Therefore in this work we analyse in particular the effect

  11. GOSAT TIR radiometric validation toward simultaneous GHG column and profile observation

    Science.gov (United States)

    Kataoka, F.; Knuteson, R. O.; Kuze, A.; Shiomi, K.; Suto, H.; Saitoh, N.

    2015-12-01

    The Greenhouse gases Observing SATellite (GOSAT) was launched on January 2009 and continues its operation for more than six years. The thermal and near infrared sensor for carbon observation Fourier-Transform Spectrometer (TANSO-FTS) onboard GOSAT measures greenhouse gases (GHG), such as CO2 and CH4, with wide and high resolution spectra from shortwave infrared (SWIR) to thermal infrared (TIR). This instrument has the advantage of being able to measure simultaneously the same field of view in different spectral ranges. The combination of column-GHG form SWIR band and vertical profile-GHG from TIR band provide better understanding and distribution of GHG, especially in troposphere. This work describes the radiometric validation and sensitivity analysis of TANSO-FTS TIR spectra, especially CO2, atmospheric window and CH4 channels with forward calculation. In this evaluation, we used accurate in-situ dataset of the HIPPO (HIAPER Pole-to-Pole Observation) airplane observation data and GOSAT vicarious calibration and validation campaign data in Railroad Valley, NV. The HIPPO aircraft campaign had taken accurate atmospheric vertical profile dataset (T, RH, O3, CO2, CH4, N2O, CO) approximately pole-to-pole from the surface to the tropopause over the ocean. We implemented these dataset for forward calculation and made the spectral correction model with respect to wavenumber and internal calibration blackbody temperature The GOSAT vicarious calibration campaign have conducted every year since 2009 near summer solstice in Railroad Valley, where high-temperature desert site. In this campaign, we have measured temperature and humidity by a radiosonde and CO2, CH4 and O3 profile by the AJAX airplane at the time of the GOSAT overpass. Sometimes, the GHG profiles over the Railroad Valley show the air mass advection in mid-troposphere depending on upper wind. These advections bring the different concentration of GHG in lower and upper troposphere. Using these cases, we made

  12. Assessment of Diagnostic Techniques of Urinary Tuberculosis

    Science.gov (United States)

    Ghaleb, Khaled; Afifi, Magdy; El-Gohary, Mohamad

    2013-01-01

    Early diagnosis of active tuberculosis remains an elusive challenge. In addition, one third of the world’s population is latently infected with Mycobacterium tuberculosis (Mtb) and up to 10% of infected individuals develop tuberculosis (TB) in their lifetime. In this investigation, the incidence of urinary tuberculosis among renal patients was studied. Three hundreds urine samples were processed for detection of Mtb by Ziehl-Neelsen (ZN) smear examination, Lowenstein Jensen (LJ) medium, radiometric BACTEC460 system as well as polymerase chain reaction (PCR) followed by DNA Enzyme Immunoassay (DEIA) test. Out of 300 urine samples, 2 were positive by both ZN smears and LJ medium with incidence rate of 0.66 %, 3 positive samples by BACTEC460 culture system with incidence of 1%. PCR assay gave more positive results than smear and culture examination (i.e. 8 positive samples with incidence rate of 2.6%). The specificities were 25% for both ZN smears and LJ medium, 37.5% for BACTEC460 culture system, and 100% for PCR test, while sensitivities of all assays were 100%. Thus PCR is a rapid and sensitive method for the early diagnosis of urinary tuberculosis. PMID:23795272

  13. Level 0 to 1 processing of the imaging Fourier transform spectrometer GLORIA: generation of radiometrically and spectrally calibrated spectra

    Directory of Open Access Journals (Sweden)

    A. Kleinert

    2014-12-01

    Full Text Available The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA is an imaging Fourier transform spectrometer that is capable of operating on various high-altitude research aircraft. It measures the atmospheric emission in the thermal infrared spectral region in limb and nadir geometry. GLORIA consists of a classical Michelson interferometer combined with an infrared camera. The infrared detector has a usable area of 128 × 128 pixels, measuring up to 16 384 interferograms simultaneously. Imaging Fourier transform spectrometers impose a number of challenges with respect to instrument calibration and algorithm development. The optical setup with extremely high optical throughput requires the development of new methods and algorithms for spectral and radiometric calibration. Due to the vast amount of data there is a high demand for scientifically intelligent optimisation of the data processing. This paper outlines the characterisation and processing steps required for the generation of radiometrically and spectrally calibrated spectra. Methods for performance optimisation of the processing algorithm are presented. The performance of the data processing and the quality of the calibrated spectra are demonstrated for measurements collected during the first deployments of GLORIA on aircraft.

  14. Imager-to-Radiometer In-flight Cross Calibration: RSP Radiometric Comparison with Airborne and Satellite Sensors

    Science.gov (United States)

    McCorkel, Joel; Cairns, Brian; Wasilewski, Andrzej

    2016-01-01

    This work develops a method to compare the radiometric calibration between a radiometer and imagers hosted on aircraft and satellites. The radiometer is the airborne Research Scanning Polarimeter (RSP), which takes multi-angle, photo-polarimetric measurements in several spectral channels. The RSP measurements used in this work were coincident with measurements made by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), which was on the same aircraft. These airborne measurements were also coincident with an overpass of the Landsat 8 Operational Land Imager (OLI). First we compare the RSP and OLI radiance measurements to AVIRIS since the spectral response of the multispectral instruments can be used to synthesize a spectrally equivalent signal from the imaging spectrometer data. We then explore a method that uses AVIRIS as a transfer between RSP and OLI to show that radiometric traceability of a satellite-based imager can be used to calibrate a radiometer despite differences in spectral channel sensitivities. This calibration transfer shows agreement within the uncertainty of both the various instruments for most spectral channels.

  15. Transmittance Measurement of a Heliostat Facility used in the Preflight Radiometric Calibration of Earth-Observing Sensors

    Science.gov (United States)

    Czapla-Myers, J.; Thome, K.; Anderson, N.; McCorkel, J.; Leisso, N.; Good, W.; Collins, S.

    2009-01-01

    Ball Aerospace and Technologies Corporation in Boulder, Colorado, has developed a heliostat facility that will be used to determine the preflight radiometric calibration of Earth-observing sensors that operate in the solar-reflective regime. While automatically tracking the Sun, the heliostat directs the solar beam inside a thermal vacuum chamber, where the sensor under test resides. The main advantage to using the Sun as the illumination source for preflight radiometric calibration is because it will also be the source of illumination when the sensor is in flight. This minimizes errors in the pre- and post-launch calibration due to spectral mismatches. It also allows the instrument under test to operate at irradiance values similar to those on orbit. The Remote Sensing Group at the University of Arizona measured the transmittance of the heliostat facility using three methods, the first of which is a relative measurement made using a hyperspectral portable spectroradiometer and well-calibrated reference panel. The second method is also a relative measurement, and uses a 12-channel automated solar radiometer. The final method is an absolute measurement using a hyperspectral spectroradiometer and reference panel combination, where the spectroradiometer is calibrated on site using a solar-radiation-based calibration.

  16. Radiometric calibration of IR Fourier transform spectrometers - Solution to a problem with the High-Resolution Interferometer Sounder

    Science.gov (United States)

    Revercomb, Henry E.; Smith, William L.; Buijs, H.; Howell, Hugh B.; Laporte, D. D.

    1988-01-01

    A calibrated Fourier transform spectrometer, known as the High-Resolution Interferometer Sounder (HIS), has been flown on the NASA U-2 research aircraft to measure the infrared emission spectrum of the earth. The primary use - atmospheric temperature and humidity sounding - requires high radiometric precision and accuracy (of the order of 0.1 and 1 C, respectively). To meet these requirements, the HIS instruments, the HIS instrument performs inflight radiometric calibration, using observations of hot and cold blackbody reference sources as the basis for two-point calibrations at each wavenumber. Initially, laboratory tests revealed a calibration problem with brightness temperature errors as large as 15 C between 600 and 900/cm. The symptom of the problem, which occurred in one of the three spectral bands of HIS, was a source-dependent phase response. Minor changes to the calibration equations completely eliminated the anomalous errors. The new analysis properly accounts for the situation in which the phase response for radiance from the instrument itself differs from that for radiance from an external source. The mechanism responsible for the dual phase response of the HIS instrument is identified as emission from the interferometer beam splitter.

  17. Transmittance measurement of a heliostat facility used in the preflight radiometric calibration of Earth-observing sensors

    Science.gov (United States)

    Czapla-Myers, J.; Thome, K.; Anderson, N.; McCorkel, J.; Leisso, N.; Good, W.; Collins, S.

    2009-08-01

    Ball Aerospace and Technologies Corporation in Boulder, Colorado, has developed a heliostat facility that will be used to determine the preflight radiometric calibration of Earth-observing sensors that operate in the solar-reflective regime. While automatically tracking the Sun, the heliostat directs the solar beam inside a thermal vacuum chamber, where the sensor under test resides. The main advantage to using the Sun as the illumination source for preflight radiometric calibration is because it will also be the source of illumination when the sensor is in flight. This minimizes errors in the pre- and post-launch calibration due to spectral mismatches. It also allows the instrument under test to operate at irradiance values similar to those on orbit. The Remote Sensing Group at the University of Arizona measured the transmittance of the heliostat facility using three methods, the first of which is a relative measurement made using a hyperspectral portable spectroradiometer and well-calibrated reference panel. The second method is also a relative measurement, and uses a 12-channel automated solar radiometer. The final method is an absolute measurement using a hyperspectral spectroradiometer and reference panel combination, where the spectroradiometer is calibrated on site using a solar-radiation-based calibration.

  18. Revisiting the paper “Using radiometric surface temperature for surface energy flux estimation in Mediterranean drylands from a two-source perspective”

    DEFF Research Database (Denmark)

    Kustas, William P.; Nieto, Hector; Morillas, Laura

    2016-01-01

    The recent paper by Morillas et al. [Morillas, L. et al. Using radiometric surface temperature for surface energy flux estimation in Mediterranean drylands from a two-source perspective, Remote Sens. Environ. 136, 234–246, 2013] evaluates the two-source model (TSM) of Norman et al. (1995) with re...

  19. Correlation of VLF-EM Data with Radiometric Measurements: Implications for Uranium Exploration around Beldih, South Purulia Shear Zone, India

    Directory of Open Access Journals (Sweden)

    Saurabh Mittal

    2014-01-01

    Full Text Available This study is an attempt to correlate VLF-EM data with the radiometric measurements to decipher the subsurface structure and to locate uranium mineralization in the shear zone. The study area is around Beldih mine which is an open cast apatite mine located on the South Purulia Shear Zone. VLF method has been applied to map the structure and the presence of radioactive minerals has been delineated by the detection of high α and γ counts with respect to the background radiations. High radiation counts and high surface γ activity are found just above the higher apparent current-density zones in all the profiles studied, at various locations, indicating uranium and/or thorium mineralization as well as good correlation between these techniques.

  20. Radiometric dating of the Earlier Stone Age sequence in excavation I at Wonderwerk Cave, South Africa: preliminary results.

    Science.gov (United States)

    Chazan, Michael; Ron, Hagai; Matmon, Ari; Porat, Naomi; Goldberg, Paul; Yates, Royden; Avery, Margaret; Sumner, Alexandra; Horwitz, Liora Kolska

    2008-07-01

    We present here the results of 44 paleomagnetic measurements, and single cosmogenic burial and optically stimulated luminescence ages for the Earlier Stone Age deposits from Wonderwerk Cave, Northern Cape, South Africa. The resulting paleomagnetic sequence: N>R>N>R>N constrains the Earlier Stone Age strata in this part of the site to between approximately 0.78-1.96 Ma. A single cosmogenic date of approximately 2.0 Ma from the base of the section offers some corroboration for the paleomagnetic sequence. Preliminary results indicate that the small lithic assemblage from the basal stratum may contain an Oldowan facies. This is overlain by several strata containing Acheulean industries. The preliminary radiometric dates reported here place the onset of the Acheulean at this site to approximately 1.6 Ma, which is roughly contemporaneous with that of East Africa.

  1. Critical comparison of radiometric and mass spectrometric methods for the determination of radionuclides in environmental, biological and nuclear waste samples.

    Science.gov (United States)

    Hou, Xiaolin; Roos, Per

    2008-02-11

    The radiometric methods, alpha (alpha)-, beta (beta)-, gamma (gamma)-spectrometry, and mass spectrometric methods, inductively coupled plasma mass spectrometry, accelerator mass spectrometry, thermal ionization mass spectrometry, resonance ionization mass spectrometry, secondary ion mass spectrometry, and glow discharge mass spectrometry are reviewed for the determination of radionuclides. These methods are critically compared for the determination of long-lived radionuclides important for radiation protection, decommissioning of nuclear facilities, repository of nuclear waste, tracer application in the environmental and biological researches, these radionuclides include (3)H, (14)C, (36)Cl, (41)Ca, (59,63)Ni, (89,90)Sr, (99)Tc, (129)I, (135,137)Cs, (210)Pb, (226,228)Ra, (237)Np, (241)Am, and isotopes of thorium, uranium and plutonium. The application of on-line methods (flow injection/sequential injection) for separation of radionuclides and automated determination of radionuclides is also discussed.

  2. Surface aerosol radiative forcing derived from collocated ground-based radiometric observations during PRIDE, SAFARI, and ACE-Asia.

    Science.gov (United States)

    Hansell, Richard A; Tsay, Si-Chee; Ji, Qiang; Liou, K N; Ou, Szu-Cheng

    2003-09-20

    An approach is presented to estimate the surface aerosol radiative forcing by use of collocated cloud-screened narrowband spectral and thermal-offset-corrected radiometric observations during the Puerto Rico Dust Experiment 2000, South African Fire Atmosphere Research Initiative (SAFARI) 2000, and Aerosol Characterization Experiment-Asia 2001. We show that aerosol optical depths from the Multiple-Filter Rotating Shadowband Radiometer data match closely with those from the Cimel sunphotometer data for two SAFARI-2000 dates. The observed aerosol radiative forcings were interpreted on the basis of results from the Fu-Liou radiative transfer model, and, in some cases, cross checked with satellite-derived forcing parameters. Values of the aerosol radiative forcing and forcing efficiency, which quantifies the sensitivity of the surface fluxes to the aerosol optical depth, were generated on the basis of a differential technique for all three campaigns, and their scientific significance is discussed.

  3. Tectonic structure and post-Hercynian evolution of the Serre, Calabrian Arc, southern Italy: Geological, petrological and radiometric evidences

    Science.gov (United States)

    Moro, Aldo Del; Paglionico, Antonio; Piccarreta, Giuseppe; Rottura, Alessandro

    1986-04-01

    Conflicting opinions exist concerning the structure and the post-Hercynian evolution of the Serre. The present paper deals with these topics on the basis of new geological, petrological and radiometric evidence. The composition of the so-called Stilo and Polia-Copanello units has been redefined. The above domains—former sections of upper and lower Palaeozoic continental crust respectively—came into contact, due to transcurrent movements 130-140 Ma ago. A significant vertical component during the transcurrent movements, probably, exhumed the former section of lower crust. The above domains, juxtaposed, were successively involved as a single kinematic body in the Alpine orogenesis. The results enable us to make inferences for the Calabrian Arc evolution and call attention to similarities between an Austro-Alpine element (Stilo + Polia-Copanello) of the Calabrian chain and a South-Alpine sector of the Alps (Ivrea + Ceneri zones).

  4. Diabatic initialization for improvement in the tropical analysis of divergence and moisture using satellite radiometric imagery data

    Science.gov (United States)

    Kasahara, Akira; Mizzi, Arthur P.; Donner, Leo J.

    1994-05-01

    To improve the quality of horizontal divergence and moisture analyses in the tropics, a diabatic initialization scheme is developed to incorporate information on convective activity and the proxy data of precipitation obtained from satellite radiometric imagery data. The tropical precipitation rates are estimated by developing a relationship between the pentad precipitation data of the Global Precipitation Climatology Project with daily outgoing longwave radiation data. The tropical belt from 35°S to 25°N (for January 1988) is divided into 3 parts: convective, convective fringe, and downward-motion (clear-air) areas. In the convective region, the algorithm adjusts the horizontal divergence and humidity fields such that a version of the Kuo cumulus parameterization will yield the precipitation rates closest to the proxy data. The temperature in the planetary boundary layer is also adjusted, if necessary, to ensure the initiation of cumulus convection. In the downward-motion region, the divergence field is adjusted to yield descending motion expected from the thermodynamic balance between radiative cooling and adiabatic warming. In the convective fringe region, where convective criteria are not met, the divergence field is adjusted only to satisfy the global conservation of divergence. The humidity field is left intact in both the downward-motion and convective fringe regions. This adjustment scheme will ameliorate problems associated with spinup of precipitation in a numerical prediction model with the same cumulus parameterization as used in the initialization. This initialization scheme may be used as a method of quality control for first-guess fields in four-dimensional data assimilation by means of satellite radiometric imagery data.

  5. Radiometric cross-calibration of the Terra MODIS and Landsat 7 ETM+ using an invariant desert site

    Science.gov (United States)

    Choi, T.; Angal, A.; Chander, G.; Xiong, X.

    2008-01-01

    A methodology for long-term radiometric cross-calibration between the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) sensors was developed. The approach involves calibration of near-simultaneous surface observations between 2000 and 2007. Fifty-seven cloud-free image pairs were carefully selected over the Libyan desert for this study. The Libyan desert site (+28.55??, +23.39??), located in northern Africa, is a high reflectance site with high spatial, spectral, and temporal uniformity. Because the test site covers about 12 kmx13 km, accurate geometric preprocessing is required to match the footprint size between the two sensors to avoid uncertainties due to residual image misregistration. MODIS Level IB radiometrically corrected products were reprojected to the corresponding ETM+ image's Universal Transverse Mercator (UTM) grid projection. The 30 m pixels from the ETM+ images were aggregated to match the MODIS spatial resolution (250 m in Bands 1 and 2, or 500 m in Bands 3 to 7). The image data from both sensors were converted to absolute units of at-sensor radiance and top-ofatmosphere (TOA) reflectance for the spectrally matching band pairs. For each band pair, a set of fitted coefficients (slope and offset) is provided to quantify the relationships between the testing sensors. This work focuses on long-term stability and correlation of the Terra MODIS and L7 ETM+ sensors using absolute calibration results over the entire mission of the two sensors. Possible uncertainties are also discussed such as spectral differences in matching band pairs, solar zenith angle change during a collection, and differences in solar irradiance models.

  6. Evaluation of radiometric faecal culture and direct PCR on pooled faeces for detection of Mycobacterium avium subsp. paratuberculosis in cattle.

    Science.gov (United States)

    Eamens, Graeme J; Whittington, Richard J; Turner, Mark J; Austin, Susan L; Fell, Shayne A; Marsh, Ian B

    2007-11-15

    Dilution rates for pooled faecal culture (PFC) and direct IS900 polymerase chain reaction (D-PCR) tests were evaluated on faecal samples from infected cows mixed with uninfected faeces in dilutions from 1 in 5 to 1 in 50. PFC was performed by radiometric culture, with confirmation by IS900 PCR and restriction endonuclease analysis (PCR/REA) on growth, and by mycobactin dependency testing on solid medium. Using 37 culture positive faecal samples from 12 subclinical cows, 83.8% and 94.6% of samples were confirmed positive in the PFC assay at dilutions of 1 in 50 and 1 in 30, respectively. Lower dilutions (1 in 5 to 1 in 20) provided only marginally better sensitivity, and confirmation of PFC growth by PCR/REA was significantly more sensitive than mycobactin dependency. D-PCR had significantly lower sensitivity than PFC confirmed by PCR/REA, with pools of 1 in 50, 30, 10 and 5 yielding positive results in 64.9%, 70.3%, 78.4% and 83.8% of samples, respectively. Cattle considered to be shedding 1.5 x 10(6) viable M. avium subsp. paratuberculosis (Map)/g faeces (on the basis of estimated losses in processing and growth rates in radiometric broth) were positive at dilutions up to 1 in 50 in the PFC and D-PCR. Those shedding 5 x 10(5) viable Map/g were positive in the PFC at dilutions up to 1 in 40, but required a 1 in 10 dilution or less for D-PCR. The results suggest that for cattle shedding relatively high concentrations of Map in faeces (>2 x 10(5) viable Map/g), maximal dilutions of 1 in 30 for PFC and 1 in 10 for D-PCR would be applicable.

  7. Analysis of the radiometric survey during the Argonauta reactor operation; Analise do levantamento radiometrico durante operacao do reator Argonauta

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Eara de S.L.; Cardozo, Katia K.M.; Silva, Joao Carlos P.; Santos, Joao Regis dos, E-mail: esluz@ien.gov.br, E-mail: cardozo@ien.gov.br, E-mail: jcarlos@ien.gov.br, E-mail: regis@ien.gov.br [Instituto de Engenharia Nuclear (CNEN-IEN/RJ), Rio de Janeiro - RJ (Brazil)

    2013-07-01

    The Argonaut reactor at the Institute of Nuclear Engineering-IEN/CNEN, operates normally, the powers between 1.7 and 340 W on neutrongraphy procedures, production of radionuclides and experimental reactor physics lessons to postgraduate courses. The doses from neutrons and gamma radiation are measured when the reactor is critical, inside the reactor hall and surrounding regions. A study of the data obtained was performed to evaluate the daily need of this survey in the reactor hall. Taking into account the principle ALARA, which aims to optimize and minimize the dose received by the individual, we propose, in this work, through an analysis of the acquired data in occupational radiometric surveys, a reformulation of the area monitoring routine practiced by the team of radiological protection of the Institute of Nuclear Engineering - IEN/CNEN-RJ, whereas other monitoring routines regarding the radiological protection are also applied in the routine of the reactor. The operations under review occurred with the reactor operating 340 W power at intervals of 60, 120 and 180 minutes, in monitoring points in controlled areas, supervised and free. The results showed significant dose values in the output of the J-Channel 9 when the operation occurs with this open. With 180 minutes of operation, the measured values of dose rate were lower than the values at 60 min and 120 operations min. At the point in the supervised area, offsite to the reactor hall, situated in the direction of the J-Channel 9, the value reduces more than 14% in any operating time in relation to the dose rate measured at the point opposite the canal. There is a 50% reduction in the dose rates for operations with and J-9 closed. The results suggest a new frequency of radiometric survey whose mode of operation is maintained in similar conditions, since combined with other relevant practices of radiation protection.

  8. Solar Tower Experiments for Radiometric Calibration and Validation of Infrared Imaging Assets and Analysis Tools for Entry Aero-Heating Measurements

    Science.gov (United States)

    Splinter, Scott C.; Daryabeigi, Kamran; Horvath, Thomas J.; Mercer, David C.; Ghanbari, Cheryl M.; Ross, Martin N.; Tietjen, Alan; Schwartz, Richard J.

    2008-01-01

    The NASA Engineering and Safety Center sponsored Hypersonic Thermodynamic Infrared Measurements assessment team has a task to perform radiometric calibration and validation of land-based and airborne infrared imaging assets and tools for remote thermographic imaging. The IR assets and tools will be used for thermographic imaging of the Space Shuttle Orbiter during entry aero-heating to provide flight boundary layer transition thermography data that could be utilized for calibration and validation of empirical and theoretical aero-heating tools. A series of tests at the Sandia National Laboratories National Solar Thermal Test Facility were designed for this task where reflected solar radiation from a field of heliostats was used to heat a 4 foot by 4 foot test panel consisting of LI 900 ceramic tiles located on top of the 200 foot tall Solar Tower. The test panel provided an Orbiter-like entry temperature for the purposes of radiometric calibration and validation. The Solar Tower provided an ideal test bed for this series of radiometric calibration and validation tests because it had the potential to rapidly heat the large test panel to spatially uniform and non-uniform elevated temperatures. Also, the unsheltered-open-air environment of the Solar Tower was conducive to obtaining unobstructed radiometric data by land-based and airborne IR imaging assets. Various thermocouples installed on the test panel and an infrared imager located in close proximity to the test panel were used to obtain surface temperature measurements for evaluation and calibration of the radiometric data from the infrared imaging assets. The overall test environment, test article, test approach, and typical test results are discussed.

  9. Structural and photocarrier radiometric characterization of Cu{sub x}(CdTe){sub y}O{sub z} thin films growth by reactive sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez-Hernandez, R., E-mail: ruvel2@yahoo.com.m [Division de Investigacion y Posgrado, Facultad de Ingenieria, Universidad Autonoma de Queretaro, Cerro de las Campanas S/N, Queretaro, Qro., Mexico, C.P. 76010 (Mexico); Rojas-Rodriguez, I. [Universidad Tecnologica de Queretaro, Av. Pie de la Cuesta S/N, Sn. Pedrito Penuelas, Queretaro, Qro. Mexico (Mexico); Carmona-Rodriguez, J.; Jimenez-Sandoval, S. [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Queretaro, Apartado Postal 1-798, Queretaro, Qro., Mexico C.P.76001 (Mexico); Rodriguez-Garcia, M.E. [Departamento de Nanotecnologia, Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, Campus Juriqulla, Apartado Postal 1-1010, Queretaro, Qro. Mexico (Mexico)

    2011-01-31

    This research presents a structural and photocarrier radiometric (PCR) characterization of Cu{sub x}(CdTe){sub y}O{sub z} thin films grown using reactive radiofrequency co-sputtering. Electronic distribution induced by variations in dopant concentration as a function of the position was studied using photocarrier radiometric images. Optical and structural characterization of these thin films was carried out by using micro Raman spectroscopy and X-ray diffraction. Due to its nondestructive and noncontact characteristics, the PCR is an excellent technique that permits one to obtain details of lateral electronic distribution across the sample. It was found that Cu target power influences the electronic distribution and produces different phases such as Cu{sub 2}Te and CdO.

  10. Non-invasive hyperthermia apparatus including coaxial applicator having a non-invasive radiometric receiving antenna incorporated therein and method of use thereof

    Science.gov (United States)

    Ross, M.P.

    1996-08-27

    A coaxial hyperthermia applicator is disclosed for applying non-invasively electromagnetic energy to a body against which it is placed. The coaxial applicator antenna has formed integrally within it a non-invasive radiometric antenna for receiving thermoelectromagnetic emissions. The coaxial-configured applicator produces a bell-shaped radiation pattern symmetric about the axis of symmetry of the coaxial applicator. Integrating the radiometric antenna within the coaxial applicator produces a single device that performs dual functions. The first function is to transmit non-invasively energy for heating a subcutaneous tumor. The second function is to receive non-invasively thermal electromagnetic radiation from the tumor by which temperature is sensed and fed back to control the output of the coaxial applicator. 11 figs.

  11. A Method to Estimate Uncertainty in Radiometric Measurement Using the Guide to the Expression of Uncertainty in Measurement (GUM) Method; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Habte, A.; Sengupta, M.; Reda, I.

    2015-03-01

    Radiometric data with known and traceable uncertainty is essential for climate change studies to better understand cloud radiation interactions and the earth radiation budget. Further, adopting a known and traceable method of estimating uncertainty with respect to SI ensures that the uncertainty quoted for radiometric measurements can be compared based on documented methods of derivation.Therefore, statements about the overall measurement uncertainty can only be made on an individual basis, taking all relevant factors into account. This poster provides guidelines and recommended procedures for estimating the uncertainty in calibrations and measurements from radiometers. The approach follows the Guide to the Expression of Uncertainty in Measurement (GUM). derivation.Therefore, statements about the overall measurement uncertainty can only be made on an individual basis, taking all relevant factors into account. This poster provides guidelines and recommended procedures for estimating the uncertainty in calibrations and measurements from radiometers. The approach follows the Guide to the Expression of Uncertainty in Measurement (GUM).

  12. REAL-TIME FADE MITIGATION USING RADIOMETRIC MEASUREMENTS FOR FUTURE KA-BAND SERVICES AT DLR.

    OpenAIRE

    2009-01-01

    Due to the congestion of popular C- and Ku-band frequencies, the satellite communication systems are rapidly moving toward the higher frequencies. Most of the commercial communication satellites in the near future will operate Ka-band transponders. One of the inevitable part of such systems are ground stations which support In-Orbit-testing and the traffic routine for the satellites. The main problem at Ka-band link planning is the link availability reduction due to rain fade and scintillatio...

  13. An Assessment of Polynomial Regression Techniques for the Relative Radiometric Normalization (RRN of High-Resolution Multi-Temporal Airborne Thermal Infrared (TIR Imagery

    Directory of Open Access Journals (Sweden)

    Mir Mustafizur Rahman

    2014-11-01

    Full Text Available Thermal Infrared (TIR remote sensing images of urban environments are increasingly available from airborne and satellite platforms. However, limited access to high-spatial resolution (H-res: ~1 m TIR satellite images requires the use of TIR airborne sensors for mapping large complex urban surfaces, especially at micro-scales. A critical limitation of such H-res mapping is the need to acquire a large scene composed of multiple flight lines and mosaic them together. This results in the same scene components (e.g., roads, buildings, green space and water exhibiting different temperatures in different flight lines. To mitigate these effects, linear relative radiometric normalization (RRN techniques are often applied. However, the Earth’s surface is composed of features whose thermal behaviour is characterized by complexity and non-linearity. Therefore, we hypothesize that non-linear RRN techniques should demonstrate increased radiometric agreement over similar linear techniques. To test this hypothesis, this paper evaluates four (linear and non-linear RRN techniques, including: (i histogram matching (HM; (ii pseudo-invariant feature-based polynomial regression (PIF_Poly; (iii no-change stratified random sample-based linear regression (NCSRS_Lin; and (iv no-change stratified random sample-based polynomial regression (NCSRS_Poly; two of which (ii and iv are newly proposed non-linear techniques. When applied over two adjacent flight lines (~70 km2 of TABI-1800 airborne data, visual and statistical results show that both new non-linear techniques improved radiometric agreement over the previously evaluated linear techniques, with the new fully-automated method, NCSRS-based polynomial regression, providing the highest improvement in radiometric agreement between the master and the slave images, at ~56%. This is ~5% higher than the best previously evaluated linear technique (NCSRS-based linear regression.

