WorldWideScience

Sample records for bacolod city groundwater

  1. Education Beyond Borders: Lived-Experiences in Teaching Basic English Grammar among ALS Teachers in Bacolod City, Philippines

    Directory of Open Access Journals (Sweden)

    John Gerald Arbias Pilar

    2015-11-01

    Full Text Available This study primarily conducted to investigate the lived-experiences among the alternative learning students (ALS in Bacolod City, Philippines. Moreover, this study was able to conceptualize that education can be flexible according to the needs of the learners thus, education can take beyond borders. The qualitative-phenomenological approach was used through thematizing the responses of the informants. The findings thematized in the following: (1 the role of multimedia as a teaching learning tool among ALS teachers is very essential in delivering the lessons; (2 the use of Hiligaynon is vital in learning Basic English Grammar. It was concluded that ALS teachers were more flexible, open-minded, and perseverance in dealing with ALS students since the latter are heterogeneous in terms of age, gender, year level, civil status, and economic background. Moreover, ALS teachers were searching for better teaching strategies for them to improve their skills in teaching Basic English Grammar to ALS students particularly the one who were in jail and in the care of DSWD (for minor age, 16 - 17 year old. It is recommended that the ALS students’ performance and development should be monitored so that they will be ready to take the ALS accreditation and equivalency test. Therefore, these ALS students need to be provided with quality education beyond classroom.

  2. Review on the Antimicrobial Resistance of Pathogens from Tracheal and Endotracheal Aspirates of Patients with Clinical Manifestations of Pneumonia in Bacolod City in 2013

    Directory of Open Access Journals (Sweden)

    Alain C. Juayang

    2015-01-01

    Full Text Available Microbiological content specifically bacterial and fungal etiologies from tracheal aspirates in a tertiary hospital in Bacolod City was reviewed for baseline information. A total of 130 tracheal aspirates were subjected for culture to isolate and identify the pathogen and determine their susceptibilities to various antibiotics. Productions of certain enzymes responsible for antibiotic resistance like ESBL (Extended Spectrum Beta-Lactamase, metallo-β-lactamase, and carbapenemase were also studied. Out of 130 specimens, 69.23% were found to be positive for the presence of microorganisms. Most infections were from male patients aging 60 years and above, confined at the Intensive Care Units (ICU. Pseudomonas aeruginosa and Klebsiella pneumoniae were found to be the most frequent bacterial isolates and non-Candida albicans for fungal isolates, respectively. Among the various antibiotics tested, most isolates were found to be resistant to third generation cephalosporins and penicillins, but susceptible to aminoglycoside Amikacin. On the other hand, production of ESBL and carbapenemase was found to be common among members of Enterobacteriaceae especially K. pneumoniae.

  3. Features of groundwater pollution and its relation to overexploitation of groundwater in Shijiazhuang city

    International Nuclear Information System (INIS)

    Guo Yonghai; Wang Zhiming; Liu Shufen; Li Ping

    2005-01-01

    The groundwater pollution in Shijiazhuang city is characterized by an excess of some components and parameters over permitted values. The main pollutants are originated from the city sewage which is quite typical for groundwater pollution in many cities of China. On the basis of agonizingly features of groundwater pollution, the relationship between the groundwater pollution and the groundwater overexploitation is discussed in this paper, and the mechanism of intensifying the pollution by overexploitation has been revealed. Finally, it is proposed that the overexploitation of groundwater is an important inducing factor leading to the groundwater pollution in cities. (authors)

  4. Assessment of groundwater quality of Benin City, Edo state, Nigeria ...

    African Journals Online (AJOL)

    The quality of groundwater of Benin City, Edo State, Nigeria was investigated between February and July 2008. Water samples were collected from functional bore holes from five locations (stations 1 – 5) and analyzed for physico-chemical parameters including heavy metals. Data obtained were compared with World ...

  5. Thermal footprints in groundwater of central European cities

    Science.gov (United States)

    Bayer, P.; Menberg, K.; Blum, P.

    2014-12-01

    Atmospheric thermal pollution in densely populated areas is recognized as a severe problem with consequences for human health, and considerable efforts are being taken to mitigate heat stress in cities. However, anthropogenic activities also influence the thermal environment beneath the ground level, with commonly growing temperatures that affect groundwater ecology and geothermal use efficiency. In our work, we identify the controlling mechanisms for the long-term evolution of such urban heat islands. The shallow groundwater temperatures in several central European cities such as Cologne, Karlsruhe, Munich, Berlin and Zurich were mapped at high spatial and temporal resolution. Thermal anomalies were found to be highly heterogeneous with local hot spots showing temperatures of more than 20°C. Accordingly, these urban regions show a considerable groundwater warming in comparison to undisturbed temperatures of 8-11°C. Examination of potential heat sources by analytical modelling reveals that increased ground surface temperatures and basements of buildings act as dominant drivers for the anthropogenic heat input into the groundwater. The factors are revealed to be case-specific and they may have pronounced local or regional effects. Typical local factors are for example buried district heating networks. In selected cities we find that the average urban heat flux is around one order of magnitude higher than the elevated ground heat flux due to recent climate change. Additionally, such as observed in Zurich, naturally controlled temperature variations can be substantial and they are shown to wash out anthropogenic thermal footprints.

  6. Urban Groundwater Mapping - Bucharest City Area Case Study

    Science.gov (United States)

    Gaitanaru, Dragos; Radu Gogu, Constantin; Bica, Ioan; Anghel, Leonard; Amine Boukhemacha, Mohamed; Ionita, Angela

    2013-04-01

    Urban Groundwater Mapping (UGM) is a generic term for a collection of procedures and techniques used to create targeted cartographic representation of the groundwater related aspects in urban areas. The urban environment alters the physical and chemical characteristics of the underneath aquifers. The scale of the pressure is controlled by the urban development in time and space. To have a clear image on the spatial and temporal distribution of different groundwater- urban structures interaction we need a set of thematic maps is needed. In the present study it is described the methodological approach used to obtain a reliable cartographic product for Bucharest City area. The first step in the current study was to identify the groundwater related problems and aspects (changes in the groundwater table, infiltration and seepage from and to the city sewer network, contamination spread to all three aquifers systems located in quaternary sedimentary formations, dewatering impact for large underground structures, management and political drawbacks). The second step was data collection and validation. In urban areas there is a big spectrum of data providers related to groundwater. Due to the fact that data is produced and distributed by different types of organizations (national agencies, private companies, municipal water regulator, etc) the validation and cross check process is mandatory. The data is stored and managed by a geospatial database. The design of the database follows an object-orientated paradigm and is easily extensible. The third step consists of a set of procedures based on a multi criteria assessment that creates the specific setup for the thematic maps. The assessment is based on the following criteria: (1) scale effect , (2) time , (3) vertical distribution and (4) type of the groundwater related problem. The final step is the cartographic representation. In this final step the urban groundwater maps are created. All the methodological steps are doubled

  7. An approach of groundwater management in Barcelona City

    Science.gov (United States)

    Criollo, Rotman; Vázquez-Suñé, Enric; Velasco, Violeta; Marazuela, Miguel Angel; Burdons, Silvia; Enrich, Monica; Cardona, Fidel

    2017-04-01

    Urban groundwater is a valuable resource since its quantity is larger than frequently expected due to additional recharge sources (Lerner, 2002; Vázquez-Suñé et al., 2003). Its interaction with the complex infrastructures network makes the water authorities a challenge to ensure a proper water management. Necessary datasets to ensure a suitable water management have normally different origins and formats. At the same time, the water management of a city involves different decision makers with different knowledges. In this scenario, it is a necessity to create a common environment where different actors would be able to understand and analyze problems in the same way. It should be also necessary to store, analyze and visualize all the required data in the same formats within its geographical context by using standardized specific tools. To apply these recommendations for the urban groundwater management of the Barcelona City Council, we have implemented a software platform developed in a Geographic Information System (GIS) environment. These GIS-based tools will give support to the users for storing, managing, and analyzing geological, hydrogeological and hydrochemical data in 2D and in a 3D context (Velasco et al., 2013). This implementation will improve the groundwater management in Barcelona city optimizing the analysis and decision making processes. References Lerner, D.N., (2002). Identifying and quantifying urban recharge: a review. Hydrogeology Journal, 10 (1), pp. 143-152 Vázquez-Suñé, E., Sánchez-Vila, X. & Carrera, J. (2005). Introductory review of specific factors influencing urban groundwater, an emerging branch of hydrogeology, with reference to Barcelona, Spain. Hydrogeology Journal, 13: 522. doi:10.1007/s10040-004-0360-2 Velasco, V., Gogu, R., Vázquez-Suñè, E., Garriga A., Ramos, E., Riera, J., Alcaraz, M. (2013). The use of GIS-based 3D geological tools to improve hydrogeological models of sedimentary media in an urban environment

  8. Groundwater Depletion in Dhaka City, Bangladesh: A Spatio-temporal Analysis

    Science.gov (United States)

    Jerin, T.; Ishtiaque, A.

    2015-12-01

    Dhaka city, having a population of more than fifteen million, exclusively depends on groundwater as a source of quality drinking water. In recent decades the city is encountering groundwater diminution and the declining scenario is dissimilar in different parts of the city. This paper aims to discuss the groundwater depletion in different parts of Dhaka city from 1990 to 2012 along with the causes and consequences. Groundwater level data of different locations of Dhaka city were collected from Bangladesh Water Development Board (BWDB). The data were processed and analyzed using SPSS and Excel Worksheet; a contour map was generated using ArcGIS 10.0 to outline the contemporary groundwater scenario of Dhaka city and the spatial analyst tool, Inverse Distance Weighted (IDW) was used to prepare the map. In addition, experts' opinions were collected using an in-depth interview strategy in order to provide a better understanding of the causes and consequences of groundwater depletion. The research results show that groundwater in Dhaka city is depleting at an alarming rate; the central part has the worst situation followed by the south-western part. In contrast, northern part has relatively better groundwater condition. Moreover, the peripheral zone exhibits a better condition because of the existence of rivers and wetlands. The interviews reveal that population density and overexploitation are mainly responsible for groundwater depletion; however, various other factors such as the deliberate establishment of deep tube wells, reduction of recharge capacity due to rapid growth of urban structures altogether results in huge drop of water level throughout the city. Rapid decline in groundwater augments the city's exposure towards multiple risks including land subsidence, groundwater pollution and most importantly, paucity of available fresh water that might ultimately results into an urban disaster. Potential solutions to ameliorate this situation include urban greening

  9. Impact of urbanization on the groundwater regime in a fast growing city in central India.

    Science.gov (United States)

    Naik, Pradeep K; Tambe, Jivesh A; Dehury, Biranchi N; Tiwari, Arun N

    2008-11-01

    This paper describes the impact of urbanization on the groundwater regime in a fast growing city, Solapur, in central India, giving special emphasis on the management of the present and ultimate demand of water in 2,020 AD. The objective is to apprise the city planners and administrators of the effects of urbanization on the groundwater regime in a fast growing medium-sized city in a developing country where the infrastructure developments are not in conformity with the rapid growth in population. Solapur city with an area of 178.57 km2 receives a recharge of about 24 million m3 of groundwater from various sources annually. Reduction in recharge, as conventionally assumed due to the impact of urbanization, could not, however, be well established. Instead, there was a rise in recharge as water use in the city grew from time to time and more and more water was supplied to satisfy the human needs. Compared to mid-1970s, groundwater levels have increased within the main city area due to increased recharge and decreased groundwater abstraction. However, outside the main city area, there is a general decline in groundwater levels due to increased groundwater utilization for irrigation purposes. Groundwater quality deterioration has been highly localized. Water quality has deteriorated during the last 10 years, especially in dugwells, mainly due to misuse and disuse of these structures and poor circulation of groundwater. However, in case of borewells, comparison of the present water quality with that in mid-1970s and early 1980s does not show any perceptible change. Deeper groundwater tapped by borewells can still be used for drinking purposes with caution.

  10. Groundwater chemistry within a plateau neighboring Matsumoto city, Japan

    Science.gov (United States)

    Ii, H.; Misawa, S.

    1994-11-01

    The change in groundwater chemistry along the groundwater flow path in the Matsumoto tunnel vicinity was studied, and the origin of the groundwater and dissoluted substances was determined. The relationship between the concentration of HCO3 -, Ca2+, and Na+, and CO2 gas pressure in the groundwater indicated that the HCO3 -, Ca2+, and Na+ were produced by the reaction of the CO2 gas in the groundwater and feldspar in the rocks. The relationship between the concentration of NO3 - and the Eh and pH values in the groundwater indicated that in an oxidative condition, ammonia-oxidizing and nitriteoxidizing bacteria used NH4 + and produced NO3 - and H+, and in a reductive condition, denitrifying bacteria used NO3 - and produced N2 gas and OH-. The stable hydrogen and oxygen isotopic ratio in the groundwater and precipitation indicated that the groundwater originated from precipitation that had fallen on the area. The concentration of3H and the stable hydrogen and oxygen isotopic ratios in the groundwater suggested that it has been getting warmer climatically for more than 60 years. The stable carbon isotopic ratio indicated that the HCO3 - in the groundwater, excluding deep well water, originated from CO2 gas produced by organic matter in the soil. The deep well water, which had a higher concentration of HCO3 - than the other groundwater sampled, was thought to have acquired HCO3 - though contact with rocks. The36Cl/Cl ratio indicated the recharge age of the deep well water sampled at a depth of 760 m at the foot of the plateau was recent.

  11. Evapotranspiration Within the Groundwater Model Domain of the Tuba City, Arizona, Disposal Site Interim Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-03-01

    The revised groundwater model includes estimates of evapotranspiration (ET). The types of vegetation and the influences of ET on groundwater hydrology vary within the model domain. Some plant species within the model domain, classified as phreatophytes, survive by extracting groundwater. ET within these plant communities can result in a net discharge of groundwater if ET exceeds precipitation. Other upland desert plants within the model domain survive on meteoric water, potentially limiting groundwater recharge if ET is equivalent to precipitation. For all plant communities within the model domain, excessive livestock grazing or other disturbances can tip the balance to a net groundwater recharge. This task characterized and mapped vegetation within the groundwater model domain at the Tuba City, Arizona, Site, and then applied a remote sensing algorithm to estimate ET for each vegetation type. The task was designed to address five objectives: 1. Characterize and delineate different vegetation or ET zones within the groundwater model domain, focusing on the separation of plant communities with phreatophytes that survive by tapping groundwater and upland plant communities that are dependent on precipitation. 2. Refine a remote sensing method, developed to estimate ET at the Monument Valley site, for application at the Tuba City site. 3. Estimate recent seasonal and annual ET for all vegetation zones, separating phreatophytic and upland plant communities within the Tuba City groundwater model domain. 4. For selected vegetation zones, estimate ET that might be achieved given a scenario of limited livestock grazing. 5. Analyze uncertainty of ET estimates for each vegetation zone and for the entire groundwater model domain.

  12. Assessment of groundwater contamination in an industrial city ...

    African Journals Online (AJOL)

    Contamination of groundwater due to heavy metals is one of the most important concerns that have received attention at regional, local and global levels because of their toxicological importance in ecosystems and impact on public health. The present study was designed to assess the quality of groundwater in relation to ...

  13. Land subsidence caused by groundwater exploitation in Suzhou City, China

    Science.gov (United States)

    Chen, Chongxi; Pei, Shunping; Jiao, Jiu Jimmy

    2002-09-01

    Suzhou City, located at the lower reaches of the Yangtze River in southeastern Jiangsu Province, is one of the few cities in China which suffer from severe ground settlement. A research project was carried out to investigate this problem. Geological and hydrogeological studies show that there is a multi-layered aquifer system with three distinct, soft mud layers of marine and lagoonal origins. An examination of historical records of groundwater extraction, water levels, and ground settlement shows that the ground subsidence is associated with the continuously increasing groundwater extraction in the deep, confined aquifer. It is believed that the consolidation of the soft mud layers, especially the third layer which is thick and close to the main pumped aquifer, contributes to the ground settlement. A three-dimensional finite difference numerical model representing the multi-layered aquifer system was developed to study the ground settlement in response to groundwater extraction. By calibrating the model with both the measured groundwater level and ground settlement, the aquifer parameters were estimated. The model outputs fit reasonably well with the observed results, which indicates that the numerical model can reproduce the dynamic processes of both groundwater flow and soil consolidation. The hydraulic conductivity of the third mud layer near the center of the ground settlement has been reduced by over 30% in the last 14 years. The gradual deterioration in the hydraulic conductivity of the mud may have significant adverse effect on the sustainable groundwater resource of the deep confined aquifer, since the recharge from the shallow aquifers through the mud layer is the only source of water to the deep aquifer. An analysis of the spatial distributions of groundwater drawdown and ground settlement shows that the area with maximum drawdown is not necessarily the area with maximum ground settlement due to the occurrence of the soft mud layer. A simple reallocation

  14. Recharge source identification using isotope analysis and groundwater flow modeling for Puri city in India

    Science.gov (United States)

    Nayak, P. C.; Vijaya Kumar, S. V.; Rao, P. R. S.; Vijay, T.

    2017-11-01

    The holy city of Lord Jagannath is situated on the sea shore of the Bay of Bengal in Odisha state in India. Puri is a city of high religious importance and heritage value, details of the rituals, fairs, and festivals, and related aspects are covered extensively. It is found that water levels in two wells (Ganga and Yamuna) are declining and the causes are studied by undertaking modeling study of rainfall-recharge processes, surface water-groundwater interactions, and increasing demands due to urbanization at basin scale. Hydrochemical analysis of groundwater samples indicates that pH value is varying from 7 to 8.4 and electrical conductivity (EC) is found in between 238 and 2710 μmhos/cm. The EC values indicate that the shallow groundwater in Puri is not saline. Stable isotopic signatures of O-18, Deuterium indicate two different sources are active in the city area. In most of the handpumps, water recharged by the surface water sources. From the current investigation, it is evident that in a few handpumps and most of the dug-wells, isotopic signatures of water samples resembles with local precipitation. The groundwater recharge is taking place from the north-southern direction. Visual MODFLOW has been used for studying groundwater aspects and different scenarios have been developed. It is suggested to maintain water level in Samang Lake to restore depletion in groundwater level in two wells.

  15. GROUNDWATER QUALITY ASSESSMENT FOR DRINKING PURPOSES USING GIS MODELLING (CASE STUDY: CITY OF TABRIZ

    Directory of Open Access Journals (Sweden)

    M. Jeihouni

    2014-10-01

    Full Text Available Tabriz is the largest industrial city in North West of Iran and it is developing rapidly. A large proportion of water requirements for this city are supplied from dams. In this research, groundwater quality assessed through sampling 70 wells in Tabriz and its rural areas. The purposes of this study are: (1 specifying spatial distribution of groundwater quality parameters such as Chloride, Electrical Conductivity (EC, pH, hardness and sulphate (2 mapping groundwater quality for drinking purpose by employing Analytic Hierarchy Process (AHP method in the study area using GIS and Geosatistics. We utilized an interpolation technique of ordinary kriging for generating thematic map of each parameter. The final map indicates that the groundwater quality esaeicni from North to South and from West to East of the study area. The areas located in Center, South and South West of the study area have the optimum quality for drinking purposes which are the best locations to drill wells for supplying water demands of Tabriz city. In critical conditions, the groundwater quality map as a result of this research can be taken into account by East Azerbaijan Regional Water Company as decision support system to drill new wells or selecting existing wells to supply drinking water to Tabriz city.

  16. Emergy assessment of ecological compensation of groundwater overexploitation in Xuchang city

    Science.gov (United States)

    Lv, C.; Ling, M.; Cao, Q.; Guo, X.

    2017-12-01

    In recent 30 years, the amount of groundwater extraction in China is increasing at a rate of 2.5 billion m3 per year. And the growing amount led to form a predatory exploitation in many parts, and caused serious exploitation problems, such as land subsidence, sea water intrusion, surface runoff reduction, vegetation decline, groundwater pollution, and so on. Ecological compensation of overexploitation has become an important mean to adjust the environmental benefits distribution relationship related to the groundwater system and to alleviate the problem of groundwater overexploitation. Based on the ecological economics emergy value theory and analysis method, the emergy loss value calculation method of eco-environmental problems caused by groundwater overexploitation, such as environmental land subsidence (collapse), salt (sea) water intrusion, surface runoff reduction, vegetation deterioration and groundwater pollution, is established, and the assessment method, which takes emergy loss value as the quantity of ecological compensation of groundwater overexploitation, is put forward. This method can reflect the disaster loss degree of groundwater overexploitation more intuitively, and it helps to improve, manage and restore a series of problems caused by groundwater overexploitation, construct a scientific and reasonable groundwater ecological compensation mechanism, and provide good ecological security for the sustainable and healthy development of national economy in our country. Taking Xuchang city as an application example, the results showed that the ecological economic loss of groundwater overexploitation was 109 million in 2015, accounting for 0.3% of the total GDP. Among them, the ecological economic loss of land subsidence is the largest, which was 77 million, accounting for 70.3% of the total loss, the second one is surface runoff reducing loss, which was 27 million, accounting for 24.7% of the total loss, and underground water pollution loss is the

  17. Implementations of Riga city water supply system founded on groundwater sources

    Science.gov (United States)

    Lāce, I.; Krauklis, K.; Spalviņš, A.; Laicāns, J.

    2017-10-01

    Drinking water for Riga city is provided by the groundwater well field complex “Baltezers, Zakumuiza, Rembergi” and by the Daugava river as a surface water source. Presently (2016), the both sources jointly supply 122 thous.metre3day-1 of drinking water. It seems reasonable to use in future only groundwater, because river water is of low quality and its treatment is expensive. The research on this possibility was done by scientists of Riga Technical university as the task drawn up by the company “Aqua-Brambis”. It was required to evaluate several scenario of the groundwater supply for Riga city. By means of hydrogeological modelling, it was found out that groundwater well fields could provide 120-122 thous.metre3day-1 of drinking water for the Riga city and it is possible further not to use water of the Daugava river. However, in order to provide more extensive use of groundwater sources, existing water distribution network shall be adapted to the change of the water sources and supply directions within the network. Safety of water supply shall be ensured. The publication may be of interest for specialists dealing with problems of water supply for large towns.

  18. The City of Rome and its groundwater: from critical issues, to urban resilience opportunities

    Directory of Open Access Journals (Sweden)

    Francesco La Vigna

    2015-12-01

    Full Text Available This paper emphasizes the importance of groundwater resources of Rome with regard to its protection, and the associated issues. There are different tipologies of interference between human presence and groundwater in the city, ranging from the presence of water circulating inside the thick layers of anthropogenic deposits, the frequent contamination of groundwater, the presence of mining activities, the presence of archaeological heritage in underground or in low areas affected by flooding also induced by water table rising. Despite the various issues that are found, the knowledge of groundwater resources of Rome can be an important starting point to enhance its protection s and take advantage of the related countless benefits also aim to increase urban resilience.

  19. Assessment of groundwater vulnerability by applying the modified DRASTIC model in Beihai City, China.

    Science.gov (United States)

    Wu, Xiaoyu; Li, Bin; Ma, Chuanming

    2018-02-21

    This study assesses vulnerability of groundwater to pollution in Beihai City, China, as a support of groundwater resource protection. The assessment result not only objectively reflects potential possibility of groundwater to contamination but also provides scientific basis for the planning and utilization of groundwater resources. This study optimizes the parameters consisting of natural factors and human factors upon the DRASTIC model and modifies the ratings of these parameters, based on the local environmental conditions for the study area. And a weight of each parameter is assigned by the analytic hierarchy process (AHP) to reduce the subjectivity of humans to vulnerability assessment. The resulting scientific ratings and weights of modified DRASTIC model (AHP-DRASTLE model) contribute to obtain the more realistic assessment of vulnerability of groundwater to contaminant. The comparison analysis validates the accuracy and rationality of the AHP-DRASTLE model and shows it suits the particularity of the study area. The new assessment method (AHP-DRASTLE model) can provide a guide for other scholars to assess the vulnerability of groundwater to contamination. The final vulnerability map for the AHP-DRASTLE model shows four classes: highest (2%), high (29%), low (55%), and lowest (14%). The vulnerability map serves as a guide for decision makers on groundwater resource protection and land use planning at the regional scale and that it is adapted to a specific area.

  20. GROUNDWATER MAPPING OF BOA VISTA DO CADEADO CITY / RS.

    OpenAIRE

    Silva, Jose Luiz Silverio da; Nascimento, Leandro Meirelles do; Löbler, Carlos Alberto

    2014-01-01

    http://dx.doi.org/10.5902/2236130811006The pollution generated by human activities has aroused the continuing need to know and assess the conditions of the environment in relation to possible sources of contamination, especially harmful to groundwater resources. Through this study, in the municipality of  Boa Vista do Cadeado, in the state of  Rio Grande do Sul, located in northwestern region, inserted in the Paraná Basin of the Southern Geomorphological  Brazilian Plateau where spills outcro...

  1. [Distribution Characteristics of Fluoroquinolones Antibiotics in Surface Water and Groundwater from Typical Areas in A City].

    Science.gov (United States)

    Cui, Ya-feng; He, Jiang-tao; Su, Si-hui; Yang, Lei; Qiao, Xiao-cui

    2015-11-01

    In order to investigate the characteristics of 5 typical kinds of fluoroquinolones (FQs) pollution in waters from a city, surface water and groundwater samples from main drainage rivers and typical areas were collected, respectively. The conventional test and FQs concentrations analysis of the water samples were conducted. The results showed the concentration and composition of FQs in groundwater differed substantially from those in surface water. The average concentration of FQs in surface water was 789.1 ng x L(-1) with the main components of ofloxacin (OFL) and lomefloxacin (LOM). This value was higher than the average concentration of FQs in groundwater: 342.7 ng x L(-1) with the main components of norfloxacin (NOR) and lomefloxacin (LOM). The enrofloxacin (ENR) exhibited relatively lower levels in both surface water and groundwater as compared to others. The highest FQs concentrations in surface water were found in trenches, followed by tributaries and the main stream. For groundwater, FQs concentrations were relatively higher in the sewage riverside. A decreasing trend of FQs concentration was monitored with the increasing distance of sampling points to the drainage rivers and all components mentioned above showed similar changing trends. The results of this study preliminarily indicated that FQs in groundwater along the riverside probably came from the surface water.

  2. The activity concentrations of 222Rn in some groundwater wells, Najran City, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Al-Naggar Tayseer I.

    2017-01-01

    Full Text Available In this work, the radon exhalation rate, effective radium content and radiation doses from some groundwater wells in Najran City, Saudi Arabia, were addressed and discussed in detail. This survey of radon concentrations in the groundwater was carried out using the passive measurement technique, where the radon gas passively diffuses into the detector. The obtained results revealed that the radon exhalation rate in terms of area and mass exhibits linear correlations with effective radium in groundwater (correlation coefficient R2 = 1. Also, the majority of radon concentrations are within the UNSCEAR 1993 permitted level and the average annual effective doses obtained for radium and radon are 180 µSv and 860 µSv, respectively.

  3. Naturally occurring arsenic in the groundwater at the Kansas City Plant

    Energy Technology Data Exchange (ETDEWEB)

    Korte, N.E.

    1990-12-01

    This report describes an investigation concerning the presence of arsenic in concentrations exceeding 0.4 mg/L in the groundwater under the Department of Energy's Kansas City Plant (KCP). The study consisted of four distinct phases: a thorough review of the technical literature, a historical survey of arsenic use at the facility, a laboratory study of existing techniques for determining arsenic speciation, and a field program including water, soil, and sediment sampling. The historical survey and literature review demonstrated that plant activities had not released significant quantities of arsenic to the environment but that similar occurrences of arsenic in alluvial groundwater are widespread in the midwestern United States. Laboratory studies showed that a chromatographic separation technique was necessary to accurately determine arsenic speciation for the KCP groundwater samples. Field studies revealed that naturally occurring reducing conditions prevalent in the subsurface are responsible for dissolving arsenic previously sorbed by iron oxides. Indeed, the data demonstrated that the bulk arsenic concentration of site subsoils and sediments is {approximately}7 mg/kg, whereas the arsenic content of iron oxide subsamples is as high as 84 mg/kg. Literature showed that similar concentrations of arsenic in sediments occur naturally and are capable of producing the levels of arsenic found in groundwater monitoring wells at the KCP. The study concludes, therefore, that the arsenic present in the KCP groundwater is the result of natural phenomena. 44 refs., 8 figs., 14 tabs.

  4. Potential effects of groundwater and surface water contamination in an urban area, Qus City, Upper Egypt

    Science.gov (United States)

    Abdalla, Fathy; Khalil, Ramadan

    2018-05-01

    The potential effects of anthropogenic activities, in particular, unsafe sewage disposal practices, on shallow groundwater in an unconfined aquifer and on surface water were evaluated within an urban area by the use of hydrogeological, hydrochemical, and bacteriological analyses. Physicochemical and bacteriological data was obtained from forty-five sampling points based on33 groundwater samples from variable depths and 12 surface water samples. The pollution sources are related to raw sewage and wastewater discharges, agricultural runoff, and wastewater from the nearby Paper Factory. Out of the 33 groundwater samples studied, 17 had significant concentrations of NO3-, Cl- and SO42-, and high bacteria counts. Most of the water samples from the wells contained high Fe, Mn, Pb, Zn, Cd, and Cr. The majority of surface water samples presented high NO3- concentrations and high bacteria counts. A scatter plot of HCO3- versus Ca indicates that 58% of the surface water samples fall within the extreme contamination zone, while the others are within the mixing zone; whereas 94% of groundwater samples showed evidence of mixing between groundwater and wastewater. The bacteriological assessment showed that all measured surface and groundwater samples contained Escherichia coli and total coliform bacteria. A risk map delineated four classes of contamination, namely, those sampling points with high (39.3%), moderate (36.3%), low (13.3%), and very low (11.1%) levels of contamination. Most of the highest pollution points were in the middle part of the urban area, which suffers from unmanaged sewage and industrial effluents. Overall, the results demonstrate that surface and groundwater in Qus City are at high risk of contamination by wastewater since the water table is shallow and there is a lack of a formal sanitation network infrastructure. The product risk map is a useful tool for prioritizing zones that require immediate mitigation and monitoring.

  5. Evapotranspiration Dynamics and Effects on Groundwater Recharge and Discharge at the Tuba City, Arizona, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-02-01

    The U.S. Department of Energy Office of Legacy Management is evaluating groundwater flow and contaminant transport at a former uranium mill site near Tuba City, Arizona. We estimated effects of temporal and spatial variability in evapotranspiration (ET) on recharge and discharge within a groundwater model domain (GMD) as part of this evaluation. We used remote sensing algorithms and precipitation (PPT) data to estimate ET and the ET/PPT ratios within the 3531 hectare GMD. For the period from 2000 to 2012, ET and PPT were nearly balanced (129 millimeters per year [mm yr-1] and 130 mm yr-1, respectively; ET/PPT = 0.99). However, seasonal and annual variability in ET and PPT were out of phase, and spatial variability in vegetation differentiated discharge and recharge areas within the GMD. Half of ET occurred during spring and early summer when PPT was low, and about 70% of PPT arriving in fall and winter was discharged as plant transpiration in the spring and summer period. Vegetation type and health had a significant effect on the site water balance. Plant cover and ET were significantly higher (1) during years of lighter compared to years of heavier grazing pressure, and (2) on rangeland protected from grazing compared to rangeland grazed by livestock. Heavy grazing increased groundwater recharge (PPT > ET over the 13-year period). Groundwater discharge (ET > PPT over the 13-year period) was highest in riparian phreatophyte communities but insignificant in desert phreatophyte communities impacted by heavy grazing. Grazing management in desert upland and phreatophyte communities may result in reduced groundwater recharge, increased groundwater discharge, and could be used to influence local groundwater flow.

  6. Groundwater quality in Taiz City and surrounding area, Yemen Republic

    International Nuclear Information System (INIS)

    Metwali, R.

    2002-01-01

    Fifty one water samples were collected from production wells used for human consumption from Taiz City and its surroundings, Yemen Republic. The water quality was investigated with respect to bacteriological and physico-chemical parameters. The achieved results revealed that most water samples, especially from private wells, contain a high number of total coliforms (TC) which exceed the permissible limit recommended by the World Health Organization, WHO (1996). Also faecal coliforms (FC) were recorded in the majority of polluted samples. A quantitative estimation was done for each of temperature (18-26C), pH (6.12-8.79), total hardness (58-2200 mg/L), electrical conductivity (218-4600 m.Mohs), total dissolved solids (117-3700mg/L), nitrate (10-187mg/L) and type of aquifer (rocky and alluvium). It is worthy to notice that from the total of fifty-one wells, there was pollution in (65%) of them. Recommendations were suggested for the treatment of the water of such polluted wells and rigid government control in a trial to prevent human and animal illness. (author)

  7. Five-Year Antimicrobial Susceptibility of Pseudomonas aeruginosa from a Local Tertiary Hospital in Bacolod City, Philippines

    Directory of Open Access Journals (Sweden)

    Alain C. Juayang

    2017-07-01

    Full Text Available Over five years, a total of 646 P. aeruginosa isolates was acquired from different clinical specimens and their resistance to the commonly used anti-pseudomonal antibiotics was determined. The majority of the isolates were from respiratory (60.99% and urinary sources (23.22% while the least came from transudates and exudates (2.01%. Most of the samples were acquired from older adults (77.55%, most of whom were admitted (67.03%. Amikacin was found to be the most effective drug with a resistance rate of 7.5%, followed by piperacillin/tazobactam (8.5% and gentamicin (13.5%. On the other hand, 26.7% of the isolates were resistant to levofloxacin. Almost 100% of the isolates were screened positive for AmpC production, which may suggest inducible resistance against expanded spectrum beta-lactamase. Furthermore, for the last three years, P. aeruginosa isolates from this area have been noted to have decreasing resistance only to aztreonam and gentamicin. Also, for five years, a mean MAR index of 0.17 was noted which indicates either proper antibiotic use or most isolates did not come from high-risk areas. Moreover, there was no significant difference in the resistance of P. aeruginosa when compared by specimen source (p = 0.662, but significant when compared by year band (p = 0.02.

  8. Chemical response to groundwater extraction southeast of Mexico City

    Science.gov (United States)

    Huizar-Alvarez, R.; Carrillo-Rivera, J. J.; Ángeles-Serrano, G.; Hergt, T.; Cardona, A.

    An alternative procedure of pumping test data interpretation is used through a joint analysis of the standard time-drawdown curve and simultaneous field measurements of total dissolved solids (TDS); additional support is also provided by the temperature of extracted groundwater and the chemical composition of extracted water. The overall information was applied to characterise the groundwater flow system and its sources, the hydraulic conditions of the aquifer and hydraulic response of extraction boreholes. The analysis of this information suggests the presence of: (i) a local flow system that circulates at shallow depth through basalt units interstratified with fine grained sediments and pyroclastics; these materials contain water with TDS of 127-600 mg/L and Na of 24-178 mg/L, and temperature of 18-19.5 °C (ii) intermediate flow in granular material under reducing conditions by the oxidation of organic matter in aquitard sediments; this water has TDS and Na values of 203-940 and 30-370 mg/L, respectively, and temperatures of about 20-22 °C (iii) regional flow through volcanic rocks and limestone, with TDS content of 300-700 mg/L, Na of 80-230 mg/L and temperature of 23.0-24.8 °C. The hydraulic response and the chemical composition of the water produced by some boreholes are affected by the seepage inflow from sewage effluents, the input from an overlying aquitard unit and the inducement of regional flow. The conception of the flow regime thus obtained allowed the recognition of hydraulic conditions which were more consistent with the hydrogeological setting, than if only a time vs. drawdown test analysis would have been carried out. L'interprétation simultanée de pompages d'essais, des données de température et résidu sec (RS) de L'eau souterraine pompée, mesurées simultanément sur le terrain et la composition chimique de L'eau pompée comme un aide additionnelle, est utilisée comme une différent procédure pour interpréter les pompages d'essais. La

  9. Assessment of hydro-geochemistry and groundwater quality of Rajshahi City in Bangladesh

    Science.gov (United States)

    Mostafa, M. G.; Uddin, S. M. Helal; Haque, A. B. M. H.

    2017-12-01

    The study was carried out to understand the hydro-geochemistry and ground water quality in the Rajshahi City of Bangladesh. A total of 240 groundwater samples were collected in 2 years, i.e., 2009 and 2010 covering the pre-monsoon, monsoon and post-monsoon seasons. Aquifer soil samples were collected from 30 locations during the monsoon in 2000. All the samples were analyzed for various physicochemical parameters according to standard methods of analysis, these includes pH, electrical conductivity, total dissolved solids, total hardness, and total alkalinity, major cations such as Na+, K+, Ca2+, Mg2+, and Fe2+, major anions such as HCO3 -, NO3 -, Cl-, and SO4 2- and heavy metals such as Mn, Zn, Cu, As, Cd and Pb. The results illustrated that the groundwater was slightly acidic to neutral in nature, total hardness observed in all samples fall under the hard to a very hard category. The bicarbonate and calcium concentration in the groundwater exceeded the permissible limits may be due to the dissolution of calcite. The concentration of calcium, iron, manganese, arsenic and lead were far above the permissible limit in most of the shallow tube well samples. The study found that the major hydrochemical facies was identified to be calcium-bicarbonate-type (CaHCO3). A higher concentration of metals including Fe, Mn, As and Pb was found indicating various health hazards. The rock-water interaction was the major geochemical process controlling the chemistry of groundwater in the study area. The study results revealed that the quality of the groundwater in Rajshahi City area was of great concern and not suitable for human consumption without adequate treatment.

  10. Groundwater.

    Science.gov (United States)

    Braids, Olin C.; Gillies, Nola P.

    1978-01-01

    Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)

  11. Analysis on hydrochemical characteristics of groundwater in Fangcheng district of Fangchenggang City, Guangxi, China

    Science.gov (United States)

    Wen, C.

    2016-12-01

    The Fangcheng district is located in the central part of Fangchenggang City, which lies in the most southwest of China. The geology is mainly composed of unconsolidated sediments and sedimentary rock. Intensive human activities make it imperative to assess the hydrochemical characteristics to ensure long-term sustainability and protection of the groundwater resources. A total of 100 groundwater samples were collected from bore wells during dry season and rain season respectively in Fangcheng district and analyzed for major cations(K+, Na+, Ca2+,Mg2+)and anions(HCO3-, Cl-, SO42-). The main type of groundwater is Ca-Mg-SO4-Cl. Ion ratio analysis indicates that Ca2+,Mg2+, HCO3- are mainly derived from chemical weathering of Dolomite and Calcite; K+, Na+, Cl-, SO42-are primarily contributed by silicate mineral weathering. Gibbs plot suggests that the hydrochemical composition is mainly formed by weathered-leached effects, which becomes increasingly as the sea goes downstream. The impact of human activities on groundwater is increasing important in time and space.

  12. Data Validation Package: April 2016 Groundwater Sampling at the Falls City, Texas, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Jasso, Tashina [USDOE Office of Legacy Management, Washington, DC (United States); Widdop, Michael [Navarro Research and Engineering, Inc., Las Vegas, NV (United States)

    2016-09-29

    Nine groundwater samples were collected at the Falls City, Texas, Disposal Site as specified in the March 2008 Long-Term Surveillance Plan for the US Department of Energy Falls City Uranium Mill Tailings Disposal Site, Falls City, Texas (DOE-LM/1602-2008). Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for US Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). The wells sampled included the cell performance monitoring wells (0709, 0858, 0880, 0906, and 0921) and the groundwater monitoring wells (0862, 0886, 0891, 0924, and 0963). A duplicate sample was collected from location 0891. Water levels were measured at each sampled well. Historically, cell performance monitoring wells 0908 and 0916 have not produced water and were confirmed as dry during this sampling event. These wells are completed above the saturated interval in the formation. Notable observations for time-concentration graphs in this report include: (1) uranium concentrations in well 0891 continue to increase; (2) the uranium concentration in well 0880 is higher than the 2015 value and lower than the 2014 value, and it remains within the range of historical values; and (3) uranium concentrations in the other sampled wells are below 2 mg/L and consistent with previous results.

  13. Study of Seasonal Variation in Groundwater Quality of Sagar City (India by Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    Hemant Pathak

    2011-01-01

    Full Text Available Groundwater is one of the major resources of the drinking water in Sagar city (India.. In this study 15 sampling station were selected for the investigations on 14 chemical parameters. The work was carried out during different months of the pre-monsoon, monsoon and post-monsoon seasons in June 2009 to June 2010. The multivariate statistics such as principal component and cluster analysis were applied to the datasets to investigate seasonal variations in groundwater quality. Principal axis factoring has been used to observe the mode of association of parameters and their interrelationships, for evaluating water quality. Average value of BOD, COD, ammonia and iron was high during entire study period. Elevated values of BOD and ammonia in monsoon, slightly more value of BOD in post-monsoon, BOD, ammonia and iron in pre-monsoon period reflected contribution on temporal effect on groundwater. Results of principal component analysis evinced that all the parameters equally and significantly contribute to groundwater quality variations. Factor 1 and factor 2 analysis revealed the DO value deteriorate due to organic load (BOD/Ammonia in different seasons. Hierarchical cluster analysis grouped 15 stations into four clusters in monsoon, five clusters in post-monsoon and five clusters in pre-monsoon with similar water quality features. Clustered group at monsoon, post-monsoon and pre-monsoon consisted one station exhibiting significant spatial variation in physicochemical composition. The anthropogenic nitrogenous species, as fallout from modernization activities. The study indicated that the groundwater sufficiently well oxygenated and nutrient-rich in study places.

  14. Overflow and microbiological contamination in surface and groundwaters in La Costa city (Canelones department, Uruguay)

    International Nuclear Information System (INIS)

    Marmisolle, J.; Goso Aguilar, C.

    2006-01-01

    In this paper the results of a geological risk study made during 2005 related to overflow and microbiological water contamination at Ciudad de la Costa City (Canelones department) are shown. This city has been showed a great urban growth for the last three decades. New hydrogeological studies looking forward the phreatic level and its bacteriological quality allow to know the level of the risk along 2005´s first semester. The top of the phreatic table in 40% of the studied area is below than 0.50 meter depth. The results of fourteen bacteriologic analyses in groundwater samples show extreme contamination values in faecal colliform, Pseudomona sp. and Aeruginosa content. Both surface drainage and beach water bacteriologic analyses did not show contamination values except those corresponding to Carrasco creek

  15. Fuzzy model for determination and assessment of groundwater quality in the city of Zrenjanin, Serbia

    Directory of Open Access Journals (Sweden)

    Kiurski-Milosević Jelena Ž.

    2015-01-01

    Full Text Available The application of the fuzzy logic for determination and assessment of the chemical quality of groundwater for drinking purposes in the city of Zrenjanin is presented. The degree of certainty and uncertainties are one of the problems in the most commonly used methods for assessing the water quality. Fuzzy logic can successfully handle these problems. Evaluation of fuzzy model was carried out on the samples from two representative wells that are located at depths of two aquifers from which water is taken to supply the population as drinking water. The samples were analyzed on 8 different chemical water quality parameters. In the research arsenic concentration (As3+, As5+ is considered as the dominant parameter due to its suspecting carcinogenic effects on human health. This type of research is for the first time conducted in the city of Zrenjanin, middle Banat region. [Projekat Ministarstva nauke Republike Srbije, br. MNTR174009 i br. TR34014

  16. Groundwater contamination and risk assessment of industrial complex in Busan Metropolitan City, Korea

    Science.gov (United States)

    Hamm, S.-Y.; Ryu, S. M.; Cheong, J.-Y.; Woo, Y.-J.

    2003-04-01

    In Korea, the potential of groundwater contamination in urban areas is increasing by industrial and domestic waste waters, leakage from oil storage tanks and sewage drains, leachate from municipal landfill sites and so on. Nowadays, chlorinated organic compounds such as trichloroethylene (TCE) and tetrachloroethylene (PCE), which are driving residential area as well as industrial area, are recognized as major hazardous contaminants. As well known, TCE is wisely used industrial activities such as degreasing, metal stripping, chemical manufacturing, pesticide production, coal gasification plants, creosote operation, and also used in automobile service centers, photo shops and laundries as cleaning solvent. Thus, groundwater protection in urban areas is important issue in Korea This study is to understand groundwater quality and contamination characteristics and to estimate risk assessment in Sasang industrial complex, Busan Metropolitan City. Busan Metropolitan City is located on southeastern coast of the Korean peninsula and is the second largest city in South Korea with a population of 3.8 millions. The geology of the study area is composed of andesite, andesitic tuff, biotite granite and alluvium (Kim et al., 1998). However, geology cannot be identified on the surface due to pavement and buildings. According to drill logs in the study area, the geologic section consists in landfill, fine sand, clay, gravelly clay, and biotite granite from the surface. Biotite granite appears 5.5- 6 m depth. Groundwater samples were collected at twenty sites in Sasang industrial complex. The groundwater samples are plotted on Piper's trilinear diagram, which indicates Ca-Cl2 type. The groundwater may be influenced by salt water because Sasang industrial complex is located near the mouse of Nakdong river that flows to the South Sea. The Ca-Cl2 water type may be partly influenced by anthropogenic contamination in the study area, since water type in granite area generally belongs Ca

  17. Temporal-Spatial Evolution of Groundwater Nitrogen Pollution Over Seven Years in a Highly Urbanized City in the Southern China.

    Science.gov (United States)

    He, Xiaorui; Qian, Jiazhong; Liu, Zufa; Lu, Yuehan; Ma, Lei; Zhao, Weidong; Kang, Bo

    2017-12-01

    Understanding the temporospatial variation in nitrogen pollution in groundwater and the associated controlling factors is important to establish management practices that ensure sustainable use of groundwater. In this study, we analyzed inorganic nitrogen content (nitrate, nitrite, and ammonium) in 1164 groundwater samples from shallow, middle-deep, and deep aquifers in Zhanjiang, a highly urbanized city in the southern China. Our data span a range of 7 years from 2005 to 2011. Results show that shallow aquifers had been heavily contaminated by nitrate and ammonium. Temporal patterns show that N contamination levels remained high and relatively stable over time in urban areas. This stability and high concentration is hypothesized as a result of uncontrolled, illicit sewer discharges from nearby business facilities. Groundwater in urban land and farmland displays systematic differences in geochemical characteristics. Collectively, our findings demonstrate the importance of continuously monitoring groundwater quality and strictly regulating sewage discharges in Zhanjiang.

  18. Preliminary study on arsenic concentration in groundwater in usual exploited aquifer in Ho Chi Minh City (pleistocene aquifer QIm)

    International Nuclear Information System (INIS)

    Phan Thanh Tong; Nguyen Kien Chinh; Tran Thi Bich Lien; Nguyen Van Suc; Le Danh Chuan; Huynh Le Khoa

    2004-01-01

    Recent days, As in groundwater is a hot spot in some countries in Asia (e.g India, Bangladesh, Myanmar, Thailand) that was revealed through Executive Meetings of RAS/8/084. In Vietnam, some reports on groundwater quality in Red River Delta and Mekong Delta (with few random groundwater samples selected to analyse randomly) brought an opinion that groundwater in some region in Vietnam contains a quantity of As is over WHO Limit to As concentration in drinking water. This project hat been carrying out in Ho Chi Minh City in order to survey and make a preliminary assessment on As content in groundwater in shallow aquifer which is usual exploited in one of important social-economic centers of Vietnam. (author)

  19. Pesticide Groundwater Risk Assessment with China-PEARL and PRZM-GW Model in Weifang City Scenario

    OpenAIRE

    WEN Bo-jian; LI Wen-juan

    2014-01-01

    China-PEARL is a pesticide exposure model that has been applied to pesticide groundwater risk assessment in China. Weifang City scenario of PRZM-GW was established based on Weifang City scenario data of China-PEARL. PECs(predicted environmental concen-tration)of 56 pesticides applied on 5 crops in 145 application methods were calculated by both China-PEARL and PRZM-GW. The risk characterization results with RQ(risk quotient)showed that the groundwater risk of 8 pesticides in 13 application me...

  20. Factors controlling groundwater quality in the Yeonjegu District of Busan City, Korea, using the hydrogeochemical processes and fuzzy GIS.

    Science.gov (United States)

    Venkatramanan, Senapathi; Chung, Sang Yong; Selvam, Sekar; Lee, Seung Yeop; Elzain, Hussam Eldin

    2017-10-01

    The hydrogeochemical processes and fuzzy GIS techniques were used to evaluate the groundwater quality in the Yeonjegu district of Busan Metropolitan City, Korea. The highest concentrations of major ions were mainly related to the local geology. The seawater intrusion into the river water and municipal contaminants were secondary contamination sources of groundwater in the study area. Factor analysis represented the contamination sources of the mineral dissolution of the host rocks and domestic influences. The Gibbs plot exhibited that the major ions were derived from the rock weathering condition. Piper's trilinear diagram showed that the groundwater quality was classified into five types of CaHCO 3 , NaHCO 3 , NaCl, CaCl 2 , and CaSO 4 types in that order. The ionic relationship and the saturation mineral index of the ions indicated that the evaporation, dissolution, and precipitation processes controlled the groundwater chemistry. The fuzzy GIS map showed that highly contaminated groundwater occurred in the northeastern and the central parts and that the groundwater of medium quality appeared in most parts of the study area. It suggested that the groundwater quality of the study area was influenced by local geology, seawater intrusion, and municipal contaminants. This research clearly demonstrated that the geochemical analyses and fuzzy GIS method were very useful to identify the contaminant sources and the location of good groundwater quality.

  1. Ground-water flow and quality in the Atlantic City 800-foot sand, New Jersey

    Science.gov (United States)

    McAuley, Steven D.; Barringer, Julia L.; Paulachok, Gary N.; Clark, Jeffrey S.; Zapecza, Otto S.

    2001-01-01

    reported for water in a former supply well in southern Cape May County. These data indicate that salty water has moved inland in Cape May County. Analysis of the chloride-concentration data indicates that ground water with a chloride concentration of 250 mg/L is within 4 miles of supply wells in Stone Harbor, Cape May County, and is about 10 miles offshore of supply wells near Atlantic City. Results of numerical simulations of ground-water flow were analyzed to determine the effects of four water-supply alternatives on water levels, the flow budget, and potential saltwater movement toward pumping centers during 1986-2040. In the supply alternatives, pumpage is (1) held constant at 1986 rates of pumpage; (2) increased by 35 percent at 1986 locations; (3) increased by 35 percent, but with relocation of some supply wells further inland; and (4) increased by 35 percent but with some of the increase derived from inland wells tapping the Kirkwood-Cohansey aquifer system rather than the Atlantic City 800-foot sand. Inland relocation of supply wells closer to the updip limit of the overlying confining unit results in the smallest decline in water levels and the smallest rate of ground-water flow between the offshore location of salty water and coastal supply wells. Increased pumpage from coastal supply wells results in the greatest water-level declines and the greatest increase in the rate of ground-water flow from offshore to coastal wells. Flow of undesirable salty ground water from offshore locations remains nearly the same as for current (1986) conditions when pumping rates do not change, and the flow-rate increase is smallest for the relocated pumpage (fourth) alternative. In comparing the two conditions of a 35-percent increase in pumpage, the flow from undesirable salty water positions is lessened and flow from the unconfined aquifer is increased when some of the pumping centers are relocated farther inland. Ground water from the 250-mg/L isochlor position does not reach

  2. Temporal and spatial variation of groundwater in quantity and quality in sand dune at coastal region, Kamisu city, central Japan.

    Science.gov (United States)

    Umei, Yohei; Tsujimura, Maki; Sakakibara, Koichi; Watanabe, Yasuto; Minema, Motomitsu

    2016-04-01

    The role of groundwater in integrated water management has become important in recent 10 years, though the surface water is the major source of drinking water in Japan. Especially, it is remarked that groundwater recharge changed due to land cover change under the anthropogenic and climatic condition factors. Therefore, we need to investigate temporal and spatial variation of groundwater in quantity and quality focusing on the change during recent 10-20 years in specific region. We performed research on groundwater level and quality in sand dune at coastal region facing Pacific Ocean, Kamisu city, Ibaraki Prefecture, which have been facing environmental issues, such as land cover change due to soil mining for construction and urbanization. We compared the present situation of groundwater with that in 2000 using existed data to clarify the change of groundwater from 2000 to 2015. The quality of water is dominantly characterized by Ca2+-HCO3- in both 2000 and 2015, and nitrate was not observed in 2015, though it was detected in some locations in 2000. This may be caused by improvement of the domestic wastewater treatment. The topography of groundwater table was in parallel with that of ground surface in 2015, same as that in 2000. However, a depletion of groundwater table was observed in higher elevation area in 2015 as compared with that in 2000, and this area corresponds to the locations where the land cover has changed due to soil mining and urbanization between 2015 and 2000. In the region of soil mining, the original soil is generally replaced by impermeable soil after mining, and this may cause a decrease of percolation and net groundwater recharge, thus the depletion of groundwater table occurred after the soil mining.

  3. Groundwater monitoring plan for the Missouri River alluvial aquifer in the vicinity of the City of Independence, Missouri, well field

    Science.gov (United States)

    Wilkison, Donald H.

    2012-01-01

    Source contributions to monitoring and supply wells, contributing recharge areas, groundwater travel times, and current (2012) understanding of alluvial water quality were used to develop a groundwater monitoring plan for the Missouri River alluvial aquifer in the vicinity of the City of Independence, Missouri well field. The plan was designed to evaluate long-term alluvial water quality and assess potential changes in, and threats to, well-field water quality. Source contributions were determined from an existing groundwater flow model in conjunction with particle-tracking analysis and verified with water-quality data collected from 1997 through 2010 from a network of 68 monitoring wells. Three conjunctive factors - well-field pumpage, Missouri River discharge, and aquifer recharge - largely determined groundwater flow and, therefore, source contributions. The predominant source of groundwater to most monitoring wells and supply wells is the Missouri River, and this was reflected, to some extent, in alluvial water quality. To provide an estimate of the maximum potential lead time available for remedial action, monitoring wells where groundwater travel times from the contributing recharge areas are less than 2 years and predominately singular sources (such as the Missouri River or the land surface) were selected for annual sampling. The sample interval of the remaining wells, which have varying travel times and intermediate mixtures of river and land-surface contributions, were staggered on a 2-, 3-, or 4-year rotation. This was done to provide data from similar contributing areas and account for inherent aquifer variability yet minimize sample redundancy.

  4. Vertical groundwater flow in Permo-Triassic sediments underlying two cities in the Trent River Basin (UK)

    Science.gov (United States)

    Taylor, R. G.; Cronin, A. A.; Trowsdale, S. A.; Baines, O. P.; Barrett, M. H.; Lerner, D. N.

    2003-12-01

    The vertical component of groundwater flow that is responsible for advective penetration of contaminants in sandstone aquifers is poorly understood. This lack of knowledge is of particular concern in urban areas where abstraction disrupts natural groundwater flow regimes and there exists an increased density of contaminant sources. Vertical hydraulic gradients that control vertical groundwater flow were investigated using bundled multilevel piezometers and a double-packer assembly in dedicated boreholes constructed to depths of between 50 and 92 m below ground level in Permo-Triassic sediments underlying two cities within the Trent River Basin of central England (Birmingham, Nottingham). The hydrostratigraphy of the Permo-Triassic sediments, indicated by geophysical logging and hydraulic (packer) testing, demonstrates considerable control over observed vertical hydraulic gradients and, hence, vertical groundwater flow. The direction and magnitude of vertical hydraulic gradients recorded in multilevel piezometers and packers are broadly complementary and range, within error, from +0.1 to -0.7. Groundwater is generally found to flow vertically toward transmissive zones within the hydrostratigraphical profile though urban abstraction from the Sherwood Sandstone aquifer also influences observed vertical hydraulic gradients. Bulk, downward Darcy velocities at two locations affected by abstraction are estimated to be in the order of several metres per year. Consistency in the distribution of hydraulic head with depth in Permo-Triassic sediments is observed over a one-year period and adds support the deduction of hydrostratigraphic control over vertical groundwater flow.

  5. Simulation and assessment of groundwater flow and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2003 through 2013: Chapter B of Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    Science.gov (United States)

    Jones, Perry M.; Roth, Jason L.; Trost, Jared J.; Christenson, Catherine A.; Diekoff, Aliesha L.; Erickson, Melinda L.

    2017-09-05

    Water levels during 2003 through 2013 were less than mean water levels for the period 1925–2013 for several lakes in the northeast Twin Cities Metropolitan Area in Minnesota. Previous periods of low lake-water levels generally were correlated with periods with less than mean precipitation. Increases in groundwater withdrawals and land-use changes have brought into question whether or not recent (2003–13) lake-water-level declines are solely caused by decreases in precipitation. A thorough understanding of groundwater and surface-water exchanges was needed to assess the effect of water-management decisions on lake-water levels. To address this need, the U.S. Geological Survey, in cooperation with the Metropolitan Council and the Minnesota Department of Health, developed and calibrated a three-dimensional, steady-state groundwater-flow model representing 2003–13 mean hydrologic conditions to assess groundwater and lake-water exchanges, and the effects of groundwater withdrawals and precipitation on water levels of 96 lakes in the northeast Twin Cities Metropolitan Area.Lake-water budgets for the calibrated groundwater-flow model indicated that groundwater is flowing into lakes in the northeast Twin Cities Metropolitan Area and lakes are providing water to underlying aquifers. Lake-water outflow to the simulated groundwater system was a major outflow component for Big Marine Lake, Lake Elmo, Snail Lake, and White Bear Lake, accounting for 45 to 64 percent of the total outflows from the lakes. Evaporation and transpiration from the lake surface ranged from 19 to 52 percent of the total outflow from the four lakes. Groundwater withdrawals and precipitation were varied from the 2003‒13 mean values used in the calibrated model (30-percent changes in groundwater withdrawals and 5-percent changes in precipitation) for hypothetical scenarios to assess the effects of groundwater withdrawals and precipitation on water budgets and levels in Big Marine Lake, Snail Lake

  6. Volatile Short-chain Chlorinated Hydrocarbons in the Groundwater of the City of Zagreb

    Directory of Open Access Journals (Sweden)

    Marijanović-Rajčić, M.

    2008-01-01

    Full Text Available The aim of the study was to assess the quality of the groundwater sampled from private wells and the public water-supply system in terms of estimating the contamination caused by short-chain chlorinated hydrocarbons, as well as to estimate the exposure of the citizens dwelling in different suburbs to these pollutants of their drinking water (Fig. 1. The aim of the study was also to determine which suburb is supplied through the public water-supply system with water originating from the Sašnak spring that is contaminated with volatile chlorinated short-chain hydrocarbons.Drinking water samples were taken from 3 private wells and 1 public water-supply system situated in 3 Zagreb suburbs - Pešćenica, Trnje, and Trešnjevka. The sampling was carried out during 2003 and was undertaken on a seasonal basis. Short-chain chlorinated hydrocarbons - 1,1,1-trichloroethane, carbon tetrachloride, 1,1,2-trichloroethene and 1,1,2,2-tetrachloroethene - were determined by gas chromatography, following "liquid-liquid extraction" in pentane. For that purpose, we applied the gas chromatograph equipped with an electron-capture detector, thermo-programmable operations, and a suitable capillary column. The technique applied was that of split-injection.The groundwater of the City of Zagreb was found to be contaminated with volatile chlorinated hydrocarbons. The concentration level of 1,1,1-trichloroethane, determined in most of the samples, was found to be low (Fig. 2. On the other hand, 1,1,2-trichloroethene was present in all samples in concentrations of about 1 µg l-1- (Fig. 3. Only the drinking water samples taken from private wells in the suburb of Trnje contained somewhat higher mass concentrations of 1,1,1-trichloroethane, with the peak value of 19.03 µg l-1, measured in the winter season. In the samples taken from private wells in Trnje, the mass concentrations of 1,1,2,2-tetrachloroethene rangedfrom 15.30 µg l-1 to 18.65 µg l-1, as measured in autumn

  7. Pesticide Groundwater Risk Assessment with China-PEARL and PRZM-GW Model in Weifang City Scenario

    Directory of Open Access Journals (Sweden)

    WEN Bo-jian

    2014-10-01

    Full Text Available China-PEARL is a pesticide exposure model that has been applied to pesticide groundwater risk assessment in China. Weifang City scenario of PRZM-GW was established based on Weifang City scenario data of China-PEARL. PECs(predicted environmental concen-trationof 56 pesticides applied on 5 crops in 145 application methods were calculated by both China-PEARL and PRZM-GW. The risk characterization results with RQ(risk quotientshowed that the groundwater risk of 8 pesticides in 13 application methods was unacceptable.Among them, carbendazim and fomesafen were assessed as unacceptable groundwater risk by both models. The comparison of PECs of the two models indicated that the evaluating results of PRZM-GW and China-PEARL were highly consistent. It verified the credibility of China-PEARL. The analysis on the factors affecting the outputs of the two models revealed that Koc had the biggest effect on PECs. Koc>400 L·kg -1could be adopted as a preliminary determination index of PEC10 d. Hydrolysis half-life was used in PRZM-GW and determined the variation trend of pesticide concentration in groundwater. Solubility in water was an input option of China-PEARL which influenced lightly on PECs.

  8. Impact of leachate on groundwater pollution due to non-engineered municipal solid waste landfill sites of erode city, Tamil Nadu, India

    OpenAIRE

    Nagarajan, Rajkumar; Thirumalaisamy, Subramani; Lakshumanan, Elango

    2012-01-01

    Abstract Leachate and groundwater samples were collected from Vendipalayam, Semur and Vairapalayam landfill sites in Erode city, Tamil Nadu, India, to study the possible impact of leachate percolation on groundwater quality. Concentrations of various physicochemical parameters including heavy metals (Cd, Cr, Cu, Fe, Ni, Pb, Fe and Zn) were determined in leachate samples and are reported. The concentrations of Cl-, NO3-, SO42-, NH4+ were found to be in considerable levels in the groundwater sa...

  9. Potential effect of natural gas wells on alluvial groundwater contamination at the Kansas City Plant

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, D.A.; Laase, A.D. [Oak Ridge National Lab., TN (United States); Locke, D.A. [Oak Ridge Inst. for Science and Education, TN (United States)

    1993-05-01

    This report is the result of a request for further information about several abandoned natural gas wells at the US Department of Energy`s Kansas City Plant (KCP). The request was prompted by an old map showing several, possibly eight, natural gas wells located under or near what is now the southeast corner of the Main Manufacturing Building at KCP. Volatile organic compound contamination in the alluvial aquifer surrounding the gas wells might possibly contaminate the bedrock aquifer if the gas wells still exist as conduits. Several circumstances exist that make it doubtful that contamination is entering the bedrock aquifers: (1) because regional groundwater flow in the bedrock beneath the KCP is expected to be vertically upward, contaminants found in the alluvial aquifer should not migrate down the old wells; (2) because of the low hydraulic conductivity of the bedrock units, contaminant transport would be extremely slow if the contaminants were migrating down the wells; and (3) casing, apparently set through the alluvium in all of the wells, would have deteriorated and may have collapsed; if the casing collapsed, the silty clays in the alluvium would also collapse and seal the well. No definitive information has been discovered about the exact location of the wells. No further search for or consideration of the old gas wells is recommended.