  14. San Bernardino Cave (Italy and the appearance of Levallois technology in Europe: results of a radiometric and technological reassessment.

    Directory of Open Access Journals (Sweden)

    Andrea Picin

    Full Text Available The introduction of Levallois technology in Europe marked the transition from the Lower to the early Middle Paleolithic. This new method of flake production was accompanied by significant behavioral changes in hominin populations. The emergence of this technological advance is considered homogeneous in the European archaeological record at the Marine isotopic stage (MIS 9/MIS 8 boundary. In this paper we report a series of combined electron spin resonance/U-series dates on mammal bones and teeth recovered from the lower units of San Bernardino Cave (Italy and the technological analyses of the lithic assemblages. The San Bernardino Cave has yielded the earliest evidence of Levallois production on the Italian Peninsula recovered to date. In addition to our results and the review of the archaeological record, we describe the chronological and geographical differences between European territories and diversities in terms of technological developments. The belated emergence of Levallois technology in Italy compared to western Europe corresponds to the late Italian Neanderthal speciation event. The new radiometric dates and the technological analyses of San Bernardino Cave raise the issue of the different roles of glacial refugia in the peopling and the spread of innovative flaking strategies in Europe during the late Middle Pleistocene.

  15. Spatio-Temporal Assessment of Tuz Gölü, Turkey as a Potential Radiometric Vicarious Calibration Site

    Directory of Open Access Journals (Sweden)

    Vincent O. Odongo

    2014-03-01

    Full Text Available The paper provides an assessment of Tuz Gölü, a site in Turkey proposed for the radiometric vicarious calibration of satellite sensors, in terms of its spatial homogeneity as expressed in visible and near-infrared (VNIR wavelengths over a 25-year period (1984–2009. By combining the coefficient of variation (CV and Getis statistic (Gi*, a spatially homogenous and temporally stable area at least 720 m × 330 m in size was identified. Analysis of mid-summer Landsat Thematic Mapper (TM images acquired over the period 1984–2009 showed that the hemispherical-directional reflectance factor of this area had a spatial variability, as defined by the CV, in the range of 0.99% to 3.99% in Landsat TM bands 2–4. This is comparable with the reported variability of other test sites around the world, but this is the first time an area has been shown to have this degree of homogeneity over such a long period of time.

  16. Radiometric discrimination of pre-Variscan amphibolites in the Ediacaran Serie Negra (Ossa-Morena Zone, SW Iberia)

    Science.gov (United States)

    Sánchez-Lorda, M. E.; Ábalos, B.; García de Madinabeitia, S.; Eguíluz, L.; Gil Ibarguchi, J. I.; Paquette, J.-L.

    2016-06-01

    New results on the geochronology of metabasites hosted by the Neoproterozoic (late Ediacaran) Serie Negra of the Ossa-Morena Zone (Iberian Massif) are presented. These rocks record a protracted subduction at least since the latest Cryogenian, followed in a continuum by early Cambrian rifting. The Serie Negra country rocks are continental-crust forearc segments of the thinned continental margin of Gondwana. The metabasite suite exhibits E- and N-MORB, as well as volcanic arc signatures, and discloses the existence of a diverse Late Ediacaran-Early Cambrian magmatism across the Ossa-Morena Zone. Protoliths of the E-MORB metabasites are clearly Ediacaran. They exhibit geochemical characteristics typical of younger island arcs, notably of their forearc zones affected by extension soon after the initiation of subduction. Radiometric dating of N-MORB metabasites shows that these rocks are significatively younger than their country rocks, whose age has been stratigraphically and paleontologically constrained as Ediacaran. They record early Cambrian rifting developed in a continuum after a protracted subduction. Metabasite petrological zonation permits to reconstruct a single Ediacaran subduction zone located to the S of the current OMZ and dipping towards the N (in present day geographical coordinates).

  17. Radiometric age determination of tonsteins and stratigraphic constraints for the Lower Permian coal succession in southern Parana Basin, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Guerra-Sommer, Margot; Cazzulo-Klepzig, Miriam; Hartmann, Leo Afraneo; Formoso, Milton Luis Laquintinie [Instituto de Geociencias, Universidade Federal do Rio Grande do Sul, Avenida Bento Goncalves, 9500, 91501-970 Porto Alegre, Rio Grande do Sul (Brazil); Santos, Joao Orestes Schneider [Centre for Global Targeting, University of Western Australia, Crawley, Perth 6009, WA (Australia); Ketzer, Joao Marcelo [Instituto de Meio Ambiente, Pontificia Universidade Catolica, Avenida Ipiranga, Porto Alegre, Rio Grande do Sul (Brazil)

    2008-03-03

    Ion microprobe (SHRIMP II) dating of zircons from tonsteins interbedded with coal seams from the Candiota and Faxinal coalfields (Early Permian, Rio Bonito Formation, Parana Basin, Brazil) is presented. The mean ages obtained (290.6 {+-} 1.5 Ma) are more precise than previously published intervals. Calibrations of chronostratigraphic data with radiometric ages show that the main coal succession from the southern Basin is constrained to the Middle Sakmarian. The {+-} 2 Ma time interval of deposition supports the hypothesis that the coal-generating process was quite rapid in terms of geological time. In a general context, Faxinal and Candiota coals are assigned, into the Protohaploxypinus goraiensis Subzone, besides some paleocological differences evidenced by palynological studies. This bio-interval does not correspond to a consistent palynostratigraphic tool and more accurate biostratigraphic zonation for the Carboniferous-Permian interval must be delineated. The new results have far-reaching significance for correlations of the Basin with sequences of the Argentinian Paganzo Basin (302 {+-} 6 Ma and 288 {+-} 7 Ma) and also with the Karoo Basin, with the lowermost Ecca Group (288 {+-} 3 Ma and 289.6 {+-} 3.8 Ma). This new evidence supports the presence of an active and widespread Lower Permian explosive volcanic event in western Gondwana, which is interpreted as the same volcanism which produced the Choiyoi Group in western Argentina. According to this correlation the ash-fall source is located about 1400 km to the southwest of their area of deposition. (author)

  18. Radiometric cytolysis inhibition assay, a new rapid test for neutralizing antibodies to intact and trypsin-cleaved poliovirus

    Energy Technology Data Exchange (ETDEWEB)

    Hovi, T.; Roivainen, M.

    1989-04-01

    We have developed a new rapid test, the radiometric cytolysis inhibition assay (RACINA), for the determination of neutralizing poliovirus antibodies. HeLa cells prelabeled with /sup 51/Cr, (/sup 3/H)leucine, or, preferentially, with (/sup 3/H)uridine are used as sensitive quantitative indicators of residual infectious virus. Both suspensions and monolayer cultures of the indicator cells can be used. Neutralization of a fraction of a high-titer virus preparation can be scored after the first replication cycle at 8 to 10 h. By lowering the incubation temperature to 30/degree/C, the completion of the cytolysis due to the first replication cycle of poliovirus was delayed beyond 21 h. This makes it possible to use the RACINA, unlike the standard microneutralization assay, for measuring antibodies to trypsin-cleaved polioviruses. The RACINA was found to be as sensitive as and more reproducible than the standard microneutralization assay in the measurement of neutralizing poliovirus antibodies. The RACINA is a rapid and reliable test for neutralizing antibodies and in principle it may be applicable for quantitation of neutralizing antibodies to other cytolytic agents as well.

  19. Effect of MODIS Terra Radiometric Calibration Improvements on Collection 6 Deep Blue Aerosol Products: Validation and Terra/Aqua Consistency

    Science.gov (United States)

    Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Jeong, M.-J.; Meister, G.

    2015-01-01

    The Deep Blue (DB) algorithm's primary data product is midvisible aerosol optical depth (AOD). DB applied to Moderate Resolution Imaging Spectroradiometer (MODIS) measurements provides a data record since early 2000 for MODIS Terra and mid-2002 for MODIS Aqua. In the previous data version (Collection 5, C5), DB production from Terra was halted in 2007 due to sensor degradation; the new Collection 6 (C6) has both improved science algorithms and sensor radiometric calibration. This includes additional calibration corrections developed by the Ocean Biology Processing Group to address MODIS Terra's gain, polarization sensitivity, and detector response versus scan angle, meaning DB can now be applied to the whole Terra record. Through validation with Aerosol Robotic Network (AERONET) data, it is shown that the C6 DB Terra AOD quality is stable throughout the mission to date. Compared to the C5 calibration, in recent years the RMS error compared to AERONET is smaller by approximately 0.04 over bright (e.g., desert) and approximately 0.01-0.02 over darker (e.g., vegetated) land surfaces, and the fraction of points in agreement with AERONET within expected retrieval uncertainty higher by approximately 10% and approximately 5%, respectively. Comparisons to the Aqua C6 time series reveal a high level of correspondence between the two MODIS DB data records, with a small positive (Terra-Aqua) average AOD offset Terra DB AOD data remain stable (to better than 0.01 AOD) throughout the mission to date, suitable for quantitative scientific analyses.

  20. Simultaneous Retrieval of Aerosol and Surface Optical Properties from Combined Airborne- and Ground-Based Direct and Diffuse Radiometric Measurements

    Science.gov (United States)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2010-01-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR) and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 m) and angular range (180 ) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  1. Airborne Geophysical Surveys in the North-Central Region of Goias (Brazil): Implications for Radiometric Characterization of Subtropical Soils

    CERN Document Server

    Guimarães, S N P; Justo, J S

    2011-01-01

    In this work we present progress obtained in analysis airborne geophysical survey data for the north-central region of the state of Goias (Brazil). The results obtained indicate that most of the subtropical soil types are characterized by Uranium contents of greater than one parts per million (ppm). Only ultisol and oxisol soils are found to have Uranium contents lower than one ppm. Thorium and Potassium abundances also display trends similar to those of Uranium. The K/U ratios fall in the expected range of values for common soils while the Th/U ratios are higher than normal. This latter observation may indicate a characteristic feature of subtropical soils. Alternatively it may be considered as indicative of disequilibrium conditions in radioactive series and consequent underestimation of Uranium in soil layers of the study area. In this context we point out the possibility of using results of radiometric surveys as a convenient complementary tool in identifying geochemical zoning of soils in subtropical env...

  2. [Estimation models of vegetation fractional coverage (VFC) based on remote sensing image at different radiometric correction levels].

    Science.gov (United States)

    Gu, Zhu-Jun; Zeng, Zhi-Yuan; Shi, Xue-Zheng; Yu, Dong-Sheng; Zheng, Wei; Zhang, Zhen-Long; Hu, Zi-Fu

    2008-06-01

    The images of post atmospheric correction reflectance (PAC), top of atmosphere reflectance (TOA), and digital number (DN) of a SPOT5 HRG remote sensing image of Nanjing, China were used to derive four vegetation indices (VIs), i. e., normalized difference vegetation index (NDVI), transformed vegetation index (TVI), soil-adjusted vegetation index (SAVI), and modified soil-adjusted vegetation index (MSAVI), and 36 VI-VFC relationship models were established based on these VIs and the VFC data obtained from ground measurement. The results showed that among the models established, the cubic polynomial models based on NDVI and TVI from PAC were the best, followed by those based on SAVI and MSAVI from DN, with the accuracy being slightly higher than that of the former two models when VFC > 0.8. The accuracy of these four models was higher in middle-densely vegetated areas (VFC = 0.4-0.8) than in sparsely vegetated areas (VFC = 0-0.4). All the established models could be used in other places via the introduction of calibration models. In VI-VFC modeling, using VIs derived from different radiometric correction levels of remote sensing image could help mining valuable information from remote sensing image, and thus, improving the accuracy of VFC estimation.

  3. Radiometric Determination of Uranium in Natural Waters after Enrichment and Separation by Cation-Exchange and Liquid-Liquid Extraction

    CERN Document Server

    Pashalidis, I

    2003-01-01

    The alpha-radiometric determination of uranium after its pre-concentration from natural water samples using the cation-exchange resin Chelex-100, its selective extraction by tributylphosphate and electrodeposition on stainless steel discs is reported. The validity of the separation procedure and the chemical recoveries were checked by addition of uranium standard solution as well as by tracing with U-232. The average uranium yield was determined to be (97 +- 2) % for the cation-exchange, (95 +- 2) % for the liquid-liquid extraction, and more than 99% for the electrodeposition. Employing high-resolution alpha-spectroscopy, the measured activity of the U-238 and U-234 radioisotopes was found to be of similar magnitude; i.e. ~7 mBq/L and ~35 mBq/L for ground- and seawater samples, respectively. The energy resolution (FWHM) of the alpha-peaks was 22 keV, while the Minimum Detectable Activity (MDA) was estimated to be 1 mBq/L (at the 95% confidence limit).

  4. Some observations from radiometric ‘8 bit’ data of sediment thin sections based on alternative petrographic image analysis method

    Indian Academy of Sciences (India)

    Sudip Dey; Suvendu Ghosh; Chandrani Debbarma; Prasamita Sarkar; Mhu Aris Marfai; Sabyasachi Maiti

    2009-04-01

    This paper deals with the experiment of sediment microstructure analysis especially microfabric mapping by digital imaging.For that purpose the greyscale images (Red band from RGB combination)of the thin sections have been prepared from the selected 12 samples.The basis of this mapping is the reflectance capacity of different sediments which is influenced by the physical parameters like grain size and colour.The reflectances of different sediments are represented in digital format by different DN values from 0 –255 within the radiometric ranges of ‘8 bit ’data. Density slicing has been chosen as the method of microstructure mapping in this research.This study shows that lower DN values normally present dark coloured coarser sand and clay while higher DN values present light coloured finer sediment samples.In the selected samples for this study the maximum DN value has been found from micaceous materials.Another remarkable thing observed from the microfabric mapping is that the presence of coarser sediments forms complex microfabric pattern than the finer sediments in the study area.Though this method have some demerits,still its simple technique can be very useful for accurate microstructure analysis.

  5. Compilation of radiometric age and trace-element geochemical data, Yucca Mountain and surrounding areas of southwestern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, S.I.; Noble, D.C.; Larson, L.T.

    1994-12-31

    This document is a compilation of available radiometric age and trace-element geochemical data for volcanic rocks and episodes of hydrothermal activity in Yucca Mountain and the surrounding region of southwestern Nevada. Only the age determinations considered to be geologically reasonable (consistent with stratigraphic relations) are listed below. A number of the potassium-argon (K-Ar) ages of volcanic rocks given by Kistler, Marvin et al., Noble et al., Weiss et al., and Noble et al. are not included as these ages have been shown to be incorrect or disturbed by hydrothermal alteration based on subsequent stratigraphic and/or petrographic data and the recognition of errors in K-Ar age determinations related to incomplete extraction of argon. In cases where absolute ages are tightly constrained by high precision {sup 40}Ar/{sup 39}Ar ages and unequivocal stratigraphic relations, we have omitted the less precise K-Ar age data. Similarly, the more precise single-crystal laser-fusion {sup 40}Ar/{sup 39}Ar age determinations of certain units are reported and less precise ages by multi-grain bulk-fusion {sup 40}Ar/{sup 39}Ar methods are not included. This compilation does not include age data for basaltic rocks of Pliocene and Quaternary age in the Yucca Mountain region.

  6. The effect of image radiometric correction on the accuracy of vegetation canopy density estimate using several Landsat-8 OLI’s vegetation indices: A case study of Wonosari area, Indonesia

    Science.gov (United States)

    Dewa, R. P.; Danoedoro, P.

    2017-01-01

    Recent studies on the use of spectral indices have involved radiometric correction as a prerequisite. However, study on the effect of radiometric correction level on the accuracy of biophysical parameters’ estimate is still rare in Indonesia. This study tried to investigate the influence of various radiometric correction levels and the number of vegetation strata on the accuracy of vegetation density estimates using NDVI, MSAVI2 and GEMI of Landsat 8 OLI. In this study, the dataset covering vegetated area in Wonosari, Gunung Kidul Regency, Indonesia was processed radiometrically using eight different methods, i.e. spectral radiance, at sensor reflectance, sun elevation correction, histogram adjustments using original DN, spectal radiance, at sensor reflectance, and sun position correction respectively, as well as dark object subtraction (DOS). Every image with specific correction level was then transformed using the aforementioned indices, in order correlate with the field-measured canopy density. The analysis were carried out by considering the number of canopy layers. This found that different radiometric correction methods resulted canopy density estimates with different accuracies. The number of canopy strata also played an important role. Every vegetation index transformation performed its best accuracy by using different radiometric correction method and different number of canopy layers.

  7. An algorithm for radiometric and geometric correction of digital SLAR data

    NARCIS (Netherlands)

    Hoogeboom, P.; Binnenkade, P.; Veugen, L.M.M.

    1983-01-01

    In The Netherlands an accurate SLAR system with digital data recording is used for measurements within the framework of the national microwave remote sensing research program. However, the images are disturbed by unwanted platform motions due to, e.g., turbulence at the low operating height (300–300

  8. Radiometric mapping of Goiania urban area: natural and artificial radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Nivaldo C.; Dias, Danila C.S.; Guerrero, Eder T. Z.; Alberti, Heber L.C., E-mail: ncsilva@cnen.gov.br, E-mail: danilacdias@gmail.com, E-mail: edertzg@cnen.gov.br, E-mail: heber@cnen.gov.br [Comissao Nacional de Energia Nuclear (LAPOC/CNEN), Pocos de Caldas, MG (Brazil). Laboratorio de Pocos de Caldas; Santos, Eliane E.; Pimenta, Lucinei R.; Costa, Heliana F., E-mail: esantos@cnen.gov.br, E-mail: lucinei@cnen.gov.br, E-mail: heliana@cnen.gov.br [Centro Regional de Ciencias Nucleares do Centro Oeste (CRCN-CO/CNEN-GO), Abadia de Goias, GO (Brazil)

    2013-07-01

    In the city of Goiania it is common to observe in some social groups, such as medical society, academy and communication (media), the association between cancer incidence and the 1987's Goiania radiological accident. Moreover, data of Population-Base Cancer Register published in 2010 by INCA (Instituto Nacional do Cancer), reveals that Goiania figures among the three cities where the major increases in cancer incidence were observed. Therefore, this project aims to provide a dose rate database over Goiania's road network aiming to: 1) assess the level radiation dose to which the population is exposed and 1) provide technical support for social communication of Brazilian Commission for Nuclear Energy. The monitoring was accomplished by using a mobile system (EBERLINE FHT 1376) which includes a 5-liter plastic scintillator detector coupled with a GPS (Global Positioning System) and a portable computer. This system allowed the recording of both the geographical coordinates and the dose rate of each single point. Using a NBR (Natural Background Rejection) the system is able to discriminate between natural and artificial radiation. After the field campaign, the raw data were then treated in a Geographical Information System (GIS) using the ArcGis software in order to produce dose maps. Therefore, this paper will present the results of the current stage of this research encompassing the monitoring of streets located on seven regions Goiania - divided in for administrative purposes. It is important to point out that more than 175175 individual data were collected with results ranging from 13 to 490 nSv/h. (author)

  9. Sea-surface temperature and salinity mapping from remote microwave radiometric measurements of brightness temperature

    Science.gov (United States)

    Hans-Juergen, C. B.; Kendall, B. M.; Fedors, J. C.

    1977-01-01

    A technique to measure remotely sea surface temperature and salinity was demonstrated with a dual frequency microwave radiometer system. Accuracies in temperature of 1 C and in salinity of part thousand for salinity greater than 5 parts per thousand were attained after correcting for the influence of extraterrestrial background radiation, atmospheric radiation and attenuation, sea-surface roughness, and antenna beamwidth. The radiometers, operating at 1.43 and 2.65 GHz, comprise a third-generation system using null balancing and feedback noise injection. Flight measurements from an aircraft at an altitude of 1.4 km over the lower Chesapeake Bay and coastal areas of the Atlantic Ocean resulted in contour maps of sea-surface temperature and salinity with a spatial resolution of 0.5 km.

  10. Sentinel-3 OLCI/SLSTR - Validation of the Radiometric Calibration for Optical Sensors

    OpenAIRE

    Fougnie, Bertrand; Nieke, Jens; Bouvet, Marc; Bruniquel, Véronique; Bourg, Ludovic; Smith, Dave

    2015-01-01

    The main objective of the SENTINEL-3 mission is to measure sea surface topography, sea and land surface temperature, and ocean and land surface colour with high accuracy and reliability to support ocean forecasting systems, environmental monitoring and climate monitoring. The mission will provide data continuity for the ERS, Envisat and SPOT satellites. The SENTINEL-3 mission will be jointly operated by ESA and EUMETSAT to deliver operational ocean and land observation services. Sentinel-3 wi...

  11. Meteoric diagenesis of catastrophic rockslide deposits of the Alps: diagenetic systems and implications for radiometric age-dating.

    Science.gov (United States)

    Sanders, D.; Ostermann, M.; Kramers, J.; Brandner, R.

    2009-04-01

    Deposits of catastrophic subaerial rockslides (=rapid mass-wasting events involving more than a million cubic meters of rock) composed of lithologies rich in carbonate minerals may undergo precipitation of cements that, in many cases, can be used to U/Th proxy-date the rockslide event and/or subsequent changes of the rockslide mass. In the Alps, lithification of rockslide masses into breccias is observed in rockslides composed of limestones, dolostones, calcitic-dolomitic marbles, and calcphyllites. Cementation may be localized to meteoric 'runoff-shadows' below larger boulders, or may comprise a continous surface veneer of breccia or, more rarely, may affect the entire rockslide mass. In addition, precipitation of flowstone cements and stalactites may take place in megapores along the underside of boulders. Cements comprise skalenohedral calcite, prismatic calcite, blocky calcite, calcimicrite, micropeloidal calcitic cement and, rarely, isopachous to botryoidal aragonite. Cement formation probably is driven by meteoric dissolution-reprecipitation of fine-grained, abrasive rock powder generated during the rockslide event. U/Th ages of cements indicate that most, but not all, precipitation starts closely after a rockslide event. In rockslides composed of calcphyllites with an accessory content of pyrite, aside of 'normal' meteoric dissolution-reprecipitation of abrasive carbonate gauge, oxidation of pyrite drives widespread carbonate dissolution followed by reprecipitation, as a cement, of part of the dissolved calcium carbonate. Drill coring indicates that rockslide deposits composed of pyritiferous calcphyllites can be lithified from top to bottom. Limestone-precipitating springs emerging from rockslide deposits, and well-cemented 'secondary' deposits (e. g. talus slopes or fluvial conglomerates onlapping rockslide deposits) percolated by groundwaters emerging from rockslide masses, indicate that rockslide deposits remain diagenetically active for thousands of years after emplacement. Because different 'generations' of meteoric cements can be formed over a long interval of time after the rockslide event, U/Th dating of cements not only provides a new approach to proxy-date the mass-wasting event, but also for dating subsequent geomorphic changes of a rockslide deposit.

  12. Direct radiometric dating of hydrocarbon deposits using rhenium-osmium isotopes.

    Science.gov (United States)

    Selby, David; Creaser, Robert A

    2005-05-27

    Rhenium-osmium (Re-Os) data from migrated hydrocarbons establish the timing of petroleum emplacement for the giant oil sand deposits of Alberta, Canada, at 112 +/- 5.3 million years ago. This date does not support models that invoke oil generation and migration for these deposits in the Late Cretaceous. Most Re-Os data from a variety of deposits within the giant hydrocarbon system show similar characteristics, supporting the notion of a single source for these hydrocarbons. The Re-Os data disqualify Cretaceous rocks as the primary hydrocarbon source but suggest an origin from older source rocks. This approach should be applicable to dating oil deposits worldwide.

  13. Solar Radiometric Data Quality Assessment of SIRS, SKYRAD and GNDRAD Measurements (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Habte, A.; Stoffel, T.; Reda, I.; Wilcox, S.; Kutchenreiter, M.; Gotseff, P.; Anderberg, M.

    2014-03-01

    Solar radiation is the driving force for the earth's weather and climate. Understanding the elements of this dynamic energy balance requires accurate measurements of broadband solar irradiance. Since the mid-1990's the ARM Program has deployed pyrheliometers and pyranometers for the measurement of direct normal irradiance (DNI), global horizontal irradiance (GHI), diffuse horizontal irradiance (DHI), and upwelling shortwave (US) radiation at permanent and mobile field research sites. This poster summarizes the basis for assessing the broadband solar radiation data available from the SIRS, SKYRAD, and GNDRAD measurement systems and provides examples of data inspections.

  14. A space simulation test chamber development for the investigation of radiometric properties of materials

    Science.gov (United States)

    Enlow, D. L.

    1972-01-01

    The design, fabrication, and preliminary utilization of a thermal vacuum space simulation facility are discussed. The facility was required to perform studies on the thermal radiation properties of materials. A test chamber was designed to provide high pumping speed, low pressure, a low photon level radiation background (via high emissivity, coated, finned cryopanels), internal heat sources for rapid warmup, and rotary and linear motion of the irradiated materials specimen. The radiation detection system consists of two wideband infrared photoconductive detectors, their cryogenic coolers, a cryogenic-cooled blackbody source, and a cryogenic-cooled optical radiation modulator.

  15. Dust Provenance and Radiometric U-Series Ages as Evidence for an Eemian Ice Sheet in Greenland

    Science.gov (United States)

    Aciego, S.; Bourdon, B.; Schwander, J.; Stocker, T. F.

    2009-12-01

    The mineralogy and geochemistry of air-transported mineral particles, dust, reflect the prior history of the source material as well as influence the chemistry of the settling locations (rivers, ice sheets and ultimately the oceans). When applied to ice sheets, the atmospheric circulation patterns gleaned from the chemical characteristics of the dust may provide some additional constraints on size and shape of paleo-ice sheets. Furthermore, the ice bound dust grains can be used to determine the age of the ice by using uranium series recoil as a radiometric dating method, provided there is sufficient information about the size and shape of the dust grains and the [U] concentration and isotopic (234U/238U) composition of the ice and dust. The Dye3 ice core is the southern-most deep ice core in Greenland, so should provide a minimum estimate of ice sheet size in the past: the existence of ice is evidence for an ice sheet at any given time. A series of samples from 200 m to 2030 m in depth were analyzed by MC-ICPMS and TIMS for U concentrations and 234U/238U as well as 176Hf/177Hf, 87Sr/86Sr, and 143Nd/144Nd. The radiogenic isotopic compositions of the insoluble dust found in the upper 1800 m falls within the range of previously measured Greenland dust samples: 87Sr/86Sr = 0.7108 - 0.7174, ɛNd = -9.7 - -13.6, and ɛHf = -2 - -5. However, the data trends toward significantly more unradiogenic Nd and Hf and radiogenic Sr values in the lower 100 m: 87Sr/86Sr = 0.7167 - 0.7200, ɛNd = -15.62 - -17.36, and ɛHf = -21 - -25; the deepest sample containing basal sediments having the most extreme values: 87Sr/86Sr = 0.7349 - 0.7785 ɛNd = -37.48 - -41.61, and ɛHf = -24.8 - -39.54. The calculated 234U/238U radiometric age for the deepest ice ranges from 90 to 110 ± 50 ka, in the same range as two possible age models for the Dye3 location, indicating the deepest ice is in the range of 40-60 ka or 85-120 ka. However, based on the radiogenic isotopes, while the dust in the

  16. Radiometric dating of quaternary deposits and the hominid mandible of lake banyolas, Spain

    Science.gov (United States)

    Julia, R.; Bischoff, J.L.

    1991-01-01

    We report results of U-series analyses of the travertine matrix surrounding the Banyolas mandible that indicate an age of 45??4 ka bp. The mandible, an archaic hominid fossil generally deemed of mid-Pleistocene age, was recovered from a travertine matrix in 1887. Similar analyses on 21 travertine samples from quarries near the discovery site yield coherent U-series dates in correct stratigraphic order, ranging from 44 ka bp to 117 ka bp. Isotopic composition of these samples and the mandible matrix show no evidence of open system behaviour. Coherent isotopic results from adjacent quarries support the validity of the date on the mandible travertine, and we conclude the mandible is much younger than previously believed. ?? 1991.

  17. Simultaneous retrieval of aerosol and surface optical properties from combined airborne- and ground-based direct and diffuse radiometric measurements

    Directory of Open Access Journals (Sweden)

    C. K. Gatebe

    2010-03-01

    Full Text Available This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR and AERONET data. A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34–2.30 μm and angular range (180° of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM Central Facility, Oklahoma, USA, and (d the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  18. Radiometric Inter-Calibration between Himawari-8 AHI and S-NPP VIIRS for the Solar Reflective Bands

    Directory of Open Access Journals (Sweden)

    Fangfang Yu

    2016-02-01

    Full Text Available The Advanced Himawari Imager (AHI on-board Himawari-8, which was launched on 7 October 2014, is the first geostationary instrument housed with a solar diffuser to provide accurate onboard calibrated data for the visible and near-infrared (VNIR bands. In this study, the Ray-matching and collocated Deep Convective Cloud (DCC methods, both of which are based on incidently collocated homogeneous pairs between AHI and Suomi NPP (S-NPP Visible Infrared Imaging Radiometer Suite (VIIRS, are used to evaluate the calibration difference between these two instruments. While the Ray-matching method is used to examine the reflectance difference over the all-sky collocations with similar viewing and illumination geometries, the near lambertian collocated DCC pxiels are used to examine the difference for the median or high reflectance scenes. Strong linear relationships between AHI and VIIRS can be found at all the paired AHI and VIIRS bands. Results of both methods indicate that AHI radiometric calibration accuracy agrees well with VIIRS data within 5% for B1-4 and B6 at mid and high reflectance scenes, while AHI B5 is generally brighter than VIIRS by ~6%–8%. No apparent East-West viewing angle dependent calibration difference can be found at all the VNIR bands. Compared to the Ray-matching method, the collocated DCC method provides less uncertainty of inter-calibration results at near-infrared (NIR bands. As AHI has similar optics and calibration designs to the GOES-R Advanced Baseline Imager (ABI, which is currently scheduled to launch in fall 2016, the on-orbit AHI data provides a unique opportunity to develop, test and examine the cal/val tools developed for ABI.

  19. The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products

    Science.gov (United States)

    Crisp, David; Pollock, Harold R.; Rosenberg, Robert; Chapsky, Lars; Lee, Richard A. M.; Oyafuso, Fabiano A.; Frankenberg, Christian; O'Dell, Christopher W.; Bruegge, Carol J.; Doran, Gary B.; Eldering, Annmarie; Fisher, Brendan M.; Fu, Dejian; Gunson, Michael R.; Mandrake, Lukas; Osterman, Gregory B.; Schwandner, Florian M.; Sun, Kang; Taylor, Tommy E.; Wennberg, Paul O.; Wunch, Debra

    2017-01-01

    The Orbiting Carbon Observatory-2 (OCO-2) carries and points a three-channel imaging grating spectrometer designed to collect high-resolution, co-boresighted spectra of reflected sunlight within the molecular oxygen (O2) A-band at 0.765 microns and the carbon dioxide (CO2) bands at 1.61 and 2.06 microns. These measurements are calibrated and then combined into soundings that are analyzed to retrieve spatially resolved estimates of the column-averaged CO2 dry-air mole fraction, XCO2. Variations of XCO2 in space and time are then analyzed in the context of the atmospheric transport to quantify surface sources and sinks of CO2. This is a particularly challenging remote-sensing observation because all but the largest emission sources and natural absorbers produce only small ( 17 000), dynamic range (˜ 104), and sensitivity (continuum signal-to-noise ratio > 400). The OCO-2 instrument performance was extensively characterized and calibrated prior to launch. In general, the instrument has performed as expected during its first 18 months in orbit. However, ongoing calibration and science analysis activities have revealed a number of subtle radiometric and spectroscopic challenges that affect the yield and quality of the OCO-2 data products. These issues include increased numbers of bad pixels, transient artifacts introduced by cosmic rays, radiance discontinuities for spatially non-uniform scenes, a misunderstanding of the instrument polarization orientation, and time-dependent changes in the throughput of the oxygen A-band channel. Here, we describe the OCO-2 instrument, its data products, and its on-orbit performance. We then summarize calibration challenges encountered during its first 18 months in orbit and the methods used to mitigate their impact on the calibrated radiance spectra distributed to the science community.

  20. Hexabromocyclododecanes, polybrominated diphenyl ethers, and polychlorinated biphenyls in radiometrically dated sediment cores from English lakes, ~ 1950–present

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Congqiao, E-mail: congqiao.yang@utoronto.ca [School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT (United Kingdom); Rose, Neil L.; Turner, Simon D.; Yang, Handong; Goldsmith, Ben [Environmental Change Research Centre, Department of Geography, University College London, London WC1E 6BT (United Kingdom); Losada, Sara; Barber, Jonathan L. [Centre for Environment, Fisheries and Aquaculture Science, Cefas Lowestoft Laboratory, Pakefield Road, Lowestoft, Suffolk NR33 0HT (United Kingdom); Harrad, Stuart [School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT (United Kingdom)

    2016-01-15

    This paper reports input fluxes between ~ 1950 and present, of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and hexabromocyclododecanes (HBCDs) in radiometrically-dated sediment cores from 7 English lakes. Fluxes of PCBs at all but one location prone to significant sediment resuspension peaked in the late-1960s/early-1990s, before declining thereafter. Input fluxes of HBCDs at all sites increased from first emergence in the mid-1960s. Thereafter, fluxes peaked in the late-1980s/early-2000s, before declining through to the present, except at the most urban site where HBCD fluxes are still increasing. Trends of PBDEs predominant in the Penta-BDE and Octa-BDE formulations vary between sites. While at some locations, fluxes peaked in the late-1990s/early-2000s; at others, fluxes are still increasing. This suggests the full impact of EU restrictions on these formulations has yet to be felt. Fluxes of BDE-209 have yet to peak at all except one location, suggesting little discernible environmental response to recent EU restrictions on the Deca-BDE product. Strikingly, fluxes of BDE-209 in the most recent core slices either exceed or approach peak fluxes of ΣPCBs, implying substantial UK use of Deca-BDE. Excepting HBCDs, inventories of our target contaminants correlated significantly with local population density, implying substantial urban sources. - Highlights: • Temporal trends in PCB inputs consistent with those in UK manufacture & use. • HBCD inputs declining from peak levels at all but the most urban site. • Deca-BDE inputs yet to peak at all but one site. • Varying Penta & Octa-BDE trends imply full impact of restrictions not yet evident. • Excepting HBCDs, contaminant inventories correlate with local population density.

  1. Radiometric calibration stability and inter-calibration of solar-band instruments in orbit using the moon

    Science.gov (United States)

    Stone, T.C.

    2008-01-01

    With the increased emphasis on monitoring the Earth's climate from space, more stringent calibration requirements are being placed on the data products from remote sensing satellite instruments. Among these are stability over decade-length time scales and consistency across sensors and platforms. For radiometer instruments in the solar reflectance wavelength range (visible to shortwave infrared), maintaining calibration on orbit is difficult due to the lack of absolute radiometric standards suitable for flight use. The Moon presents a luminous source that can be viewed by all instruments in Earth orbit. Considered as a solar diffuser, the lunar surface is exceedingly stable. The chief difficulty with using the Moon is the strong variations in the Moon's brightness with illumination and viewing geometry. This mandates the use of a photometric model to compare lunar observations, either over time by the same instrument or between instruments. The U.S. Geological Survey in Flagstaff, Arizona, under NASA sponsorship, has developed a model for the lunar spectral irradiance that explicitly accounts for the effects of phase, the lunar librations, and the lunar surface reflectance properties. The model predicts variations in the Moon's brightness with precision ???1% over a continuous phase range from eclipse to the quarter lunar phases. Given a time series of Moon observations taken by an instrument, the geometric prediction capability of the lunar irradiance model enables sensor calibration stability with sub-percent per year precision. Cross-calibration of instruments with similar passbands can be achieved with precision comparable to the model precision. Although the Moon observations used for intercomparison can be widely separated in phase angle and/or time, SeaWiFS and MODIS have acquired lunar views closely spaced in time. These data provide an example to assess inter-calibration biases between these two instruments.

  2. Simultaneous retrieval of aerosol and surface optical properties from combined airborne- and ground-based direct and diffuse radiometric measurements

    Directory of Open Access Journals (Sweden)

    C. K. Gatebe

    2009-12-01

    Full Text Available This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer, CAR, and AERONET data. A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34–2.30 μm and angular range (180° of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM Central Facility, Oklahoma, USA, and (d the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  3. Urban vegetation detection using radiometrically calibrated small-footprint full-waveform airborne LiDAR data

    Science.gov (United States)

    Höfle, Bernhard; Hollaus, Markus; Hagenauer, Julian

    2012-01-01

    This paper introduces a new GIS workflow for urban vegetation mapping from high-density (50 pts./m 2) full-waveform airborne LiDAR data, combining the advantages of both raster and point cloud based analysis. Polygon segments derived by edge-based segmentation of the normalized digital surface model are used for classification. A rich set of segment features based on the point cloud and derived from full-waveform attributes is built, serving as input for a decision tree and artificial neural network (ANN) classifier. Exploratory data analysis and detailed investigation of the discriminative power of selected point cloud and full-waveform LiDAR observables indicate a high value of the occurrence of multiple distinct targets in a laser beam (i.e. 'echo ratio') for vegetation classification (98% correctness). The radiometric full-waveform observables (e.g. backscattering coefficient) do not suffice as single discriminators with low correctness values using a decision tree classifier (⩽72% correctness) but higher values with ANN (⩽95% correctness). Tests using reduced point densities indicate that the derived segment features and classification accuracies remain relatively stable even up to a reduction factor of 10 (5 pts./m 2). In a representative study area in the City of Vienna/Austria the applicability of the developed object-based GIS workflow is demonstrated. The unique high density full-waveform LiDAR data open a new scale in 3D object characterization but demands for novel joint strategies in object-based raster and 3D point cloud analysis.

  4. Landsat-7 ETM+ on-orbit reflective-band radiometric stability and absolute calibration

    Science.gov (United States)

    Markham, B.L.; Thome, K.J.; Barsi, J.A.; Kaita, E.; Helder, Dennis L.; Barker, J. L.; Scaramuzza, Pat

    2004-01-01

    Launched in April 1999, the Landsat-7 Enhanced Thematic Mapper Plus (ETM+) instrument is in its sixth year of operation. The ETM+ instrument has been the most stable of any of the Landsat instruments. To date, the best onboard calibration source for the reflective bands has been the Full Aperture Solar Calibrator, a solar-diffuser-based system, which has indicated changes of between 1% to 2% per year in the ETM+ gain for bands 1-4 and 8 and less than 0.5%/year for bands 5 and 7. However, most of this change is believed to be caused by changes in the solar diffuser panel, as opposed to a change in the instrument's gain. This belief is based partially on vicarious calibrations and observations of "invariant sites", hyperarid sites of the Sahara and Arabia. Weighted average slopes determined from these datasets suggest changes of 0.0% to 0.4% per year for bands 1-4 and 8 and 0.4% to 0.5% per year for bands 5 and 7. Absolute calibration of the reflective bands of the ETM+ is consistent with vicarious observations and other sensors generally at the 5% level, though there appear to be some systematic differences.

  5. Radiometric assessment of natural radioactivity levels of agricultural soil samples collected in Dakahlia, Egypt.

    Science.gov (United States)

    Issa, Shams A M

    2013-01-01

    Determination of the natural radioactivity has been carried out, by using a gamma-ray spectrometry [NaI (Tl) 3″ × 3″] system, in surface soil samples collected from various locations in Dakahlia governorate, Egypt. These locations form the agriculturally important regions of Egypt. The study area has many industries such as chemical, paper, organic fertilisers and construction materials, and the soils of the study region are used as a construction material. Therefore, it becomes necessary to study the natural radioactivity levels in soil to assess the dose for the population in order to know the health risks. The activity concentrations of (226)Ra, (232)Th and (40)K in the soil ranged from 5.7 ± 0.3 to 140 ± 7, from 9.0 ± 0.4 to 139 ± 7 and from 22 ± 1 to 319 ± 16 Bq kg(-1), respectively. The absorbed dose rate, annual effective dose rate, radium equivalent (Req), excess lifetime cancer risk, hazard indices (Hex and Hin) and annual gonadal dose equivalent, which resulted from the natural radionuclides in the soil were calculated.

  6. TES Level 1 Algorithms: Interferogram Processing, Geolocation, Radiometric, and Spectral Calibration

    Science.gov (United States)

    Worden, Helen; Beer, Reinhard; Bowman, Kevin W.; Fisher, Brendan; Luo, Mingzhao; Rider, David; Sarkissian, Edwin; Tremblay, Denis; Zong, Jia

    2006-01-01

    The Tropospheric Emission Spectrometer (TES) on the Earth Observing System (EOS) Aura satellite measures the infrared radiance emitted by the Earth's surface and atmosphere using Fourier transform spectrometry. The measured interferograms are converted into geolocated, calibrated radiance spectra by the L1 (Level 1) processing, and are the inputs to L2 (Level 2) retrievals of atmospheric parameters, such as vertical profiles of trace gas abundance. We describe the algorithmic components of TES Level 1 processing, giving examples of the intermediate results and diagnostics that are necessary for creating TES L1 products. An assessment of noise-equivalent spectral radiance levels and current systematic errors is provided. As an initial validation of our spectral radiances, TES data are compared to the Atmospheric Infrared Sounder (AIRS) (on EOS Aqua), after accounting for spectral resolution differences by applying the AIRS spectral response function to the TES spectra. For the TES L1 nadir data products currently available, the agreement with AIRS is 1 K or better.

  7. Assessing satellite sea surface salinity from ocean color radiometric measurements for coastal hydrodynamic model data assimilation

    Science.gov (United States)

    Vogel, Ronald L.; Brown, Christopher W.

    2016-07-01

    Improving forecasts of salinity from coastal hydrodynamic models would further our predictive capacity of physical, chemical, and biological processes in the coastal ocean. However, salinity is difficult to estimate in coastal and estuarine waters at the temporal and spatial resolution required. Retrieving sea surface salinity (SSS) using satellite ocean color radiometry may provide estimates with reasonable accuracy and resolution for coastal waters that could be assimilated into hydrodynamic models to improve SSS forecasts. We evaluated the applicability of satellite SSS retrievals from two algorithms for potential assimilation into National Oceanic and Atmospheric Administration's Chesapeake Bay Operational Forecast System (CBOFS) hydrodynamic model. Of the two satellite algorithms, a generalized additive model (GAM) outperformed that of an artificial neural network (ANN), with mean bias and root-mean-square error (RMSE) of 1.27 and 3.71 for the GAM and 3.44 and 5.01 for the ANN. However, the RMSE for the SSS predicted by CBOFS (2.47) was lower than that of both satellite algorithms. Given the better precision of the CBOFS model, assimilation of satellite ocean color SSS retrievals will not improve CBOFS forecasts of SSS in Chesapeake Bay. The bias in the GAM SSS retrievals suggests that adding a variable related to precipitation may improve its performance.

  8. Emission Spectroscopy and Radiometric Measurements in the NASA Ames IHF Arc Jet Facility

    Science.gov (United States)

    Winter, Michael W.; Raiche, George A.; Prabhu, Dinesh K.

    2012-01-01

    Plasma diagnostic measurement campaigns in the NASA Ames Interaction Heating Facility (IHF) have been conducted over the last several years with a view towards characterizing the flow in the arc jet facility by providing data necessary for modeling and simulation. Optical emission spectroscopy has been used in the plenum and in the free jet of the nozzle. Radiation incident over a probe surface has also been measured using radiometry. Plenum measurements have shown distinct radial profiles of temperature over a range of operating conditions. For cases where large amounts of cold air are added radially to the main arc-heated stream, the temperature profiles are higher by as much as 1500 K than the profiles assumed in flow simulations. Optical measurements perpendicular to the flow direction in the free jet showed significant contributions to the molecule emission through inverse pre-dissociation, thus allowing determination of atom number densities from molecular emission. This has been preliminarily demonstrated with the N2 1st Positive System. Despite the use of older rate coefficients, the resulting atom densities are reasonable and surprisingly close to flow predictions.

  9. Monitoring Evaporation/Transpiration in a Vineyard from Two-Source Energy Balance and Radiometric Temperatures

    Science.gov (United States)

    Sánchez, Juan Manuel; Doña, Carolina; Cuxart, Joan; Caselles, Vicente; Niclòs, Raquel

    2014-05-01

    Water management and understanding of irrigation efficiency could be significantly improved if the components of evapotranspiration (ET) in row-crop systems (plants and soil interrows) could be quantified separately. This evaporation/transpiration (E/T) partition, and its daily and seasonal evolution, depends on a variety of biophysical and environmental factors. In this work we present an operational method to provide continuous E/T results avoiding soil or canopy disturbance. This technique is based on the combination of the surface-atmosphere energy exchange modeling together with an accurate remote thermal characterization of the crop elements. An experiment was carried out in a row-crop vineyard in Mallorca, Spain, from June 2012 to May 2013. A set of 6 thermal-infrared radiometers (IRTs) were mounted in a mast placed in the middle of a vineyard N-S row. Two IRTs pointed to the soil between rows and other two pointed to the plants from a frontal view, measuring both east and west sides of the row. A fifth IRT pointed upward to collect the downwelling sky radiance and the remaining IRT was mounted at 4.5-m height over the canopy measuring the composed soil-canopy temperature. Measurements of the four components of the net radiation over the canopy and soil heat fluxes, as well as air temperature, humidity, wind speed, and soil moisture, were collected and stored in 15-min averages. A two-source energy balance approach was applied to the vineyard from its appropriate thermal characterization. Total and separate soil/canopy components of net radiation, soil, sensible and latent heat fluxes were obtained every 15 minutes and averaged at hourly and daily scales. Comparison between observed and modeled values of available surface energy showed relative errors below 15%. An analysis of the partition E/T was conducted along the vineyard growing season and the different phenological stages. In this experiment, interrow soil evaporation reached as much as 1/3 of the

  10. Radiometric Normalization of Temporal Images Combining Automatic Detection of Pseudo-Invariant Features from the Distance and Similarity Spectral Measures, Density Scatterplot Analysis, and Robust Regression

    Directory of Open Access Journals (Sweden)

    Ana Paula Ferreira de Carvalho

    2013-05-01

    Full Text Available Radiometric precision is difficult to maintain in orbital images due to several factors (atmospheric conditions, Earth-sun distance, detector calibration, illumination, and viewing angles. These unwanted effects must be removed for radiometric consistency among temporal images, leaving only land-leaving radiances, for optimum change detection. A variety of relative radiometric correction techniques were developed for the correction or rectification of images, of the same area, through use of reference targets whose reflectance do not change significantly with time, i.e., pseudo-invariant features (PIFs. This paper proposes a new technique for radiometric normalization, which uses three sequential methods for an accurate PIFs selection: spectral measures of temporal data (spectral distance and similarity, density scatter plot analysis (ridge method, and robust regression. The spectral measures used are the spectral angle (Spectral Angle Mapper, SAM, spectral correlation (Spectral Correlation Mapper, SCM, and Euclidean distance. The spectral measures between the spectra at times t1 and t2 and are calculated for each pixel. After classification using threshold values, it is possible to define points with the same spectral behavior, including PIFs. The distance and similarity measures are complementary and can be calculated together. The ridge method uses a density plot generated from images acquired on different dates for the selection of PIFs. In a density plot, the invariant pixels, together, form a high-density ridge, while variant pixels (clouds and land cover changes are spread, having low density, facilitating its exclusion. Finally, the selected PIFs are subjected to a robust regression (M-estimate between pairs of temporal bands for the detection and elimination of outliers, and to obtain the optimal linear equation for a given set of target points. The robust regression is insensitive to outliers, i.e., observation that appears to deviate

  11. The Need for Accurate Geometric and Radiometric Corrections of Drone-Borne Hyperspectral Data for Mineral Exploration: MEPHySTo—A Toolbox for Pre-Processing Drone-Borne Hyperspectral Data

    Directory of Open Access Journals (Sweden)

    Sandra Jakob

    2017-01-01

    Full Text Available Drone-borne hyperspectral imaging is a new and promising technique for fast and precise acquisition, as well as delivery of high-resolution hyperspectral data to a large variety of end-users. Drones can overcome the scale gap between field and air-borne remote sensing, thus providing high-resolution and multi-temporal data. They are easy to use, flexible and deliver data within cm-scale resolution. So far, however, drone-borne imagery has prominently and successfully been almost solely used in precision agriculture and photogrammetry. Drone technology currently mainly relies on structure-from-motion photogrammetry, aerial photography and agricultural monitoring. Recently, a few hyperspectral sensors became available for drones, but complex geometric and radiometric effects complicate their use for geology-related studies. Using two examples, we first show that precise corrections are required for any geological mapping. We then present a processing toolbox for frame-based hyperspectral imaging systems adapted for the complex correction of drone-borne hyperspectral imagery. The toolbox performs sensor- and platform-specific geometric distortion corrections. Furthermore, a topographic correction step is implemented to correct for rough terrain surfaces. We recommend the c-factor-algorithm for geological applications. To our knowledge, we demonstrate for the first time the applicability of the corrected dataset for lithological mapping and mineral exploration.

  12. Radiometric evaluation of the {sup 210}Pb in the estuary of the SUAPE Pole in the State of Pernambuco

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Paula Frassinetti P.; Antonio Filho, Joao; Mendonca, Keyla Mary C., E-mail: jaf@ufpe.com [Departamento de Energia Nuclear (DEN/UFPE), Recife, PE (Brazil); Carvalho, Wellington S. [Faculdade Integrada de Pernambuco (FACIPE), Recife, PE (Brazil)

    2011-07-01

    Nowadays there is a growing interest in the study of natural radioactivity levels, mainly of radionuclide {sup 210}Pb present in the environment. The environmental radioactivity control is of extreme importance for attainment of information on the exposition of humans and vegetables the potential sources in natural radioactive occurrences. Industrial processes involving mining and extraction and production of oil foster concentration of radionuclides, contributing to the occurrence of what is known as TENORM Technologically Enhanced Naturally Occurring Radioactive Material. This work aims to assess the environmental radiological impact on the Estuarine Region of the SUAPE Industrial Pole, due to the installation of an oil refinery and the consequent introduction on the environment of natural radioactive materials from other regions. For this, were determined the concentrations of {sup 210}Pb in samples de soil, sediments, roots and levels of fen and fishes in the region above reported, these data will serve of parameters of reference for a radiometric evaluation on future radioecology impacts caused by the functioning of the refinery of SUAPE oil. To determine the concentration of {sup 210}Pb was used the Ionic Resin Exchange method, for in such a way, the detector was used alpha-beta. Concentrations of {sup 210}Pb in the soils, sediments, roots and levels of fen samples vary respectively from 27 {+-} 2 to 60 {+-} 5, from 18 {+-} 5 to 60 {+-} 6, from 65 {+-} 2 to 117 {+-} 3, from 217 {+-} 6 to 239 {+-} 7 Bq.kg-1. Concentrations of the {sup 210}Pb in samples of some species of fish found in the studied region, such as Mullet, Salema, Catfish and Carapitinga, was also determined varying from 26 {+-} 11 to 62 {+-} 6 Bq.kg-1. The results obtained in the samples of soils, sediments, roots of fen e fishes showed that the concentrations of {sup 210}Pb in the environment are normal for the patterns of the area and are in accordance with data the found ones in literature

  13. Radiometric Dating in Geology.

    Science.gov (United States)

    Pankhurst, R. J.

    1980-01-01

    Described are several aspects and methods of quantitatively measuring geologic time using a constant-rate natural process of radioactive decay. Topics include half lives and decay constants, radiogenic growth, potassium-argon dating, rubidium-strontium dating, and the role of geochronology in support of geological exploration. (DS)

  14. OLI Radiometric Calibration

    Science.gov (United States)

    Markham, Brian; Morfitt, Ron; Kvaran, Geir; Biggar, Stuart; Leisso, Nathan; Czapla-Myers, Jeff

    2011-01-01

    Goals: (1) Present an overview of the pre-launch radiance, reflectance & uniformity calibration of the Operational Land Imager (OLI) (1a) Transfer to orbit/heliostat (1b) Linearity (2) Discuss on-orbit plans for radiance, reflectance and uniformity calibration of the OLI

  15. Radiometric temperature measurements fundamentals

    CERN Document Server

    Zhang, Zhuomin M; Machin, Graham

    2009-01-01

    This book describes the theory of radiation thermometry, both at a primary level and for a variety of applications, such as in the materials processing industries and remote sensing. This book is written for those who will apply radiation thermometry in industrial practice; use radiation thermometers for scientific research; the radiation thermometry specialist in a national measurement institute; developers of radiation thermometers who are working to innovate products for instrument manufacturers, and developers of non-contact thermometry methods to address challenging thermometry problems.

  16. Radiometric quality and performance of TIMESAT for smoothing moderate resolution imaging spectroradiometer enhanced vegetation index time series from western Bahia State, Brazil

    Science.gov (United States)

    Borges, Elane F.; Sano, Edson E.; Medrado, Euzébio

    2014-01-01

    The launch of the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Terra and Aqua platforms in 1999 and 2002, respectively, with temporal resolutions of 1 to 2 days opened the possibility of using a longtime series of satellite images to map land use and land cover classes from different regions of the Earth, to study vegetation phenology, and to monitor regional and global climate change, among other applications. The main objectives of this study were twofold: to analyze the radiometric quality of the time series of enhanced vegetation index (EVI) products derived from the Terra MODIS sensor in western Bahia State, Brazil, and to identify the most appropriate filter to smooth MODIS EVI time series of the study area among those available in the public domain, the TIMESAT algorithm. The 2000 to 2011 time period was considered (a total of 276 scenes). The radiometric quality was analyzed based on the pixel reliability data set available in the MOD13Q1 product. The performances of the three smoothing filters available within TIMESAT (double logistic, Savitzky-Golay, and asymmetric Gaussian) were analyzed using the Graybill's F test and Willmott statistics. Five percent of the MODIS pixels from the study area were cloud-affected, almost all of which were from the rainy season. The double logistic filter presented the best performance.

  17. An in vitro study of dental enamel wear by restorative materials using radiometric method; Estudo in vitro do desgaste do esmalte dental pelos materiais restauradores utilizando metodo radiometrico

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Lena Katekawa

    2000-07-01

    There is an increasing demand and interest to study the dental materials wear as well as about the abrasion effect on antagonistic teeth. Due to the fact that the existent restorative materials have no specifications about their abrasiveness, it is necessary the establishment of degrees of comparison among them to support clinical application. In this work, the radiometric method was applied to study the enamel wear caused by another enamel and by restorative materials (Ceramco II, Noritake and Finesse porcelains, Artglass and Targis). The dental enamel made radioactive by irradiation at the IEA-R1m nuclear research reactor under a thermal neutron flux was submitted to wear in a machine which allows sliding motion of an antagonistic surface in contact with this radioactive enamel. The enamel wear was evaluated by measuring beta activity of {sup 32}P transferred to water from this irradiated tooth. Results obtained indicated that dental porcelains cause pronounced enamel wear when compared with that provoked by another enamel or by resin materials. Resin materials caused less enamel wear than another enamel. Vickers microhardness data obtained for antagonistic materials showed a correlation with the wear caused to the enamel. This study allowed to conclude that the radiometric method proposed can be used satisfactorily in the evaluation of enamel wear by restorative materials. This method presents advantages due to quick responses and ease of analyses There is (author)

  18. Radiometric Cross-Calibration of the Chilean Satellite FASat-C Using RapidEye and EO-1 Hyperion Data and a Simultaneous Nadir Overpass Approach

    Directory of Open Access Journals (Sweden)

    Carolina Barrientos

    2016-07-01

    Full Text Available The absolute radiometric calibration of a satellite sensor is the critical factor that ensures the usefulness of the acquired data for quantitative applications on remote sensing. This work presents the results of the first cross-calibration of the sensor on board the Sistema Satelital de Observación de la Tierra (SSOT Chilean satellite or Air Force Satellite FASat-C. RapidEye-MSI was chosen as the reference sensor, and a simultaneous Nadir Overpass Approach (SNO was applied. The biases caused by differences in the spectral responses of both instruments were compensated through an adjustment factor derived from EO-1 Hyperion data. Through this method, the variations affecting the radiometric response of New AstroSat Optical Modular Instrument (NAOMI-1, have been corrected based on collections over the Frenchman Flat calibration site. The results of a preliminary evaluation of the pre-flight and updated coefficients have shown a significant improvement in the accuracy of at-sensor radiances and TOA reflectances: an average agreement of 2.63% (RMSE was achieved for the multispectral bands of both instruments. This research will provide a basis for the continuity of calibration and validation tasks of future Chilean space missions.

  19. Colorimetric calibration of coupled infrared simulation system

    Science.gov (United States)

    Zhang, Ying; Fei, Jindong; Gao, Yang; Du, Jian

    2015-10-01

    In order to test 2-color infrared sensors, a coupled infrared simulation system can generate radiometric outputs with wavelengths that range from less than 3 microns to more than 12 microns. There are two channels in the coupled simulation system, optically combined by a diachronic beam combiner. Each channel has an infrared blackbody, a filter, a diaphragm, and diaphragm-motors. The system is projected to the sensor under testing by a collimator. This makes it difficult to calibrate the system with only one-band thermal imager. Errors will be caused in the radiance levels measured by the narrow band thermal imager. This paper describes colorimetric temperature measurement techniques that have been developed to perform radiometric calibrations of these infrared simulation systems above. The calibration system consists of two infrared thermal imagers; one is operated at the wavelength range of MW-IR, and the other at the range of LW-IR.

  20. The effect of radiometer placement and view on inferred directional and hemispheric radiometric temperatures of an urban canopy

    Science.gov (United States)

    Adderley, C.; Christen, A.; Voogt, J. A.