  10. Potential effect of natural gas wells on alluvial groundwater contamination at the Kansas City Plant

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, D.A.; Laase, A.D. (Oak Ridge National Lab., TN (United States)); Locke, D.A. (Oak Ridge Inst. for Science and Education, TN (United States))

    1993-05-01

    This report is the result of a request for further information about several abandoned natural gas wells at the US Department of Energy's Kansas City Plant (KCP). The request was prompted by an old map showing several, possibly eight, natural gas wells located under or near what is now the southeast corner of the Main Manufacturing Building at KCP. Volatile organic compound contamination in the alluvial aquifer surrounding the gas wells might possibly contaminate the bedrock aquifer if the gas wells still exist as conduits. Several circumstances exist that make it doubtful that contamination is entering the bedrock aquifers: (1) because regional groundwater flow in the bedrock beneath the KCP is expected to be vertically upward, contaminants found in the alluvial aquifer should not migrate down the old wells; (2) because of the low hydraulic conductivity of the bedrock units, contaminant transport would be extremely slow if the contaminants were migrating down the wells; and (3) casing, apparently set through the alluvium in all of the wells, would have deteriorated and may have collapsed; if the casing collapsed, the silty clays in the alluvium would also collapse and seal the well. No definitive information has been discovered about the exact location of the wells. No further search for or consideration of the old gas wells is recommended.

  11. Potential effect of natural gas wells on alluvial groundwater contamination at the Kansas City Plant

    International Nuclear Information System (INIS)

    Pickering, D.A.; Laase, A.D.; Locke, D.A.

    1993-05-01

    This report is the result of a request for further information about several abandoned natural gas wells at the US Department of Energy's Kansas City Plant (KCP). The request was prompted by an old map showing several, possibly eight, natural gas wells located under or near what is now the southeast corner of the Main Manufacturing Building at KCP. Volatile organic compound contamination in the alluvial aquifer surrounding the gas wells might possibly contaminate the bedrock aquifer if the gas wells still exist as conduits. Several circumstances exist that make it doubtful that contamination is entering the bedrock aquifers: (1) because regional groundwater flow in the bedrock beneath the KCP is expected to be vertically upward, contaminants found in the alluvial aquifer should not migrate down the old wells; (2) because of the low hydraulic conductivity of the bedrock units, contaminant transport would be extremely slow if the contaminants were migrating down the wells; and (3) casing, apparently set through the alluvium in all of the wells, would have deteriorated and may have collapsed; if the casing collapsed, the silty clays in the alluvium would also collapse and seal the well. No definitive information has been discovered about the exact location of the wells. No further search for or consideration of the old gas wells is recommended

  12. Kansas City plant ultraviolet/ozone/hydrogen peroxide groundwater treatment system overview

    International Nuclear Information System (INIS)

    Stites, M.E.; Hughes, R.F.

    1992-01-01

    The Kansas City Plant (KCP) has committed to the utilization of a groundwater treatment system, for removal of volatile organic compounds (VOCs), that discharges a minimal amount of pollutants to the environment. An advanced oxidation process (AOP) system utilizing ozone, ultraviolet radiation, and hydrogen peroxide serves in this capacity. Packed tower aeration and activated carbon filtration are listed as best available technologies (BATs) by the Environmental Protection Agency (EPA) for the removal of VOCs in water. The disadvantage to these BATs is that they transfer the VOCs from the water medium to the air or carbon media respectively. Operation of the system began in May 1988 at a flow rate of 22.7 liters per minute (lpm) (6 gallons per minute (gpm)). An additional 102.2 lpm (27 gpm) of flow were added in October 1990. Various efforts to optimize and track the treatment unites efficiency have been carried out. A maximum influent reading of 26,590 parts per billion (ppb) of total VOCs has been recorded. Following the addition of flows, removal efficiency has averaged approximately 95%. Both air and water effluents are factored into this calculation. (author)

  13. Data Validation Package August 2015 Groundwater and Surface Water Sampling at the Tuba City, Arizona, Disposal Site November 2015

    Energy Technology Data Exchange (ETDEWEB)

    Bush, Richard [USDOE Office of Legacy Management, Washington, DC (United States); Lemke, Peter [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2015-11-01

    The groundwater compliance strategy for the Tuba City, Arizona, Disposal Site is defined in the 1999 Phase I Ground Water Compliance Action Plan for the Tuba City, Arizona, UMTRA Site. Samples are collected and analyzed on a semiannual basis to evaluate the performance of the Phase I remediation system. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). U.S. Environmental Protection Agency (EPA) groundwater standards were exceeded in samples collected from monitoring wells and extraction wells as listed in Table 1. The data from this sampling event are generally consistent with previously obtained values and are acceptable for general use as qualified. Data anomalies are not significant with respect to the known nature and extent of contamination and progress of remedial action at the site. The data from this sampling event will be incorporated into the annual performance evaluation report that will present a comprehensive hydrologic summary and evaluation of groundwater remedial action performance at the Tuba City site through March 2016.

  14. Data Validation Package February 2016 Groundwater and Surface Water Sampling at the Tuba City, Arizona, Disposal Site April 2016

    Energy Technology Data Exchange (ETDEWEB)

    Bush, Richard [USDOE Office of Legacy Management, Washington, DC (United States); Lemke, Peter [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-04-01

    The groundwater compliance strategy for the Tuba City, Arizona, Disposal Site is defined in the 1999 Phase I Ground Water Compliance Action Plan for the Tuba City, Arizona, UMTRA Site. Samples are collected and analyzed on a semiannual basis to evaluate the performance of the Phase I remediation system. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). U.S. Environmental Protection Agency (EPA) groundwater standards were exceeded in samples collected from monitoring wells as listed in Table 1. The data from this sampling event are generally consistent with previously obtained values and are acceptable for general use as qualified. Data anomalies are not significant with respect to the known nature and extent of contamination and progress of remedial action at the site. The data from this sampling event will be incorporated into the annual performance evaluation report that will present a comprehensive hydrologic summary and evaluation of groundwater remedial action performance at the Tuba City site through March 2016.

  15. Groundwater evolution beneath Hat Yai, a rapidly developing city in Thailand

    Science.gov (United States)

    Lawrence, A. R.; Gooddy, D. C.; Kanatharana, P.; Meesilp, W.; Ramnarong, V.

    2000-09-01

    Many cities and towns in South and Southeast Asia are unsewered, and urban wastewaters are often discharged either directly to the ground or to surface-water canals and channels. This practice can result in widespread contamination of the shallow groundwater. In Hat Yai, southern Thailand, seepage of urban wastewaters has produced substantial deterioration in the quality of the shallow groundwater directly beneath the city. For this reason, the majority of the potable water supply is obtained from groundwater in deeper semi-confined aquifers 30-50 m below the surface. However, downward leakage of shallow groundwater from beneath the city is a significant component of recharge to the deeper aquifer, which has long-term implications for water quality. Results from cored boreholes and shallow nested piezometers are presented. The combination of high organic content of the urban recharge and the shallow depth to the water table has produced strongly reducing conditions in the upper layer and the mobilisation of arsenic. A simple analytical model shows that time scales for downward leakage, from the surface through the upper aquitard to the semi-confined aquifer, are of the order of several decades. Résumé. De nombreuses villes du sud et du sud-est de l'Asie ne possèdent pas de réseaux d'égouts et les eaux usées domestiques s'écoulent souvent directement sur le sol ou dans des canaux et des cours d'eau de surface. Ces pratiques peuvent provoquer une contamination dispersée de la nappe phréatique. A Hat Yai (sud de la Thaïlande), les infiltrations d'eaux usées domestiques sont responsables d'une détérioration notable de la qualité de la nappe phréatique directement sous la ville. Pour cette raison, la majorité de l'eau potable est prélevée dans des aquifères semi-captifs plus profonds, situés entre 30 et 50 m sous la surface. Cependant, une drainance à partir de la nappe phréatique sous la ville constitue une composante significative de la recharge

  16. Water levels and groundwater and surface-water exchanges in lakes of the northeast Twin Cities Metropolitan Area, Minnesota, 2002 through 2015

    Science.gov (United States)

    Jones, Perry M.; Trost, Jared J.; Erickson, Melinda L.

    2016-10-19

    OverviewThis study assessed lake-water levels and regional and local groundwater and surface-water exchanges near northeast Twin Cities Metropolitan Area lakes applying three approaches: statistical analysis, field study, and groundwater-flow modeling.  Statistical analyses of lake levels were completed to assess the effect of physical setting and climate on lake-level fluctuations of selected lakes. A field study of groundwater and surface-water interactions in selected lakes was completed to (1) estimate potential percentages of surface-water contributions to well water across the northeast Twin Cities Metropolitan Area, (2) estimate general ages for waters extracted from the wells, and (3) assess groundwater inflow to lakes and lake-water outflow to aquifers downgradient from White Bear Lake.  Groundwater flow was simulated using a steady-state, groundwater-flow model to assess regional groundwater and surface-water exchanges and the effects of groundwater withdrawals, climate, and other factors on water levels of northeast Twin Cities Metropolitan Area lakes.

  17. Combining monitoring and modelling tools as a basis for city-scale concepts for a sustainable thermal management of urban groundwater resources.

    Science.gov (United States)

    Mueller, Matthias H; Huggenberger, Peter; Epting, Jannis

    2018-06-15

    Increasing anthropogenic impacts lead to elevated temperatures of the shallow subsurface, including the unsaturated and groundwater saturated zone, in many urban areas in comparison to unaffected natural thermal states. The "current thermal state" of four groundwater bodies in the urban area of Basel-City, Switzerland, was investigated by means of high-resolution multilevel temperature wells and numerical 3D groundwater flow and heat transport models. The calibrated and validated numerical groundwater flow and heat transport models allow evaluating and comparing groundwater and heat fluxes for the investigated groundwater bodies and defined cross-sections for differing urban districts, e.g. residential and industrial areas under development. We present the overall and the specific advective heat fluxes within two urban districts, which will be restructured in the near future. The management of groundwater resources in urban areas plays an important role not only for groundwater quantity but also for its quality, i.e. thermal subsurface and groundwater regimes. We demonstrate how monitoring and modelling tools can be the basis for a sustainable management of complex urban groundwater resources. Furthermore, we argue that such tools should be integrated in the thermal management of urban groundwater bodies. Such tools also allow integrating the potentially available energy of shallow subsurface resources into energetic management strategies on the urban scale. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Development of a Conductivity Sensor for Monitoring Groundwater Resources to Optimize Water Management in Smart City Environments.

    Science.gov (United States)

    Parra, Lorena; Sendra, Sandra; Lloret, Jaime; Bosch, Ignacio

    2015-08-26

    The main aim of smart cities is to achieve the sustainable use of resources. In order to make the correct use of resources, an accurate monitoring and management is needed. In some places, like underground aquifers, access for monitoring can be difficult, therefore the use of sensors can be a good solution. Groundwater is very important as a water resource. Just in the USA, aquifers represent the water source for 50% of the population. However, aquifers are endangered due to the contamination. One of the most important parameters to monitor in groundwater is the salinity, as high salinity levels indicate groundwater salinization. In this paper, we present a specific sensor for monitoring groundwater salinization. The sensor is able to measure the electric conductivity of water, which is directly related to the water salinization. The sensor, which is composed of two copper coils, measures the magnetic field alterations due to the presence of electric charges in the water. Different salinities of the water generate different alterations. Our sensor has undergone several tests in order to obtain a conductivity sensor with enough accuracy. First, several prototypes are tested and are compared with the purpose of choosing the best combination of coils. After the best prototype was selected, it was calibrated using up to 30 different samples. Our conductivity sensor presents an operational range from 0.585 mS/cm to 73.8 mS/cm, which is wide enough to cover the typical range of water salinities. With this work, we have demonstrated that it is feasible to measure water conductivity using solenoid coils and that this is a low cost application for groundwater monitoring.

  19. Development of a Conductivity Sensor for Monitoring Groundwater Resources to Optimize Water Management in Smart City Environments

    Directory of Open Access Journals (Sweden)

    Lorena Parra

    2015-08-01

    Full Text Available The main aim of smart cities is to achieve the sustainable use of resources. In order to make the correct use of resources, an accurate monitoring and management is needed. In some places, like underground aquifers, access for monitoring can be difficult, therefore the use of sensors can be a good solution. Groundwater is very important as a water resource. Just in the USA, aquifers represent the water source for 50% of the population. However, aquifers are endangered due to the contamination. One of the most important parameters to monitor in groundwater is the salinity, as high salinity levels indicate groundwater salinization. In this paper, we present a specific sensor for monitoring groundwater salinization. The sensor is able to measure the electric conductivity of water, which is directly related to the water salinization. The sensor, which is composed of two copper coils, measures the magnetic field alterations due to the presence of electric charges in the water. Different salinities of the water generate different alterations. Our sensor has undergone several tests in order to obtain a conductivity sensor with enough accuracy. First, several prototypes are tested and are compared with the purpose of choosing the best combination of coils. After the best prototype was selected, it was calibrated using up to 30 different samples. Our conductivity sensor presents an operational range from 0.585 mS/cm to 73.8 mS/cm, which is wide enough to cover the typical range of water salinities. With this work, we have demonstrated that it is feasible to measure water conductivity using solenoid coils and that this is a low cost application for groundwater monitoring.

  20. Unconfined Groundwater Quality based on the Settlement Unit in Surakarta City

    Directory of Open Access Journals (Sweden)

    Munawar Cholil

    2004-01-01

    Full Text Available The quality of groundwater of unonfined aquifer with growing population density is endangered by population. This may cause serious problem as greatest portion of the population utility groundwater of unconfined aquifer as their drinking water. This research is aim at studying the difference in quality of groundwater of unonfined aquifer in Surakarta Munipicality by settlement units, and studying the impact settlement factors and groundwater depth on the quality of groundwater of unonfined aquifer. The research was executed by a survey methhod, taking 44 units of groundwater of unonfined aquifer samples at stratified proportional random from 44 villages. The samples were analyzed at the laboratory of Local Drinking Water Company (PDAM of Surakarta. Data were analyzed using by stiff diagram, variance analysis, and multiple regression. The research reveals that there is very little differences in the quality of free groundwater in Surakarta, as it is shown by same chemical properties. Several chemical properties were found very high in concentration, but the rest were simultaniously low. On the basis of minimum quality of drinking water coli content have exeeded the allowed limit for drinking water. Among the settlement units observed, there were no significant differences in the physical, chemical (except pH, bacteriological factors. This means that differences among various depth of water. Electrical onductivity (EC, Na, Mg, H2CO3, H2SO4, and NH3 were found different among various depth of water table. Major chemical conentration were significant with geology formation. Population density, built up areas, size of settlement, building density, and the condition of drainage simultaniously affect the quality of free ground water. No differences among settlement units was observed the most important fators determining the free groundwater quality was population density.

  1. Quantification of large-scale urban mass fluxes of xenobiotics and of the river-groundwater interaction in the city of Halle, Germany

    Science.gov (United States)

    Reinstorf, F.; Leschik, S.; Musolff, A.; Osenbrück, K.; Strauch, G.; Möder, M.; Schirmer, M.

    In order to quantify the fluxes of micropollutants like pharmaceuticals including endocrine disruptors, and fragrances in the environment modelling approaches in the area of the city of Halle/Saale, Germany were performed. The investigated micropollutants are Bisphenol A, t-Nonylphenol, Carbamazepine, Galaxolide ® and Tonalide ®. These substances were found ubiquitously in the urban groundwater and surface waters. The assessment of the concentration values of these substances in the urban waters showed no significant changes during the city passage. Therefore, a balance model for the whole city area was set up and the main water-bounded mass fluxes of the substances were estimated. The assessment of the mass fluxes shows increasing values of about 20 up to 400% for nearly all investigated micropollutants during the city passage of the urban waters. An exception is Bisphenol A with a constant mass flux. In order to investigate the surface water-groundwater interaction, a transient hydrodynamic river reach model of the Saale River and a groundwater transport model of the area connected to the reach were created by coupling two well known conventional compartment models for river hydraulic and groundwater transport. The inter-compartmental transport of Carbamazepine initiated through infiltration from the Saale River into the groundwater during a flooding event was simulated . A substance mass flux of 3.29 × 10 5 μg d -1 and a fluid flux of 9.95 × 10 3 m 3 d -1 was calculated.

  2. Impact of leachate on groundwater pollution due to non-engineered municipal solid waste landfill sites of erode city, Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    Nagarajan Rajkumar

    2012-12-01

    Full Text Available Abstract Leachate and groundwater samples were collected from Vendipalayam, Semur and Vairapalayam landfill sites in Erode city, Tamil Nadu, India, to study the possible impact of leachate percolation on groundwater quality. Concentrations of various physicochemical parameters including heavy metals (Cd, Cr, Cu, Fe, Ni, Pb, Fe and Zn were determined in leachate samples and are reported. The concentrations of Cl-, NO3-, SO42-, NH4+ were found to be in considerable levels in the groundwater samples particularly near to the landfill sites, likely indicating that groundwater quality is being significantly affected by leachate percolation. Further they were proved to be the tracers for groundwater contamination near Semur and Vendipalayam dumpyards. The presence of contaminants in groundwater particularly near the landfill sites warns its quality and thus renders the associated aquifer unreliable for domestic water supply and other uses. Although some remedial measures are suggested to reduce further groundwater contamination via leachate percolation, the present study demands for the proper management of waste in Erode city.

  3. Xenobiotics in groundwater and surface water of the city of Leipzig

    Science.gov (United States)

    Musolff, A.; Leschik, S.; Reinstorf, F.; Strauch, G.; Schirmer, M.; Möder, M.

    2007-09-01

    Xenobiotics are increasingly being considered as ecotoxicologically relevant for the aquatic environment and human health. Their behaviour and the effects on the environment have not yet been comprehensively investigated and, therefore, are currently the subject of the project WASSER Leipzig initiated by the UFZ. The results of this article are based on groundwater and surface water analyses of a watershed within the town of Leipzig. Here the industrial chemicals bisphenol-A and t-nonylphenol, the polycyclic fragrances galaxolide and tonalide, the antiepileptic drug carbamacepine and caffeine where investigated. Xenobiotics showed ubiquitous occurrence in the rivers, which were contaminated from treated and untreated sewage, as well as in groundwater, contaminated by leaky sewers. Mean concentrations up to several hundred ng/l were found in the rivers, while groundwater concentrations, except for bisphenol-A, tended to be lower. Applying the statistical factor analysis on the hydrochemical measurements, a differentiation of the xenobiotics with regard to their hydrochemical behaviour in groundwater was performed.

  4. Subterranean blue. Sustaining water lifelines for cities. Already half of the world's people live in urban areas, and more are moving in. Many of them depend on groundwater for living. But as cities grow, can subterranean water sources be sustained?

    International Nuclear Information System (INIS)

    Chilton, J.

    2003-01-01

    Cities used to be centres of plague and illness. During the past 150 years urban sanitary engineering and medical epidemiology have promoted rapid improvements to human health in the cities of the industrial world. A celebrated example was the pioneering work of Dr. John Snow who, in the mid-19th century, traced the source of a London cholera epidemic to a public water pump on Broad Street. Most cities evolved from small settlements and the availability of a suitable water supply was often the primary factor in their location. Often, though, these original water sources quickly became inadequate in quality or quantity, and sometimes are now completely forgotten. New sources and larger quantities of water were required. Groundwater may have been drawn from deep aquifers, even from beyond city boundaries. Today, groundwater plays a critical but complex (and often largely unrecognized) role in the urban environment

  5. Assessment of groundwater pollution from the oxidation ponds in tenth of Ramadan city, using isotopic techniques and hydrogeological modelling

    International Nuclear Information System (INIS)

    Abd El-Samie, S.G.; Sadek, M.A.; Mahmoud, N.S.

    2002-01-01

    The tenth of ramadan city is an intensive industrial settement on the peripheries of cairo. All types of wastewater from industrial and domestic practices are discharged into three unlined oxidation ponds to eliminate pollutants. The present srudy has been conduted to assess the extent of seepage to groundwater from the ponds and how efficient they are for pollution reduction. The chemical composition is more developed in the groundwater of the miocene aquifer due to the less active recharge and the dominance of readily dissolved salts that interact with the inflow. The seepage from ismailia canal and the excess irrigation from agricultural lands and the infiltration from the oxidation ponds as well as the upleaked water represent the main sources of recharge in the quaternary aquifer. The chemical and isotopic composition of the water in the oxidation ponds is controlled by the nature of the drained water and the geochemical processes affecting the solute content. The isotopic enrichment differs for the three ponds being related to the evaporation intensity in each

  6. Studying The Contamination Status And The Sources Of Nitrogen Compounds In Groundwater In Ho Chi Minh City Area Using The Isotope Hydrology Techniques

    International Nuclear Information System (INIS)

    Nguyen Kien Chinh; Le Danh Chuan; Nguyen Van Nhien; Huynh Long; Tran Bich Lien; Luong Thu Tra

    2013-01-01

    The obtained data on nitrate, ammonium and total nitrogen concentration of 100 groundwater samples collected from 3 main aquifers show that although the nitrate concentration is still lower than the authorized limit of this compound in groundwater but the concentration and, specially the distribution of nitrate in shallow aquifer (Pleistocene) shows the increasing tendency in pollution level while ammonium and also total nitrogen content exceeded the authorized limit of these compounds in groundwater. For deeper aquifers (Upper and Lower Pliocene) groundwater is less polluted by nitrogen compounds. Analysis data on isotopic composition δ 15 N and δ 18 O of nitrate of the collected groundwater samples in compiling with other environmental isotopes data as δ 2 H, δ 18 O of water and natural radioactive isotopes in groundwater ( 3 H and 14 C) show that nitrate in Pleistocene groundwater is derived from both sources, geogenic source such as organic matter buried in aquifer soil layers and anthropogenic source like fertilizers, manure and septic wastes with the dominance of anthropogenic source. At the same time, obtained isotopic data proved the geogenic source of nitrate in water of the deeper aquifers. Study results on infiltration rate and infiltration depth of fertilizers and water using tracer techniques in the zone specializing in legume cultivation of the study area show the possible infiltration into shallow groundwater of water and also fertilizers. The obtained results prove the need of better management of the use of fertilizers for cultivation activities in the study area and to apply the advanced cultural manners for minimizing amount of fertilizers used. At the same time to strengthen wastes management and treatment in whole study area, especially in the zones which intake rain water as a recharge source to shallow groundwater such as Cu Chi, Hoc Mon and also inner city districts. (author)

  7. Groundwater Quality Analysis for Human Consumption: A Case Study of Sukkur City, Pakistan

    Directory of Open Access Journals (Sweden)

    A. N. Laghari

    2018-02-01

    Full Text Available Drinking water quantity and quality is of the utmost importance. If the drinking water gets contaminated, it can result in severe health problems. For example, the continuous consumption of drinking water containing more than permissible amounts of fluoride can lead to bone deterioration and increased risk of bone fracture [1]. The present study was carried out to check the quality of underground water of Sukkur city. The analyzed parameters were fluoride, sodium, magnesium, calcium, potassium, iron, arsenic, TDS, pH, conductivity, odor, color and taste. World Health Organization (WHO standards were followed in present study. Underground water samples were collected from 20 different populated locations of Sukkur city. Only arsenic, pH, iron and potassium were found to be within health safe limits while the rest of the parameters exceeded the permissible standards set out by WHO. The TDS, sodium, fluoride and magnesium were over the limits at some locations.

  8. Numerical groundwater-flow model of the Minnelusa and Madison hydrogeologic units in the Rapid City area, South Dakota

    Science.gov (United States)

    Putnam, Larry D.; Long, Andrew J.

    2009-01-01

    The city of Rapid City and other water users in the Rapid City area obtain water supplies from the Minnelusa and Madison aquifers, which are contained in the Minnelusa and Madison hydrogeologic units. A numerical groundwater-flow model of the Minnelusa and Madison hydrogeologic units in the Rapid City area was developed to synthesize estimates of water-budget components and hydraulic properties, and to provide a tool to analyze the effect of additional stress on water-level altitudes within the aquifers and on discharge to springs. This report, prepared in cooperation with the city of Rapid City, documents a numerical groundwater-flow model of the Minnelusa and Madison hydrogeologic units for the 1,000-square-mile study area that includes Rapid City and the surrounding area. Water-table conditions generally exist in outcrop areas of the Minnelusa and Madison hydrogeologic units, which form generally concentric rings that surround the Precambrian core of the uplifted Black Hills. Confined conditions exist east of the water-table areas in the study area. The Minnelusa hydrogeologic unit is 375 to 800 feet (ft) thick in the study area with the more permeable upper part containing predominantly sandstone and the less permeable lower part containing more shale and limestone than the upper part. Shale units in the lower part generally impede flow between the Minnelusa hydrogeologic unit and the underlying Madison hydrogeologic unit; however, fracturing and weathering may result in hydraulic connections in some areas. The Madison hydrogeologic unit is composed of limestone and dolomite that is about 250 to 610 ft thick in the study area, and the upper part contains substantial secondary permeability from solution openings and fractures. Recharge to the Minnelusa and Madison hydrogeologic units is from streamflow loss where streams cross the outcrop and from infiltration of precipitation on the outcrops (areal recharge). MODFLOW-2000, a finite-difference groundwater

  9. Assessment of groundwater vulnerability using DRASTIC Model and GIS : A case study of two sub-districts in Banda Aceh city, Indonesia

    Science.gov (United States)

    Machdar, I.; Zulfikar, T.; Rinaldi, W.; Alfiansyah, Y.

    2018-03-01

    This present study assessed the groundwater vulnerability to protect aquifer in part of Banda Aceh City (the sub-district of Banda Raya and Lueng Bata), Indonesia. The study provides an additional tool for local planner and manager as for managing and protecting groundwater resources. The study area covers 1,164 ha and total population was estimated around 50,000 inhabitants. DRASTIC model in a GIS (Geographic Information System) environment was used in this study to generate vulnerability maps. The maps were created by applied seven criteria as standard in DRASTIC approach, i.e. depth to groundwater, recharge, aquifer type, soil properties, topography, impact of the vadose zone, and hydraulic conductivity. The vulnerability maps provides five categories of vulnerability, i.e. less, low, medium, high, and very high. It was found that the village areas, labelled with the high groundwater pollution potential, are mainly in the area of Lamlagang and the part of Geuce Kaye Jatoe and Geuce Komplek (Banda Raya sub-district) and the part of Batoh and Suka Damai (Lueng Bata sub-distric) This study prompts that the DRASTIC approach is helpful and efficient instrument for assessing groundwater vulnerability. The generated map can be an effective tool for local administrators in groundwater management as well.

  10. Impacts of at-site wastewater disposal systems on the groundwater aquifer in arid regions: case of Sfax City, Southern Tunisia

    Science.gov (United States)

    Chamtouri, Ibticem; Abida, Habib; Khanfir, Hafedh; Bouri, Salem

    2008-09-01

    Groundwater in Sfax City (Tunisia) has been known since the beginning of the century for its deterioration in quality, as a result of wastewater recharge into the aquifer. An average value of 12 × 106 m3 of untreated wastewater reaches the groundwater aquifer each year. This would result not only in a chemical and biological contamination of the groundwater, but also in an increase of the aquifer piezometric level. Quantitative impacts were evaluated by examining the groundwater piezometric level at 57 surface wells and piezometers. The survey showed that, during the last two decades, the groundwater level was ever increasing in the urban area with values reaching 7 m in part; and decreasing in Sidi Abid (agricultural area) with values exceeding -3 m. Groundwater samples for chemical and microbial analysis were collected from 41 wells spread throughout the study area. Results showed significantly elevated levels of sodium, chlorides, nitrates and coliform bacteria all over the urban area. High levels (NO3: 56-254 mg/l; Na >1,500 mg/l; Coliforms >30/100 ml) can be related to more densely populated areas with a higher density of pit latrine and recharge wells. Alternatively results showed a very variable chemical composition of groundwater, e.g. electrical conductivity ranges from 4,040 to19,620 μs/cm and the dry residual varies between 1.4 and 14 g/l with concentrations increasing downstream. Furthermore a softening of groundwater in Set Ezzit (highly populated sector) was observed.

  11. Geophysical investigation to reveal the groundwater condition at new Borg El-Arab industrial city, Egypt

    Directory of Open Access Journals (Sweden)

    Alhussein A. Basheer

    2014-12-01

    The present study embraces Vertical Electrical Soundings (VES’es and Time Domain Electromagnetic sounding (TEM to investigate the study area. The study aims to delineate the main subsurface conditions from the viewpoint of groundwater location, depth and water quality. Analysis and interpretation of the obtained results reveal that the subsurface consists of five geoelectrical layers with a gentle general slope toward the Mediterranean Sea. The third and the fourth layers in the succession are suggested to be the two water bearing formations of which the third layer is saturated with fresh water overlying saline water at the bottom of the fourth one. It is worth mentioning that the fresh water depth varies between 50 and 354 m under the ground surface. The thickness of the fresh water aquifer varies from 9.5 to 66 m; and the saline water depth varies between 116 and 384 m below the ground surface, the thickness of saline water aquifer differs from 34 to 90.5 m.

  12. Variations in chemical and isotopic compositions of groundwaters from the Otobaru landslide in the area of hydrothermal alteration, Beppu City

    International Nuclear Information System (INIS)

    Yoshioka, Ryuma; Kitaoka, Koichi; Kamiyama, Kokichi

    1989-01-01

    The landslide at the Otobaru area, Beppu City, occurred twice in 1943 and 1969. A part of this area, even now, is affected considerably by thermal activities. Variations in chemical and isotopic compositions of waters from the Otobaru area and its vicinity were investigated from 1977 to 1983 and 1986 to 1987. The results are as follows: (1) electric conductivity data suggest that the two kinds of low-concentration water and high-concentration water exist in the landslide area, (2) the existence-of two groundwater aquifer in the landslide area and its vicinity is inferred from tritium data, (3) variations chemical composition of waters from the horizontal borehole are accompanied by the rise and decline of water table, (4) the waters from the landslide area and its vicinity are in equilibrium with montmorillonite, (5) the most waters under 10 -1 atm. of P co2 are saturated or supersaturated with calcite, and (6) there is no detectable contribution of geothermal water to the waters from the landslide and its vicinity. And our hypothesis on the mechanism for the formation of calcium sulfate type water is also presented. (author)

  13. Shallow Groundwater Temperatures and the Urban Heat Island Effect: the First U.K City-wide Geothermal Map to Support Development of Ground Source Heating Systems Strategy

    Science.gov (United States)

    Patton, Ashley M.; Farr, Gareth J.; Boon, David P.; James, David R.; Williams, Bernard; Newell, Andrew J.

    2015-04-01

    The first UK city-wide heat map is described based on measurements of groundwater from a shallow superficial aquifer in the coastal city of Cardiff, Wales, UK. The UK Government has a target of reducing greenhouse gas emissions by 80% by 2050 (Climate Change Act 2008) and low carbon technologies are key to achieving this. To support the use of ground source heating we characterised the shallow heat potential of an urban aquifer to produce a baseline dataset which is intended to be used as a tool to inform developers and to underpin planning and regulation. We exploited an existing network of 168 groundwater monitoring boreholes across the city, recording the water temperature in each borehole at 1m depth intervals up to a depth of 20m. We recorded groundwater temperatures during the coldest part of 2014, and repeat profiling of the boreholes in different seasons has added a fourth dimension to our results and allowed us to characterise the maximum depth of seasonal temperature fluctuation. The temperature profiles were used to create a 3D model of heat potential within the aquifer using GOCAD® and the average borehole temperatures were contoured using Surfer® 10 to generate a 2D thermal resource map to support future assessment of urban Ground Source Heat Pumps prospectively. The average groundwater temperature in Cardiff was found to be above the average for England and Wales (11.3°C) with 90% of boreholes in excess of this figure by up to 4°C. The subsurface temperature profiles were also found to be higher than forecast by the predicted geothermal gradient for the area. Potential sources for heat include: conduction from buildings, basements and sub-surface infrastructure; insulation effects of the urban area and of the geology, and convection from leaking sewers. Other factors include recharge inhibition by drains, localised confinement and rock-water interaction in specific geology. It is likely to be a combination of multiple factors which we are hoping

  14. Adsorptive properties of alluvial soil for arsenic(V) and its potential for protection of the shallow groundwater among Changsha, Zhuzhou, and Xiangtan cities, China.

    Science.gov (United States)

    Chen, Hongwei; Mei, Jinhua; Luo, Yueping; Qiu, Anni; Wang, Huan

    2017-02-01

    The study area is among Changsha, Zhuzhou, and Xiangtan cities, which was under agricultural use and natural conditions about 10 years ago and now is becoming part of the metropolis because of the urban expansion. This study aims to investigate the mechanisms and capabilities of the local alluvial soil layer for protecting the local shallow groundwater from arsenic pollution by field surveys and batch experiments. The field surveys showed that there was an acidic tendency of the groundwater, and phosphate, nitrate, and arsenic in the groundwater significantly increased comparing to their reference values. It indicates that the disturbance of the former agricultural land due to the change of land use may be responsible for these changes. From the experimental results, the maximum adsorption capacity of the soil for As(V) was as low as 0.334 mg/g, and lower As(V) adsorption capacities were obtained at higher As(V) concentration, higher pH, and lower temperature. The presence of H 2 PO 4 - and SiO 3 2- posed negative, while HCO 3 - slight positive, and SO 4 2- , NO 3 - and Cl - negligible influences on the As(V) adsorption. The surface-derived organic matter played a negative role in the adsorption process, and low specific surface area influenced adsorption capacity of the soil. The study reveals that the local soil layer shows poor potential for protection of the local shallow groundwater from As(V) pollution, and the change trends of the groundwater environments due to more intensive anthropogenic activities will further weaken this potential and increase the risk of the groundwater contamination.

  15. A 3D analysis of spatial relationship between geological structure and groundwater profile around Kobe City, Japan: based on ARCGIS 3D Analyst.

    Science.gov (United States)

    Shibahara, A.; Tsukamoto, H.; Kazahaya, K.; Morikawa, N.; Takahashi, M.; Takahashi, H.; Yasuhara, M.; Ohwada, M.; Oyama, Y.; Inamura, A.; Handa, H.; Nakama, J.

    2008-12-01

    Kobe city is located on the northern side of Osaka sedimentary basin, Japan, containing 1,000-2,000 m thick Quaternary sediments. After the Hanshin-Awaji Earthquake (January 17, 1995), a number of geological and geophysical surveys were conducted in this region. Then high-temperature anomaly of groundwater accompanied with high Cl concentration was detected along fault systems in this area. In addition, dissolved He in groundwater showed nearly upper mantle-like 3He/4He ratio, although there were no Quaternary volcanic activities in this region. Some recent studies have assumed that these groundwater profiles are related with geological structure because some faults and joints can function as pathways for groundwater flow, and mantle-derived water can upwell through the fault system to the ground surface. To verify these hypotheses, we established 3D geological and hydrological model around Osaka sedimentary basin. Our primary goal is to analyze spatial relationship between geological structure and groundwater profile. In the study region, a number of geological and hydrological datasets, such as boring log data, seismic profiling data, groundwater chemical profile, were reported. We converted these datasets to meshed data on the GIS, and plotted in the three dimensional space to visualize spatial distribution. Furthermore, we projected seismic profiling data into three dimensional space and calculated distance between faults and sampling points, using Visual Basic for Applications (VBA) scripts. All 3D models are converted into VRML format, and can be used as a versatile dataset on personal computer. This research project has been conducted under the research contract with the Japan Nuclear Energy Safety Organization (JNES).

  16. An evaluation of the use of an advanced oxidation process to remove chlorinated hydrocarbons from groundwater at the US Department of Energy Kansas City Plant

    Energy Technology Data Exchange (ETDEWEB)

    Garland, S.B. II; Peyton, G.R.

    1990-10-01

    The Allied-Signal Aerospace Company currently operates a production facility in Kansas City, Missouri, under contract with the US Department of Energy (DOE). Over the years the operation of the DOE Kansas City Plant has resulted in the contamination of groundwater with chlorinated hydrocarbons, including trichloroethene (TCE). One of the plumes of contaminated groundwater, the underground tank farm (UTF) plume, was selected for remediation with an advanced oxidation process (AOP) consisting of simultaneous treatment by ozone (O{sub 3}), ultraviolet (UV) radiation, and hydrogen peroxide (H{sub 2}O{sub 2}). Since the use of AOPs is relatively new for the removal of organics from groundwater, information on design criteria, costs, performance, and operating experience is not well documented in the literature. Therefore, the Oak Ridge National Laboratory (ORNL) was requested to evaluate the treatment process. This report documents the work performed through FY 1989. The results of the initial year of the evaluations, FY 1988, have been published previously, and the evaluation will continue at least through FY 1990. This report first briefly describes the treatment plant and the mechanisms of the treatment process. Next, the methodology and the results from the evaluation are discussed. Finally, conclusions and recommendations are presented. 8 refs., 14 figs., 16 tabs.

  17. Investigation on the Sources of Recharge and Salinity in Deep Groundwater System Underlying a Coastal City of Bangladesh by Combined Geochemical and Isotopic Approaches

    Science.gov (United States)

    Rahman, M.; Tokunaga, T.

    2017-12-01

    The Khulna city, situated in the southwestern coastal Bangladesh, has been abstracting deep groundwater (DGW, >150 m below ground level, bgl) since 1970s due to the prevalence of salinity, iron, and arsenic in shallow groundwater (SGW, pond water (PndW), and river water (RW). δ18O and δ2H of DGW, SGW, and RW fall on the local meteoric water line (LMWL) whereas PndW shows evaporation effect as plotted below the LMWL. All these water features form distinct clusters among one another. DGW was not recharged from modern precipitation as 3H values were below detection limit (0.3 TU). 14C activities of 7.9 to 17.5 pMC and apparent radiocarbon age of around 14-21 ka most probably indicate the recharge with paleo-meteoric water. However, elevated 3H and 14C in SGW, reported in recent studies, suggest their recharge with modern precipitation. Neither modern seawater nor SGW influences the salinization of DGW as perceived from a cross plot between Cl- and δ18O. Salinity in DGW might have evolved through mineral dissolution, rock weathering, or mixing with paleo-brackish water. Although DGW level and SGW level fluctuate similarly with monsoon rainfall and river stages, we found no direct connection between SGW and DGW with respect to geochemical and isotopic signatures. Further efforts are necessary for improved understanding of the system for sustainable groundwater management and ensuring long-term freshwater supply for the Khulna city, Bangladesh.

  18. Groundwater Pollution Characteristics and Hydrochemical Properties of Typical Plain River-net Area in Lower Yangtze River Delta, China: A Case Study in Suzhou City

    Science.gov (United States)

    Zhu, X.; Ruan, X.; Sun, H.; Pan, Z.

    2011-12-01

    Due to anthropogenic activities, tidal river water retention and other geological factors, groundwater quality in plain river-net area is vulnerable to pollution. Detailed chemical analysis results of 49 groundwater samples were carried out to identify groundwater pollution characteristics, hydrochemical properties and to assess groundwater quality and usability in Suzhou City, a typical plain area in Lower Yangtze River Delta, China. In order to protect, utilize and manage groundwater resources effectively, it is necessary to recognize the dominant processes responsible for hydrogeochemistry, groundwater pollution threats in study area. The results revealed ammonia concentration in confined and shallow groundwater ranges from 0.02 to 6.78 mg/L, 0.04 to 3.17 mg/L, respectively. Nitrite concentrations range from 0.004 to 1.01 mg/L, 0.004 to 3.66 mg/L, respectively. Iron concentrations range from 0.006 to 16.9 mg/L, 0.02 to 7.88 mg/L, respectively. Manganese concentrations range from 0.003 to 1.04 mg/L, 0.06 to 0.58 mg/L, respectively. On the basis of analytical results and water quality standards, majority of groundwater samples are not suitable for drinking, domestic as well as for industrial uses directly. Toxic metals and high levels ions should be removed if groundwater is supplied for different purposes. Salinity, sodium adsorption ratio, residual sodium carbonate and sodium percentage values revealed that most of groundwater samples are suitable for irrigation purposes except only a few. The salinity hazard of study area is regarded as low to medium, and special management for salinity control is required in scattered regions. Results of suitability for industrial purposes according to calculated Langeliar saturation index and Larson Ratio showed that majority of samples are calcium carbonate depositing, whereas a few are calcium carbonate dissolving in nature. Results show that sodium, calcium and bicarbonate are the dominant ions of groundwater. Na-HCO3

  19. Simulation and Prediction of Groundwater Pollution from Planned Feed Additive Project in Nanning City Based on GMS Model

    Science.gov (United States)

    Liang, Yimin; Lan, Junkang; Wen, Zhixiong

    2018-01-01

    In order to predict the pollution of underground aquifers and rivers by the proposed project, Specialized hydrogeological investigation was carried out. After hydrogeological surveying and mapping, drilling, and groundwater level monitoring, the scope of the hydrogeological unit and the regional hydrogeological condition were found out. The permeability coefficients of the aquifers were also obtained by borehole water injection tests. In order to predict the impact on groundwater environment by the project, a GMS software was used in numerical simulation. The simulation results show that when unexpected sewage leakage accident happened, the pollutants will be gradually diluted by groundwater, and the diluted contaminants will slowly spread to southeast with groundwater flow, eventually they are discharged into Gantang River. However, the process of the pollutants discharging into the river is very long, the long-term dilution of the river water will keep Gantang River from being polluted.

  20. Simulation of groundwater flow, effects of artificial recharge, and storage volume changes in the Equus Beds aquifer near the city of Wichita, Kansas well field, 1935–2008

    Science.gov (United States)

    Kelly, Brian P.; Pickett, Linda L.; Hansen, Cristi V.; Ziegler, Andrew C.

    2013-01-01

    The Equus Beds aquifer is a primary water-supply source for Wichita, Kansas and the surrounding area because of shallow depth to water, large saturated thickness, and generally good water quality. Substantial water-level declines in the Equus Beds aquifer have resulted from pumping groundwater for agricultural and municipal needs, as well as periodic drought conditions. In March 2006, the city of Wichita began construction of the Equus Beds Aquifer Storage and Recovery project to store and later recover groundwater, and to form a hydraulic barrier to the known chloride-brine plume near Burrton, Kansas. In October 2009, the U.S. Geological Survey, in cooperation with the city of Wichita, began a study to determine groundwater flow in the area of the Wichita well field, and chloride transport from the Arkansas River and Burrton oilfield to the Wichita well field. Groundwater flow was simulated for the Equus Beds aquifer using the three-dimensional finite-difference groundwater-flow model MODFLOW-2000. The model simulates steady-state and transient conditions. The groundwater-flow model was calibrated by adjusting model input data and model geometry until model results matched field observations within an acceptable level of accuracy. The root mean square (RMS) error for water-level observations for the steady-state calibration simulation is 9.82 feet. The ratio of the RMS error to the total head loss in the model area is 0.049 and the mean error for water-level observations is 3.86 feet. The difference between flow into the model and flow out of the model across all model boundaries is -0.08 percent of total flow for the steady-state calibration. The RMS error for water-level observations for the transient calibration simulation is 2.48 feet, the ratio of the RMS error to the total head loss in the model area is 0.0124, and the mean error for water-level observations is 0.03 feet. The RMS error calculated for observed and simulated base flow gains or losses for the

  1. An overview on the effect of open dump solid waste landfill in Urmia City, Iran, on the surrounding soil and groundwater resources

    International Nuclear Information System (INIS)

    Badv, K.

    2002-01-01

    The effect of the leachate migrating from the open dump solid waste landfill in Urmia City, Iran, on the surrounding soil and groundwater quality was investigated. Leachate samples were collected and analyzed for their physical and chemical properties and the results were compared with the reported values from other landfills in different countries. The comparison indicated that the values of pH, Electrical Conductance (EC), Sulphate, Zinc, Ammonium Nitrogen, Potassium, and Total Nitrogen, in Urmia landfill leachate exceed the reported values from other landfills. Soil samples were collected from two hand-excavated boreholes and were analyzed for their physical and chemical properties. Results showed that the soil samples have been contaminated due to the leachate migration downgradient of the landfill. Similar soil samples collected from the upgradient of the landfill did not show any contamination due to leachate. Groundwater samples were collected from 16 wells located downstream of the landfill site, downgradient of the groundwater flow path. The samples were then analyzed for their physical and chemical properties and the results did not show any contamination due to leachate migration. (author)

  2. Simulation of Groundwater Movement for Nuclear Research Center at AlTuwaitha Area in Baghdad City, Iraq

    Directory of Open Access Journals (Sweden)

    Ayad Sleibi Mustafa

    2017-07-01

    Full Text Available The simulation of groundwater movement has been carried out by using MODFLOW model in order to show the impact of change of water surface elevation of the Tigris river on layers of the aquifer system for Nuclear Research Center at Al-Tuwaitha area, in addition to evaluate the ability of the proposed pumping well to collect groundwater and change the direction of flow at steady-state. The results of the study indicated that there is a good match between the values of groundwater levels that calculated in the model and measured in the field, where mean error is 0.09 m.The study also showed that the increasing of water surface elevation of the Tigris river led to increase in the hydraulic head of observed wells, while the use proposed pumping well reduced the hydraulic head and intercepted the movement of groundwater flow. The flow direction is toward the Tigris river, and the velocity of flow is clear in the third layer identified medium sand which is 0.0015 m/day. The using of the proposed pumping well has changed the direction of groundwater, especially in the area around the well.

  3. Water-quality assessment of part of the Upper Mississippi River basin, Minnesota and Wisconsin - Ground-water quality along a flow system in the Twin Cities metropolitan area, Minnesota, 1997-98

    Science.gov (United States)

    Andrews, William J.; Stark, James R.; Fong, Alison L.; Fallon, James D.

    2005-01-01

    As part of a national analysis of the effects of land use on ground-water quality for the National Water-Quality Assessment Program, the U.S. Geological Survey sampled wells along a flow system in surficial glacial aquifers in the northwestern part of the Twin Cities metropolitan area during 1997 and 1998. In addition, a reconnaissance steady-state ground-water model was developed to estimate flowpaths and dates of ground-water recharge using a particle-tracking routine.

  4. Groundwater and geothermal: urban district heating applications

    Energy Technology Data Exchange (ETDEWEB)

    Mounts, R.; Frazier, A.; Wood, E.; Pyles, O.

    1982-01-01

    This report describes how several cities use groundwater and geothermal energy in district heating systems. It begins with groundwater, introducing the basic technology and techniques of development, and describing two case studies of cities with groundwater-based district heating systems. The second half of the report consists of three case studies of cities with district heating systems using higher temperature geothermal resources.

  5. The contribution of geology and groundwater studies to city-scale ground heat network strategies: A case study from Cardiff, UK

    Science.gov (United States)

    Boon, David; Farr, Gareth; Patton, Ashley; Kendall, Rhian; James, Laura; Abesser, Corinna; Busby, Jonathan; Schofield, David; White, Debbie; Gooddy, Daren; James, David; Williams, Bernie; Tucker, David; Knowles, Steve; Harcombe, Gareth

    2016-04-01

    The development of integrated heat network strategies involving exploitation of the shallow subsurface requires knowledge of ground conditions at the feasibility stage, and throughout the life of the system. We describe an approach to the assessment of ground constraints and energy opportunities in data-rich urban areas. Geological and hydrogeological investigations have formed a core component of the strategy development for sustainable thermal use of the subsurface in Cardiff, UK. We present findings from a 12 month project titled 'Ground Heat Network at a City Scale', which was co-funded by NERC/BGS and the UK Government through the InnovateUK Energy Catalyst grant in 2015-16. The project examined the technical feasibility of extracting low grade waste heat from a shallow gravel aquifer using a cluster of open loop ground source heat pumps. Heat demand mapping was carried out separately. The ground condition assessment approach involved the following steps: (1) city-wide baseline groundwater temperature mapping in 2014 with seasonal monitoring for at least 12 months prior to heat pump installation (Patton et al 2015); (2) desk top and field-based investigation of the aquifer system to determine groundwater levels, likely flow directions, sustainable pumping yields, water chemistry, and boundary conditions; (3) creation of a 3D geological framework model with physical property testing and model attribution; (4) use steps 1-3 to develop conceptual ground models and production of maps and GIS data layers to support scenario planning, and initial heat network concept designs; (5) heat flow modelling in FEFLOW software to analyse sustainability and predict potential thermal breakthrough in higher risk areas; (6) installation of a shallow open loop GSHP research observatory with real-time monitoring of groundwater bodies to provide data for heat flow model validation and feedback for system control. In conclusion, early ground condition modelling and subsurface

  6. Groundwater Modeling of Mercury Pollution at a Former Mercury Cell Chlor Alkali Facility in Pavlodar City, Kazakhstan

    Science.gov (United States)

    In northern Kazakhstan, there is a serious case of mercury pollution near the city of Pavlodar from an old mercury cell chlor-alkali plant. The soil, sediment, and water is severely contaminated with mercury and mercury compounds as a result of the industrial activity of this ch...

  7. Groundwater quality mapping in urban groundwater using GIS.

    Science.gov (United States)

    Nas, Bilgehan; Berktay, Ali

    2010-01-01

    Konya City, located in the central part of Turkey, has grown and urbanized rapidly. A large amount of the water requirement of Konya City is supplied from groundwater. The quality of this groundwater was determined by taking samples from 177 of the wells within the study area. The purposes of this investigation were (1) to provide an overview of present groundwater quality and (2) to determine spatial distribution of groundwater quality parameters such as pH, electrical conductivity, Cl-, SO4(-2), hardness, and NO3- concentrations, and (3) to map groundwater quality in the study area by using GIS and Geostatistics techniques. ArcGIS 9.0 and ArcGIS Geostatistical Analyst were used for generation of various thematic maps and ArcGIS Spatial Analyst to produce the final groundwater quality map. An interpolation technique, ordinary kriging, was used to obtain the spatial distribution of groundwater quality parameters. The final map shows that the southwest of the city has optimum groundwater quality, and, in general, the groundwater quality decreases south to north of the city; 5.03% (21.51 km2) of the total study area is classified to be at the optimum groundwater quality level.

  8. Radon-222 in groundwater and effective dose due to ingestion and inhalation in the city of Ibadan, Nigeria.

    Science.gov (United States)

    Ademola, Janet Ayobami; Oyeleke, Oyebode Akanni

    2017-03-20

    Radon concentration in groundwater collected from the eleven Local Government Areas (LGAs) of Ibadan, Nigeria, was analyzed. Annual effective doses due to ingestion and inhalation of radon from the consumption of the water were determined. The arithmetic means (AMs) of radon concentration for the 11 LGAs varied from 2.18 to 76.75 Bq l -1 with a standard deviation of 1.57 and 70.64 Bq l -1 , respectively. The geometric means (GMs) varied from 1.67 to 49.47 Bq l -1 with geometric standard deviation of 2.22 and 3.04, respectively. About 58% of the 84 water samples examined had a higher concentration of radon than the 11.1 Bq l -1 recommended by United States Environmental Protection Agency (USEPA); the AMs of six LGAs and GMs of three LGAs were higher than the recommended value. However the AMs and GMs of all the LGAs with about 93% of the water sampled were lower than the 100 Bq l -1 recommended by the World Health Organization and EURATOM drinking water directive. The concentration of radon varied with the geological formation of the area. The AMs of the annual effective dose due to ingestion of radon in water ranged from 0.036 to 1.261 mSv y -1 , 0.071 to 2.521 mSv y -1 and 0.042 to 1.471 mSv y -1 for adult, child and infant, respectively and the GMs in the range of 0.026 to 0.813, 0.055 to 1.625 and 0.032 to 0.948 mSv y -1 , respectively. The AMs of 10 LGAs and GMs of 7 LGAs were higher than the recommended reference dose level of 0.1 mSv y -1 from the consumption of water for the duration of one year for all the three categories of people. The AMs and GMs of the annual effective dose due to inhalation of radon in drinking water ranged from 0.533 to 18.82 μSv y -1 and 0.411 to 12.13 μSv y -1 , respectively, contributing less to the overall dose.

  9. Integrated methods and scenario development for urban groundwater management and protection during tunnel road construction: a case study of urban hydrogeology in the city of Basel, Switzerland

    Science.gov (United States)

    Epting, J.; Huggenberger, P.; Rauber, M.

    2008-05-01

    In the northwestern area of Basel, Switzerland, a tunnel highway connects the French highway A35 (Mulhouse Basel) with the Swiss A2 (Basel Gotthard Milano). The subsurface highway construction was associated with significant impacts on the urban groundwater system. Parts of this area were formerly contaminated by industrial wastes, and groundwater resources are extensively used by industry. During some construction phases, considerable groundwater drawdown was necessary, leading to major changes in the groundwater flow regime. Sufficient groundwater supply for industrial users and possible groundwater pollution due to interactions with contaminated areas had to be taken into account. A groundwater management system is presented, comprising extensive groundwater monitoring, high-resolution numerical groundwater modeling, and the development and evaluation of different scenarios. This integrated approach facilitated the evaluation of the sum of impacts, and their interaction in time and space with changing hydrological boundary conditions. For all project phases, changes of the groundwater system had to be evaluated in terms of the various goals and requirements. Although the results of this study are case-specific, the overall conceptual approach and methodologies applied may be directly transferred to other urban areas.

  10. Identification and temporal decrease of137Cs and134Cs in groundwater in Minami-Soma City following the accident at the Fukushima Dai-ichi nuclear power plant.

    Science.gov (United States)

    Shizuma, Kiyoshi; Fujikawa, Yoko; Kurihara, Momo; Sakurai, Yushi

    2018-03-01

    The Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident on March 11, 2011, caused severe radioactive contamination in Fukushima Prefecture. In order to clarify the safety of drinking water, we have conducted radiocesium monitoring of public tap water and groundwater in Minami-Soma City, which is 10-40 km north of the nuclear power plant. The source of tap water for Minami-Soma City is groundwater, which is treated by rapid filtration before distribution in two of the three treatment plants. The tap water was collected from six stations during 2012-2016 and groundwater was collected from 11 stations with wells between 5 and 100 m deep during 2014-2016. Radiocesium contamination of groundwater has been considered unlikely in Japan because of the small vertical migration velocity of radiocesium in Japanese soil. However, radiocesium was detected in public tap water after 2012, and the maximum 137 Cs concentration of 292 mBq L -1 was observed in 2013. In all the well water, radiocesium was detected between 2014 and 2015, at concentrations similar to those observed in tap water in the same period. In tap water and groundwater, radiocesium was decreased to below the detection limit in 2016 except for four stations. Radiocesium concentration in shallow water reached a maximum between 2013 and 2015, 2-4 years after the FDNPP accident, and then decreased. The results are interpreted that dissolved 137 Cs migrated in the soil and reached aquifers of various depth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Analysis of ground-water flow in the Madison aquifer using fluorescent dyes injected in Spring Creek and Rapid Creek near Rapid City, South Dakota, 2003-04

    Science.gov (United States)

    Putnam, Larry D.; Long, Andrew J.

    2007-01-01

    The Madison aquifer, which contains fractures and solution openings in the Madison Limestone, is used extensively for water supplies for the city of Rapid City and other suburban communities in the Rapid City, S. Dak., area. The 48 square-mile study area includes the west-central and southwest parts of Rapid City and the outcrops of the Madison Limestone extending from south of Spring Creek to north of Rapid Creek. Recharge to the Madison Limestone occurs when streams lose flow as they cross the outcrop. The maximum net loss rate for Spring and Rapid Creek loss zones are 21 and 10 cubic feet per second (ft3/s), respectively. During 2003 and 2004, fluorescent dyes were injected in the Spring and Rapid Creek loss zones to estimate approximate locations of preferential flow paths in the Madison aquifer and to measure the response and transit times at wells and springs. Four injections of about 2 kilograms of fluorescein dye were made in the Spring Creek loss zone during 2003 (sites S1, S2, and S3) and 2004 (site S4). Injection at site S1 was made in streamflow just upstream from the loss zone over a 12-hour period when streamflow was about equal to the maximum loss rate. Injections at sites S2, S3, and S4 were made in specific swallow holes located in the Spring Creek loss zone. Injection at site R1 in 2004 of 3.5 kilograms of Rhodamine WT dye was made in streamflow just upstream from the Rapid Creek loss zone over about a 28-hour period. Selected combinations of 27 wells, 6 springs, and 3 stream sites were monitored with discrete samples following the injections. For injections at sites S1-S3, when Spring Creek streamflow was greater than or equal to 20 ft3/s, fluorescein was detected in samples from five wells that were located as much as about 2 miles from the loss zone. Time to first arrival (injection at site S1) ranged from less than 1 to less than 10 days. The maximum fluorescein concentration (injection at site S1) of 120 micrograms per liter (ug/L) at well CO

  12. Investigation of the potential source area, contamination pathway, and probable release history of chlorinated-solvent-contaminated groundwater at the Capital City Plume Site, Montgomery, Alabama, 2008-2010

    Science.gov (United States)

    Landmeyer, James E.; Miller, Scott; Campbell, Bruce G.; Vroblesky, Don A.; Gill, Amy C.; Clark, Athena P.

    2011-01-01

    Detection of the organic solvent perchloroethylene (PCE) in a shallow public-supply well in 1991 and exposure of workers in 1993 to solvent vapors during excavation activities to depths near the water table provided evidence that the shallow aquifer beneath the capital city of Montgomery, Alabama, was contaminated. Investigations conducted from 1993 to 1999 by State and Federal agencies confirmed the detection of PCE in the shallow aquifer, as well as the detection of the organic solvent trichloroethylene (TCE) and various inorganic compounds, but the source of the groundwater contamination was not determined. In May 2000 the U.S. Environmental Protection Agency proposed that the site, called the Capital City Plume (CCP) Site, be a candidate for the National Priorities List. Between 2000 and 2007, numerous site-investigation activities also did not determine the source of the groundwater contamination. In 2008, additional assessments were conducted at the CCP Site to investigate the potential source area, contamination pathway, and the probable release history of the chlorinated-solvent-contaminated groundwater. The assessments included the collection of (1) pore water in 2008 from the hyporheic zone of a creek using passive-diffusion bag samplers; (2) tissue samples in 2008 and 2009 from trees growing in areas of downtown Montgomery characterized by groundwater contamination and from trees growing in riparian zones along the Alabama River and Cypress Creek; and (3) groundwater samples in 2009 and 2010. The data collected were used to investigate the potential source area of contaminants detected in groundwater, the pathway of groundwater contamination, and constraints on the probable contaminant-release history. The data collected between 2008 and 2010 indicate that the PCE and TCE contamination of the shallow aquifer beneath the CCP Site most likely resulted from the past use and disposal of industrial wastewater from printing operations containing chlorinated

  13. Comprehensive studies of hydrogeochemical processes and quality status of groundwater with tools of cluster, grouping analysis, and fuzzy set method using GIS platform: a case study of Dalcheon in Ulsan City, Korea.

    Science.gov (United States)

    Venkatramanan, S; Chung, S Y; Rajesh, R; Lee, S Y; Ramkumar, T; Prasanna, M V

    2015-08-01

    This research aimed at developing comprehensive assessments of physicochemical quality of groundwater for drinking and irrigation purposes at Dalcheon in Ulsan City, Korea. The mean concentration of major ions represented as follows: Ca (94.3 mg/L) > Mg (41.7 mg/L) > Na (19.2 mg/L) > K (3.2 mg/L) for cations and SO4 (351 mg/L) > HCO3 (169 mg/L) > Cl (19 mg/L) for anions. Thematic maps for physicochemical parameters of groundwater were prepared, classified, weighted, and integrated in GIS method with fuzzy logic. The maps exhibited that suitable zone of drinking and irrigation purpose occupied in SE, NE, and NW sectors. The undesirable zone of drinking purpose was observed in SW and central parts and that of irrigation was in the western part of the study area. This was influenced by improperly treated effluents from an abandoned iron ore mine, irrigation, and domestic fields. By grouping analysis, groundwater types were classified into Ca(HCO3)2, (Ca,Mg)Cl2, and CaCl2, and CaHCO3 was the most predominant type. Grouping analysis also showed three types of irrigation water such as C1S1, C1S2, and C1S3. C1S3 type of high salinity to low sodium hazard was the most dominant in the study area. Equilibrium processes elucidated the groundwater samples were in the saturated to undersaturated condition with respect to aragonite, calcite, dolomite, and gypsum due to precipitation and deposition processes. Cluster analysis suggested that high contents of SO4 and HCO3 with low Cl was related with water-rock interactions and along with mining impact. This study showed that the effluents discharged from mining waste was the main sources of groundwater quality deterioration.

  14. The city as a participant in the protection of groundwater in Brazil; O municipio como participe na protecao das aguas subterraneas no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Cordeiro de Souza, L.

    2012-11-01

    Brazilian environmental legislation aims to ensure the protection and preservation of the environment, and particularly its natural resources, in search of a better quality of life for all. The lack of force in existing statutes, however, sometimes renders the purpose of the law ineffective. Our water sources, providing this vital and essential element for life, are suffering pollution and contamination. Our focus here is on the subject of groundwater, which is widely relied upon in Brazil as a water source, but treated in some places in an uncontrolled way, and due to different forms of pollution and contamination arriving at the vulnerable areas of the aquifers, may easily be compromised both in quality and quantity. Constitutional authority to legislate on groundwater has been given to the Member States, since it falls outside the legal remit of individual municipalities. Studies show, however, that pollutants are reaching the aquifers from the overlying soil, which leads to a demand that the municipalities should use their constitutional authority to legislate on land use and its management to protect and preserve these important water sources, especially in the area of the Guarani aquifer. To this effect, we propose the creation of a Special Environment Zoning tool (ZEA) to limit land use in areas of aquifer vulnerability, by which municipalities become active participants in the protection process aimed at preventing harm to the groundwater of the Guarani aquifer. (Author)

  15. Data on assessment of groundwater quality for drinking and irrigation in rural area Sarpol-e Zahab city, Kermanshah province, Iran.

    Science.gov (United States)

    Soleimani, Hamed; Abbasnia, Abbas; Yousefi, Mahmood; Mohammadi, Ali Akbar; Khorasgani, Fazlollah Changani

    2018-04-01

    In present study 30 groundwater samples were collected from Sarpol-e Zahab area, Kermanshah province of Iran in order to assess the quality of groundwater in subjected area and determining its suitability for drinking and agricultural purposes. Also the variations in the quality levels of groundwater were compared over the years of 2015 and 2016. Statistical analyses including Spearman correlation coefficients and factor analysis display good correlation between physicochemical parameters (EC, TDS and TH) and Na + , Mg 2+ , Ca 2+ , Cl - and [Formula: see text] ionic constituents. Also in order to assess water quality for irrigation we used the United States Department of Agriculture (USDA) classification which is based on SAR for irrigation suitability assessment. In addition, the residual sodium carbonate (RSC), %Na, PI, KR, SSP, MH, EC characteristics were calculated for all samples and used for assessment of irrigation suitability. Based on these indicators, for every two years, the quality of water for agriculture is in good and excellent category. The Piper classification for hydro geochemical facies indicates that the water in the study area is of Ca-HCO 3 - type. However, the study of water hardness shows that more than 80% of samples are in hard and very hard water class. Therefore, there is a need for decisions to refine and soften the water.

  16. Assessment of groundwater vulnerability and sensitivity to pollution ...

    African Journals Online (AJOL)

    Groundwater pollution caused by human activity is a serious environmental problem in cities. Pollution vulnerability assessment of groundwater resources provides information on how to protect areas vulnerable to pollution. The present study is a detailed investigation of the potential for groundwater contamination through ...

  17. Assessment of groundwater quality and evaluation of scaling and corrosiveness potential of drinking water samples in villages of Chabahr city, Sistan and Baluchistan province in Iran.

    Science.gov (United States)

    Abbasnia, Abbas; Alimohammadi, Mahmood; Mahvi, Amir Hossein; Nabizadeh, Ramin; Yousefi, Mahmood; Mohammadi, Ali Akbar; Pasalari, Hassan; Mirzabeigi, Majid

    2018-02-01

    The aims of this study were to assess and analysis of drinking water quality of Chabahar villages in Sistan and Baluchistan province by water quality index (WQI) and to investigate the water stability in subjected area. The results illustrated that the average values of LSI, RSI, PSI, LS, and AI was 0.5 (±0.34), 6.76 (±0.6), 6.50 (±0.99), 2.71 (±1.59), and 12.63 (±0.34), respectively. The calculation of WQI for groundwater samples indicated that 25% of the samples could be considered as excellent water, 50% of the samples were classified as good water category and 25% of the samples showed poor water category.

  18. Quantification of benzene in groundwater sources and risk analysis in a popular South Indian Pilgrimage City – A GIS based approach

    Directory of Open Access Journals (Sweden)

    M. Senthil kumar

    2017-05-01

    Full Text Available The present research work quantified the concentration of benzene in a total of hundred groundwater samples at the proximity of petrol bunks and residential places in Madurai District. The average values recorded in Jan 2011, Feb 2011 and Mar 2011 were 0.100 mg L−1 (10 times of PL, 0.138 mg L−1 (14 times of PL and 0.060 mg L−1 (6 times of PL respectively. A significant variation in the benzene level during February–March 2011 was validated through Student’s t-test analysis. Hierarchical cluster analysis using dendograms revealed the un-symmetric distribution of benzene during the study period. The cancer risk analysis at corporate locations among children was seven folds higher as compared to the risk of adults. The benzene concentration levels are interpreted using Arc Geographical Information System (Arc GIS through thematic maps.

  19. Groundwater animals

    OpenAIRE

    Maurice, Louise; Bloomfield, John; Robertson, Anne; Allen, Debbie

    2010-01-01

    Groundwater animals are adapted to live in environments with no light and limited nutrients, They can provide insights into fundamental questions of evolution, ecology and biodiversity. They also have an important role to play in informing the reconstruction of past changes in geomorphology and climate, and can be used for characterising aquifers. The BGS is undertaking a systematic survey of selected areas and lithologies in the UK where groundwater animals have not been inves...

  20. 500 Cities: City Boundaries

    Data.gov (United States)

    U.S. Department of Health & Human Services — This city boundary shapefile was extracted from Esri Data and Maps for ArcGIS 2014 - U.S. Populated Place Areas. This shapefile can be joined to 500 Cities...

  1. Groundwater Potential

    African Journals Online (AJOL)

    big timmy

    INTEGRATION OF HYDROGEOPHYSICAL AND REMOTE SENSING DATA IN THE. ASSESSMENT OF GROUNDWATER POTENTIAL OF THE BASEMENT COMPLEX. TERRAIN OF EKITI STATE, SOUTHWESTERN NIGERIA. 1. 2. 3. 4. Bayowa O.G., Olorunfemi M.O., Akinluyi F.O., and Ademilua O.L. 1Department of Earth ...

  2. Groundwater flood or groundwater-induced flood?

    OpenAIRE

    Robins, N.S.; Finch, J.W.

    2012-01-01

    A number of ‘groundwater flood’ events have been recorded over the Chalk aquifer in southern England since the 1994 occurrence at Chichester, Sussex. Reporting of this event and subsequent groundwater floods indicates that there are two types of groundwater flood event. Type 1 is the true groundwater flood in which the water table elevation rises above the ground elevation, and Type 2 occurs when intense groundwater discharge via bourne springs and highly permeable shallow horizons discharges...

  3. Effects of intensive urbanization on the intrusion of shallow groundwater into deep groundwater: Examples from Bangkok and Jakarta

    Energy Technology Data Exchange (ETDEWEB)

    Onodera, Shin-ichi [Graduate School of Integrated Arts and Sciences, Hiroshima University (Japan)], E-mail: sonodera@hiroshima-u.ac.jp; Saito, Mitsuyo [Center for Marine Environmental Studies, Ehime University (Japan); Sawano, Misa [Oyo Corporation (Japan); Hosono, Takahiro [Department of Earth Science and Technology, Akita University (Japan); Taniguchi, Makoto [Research Institute for Humanity and Nature (Japan); Shimada, Jun [Graduate School of Sciences, Kumamoto University (Japan); Umezawa, Yu [Faculty of Fisheries, Nagasaki University (Japan); Lubis, Rachmat Fajar [Indonesia Institute of Science (Indonesia); Buapeng, Somkid [Groundwater Division, Department of Mineral Resources (Thailand); Delinom, Robert [Indonesia Institute of Science (Indonesia)

    2008-10-15

    Asian megacities have severe pollution problems in both coastal and urban areas. In addition, the groundwater potential has decreased and land subsidence has occurred because of intensive groundwater pumping in urban areas. To prevent the adverse effects of urbanization on groundwater quality, it is necessary to confirm the changes in groundwater flow and contaminant transport caused by urbanization. We examined the effects of urbanization on contaminant transport in groundwater. The research areas were located around Bangkok, Thailand, and akarta, Indonesia, cities with populations of approximately 8 and 12 million, respectively. Each metropolitan city is located on a river delta and is adjacent to a bay. We measured the water level and collected water samples at boreholes at multiple depths (100 to 200 m) in 2004 and 2006 in Bangkok and Jakarta, respectively. The current hydraulic potential is below sea level in both cities because of prior excess abstraction of groundwater. As a result, the direction of groundwater flow is now downward in the coastal area. The Cl{sup -} concentration and {delta}{sup 18}O distributions in groundwater suggest that the decline in hydraulic potential has caused the intrusion of seawater and shallow groundwater into deep groundwater. Concentrations of Mn and NO3{sup -}-N in groundwater suggest the intrusion of these contaminants from shallow to deep aquifers with downward groundwater flow and implies an accumulation of contaminants in deep aquifers. Therefore, it is important to recognize the possibility of future contaminant transport with the discharge of deep groundwater into the sea after the recovery of groundwater potential in the coastal areas.

  4. Effects of intensive urbanization on the intrusion of shallow groundwater into deep groundwater: Examples from Bangkok and Jakarta

    International Nuclear Information System (INIS)

    Onodera, Shin-ichi; Saito, Mitsuyo; Sawano, Misa; Hosono, Takahiro; Taniguchi, Makoto; Shimada, Jun; Umezawa, Yu; Lubis, Rachmat Fajar; Buapeng, Somkid; Delinom, Robert

    2008-01-01

    Asian megacities have severe pollution problems in both coastal and urban areas. In addition, the groundwater potential has decreased and land subsidence has occurred because of intensive groundwater pumping in urban areas. To prevent the adverse effects of urbanization on groundwater quality, it is necessary to confirm the changes in groundwater flow and contaminant transport caused by urbanization. We examined the effects of urbanization on contaminant transport in groundwater. The research areas were located around Bangkok, Thailand, and akarta, Indonesia, cities with populations of approximately 8 and 12 million, respectively. Each metropolitan city is located on a river delta and is adjacent to a bay. We measured the water level and collected water samples at boreholes at multiple depths (100 to 200 m) in 2004 and 2006 in Bangkok and Jakarta, respectively. The current hydraulic potential is below sea level in both cities because of prior excess abstraction of groundwater. As a result, the direction of groundwater flow is now downward in the coastal area. The Cl - concentration and δ 18 O distributions in groundwater suggest that the decline in hydraulic potential has caused the intrusion of seawater and shallow groundwater into deep groundwater. Concentrations of Mn and NO3 - -N in groundwater suggest the intrusion of these contaminants from shallow to deep aquifers with downward groundwater flow and implies an accumulation of contaminants in deep aquifers. Therefore, it is important to recognize the possibility of future contaminant transport with the discharge of deep groundwater into the sea after the recovery of groundwater potential in the coastal areas

  5. Erratum to "Effects of intensive urbanization on the intrusion of shallow groundwater into deep groundwater: examples from Bangkok and Jakarta".

    Science.gov (United States)

    Onodera, Shin-ichi; Saito, Mitsuyo; Sawano, Misa; Hosono, Takahiro; Taniguchi, Makoto; Shimada, Jun; Umezawa, Yu; Lubis, Rachmat Fajar; Buapeng, Somkid; Delinom, Robert

    2009-04-15

    Asian megacities have severe pollution problems in both coastal and urban areas. In addition, the groundwater potential has decreased and land subsidence has occurred because of intensive groundwater pumping in urban areas. To prevent the adverse effects of urbanization on groundwater quality, it is necessary to confirm the changes in groundwater flow and contaminant transport caused by urbanization. We examined the effects of urbanization on contaminant transport in groundwater. The research areas were located around Bangkok, Thailand, and Jakarta, Indonesia, cities with populations of approximately 8 and 12 million, respectively. Each metropolitan city is located on a river delta and is adjacent to a bay. We measured the water level and collected water samples at boreholes at multiple depths (100 to 200 m) in 2004 and 2006 in Bangkok and Jakarta, respectively. The current hydraulic potential is below sea level in both cities because of prior excess abstraction of groundwater. As a result, the direction of groundwater flow is now downward in the coastal area. The Cl- concentration and delta18O distributions in groundwater suggest that the decline in hydraulic potential has caused the intrusion of seawater and shallow groundwater into deep groundwater. Concentrations of Mn and NO3--N in groundwater suggest the intrusion of these contaminants from shallow to deep aquifers with downward groundwater flow and implies an accumulation of contaminants in deep aquifers. Therefore, it is important to recognize the possibility of future contaminant transport with the discharge of deep groundwater into the sea after the recovery of groundwater potential in the coastal areas.

  6. Effects of intensive urbanization on the intrusion of shallow groundwater into deep groundwater: examples from Bangkok and Jakarta.

    Science.gov (United States)

    Onodera, Shin-ichi; Saito, Mitsuyo; Sawano, Misa; Hosono, Takahiro; Taniguchi, Makoto; Shimada, Jun; Umezawa, Yu; Lubis, Rachmat Fajar; Buapeng, Somkid; Delinom, Robert

    2008-10-15

    Asian megacities have severe pollution problems in both coastal and urban areas. In addition, the groundwater potential has decreased and land subsidence has occurred because of intensive groundwater pumping in urban areas. To prevent the adverse effects of urbanization on groundwater quality, it is necessary to confirm the changes in groundwater flow and contaminant transport caused by urbanization. We examined the effects of urbanization on contaminant transport in groundwater. The research areas were located around Bangkok, Thailand, and Jakarta, Indonesia, cities with populations of approximately 8 and 12 million, respectively. Each metropolitan city is located on a river delta and is adjacent to a bay. We measured the water level and collected water samples at boreholes at multiple depths (100 to 200 m) in 2004 and 2006 in Bangkok and Jakarta, respectively. The current hydraulic potential is below sea level in both cities because of prior excess abstraction of groundwater. As a result, the direction of groundwater flow is now downward in the coastal area. The Cl(-) concentration and delta(18)O distributions in groundwater suggest that the decline in hydraulic potential has caused the intrusion of seawater and shallow groundwater into deep groundwater. Concentrations of Mn and NO3(-)-N in groundwater suggest the intrusion of these contaminants from shallow to deep aquifers with downward groundwater flow and implies an accumulation of contaminants in deep aquifers. Therefore, it is important to recognize the possibility of future contaminant transport with the discharge of deep groundwater into the sea after the recovery of groundwater potential in the coastal areas.

  7. Hydrodynamic analysis of the interaction of two operating groundwater sources, case study: Groundwater supply of Bečej

    Directory of Open Access Journals (Sweden)

    Polomčić Dušan M.

    2014-01-01

    Full Text Available The existing groundwater source 'Vodokanal' for the public water supply of Bečej city in Serbia tapping groundwater from three water-bearing horizons over 15 wells with summary capacity of 100 l/s. Near the public water source of Bečej exists groundwater source 'Soja Protein' for industry with current capacity of 12 l/s which tapped same horizons. In the coming period is planned to increase summary capacity of this groundwater source up to 57 l/s. Also, the increase of summary city's source capacity is planned for 50 l/s in the next few years. That is means an increase of groundwater abstraction for an additional 84 % from the same water-bearing horizons. Application of hydrodynamic modeling, based on numerical method of finite difference will show the impact of increasing the total capacity of the source 'Soja Protein' on the groundwater level in groundwater source 'Vodokanal' and effects of additional decrease in groundwater levels, in all three water-bearing horizons, on the wells of the 'Vodokanala' groundwater source due to operation of industrial source. It was done 7 variant solutions of the extensions of groundwater sources and are their effects for a period of 10 years with the aim of the sustainable management of groundwater.

  8. Groundwater Waters

    Directory of Open Access Journals (Sweden)

    Ramón Llamas

    1999-10-01

    Full Text Available The groundwaters released through springs constituted a basic element for the survival and progressive development of human beings. Man came to learn how to take better advantage of these waters by digging wells, irrigation channels, and galleries. Nevertheless, these activities do not require cooperation nor the collective agreement of relatively large groups of people, as in the case of creating the necessary structures to take advantage of the resources of surfacewaters. The construction and operation of these structures was a powerful factor in the birth of an urban or civil society – the designated water civilizations. The difference between people taking advantage of groundwater, quasi-individually, and those of surface water, where people work in a group, has continued to the present day. Whereas earlier, this difference did not bring about any special problems, the technological advances of this century, especially theturbine pump, have led to a spectacular increase in the use of roundwater. This advance has significantly contributed to reducing hunger in the world and has provided potable water in developing countries. However, the almost generalized lack of planning and control in the exploitation of these groundwaters reflects that they are little or badly understood by the managers of water policy in almost every country. As such, problems have occurred which have often become exaggerated, giving rise to water-myths. These problems, though, should be addressed if the aim is the sustainable usage of surface water as well as groundwater. To counter any misconceptions and to seek solutions to the problems, distinct plans of action can be highlighted: educating the public; fomenting a system of participative management and decisive support for the communities of users of subterranean waters; integrating a sufficient number of experts in hydrology in the various water management organizations;and assuring transparency of the data on

  9. Groundwater Waters

    OpenAIRE

    Ramón Llamas; Emilio Custodio

    1999-01-01

    The groundwaters released through springs constituted a basic element for the survival and progressive development of human beings. Man came to learn how to take better advantage of these waters by digging wells, irrigation channels, and galleries. Nevertheless, these activities do not require cooperation nor the collective agreement of relatively large groups of people, as in the case of creating the necessary structures to take advantage of the resources of surfacewaters. The construction a...

  10. Groundwater systems

    OpenAIRE

    MacDonald, A.M.; Foster, S.S.D.

    2016-01-01

    Groundwater is a vulnerable resource. As schemes are developed to pump out huge quantities of water, and with the advent of particularly persistent contaminants, the resource needs to be protected and managed (see Table 2.1). Despite groundwater’s pivotal role in sustaining ecosystems and providing water supply, the resource is still poorly understood, and hence poorly managed, in many parts of the world. When things go wrong, the damage can be lasting or even permanent. For examp...

  11. Implications of groundwater quality to corrosion problem and urban ...

    African Journals Online (AJOL)

    Surface and groundwater chemistry being an important factor in urban planning and infrastructure development, present paper tries to present the problems of corrosiveness due to groundwater chemistry in Mekelle city. Iron corrosion in distribution systems and engineering structures are common problems in many urban ...

  12. Dissolved helium and TDS in groundwater from Bhavnagar in Gujarat

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    2003-01-02

    Jan 2, 2003 ... Dissolved helium and. TDS in groundwater from. Bhavnagar. 53. Figure 2. Map of Bhavnagar city with groundwater helium sampling stations. ... fied inlet port to enable quantitative helium analy- ses (see Gupta et al 2002). ..... Datta P S, Gupta S K, Jayasurya A, Nijampurkar V N,. Sharma P and Plusnin M I ...

  13. Land-use impacts on the quality of groundwater in Bulawayo ...

    African Journals Online (AJOL)

    Land-use impacts on the quality of groundwater in Bulawayo. ... The impacts of land use from commercial, industrial and domestic activities in the second largest city (Bulawayo) in Zimbabwe on groundwater quality are investigated in this paper. ... Key Words: Groundwater, Water quality, Land use, Environmental impact

  14. Groundwater monitoring of an open-pit limestone quarry: groundwater characteristics, evolution and their connections to rock slopes.

    Science.gov (United States)

    Eang, Khy Eam; Igarashi, Toshifumi; Fujinaga, Ryota; Kondo, Megumi; Tabelin, Carlito Baltazar

    2018-03-06

    Groundwater flow and its geochemical evolution in mines are important not only in the study of contaminant migration but also in the effective planning of excavation. The effects of groundwater on the stability of rock slopes and other mine constructions especially in limestone quarries are crucial because calcite, the major mineral component of limestone, is moderately soluble in water. In this study, evolution of groundwater in a limestone quarry located in Chichibu city was monitored to understand the geochemical processes occurring within the rock strata of the quarry and changes in the chemistry of groundwater, which suggests zones of deformations that may affect the stability of rock slopes. There are three distinct geological formations in the quarry: limestone layer, interbedded layer of limestone and slaty greenstone, and slaty greenstone layer as basement rock. Although the hydrochemical facies of all groundwater samples were Ca-HCO 3 type water, changes in the geochemical properties of groundwater from the three geological formations were observed. In particular, significant changes in the chemical properties of several groundwater samples along the interbedded layer were observed, which could be attributed to the mixing of groundwater from the limestone and slaty greenstone layers. On the rainy day, the concentrations of Ca 2+ and HCO 3 - in the groundwater fluctuated notably, and the groundwater flowing along the interbedded layer was dominated by groundwater from the limestone layer. These suggest that groundwater along the interbedded layer may affect the stability of rock slopes.

  15. Assessment of Physicochemical Characteristics of Groundwater ...

    African Journals Online (AJOL)

    The aim of the present study is to assess the qualitative aspect of drinking water supply of Firozabad city (India) through index method and comparing it with existing standards for important parameters. The main components of the study include a field sampling analysis of groundwater collected from three different sites viz.

  16. Ratio of Major Ions in Groundwater to Determine Saltwater Intrusion in Coastal Areas

    Science.gov (United States)

    Sudaryanto; Naily, Wilda

    2018-02-01

    Saltwater or seawater intrusion into groundwater aquifers occurs mostly in big cities and developing coastal cities. Coastal hydrology is associated with complex and highly dynamic environmental characteristics of interactions between groundwater, surface water, and water from the estuary. The rise of sea levels and excessive use of groundwater for clean water source trigger saltwater intrusion. Identification of saltwater intrusion into groundwater can be done by groundwater sampling and major ion analysis. The major ions dissolved in water are Ca, Mg, Na, K, Cl, HCO3, and SO4; the major ion ratios are Cl/Br, Ca/Mg, Ca/ (HCO3 and SO4), and Na/Cl. By knowing whether groundwater quality has been or has not been influenced by saltwater, groundwater zones can be determined in every coastal area. In addition, by analyzing and reviewing some concepts about the intrusion or contamination of saltwater into groundwater, there will be sufficient results for the identification of saltwater intrusion.

  17. Ground-water conditions in the vicinity of Enid, Oklahoma

    Science.gov (United States)

    Schoff, Stuart L.

    1948-01-01

    This memorandum summaries matter discussed at a meeting of the City Commission of Enid, Oklahoma, on Thursday, January 15, 1948, at which the write presented a brief analysis of the ground-water resources available to the City of Enid and answered questions brought up by the commissioners.

  18. Image city

    DEFF Research Database (Denmark)

    2003-01-01

    Image city exhibition explores a condition of mediation, through a focus on image and sound narratives with a point of departure on a number of Asian cities.......Image city exhibition explores a condition of mediation, through a focus on image and sound narratives with a point of departure on a number of Asian cities....

  19. Education Cities

    Science.gov (United States)

    Shaked, Haim

    2014-01-01

    In recent years, several cities in Israel have labeled themselves "Education Cities," concentrating on education as their central theme. Employing qualitative techniques, this article aims to describe, define, and conceptualize this phenomenon as it is being realized in three such cities. Findings show that Education Cities differ from…

  20. Groundwater ecology literature review

    OpenAIRE

    Maurice, L.

    2009-01-01

    Groundwater ecology is the study of ecosystems that occur in the subsurface within groundwater. Groundwater often contains a diverse range of organisms, and those that live in groundwater and generally do not live above the ground surface are called Stygobites. Stygobites species come from several different taxonomic groups of animals. Many animals found in groundwater are Crustaceans (Copepoda, Ostracoda, Amphipoda, Isopoda, Syncarida, Cladocera) but species of Oligocheata and...

  1. Quantitative maps of groundwater resources in Africa

    International Nuclear Information System (INIS)

    MacDonald, A M; Bonsor, H C; Dochartaigh, B É Ó; Taylor, R G

    2012-01-01

    In Africa, groundwater is the major source of drinking water and its use for irrigation is forecast to increase substantially to combat growing food insecurity. Despite this, there is little quantitative information on groundwater resources in Africa, and groundwater storage is consequently omitted from assessments of freshwater availability. Here we present the first quantitative continent-wide maps of aquifer storage and potential borehole yields in Africa based on an extensive review of available maps, publications and data. We estimate total groundwater storage in Africa to be 0.66 million km 3 (0.36–1.75 million km 3 ). Not all of this groundwater storage is available for abstraction, but the estimated volume is more than 100 times estimates of annual renewable freshwater resources on Africa. Groundwater resources are unevenly distributed: the largest groundwater volumes are found in the large sedimentary aquifers in the North African countries Libya, Algeria, Egypt and Sudan. Nevertheless, for many African countries appropriately sited and constructed boreholes can support handpump abstraction (yields of 0.1–0.3 l s −1 ), and contain sufficient storage to sustain abstraction through inter-annual variations in recharge. The maps show further that the potential for higher yielding boreholes ( > 5 l s −1 ) is much more limited. Therefore, strategies for increasing irrigation or supplying water to rapidly urbanizing cities that are predicated on the widespread drilling of high yielding boreholes are likely to be unsuccessful. As groundwater is the largest and most widely distributed store of freshwater in Africa, the quantitative maps are intended to lead to more realistic assessments of water security and water stress, and to promote a more quantitative approach to mapping of groundwater resources at national and regional level. (letter)

  2. Sinking coastal cities

    Science.gov (United States)

    Erkens, Gilles; Bucx, Tom; Dam, Rien; De Lange, Ger; Lambert, John

    2014-05-01

    In many coastal and delta cities land subsidence now exceeds absolute sea level rise up to a factor of ten. Without action, parts of Jakarta, Ho Chi Minh City, Bangkok and numerous other coastal cities will sink below sea level. Land subsidence increases flood vulnerability (frequency, inundation depth and duration of floods), with floods causing major economic damage and loss of lives. In addition, differential land movement causes significant economic losses in the form of structural damage and high maintenance costs. This effects roads and transportation networks, hydraulic infrastructure - such as river embankments, sluice gates, flood barriers and pumping stations -, sewage systems, buildings and foundations. The total damage worldwide is estimated at billions of dollars annually. Excessive groundwater extraction after rapid urbanization and population growth is the main cause of severe land subsidence. In addition, coastal cities are often faced with larger natural subsidence, as they are built on thick sequences of soft soil. Because of ongoing urbanization and population growth in delta areas, in particular in coastal megacities, there is, and will be, more economic development in subsidence-prone areas. The impacts of subsidence are further exacerbated by extreme weather events (short term) and rising sea levels (long term).Consequently, detrimental impacts will increase in the near future, making it necessary to address subsidence related problems now. Subsidence is an issue that involves many policy fields, complex technical aspects and governance embedment. There is a need for an integrated approach in order to manage subsidence and to develop appropriate strategies and measures that are effective and efficient on both the short and long term. Urban (ground)water management, adaptive flood risk management and related spatial planning strategies are just examples of the options available. A major rethink is needed to deal with the 'hidden' but urgent

  3. Groundwater recharge: Accurately representing evapotranspiration

    CSIR Research Space (South Africa)

    Bugan, Richard DH

    2011-09-01

    Full Text Available Groundwater recharge is the basis for accurate estimation of groundwater resources, for determining the modes of water allocation and groundwater resource susceptibility to climate change. Accurate estimations of groundwater recharge with models...

  4. City PLANTastic

    DEFF Research Database (Denmark)

    , any attempt to create a green city is motivated by certain ecological, political and esthetical perspectives. Therefore the role of plants in tomorrows cities is everything but straightforward. Rather, a broad range of possibilities unfolds. City PLANTastic is the title of the 8th World in Denmark...... and urbanism, who reflect upon the multiple roles of plants in the future city through their most recent projects. The theme for the 2012 World in Denmark conference is City PLANTastic, which will also be explored by researchers through their works.......The city is going green. From New York to Copenhagen vegetables are enthusiastically planted on city squares, and buildings are turning green everywhere . The word “plant” is on everyone’s lips, reflecting a growing desire to solve ecological, technical and social challenges in the city. Hovever...

  5. Sin City?

    DEFF Research Database (Denmark)

    Svarer, Michael; Gautier, Pieter A.; Teulings, Coen n.

    , the ones who stay in the city have significant higher divorce rates. Similarly, for the couples who married outside the city, the ones who move to the city are more likely to divorce. This correlation can be explained by both a causal and a sorting effect. We disentangle them by using the timing...

  6. Groundwater Managment Districts

    Data.gov (United States)

    Kansas Data Access and Support Center — This dataset outlines the location of the five Groundwater Management Districts in Kansas. GMDs are locally formed and elected boards for regional groundwater...

  7. Seasonal groundwater turnover

    OpenAIRE

    Nordell, Bo; Engström, Maria

    2006-01-01

      Seasonal air temperature variations and corresponding changes in groundwater temperature cause convective movements in groundwater similar to the seasonal turnover in lakes. Numerical simulations were performed to investigate the natural conditions for thermally driven groundwater convection to take place. Thermally driven convection could be triggered by a horizontal groundwater flow, Convection then starts at a considerably lower Rayleigh number (Ra) than the general critical Rayleigh ...

  8. City PLANTastic

    DEFF Research Database (Denmark)

    The city is going green. From New York to Copenhagen vegetables are enthusiastically planted on city squares, and buildings are turning green everywhere . The word “plant” is on everyone’s lips, reflecting a growing desire to solve ecological, technical and social challenges in the city. Hovever......, any attempt to create a green city is motivated by certain ecological, political and esthetical perspectives. Therefore the role of plants in tomorrows cities is everything but straightforward. Rather, a broad range of possibilities unfolds. City PLANTastic is the title of the 8th World in Denmark...... conference, which invites you to discuss the contemporary tendencies for a greener city. Come and listen to five international key note speakers, whose projects have showed new directions for planting in urban spaces: The conference presents key note speakers from landscape architecture, urban design...

  9. Groundwater-level trends and implications for sustainable water use in the Kabul Basin, Afghanistan

    Science.gov (United States)

    Mack, Thomas J.; Chornack, Michael P.; Taher, Mohammad R.

    2013-01-01

    The Kabul Basin, which includes the city of Kabul, Afghanistan, with a population of approximately 4 million, has several Afghan, United States, and international military installations that depend on groundwater resources for a potable water supply. This study examined groundwater levels in the Kabul Basin from 2004 to 2012. Groundwater levels have increased slightly in rural areas of the Kabul Basin as a result of normal precipitation after the drought of the early 2000s. However, groundwater levels have decreased in the city of Kabul due to increasing water use in an area with limited recharge. The rate of groundwater-level decrease in the city is greater for the 2008–2012 period (1.5 meters per year (m/yr) on average) than for the 2004–2008 period (0–0.7 m/yr on average). The analysis, which is corroborated by groundwater-flow modeling and a non-governmental organization decision-support model, identified groundwater-level decreases and associated implications for groundwater sustainability in the city of Kabul. Military installations in the city of Kabul (the Central Kabul subbasin) are likely to face water management challenges resulting from long-term groundwater sustainability concerns, such as the potential drying of shallow water-supply wells. Installations in the northern part of the Kabul Basin may have fewer issues with long-term water sustainability. Groundwater-level monitoring and groundwater-flow simulation can be valuable tools for assessing groundwater management options to improve the sustainability of water resources in the Kabul Basin.

  10. Building groundwater modeling capacity in Mongolia

    Science.gov (United States)

    Valder, Joshua F.; Carter, Janet M.; Anderson, Mark T.; Davis, Kyle W.; Haynes, Michelle A.; Dorjsuren Dechinlhundev,

    2016-06-16

    Ulaanbaatar, the capital city of Mongolia (fig. 1), is dependent on groundwater for its municipal and industrial water supply. The population of Mongolia is about 3 million people, with about one-half the population residing in or near Ulaanbaatar (World Population Review, 2016). Groundwater is drawn from a network of shallow wells in an alluvial aquifer along the Tuul River. Evidence indicates that current water use may not be sustainable from existing water sources, especially when factoring the projected water demand from a rapidly growing urban population (Ministry of Environment and Green Development, 2013). In response, the Government of Mongolia Ministry of Environment, Green Development, and Tourism (MEGDT) and the Freshwater Institute, Mongolia, requested technical assistance on groundwater modeling through the U.S. Army Corps of Engineers (USACE) to the U.S. Geological Survey (USGS). Scientists from the USGS and USACE provided two workshops in 2015 to Mongolian hydrology experts on basic principles of groundwater modeling using the USGS groundwater modeling program MODFLOW-2005 (Harbaugh, 2005). The purpose of the workshops was to bring together representatives from the Government of Mongolia, local universities, technical experts, and other key stakeholders to build in-country capacity in hydrogeology and groundwater modeling.A preliminary steady-state groundwater-flow model was developed as part of the workshops to demonstrate groundwater modeling techniques to simulate groundwater conditions in alluvial deposits along the Tuul River in the vicinity of Ulaanbaatar. ModelMuse (Winston, 2009) was used as the graphical user interface for MODFLOW for training purposes during the workshops. Basic and advanced groundwater modeling concepts included in the workshops were groundwater principles; estimating hydraulic properties; developing model grids, data sets, and MODFLOW input files; and viewing and evaluating MODFLOW output files. A key to success was

  11. Towards sustainable ground water management in Dar Es Salaam city, Tanzania

    International Nuclear Information System (INIS)

    Mato, R.R.A.M.

    2005-01-01

    Groundwater pollution in urban areas is a worldwide growing environmental problem in this millennium. Many major cities in the world depend on groundwater for water supplies. However, urbanization processes threaten its quality. The problem is more pronounced in urban areas in developing countries like Tanzania, which are characterized with inadequate infrastructure for waste management. In Tanzania, the situation is more threatening in Dar Es Salaam City, which experiences acute deficiency in infrastructure provision: housing, water supply, sanitation, transportation and energy. The existing challenge is to protect groundwater resources amidst rapid growing Dar Es Salaam city, of which failure can lead to escalating costs for provision of drinking water with overall results of decreased public health conditions. A research conducted from 1997 to 2002, revealed that almost 50% of the water supply in Dar Es Salaam city comes from groundwater and that groundwater is being threatened by indiscriminate disposal practices of both domestic and industrial wastes. For example about 88% of the urban population use on-site sanitation systems, which discharge partially treated sewage to the groundwater. About 60 tonnes/day of chemical oxygen demand (COD) are transported to the groundwater through domestic sewage. Analysis of groundwater quality in the city indicated that the unconfined aquifer is starting to degrade. For instance, more than 40% of groundwater samples analysed for nitrate, chloride and faecal coliform bacteria, did not comply with the national standards for drinking water. Recognising the fact that demand for groundwater is on the increase in the city and that the aquifers have shown signs of degradation, a groundwater management plan is required to ensure sustainable utilization of the resource. This paper discusses the groundwater situation in Dar Es Salaam city and finally puts forward measures towards establishment of a management strategy. (author)

  12. Groundwater quality in Coachella Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Coachella Valley is one of the study areas being evaluated. The Coachella study area is approximately 820 square miles (2,124 square kilometers) and includes the Coachella Valley groundwater basin (California Department of Water Resources, 2003). Coachella Valley has an arid climate, with average annual rainfall of about 6 inches (15 centimeters). The runoff from the surrounding mountains drains to rivers that flow east and south out of the study area to the Salton Sea. Land use in the study area is approximately 67 percent (%) natural, 21% agricultural, and 12% urban. The primary natural land cover is shrubland. The largest urban areas are the cities of Indio and Palm Springs (2010 populations of 76,000 and 44,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Coachella Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Coachella Valley are completed to depths between 490 and 900 feet (149 to 274 meters), consist of solid casing from the land surface to a depth of 260 to 510 feet (79 to 155 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to

  13. Spatio-temporal variability of groundwater depth in the eghlid aquifer in southern iran

    OpenAIRE

    Delbari, Masoomeh; Bahraini Motlagh, Masoud; Amiri, Meysam

    2014-01-01

    Groundwater is the main water source for domestic and agricultural use in Eghlid, a city located in Fars province in southern Iran. Here, spatial and temporal changes in groundwater depth were monitored by using geostatistical methods at 41 observation wells in Eghlid during the wet and dry seasons of 1997, 2003 and 2010. Experimental semivariograms were calculated and modeled with the GS+ (Gamma Design Software, Plainwell, Michigan USA),and groundwater depth was inter- polated by using the o...

  14. Eating Cities

    DEFF Research Database (Denmark)

    Mikkelsen, Bent Egberg; Fisker, Anna Marie; Clausen, Katja Seerup

    2016-01-01

    This paper analyzed the development of a city based sustainable food strategy for the city of Aalborg. It’s based on 3 cases of food service: food for the elderly as operated by the Municipality, food the hospital patients as operated by the region and food for defense staff as operated...

  15. Atypical Cities

    Science.gov (United States)

    DiJulio, Betsy

    2011-01-01

    In this creative challenge, Surrealism and one-point perspective combine to produce images that not only go "beyond the real" but also beyond the ubiquitous "imaginary city" assignment often used to teach one-point perspective. Perhaps the difference is that in the "atypical cities challenge," an understanding of one-point perspective is a means…

  16. An assessment of groundwater quality using water quality index in Chennai, Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    I Nanda Balan

    2012-01-01

    Full Text Available Context : Water, the elixir of life, is a prime natural resource. Due to rapid urbanization in India, the availability and quality of groundwater have been affected. According to the Central Groundwater Board, 80% of Chennai′s groundwater has been depleted and any further exploration could lead to salt water ingression. Hence, this study was done to assess the groundwater quality in Chennai city. Aim : To assess the groundwater quality using water quality index in Chennai city. Materials and Methods: Chennai city was divided into three zones based on the legislative constituency and from these three zones three locations were randomly selected and nine groundwater samples were collected and analyzed for physiochemical properties. Results: With the exception of few parameters, most of the water quality assessment parameters showed parameters within the accepted standard values of Bureau of Indian Standards (BIS. Except for pH in a single location of zone 1, none of the parameters exceeded the permissible values for water quality assessment as prescribed by the BIS. Conclusion: This study demonstrated that in general the groundwater quality status of Chennai city ranged from excellent to good and the groundwater is fit for human consumption based on all the nine parameters of water quality index and fluoride content.

  17. Groundwater flow modelling in the upper Anga'a river watershed ...

    African Journals Online (AJOL)

    The Anga'a River watershed is located within the Yaounde IV district, South-east of Yaounde City, Cameroon. The groundwater flow and particle tracking modelling was carried out to determine in detail the groundwater flow and particle migration in the shallow unconfined aquifer of the Upper Anga'a river watershed.

  18. Groundwater sustainability strategies

    Science.gov (United States)

    Gleeson, Tom; VanderSteen, Jonathan; Sophocleous, Marios A.; Taniguchi, Makoto; Alley, William M.; Allen, Diana M.; Zhou, Yangxiao

    2010-01-01

    Groundwater extraction has facilitated significant social development and economic growth, enhanced food security and alleviated drought in many farming regions. But groundwater development has also depressed water tables, degraded ecosystems and led to the deterioration of groundwater quality, as well as to conflict among water users. The effects are not evenly spread. In some areas of India, for example, groundwater depletion has preferentially affected the poor. Importantly, groundwater in some aquifers is renewed slowly, over decades to millennia, and coupled climate–aquifer models predict that the flux and/or timing of recharge to many aquifers will change under future climate scenarios. Here we argue that communities need to set multigenerational goals if groundwater is to be managed sustainably.

  19. Dynamics of Agricultural Groundwater Extraction

    NARCIS (Netherlands)

    Hellegers, P.J.G.J.; Zilberman, D.; Ierland, van E.C.

    2001-01-01

    Agricultural shallow groundwater extraction can result in desiccation of neighbouring nature reserves and degradation of groundwater quality in the Netherlands, whereas both externalities are often not considered when agricultural groundwater extraction patterns are being determined. A model is

  20. Groundwater-flow and land-subsidence model of Antelope Valley, California

    Science.gov (United States)

    Siade, Adam J.; Nishikawa, Tracy; Rewis, Diane L.; Martin, Peter; Phillips, Steven P.

    2014-01-01

    Antelope Valley, California, is a topographically closed basin in the western part of the Mojave Desert, about 50 miles northeast of Los Angeles. The Antelope Valley groundwater basin is about 940 square miles and is separated from the northern part of Antelope Valley by faults and low-lying hills. Prior to 1972, groundwater provided more than 90 percent of the total water supply in the valley; since 1972, it has provided between 50 and 90 percent. Most groundwater pumping in the valley occurs in the Antelope Valley groundwater basin, which includes the rapidly growing cities of Lancaster and Palmdale. Groundwater-level declines of more than 270 feet in some parts of the groundwater basin have resulted in an increase in pumping lifts, reduced well efficiency, and land subsidence of more than 6 feet in some areas. Future urban growth and limits on the supply of imported water may increase reliance on groundwater.

  1. INSTANT CITY

    DEFF Research Database (Denmark)

    Marling, Gitte; Kiib, Hans

    2013-01-01

    This article analyses Roskilde Festival as an Instant City. For more than 40 years, Roskilde Festival has had many thousands participants for a weeklong festival on music, performances and cultural experiences in a layout designed as an urban environment. During the last ten years, in- creasing...... emphasis has been laid on creating a vivid, and engaging social environment in order to create a lab for social, and architectural experi- ments. These goals challenge the city planning as well as the urban sce- nography. The article addresses the research questions: What kind of city life and social...... experiments are taking place in ‘the instant city’, and how can it be characterized? It also emphasizes the relation between city life, urban design, and the aesthetics of architecture and urban spaces. The question here is, in what way architecture and urban scenography are used as tools to support the goal...

  2. Groundwater quality in the Mojave area, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Four groundwater basins along the Mojave River make up one of the study areas being evaluated. The Mojave study area is approximately 1,500 square miles (3,885 square kilometers) and includes four contiguous groundwater basins: Upper, Middle, and Lower Mojave River Groundwater Basins, and the El Mirage Valley (California Department of Water Resources, 2003). The Mojave study area has an arid climate, and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). Land use in the study area is approximately 82 percent (%) natural (mostly shrubland), 4% agricultural, and 14% urban. The primary crops are pasture and hay. The largest urban areas are the cities of Victorville, Hesperia, and Apple Valley (2010 populations of 116,000, 90,000 and 69,000, respectively). Groundwater in these basins is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in the Mojave study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in the Mojave study area are completed to depths between 200 and 600 feet (18 to 61 meters), consist of solid casing from the land surface to a depth of 130 to 420 feet (40 to 128 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the mountains to the south, mostly through the Mojave River channel. The primary sources

  3. Flying Cities

    DEFF Research Database (Denmark)

    Herbelin, Bruno; Lasserre, Sebastien; Ciger, Jan

    2008-01-01

    Flying Cities is an artistic installation which generates imaginary cities from the speech of its visitors. Thanks to an original interactive process analyzing people's vocal input to create 3D graphics, a tangible correspondence between speech and visuals opens new possibilities of interaction. ...... and a potential application. We believe that it could become a new medium for creativity, and a way to visually perceive a vocal performance in the context of the rehabilitation of people with reduced mobility or language impairments....

  4. Groundwater pollution microbiology

    Energy Technology Data Exchange (ETDEWEB)

    Bitton, G.; Gerba, C.P.

    1984-01-01

    This book provides a survey of available information on groundwater pollution microbiology. It is useful as a starting point for students and professionals investigating this topic. Subjects discussed include bacteria and virus movement through soils, carcinogenicity of some organic chemicals detected in groundwater, sampling techniques, and land treatment systems. Include references to the journal literature and a subject index.

  5. Groundwater Assessment Platform

    OpenAIRE

    Podgorski, Joel; Berg, Michael

    2018-01-01

    The Groundwater Assessment Platform is a free, interactive online GIS platform for the mapping, sharing and statistical modeling of groundwater quality data. The modeling allows users to take advantage of publicly available global datasets of various environmental parameters to produce prediction maps of their contaminant of interest.

  6. Human health and groundwater

    Science.gov (United States)

    The high quality of most groundwaters, consequent upon the self-purification capacity of subsurface strata, has long been a key factor in human health and wellbeing. More than 50% of the world’s population now rely on groundwater for their supply of drinking water – and in most circumstances a prope...

  7. Hanford groundwater scenario studies

    International Nuclear Information System (INIS)

    Arnett, R.C.; Gephart, R.E.; Deju, R.A.; Cole, C.R.; Ahlstrom, S.W.

    1977-05-01

    This report documents the results of two Hanford groundwater scenario studies. The first study examines the hydrologic impact of increased groundwater recharge resulting from agricultural development in the Cold Creek Valley located west of the Hanford Reservation. The second study involves recovering liquid radioactive waste which has leaked into the groundwater flow system from a hypothetical buried tank containing high-level radioactive waste. The predictive and control capacity of the onsite Hanford modeling technology is used to evaluate both scenarios. The results of the first study indicate that Cold Creek Valley irrigationis unlikely to cause significant changes in the water table underlying the high-level waste areas or in the movement of radionuclides already in the groundwater. The hypothetical tank leak study showed that an active response (in this case waste recovery) can be modeled and is a possible alternative to passive monitoring of radionuclide movement in the unlikely event that high-level waste is introduced into the groundwater

  8. Implications of groundwater quality to corrosion problem and urban ...

    African Journals Online (AJOL)

    Bheema

    Implications of groundwater quality to corrosion problem and urban planning in. Mekelle area, Northern ... Describing the overall water quality and its impact on water pipes in the Mekelle area is complicated due to the spatial ...... Cities of theFuture:Towards Integrated Sustainable Water and Landscape. Management.

  9. Effect of seasonal drawdown variations on groundwater quality in ...

    African Journals Online (AJOL)

    user

    2013-07-24

    Jul 24, 2013 ... sources peculiar to emerging African cities. Key words: Shallow well, pollution, water level, ... groundwater contamination within the region of interest. MATERIALS AND METHODS. Study area ... were covered with cork to prevent spillage and contamination and were kept in the laboratory at 4°C before the ...

  10. Litho-stratigraphic and hydrogeological evaluation of groundwater ...

    African Journals Online (AJOL)

    This study evaluates the subsurface geology and groundwater flow direction in Okpagha, Iguomo, Ikhueniro and Okhuahe suburbs in Benin City, Nigeria. Six boreholes were drilled by means of manual (rotary) method in different parts of the study area and each borehole was logged in order to understand the lithology, ...

  11. Groundwater quality in the Owens Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Owens Valley is one of the study areas being evaluated. The Owens study area is approximately 1,030 square miles (2,668 square kilometers) and includes the Owens Valley groundwater basin (California Department of Water Resources, 2003). Owens Valley has a semiarid to arid climate, with average annual rainfall of about 6 inches (15 centimeters). The study area has internal drainage, with runoff primarily from the Sierra Nevada draining east to the Owens River, which flows south to Owens Lake dry lakebed at the southern end of the valley. Beginning in the early 1900s, the City of Los Angeles began diverting the flow of the Owens River to the Los Angeles Aqueduct, resulting in the evaporation of Owens Lake and the formation of the current Owens Lake dry lakebed. Land use in the study area is approximately 94 percent (%) natural, 5% agricultural, and 1% urban. The primary natural land cover is shrubland. The largest urban area is the city of Bishop (2010 population of 4,000). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to the Owens Lake dry lakebed. The primary aquifers in Owens Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database

  12. Trends in groundwater quality in relation to groundwater age

    NARCIS (Netherlands)

    Visser, A.|info:eu-repo/dai/nl/318725371

    2009-01-01

    Groundwater is a valuable natural resource and as such should be protected from chemical pollution. Because of the long travel times of pollutants through groundwater bodies, early detection of groundwater quality deterioration is necessary to efficiently protect groundwater bodies. The aim of this

  13. Will Jakarta Be The Next Atlantis? Excessive Groundwater Use Resulting From A Failing Piped Water Network

    Directory of Open Access Journals (Sweden)

    Nicola Colbran

    2009-06-01

    Full Text Available This article examines the connection between a failing piped water network and excessive groundwater use in Jakarta. It discusses the political history of the city's piped water network, which was privatised in 1998, and how privatisation was intended to increase access to clean, safe water for its residents. The article asserts that this has not eventuated, and that tap water remains costly, unreliable and does not provide noticeable benefits when compared with groundwater. The result is that households, industry, businesses, luxury apartment complexes and hotels choose alternative water sources and distribution methods, in particular groundwater. This is having an unsustainable impact on groundwater levels and Jakarta 's natural environment, causing significant land subsidence, pollution and salinisation of aquifers, and increased levels of flooding. The effect is so severe that the World Bank has predicted much of Jakarta will be inundated by seawater in 2025, rendering one third of the city uninhabitable and displacing millions. The article concludes by discussing and assessing the steps the government has taken to address excessive and unlicensed groundwater use. These steps include new regulations on groundwater, a public awareness campaign on the importance of groundwater and a commitment to improve the raw water supplied to the piped water network. However, the article observes that the government is yet to develop long term policies for improvement of the network itself. The question therefore remains, has the government done enough, or will groundwater use continue unabated making Jakarta the next lost city of Atlantis?

  14. Groundwater availability of the Mississippi embayment

    Science.gov (United States)

    Clark, Brian R.; Hart, Rheannon M.; Gurdak, Jason J.

    2011-01-01

    Groundwater is an important resource for agricultural and municipal uses in the Mississippi embayment. Arkansas ranks first in the Nation for rice and third for cotton production, with both crops dependent on groundwater as a major source of irrigation requirements. Multiple municipalities rely on the groundwater resources to provide water for industrial and public use, which includes the city of Memphis, Tennessee. The demand for the groundwater resource has resulted in groundwater availability issues in the Mississippi embayment including: (1) declining groundwater levels of 50 feet or more in the Mississippi River Valley alluvial aquifer in parts of eastern Arkansas from agricultural pumping, (2) declining groundwater levels of over 360 feet over the last 90 years in the confined middle Claiborne aquifer in southern Arkansas and northern Louisiana from municipal pumping, and (3) litigation between the State of Mississippi and a Memphis water utility over water rights in the middle Claiborne aquifer. To provide information to stakeholders addressing the groundwater-availability issues, the U.S. Geological Survey Groundwater Resources Program supported a detailed assessment of groundwater availability through the Mississippi Embayment Regional Aquifer Study (MERAS). This assessment included (1) an evaluation of how these resources have changed over time through the use of groundwater budgets, (2) development of a numerical modeling tool to assess system responses to stresses from future human uses and climate trends, and (3) application of statistical tools to evaluate the importance of individual observations within a groundwater-monitoring network. An estimated 12 million acre-feet per year (11 billion gallons per day) of groundwater was pumped in 2005 from aquifers in the Mississippi embayment. Irrigation constitutes the largest groundwater use, accounting for approximately 10 million acre-feet per year (9 billion gallons per day) in 2000 from the Mississippi

  15. Drone City

    DEFF Research Database (Denmark)

    Jensen, Ole B.

    2016-01-01

    This paper address the phenomenon of drones and their potential relationship with the city from the point of view of the so-called “mobilities turn”. This is done in such a way that turns attention to a recent redevelopment of the “turn” towards design; so the emerging perspective of “mobilities...... design” will be used as a background perspective to reflect upon the future of drones in cities. The other perspective used to frame the phenomenon is the emerging discourse of the “smart city”. A city of proliferating digital information and data communication may be termed a smart city as shorthand...... for a new urban condition where cities are networked and connected (as well as disconnected) from the local block to global digital spheres. In the midst of many of the well-known data-creating devices (e.g. Bluetooth, radio-frequency identification (RFID), GPS, smartphone applications) there is a “new kid...

  16. Vatican City.

    Science.gov (United States)

    1984-11-01

    Vatican City, the administrative and spiritual capital of the Roman catholic Church, has a population of 1000. Citizenship is generally accorded only to those who reside in Vatican City for reasons of office of employment. Supreme legislative, executive, and judicial power is currentily exercised by Pope John Paul II, the 1st non-italian pope in 5 centuries. The State of Vatican City is recognized by many nations as an independent sovereign state under the temporal jurisdiction of the Pope. By 1984, 108 countries had established diplomatic relations with the Holy See, most of which are not Roman Catholic. Third World countries comprise a large proportion of countries that have recently established relations with the Holy See. The US re-established relations with the Vatican in 1984 and there is frequent contact and consultation between the 2 states on key international issues.

  17. Expanding cities

    DEFF Research Database (Denmark)

    Møller-Jensen, Lasse

    A number of cities in Africa experience very rapid spatial growth without the benefit of a systematic process of planning and implementation of planning decisions. This process has challenged the road and transport system, created high levels of congestion, and hampered mobility and accessibility...... to both central and new peripheral areas. This paper reports on studies carried out in Accra and Dar es Salaam to address and link 1) mobility practices of residents, 2) local strategies for ‘post-settlement’ network extension, and 3) the city-wide performance of the transport system. The studies draw...... in advance. However, such solutions are often impeded by costly and cumbersome land-acquisition processes, and because of the reactive and often piecemeal approach to infrastructure extensions, the development will often be more costly. Moreover, the lack of compliance to a city-wide development plan...

  18. Saline groundwater in crystalline bedrock

    International Nuclear Information System (INIS)

    Lampen, P.

    1992-11-01

    The State-of-art report describes research made on deep saline groundwaters and brines found in crystalline bedrock, mainly in site studies for nuclear waste disposal. The occurrence, definitions and classifications of saline groundwaters are reviewed with a special emphasis on the different theories concerning the origins of saline groundwaters. Studies of the saline groundwaters in Finland and Sweden have been reviewed more thoroughly. Also the mixing of different bodies of groundwaters, observations of the contact of saline groundwaters and permafrost, and the geochemical modelling of saline groundwaters as well as the future trends of research have been discussed. (orig.)

  19. Flying Cities

    DEFF Research Database (Denmark)

    Ciger, Jan

    2006-01-01

    of providing a tangible correspondence between the two spaces. This interaction mean has proved to suit the artistic expression well but it also aims at providing anyone with a pleasant and stimulating feedback from speech activity, a new medium for creativity and a way to visually perceive a vocal performance......The Flying Cities artistic installation brings to life imaginary cities made from the speech input of visitors. In this article we describe the original interactive process generating real time 3D graphics from spectators' vocal inputs. This example of cross-modal interaction has the nice property...

  20. Vacant city

    Directory of Open Access Journals (Sweden)

    Nicola Marzot

    2013-06-01

    Full Text Available Abandoned places that the crisis has multiplied, unaware wrecks of a project of civilization that has consumed its thrust and life-giving function, are waiting for new desirable interpretations, they are an expression of a possible city in opposition to the existing, even if  not recognized by any instrument. It is the Vacant city, magmatic, formless, pervasive and widespread, marginal and interstitial. Its spaces express, in their programmatic essence, those conditions of re-colonization of the territory intended to minimum investment  of financial capital and maximum return in terms of social value as a result of a transformation. 

  1. City 2020+

    Science.gov (United States)

    Schneider, C.; Buttstädt, M.; Merbitz, H.; Sachsen, T.; Ketzler, G.; Michael, S.; Klemme, M.; Dott, W.; Selle, K.; Hofmeister, H.

    2010-09-01

    This research initiative CITY 2020+ assesses the risks and opportunities for residents in urban built environments under projected demographic and climate change for the year 2020 and beyond, using the City of Aachen as a case study. CITY 2020+ develops scenarios, options and tools for planning and developing sustainable future city structures. We investigate how urban environment, political structure and residential behavior can best be adapted, with attention to the interactions among structural, political, and sociological configurations and with their consequences on human health. Demographers project that in the EU-25-States by 2050, approximately 30% of the population will be over age 65. Also by 2050, average tem¬peratures are projected to rise by 1 to 2 K. Combined, Europe can expect enhanced thermal stress and higher levels of particulate matter. CITY 2020+ amongst other sub-projects includes research project dealing with (1) a micro-scale assessment of blockages to low-level cold-air drainage flow into the city centre by vegetation and building structures, (2) a detailed analysis of the change of probability density functions related to the occurrence of heat waves during summer and the spatial and temporal structure of the urban heat island (UHI) (3) a meso-scale analysis of particulate matter (PM) concentrations depending on topography, local meteorological conditions and synoptic-scale weather patterns. First results will be presented specifically from sub-projects related to vegetation barriers within cold air drainage, the assessment of the UHI and the temporal and spatial pattern of PM loadings in the city centre. The analysis of the cold air drainage flow is investigated in two consecutive years with a clearing of vegetation stands in the beginning of the second year early in 2010. The spatial pattern of the UHI and its possible enhancement by climate change is addressed employing a unique setup using GPS devices and temperature probes fixed to

  2. Study on protection and reclamation for the groundwater resources in Busan area

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Ig-Hwan; Cho, Byong-Wook; Lee, Byung-Dae [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    This research was carried out to investigate the protection of contaminated groundwater and reclamation in the Pusan area. Groundwater Busan city is highly subjected to groundwater contamination due to its unfavorable geographical features; it is located in the estuaries of the Nakdong river, most of the urban area are composed of highlands, and the large population resides in the downhill. Heavy pumping and deterioration of groundwater are currently found to be significant compared to other major cities, resulting in shortage of water resources and contamination of groundwater. The first step of the research aims at investigating hydrogeological features which includes analysis of climate and hydrologic data, investigation of geology and structural pattern, acquisition of hydrological data, inspection of wells, measurement of groundwater level, analysis of water samples, investigation of groundwater contamination, isotope analysis, and monitoring water level by automated data logger to identify seawater intrusion. The second step is to simulate the two-dimensional flow model after construction of the database. Aside from this, abandoned wells were transformed into observation wells. An effort for remedy of contaminated groundwater was made and the water quality was constantly monitored to improve the deteriorated water to the drinking water. Kriging analysis and geostatistical analysis were carried out in order to verify the effect of seawater intrusion, showing that there is no clear evidence of seawater intrusion. Instead, it is clear that groundwater in the inland district was preferentially contaminated by pollutants originated from human activities. Based on the two-dimensional flow model, only 0.021 m{sup 3} may be allocated to each person a day from public wells for emergency. In order to ensure that protection and remediation of groundwater of the Busan area are able to accomplish, well-controlled management of aquifer systems needs to be maintained and

  3. Groundwater Capture Zones

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Source water protection areas are delineated for each groundwater-based public water supply system using available geologic and hydrogeologic information to...

  4. Groundwater management in France

    Science.gov (United States)

    Margat, Jean

    1987-06-01

    Groundwater, like other extensive natural and renewable resources, easily accessible and, at the same time, vulnerable, has to be managed so as to reconcile the unique resource with its many users, and its long-term preservation with short-term utilization requirements. Under the natural, legal, and economic conditions prevailing in France, where groundwater constitutes a large part of water production and resources, where there are tens of thousands of economic developers and users of a few hundred natural groundwater management units, such management concerns these users as well as the public and collective authorities that control the users' activities for the common present and future good of all. Legislative, financial, and educational means are applied simultaneously to preserve and protect the quality and quantily of the groundwater and at times to encourage its use and stimulate its development.

  5. Wetland Groundwater Processes

    National Research Council Canada - National Science Library

    Williams, Greg

    1993-01-01

    This technical note summarizes hydrologic and hydraulic (H AND H) processes and the related terminology that will likely be encountered during an evaluation of the effect of ground-water processes on wetland function...

  6. Uranium concentrations in groundwater, northeastern Washington

    Science.gov (United States)

    Kahle, Sue C.; Welch, Wendy B.; Tecca, Alison E.; Eliason, Devin M.

    2018-04-18

    A study of uranium in groundwater in northeastern Washington was conducted to make a preliminary assessment of naturally occurring uranium in groundwater relying on existing information and limited reconnaissance sampling. Naturally occurring uranium is associated with granitic and metasedimentary rocks, as well as younger sedimentary deposits, that occur in this region. The occurrence and distribution of uranium in groundwater is poorly understood. U.S. Environmental Protection Agency (EPA) regulates uranium in Group A community water systems at a maximum contaminant level (MCL) of 30 μg/L in order to reduce uranium exposure, protect from toxic kidney effects of uranium, and reduce the risk of cancer. However, most existing private wells in the study area, generally for single family use, have not been sampled for uranium. This document presents available uranium concentration data from throughout a multi-county region, identifies data gaps, and suggests further study aimed at understanding the occurrence of uranium in groundwater.The study encompasses about 13,000 square miles (mi2) in the northeastern part of Washington with a 2010 population of about 563,000. Other than the City of Spokane, most of the study area is rural with small towns interspersed throughout the region. The study area also includes three Indian Reservations with small towns and scattered population. The area has a history of uranium exploration and mining, with two inactive uranium mines on the Spokane Indian Reservation and one smaller inactive mine on the outskirts of Spokane. Historical (1977–2016) uranium in groundwater concentration data were used to describe and illustrate the general occurrence and distribution of uranium in groundwater, as well as to identify data deficiencies. Uranium concentrations were detected at greater than 1 microgram per liter (μg/L) in 60 percent of the 2,382 historical samples (from wells and springs). Uranium concentrations ranged from less than 1 to

  7. FUN CITY

    DEFF Research Database (Denmark)

    down the consquences of these developments, to elocidate the interplay between funscapes and fear culture, and to account for the meaning of new concepts and new phenomena such as "event culture", "urban scenography", "experience economy","city branding" and "cultural planning"....

  8. Fun City

    DEFF Research Database (Denmark)

    down the consquences of these developments, to elocidate the interplay between funscapes and fear culture, and to account for the meaning of new concepts and new phenomena such as "event culture", "urban scenography", "experience economy","city branding" and "cultural planning"....

  9. City Branding

    DEFF Research Database (Denmark)

    Frimann, Søren; Stigel, Jørgen

    2006-01-01

    with their relatively concrete dimensions are absent when the main question is one of values. Furthermore, when  the relatively straightforward identification and power structures of corporations and consumers are replaced by the more diversified structures of city government, their poplulations, and potential visitors...

  10. Excite City

    DEFF Research Database (Denmark)

    Marling, Gitte; Kiib, Hans; Jensen, Ole B.

    This paper takes its point of departure in the pressure of the experience economy on European cities - a pressure which in recent years has found its expression in a number of comprehensive transformations of the physical and architectural environments, and new eventscapes related to fun and cult......This paper takes its point of departure in the pressure of the experience economy on European cities - a pressure which in recent years has found its expression in a number of comprehensive transformations of the physical and architectural environments, and new eventscapes related to fun...... and cultural experience are emerging. The physical, cultural and democratic consequences of this development are discussed in the paper, which concludes with a presentation of a new field of research that highlights the problems and the new opportunities with which "the experience city" is faced. Special...... attention is put on a new research project called "Experience City - hybrid cultural projects and performative urban spaces". The thesis and research themes are presented and related to the general framework of present cultural planning and post industrial urban transformation....

  11. Vacant city

    NARCIS (Netherlands)

    Marzot, N.

    2013-01-01

    Abandoned places that the crisis has multiplied, unaware wrecks of a project of civilization that has consumed its thrust and life-giving function, are waiting for new desirable interpretations, they are an expression of a possible city in opposition to the existing, even if not recognized by any

  12. Gases in groundwater

    International Nuclear Information System (INIS)

    Vogel, J.C.; Heaton, T.H.E.

    1979-01-01

    Contributing to both economic and environmental spheres, radon and helium contained in groundwater are being used to detect uranium mineralisation and in conjunction with other gases, to locate natural gas and oil deposits; they are also helping to unravel the earth's past climatic history. Analysis of the gases dissolved in groundwater is proving useful in widely different fields ranging from uranium exploration, to earthquake prediction and the determination of palaeotemperatures [af

  13. Human health and groundwater

    OpenAIRE

    Candela Lledó, Lucila

    2016-01-01

    Strategic overview series of the International Association of Hydrogeologists-IAH. This Series is designed both to inform professionals in other sectors of key interactions with groundwater resources and hydrogeological science, and to guide IAH members in their outreach to related sectors. The naturally high microbiological and chemical quality of groundwater, captured at springheads and in shallow galleries and dugwells, has been vital for human survival, wellbeing and development from o...

  14. Integrated groundwater data management

    Science.gov (United States)

    Fitch, Peter; Brodaric, Boyan; Stenson, Matt; Booth, Nathaniel; Jakeman, Anthony J.; Barreteau, Olivier; Hunt, Randall J.; Rinaudo, Jean-Daniel; Ross, Andrew

    2016-01-01

    The goal of a data manager is to ensure that data is safely stored, adequately described, discoverable and easily accessible. However, to keep pace with the evolution of groundwater studies in the last decade, the associated data and data management requirements have changed significantly. In particular, there is a growing recognition that management questions cannot be adequately answered by single discipline studies. This has led a push towards the paradigm of integrated modeling, where diverse parts of the hydrological cycle and its human connections are included. This chapter describes groundwater data management practices, and reviews the current state of the art with enterprise groundwater database management systems. It also includes discussion on commonly used data management models, detailing typical data management lifecycles. We discuss the growing use of web services and open standards such as GWML and WaterML2.0 to exchange groundwater information and knowledge, and the need for national data networks. We also discuss cross-jurisdictional interoperability issues, based on our experience sharing groundwater data across the US/Canadian border. Lastly, we present some future trends relating to groundwater data management.

  15. Salinity Pattern in Semarang Coastal City: An Overview

    Directory of Open Access Journals (Sweden)

    Novi Rahmawati

    2014-07-01

    Full Text Available DOI: 10.17014/ijog.v8i2.160Semarang Coastal City is one of cities in Indonesia which has experienced a long-term salt intrusion. Land subsidence and groundwater exploitation were identified as main factors accelerated salt intrusion in this area. Extended salt intrusion into the land from year to year cannot be neglected. Salinity pattern and land use affected by this intrusion must be identified. Salinity pattern could be identified by electrical conductance content. The purposes of this research are: a to define spatial electrical conductance map from 1995 to 2008 and b to identify salinity pattern in each land use. Primary data set of electrical conductance measurement in 2004 and 2008 was performed. Secondary data set of electrical conductance was collected in 1995 and 2000. Electrical conductance mapping was assigned by point interpolation using GIS Environment. Land use classification was interpreted from topographical map and IKONOS using GIS Environment. Field check of land use was also done in the study area. Geologically, the area setting consists of Damar, Kalibiuk, and Breccias Formations, where the Damar Formation is the recharge source for groundwater in Semarang City. Based on the result, it can be concluded that the salinity content in groundwater increased from 1995-2008. In 1995, there was only 2.4% of brackish groundwater in Semarang Coastal City, but in 2008, most of area in that region was classified as saline. Land use conversion into built up area increased from 1998 to 2008. The area intruded by salt water increased within 1995, 2004, and 2008 periods. About 68 % of the area contained brackish water and most of the area were built up area in 1995. In 2004, no fresh groundwater found in Semarang Coastal City and the area of brackish groundwater reached 77% and about 23% was saline groundwater which 82% of the built up area included brackish groundwater. In 2008, approximately 55% of Semarang Coastal City was occupied by

  16. Speciation of selenium in groundwater: Seasonal variations and redox transformations

    International Nuclear Information System (INIS)

    Kumar, A. Ramesh; Riyazuddin, P.