    2015-07-01

    Any radiometer at a fixed location has a biased view when observing a convoluted, three-dimensional surface such as an urban canopy. The goal of this contribution is to determine the bias of various sensors views observing a simple urban residential neighbourhood (nadir, oblique, hemispherical) over a 24 hour cycle under clear weather conditions. The error in measuring a longwave radiation flux density (L) and/or inferring surface temperatures (T0) is quantified for different times over a diurnal cycle. Panoramic time-sequential thermography (PTST) data were recorded by a thermal camera on a hydraulic mast above a residential canyon in Vancouver, BC. The data set resolved sub-facet temperature variability of all representative urban facets in a 360° swath repetitively over a 24-hour cycle. This data set is used along with computer graphics and vision techniques to project measured fields of L for a given time and pixel onto texture sheets of a three-dimensional urban surface model at a resolution of centimetres. The resulting data set attributes L of each pixel on the texture sheets to different urban facets and associates facet location, azimuth, slope, material, and sky view factor. The texture sheets of L are used to calculate the complete surface temperature (T0,C) and to simulate the radiation in the field of view (FOV) of narrow and hemispheric radiometers observing the same urban surface (in absence of emissivity and atmospheric effects). The simulated directional (T0,d) and hemispheric (T0,h) radiometric temperatures inferred from various biased views are compared to T0,C. For a range of simulated off-nadir (φ) and azimuth (Ω) angles, T0,d(φ,Ω) and T0,C differ between -2.6 and +2.9 K over the course of the day. The effects of effective anisotropy are highest in the daytime, particularly around sunrise and sunset when different views can lead to differences in T0,d(φ,Ω) that are as high as 3.5 K. For a sensor with a narrow FOV in the nadir of the

  1. The effect of radiometer placement and view on inferred directional and hemispheric radiometric temperatures of a urban canopy

    Science.gov (United States)

    Adderley, C.; Christen, A.; Voogt, J. A.

    2015-02-01

    Any radiometer at a fixed location has a biased view when observing a convoluted, three dimensional surface such as an urban canopy. The goal of this contribution is to determine the bias of various sensors views observing a simple urban residential neighbourhood (nadir, oblique, hemispherical) over a 24 h cycle under clear weather conditions. The error in measuring longwave radiance (L) and/or inferring surface temperatures (T0) is quantified for different times over a diurnal cycle. Panoramic time-sequential thermography (PTST) data was recorded by a thermal camera on a hydraulic mast above a residential canyon in Vancouver, BC. The dataset resolved sub-facet temperature variability of all representative urban facets in a 360° swath repetitively over a 24 h cycle. This dataset is used along with computer graphics and vision techniques to project measured fields of L for a given time and pixel onto texture sheets of a three-dimensional urban surface model at a resolution of centimetres. The resulting dataset attributes L of each pixel on the texture sheets to different urban facets and associates facet location, azimuth, slope, material, and sky view factor. The texture sheets of L are used to calculate the complete surface temperature (T0,C) and to simulate the instantaneous field of view (IFOV) of narrow and hemispheric radiometers observing the same urban surface (in absence of emissivity and atmospheric effects). The simulated directional (T0,d) and hemispheric (T0,h) radiometric temperatures inferred from various biased views are compared to T0,C. For a range of simulated off-nadir (ϕ) and azimuth (Ω) angles, T0,d (ϕ, Ω) and T0,C differ between -2.7 and +2.9 K over the course of the day. The effects of effective anisotropy are highest in the daytime, particularly around sunrise and sunset when different views can lead to differences in T0,d (ϕ, Ω) that are as high as 3.5 K. For a sensor with a narrow IFOV in the nadir of the urban

  2. The effect of radiometer placement and view on inferred directional and hemispheric radiometric temperatures of a urban canopy

    Directory of Open Access Journals (Sweden)

    C. Adderley

    2015-02-01

    Full Text Available Any radiometer at a fixed location has a biased view when observing a convoluted, three dimensional surface such as an urban canopy. The goal of this contribution is to determine the bias of various sensors views observing a simple urban residential neighbourhood (nadir, oblique, hemispherical over a 24 h cycle under clear weather conditions. The error in measuring longwave radiance (L and/or inferring surface temperatures (T0 is quantified for different times over a diurnal cycle. Panoramic time-sequential thermography (PTST data was recorded by a thermal camera on a hydraulic mast above a residential canyon in Vancouver, BC. The dataset resolved sub-facet temperature variability of all representative urban facets in a 360° swath repetitively over a 24 h cycle. This dataset is used along with computer graphics and vision techniques to project measured fields of L for a given time and pixel onto texture sheets of a three-dimensional urban surface model at a resolution of centimetres. The resulting dataset attributes L of each pixel on the texture sheets to different urban facets and associates facet location, azimuth, slope, material, and sky view factor. The texture sheets of L are used to calculate the complete surface temperature (T0,C and to simulate the instantaneous field of view (IFOV of narrow and hemispheric radiometers observing the same urban surface (in absence of emissivity and atmospheric effects. The simulated directional (T0,d and hemispheric (T0,h radiometric temperatures inferred from various biased views are compared to T0,C. For a range of simulated off-nadir (ϕ and azimuth (Ω angles, T0,d (ϕ, Ω and T0,C differ between −2.7 and +2.9 K over the course of the day. The effects of effective anisotropy are highest in the daytime, particularly around sunrise and sunset when different views can lead to differences in T0,d (ϕ, Ω that are as high as 3.5 K. For a sensor with a narrow IFOV in the nadir of the

  3. Rapid Identification of microbes in positive blood cultures by use of the vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system.

    Science.gov (United States)

    Foster, Arnold G W

    2013-11-01

    Sepsis is a major cause of death worldwide among nonhospitalized people and hospitalized patients. A wide range of pathogens are involved, and the correct identification and correct antimicrobial therapy are critical to ensure optimal clinical outcomes. With the recent introduction of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), rapid identification of bacteria and fungi is now possible. The purpose of this study was to develop a rapid technique for identifying organisms in positive blood cultures using the Vitek MS system (bioMérieux). This technique is a lysis centrifugation method which involves a four-step washing and centrifugation procedure. A total of 253 positive monomicrobial blood cultures (Bactec Plus aerobic, anaerobic, and pediatric bottles) were tested using the Vitek MS system (KnowledgeBase version 2.0), with 92.1% and 88.1% of organisms overall being identified to the genus level and the species level, respectively. Of 161 Gram-positive bacterial isolates, 95.7% and 90.1% were identified to the genus level and the species level, respectively; of 92 Gram-negative bacterial isolates, 84.7% and 83.7% were identified to the genus level and the species level, respectively. The results obtained using this method demonstrate that the Vitek MS system can be used for rapid and effective identification of bacteria from positive blood cultures within 30 to 45 min after the positive signal has been provided by the Bactec FX blood culture system (Becton, Dickinson). This will lead to faster administration of the appropriate antimicrobial therapy and increase the chances for optimal clinical outcomes for patients.

  4. Analytical models and system topologies for remote multispectral data acquisition and classification

    Science.gov (United States)

    Huck, F. O.; Park, S. K.; Burcher, E. E.; Kelly, W. L., IV

    1978-01-01

    Simple analytical models are presented of the radiometric and statistical processes that are involved in multispectral data acquisition and classification. Also presented are basic system topologies which combine remote sensing with data classification. These models and topologies offer a preliminary but systematic step towards the use of computer simulations to analyze remote multispectral data acquisition and classification systems.

  5. Determination of plutonium isotopes (238Pu, 239Pu, 240Pu, 241Pu) in environmental samples using radiochemical separation combined with radiometric and mass spectrometric measurements

    DEFF Research Database (Denmark)

    Xu, Yihong; Qiao, Jixin; Hou, Xiaolin

    2014-01-01

    This paper reports an analytical method for the determination of plutonium isotopes (238Pu, 239Pu, 240Pu, 241Pu) in environmental samples using anion exchange chromatography in combination with extraction chromatography for chemical separation of Pu. Both radiometric methods (liquid scintillation...

  6. Transponder-aided joint calibration and synchronization compensation for distributed radar systems.

    Science.gov (United States)

    Wang, Wen-Qin

    2015-01-01

    High-precision radiometric calibration and synchronization compensation must be provided for distributed radar system due to separate transmitters and receivers. This paper proposes a transponder-aided joint radiometric calibration, motion compensation and synchronization for distributed radar remote sensing. As the transponder signal can be separated from the normal radar returns, it is used to calibrate the distributed radar for radiometry. Meanwhile, the distributed radar motion compensation and synchronization compensation algorithms are presented by utilizing the transponder signals. This method requires no hardware modifications to both the normal radar transmitter and receiver and no change to the operating pulse repetition frequency (PRF). The distributed radar radiometric calibration and synchronization compensation require only one transponder, but the motion compensation requires six transponders because there are six independent variables in the distributed radar geometry. Furthermore, a maximum likelihood method is used to estimate the transponder signal parameters. The proposed methods are verified by simulation results.

  7. Transponder-aided joint calibration and synchronization compensation for distributed radar systems.

    Directory of Open Access Journals (Sweden)

    Wen-Qin Wang

    Full Text Available High-precision radiometric calibration and synchronization compensation must be provided for distributed radar system due to separate transmitters and receivers. This paper proposes a transponder-aided joint radiometric calibration, motion compensation and synchronization for distributed radar remote sensing. As the transponder signal can be separated from the normal radar returns, it is used to calibrate the distributed radar for radiometry. Meanwhile, the distributed radar motion compensation and synchronization compensation algorithms are presented by utilizing the transponder signals. This method requires no hardware modifications to both the normal radar transmitter and receiver and no change to the operating pulse repetition frequency (PRF. The distributed radar radiometric calibration and synchronization compensation require only one transponder, but the motion compensation requires six transponders because there are six independent variables in the distributed radar geometry. Furthermore, a maximum likelihood method is used to estimate the transponder signal parameters. The proposed methods are verified by simulation results.

  8. (25143) Itokawa: The Power of Radiometric Techniques for the Interpretation of Remote Thermal Observations in the Light of the Hayabusa Rendezvous Results

    CERN Document Server

    Müller, T G; Usui, F

    2014-01-01

    The near-Earth asteroid (25143) Itokawa was characterised in great detail by the Japanese Hayabusa mission. We revisited the available thermal observations in the light of the true asteroid properties with the goal to evaluate the possibilities and limitations of thermal model techniques. In total, we used 25 published ground-based mid-infrared photometric observations and 5 so far unpublished measurements from the Japanese infrared astronomical satellite AKARI in combination with improved H-G values. Our thermophysical model (TPM) approach allowed us to determine correctly the sense of rotation, to estimate the thermal inertia and to derive robust effective size and albedo values by only using a simple spherical shape model. A more complex shape model, derived from light-curve inversion techniques, improved the quality of the predictions considerably and made the interpretation of thermal light-curve possible. The radiometrically derived effective diameter value agrees within 2% of the true Itokawa size valu...

  9. Radiometric Dating of Ignimbrite from Inner Mongolia Provides no Indication of a Post-Middle Jurassic Age for the Daohugou Beds

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Lacustrine deposits exposed at Daohugou, Inner Mongolia, China, have yielded superbly preserved vertebrate fossils. The fossil beds were first misinterpreted as of Early Cretaceous age, based on alleged occurrences of key fossils of the Jehol Biota. Compelling evidence revealed by more rigorous research involving regional biostratigraphy, radiometric dating, and paleontology supports the Middle Jurassic age of the fossil beds. Despite the awesome evidence for the Middle Jurassic age of the Daohugou beds, the age dispute has been resurrected recently by invoking an overturned stratigraphic sequence. A careful review of the data, however, found no evidence that this sequence has been overturned. In addition, many of the assumptions, on which the conjecture of the fossil beds being postMiddle Jurassic is imprudently based, are self-contradictory or otherwise misleading. Thus, the postMiddle Jurassic age of the Daohugou beds as an unfounded conclusion can readily be dismissed.

  10. Geology, tephrochronology, radiometric ages, and cross sections of the Mark West Springs 7.5 degree quadrangle, Sonoma and Napa counties, California

    Science.gov (United States)

    McLaughlin, R.J.; Sarna-Wojicki, A. M.; Fleck, R.J.; Wright, W.H.; Levin, V.R.G.; Valin, Z.C.

    2004-01-01

    This geologic map database and cross sections presents new geologic mapping by the authors in addition to new radiometric ages and tephrochronology of volcanic rock units. The map database depicts the general distribution of bedrock and surficial deposits in the mapped area and provides a context for interpreting the evolution of active faults in the region. Together with the accompanying PDF file (SIM2858-pamphlet.pdf), it provides current information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The scale of the source maps limits the spatial resolution (scale) of the database to 1:24,000 or smaller.

  11. Using the Sonoran Desert test site to monitor the long-term radiometric stability of the Landsat TM/ETM+ and Terra MODIS sensors

    Science.gov (United States)

    Angal, A.; Xiong, X.; Choi, T.; Chander, G.; Wu, A.

    2009-01-01

    Pseudo-invariant ground targets have been extensively used to monitor the long-term radiometric calibration stability of remote sensing instruments. The NASA MODIS Characterization Support Team (MCST), in collaboration with members from the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center, has previously demonstrated the use of pseudo-invariant ground sites for the long-term stability monitoring of Terra MODIS and Landsat 7 ETM+ sensors. This paper focuses on the results derived from observations made over the Sonoran Desert. Additionally, Landsat 5 TM data over the Sonoran Desert site were used to evaluate the temporal stability of this site. Top-ofatmosphere (TOA) reflectances were computed for the closely matched TM, ETM+, and MODIS spectral bands over selected regions of interest. The impacts due to different viewing geometries, or the effect of test site Bi-directional Reflectance Distribution Function (BRDF), are also presented. ?? 2009 SPIE.

  12. 无人机航放测量新技术的示范应用%The applied demonstration of new drone aero-radiometric technique

    Institute of Scientific and Technical Information of China (English)

    高国林; 邱崇涛; 王景丹; 沈正新; 李江坤

    2016-01-01

    基于我国首套无人机平台的航放测量系统,简要介绍了无人机航放探测原理及校准、测量、数据处理等技术;通过在新疆克拉玛依和喀什等地区开展的应用示范工作,获取了内容丰富的无人机航放测量结果;结合地质、遥感资料以及岩石放射性参数、航放异常检查结果,对区域航放特征和局部航放异常进行综合分析评价,说明了该技术在基础地质调查、放射性矿产勘查和非放射性矿产调查中的有效性;最后对比有人机和无人机的航放测量效果并进行了简单评价.%Based on the first airborne gamma ray spectrometer on the drone in China,this paper briefly described related techniques such as principle,calibration, measurement,and data processing.Through the demonstration surveys in both Karamay and Kashi,rich re-sults of aero radiometric survey were obtained.Combined with regional geology,remote sensing data,radioactivity characteristics of rocks and the results of ground-checking,the authors analyzed and evaluated the regional features and the local anomalies of aero-radiometric survey comprehensively.The results show that the technique is an effective method in such aspects as basic geological investigation and exploration of radioactive and non-radioactive mineral resource.Finally,the measurement technique was evaluated briefly for the drone based on the fix-wing craft.

  13. Volcanic Event Recurrence Rate Model (VERRM): Incorporating Radiometric Ages, Volcanic Stratigraphy and Paleomagnetic Data into a Monte Carlo Simulation to Estimate Uncertainty in Recurrence Rate through Time

    Science.gov (United States)

    Wilson, J. A.; Richardson, J. A.

    2015-12-01

    Traditional methods used to calculate recurrence rate of volcanism, such as linear regression, maximum likelihood and Weibull-Poisson distributions, are effective at estimating recurrence rate and confidence level, but these methods are unable to estimate uncertainty in recurrence rate through time. We propose a new model for estimating recurrence rate and uncertainty, Volcanic Event Recurrence Rate Model. VERRM is an algorithm that incorporates radiometric ages, volcanic stratigraphy and paleomagnetic data into a Monte Carlo simulation, generating acceptable ages for each event. Each model run is used to calculate recurrence rate using a moving average window. These rates are binned into discrete time intervals and plotted using the 5th, 50th and 95th percentiles. We present recurrence rates from Cima Volcanic Field (CA), Yucca Mountain (NV) and Arsia Mons (Mars). Results from Cima Volcanic Field illustrate how several K-Ar ages with large uncertainties obscure three well documented volcanic episodes. Yucca Mountain results are similar to published rates and illustrate the use of using the same radiometric age for multiple events in a spatially defined cluster. Arsia Mons results show a clear waxing/waning of volcanism through time. VERRM output may be used for a spatio-temporal model or to plot uncertainty in quantifiable parameters such as eruption volume or geochemistry. Alternatively, the algorithm may be reworked to constrain geomagnetic chrons. VERRM is implemented in Python 2.7 and takes advantage of NumPy, SciPy and matplotlib libraries for optimization and quality plotting presentation. A typical Monte Carlo simulation of 40 volcanic events takes a few minutes to couple hours to complete, depending on the bin size used to assign ages.

  14. Programmable performance - One aspect of smart sensing systems

    Science.gov (United States)

    Jobson, D. J.

    1980-01-01

    Programmable performance is the ability to flexibly alter basic spatial, spectral, and radiometric system response as a function of time. In this paper programmable performance is defined as a functional element of smart sensor systems for the 1990's. The uses and benefits of these classes of sensor systems are discussed with reference to multispectral scanners of the earth's surface. An overall technology trend is identified which couples a high degree of sensor performance flexibility to a need for advanced device technology developments.

  15. A Radiometric Varying Robust Stereo Matching Algorithm%一种光照度不一致鲁棒立体匹配算法

    Institute of Scientific and Technical Information of China (English)

    曹晓倩; 马彩文

    2014-01-01

    In order to improve the matching rate of radiometric varying stereo images, a novel stereo matching algorithm based on the improved epipolar distance transformation in log-chromaticity space is proposed. In log-chromaticity space, the intensity proportion of stereo image pairs is computed firstly according to raw disparity map;secondly, epipolar distance transformation is performed on left and right images respectively using proportional intensity deviation parameters;at last, the final disparity map is acquired by the belief propagation method. Theoretically, the matching rate of the proposed algorithm is independent of radiometric varying situations including differences in light source’s position, spectrum, intensity and the parameters setting of cameras. Experimental results indicate that the matching rate of the proposed algorithm is improved at most 60%comparing with the original epipolar distance transformation algorithm and at most 78%comparing with the state of art algorithms such as ANCC (adaptive normalized cross correlation) when applied to textureless image pairs.%为了提高光照度不一致立体图像对的匹配率,提出一种基于对数颜色空间下改进极线距离变换的立体匹配算法。在对数颜色空间下,首先根据初始视差图计算立体图像对的灰度比;然后,采用与灰度比成比例的灰度误差系数,分别对左右图像进行极线距离变换;最后利用置信度传播算法计算视差图。理论上,本文算法的匹配结果不会受光源位置、光源谱分布、光照强度以及摄像机参数设置等光照度不一致因素的影响。实验表明:本文算法的匹配率相对于原始极线距离变换算法最多可提高60%;而应用于弱纹理图像对时,相对于当前先进的自适应归一化算法,匹配率最多可提高78%。

  16. Analysis of the Positive Pathogenic Bacteria and the Alarm Time by Automated Blood Culture System%全自动血培养仪阳性病原菌种类及报警时间分析

    Institute of Scientific and Technical Information of China (English)

    廖忠; 叶杰; 陈振南

    2013-01-01

    Objective:To analyse the positive pathogenic bacteria of the blood culture and the alarm time.Method:A total of 2180 blood specimens were collected from April 2010 to April 2012 in our hospital and the specimens were detected by BD BACTEC 9120 automated blood culture system.Analyse the bacterial species and alarm time of the blood specimens in aerobic and anaerobic bottles.Result:282 blood culture positive samples were isolated from the 2180 blood culture samples,which was true positive in 263 cases.The positive rate of the blood culture was 12.1%,which 269 strains of pathogens were isolated,including Gram-positive cocci accounted for 40.1%,gram negative bacilli 57.2%,fungi 2.6%.However the positive rate was just 15.6% only from aerobic bottles and 5.7% only from anaerobic ones,and 20.9% from both of the two bottles.The fastest positive time was 5.02 h, during the test,the number of positive reactions accounted for 69.1% in 24 hours,92.5% in 48 hours,and 97% in 72 hours.The false positive rate was 0.87%, and the false negative rate was 0.52%.Conclusion:Application of both aerobic and anaerobic cultivation detected by BD BACTEC 9120 automated blood culture system can improve the blood culture positive rate,shorten the positive detection time.%  目的:分析血培养阳性病原菌种类及仪器报警时间.方法:用 BD BACTEC 9120全自动血培养仪检测笔者所在医院2010年4月-2012年4月共计2180份血标本,分析血标本在需氧瓶和厌氧瓶中生长细菌的种类及仪器报警时间.结果:2180例血培养标本中报警阳性282例,其中真阳性263例,阳性率为12.1%.分离出细菌269株,其中革兰阳性球菌占40.1%,革兰阴性杆菌占57.2%,真菌占2.6%.其中仅需氧瓶报阳的阳性率为6.3%,仅厌氧瓶报阳的阳性率为2.8%,需氧瓶及厌氧瓶均报阳的阳性率为2.9%;最快阳性检出时间为5.02 h,24 h内检出的阳性数占69.1%,48 h 检出的阳性数占92.5%,72 h 检出的阳性数占97.0%

  17. Determinação indireta do teor de hematita no solo a partir de dados de colorimetria e radiometria Indirect determination of hematite content in soil from colorimetric and radiometric data

    Directory of Open Access Journals (Sweden)

    Rogério Costa Campos

    2003-04-01

    Full Text Available A cor do solo é uma propriedade que deriva de alguns atributos do próprio solo, entre eles, do teor de óxidos de ferro. Desse modo, o estabelecimento de relações funcionais entre dados referentes à caracterização da cor e teores de óxidos de ferro apresenta-se como uma alternativa simples e rápida para a semiquantificação dos teores dos referidos óxidos. O objetivo do presente trabalho foi semiquantificar os teores de hematita na fração argila, em laboratório, a partir da avaliação automatizada das cores de amostras de solos do Estado de São Paulo, utilizando um colorímetro e um espectrorradiômetro. Os dados obtidos por radiometria serviram de base para a determinação da cor nos sistemas L*a*b* e Munsell, bem como para o cálculo de índices de avermelhamento (IAVs. Os IAVs apresentaram dependência funcional dos teores de hematita e foram as melhores relações verificadas com os índices determinados a partir de cores no sistema L*a*b*. Modelos exponenciais, baseados em dados obtidos por sensores, mostram-se adequados na predição dos teores de hematita.The soil color is a property that derives from some soil attributes, among them, the iron oxides content. So, the establishment of functional relationships between data related to soil color characterization and iron oxides content consists on a very useful procedure for the semiquantitative determination of the soil iron oxides contents. The present research aimed at estimating the hematite content clay fraction, in laboratory, from data related to soil color obtained by using automatic devices. Soil samples from São Paulo State, Brazil, had their clay fraction hematite contents semiquantitavely determined by the association of chemical and physical methods and their colors evaluated in laboratory through measurements made with a colorimeter and a spectroradiometer. The radiometric data were used to the determination of soil color in L*a*b* and Munsell systems and to

  18. Dose of radiometric exposure of granites from state of Rondonia, Brazil; Dose de exposicao radiometrica de granitos do estado de Rondonia, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Bonotto, Daniel Marcos; Leite Junior, Washington Barbosa, E-mail: danielbonotto@yahoo.com.br, E-mail: wleite@rc.unesp.br [Instituto de Geociencias e Ciencias Exatas (IGCE/UNESP), Rio Claro, SP (Brazil); Payolla, Bruno Leonelo, E-mail: bruno@eln.gov.br [Centrais Eletricas do Norte do Brasil S.A., ELETRONORTE, Brasilia, DF (Brazil); Bettencourt, Jorge da Silva, E-mail: jsbetten@usp.br [Instituto de Geociencias (IG), USP, Sao Paulo, SP (Brazil); Silveira, Ene Gloria da, E-mail: ene_gloria@yahoo.com.br [Fundacao Universidade Federal de Rondonia, UNIR, Porto Velho, RO (Brazil)

    2009-07-15

    This work evaluated the activity concentration of the radioelements K, eU and eTh in samples of granites from Rondonia State, Brazil. The statistical analysis of the data indicated that they fit lognormal distributions. The modal values correspond to about 11% for K, 29 ppm for eU and 85 ppm for eTh. Direct significant correlations were found among the concentrations of the three radioelements, i.e. r = 0.71 (between K and eU), r = 0.72 (between K and eTh), and r = 0.72 (between eU and eTh), suggesting congruency of their accumulation in minerals occurring in the rocks analyzed. The activity concentration data allowed estimate the absorbed dose rate in air at 1 m above the ground, which also fits a lognormal distribution characterized by a mode of 2.7 mSv/y that is slightly higher than the average worldwide exposure of 2.4 mSv/y. The results obtained also allowed evaluate if the granites analyzed are radiometrically suitable as building and ornamental materials. (author)

  19. Radiometric ligand binding assay for C-reactive protein. Complexed C-reactive protein is not detectable in acute phase serum.

    Science.gov (United States)

    De Beer, F C; Shine, B; Pepys, M B

    1982-10-01

    A radiometric ligand binding assay for human C-reactive protein (CRP) was established using pneumococcal C polysaccharide (CPS) coupled to magnetizable cellulose particles as the solid phase ligand. Competition for binding to the solid phase between 125I-CRP and unlabelled CRP permitted detection of 30 micrograms/l of CRP and the precise assay of concentrations up to 3000 micrograms/l. Identical results were obtained when the assay was used to quantitate isolated pure CRP and pure CRP added to normal human serum. However in vitro addition of known ligands for CRP to acute phase serum resulted in lowering of the apparent CRP concentration in this assay and addition of as little as 1 microgram/l of free CPS or 1 mg/l of lecithin was demonstrable in this way. A combination of the ligand binding assay and the standard electroimmunoassay for CRP was therefore used to test acute phase sera for the presence of CRP complexed in vitro. No evidence of complexed CRP was detected among sera containing between 1-319 mg/l of CRP from patients with Hodgkin's disease (10), rheumatoid arthritis (10), Crohn's disease (19) and various microbial infections (11), including six with subacute bacterial endocarditis. Since it is likely that CRP does form complexes with its ligands in the plasma these results suggest that complexed CRP is rapidly cleared from the circulation.

  20. Radiometric and geometric evaluation of GeoEye-1, WorldView-2 and Pléiades-1A stereo images for 3D information extraction

    Science.gov (United States)

    Poli, D.; Remondino, F.; Angiuli, E.; Agugiaro, G.

    2015-02-01

    Today the use of spaceborne Very High Resolution (VHR) optical sensors for automatic 3D information extraction is increasing in the scientific and civil communities. The 3D Optical Metrology (3DOM) unit of the Bruno Kessler Foundation (FBK) in Trento (Italy) has collected VHR satellite imagery, as well as aerial and terrestrial data over Trento for creating a complete testfield for investigations on image radiometry, geometric accuracy, automatic digital surface model (DSM) generation, 2D/3D feature extraction, city modelling and data fusion. This paper addresses the radiometric and the geometric aspects of the VHR spaceborne imagery included in the Trento testfield and their potential for 3D information extraction. The dataset consist of two stereo-pairs acquired by WorldView-2 and by GeoEye-1 in panchromatic and multispectral mode, and a triplet from Pléiades-1A. For reference and validation, a DSM from airborne LiDAR acquisition is used. The paper gives details on the project, dataset characteristics and achieved results.

  1. Determination of plutonium isotopes (238Pu, 239Pu, 240Pu, 241Pu) in environmental samples using radiochemical separation combined with radiometric and mass spectrometric measurements.

    Science.gov (United States)

    Xu, Yihong; Qiao, Jixin; Hou, Xiaolin; Pan, Shaoming; Roos, Per

    2014-02-01

    This paper reports an analytical method for the determination of plutonium isotopes ((238)Pu, (239)Pu, (240)Pu, (241)Pu) in environmental samples using anion exchange chromatography in combination with extraction chromatography for chemical separation of Pu. Both radiometric methods (liquid scintillation counting and alpha spectrometry) and inductively coupled plasma mass spectrometry (ICP-MS) were applied for the measurement of plutonium isotopes. The decontamination factors for uranium were significantly improved up to 7.5 × 10(5) for 20 g soil compared to the level reported in the literature, this is critical for the measurement of plutonium isotopes using mass spectrometric technique. Although the chemical yield of Pu in the entire procedure is about 55%, the analytical results of IAEA soil 6 and IAEA-367 in this work are in a good agreement with the values reported in the literature or reference values, revealing that the developed method for plutonium determination in environmental samples is reliable. The measurement results of (239+240)Pu by alpha spectrometry agreed very well with the sum of (239)Pu and (240)Pu measured by ICP-MS. ICP-MS can not only measure (239)Pu and (240)Pu separately but also (241)Pu. However, it is impossible to measure (238)Pu using ICP-MS in environmental samples even a decontamination factor as high as 10(6) for uranium was obtained by chemical separation.

  2. Evaluation of element migration from food plastic packagings into simulated solutions using radiometric method; Avaliacao da migracao de elementos de embalagens plasticas de alimentos para solucoes simulantes pelo metodo radiometrico

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Eufemia Paez [Escola SENAI ' Fundacao Zerrenner' , Sao Paulo, SP (Brazil)]. E-mail: vlcastro@dialdata.com.br; Saiki, Mitiko [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: mitiko@ipen.br; Wiebeck, Helio [Sao Paulo Univ., SP (Brazil). Escola Politecnica]. E-mail: hwiebeck@usp.br

    2005-07-01

    In the present study a radiometric method was established to determine the migration of elements from food plastic packagings to a simulated acetic acid solution. This radiometric method consisted of irradiating plastic samples with neutrons at IEA-R1 nuclear reactor for a period of 16 hours under a neutron flux of 10{sup 12} n cm{sup -2} s{sup -1} and, then to expose them to the element migration into a simulated solution. The radioactivity of the activated elements transferred to the solutions was measured to evaluate the migration. The experimental conditions were: time of exposure of 10 days at 40 deg C and 3% acetic acid solution was used as simulated solution, according to the procedure established by the National Agency of Sanitary Monitoring (ANVISA). The migration study was applied for plastic samples from soft drink and juice packagings. The results obtained indicated the migration of elements Co, Cr and Sb. The advantage of this methodology was no need to analyse the blank of simulantes, as well as the use of high purity simulated solutions. Besides, the method allows to evaluate the migration of the elements into the food content instead of simulated solution. The detention limits indicated high sensitivity of the radiometric method. (author)

  3. Integration Technique of Multi-source Information Dominated by Aerial Radiometric Measure-ment and Its Application

    Institute of Scientific and Technical Information of China (English)

    刘德长; 孙茂荣; 朱德龄; 张静波; 何建国

    1994-01-01

    This paper aims at exploring a digital image integration technique for multi-geoscience in formation dominated by airborne gamma-ray data, especially deeply discussing the method to secondly develop those aerial data by combining digital image processing system with the colored mapping system. Utilizing this technique , we have analyzed the geologic environment of uranium mineralization of Lianshanguan area > Liaoning Province, provided some important background information for further seeking of minerals. Meanwhile , experimental studies have been made to predict uranium mineralization , and evident results aquired. Practise shows that this new technique offers prospecting significance for mineral seeking and great practical value in survey of uranium resources.

  4. Geometric and radiometric preprocessing of airborne visible/infrared imaging spectrometer (AVIRIS) data in rugged terrain for quantitative data analysis

    Science.gov (United States)

    Meyer, Peter; Green, Robert O.; Staenz, Karl; Itten, Klaus I.

    1994-01-01

    A geocoding procedure for remotely sensed data of airborne systems in rugged terrain is affected by several factors: buffeting of the aircraft by turbulence, variations in ground speed, changes in altitude, attitude variations, and surface topography. The current investigation was carried out with an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) scene of central Switzerland (Rigi) from NASA's Multi Aircraft Campaign (MAC) in Europe (1991). The parametric approach reconstructs for every pixel the observation geometry based on the flight line, aircraft attitude, and surface topography. To utilize the data for analysis of materials on the surface, the AVIRIS data are corrected to apparent reflectance using algorithms based on MODTRAN (moderate resolution transfer code).

  5. Distribution of Zinc and Cadmium in Tissues of Giant Reed (Arundo Donax L.: Sequential Extraction - Radiometric Study

    Directory of Open Access Journals (Sweden)

    Richveisová Barbora Micháleková

    2014-06-01

    Full Text Available Heavy metals are taken up by the vascular plant root system from water solutions in cationic forms. Subsequently, during both short and long distance transport to other plant tissues, cation forms are incorporated to many bioorganic compounds differing in stability, ionic character and physico-chemical properties such as solubility in lipid structures and mobility across cell membrane systems. Many sequential and single step extraction methods have been elaborated for characterization of the role of individual components of plant cells components in transport and detoxication of heavy metals. In our study, dry biomass of giant reed (Arundo donax L. grown in hydroponic media spiked with 65ZnCl2 and 109CdCl2 was treated with dithizone solutions as complexing ligand in order to convert free Zn2+ and Cd2+ ions to corresponding dithizonates. Treatment with dithizone showed that up to 67 % of the total plant Cd and 56 % of the total plant Zn were transformed to dithizonate complexes extracted with chloroform. Extraction of biomass with Folch reagent showed that up to 48 % of the total root cadmium and up to 18 % of the total shoot cadmium is bound in lipid fraction. Zinc was not found in lipid fraction of root and shoot. Derivatization of the dried root and shoot lipid fraction by dithizone showed that two third of Cd in root and practically all Cd in shoot lipid fraction could be transformed to Cd-dithizonate. Methods of biomass treating with complexing ligands and a method of sequential extraction procedures with non-polar organic solvents and radiotracer methodology seem to be useful methods for the study of metal speciation and distribution in vascular plants

  6. Radiometric temperature reading of a hot ellipsoidal object inside the oral cavity by a shielded microwave antenna put flush to the cheek

    Science.gov (United States)

    Klemetsen, Øystein; Jacobsen, Svein; Birkelund, Yngve

    2012-05-01

    A new scheme for detection of vesicoureteral reflux (VUR) in children has recently been proposed in the literature. The idea is to warm bladder urine via microwave exposure to at least fever temperatures and observe potential urine reflux from the bladder back to the kidney(s) by medical radiometry. As a preliminary step toward realization of this detection device, we present non-invasive temperature monitoring by use of microwave radiometry in adults to observe temperature dynamics in vivo of a water-filled balloon placed within the oral cavity. The relevance of the approach with respect to detection of VUR in children is motivated by comparing the oral cavity and cheek tissue with axial CT images of young children in the bladder region. Both anatomical locations reveal a triple-layered tissue structure consisting of skin-fat-muscle with a total thickness of about 8-10 mm. In order to mimic variations in urine temperature, the target balloon was flushed with water coupled to a heat exchanger, that was moved between water baths of different temperatures, to induce measurable temperature gradients. The applied radiometer has a center frequency of 3.5 GHz and provides a sensitivity (accuracy) of 0.03 °C for a data acquisition time of 2 s. Three different scenarios were tested and included observation through the cheek tissue with and without an intervening water bolus compartment present. In all cases, radiometric readings observed over a time span of 900 s were shown to be highly correlated (R ˜ 0.93) with in situ temperatures obtained by fiberoptic probes.

  7. Identifying areas with potential for high indoor radon levels: analysis of the national airborne radiometric reconnaissance data for California and the Pacific Northwest

    Energy Technology Data Exchange (ETDEWEB)

    Moed, B.A.; Nazaroff, W.W.; Nero, A.V.; Schwehr, M.B.; Van Heuvelen, A.

    1984-04-01

    Radon-222 is an important indoor air pollutant which, through the inhalation of its radioactive decay products, accounts for nearly half of the effective dose equivalent to the public from natural ionizing radiation. Indoor radon concentrations vary widely, largely because of local and regional differences in the rate of entry from sources. The major sources are soil and rock near building foundations, earth-based building materials, and domestic water; of these, soil and rock are thought to be predominant in many buildings with higher-than-average concentrations. Thus, one key factor in determining radon source potential is the concentration of radium, the progenitor of radon, in surficial rocks and soils. Aerial radiometric data were analyzed, collected for the National Uranium Resource Evaluation Program, for seven Western states to: (1) provide information on the spatial distribution of radium contents in surficial geologic materials for those states; and (2) investigate approaches for using the aerial data, which have been collected throughout the contiguous United States and Alaska, to identify areas where high indoor radon levels may be common. Radium concentrations were found to be relatively low in central and western portions of Washington, Oregon, and northern California; they were found to be relatively high in central and southern California. A field validation study, conducted along two flight-line segments near Spokane, Washington, showed close correspondence between the aerial data, in situ measurements of both radium content and radon flux from soil, and laboratory measurements of both radium content of and radon emanation rate from soil samples. 99 references, 11 figures, 3 tables.

  8. Development of radiometric methods for radioactive waste characterization; Desenvolvimento de metodos radiometricos para a caracterizacao de rejeitos radioativos

    Energy Technology Data Exchange (ETDEWEB)

    Tessaro, Ana Paula Gimenes

    2015-07-01

    The admission of radioactive waste in a final repository depends among other things on the knowledge of the radioisotopic inventory of the waste. To obtain this information it is necessary make the primary characterization of the waste so that it is composition is known, to guide the next steps of radioactive waste management. Filter cartridges that are used in the water polishing system of IEA-R1 research reactor is one of these wastes. The IEA-R1 is a pool-type research reactor, operating between 2 and 5 MW that uses water as coolant, moderator and biological shield. Besides research, it is used for production of radioisotopes and irradiation of samples with neutron and gamma beams. It is located in the Nuclear and Energy Research Institute at the University of Sao Paulo campus. The filter cartridges are used to retain particles that are suspended in the cooling water. When filters become saturated and are unable to maintain the flow within the established limits, they are replaced and disposed of as radioactive waste. After a period of decay, they are sent to the Radioactive Waste Management Department. The aim of this work is to present the studies to determine the activity of gamma emitters present in the cartridge filters. The activities were calculated using the dose rates measured with hand held detectors, after the ratios of the emission rates of photons were evaluated by gamma spectrometry, by the Point Kernel method, which correlates the activity of a source with dose rates at various distances. The method described can be used to determine routinely the radioactive inventory of these filters, avoiding the necessity of destructive radiochemical analysis, or the necessity of calibrating the geometry of measurement. (author)

  9. Electro-optical system analysis and design a radiometry perspective

    CERN Document Server

    Willers, Cornelius J

    2013-01-01

    The field of radiometry can be dangerous territory to the uninitiated, faced with the risk of errors and pitfalls. The concepts and tools explored in this book empower readers to comprehensively analyze, design, and optimize real-world systems. This book builds on the foundation of solid theoretical understanding, and strives to provide insight into hidden subtleties in radiometric analysis. Atmospheric effects provide opportunity for a particularly rich set of intriguing observations.

  10. A Microwave Radiometric Method to Obtain the Average Path Profile of Atmospheric Temperature and Humidity Structure Parameters and Its Application to Optical Propagation System Assessment

    Science.gov (United States)

    Manning, Robert M.; Vyhnalek, Brian E.

    2015-01-01

    The values of the key atmospheric propagation parameters Ct2, Cq2, and Ctq are highly dependent upon the vertical height within the atmosphere thus making it necessary to specify profiles of these values along the atmospheric propagation path. The remote sensing method suggested and described in this work makes use of a rapidly integrating microwave profiling radiometer to capture profiles of temperature and humidity through the atmosphere. The integration times of currently available profiling radiometers are such that they are approaching the temporal intervals over which one can possibly make meaningful assessments of these key atmospheric parameters. Since these parameters are fundamental to all propagation conditions, they can be used to obtain Cn2 profiles for any frequency, including those for an optical propagation path. In this case the important performance parameters of the prevailing isoplanatic angle and Greenwood frequency can be obtained. The integration times are such that Kolmogorov turbulence theory and the Taylor frozen-flow hypothesis must be transcended. Appropriate modifications to these classical approaches are derived from first principles and an expression for the structure functions are obtained. The theory is then applied to an experimental scenario and shows very good results.

  11. Measure of the temperature-depth profile by and S band radiometric receiver for biomedical applications; Mesure du profil de temperature en profondeur par un recepteur radiometrique a bande S pour applications biomedicales

    Energy Technology Data Exchange (ETDEWEB)

    Bri, S. [Universite My, Lab. de Genie Electrique de Meknes (LGEM), Dept. Genie Electrique, Meknes (Morocco); Bri, S.; Zenkouar, L.; Bellarbi, L. [Laboratoire d' Electronique et Communications (LEC), EMI, Rabat (Morocco); Saadi, A.; Habibi, M. [Universite Ibn Tofail, Lab. d' Automatique et de Micro-ondes (LAMO), Faculte des Sciences, Dept. de Physique, Kenitra (Morocco); Mamouni, A. [Lille-1 Univ., IEMN, UMR CNRS 8520, 59 - Villeneuve-d' Ascq (France)

    2004-04-01

    The authors present a method for measuring the temperature-depth profile in a lossy material by applying Kalman algorithm to radiometric signals. The method employs a correlation microwave radiometer. It uses both short-range weighting functions and the delay times of the correlator. An experimental verification of this new thermal inversion approach is presented. The thermal noise is received in the microwave domain, by a S band radiometer by using an automatic experimental bench. A feature of this method is that it can be used in biomedical applications. (author)

  12. Clinical presentation and diagnostic approach in cases of genitourinary tuberculosis

    Directory of Open Access Journals (Sweden)

    Rakesh Kapoor

    2008-01-01

    Full Text Available Objective: We herein describe the various modes of presentation in genitourinary tuberculosis (GUTB and a simple diagnostic approach to it. Materials and Methods: We made a literature search through Medline database and various other peer-reviewed online journals to study the various modes of presentation in GUTB. We reviewed over 100 articles published in the last 10 years (1998 -- 2007, which were tracked through the key words like GUTB and extrapulmonary tuberculosis. Results: GUTB has varied presentation and the most common way of presentation is in the form of irritative voiding symptoms, which are found in more than 50% of the patients. The usual frequency of organ involvement is: kidney, bladder, fallopian tube, and scrotum. The usual tests used to diagnose GUTB are the demonstration of mycobacterium in urine or body fluid and radiographic examination. Intravenous urography (IVU has been considered to be one of the most useful tests for the anatomical as well as the functional details of kidneys and ureters. In cases of renal failure, MRI can be used. Newer examinations such as radiometric liquid culture systems (i.e., BACTEC ® , Becton Dickinson,USA and polymerase chain reaction (PCR give rapid results and are highly sensitive in the identification of mycobacterium. Conclusion: GUTB can involve any part of the genitourinary system and presentation may vary from vague urinary symptoms to chronic kidney disease. Newer tests like radiometric liquid culture systems and polymerase chain reaction give rapid results and carry high diagnostic value.

  13. The Precambrian Singo Igneous Complex (SIC), Uganda Revealed As a Mineralized Nested Ring Complex Using High Resolution Airborne Radiometric and Magnetic Data.

    Science.gov (United States)

    Atekwana, E. A.; LePera, A.; Abdelsalam, M. G.; Katumwehe, A. B.; Achang, M.

    2014-12-01

    We used high-resolution radiometrics and aeromagnetic data to investigate the Precambrian Singo Igneous Complex (SIC) in Uganda. The SIC covers an area of about 700 km² and is host to hydrothermally formed economic minerals such as Gold and Tungsten. The distribution of the ore deposits is not well known and current mine workings are limited to the western margins of the complex. Our objectives were to (1) provide a detailed geological map of the SIC and surrounding, (2) investigate relationships between preserved intrusive bodies and Precambrian tectonic structures to provide insight into emplacement of the complex, (3) examine links between magma emplacement, discontinuities and hydrothermal alteration (4) generate two-dimensional (2-D) and three-dimensional (3-D) models of the complex to understand its subsurface geometry, (5) investigate the relationship between the structure of the SIC and mineral occurrences as an aid to future exploration programs. Edge enhancement filters such as the analytical signal, vertical and tilt derivatives were applied to the magnetic data. In addition, 2-D and 3-D models were produced using Geosoft's GM-SYS 2-D and Voxi modules. The filtered data provided unprecedented structural details of the complex and revealed the following: (1) the edge of the SIC is characterized by higher magnetic susceptibility and Thorium content than its interior, (2) the SIC is characterized by eight to nine nested ring complexes with diameters ranging from 2.5 to 14 km, (3) the 3-D inversion suggests near vertical walls for the ring complexes extending to a depth of about 7 km, (4) the SIC was emplaced within a Precambrian folded basement and was traversed by numerous NW-trending dykes and (5) present day mining activities are concentrated within the folded basement units although occurrences of Tungsten and Gold are found associated with the highly magnetized edge of the ring complexes. We interpret the highly magnetized edges of the nested ring

  14. Radiometric calibration for MWIR cameras

    Science.gov (United States)

    Yang, Hyunjin; Chun, Joohwan; Seo, Doo Chun; Yang, Jiyeon

    2012-06-01

    Korean Multi-purpose Satellite-3A (KOMPSAT-3A), which weighing about 1,000 kg is scheduled to be launched in 2013 and will be located at a sun-synchronous orbit (SSO) of 530 km in altitude. This is Korea's rst satellite to orbit with a mid-wave infrared (MWIR) image sensor, which is currently being developed at Korea Aerospace Research Institute (KARI). The missions envisioned include forest re surveillance, measurement of the ocean surface temperature, national defense and crop harvest estimate. In this paper, we shall explain the MWIR scene generation software and atmospheric compensation techniques for the infrared (IR) camera that we are currently developing. The MWIR scene generation software we have developed taking into account sky thermal emission, path emission, target emission, sky solar scattering and ground re ection based on MODTRAN data. Here, this software will be used for generating the radiation image in the satellite camera which requires an atmospheric compensation algorithm and the validation of the accuracy of the temperature which is obtained in our result. Image visibility restoration algorithm is a method for removing the eect of atmosphere between the camera and an object. This algorithm works between the satellite and the Earth, to predict object temperature noised with the Earth's atmosphere and solar radiation. Commonly, to compensate for the atmospheric eect, some softwares like MODTRAN is used for modeling the atmosphere. Our algorithm doesn't require an additional software to obtain the surface temperature. However, it needs to adjust visibility restoration parameters and the precision of the result still should be studied.

  15. Rapid susceptibility testing of Mycobacterium tuberculosis by bioluminescence assay of mycobacterial ATP

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, L.E.; Hoffner, S.E.; Ansehn, S.

    1988-08-01

    Mycobacterial growth was monitored by bioluminescence assay of mycobacterial ATP. Cultures of Mycobacterium tuberculosis H37Rv and of 25 clinical isolates of the same species were exposed to serial dilutions of ethambutol, isoniazid, rifampin, and streptomycin. A suppression of ATP, indicating growth inhibition, occurred for susceptible but not resistant strains within 5 to 7 days of incubation. Breakpoint concentrations between susceptibility and resistance were determined by comparing these results with those obtained by reference techniques. Full agreement was found in 99% of the assays with the resistance ratio method on Lowenstein-Jensen medium, and 98% of the assays were in full agreement with the radiometric system (BACTEC). A main advantage of the bioluminescence method is its rapidity, with results available as fast as with the radiometric system but at a lower cost and without the need for radioactive culture medium. The method provides kinetic data concerning drug effects within available in vivo drug concentrations and has great potential for both rapid routine susceptibility testing and research applications in studies of drug effects on mycobacteria.

  16. Sedimentation rates of Sao Paulo coast by carbonate calcium content: an alternative for radiometric methods; Levantamento das taxas de sedimentacao do litoral de Sao Paulo a partir do teor de carbonato de calcio: uma alternativa aos metodos radiometricos

    Energy Technology Data Exchange (ETDEWEB)

    Figueira, Rubens C.L. [Universidade Cruzeiro do Sul, Sao Paulo, SP (Brazil). Centro de Tecnologia e Ciencias Exatas]. E-mail: figueira@ipen.br; figueiraru@yahoo.com.br; Tessler, Moyses G.; Mahiques, Michel M. de; Fukumoto, Marina M.M. [Sao Paulo Univ., SP (Brazil). Inst. Oceanografico. Dept. de Oceanografia Geologica]. E-mail: mgtessle@usp.br; mahiques@usp.br; marina@io.usp.br

    2005-07-01

    In this work it is presented a methodology of sedimentation rate determination by carbonate calcium content. The technique developed is an alternative for radiometric methods where are used {sup 210}Pb{sub unsupported} and {sup 137}Cs radionuclides. This methodology consisted in a determination of chronologic event along sedimentary column. In this work two events were used: the tsunami in Sao Vicente city, in 1542, and the maximum of 1{sup 37}Cs radioactive fallout from nuclear atmospheric tests, in 1963-65. It was possible to calculate the accumulation rate of total sediments and precipitation rate of calcium carbonate, which values are necessary to determine the age of slice from sedimentary column and consequently the sedimentation rate. The results obtained for Sao Paulo Continental Shelf had a good agreement with radiometric methods, the values were: 0.32({+-}0.12) cm.y{sup -1}, 0.23({+-}0.08) cm.y{sup -1} and 0.25({+-}0.9) cm.y{sup -1} for carbonate method, {sup 210}Pb{sub unsupported} (CIC model) and {sup 137}Cs (radioactive fallout), respectively. The analytical procedure using carbonate calcium content showed to be fast, efficient and with low cost. However, it must be used carefully, because the results can be strongly influenced by environmental factors which could change the precipitation rate of calcium carbonate and it could cause errors on sedimentation rate values in a determined area (author)

  17. Evaluation of MGIT 960 System for the Second-Line Drugs Susceptibility Testing of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Hyejin Kim

    2013-01-01

    Full Text Available Many laboratories validate DST of the second-line drugs by BACTEC MGIT 960 system. The objective of this study is to evaluate the critical concentration and perform DST for the 2nd line drugs. We evaluated 193 clinical strains of M. tuberculosis isolated from patients in South Korea. Testing the critical concentration of six second-line drugs was performed by MGIT 960 and compared with L-J proportion method. The critical concentration was determined to establish the most one that gave the difference between drug resistance and susceptibility in MGIT960 system. Good agreement of the following concentrations was found: Concordance was 95% for 0.5 μg/mL of moxifloxacin; 93.6%, 1.0 μg/mL of levofloxacin; 97.5%, 2.5 μg/mL of kanamycin; 90.6%, 2.5 μg/mL of capreomycin; 86.2%, 5.0 μg/mL of ethionamide; and 90.8%, 2.0 μg/mL of ρ-aminosalicylic acid. The critical concentrations of the four drugs, moxifloxacin, levofloxacin, kanamycin, and capreomycin, were concordant and reliable for testing 2nd line drug resistance. Further study of ethionamide and ρ-aminosalicylic acid is required.

  18. Diagnostic issues, clinical characteristics, and outcomes for patients with fungemia

    DEFF Research Database (Denmark)

    Arendrup, Maiken Cavling; Sulim, Sofia; Holm, Anette;

    2011-01-01

    . Blood culture positivity varied by system, species, and procedure. Thus, cases with concomitant bacteremia were reported less commonly by BacT/Alert than by the Bactec system (9% [11/124 cases] versus 28% [53/192 cases]; P

  19. Diagnostic Issues, Clinical Characteristics, and Outcomes for Patients with Fungemia

    DEFF Research Database (Denmark)

    Arendrup, Maiken Cavling; Sulim, Sofia; Holm, Anette;

    2011-01-01

    . Blood culture positivity varied by system, species, and procedure. Thus, cases with concomitant bacteremia were reported less commonly by BacT/Alert than by the Bactec system (9% [11/124 cases] versus 28% [53/192 cases]; P

  20. [Commemorative lecture of receiving Imamura Memorial Prize. I. Studies on bacteriological diagnostic methods for mycobacteria].

    Science.gov (United States)

    Abe, C

    1994-08-01

    Two systems, radiometric BACTEC and biphasic MB-Check, based on liquid media proved to be significantly better than the egg-based solid media for the isolation of mycobacteria from clinical specimens. The difference in the rates of isolation of mycobacteria between two groups of media was more remarkable with smear-negative specimens. The time to the detection of the Mycobacterium tuberculosis complex with MB- Check was shorter than that with the 3% Ogawa egg method but longer than that with BACTEC. The polymerase chain reaction (PCR) using oligonucleotides based on the repetitive sequence (IS986) of M. tuberculosis as a primer and the Gen-Probe Amplified Mycobacterium Tuberculosis Direct Test (MTD), which combines an M. tuberculosis rRNA amplification method with the hybridization protection assay format, were evaluated for detection of M. tuberculosis in clinical samples. Although the sensitivities of the PCR and MTD appeared to be similar to that of culture with the MB-Check system, the two methods based on nucleic acid amplification should be very useful for rapid detection of M. tuberculosis infections without the long time required for culture of M. tuberculosis. Epidemiological studies with techniques which allow differentiation of strains within M. tuberculosis groups are important for limiting the dissemination of the disease. We analyzed six groups of small outbreaks of M. tuberculosis infections by restriction fragment length polymorphism (RFLP) analysis. Five showed identical fingerprints within each group, but one which as also suspected to have a common source of infection showed different banding patterns, emphasizing that RFLP analysis using IS986 as a probe is useful in epidemiological studies of tuberculosis.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Clinical impact of a commercially available multiplex PCR system for rapid detection of pathogens in patients with presumed sepsis

    Directory of Open Access Journals (Sweden)

    Linde Hans-Jörg

    2009-08-01

    Full Text Available Abstract Background Timely identification of pathogens is crucial to minimize mortality in patients with severe infections. Detection of bacterial and fungal pathogens in blood by nucleic acid amplification promises to yield results faster than blood cultures (BC. We analyzed the clinical impact of a commercially available multiplex PCR system in patients with suspected sepsis. Methods Blood samples from patients with presumed sepsis were cultured with the Bactec 9240™ system (Becton Dickinson, Heidelberg, Germany and aliquots subjected to analysis with the LightCycler® SeptiFast® (SF Test (Roche Diagnostics, Mannheim, Germany at a tertiary care centre. For samples with PCR-detected pathogens, the actual impact on clinical management was determined by chart review. Furthermore a comparison between the time to a positive blood culture result and the SF result, based on a fictive assumption that it was done either on a once or twice daily basis, was made. Results Of 101 blood samples from 77 patients, 63 (62% yielded concordant negative results, 14 (13% concordant positive and 9 (9% were BC positive only. In 14 (13% samples pathogens were detected by SF only, resulting in adjustment of antibiotic therapy in 5 patients (7,7% of patients. In 3 samples a treatment adjustment would have been made earlier resulting in a total of 8 adjustments in all 101 samples (8%. Conclusion The addition of multiplex PCR to conventional blood cultures had a relevant impact on clinical management for a subset of patients with presumed sepsis.

  2. ASSESSMENT OF DIAGNOSTIC TECHNIQUES OF URINARY TUBERCULOSIS

    Directory of Open Access Journals (Sweden)

    Khaled Ismail Ghaleb

    2013-06-01

    Full Text Available Khalid Ghaleb a,* , Magdy Afifib, Mohamad El-Gohary c aDepartment of Medical Laboratories, Faculty of Applied Medical Science, King Khalid University, Bisha 551, Saudia Arabia bDepartment of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assuit 71524, Egypt cDepartment of Internal Medicine, Faculty of Medicine, Al-Azhar University, Assuit, Egypt • The corresponding author e-mail: kh_ghaleb4@hotmail.com Current Tel: 00966595388496 Saudia,  00201119338055 Egypt The place of the study worked : Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assuit 71524, Egypt, e-mail: afifi_magdy@ymail.com  Tel: 00201006554961 Abstract Early diagnosis of active tuberculosis remains an elusive challenge. In addition, one third of the world's population is latently infected with Mycobacterium tuberculosis (Mtb and up to 10% of infected individuals develop tuberculosis (TB in their lifetime. In this investigation, the incidence of urinary tuberculosis among renal patients was studied. Three hundreds urine samples were processed for detection of Mtb by Ziehl-Neelson (ZN smear examination, Lowenstein Jensen (LJ medium, radiometric BACTEC460 system as well as polymerase chain reaction (PCR and DNA Enzyme Immunoassay (DEIA test.  Out of 300 urine samples, 2 were positive by both  ZN smears and LJ medium with incidence rate of 0.66 %, 3 positive samples by BACTEC460 culture system with incidence of 1%. PCR assay gave more positive results than smear and culture examination (i.e. 8 positive samples with incidence  rate of 2.6%.  The specificities were 25% for both ZN smears and LJ medium, 37.5% for BACTEC460 culture system, and 100% for PCR test, while  sensitivities of all assays were 100%. Thus PCR is a rapid and sensitive method for the early diagnosis of urinary tuberculosis.   Keywords: List of abbreviations:Acid Fast Bacilli (AFB-Base pair (bp-DNA Enzyme Immunoassay (DEIA  -Extrapulmonary Tuberculosis

  3. Optimal design of sampling and mapping schemes in the radiometric exploration of Chipilapa, El Salvador (Geo-statistics); Diseno optimo de esquemas de muestreo y mapeo en la exploracion radiometrica de Chipilapa, El Salvador (Geo-estadistica)

    Energy Technology Data Exchange (ETDEWEB)

    Balcazar G, M.; Flores R, J.H

    1992-01-15

    As part of the knowledge about the radiometric surface exploration, carried out in the geothermal field of Chipilapa, El Salvador, its were considered the geo-statistical parameters starting from the calculated variogram of the field data, being that the maxim distance of correlation of the samples in 'radon' in the different observation addresses (N-S, E-W, N W-S E, N E-S W), it was of 121 mts for the monitoring grill in future prospectus in the same area. Being derived of it an optimization (minimum cost) in the spacing of the field samples by means of geo-statistical techniques, without losing the detection of the anomaly. (Author)

  4. The millimeter wave radiometric brightness temperatures of target and calculation for the parameters of stealth materials%毫米波装甲目标辐射亮温解及隐身材料主要参数计算

    Institute of Scientific and Technical Information of China (English)

    汪先平; 聂建英

    2013-01-01

    在毫米波辐射探测中,为得到真实目标的辐射亮温,采用BFGS方法从测得的天线温度数据反演出较稳定的毫米波装甲目标的辐射亮温.根据反演出的亮温,给出一种求得装甲涂层隐身材料的反射率和发射率的简单方法.%To make precise measurements of the radiometric brightness temperature of a target, in the millimeter wave radiation detection. BFGS is applied to recovery of the millimeter wave radiation target ' s brightness temperatures from the measurement of the temperature data antenna. And according to the bright temperature performance, a simple method to calculate the reflectance and emissivity of the stealth coating armored were given.