    2011-01-01

    Highlights: → Selenium(VI) was the predominant species of Se present in groundwater. → Groundwater recharge increased Se mobilization. → Dissolved oxygen and redox potential control the mobilization of soil selenium. → Shallow groundwater is susceptible for more selenium enrichment than deeper ones. - Abstract: Speciation of selenium in groundwater is essential from the viewpoint of toxicity to organisms and biogeochemical cycling. Selenium speciation in groundwater is controlled by aquifer redox conditions, microbial transformations, dissolved oxygen (DO) and other redox couples. A suburban area of Chennai city in India, where improper waste disposal measures have been practiced is selected for this study. Se(IV), Se(VI) and other hydrochemical parameters were monitored in shallow ground water during pre- and post-monsoon seasons for a period of three years. The objective of the study was to investigate the effect of groundwater recharge on selenium speciation. The concentration of Se(IV), and Se(VI) ranged between 0.15-0.43 μg L -1 and 0.16-4.73 μg L -1 , respectively. During post-monsoon period the concentration of Se(IV), and Se(VI) ranged between 0.15-1.25 μg L -1 and 0.58-10.37 μg L -1 , respectively. Se(VI) was the dominant species of selenium during the pre- and post-monsoon periods. During the post-monsoon periods, leaching of selenium from soil was more effective due to the increased oxidizing nature of the groundwater as indicated by the DO and redox potential (Eh) measurements. This finding has important implications on the behavior of selenium in groundwater, and also on the health of people consuming groundwater from seleniferous areas.

  17. Data-Driven Techniques for Regional Groundwater Level Forecasts

    Science.gov (United States)

    Chang, F. J.; Chang, L. C.; Tsai, F. H.; Shen, H. Y.

    2015-12-01

    Data-Driven Techniques for Regional Groundwater Level Forecasts Fi-John Changa, Li-Chiu Changb, Fong He Tsaia, Hung-Yu Shenba Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC. b Department of Water Resources and Environmental Engineering, Tamkang University, New Taipei City 25137, Taiwan, ROC..Correspondence to: Fi-John Chang (email: changfj@ntu.edu.tw)The alluvial fan of the Zhuoshui River in Taiwan is a good natural recharge area of groundwater. However, the over extraction of groundwater occurs in the coastland results in serious land subsidence. Groundwater systems are heterogeneous with diverse temporal-spatial patterns, and it is very difficult to quantify their complex processes. Data-driven methods can effectively capture the spatial-temporal characteristics of input-output patterns at different scales for accurately imitating dynamic complex systems with less computational requirements. In this study, we implement various data-driven methods to suitably predict the regional groundwater level variations for making countermeasures in response to the land subsidence issue in the study area. We first establish the relationship between regional rainfall, streamflow as well as groundwater levels and then construct intelligent groundwater level prediction models for the basin based on the long-term (2000-2013) regional monthly data sets collected from the Zhuoshui River basin. We analyze the interaction between hydrological factors and groundwater level variations; apply the self-organizing map (SOM) to obtain the clustering results of the spatial-temporal groundwater level variations; and then apply the recurrent configuration of nonlinear autoregressive with exogenous inputs (R-NARX) to predicting the monthly groundwater levels. As a consequence, a regional intelligent groundwater level prediction model can be constructed based on the adaptive results of the SOM. Results demonstrate that the development

  18. Limits to global groundwater consumption

    Science.gov (United States)

    de Graaf, I.; Van Beek, L. P.; Sutanudjaja, E.; Wada, Y.; Bierkens, M. F.

    2016-12-01

    Groundwater is the largest accessible freshwater resource worldwide and is of critical importance for irrigation, and so for global food security. For many regions of the world where groundwater abstraction exceeds groundwater recharge, persistent groundwater depletion occurs. A direct consequence of depletion is falling groundwater levels, reducing baseflows to rivers, harming ecosystems. Also, pumping costs increase, wells dry up and land subsidence can occur. Water demands are expected to increase further due to growing population, economic development and climate change, posing the urgent question how sustainable current water abstractions are worldwide and where and when these abstractions approach conceivable limits with all the associated problems. Here, we estimated past and future trends (1960-2050) in groundwater levels resulting from changes in abstractions and climate and predicted when limits of groundwater consumption are reached. We explored these limits by predicting where and when groundwater levels drop that low that groundwater becomes unattainable for abstractions and how river flows are affected. Water availabilities, abstractions, and lateral groundwater flows are simulated (5 arcmin. resolution) using a coupled version of the global hydrological model PCR-GLOBWB and a groundwater model based on MODFLOW. The groundwater model includes a parameterization of the worlds confined and unconfined aquifer systems, needed for a realistic simulation of groundwater head dynamics. Results show that, next to the existing regions experiencing groundwater depletion (like India, Pakistan, Central Valley) new regions will develop, e.g. Southern Europe, the Middle East, and Africa. Using a limit that reflects present-day feasibility of groundwater abstraction, we estimate that in 2050 groundwater becomes unattainable for 20% of the global population, mainly in the developing countries and pumping cost will increase significantly. Largest impacts are found

  19. Sustainable Cities

    DEFF Research Database (Denmark)

    Georg, Susse; Garza de Linde, Gabriela Lucía

    Judging from the number of communities and cities striving or claiming to be sustainable and how often eco-development is invoked as the means for urban regeneration, it appears that sustainable and eco-development have become “the leading paradigm within urban development” (Whitehead 2003......), urban design competitions are understudied mechanisms for bringing about field level changes. Drawing on actor network theory, this paper examines how urban design competitions may bring about changes within the professional field through the use of intermediaries such as a sustainable planning....../assessment tool. The context for our study is urban regeneration in one Danish city, which had been suffering from industrial decline and which is currently investing in establishing a “sustainable city”. Based on this case study we explore how the insights and inspiration evoked in working with the tool...

  20. Sharing City

    DEFF Research Database (Denmark)

    This magazine offers an insight into the growing commercial innovation, civic movements, and political narratives surrounding sharing economy services, solutions and organisational types. It presents a cross-section of the manifold sharing economy services and solutions that can be found in Denmark....... Solutions of sharing that seeks to improve our cities and local communities in both urban and rural environments. 24 sharing economy organisations and businesses addressing urban and rural issues are being portrayed and seven Danish municipalities that have explored the potentials of sharing economy....... Moreover, 15 thought leading experts - professionals and academic - have been invited to give their perspective on sharing economy for cities. This magazine touches upon aspects of the sharing economy as mobility, communities, sustainability, business development, mobility, and urban-rural relation....

  1. Groundwater quality in the Antelope Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Antelope Valley is one of the study areas being evaluated. The Antelope study area is approximately 1,600 square miles (4,144 square kilometers) and includes the Antelope Valley groundwater basin (California Department of Water Resources, 2003). Antelope Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lakebeds in the lower parts of the valley. Land use in the study area is approximately 68 percent (%) natural (mostly shrubland and grassland), 24% agricultural, and 8% urban. The primary crops are pasture and hay. The largest urban areas are the cities of Palmdale and Lancaster (2010 populations of 152,000 and 156,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Antelope Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Antelope Valley are completed to depths between 360 and 700 feet (110 to 213 meters), consist of solid casing from the land surface to a depth of 180 to 350 feet (55 to 107 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation and sewer and septic

  2. Shallow ground-water conditions, Tom Green County, Texas

    Science.gov (United States)

    Lee, J.N.

    1986-01-01

    Most of the water needs of Tom Green County, Texas, are supplied by ground water; however, the city of San Angelo is supplied by surface water. Groundwater withdrawals during 1980 (latest year for which data are available) in Tom Green County totaled about 15,300 acre-feet, all derived from shallow aquifers. Shallow aquifers in this report refer to the ground-water system generally less than 400 feet deep that contains water with less than a 10,000 milligrams per liter concentration of dissolved solids; aquifers comprising this system include: The Leona, Comanche Peak, Trinity, Blaine, San Angelo, Choza, Bullwagon, Vale, Standpipe, and Arroyo aquifers.

  3. Solar cities

    International Nuclear Information System (INIS)

    Roaf, S.; Fuentes, M.; Gupta, R.

    2005-01-01

    Over the last decade, climate change has moved from being the concern of few to a widely recognized threat to humanity itself and the natural environment. The 1990s were the warmest decade on record, and ever-increasing atmospheric levels of greenhouse gases such as carbon dioxide (CO/sub 2/), could, if left unchecked lead to serious consequences globally, including increased risks of droughts, floods and storms, disruption to agriculture, rising sea levels and the spread of disease. The contribution of anthropogenic emissions of carbon dioxide has been recognized as the principal cause of the atmospheric changes that drive these climate trends. Globally, buildings are the largest source of indirect carbon emissions. In 2000, the UK Royal Commission on Environmental Pollution estimated that in order to stabilise carbon emissions at levels, which avoid catastrophic alterations in the climate, we would have to reduce emissions from the built environment by at least 60% by 2050 and 80% by 2100 relative to 1997 levels. Studies of the Oxford Ecohouse have demonstrated that it is not difficult to reduce carbon emissions from houses by 60% or more through energy efficiency measures, but it is only possible to reach the 90% level of reductions required by using renewable energy technologies. Solar energy technologies have been the most successfully applied of all renewable to date largely because they are the only systems that can be incorporated easily into the urban fabric. In addition, the short fossil fuel horizons that are predicted (c. 40 years left for oil and 65 years for gas) will drive the markets for solar technologies. For these reasons, the cities of the future will be powered by solar energy, to a greater or lesser extent, depending on the city form and location. In recognition of the need to move rapidly towards a renewable energy future, a group of international cities, including Oxford, have started the Solar City Network. In this paper we outline the

  4. Controlling groundwater pumping online.

    Science.gov (United States)

    Zekri, Slim

    2009-08-01

    Groundwater over-pumping is a major problem in several countries around the globe. Since controlling groundwater pumping through water flow meters is hardly feasible, the surrogate is to control electricity usage. This paper presents a framework to restrict groundwater pumping by implementing an annual individual electricity quota without interfering with the electricity pricing policy. The system could be monitored online through prepaid electricity meters. This provides low transaction costs of individual monitoring of users compared to the prohibitive costs of water flow metering and monitoring. The public groundwater managers' intervention is thus required to determine the water and electricity quota and watch the electricity use online. The proposed framework opens the door to the establishment of formal groundwater markets among users at very low transaction costs. A cost-benefit analysis over a 25-year period is used to evaluate the cost of non-action and compare it to the prepaid electricity quota framework in the Batinah coastal area of Oman. Results show that the damage cost to the community, if no active policy is implemented, amounts to (-$288) million. On the other hand, the implementation of a prepaid electricity quota with an online management system would result in a net present benefit of $199 million.

  5. Belgrade waterworks groundwater source

    International Nuclear Information System (INIS)

    Sotic, A.; Dasic, M.; Vukcevic, G.; Vasiljevic, Lj.; Nikolic, S.

    2002-01-01

    Paper deals with Belgrade Waterworks groundwater source, its characteristics, conception of protection programme, contaminations on source and with parameters of groundwater quality degradation. Groundwaters present natural heritage with their strategic and slow renewable natural resources attributes, and as such they require priority in protection. It is of greatest need that existing source is to be protected and used optimally for producing quality drinkable water. The concept of source protection programme should be based on regular water quality monitoring, identification of contaminators, defining areas of their influences on the source and their permanent control. However, in the last 10 years, but drastically in the last 3, because of the overall situation in the country, it is very characteristic downfall in volume of business, organisation and the level of supply of the technical equipment

  6. Basin F Subregional Groundwater Model

    National Research Council Canada - National Science Library

    Mazion, Edward

    2001-01-01

    The groundwater flow system at Rocky Mountain Arsenal (RMA) is complex. To evaluate proposed remedial alternatives, interaction of the local groundwater flow system with the present contamination control systems must be understood...

  7. Tehran Groundwater Chemical Pollution

    Directory of Open Access Journals (Sweden)

    M- Shariatpanahi

    1990-06-01

    Full Text Available Seventy eight wells water sample of Tehran plain were examined to determine r its groundwaters chemical pollution. Tehran s groundwaters are slightly acidic and their total dissolved solids are high and are in the hard water category."nThe nitrate concentration of wells water of west region is less than per¬missible level of W.H.O. standard, whereas, the nitrate concentration of some of the other regions wells exceed W.H.O. standard which is indication of pollution"nwith municipal wastewaters. The concentration of toxic elements Cr, Cd, As, Hg and"ni Pb of some of the west, east and south regions wells of Tehran is more than per¬missible level of W.H.O. standard, whereas, the concentration of Cu, Zn,Mn and detergents is below W.H.O. standard."n1"nIn general, the amount of dissolved materials of Tehran s groundwaters and also"ni the potential of their contamination with nitrate is increased as Tehran s ground-"nwaters move further to the south, and even though, Tehran s groundwaters contamination with toxic elements is limited to the industrial west district, industrial-residential east and south districts, but»with regard to the disposal methods of"nt municipal and industrial wastewaters, if Tehran s groundwaters pollution continues,"nlocal contamination of groundwaters is likely to spread. So that finally their quality changes in such a way that this water source may become unfit for most domestic, industrial and agricultural uses. This survey shows the necessity of collection and treatment of Tehran s wastewaters and Prevention of the disposal of untreated wastewaters into the environment.

  8. Technical framework for groundwater restoration

    International Nuclear Information System (INIS)

    1991-04-01

    This document provides the technical framework for groundwater restoration under Phase II of the Uranium Mill Tailings Remedial Action (UMTRA) Project. A preliminary management plan for Phase II has been set forth in a companion document titled ''Preplanning Guidance Document for Groundwater Restoration''. General principles of site characterization for groundwater restoration, restoration methods, and treatment are discussed in this document to provide an overview of standard technical approaches to groundwater restoration

  9. Whose city?

    DEFF Research Database (Denmark)

    Die Stadt als Beute. But where most of these films follow the money and dissect the power relations in today’s urban planning, Whose city? instead moves back in time to the almost forgotten, but defining architectural disputes of the 1990s. With the fall of the Berlin Wall and the rest of the Iron...... the fundamental question was no longer asked: Who are we building for? The film represents a meditative journey through Berlin, from Potsdamer Platz in the West to Alexanderplatz in the East, and from the male-dominated conservative urban planning of the early 1990s to the more open-minded, women-led urban...

  10. Visualization of groundwater withdrawals

    Science.gov (United States)

    Winston, Richard B.; Goode, Daniel J.

    2017-12-21

    Generating an informative display of groundwater withdrawals can sometimes be difficult because the symbols for closely spaced wells can overlap. An alternative method for displaying groundwater withdrawals is to generate a “footprint” of the withdrawals. WellFootprint version 1.0 implements the Footprint algorithm with two optional variations that can speed up the footprint calculation. ModelMuse has been modified in order to generate the input for WellFootprint and to read and graphically display the output from WellFootprint.

  11. Subpermafrost groundwater systems

    Science.gov (United States)

    van der Ploeg, Martine; Bense, Victor; Haldorsen, Sylvi

    2017-04-01

    Groundwater basins in polar areas are probably among the least studied systems in the World. Foremost, this is because such systems are mainly situated in sparsely populated areas. Also, where the permafrost is thick and continuous over large areas, the recharge is very limited and terrestrial discharge takes place only in some few springs. A now completed study of polar groundwater was carried out in Svalbard, the arctic archipelago north of Norway. Based on field observations and simulation models it was concluded that major discharge conduits only formed during extensive global glacial phases, beneath the parts of the glaciers were the ice was temperate. During most of the interglacial periods, when the glaciers retreat, the number of discharge springs will decrease gradually as long as continuous permafrost covers the area. However, the amount of recharge and thereby discharge in each individual groundwater spring is today highly dependent on short-time fluctuations in precipitation and air temperature. This situation may also be applicable in other polar areas where glaciers are abundant and parts of them are temperate. Such conditions occur in e.g. Greenland and on islands north of the North American mainland, as well as in parts of Antarctica. However, we cannot use the glacial-interglacial boundary conditions in all polar regions. Subpermafrost groundwater systems also exist in permafrost areas where few or no glaciers occur today and where the recharge has taken and takes place under e.g. larger lakes or snowfields. In many areas the groundwater systems may be much older than assumed in Svalbard. Their cycles may relate to several glaciations or to true non-glacial periods in the past. The development and melting of thick continuous permafrost are slow processes and the dynamic of the related groundwater systems will be dependent on cold/mild climate episodes lasting for many thousand years. The polar systems thereby have many of the same characteristics

  12. In situ groundwater bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2009-02-01

    In situ groundwater bioremediation of hydrocarbons has been used for more than 40 years. Most strategies involve biostimulation; however, recently bioaugmentation have been used for dehalorespiration. Aquifer and contaminant profiles are critical to determining the feasibility and strategy for in situ groundwater bioremediation. Hydraulic conductivity and redox conditions, including concentrations of terminal electron acceptors are critical to determine the feasibility and strategy for potential bioremediation applications. Conceptual models followed by characterization and subsequent numerical models are critical for efficient and cost effective bioremediation. Critical research needs in this area include better modeling and integration of remediation strategies with natural attenuation.

  13. Water for cities

    International Nuclear Information System (INIS)

    Kajumulo Tibaijuka, A.

    2003-01-01

    Africa has entered the new Millennium with a sense of hope and renewed confidence. With widening and deepening of political reforms, economic liberalization and a strengthened civil society, an increasing number of African countries are striving towards economic recovery and sustainable development. But also Africa is a continent of paradox. Home to the world's longest river, the Nile, and the second largest freshwater lake, Lake Victoria. Africa has abundant water resources contributed by large rivers, vast stretches of wetlands and limited, but widely spread, groundwater. Yet only a limited number of countries are beneficiaries of this abundance. Fourteen African countries account for 80% of the total water available on the continent, while 12 of the countries together account for only 1% of water availability. Some 400 million people are estimated to be living in water-scarce condition today. Indeed my home country, Tanzania, claims over 40% of Africa's water resources from Lake Victoria, Lake Tanganaika and other major water bodies. Water in Africa is not only unfairly distributed by nature but, due to backward technology and underdevelopment, it remains also inadequately allocated by man. At the turn of the new Millennium, over 300 million people in Africa still do not have access to safe water. But perhaps nowhere is the challenge more complex and demanding than in the rapidly growing African cities. With an average growth rate of 5% per annum, Africa is the fastest urbanizing region in the world today. Between 1990 and 2020, in many of our life times, urban populations in Africa will rise fourfold from 138 to 500 million. The 'Water for African Cities Programme' is demonstrating, in seven African countries (Cote d'Ivoire, Ethiopia, Ghana, Kenya, Senegal, South Africa and Zambia), how to put in place an integrated urban water resource management strategy that could bring three key sectors -- urban, environment and water -- to work together. Tanzania is the

  14. Groundwater: A Community Action Guide.

    Science.gov (United States)

    Boyd, Susan, Ed.; And Others

    Designed to be a guide for community action, this booklet examines issues and trends related to groundwater contamination. Basic concepts about groundwater and information about problems affecting it are covered under the categories of (1) what is groundwater? (2) availability and depletion; (3) quality and contamination; (4) public health…

  15. Stable isotope and groundwater flow dynamics of agricultural irrigation recharge into groundwater resources of the Central Valley, California

    International Nuclear Information System (INIS)

    Davisson, M.L.; Criss, R.E.

    1995-01-01

    Intensive agricultural irrigation and overdraft of groundwater in the Central Valley of California profoundly affect the regional quality and availability of shallow groundwater resources. In the natural state, the δ 18 O values of groundwater were relatively homogeneous (mostly -7.0 ± 0.5 per-thousand), reflecting local meteoric recharge that slowly (1-3m/yr) flowed toward the valley axis. Today, on the west side of the valley, the isotope distribution is dominated by high 18 O enclosures formed by recharge of evaporated irrigation waters, while the east side has bands of low 18 O groundwater indicating induced recharge from rivers draining the Sierra Nevada mountains. Changes in δ 18 O values caused by the agricultural recharge strongly correlate with elevated nitrate concentrations (5 to >100 mg/L) that form pervasive, non-point source pollutants. Small, west-side cities dependent solely on groundwater resources have experienced increases of >1.0 mg/L per year of nitrate for 10-30 years. The resultant high nitrates threaten the economical use of the groundwater for domestic purposes, and have forced some well shut-downs. Furthermore, since >80% of modern recharge is now derived from agricultural irrigation, and because modern recharge rates are ∼10 times those of the natural state, agricultural land retirement by urbanization will severely curtail the current safe-yields and promote overdraft pumping. Such overdrafting has occurred in the Sacramento metropolitan area for ∼40 years, creating cones of depression ∼25m deep. Today, groundwater withdrawal in Sacramento is approximately matched by infiltration of low 18 O water (-11.0 per-thousand) away from the Sacramento and American Rivers, which is estimated to occur at 100-300m/year from the sharp 18 O gradients in our groundwater isotope map

  16. The variation of calcium, magnesium, sodium, potassium and bicarbonate concentration, pH and conductivity in groundwater of Karachi region

    International Nuclear Information System (INIS)

    Zubair, A.; Ali, S.I.

    2002-01-01

    Groundwater in Karachi is influenced mainly by the evaporation / crystallization process as expressed by the Na/(Na+Ca) weight concentration ratio. The high coefficient of determined between conductivity and total dissolved ions concentration in meq/sup -1/ revealed that major ions affect the conductivity of groundwater. It was also found that groundwater quality with respect to cations is not significantly influenced by geology, particularly in the Urban are of the city, where the 90% of the population resides. The relationship between conductivity and bicarbonate concentration shows that supersaturation of groundwater with carbon dioxide is responsible for general depression of pH. (author)

  17. CHARACTERIZATION OF GROUNDWATER HYDROCHEMISTRY ...

    African Journals Online (AJOL)

    Osondu

    2013-03-01

    Mar 1, 2013 ... The residual sodium carbonate shows that 18.2%, 13.6% and 15.9% of the samples are suitable, marginal and unsuitable water respectively ... groundwater in the host rock, the ambient temperature and pH, chemical ..... lagoon and the transitional effects on the lacustrine ichthyofaunal diversity. African J. of ...

  18. Groundwater quota versus tiered groundwater pricing : two cases of groundwater management in north-west China

    NARCIS (Netherlands)

    Aarnoudse, Eefje; Qu, Wei; Bluemling, B.; Herzfeld, Thomas

    2017-01-01

    Difficulties in monitoring groundwater extraction cause groundwater regulations to fail worldwide. In two counties in north-west China local water authorities have installed smart card machines to monitor and regulate farmers’ groundwater use. Data from a household survey and in-depth interviews are

  19. HANFORD GROUNDWATER REMEDIATION

    Energy Technology Data Exchange (ETDEWEB)

    CHARBONEAU, B; THOMPSON, M; WILDE, R.; FORD, B.; GERBER, M.S.

    2006-02-01

    By 1990 nearly 50 years of producing plutonium put approximately 1.70E + 12 liters (450 billion gallons) of liquid wastes into the soil of the 1,518-square kilometer (586-square mile) Hanford Site in southeast Washington State. The liquid releases consisted of chemicals used in laboratory experiments, manufacturing and rinsing uranium fuel, dissolving that fuel after irradiation in Hanford's nuclear reactors, and in liquefying plutonium scraps needed to feed other plutonium-processing operations. Chemicals were also added to the water used to cool Hanford's reactors to prevent corrosion in the reactor tubes. In addition, water and acid rinses were used to clean plutonium deposits from piping in Hanford's large radiochemical facilities. All of these chemicals became contaminated with radionuclides. As Hanford raced to help win World War II, and then raced to produce materials for the Cold War, these radioactive liquid wastes were released to the Site's sandy soils. Early scientific experiments seemed to show that the most highly radioactive components of these liquids would bind to the soil just below the surface of the land, thus posing no threat to groundwater. Other experiments predicted that the water containing most radionuclides would take hundreds of years to seep into groundwater, decaying (or losing) most of its radioactivity before reaching the groundwater or subsequently flowing into the Columbia River, although it was known that some contaminants like tritium would move quickly. Evidence today, however, shows that many contaminants have reached the Site's groundwater and the Columbia River, with more on its way. Over 259 square kilometers (100 square miles) of groundwater at Hanford have contaminant levels above drinking-water standards. Also key to successfully cleaning up the Site is providing information resources and public-involvement opportunities to Hanford's stakeholders. This large, passionate, diverse, and

  20. Learning Cities as Healthy Green Cities: Building Sustainable Opportunity Cities

    Science.gov (United States)

    Kearns, Peter

    2012-01-01

    This paper discusses a new generation of learning cities we have called EcCoWell cities (Economy, Community, Well-being). The paper was prepared for the PASCAL International Exchanges (PIE) and is based on international experiences with PIE and developments in some cities. The paper argues for more holistic and integrated development so that…

  1. Drinking water quality in Rohri City, Sindh, Pakistan | Shar | African ...

    African Journals Online (AJOL)

    Groundwater and surface water samples from Rohri city were analyzed for the presence of total coliform (TC), E. coli (Ec) and heterotrophic plate count (HPC). The samples were collected before and after storage. The bacteriological analysis was carried out by membrane filtration and spread plate count (SPC) technique.

  2. Heavy Metals Concentrations in Groundwater Used for Irrigation

    OpenAIRE

    Taghipour, Hassan; Mosaferi, Mohammad; Pourakbar, Mojtaba; Armanfar, Feridoun

    2012-01-01

    Background: The main objective of this study was characterization of selected heavy metals concentrations (Lead, cadmium, copper, zinc, nickel and chromium) in groundwater used for ir-rigation in Tabriz City's countryside.Methods: After consulting with the experts of agriculture department and site survey, 38 irriga-tion water samples were taken from different farms (34 wells) without primary coordination with farm owners. All of samples were acidified to achieve pH≈2 and then were concentrat...

  3. Groundwater-level data from an earthen dam site in southern Westchester County, New York

    Science.gov (United States)

    Noll, Michael L.; Chu, Anthony

    2018-03-23

    In 2005, the U.S. Geological Survey began a cooperative study with New York City Department of Environmental Protection to characterize the local groundwater-flow system and identify potential sources of seeps on the southern embankment of the Hillview Reservoir in Westchester County, New York. Groundwater levels were collected at 49 wells at Hillview Reservoir, and 1 well in northern Bronx County, from April 2005 through November 2016. Groundwater levels were measured discretely with a chalked steel or electric tape, or continuously with a digital pressure transducer, or both, in accordance with U.S. Geological Survey groundwatermeasurement standards. These groundwater-level data were plotted as time series and are presented in this report as hydrographs. Twenty-eight of the 50 hydrographs have continuous record and discrete field groundwater-level measurements, 22 of the hydrographs contain only discrete measurements.

  4. Evaluation of Groundwater Vulnerability to Contamination Based on DRASTIC Model and GIS in Tianjin Plain Area

    Science.gov (United States)

    Li, Shaofei; Ma, Shuai; Yu, Ping; Li, Yan

    2018-01-01

    Assessment of groundwater vulnerability to contamination is the basement approaches for preserving the quality of groundwater. Based on DRASTIC model containing seven hydrogeological parameters and GIS techniques, groundwater vulnerability assessment was carried out in the plain area of Tianjin City, China. The results indicate that the studied area can be divided into five zones: low, slightly lower, middle, slightly higher, and high groundwater vulnerability zones, with coverage area of 1.8%, 24.8%, 53%, 19.6% and 0.8%, respectively. Low vulnerability zone locates in downtown, where the ground is covered by impervious surface. High and slightly higher vulnerability zones mainly locate in the groundwater recharge areas and the suburban areas surrounding downtown. Medium vulnerability zone covers most parts of the plain areas in the south of Baodi fraction. The result is consistent with the actual situation.

  5. Branding Cities, Changing Societies

    DEFF Research Database (Denmark)

    Ooi, Can-Seng

    Societal changes are seldom discussed in the literature on city branding. The time element is important because it highlights the fluctuating reality of society. The city brand message freezes the place but in fact, the city branding exercise is a continuous process. Society emerges too. City...... brands are supposed to accentuate the uniqueness of the city, be built from the bottom-up and reflect the city's identity. This paper highlights three paradoxes, pointing out that city branding processes can also make cities more alike, bring about societal changes and forge new city identities. A city...... branding campaign does not just present the city, it may change the city. The relationships between the branding exercise and the city are intertwined in the evolution of the place....

  6. Branding Cities, Changing Societies

    DEFF Research Database (Denmark)

    Ooi, Can-Seng

    brands are supposed to accentuate the uniqueness of the city, be built from the bottom-up and reflect the city's identity. This paper highlights three paradoxes, pointing out that city branding processes can also make cities more alike, bring about societal changes and forge new city identities. A city......Societal changes are seldom discussed in the literature on city branding. The time element is important because it highlights the fluctuating reality of society. The city brand message freezes the place but in fact, the city branding exercise is a continuous process. Society emerges too. City...... branding campaign does not just present the city, it may change the city. The relationships between the branding exercise and the city are intertwined in the evolution of the place....

  7. Assessment of aquifer system in the city of Lahore, Pakistan using isotopic techniques

    International Nuclear Information System (INIS)

    Ahmad, M.; Rafiq, M.; Akram, W.; Tasneem, M.A.; Ahmad, N.; Iqbal, N.; Sajjad, M.I.

    2002-01-01

    Isotopic and geochemical techniques were applied to assess the groundwater replenishment mechanism, pollution levels and pollution sources in the city of Lahore, the second largest city of Pakistan where water supply has been based on the abstraction of groundwater. Isotopic and chemical data indicates that groundwater has major contribution from the river water up to the center of the city while at remaining locations it seems base-flow recharged by rains of distant area or mixed recharge from river and rains. In case of shallow groundwater, different local sources like irrigation canals, sewerage drains, local rain and maybe the leaking main supply lines also contribute. High tritium values of deep groundwater fed by river show its quick movement up to 8-10 Km. Deep groundwater in the adjacent area towards the center of the city, although fed by the river shows residence time of about 45 years. Recharge to shallow aquifer is generally quick as most of the sampling locations have high tritium values. Chemical data shows that groundwater is mainly of sodium bicarbonate and calcium bicarbonate type. The infiltrating river water is of calcium bicarbonate type which changes to sodium bicarbonate type at few kilometers away from the river due to cation exchange and calcite precipitation processes. Water quality was assessed for drinking purpose and it was noted that concentrations of several parameters exceed the norms of good quality drinking water in case of shallow groundwater. This study clearly indicated an increasing trend of groundwater nitrate concentrations. δ 15 N values of high nitrate waters reveal the localized pollution from sewerage drains. Bacterial contamination of groundwater especially at locations near the drains also proves the penetration of urban recharge from sewerage drains. (author)

  8. Groundwater flow system in the valley of Toluca, Mexico: an assay of natural radionuclide specific activities

    Energy Technology Data Exchange (ETDEWEB)

    Segovia, N.; Tamez, E.; Pena, P.; Acosta, E.; Iturbe, J.L. [ININ, Mexico D.F. (Mexico); Carrillo, J. [UACPyP-CCH, UNAM, Mexico D.F. (Mexico); Armienta, M.A. [IGFUNAM, C. Universitaria, Mexico D.F. (Mexico)

    1999-03-01

    Natural radionuclides and physicochemical parameters have been evaluated in groundwater samples from boreholes belonging to the drinking water supply system of the Toluca City, Mexico. The results obtained for radon and radium, together with the physicochemical parameters of the studied samples, indicate a fast and efficient recharge pattern. The presence of a local and a regional groundwater flows was also observed. The local flow belongs to shallower water, recognized by its low radon content and dissolved ions, as compared with the regional, deeper groundwater flow with a longer residence time.

  9. Smart City project

    KAUST Repository

    Al Harbi, Ayman

    2018-01-24

    A \\'smart city\\' is an urban region that is highly advanced in terms of overall infrastructure, sustainable real estate, communications and market viability. It is a city where information technology is the principal infrastructure and the basis for providing essential services to residents. Yanbu Industrial City- Smart City Project - First large scale smart city in The kingdom.

  10. Multiple Imputation of Groundwater Data to Evaluate Spatial and Temporal Anthropogenic Influences on Subsurface Water Fluxes in Los Angeles, CA

    Science.gov (United States)

    Manago, K. F.; Hogue, T. S.; Hering, A. S.

    2014-12-01

    In the City of Los Angeles, groundwater accounts for 11% of the total water supply on average, and 30% during drought years. Due to ongoing drought in California, increased reliance on local water supply highlights the need for better understanding of regional groundwater dynamics and estimating sustainable groundwater supply. However, in an urban setting, such as Los Angeles, understanding or modeling groundwater levels is extremely complicated due to various anthropogenic influences such as groundwater pumping, artificial recharge, landscape irrigation, leaking infrastructure, seawater intrusion, and extensive impervious surfaces. This study analyzes anthropogenic effects on groundwater levels using groundwater monitoring well data from the County of Los Angeles Department of Public Works. The groundwater data is irregularly sampled with large gaps between samples, resulting in a sparsely populated dataset. A multiple imputation method is used to fill the missing data, allowing for multiple ensembles and improved error estimates. The filled data is interpolated to create spatial groundwater maps utilizing information from all wells. The groundwater data is evaluated at a monthly time step over the last several decades to analyze the effect of land cover and identify other influencing factors on groundwater levels spatially and temporally. Preliminary results show irrigated parks have the largest influence on groundwater fluctuations, resulting in large seasonal changes, exceeding changes in spreading grounds. It is assumed that these fluctuations are caused by watering practices required to sustain non-native vegetation. Conversely, high intensity urbanized areas resulted in muted groundwater fluctuations and behavior decoupling from climate patterns. Results provides improved understanding of anthropogenic effects on groundwater levels in addition to providing high quality datasets for validation of regional groundwater models.

  11. Natural radioactivity in groundwater and estimates of committed effective dose due to water ingestion in the state of Chihuahua (Mexico).

    Science.gov (United States)

    Villalba, L; Montero-Cabrera, M E; Manjón-Collado, G; Colmenero-Sujo, L; Rentería-Villalobos, M; Cano-Jiménez, A; Rodríguez-Pineda, A; Dávila-Rangel, I; Quirino-Torres, L; Herrera-Peraza, E F

    2006-01-01

    The activity concentration of 222Rn, 226Ra and total uranium in groundwater samples collected from wells distributed throughout the state of Chihuahua has been measured. The values obtained of total uranium activity concentration in groundwater throughout the state run from Chihuahua City. Committed effective dose estimates for reference individuals were performed, with results as high as 134 microSv for infants in Aldama city. In Aldama and Chihuahua cities the average and many individual wells showed activity concentration values of uranium exceeding the Mexican norm of drinking water quality.

  12. Eolian transport, saline lake basins, and groundwater solutes

    Science.gov (United States)

    Wood, Warren W.; Sanford, Ward E.

    1995-01-01

    Eolian processes associated with saline lakes are shown to be important in determining solute concentration in groundwater in arid and semiarid areas. Steady state mass balance analyses of chloride in the groundwater at Double Lakes, a saline lake basin in the southern High Plains of Texas, United States, suggest that approximately 4.5 × 105 kg of chloride is removed from the relatively small (4.7 km2) basin floor each year by deflation. This mass enters the groundwater down the wind gradient from the lake, degrading the water quality. The estimates of mass transport were independently determined by evaluation of solutes in the unsaturated zone and by solute mass balance calculations of groundwater flux. Transport of salts from the lake was confirmed over a short term (2 years) by strategically placed dust collectors. Results consistent with those at Double Lake were obtained from dune surfaces collected upwind and downwind from a sabkha near the city of Abu Dhabi in the United Arab Emirates. The eolian transport process provides an explanation of the degraded groundwater quality associated with the 30–40 saline lake basins on the southern half of the southern High Plains of Texas and New Mexico and in many other arid and semiarid areas.

  13. Water resilient green cities in Africa Newsletter issue 2

    DEFF Research Database (Denmark)

    Liu, Li; Jensen, Marina Bergen; Fryd, Ole

    2015-01-01

    Many cities around the world are exploring green infrastructures with landscape-based systems as solutions to complement the limited capacity or extend the conventional water systems. In addition to improving flood protection, these landscape-based systems can support water supply, groundwater...... recharge and provide additional ecosystem services to the benefit of the citizens’ everyday life. Cities in Africa, like Addis Ababa, Ethiopia and Dar es Salam, Tanzania, do not have adequate city-wide conventional urban water systems like centralized, pipe-based water supply, drainage and sanitation...

  14. City Revenues and Expenses

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — City Revenues and Expenses from the Operating Budget from 2012 to Present, updated every night from the City's JD Edwards ledger.

  15. Pittsburgh City Facilities

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Pittsburgh City FacilitiesIncludes: City Administrative Buildings, Police Stations, Fire Stations, EMS Stations, DPW Sites, Senior Centers, Recreation Centers, Pool...

  16. Groundwater quality: Ghana

    OpenAIRE

    Smedley, Pauline

    2000-01-01

    This is one of a series of information sheets prepared for each country in which WaterAid works. The sheetsaim to identify inorganic constituents of significant risk to health that may occur in groundwater in thecountry in question. The purpose of the sheets is to provide guidance to WaterAid Country Office staff ontargeting efforts on water-quality testing and to encourage further thinking in the organisation on waterqualityissues.

  17. Emerging contaminants in groundwater

    OpenAIRE

    Stuart, M.E.; Manamsa, K.; Talbot, J.C.; Crane, E.J.

    2011-01-01

    The term ‘emerging contaminants’ is generally used to refer to compounds previously not considered or known to be significant to groundwater (in terms of distribution and/or concentration) which are now being more widely detected. As analytical techniques improve, previously undetected organic micropollutants are being observed in the aqueous environment. Many emerging contaminants remain unregulated, but the number of regulated contaminants will continue to grow slowly over th...

  18. Defining groundwater age. Chapter 3

    International Nuclear Information System (INIS)

    Torgersen, T.; Purtschert, R.; Phillips, F.M.; Plummer, L.N.; Sanford, W.E.; Suckow, A.

    2013-01-01

    This book investigates applications of selected chemical and isotopic substances that can be used to recognize and interpret age information pertaining to ‘old’ groundwater (defined as water that was recharged on a timescale from approximately 1000 to more than 1 000 000 a). However, as discussed below, only estimates of the ‘age’ of water extracted from wells can be inferred. These groundwater age estimates are interpreted from measured concentrations of chemical and isotopic substances in the groundwater. Even then, there are many complicating factors, as discussed in this book. In spite of these limitations, much can be learned about the physics of groundwater flow and about the temporal aspects of groundwater systems from age interpretations of measured concentrations of environmental tracers in groundwater systems. This chapter puts the concept of ‘age’ into context, including its meaning and interpretation, and attempts to provide a unifying usage for the rest of the book.

  19. Approaches to groundwater travel time

    International Nuclear Information System (INIS)

    Kaplan, P.; Klavetter, E.; Peters, R.

    1989-01-01

    One of the objectives of performance assessment for the Yucca Mountain Project is to estimate the groundwater travel time at Yucca Mountain, Nevada, to determine whether the site complies with the criteria specified in the Code of Federal Regulations, Title 10 CFR 60.113 (a). The numerical standard for performance in these criteria is based on the groundwater travel time along the fastest path of likely radionuclide transport from the disturbed zone to the accessible environment. The concept of groundwater travel time as proposed in the regulations, does not have a unique mathematical statement. The purpose of this paper is to discuss the ambiguities associated with the regulatory specification of groundwater travel time, two different interpretations of groundwater travel time, and the effect of the two interpretations on estimates of the groundwater travel time

  20. Ground-water travel time

    International Nuclear Information System (INIS)

    Bentley, H.; Grisak, G.

    1985-01-01

    The Containment and Isolation Working Group considered issues related to the postclosure behavior of repositories in crystalline rock. This working group was further divided into subgroups to consider the progress since the 1978 GAIN Symposium and identify research needs in the individual areas of regional ground-water flow, ground-water travel time, fractional release, and cumulative release. The analysis and findings of the Ground-Water Travel Time Subgroup are presented

  1. Adsorptive Iron Removal from Groundwater

    OpenAIRE

    Sharma, S.K.

    2001-01-01

    Iron is commonly present in groundwater worldwide. The presence of iron in the water supply is not harmful to human health, however it is undesirable. Bad taste, discoloration, staining, deposition in the distribution system leading to aftergrowth, and incidences of high turbidity are some of the aesthetic and operational problems associated with iron in water supplies. Iron removal from groundwater is, therefore, a major concern for water supply companies using groundwater sources....

  2. GROUNDWATER PROTECTION MANAGEMENT PROGRAM DESCRIPTION.

    Energy Technology Data Exchange (ETDEWEB)

    PAQUETTE,D.E.; BENNETT,D.B.; DORSCH,W.R.; GOODE,G.A.; LEE,R.J.; KLAUS,K.; HOWE,R.F.; GEIGER,K.

    2002-05-31

    THE DEPARTMENT OF ENERGY ORDER 5400.1, GENERAL ENVIRONMENTAL PROTECTION PROGRAM, REQUIRES THE DEVELOPMENT AND IMPLEMENTATION OF A GROUNDWATER PROTECTION PROGRAM. THE BNL GROUNDWATER PROTECTION MANAGEMENT PROGRAM DESCRIPTION PROVIDES AN OVERVIEW OF HOW THE LABORATORY ENSURES THAT PLANS FOR GROUNDWATER PROTECTION, MONITORING, AND RESTORATION ARE FULLY DEFINED, INTEGRATED, AND MANAGED IN A COST EFFECTIVE MANNER THAT IS CONSISTENT WITH FEDERAL, STATE, AND LOCAL REGULATIONS.

  3. Application of Decision-Tree Model to Groundwater Productivity-Potential Mapping

    Directory of Open Access Journals (Sweden)

    Saro Lee

    2015-09-01

    Full Text Available For the sustainable use of groundwater, this study analyzed groundwater productivity-potential using a decision-tree approach in a geographic information system (GIS in Boryeong and Pohang cities, Korea. The model was based on the relationship between groundwater-productivity data, including specific capacity (SPC, and its related hydrogeological factors. SPC data which is measured and calculated for groundwater productivity and data about related factors, including topography, lineament, geology, forest and soil data, were collected and input into a spatial database. A decision-tree model was applied and decision trees were constructed using the chi-squared automatic interaction detector (CHAID and the quick, unbiased, and efficient statistical tree (QUEST algorithms. The resulting groundwater-productivity-potential (GPP maps were validated using area-under-the-curve (AUC analysis with the well data that had not been used for training the model. In the Boryeong city, the CHAID and QUEST algorithms had accuracies of 83.31% and 79.47%, and in the Pohang city, the CHAID and QUEST algorithms had accuracies of 86.18% and 80.00%. As another validation, the GPP maps were validated by comparing the actual SPC data. As the result, in the Boryeong city, the CHAID and QUEST algorithms had accuracies of 96.55% and 94.92% and in the Pohang city, the CHAID and QUEST algorithms had accuracies of 87.88% and 87.50%. These results indicate that decision-tree models can be useful for development of groundwater resources.

  4. Intensive rainfall recharges tropical groundwaters

    International Nuclear Information System (INIS)

    Jasechko, Scott; Taylor, Richard G

    2015-01-01

    Dependence upon groundwater to meet rising agricultural and domestic water needs is expected to increase substantially across the tropics where, by 2050, over half of the world’s population is projected to live. Rare, long-term groundwater-level records in the tropics indicate that groundwater recharge occurs disproportionately from heavy rainfalls exceeding a threshold. The ubiquity of this bias in tropical groundwater recharge to intensive precipitation is, however, unknown. By relating available long-term records of stable-isotope ratios of O and H in tropical precipitation (15 sites) to those of local groundwater, we reveal that groundwater recharge in the tropics is near-uniformly (14/15 sites) biased to intensive monthly rainfall, commonly exceeding the ∼70th intensity decile. Our results suggest that the intensification of precipitation brought about by global warming favours groundwater replenishment in the tropics. Nevertheless, the processes that transmit intensive rainfall to groundwater systems and enhance the resilience of tropical groundwater storage in a warming world, remain unclear. (letter)

  5. Decadal variations in groundwater quality

    DEFF Research Database (Denmark)

    Jessen, Søren; Postma, Dieke; Thorling, Lærke

    2017-01-01

    Twenty-five years of groundwater quality monitoring in a sandy aquifer beneath agricultural fields showed large temporal and spatial variations in major ion groundwater chemistry, which were linked closely to the nitrate (NO3) content of agricultural recharge. Between 1988 and 2013, the NO3 content...... loading. Agriculture thus is an important determinant of major ion groundwater chemistry. Temporal and spatial variations in the groundwater quality were simulated using a 2D reactive transport model, which combined effects of the historical NO3 leaching and denitrification, with dispersive mixing...

  6. Investigation on shallow groundwater in a small basin using natural radioisotopes

    International Nuclear Information System (INIS)

    Hamada, Hiromasa; Komae, Takami

    1996-01-01

    The authors conducted an investigation on shallow groundwater using natural radioisotopes as indicators in the small basin of the Hinuma River, Kasama City, Ibaraki Prefecture, Japan. 3 H concentrations in the groundwater showed that it originated from precipitation in the 1960's. Since 222 Rn concentrations decreased as groundwater flowed downstream, they were influenced by infiltration of surface water. Especially, during the irrigation period, the decrease of 222 Rn concentrations was remarkable in the lowland. From the distribution of 222 Rn concentrations in surface water, the sections where groundwater seeped into a river were found, and a quantitative analysis of groundwater seepage in the two sections was conducted on the basis of 222 Rn concentrations in groundwater and in surface water. The ratios of groundwater seepage to the flow at the upstream station for the two sections were about 5% and 10%, respectively. The water movement within the basin, i.e., the actual manner in which surface water infiltrated underground and groundwater seeped into a river, was clarified by analyzing the variations of natural radioisotope concentrations in water and the water balance of the basin. (author)

  7. Geospatial Data Management Platform for Urban Groundwater

    Science.gov (United States)

    Gaitanaru, D.; Priceputu, A.; Gogu, C. R.

    2012-04-01

    Due to the large amount of civil work projects and research studies, large quantities of geo-data are produced for the urban environments. These data are usually redundant as well as they are spread in different institutions or private companies. Time consuming operations like data processing and information harmonisation represents the main reason to systematically avoid the re-use of data. The urban groundwater data shows the same complex situation. The underground structures (subway lines, deep foundations, underground parkings, and others), the urban facility networks (sewer systems, water supply networks, heating conduits, etc), the drainage systems, the surface water works and many others modify continuously. As consequence, their influence on groundwater changes systematically. However, these activities provide a large quantity of data, aquifers modelling and then behaviour prediction can be done using monitored quantitative and qualitative parameters. Due to the rapid evolution of technology in the past few years, transferring large amounts of information through internet has now become a feasible solution for sharing geoscience data. Furthermore, standard platform-independent means to do this have been developed (specific mark-up languages like: GML, GeoSciML, WaterML, GWML, CityML). They allow easily large geospatial databases updating and sharing through internet, even between different companies or between research centres that do not necessarily use the same database structures. For Bucharest City (Romania) an integrated platform for groundwater geospatial data management is developed under the framework of a national research project - "Sedimentary media modeling platform for groundwater management in urban areas" (SIMPA) financed by the National Authority for Scientific Research of Romania. The platform architecture is based on three components: a geospatial database, a desktop application (a complex set of hydrogeological and geological analysis

  8. Chemometric analysis of groundwater quality data around municipal landfill and paper factory and their potential influence on population's health.

    Science.gov (United States)

    Gvozdić, Vlatka; Cačić, Ljiljana; Brana, Josip; Puntarić, Dinko; Vidosavljević, Domagoj

    2012-02-01

    To assess the level of 15 groundwater quality parameters in groundwater samples collected around municipal landfill and paper factory in order to evaluate usefulness of the groundwater and its possible implication on the human health. Obtained data have been analyzed by principal component analysis (PCA) technique, in order to differentiate the groundwater samples on the basis of their compositional differences and origin. Wastes and effluents from municipal landfill did not contribute significantly to the pollution of the aquatic medium. Groundwater degradation caused by high contents of nitrate, mineral oils, organic and inorganic matters was particularly expressed in the narrow area of the city centre, near the paper factory and most likely it has occurred over a long period of time. The results have shown that the concentrations of the most measured parameters (NO3-N, NH4-N, oils, organic matter, Fe, Pb, Ni and Cr) were above allowed limits for drinking and domestic purposes. This study has provided important information on ecological status of the groundwater systems and for identification of groundwater quality parameters with concentrations above allowable limits for human consumption. The results generally revealed that groundwater assessed in this study mainly does not satisfy safe limits for drinking water and domestic use. As a consequence, contaminated groundwater becomes a large hygienic and toxicological problem, since it considerably impedes groundwater utilization. Even though, all of these contaminants have not yet reached toxic levels, they still represent long term risk for health of the population.

  9. Groundwater quality assessment of urban Bengaluru using multivariate statistical techniques

    Science.gov (United States)

    Gulgundi, Mohammad Shahid; Shetty, Amba

    2018-03-01

    Groundwater quality deterioration due to anthropogenic activities has become a subject of prime concern. The objective of the study was to assess the spatial and temporal variations in groundwater quality and to identify the sources in the western half of the Bengaluru city using multivariate statistical techniques. Water quality index rating was calculated for pre and post monsoon seasons to quantify overall water quality for human consumption. The post-monsoon samples show signs of poor quality in drinking purpose compared to pre-monsoon. Cluster analysis (CA), principal component analysis (PCA) and discriminant analysis (DA) were applied to the groundwater quality data measured on 14 parameters from 67 sites distributed across the city. Hierarchical cluster analysis (CA) grouped the 67 sampling stations into two groups, cluster 1 having high pollution and cluster 2 having lesser pollution. Discriminant analysis (DA) was applied to delineate the most meaningful parameters accounting for temporal and spatial variations in groundwater quality of the study area. Temporal DA identified pH as the most important parameter, which discriminates between water quality in the pre-monsoon and post-monsoon seasons and accounts for 72% seasonal assignation of cases. Spatial DA identified Mg, Cl and NO3 as the three most important parameters discriminating between two clusters and accounting for 89% spatial assignation of cases. Principal component analysis was applied to the dataset obtained from the two clusters, which evolved three factors in each cluster, explaining 85.4 and 84% of the total variance, respectively. Varifactors obtained from principal component analysis showed that groundwater quality variation is mainly explained by dissolution of minerals from rock water interactions in the aquifer, effect of anthropogenic activities and ion exchange processes in water.

  10. Isotopic constraints on water source mixing, network leakage and contamination in an urban groundwater system.

    Science.gov (United States)

    Grimmeisen, F; Lehmann, M F; Liesch, T; Goeppert, N; Klinger, J; Zopfi, J; Goldscheider, N

    2017-04-01

    Water supply in developing countries is prone to large water losses due to leaky distribution networks and defective sewers, which may affect groundwater quality and quantity in urban areas and result in complex subsurface mixing dynamics. In this study, a multi-stable isotope approach was used to investigate spatiotemporal fluctuations of surface and sub-surface water source partitioning and mixing, and to assess nitrogen (N) contamination in the urban water cycle of As-Salt, Jordan. Water import from the King Abdullah Canal (KAC), mains waters from the network, and wastewater are characterized by distinct isotopic signatures, which allowed us to quantify city effluents into the groundwater. Temporal variations in isotopic signatures of polluted groundwater are explained by seasonally fluctuating inflow, and dilution by water that originates from Lake Tiberias and enters the urban water cycle via the KAC. Isotopic analysis (N and O) and comparison between groundwater nitrate and nitrate from mains water, water imports and wastewater confirmed that septic waste from leaky sewers is the main contributor of nitrate contamination. The nitrate of strongly contaminated groundwater was characterized by highest δ 15 N NO3 values (13.3±1.8‰), whereas lowest δ 15 N NO3 values were measured in unpolluted groundwater (6.9‰). Analogously, nitrate concentration and isotopic ratios were used for source partitioning and qualitatively confirmed δD H2O and δ 18 O H2O -based estimates. Dual water isotope endmember mixing calculations suggest that city effluents from leaky networks and sewers contribute 30-64% to the heavily polluted groundwater. Ternary mixing calculations including also chloride revealed that 5-18% of the polluted groundwater is wastewater. Up to two thirds of the groundwater originates from mains, indicating excessive water loss from the network, and calling for improved water supply management. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Groundwater Unmasked: Combining Techniques to Trace Groundwater in Lowland Streams

    Science.gov (United States)

    Kaandorp, Vince; de Hilster, Stèphanie; Doornenbal, Pieter; de Louw, Perry

    2017-04-01

    Seepage of groundwater produces a significant part of stream discharge. This base flow component is of vital important for stream functioning as it prevents streams from falling dry and provides a specific water chemistry and temperature. The interaction between groundwater and surface water is complex and highly heterogeneous both in space and time. The location of groundwater seepage can be found using several techniques which we combined to reduce uncertainties. We applied the different techniques in two lowland streams in the Netherlands, which have different geological and hydrological settings. Two glass fibre cables with a length of 1.5 km were placed in the streams for the application of Distributed Temperature Sensing (DTS). The high-frequent spatially distributed stream temperature measurements revealed local hotspots of groundwater/surface water interaction. These were compared with measurements from the groundwater tracer Radon-222, vertical flux measurements using seepage meters, vertical temperature profile measurements and visual seepage indicators. Groundwater/surface water interaction was found to vary spatially in a spectacular way: whereas seepage occurred on one side of the stream, no seepage was found on the opposite side at only meter distance. It is essential to include these small scale differences as they can result in contrasting ecological habitats. Although combining groundwater tracing methods proved to be valuable, capturing the heterogeneity and quantifying the amounts of water exchange stay the most challenging problem facing research on groundwater/surface water interaction.

  12. Groundwater recharge in a multi-aquifer system in Iloilo, Philippines

    Science.gov (United States)

    Geronia, M. C. M.

    2016-12-01

    For rapidly urbanizing areas, groundwater utilization has been subject to contentions concerning its allocation and supply. The Philippines, an industrializing and developing country, primarily taps surface water for supply but has been extracting groundwater in increasing amounts in recent years. Despite abundant rainfall, the recharge and rainfall proportion for the Philippines just ranges from 7 to 10 percent, causing low recharge rates. Iloilo, a developing metropolis in central Philippines, has started to run into groundwater supply shortages. The city has already been tapping 93% of its supply from deep aquifers for years but low and unpredictable recharge and lack of groundwater studies increase uncertainties to the city's water situation. This study analyzed the relationship among the city's volcanic and clastic multi-aquifer systems and groundwater recharge during the wet season. Constant-rate pumping tests were performed and time-drawdown data were collected on wells at different depths scattered across the city. Hydrographs were computed and analyzed for the basin to determine rainfall-recharge relationship for the aquifer system and were compared to available historical data. Results showed shallow aquifers with depths less than 20 meters, as expected, were still subject to recharge especially during wet season. However, urbanization and increased abstraction from unregulated wells further worsened by an El Niño-induced 6-month drought had started to dry up the shallow perched aquifers, resulting to a net decrease in available supply. Aquifer recharge at depths between 50 to 70 meters has decreased substantially, potentially threatening the city's water supply for the long term. Nonetheless, characterizing and quantifying the relationship of the Iloilo aquifer system and recharge have given a much better picture of the situation that will benefit the city in water resource planning and allocation in light of future hydrological and climate risks.

  13. Water changed the cities

    DEFF Research Database (Denmark)

    Elle, Morten; Jensen, Marina Bergen

    An improvement in water infrastructure and cleaning up the waters changed many harbour cities in Denmark at the beginning of the 90s. The harbour cities changed from drity, run-down industrial harbours to clean and attractive harbour dwelling creating new city centres and vital city areas...

  14. Groundwater Vulnerability to Seawater Intrusion along Coastal Urban Areas: A Quantitative Comparative Assessment of EPIK and DRASTIC

    Science.gov (United States)

    Momjian, Nanor; Abou Najm, Majdi; Alameddine, Ibrahim; El-Fadel, Mutasem

    2015-04-01

    Groundwater vulnerability assessment models are invariably coupled with Geographic Information Systems to provide decision makers with easier visualization of complex systems. In this study, we examine the uncertainty associated with such models (DRASTIC, EPIK) in assessing seawater intrusion, a growing threat along coastal urban cities due to overexploitation of groundwater resources associated with population growth and more recently, exacerbated by climate change impacts. For this purpose, a mapping of groundwater vulnerability was first conducted at a country level (Lebanon) and coupled with a groundwater quality monitoring program in three coastal cities for cross-validation. Then, six water quality categories were defined and mapped based on water quality standards ranging from drinking to seawater with weighted scores assigned for each category in both DRASTIC and EPIK for cross-validation. Finally, the results of groundwater quality tests were compared with vulnerability predictions at sampling points using two indicators (Chloride and TDS). While field measurements demonstrated the high vulnerability to seawater intrusion in coastal urbanized areas, the modelling results exhibited variations from field measurements reaching up to two water quality categories. Vertical-based vulnerability models demonstrated poor correlation when the anthropogenic impact was introduced through a process that depends on lateral groundwater flow thus highlighting (1) the limited ability of such models to capture vulnerability to lateral seawater intrusion induced primarily by vertical groundwater withdrawal, and (2) the need to incorporate depth and underlying lithology into the layers of groundwater vulnerability models when examining horizontally induced contamination such as seawater intrusion.

  15. Solutions Remediate Contaminated Groundwater

    Science.gov (United States)

    2010-01-01

    During the Apollo Program, NASA workers used chlorinated solvents to clean rocket engine components at launch sites. These solvents, known as dense non-aqueous phase liquids, had contaminated launch facilities to the point of near-irreparability. Dr. Jacqueline Quinn and Dr. Kathleen Brooks Loftin of Kennedy Space Center partnered with researchers from the University of Central Florida's chemistry and engineering programs to develop technology capable of remediating the area without great cost or further environmental damage. They called the new invention Emulsified Zero-Valent Iron (EZVI). The groundwater remediation compound is cleaning up polluted areas all around the world and is, to date, NASA's most licensed technology.

  16. Groundwater vulnerability mapping in Guadalajara aquifers system (Western Mexico)

    Science.gov (United States)

    Rizo-Decelis, L. David; Marín, Ana I.; Andreo, Bartolomé

    2016-04-01

    Groundwater vulnerability mapping is a practical tool to implement strategies for land-use planning and sustainable socioeconomic development coherent with groundwater protection. The objective of vulnerability mapping is to identify the most vulnerable zones of catchment areas and to provide criteria for protecting the groundwater used for drinking water supply. The delineation of protection zones in fractured aquifers is a challenging task due to the heterogeneity and anisotropy of hydraulic conductivities, which makes difficult prediction of groundwater flow organization and flow velocities. Different methods of intrinsic groundwater vulnerability mapping were applied in the Atemajac-Toluquilla groundwater body, an aquifers system that covers around 1300 km2. The aquifer supplies the 30% of urban water resources of the metropolitan area of Guadalajara (Mexico), where over 4.6 million people reside. Study area is located in a complex neotectonic active volcanic region in the Santiago River Basin (Western Mexico), which influences the aquifer system underneath the city. Previous works have defined the flow dynamics and identified the origin of recharge. In addition, the mixture of fresh groundwater with hydrothermal and polluted waters have been estimated. Two main aquifers compose the multilayer system. The upper aquifer is unconfined and consists of sediments and pyroclastic materials. Recharge of this aquifer comes from rainwater and ascending vertical fluids from the lower aquifer. The lower aquifer consists of fractured basalts of Pliocene age. Formerly, the main water source has been the upper unit, which is a porous and unconsolidated unit, which acts as a semi-isotropic aquifer. Intense groundwater usage has resulted in lowering the water table in the upper aquifer. Therefore, the current groundwater extraction is carried out from the deeper aquifer and underlying bedrock units, where fracture flow predominates. Pollution indicators have been reported in

  17. Monitoring of landfill influences on groundwater

    Directory of Open Access Journals (Sweden)

    Mihael Brenčič

    2004-06-01

    Full Text Available Landfills of waste present serious threat to groundwater. To prevent groundwater pollution from landfill monitoring is performed. Rule of groundwater pollution monitoring from dangerous substances implements principles in Slovene legislation. In everyday practice certain questions arose since validity of the rule. These questions are about responsible parties in monitoring, groundwater distribution in space, target groundwater units, characterization level of the landfill and its surroundings, background values in groundwater, table of content of groundwater monitoring plan, quality of groundwater monitoring network, phases of monitoring, maintenance of monitoring network and activation of piezometers.

  18. The Virginia Beach shallow ground-water study

    Science.gov (United States)

    Johnson, Henry M.

    1999-01-01

    IntroductionVirginia Beach is a rapidly growing city of more than 425,000 people. Sources of fresh water within the city, however, are limited. Prior to 1998, the Virginia Beach Public Utilities Department met the city's water needs by purchasing treated drinking water from the City of Norfolk. Because Norfolk had to meet its own requirements, the amount of water available to Virginia Beach was limited to about 30 million gallons per day (mgd) and even less during droughts. This water supply was supplemented with ground water from city-owned, community, and private wells. In many parts of the city, however, ground water cannot be used because of high concentrations of chloride, iron, and (or) sulfur, which give the water an unpleasant taste.In early 1998, a pipeline came on-line that can carry up to 45 mgd of water from Lake Gaston to Virginia Beach. The Gaston pipeline has alleviated concerns about water supply and quality for most residents living north of the "Green Line." These residents primarily use ground water only for small-scale domestic activities such as watering lawns, filling ponds and pools, and washing cars. City water and sewer services have been extended beyond the Green Line into the "Transition Area." Residents and businesses south of the Transition Area, however, continue to rely on ground water to meet most of their needs for potable and non-potable water. To help assure a continued, reliable supply of ground water, the U.S. Geological Survey (USGS), in cooperation with the City of Virginia Beach Public Utilities Department, has begun an assessment of the shallow ground-water resources underlying the City of Virginia Beach.

  19. Groundwater protection management program plan

    International Nuclear Information System (INIS)

    1992-06-01

    US Department of Energy (DOE) Order 5400.1 requires the establishment of a groundwater protection management program to ensure compliance with DOE requirements and applicable Federal, state, and local laws and regulations. The Uranium Mill Tailings Remedial Action (UMTRA) Project Office has prepared a ''Groundwater Protection Management Program Plan'' (groundwater protection plan) of sufficient scope and detail to reflect the program's significance and address the seven activities required in DOE Order 5400.1, Chapter 3, for special program planning. The groundwater protection plan highlights the methods designed to preserve, protect, and monitor groundwater resources at UMTRA Project processing and disposal sites. The plan includes an overview of the remedial action status at the 24 designated processing sites and identifies project technical guidance documents and site-specific documents for the UMTRA groundwater protection management program. In addition, the groundwater protection plan addresses the general information required to develop a water resources protection strategy at the permanent disposal sites. Finally, the plan describes ongoing activities that are in various stages of development at UMTRA sites (long-term care at disposal sites and groundwater restoration at processing sites). This plan will be reviewed annually and updated every 3 years in accordance with DOE Order 5400.1

  20. Technical approach to groundwater restoration

    International Nuclear Information System (INIS)

    1993-01-01

    The Technical Approach to Groundwater Restoration (TAGR) provides general technical guidance to implement the groundwater restoration phase of the Uranium Mill Tailings Remedial Action (UMTRA) Project. The TAGR includes a brief overview of the surface remediation and groundwater restoration phases of the UMTRA Project and describes the regulatory requirements, the National Environmental Policy Act (NEPA) process, and regulatory compliance. A section on program strategy discusses program optimization, the role of risk assessment, the observational approach, strategies for meeting groundwater cleanup standards, and remedial action decision-making. A section on data requirements for groundwater restoration evaluates the data quality objectives (DQO) and minimum data required to implement the options and comply with the standards. A section on sits implementation explores the development of a conceptual site model, approaches to site characterization, development of remedial action alternatives, selection of the groundwater restoration method, and remedial design and implementation in the context of site-specific documentation in the site observational work plan (SOWP) and the remedial action plan (RAP). Finally, the TAGR elaborates on groundwater monitoring necessary to evaluate compliance with the groundwater cleanup standards and protection of human health and the environment, and outlines licensing procedures

  1. SEISMIC REFRACTION INVESTIGATION OF GROUNDWATER ...

    African Journals Online (AJOL)

    There was a good correlation between seismic interpretation and borehole lithologic section within the study area. With a considerable saturated thickness, areas of good potential aquifers for groundwater development abound in the study area. KeyWords: Seismic refraction, groundwater development, basement, Oban ...

  2. GROUNDWATER HYDROCHEMISTRY EVALUATION IN RURAL ...

    African Journals Online (AJOL)

    Osondu

    2012-10-09

    Oct 9, 2012 ... Abstract. Groundwater is one of the major sources of exploitation in arid and semi -arid regions. To protect this scarce resource information on its quality status over time is important. This paper examines the quality of groundwater from domestic water supply boreholes across rural Botswana. Ionic.

  3. Isotope hydrology: Investigating groundwater contamination

    International Nuclear Information System (INIS)

    Dubinchuk, V.; Froehlich, K.; Gonfiantini, R.

    1989-01-01

    Groundwater quality has worsened in many regions, with sometimes serious consequences. Decontaminating groundwater is an extremely slow process, and sometimes impossible, because of the generally long residence time of the water in most geological formations. Major causes of contamination are poor groundwater management (often dictated by immediate social needs) and the lack of regulations and control over the use and disposal of contaminants. These types of problems have prompted an increasing demand for investigations directed at gaining insight into the behaviour of contaminants in the hydrological cycle. Major objectives are to prevent pollution and degradation of groundwater resources, or, if contamination already has occurred, to identify its origin so that remedies can be proposed. Environmental isotopes have proved to be a powerful tool for groundwater pollution studies. The IAEA has had a co-ordinated research programme since 1987 on the application of nuclear techniques to determine the transport of contaminants in groundwater. An isotope hydrology project is being launched within the framework of the IAEA's regional co-operative programme in Latin America (known as ARCAL). Main objectives are the application of environmental isotopes to problems of groundwater assessment and contamination in Latin America. In 1989, another co-ordinated research programme is planned under which isotopic and other tracers will be used for the validation of mathematical models in groundwater transport studies

  4. Sustainable groundwater management in California

    Science.gov (United States)

    Phillips, Steven P.; Rogers, Laurel Lynn; Faunt, Claudia

    2015-12-01

    The U.S. Geological Survey (USGS) uses data collection, modeling tools, and scientific analysis to help water managers plan for, and assess, hydrologic issues that can cause “undesirable results” associated with groundwater use. This information helps managers understand trends and investigate and predict effects of different groundwater-management strategies.

  5. Groundwater quality characterization around Jawaharnagar open dumpsite, Telangana State

    Science.gov (United States)

    Unnisa, Syeda Azeem; Zainab Bi, Shaik

    2017-11-01

    In the present work groundwater samples were collected from ten different data points in and around Jawaharnagar municipal dumpsite, Telangana State Hyderabad city from May 2015 to May 2016 on monthly basis for groundwater quality characterization. Pearson's correlation coefficient ( r) value was determined using correlation matrix to identify the highly correlated and interrelated water quality standards issued by Bureau of Indian Standard (IS-10500:2012). It is found that most of the groundwater samples are above acceptable limits and are not potable. The chemical analysis results revealed that pH range from 7.2 to 7.8, TA 222 to 427 mg/l, TDS 512 to 854 mg/l, TH 420 to 584 mg/l, Calcium 115 to 140 mg/l, Magnesium 55 to 115 mg/l, Chlorides 202 to 290 mg/l, Sulphates 170 to 250 mg/l, Nitrates 6.5 to 11.3 mg/l, and Fluoride 0.9 to 1.7 mg/l. All samples showed higher range of physicochemical parameters except nitrate content which was lower than permissible limit. Highly positive correlation was observed between pH-TH ( r = 0.5063), TA-Cl- ( r = 0.5896), TDS-SO4 - ( r = 0.5125), Mg2+-NO3 - ( r = 0.5543) and Cl--F- ( r = 0.7786). The groundwater samples in and around Jawaharnagar municipal dumpsite implies that groundwater samples were contaminated by municipal leachate migration from open dumpsite. The results revealed that the systematic calculations of correlation coefficient between water parameters and regression analysis provide qualitative and rapid monitoring of groundwater quality.

  6. Monitoring probe for groundwater flow

    Science.gov (United States)

    Looney, B.B.; Ballard, S.

    1994-08-23

    A monitoring probe for detecting groundwater migration is disclosed. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow. 4 figs.

  7. Changes in the Regional Groundwater Aquifer and Potential Impacts on Surface Waters in Central Zealand, Denmark

    DEFF Research Database (Denmark)

    Thorn, Paul

    The regional, confined aquifer on the island of Zealand, in eastern Denmark, is the primary aquifer used for large-scale abstraction for the supplies of all larger cities, including Roskilde and the greater Copenhagen metropolitan area. Large-scale groundwater abstraction from this aquifer...... in the area near Lejre Denmark (approximately 15km to the SW of Roskilde) began in 1937, exporting approximately 18 million m3 of water per year to supply the city of Copenhagen. After abstraction began, streams in the area were observed to go dry after extended periods without precipitation, where......, wetlands and lakes in the area. The results show that there was a significant impact on the regional groundwater aquifer in the Langvad river catchment, with groundwater as much as 17m lower in 1987 from 1936 (pre-abstraction). However, in the Elverdam river catchment, the levels remained virtually...

  8. The challenges of water governance in Ho Chi Minh City.

    Science.gov (United States)

    van Leeuwen, Cornelis J; Dan, Nguyen P; Dieperink, Carel

    2016-04-01

    Population growth, urbanization, pollution, and climate change pose urgent water challenges in cities. In this study, the sustainability of integrated water resources management in Ho Chi Minh City (HCMC) was evaluated using the City Blueprint approach. The City Blueprint is a set of 24 dedicated indicators divided over 8 categories (i.e., water security, water quality, drinking water, sanitation, infrastructure, climate robustness, biodiversity and attractiveness, and governance including public participation). The analysis showed that the rapid increase of water use for urban, industrial, and agricultural activities in HCMC has resulted in depletion of groundwater and severe pollution of both groundwater and surface water. Surface water quality, groundwater quality, biodiversity, and the sanitation of domestic and industrial wastewater are matters that need serious improvement. Current and future water supply in HCMC is at risk. HCMC can cope with it, but the 7 governance gaps as described by the Organisation for Economic Co-operation and Development (OECD) are major obstacles for HCMC. Rainwater harvesting, pollution reduction, as well as wastewater reuse are among the practical options. Wastewater reuse could lower the water stress index to 10%. The window to do this is narrow and rapidly closing as a result of the unprecedented urbanization and economic growth of this region. © 2015 SETAC.

  9. Groundwater: from mystery to management

    International Nuclear Information System (INIS)

    Narasimhan, T N

    2009-01-01

    Groundwater has been used for domestic and irrigation needs from time immemorial. Yet its nature and occurrence have always possessed a certain mystery because water below the land surface is invisible and relatively inaccessible. The influence of this mystery lingers in some tenets that govern groundwater law. With the birth of modern geology during the late nineteenth century, groundwater science became recognized in its own right. Over the past two centuries, groundwater has lost its shroud of mystery, and its scientific understanding has gradually grown hand-in-hand with its development for human use. Groundwater is a component of the hydrological cycle, vital for human sustenance. Its annual renewability from precipitation is limited, and its chemical quality is vulnerable to degradation by human action. In many parts of the world, groundwater extraction is known to greatly exceed its renewability. Consequently, its rational management to benefit present and future generations is a matter of deep concern for many nations. Groundwater management is a challenging venture, requiring an integration of scientific knowledge with communal will to adapt to constraints of a finite common resource. As scientists and policy makers grapple with the tasks of groundwater management, it is instructive to reflect on the evolution of groundwater knowledge from its initial phase of demystification at the beginning of the nineteenth century, through successive phases of technological conquest, scientific integration, discovery of unintended consequences and the present recognition of an imperative for judicious management. The following retrospective provides a broad context for unifying the technical contributions that make up this focus issue on groundwater resources, climate and vulnerability.

  10. Development of monitoring and modelling tools as basis for sustainable thermal management concepts of urban groundwater bodies

    Science.gov (United States)

    Mueller, Matthias H.; Epting, Jannis; Köhler, Mandy; Händel, Falk; Huggenberger, Peter

    2015-04-01

    Increasing groundwater temperatures observed in many urban areas strongly interfere with the demand of thermal groundwater use. The groundwater temperatures in these urban areas are affected by numerous interacting factors: open and closed-loop geothermal systems for heating and cooling, sealed surfaces, constructions in the subsurface (infrastructure and buildings), artificial groundwater recharge, and interaction with rivers. On the one hand, these increasing groundwater temperatures will negatively affect the potential for its use in the future e.g. for cooling purposes. On the other hand, elevated subsurface temperatures can be considered as an energy source for shallow geothermal heating systems. Integrated thermal management concepts are therefore needed to coordinate the thermal use of groundwater in urban areas. These concepts should be based on knowledge of the driving processes which influence the thermal regime of the aquifer. We are currently investigating the processes influencing the groundwater temperature throughout the urban area of Basel City, Switzerland. This involves a three-dimensional numerical groundwater heat-transport model including geothermal use and interactions with the unsaturated zone such as subsurface constructions reaching into the aquifer. The cantonal groundwater monitoring system is an important part of the data base in our model, which will help to develop sustainable management strategies. However, single temperature measurements in conventional groundwater wells can be biased by vertical thermal convection. Therefore, multilevel observation wells are used in the urban areas of the city to monitor subsurface temperatures reaching from the unsaturated zone to the base of the aquifer. These multilevel wells are distributed in a pilot area in order to monitor the subsurface temperatures in the vicinity of deep buildings and to quantify the influence of the geothermal use of groundwater. Based on time series of the conventional

  11. Long-term trends and spatial variability of shallow groundwater temperatures beneath Bratislava

    Science.gov (United States)

    Krcmar, David; Benz, Susanne A.; Bayer, Peter; Blum, Philipp; Stankova, Hana

    2017-04-01

    Shallow groundwater temperatures are closely linked to surface temperatures. In recent years several studies have shown that the effects from atmospheric warming can be observed in rural groundwater temperature measurements. However, urban groundwater temperatures are different. Especially shallow aquifers show temperatures that change with the evolution of a city. Temperatures are locally variable and regionally higher when compared to undisturbed rural environments. For several cities, particularly in cold and temperate climate zones, pronounced subsurface urban heat islands have been reported with groundwater temperatures that are increased by several degrees compared to their rural surrounding. Heat release from basements and other urban infrastructure has been identified as a major heat source, superposing the effects from atmospheric warming. A major challenge still is to distinguish between the anthropogenic urban effects and the influence from climate change. In our study, we focus on the conditions in the city of Bratislava in Slovakia, where productive aquifers are hosted by the sediments in the Danube river valley. At selected wells, long-term groundwater temperature measurements have been recorded since the year 2002. These temperature time series are measured in shallow depth and therefore show substantial seasonal variations. Each temperature time series is compared to satellite-derived land surface temperature trends, and a clear correlation is found that supports the strong coupling between atmospheric, land surface and groundwater temperatures. Additionally, it is now possible to analyze the main differences between these two temperature trends for all selected wells and relate them to location specific cases of urban infrastructure that influence groundwater temperatures but not land surface temperatures.

  12. Groundwater vulnerability in the District of Abidjan (Côte d'Ivoire)

    Science.gov (United States)

    Kouame, Agnes; Jaboyedoff, Michel; Derron, Marc-Henri; Tacher, Laurent

    2014-05-01

    The District of Abidjan, located on the coastal sedimentary basin south of Côte d'Ivoire (West Africa) covers an area of 2,1 km2. This sedimentary basin is composed of continuous groundwater aquifers in Quaternary, Tertiary and Upper Cretaceous rocks. Our study focuses on the unconfined Quaternary groundwater called the Continental Terminal which formations are composed mainly of lenticular stratification of coarse sands, clays, ferruginous sandstone and iron ore. This Continental Terminal aquifer is the main source of drinking water for the city of Abidjan. Indeed, the city of Abidjan is facing various pollution problems such as illegal dumping of household waste, waste oils garages, domestic and industrial wastewater, gas stations, public discharge Akouédo and the spill of approximately 500 tons of toxic waste from the ship "Probo Koala" the night of 19 August 2006. These toxic wastes have killed more than 10 people and several infections. The infiltration of these contaminants under the influence of rainwater in the basement is a serious threat to groundwater from the District of Abidjan especially as the rains are very strong in this part of the country. What would be the fate of pollutants such as organochlorines, hydrogen sulfide, sulfides and hydrocarbons contained in toxic waste, knowing that this aquifer is the main source of supply of drinking water to the city of Abidjan? It therefore seems necessary to study the vulnerability of groundwater of Abidjan District. The overall objective of this study is to assess the risk of groundwater contamination by organochlorines, sulfides, hydrogen sulfide and hydrocarbons. This project is to develop groundwater flow and contaminant transport models such as organochlorines models, hydrogen sulfide and sulfides with two digital codes, Visual Modflow and Feflow. Then several scenarios with different pollutants are finally made to realize maps of groundwater vulnerability from Abidjan to these contaminants.

  13. Groundwater Monitoring Plan for the Solid Waste Landfill

    International Nuclear Information System (INIS)

    Lindberg, J.W.; Chou, C.J.

    2000-01-01

    The Solid Waste Landfill (SWL) is regulated by the Washington State Department of Ecology under WAC 173-304. Between 1973 and 1976, the landfill received primarily paper waste and construction debris, but it also received asbestos, sewage, and catch tank liquid waste. Groundwater monitoring results indicate the SWL has contaminated groundwater with volatile organic compounds and possibly metals at levels that exceed regulatory limits. DynCorp, Tri-Cities, Inc. operates the facility under an interim closure plan (final closure plan will be released shortly). Pacific Northwest National Laboratory (PNNL) monitors groundwater at the site. This monitoring plan includes well and constituent lists, and summarizes sampling, analytical, and quality control requirements. Changes from the previous monitoring plan include elimination of two radionuclides from the analyte list and some minor changes in the statistical analysis. Existing wells in the current monitoring network only monitor the uppermost portion of the upper-most aquifer. Therefore, two new downgradient wells and one existing upgradient well are proposed to determine whether groundwater waste constituents have reached the lower portion of the uppermost aquifer. The proposed well network includes three upgradient wells and ten downgradient wells. The wells will be sampled quarterly for 14 analytes required by WAC 173-304-490 plus volatile organic compounds and filtered arsenic as site-specific analytes

  14. Groundwater Monitoring Plan for the Solid Waste Landfill

    Energy Technology Data Exchange (ETDEWEB)

    JW Lindberg; CJ Chou

    2000-12-14

    The Solid Waste Landfill (SWL) is regulated by the Washington State Department of Ecology under WAC 173-304. Between 1973 and 1976, the landfill received primarily paper waste and construction debris, but it also received asbestos, sewage, and catch tank liquid waste. Groundwater monitoring results indicate the SWL has contaminated groundwater with volatile organic compounds and possibly metals at levels that exceed regulatory limits. DynCorp, Tri-Cities, Inc. operates the facility under an interim closure plan (final closure plan will be released shortly). Pacific Northwest National Laboratory (PNNL) monitors groundwater at the site. This monitoring plan includes well and constituent lists, and summarizes sampling, analytical, and quality control requirements. Changes from the previous monitoring plan include elimination of two radionuclides from the analyte list and some minor changes in the statistical analysis. Existing wells in the current monitoring network only monitor the uppermost portion of the upper-most aquifer. Therefore, two new downgradient wells and one existing upgradient well are proposed to determine whether groundwater waste constituents have reached the lower portion of the uppermost aquifer. The proposed well network includes three upgradient wells and ten downgradient wells. The wells will be sampled quarterly for 14 analytes required by WAC 173-304-490 plus volatile organic compounds and filtered arsenic as site-specific analytes.

  15. Groundwater quality in the Monterey Bay and Salinas Valley groundwater basins, California

    Science.gov (United States)

    Kulongoski, Justin T.; Belitz, Kenneth

    2011-01-01

    . Land use in the study unit is about 44 percent (%) natural (mostly grassland and forests), 43% agricultural, and 13% urban. The primary agricultural uses are row crops, pasture, hay, and vineyards. The largest urban areas are the cities of Santa Cruz, Watsonville, Monterey, Salinas, King City, and Paso Robles. Recharge to the groundwater system is primarily from stream-channel infiltration from the major rivers and their tributaries, and from infiltration of water from precipitation and irrigation. The primary sources of discharge are water pumped for irrigation and municipal supply, evaporation, and discharge to streams.

  16. Reconstruction of groundwater depletion using a global scale groundwater model

    Science.gov (United States)

    de Graaf, Inge; van Beek, Rens; Sutanudjaja, Edwin; Wada, Yoshi; Bierkens, Marc

    2015-04-01

    Groundwater forms an integral part of the global hydrological cycle and is the world's largest accessible source of fresh water to satisfy human water needs. It buffers variable recharge rates over time, thereby effectively sustaining river flows in times of drought as well as evaporation in areas with shallow water tables. Moreover, although lateral groundwater flows are often slow, they cross topographic and administrative boundaries at appreciable rates. Despite the importance of groundwater, most global scale hydrological models do not consider surface water-groundwater interactions or include a lateral groundwater flow component. The main reason of this omission is the lack of consistent global-scale hydrogeological information needed to arrive at a more realistic representation of the groundwater system, i.e. including information on aquifer depths and the presence of confining layers. The latter holds vital information on the accessibility and quality of the global groundwater resource. In this study we developed a high resolution (5 arc-minutes) global scale transient groundwater model comprising confined and unconfined aquifers. This model is based on MODFLOW (McDonald and Harbaugh, 1988) and coupled with the land-surface model PCR GLOBWB (van Beek et al., 2011) via recharge and surface water levels. Aquifers properties were based on newly derived estimates of aquifer depths (de Graaf et al., 2014b) and thickness of confining layers from an integration of lithological and topographical information. They were further parameterized using available global datasets on lithology (Hartmann and Moosdorf, 2011) and permeability (Gleeson et al., 2014). In a sensitivity analysis the model was run with various hydrogeological parameter settings, under natural recharge only. Scenarios of past groundwater abstractions and corresponding recharge (Wada et al., 2012, de Graaf et al. 2014a) were evaluated. The resulting estimates of groundwater depletion are lower than

  17. Time-dependent methods to evaluate the effects of urban sprawl on groundwater quality: a synthesis

    Directory of Open Access Journals (Sweden)

    Stefania Stevenazzi

    2017-12-01

    Full Text Available Freshwater resources are threatened worldwide with unknown and unpredictable fate, due to non-stationarity and change of water cycle dynamics, and increasing demand resulting from population growth and economic expansion. Thus, practical actions, strategies and solutions are necessary to ensure the short-term and long-term provision of adequate, affordable, accessible and safe freshwater supply to meet the needs of the growing human population and ecosystems. Since the mid-1950s, Europe is experiencing the phenomenon of urban sprawl, characterized by an unplanned incremental urban development, no more tied with population growth (EEA 2006. Impacts of urban sprawl threaten both the natural and rural environments and the quality of life for people living in cities, with worsening of air quality, and surface- and groundwater quality and quantity. For the protection of groundwater, the European Union issued a series of Directives (Water Framework Directive, 2000/60/EC; Groundwater Directive, 2006/118/EC that require member states to achieve a good chemical status of their groundwater bodies and the identification of areas where groundwater suffers increasing trends in contaminant concentrations. In order to cope with EU Directives, a time-dependent approach for groundwater vulnerability assessment is developed to account for both the recent status of groundwater contamination and its evolution in the Po Plain area of Lombardy Region (northern Italy. Such approach takes the advantages of a Bayesian spatial statistical method to assess groundwater vulnerability and satellite scatterometer data to delineate urban areas and monitor their evolution. The proposed approach can determine potential impacts of contamination events on groundwater quality, if policies are maintained at the status quo or if new measures are implemented for safeguarding groundwater resources.

  18. Assessing the effects of urbanization and climate change on groundwater management in China

    Science.gov (United States)

    Hua, S.; Zheng, C.

    2017-12-01

    Groundwater is expected to be more vulnerable in the future due to climate change coupled with rapid urbanization. Thus, protecting future groundwater resources under the impact of urbanization and climate change is necessary towards more sustainable groundwater resource development. This study is intended to shed lights on how water managers may plan for the adverse effects of urbanization and climate change on groundwater quality. A new approach is presented in which the groundwater vulnerability under future climate change scenarios is employed as a constraint to urban expansion. An original form of the Land Transformation Model (LTM) and a revised LTM simulation are applied to model the urbanization. The results indicated that there would be a notable and uneven urban growth between 2010 and 2050. Future groundwater vulnerability is expected to shift significantly under future climate change scenarios. The results of the revised LTM project more urban expansion in the central regions of China, while those of the original LTM project urban expansion in throughout China, although the two projections have the same areas of expansion. The urban expansion simulated by the original LTM follows the historical trend under the drivers of socioeconomic, political and geographic factors. However, the revised LTM drives the urban expansion to the regions with relatively lower groundwater vulnerability, in contrast to the historical trend. This study demonstrates that the integration of LTM and future groundwater vulnerability in the urban planning can better protect the groundwater resource and promote more sustainable socioeconomic development. The methodology developed in this study provides water managers and city planners a useful groundwater management tool for mitigating the risks associated with rapid urbanization and climate change.

  19. Natural radioactivity in groundwater and estimates of committed effective dose due to water ingestion in the state of Chihuahua (Mexico)

    International Nuclear Information System (INIS)

    Villalba, L.; Montero-Cabrera, M. E.; Manjon-Collado, G.; Colmenero-Sujo, L.; Renteria-Villalobos, M.; Cano-Jimenez, A.; Rodriguez-Pineda, A.; Davila-Rangel, I.; Quirino-Torres, L.; Herrera-Peraza, E. F.

    2006-01-01

    The activity concentration of 222 Rn, 226 Ra and total uranium in groundwater samples collected from wells distributed throughout the state of Chihuahua has been measured. The values obtained of total uranium activity concentration in groundwater throughout the state run from -1 . Generally, radium activity concentration was -1 , with some exceptions; in spring water of San Diego de Alcala, in contrast, the value reached ∼5.3 Bq l -1 . Radon activity concentration obtained throughout the state was from 1.0 to 39.8 Bq l -1 . A linear correlation between uranium and radon dissolved in groundwater of individual wells was observed near Chihuahua City. Committed effective dose estimates for reference individuals were performed, with results as high as 134 μSv for infants in Aldama city. In Aldama and Chihuahua cities the average and many individual wells showed activity concentration values of uranium exceeding the Mexican norm of drinking water quality. (authors)

  20. Overview of groundwater sources and water-supply systems, and associated microbial pollution, in Finland, Norway and Iceland

    Science.gov (United States)

    Kløve, Bjørn; Kvitsand, Hanne Margrethe Lund; Pitkänen, Tarja; Gunnarsdottir, Maria J.; Gaut, Sylvi; Gardarsson, Sigurdur M.; Rossi, Pekka M.; Miettinen, Ilkka

    2017-06-01

    The characteristics of groundwater systems and groundwater contamination in Finland, Norway and Iceland are presented, as they relate to outbreaks of disease. Disparities among the Nordic countries in the approach to providing safe drinking water from groundwater are discussed, and recommendations are given for the future. Groundwater recharge is typically high in autumn or winter months or after snowmelt in the coldest regions. Most inland aquifers are unconfined and therefore vulnerable to pollution, but they are often without much anthropogenic influence and the water quality is good. In coastal zones, previously emplaced marine sediments may confine and protect aquifers to some extent. However, the water quality in these aquifers is highly variable, as the coastal regions are also most influenced by agriculture, sea-water intrusion and urban settlements resulting in challenging conditions for water abstraction and supply. Groundwater is typically extracted from Quaternary deposits for small and medium municipalities, from bedrock for single households, and from surface water for the largest cities, except for Iceland, which relies almost entirely on groundwater for public supply. Managed aquifer recharge, with or without prior water treatment, is widely used in Finland to extend present groundwater resources. Especially at small utilities, groundwater is often supplied without treatment. Despite generally good water quality, microbial contamination has occurred, principally by norovirus and Campylobacter, with larger outbreaks resulting from sewage contamination, cross-connections into drinking water supplies, heavy rainfall events, and ingress of polluted surface water to groundwater.

  1. Characterization of colloids in groundwater

    International Nuclear Information System (INIS)

    Kim, J.I.; Buckau, G.; Klenze, R.

    1987-07-01

    Natural colloids in the Gorleben aquifer systems have been investigated as for their chemical composition, quantification and size distribution. Humic substances appear to be the major organic materials in these groundwaters, generating humic colloids which are analysed to be humic acid (and fulvic acid) loaded with a large number of trace heavy metal ions. These metal ions include natural homologues of actinides and some fission products in trivalent, tetravalent and hexavalent state. Concentrations of trivalent and tetravalent heavy metal ions are linearly correlated with the dissolved organic carbon (DDC) concentration in different groundwaters. The DOC is found to be present as humic colloids. The Am 3+ ions introduced in such a groundwater readily undergo the generation of its pseudocolloids through sorption or ion exchange reactions with humic colloids. The chemical behaviour of Am(III), being similar to the trivalent metal ions, e.g. Fe 3+ , REE etc. found in natural colloids, has been investigated by laser induced photoacoustic spectroscopy (LPAS). Groundwaters from Ispra, Markham Clinton and Felslabor Grimsel. Bidistilled water and one of Gorleben groundwaters, Gohy 1011, are taken for the purpose of comparison. This groundwater contains the least amount of natural colloids of all Gorleben groundwaters hitherto investigated. An indirect quantification is made by comparison of the LPAS results with experiment from Latex solution. (orig./IRB)

  2. Calculation of groundwater travel time

    International Nuclear Information System (INIS)

    Arnett, R.C.; Sagar, B.; Baca, R.G.

    1984-12-01

    Pre-waste-emplacement groundwater travel time is one indicator of the isolation capability of the geologic system surrounding a repository. Two distinct modeling approaches exist for prediction of groundwater flow paths and travel times from the repository location to the designated accessible environment boundary. These two approaches are: (1) the deterministic approach which calculates a single value prediction of groundwater travel time based on average values for input parameters and (2) the stochastic approach which yields a distribution of possible groundwater travel times as a function of the nature and magnitude of uncertainties in the model inputs. The purposes of this report are to (1) document the theoretical (i.e., mathematical) basis used to calculate groundwater pathlines and travel times in a basalt system, (2) outline limitations and ranges of applicability of the deterministic modeling approach, and (3) explain the motivation for the use of the stochastic modeling approach currently being used to predict groundwater pathlines and travel times for the Hanford Site. Example calculations of groundwater travel times are presented to highlight and compare the differences between the deterministic and stochastic modeling approaches. 28 refs

  3. City Car = The City Car / Andres Sevtshuk

    Index Scriptorium Estoniae

    Sevtshuk, Andres, 1981-

    2008-01-01

    Massachusettsi Tehnoloogiainstituudi (MIT) meedialaboratooriumi juures tegutseva Targa Linna Grupi (Smart City Group) ja General Motorsi koostööna sündinud kaheistmelisest linnasõbralikust elektriautost City Car. Nimetatud töögrupi liikmed (juht William J. Mitchell, töögruppi kuulus A. Sevtshuk Eestist)

  4. Three Sustainability Advantages of Urban Densification in a Concentric Urban Form: Evidence from Bandung City, Indonesia

    Directory of Open Access Journals (Sweden)

    Ariva Sugandi Permana

    2015-09-01

    Full Text Available Amid limited land resource in Bandung city, pressure on the needs of lands continuously exists. Urban densification may create high density spaces and minimizes trip length by exploiting vertical growth. In contrary, sprawling city expands horizontally and creates low density spaces. Sprawling cities in most cases are motorized transport dependent cities. The study was carried out by analyzing the present form of Bandung City. Bandung City in Indonesia, a pronounced concentric-cum-sprawling city of a developing country, was selected as study area. The analysis covers three most determinative environment-related issues that lead to sustainability advantages of the city, since appropriately addressing the issues would likely contribute to sustainability of the city. These three issues are transport energy, flood, and groundwater depletion. Analysis on transport energy consumption in three urban development forms was carried out. The study result reveals that urban densification may lead to lower transport energy consumption as reflected in the mixed use areas compared to the other two urban development forms. The study also confirms that urban densification enables groundwater depletion to be minimized amid significant abstraction in the city and at the same time reducing flooding problems.

  5. Anthropization of groundwater resources in the Mediterranean region: processes and challenges

    Science.gov (United States)

    Leduc, Christian; Pulido-Bosch, Antonio; Remini, Boualem

    2017-09-01

    A comprehensive overview is provided of processes and challenges related to Mediterranean groundwater resources and associated changes in recent decades. While most studies are focused thematically and/or geographically, this paper addresses different stages of groundwater exploitation in the region and their consequences. Examples emphasize the complex interactions between the physical and social dimensions of uses and evolution of groundwater. In natural conditions, Mediterranean groundwater resources represent a wide range of hydrogeological contexts, recharge conditions and rates of exploitation. They have been actively exploited for millennia but their pseudo-natural regimes have been considerably modified in the last 50 years, especially to satisfy agricultural demand (80% of total water consumption in North Africa), as well as for tourism and coastal cities. Climate variability affects groundwater dynamics but the various forms of anthropization are more important drivers of hydrological change, including changes in land use and vegetation, hydraulic works, and intense pumpings. These changes affect both the quantity and quality of groundwater at different scales, and modify the nature of hydrogeological processes, their location, timing, and intensity. The frequent cases of drastic overexploitation illustrate the fragility of Mediterranean groundwater resources and the limits of present forms of management. There is no easy way to maintain or recover sustainability, which is often threatened by short-term interests. To achieve this goal, a significant improvement in hydrogeological knowledge and closer collaboration between the various disciplines of water sciences are indispensable.

  6. Wastewater compounds in urban shallow groundwater wells correspond to exfiltration probabilities of nearby sewers.

    Science.gov (United States)

    Lee, Do Gyun; Roehrdanz, Patrick R; Feraud, Marina; Ervin, Jared; Anumol, Tarun; Jia, Ai; Park, Minkyu; Tamez, Carlos; Morelius, Erving W; Gardea-Torresdey, Jorge L; Izbicki, John; Means, Jay C; Snyder, Shane A; Holden, Patricia A

    2015-11-15

    Wastewater compounds are frequently detected in urban shallow groundwater. Sources include sewage or reclaimed wastewater, but origins are often unknown. In a prior study, wastewater compounds were quantified in waters sampled from shallow groundwater wells in a small coastal California city. Here, we resampled those wells and expanded sample analyses to include sewage- or reclaimed water-specific indicators, i.e. pharmaceutical and personal care product chemicals or disinfection byproducts. Also, we developed a geographic information system (GIS)-based model of sanitary sewer exfiltration probability--combining a published pipe failure model accounting for sewer pipe size, age, materials of construction, with interpolated depths to groundwater--to determine if sewer system attributes relate to wastewater compounds in urban shallow groundwater. Across the wells, groundwater samples contained varying wastewater compounds, including acesulfame, sucralose, bisphenol A, 4-tert-octylphenol, estrone and perfluorobutanesulfonic acid (PFBS). Fecal indicator bacterial concentrations and toxicological bioactivities were less than known benchmarks. However, the reclaimed water in this study was positive for all bioactivity tested. Excluding one well intruded by seawater, the similarity of groundwater to sewage, based on multiple indicators, increased with increasing sanitary sewer exfiltration probability (modeled from infrastructure within ca. 300 m of each well). In the absence of direct exfiltration or defect measurements, sewer exfiltration probabilities modeled from the collection system's physical data can indicate potential locations where urban shallow groundwater is contaminated by sewage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Initial characterization of the groundwater system near the Lower Colorado Water Supply Project, Imperial Valley, California

    Science.gov (United States)

    Coes, Alissa L.; Land, Michael; Densmore, Jill N.; Landrum, Michael T.; Beisner, Kimberly R.; Kennedy, Jeffrey R.; Macy, Jamie P.; Tillman, Fred D.

    2015-01-01

    In 2009, the U.S. Geological Survey, in cooperation with the city of Needles, began a study of the hydrogeology along the All-American Canal, which conveys water from the Colorado River to the Imperial Valley. The focus of this study was to gain a better understanding of the effect of lining the All-American Canal, and other management actions, on future total dissolved solids concentrations in groundwater pumped by Lower Colorado Water Supply Project wells that is delivered to the All-American Canal. The study included the compilation and evaluation of previously published hydrogeologic and geochemical information, establishment of a groundwater-elevation and groundwater-quality monitoring network, results of monitoring groundwater elevations and groundwater quality from 2009 to 2011, site-specific hydrologic investigations of the Lower Colorado Water Supply Project area, examination of groundwater salinity by depth by using time-domain electromagnetic surveys, and monitoring of groundwater-storage change by using microgravity methods. 

  8. Groundwater pollution: Are we monitoring appropriate parameters ...

    African Journals Online (AJOL)

    Groundwater pollution is a worldwide phenomenon with potentially disastrous consequences. Prevention of pollution is the ideal approach. However, in practice groundwater quality monitoring is the main tool for timely detection of pollutants and protection of groundwater resources. Monitoring groundwater quality is a ...

  9. SEASONAL VARIATIONS IN GROUNDWATER QUALITY OF ...

    African Journals Online (AJOL)

    2015-02-05

    Feb 5, 2015 ... investigation is focused on seasonal variation in groundwater quality of Valsad district of south Gujarat (India). Groundwater ... natural resource that has to be conserved and preserved for sustenance of life in future [1]. Groundwater was ... The groundwater quality may also vary with seasonal changes [2].

  10. Sources of groundwater contamination

    International Nuclear Information System (INIS)

    Assaf, H.; Al-Masri, M. S.

    2007-09-01

    In spite of the importance of water for life, either for drinking, irrigation, industry or other wide uses in many fields, human beings seem to contaminate it and make it unsuitable for human uses. This is due to disposal of wastes in the environment without treatment. In addition to population increase and building expanding higher living costs, industrial and economical in growth that causes an increase in water consumption. All of these factors have made an increase pressure on our water environment quantitatively and qualitatively. In addition, there is an increase of potential risks to the water environmental due to disposal of domestic and industrial wastewater in areas near the water sources. Moreover, the use of unacceptable irrigation systems may increase soil salinity and evaporation rates. The present report discusses the some groundwater sources and problem, hot and mineral waters that become very important in our life and to our health due to its chemical and radioactivity characteristics.(authors)

  11. Actinide colloid generation in groundwater

    International Nuclear Information System (INIS)

    Kim, J.I.

    1990-05-01

    The progress made in the investigation of actinide colloid generation in groundwaters is summarized and discussed with particular examples relevant to an understanding of the migration behaviour of actinides in natural aquifer systems. The first part deals with the characterization of colloids: groundwater colloids, actinide real-colloids and actinide pseudocolloids. The second part concentrates on the generation processes and migration behaviour of actinide pseudocolloids, which are discussed with some notable experimental examples. Importance is stressed more on the chemical aspects of the actinide colloid generation in groundwater. This work is a contribution to the CEC project MIRAGE II, particularly, to research area: complexation and colloids. (orig.)

  12. Groundwater quality in the Indian Wells Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Indian Wells Valley is one of the study areas being evaluated. The Indian Wells study area is approximately 600 square miles (1,554 square kilometers) and includes the Indian Wells Valley groundwater basin (California Department of Water Resources, 2003). Indian Wells Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lake beds in the lower parts of the valley. Land use in the study area is approximately 97.0 percent (%) natural, 0.4% agricultural, and 2.6% urban. The primary natural land cover is shrubland. The largest urban area is the city of Ridgecrest (2010 population of 28,000). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from the Sierra Nevada to the west and from the other surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada and to the west and from the other surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada and direct infiltration from irrigation and septic systems. The primary sources of discharge are pumping wells and evapotranspiration near the dry lakebeds. The primary aquifers in the Indian Wells study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in

  13. Environmental isotope and chemical characterization of groundwater in Islamabad

    International Nuclear Information System (INIS)

    Javed, T.; Qureshi, R.M.; Mashiatullah, A.; Ahmad, N.; Akram, W.; Tasneem, M.A.

    2005-01-01

    52 groundwater samples were collected from tube-wells and hand-pumps installed in the jurisdiction of Islamabad city. Samples were analyzed for various pollution parameters such as the physiochemical parameters (E.C., redox, pH, dissolved oxygen), stable isotope parameters (/sup 13/C/sub TDIC/ and /sup 18/O, /sup 2/H of water), as well as major cation and anion (HCO/sub 3//sup -2/. SO/sub 4//sup -2/. Cl/sup -/, Na/sup +l/, K/sup +1/, Ca/sup +2/, and Mg/sup +1/. Electrical conductivity of a majority of these samples was found to lie in the range of 429- 950 micro S/cm. Most of the groundwater samples have nearly neutral pH values. Concentration of anions and cation in shallow groundwater lies in range of HCO/sub 3/ (259-345 ppm), SO/sub 4/ (8-26 ppm), Cl (16-43 ppm), Na (19-33 ppm), K (0.3-2.1 ppm), Ca (65-93 ppm) and Mg (14-22 ppm) respectively. For deep groundwater samples, these values are in range HCO/sub 3/(218-356 ppm), SO/sub 4/ (9-41 ppm), Cl (13-58 ppm), Na (9-58 ppm), K (0.8-6.1 ppm), Ca (62-102 ppm), and Mg (10-26 ppm) respectively. The delta /sup 13/C values lie in the range of -6.2 to -2.0 % V- SMOW for deep groundwater and -5.3 to -3.6 % V- SMOW for shallow groundwater. The delta /sup 13/C values of Total dissolved Inorganic Carbon (TDIC) lie in the range of -8.2 to- 1.18 % PDB for tube well samples and -7.3 to -1.8 % PDB for shallow wells. Depleted values of delta sup 13/C indicate domestic waste input in groundwater. Delta /sup 13/C values in the range of -3 plus minus 2 % PDB represent limestone dissolution as the main source of dissolved inorganic carbon. In view of the neutral pH range (pH=7 plus minus 0.5) of water samples collected in the Islamabad area, bicarbonate is the main dissolved inorganic carbon (DIC) specie in groundwater with delta /sup 13/C values up to -8.3 % PDB. In general most of the water samples are suitable for drinking with respect to physiochemical and major cation and anion. (author)

  14. What Is Clean Cities?

    Energy Technology Data Exchange (ETDEWEB)

    2007-08-01

    This Clean Cities Program fact sheet describes the purpose and scope of this DOE program. Clean Cities facilitates the use of alternative and advanced fuels and vehicles to displace petroleum in the transportation sector.

  15. Cities spearhead climate action

    Science.gov (United States)

    Watts, Mark

    2017-08-01

    Following President Trump's withdrawal from the Paris Agreement, cities worldwide have pledged support to combat climate change. Along with a growing coalition of businesses and institutions, cities represent a beacon of hope for carbon reduction in politically tumultuous times.

  16. City of Pittsburgh Trees

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Trees cared for and managed by the City of Pittsburgh Department of Public Works Forestry Division. Tree Benefits are calculated using the National Tree Benefit...

  17. Hydrogeology and simulation of groundwater flow in the Central Oklahoma (Garber-Wellington) Aquifer, Oklahoma, 1987 to 2009, and simulation of available water in storage, 2010–2059

    Science.gov (United States)

    Mashburn, Shana L.; Ryter, Derek W.; Neel, Christopher R.; Smith, S. Jerrod; Magers, Jessica S.

    2014-02-10

    The Central Oklahoma (Garber-Wellington) aquifer underlies about 3,000 square miles of central Oklahoma. The study area for this investigation was the extent of the Central Oklahoma aquifer. Water from the Central Oklahoma aquifer is used for public, industrial, commercial, agricultural, and domestic supply. With the exception of Oklahoma City, all of the major communities in central Oklahoma rely either solely or partly on groundwater from this aquifer. The Oklahoma City metropolitan area, incorporating parts of Canadian, Cleveland, Grady, Lincoln, Logan, McClain, and Oklahoma Counties, has a population of approximately 1.2 million people. As areas are developed for groundwater supply, increased groundwater withdrawals may result in decreases in long-term aquifer storage. The U.S. Geological Survey, in cooperation with the Oklahoma Water Resources Board, investigated the hydrogeology and simulated groundwater flow in the aquifer using a numerical groundwater-flow model. The purpose of this report is to describe an investigation of the Central Oklahoma aquifer that included analyses of the hydrogeology, hydrogeologic framework of the aquifer, and construction of a numerical groundwater-flow model. The groundwater-flow model was used to simulate groundwater levels and for water-budget analysis. A calibrated transient model was used to evaluate changes in groundwater storage associated with increased future water demands.

  18. Current Status of Groundwater Monitoring Networks in Korea

    OpenAIRE

    Jin-Yong Lee; Kideok D. Kwon

    2016-01-01

    Korea has been operating groundwater monitoring systems since 1996 as the Groundwater Act enacted in 1994 enforces nationwide monitoring. Currently, there are six main groundwater monitoring networks operated by different government ministries with different purposes: National Groundwater Monitoring Network (NGMN), Groundwater Quality Monitoring Network (GQMN), Seawater Intrusion Monitoring Network (SIMN), Rural Groundwater Monitoring Network (RGMN), Subsidiary Groundwater Monitoring Network ...

  19. Revisiting city connectivity

    NARCIS (Netherlands)

    Mans, U.

    2014-01-01

    This article introduces a new perspective on city connectivity in order to analyze non-hub cities and their position in the world economy. The author revisits the different approaches discussed in the Global Commodity Chains (GCC), Global Production Networks (GPN) and World City Network (WCN)

  20. Smart city analytics

    DEFF Research Database (Denmark)

    Hansen, Casper; Hansen, Christian; Alstrup, Stephen

    2017-01-01

    is very useful when full records are not accessible or available. Smart city analytics does not necessarily require full city records. To our knowledge this preliminary study is the first to predict large increases in home care for smart city analytics....

  1. Imagineering the city

    NARCIS (Netherlands)

    van den Berg, M.; Paddison, R.; Hutton, T.

    2015-01-01

    Cities today are products. The urban experience is commodified into marketable items by urban entrepreneurs. Urban administrations, city marketers, politicians, local businesses and other actors all over the world are developing entrepreneurial strategies to sell their city. From "‘I ♥ New York"’ to

  2. Groundwater Vulnerability Regions of Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The regions onThis map represent areas with similar hydrogeologic characteristics thought to represent similar potentials for contamination of groundwater and/or...

  3. Salinity Pattern in Semarang Coastal City: an Overview

    OpenAIRE

    Rahmawati, Novi; Marfai, M. A

    2013-01-01

    DOI: 10.17014/ijog.v8i2.160Semarang Coastal City is one of cities in Indonesia which has experienced a long-term salt intrusion. Land subsidence and groundwater exploitation were identified as main factors accelerated salt intrusion in this area. Extended salt intrusion into the land from year to year cannot be neglected. Salinity pattern and land use affected by this intrusion must be identified. Salinity pattern could be identified by electrical conductance content. The purposes of this res...

  4. Assessment of emerging groundwater contaminants

    OpenAIRE

    Stuart, Marianne; Lapworth, Dan; Manamsa, Katya; Crane, Emily; White, Debbie

    2016-01-01

    Emerging contaminants in groundwater are important. These have been studied at a range of scales. An increasing range of compounds is being detected Urban areas show impact of sewage and industrial wastewater. Some ECs are probably no threat to drinking water at such µg/L concentrations, e.g. caffeine Others may prove to be in the future. There is little information on their impact on other groundwater receptors in the environment. We are still far from understanding which of these comp...

  5. Irrigation and groundwater in Pakistan

    Science.gov (United States)

    Ertsen, Maurits; Iftikhar Kazmi, Syed

    2010-05-01

    Introduction of large gravity irrigation system in the Indus Basin in late nineteenth century without a drainage system resulted in water table rise consequently giving rise to water logging and salinity problems over large areas. In order to cope with the salinity and water logging problem government initiated salinity control and reclamation project (SCARP) in 1960. Initially 10,000 tube wells were installed in different areas, which not only resulted in the lowering of water table, but also supplemented irrigation. Resulting benefits from the full irrigation motivated framers to install private tube wells. Present estimate of private tube wells in Punjab alone is around 0.6 million and 48 billion cubic meter of groundwater is used for irrigation, contributing is 1.3 billion to the economy. The Punjab meets 40% of its irrigation needs from groundwater abstraction. Today, farmers apply both surface water flows and groundwater from tubewells, creating a pattern of private and public water control. As the importance of groundwater in sustaining human life and ecology is evident so are the threats to its sustainability due to overexploitation, but sufficient information for its sustainable management especially in developing countries is still required. Sustainable use of groundwater needs proper quantification of the resource and information on processes involved in its recharge and discharge. Groundwater recharge is broadly defined as water that reaches the aquifer from any direction (Lerner 1997). Sustainability and proper management of groundwater resource requires reliable quantification of the resource. In order to protect the resource from contamination and over exploitation, identification of recharge sources and their contribution to resource is a basic requirement. Physiochemical properties of some pesticides and their behavior in soil and water can make them potential tracers of subsurface moisture movement. Pesticides are intensively used in the area to

  6. Optimal and Sustainable Groundwater Extraction

    Directory of Open Access Journals (Sweden)

    Christopher A. Wada

    2010-08-01

    Full Text Available With climate change exacerbating over-exploitation, groundwater scarcity looms as an increasingly critical issue worldwide. Minimizing the adverse effects of scarcity requires optimal as well as sustainable patterns of groundwater management. We review the many sustainable paths for groundwater extraction from a coastal aquifer and show how to find the particular sustainable path that is welfare maximizing. In some cases the optimal path converges to the maximum sustainable yield. For sufficiently convex extraction costs, the extraction path converges to an internal steady state above the level of maximum sustainable yield. We describe the challenges facing groundwater managers faced with multiple aquifers, the prospect of using recycled water, and the interdependence with watershed management. The integrated water management thus described results in less water scarcity and higher total welfare gains from groundwater use. The framework also can be applied to climate-change specifications about the frequency, duration, and intensity of precipitation by comparing before and after optimal management. For the case of South Oahu in Hawaii, the prospect of climate change increases the gains of integrated groundwater management.

  7. Hoe Creek groundwater restoration, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Renk, R.R.; Crader, S.E.; Lindblom, S.R.; Covell, J.R.

    1990-01-01

    During the summer of 1989, approximately 6.5 million gallons of contaminated groundwater were pumped from 23 wells at the Hoe Creek underground coal gasification site, near Gillette, Wyoming. The organic contaminants were removed using activated carbon before the water was sprayed on 15.4 acres at the sites. Approximately 2647 g (5.8 lb) of phenols and 10,714 g (23.6 lb) of benzene were removed from the site aquifers. Phenols, benzene, toluene, ethylbenzene, and naphthalene concentrations were measured in 43 wells. Benzene is the only contaminant at the site exceeds the federal standard for drinking water (5 {mu}g/L). Benzene leaches into the groundwater and is slow to biologically degrade; therefore, the benzene concentration has remained high in the groundwater at the site. The pumping operation affected groundwater elevations across the entire 80-acre site. The water levels rebounded quickly when the pumping operation was stopped on October 1, 1989. Removing contaminated groundwater by pumping is not an effective way to clean up the site because the continuous release of benzene from coal tars is slow. Benzene will continue to leach of the tars for a long time unless its source is removed or the leaching rate retarded through mitigation techniques. The application of the treated groundwater to the surface stimulated plant growth. No adverse effects were noted or recorded from some 60 soil samples taken from twenty locations in the spray field area. 20 refs., 52 figs., 8 tabs.

  8. Marriage and the City

    DEFF Research Database (Denmark)

    Gautier, Pieter; Svarer, Michael; Teulings, Coen

    Do people move to cities because of marriage market considerations? In cities singles can meet more potential partners than in rural areas. Singles are therefore prepared to pay a premium in terms of higher housing prices. Once married, the marriage market benefits disappear while the housing...... premium remains. We extend the model of Burdett and Coles (1997) with a distinction between efficient (cities) and less efficient (non-cities) search markets. One implication of the model is that singles are more likely to move from rural areas to cities while married couples are more likely to make...

  9. Integrated site investigation and groundwater monitoring in an urban environment

    Science.gov (United States)

    Weatherl, R. K.

    2017-12-01

    Understanding groundwater dynamics around cities and other areas of human influence is of crucial importance for water resource management and protection, especially in a time of environmental and societal change. The human environment presents a unique challenge in terms of hydrological characterization, as the water cycle is generally artificialized and emissions of treated waste and chemical products into the surface- and groundwater system tend to disrupt the natural aqueous signature in significant ways. This project presents an integrated approach for robust characterization and monitoring of an urban aquifer which is actively exploited for municipal water supply. The study is carried out in the town of Fehraltorf, in the canton of Zürich, Switzerland. This particular town encompasses industrial and agricultural zones in addition to its standard urban setting. A minimal amount of data exist at this site, and the data that do exist are spatially and temporally sparse. Making use of traditional hydrogeological methods alongside evolving and emerging technologies, we aim to identify sources of contamination and to define groundwater flow and solute transport through space and time. Chemical and physical indicator parameters are identified for tracing contaminations including micropollutants and plant nutrients. Wireless sensors are installed for continuous on-line monitoring of essential parameters (electrical conductivity, temperature, water level). A wireless sensor network has previously been installed in the sewer system of the study site, facilitating investigation into interactions between sewer water and groundwater. Our approach illustrates the relations between land use, climate, rainfall dynamics, and the groundwater signature through time. At its conclusion, insights gained from this study will be used by municipal authorities to refine protective zones around pumping wells and to direct resources towards updating practices and replacing

  10. Spatial resolution of subsurface anthropogenic heat fluxes in cities

    Science.gov (United States)

    Benz, Susanne; Bayer, Peter; Menberg, Kathrin; Blum, Philipp

    2015-04-01

    Urban heat islands in the subsurface contain large quantities of energy in the form of elevated groundwater temperatures caused by anthropogenic heat fluxes (AHFS) into the subsurface. Hence, the objective of this study is to exemplarily quantify these AHFS and the generated thermal powers in two German cities, Karlsruhe and Cologne. A two-dimensional (2D) statistical analytical model of the vertical subsurface anthropogenic heat fluxes across the unsaturated zone was developed. The model consists of a so-called Local Monte Carlo approach that introduces a spatial representation of the following sources of AHFS: (1) elevated ground surface temperatures, (2) basements, (3) sewage systems, (4) sewage leakage, (5) subway tunnels, and (6) district heating networks. The results show that district heating networks induce the largest local AHFS with values larger than 60 W/m2 and one order of magnitude higher than the other evaluated heat sources. Only sewage pipes and basements reaching into the groundwater cause equally high heat fluxes, with maximal values of 40.37 W/m2 and 13.60 W/m2, respectively. While dominating locally, the district heating network is rather insignificant for the citywide energy budget in both urban subsurfaces. Heat from buildings (1.51 ± 1.36 PJ/a in Karlsruhe; 0.31 ± 0.14 PJ/a in Cologne) and elevated GST (0.34 ± 0.10 PJ/a in Karlsruhe; 0.42 ± 0.13 PJ/a in Cologne) are dominant contributors to the anthropogenic thermal power of the urban aquifer. In Karlsruhe, buildings are the source of 70% of the annual heat transported into the groundwater, which is mainly caused by basements reaching into the groundwater. A variance analysis confirms these findings: basement depth is the most influential factor to citywide thermal power in the studied cities with high groundwater levels. The spatial distribution of fluxes, however, is mostly influenced by the prevailing thermal gradient across the unsaturated zone. A relatively cold groundwater

  11. Updated comparison of groundwater flow model results and isotopic data in the Leon Valley, Mexico

    Science.gov (United States)

    Hernandez-Garcia, G. D.

    2015-12-01

    Northwest of Mexico City, the study area is located in the State of Guanajuato. Leon Valley has covered with groundwater its demand of water, estimated in 20.6 cubic meters per second. The constant increase of population and economic activities in the region, mainly in cities and automobile factories, has also a constant growth in water needs. Related extraction rate has produced an average decrease of approximately 1.0 m per year over the past two decades. This suggests that the present management of the groundwater should be checked. Management of groundwater in the study area involves the possibility of producing environmental impacts by extraction. This vital resource under stress becomes necessary studying its hydrogeological functioning to achieve scientific management of groundwater in the Valley. This research was based on the analysis and integration of existing information and the field generated by the authors. On the base of updated concepts like the geological structure of the area, the hydraulic parameters and the composition of deuterium-delta and delta-oxygen -18, this research has new results. This information has been fully analyzed by applying a groundwater flow model with particle tracking: the result has also a similar result in terms of travel time and paths derived from isotopic data.

  12. Assessment of groundwater vulnerability in the Yinchuan Plain, Northwest China using OREADIC.

    Science.gov (United States)

    Qian, Hui; Li, Peiyue; Howard, Ken W F; Yang, Chao; Zhang, Xuedi

    2012-06-01

    Groundwater vulnerability assessments provide a measure of the sensitivity of groundwater quality to an imposed contaminant load and are globally recognized as an essential element of all aquifer management and protection plans. In this paper, the vulnerability of groundwaters underlying the Yinchuan Plain of Northwest China is determined using OREADIC, a GIS-based assessment tool that incorporates the key characteristics of the universally popular DRASTIC approach to vulnerability assessment but has been modified to consider important additional hydrogeological factors that are specific to the region. The results show that areas of high vulnerability are distributed mainly around Qingtongxia City, Wuzhong City, Lingwu City, and Yongning County and are associated with high rates of aquifer recharge, shallow depths to the water table, and highly permeable aquifer materials. The presence of elevated NO (3) (-) in the high vulnerability areas endorses the OREADIC approach. The vulnerability maps developed in this study have become valuable tools for environmental planning in the region and will be used for predictive management of the groundwater resource.

  13. Use of environmental isotopes for studying human induced change in groundwater environment in Lahore, Pakistan

    International Nuclear Information System (INIS)

    Ahmad, M.; Akram, W.; Sajjad, M.I.; Rafiq, M.; Tasneem, Azam M.

    2002-01-01

    Lahore is the second biggest city of Pakistan where groundwater is the only source of drinking water supply for the city. On the other hand, the quality of groundwater is being degraded due to various human activities especially due to waste disposal practices. Untreated domestic and industrial wastes are discharged into open channels, drains, etc. which leads to surface water and groundwater pollution. This study was undertaken to assess the changes in groundwater environment due to such activities. Water samples were collected on periodical basis from existing handpumps, tube wells and drains and analyzed for isotopic ( 2 H, 3 H, 13 C, 18 O) and major dissolved ions. Samples having high nitrate were analyzed for 15 N. Selected samples were also analyzed for Coliform bacteria. Results of only selected parameters are discussed here. The data showed that quality of shallow groundwater has deteriorated at most of the locations and concentrations of several chemical parameters are higher than WHO permissible levels for drinking water. Comparison with a previous study carried out in 1991, indicated a clear increasing trend of total dissolved salts in groundwater. An outstanding feature of the data is the increasing trend of nitrate concentrations both in shallow and deep groundwater. Results of nitrate analysis indicate that concentrations vary from 10 to 188 mg/l in shallow groundwater and 9 to 41 mg/l in deep groundwater. Frequency histogram of nitrate concentrations is shown. Nitrates which were generally a few ppm have increased at almost all the surveyed locations and have even crossed the WHO limit of 45 mg/l at several shallow locations. High nitrate waters exist as isolated pockets. Results of tritium analysis indicated that shallow groundwater has generally high tritium values. Presence of more nitrate at shallow depths, occurrence of high nitrate waters as isolated pockets and high tritium in contaminated waters suggest that nitrates are derived from as

  14. Purification of contaminated groundwater by membrane technology

    Energy Technology Data Exchange (ETDEWEB)

    Youn, In Soo; Chung, Chin Ki; Kim, Byoung Gon [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-12-01

    The objective of this study is to apply the membrane separation technology to the purification of contaminated ground water in Korea. Under this scope, the purification was aimed to the drinking water level. The scale of the membrane system was chosen to a small filtration plant for local clean water supplies and/or heavy purifiers for buildings and public uses. The actual conditions of ground water contamination in Korea was surveyed to determine the major components to remove under the drinking water requirements. To set up a hybrid process with membrane methods, conventional purification methods were also investigated for the comparison purpose. The research results are summarized as follows : 1) Contamination of the groundwater in Korea has been found to be widespread across the country. The major contaminant were nitrate, bacteria, and organic chlorides. Some solvents and heavy metals are also supposed to exist in the ground water of industrial complexes, cities, and abandoned mines. 2) The purification methods currently used in public filtration plants appear not to be enough for new contaminants from recent industrial expanding. The advanced purification technologies generally adopted for this problem have been found to be unsuitable due to their very complicated design and operation, and lack of confidence in the purification performance. 3) The reverse osmosis tested with FilmTec FT30 membrane was found to remove nitrate ions in water with over 90 % efficiency. 4) The suitable membrane process for the contaminated groundwater in Korea has been found to be the treatments composed of activated carbon, microfiltration, reverse osmosis or ultrafiltration, and disinfection. The activated carbon treatment could be omitted for the water of low organic contaminants. The microfiltration and the reverse osmosis treatments stand for the conventional methods of filtration plants and the advanced methods for hardly removable components, respectively. It is recommended

  15. Groundwater quantitative status assessment in Slovenia

    Directory of Open Access Journals (Sweden)

    Mišo Andjelov

    2006-12-01

    Full Text Available The framework for the integrated water management of the entire EU area has been set, when the European Parliament and Council passed the Directive 2000/60/EC in 2000. According to the directive, the evaluation of meeting the environmental objectives is based also upon the assessment of quantitative and chemical status of individual groundwater body.The assessment of quantitative status of groundwater bodies under the Groundwater Directive of EU is based on the definition of the available groundwater quantity.Thisisalong period mean annual renewable quantity of water in the groundwater body, reduced by the quantity of the long period annual groundwater discharge, which is required for sustaining ecological objectives concerning surface water bodies and preservation of the ecosistems, connected with the groundwater bodies.Methodological approach and the results of the first groundwater quantitive status assessment for 21 groundwater bodies in Slovenia are given in this paper. The assessment of the available groundwater quantity in Slovenian groundwater bodies in the period from 1990 to 2001 are 1,43 ⋅ 109 m3 per year, and 727,4 m3 per capita per year respectively. In the year 2002 abstracted groundwater (0,23 ⋅ 109 m3 per year represents 15 percent of the available groundwater reserves in Slovenia. For all Slovenian groundwater bodies quantitative status was assessed as good.

  16. Spatial distribution of groundwater quality with special emphasis on fluoride of Mandvi Taluka, Surat, Gujarat, India

    Science.gov (United States)

    Prajapati, Mayuri; Jariwala, Namrata; Agnihotri, Prasit

    2017-12-01

    The present study deals with the groundwater quality with respect to F- in the Mandavi Taluka of Surat city with an objective to analyze the spatial variability of ground water quality parameter. A total 57 representative groundwater samples from different bore wells and hand pumps were collected during pre-monsoon. Samples were analyzed for various physiochemical parameters including fluoride. GIS technique is adopted to prepare DEM and spatial distribution map of fluoride to represent fluoride concentration in the study area. Results obtained from analysis with GIS mapping reveal that fluoride in the study is mainly attributed to geogenic source.

  17. Application of 18O and 2H natural isotopes for groundwater study in Semarang Basin, Central Java

    International Nuclear Information System (INIS)

    Rasi Prasetio; Satrio

    2015-01-01

    As a big city that support industrialism, Semarang has increasing needs of fresh water supply which is mostly provided by ground water. The utilization of groundwater must consider sustainability and environmental preservation aspects, as water is basic needs for human being. Therefore, the knowledge about groundwater dynamics is important to manage groundwater utilization. Isotope hydrology technique using 18 O and 2 H isotopes has been applied to investigate groundwater dynamics and can be taken as consideration for groundwater management. For this purpose, water samples have been collected from various water sources such as springs, deep monitoring wells, dug wells, streams and rain water for 18 O and 2 H isotopes analysis. The results show that isotopes composition of groundwater varied between -8.77‰ to -4.76‰ for δ 18 O and -56.6‰ to -29.4‰ for δ 2 H. Isotopes composition for unconfined groundwater in most of study area are relatively uniform, i.e. between -5.9‰ to -6.6‰ for δ 18 O and -35.1‰ to -40.4‰ for δ 2 H, except in some minor places that have more depleted and more enriched composition. This distribution indicates that the unconfined aquifer is depend on local recharge. While most of isotopes composition of deep confined aquifer plotted around isotopes composition of Ungaran's rain water, indicates that the recharge area of these confined groundwater were originated from this elevation or higher. (author)

  18. City Carbon Footprint Networks

    Directory of Open Access Journals (Sweden)

    Guangwu Chen

    2016-07-01

    Full Text Available Progressive cities worldwide have demonstrated political leadership by initiating meaningful strategies and actions to tackle climate change. However, the lack of knowledge concerning embodied greenhouse gas (GHG emissions of cities has hampered effective mitigation. We analyse trans-boundary GHG emission transfers between five Australian cities and their trading partners, with embodied emission flows broken down into major economic sectors. We examine intercity carbon footprint (CF networks and disclose a hierarchy of responsibility for emissions between cities and regions. Allocations of emissions to households, businesses and government and the carbon efficiency of expenditure have been analysed to inform mitigation policies. Our findings indicate that final demand in the five largest cities in Australia accounts for more than half of the nation’s CF. City households are responsible for about two thirds of the cities’ CFs; the rest can be attributed to government and business consumption and investment. The city network flows highlight that over half of emissions embodied in imports (EEI to the five cities occur overseas. However, a hierarchy of GHG emissions reveals that overseas regions also outsource emissions to Australian cities such as Perth. We finally discuss the implications of our findings on carbon neutrality, low-carbon city concepts and strategies and allocation of subnational GHG responsibility.

  19. A conceptual hydrogeologic model for the hydrogeologic framework, geochemistry, and groundwater-flow system of the Edwards-Trinity and related aquifers in the Pecos County region, Texas

    Science.gov (United States)

    Thomas, Jonathan V.; Stanton, Gregory P.; Bumgarner, Johnathan R.; Pearson, Daniel K.; Teeple, Andrew; Houston, Natalie A.; Payne, Jason; Musgrove, MaryLynn

    2013-01-01

    The Edwards-Trinity aquifer is a vital groundwater resource for agricultural, industrial, and municipal uses in the Trans-Pecos region of west Texas. A conceptual model of the hydrogeologic framework, geochemistry, and groundwater-flow system in the 4,700 square-mile study area was developed by the U.S. Geological Survey (USGS) in cooperation with the Middle Pecos Groundwater Conservation District, Pecos County, City of Fort Stockton, Brewster County, and Pecos County Water Control and Improvement District No. 1. The model was developed to gain a better understanding of the groundwater system and to establish a scientific foundation for resource-management decisions. Data and information were collected or obtained from various sources to develop the model. Lithologic information obtained from well reports and geophysical data were used to describe the hydrostratigraphy and structural features of the groundwater system, and aquifer-test data were used to estimate aquifer hydraulic properties. Groundwater-quality data were used to evaluate groundwater-flow paths, water and rock interaction, aquifer interaction, and the mixing of water from different sources. Groundwater-level data also were used to evaluate aquifer interaction as well as to develop a potentiometric-surface map, delineate regional groundwater divides, and describe regional groundwater-flow paths.