  5. Geochemical signature of columbite-tantalite and radiometric survey of radioactive pegmatites in the region of Parelhas, Rio Grande do Norte, Brazil; Assinatura geoquimica de columbita-tantalita e levantamento radiometrico de pegmatitos radioativos da regiao de Parelhas, RN, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Jorge Costa de

    2013-07-01

    This thesis is the result of geochemical, structural and radiometric investigations on radioactive pegmatites of the Borborema Pegmatitic Province in Northeast Brazil. The studied area, located in the surroundings of the city of Parelhas in the region of the Serra da Borborema, is well known for its thousands of pegmatitic bodies exploited in primitive mines called 'garimpos'. The main goal was to find an efficient, cheap and routine inspection procedure to identify the origin of commercialized radioactive columbite-tantalite (coltan) ore. The Brazilian Nuclear Energy Agency (CNEN) controls uranium commerce and nuclear activity in Brazil. Without an effective method to characterize coltan ores from different localities it is impossible to control the trade. The here presented new method was developed by correlating structural features of these pegmatites with the geochemical behavior of their coltan samples. It was found that the variation of the ratio U/Th versus Nb{sub 2}O{sub 5}/Ta{sub 2}O{sub 5} provides geochemical signatures (analytical fingerprints) for the source location of such ore. A test of the new method with coltan samples of commercial batches from the Brazilian states Amapa and Rondonia also generated distinct geochemical signatures. A radiometric survey (CPS) was carried out in several mines and pegmatites to study the environmental impact of gamma radiation. It included in situ measurements of pegmatite walls, host rocks, soil, and accumulated water and revealed that gamma emitters are hardly solubilized and environmental gamma radiation therefore generally is not enhanced to a dangerous level. (author)

  6. Direct Sensitivity Test of the MB/BacT System

    Directory of Open Access Journals (Sweden)

    Barreto Angela Maria Werneck

    2002-01-01

    Full Text Available In order to evaluate the direct-method test of sensitivity to drugs used in the principal tuberculosis treatment regimes, in the Organon Teknika MB/BacT system, we tested 50 sputum samples positive to microscopy taken from patients with pulmonary tuberculosis and with clinical indications for an antibiogram, admitted sequentially for examination during the routine of the reference laboratory. The material was treated v/v with 23% trisodium phosphate solution, incubated for 24 h at 35°C, and neutralized v/v with 20% monosodium phosphate solution. The material was then centrifuged and the sediment inoculated into flasks containing Rifampin - 2 µg/ml, Isoniazid - 0.2 µg/ml, Pyrazinamide - 100 µg/ml, Ethambutol - 2.5 µg/ml, Ethionamide - 1.25 µg/ml, and Streptomycin - 2 µg/ml. The tests were evaluated using the indirect method in the BACTEC 460 TB (Becton Dickinson system as the gold standard. The results showed that the Rifampin test performed best, i.e., 100% sensitivity at 95% Confidence Interval (82.2-100 and 100% specificity at 95% Confidence Interval (84.5-100, followed by Isoniazid and Pyrazinamide. In this experiment, 92% of the materials showed a final reading in 30 days; this period represents the time for primary isolation as well as the results of the sensitivity profile, and is within Centers for Disease Control and Prevention recommendations regarding time for performance of the antibiogram. The inoculated flasks showed no contamination during the experiment. The MB/BacT is shown to be a reliable, rapid, fully automated nonradiometric system for the tuberculosis antibiogram.

  7. Rapid, automated, nonradiometric susceptibility testing of Mycobacterium tuberculosis complex to four first-line antituberculous drugs used in standard short-course chemotherapy

    DEFF Research Database (Denmark)

    Johansen, Isik Somuncu; Thomsen, Vibeke Østergaard; Marjamäki, Merja;

    2004-01-01

    The increasing prevalence of drug-resistant tuberculosis necessitates rapid and accurate susceptibility testing. The nonradiometric BACTEC Mycobacteria Growth Indicator Tube 960 (MGIT) system for susceptibility testing was evaluated on 222 clinical Mycobacterium tuberculosis complex isolates for ...

  8. A rapid and low-cost microscopic observation drug susceptibility assay for detecting TB and MDR-TB among individuals infected by HIV in South India

    Directory of Open Access Journals (Sweden)

    S Solomon

    2013-01-01

    Full Text Available Background: The converging epidemics of HIV and tuberculosis (TB pose one of the greatest public health challenges of our time. Rapid diagnosis of TB is essential in view of its infectious nature, high burden of cases, and emergence of drug resistance. Objective: The purpose of this present study was to evaluate the feasibility of implementing the microscopic observation drug susceptibility (MODS assay, a novel assay for the diagnosis of TB and multi-drug-resistant tuberculosis (MDR-TB directly from sputum specimens, in the Indian setting. Materials and Methods: This study involved a cross-sectional, blinded assessment of the MODS assay on 1036 suspected cases of pulmonary TB in HIV-positive and HIV-negative patients against the radiometric method, BD-BACTEC TB 460 system. Results: Overall, the sensitivity, specificity, positive predictive value, and negative predictive value of the MODS assay in detecting MTB among TB suspected patients were 89.1%, 99.1%, 94.2%, 95.8%, respectively. In addition, in the diagnosis of drug-resistant TB, the MODS assay was 84.2% sensitive for those specimens reporting MDR, 87% sensitivity for those specimens reporting INH mono-resistance, and 100% sensitive for specimens reporting RIF mono-resistance. The median time to detection of TB in the MODS assay versus BACTEC was 9 versus 21 days (P < 0.001. Conclusion: Costing 5 to 10 times lesser than the automated culture methods, the MODS assay has the potential clinical utility as a simple and rapid method. It could be effectively used as an alternative method for diagnosing TB and detection of MDR-TB in a timely and affordable way in resource-limited settings.

  9. Nosocomial pneumonia caused by a glucose-metabolizing strain of Neisseria cinerea.

    OpenAIRE

    Boyce, J M; Taylor, M R; Mitchell, E B; Knapp, J S

    1985-01-01

    We describe what appears to be the first reported case of nosocomial pneumonia caused by Neisseria cinerea. The isolate metabolized glucose when tested in BACTEC Neisseria Differentiation Kits (Johnston Laboratories), but did not produce detectable acid in cystine-Trypticase (BBL Microbiology Systems) agar medium or in modified oxidation-fermentation medium. Clinical laboratories that rely on the BACTEC method for differentiation of pathogenic neisseriae should be aware of the fact that N. ci...

  10. National Guidelines for Digital Camera Systems Certification

    Science.gov (United States)

    Yaron, Yaron; Keinan, Eran; Benhamu, Moshe; Regev, Ronen; Zalmanzon, Garry

    2016-06-01

    Digital camera systems are a key component in the production of reliable, geometrically accurate, high-resolution geospatial products. These systems have replaced film imaging in photogrammetric data capturing. Today, we see a proliferation of imaging sensors collecting photographs in different ground resolutions, spectral bands, swath sizes, radiometric characteristics, accuracies and carried on different mobile platforms. In addition, these imaging sensors are combined with navigational tools (such as GPS and IMU), active sensors such as laser scanning and powerful processing tools to obtain high quality geospatial products. The quality (accuracy, completeness, consistency, etc.) of these geospatial products is based on the use of calibrated, high-quality digital camera systems. The new survey regulations of the state of Israel specify the quality requirements for each geospatial product including: maps at different scales and for different purposes, elevation models, orthophotographs, three-dimensional models at different levels of details (LOD) and more. In addition, the regulations require that digital camera systems used for mapping purposes should be certified using a rigorous mapping systems certification and validation process which is specified in the Director General Instructions. The Director General Instructions for digital camera systems certification specify a two-step process as follows: 1. Theoretical analysis of system components that includes: study of the accuracy of each component and an integrative error propagation evaluation, examination of the radiometric and spectral response curves for the imaging sensors, the calibration requirements, and the working procedures. 2. Empirical study of the digital mapping system that examines a typical project (product scale, flight height, number and configuration of ground control points and process). The study examine all the aspects of the final product including; its accuracy, the product pixels size

  11. Radiometric evaluation of graves of victims of the accident with Cesium 137 in Goiania, GO, Brazil: 25 years after; Avaliacao radiometrica das sepulturas das vitimas do acidente com o Cesio 137 em Goiania: 25 anos apos

    Energy Technology Data Exchange (ETDEWEB)

    Lage, Leonardo B.; Correa, Rosangela da S.; Santos, Eliane E. dos, E-mail: leonardobl@cnen.gov.br, E-mail: rcorrea@cnen.gov.br, E-mail: esantos@cnen.gov.br [Centro Regional de Ciencias Nucleares do Centro-Oeste (CRCN-CO/CNEN-GO), Abadia de Goias, GO (Brazil); Freitas-Junior, Ruffo, E-mail: uffojr@terra.com.br [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Faculdade de Medicina. Programa de Mastologia

    2013-07-01

    Twenty-five years after the radiation accident in Goiania, this study aims to evaluate the radiological situation in the area demarcated by the graves of the victims of the accident with cesium-137. Radiometric survey was carried out on the surface that encompasses the four graves and vicinity, from a pre-established mesh. Dose rate measurements were carried out, using the IdentFINDER equipment, positioned at 1 m height from the ground. The values of dose rates at the points measured ranged from 0.03 to 0.07 μSv/h. This variation of dose rate is less than those obtained in the local graveyard and are in the range of background radiation observed in Goiania. Considering the results obtained 25 years after the accident, it was concluded that engineering barriers adopted at that time are effective, stating the place absolutely safe from a radiological point of view, both for the individual from the public as to the environment.

  12. systems

    Directory of Open Access Journals (Sweden)

    Alexander Leonessa

    2000-01-01

    Full Text Available A nonlinear robust control-system design framework predicated on a hierarchical switching controller architecture parameterized over a set of moving nominal system equilibria is developed. Specifically, using equilibria-dependent Lyapunov functions, a hierarchical nonlinear robust control strategy is developed that robustly stabilizes a given nonlinear system over a prescribed range of system uncertainty by robustly stabilizing a collection of nonlinear controlled uncertain subsystems. The robust switching nonlinear controller architecture is designed based on a generalized (lower semicontinuous Lyapunov function obtained by minimizing a potential function over a given switching set induced by the parameterized nominal system equilibria. The proposed framework robustly stabilizes a compact positively invariant set of a given nonlinear uncertain dynamical system with structured parametric uncertainty. Finally, the efficacy of the proposed approach is demonstrated on a jet engine propulsion control problem with uncertain pressure-flow map data.

  13. Radiometric Calibration Stability Assessment for Soumi NPP CrIS: A Perspective from Two Years’ Inter-Comparison with AIRS and IASI

    OpenAIRE

    Wang, Likun; Han, Yong; Chen, Yong; Tremblay, Denis; Jin, Xin; Xiong, Xiaozhen

    2015-01-01

    The Cross-track Infrared Sounder (CrIS) on the Suomi National Polar-orbiting Partnership (SNPP) and future Joint Polar Satellite System (JPSS) is a Fourier transform spectrometer that provides soundings of the atmosphere over 3 wavelength ranges: LWIR (9.14 - 15.38 μm); MWIR (5.71 - 8.26 μm); and SWIR (3.92 - 4.64 μm). Since it was launched on 29 October 2011, extensive post-launch calibration and validation activities have been carried out by CrIS sensor data record team (SDR), leading to th...

  14. Detection of fungal DNA in peritoneal fluids by a PCR DNA low-density microarray system and quantitation of serum (1-3)-β-D-glucan in the diagnosis of peritoneal candidiasis.

    Science.gov (United States)

    Corrales, Isabel; Giménez, Estela; Aguilar, Gerardo; Delgado, Carlos; Puig, Jaime; Izquierdo, Ana; Belda, Javier; Navarro, David

    2015-02-01

    Microbiological documentation of peritoneal candidiasis (PC) is hampered by the low numbers of yeasts observable by direct microscopic examination and recoverable by culture methods. The performance of a polymerase chain reaction (PCR) DNA Low-Density Microarray System (CLART STIs B) was compared to that of BACTEC FX automated culture method for the detection of Candida spp. in 161 peritoneal fluids (PF) from patients with peritonitis. The clinical utility of (1-3)-β-d-glucan (BDG) antigenemia in the diagnosis of PC was evaluated in 42 of these patients. The overall agreement between the PCR assay and the culture method was good (κ = 0.790), and their sensitivities were 93.5% and 74.19%, respectively. Serum BDG levels in patients with Candida spp. in PFs (median, 200.3 pg/mL; Range, 22.0-523.4 pg/mL) was significantly higher (P = 0.002) than those found in patients without the yeast (median, 25.3 pg/mL; Range, 0-523.4 pg/mL). Our study demonstrates the potential clinical utility of molecular methods and the measurement of serum BDG levels for the diagnosis of PC.

  15. Medidas radiométricas em casas de vegetação com cobertura plástica na região de Campinas - SP Radiometric measurement of greenhouses with plastic cover at Campinas region- SP

    Directory of Open Access Journals (Sweden)

    Edilson Costa

    2011-06-01

    Full Text Available Com o objetivo de caracterizar as relações e alterações radiométricas em três casas de vegetação, cobertas com filme transparente de polietileno de baixa densidade (PEBD de camada simples com 150µm de espessura, tratado contra raios ultravioleta, sob ambientes distintos, foram realizados os experimentos durante o cultivo hidropônico de alface, cultivar Vera, na região de Campinas - SP, em diferentes períodos do ano, visando ao uso de dados experimentais de postos meteorológicos em substituição à necessidade de adquirir equipamentos de radiação para medições internas. As casas de vegetação eram de estrutura metálica de aço, de forma e volume idênticos. Coletaram-se a radiação solar global interna e externa (RSGI e RSGE, W m-2, a radiação fotossinteticamente ativa (RFA, µmol m-2 s-1 e a radiação ultravioleta, em 254; 312 e 365 nm (RUV, W m-2. Os resultados mostraram que as equações de regressão linear são estimativas aceitáveis na obtenção da radiação fotossinteticamente ativa em função da radiação solar global externa. Em ambientes fechados e climatizados, existe maior correlação entre a radiação fotossinteticamente ativa e a radiação solar global externa. A orientação das casas de vegetação não climatizadas não influencia no espalhamento interno da radiação fotossinteticamente ativa.The objective of this study was to characterize the radiometric relationship and changing in three greenhouses covered with transparent low density polyethylene film (PEBD with a 150µm single layer of low density polyethylene film, treated with compounds that inhibit rapid degradation by ultraviolet radiation, under effects of different environments. The experiments were conducted during hydroponics lettuce production of Vera variety at Campinas region-SP in different periods of the year, aiming the use of experimental data from meteorological stations in substitution of the needs to pursue radiometric

  16. Optimization of light quality from color mixing light-emitting diode systems for general lighting

    DEFF Research Database (Denmark)

    Thorseth, Anders

    2012-01-01

    To address the problem of spectral light quality from color mixing light-emitting diode systems, a method for optimizing the spectral output of multicolor LED system with regards to standardized quality parameters has been developed. The composite spectral power distribution from the LEDs...... are simulated using radiometrically measured single LED spectra. The method uses electrical input powers as input parameters and optimizes the resulting spectral power distribution with regard to color rendering index, correlated color temperature and chromaticity distance. The results indicate Pareto optimal...

  17. 多光谱低空遥感图像光照辐射度校正%Radiometric calibration of low altitude multispectral remote sensing images

    Institute of Scientific and Technical Information of China (English)

    汪沛; 张俊雄; 兰玉彬; 周志艳; 罗锡文

    2014-01-01

    includes the development of micro UAV remote sensing platforms, information acquisition technology, image processing, and analysis and application of crop management, is reviewed in this paper. Micro UAV mainly has two types: rotor helicopter and fixed-wing aircraft. The rotor helicopter has been used more widely in acquiring information of the field, because it has the ability of taking off and landing vertically, fixed-point hovering, and slow cruising. Japan was the first country that has used the micro-UAV in agricultural production, and is one of the countries that have the best and most mature technologies in using remote UAV in agriculture today. The United States, Netherlands, Israel, and the United Kingdom also have a very good development all over the world. The beginning of research and development of micro UAV in China was much later than the other developed countries, but it has a booming development and grows rapidly. In this paper, parameters and characteristics of different models of the micro UAVs from eight companies in China have been listed for comparison. In remote sensing information acquiring systems, due to the limited load capacity of micro-UAV, digital camera and light-weight multispectral camera are two main instruments that are used on micro UAV for remote sensing information acquiring. How to adjust the posture of airborne remote sensors quickly and accurately so that the detecting target is always in the center of monitoring view, and how to realize remote controlling, image and information capturing, and transmission wirelessly are some of the focuses of UAV remote sensing technology at present. Limited by the stability and load capacity of the micro UAV, the remote sensing image always appears with the defects including a small view, large angle inclination, and serious irregular image overlap. So, solving the problem of correction, matching, mosaicing, fusing, and analyzing of the remote sensing images is one of the most important research

  18. Shooting stars: Our guide to the early solar system`s formation

    Energy Technology Data Exchange (ETDEWEB)

    O`Reilly, J.

    1995-11-01

    Plagioclase grains were studied from the Allende meteorite, sample 916, to determine a chronology of events that occurred within the first ten million years of the solar system`s formation. Radiometric dating of the {sup 26}-Al-{sup 26}Mg system was accomplished on the ion microprobe mass spectromer. The excess {sup 26}-Mg in core plagioclase grains of calcium-aluminum rich inclusions (CAIs) provided a time of original condensation for {sup 26}-Al of {approximately}4.55 million years ago, a hundred million years prior to the formation of the planets. This data has been found to correlate with other excess {sup 26}-Mg samples. Measurements of plagioclase in the CAI`s periphery dated 1.52 million years later, suggesting an interesting history of collision and melting.

  19. 数字微镜光谱仪的互补S编码矩阵的设计及实验%Imaging Spectrometry Radiometric Cross-Calibration Based on Precise Spectral Response Matching

    Institute of Scientific and Technical Information of China (English)

    张智海; 高玲肖; 郭媛君; 王伟; 莫祥霞

    2012-01-01

    数字微镜光谱仪在应用中编码矩阵的选取至关重要.最佳的理论编码矩阵H矩阵存在非循环、编码复杂、双光路系统实现困难的问题而得不到广泛应用;而最佳实用S矩阵较H矩阵信噪比提高优势略逊.为此本文针对数字微镜光谱仪设计了一种互补S编码矩阵,介绍了其构造、实现过程以及对杂散光和暗电流噪声的削弱作用,通过对其噪声改善程度理论的分析,说明该算法结合了H矩阵与S矩阵的优点,达到了理论与实用的双优.经实验验证,该算法较S矩阵编码模板信噪比提高了2.05倍.%The present research describes the development of an improved cross-calibration method of on-orbit satellite sensor. The EO-1/Hyperion was taken as the referenced sensor and HJ-1A/HSI was taken as the uncalibrated sensor. The differences between the bands configurations were removed by the precise spectral response matching using the deconvolution method, which significantly reduced the radiometric calibration uncertainty of HSI sensor. The calibration coefficients of HSI for all 115 bands were acquired. The uncertainties of calibration coefficient from band 1 to band 60 stably lie in 5%~8%, and for all the other bands excerpt for the oxygen absorption which lies in at 760 run and the water vapor absorption which lies in at 940 nm, the uncertainties of calibration coefficients are changed from 7% to 18%, which increased as the wavelength increased. Contrasted Compared with the traditional spectral matching method, the method proposed can improve the calibration accuracy by about 50%, which can meet the demand of the quantitive application for hyperspectral remote sensing data. It demonstrated the good precision and reliability of the method. It solved the spectral matching problem when the band configuration is big enough so that the cross calibration accuracy is too low and is difficult to apply in hyperspectral sensor cross-calibration, and provides a new

  20. In vitro effects of citrus oils against Mycobacterium tuberculosis and non-tuberculous Mycobacteria of clinical importance.

    Science.gov (United States)

    Crandall, Philip G; Ricke, Steven C; O'Bryan, Corliss A; Parrish, Nicole M

    2012-01-01

    We evaluated the in vitro activity of citrus oils against Mycobacterium tuberculosis and other non-tuberculous Mycobacterium species. Citrus essential oils were tested against a variety of Mycobacterium species and strains using the BACTEC radiometric growth system. Cold pressed terpeneless Valencia oil (CPT) was further tested using the Wayne model of in vitro latency. Exposure of M. tuberculosis and M. bovis BCG to 0.025 % cold pressed terpeneless Valencia orange oil (CPT) resulted in a 3-log decrease in viable counts versus corresponding controls. Inhibition of various clinical isolates of the M. avium complex and M. abscessus ranged from 2.5 to 5.2-logs. Some species/strains were completely inhibited in the presence of CPT including one isolate each of the following: the M. avium complex, M. chelonae and M. avium subsp. paratuberculosis. CPT also inhibited the growth of BCG more than 99 % in an in vitro model of latency which mimics anaerobic dormancy thought to occur in vivo. The activity of CPT against drug-resistant strains of the M. avium complex and M. abscessus suggest that the mechanism of action for CPT is different than that of currently available drugs. Inhibition of latently adapted bacilli offers promise for treatment of latent infections of MTB. These results suggest that the antimycobacterial properties of CPT warrant further study to elucidate the specific mechanism of action and clarify the spectrum of activity.

  1. Using Melting Ice to Teach Radiometric Dating.

    Science.gov (United States)

    Wise, Donald Underkofler

    1990-01-01

    Presented is an activity in which a mystery setting is used to motivate students to construct their own decay curves of melting ice used as an analogy to radioactive decay. Procedures, materials, apparatus, discussion topics, presentation, and thermodynamics are discussed. (CW)

  2. Radiometric Analysis of Daytime Satellite Detection

    Science.gov (United States)

    2006-03-01

    detector m No 300 km – 1500 km 400 km Cos(θs) cosine of satellite orientation angle unitless No 0-1 0.5 Δf noise-equivalent bandwidth Hz No...Dependence Asat area of satellite m2 9 m2 linear Rsat-det distance from satellite to detector m 400 km 2 1 x Cos(θs) cosine of satellite orientation angle

  3. Restoration of multichannel microwave radiometric images

    Science.gov (United States)

    Chin, R. T.; Yeh, C.-L.; Olson, W. S.

    1985-01-01

    A constrained iterative image restoration method is applied to multichannel diffraction-limited imagery. This method is based on the Gerchberg-Papoulis algorithm utilizing incomplete information and partial constraints. The procedure is described using the orthogonal projection operators which project onto two prescribed subspaces iteratively. Its properties and limitations are presented. The effect of noise was investigated and a better understanding of the performance of the algorithm with noisy data has been achieved. The restoration scheme with the selection of appropriate constraints was applied to a practical problem. The 6.6, 10.7, 18, and 21 GHz satellite images obtained by the scanning multichannel microwave radiometer (SMMR), each having different spatial resolution, were restored to a common, high resolution (that of the 37 GHz channels) to demonstrate the effectiveness of the method. Both simulated data and real data were used in this study. The restored multichannel images may be utilized to retrieve rainfall distributions.

  4. Automatic Radiometric Normalization of Multitemporal Satellite Imagery

    DEFF Research Database (Denmark)

    Canty, Morton J.; Nielsen, Allan Aasbjerg; Schmidt, Michael

    2004-01-01

    with normalization using orthogonal regression. The procedure is applied to Landsat TM images over Nevada, Landsat ETM+ images over Morocco, and SPOT HRV images over Kenya. Results from this new automatic, combined MAD/orthogonal regression method, based on statistical analysis of test pixels not used in the actual...

  5. Operational Land Imager relative radiometric calibration

    Science.gov (United States)

    Barsi, Julia A.; Markham, Brian L.

    2015-09-01

    The Operational Land Imager (OLI), on board the Landsat-8 satellite, is a pushbroom sensor with nearly 7000 detectors per band, divided between 14 separate modules. While rigorously characterized prior to launch, the shear number of individual detectors presents a challenge to maintaining the on-orbit relative calibration, such that stripes, bands and other artifacts are minimized in the final image products. On-orbit relative calibration of the OLI is primarily monitored and corrected by observing an on-board primary solar diffuser panel. The panel is the most uniform target available to the OLI, though as observed but the OLI, it has a slope across the field of view due to view angle effects. Just after launch, parameters were derived using the solar diffuser data, to correct for the angular effects across the 14 modules. The residual discontinuities between arrays and the detector-to-detector uniformity continue to be monitored on a weekly basis. The observed variations in the responses to the diffuser panel since launch are thought to be due to real instrument changes. Since launch, the Coastal/Aerosol (CA) and Blue bands have shown the most variation in relative calibration of the VNIR bands, with as much as 0.14% change (3-sigma) between consecutive relative gain estimates. The other VNIR bands (Green, Red and NIR) initially had detectors showing a slow drift of about 0.2% per year, though this stopped after an instrument power cycle about seven months after launch. The SWIR bands also exhibit variability between collects (0.11% 3-sigma) but the larger changes have been where individual detectors' responses change suddenly by as much as 1.5%. The mechanisms behind these changes are not well understood but in order to minimize impact to the users, the OLI relative calibration is updated on a quarterly basis in order to capture changes over time.

  6. SYSTEM

    Directory of Open Access Journals (Sweden)

    K. Swarnalatha

    2013-01-01

    Full Text Available Risk analysis of urban aquatic systems due to heavy metals turns significant due to their peculiar properties viz. persis tence, non-degradab ility, toxicity, and accumulation. Akkulam Veli (AV, an urba n tropical lake in south India is subjected to various environmental stresses due to multiple waste discharge, sand mining, developmental activities, tour ism related activitie s etc. Hence, a comprehensive approach is adopted for risk assessment using modified degree of contamination factor, toxicity units based on numerical sediment quality guidelines (SQGs, and potentialecological risk indices. The study revealed the presence of toxic metals such as Cr, C d, Pb and As and the lake is rated under ‘low ecological risk’ category.

  7. Quantitative luminescence imaging system

    Science.gov (United States)

    Batishko, C. R.; Stahl, K. A.; Fecht, B. A.

    The goal of the Measurement of Chemiluminescence project is to develop and deliver a suite of imaging radiometric instruments for measuring spatial distributions of chemiluminescence. Envisioned deliverables include instruments working at the microscopic, macroscopic, and life-sized scales. Both laboratory and field portable instruments are envisioned. The project also includes development of phantoms as enclosures for the diazoluminomelanin (DALM) chemiluminescent chemistry. A suite of either phantoms in a variety of typical poses, or phantoms that could be adjusted to a variety of poses, is envisioned. These are to include small mammals (rats), mid-sized mammals (monkeys), and human body parts. A complete human phantom that can be posed is a long-term goal of the development. Taken together, the chemistry and instrumentation provide a means for imaging rf dosimetry based on chemiluminescence induced by the heat resulting from rf energy absorption. The first delivered instrument, the Quantitative Luminescence Imaging System (QLIS), resulted in a patent, and an R&D Magazine 1991 R&D 100 award, recognizing it as one of the 100 most significant technological developments of 1991. The current status of the project is that three systems have been delivered, several related studies have been conducted, two preliminary human hand phantoms have been delivered, system upgrades have been implemented, and calibrations have been maintained. Current development includes sensitivity improvements to the microscope-based system; extension of the large-scale (potentially life-sized targets) system to field portable applications; extension of the 2-D large-scale system to 3-D measurement; imminent delivery of a more refined human hand phantom and a rat phantom; rf, thermal and imaging subsystem integration; and continued calibration and upgrade support.

  8. Argus phase II optical data collection system

    Science.gov (United States)

    Wasson, Wayne E.

    1996-11-01

    The Argus aircraft is a highly modified NC-135E fitted with an infrared and ultraviolet-visible sensor suite for radiometric and spectral data collection. Each suite is operated independently with its own separate gimbal for precision pointing, telescope, and relay optics. The system includes a silica window for the ultraviolet-visible, and a zinc selenide window for the infrared. The entire system was developed and fabricated in-house at the Phillips Laboratory. All sensors are calibrated as a system onboard the aircraft through a unique facility called the aircraft optical calibration facility. The data is all recorded digitally, and can be transferred to secure data reduction facilities via optical fiber. The system is modular, in that the ultraviolet-visible and infrared benches can be separated, or the entire system can be quickly removed to allow for the introduction of other sensor suites or systems. The gimbals and telescopes can be used independently of the rest of the system. The aircraft is also fitted with an anemometry system, which can be operated independently of the sensor systems. This aircraft is capable of many types of missions, and will soon be fitted with a LIDAR system for remote sensing. The philosophy in building the system is to make it capable of quick changes during mission.

  9. Photometric Calibration and Image Stitching for a Large Field of View Multi-Camera System

    Directory of Open Access Journals (Sweden)

    Yu Lu

    2016-04-01

    Full Text Available A new compact large field of view (FOV multi-camera system is introduced. The camera is based on seven tiny complementary metal-oxide-semiconductor sensor modules covering over 160° × 160° FOV. Although image stitching has been studied extensively, sensor and lens differences have not been considered in previous multi-camera devices. In this study, we have calibrated the photometric characteristics of the multi-camera device. Lenses were not mounted on the sensor in the process of radiometric response calibration to eliminate the influence of the focusing effect of uniform light from an integrating sphere. Linearity range of the radiometric response, non-linearity response characteristics, sensitivity, and dark current of the camera response function are presented. The R, G, and B channels have different responses for the same illuminance. Vignetting artifact patterns have been tested. The actual luminance of the object is retrieved by sensor calibration results, and is used to blend images to make panoramas reflect the objective luminance more objectively. This compensates for the limitation of stitching images that are more realistic only through the smoothing method. The dynamic range limitation of can be resolved by using multiple cameras that cover a large field of view instead of a single image sensor with a wide-angle lens. The dynamic range is expanded by 48-fold in this system. We can obtain seven images in one shot with this multi-camera system, at 13 frames per second.

  10. Photometric Calibration and Image Stitching for a Large Field of View Multi-Camera System.

    Science.gov (United States)

    Lu, Yu; Wang, Keyi; Fan, Gongshu

    2016-04-11

    A new compact large field of view (FOV) multi-camera system is introduced. The camera is based on seven tiny complementary metal-oxide-semiconductor sensor modules covering over 160° × 160° FOV. Although image stitching has been studied extensively, sensor and lens differences have not been considered in previous multi-camera devices. In this study, we have calibrated the photometric characteristics of the multi-camera device. Lenses were not mounted on the sensor in the process of radiometric response calibration to eliminate the influence of the focusing effect of uniform light from an integrating sphere. Linearity range of the radiometric response, non-linearity response characteristics, sensitivity, and dark current of the camera response function are presented. The R, G, and B channels have different responses for the same illuminance. Vignetting artifact patterns have been tested. The actual luminance of the object is retrieved by sensor calibration results, and is used to blend images to make panoramas reflect the objective luminance more objectively. This compensates for the limitation of stitching images that are more realistic only through the smoothing method. The dynamic range limitation of can be resolved by using multiple cameras that cover a large field of view instead of a single image sensor with a wide-angle lens. The dynamic range is expanded by 48-fold in this system. We can obtain seven images in one shot with this multi-camera system, at 13 frames per second.

  11. Use of a field lens for improving the overlap function of a lidar system employing an optical fiber in the receiver assembly

    OpenAIRE

    Comerón Tejero, Adolfo; Sicard, Michaël; Kumar, Dhiraj; Rocadenbosch Burillo, Francisco

    2011-01-01

    This paper presents a method to compute the overlap function of a lidar system in which a step-index optical fiber (or a bundle of such fibers) is used to carry the light collected by the telescope to the photoreceiver and a field lens is placed between the telescope and the optical fiber to increase the receiver field of view (FOV). The use of field lenses is a classical way to increase the FOV of radiometric systems (such as the receiving part of a lidar) when there is no numerical aperture...

  12. Image quality vs. sensitivity: fundamental sensor system engineering

    Science.gov (United States)

    Schueler, Carl F.

    2008-08-01

    This paper focuses on the fundamental system engineering tradeoff driving almost all remote sensing design efforts, affecting complexity, cost, performance, schedule, and risk: image quality vs. sensitivity. This single trade encompasses every aspect of performance, including radiometric accuracy, dynamic range and precision, as well as spatial, spectral, and temporal coverage and resolution. This single trade also encompasses every aspect of design, including mass, dimensions, power, orbit selection, spacecraft interface, sensor and spacecraft functional trades, pointing or scanning architecture, sensor architecture (e.g., field-of-view, optical form, aperture, f/#, material properties), electronics, mechanical and thermal properties. The relationship between image quality and sensitivity is introduced based on the concepts of modulation transfer function (MTF) and signal-to-noise ratio (SNR) with examples to illustrate the balance to be achieved by the system architect to optimize cost, complexity, performance and risk relative to end-user requirements.

  13. FY-3A/MERSI热红外通道在轨辐射定标精度评估%On-Orbit Radiometric Calibration Accuracy of FY-3A MERSI Thermal Inf rared Channel

    Institute of Scientific and Technical Information of China (English)

    徐娜; 胡秀清; 陈林; 张勇; 胡菊旸; 孙凌

    2014-01-01

    卫星资料辐射定标精度是其定量应用的关键因素。以METOP-A/IASI的高光谱探测资料为传递基准,利用同时星下点观测的交叉定标方法,对 FY-3A/M ERSI热红外通道的在轨辐射定标精度进行了客观评估,并给出了亮温系统偏差的订正因子。从观测时间差异、卫星观测天顶角和方位角差异、以及目标均匀性四个方面,分析了交叉定标中所用主要匹配近似因子的不确定性。分析结果表明,目标均匀性是匹配误差的主要来源,偏差不确定性小于2%(当亮温偏差约为1 K时,不确定性<0.02 K),其他因素的影响可以忽略。一年多的样本统计及偏差分析结果显示,MERSI的观测亮温明显高于IASI ,年平均亮温偏差约(3.18±0.34) K ,月平均亮温偏差呈现季节波动特征,波动幅度约0.8 K。与相近时期敦煌场和青海湖地同步观测评价结果有非常好的一致性。初步原因分析推断,造成M ERSI亮温偏高的原因主要有两个,一是星上黑体发射率被高估,二是光谱响应函数向大气窗区漂移,后者可能为主导因素。%Accurate satellite radiance measurements are significant for data assimilations and quantitative retrieval applications . In the present paper ,radiometric calibration accuracy of FungYun-3A (FY-3A) Medium Resolution Spectral Imager (MERSI) thermal infrared (TIR) channel was evaluated based on simultaneous nadir observation (SNO) intercalibration method .Hyper-spectral and high-quality measurements of METOP-A/IASI were used as reference .Assessment uncertainty from intercalibration method was also investigated by examining the relation between BT bias against four main collocation factors ,i .e .observation time difference ,view geometric difference related to zenith angles and azimuth angles ,and scene spatial homogeneity .It was indicated that the BT bias is evenly distributed across the collocation variables with

  14. Nosocomial pneumonia caused by a glucose-metabolizing strain of Neisseria cinerea.

    Science.gov (United States)

    Boyce, J M; Taylor, M R; Mitchell, E B; Knapp, J S

    1985-01-01

    We describe what appears to be the first reported case of nosocomial pneumonia caused by Neisseria cinerea. The isolate metabolized glucose when tested in BACTEC Neisseria Differentiation Kits (Johnston Laboratories), but did not produce detectable acid in cystine-Trypticase (BBL Microbiology Systems) agar medium or in modified oxidation-fermentation medium. Clinical laboratories that rely on the BACTEC method for differentiation of pathogenic neisseriae should be aware of the fact that N. cinerea may mimic N. gonorrhoeae when tested in BACTEC Neisseria Differentiation kits. The ability of N. cinerea to grow well on tryptic soy and Mueller-Hinton agars and its inability to grow on modified Thayer-Martin medium are characteristics which help to distinguish N. cinerea from N. gonorrhoeae.

  15. Performance of the BACTEC MGIT 960 compared with solid media for detection of Mycobacterium in Bangkok, Thailand.

    Science.gov (United States)

    Srisuwanvilai, La-Ong; Monkongdee, Patama; Podewils, Laura Jean; Ngamlert, Keerataya; Pobkeeree, Vallerut; Puripokai, Panitchaya; Kanjanamongkolsiri, Photjanart; Subhachaturas, Wonchat; Akarasewi, Pasakorn; Wells, Charles D; Tappero, Jordan W; Varma, Jay K

    2008-08-01

    Controlled trials have demonstrated that liquid media culture (LMC) is superior to solid media culture for diagnosis of Mycobacterium tuberculosis (MTB), but there is limited evidence about its performance in resource-limited settings. We evaluated the performance of LMC in a demonstration project in Bangkok, Thailand. Sputum specimens from persons with suspected or clinically diagnosed tuberculosis were inoculated in parallel on solid (Lowenstein-Jensen [LJ]) and liquid (mycobacterial growth indicator tube [MGIT 960]) media. Biochemical tests identified isolates as MTB or nontuberculosis mycobacteria (NTM). Of 2566 specimens received from October 2004 to September 2006, 1355 (53%) were culture positive by MGIT compared with 1013 (39%) by LJ. Median time to growth for MGIT was significantly less than LJ: 11 versus 27 days. Of 1417 isolates detected by at least 1 media, 1255 (86%) were identified as MTB and 162 (11%) NTM. MGIT improved speed and sensitivity of MTB isolation and drug susceptibility testing, regardless of HIV status.

  16. Characterization, Modeling, and Optimization of Light-Emitting Diode Systems

    DEFF Research Database (Denmark)

    Thorseth, Anders

    This thesis explores, characterization, modeling, and optimization of light-emitting diodes (LED) for general illumination. An automated setup has been developed for spectral radiometric characterization of LED components with precise control of the settings of forward current and operating...... comparing the chromaticity of the measured SPD with tted models, the deviation is found to be larger than the lower limit of human color perception. A method has been developed to optimize multicolored cluster LED systems with respect to light quality, using multi objective optimization. The results...... temperature. The automated setup has been used to characterize commercial LED components with respect to multiple settings. It is shown that the droop in quantum efficiency can be approximated by a simple parabolic function. The investigated models of the spectral power distributions (SPD) from LEDs...

  17. Optical measurement system applied to continuous displacement monitoring of long-span suspension bridges

    Science.gov (United States)

    Lages Martins, L.; Rebordão, J. M.; Ribeiro, A. S.

    2013-04-01

    This paper provides a general description of main issues related to the design of an optical measurement system applied to continuous displacement monitoring of long-span suspension bridges. The proposed system's architecture is presented and its main components - camera and active targets - are described in terms of geometrical and radiometric characteristics required for long distance measurement of the tridimensional displacement of the stiffness girder in the middle section of the bridge's central span. The intrinsic and extrinsic camera parameterization processes, which support the adopted measurement approach, are explained in a specific section. Since the designed measurement system is intended to perform continuous displacement monitoring in long distance observation framework, particular attention is given to environmental effects, namely, refraction, turbulence and sensor saturation phenomena, which can influence the displacement measurement accuracy. Finally, a measurement uncertainty method is discussed in order to provide a suitable solution for the determination of the accuracy related to the proposed measurement approach.

  18. Process simulation in digital camera system

    Science.gov (United States)

    Toadere, Florin

    2012-06-01

    The goal of this paper is to simulate the functionality of a digital camera system. The simulations cover the conversion from light to numerical signal and the color processing and rendering. We consider the image acquisition system to be linear shift invariant and axial. The light propagation is orthogonal to the system. We use a spectral image processing algorithm in order to simulate the radiometric properties of a digital camera. In the algorithm we take into consideration the transmittances of the: light source, lenses, filters and the quantum efficiency of a CMOS (complementary metal oxide semiconductor) sensor. The optical part is characterized by a multiple convolution between the different points spread functions of the optical components. We use a Cooke triplet, the aperture, the light fall off and the optical part of the CMOS sensor. The electrical part consists of the: Bayer sampling, interpolation, signal to noise ratio, dynamic range, analog to digital conversion and JPG compression. We reconstruct the noisy blurred image by blending different light exposed images in order to reduce the photon shot noise, also we filter the fixed pattern noise and we sharpen the image. Then we have the color processing blocks: white balancing, color correction, gamma correction, and conversion from XYZ color space to RGB color space. For the reproduction of color we use an OLED (organic light emitting diode) monitor. The analysis can be useful to assist students and engineers in image quality evaluation and imaging system design. Many other configurations of blocks can be used in our analysis.

  19. Association of Serum Soluble Triggering Receptor Expressed on Myeloid Cells Levels in Malignancy Febrile Neutropenic Patients with Bacteremia and Fungemia

    Directory of Open Access Journals (Sweden)

    Ahmad-Reza Shamshiri

    2011-09-01

    Full Text Available Objective:Infections are the major cause of morbidity and mortality in febrile neutropenic patients with malignancy. Rapid diagnostic tests are needed for prompt diagnosis and early treatment which is crucial for optimal management. We assessed the utility of soluble triggering receptor expressed on myeloid cells (sTREM-1 in the diagnosis of bacteremia and fungemia in febrile neutropenic patients. Methods:Sixty-five febrile neutropenic children with malignancy hospitalized in Mofid Children's Hospital during a period of one year from January 2007 were recruited for this cross sectional study (mean age 66.2± 37 months; 35 females and 30 males. Thirty patients (46.2% had acute lymphoblastic leukemia, 2 (3.1% acute myeloid leukemia, one (1.5% lymphoma and 32 (49.2% were under treatment for solid tumors. Simultaneous blood samples were collected for measurement of serum sTREM-1 levels and for blood cultures which were grown in BACTEC media. Gold standard for the presence of infection was a positive BACTEC culture as a more sensitive method compared to current blood culture techniques. Findings Blood cultures with BACTEC system were positive in 13(20% patients (12 bacterial and one fungal culture. The mean serum sTREM-1 level in BACTEC positive patients was 948.2±592.9 pg/ml but in BACTEC negative cases it was 76.3±118.8 pg/ml (P<0.001. The optimal cut-off point of sTREM-1 for detecting patients with positive result of BACTEC was 525 pg/ml with sensitivity and specificity of 84.6% and 100%, respectively. Conclusion:Our study revealed a significant association between serum sTREM-1 level and bacteremia and fungemia in febrile neutropenic patients suffering malignancy with acceptable sensitivity and specificity.

  20. Measurements with Pinhole and Coded Aperture Gamma-Ray Imaging Systems

    Energy Technology Data Exchange (ETDEWEB)

    Raffo-Caiado, Ana Claudia [ORNL; Solodov, Alexander A [ORNL; Abdul-Jabbar, Najeb M [ORNL; Hayward, Jason P [ORNL; Ziock, Klaus-Peter [ORNL

    2010-01-01

    From a safeguards perspective, gamma-ray imaging has the potential to reduce manpower and cost for effectively locating and monitoring special nuclear material. The purpose of this project was to investigate the performance of pinhole and coded aperture gamma-ray imaging systems at Oak Ridge National Laboratory (ORNL). With the aid of the European Commission Joint Research Centre (JRC), radiometric data will be combined with scans from a three-dimensional design information verification (3D-DIV) system. Measurements were performed at the ORNL Safeguards Laboratory using sources that model holdup in radiological facilities. They showed that for situations with moderate amounts of solid or dense U sources, the coded aperture was able to predict source location and geometry within ~7% of actual values while the pinhole gave a broad representation of source distributions

  1. Utilization of radiometric method in evaluation of wear on human dental enamel in vitro by dental porcelain glazed and polished; Utilizacao do metodo radiometrico na avaliacao in vitro do desgaste provocado ao esmalte dental humano por porcelanas dentais glazeadas e polidas

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Lena Katekawa; Campos, Tomie Nakakuki de; Adachi, Eduardo Makoto [Sao Paulo Univ., SP (Brazil). Faculdade de Odontologia. Dept. de Protese]. E-mail: katekawa@usp.br; Saiki, Mitiko [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: mitiko@curiango.ipen.br

    2005-07-01

    The dental porcelain is a material commonly used in prosthesis. Disadvantages of dental porcelain use include possibility to cause tooth or dental materials wear. Before its use in the mouth, surfaces are treated with polishing and/or glazing. This research used the radiometric method to verify the influence of these surface treatments on the porcelains of commercial brands: Ceramco II, Noritake and Finesse. This method was originally developed for dentifrice abrasiveness evaluation. Five specimens of dental enamel and 10 specimens of each porcelain (5 glazed, 5 polished) were used. The dental enamel was flattened and irradiated with neutrons from the IEA-R1 (IPEN/CNEN) nuclear reactor. Then it was weared by each porcelain in sliding motion, with water. After 2,500 cycles for each porcelain specimen, the released enamel residue was measured. The enamel wear was evaluated by measuring beta activity of {sup 32}P transferred to water from the irradiated tooth. Results varied from 2.57 to 5.81 {mu}g of enamel /mm{sup 2} weared surface. There was no statistical difference ({alpha}=0.05) between dental enamel wear caused by the same porcelains glazed or polished. The results suggest that adequate surface finishing depend on the type of dental porcelain. (author)

  2. High Performance Image Processing And Laser Beam Recording System

    Science.gov (United States)

    Fanelli, Anthony R.

    1980-09-01

    The article is meant to provide the digital image recording community with an overview of digital image processing, and recording. The Digital Interactive Image Processing System (DIIPS) was assembled by ESL for Air Force Systems Command under ROME AIR DEVELOPMENT CENTER's guidance. The system provides the capability of mensuration and exploitation of digital imagery with both mono and stereo digital images as inputs. This development provided for system design, basic hardware, software and operational procedures to enable the Air Force's System Command photo analyst to perform digital mensuration and exploitation of stereo digital images as inputs. The engineering model was based on state-of-the-art technology and to the extent possible off-the-shelf hardware and software. A LASER RECORDER was also developed for the DIIPS Systems and is known as the Ultra High Resolution Image Recorder (UHRIR). The UHRIR is a prototype model that will enable the Air Force Systems Command to record computer enhanced digital image data on photographic film at high resolution with geometric and radiometric distortion minimized.

  3. Introduction of a Photogrammetric Camera System for Rpas with Highly Accurate Gnss/imu Information for Standardized Workflows

    Science.gov (United States)

    Kraft, T.; Geßner, M.; Meißner, H.; Przybilla, H. J.; Gerke, M.

    2016-03-01

    In this paper we present the evaluation of DLR's modular airborne camera system MACS-Micro for remotely piloted aircraft system (RPAS) with a maximum takeoff weight (MTOW) less than 5kg. The main focus is on standardized calibration and test procedures as well as on standardized photogrammetric workflows as a proof of feasibility for this aerial camera concept. The prototype consists of an industrial grade frame imaging camera and a compact GNSS/IMU solution which are operated by an embedded PC. The camera has been calibrated pre- and post- flight using a three dimensional test field. The validation of the latest prototype is done by a traditional photogrammetric evaluation of an aerial survey using 39 ground control points. The results, concerning geometric and radiometric features of the present system concept as well as the quality of the aero triangulation, fulfill many of the aimed keyspecifications.

  4. Comparison of the COBAS AMPLICOR MTB and BDProbeTec ET assays for detection of Mycobacterium tuberculosis in respiratory specimens.

    NARCIS (Netherlands)

    W.H.F. Goessens (Wil); P. de Man (Peter); J.G. Koeleman; A. Luijendijk (Ad); R. te Witt (René); H.P. Endtz (Hubert); A.F. van Belkum (Alex)

    2005-01-01

    textabstractThe performances of the BDProbeTec ET (Becton Dickinson) and COBAS AMPLICOR MTB (Roche) were retrospectively evaluated for detecting Mycobacterium tuberculosis complex in various respiratory specimens. The BACTEC and MGIT liquid culture system (Becton Dickinson) was used as a reference m

  5. Electromechanically cooled germanium radiation detector system

    Science.gov (United States)

    Lavietes, Anthony D.; Joseph Mauger, G.; Anderson, Eric H.

    1999-02-01

    We have successfully developed and fielded an electromechanically cooled germanium radiation detector (EMC-HPGe) at Lawrence Livermore National Laboratory (LLNL). This detector system was designed to provide optimum energy resolution, long lifetime, and extremely reliable operation for unattended and portable applications. For most analytical applications, high purity germanium (HPGe) detectors are the standard detectors of choice, providing an unsurpassed combination of high energy resolution performance and exceptional detection efficiency. Logistical difficulties associated with providing the required liquid nitrogen (LN) for cooling is the primary reason that these systems are found mainly in laboratories. The EMC-HPGe detector system described in this paper successfully provides HPGe detector performance in a portable instrument that allows for isotopic analysis in the field. It incorporates a unique active vibration control system that allows the use of a Sunpower Stirling cycle cryocooler unit without significant spectral degradation from microphonics. All standard isotopic analysis codes, including MGA and MGA++ [1], GAMANL [2], GRPANL [3]and MGAU [4], typically used with HPGe detectors can be used with this system with excellent results. Several national and international Safeguards organisations including the International Atomic Energy Agency (IAEA) and U.S. Department of Energy (DOE) have expressed interest in this system. The detector was combined with custom software and demonstrated as a rapid Field Radiometric Identification System (FRIS) for the U.S. Customs Service [5]. The European Communities' Safeguards Directorate (EURATOM) is field-testing the first Safeguards prototype in their applications. The EMC-HPGe detector system design, recent applications, and results will be highlighted.

  6. The thioamides methimazole and thiourea inhibit growth of M. avium Subspecies paratuberculosis in culture.

    Directory of Open Access Journals (Sweden)

    Robert J Greenstein

    Full Text Available BACKGROUND: Thyrotoxicosis is conceptualized as an "autoimmune" disease with no accepted infectious etiology. There are increasingly compelling data that another "autoimmune" affliction, Crohn disease, may be caused by Mycobacterium avium subspecies paratuberculosis (MAP. Like M. tb, MAP is systemic. We hypothesized that some cases of thyrotoxicosis may be initiated by a MAP infection. Because other thioamides treat tuberculosis, leprosy and M. avium complex, we hypothesized that a mode of action of some thioamide anti-thyrotoxicosis medications may include MAP growth inhibition. METHODS: The effect of the thioamides, thiourea, methimazole and 6-propo-2-thiouracil (6-PTU were studied in radiometric Bactec culture, on ten strains of three mycobacterial species (six of MAP, two of M. avium and two of M. tb. complex. Data are presented as "cumulative growth index," (cGI or "percent decrease in cumulative GI" (%-DeltacGI. PRINCIPAL FINDINGS: Methimazole was the most effective thioamide at inhibiting MAP growth. At 128microg/ml: MAP UCF-4; 65%-DeltacGI & MAP ATCC 19698; 90%-DeltacGI. Thiourea inhibited MAP "Ben" maximally; 70%-DeltacGI. Neither methimazole nor thiourea inhibited M. avium or M. tb. at the doses tested. 6-PTU has no inhibition on any strain studied, although a structurally analogous control, 5-PTU, was the most inhibitory thioamide tested. SIGNIFICANCE: We show inhibition of MAP growth by the thioamides, thiourea and methimazole in culture. These data are compatible with the hypothesis that these thioamides may have anti-prokaryotic in addition to their well-established eukaryotic actions in thyrotoxic individuals.

  7. Absolute Radiometric Calibration of Earth Radiation Measurement on FY-3B and Its Comparison with CERES/Aqua Data%风云三号B星(FY-3B)上地球辐射探测仪的绝对辐射定标及其与Aqua卫星上云和地球辐射能量系统(CERES)数据之间的对比

    Institute of Scientific and Technical Information of China (English)

    邱红; 胡丽琴; 张艳; 陆段军; 齐瑾

    2013-01-01

    风云三号B星(FY-3B)携带的地球辐射探测仪(ERM)通过窄视场(NFOV)扫描和宽视场(WFOV)非扫描方式来观测地球大气。每种视场包括两个宽带通道,即光谱范围在0.2~50μm的全波段通道和在0.2~4.3μm之间的短波通道。将ERM观测去滤波的长波辐射、短波辐射与美国地球观测系统(EOS)Aqua卫星携带的云和地球辐射能量系统(CERES)飞行模式(FM)3中观测数据对比来检验ERM的定标。ERM的长波辐射和短波辐射与CERES数据具有较好的相关性,二者之间存在一定系统偏差。利用CERES数据对ERM数据做光谱订正。经过订正后,ERM长波辐射偏差会从-3.00W/(sr·m2)减小到-0.60W/(sr·m2),短波辐射的偏差从6.00W/(sr·m2)减小到4.00W/(sr·m2)。根据ERM在轨内定标数据分析了ERM长波及短波通道辐射响应的稳定性,结果显示全波通道长波部分较为稳定并且变化率小于1.5%,与之相比,短波通道变化较大,变化率超过3%。这些变化可能是由于探测器的退化而引起的,NFOV短波通道在轨运行8个月后因故障失效。%The Earth Radiation Measurement (ERM) instrument onboard FengYun (FY)-3B satellite observes the Earth’s atmosphere with a narrow scanning ifeld of view (NFOV) and a wide nonscanning FOV (WFOV). For each ifeld of view, the measurements are made from two broadband channels:a total waveband channel covering 0.2-50μm and a shortwave (SW) band covering 0.2-4.3μm. The validation to the ERM calibration was carried out by comparing the unifltered longwave (LW) and SW radiances from ERM with those from Clouds and Earth’s Radiation Energy System (CERES) lfight model (FM) 3 onboard Earth Observing System Aqua satellite. While the ERM LWand SWradiances have a good correlation with CERES data, there is a systemic bias between the two data sets. A spectral correction is made for the ERM data using the CERES data. After the

  8. Modified calibration procedures for a Yankee Environmental System UVB-1 biometer based on spectral measurements with a brewer spectrophotometer.

    Science.gov (United States)

    Vilaplana, José M; Cachorro, Victoria E; Sorribas, Mar; Luccini, Eduardo; de Frutos, Angel M; Berjón, Alberto; de la Morena, Benito

    2006-01-01

    The calibration of the erythemal irradiance measured by a Yankee Environmental System (YES) UVB-1 biometer is presented using two methods of calibration with a wide range of experimental solar zenith angles (SZAs) and ozone values. The calibration is performed through simultaneous spectral measurements by a calibrated double-monochromator Brewer MK-III spectrophotometer at "El Arenosillo" station, located in southwestern Spain. Because the range of spectral measurements of the Brewer spectrophotometer is 290-363 nm, a previously validated radiative transfer model was used to account for the erythemal contribution between 363 and 400 nm. Both methods are recommended by the World Meteorological Organization and we present and discuss here a wide range of results and features given by modified procedures applied to these two general methods. As is well established, the calibration factor for this type of radiometric system is dependent on atmospheric conditions, the most important of which are the ozone content and the SZA. Although the first method is insensitive to these two factors, we analyze this behavior in terms of the range used for the SZA and the use of two different mathematical approaches for its determination. The second method shows the dependence on SZA and ozone content and, thus, a polynomial as a function of SZA or a matrix including SZA and ozone content were determined as general calibration factors for the UV radiometric system. We must note that the angular responses of the YES radiometer and Brewer spectroradiometer have not been considered, because of the difficulty in correcting them. The results show in detail the advantages and drawbacks (and the corresponding associated error) given by the different approaches used for the determination of these calibration coefficients.

  9. Automatic Road Sign Inventory Using Mobile Mapping Systems

    Science.gov (United States)

    Soilán, M.; Riveiro, B.; Martínez-Sánchez, J.; Arias, P.

    2016-06-01

    The periodic inspection of certain infrastructure features plays a key role for road network safety and preservation, and for developing optimal maintenance planning that minimize the life-cycle cost of the inspected features. Mobile Mapping Systems (MMS) use laser scanner technology in order to collect dense and precise three-dimensional point clouds that gather both geometric and radiometric information of the road network. Furthermore, time-stamped RGB imagery that is synchronized with the MMS trajectory is also available. In this paper a methodology for the automatic detection and classification of road signs from point cloud and imagery data provided by a LYNX Mobile Mapper System is presented. First, road signs are detected in the point cloud. Subsequently, the inventory is enriched with geometrical and contextual data such as orientation or distance to the trajectory. Finally, semantic content is given to the detected road signs. As point cloud resolution is insufficient, RGB imagery is used projecting the 3D points in the corresponding images and analysing the RGB data within the bounding box defined by the projected points. The methodology was tested in urban and road environments in Spain, obtaining global recall results greater than 95%, and F-score greater than 90%. In this way, inventory data is obtained in a fast, reliable manner, and it can be applied to improve the maintenance planning of the road network, or to feed a Spatial Information System (SIS), thus, road sign information can be available to be used in a Smart City context.

  10. Radiometric Testing of Magnesium Diboride Array (MDA) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective is to develop a 2-Dimensional Far Infra-Red Magnesium Diboride Array (2D FIR MDA) to use in NASA’s future planetary exploration instruments. The...

  11. First measurements with the Physikalisches Institut Radiometric Experiment (PHIRE)

    Science.gov (United States)

    Gunderson, K.; Thomas, N.; Whitby, J. A.

    2006-09-01

    We have constructed an experiment to perform bidirectional reflectance distribution function (BRDF) measurements of laboratory samples, and have used the experiment to characterize a sample of JSC-1 lunar regolith simulant. Characterizations relied on in-plane BRDF measurements in visible and near-infrared (NIR) bandpasses. The optical properties of the simulant sample were found to be similar to those observed for bright, lunar highland regions. Reflectance models (Hapke 1981. Bidirectional reflectance spectroscopy 1. Theory. J. Geophys. Res. 86(B4), 3,039-3,054; 1984. Bidirectional reflectance spectroscopy 3. Correction for macroscopic roughness. Icarus 59, 41-59; 1986. Bidirectional reflectance spectroscopy 4. The extinction coefficient and the opposition effect. Icarus 67, 264-280; 2002. Bidirectional reflectance spectroscopy 5. The coherent backscatter opposition effect and anisotropic scattering. Icarus 157, 523-534) made excellent fits to fixed incidence angle, variable emission angle data sets. However, the models were not found to extrapolate well to fixed, near-zero phase angle data at varying incidence angles, and no solutions were found that provided simultaneous, high quality fits to the two types of data sets. Except for the single-scattering albedo, the best-fit parameters of the fixed incidence angle data were statistically the same in the visible and NIR. Correlations between the reflectance model parameters were systematically examined, and strong correlations were found between single-scattering albedo and the two two-stream Henyey-Greenstein scattering parameters and, to a lesser extent, the small-scale mean surface roughness.