  20. Chemometric analysis of groundwater quality data around municipal landfill and paper factory and their potential influence on population’s health

    Directory of Open Access Journals (Sweden)

    Ljiljana Čačić

    2012-02-01

    Full Text Available Aim To assess the level of 15 groundwater quality parameters in groundwater samples collected around municipal landfill and paper factory in order to evaluate usefulness of the groundwater and its possible implication on the human health. Methods Obtained data have been analyzed by principal component analysis (PCA technique, in order to differentiate the groundwater samples on the basis of their compositional differences and origin. Results Wastes and effluents from municipal landfill did not contribute significantly to the pollution of the aquatic medium. Groundwater degradation caused by high contents of nitrate, mineral oils, organic and inorganic matters was particularly expressed in the narrow area of the city centre, near the paper factory and most likely it has occurred over a long period of time. The results have shown that the concentrations of the most measured parameters(NO3-N, NH4-N, oils, organic matter, Fe, Pb, Ni and Cr were above llowed limits for drinking and domestic purposes. onclusion This study has provided important information on cological status of the groundwater systems and for identification f groundwater quality parameters with concentrations above llowable limits for human consumption. The results generally evealed that groundwater assessed in this study mainly does not atisfy safe limits for drinking water and domestic use. As a consequence, ontaminated groundwater becomes a large hygienic nd toxicological problem, since it considerably impedes groundwater tilization. Even though, all of these contaminants havenot yet reached toxic levels, they still represent long term risk for ealth of the population.

  1. Estimation of the sources and flow system of groundwater in Fuji-Gotenba area by stable isotopic analysis and groundwater flow simulation

    International Nuclear Information System (INIS)

    Tomiyama, Shingo; Miyaike, Shusaku; Ii, Hiroyuki; Hattori, Ryota; Ito, Yuji

    2009-01-01

    Understanding the source and chemical character of the groundwater provides an important strategy for the quality management of mineral water and food materials. In order to identify a source and the flow paths of groundwater used for mineral water, the water quality and stable isotopes of hydrogen and oxygen of well water in Gotenba city were studied. The electrical conductivity and chemical character of sampled water are similar to those of well water and spring water discharged elsewhere around Mt. Fuji. The hydrogen and oxygen isotopic ratios of water samples indicate their origin to be solely meteoric and the oxygen isotopic ratios suggest that the groundwater mainly originated from the mountain-side of Mt. Fuji at altitudes of from 1500 m to 2300 m. A subsequent simulation of groundwater showed that the distribution of the total head and the Darcy velocity are down streamlines from mountain-sides toward the study area in Gotenba city. The altitudes of discharge obtained by the simulation are above 2000 m, and these correspond well with altitudes estimated from δ 18 O values of the samples. (author)

  2. Isotopic identification of Saharian groundwaters, groundwater formation in the past

    International Nuclear Information System (INIS)

    Sonntag, C.; Rudolph, J.; Junghans, C.; Thorweihe, U.; Klitzsch, E.; Loehnert, E.P.; El Shazly, E.M.; Swailem, F.M.

    1980-01-01

    Frequency distributions of 14 C groundwater ages for various regions of the Sahara and the adjacent Sahel Zone reflect the alternating sequence of humid and arid periods in the late Pleistocene and Holocene. The groundwaters from deep aquifer systems have mainly been formed in a long wet period from more than 50000 years B.P. till 20000 y B.P. At that time the Northern Sahara has received winter rain from the western drift. This is shown by a west-east decrease in the deuterium and 18 O content of these paleowaters (continental effect in groundwater). The lower deuterium excess d = delta D - 8 x delta 18 O in Northern Saharian paleowaters is interpreted to be due to a lower moisture deficit over the ocean during the ice-age. A hydrogeological model of the paleowaters in the Western Desert of Egypt is presented. (author)

  3. Groundwater and Terrestrial Water Storage

    Science.gov (United States)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2011-01-01

    Most people think of groundwater as a resource, but it is also a useful indicator of climate variability and human impacts on the environment. Groundwater storage varies slowly relative to other non-frozen components of the water cycle, encapsulating long period variations and trends in surface meteorology. On seasonal to interannual timescales, groundwater is as dynamic as soil moisture, and it has been shown that groundwater storage changes have contributed to sea level variations. Groundwater monitoring well measurements are too sporadic and poorly assembled outside of the United States and a few other nations to permit direct global assessment of groundwater variability. However, observational estimates of terrestrial water storage (TWS) variations from the GRACE satellites largely represent groundwater storage variations on an interannual basis, save for high latitude/altitude (dominated by snow and ice) and wet tropical (surface water) regions. A figure maps changes in mean annual TWS from 2009 to 2010, based on GRACE, reflecting hydroclimatic conditions in 2010. Severe droughts impacted Russia and the Amazon, and drier than normal weather also affected the Indochinese peninsula, parts of central and southern Africa, and western Australia. Groundwater depletion continued in northern India, while heavy rains in California helped to replenish aquifers that have been depleted by drought and withdrawals for irrigation, though they are still below normal levels. Droughts in northern Argentina and western China similarly abated. Wet weather raised aquifer levels broadly across western Europe. Rains in eastern Australia caused flooding to the north and helped to mitigate a decade long drought in the south. Significant reductions in TWS seen in the coast of Alaska and the Patagonian Andes represent ongoing glacier melt, not groundwater depletion. Figures plot time series of zonal mean and global GRACE derived non-seasonal TWS anomalies (deviation from the mean of

  4. Innovative technologies for groundwater cleanup

    International Nuclear Information System (INIS)

    Yow, J.L. Jr.

    1992-09-01

    These notes provide a broad overview of current developments in innovative technologies for groundwater cleanup. In this context, groundwater cleanup technologies include site remediation methods that deal with contaminants in ground water or that may move from the vadose zone into ground water. This discussion attempts to emphasize approaches that may be able to achieve significant improvements in groundwater cleanup cost or effectiveness. However, since data for quantitative performance and cost comparisons of new cleanup methods are scarce, preliminary comparisons must be based on the scientific approach used by each method and on the site-specific technical challenges presented by each groundwater contamination situation. A large number of technical alternatives that are now in research, development, and testing can be categorized by the scientific phenomena that they employ and by the site contamination situations that they treat. After reviewing a representative selection of these technologies, one of the new technologies, the Microbial Filter method, is discussed in more detail to highlight a promising in situ groundwater cleanup technology that is now being readied for field testing

  5. Groundwater recharge and agricultural contamination

    Science.gov (United States)

    Böhlke, J.K.

    2002-01-01

    Agriculture has had direct and indirect effects on the rates and compositions of groundwater recharge and aquifer biogeochemistry. Direct effects include dissolution and transport of excess quantities of fertilizers and associated materials and hydrologic alterations related to irrigation and drainage. Some indirect effects include changes in water–rock reactions in soils and aquifers caused by increased concentrations of dissolved oxidants, protons, and major ions. Agricultural activities have directly or indirectly affected the concentrations of a large number of inorganic chemicals in groundwater, for example NO3–, N2, Cl, SO42–, H+, P, C, K, Mg, Ca, Sr, Ba, Ra, and As, as well as a wide variety of pesticides and other organic compounds. For reactive contaminants like NO3–, a combination of chemical, isotopic, and environmental-tracer analytical approaches might be required to resolve changing inputs from subsequent alterations as causes of concentration gradients in groundwater. Groundwater records derived from multi-component hydrostratigraphic data can be used to quantify recharge rates and residence times of water and dissolved contaminants, document past variations in recharging contaminant loads, and identify natural contaminant-remediation processes. These data indicate that many of the world's surficial aquifers contain transient records of changing agricultural contamination from the last half of the 20th century. The transient agricultural groundwater signal has important implications for long-term trends and spatial heterogeneity in discharge.

  6. Geochemical Investigations of Groundwater Stability

    Energy Technology Data Exchange (ETDEWEB)

    Bath, Adrian [Intellisci Ltd., Loughborough (United Kingdom)

    2006-05-15

    The report describes geochemical parameters and methods that provide information about the hydrodynamic stability of groundwaters in low permeability fractured rocks that are potential hosts for radioactive waste repositories. Hydrodynamic stability describes the propensity for changes in groundwater flows over long timescales, in terms of flow rates and flow directions. Hydrodynamic changes may also cause changes in water compositions, but the related issue of geochemical stability of a potential repository host rock system is outside the scope of this report. The main approaches to assessing groundwater stability are numerical modelling, measurement and interpretation of geochemical indicators in groundwater compositions, and analyses and interpretations of secondary minerals and fluid inclusions in these minerals. This report covers the latter two topics, with emphasis on geochemical indicators. The extent to which palaeohydrogeology and geochemical stability indicators have been used in past safety cases is reviewed. It has been very variable, both in terms of the scenarios considered, the stability indicators considered and the extent to which the information was explicitly or implicitly used in assessing FEPs and scenarios in the safety cases. Geochemical indicators of hydrodynamic stability provide various categories of information that are of hydrogeological relevance. Information about groundwater mixing, flows and water sources is potentially provided by the total salinity of groundwaters, their contents of specific non-reactive solutes (principally chloride) and possibly of other solutes, the stable isotopic ratio of water, and certain characteristics of secondary minerals and fluid inclusions. Information pertaining directly to groundwater ages and the timing of water and solute movements is provided by isotopic systems including tritium, carbon-14, chlorine-36, stable oxygen and hydrogen isotopes, uranium isotopes and dissolved mobile gases in

  7. Contaminants in groundwater: Chemical processes

    International Nuclear Information System (INIS)

    Cherry, J.A.; Gillham, R.W.; Barker, J.F.

    1984-01-01

    The movement of most toxic contaminants in groundwater is affected by chemical reactions that cause transfer of contaminant mass between the liquid and solid phases or conversion of dissolved species from one form to another. The chemical attenuation of inorganic contaminants occurs mainly by adsorption, precipitation, oxidation, or reduction. organic contaminants can be adsorbed or degraded by microbiological processes, but at present little is known about their behavior, particularly under the anaerobic conditions that are common in contaminated groundwater. Field and laboratory studies have established that various toxic heavy metals, transition metals, metalloids, radionuclides, and other inorganic species can be mobile or immobile in the groundwater zone, depending on the hydrogeochemical conditions represented by the pH, the redox condition, the ionic strength, the mineralogy, the solid-phase surface area, and the complexing capacity. Although the importance of chemical reactions in the attenuation of contaminants is widely recognized, the capabilities for attenuation predictions are not well developed. This is the case because the chemical processes within dynamic groundwater systems are complex; consequently, many of the geochemical parameters in predictive models are problematic. The prediction problem is complicated by the fact that the chemical processes are continually influenced by the redistribution of dissolved species caused by molecular diffusion and mechanical dispersion. The complexities of these mixing processes contribute to the difficulties in developing reliable methods for predicting the chemical behavior of contaminants in the groundwater zone

  8. Complex interactions among climate change, sanitation, and groundwater quality: A case study from Ramotswa, Botswana

    Science.gov (United States)

    McGill, B. M.; Altchenko, Y.; Kenabatho, P. K.; Sylvester, S. R.; Villholth, K. G.

    2017-12-01

    With population growth, rapid urbanization, and climate change, groundwater is becoming an increasingly important source of drinking water around the world, including southern Africa. This is an investigation into the coupled human and natural system linking climate change, droughts, sanitation, and groundwater quality in Ramotswa, a town in the semi-arid southeastern Botswana. During the recent drought from 2013-2016, water shortages from reservoirs that supply the larger city of Gaborone resulted in curtailed water supply to Ramotswa, forcing people with flush toilets to use pit latrines. Pit latrines have been suspected as the cause of elevated nitrate in the Ramotswa groundwater, which also contributes to the town's drinking water supply. The groundwater pollution paradoxically makes Ramotswa dependent on Gaborone's water, supplied in large part by surface reservoirs, which are vulnerable to drought. Analysis of long-term rainfall records indicates that droughts like the one in 2013-2016 are increasing in likelihood due to climate change. Because of the drought, many more people used pit latrines than under normal conditions. Analysis of the groundwater for nitrate and using caffeine as an indicator, human waste leaching from pit latrines is implicated as the major culprit for the nitrate pollution. The results indicate a critical indirect linkage between climate change, sanitation, groundwater quality and water security in this area of rapid urbanization and population growth. Recommendations are offered for how Ramotswa's water security could be made less vulnerable to climate change.

  9. Hydrogeological and quantitative groundwater assessment of the Basaltic Aquifer, Northern Harrat Rahat, Saudi Arabia

    International Nuclear Information System (INIS)

    Al-Shaibani, A.; Abokhodair, Abdulwahab A.; Lloyd, J.W.; Al-Ahmari, A.

    2007-01-01

    The Northern Harrat Rahat consists of 300m basalt lavas covering some 2000 km2 to the south-east of Al-Madinah in western Saudi Arabia. Like many basalt sequences, the Rahat basalts form an important aquifer and groundwater resource. The aquifer has a saturated thickness of up to 60m and made up of the weathered upper part of underlying basement, pre-basalt sands and gravels and the fractured basalts. Since 1992, groundwater has been abstracted from the aquifer as part of the Al-Madinah water supply. To assess the potential of the aquifer an assessment has been made based on pumping tests of 70 wells. The hydraulic parameters have been shown to be highly variable typical of the fractured domain. The aquifer contains good-quality water in storage, but receives limited recharge. Groundwater temperature anomalies indicate remnant volcanic activity locally. A numerical groundwater model has been constructed, which has been calibrated using limited groundwater head measurements, but with good abstraction records. Prediction of groundwater heads and the examination of several abstraction scenarios indicate that the aquifer can continue to support part of the Al-Madinah demand for the next several years, if certain well distributions are adopted. The predictions also show that the aquifer can only support the total demand of the city for a few days as a contingency resource. (author)

  10. [Healthy Cities projects].

    Science.gov (United States)

    Takano, Takehito

    2002-05-01

    This is a review article on "Healthy Cities". The Healthy Cities programme has been developed by the World Health Organization (WHO) to tackle urban health and environmental issues in a broad way. It is a kind of comprehensive policy package to carry out individual projects and activities effectively and efficiently. Its key aspects include healthy public policy, vision sharing, high political commitment, establishment of structural organization, strategic health planning, intersectoral collaboration, community participation, setting approach, development of supportive environment for health, formation of city health profile, national and international networking, participatory research, periodic monitoring and evaluation, and mechanisms for sustainability of projects. The present paper covered the Healthy Cities concept and approaches, rapid urbanization in the world, developments of WHO Healthy Cities, Healthy Cities developments in the Western Pacific Region, the health promotion viewpoint, and roles of research.

  11. Procedural semantic cities

    OpenAIRE

    Roglà Pujalt, Otger; Pelechano Gómez, Núria; Patow, Gustavo Ariel

    2017-01-01

    Procedural modeling of virtual cities has achieved high levels of realism with little effort from the user. One can rapidly obtain a large city using off-the-shelf software based on procedural techniques, such as the use of CGA. However in order to obtain realistic virtual cities it is necessary to include virtual humanoids that behave realistically adapting to such environment. The first step towards achieving this goal requires tagging the environment with semantics, which is a time consumi...

  12. EU Smart City Governance

    Directory of Open Access Journals (Sweden)

    Carmela Gargiulo

    2013-11-01

    Full Text Available In recent years European Commission has developed a set of documents for Members States tracing, directly or indirectly, recommendations for the transformation of the European city. The paper wants to outline which future EU draws for the city, through an integrated and contextual reading of addresses and strategies contained in the last documents, a future often suggested as Smart City. Although the three main documents (Cohesion Policy 2014-2020 of European Community, Digital Agenda for Europe and European Urban Agenda face the issue of the future development of European cities from different points of view, which are respectively cohesion social, ICT and urban dimension, each of them pays particular attention to urban and territorial dimension, identified by the name of Smart City. In other words, the paper aims at drawing the scenario of evolution of Smart Cities that can be delineated through the contextual reading of the three documents. To this end, the paper is divided into three parts: the first part briefly describes the general contents of the three European economic plan tools; the second part illustrates the scenarios for the future of the European city contained in each document; the third part seeks to trace the evolution of the Smart Cities issue developed by the set of the three instruments, in order to provide the framework of European Community for the near future of our cities

  13. Sinkholes Due to Groundwater Withdrawal in Tazerbo Wellfield, SE Libya.

    Science.gov (United States)

    Alfarrah, Nawal; Berhane, Gebremedhin; Hweesh, Abdelrahim; Walraevens, Kristine

    2017-07-01

    The desert of eastern Libya forms one of the most arid regions of the Sahara. The Great Man-Made River Project (GMRP) was established. It transports millions of cubic meters of water a day from desert wellfields to the coastal cities, where over 80% of the population lives. The Tazerbo Wellfield is one of the wellfields designed within the GMRP, delivering water to the eastern coast of Libya through an underground pipe network. Tazerbo Wellfield consists of 108 production wells; each well was designed to pump 100 L/s. The planned total groundwater withdrawal from all wells is 1 million m 3 /d. The deep sandstone aquifer (Nubian sandstone) is covered by a thick mudstone-siltstone aquitard and is being heavily pumped. The aquifer and fine-grained sediments of the aquitard may be compacted resulting in land subsidence as a result of high exploitation. Local sinkholes have developed in the area of Tazerbo since the start of the pumping from the wellfield in 2004. These sinkholes have been caused mainly by lowering of the piezometric heads due to the withdrawal of groundwater. In this study, a hydrogeological investigation is presented about the effect of large groundwater pumping from the Nubian sandstone aquifer in Tazerbo Wellfield, SE Libya, based on physical parameters for 108 production wells and 23 observation wells. © 2017, National Ground Water Association.

  14. Groundwater productivity potential mapping using evidential belief function.

    Science.gov (United States)

    Park, Inhye; Kim, Yongsung; Lee, Saro

    2014-09-01

    The evidential belief function (EBF) model was applied and validated for analysis of groundwater-productivity potential (GPP) in Boryeong and Pohang cities, agriculture region in Korea using geographic information systems (GIS). Data about related factors, including topography, lineament, geology, forest, soil, and groundwater data were collected and input into a spatial database. Additionally, in the Boryeong area, specific capacity (SPC) data not lower than 4.55 m3 /d/m were collected, corresponding to 300 m3 /d yield from 72 well locations. In the Pohang area, SPC data of ≥ 6.25 m3 /d/m were collected, corresponding to a yield of 500 m3 /d from 44 well locations. By using the constructed spatial database, 19 factors related to groundwater productivity were extracted. The relationships between the well locations and the factors were identified and quantified by using the EBF model. Four relationships were calculated: belief (Bel), disbelief (Dis), uncertainty (Unc), and plausibility (Pls). The relationships were used as factor ratings in the overlay analysis to create GPP indices and maps. The resulting GPP maps showed 83.41% and 77.53% accuracy in Boryeong and Pohang areas, respectively. The EBF model was found to be more effective in terms of prediction accuracy. © 2014, National Ground Water Association.

  15. The effects of urbanization on groundwater quantity and quality in the Zahedan aquifer, southeast Iran

    Science.gov (United States)

    Khazaei, E.; Mackay, R.; Warner, J.W.

    2004-01-01

    This paper investigates the impacts of urban growth on groundwater quality and quantity in the Zahedan aquifer, which is the sole source of water supply for the city of Zahedan, Iran. The investigation is based on the collection of available historical data, supplemented by field and laboratory investigations. Groundwater levels in 40 wells were measured in December 2000. In addition, 102 water samples were taken in two periods during November and December 2000. Of these, 43 samples were analyzed for major ions, 32 samples were analyzed for nitrogen and phosphorus and the remainder for bacteriological contamination. The water level data show that there has been a general decline since 1977 due to over-abstraction. The magnitude of this decline has reached about 20 m in some places. However, in one area over the same period, a rise of about 3 m has been observed. This occurs as a result of the local hydrogeological conditions of shallow bedrock and relatively low permeability materials down stream of this area that limits the flow of groundwater towards the northeastern part of the aquifer. The general fall in groundwater levels has been accompanied by a change in the direction of the groundwater flow and an overall reduction of the areal extent of the saturated region of the aquifer. The city now has a serious problem such that even if the abstracted groundwater is rationed, water is not available for long periods because the demand far exceeds the supply. The heavy impact of urbanization on the groundwater quality is shown through the observed high nitrate (up to 295 mg/l as nitrate) and high phosphorus values (about 0.1 mg/l as P). Significant changes in the chloride concentration are also observed in two areas: increasing from 100 mg/l to 1,600 mg/l and from 2,000 mg/l to 4,000 mg/l, respectively. Furthermore, the bacteriological investigations show that 33 percent of the 27 collected groundwater samples are positive for total coliform and 11 percent of the

  16. Oxidation technologies for groundwater treatment

    International Nuclear Information System (INIS)

    Heeks, R.E.; Smith, L.P.; Perry, P.M.

    1991-01-01

    Xerox Corporation has pilot tested three UV/Oxidation processes for the treatment of contaminated groundwater containing chlorinated and non-chlorinated organic solvents. The technologies pilot tested included the ULTROX system developed by ULTROX International, the perox-pure process of Peroxidation Systems, Inc. and the Rayox process by Solarchem Environmental Systems. The three processes use a combination of ultraviolet light and hydrogen peroxide to oxidize organic solvents in water. The ULTROX system includes ozone as part of the treatment. Data gathered during pilot testing demonstrated that these processes are effective in the destruction of organic contaminants in groundwater. These results are discussed in regard to applicability to the groundwater remediation at the Xerox Facilities in Webster and Blauvelt, New York

  17. 85Kr dating of groundwater

    International Nuclear Information System (INIS)

    Rozanski, K.; Florkowski, T.

    1978-01-01

    The possibility of 85 Kr dating of groundwater is being investigated. The method of gas extraction from 200 to 300 litres of water sample has been developed. The Argon and Krypton mixture, separated from the gas extracted from water, was counted in a 1.5 ml volume proportional counter. The amount of krypton gas in the counter was determined by mass spectrometry. A number of surface and groundwater samples were analyzed indicating an 85 Kr concentration ranging from present atmospheric content (river water) to zero values. 85 Kr 'blank value' was determined to be about 5 per cent of present 85 Kr atmospheric content. For groundwater samples, the mean residence time in the system was calculated assuming the exponential model and known 85 Kr input function. Further improvement of the method should bring higher yield of krypton separation and lower volume of water necessary for analysis. (orig.) [de

  18. Theme city or gated community - images of future cities

    OpenAIRE

    Helenius-Mäki, Leena

    2002-01-01

    The future of the cities has been under discussion since the first city. It has been typical in every civilisation and era to hope for a better city. Creek philosopher Platon created image of future city where all men were equal and the city was ruled by philosophers minds. Many philosopher or later social scientist have ended up to similar "hope to be city". The form and type of the better city has depended from creators of those future city images. The creators have had their future city im...

  19. Groundwater resource evaluation of urban Bulawayo aquifer

    CSIR Research Space (South Africa)

    Rusinga, F

    2005-01-01

    Full Text Available Judicious management of a groundwater system requires an understanding of its hydrogeology and response to various recharge and pumping stresses. However, in developing countries, groundwater resource evaluations are hampered by a lack of adequate...

  20. Big data, smart cities and city planning.

    Science.gov (United States)

    Batty, Michael

    2013-11-01

    I define big data with respect to its size but pay particular attention to the fact that the data I am referring to is urban data, that is, data for cities that are invariably tagged to space and time. I argue that this sort of data are largely being streamed from sensors, and this represents a sea change in the kinds of data that we have about what happens where and when in cities. I describe how the growth of big data is shifting the emphasis from longer term strategic planning to short-term thinking about how cities function and can be managed, although with the possibility that over much longer periods of time, this kind of big data will become a source for information about every time horizon. By way of conclusion, I illustrate the need for new theory and analysis with respect to 6 months of smart travel card data of individual trips on Greater London's public transport systems.

  1. Determination of Some Heavy Metals In The Environment of SADAT Industrial City

    International Nuclear Information System (INIS)

    Nassef, M.; EI-Tahawy, M.S.; Hannigan, R.; EL Sayed, K.A.

    2007-01-01

    The aim of this study was to assess the heavy metal concentration in the soil and the groundwater of Sadat City in Egypt and its relation to the highly developed industrial activities in that area. The levels of Pb, Cr, Cu, Cd, Zr, and V were determined in the groundwater samples (as drinking water supplies) and also the same elements in the soil samples. 10 soil samples and 18 groundwater samples were collected from the city. The soil and the groundwater samples were analysed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The concentration of Pb, Cr, Cu, Cd, Zr, and V measured (in ppm) in the soil samples ranged from 0.48 to 11.3, 0.36 to 2.56, 43.7 to 304.0, 0.34 to 2.64, 0.209 to 21.7, and 0.10 to 17.0, respectively. The concentration of Pb, Cr, Cu, Cd, Zr, and V measured (in ppb) in the groundwater samples of all studied wells ranged from 0.11 to 41.32, 0.10 to 2.63, 0.14 to 5.76, 0.03 to 21.7, 11.4 to 134, and 0.08 to 5.08, respectively. The levels of Pb and Zr exceeded the threshold limits set by the WHO health-based guideline for drinking water in some studied groundwater wells

  2. Food supply reliance on groundwater

    Science.gov (United States)

    Dalin, Carole; Puma, Michael; Wada, Yoshihide; Kastner, Thomas

    2016-04-01

    Water resources, essential to sustain human life, livelihoods and ecosystems, are under increasing pressure from population growth, socio-economic development and global climate change. As the largest freshwater resource on Earth, groundwater is key for human development and food security. Yet, excessive abstraction of groundwater for irrigation, driven by an increasing demand for food in recent decades, is leading to fast exhaustion of groundwater reserves in major agricultural areas of the world. Some of the highest depletion rates are observed in Pakistan, India, California Central Valley and the North China Plain aquifers. In addition, the growing economy and population of several countries, such as India and China, makes prospects of future available water and food worrisome. In this context, it is becoming particularly challenging to sustainably feed the world population, without exhausting our water resources. Besides, food production and consumption across the globe have become increasingly interconnected, with many areas' agricultural production destined to remote consumers. In this globalisation era, trade is crucial to the world's food system. As a transfer of water-intensive goods, across regions with varying levels of water productivity, food trade can save significant volumes of water resources globally. This situation makes it essential to address the issue of groundwater overuse for global food supply, accounting for international food trade. To do so, we quantify the current, global use of non-renewable groundwater for major crops, accounting for various water productivity and trade flows. This will highlight areas requiring quickest attention, exposing major exporters and importers of non-renewable groundwater, and thus help explore solutions to improve the sustainability of global food supply.

  3. Uranium isotopes in groundwater occurring at Amazonas State, Brazil.

    Science.gov (United States)

    da Silva, Márcio Luiz; Bonotto, Daniel Marcos

    2015-03-01

    This paper reports the behavior of the dissolved U-isotopes (238)U and (234)U in groundwater providing from 15 cities in Amazonas State, Brazil. The isotope dilution technique accompanied by alpha spectrometry were utilized for acquiring the U content and (234)U/(238)U activity ratio (AR) data, 0.01-1.4µgL(-1) and 1.0-3.5, respectively. These results suggest that the water is circulating in a reducing environment and leaching strata containing minerals with low uranium concentration. A tendency to increasing ARs values following the groundwater flow direction is identified in Manaus city. The AR also increases according to the SW-NE directions: Uarini→Tefé; Manacapuru→Manaus; Presidente Figueiredo→São Sebastião do Uatumã; and Boa Vista do Ramos→Parintins. Such trends are possibly related to several factors, among them the increasing acid character of the waters. The waters analyzed are used for human consumption and the highest dissolved U content is much lower than the maximum established by the World Health Organization. Therefore, in view of this radiological parameter they can be used for drinking purposes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Groundwater geochemistry in the Seminole Well Field, Cedar Rapids, Iowa

    Science.gov (United States)

    Boyd, Robert A.

    1999-01-01

    The City of Cedar Rapids obtains its municipal water supply from four well fields in an alluvial aquifer along the Cedar River in east-central Iowa. Since 1992, the City and the U.S. Geological Survey have cooperatively studied the groundwater-flow system and water chemistry near the well fields. The geochemistry in the alluvial aquifer near the Seminole Well Field was assessed to identify potentially reactive minerals and possible chemical reactions that produce observed changes in water chemistry. Calcite, dolomite, ferrihydrite, quartz, rhodochrosite, and siderite were identified as potentially reactive minerals by calculating saturation indexes. Aluminosiicate minerals including albite, Ca-montmorillonite, gibbsite, illite, K-feldspar, and kaolinite were identified as potentially reactive minerals using hypothetical saturation indexes calculated with an assumed dissolved aluminum concentration of 1 microgram per liter. Balanced chemical equations derived from inverse-modeling techniques were used to assess chemical reactions as precipitation percolates to the water table. Calcite dissolution was predominate, but aluminosilicate weathering, cation exchange, and redox reactions also likely occurred. Microbial-catalyzed redox reactions altered the chemical composition of water infiltrating from the Cedar River into the alluvial aquifer by consuming dissolved oxygen, reducing nitrate, and increasing dissolved iron and manganese concentrations. Nitrate reduction only occurred in relatively shallow (3 to 7 meters below land surface) groundwater near the Cedar River and did not occur in water infiltrating to deeper zones of the alluvial aquifer.

  5. Groundwater and climate change research scoping study

    OpenAIRE

    Jackson, C.R.; Cheetham, M.; Guha, P.

    2006-01-01

    This scoping study has reviewed much of the published literature in the field of climate change and groundwater research. Whilst it is not exhaustive with regard to groundwater quality issues, most of the published literature relating to climate change and groundwater resources, particularly in the UK, is covered. Further work is required to identify current research needs relating to the effects of climate change on groundwater quality. The study of the effects of climate chan...

  6. Effect to groundwater recharge caused by land use change, comparative filed observation in forest and grassland watersheds, Southwestern Japan

    Science.gov (United States)

    Kudo, K.; Shimada, J.; Tanaka, N.

    2011-12-01

    City of Kumamoto and their surrounding area are totally supported by the local groundwater as their tap water source, which is quite unique as comparing to the other large cities in Japan because Japanese large cities are mostly supplied by the surface water which is relatively easy to access for their tap water. Because of this, prefecture government of the Kumamoto City has much concern about the sustainable use of groundwater resources for their future generations. In Japan, for the sustainable use of groundwater resources, the forestation in the groundwater recharge area believed to increase the groundwater recharge to the local groundwater aquifer. It is true that the forestation surely works to reduce the direct runoff rate during the flooding period and also works to maintain a bit higher base flow rate during the low flow period than without forestation. However, the effect to the groundwater recharge rate by the forestation is not well understood because of the increase of evapo-transpiration by the tree itself. In order to understand the change of the groundwater recharge rate by the forestation, a paired catchments field observation has been conducted in two adjacent forest (0.088km2) and grassland (0.14km2) watersheds at the western foot of Mt. Aso known as recharge area of major local aquifer of Kumamoto region. The study sites are located at 32°53'N, 130°57'E with elevation ranging from 500 to 800m. The forest watershed consists mainly of around 30 year aged Japanese cypress plantations surrounded by Japanese cedar and mixture forest. The grassland watershed consists mainly of pasture and Japanese silver grass. Both catchments develop on the mountain foot slope consists of the Aso-2 pyroclastic sediments. As for the hydrometric observation system for each catchments, parshall flume runoff weir for the river discharge, meteoric tower for the evapo-transpiration monitoring purpose, and precipitation gage are installed to calculate groundwater recharge

  7. Groundwater and Terrestrial Water Storage

    Science.gov (United States)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2014-01-01

    Terrestrial water storage (TWS) comprises groundwater, soil moisture, surface water, snow,and ice. Groundwater typically varies more slowly than the other TWS components because itis not in direct contact with the atmosphere, but often it has a larger range of variability onmultiannual timescales (Rodell and Famiglietti, 2001; Alley et al., 2002). In situ groundwaterdata are only archived and made available by a few countries. However, monthly TWSvariations observed by the Gravity Recovery and Climate Experiment (GRACE; Tapley et al.,2004) satellite mission, which launched in 2002, are a reasonable proxy for unconfinedgroundwater at climatic scales.

  8. The City at Stake:

    Directory of Open Access Journals (Sweden)

    Sophie Esmann Andersen

    2009-12-01

    Full Text Available Studies of the city have been addressed from many different approaches such as law, political science, art history and public administration, in which the eco-nomic, political and legal status of the city have played a major role. However, a new agenda for conceptualizing the city has emerged, in which the city assumes new roles. By using stakeholder theory as a framework for conceptualizing the city, we argue that the city assumes a political-economic agenda-setting role as well as providing a stage for identity constructions and relational performances for consumers, organizations, the media, politicians and other stakeholders. Stakeholder theory allows us to conceptualize the city as being constituted by stakes and relationships between stakeholders which are approached from three analytical positions (modern, postmodern and hypermodern, respectively, thereby allowing us to grasp different stakes and types of relationships, ranging from functional and contractual relationships to individualized and emotionally driven or more non-committal and fluid forms of relationships. In order to support and illustrate the analytical potentials of our framework for conceptualizing urban living, we introduce a project which aims to turn the city of Aarhus into a CO2-neutral city by the year 2030, entitled Aarhus CO2030. We conclude that applying stakeholder theory to a hyper-complex organization such as a city opens up for a reconceptualization of the city as a web of stakes and stakeholder relations. Stakeholder theory contributes to a nuanced and elaborate understanding of the urban complexity and web of both enforced and voluntary relationships as well as the different types of relationships that characterize urban life.

  9. Management decision of optimal recharge water in groundwater artificial recharge conditions- A case study in an artificial recharge test site

    Science.gov (United States)

    He, H. Y.; Shi, X. F.; Zhu, W.; Wang, C. Q.; Ma, H. W.; Zhang, W. J.

    2017-11-01

    The city conducted groundwater artificial recharge test which was taken a typical site as an example, and the purpose is to prevent and control land subsidence, increase the amount of groundwater resources. To protect groundwater environmental quality and safety, the city chose tap water as recharge water, however, the high cost makes it not conducive to the optimal allocation of water resources and not suitable to popularize widely. To solve this, the city selects two major surface water of River A and B as the proposed recharge water, to explore its feasibility. According to a comprehensive analysis of the cost of recharge, the distance of the water transport, the quality of recharge water and others. Entropy weight Fuzzy Comprehensive Evaluation Method is used to prefer tap water and water of River A and B. Evaluation results show that water of River B is the optimal recharge water, if used; recharge cost will be from 0.4724/m3 to 0.3696/m3. Using Entropy weight Fuzzy Comprehensive Evaluation Method to confirm water of River B as optimal water is scientific and reasonable. The optimal water management decisions can provide technical support for the city to carry out overall groundwater artificial recharge engineering in deep aquifer.

  10. Valuing groundwater: A practical approach for integrating ...

    African Journals Online (AJOL)

    ... Community (SADC) Groundwater and Drought Management Project. This methodology can be generally applied to groundwater management issues across the SADC region. The methodology is based upon an ecosystem services approach which considers all the potential services that groundwater provides, which can ...

  11. Hydrogeochemical assessment of groundwater in Kashmir Valley ...

    Indian Academy of Sciences (India)

    Groundwater samples ( = 163) were collected across Kashmir Valley in 2010 to assess the hydrogeochemistry of the groundwater in shallow and deep aquifers and its suitability for domestic, agriculture, horticulture, and livestock purposes. The groundwater is generally alkaline in nature. The electrical conductivity (EC) ...

  12. Hydrogeochemical assessment of groundwater in Kashmir Valley ...

    Indian Academy of Sciences (India)

    Groundwater samples (n = 163) were collected across Kashmir Valley in 2010 to assess the hydrogeo- chemistry of the groundwater in shallow and deep aquifers and its suitability for domestic, agriculture, horticulture, and livestock purposes. The groundwater is generally alkaline in nature. The electrical conductivity (EC) ...

  13. Groundwater circulation and hydrogeochemical evolution in ...

    Indian Academy of Sciences (India)

    Deuterium and oxygen-18 isotopes in groundwater samples indicate that the recharge of groundwater is happened by meteoric water andglacier melt-water in the Kunlun Mountains, and in three different recharge conditions. Groundwater ages, estimated by the radiogenic (³H and ¹⁴C) isotope data, range from present to ...

  14. State space modeling of groundwater fluctuations

    NARCIS (Netherlands)

    Berendrecht, W.L.

    2004-01-01

    Groundwater plays an important role in both urban and rural areas. It is therefore essential to monitor groundwater fluctuations. However, data that becomes available need to be analyzed further in order to extract specific information on the groundwater system. Until recently, simple linear time

  15. Quantification of Seepage in Groundwater Dependent Wetlands

    DEFF Research Database (Denmark)

    Johansen, Ole; Beven, Keith; Jensen, Jacob Birk

    2017-01-01

    Restoration and management of groundwater dependent wetlands require tools for quantifying the groundwater seepage process. A method for determining point estimates of the groundwater seepage based on water level observations is tested. The study is based on field data from a Danish rich fen...

  16. A proposed groundwater management framework for municipalities ...

    African Journals Online (AJOL)

    Groundwater is not being perceived as an important water resource and therefore has been given limited attention in South Africa. ... Hence, the Water Research Commission (WRC) has commissioned a project to develop a Groundwater Management Framework that incorporates all aspects of groundwater management at ...

  17. A proposed groundwater management framework for municipalities ...

    African Journals Online (AJOL)

    Groundwater is not being perceived as an important water resource and therefore has been given limited attention in South. Africa. This is reflected in general ... Research Commission (WRC) has commissioned a project to develop a Groundwater Management Framework that incorpo- rates all aspects of groundwater ...

  18. Groundwater: Illinois' Buried Treasure. Education Activity Guide.

    Science.gov (United States)

    Environmental Education Association of Illinois, Chicago.

    Groundwater is an extremely valuable resource that many feel has been too long neglected and taken for granted. There is growing recognition in Illinois and throughout the United States that comprehensive groundwater protection measures are vital. Illinois embarked on a course in protecting groundwater resources with the passage of the Illinois…

  19. Investigation of Seawater Intrusion into Coastal Groundwater ...

    African Journals Online (AJOL)

    ADOWIE PERE

    https://dx.doi.org/10.4314/jasem.v21i2.18. Key words: Escravos, Vertical electrical sounding, Saltwater Intrusion, freshwater lenses, Aquifer, groundwater. Globally groundwater contributes a greater percentage of water usage in domestic, irrigation of agricultural farms and industrial purposes. Though groundwater is not the ...

  20. Governing the City

    DEFF Research Database (Denmark)

    Kornberger, Martin

    2012-01-01

    cities. This theoretical curiosity is reflected in the rising interest in urban strategy from practice. For instance, the World Bank regularly organizes an Urban Strategy Speaker Series, while the powerful network CEOs for Cities lobbies for a strategic approach to urban development. Critical scholars...

  1. Feeding the Sustainable City

    International Development Research Centre (IDRC) Digital Library (Canada)

    , many Southern cities are now re-examining their attitude to urban agriculture. The challenge they face is how to control agricultural activity so that it can be integrated into the city environment for the benefit of the urban farmers and the rest of ...

  2. Walkout in Crystal City

    Science.gov (United States)

    Barrios, Greg

    2009-01-01

    When students take action, they create change that extends far beyond the classroom. In this article, the author, who was a former teacher from Crystal City, Texas, remembers the student walkout that helped launch the Latino civil rights movement 40 years ago. The Crystal City student walkout remains a high point in the history of student activism…

  3. Innovation in City Governments

    DEFF Research Database (Denmark)

    Lewis, Jenny M; Ricard, Lykke Margot; Klijn, Erik Hans

    project in Copenhagen, Barcelona and Rotterdam. The book provides major new insights on how structures, networks and leadership in city governments shape the social innovation capacity of cities. It provides ground-breaking analyses of how governance structures and local socio-economic challenges...

  4. Smart networked cities?

    NARCIS (Netherlands)

    Tranos, E.; Gertner, D.A.

    2012-01-01

    This paper aims to critically assess the lack of a global inter-urban perspective in the smart city policy framework from a conceptual standpoint. We argue here that the smart city policy agenda should be informed by and address the structure of transnational urban networks as this can affect the

  5. Innovation and the City

    Science.gov (United States)

    Kleiman, Neil; Forman, Adam; Ko, Jae; Giles, David; Bowles, Jonathan

    2013-01-01

    With Washington trapped in budget battles and partisan gridlock, cities have emerged as the best source of government innovation. Nowhere is this more visible than in New York City. Since taking office in 2002, Mayor Bloomberg has introduced a steady stream of innovative policies, from a competition to recruit a new applied sciences campus and a…

  6. Distance Estimation in Cities

    Science.gov (United States)

    Canter, David; Tagg, Stephen K.

    1975-01-01

    The results of eleven distance estimation studies made in seven cities and five countries are reported. Distances were estimated between various points within the cities in which the subjects were resident. In general, undergraduate residents' distance estimates correlated highly with actual distance, but the nonundergraduate group's did not.…

  7. Preface (to Playable Cities)

    NARCIS (Netherlands)

    Unknown, [Unknown; Nijholt, A.; Nijholt, Antinus

    In this book, we address the issue of playfulness and playability in intelligent and smart cities. Playful technology can be introduced and authorized by city authorities. This can be compared and is similar to the introduction of smart technology in theme and recreational parks. However, smart

  8. in benin city, nigeria

    African Journals Online (AJOL)

    CURRENT PRACTICES IN INFANT NUTRITION. IN BENIN CITY, NIGERIA. U.H. Oparaocha, O.M.Ibadin, C.D. Muogbo. The Roding Medical Centre, Victoria Island, Lagos and Departments of Child Health,. University of Benin/Teaching Hospital, Benin City,. ABSTRACT. A community based prospective study was carried out ...

  9. City Bug Report

    DEFF Research Database (Denmark)

    Korsgaard, Henrik; Brynskov, Martin

    2014-01-01

    This paper explores the wider contexts of digital policy, transparency, digitisation and how this changes city administration and the role of the (digital) publics, using City Bug Report as a design case. Employing a mix between design research and action research, the authors exemplify and analy...

  10. Cities, knowledge and innovation

    NARCIS (Netherlands)

    van Oort, Frank|info:eu-repo/dai/nl/107712741; Lambooy, J.G.

    2014-01-01

    This chapter provides an overview of current theories and empirical research on cities and the knowledge economy. Two recent and interrelated streams of literature are discussed: the first focusing on agglomeration economies related to increasing returns and knowledge spillovers of firms in cities

  11. City profile: Paramaribo

    NARCIS (Netherlands)

    Verrest, H.J.L.M.

    2010-01-01

    Paramaribo, the largest and only significant urban area in Suriname, is a typical primate city. The majority of the countries’ population resides here and the majority of political, social and economic functions is clustered in the urban zone. In the course of the 20th century, the city changed

  12. Sustainability for Shrinking Cities

    Science.gov (United States)

    Shrinking cities are widespread throughout the world despite the rapidly increasing global urban population. These cities are attempting to transition to sustainable trajectories to improve the health and well-being of urban residents, to build their capacity to adapt to changing...

  13. The Flickering Global City

    Directory of Open Access Journals (Sweden)

    Eric Slater

    2015-08-01

    Full Text Available This article explores new dimensions of the global city in light of the correlation between hegemonic transition and the prominence of financial centers. It counterposes Braudel’s historical sequence of dominant cities to extant approaches in the literature, shifting the emphasis from a convergence of form and function to variations in history and structure. The marked increase of finance in the composition of London, New York and Tokyo has paralleled each city’s occupation of a distinct niche in world financial markets: London is the principal center of currency exchange, New York is the primary equities market, and Tokyo is the leader in international banking. This division expresses the progression of world-economies since the nineteenth century and unfolds in the context of the present hegemonic transition. By combining world-historical and city-centered approaches, the article seeks to reframe the global city and overcome the limits inherent in the paradigm of globalization.

  14. Smart City Planning

    DEFF Research Database (Denmark)

    Ekman, Ulrik

    2018-01-01

    This article reflects on the challenges for urban planning posed by the emergence of smart cities in network societies. In particular, it reflects on reductionist tendencies in existing smart city planning. Here the concern is with the implications of prior reductions of complexity which have been...... undertaken by placing primacy in planning on information technology, economical profit, and top-down political government. Rather than pointing urban planning towards a different ordering of these reductions, this article argues in favor of approaches to smart city planning via complexity theory....... Specifically, this article argues in favor of approaching smart city plans holistically as topologies of organized complexity. Here, smart city planning is seen as a theory and practice engaging with a complex adaptive urban system which continuously operates on its potential. The actualizations in the face...

  15. Environmental Groundwater Vulnerability Assessment in Urban Water Mines (Porto, NW Portugal

    Directory of Open Access Journals (Sweden)

    Maria José Afonso

    2016-11-01

    Full Text Available A multidisciplinary approach was developed to estimate urban groundwater vulnerability to contamination combining hydrogeology, hydrogeochemistry, subterranean hydrogeotechnics, groundwater ecotoxicology and isotope tracers. Paranhos and Salgueiros spring waters in Porto City were used as a case study. Historical and current vulnerability scenarios were compared using hydrogeological GIS-based modelling. Potential contamination sources were mapped around the spring galleries. Most of these were point sources and their potential contamination load was moderate. The ecotoxicological assessment indicated a low acute toxicity potential. Groundwater radionuclides appeared to be mainly controlled by geological factors and biomineralisation. Vulnerability maps suggest that most of the area has a moderate to low vulnerability to contamination. However, some surface sources such as sewage systems cause contamination and contribute to increased vulnerability. This integrated approach was demonstrated to be adequate for a better knowledge of urban hydrogeological processes and their dynamics, and highlighted the importance of a vulnerability assessment in urban areas.

  16. Spatial variability and long-term analysis of groundwater quality of Faisalabad industrial zone

    Science.gov (United States)

    Nasir, Muhammad Salman; Nasir, Abdul; Rashid, Haroon; Shah, Syed Hamid Hussain

    2017-10-01

    Water is the basic necessity of life and is essential for healthy society. In this study, groundwater quality analysis was carried out for the industrial zone of Faisalabad city. Sixty samples of groundwater were collected from the study area. The quality maps of deliberately analyzed results were prepared in GIS. The collected samples were analyzed for chemical parameters and heavy metals, such as total hardness, alkalinity, cadmium, arsenic, nickel, lead, and fluoride, and then, the results were compared with the WHO guidelines. The values of these results were represented by a mapping of quality parameters using the ArcView GIS v9.3, and IDW was used for raster interpolation. The long-term analysis of these parameters has been carried out using the `R Statistical' software. It was concluded that water is partially not fit for drinking, and direct use of this groundwater may cause health issues.

  17. Groundwater Arsenic Contamination in Kopruoren Basin (Kutahya), Turkey

    Science.gov (United States)

    Arslan, S.; Dokuz, U.; Celik, M.; Cheng, Z.

    2012-12-01

    Groundwater quality in the Kopruoren Basin located to the west of Kutahya city in western Anatolia was investigated. Kopruoren Basin is about 275 km2 with about 6,000 residents, but the surface and ground-water quality in this basin impacts a much larger population since the area is located upstream of Kutahya and Eskisehir plains. Groundwater occurs under confined conditions in the limestones of Pliocene units. The only silver deposit of Turkey is developed in the metamorphic basement rocks, Early Miocene volcanics and Pliocene units near Gumuskoy. The amount of silver manufactured annually comprises about 1% of the World's Silver Production. The cyanide-rich wastes of the Eti Gumus silver plant is stored in waste pools. There have been debates about the safety of this facility after a major collapse occurred in one of the pools in May 2011. In this study samples from 31 wells and 21 springs were collected in July and October 2011 and May 2012. The groundwaters are of Ca-Mg-HCO3 type, with arsenic, zinc and antimony occurring at high concentrations. Dissolved arsenic concentrations are as high as 48 ug/L in springs and 734 ug/L in well water. Arsenic in 57% of the springs and 68% of the wells exceeded the WHO guideline value (10 ug/L). Natural sources of arsenic in the area include the dissolution of arsenic-rich minerals such as realgar and orpiment associated with the mineral deposits in the southern part of the study area. In the northern part, arsenic is enriched due to the dissolution of arsenic-bearing coal deposits. Besides these natural sources of contamination, the silver mining activity could be an important anthropogenic source. The leakage of cyanide and arsenic, together with other trace elements to the environment from the waste pools, will continue to poison the environment if necessary precautions are not taken immediately.

  18. Groundwater for urban water supplies in northern China - An overview

    Science.gov (United States)

    Zaisheng, Han

    Groundwater plays an important role for urban and industrial water supply in northern China. More than 1000 groundwater wellfields have been explored and installed. Groundwater provides about half the total quantity of the urban water supply. Complete regulations and methods for the exploration of groundwater have been established in the P.R. China. Substantial over-exploitation of groundwater has created environmental problems in some cities. Some safeguarding measures for groundwater-resource protection have been undertaken. Résumé Les eaux souterraines jouent un rôle important dans l'approvisionnement en eau des agglomérations et des industries du nord de la Chine. Les explorations ont conduit à mettre en place plus de 1000 champs de puits captant des eaux souterraines. Les eaux souterraines satisfont environ la moitié des besoins en eau des villes. Une réglementation complète et des méthodes d'exploration des eaux souterraines ont étéétablies en République Populaire de Chine. Une surexploitation très nette est à l'origine de problèmes environnementaux dans certaines villes. Des mesures ont été prises pour protéger la ressource en eau souterraine. Resumen El agua subterránea desempeña un papel importante en el suministro de agua para uso doméstico e industrial en la China septentrional. Se han explorado y puesto en marcha más de 1000 campos de explotación de aguas subterráneas, que proporcionan cerca de la mitad del total del suministro urbano. En la República Popular de China se han definido totalmente la legislación y la metodología para realizar estas explotaciones. La gran sobreexplotación en algunas ciudades ha creado algunos problemas medioambientales. Como consecuencia, se han llevado a cabo algunas medidas de protección de los recursos de aguas subterráneas.

  19. Evapotranspiration And Geochemical Controls On Groundwater Plumes At Arid Sites: Toward Innovative Alternate End-States For Uranium Processing And Tailings Facilities

    International Nuclear Information System (INIS)

    Looney, Brian B.; Denham, Miles E.; Eddy-Dilek, Carol A.; Millings, Margaret R.; Kautsky, Mark

    2014-01-01

    Management of legacy tailings/waste and groundwater contamination are ongoing at the former uranium milling site in Tuba City AZ. The tailings have been consolidated and effectively isolated using an engineered cover system. For the existing groundwater plume, a system of recovery wells extracts contaminated groundwater for treatment using an advanced distillation process. The ten years of pump and treat (P and T) operations have had minimal impact on the contaminant plume - primarily due to geochemical and hydrological limits. A flow net analysis demonstrates that groundwater contamination beneath the former processing site flows in the uppermost portion of the aquifer and exits the groundwater as the plume transits into and beneath a lower terrace in the landscape. The evaluation indicates that contaminated water will not reach Moenkopi Wash, a locally important stream. Instead, shallow groundwater in arid settings such as Tuba City is transferred into the vadose zone and atmosphere via evaporation, transpiration and diffuse seepage. The dissolved constituents are projected to precipitate and accumulate as minerals such as calcite and gypsum in the deep vadose zone (near the capillary fringe), around the roots of phreatophyte plants, and near seeps. The natural hydrologic and geochemical controls common in arid environments such as Tuba City work together to limit the size of the groundwater plume, to naturally attenuate and detoxify groundwater contaminants, and to reduce risks to humans, livestock and the environment. The technical evaluation supports an alternative beneficial reuse (''brownfield'') scenario for Tuba City. This alternative approach would have low risks, similar to the current P and T scenario, but would eliminate the energy and expense associated with the active treatment and convert the former uranium processing site into a resource for future employment of local citizens and ongoing benefit to the Native American Nations

  20. Evapotranspiration And Geochemical Controls On Groundwater Plumes At Arid Sites: Toward Innovative Alternate End-States For Uranium Processing And Tailings Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Looney, Brian B.; Denham, Miles E.; Eddy-Dilek, Carol A.; Millings, Margaret R.; Kautsky, Mark

    2014-01-08

    Management of legacy tailings/waste and groundwater contamination are ongoing at the former uranium milling site in Tuba City AZ. The tailings have been consolidated and effectively isolated using an engineered cover system. For the existing groundwater plume, a system of recovery wells extracts contaminated groundwater for treatment using an advanced distillation process. The ten years of pump and treat (P&T) operations have had minimal impact on the contaminant plume – primarily due to geochemical and hydrological limits. A flow net analysis demonstrates that groundwater contamination beneath the former processing site flows in the uppermost portion of the aquifer and exits the groundwater as the plume transits into and beneath a lower terrace in the landscape. The evaluation indicates that contaminated water will not reach Moenkopi Wash, a locally important stream. Instead, shallow groundwater in arid settings such as Tuba City is transferred into the vadose zone and atmosphere via evaporation, transpiration and diffuse seepage. The dissolved constituents are projected to precipitate and accumulate as minerals such as calcite and gypsum in the deep vadose zone (near the capillary fringe), around the roots of phreatophyte plants, and near seeps. The natural hydrologic and geochemical controls common in arid environments such as Tuba City work together to limit the size of the groundwater plume, to naturally attenuate and detoxify groundwater contaminants, and to reduce risks to humans, livestock and the environment. The technical evaluation supports an alternative beneficial reuse (“brownfield”) scenario for Tuba City. This alternative approach would have low risks, similar to the current P&T scenario, but would eliminate the energy and expense associated with the active treatment and convert the former uranium processing site into a resource for future employment of local citizens and ongoing benefit to the Native American Nations.

  1. Groundwater-pumping optimization for land-subsidence control in Beijing plain, China

    Science.gov (United States)

    Qin, Huanhuan; Andrews, Charles B.; Tian, Fang; Cao, Guoliang; Luo, Yong; Liu, Jiurong; Zheng, Chunmiao

    2018-01-01

    Beijing, in the North China plain, is one of the few megacities that uses groundwater as its main source of water supply. Groundwater accounts for about two-thirds of the city's water supply, and during the past 50 years the storage depletion from the unconsolidated aquifers underlying the city has been >10.4 billion m3. By 2010, groundwater pumping in the city had resulted in a cumulative subsidence of greater than 100 mm in an area of about 3,900 km2, with a maximum cumulative subsidence of >1,200 mm. This subsidence has caused significant social and economic losses in Beijing, including significant damage to underground utilities. This study was undertaken to evaluate various future pumping scenarios to assist in selecting an optimal pumping scenario to minimize overall subsidence, meet the requirements of the Beijing Land Subsidence Prevention Plan (BLSPP 2013-2020), and be consistent with continued sustainable economic development. A numerical groundwater and land-subsidence model was developed for the aquifer system of the Beijing plain to evaluate land subsidence rates under the possible future pumping scenarios. The optimal pumping scenario consistent with the evaluation constraints is a reduction in groundwater pumping from three major pumping centers by 100, 50 and 20%, respectively, while maintaining an annual pumping rate of 1.9 billion m3. This scenario's land-subsidence rates satisfy the BLSPP 2013-2020 and the pumping scenario is consistent with continued economic development. It is recommended that this pumping scenario be adopted for future land-subsidence management in Beijing.

  2. Hydrogeological Investigation and Groundwater Potential ...

    African Journals Online (AJOL)

    The paper assesses groundwater quality and productivity in Haromaya watershed, eastern Ethiopia. Continuous pumping test data, collected from seven boreholes was used to determine productivity of the aquifers. 14 water samples were tested for water quality. The aquifers on the basis of permeability, potential and ...

  3. Adsorptive Iron Removal from Groundwater

    NARCIS (Netherlands)

    Sharma, S.K.

    2001-01-01

    Iron is commonly present in groundwater worldwide. The presence of iron in drinking water is not harmful to human health, however it is undesirable because of the associated aesthetic and operational problems, namely: bad taste, colour, stains on laundry and plumbing fixtures, and aftergrowth in the

  4. HYDROGEOPHYSICAL EVALUATION OF THE GROUNDWATER ...

    African Journals Online (AJOL)

    Timothy Ademakinwa

    Vertical Electrical Soundings (VES) and hydrogeological data were used to delineate the subsurface sequence and map the aquifer units with a view to evaluating the groundwater prospect of the central part of Ogun State,. Southwestern Nigeria. Thirty Schlumberger VES with maximum current electrode spacing (AB) of ...

  5. Adsorptive iron removal from groundwater

    NARCIS (Netherlands)

    Sharma, S.K.

    2001-01-01

    Iron is commonly present in groundwater worldwide. The presence of iron in the water supply is not harmful to human health, however it is undesirable. Bad taste, discoloration, staining, deposition in the distribution system leading to aftergrowth, and incidences of high turbidity are some

  6. Summary report on groundwater chemistry

    International Nuclear Information System (INIS)

    Lampen, P.; Snellman, M.

    1993-07-01

    The preliminary site investigations for radioactive waste disposal (in Finland) carried out by Teollisuuden Voima Oy (TVO) during the period 1987 to 1992 yielded data on hydrogeochemistry from a total 337 water samples. The main objective of the groundwater chemistry studies was to characterize groundwaters at the investigation sites and, specifically, to create a concept for the mean residence times and evolution of groundwater by means of isotopic analyses. Moreover, the studies yielded input data for geochemical modelling and the performance assessment. Samples were taken from deep boreholes (with a depth of 500 to 1000 m), percussion-drilled boreholes (depth approx. 200 m), flushing-water wells (approx. 100 m) and multi-level pietzometers (approx. 100 m) used in the hydrological tests. The water used for drilling the deep boreholes was taken from local flushing-water wells, whose water was also analyzed in detail. The flushing water used in drilling was marked with two tracers, iodine and uranine, analyzed with two different methods. For reference purposes, samples were also taken from surficial and groundwaters over a large area surrounding the investigation site. Precipitation over a period of at least one year was collected at all the five investigation sites and the samples were analyzed in great detail, particularly with regard to isotopes. Similarly, snow profile samples representing precipitation during the entire winter was taken from each site at least once

  7. Arsenic levels in groundwater aquifer

    African Journals Online (AJOL)

    Miodrag Jelic

    5Faculty of Ecology and Environmental Sciences, Union-Nikola Tesla University, Belgrade, Serbia. 6Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia. Accepted 31 December, 2012. As part of a survey on the groundwater aquifer at the Neoplanta source site, standard laboratory.

  8. Groundwater regulation and integrated planning

    Science.gov (United States)

    Quevauviller, Philippe; Batelaan, Okke; Hunt, Randall J.

    2016-01-01

    The complex nature of groundwater and the diversity of uses and environmental interactions call for emerging groundwater problems to be addressed through integrated management and planning approaches. Planning requires different levels of integration dealing with: the hydrologic cycle (the physical process) including the temporal dimension; river basins and aquifers (spatial integration); socioeconomic considerations at regional, national and international levels; and scientific knowledge. The great natural variation in groundwater conditions obviously affects planning needs and options as well as perceptions from highly localised to regionally-based approaches. The scale at which planning is done therefore needs to be carefully evaluated against available policy choices and options in each particular setting. A solid planning approach is based on River Basin Management Planning (RBMP), which covers: (1) objectives that management planning are designed to address; (2) the way various types of measures fit into the overall management planning; and (3) the criteria against which the success or failure of specific strategies or interventions can be evaluated (e.g. compliance with environmental quality standards). A management planning framework is to be conceived as a “living” or iterated document that can be updated, refined and if necessary changed as information and experience are gained. This chapter discusses these aspects, providing an insight into European Union (EU), United States and Australia groundwater planning practices.

  9. The control of saline groundwater

    NARCIS (Netherlands)

    Talsma, T.

    1963-01-01

    A study was made of the effect of the watertable, water-conducting properties of the soil, climatic factors and groundwater salinity on the salinization of soils in the Murrumbidgee Irrigation Areas, Australia.

    Average daily capillary flow rates were calculated from measured salinization (by

  10. To study the effects of groundwater contamination in Kasur due to Nallah Rohi

    International Nuclear Information System (INIS)

    Ghumman, A.R.; Shamim, M.A.

    2005-01-01

    Groundwater contamination is a worldwide known problem. Pakistan, being a developing country, is also facing the problem created by groundwater pollution. Disposal of domestic wastes and agricultural treatments has been reported to be a considerable factor for causing the pollution, especially the groundwater contamination. In the rural areas of Pakistan, latrines and septic tanks have become common because of the advancement in the living standards. All of the domestic wastes is disposed off into the ponds or nearby passing streams. In the similar fashion, drains in the big and well developed cities of Pakistan lead the domestic waste, along with the industrial waste, into the passing by streams, canals and rivers. All of such disposed off waste is untreated because of the lack of legislation and its improper implementation. The contaminated water affects the health of human beings and also destroys the crops when this water is used for irrigation. So this paper deals with the effects and condition of the disposal of the harmful chemicals, which ultimately through seepage reach the groundwater and make it hazardous. Also, the lateral distances of the contaminated groundwater were found out. For experimentation, major city of Kasur which is in the vicinity of Nullah Rohi, was selected. All the wastes including both the industrial as well as domestic, of the whole area, is disposed off into the Nullah. The percolation of the harmful chemicals and its mixing with groundwater has resulted in the hazardous effects on the inhabitants of the area on the irrigation land as well. So the water in the vicinity, at different locations was tested and the degree of contamination and the lateral distances of contaminated water were also worked out. (author)

  11. Application of Isotope Techniques in the Assessment of Groundwater Resource in Water Resources Region 10, Philippines

    International Nuclear Information System (INIS)

    Racadio, Charles Darwin T.; Mendoza, Norman DS.; Castañeda, Soledad S.; Abaño, Susan P.; Rongavilla, Luis S.; Castro, Joey

    2015-01-01

    Groundwater has been the primary source of drinking water of about 50% of the people in the Philippines and the numbers continue to rise. However, data and information on groundwater resources are generally spasmodic or sparse in the country. A specific remedy to address this gap is the use of isotope hydrological techniques. A pilot project utilizing this technique was done in Water Resources Region X with the aim of demonstrating the effectiveness and efficiency of these approach in groundwater resources assessment. When optimized, the technique will be replicated in other areas of the country. Groundwater samples from springs deep wells hand pumps and dug wells and river water were collected within the study area from September 2012 to June 2014. Monthly integrated precipitation samples were also collected at different points within the study area from October 2012 to March 2015. Samples were analyzed for stable isotope (δ”2H and δ”1”8O) using Laser Water Isotope Analyzer and tritium for groundwater dating. Results showed that aquifers in the study area are recharged by infiltrated rain during the heavy rainfall moths (May to November for Cagayan-Tagaloan Basin, and December to April for Agusan Basin). Water in Agusan Basin is isotopically enriched compared with the water in Cagayan-Tagaloan Basin. There appears to be interaction between shallow unconfined aquifer and deep semi-confined aquifer in Cagayan de Oro City. Shallow aquifers appear to be recharged by local precipitation. Groundwater in the study area is of Ca-Mg-HCO 3 type, which is characteristic of dynamic water with short residence time. Tritium-helium aging puts the water at ages between 18 to 72 years. Recharged rates of 422 to 625 mm/year were calculated for Cagayan de Oro City.(author)

  12. Assessment of groundwater quality at a MSW landfill site using standard and AHP based water quality index: a case study from Ranchi, Jharkhand, India.

    Science.gov (United States)

    Chakraborty, Shubhrasekhar; Kumar, R Naresh

    2016-06-01

    Landfill leachate generated from open MSW dumpsite can cause groundwater contamination. The impact of open dumping of MSW on the groundwater of adjacent area was studied. To assess the spatial and temporal variations in groundwater quality, samples were collected around an open MSW dumping site in Ranchi city, Jharkhand, India. Groundwater samples were analysed for various physicochemical and bacteriological parameters for 1 year. Results indicated that the groundwater is getting contaminated due to vertical and horizontal migration of landfill leachate. Extent of contamination was higher in areas closer to the landfill as indicated by high alkalinity, total dissolved solids and ammonia concentration. Metals such as lead, iron, and manganese were present at concentrations of 0.097, 0.97 and 0.36 mg/L, respectively exceeding the Bureau of Indian Standards (BIS) 10,500 for drinking water. Enterobacteriaceae were also detected in several groundwater samples and highest coliform count of 2.1×10(4) CFU/mL was recorded from a dug well. In order to determine the overall groundwater quality, water quality index (WQI) was calculated using weighted arithmetic index method and this index was further modified by coupling with the analytical hierarchy process (AHP) to get specific information. WQI values indicated that the overall groundwater quality of the region came under "poor" category while zone wise classification indicated the extent of impact of landfill leachate on groundwater.

  13. Applying Factor Analysis Combined with Kriging and Information Entropy Theory for Mapping and Evaluating the Stability of Groundwater Quality Variation in Taiwan

    Science.gov (United States)

    Shyu, Guey-Shin; Cheng, Bai-You; Chiang, Chi-Ting; Yao, Pei-Hsuan; Chang, Tsun-Kuo

    2011-01-01

    In Taiwan many factors, whether geological parent materials, human activities, and climate change, can affect the groundwater quality and its stability. This work combines factor analysis and kriging with information entropy theory to interpret the stability of groundwater quality variation in Taiwan between 2005 and 2007. Groundwater quality demonstrated apparent differences between the northern and southern areas of Taiwan when divided by the Wu River. Approximately 52% of the monitoring wells in southern Taiwan suffered from progressing seawater intrusion, causing unstable groundwater quality. Industrial and livestock wastewaters also polluted 59.6% of the monitoring wells, resulting in elevated EC and TOC concentrations in the groundwater. In northern Taiwan, domestic wastewaters polluted city groundwater, resulting in higher NH3-N concentration and groundwater quality instability was apparent among 10.3% of the monitoring wells. The method proposed in this study for analyzing groundwater quality inspects common stability factors, identifies potential areas influenced by common factors, and assists in elevating and reinforcing information in support of an overall groundwater management strategy. PMID:21695030

  14. 2008 City of Baltimore Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In the spring of 2008, the City of Baltimore expressed an interest to upgrade the City GIS Database with mapping quality airborne LiDAR data. The City of Baltimore...

  15. A Contamination Vulnerability Assessment for the Santa Clara and San Mateo County Groundwater Basins

    International Nuclear Information System (INIS)

    Moran, J E; Hudson, G B; Eaton, G F; Leif, R

    2004-01-01

    In response to concerns expressed by the California Legislature and the citizenry of the State of California, the State Water Resources Control Board (SWRCB), implemented a program to assess groundwater quality, and provide a predictive capability for identifying areas that are vulnerable to contamination. The program was initiated in response to concern over public supply well closures due to contamination by chemicals such as MtBE from gasoline, and solvents from industrial operations. As a result of this increased awareness regarding groundwater quality, the Supplemental Report of the 1999 Budget Act mandated the SWRCB to develop a comprehensive ambient groundwater-monitoring plan, and led to the initiation of the Ambient Groundwater Monitoring and Assessment (GAMA) Program. The primary objective of the GAMA Program is to assess the water quality and to predict the relative susceptibility to contamination of groundwater resources throughout the state of California. Under the GAMA program, scientists from Lawrence Livermore National Laboratory (LLNL) collaborate with the SWRCB, the U.S. Geological Survey, the California Department of Health Services (DHS), and the California Department of Water Resources (DWR) to implement this groundwater assessment program. In 2001 and 2002, LLNL carried out this vulnerability study in the groundwater basins of Santa Clara County and San Mateo County, located to the south of the city of San Francisco. The goal of the study is to provide a probabilistic assessment of the relative vulnerability of groundwater used for the public water supply to contamination from surface sources. This assessment of relative contamination vulnerability is made based on the results of two types of analyses that are not routinely carried out at public water supply wells: ultra low-level measurement of volatile organic compounds (VOCs), and groundwater age dating (using the tritium-helium-3 method). In addition, stable oxygen isotope measurements

  16. Isotopic and geochemical evidence of recharge sources and water quality in the Quaternary aquifer beneath Jinchang city, NW China

    International Nuclear Information System (INIS)

    Ma Jinzhu; Pan Feng; Chen Lihua; Edmunds, W. Mike; Ding Zhenyu; He Jianhua; Zhou Kunpeng; Huang Tianming

    2010-01-01

    Multiple isotopic and hydrogeochemical tracers were utilized to understand the recharge sources and geochemical evolution of groundwater in the Quaternary aquifer beneath Jinchang city and the adjacent Gobi desert area. The groundwater shows markedly depleted stable isotopic composition compared to modern rainfall. The signature of groundwaters from Jinchang and the northern Gobi desert area differ clearly from that of the alluvial fan in the south Yongchang basin and modern rainfall, and has lower or non-detectable 3 H activity, implying that the aquifer is likely maintained by palaeowater. This groundwater in the Gobi desert has a 14 C age older than 12 ka, indicating that the groundwater resources are non-renewable. The build-up of dissolved solids through evaporation is a major control on groundwater composition, and the dominant anion species change systematically from HCO 3 - , SO 4 2- to Cl - , but cations from weathering of albite, calcite, dolomite and gypsum also make a significant contribution. The scientific results have important implications for groundwater management in Jinchang city and as well as in the Shiyang River basin under China's West Development Strategy. It is recommended that the water allocation program of diverting water from the Dongda river to the Minqin basin be reconsidered.

  17. Quantifying renewable groundwater stress with GRACE

    Science.gov (United States)

    Richey, Alexandra S.; Thomas, Brian F.; Lo, Min‐Hui; Reager, John T.; Voss, Katalyn; Swenson, Sean; Rodell, Matthew

    2015-01-01

    Abstract Groundwater is an increasingly important water supply source globally. Understanding the amount of groundwater used versus the volume available is crucial to evaluate future water availability. We present a groundwater stress assessment to quantify the relationship between groundwater use and availability in the world's 37 largest aquifer systems. We quantify stress according to a ratio of groundwater use to availability, which we call the Renewable Groundwater Stress ratio. The impact of quantifying groundwater use based on nationally reported groundwater withdrawal statistics is compared to a novel approach to quantify use based on remote sensing observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission. Four characteristic stress regimes are defined: Overstressed, Variable Stress, Human‐dominated Stress, and Unstressed. The regimes are a function of the sign of use (positive or negative) and the sign of groundwater availability, defined as mean annual recharge. The ability to mitigate and adapt to stressed conditions, where use exceeds sustainable water availability, is a function of economic capacity and land use patterns. Therefore, we qualitatively explore the relationship between stress and anthropogenic biomes. We find that estimates of groundwater stress based on withdrawal statistics are unable to capture the range of characteristic stress regimes, especially in regions dominated by sparsely populated biome types with limited cropland. GRACE‐based estimates of use and stress can holistically quantify the impact of groundwater use on stress, resulting in both greater magnitudes of stress and more variability of stress between regions. PMID:26900185

  18. @City: technologising Barcelona

    Directory of Open Access Journals (Sweden)

    Jesús Rojas

    2007-05-01

    Full Text Available This article is about the concept of the contemporary city - the influence that technology has when one thinks about, plans and lives in a city. The conjunction of  technology and city reformulates customs and social practices; it can even determine the way one constitutes one's own identity. One can see how close the relation is between technology (specifically, TICS and the structures of the city in a wide variety of situations: in social interactions on the street, in transport, and in ways of buying, of working and entertainment. "@City" is a concept that very well reflects  the emergent properties of a current city, that is, the coexistence of a physical and a virtual urban space. The "22@Barcelona" project attempts to bring together different types of spaces. By combining the physical with the virtual, 22@Barcelona, as a neighborhood of @City,  creates an uncertain and blurred border between both spaces.The article also examines the impact that these spaces have on the psycho-social processes involved in the daily life of a traditionally working-class neighborhood, now strongly limited by technological boundaries.

  19. @City: technologising Barcelona

    Directory of Open Access Journals (Sweden)

    Rojas, Jesús

    2007-05-01

    Full Text Available This article is about the concept of the contemporary city - the influence that technology has when one thinks about, plans and lives in a city. The conjunction of technology and city reformulates customs and social practices; it can even determine the way one constitutes one's own identity. One can see how close the relation is between technology (specifically, TICS and the structures of the city in a wide variety of situations: in social interactions on the street, in transport, and in ways of buying, of working and entertainment. "@City" is a concept that very well reflects the emergent properties of a current city, that is, the coexistence of a physical and a virtual urban space. The "22@Barcelona" project attempts to bring together different types of spaces. By combining the physical with the virtual, 22@Barcelona, as a neighborhood of @City, creates an uncertain and blurred border between both spaces.The article also examines the impact that these spaces have on the psycho-social processes involved in the daily life of a traditionally working-class neighborhood, now strongly limited by technological boundaries.

  20. Smart city – future city? smart city 20 as a livable city and future market

    CERN Document Server

    Etezadzadeh, Chirine

    2016-01-01

    The concept of a livable smart city presented in this book highlights the relevance of the functionality and integrated resilience of viable cities of the future. It critically examines the progressive digitalization that is taking place and identifies the revolutionized energy sector as the basis of urban life. The concept is based on people and their natural environment, resulting in a broader definition of sustainability and an expanded product theory. Smart City 2.0 offers its residents many opportunities and is an attractive future market for innovative products and services. However, it presents numerous challenges for stakeholders and product developers.

  1. A liveable city:

    DEFF Research Database (Denmark)

    Sommerlund, Julie

    2014-01-01

    There are over 20 cities world-wide with a population of over 10 million people. We have entered ‘The Millennium of the City’. The growth of urban populations has been accompanied by profound changes of the cities’ economic and social profile and of the cities themselves. The world economy...... on experience. We will argue for a human turn in the research on liveabil- ity and urbanisation, and debates the concept of liveability. We will take Copenhagen as our main case and compare with other cities from around the world....

  2. Making the Experience City

    DEFF Research Database (Denmark)

    Jensen, Ole B.

    2009-01-01

    This paper describes the latest research into cultural planning and architectural branding in Denmark based on the ‘Experience City' research project located at Aalborg University. The paper explores the implication of the turn towards culture and experience in the contemporary Danish city. It thus...... makes an investigation into the complex relationship between the words and policies of the ‘Experience Economy' and the actual urban transformations made in cities with reference to these changes. The paper discusses the cases researched in relation to the state, market, civil society framework as well...

  3. The guide to greening cities

    National Research Council Canada - National Science Library

    Johnston, Sadhu Aufochs

    2013-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 CHAPTER 3. Leading in the Community: Using City Assets, Policy, Partnerships, and Persuasion . . Case in Point: Returning to Green City Roots and Loving El...

  4. Characterization of source rocks and groundwater radioactivity at the Chihuahua valley

    International Nuclear Information System (INIS)

    Renteria V, M.; Montero C, M.E.; Reyes C, M.; Herrera P, E.F.; Valenzuela H, M.; Rodriguez P, A.; Manjon C, G.; Garcia T, R.; Crespo, T.

    2007-01-01

    As part of a scientific research project about alpha radioactivity in groundwater for human consumption at the Chihuahua City, the characterization of rock sources of radioactivity around de Chihuahua valley was developed. The radioactivity of groundwater and sediments was determined, too. The radioactivity of uranium- and thorium- series isotopes contained in rocks was obtained by high resolution gamma-ray spectroscopy. Some representative values are 50 Bq/kg for the mean value of Bi-214 activity, and 121.5 Bq/kg for the highest value at West of the city. The activity of sediments, extracted during wells perforation, was determined using a Nal(TI) detector. A non-reported before uranium ore was localized at the San Marcos range formation. Its outcrops are inside the Chihuahua-Sacramento valley basin and its activity characterization was performed. Unusually high specific uranium activities, determined by alpha spectrometry, were obtained in water, plants, sediments and fish extracted at locations close to outcrops of uranium minerals. The activity of water of the San Marcos dam reached 7.7 Bq/L. The activity of fish, trapped at San Marcos dam, is 0.99 Bq/kg. Conclusions about the contamination of groundwater at North of Chihuahua City were obtained. (Author)

  5. Characterization of source rocks and groundwater radioactivity at the Chihuahua valley

    Energy Technology Data Exchange (ETDEWEB)

    Renteria V, M.; Montero C, M.E.; Reyes C, M.; Herrera P, E.F.; Valenzuela H, M. [Centro de lnvestigacion en Materiales Avanzados, Miguel de Cervantes 120, 31109 Chihuahua, (Mexico); Rodriguez P, A. [World Wildlife Fund (WWF), Chihuahuan Desert Program, Coronado 1005, 31000 Chihuahua (Mexico); Manjon C, G.; Garcia T, R. [Universidad de Sevilla, Departamento de Fisica Aplicada 11, ETS Arquitectura, Av. Reina Mercedes 2, 41012 Sevilla, (Spain); Crespo, T. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Av. Complutense 22, 28040 Madrid, (Spain)]. e-mail: elena.montero@cimav.edu.mx

    2007-07-01

    As part of a scientific research project about alpha radioactivity in groundwater for human consumption at the Chihuahua City, the characterization of rock sources of radioactivity around de Chihuahua valley was developed. The radioactivity of groundwater and sediments was determined, too. The radioactivity of uranium- and thorium- series isotopes contained in rocks was obtained by high resolution gamma-ray spectroscopy. Some representative values are 50 Bq/kg for the mean value of Bi-214 activity, and 121.5 Bq/kg for the highest value at West of the city. The activity of sediments, extracted during wells perforation, was determined using a Nal(TI) detector. A non-reported before uranium ore was localized at the San Marcos range formation. Its outcrops are inside the Chihuahua-Sacramento valley basin and its activity characterization was performed. Unusually high specific uranium activities, determined by alpha spectrometry, were obtained in water, plants, sediments and fish extracted at locations close to outcrops of uranium minerals. The activity of water of the San Marcos dam reached 7.7 Bq/L. The activity of fish, trapped at San Marcos dam, is 0.99 Bq/kg. Conclusions about the contamination of groundwater at North of Chihuahua City were obtained. (Author)

  6. Work plan for the Oak Ridge National Laboratory groundwater program: Continuous groundwater collection

    International Nuclear Information System (INIS)

    1995-08-01

    The continuous collection of groundwater data is a basic and necessary part of Lockeheed Martin Energy Systems' ORNL Environmental Restoration Area-Wide Groundwater Program. Continuous groundwater data consist primarily of continually recorded groundwater levels, and in some instances, specific conductivity, pH, and/or temperature measurements. These data will be collected throughout the ORNL site. This Work Plan (WP) addresses technical objectives, equipment requirements, procedures, documentation requirements, and technical instructions for the acquisition of the continuous groundwater data. Intent of this WP is to provide an approved document that meets all the necessary requirements while retaining the flexibility necessary to effectively address ORNL's groundwater problems

  7. OpenCities Project

    Data.gov (United States)

    US Agency for International Development — The Open Cities Project aims to catalyze the creation, management and use of open data to produce innovative solutions for urban planning and resilience challenges...

  8. The Sustainable City.

    Science.gov (United States)

    Gangloff, Deborah

    1995-01-01

    Focuses on methods to make cities more sustainable through the processes of energy efficiency, pollution and waste reduction, capture of natural processes, and the merger of ecological, economic, and social factors. (LZ)

  9. Simulacrum City / Triin Ojari

    Index Scriptorium Estoniae

    Ojari, Triin, 1974-

    2000-01-01

    Veneetsia 7. arhitektuuribiennaali Eesti ekspositsiooni kataloogist Simulacrum City. Tallinn : Eesti Arhitektide Liit, 2000. Teksti autorid Anders Härm, Tarmo Maiste, Andres Kurg, Harry Charrington, kujundaja Jaanus Tamme, fotod Arne Maasik

  10. SmartCityWare

    DEFF Research Database (Denmark)

    Mohamed, Nader; Al-Jaroodi, Jameela; Jawhar, Imad

    2017-01-01

    rely heavily on utilizing various software, hardware, and communication technologies to improve the operations in areas, such as healthcare, transportation, energy, education, logistics, and many others, while reducing costs and resources consumption. One of the promising technologies to support...... such efforts is the Cloud of Things (CoT). CoT provides a platform for linking the cyber parts of a smart city that are executed on the cloud with the physical parts of the smart city, including residents, vehicles, power grids, buildings, water networks, hospitals, and other resources. Another useful...... services and components involved in smart city applications as services accessible through the service-oriented model. This enhances integration and allows for flexible inclusion and utilization of the various services needed in a smart city application. In addition, we discuss the implementation...

  11. Towards Intelligently - Sustainable Cities?

    Directory of Open Access Journals (Sweden)

    Luca Salvati

    2013-04-01

    Full Text Available In the quest for achieving sustainable cities, Intelligent and Knowledge City Programmes (ICPs and KCPs represent cost-efficient strategies for improving the overall performance of urban systems. However, even though nobody argues on the desirability of making cities “smarter”, the fundamental questions of how and to what extent can ICPs and KCPs contribute to the achievement of urban sustainability lack a precise answer. In the attempt of providing a structured answer to these interrogatives, this paper presents a methodology developed for investigating the modalities through which ICPs and KCPs contribute to the achievement or urban sustainability. Results suggest that ICPs and KCPs efficacy lies in supporting cities achieve a sustainable urban metabolism through optimization, innovation and behavior changes.

  12. Ecological city planning

    Directory of Open Access Journals (Sweden)

    Salvador Rueda

    2013-07-01

    Full Text Available A territory, a city, a neighbourhood are all ecosystems; a mixture of chemico-physical and organic elements related to each other. That which defines an ecological system is the set of rules and characteristics which condition its relationships, and its duration in time is guaranteed by its efficiency and internal organization which applied to the city is translated in the reduction of the use of natural resources and in the increase of social organization. To increase the efficiency of the urban systems is the necessary condition for the formulation of ecological city planning favouring the maximum liveability of sites. Liveability is directly correlated to the optimization of numerous elements (public space, equipment, services, building techniques, innovative technology, social cohesion, biodiversity. To carry out such objectives, ecological city planning proposes a new model of town planning on three levels (subsoil, ground level, and upper level.

  13. Futures of cities

    DEFF Research Database (Denmark)

    Bogen dokumenterer resultater fra den internationale kongres Futures of Cities arrangeret af IFHP International Federation of Housing and Planning, Realdania, Kunstakademiets Arkitektskole og City of Copenhagen. Kongressen blev afholdt i september 2007 i Øksnehallen og på Kunstakademiets Arkitekt......Bogen dokumenterer resultater fra den internationale kongres Futures of Cities arrangeret af IFHP International Federation of Housing and Planning, Realdania, Kunstakademiets Arkitektskole og City of Copenhagen. Kongressen blev afholdt i september 2007 i Øksnehallen og på Kunstakademiets....... Competition: Ranko Radovic Student Competition, 193 projekter fra alle verdensdele indleveret til studenterkonkurrencen. I bogen er indlagt en cd-rom med en 4 minutter lang film udgivet af bogens forfattere og redigeret af Squint/Opera Ltd, UK. Musik af Martin Bennebo og Karen Duelund Mortensen, produceret af...

  14. WE LOVE THE CITY

    DEFF Research Database (Denmark)

    2011-01-01

    WE LOVE THE CITY Byen i bygningen, bygningen i byen Lasse Andersson, Ph.d., arkitekt maa, adjunkt ved Aalborg Universitet Med udstillingen WE LOVE THE CITY vil vi formidle mødet mellem urban design oog arkitektur. Disciplinen ’at bygge by’ har de seneste 20 år ikke tændt hjerterne hos...... fjern og ’usexet’ for unge arkitekter in spe. Det kan fremtidens by ikke være tjent med, og WE LOVE THE CITY vil derfor gerne vise alle, der færdes i byen og bruger dens arkitektur, at her er et potentiale. Med udstillingen WE LOVE THE CITY ønsker Utzon Centeret, LasseVegas Kontoret ApS og ADEPT...

  15. Smart Sustainable Cities

    International Development Research Centre (IDRC) Digital Library (Canada)

    Technology, Municipality of Montevideo, Uruguay) and Lark Yang Tan (Director, Infocomm Development ...... Since the last century and particularly since the industrial revolution when people started to move to cities ...... Engineering; Arts and Humanities; Economics, Econometrics and Finance; Psychology; Biochemistry,.

  16. the city otherwise

    Directory of Open Access Journals (Sweden)

    Elena Grigoryeva

    2017-06-01

    Irkutsk sociologists Mikhail Rozhansky and Elena Korkina, the ideologists of The City Otherwise Project, show the readers of PB how young citizens view their city. These views are expressed in their reflections and photos. Against common beliefs about modern youth, these young people are not obsessed with their gadgets. They use them quite well to take a fresh look at the environment. It should be noted that the project has attracted, among others, starting architects, especially those who have experience in participatory design. It is an interesting attempt to get in tune with the pulse of the city, with the common rhythm of images, which makes the city and its inhabitants a single whole.

  17. Environment, gas and city

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Here are given all the advantages of natural gas among the others energies sources to avoid air pollution in cities. Pollution, energy economy, energy control are actions of environmental policy of natural gas industry in France

  18. Postsovkhoz City & Postsovkhoz Person

    Index Scriptorium Estoniae

    2001-01-01

    Põlvamaal Moostes mõtte- ja keskkonnakunstitalgud "Postsovkhoz City" ja "Postsovkhoz Person". Näha saab endistesse tööstushoonetesse ülespandud näitusi ja installatsioone. 11. VIII esinejad, ettekanded.

  19. Stream Nitrogen Inputs Reflect Groundwater Across a Snowmelt-Dominated Montane to Urban Watershed.

    Science.gov (United States)

    Hall, Steven J; Weintraub, Samantha R; Eiriksson, David; Brooks, Paul D; Baker, Michelle A; Bowen, Gabriel J; Bowling, David R

    2016-02-02

    Snowmelt dominates the hydrograph of many temperate montane streams, yet little work has characterized how streamwater sources and nitrogen (N) dynamics vary across wildland to urban land use gradients in these watersheds. Across a third-order catchment in Salt Lake City, Utah, we asked where and when groundwater vs shallow surface water inputs controlled stream discharge and N dynamics. Stream water isotopes (δ(2)H and δ(18)O) reflected a consistent snowmelt water source during baseflow. Near-chemostatic relationships between conservative ions and discharge implied that groundwater dominated discharge year-round across the montane and urban sites, challenging the conceptual emphasis on direct stormwater inputs to urban streams. Stream and groundwater NO3(-) concentrations remained consistently low during snowmelt and baseflow in most montane and urban stream reaches, indicating effective subsurface N retention or denitrification and minimal impact of fertilizer or deposition N sources. Rather, NO3(-) concentrations increased 50-fold following urban groundwater inputs, showing that subsurface flow paths potentially impact nutrient loading more than surficial land use. Isotopic composition of H2O and NO3(-) suggested that snowmelt-derived urban groundwater intercepted NO3(-) from leaking sewers. Sewer maintenance could potentially mitigate hotspots of stream N inputs at mountain/valley transitions, which have been largely overlooked in semiarid urban ecosystems.

  20. Current Conditions Risk Assessment for the 300-FF-5 Groundwater Operable Unit

    Energy Technology Data Exchange (ETDEWEB)

    Miley, Terri B.; Bunn, Amoret L.; Napier, Bruce A.; Peterson, Robert E.; Becker, James M.

    2007-11-01

    This report updates a baseline risk assessment for the 300 Area prepared in 1994. The update includes consideration of changes in contaminants of interest and in the environment that have occurred during the period of interim remedial action, i.e., 1996 to the present, as well as the sub-regions, for which no initial risk assessments have been conducted. In 1996, a record of decision (ROD) stipulated interim remedial action for groundwater affected by releases from 300 Area sources, as follows: (a) continued monitoring of groundwater that is contaminated above health-based levels to ensure that concentrations continue to decrease, and (b) institutional controls to ensure that groundwater use is restricted to prevent unacceptable exposure to groundwater contamination. In 2000, the groundwater beneath the two outlying sub-regions was added to the operable unit. In 2001, the first 5-year review of the ROD found that the interim remedy and remedial action objectives were still appropriate, although the review called for additional characterization activities. This report includes a current conditions baseline ecological and human health risk assessment using maximum concentrations in the environmental media of the 300-FF-5 Operable Unit and downstream conditions at the City of Richland, Washington. The scope for this assessment includes only current measured environmental concentrations and current use scenarios. Future environmental concentrations and future land uses are not considered in this assessment.

  1. Groundwater use in Pakistan: opportunities and limitations

    International Nuclear Information System (INIS)

    Bhutta, M.N.

    2005-01-01

    Groundwater potential in the Indus Basin is mainly due to recharge from irrigation system, rivers and rainfall. Its quality and quantity varies spatially and temporally. However, the potential is linked with the surface water supplies. Irrigated agriculture is the major user of groundwater. Annual recharge to groundwater in the basin is estimated as 68 MAF. But 50 percent of the area has marginal to hazardous groundwater quality. Existing annual groundwater pumpage is estimated as 45 MAF (55 BCM). More than 13 MAF mainly of groundwater is lost as non-beneficial ET losses. Groundwater contributes 35 percent of total agricultural water requirements in the country. Annual cropping intensities have increased from 70% to 150% due to groundwater use. Increase in crop yield due to groundwater use has been observed 150-200. percent. Total investment on private tube wells has been made more than Rs.25.0 billion. In the areas where farmers are depending more on groundwater. mining of groundwater has been observed. Population pressure, inadequate supply of canal water and development of cheap local tub well technology have encouraged farmers to invest in the groundwater development. Deterioration of groundwater has also been observed due to excessive exploitation. The available information about the private tube wells is insufficient for different areas. Although during the past decade the growth of tube wells was tremendous but was not reflected accordingly in the statistics. Monitoring of groundwater quality is not done systematically and adequately. It is very difficult to manage a resource for which adequate information is not available. The present scenario of groundwater use is not sustainable and therefore certain measures are needed to be taken. It is recommended to. have a systematic monitoring of groundwater. For the sustainable use of groundwater, it is recommended to manage the demand of water i.e. grow more crops with less water. To achieve high productivity of

  2. Keys to the City

    DEFF Research Database (Denmark)

    Monsson, Christian Kjær

    2014-01-01

    Review of: Keys to the City: How Economics, Institutions, Social Interaction, and Politics Shape Development / Michael Storper Princeton University Press, Princeton, NJ, 2013, 288 pp., $39.95/£27.95 (cloth), ISBN 9780691143118......Review of: Keys to the City: How Economics, Institutions, Social Interaction, and Politics Shape Development / Michael Storper Princeton University Press, Princeton, NJ, 2013, 288 pp., $39.95/£27.95 (cloth), ISBN 9780691143118...

  3. High levels of uranium in groundwater of Ulaanbaatar, Mongolia

    Energy Technology Data Exchange (ETDEWEB)

    Nriagu, Jerome, E-mail: stoten@umich.edu [Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109 (United States); Nam, Dong-Ha; Ayanwola, Titilayo A. [Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109 (United States); Dinh, Hau [College of Literature, Science and Arts, University of Michigan (United States); Erdenechimeg, Erdenebayar; Ochir, Chimedsuren [Department Of Preventive Medicine, School Of Public Health, Health Science University, Mongolia, Ulaanbaatar (Mongolia); Bolormaa, Tsend-Ayush [Central Water Laboratory of Water Supply and Sewerage Authority (USUG), Ulaanbaatar (Mongolia)

    2012-01-01

    Water samples collected from 129 wells in seven of the nine sub-divisions of Ulaanbaatar were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) using Clean Lab methods. The levels of many trace elements were found to be low with the average concentrations (ranges in brackets) being 0.9 (< 0.1-7.9) {mu}g/L for As; 7.7 (0.12-177) {mu}g/L for Mn; 0.2 (< 0.05-1.9) {mu}g/L for Co; 16 (< 0.1-686) {mu}g/L for Zn; 0.7 (< 0.1-1.8) {mu}g/L for Se; < 0.1 (< 0.02-0.69) {mu}g/L for Cd; and 1.3 (< 0.02-32) {mu}g/L for Pb. The levels of uranium were surprisingly elevated (mean, 4.6 {mu}g/L; range < 0.01-57 {mu}g/L), with the values for many samples exceeding the World Health Organization's guideline of 15 {mu}g/L for uranium in drinking water. Local rocks and soils appear to be the natural source of the uranium. The levels of uranium in Ulaanbaatar's groundwater are in the range that has been associated with nephrotoxicity, high blood pressure, bone dysfunction and likely reproductive impairment in human populations. We consider the risk associated with drinking the groundwater with elevated levels of uranium in Ulaanbaatar to be a matter for some public health concern and conclude that the paucity of data on chronic effects of low level exposure is a risk factor for continuing the injury to many people in this city. - Highlights: Black-Right-Pointing-Pointer We analyzed water samples from wells across the city of Ulaanbaatar, Mongolia for total uranium along with arsenic, manganese, cobalt, zinc, selenium, cadmium and lead. Black-Right-Pointing-Pointer We found that compared to other trace metals and metalloids, the levels of uranium were surprisingly elevated with the values for many samples exceeding the World Health Organization's guideline for drinking water. Black-Right-Pointing-Pointer Local rocks and soils appear to be the natural source of the uranium. Black-Right-Pointing-Pointer The health risk associated with drinking the groundwater

  4. Calendar Year 2016 Annual Groundwater Monitoring Report.

    Energy Technology Data Exchange (ETDEWEB)

    Copland, John R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jackson, Timmie Okchumpulla [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Li, Jun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, Michael Marquand [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Skelly, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-01

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned/contractoroperated laboratory. National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., manages and operates SNL/NM for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Field Office administers the contract and oversees contractor operations at the site. Two types of groundwater surveillance monitoring are conducted at SNL/NM: (1) on a site-wide basis as part of the SNL/NM Long-Term Stewardship (LTS) Program’s Groundwater Monitoring Program (GMP) Groundwater Surveillance Task and (2) on a site-specific groundwater monitoring at LTS/Environmental Restoration (ER) Operations sites with ongoing groundwater investigations. This Annual Groundwater Monitoring Report summarizes data collected during groundwater monitoring events conducted at GMP locations and at the following SNL/NM sites through December 31, 2016: Burn Site Groundwater Area of Concern (AOC); Chemical Waste Landfill; Mixed Waste Landfill; Technical Area-V Groundwater AOC; and the Tijeras Arroyo Groundwater AOC. Environmental monitoring and surveillance programs are required by the New Mexico Environment Department (NMED) and DOE Order 436.1, Departmental Sustainability, and DOE Order 231.1B, Environment, Safety, and Health Reporting.

  5. [Construction of groundwater contamination prevention mapping system].

    Science.gov (United States)

    Wang, Jun-Jie; He, Jiang-Tao; Lu, Yan; Liu, Li-Ya; Zhang, Xiao-Liang

    2012-09-01

    Groundwater contamination prevention mapping is an important component of groundwater contamination geological survey and assessment work, which could provide the basis for making and implementing groundwater contamination prevention planning. A groundwater contamination prevention mapping system was constructed in view of the synthetic consideration on nature perspective derived from groundwater contamination sources and aquifer itself, social-economic perspective, policy perspective derived from outside. During the system construction process, analytic hierarchy process and relevant overlaying principles were used to couple groundwater contamination risk assessment, groundwater value as well as wellhead protection area zoning. Data processing and visualization of mapping results were achieved in the GIS environment. The research on groundwater contamination prevention mapping in Beijing Plain indicated that the final groundwater prevention map was in accordance with the actual conditions and well reflected the priorities of groundwater prevention, which could play a guidance role in designing and implementing further practical prevention and supervision measures. Besides, because of the dynamical properties of the system components, it was suggested to analyze the update frequency of the mapping.

  6. Schizophrenia and city life.

    Science.gov (United States)

    Lewis, G; David, A; Andréasson, S; Allebeck, P

    1992-07-18

    Prevalence of schizophrenia and rates of first admission to hospital for this disorder are higher in most modern industrialised cities, and in urban compared with rural areas. The "geographical drift" hypothesis (ie, most schizophrenics tend to drift into city areas because of their illness or its prodrome) has remained largely unchallenged. We have investigated the association between place of upbringing and the incidence of schizophrenia with data from a cohort of 49,191 male Swedish conscripts linked to the Swedish National Register of Psychiatric Care. The incidence of schizophrenia was 1.65 times higher (95% confidence interval 1.19-2.28) among men brought up in cities than in those who had had a rural upbringing. The association persisted despite adjustment for other factors associated with city life such as cannabis use, parental divorce, and family history of psychiatric disorder. This finding cannot be explained by the widely held notion that people with schizophrenia drift into cities at the beginning of their illness. We conclude that undetermined environmental factors found in cities increase the risk of schizophrenia.

  7. Reconstruction of groundwater circulation after seashore reclamation

    Science.gov (United States)

    Zhang, Xiaoying; Hu, Bill; Yang, Lei; Chen, Junbing

    2017-04-01

    In recent years, the effects of land reclamation on the coastal groundwater system have received increasing attention in China as extensive reclamation activities have altered the original groundwater dynamics and salinity distribution in the coastal subsurface. Previous studies focused on either the steady-state groundwater flow or the large scale numerical simulation after land reclamation, however the short-period variation of groundwater flow and its impacts on hydrogeochemical system have not often been considered. Furthermore, a permeable coastal boundary assumed exclusively in previous work is often not the case in contemporary engineering practice, and an impermeable coastal boundary with dikes has been adopted in this study. We investigate the temporal variation of groundwater levels in the un-reclaimed clay layer and reclaimed layer based on the continuous observation of 14 monitoring wells in Zhoushan island, China. We use the morphological wave analysis method to study the effect of nonstationary tidal signals on groundwater level fluctuations. The results indicate that the method of continuous wavelet transform is suitable for analyzing the groundwater flow pattern, where short period groundwater level fluctuations are affected by tidal activities through pipes built in the reclamation dike. In particular, the method of discrete wavelet transform (DWT) is proved effective in extracting tidal signals from groundwater level time series. The approximation term in the multi-resolution analysis is well in agreement with original groundwater level data, demonstrating the advantages of the DWT method in obtaining the change trends of geological, hydrological, and climate variables. Additionally, an examination of groundwater samples indicates that saltwater exists in entire reclamation regions. Our study reveals some different groundwater features in reclamation regions where the coastal boundary is impermeable, which could provide significant implications

  8. Direct Simulation of Groundwater Age

    Science.gov (United States)

    Goode, Daniel J.

    1996-02-01

    A new method is proposed to simulate groundwater age directly, by use of an advection-dispersion transport equation with a distributed zero-order source of unit (1) strength, corresponding to the rate of aging. The dependent variable in the governing equation is the mean age, a mass-weighted average age. The governing equation is derived from residence-time-distribution concepts for the case of steady flow. For the more general case of transient flow, a transient governing equation for age is derived from mass-conservation principles applied to conceptual "age mass." The age mass is the product of the water mass and its age, and age mass is assumed to be conserved during mixing. Boundary conditions include zero age mass flux across all noflow and inflow boundaries and no age mass dispersive flux across outflow boundaries. For transient-flow conditions, the initial distribution of age must be known. The solution of the governing transport equation yields the spatial distribution of the mean groundwater age and includes diffusion, dispersion, mixing, and exchange processes that typically are considered only through tracer-specific solute transport simulation. Traditional methods have relied on advective transport to predict point values of groundwater travel time and age. The proposed method retains the simplicity and tracer-independence of advection-only models, but incorporates the effects of dispersion and mixing on volume-averaged age. Example simulations of age in two idealized regional aquifer systems, one homogeneous and the other layered, demonstrate the agreement between the proposed method and traditional particle-tracking approaches and illustrate use of the proposed method to determine the effects of diffusion, dispersion, and mixing on groundwater age.

  9. Direct simulation of groundwater age

    Science.gov (United States)

    Goode, Daniel J.

    1996-01-01

    A new method is proposed to simulate groundwater age directly, by use of an advection-dispersion transport equation with a distributed zero-order source of unit (1) strength, corresponding to the rate of aging. The dependent variable in the governing equation is the mean age, a mass-weighted average age. The governing equation is derived from residence-time-distribution concepts for the case of steady flow. For the more general case of transient flow, a transient governing equation for age is derived from mass-conservation principles applied to conceptual “age mass.” The age mass is the product of the water mass and its age, and age mass is assumed to be conserved during mixing. Boundary conditions include zero age mass flux across all noflow and inflow boundaries and no age mass dispersive flux across outflow boundaries. For transient-flow conditions, the initial distribution of age must be known. The solution of the governing transport equation yields the spatial distribution of the mean groundwater age and includes diffusion, dispersion, mixing, and exchange processes that typically are considered only through tracer-specific solute transport simulation. Traditional methods have relied on advective transport to predict point values of groundwater travel time and age. The proposed method retains the simplicity and tracer-independence of advection-only models, but incorporates the effects of dispersion and mixing on volume-averaged age. Example simulations of age in two idealized regional aquifer systems, one homogeneous and the other layered, demonstrate the agreement between the proposed method and traditional particle-tracking approaches and illustrate use of the proposed method to determine the effects of diffusion, dispersion, and mixing on groundwater age.

  10. Emerging organic contaminants in groundwater

    OpenAIRE

    Stuart, Marianne; Lapworth, Dan

    2013-01-01

    Emerging organic contaminants (ECs) are compounds now being found in groundwater from agricultural, urban sources that were previously not detectable, or thought to be significant. ECs include pesticides and degradates, pharmaceuticals, industrial compounds, personal care products, fragrances, water treatment by-products, flame retardants and surfactants, as well as ‘life-style’ compounds such as caffeine and nicotine. ECs may have adverse effects on aquatic ecosystems and human health. Freq...

  11. Sensitivity analysis of groundwater flow

    International Nuclear Information System (INIS)

    Bao Yungbing

    1990-12-01

    A sensitivity analysis of general linear and nonlinear simulation equation sets is developed in this study in order to facilitate the application of the sensitivity analysis to groundwater flow problems. Two methods are considered for the sensitivity calculation: the 'direct method' and the 'adjoint method'. Sensitivity theory was used to establish a sensitivity analysis model for general three dimensional transient groundwater flow. Three different methods for calculation of the sensitivity coefficient are presented. The sensitivity equations and the groundwater flow equations were nummerically solved by the Galerkin finite element method in the model. Sensitivity coefficients were carried out both numerically with the developed direct method and with the known analytic solution. Very good agreement between the two solutions was obtained. The developed sensitivity model was applied to three dimensional (axi-symmetric) groundwater flow in a tunnel system, which was supposed to be located at a depth of 500 meters below the ground surface in a four-layered rock formation. In this case, the sensitivity distribution of the piezometric head was calculated with the direct method and the sensitivity of multiple performance functions to perturbations of the permeability were analysed by using the adjoint method. The calculations results showed that the peaks of the sensitivity coefficients appear mostly in the area around the tunnel. The piezometric head at the studied points (nodes) was quite sensitive to perturbations of the permeability in the layer where the points were located, but practically insensitive to perturbations of the permeability in the bottom layer. The flux into the tunnel and the velocity performance were mostly sensitive to perturbation of the permeability in the layer next to the top layer, but practically insensitive to perturbation of the permeability in the bottom layer. (author)

  12. City marketing: online communication plan for the city of Lisbon

    OpenAIRE

    Altrichter, Benjamin

    2011-01-01

    Mestrado em Marketing City Marketing represents marketing efforts of cities in order to attract more visitors. Today, we are confronted everyday with marketing campaigns in all different communication media promoting countries, cities or events. Cities are competing for visitors on a global scale, forcing them to adapt successful marketing strategies for gaining and retaining costumers. Yet, City Marketing still remains an unknown chapter for a big part of the general public an...

  13. Modeling groundwater flow and quality

    Science.gov (United States)

    Konikow, Leonard F.; Glynn, Pierre D.; Selinus, Olle

    2013-01-01

    In most areas, rocks in the subsurface are saturated with water at relatively shallow depths. The top of the saturated zone—the water table—typically occurs anywhere from just below land surface to hundreds of feet below the land surface. Groundwater generally fills all pore spaces below the water table and is part of a continuous dynamic flow system, in which the fluid is moving at velocities ranging from feet per millennia to feet per day (Fig. 33.1). While the water is in close contact with the surfaces of various minerals in the rock material, geochemical interactions between the water and the rock can affect the chemical quality of the water, including pH, dissolved solids composition, and trace-elements content. Thus, flowing groundwater is a major mechanism for the transport of chemicals from buried rocks to the accessible environment, as well as a major pathway from rocks to human exposure and consumption. Because the mineral composition of rocks is highly variable, as is the solubility of various minerals, the human-health effects of groundwater consumption will be highly variable.

  14. Groundwater management in northern Iraq

    Science.gov (United States)

    Stevanovic, Zoran; Iurkiewicz, Adrian

    2009-03-01

    Groundwater is vital and the sole resource in most of the studied region of northern Iraq. It has a significant role in agriculture, water supply and health, and the elimination of poverty in rural areas. Although Iraq is currently dramatically disturbed by complex political and socio-economic problems, in its northern part, i.e. the Kurdish-inhabited region, fast urbanization and economic expansion are visible everywhere. Monitoring and water management schemes are necessary to prevent aquifer over-exploitation in the region. Artificial recharge with temporary runoff water, construction of subsurface dams and several other aquifer management and regulation measures have been designed, and some implemented, in order to improve the water situation. Recommendations, presented to the local professionals and decision-makers in water management, include creation of Water Master Plans and Water User Associations, synchronization of drilling programmes, rehabilitation of the existing well fields, opening of new well fields, and the incorporation of new spring intakes in some areas with large groundwater reserves, as well as construction of numerous small-scale schemes for initial in situ water treatment where saline groundwater is present.

  15. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Falls City, Texas. Remedial action selection report, attachment 2, geology report; attachment 3, groundwater hydrology report; and attachment 4, water resources protection strategy. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-09-01

    The uranium processing site near Falls City, Texas, was one of 24 inactive uranium mill sites designated to be remediated by the U.S. Department of Energy (DOE) under Title I of the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRCA requires that the U.S. Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the U.S. Environmental Protection Agency (EPA). The RAP, which includes this summary remedial action selection report (RAS), serves a two-fold purpose. First, it describes the activities proposed by the DOE to accomplish long-term stabilization and control of the residual radioactive materials at the inactive uranium processing site near Falls City, Texas. Second, this document and the remainder of the RAP, upon concurrence and execution by the DOE, the State of Texas, and the NRC, becomes Appendix B of the Cooperative Agreement between the DOE and the State of Texas.

  16. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Falls City, Texas. Remedial action selection report, attachment 2, geology report; attachment 3, groundwater hydrology report; and attachment 4, water resources protection strategy. Final report

    International Nuclear Information System (INIS)

    1992-09-01

    The uranium processing site near Falls City, Texas, was one of 24 inactive uranium mill sites designated to be remediated by the U.S. Department of Energy (DOE) under Title I of the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRCA requires that the U.S. Nuclear Regulatory Commission (NRC) concur with the DOE's remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the U.S. Environmental Protection Agency (EPA). The RAP, which includes this summary remedial action selection report (RAS), serves a two-fold purpose. First, it describes the activities proposed by the DOE to accomplish long-term stabilization and control of the residual radioactive materials at the inactive uranium processing site near Falls City, Texas. Second, this document and the remainder of the RAP, upon concurrence and execution by the DOE, the State of Texas, and the NRC, becomes Appendix B of the Cooperative Agreement between the DOE and the State of Texas

  17. Anthropogenic Influence On Groundwater Quality In Jericho and And Adjoining Wadis (Lower Jordan Valley, Palestine)

    Science.gov (United States)

    Geyer, S.; Khayat, S.; Roediger, T.; Siebert, C.

    2008-12-01

    The Lower Jordan Valley is part of the Jordan-Dead Sea Rift. The graben is filled by sedmiments of limnological and marine origin. Towards the Dead Sea, the occurance of gipseous and salty sediments on the valley floor increase. The southern part of the Lower Jordan Valley, where the city of Jericho is situated, is an arid area (SMART-project, is to understand the vulnerability of the Jericho groundwater aquifers in connection with lowering the groundwater table by overexploitation and the intensively use of pesticides Jericho and its vicinity are of most importance for the Palestinians. However, beside the about 25,000 residents, the tourism industry and the vital agriculture depend on sufficient and expoitable fresh water resources. Because the demand of water is increasing, overexpoitaion takes place. Due to over extraction of groundwater a huge depression cone is evolving during the dry season which is filled up again according to the groundwater recharge in the rainy season. Concomitantly, depression cone in the fresh water aquifers leads to an infiltration of the surrounding saltwater. The amount of saltwater which infiltrates into the freshwater resource was calculated by different stable isotope methods (d2H, d18O) and hydrochemical analyses of wellwater. The agriculture is main consumer of groundwater - over 60% of the pumped water is used for inefficient irrigation. Additionally, an intensive use of pesticides in concentrated liquid and gaseous forms for vegetable gardening hold the danger to pollute the groundwater via irrigation return flow. This return flow most probably endangers the quality of the water resource, because shallow wells nearby extract it directly from the underground. However, one result of the first screening campaign concerning pesticide remnants in the groundwater wells of Jericho, just traces have been detected. Thus, the higher amount of chemicals is retained by the soil during infiltration of irrigated water. The detected low

  18. Learning Cities on the Move

    Science.gov (United States)

    Kearns, Peter

    2015-01-01

    The modern Learning City concept emerged from the work of OECD on lifelong learning with streams of Learning Cities and Educating Cities having much in common but having little contact with each other. While the early development of Learning Cities in the West has not been sustained, the present situation is marked by the dynamic development of…

  19. Issues of Sustainability of Coastal Groundwater Resources: Benin, West Africa

    Directory of Open Access Journals (Sweden)

    Andrew D. Mullen

    2010-08-01

    Full Text Available The largest city in Benin, West Africa (Cotonou, is reliant upon groundwater for its public water supply. This groundwater is derived from the Godomey well field which is located approximately 5 Km north of the coast of the Atlantic Ocean and in close proximity to Lake Nokoue—a shallow lake containing water with elevated concentration of chloride and other elements. Historical data indicate increased chloride concentration in a number of wells nearest to the lake, with unknown contribution from groundwater encroachment from the coastal area. Hence, there is substantial interest in better characterizing this groundwater system for the purpose of determining appropriate management practices and degree of sustainability. Among the efforts attempted to date are a series of numerical models ranging from assessment of flow to a recent effort to include density-dependent transport from the lake. In addition, substantial field characterization has been pursued including assessment of shallow water chemistry along the region of the coastal lagoon and border of the lake, characterization of hydraulic response to pumpage in the aquifer system, estimation of the distribution of electrical resistivity with depth along the coastal lagoons, and installation of multi-level piezometers at seven locations in the lake. When integrated across methods, these numerical and field results indicate that the lake remains a primary concern in terms of a source of salinity in the aquifer. Further, the coastal region appears to be more complex than previously suggested and may represent a future source of salt-water encroachment as suggested by current presence of saline waters at relatively shallow depths along the coast. Finally, hydraulic testing suggests that both natural and pumping-based fluctuations in water levels are present in this system. Substantial additional characterization and modeling efforts may provide a significantly greater understanding of the

  20. The 2016 groundwater flow model for Dane County, Wisconsin

    Science.gov (United States)

    Parsen, Michael J.; Bradbury, Kenneth R.; Hunt, Randall J.; Feinstein, Daniel T.

    2016-01-01

    A new groundwater flow model for Dane County, Wisconsin, replaces an earlier model developed in the 1990s by the Wisconsin Geological and Natural History Survey (WGNHS) and the U.S. Geological Survey (USGS). This modeling study was conducted cooperatively by the WGNHS and the USGS with funding from the Capital Area Regional Planning Commission (CARPC). Although the overall conceptual model of the groundwater system remains largely unchanged, the incorporation of newly acquired high-quality datasets, recent research findings, and improved modeling and calibration techniques have led to the development of a more detailed and sophisticated model representation of the groundwater system. The new model is three-dimensional and transient, and conceptualizes the county’s hydrogeology as a 12-layer system including all major unlithified and bedrock hydrostratigraphic units and two high-conductivity horizontal fracture zones. Beginning from the surface down, the model represents the unlithified deposits as two distinct model layers (1 and 2). A single layer (3) simulates the Ordovician sandstone and dolomite of the Sinnipee, Ancell, and Prairie du Chien Groups. Sandstone of the Jordan Formation (layer 4) and silty dolostone of the St. Lawrence Formation (layer 5) each comprise separate model layers. The underlying glauconitic sandstone of the Tunnel City Group makes up three distinct layers: an upper aquifer (layer 6), a fracture feature (layer 7), and a lower aquifer (layer 8). The fracture layer represents a network of horizontal bedding-plane fractures that serve as a preferential pathway for groundwater flow. The model simulates the sandstone of the Wonewoc Formation as an upper aquifer (layer 9) with a bedding-plane fracture feature (layer 10) at its base. The Eau Claire aquitard (layer 11) includes shale beds within the upper portion of the Eau Claire Formation. This layer, along with overlying bedrock units, is mostly absent in the preglacially eroded valleys along

  1. Groundwater impacts on surface water quality and nutrient loads in lowland polder catchments: monitoring the greater Amsterdam area

    Science.gov (United States)

    Yu, Liang; Rozemeijer, Joachim; van Breukelen, Boris M.; Ouboter, Maarten; van der Vlugt, Corné; Broers, Hans Peter

    2018-01-01

    organic matter in subsurface sediments coupled to sulfate reduction and possibly methanogenesis. The large loads of nutrient-rich groundwater seepage into the deepest polders indirectly affect surface water quality in the surrounding area, because excess water from the deep polders is pumped out and used to supply water to the surrounding infiltrating polders in dry periods. The study shows the importance of the connection between groundwater and surface water nutrient chemistry in the greater Amsterdam area. We expect that taking account of groundwater-surface water interaction is also important in other subsiding and urbanising deltas around the world, where water is managed intensively in order to enable agricultural productivity and achieve water-sustainable cities.

  2. Responses of the sustainable yield of groundwater to annual rainfall and pumping patterns in the Baotou Plain, North China

    Science.gov (United States)

    Liao, Z.; LONG, Y., Sr.; Wei, Y.; Guo, Z.

    2017-12-01

    Serious water deficits and deteriorating environmental quality are threatening the sustainable socio-economic development and the protection of the ecology and the environment in North China, especially in Baotou City. There is a common misconception that groundwater extraction can be sustainable if the pumping rate does not exceed the total natural recharge in a groundwater basin. The truth is that the natural recharge is mainly affected by the rainfall and that groundwater withdrawal determines the sustainable yield of the aquifer flow system. The concept of the sustainable yield is defined as the allowance pumping patterns and rates that avoid adverse impacts on the groundwater system. The sustainable yield introduced in this paper is a useful baseline for groundwater management under all rainfall conditions and given pumping scenarios. A dynamic alternative to the groundwater sustainable yield for a given pumping pattern and rate should consider the responses of the recharge, discharge, and evapotranspiration to the groundwater level fluctuation and to different natural rainfall conditions. In this study, methods for determining the sustainable yield through time series data of groundwater recharge, discharge, extraction, and precipitation in an aquifer are introduced. A numerical simulation tool was used to assess and quantify the dynamic changes in groundwater recharge and discharge under excessive pumping patterns and rates and to estimate the sustainable yield of groundwater flow based on natural rainfall conditions and specific groundwater development scenarios during the period of 2007 to 2014. The results of this study indicate that the multi-year sustainable yield only accounts for about one-half of the average annual recharge. The future sustainable yield for the current pumping scenarios affected by rainfall conditions are evaluated quantitatively to obtain long-term groundwater development strategies. The simulation results show that sufficient

  3. Groundwater Forecasting Optimization Pertain to Dam Removal

    Science.gov (United States)

    Brown, L.; Berthelote, A. R.

    2011-12-01

    There is increasing interest in removing dams due to changing ecological and societal values. Groundwater recharge rate is closely connected to reservoir presence or absence. With the removal of dams and their associated reservoirs, reductions in groundwater levels are likely to impact water supplies for domestic, industrial and agricultural use. Therefore accessible economic and time effective tools to forecast groundwater level declines with acceptable uncertainty following dam removals are critical for public welfare and healthy regional economies. These tools are also vital to project planning and provide beneficial information for restoration and remediation managements. The standard tool for groundwater forecasting is 3D Numerical modeling. Artificial Neural Networks (ANNs) may be an alternative tool for groundwater forecasting pertain to dam removal. This project compared these two tools throughout the Milltown Dam removal in Western Montana over a five year period. It was determined that ANN modeling had equal or greater accuracy for groundwater forecasting with far less effort and cost involved.

  4. The Joint Cities

    Directory of Open Access Journals (Sweden)

    Romano Fistola

    2010-04-01

    Full Text Available The new connections, which high speed train allows to activate among the metropolitan systems, seem to be able to give life to new urban macro-structures for which the transfer time, among the main poles of the railway segment, becomes comparable to an inside moving into the city and therefore considered as an inter-functional mobility. The tunnel effect generated by the high speed connection seems to be able to allow a new temporal and functional joint among the metropolitan systems consequently supporting the possibility, for the users, to move themselves among the different urban functions belonging to the different cities. The birth of these urban aggregations seems to drive towards new megalopolis, which we can define for the first time with the term: joint-city. For this new metropolitan settlement it seems to be very interesting to investigate the constitutive peculiarities, the systemic articulation, its relational structures, the evolutionary scenarios, and so on. The urban functions (activities can be considered as structures of relationships between people that allows to define "organizational links" inside the community; the urban functions are located in specific places inside urban container or in open spaces. The urban functions represent the urban engines and the functional system can be thought as the “soul of the city", abstract but essential to its survival. In the definition set out here the analysis is carried out for many interconnected urban functional system points (specifically those in Rome and Naples. The new high speed railway has to be considered not only as a new channel of mobility between cities, but as a real possibility of joint between the functional systems of the two centres. A final consideration can be carried out in relation to the possibility of implementing new measures of governance of urban transformations considering the new macro-city: the "Joint City".

  5. Subsurface urban heat islands in German cities.

    Science.gov (United States)

    Menberg, Kathrin; Bayer, Peter; Zosseder, Kai; Rumohr, Sven; Blum, Philipp

    2013-01-01

    Little is known about the intensity and extension of subsurface urban heat islands (UHI), and the individual role of the driving factors has not been revealed either. In this study, we compare groundwater temperatures in shallow aquifers beneath six German cities of different size (Berlin, Munich, Cologne, Frankfurt, Karlsruhe and Darmstadt). It is revealed that hotspots of up to +20K often exist, which stem from very local heat sources, such as insufficiently insulated power plants, landfills or open geothermal systems. When visualizing the regional conditions in isotherm maps, mostly a concentric picture is found with the highest temperatures in the city centers. This reflects the long-term accumulation of thermal energy over several centuries and the interplay of various factors, particularly in heat loss from basements, elevated ground surface temperatures (GST) and subsurface infrastructure. As a primary indicator to quantify and compare large-scale UHI intensity the 10-90%-quantile range UHII(10-90) of the temperature distribution is introduced. The latter reveals, in comparison to annual atmospheric UHI intensities, an even more pronounced heating of the shallow subsurface. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. An approach to identify urban groundwater recharge

    Directory of Open Access Journals (Sweden)

    E. Vázquez-Suñé

    2010-10-01

    Full Text Available Evaluating the proportion in which waters from different origins are mixed in a given water sample is relevant for many hydrogeological problems, such as quantifying total recharge, assessing groundwater pollution risks, or managing water resources. Our work is motivated by urban hydrogeology, where waters with different chemical signature can be identified (losses from water supply and sewage networks, infiltration from surface runoff and other water bodies, lateral aquifers inflows, .... The relative contribution of different sources to total recharge can be quantified by means of solute mass balances, but application is hindered by the large number of potential origins. Hence, the need to incorporate data from a large number of conservative species, the uncertainty in sources concentrations and measurement errors. We present a methodology to compute mixing ratios and end-members composition, which consists of (i Identification of potential recharge sources, (ii Selection of tracers, (iii Characterization of the hydrochemical composition of potential recharge sources and mixed water samples, and (iv Computation of mixing ratios and reevaluation of end-members. The analysis performed in a data set from samples of the Barcelona city aquifers suggests that the main contributors to total recharge are the water supply network losses (22%, the sewage network losses (30%, rainfall, concentrated in the non-urbanized areas (17%, from runoff infiltration (20%, and the Besòs River (11%. Regarding species, halogens (chloride, fluoride and bromide, sulfate, total nitrogen, and stable isotopes (18O, 2H, and 34S behaved quite conservatively. Boron, residual alkalinity, EDTA and Zn did not. Yet, including these species in the computations did not affect significantly the proportion estimations.

  7. Groundwater-quality data and regional trends in the Virginia Coastal Plain, 1906-2007

    Science.gov (United States)

    McFarland, Randolph E.

    2010-01-01

    as a result of broad contrasts between sediment permeabilities. Paths of differential flushing are also focused along the inverted zones, which follow stratigraphic and structural trends southeastward into North Carolina and northeastward beneath the chloride mound across the outer impact crater. Brine within the inner impact crater has probably remained unflushed. Regional movement of the saltwater-transition zone takes place over geologic time scales. Localized movement has been induced by groundwater withdrawal, mostly along shallow parts of the saltwater-transition zone. Short-term episodic withdrawals result in repeated cycles of upconing and downconing of saltwater, which are superimposed on longer-term lateral saltwater intrusion. Effective monitoring for saltwater intrusion needs to address multiple and complexly distributed areas of potential intrusion that vary over time. A broad belt of large groundwater fluoride concentrations underlies the city of Suffolk, and thins and tapers northward. Fluoride in groundwater probably originates by desorbtion from phosphatic sedimentary material. The high fluoride belt possibly was formed by initial adsorbtion of fluoride onto sediment oxyhydroxides, followed by desorbtion along the leading edge of the advancing saltwater-transition zone. Large groundwater iron and manganese concentrations are most common to the west along the Fall Zone, across part of the saltwater-transition zone and eastward, and within shallow groundwater far to the east. Iron and manganese initially produced by mineral dissolution along the Fall Zone are adsorbed eastward and with depth by clay and glauconite, and subsequently desorbed along the leading edge of the advancing saltwater-transition zone. Iron and manganese in shallow groundwater far to the east are produced by reaction of sediment organic matter with oxyhydroxides. Large groundwater nitrate and ammonium concentrations are mostly limited to shallow depths. Most nitrate a

  8. Earth's City Lights

    Science.gov (United States)

    2002-01-01

    This image of Earth's city lights was created with data from the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS). Originally designed to view clouds by moonlight, the OLS is also used to map the locations of permanent lights on the Earth's surface. The brightest areas of the Earth are the most urbanized, but not necessarily the most populated. (Compare western Europe with China and India.) Cities tend to grow along coastlines and transportation networks. Even without the underlying map, the outlines of many continents would still be visible. The United States interstate highway system appears as a lattice connecting the brighter dots of city centers. In Russia, the Trans-Siberian railroad is a thin line stretching from Moscow through the center of Asia to Vladivostok. The Nile River, from the Aswan Dam to the Mediterranean Sea, is another bright thread through an otherwise dark region. Even more than 100 years after the invention of the electric light, some regions remain thinly populated and unlit. Antarctica is entirely dark. The interior jungles of Africa and South America are mostly dark, but lights are beginning to appear there. Deserts in Africa, Arabia, Australia, Mongolia, and the United States are poorly lit as well (except along the coast), along with the boreal forests of Canada and Russia, and the great mountains of the Himalaya. The Earth Observatory article Bright Lights, Big City describes how NASA scientists use city light data to map urbanization. Image by Craig Mayhew and Robert Simmon, NASA GSFC, based on DMSP data

  9. Universities scale like cities.

    Science.gov (United States)

    van Raan, Anthony F J

    2013-01-01

    Recent studies of urban scaling show that important socioeconomic city characteristics such as wealth and innovation capacity exhibit a nonlinear, particularly a power law scaling with population size. These nonlinear effects are common to all cities, with similar power law exponents. These findings mean that the larger the city, the more disproportionally they are places of wealth and innovation. Local properties of cities cause a deviation from the expected behavior as predicted by the power law scaling. In this paper we demonstrate that universities show a similar behavior as cities in the distribution of the 'gross university income' in terms of total number of citations over 'size' in terms of total number of publications. Moreover, the power law exponents for university scaling are comparable to those for urban scaling. We find that deviations from the expected behavior can indeed be explained by specific local properties of universities, particularly the field-specific composition of a university, and its quality in terms of field-normalized citation impact. By studying both the set of the 500 largest universities worldwide and a specific subset of these 500 universities--the top-100 European universities--we are also able to distinguish between properties of universities with as well as without selection of one specific local property, the quality of a university in terms of its average field-normalized citation impact. It also reveals an interesting observation concerning the working of a crucial property in networked systems, preferential attachment.

  10. Network cities and externalities

    Directory of Open Access Journals (Sweden)

    Rafael Boix Domènech

    2004-01-01

    Full Text Available The concept of «agglomeration economies» explains the existence of advantages derived from the concentration of population and activity. However, it does not explain the existence of spatially dynamic external economies. Network economies generated in networks of cities correspond to this last type, since they are generated from the interaction between urban units, linked by a network relationship. The objective of this research is to advance in the study of the relationship between the networks of cities and the generation of external economies. The research is divided in four parts: first we expose the link between networks of cities and external economies. The second part outlines a model for the combined measuring of the concentration and network economies. The third part explains the results of applying the model to a case of study: the network of cities of Catalonia. The results suggest that there is a causal relationship between the organization of the urban units forming networks of cities and the generation of external economies that affect growth and economic development. Finally, conclusions and policy implications are drawn up.

  11. Universities scale like cities.

    Directory of Open Access Journals (Sweden)

    Anthony F J van Raan

    Full Text Available Recent studies of urban scaling show that important socioeconomic city characteristics such as wealth and innovation capacity exhibit a nonlinear, particularly a power law scaling with population size. These nonlinear effects are common to all cities, with similar power law exponents. These findings mean that the larger the city, the more disproportionally they are places of wealth and innovation. Local properties of cities cause a deviation from the expected behavior as predicted by the power law scaling. In this paper we demonstrate that universities show a similar behavior as cities in the distribution of the 'gross university income' in terms of total number of citations over 'size' in terms of total number of publications. Moreover, the power law exponents for university scaling are comparable to those for urban scaling. We find that deviations from the expected behavior can indeed be explained by specific local properties of universities, particularly the field-specific composition of a university, and its quality in terms of field-normalized citation impact. By studying both the set of the 500 largest universities worldwide and a specific subset of these 500 universities--the top-100 European universities--we are also able to distinguish between properties of universities with as well as without selection of one specific local property, the quality of a university in terms of its average field-normalized citation impact. It also reveals an interesting observation concerning the working of a crucial property in networked systems, preferential attachment.