  12. Radiometric Method for the Research on Geomechanical Parameters of Rocks

    Science.gov (United States)

    Bonczyk, Michał; Wysocka, Małgorzata; Bukowska, Mirosława; Michalik, Bogusław; Prusek, Stanisław; Wadas, Mariusz

    2017-03-01

    Tests aimed to verify whether there is a correlation between the basic parameters characterizing the mechanical properties of rocks with the properties of ionizing radiation scattered by rocks were performed as part of the research. The positive correlation between the two examined properties would provide the basis for the development of a new method of rock testing using radiation sources or devices generating ionizing radiation. The method could be applied to carry out research in underground boreholes to determine the mechanical properties of the rock mass in situ. The study allowed the verification of the adopted assumptions for the proposed method. The verification was based on the correlation analysis of absorption coefficients of the ionizing radiation of rocks from the Upper Silesian Coal Basin with the results of the research on mechanical and physical properties.

  13. COMBINED GEOMETRIC/RADIOMETRIC POINT CLOUD MATCHING FOR SHEAR ANALYSIS

    OpenAIRE

    Gehrke, S.

    2012-01-01

    In the recent past, dense image matching methods such as Semi-Global Matching (SGM) became popular for many applications. The SGM approach has been adapted to and implemented for Leica ADS line-scanner data by North West Geomatics (North West) in co-operation with Leica Geosystems; it is used in North West’s production workflow. One of the advantages of ADS imagery is the calibrated color information (RGB and near infrared), extending SGM-derived point clouds to dense “image point clouds” or,...

  14. Mathematical analysis for radiometric calorimetry of a radiating sphere

    Science.gov (United States)

    Schmid, L. A.

    1982-01-01

    Equations are derived from which the temperature dependence of both the specific heat and the thermal diffusivity of a spherical sample of material can be calculated from observations of the time dependence of the surface temperature and the time-rate of energy loss from the sample as it cools. The derivation takes into account the nonuniformity of the interior temperature field of the sample, and the resulting equations can be applied not only to radiative cooling, but also to any other cooling mechanism that does not violate the assumed spherical symmetry. The analysis excludes change of phase, but it does take thermal expansion into account. To permit the making of estimates necessary for the design of radiative cooling experiments, a universal temperature-time cooling curve is derived for the post-transient cooling regime of a radiating sphere of any size with arbitrary, but constant, thermal parameters.

  15. Calibration and Measurement Uncertainty Estimation of Radiometric Data: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Habte, A.; Sengupta, M.; Reda, I.; Andreas, A.; Konings, J.

    2014-11-01

    Evaluating the performance of photovoltaic cells, modules, and arrays that form large solar deployments relies on accurate measurements of the available solar resource. Therefore, determining the accuracy of these solar radiation measurements provides a better understanding of investment risks. This paper provides guidelines and recommended procedures for estimating the uncertainty in calibrations and measurements by radiometers using methods that follow the International Bureau of Weights and Measures Guide to the Expression of Uncertainty (GUM). Standardized analysis based on these procedures ensures that the uncertainty quoted is well documented.

  16. NREL Spectral Standards Development and Broadband Radiometric Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D. R.; Andreas, A.; Stoffel, T.; Reda, I.; Wilcox, S.; Gotseff, P.; Kay, B.; Gueymard, C.

    2003-05-01

    We describe a final version of revisions to current ASTM reference standard spectral distributions used to evaluate photovoltaic device performance. An NREL-developed graphical user interface for working with the SMARTS2 spectral model has been developed and is being tested. A proposed ASTM reference Ultraviolet (UV) spectra for materials durability is presented. Improvements in broadband outdoor radiometer calibration, characterization, and reporting software reduce uncertainties in broadband radiometer calibrations.

  17. Image sensors for radiometric measurements in the ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, E.S.; Desa, B.A.E.

    The signal to noise (SNR) performance of selected linear array image sensors belonging to the CCD (charge coupled device), SSPDA (self scanning photodiode array), and PCD (plasma coupled device) families is analysed. Our purpose was to investigate...

  18. Simulation of whitecaps and their radiometric properties in the SWIR

    Science.gov (United States)

    Schwenger, Frédéric; Repasi, Endre

    2016-05-01

    A 3D simulation of the dynamic sea surface populated with whitecaps is presented. The simulation considers the dynamic evolution of whitecaps depending on wind speed and fetch. It is suitable for imaging simulations of maritime scenarios. The calculation of whitecap radiance is done in the SWIR spectral band by considering wave hiding and shadowing, especially occurring at low viewing angles. Our computer simulation combines the 3D simulation of a maritime scene (open sea/clear sky) considering whitecaps with the simulation of light from a light source (e.g. laser light) reflected at the sea surface. The basic sea surface geometry is modeled by a composition of smooth wind driven gravity waves. The whitecap generation is deduced from the vertical acceleration of the sea surface, i.e. from the second moment of the wave power density spectrum. To predict the view of a camera, the sea surface radiance must be calculated for the specific waveband with the emitted sea surface radiance and the specularly reflected sky radiance as components. The radiances of light specularly reflected at the windroughened sea surface without whitecaps are modeled by considering an analytical statistical sea surface BRDF (bidirectional reflectance distribution function). A specific BRDF of whitecaps is used by taking into account their shadowing function. The simulation model is suitable for the pre-calculation of the reflected radiance of a light source for near horizontal incident angles where slope-shadowing of waves has to be considered. The whitecap coverage is determined from the simulated image sequences for different wind speeds and is compared with whitecap coverage functions from literature. A SWIR-image of the water surface of a lake populated with whitecaps is compared with the corresponding simulated image. Additionally, the impact of whitecaps on the radiation balance for a bistatic configuration of light source and receiver is calculated for different wind speeds.

  19. Standards and Procedures for Application of Radiometric Sensors

    Science.gov (United States)

    2010-07-01

    quantity at any one point in time.   2 1 )()( t t dtQ  (Eq. 2-4) The defining equation of spectral radiant flux is the differential version...It is the time integral of luminous flux over a time interval t.   t v dtQ  (Eq. 4-7) 4.2.3 Luminous Intensity, Iv. Luminous intensity

  20. Aerial radiometric and magnetic survey: Millett National Topographic Map, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The results of analyses of the airborne gamma radiation and total magnetic field survey flown for the region identified as the Millett National Topographic Map NJ11-2 are presented. The airborne data gathered are reduced by ground computer facilities to yield profile plots of the basic uranium, thorium and potassium equivalent gamma radiation intensities, ratios of these intensities, aircraft altitude above the earth's surface, total gamma ray and earth's magnetic field intensity, correlated as a function of geologic units. The distribution of data within each geologic unit, for all surveyed map lines and tie lines, has been calculated and is included. Two sets profiled data for each line are included, with one set displaying the above-cited data. The second set includes only flight line magnetic field, temperature, pressure, altitude data plus magnetic field data as measured at a base station. A general description of the area, including descriptions of the various geologic units and the corresponding airborne data, is included.

  1. Blood culture cross contamination associated with a radiometric analyzer.

    OpenAIRE

    Griffin, M. R; Miller, A D; Davis, A. C.

    1982-01-01

    During a 9-day period in August 1980 in a New Jersey hospital, three pairs of consecutively numbered blood cultures from different patients were identified as positive for the same organism (two pairs of Klebsiella pneumoniae and one pair of group A Streptococcus), for each pair, both cultures were positive in the same atmosphere, both organisms had the same sensitivities, and the second of each pair grew at least 2 days after the first and was the only positive blood culture obtained from th...

  2. Analysis of airborne radiometric data. Volume 3. Topical reports

    Energy Technology Data Exchange (ETDEWEB)

    Reed, J.H.; Shreve, D.C.; Sperling, M.; Woolson, W.A.

    1978-05-01

    This volume consists of four topical reports: a general discussion of the philosophy of unfolding spectra with continuum and discrete components, a mathematical treatment of the effects of various physical parameters on the uncollided gamma-ray spectrum at aircraft elevations, a discussion of the application of the unfolding code MAZNAI to airborne data, and a discussion of the effects of the nonlinear relationship between energy deposited and pulse height in NaI(T1) detectors.

  3. Imaging exo-solar planetary systems with Terrestrial Planet Finder

    Science.gov (United States)

    Eatchel, Andrew Lynn

    The concept of building a space based telescope capable of directly imaging extra-solar planetary systems has been in existence for more than a decade. While the basic ideas of how such an instrument might work have already been discussed in the literature, specific details of the design have not been addressed that will enable a telescope of this class to be functionally realized. A straw man configuration of the instrument is examined here for its ability to acquire data of sufficient informational content and quality to produce images and spectra of distant planetary systems and to find what technical problems arise from analyzing the interferograms it delivers. Computer programs that simulate the signals expected to be produced by a structurally connected instrument (SCI) version of Terrestrial Planet Finder (TPF) and reconstruct images from those signals will be presented along with programs that extract planetary parameters. An abbreviated radiometric performance analysis will also be provided that will assist astronomers in designing an appropriate mission.

  4. DeepSurveyCam—A Deep Ocean Optical Mapping System

    Directory of Open Access Journals (Sweden)

    Tom Kwasnitschka

    2016-01-01

    Full Text Available Underwater photogrammetry and in particular systematic visual surveys of the deep sea are by far less developed than similar techniques on land or in space. The main challenges are the rough conditions with extremely high pressure, the accessibility of target areas (container and ship deployment of robust sensors, then diving for hours to the ocean floor, and the limitations of localization technologies (no GPS. The absence of natural light complicates energy budget considerations for deep diving flash-equipped drones. Refraction effects influence geometric image formation considerations with respect to field of view and focus, while attenuation and scattering degrade the radiometric image quality and limit the effective visibility. As an improvement on the stated issues, we present an AUV-based optical system intended for autonomous visual mapping of large areas of the seafloor (square kilometers in up to 6000 m water depth. We compare it to existing systems and discuss tradeoffs such as resolution vs. mapped area and show results from a recent deployment with 90,000 mapped square meters of deep ocean floor.

  5. DeepSurveyCam--A Deep Ocean Optical Mapping System.

    Science.gov (United States)

    Kwasnitschka, Tom; Köser, Kevin; Sticklus, Jan; Rothenbeck, Marcel; Weiß, Tim; Wenzlaff, Emanuel; Schoening, Timm; Triebe, Lars; Steinführer, Anja; Devey, Colin; Greinert, Jens

    2016-01-28

    Underwater photogrammetry and in particular systematic visual surveys of the deep sea are by far less developed than similar techniques on land or in space. The main challenges are the rough conditions with extremely high pressure, the accessibility of target areas (container and ship deployment of robust sensors, then diving for hours to the ocean floor), and the limitations of localization technologies (no GPS). The absence of natural light complicates energy budget considerations for deep diving flash-equipped drones. Refraction effects influence geometric image formation considerations with respect to field of view and focus, while attenuation and scattering degrade the radiometric image quality and limit the effective visibility. As an improvement on the stated issues, we present an AUV-based optical system intended for autonomous visual mapping of large areas of the seafloor (square kilometers) in up to 6000 m water depth. We compare it to existing systems and discuss tradeoffs such as resolution vs. mapped area and show results from a recent deployment with 90,000 mapped square meters of deep ocean floor.

  6. DeepSurveyCam—A Deep Ocean Optical Mapping System

    Science.gov (United States)

    Kwasnitschka, Tom; Köser, Kevin; Sticklus, Jan; Rothenbeck, Marcel; Weiß, Tim; Wenzlaff, Emanuel; Schoening, Timm; Triebe, Lars; Steinführer, Anja; Devey, Colin; Greinert, Jens

    2016-01-01

    Underwater photogrammetry and in particular systematic visual surveys of the deep sea are by far less developed than similar techniques on land or in space. The main challenges are the rough conditions with extremely high pressure, the accessibility of target areas (container and ship deployment of robust sensors, then diving for hours to the ocean floor), and the limitations of localization technologies (no GPS). The absence of natural light complicates energy budget considerations for deep diving flash-equipped drones. Refraction effects influence geometric image formation considerations with respect to field of view and focus, while attenuation and scattering degrade the radiometric image quality and limit the effective visibility. As an improvement on the stated issues, we present an AUV-based optical system intended for autonomous visual mapping of large areas of the seafloor (square kilometers) in up to 6000 m water depth. We compare it to existing systems and discuss tradeoffs such as resolution vs. mapped area and show results from a recent deployment with 90,000 mapped square meters of deep ocean floor. PMID:26828495

  7. The Gaia Investigation of the Solar System

    Science.gov (United States)

    Delbo, Marco; Tanga, Paolo; Mignard, Francois; Cellino, Alberto; Hestroffer, Daniel

    2015-08-01

    The space mission Gaia of the European Space Agency (ESA) has begun its scientific whole-sky survey of all astrophysical sources with Vspectroscopy of the observed sources, including solar system small bodies. Preliminary results show a good quality of the data, in general, in line with the expected pre-flight specifications. These data will consist a mine of information for a remote-sensing exploration of the small worlds of our Solar System. Indeed, ~250,000 asteroids will be observed by Gaia throughout its 5-years-long mission. After an update about the status of the mission and the on-going data analysis, including some preliminary results, we are going to present the plans for the data releases, the first foreseen at the end of 2016, and the general data treatment.We will show how Gaia spectroscopy will allow up to map the composition of about 100,000 asteroids throughout the Main Belt, with high signal to noise ratio. Given its advantage position outside the Earth's atmosphere, the blue part of the spectrum (roughly below 0.5 micron) will be observed for an unprecedented number of asteroids.Additionally, precise photometry and astrometry will also be important to reveal the physical nature of these small bodies. In particular, it is estimated that three-dimensional shapes, rotation, period and pole orientation will be derived for 10,000 asteroids. The masses of about 150 of the largest asteroids, will be determined from measurements of the orbital gravitational perturbations that these bodies will exert on small asteroids during mutual close approaches.Moreover, the combination of Gaia data (delivering masses and shapes) with infrared radiometric observations, e.g. from the NASA WISE mission (informing us about the size of the bodies), will allow precise asteroid bulk densities to be determined. The bulk density and the internal structure are among the most important characteristics of asteroids, that are currently some of the least constrained.

  8. A method to measure internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures

    Science.gov (United States)

    Tian, Qijie; Chang, Songtao; Li, Zhou; He, Fengyun; Qiao, Yanfeng

    2017-03-01

    The suppression level of internal stray radiation is a key criterion for infrared imaging systems, especially for high-precision cryogenic infrared imaging systems. To achieve accurate measurement for internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures, a measurement method, which is based on radiometric calibration, is presented in this paper. First of all, the calibration formula is deduced considering the integration time, and the effect of ambient temperature on internal stray radiation is further analyzed in detail. Then, an approach is proposed to measure the internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures. By calibrating the system under two ambient temperatures, the quantitative relation between the internal stray radiation and the ambient temperature can be acquired, and then the internal stray radiation of the cryogenic infrared imaging system under various ambient temperatures can be calculated. Finally, several experiments are performed in a chamber with controllable inside temperatures to evaluate the effectiveness of the proposed method. Experimental results indicate that the proposed method can be used to measure internal stray radiation with high accuracy at various ambient temperatures and integration times. The proposed method has some advantages, such as simple implementation and the capability of high-precision measurement. The measurement results can be used to guide the stray radiation suppression and to test whether the internal stray radiation suppression performance meets the requirement or not.

  9. ERS-1 SAR geocoding system as link between spaceborne and earth reference data

    Science.gov (United States)

    Schreier, Gunter; Roth, Achim; Knöpfle, Walter

    1993-08-01

    The operational European ground segment of the European Remote Sensing Satellite ERS-1 supports geocoded SAR image data generated by the German Processing and Archiving Facility (D-PAF) of DLR in Oberpfaffenhofen near Munich. Geocoding of spaceborne satellite data means to establish an easy and user friendly link between the satellite measurements and Geo-Information Systems (GIS) as well as the possibility to intercompare SAR data with other geocoded satellite based information. Although the near to fully automatic geocoding system is based on precisely known satellite house-keeping data, it strongly depends on georeference information at least for the validation of the data and the verification of its results. Such reference information are large scale topographic maps, which are still the unique global source for earth based information and Digital Elevation Models. The later are necessary to correct SAR data for disturbing height induced geometric and radiometric defects. Additionally automatically generated Image Ground Control Chips aid the precision of the system. To accomplish the task of operational geocoding, several consistent data bases have been generated at DLR to store these types of reference data. Both, relational data base techniques as well as spatial binary reference systems are in use for the data storage. The article will present the architecture of these operational systems and will give a first review of the experience with these systems during the ERS-1 commissioning and early operations phase.

  10. The JAC airborne EM system: AEM-05

    Science.gov (United States)

    Leväniemi, H.; Beamish, D.; Hautaniemi, H.; Kurimo, M.; Suppala, I.; Vironmäki, J.; Cuss, R. J.; Lahti, M.; Tartaras, E.

    2009-03-01

    This paper describes the airborne electromagnetic (AEM) system operated by the Joint Airborne geoscience Capability (JAC), a partnership between the Finnish and British Geological Surveys. The system is a component of a 3-in-1, fixed-wing facility acquiring magnetic gradiometer and full spectrum radiometric data alongside the wing-tip, frequency-domain AEM measurements. The AEM system has recently (2005) been upgraded from 2 to 4 frequencies and now provides a bandwidth from 900 Hz to 25 kHz. The fixed-wing configuration of 4 dual vertical coplanar coils, offers a high signal/noise by virtue of the wingspan separation of the sensors. This unique configuration allows 3-in-1 surveys to be successfully performed at a variety of survey elevations when regulatory conditions are imposed. Its deployment on a twin-engine aircraft also permits low altitude surveying in countries, such as the UK, where this is a requirement. The development of the new AEM-05 system has been incremental and its history can be traced back over five decades. The AEM data acquired in the Finnish National Mapping project, and across northern Europe, have been used extensively in mineral exploration. More recent projects have investigated the application of the data to environmental, hydrogeological and land quality issues. These studies have been enhanced by reducing the flight line separation from 200 m (the national high-resolution scale) to 50 m. Our surveys also increasingly involve the application of AEM across populated areas often with extensive infrastructure. Additional secondary instrumentation has been introduced to provide an increased understanding of the data and the AEM responses observed. The secondary systems include an accurate, high sampling rate laser altimeter, a downward-looking digital camera to record the flight path, a 50/60 Hz power line monitor and a GPS gyroscope. The paper is intended as an overview and provides descriptions of the new AEM system, the secondary

  11. Ground test results and analysis advancements for the AFRL airborne CO2 DIAL system

    Science.gov (United States)

    Senft, Daniel C.; Fox, Marsha J.; Hamilton, Carla M.; Richter, Dale A.; Higdon, N. S.; Kelly, Brian T.; Babnick, Robert D.; Pierrottet, Diego F.

    1999-10-01

    The Air Force Research Laboratory (AFRL) Active Remote Sensing Branch has developed the Laser Airborne Remote Sensing (LARS) system for chemical detection using the differential absorption lidar technique. The system is based on a high-power CO2 laser which can use either the standard 12C16O2 or the 13C16O2 carbon dioxide isotopes as the lasing medium, and has output energies of up to 5 J on the stronger laser transitions. The lidar system is mounted on a flight-qualified optical breadboard designed for installation into the AFRL Argus C- 135E optical testbed aircraft. The Phase I ground tests were conducted at Kirtland AFB in 1997, prior to the LARS flight tests performed in September 1997 at Kirtland AFB and the Idaho National Engineering and Environmental Laboratory. The Phase II ground tests were conducted in 1998 to determine the optimum performance of the LARS systems, after the incorporation of modifications and improvements suggested by the flight test results. This paper will present some of the chemical detection and radiometric results obtained during the Phase II ground tests. Following the presentation of the direct detection results, a summary of current work on a heterodyne DIAL system is given.

  12. Solar System Objects in the ISOPHOT 170 micron Serendipity Survey

    CERN Document Server

    Müller, T G; Stickel, M

    2002-01-01

    The ISOPHOT Serendipity Survey (ISOSS) covered approximately 15 % of the sky at a wavelength of 170 micron while the ISO satellite was slewing from one target to the next. By chance ISOSS slews went over many solar system objects (SSOs). We identified the comets, asteroids and planets in the slews through a fast and effective search procedure based on N-body ephemeris and flux estimates. The detections were analysed from a calibration and scientific point of view. Through the measurements of the well-known asteroids Ceres, Pallas, Juno and Vesta and the planets Uranus and Neptune it was possible to improve the photometric calibration of ISOSS and to extend it to higher flux regimes. We were also able to establish calibration schemes for the important slew end data. For the other asteroids we derived radiometric diameters and albedos through a recent thermophysical model. The scientific results are discussed in the context of our current knowledge of size, shape and albedos, derived from IRAS observations, occ...

  13. Synthesis and antimycobacterial activity of new quinoxaline-2-carboxamide 1,4-di-N-oxide derivatives.

    Science.gov (United States)

    Zarranz, Belén; Jaso, Andrés; Aldana, Ignacio; Monge, Antonio

    2003-05-15

    As a continuation of our research and with the aim of obtaining new antituberculosis agents which can improve the current chemotherapeutic antituberculosis treatments, new series of quinoxaline-2-carboxamide 1,4-di-N-oxide derivatives were synthesized and evaluated for in vitro antituberculosis activity against Mycobacterium tuberculosis strain H(37)Rv, using the radiometric BACTEC 460-TB methodology. Active compounds were also screened by serial dilution to assess toxicity to a VERO cell line. The results indicate that some compounds exhibited a good antituberculosis activity and the arylcarboxamide analogues 3, 8, and 9 were the most active compounds (EC(90)/MIC1). Also, the cytotoxic effects indicate that these compounds have a good Selectivity Index (SI).

  14. Incubation time of Mycobacterium tuberculosis complex sputum cultures in BACTEC MGIT 960: Four weeks of negative culture is enough for physicians to consider alternative diagnoses

    Science.gov (United States)

    Ogwang, Sam; Mubiri, Paul; Bark, Charles M.; Joloba, Moses L.; Boom, W. Henry; Johnson, John L.

    2015-01-01

    We retrospectively analyzed time to detection of 3747 positive MGIT sputum cultures at a laboratory in a country with heavy burden of tuberculosis. Ninety-nine percent of diagnostic cultures turned positive within 28 days, suggesting that physicians may consider alternative diagnoses if sputum cultures remain negative after 4 weeks of incubation. PMID:26239846

  15. WhiteRef: A New Tower-Based Hyperspectral System for Continuous Reflectance Measurements

    Directory of Open Access Journals (Sweden)

    Karolina Sakowska

    2015-01-01

    Full Text Available Proximal sensing is fundamental to monitor the spatial and seasonal dynamics of ecosystems and can be considered as a crucial validation tool to upscale in situ observations to the satellite level. Linking hyperspectral remote sensing with carbon fluxes and biophysical parameters is critical to allow the exploitation of spatial and temporal extensive information for validating model simulations at different scales. In this study, we present the WhiteRef, a new hyperspectral system designed as a direct result of the needs identified during the EUROSPEC ES0903 Cost Action, and developed by Fondazione Edmund Mach and the Institute of Biometeorology, CNR, Italy. The system is based on the ASD FieldSpec Pro spectroradiometer and was designed to acquire continuous radiometric measurements at the Eddy Covariance (EC towers and to fill a gap in the scientific community: in fact, no system for continuous spectral measurements in the Short Wave Infrared was tested before at the EC sites. The paper illustrates the functioning of the WhiteRef and describes its main advantages and disadvantages. The WhiteRef system, being based on a robust and high quality commercially available instrument, has a clear potential for unattended continuous measurements aiming at the validation of satellites’ vegetation products.

  16. Performance characterization and ground testing of an airborne CO2 differential absorption lidar system (phase II)

    Science.gov (United States)

    Senft, Daniel C.; Fox, Marsha J.; Hamilton, Carla M.; Richter, Dale A.; Higdon, N. S.; Kelly, Brian T.

    1999-05-01

    The Air Force Research Laboratory (AFRL) Active Remote Sensing Branch has developed the Laser Airborne Remote Sensing (LARS) system for chemical detection using the differential absorption lidar (DIAL) technique. The system is based on a high-power CO2 laser which can use either the standard 12C16O2 or the 13C16O2 carbon dioxide isotopes as the lasing medium, and has output energies of up to 5 J on the stronger laser transitions. The lidar system is mounted on a flight-qualified optical breadboard designed for installation into the AFRL Argus C- 135E optical testbed aircraft. The Phase I ground tests were conducted at Kirtland AFB in 1997, prior to the LARS flight tests performed in September 1997 at Kirtland AFB and the Idaho National Engineering and Environmental Laboratory (INEEL). The Phase II ground tests were conducted in 1998 to determine the optimum performance of the LARS system, after the incorporation of modification and improvements suggested by the flight test results. This paper will present some of the chemical detection and radiometric results obtained during the Phase II ground tests.

  17. [Culture based diagnostic methods for tuberculosis].

    Science.gov (United States)

    Baylan, Orhan

    2005-01-01

    Culture methods providing isolates for identification and drug susceptibility testing, still represent the gold standard for the definitive diagnosis of tuberculosis, although the delay in obtaining results still remains a problem. Traditional solid media are recommended for use along with liquid media in primary isolation of mycobacteria. At present, a number of elaborate culture systems are available commercially. They range from simple bottles and tubes such as MGIT (BD Diagnostic Systems, USA), Septi-Chek AFB (BD, USA) and MB Redox (Biotest Diagnostics, USA) to semiautomated system (BACTEC 460TB, BD, USA) and fully automated systems (BACTEC 9000 MB [BD, USA], BACTEC MGIT 960 [BD, USA], ESP Culture System II [Trek Diagnostics, USA], MB/BacT ALERT 3D System [BioMérieux, NC], TK Culture System [Salubris Inc, Turkey]). Culture methods available today are sufficient to permit laboratories to develop an algoritm that is optimal for patients and administrative needs. In this review article, the culture systems used for the diagnosis of tuberculosis, their mechanisms, advantages and disadvantages have been discussed under the light of recent literature.

  18. Remote sensing application system for water environments developed for Environment Satellite 1

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Remote sensing data collected by the Environment Satellite I are characterized by high temporal resolution,high spectral resolution and mid-high spatial resolution.We designed the Remote Sensing Application System for Water Environments(RSASWE) to create an integrated platform for remote sensing data processing,parameter information extraction and thematic mapping using both remote sensing and GIS technologies.This system provides support for regional water environmental monitoring,and prediction and warning of water pollution.Developed to process and apply data collected by Environment Satellite I,this system has automated procedures including clipping,observation geometry computation,radiometric calibration,6S atmospheric correction and water quality parameter inversion.RSASWE consists of six subsystems:remote sensing image processing,basic parameter inversion,water environment remote sensing thematic outputs,application outputs,automated water environment outputs and a non-point source pollution monitoring subsystem.At present RSASWE plays an important role in operations at the Satellite Environment Center.

  19. The environmental features of the Monte Corchia cave system (Apuan Alps, central Italy and their effects on speleothem growth

    Directory of Open Access Journals (Sweden)

    Piccini Leonardo

    2008-10-01

    Full Text Available The Monte Corchia cave system, one of the most famous and popular caves in Italy, has in recent times been the subject of investigation on its speleothems as paleoclimate archives. This paper describes the geology, geomorphology and water chemistry of the cave system with the aim to elucidate the processes that have generated these speleothems and the properties they contain that are so useful for paleoclimatology. Some general conclusions can be drawn: i the Corchia system is a cave developed over different altitudes during progressive uplift of the mountain chain in which it is located, probably under drainage conditions very different to those of the present. This has allowed the development of a large (ca. 60 km and deep (-1187 m karst system; ii the dewatering phases have left the deepest chambers far away from clastic input and with long drip pathways; iii the peculiar geological context has permitted the water to intercept and dissolve a significant source of U (still unknown that facilitates radiometric dating; iv in the last 1 Ma at least, no significant changes have occurred in the relief and in the epikarst, in the sense that speleothems have grown under very similar conditions. In addition the extremely low Ca concentration of drip waters have permitted low speleothem growth rates and, at least for the “Galleria delle Stalattiti”, the zone under paleoclimate studies,a stable plumbing system (i.e. chemistry and stable isotopes of drip waters has produced calcite close to isotopic equilibrium.

  20. Proctitis associated with Neisseria cinerea misidentified as Neisseria gonorrhoeae in a child.

    OpenAIRE

    Dossett, J H; Appelbaum, P. C.; Knapp, J S; Totten, P A

    1985-01-01

    An 8-year-old boy developed proctitis. Rectal swabs yielded a Neisseria sp. that was repeatedly identified by API (Analytab Products, Plainview, N.Y.), Minitek (BBL Microbiology Systems, Cockeysville, Md.), and Bactec (Johnston Laboratories, Towson, Md.) methods as Neisseria gonorrhoeae. Subsequent testing in a reference laboratory yielded an identification of Neisseria cinerea. It is suggested that identification of a Neisseria sp. isolated from genital or rectal sites in a child be confirme...