  12. Hamilton : the electric city

    International Nuclear Information System (INIS)

    Gilbert, R.

    2006-01-01

    The City of Hamilton has launched an extensive energy planning exercise that examines the possibility of steep increases in oil and natural gas prices. This report examined and illustrated the issue of oil and gas price points. The report also examined and presented the city's role in an era of energy constraints, focusing on the city's transit system and its vehicle fleet. In addition, in response to City Council's direction, the report presented the aerotropolis proposal and discussed freight transport issues. Specific topics of discussion included oil and natural gas prospects; prospects for high oil and natural gas prices; impacts of fuel price increases; strategic planning objectives for energy constraints; reducing energy use by Hamilton's transport and in buildings; and land-use planning for energy constraints. Energy production opportunities involve the use of solar energy; wind energy; deep lake water cooling (DLWC); hydro-electric power; energy from waste; biogas production; district energy; and local food production. Economic and social development through preparing for energy constraints and matters raised by city council were also presented. The report also demonstrated how an energy-based strategy could be paid for and its components approved. The next steps for Hamilton were also identified. refs., tabs., figs

  13. Hydraulic fracturing near domestic groundwater wells.

    Science.gov (United States)

    Jasechko, Scott; Perrone, Debra

    2017-12-12

    Hydraulic fracturing operations are generating considerable discussion about their potential to contaminate aquifers tapped by domestic groundwater wells. Groundwater wells located closer to hydraulically fractured wells are more likely to be exposed to contaminants derived from on-site spills and well-bore failures, should they occur. Nevertheless, the proximity of hydraulic fracturing operations to domestic groundwater wells is unknown. Here, we analyze the distance between domestic groundwater wells (public and self-supply) constructed between 2000 and 2014 and hydraulically fractured wells stimulated in 2014 in 14 states. We show that 37% of all recorded hydraulically fractured wells stimulated during 2014 exist within 2 km of at least one recently constructed (2000-2014) domestic groundwater well. Furthermore, we identify 11 counties where most ([Formula: see text]50%) recorded domestic groundwater wells exist within 2 km of one or more hydraulically fractured wells stimulated during 2014. Our findings suggest that understanding how frequently hydraulic fracturing operations impact groundwater quality is of widespread importance to drinking water safety in many areas where hydraulic fracturing is common. We also identify 236 counties where most recorded domestic groundwater wells exist within 2 km of one or more recorded oil and gas wells producing during 2014. Our analysis identifies hotspots where both conventional and unconventional oil and gas wells frequently exist near recorded domestic groundwater wells that may be targeted for further water-quality monitoring.

  14. Groundwater environmental capacity and its evaluation index.

    Science.gov (United States)

    Xing, Li Ting; Wu, Qiang; Ye, Chun He; Ye, Nan

    2010-10-01

    To date, no unified and acknowledged definition or well-developed evaluation index system of groundwater environment capacity can be found in the academia at home or abroad. The article explores the meaning of water environment capacity, and analyzes the environmental effects caused by the exploitation of groundwater resources. This research defines groundwater environmental capacity as a critical value in terms of time and space, according to which the groundwater system responds to the external influences within certain goal constraint. On the basis of observing the principles of being scientific, dominant, measurable, and applicable, six level 1 evaluation indexes and 11 constraint factors are established. Taking Jinan spring region for a case study, this research will adopt groundwater level and spring flow as constraint factors, and the allowable groundwater yield as the critical value of groundwater environmental capacity, prove the dynamic changeability and its indicating function of groundwater environmental capacity through calculation, and finally point out the development trends of researches on groundwater environmental capacity.

  15. Compendium of ordinances for groundwater protection

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    Groundwater is an extremely important resource in the Tennessee Valley. Nearly two-thirds of the Tennessee Valley's residents rely, at least in part, on groundwater supplies for drinking water. In rural areas, approximately ninety-five percent of residents rely on groundwater for domestic supplies. Population growth and economic development increase the volume and kinds of wastes requiring disposal which can lead to groundwater contamination. In addition to disposal which can lead to groundwater contamination. In addition to disposal problems associated with increases in conventional wastewater and solid waste, technological advancements in recent decades have resulted in new chemicals and increased usage in agriculture, industry, and the home. Unfortunately, there has not been comparable progress in identifying the potential long-term effects of these chemicals, in managing them to prevent contamination of groundwater, or in developing treatment technologies for removing them from water once contamination has occurred. The challenge facing residence of the Tennessee Valley is to manage growth and economic and technological development in ways that will avoid polluting the groundwater resource. Once groundwater has been contaminated, cleanup is almost always very costly and is sometimes impractical or technically infeasible. Therefore, prevention of contamination -- not remedial treatment--is the key to continued availability of usable groundwater. This document discusses regulations to aid in this prevention.

  16. Urbanization and subsurface environmental issues: an attempt at DPSIR model application in Asian cities.

    Science.gov (United States)

    Jago-on, Karen Ann Bianet; Kaneko, Shinji; Fujikura, Ryo; Fujiwara, Akimasa; Imai, Tsuyoshi; Matsumoto, Toru; Zhang, Junyi; Tanikawa, Hiroki; Tanaka, Katsuya; Lee, Backjin; Taniguchi, Makoto

    2009-04-15

    This paper synthesizes existing information and knowledge on subsurface environments to understand the major cause and effect relationships of subsurface environmental issues by using the DPSIR (Driving force-Pressure-Status-Impact-Response) approach as the framework of analysis. Description is given to the major subsurface environmental issues common among the selected Asian cities (Bangkok, Jakarta, Manila, Osaka, Seoul, Taipei and Tokyo), such as excessive groundwater abstraction, land subsidence and groundwater contamination. The DPSIR framework is used to analyze the issues and problems of subsurface in key stages and suggestions are made for additional indicators to improve our description of the stages of urban development for the future.

  17. Groundwater Overexploitation and Seawater Intrusion in Coastal Areas of Arid and Semi-Arid Regions

    Directory of Open Access Journals (Sweden)

    Nawal Alfarrah

    2018-02-01

    Full Text Available The exploitation of groundwater resources is of high importance and has become very crucial in the last decades, especially in coastal areas of arid and semi-arid regions. The coastal aquifers in these regions are particularly at risk due to intrusion of salty marine water. One example is the case of Tripoli city at the Mediterranean coast of Jifarah Plain, North West Libya. Libya has experienced progressive seawater intrusion in the coastal aquifers since the 1930s because of its ever increasing water demand from underground water resources. Tripoli city is a typical area where the contamination of the aquifer in the form of saltwater intrusion is very developed. Sixty-four groundwater samples were collected from the study area and analyzed for certain parameters that indicate salinization and pollution of the aquifer. The results demonstrate high values of the parameters Electrical Conductivity, Na+, K+, Mg2+, Cl− and SO42−, which can be attributed to seawater intrusion, where Cl− is the major pollutant of the aquifer. The water types according to the Stuyfzand groundwater classification are mostly CaCl, NaCl and Ca/MgMix. These water types indicate that groundwater chemistry is changed by cation exchange reactions during the mixing process between freshwater and seawater. The intensive extraction of groundwater from the aquifer reduces freshwater outflow to the sea, creates drawdown cones and lowering of the water table to as much as 25 m below mean sea level. Irrigation with nitrogen fertilizers and domestic sewage and movement of contaminants in areas of high hydraulic gradients within the drawdown cones probably are responsible for the high NO3− concentration in the region.

  18. Numerical simulation of groundwater artificial recharge in a semiarid-climate basin of northwest Mexico, case study the Guadalupe Valley Aquifer, Baja California

    Science.gov (United States)

    Campos-Gaytan, J. R.; Herrera-Oliva, C. S.

    2013-05-01

    In this study was analyzed through a regional groundwater flow model the effects on groundwater levels caused by the application of different future groundwater management scenarios (2007-2025) at the Guadalupe Valley, in Baja California, Mexico. Among these studied alternatives are those scenarios designed in order to evaluate the possible effects generated for the groundwater artificial recharge in order to satisfy a future water demand with an extraction volume considered as sustainable. The State of Baja California has been subject to an increment of the agricultural, urban and industrials activities, implicating a growing water-demand. However, the State is characterized by its semiarid-climate with low surface water availability; therefore, has resulted in an extensive use of groundwater in local aquifer. Water level measurements indicate there has been a decline in water levels in the Guadalupe Valley for the past 30 years. The Guadalupe Valley aquifer represents one the major sources of water supply in Ensenada region. It supplies about 25% of the water distributed by the public water supplier at the city of Ensenada and in addition constitutes the main water resource for the local wine industries. Artificially recharging the groundwater system is one water resource option available to the study zone, in response to increasing water demand. The existing water supply system for the Guadalupe Valley and the city of Ensenada is limited since water use demand periods in 5 to 10 years or less will require the construction of additional facilities. To prepare for this short-term demand, one option available to water managers is to bring up to approximately 3.0 Mm3/year of treated water of the city of Ensenada into the valley during the low-demand winter months, artificially recharge the groundwater system, and withdraw the water to meet the summer demands. A 2- Dimensional groundwater flow was used to evaluate the effects of the groundwater artificial recharge

  19. Groundwater Protection As Viable Option For Sustainable Water ...

    African Journals Online (AJOL)

    The paper not only concentrates on the problems of protecting groundwater from toxic chemicals but also discusses ways of protecting groundwater from conventional pollutants. Keywords:Groundwater protection, contamination, pollution, sustainable water supply, Nigeria. Global Journal of Geological Sciences Vol.

  20. The Meat City

    DEFF Research Database (Denmark)

    Thelle, Mikkel

    2017-01-01

    This article investigates the emergence of the Copenhagen slaughterhouse, called the Meat City, during the late nineteenth century. This slaughterhouse was a product of a number of heterogeneous components: industrialization and new infrastructures were important, but hygiene and the significance...... of Danish bacon exports also played a key role. In the Meat City, this created a distinction between rising production and consumption on the one hand, and the isolation and closure of the slaughtering facility on the other. This friction mirrored an ambivalent attitude towards meat in the urban space: one...... where consumers demanded more meat than ever before, while animals were being removed from the public eye. These contradictions, it is argued, illustrate and underline the change of the city towards a ‘post-domestic’ culture. The article employs a variety of sources, but primarily the Copenhagen...

  1. Mobilities, Futures & the City

    DEFF Research Database (Denmark)

    Freudendal-Pedersen, Malene; Kesselring, Sven

    2016-01-01

    significant attention to these shifts in societies’ discursive patterns and structures. For making up powerful and strong visions and policies for sustainable cities, ‘collaborative storytelling’ plays a key role. The theoretical outset for the research project ‘Mobilities, Futures & the City’, which grounds......The future of cities and regions will be strongly shaped by the mobilities of people, goods, modes of transport, waste and information. In many ways, the ‘why and ‘for what’ often get lost in discourses on planning and designing mobilities. The predominant planning paradigm still conceptualizes...... the future of cities and mobilities as a matter of rather more efficient technologies than of social cohesion, integration and connectivity. Sustainable mobility needs the mobilities of ideas and concepts and the reflexivity of policies. Communicative planning theory and the ‘argumentative turn’ have given...

  2. Mapping the gendered city

    DEFF Research Database (Denmark)

    Almahmood, Mohammed Abdulrahman M; Scharnhorst, Eric; Carstensen, Trine Agervig

    2017-01-01

    Walking is a mode of perceiving the city which also contributes to health and social benefits. This paper studies the influence of the socio-cultural aspects on the practice of walking and the meaning of walkscapes in Riyadh, one of the most auto-dependent and gender-segregated cities on the Arab....... The results of mapping where the respondents walk show a city consisting of gender-specific walkscapes. Indoor environments, such as shopping malls, function as ‘urban shelters’ for women, so they use such spaces for walking. On the other hand, young men mainly walk in urban streets, which provide greater...... opportunities for gender interaction. However, streets are socially conceived as men’s walkscapes, which limits women’s presence, especially at certain times of the day. This paper reveals how walking experience, tempo-rhythm, sense of place and range of walkscapes are not only determined by ‘universal’ spatial...

  3. Ultrafine particles in cities.

    Science.gov (United States)

    Kumar, Prashant; Morawska, Lidia; Birmili, Wolfram; Paasonen, Pauli; Hu, Min; Kulmala, Markku; Harrison, Roy M; Norford, Leslie; Britter, Rex

    2014-05-01

    Ultrafine particles (UFPs; diameter less than 100 nm) are ubiquitous in urban air, and an acknowledged risk to human health. Globally, the major source for urban outdoor UFP concentrations is motor traffic. Ongoing trends towards urbanisation and expansion of road traffic are anticipated to further increase population exposure to UFPs. Numerous experimental studies have characterised UFPs in individual cities, but an integrated evaluation of emissions and population exposure is still lacking. Our analysis suggests that the average exposure to outdoor UFPs in Asian cities is about four-times larger than that in European cities but impacts on human health are largely unknown. This article reviews some fundamental drivers of UFP emissions and dispersion, and highlights unresolved challenges, as well as recommendations to ensure sustainable urban development whilst minimising any possible adverse health impacts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The Meat City

    DEFF Research Database (Denmark)

    Thelle, Mikkel

    2017-01-01

    where consumers demanded more meat than ever before, while animals were being removed from the public eye. These contradictions, it is argued, illustrate and underline the change of the city towards a ‘post-domestic’ culture. The article employs a variety of sources, but primarily the Copenhagen......This article investigates the emergence of the Copenhagen slaughterhouse, called the Meat City, during the late nineteenth century. This slaughterhouse was a product of a number of heterogeneous components: industrialization and new infrastructures were important, but hygiene and the significance...... of Danish bacon exports also played a key role. In the Meat City, this created a distinction between rising production and consumption on the one hand, and the isolation and closure of the slaughtering facility on the other. This friction mirrored an ambivalent attitude towards meat in the urban space: one...

  5. Bacterial contamination of groundwater in urban area of Karachi

    International Nuclear Information System (INIS)

    Zubair, A.; Rippey, B.

    1999-01-01

    Well-water samples (in=193) were collected from urban areas of five districts of Karachi during the period 1993 to 1995 to evaluate its bacteriological quality and their impact on city environment and morbidity patterns of inhabitants. Samples were analyzed by the standard method American Public Health Association. The bacteriological contamination level suggest that the groundwater of Chaahi is mainly affected by contamination of wastewater containing high levels of coliform and faecal coliform bacteria. This study points towards serious need to control the seepage from sewerage system and use of contaminated well-water should be discouraged to reduce the incidence of water-borne diseases in order to improve the quality of life and health. (author)

  6. The Evolution of Groundwater Management Paradigms in Kansas, USA

    Science.gov (United States)

    Sophocleous, M. A.

    2011-12-01

    The purpose of this presentation is to trace the evolution of key water-related laws and management practices in Kansas, from the enactment of the Kansas Water Resources Appropriation Act of 1945 to the present, in order to highlight the state's efforts to create a more sustainable water future and in hopes that others will benefit from Kansas' experience. The 1945 Act provides the basic framework of water law (prior appropriation) in Kansas. Progression of groundwater management in the state encompasses local ground-water management districts (GMDs) and their water-management programs, minimum-streamflow and TMDL standards, water-use reporting and water metering programs, use of modified safe-yield policies in some GMDs, the subbasin water-resources-management program, the integrated resource planning/Aquifer Storage and Recovery project of the City of Wichita, the Central Kansas Water Bank, enhanced aquifer subunits management, and various water conservation programs. While these have all contributed to the slowing down of declines in groundwater levels in the High Plains aquifer and in associated ecosystems, they have not yet succeeded in halting those declines. Based on the assumption that the different management approaches have to operate easily within the prevailing water rights and law framework to succeed, a number of steps are suggested here that may help further halt the declines of the High Plains aquifer. These include eliminating the "use it or lose it" maxim in the prior-appropriation framework, broadening the definition of "beneficial use," regulating domestic and other "exempt" wells, encouraging voluntary "sharing the shortage" agreements, and determining to what extent water rights may be regulated in the public interest without a compensable "taking." Further necessary measures include determining to what extent water-rights holders might be subjected to reasonable dictates without having the security of their rights altered.

  7. Chemical constraints of groundwater management in the Yucatan peninsula, Mexico

    Science.gov (United States)

    Back, W.; Lesser, J. M.

    1981-05-01

    Two critical objectives of water management in the Yucatan are: (1) to develop regional groundwater supplies for an expanding population and tourism based on the Mayan archeological sites and excellent beaches; and (2) to control groundwater pollution in a chemically sensitive system made vulnerable by geologic conditions. The Yucatan peninsula is a coastal plain underlain by permeable limestone and has an annual rainfall of more than 1000 mm. Such a setting should provide abundant supplies of water; however, factors of climate and hydrogeology have combined to form a hydrologic system with chemical boundaries that decrease the amount of available fresh water. Management of water resources has long had a major influence on the cultural and economic development of the Yucatan. The Mayan culture of the northern Yucatan developed by extensive use of groundwater. The religion was water-oriented and the Mayan priests prayed to Chac, the water god, for assistance in water management primarily to decrease the severity of droughts. The Spaniards arrived in 1517 and augmented the supplies by digging wells, which remained the common practice for more than 300 years. Many wells now have been abandoned because of serious problems of pollution resulting from the use of a sewage disposal well adjacent to each supply well. The modern phase of water management began in 1959 when the Secretaría de Recursos Hidráulicos (S.R.H.) was charged with the responsibility for both scientific investigations and development programmes for water-supply and sewage-disposal systems for cities, villages and islands.

  8. Nitrate-nitrogen contamination in groundwater: Spatiotemporal variation and driving factors under cropland in Shandong Province, China

    Science.gov (United States)

    Liu, J.; Jiang, L. H.; Zhang, C. J.; Li, P.; Zhao, T. K.

    2017-08-01

    High groundwater nitrate-N is a serious problem especially in highly active agricultural areas. In study, the concentration and spatialtemporal distribution of groundwater nitrate-N under cropland in Shandong province were assessed by statistical and geostatistical techniques. Nitrate-N concentration reached a maximum of 184.60 mg L-1 and 29.5% of samples had levels in excess of safety threshold concentration (20 mg L-1). The median nitrate-N contents after rainy season were significantly higher than those before rainy season, and decreased with increasing groundwater depth. Nitrate-N under vegetable and orchard area are significantly higher than ones under grain. The kriging map shows that groundwater nitrate-N has a strong spatial variability. Many districts, such as Weifang, Linyi in Shandong province are heavily contaminated with nitrate-N. However, there are no significant trends of NO3 --N for most cities. Stepwise regression analysis showed influencing factors are different for the groundwater in different depth. But overall, vegetable yield per unit area, percentages of orchard area, per capita agricultural production, unit-area nitrogen fertilizer, livestock per unit area, percentages of irrigation areas, population per unit area and annual mean temperature are significant variables for groundwater nitrate-N variation.

  9. Evaluation of the fast orthogonal search method for forecasting chloride levels in the Deltona groundwater supply (Florida, USA)

    Science.gov (United States)

    El-Jaat, Majda; Hulley, Michael; Tétreault, Michel

    2018-02-01

    Despite the broad impact and importance of saltwater intrusion in coastal aquifers, little research has been directed towards forecasting saltwater intrusion in areas where the source of saltwater is uncertain. Saline contamination in inland groundwater supplies is a concern for numerous communities in the southern US including the city of Deltona, Florida. Furthermore, conventional numerical tools for forecasting saltwater contamination are heavily dependent on reliable characterization of the physical characteristics of underlying aquifers, information that is often absent or challenging to obtain. To overcome these limitations, a reliable alternative data-driven model for forecasting salinity in a groundwater supply was developed for Deltona using the fast orthogonal search (FOS) method. FOS was applied on monthly water-demand data and corresponding chloride concentrations at water supply wells. Groundwater salinity measurements from Deltona water supply wells were applied to evaluate the forecasting capability and accuracy of the FOS model. Accurate and reliable groundwater salinity forecasting is necessary to support effective and sustainable coastal-water resource planning and management. The available (27) water supply wells for Deltona were randomly split into three test groups for the purposes of FOS model development and performance assessment. Based on four performance indices (RMSE, RSR, NSEC, and R), the FOS model proved to be a reliable and robust forecaster of groundwater salinity. FOS is relatively inexpensive to apply, is not based on rigorous physical characterization of the water supply aquifer, and yields reliable estimates of groundwater salinity in active water supply wells.

  10. Evaluation of groundwater quality in and around Peenya industrial area of Bangalore, South India using GIS techniques.

    Science.gov (United States)

    Pius, Anitha; Jerome, Charmaine; Sharma, Nagaraja

    2012-07-01

    Groundwater resource forms a significant component of the urban water supply. Declining groundwater levels in Bangalore Urban District is generally due to continuous overexploitation during the last two decades or more. There is a tremendous increase in demand in the city for good quality groundwater resource. The present study monitors the groundwater quality using geographic information system (GIS) techniques for a part of Bangalore metropolis. Thematic maps for the study area are prepared by visual interpretation of SOI toposheets on 1:50,000 scale using MapInfo software. Physicochemical analysis data of the groundwater samples collected at predetermined locations form the attribute database for the study, based on which spatial distribution maps of major water quality parameters are prepared using MapInfo GIS software. Water quality index was then calculated by considering the following water quality parameters--pH, total dissolved solids, total hardness, calcium hardness, magnesium hardness, alkalinity, chloride, nitrate and sulphate to find the suitability of water for drinking purpose. The water quality index for these samples ranged from 49 to 502. The high value of water quality index reveals that most of the study area is highly contaminated due to excessive concentration of one or more water quality parameters and that the groundwater needs pretreatment before consumption.

  11. Social Perception of Public Water Supply Network and Groundwater Quality in an Urban Setting Facing Saltwater Intrusion and Water Shortages.

    Science.gov (United States)

    Alameddine, Ibrahim; Jawhari, Gheeda; El-Fadel, Mutasem

    2017-04-01

    Perceptions developed by consumers regarding the quality of water reaching their household can affect the ultimate use of the water. This study identified key factors influencing consumers' perception of water quality in a highly urbanized coastal city, experiencing chronic water shortages, overexploitation of groundwater, and accelerated saltwater intrusion. Household surveys were administered to residents to capture views and perceptions of consumed water. Concomitantly, groundwater and tap water samples were collected and analyzed at each residence for comparison with perceptions. People's rating of groundwater quality was found to correlate to the measured water quality both in the dry and wet seasons. In contrast, perceptions regarding the water quality of the public water supply network did not show any correlation with the measured tap water quality indicators. Logistic regression models developed to predict perception based on salient variables indicated that age, apartment ownership, and levels of total dissolved solids play a significant role in shaping perceptions regarding groundwater quality. Perceptions concerning the water quality of the public water supply network appeared to be independent of the measured total dissolved solids levels at the tap but correlated to those measured in the wells. The study highlights misconceptions that can arise as a result of uncontrolled cross-connections of groundwater to the public supply network water and the development of misaligned perceptions based on prior consumption patterns, water shortages, and a rapidly salinizing groundwater aquifer.

  12. Social Perception of Public Water Supply Network and Groundwater Quality in an Urban Setting Facing Saltwater Intrusion and Water Shortages

    Science.gov (United States)

    Alameddine, Ibrahim; Jawhari, Gheeda; El-Fadel, Mutasem

    2017-04-01

    Perceptions developed by consumers regarding the quality of water reaching their household can affect the ultimate use of the water. This study identified key factors influencing consumers' perception of water quality in a highly urbanized coastal city, experiencing chronic water shortages, overexploitation of groundwater, and accelerated saltwater intrusion. Household surveys were administered to residents to capture views and perceptions of consumed water. Concomitantly, groundwater and tap water samples were collected and analyzed at each residence for comparison with perceptions. People's rating of groundwater quality was found to correlate to the measured water quality both in the dry and wet seasons. In contrast, perceptions regarding the water quality of the public water supply network did not show any correlation with the measured tap water quality indicators. Logistic regression models developed to predict perception based on salient variables indicated that age, apartment ownership, and levels of total dissolved solids play a significant role in shaping perceptions regarding groundwater quality. Perceptions concerning the water quality of the public water supply network appeared to be independent of the measured total dissolved solids levels at the tap but correlated to those measured in the wells. The study highlights misconceptions that can arise as a result of uncontrolled cross-connections of groundwater to the public supply network water and the development of misaligned perceptions based on prior consumption patterns, water shortages, and a rapidly salinizing groundwater aquifer.

  13. Management of water resources to control groundwater levels in the southern area of the western Nile delta, Egypt

    Directory of Open Access Journals (Sweden)

    Mohamed M. Sobeih

    2017-10-01

    Full Text Available The present study was initiated with the objective of simulating and predicting the effect of future development on the groundwater flow and levels. This supports applications for future planning and wise management of water resources. The study area extends south of El Nubariya canal including Sadat City area and its vicinities in the western Nile delta region. A numerical groundwater flow model (MODFLOW has been employed to simulate flow and get the budget of groundwater in the study area. The model showed that about 28,101,041 m3/day of surface water is infiltrated to groundwater dominantly from canals and excess irrigation water. About the same quantity (28,101,052 m3/day, is discharged from groundwater through production wells, open drains and through some reaches of canals. Three development scenarios were simulated to give predictions of the impact of future increasing recharge, construction of new canal and new open drains, and also increased pumping on the groundwater levels in the study area.

  14. Cities as development drivers

    DEFF Research Database (Denmark)

    Johnson, Bjørn; Poulsen, Tjalfe; Hansen, Jens Aage

    2011-01-01

    possible for modern European cities to contribute to greenhouse gas emission reduction by 15% through up to date technology and integrated waste management systems for material and energy recovery. Going from being part of the problem to providing solutions; however, is not an easy endeavour. It requires....... It is shown that the cities have the potential to significantly contribute to a more sustainable development through increased material recycling and energy recovery. Waste prevention may increase this potential. For example, instead of constituting 3% of the total greenhouse gas emission problem, it seems...

  15. Visions of the City

    DEFF Research Database (Denmark)

    Pinder, David

    Visions of the City is a dramatic account of utopian urbanism in the twentieth century. It explores radical demands for new spaces and ways of living, and considers their effects on planning, architecture and struggles to shape urban landscapes. Such visions, it shows, have played a crucial role...... to transform urban space and everyday life. He addresses in particular Constant's vision of New Babylon, finding within his proposals for future spaces produced through nomadic life, creativity and play a still powerful challenge to imagine cities otherwise. The book not only recovers vital moments from past...

  16. Prototyping a Smart City

    DEFF Research Database (Denmark)

    Korsgaard, Henrik; Brynskov, Martin

    In this paper, we argue that by approaching the so-called Smart City as a design challenge, and an interaction design perspective, it is possible to both uncover existing challenges in the interplay between people, technology and society, as well as prototype possible futures. We present a case...... in which we exposed data about the online communication between the citizens and the municipality on a highly visible media facade, while at the same time prototyped a tool that enabled citizens to report ‘bugs’ within the city....

  17. City of open works

    DEFF Research Database (Denmark)

    Riesto, Svava; Søberg, Martin; Braae, Ellen Marie

    2012-01-01

    Cities change – and so do the tasks and agendas of landscapes architects. New types of urban schemes are increasingly arising. On the one hand, new sorts of commissions have emerged in recent years – on the other hand, traditional commissions have been interpreted in radically new ways. These con......Cities change – and so do the tasks and agendas of landscapes architects. New types of urban schemes are increasingly arising. On the one hand, new sorts of commissions have emerged in recent years – on the other hand, traditional commissions have been interpreted in radically new ways...

  18. Monitoring and Assessing Groundwater Impacts on Vegetation Health in Groundwater Dependent Ecosystems

    Science.gov (United States)

    Rohde, M. M.; Ulrich, C.; Howard, J.; Sweet, S.

    2017-12-01

    Sustainable groundwater management is important for preserving our economy, society, and environment. Groundwater supports important habitat throughout California, by providing a reliable source of water for these Groundwater Dependent Ecosystems (GDEs). Groundwater is particularly important in California since it supplies an additional source of water during the dry summer months and periods of drought. The drought and unsustainable pumping practices have, in some areas, lowered groundwater levels causing undesirable results to ecosystems. The Sustainable Groundwater Management Act requires local agencies to avoid undesirable results in the future, but the location and vulnerabilities of the ecosystems that depend on groundwater and interconnected surface water is often poorly understood. This presentation will feature results from a research study conducted by The Nature Conservancy and Lawrence Berkeley National Laboratory that investigated how changes in groundwater availability along an interconnected surface water body can impact the overall health of GDEs. This study was conducted in California's Central Valley along the Cosumnes River, and situated at the boundary of a high and a medium groundwater basin: South American Basin (Sacramento Hydrologic Region) and Cosumnes Basin (San Joaquin Hydrologic Region). By employing geophysical methodology (electrical resistivity tomography) in this study, spatial changes in groundwater availability were determined under groundwater-dependent vegetation. Vegetation survey data were also applied to this study to develop ecosystem health indicators for groundwater-dependent vegetation. Health indicators for groundwater-dependent vegetation were found to directly correlate with groundwater availability, such that greater availability to groundwater resulted in healthier vegetation. This study provides a case study example on how to use hydrological and biological data for setting appropriate minimum thresholds and

  19. Assessment of groundwater/surface-water interaction and simulation of potential streamflow depletion induced by groundwater withdrawal, Uinta River near Roosevelt, Utah

    Science.gov (United States)

    Lambert, P.M.; Marston, T.; Kimball, B.A.; Stolp, B.J.

    2011-01-01

    Roosevelt City, Utah, asserts a need for an additional supply of water to meet municipal demands and has identified a potential location for additional groundwater development at the Sprouse well field near the West Channel of the Uinta River. Groundwater is commonly hydraulically linked to surface water and, under some conditions, the pumpage of groundwater can deplete water in streams and other water bodies. In 2008, the U.S. Geological Survey, in cooperation with Roosevelt City, the Utah Department of Natural Resources, and the Ute Indian Tribe, began a study to improve understanding of the local interconnection between groundwater and surface water and to assess the potential for streamflow depletion from future groundwater withdrawals at a potential Roosevelt City development location—the Sprouse well field near the West Channel of the Uinta River.In the study, streamflow gains and losses at the river/aquifer boundary near the well field and changes in those conditions over time were assessed through (1) synoptic measurement of discharge in the stream at multiple sites using tracer-dilution methods, (2) periodic measurement of the vertical hydraulic gradient across the streambed, and (3) continuous measurement of stream and streambed water temperature using heat as a tracer of flow across the streambed. Although some contradictions among the results of the three assessment methods were observed, results of the approaches generally indicated (1) losing streamflow conditions on the West Channel of the Uinta River north of and upstream from the Sprouse well field within the study area, (2) gaining streamflow conditions south of and downstream from the well field, and (3) some seasonal changes in those conditions that correspond with seasonal changes in stream stage and local water-table altitudes.A numerical groundwater flow model was developed on the basis of previously reported observations and observations made during this study, and was used to estimate

  20. Heavy metals concentrations in groundwater used for irrigation.

    Science.gov (United States)

    Taghipour, Hassan; Mosaferi, Mohammad; Pourakbar, Mojtaba; Armanfar, Feridoun

    2012-01-01

    The main objective of this study was characterization of selected heavy metals concentrations (Lead, cadmium, copper, zinc, nickel and chromium) in groundwater used for ir-rigation in Tabriz City's countryside. After consulting with the experts of agriculture department and site survey, 38 irriga-tion water samples were taken from different farms (34 wells) without primary coordination with farm owners. All of samples were acidified to achieve pH≈2 and then were concentrated from 10 to 1 volume. The concentrations of Cd, Pb, Cu, Cr, Ni, and Zn in the samples (totally 228) were determined with a flame atomic absorption spectrophotometer. In none of 38 farms, irrigation with surface runoff and industrial wastewater was ob-served. The average concentrations of Cd, Pb, Cu, Cr, Ni, and Zn in the irrigated water were de¬termined 6.55, 0.79, 16.23, 3.41, 4.49, and 49.33µg/L, respectively. The average and even maxi¬mum concentrations of heavy metals in the irrigation water at the studied area were less than toxicity threshold limits of agricultural water. Currently, not using of surface runoff and industrial wastewater as irrigation water by farmers indicates that the controlling efforts by authorities have been effective in the area. Water used for irrigation of the farms and groundwater of the studied area are not polluted with heavy metals and there is no risk from this viewpoint in the region.

  1. AMEC GEOMATRIX/ARA GROUNDWATER REMEDIAITON TRIP REPORT

    Energy Technology Data Exchange (ETDEWEB)

    SIMMONS SA

    2008-08-07

    City of Rialto, Well No.3 Demonstration System Integration Project, and Baldwin Park Operable Unit, Baldwin Park, California. The groundwater remediation contractors are AMEC Geomatrix and ARA. The sites were visited on July 22, 2008. Fluor Hanford and the U.S. Department of Energy are currently looking at a variety of alternatives to capture carbon tetrachloride, nitrates, and other COCs from 200-ZP-l groundwater. A few of the more important objectives of our visits were to: (1) Evaluate the treatment systems being used by AMEC Geomatrix to address VOCs, perchlorate, NDMA, 1,4,-Dioxane, and 1,2,3 TCP in a drinking water source; (2) Evaluate how effective these treatment methods have been; (3) Determine the types of problems they have encountered with these treatment systems and how they addressed these problems; (4) Determine the types of secondary wastes being generated by the system; (5) Determine how clean of an operation these companies run; and (6) Determine if the site is worth being visited by DOE-RL at a later date.

  2. Oak Ridge Y-12 Plant groundwater protection program management plan

    International Nuclear Information System (INIS)

    1996-06-01

    The Oak Ridge Y- 1 2 Plant (Y-12 Plant) is owned by the United States Department of Energy (DOE) and managed by Lockheed Martin Energy Systems, Inc. (Energy Systems) under contract No. DE-AC05-84OR21400. The Y-12 Plant Groundwater Protection Program (GWPP), which was initiated in 1975, provides for the protection of groundwater resources consistent with Federal, State, and local regulations, and in accordance with DOE orders and Energy Systems policies and procedures. The Y-12 Plant is located in Anderson County, Tennessee, and is within the corporate limits of the City of Oak Ridge. The Y-12 Plant is one of three major DOE complexes that comprise the 37,000-acre Oak Ridge Reservation (ORR) located in Anderson and Roane counties. The Y-12 Plant is located in Bear Creek Valley at an elevation of about 950 feet (ft) above sea level. Bear Creek Valley is bounded on the northwest and southeast, and is isolated from populated areas of Oak Ridge, by parallel ridges that rise about 300 ft above the valley floor. The Y-12 Plant and its fenced buffer area are about 0.6 mile wide by 3.2 miles long and cover approximately 4,900 acres. The main industrialized section encompasses approximately 800 acres

  3. Depth and Well Type Related to Groundwater Microbiological Contamination

    Directory of Open Access Journals (Sweden)

    Nayara Halimy Maran

    2016-10-01

    Full Text Available Use of groundwater from private wells in households has increased considerably, owing to a better cost/benefit ratio than that of water provided by local utilities for a fee. However, this water is usually untreated, which makes it a vehicle for diseases. Thus, monitoring this water is necessary to ensure its integrity and quality. We aimed to evaluate the physical, chemical, and microbiological parameters of untreated groundwater drawn from different types of wells, and the antimicrobial susceptibility profile of the bacteria isolated from this water. Wellwater samples were collected in two Brazilian cities. Although physical and chemical parameters of the water were suitable for drinking, Escherichia coli was detected in 33% of the samples. E. coli contaminated 65% of dug wells and 10.25% of drilled wells. Many bacteria isolated were resistant to multiple antibacterial agents, including β-lactams. Microbial contamination of this water was related to the well depth, and was more common in dug wells, making this water unfit for human consumption. Consumption of such contaminated and untreated water is a public health concern. Thus, individuals who regularly use such water must be alerted so they may either take preventive measures or connect to the water distribution system operated by local utilities.

  4. Hydrogeological controls of groundwater - land surface interactions

    Science.gov (United States)

    Bresciani, Etienne; Batelaan, Okke; Goderniaux, Pascal

    2017-04-01

    Interaction of groundwater with the land surface impacts a wide range of climatic, hydrologic, ecologic and geomorphologic processes. Many site-specific studies have successfully focused on measuring and modelling groundwater-surface water interaction, but upscaling or estimation at catchment or regional scale appears to be challenging. The factors controlling the interaction at regional scale are still poorly understood. In this contribution, a new 2-D (cross-sectional) analytical groundwater flow solution is used to derive a dimensionless criterion that expresses the conditions under which the groundwater outcrops at the land surface (Bresciani et al., 2016). The criterion gives insights into the functional relationships between geology, topography, climate and the locations of groundwater discharge along river systems. This sheds light on the debate about the topographic control of groundwater flow and groundwater-surface water interaction, as effectively the topography only influences the interaction when the groundwater table reaches the land surface. The criterion provides a practical tool to predict locations of groundwater discharge if a limited number of geomorphological and hydrogeological parameters (recharge, hydraulic conductivity and depth to impervious base) are known, and conversely it can provide regional estimates of the ratio of recharge over hydraulic conductivity if locations of groundwater discharge are known. A case study with known groundwater discharge locations located in South-West Brittany, France shows the feasibility of regional estimates of the ratio of recharge over hydraulic conductivity. Bresciani, E., Goderniaux, P. and Batelaan, O., 2016, Hydrogeological controls of water table-land surface interactions. Geophysical Research Letters 43(18): 9653-9661. http://dx.doi.org/10.1002/2016GL070618

  5. Legacy Nitrate Impacts on Groundwater and Streams

    Science.gov (United States)

    Tesoriero, A. J.; Juckem, P. F.; Miller, M. P.

    2017-12-01

    Decades of recharge of high-nitrate groundwater have created a legacy—a mass of high-nitrate groundwater—that has implications for future nitrate concentrations in groundwater and in streams. In the United States, inorganic nitrogen fertilizer applications to the land surface have increased ten-fold since 1950, resulting in sharp increases in nitrate concentrations in recharging groundwater, which pose a risk to deeper groundwater and streams. This study assesses the factors that control time lags and eventual concentrations of legacy nitrate in groundwater and streams. Results from the USGS National Water-Quality Assessment Project are presented which elucidate nitrate trends in recharging groundwater, delineate redox zones and assess groundwater and stream vulnerability to legacy nitrate sources on a regional scale. This study evaluated trends and transformations of agricultural chemicals based on groundwater age and water chemistry data along flow paths from recharge areas to streams at 20 study sites across the United States. Median nitrate recharge concentrations in these agricultural areas have increased markedly over the last 50 years, from 4 to 7.5 mg N/L. The effect that nitrate accumulation in shallow aquifers will have on drinking water quality and stream ecosystems is dependent on the redox zones encountered along flow paths and on the age distribution of nitrate discharging to supply wells and streams. Delineating redox zones on a regional scale is complicated by the spatial variability of reaction rates. To overcome this limitation, we applied logistic regression and machine learning techniques to predict the probability of a specific redox condition in groundwater in the Chesapeake Bay watershed and the Fox-Wolf-Peshtigo study area in Wisconsin. By relating redox-active constituent concentrations in groundwater samples to indicators of residence time and/or electron donor availability, we were able to delineate redox zones on a regional scale

  6. Are megacities viable? A cautionary tale from Mexico City.

    Science.gov (United States)

    Ezcurra, E; Mazari-hiriart, M

    1996-01-01

    This article describes the poor environmental and living conditions in Mexico City due to its huge size. Mexico City's size is a challenge to sustainability, and the outcome is unknown. Mexico City and the geographic basin surrounding it included about 18.5 million population in 1995. The basin and surrounding volcanic ranges include nine major environmental zones. Urban growth followed four stages. Different cultures applied different solutions to water supply problems. The basin shifted from self-sufficiency to reliance on 31% of supplies from external watersheds. The water table is declining and canals are polluted. Irrigated agriculture is disappearing. There is an average water deficit of over 800 million cubic meters per year. Mexico City is actually sinking due to groundwater exploitation. There is bacterial contamination of wells due to improper seals. About 75% of the population has access to wastewater treatment and sanitation, but sewage treatment plants operate at under 50% efficiency and treat only about 7% of the total wastewater. Atmospheric pollution from suspended particles has been a problem for decades. Ozone was the most significant air contaminant in 1994. Lead was the most harmful pollutant in 1986. Air pollutants may be the source of submucosal inflammations. Industrial areas are contaminated with suspended particles and sulfur dioxide. High traffic areas have high carbon monoxide levels. Atmospheric pollution has affected the quality of the rainwater. The city survives by importing food, energy, wood, water, building materials, and other products. The development model aims to improve quality of life. The city has been the center of political power since Aztec times, and its preeminent position forces government action. The author concludes that there are limits to urbanization, which the city is approaching rapidly.

  7. Boron isotopes and groundwater pollution

    International Nuclear Information System (INIS)

    Vengosh, A.

    1999-01-01

    Boron can be used as a tracer in ground water because of its high solubility in aqueous solutions, natural abundance in all waters, and the lack of effects by evaporation, volatilisation, oxidation-reduction reactions. Since the boron concentrations in pristine ground waters are generally low and contaminant sources are usually enriched in boron, the δ 11 B of groundwater is highly sensitive to the impact of contamination. The large isotopic variations of the potential sources can be used to trace the origin of the contamination and to reconstruct mixing and flow paths

  8. Brackish groundwater in the United States

    Science.gov (United States)

    Stanton, Jennifer S.; Anning, David W.; Brown, Craig J.; Moore, Richard B.; McGuire, Virginia L.; Qi, Sharon L.; Harris, Alta C.; Dennehy, Kevin F.; McMahon, Peter B.; Degnan, James R.; Böhlke, John Karl

    2017-04-05

    For some parts of the Nation, large-scale development of groundwater has caused decreases in the amount of groundwater that is present in aquifer storage and that discharges to surface-water bodies. Water supply in some areas, particularly in arid and semiarid regions, is not adequate to meet demand, and severe drought is affecting large parts of the United States. Future water demand is projected to heighten the current stress on groundwater resources. This combination of factors has led to concerns about the availability of freshwater to meet domestic, agricultural, industrial, mining, and environmental needs. To ensure the water security of the Nation, currently [2016] untapped water sources may need to be developed.Brackish groundwater is an unconventional water source that may offer a partial solution to current and future water demands. In support of the national census of water resources, the U.S. Geological Survey completed the national brackish groundwater assessment to better understand the occurrence and characteristics of brackish groundwater in the United States as a potential water resource. Analyses completed as part of this assessment relied on previously collected data from multiple sources; no new data were collected. Compiled data included readily available information about groundwater chemistry, horizontal and vertical extents and hydrogeologic characteristics of principal aquifers (regionally extensive aquifers or aquifer systems that have the potential to be used as a source of potable water), and groundwater use. Although these data were obtained from a wide variety of sources, the compiled data are biased toward shallow and fresh groundwater resources; data representing groundwater that is at great depths and is saline were not as readily available.One of the most important contributions of this assessment is the creation of a database containing chemical characteristics and aquifer information for the known areas with brackish groundwater

  9. Ecology and living conditions of groundwater fauna

    International Nuclear Information System (INIS)

    Thulin, Barbara; Hahn, Hans Juergen

    2008-09-01

    This report presents the current state of ecological knowledge and applied research relating to groundwater. A conceptual picture is given of groundwater fauna occurrence in regard to Swedish environmental conditions. Interpretation features for groundwater fauna and applications are outlined. Groundwater is one of the largest and oldest limnic habitats populated by a rich and diverse fauna. Both very old species and species occurring naturally in brackish or salt water can be found in groundwater. Groundwater ecosystems are heterotrophic; the fauna depends on imports from the surface. Most species are meiofauna, 0.3-1 mm. The food chain of groundwater fauna is the same as for relatives in surface water and salt water. Smaller animals graze biofilms and detritus, larger animals act facutatively as predators. A difference is that stygobiotic fauna has become highly adapted to its living space and tolerates very long periods without food. Oxygen is a limiting factor, but groundwater fauna tolerates periods with low oxygen concentrations, even anoxic conditions. For longer periods of time a minimum oxygen requirement of 1 mg/l should be fulfilled. Geographic features such as Quaternary glaciation and very old Pliocene river systems are important for distribution patterns on a large spatial scale, but aquifer characteristics are important on a landscape scale. Area diversity is often comparable to surface water diversity. However, site diversity is low in groundwater. Site specific hydrological exchange on a geological facies level inside the aquifer, e.g. porous, fractured and karstic aquifers as well as the hyporheic zone, controls distribution patterns of groundwater fauna. For a better understanding of controlling factors indicator values are suggested. Different adequate sampling methods are available. They are representative for the aquifer, but a suitable number of monitoring wells is required. The existence of groundwater fauna in Sweden is considered as very

  10. Ecology and living conditions of groundwater fauna

    Energy Technology Data Exchange (ETDEWEB)

    Thulin, Barbara (Geo Innova AB (Sweden)); Hahn, Hans Juergen (Arbeitsgruppe Grundwasseroekologie, Univ. of Koblenz-Landau (Germany))

    2008-09-15

    This report presents the current state of ecological knowledge and applied research relating to groundwater. A conceptual picture is given of groundwater fauna occurrence in regard to Swedish environmental conditions. Interpretation features for groundwater fauna and applications are outlined. Groundwater is one of the largest and oldest limnic habitats populated by a rich and diverse fauna. Both very old species and species occurring naturally in brackish or salt water can be found in groundwater. Groundwater ecosystems are heterotrophic; the fauna depends on imports from the surface. Most species are meiofauna, 0.3-1 mm. The food chain of groundwater fauna is the same as for relatives in surface water and salt water. Smaller animals graze biofilms and detritus, larger animals act facutatively as predators. A difference is that stygobiotic fauna has become highly adapted to its living space and tolerates very long periods without food. Oxygen is a limiting factor, but groundwater fauna tolerates periods with low oxygen concentrations, even anoxic conditions. For longer periods of time a minimum oxygen requirement of 1 mg/l should be fulfilled. Geographic features such as Quaternary glaciation and very old Pliocene river systems are important for distribution patterns on a large spatial scale, but aquifer characteristics are important on a landscape scale. Area diversity is often comparable to surface water diversity. However, site diversity is low in groundwater. Site specific hydrological exchange on a geological facies level inside the aquifer, e.g. porous, fractured and karstic aquifers as well as the hyporheic zone, controls distribution patterns of groundwater fauna. For a better understanding of controlling factors indicator values are suggested. Different adequate sampling methods are available. They are representative for the aquifer, but a suitable number of monitoring wells is required. The existence of groundwater fauna in Sweden is considered as very

  11. Model-based evaluation of subsurface monitoring networks for improved efficiency and predictive certainty of regional groundwater models

    Science.gov (United States)

    Gosses, M. J.; Wöhling, Th.; Moore, C. R.; Dann, R.; Scott, D. M.; Close, M.

    2012-04-01

    Groundwater resources worldwide are increasingly under pressure. Demands from different local stakeholders add to the challenge of managing this resource. In response, groundwater models have become popular to make predictions about the impact of different management strategies and to estimate possible impacts of changes in climatic conditions. These models can assist to find optimal management strategies that comply with the various stakeholder needs. Observations of the states of the groundwater system are essential for the calibration and evaluation of groundwater flow models, particularly when they are used to guide the decision making process. On the other hand, installation and maintenance of observation networks are costly. Therefore it is important to design monitoring networks carefully and cost-efficiently. In this study, we analyse the Central Plains groundwater aquifer (~ 4000 km2) between the Rakaia and Waimakariri rivers on the Eastern side of the Southern Alps in New Zealand. The large sedimentary groundwater aquifer is fed by the two alpine rivers and by recharge from the land surface. The area is mainly under agricultural land use and large areas of the land are irrigated. The other major water use is the drinking water supply for the city of Christchurch. The local authority in the region, Environment Canterbury, maintains an extensive groundwater quantity and quality monitoring programme to monitor the effects of land use and discharges on groundwater quality, and the suitability of the groundwater for various uses, especially drinking-water supply. Current and projected irrigation water demand has raised concerns about possible impacts on groundwater-dependent lowland streams. We use predictive uncertainty analysis and the Central Plains steady-state groundwater flow model to evaluate the worth of pressure head observations in the existing groundwater well monitoring network. The data worth of particular observations is dependent on the problem

  12. Groundwater impacts on surface water quality and nutrient loads in lowland polder catchments: monitoring the greater Amsterdam area

    Directory of Open Access Journals (Sweden)

    L. Yu

    2018-01-01

    from the decomposition of organic matter in subsurface sediments coupled to sulfate reduction and possibly methanogenesis. The large loads of nutrient-rich groundwater seepage into the deepest polders indirectly affect surface water quality in the surrounding area, because excess water from the deep polders is pumped out and used to supply water to the surrounding infiltrating polders in dry periods. The study shows the importance of the connection between groundwater and surface water nutrient chemistry in the greater Amsterdam area. We expect that taking account of groundwater–surface water interaction is also important in other subsiding and urbanising deltas around the world, where water is managed intensively in order to enable agricultural productivity and achieve water-sustainable cities.

  13. Comparison of a Conceptual Groundwater Model and Physically Based Groundwater Mode

    Science.gov (United States)

    Yang, J.; Zammit, C.; Griffiths, J.; Moore, C.; Woods, R. A.

    2017-12-01

    Groundwater is a vital resource for human activities including agricultural practice and urban water demand. Hydrologic modelling is an important way to study groundwater recharge, movement and discharge, and its response to both human activity and climate change. To understand the groundwater hydrologic processes nationally in New Zealand, we have developed a conceptually based groundwater flow model, which is fully integrated into a national surface-water model (TopNet), and able to simulate groundwater recharge, movement, and interaction with surface water. To demonstrate the capability of this groundwater model (TopNet-GW), we applied the model to an irrigated area with water shortage and pollution problems in the upper Ruamahanga catchment in Great Wellington Region, New Zealand, and compared its performance with a physically-based groundwater model (MODFLOW). The comparison includes river flow at flow gauging sites, and interaction between groundwater and river. Results showed that the TopNet-GW produced similar flow and groundwater interaction patterns as the MODFLOW model, but took less computation time. This shows the conceptually-based groundwater model has the potential to simulate national groundwater process, and could be used as a surrogate for the more physically based model.

  14. Considering groundwater use to improve the assessment of groundwater pumping for irrigation in North Africa

    Science.gov (United States)

    Massuel, Sylvain; Amichi, Farida; Ameur, Fatah; Calvez, Roger; Jenhaoui, Zakia; Bouarfa, Sami; Kuper, Marcel; Habaieb, Hamadi; Hartani, Tarik; Hammani, Ali

    2017-09-01

    Groundwater resources in semi-arid areas and especially in the Mediterranean face a growing demand for irrigated agriculture and, to a lesser extent, for domestic uses. Consequently, groundwater reserves are affected and water-table drops are widely observed. This leads to strong constraints on groundwater access for farmers, while managers worry about the future evolution of the water resources. A common problem for building proper groundwater management plans is the difficulty in assessing individual groundwater withdrawals at regional scale. Predicting future trends of these groundwater withdrawals is even more challenging. The basic question is how to assess the water budget variables and their evolution when they are deeply linked to human activities, themselves driven by countless factors (access to natural resources, public policies, market, etc.). This study provides some possible answers by focusing on the assessment of groundwater withdrawals for irrigated agriculture at three sites in North Africa (Morocco, Tunisia and Algeria). Efforts were made to understand the different features that influence irrigation practices, and an adaptive user-oriented methodology was used to monitor groundwater withdrawals. For each site, different key factors affecting the regional groundwater abstraction and its past evolution were identified by involving farmers' knowledge. Factors such as farmer access to land and groundwater or development of public infrastructures (electrical distribution network) are crucial to decode the results of well inventories and assess the regional groundwater abstraction and its future trend. This leads one to look with caution at the number of wells cited in the literature, which could be oversimplified.

  15. Cities and Mental Health.

    Science.gov (United States)

    Gruebner, Oliver; Rapp, Michael A; Adli, Mazda; Kluge, Ulrike; Galea, Sandro; Heinz, Andreas

    2017-02-24

    More than half of the global population currently lives in cities, with an increasing trend for further urbanization. Living in cities is associated with increased population density, traffic noise and pollution, but also with better access to health care and other commodities. This review is based on a selective literature search, providing an overview of the risk factors for mental illness in urban centers. Studies have shown that the risk for serious mental illness is generally higher in cities compared to rural areas. Epidemiological studies have associated growing up and living in cities with a considerably higher risk for schizophrenia. However, correlation is not causation and living in poverty can both contribute to and result from impairments associated with poor mental health. Social isolation and discrimination as well as poverty in the neighborhood contribute to the mental health burden while little is known about specific interactions between such factors and the built environment. Further insights on the interaction between spatial heterogeneity of neighborhood resources and socio-ecological factors is warranted and requires interdisciplinary research.

  16. WHO Healthy Cities Programme.

    Science.gov (United States)

    Goldstein, G; Kickbusch, I

    1996-03-01

    This article identifies some urban health challenges and discusses World Health Organization (WHO) concepts of public health, a Municipal Health Plan, and the WHO Healthy Cities Program (HCP). A healthy city is defined as one that continually creates and improves the physical and social environment and expands community resources for enabling the mutual support among population groups for living. Urbanization is advancing rapidly, but government resources are not keeping pace with people's needs. By 1990, at least 600 million urban people in developing countries faced life and health threats. There is poverty, inadequate food and shelter, insecure tenure, physical crowding, poor waste disposal, unsafe working conditions, inadequate local government services, overuse of harmful substances, and environmental pollution. Poor people in cities frequently must satisfy all their basic needs in health, welfare, and employment. There is exposure to early sexual activity of adolescents, transient relationships, high levels of prostitution, and limited birth control. Unsustainable use of natural resources and environmental destruction pose threats to urban productivity and restrict future development options. The WHO launched a "Health for All" campaign in 1978, based on 4 basic principles. The HCP, which is based on these principles, has expanded to many cities. It measures the health burden and makes health issues relevant and understandable to local agencies through analysis and policy advocacy. The Municipal Health Plan facilitates awareness of environmental and health problems in schools, work and marketplaces, health services, and among other organizations.

  17. The City Street

    NARCIS (Netherlands)

    H.C. van der Wouden

    1999-01-01

    Original title: De stad op straat. The city street; the public space in perspective (De stad op straat; de openbare ruimte in perspectief) by the Netherlands Institute for Social Research/SCP is intended to contribute to the formation of new ideas about the public space and the future of

  18. Transport for smart cities

    DEFF Research Database (Denmark)

    Kristensen, Niels Buus; Pedersen, Allan Schrøder

    2011-01-01

    ’ activities can be reached within the relative close distances of the city. However, urbanisation has also led to significant disadvantages, of which transport accounts for some of the most severe. Traffic accidents and emissions of air pollutants and noise take heavy tolls in terms of people killed...

  19. Benin City, Nigeria

    African Journals Online (AJOL)

    24-48 hours after DAMA, 20.7% of cases were re-adrnitted. Parental fear of accumulation of hospital bills was the commonest reason for DAMA. Mean duration of ..... more health decision—making role in Ilesha than in. Benin City. The reason for this difference is not clear. However, our finding is in consonance with what.

  20. Different Creative Cities

    DEFF Research Database (Denmark)

    Lorenzen, Mark; Vaarst Andersen, Kristina

    2012-01-01

    This article uses a mixed-method study of Denmark to investigate whether and how Richard Florida's creative class theory should be adapted to small welfare economies. First, we carry out an econometric analyses showing that like in North America, the Danish creative class propels economic growth ...... challenges associated with these different cities....

  1. Sound propagation in cities

    NARCIS (Netherlands)

    Salomons, E.; Polinder, H.; Lohman, W.; Zhou, H.; Borst, H.

    2009-01-01

    A new engineering model for sound propagation in cities is presented. The model is based on numerical and experimental studies of sound propagation between street canyons. Multiple reflections in the source canyon and the receiver canyon are taken into account in an efficient way, while weak

  2. Airport as city

    NARCIS (Netherlands)

    Yin, M.

    2011-01-01

    The airport city is a two-fold phenomenon: the areas surrounding the airport develop due to their proximity and accessibility to the terminal complex, and the terminal complex itself develops in to a pseudo-urban centre. This situation is manifest to varying extents in all major airports of the

  3. WE LOVE THE CITY

    DEFF Research Database (Denmark)

    Andersson, Lasse

    2012-01-01

    With a point of departure in amongst others the Danish office of ADEPT’s approach, ‘The city in the building and the building in the city’ (ADEPT 2012), it is consequently the aim of this article to show how workshops can help shape and develop a spatial and architectural approach to form finding...

  4. Inequalities in European cities

    NARCIS (Netherlands)

    Musterd, S.; Ostendorf, W.; Smith, S.J.; Elsinga, M.; Eng, O.S.; Fox O’Mahony, L.; Wachter, S.

    2012-01-01

    The consequences of inequalities in European cities are a big fear for many governments at the state and urban levels. Journalists, as well as many scholars who are dealing with urban issues, express their fears about the development of social, ethnic, and spatial divisions. Population categories

  5. City of layers

    DEFF Research Database (Denmark)

    Jensen, Ole B.

    2007-01-01

    mobility practices are played out in a relational space where the potential for movement is shifted in favour of the elite and the tourists. The Sky Train reconfigures the mobility patterns of the inner city of Bangkok in ways that are more than planning policies to overcome congestion and traffic jams...

  6. The Emerging City

    DEFF Research Database (Denmark)

    Samson, Kristine

    ” – urban furniture that was originally part of an election campaign for the cultural minister of Denmark, will illustrate how both political and artistic signatures become deterritorialized through urban space, time and every day social use. The second example is taken from corporate city development...

  7. That City is Mine!

    NARCIS (Netherlands)

    Rooijendijk, Cordula

    2005-01-01

    This thesis is about urban ideal images. It is about dreams - not fictitious beliefs, but dreams that humankind can realize tomorrow. It is about images from intellectuals, pastry cooks, urban planners and firemen. About people who deeply care about their cities, about their hopes, frustrations,

  8. Cities Feeding People

    International Development Research Centre (IDRC) Digital Library (Canada)

    Above all, UA more generally emerges as the efforts, replicated on a massive scale, of space-starved urbanizing people of developing nations to obtain the very basic, without which there can be no sustainable city, economy, or government: reliable and sufficient supplies of good-quality food affordable by the majority of ...

  9. Groundwater sustainability assessment in coastal aquifers

    Indian Academy of Sciences (India)

    The present work investigates the response of shallow, coastal unconfined aquifers to anticipated over- draft conditions and climate change effect using numerical simulation. The groundwater flow model. MODFLOW and variable density groundwater model SEAWAT are used for this investigation. The transmissivity and ...

  10. An efficient optimisation method in groundwater resource ...

    African Journals Online (AJOL)

    Uncertainty in input parameters to groundwater flow problems has been recognised as an impediment to designing efficient groundwater management strategies. The most popular approach to tackling this problem has been through the Monte Carlo approach. However, this approach is generally too expensive in terms of ...

  11. Procedures for ground-water investigations

    International Nuclear Information System (INIS)

    1992-12-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water monitoring procedures are developed and used in accordance with the PNL Quality Assurance Program

  12. Groundwater links between Kenyan Rift Valley lakes

    OpenAIRE

    Becht, Robert; Mwango, Fred; Muno, Fred Amstrong

    2006-01-01

    The series of lakes in the bottom of the Kenyan Rift valley are fed by rivers and springs. Based on the water balance, the relative positions determining the regional groundwater flow systems and the analysis of natural isotopes it can be shown that groundwater flows from lake Naivasha to lake Magadi, Elementeita, Nakuru and Bogoria.

  13. Environmental isotopes investigation in groundwater of Challaghatta ...

    African Journals Online (AJOL)

    Radiogenic isotopes (3H and 14C) and stable isotope (18O) together with TDS, EC and salinity of water were used to discriminate qualitative and quantitative groundwater age, probable recharge time, flow respectively in groundwater of Challaghatta valley, Bangalore. The variations between TDS and EC values of sewage ...

  14. Hydrogeological characterization and assessment of groundwater ...

    Indian Academy of Sciences (India)

    recharge areas act as a source of pollution to groundwater (Kumar et al. 2006). In this perspec- tive, it becomes important to assess groundwater quality in shallow aquifers in the vicinity of the. Najafgarh drain. 2. Hydrogeology of the study area. The Najafgarh drain traverses through south-west, west, north-west and north ...

  15. Hydrogeochemistry and groundwater quality assessment of Ranipet ...

    Indian Academy of Sciences (India)

    This poses a problem of supply of safe drinking water in the rural parts of the country. A study was carried out to assess the groundwater pollution and identify major variables affecting the groundwater quality in Ranipet industrial area. Twenty five wells were monitored during pre- and post-monsoon in 2008 and analyzed for ...

  16. Deciphering groundwater quality for irrigation and domestic ...

    Indian Academy of Sciences (India)

    For determination of the drinking suitability standard of groundwater, three parameters have been considered – total hardness (TH), Piper's trilinear diagram and water quality index study. Groundwater of the present study area has been found to be moderately-hard to hard during both sampling sessions and hence poses ...

  17. Trend Analyses of Nitrate in Danish Groundwater

    DEFF Research Database (Denmark)

    Hansen, B.; Thorling, L.; Dalgaard, Tommy

    2012-01-01

    This presentation assesses the long-term development in the oxic groundwater nitrate concentration and nitrogen (N) loss due to intensive farming in Denmark. Firstly, up to 20-year time-series from the national groundwater monitoring network enable a statistically systematic analysis of distribut......This presentation assesses the long-term development in the oxic groundwater nitrate concentration and nitrogen (N) loss due to intensive farming in Denmark. Firstly, up to 20-year time-series from the national groundwater monitoring network enable a statistically systematic analysis...... of distribution, trends and trend reversals in the groundwater nitrate concentration. Secondly, knowledge about the N surplus in Danish agriculture since 1950 is used as an indicator of the potential loss of N. Thirdly, groundwater recharge CFC (Chlorofluorocarbon) age determination allows linking of the first...... two dataset. The development in the nitrate concentration of oxic groundwater clearly mirrors the development in the national agricultural N surplus, and a corresponding trend reversal is found in groundwater. Regulation and technical improvements in the intensive farming in Denmark have succeeded...

  18. Groundwater sustainability assessment in coastal aquifers

    Indian Academy of Sciences (India)

    The present work investigates the response of shallow, coastal unconfined aquifers to anticipated overdraft conditions and climate change effect using numerical simulation. The groundwater flow model MODFLOW and variable density groundwater model SEAWAT are used for this investigation. The transmissivity and ...

  19. Hydrogeochemical analysis and evaluation of groundwater quality ...

    Indian Academy of Sciences (India)

    ical parameters of groundwater such as pH, electrical conductivity (EC), total dissolved solids. (TDS), Sodium (Na+) ... of the aquatic systems of the Gadilam river basin show that the groundwater is near-acidic to alkaline and ... leaching of secondary salts and anthropogenic impact by industry and salt water intrusion. Spatial.

  20. Spatial control of groundwater contamination, using principal ...

    Indian Academy of Sciences (India)

    A study on the geochemistry of groundwater was carried out in a river basin of Andhra Pradesh to probe into the spatial controlling processes of groundwater contamination, using principal component analysis (PCA). The PCA transforms the chemical variables, pH, EC, Ca2+, Mg2+, Na+, K+, HCO 3 − , Cl−, SO 4 2 − , NO 3 ...