WorldWideScience

Sample records for bacolod city groundwater

  1. Hydrogeochemical characterization of Bacolod City groundwater system

    International Nuclear Information System (INIS)

    Groundwater is constantly being recycled and replenished by rainfall. However, because of the uneven distribution of rain and the heavy use of water in certain areas, some regions are experiencing undue water shortage. Changes in land use, population growth, and economic development in the Bacolod City region, can result in an increase in water demand and the generation of additional pollution sources. To delineate the ground water recharge area for Bacolod City and at the same time, assess the vulnerability of the aquifer to pollution, water samples were collected in an attempt to relate chemical variations in ground water to the underlying differences in geology, availability and mechanism of recharge, and to define the natural versus anthropogenic influences in the groundwater system. Measurements of field data such as pH, conductivity, temperature and alkalinity were made. Several geochemical processes are recognized in the chemistry of the Bacolod aquifer system. The most important processes are: water-bedrock interaction, dissolution of connate halites , and seawater intrusion. Simple mass balance modeling shows that the feasible source of active recharge aside from direct precipitation, is infiltration from the Loygoy river. Rivers and tributaries transport water originated as precipitation falling at higher elevations. The ground water in Bacolod City is predominantly of the Ca-Mg-HCO3 type. Recharge becomes sodium dominated along its path, indicating a slow but active mechanism. The ground water near the coasts is brackish due to sea water infiltration. The possible presence of connate halites lying in the deep aquifers is also indicated. The information generated, when used in conjunction with isotopic techniques, will be important in the choice of sites for pumping stations and in the knowledge of the extent of potential pollution of ground water from streams/reservoirs. (author)

  2. Isotopic evidence for identifying the mechanism of salinization of groundwater in Bacolod City,Negros Occidental

    International Nuclear Information System (INIS)

    Saline water is easily identified by measurement of the conductivity of the ionic species in the water. In groundwater, it is important to identify the mechanism of salinization for proper management of the resource. Salinization may come from: a) leaching of salts by percolating water, b) intrusion of modern saltwater bodies of connate water, and c) concentration of dissolved salts due to evaporation. The salinity and isotopic concentrations of 18O, 2H, and 3H of the water sources were used to assess the processes which lead to the salinization of groundwater in Bacolod City, Negros Occidental. The isotopic composition of deep groundwater, river water, and springs cluster along the LMWL with δ 18O ranging from -7.9 ''promille'' to -6.5 ''promille'' and δ 2H ranging from -52.6 ''promille'' to -39.1''promille''. Two isotopically distinct groups of deep groundwater were deleated; the higher elevation wells yielding isotopically depleted waters while the lowland wells yielding relatively enriched water with higher conductivity. The shallow coastal wells exhibited more enriched isotope values with δ 18O values from 6.10 ''promille''-5.61''promille'' and δ 2H from -43.1''promille'' to -38.8''promille'' and highest conductivity. The relative enrichment in the isotopic composition of the deep groundwater in the lowland and the shallow groundwater along the coast is attributed to saltwater intrusion. The process of salinization in these waters is differentiated based on the relationship between their isotopic compositions and the chlorine concentrations. The high salinity of the isotopically enriched and old deep groundwater inland is attributed to mixing with connate water. On the other hand , mixing with modern sea water is evident in the deep and shallow coastal wells. (author)

  3. Ion ratios and tritium extents as markers of salinization in the Bacolod City basin

    International Nuclear Information System (INIS)

    Tritium statistics were used in tandem with geochemical information for the characterization of recharge to the Bacolod city basin. Waters were sampled from selected production wells,domestic wells, and surface water sources. The average tritium in the groundwater appeared to be 0.52 TU while surface and rain waters have an average of 0.86 and 0.89 TU, respectively. Physico-chemical properties (pH, conductivity, temperature) of the water were determined on site. Chemical characterization was focused on the determination of major ionic composition Na, K, Mg, Ca, as well as the major anions. Sulfate, (SO4), Chloride (Cl) by ion chromatography and bicarbonate ion by titration. Two portions of the basin displayed salient conductivity and chloride ion values which were strikingly greater than the rest f the other sampling points in the 3 year monitoring period. Tritium extents indicate that wells near the coasts receive potential contribution from modern recharge. Ion mass balance calculations and Br/Cl ratios corroborate tritium results to further validate that sea water intrusion may account for the high conductivities. The salinization and high conductivity of groundwater at points far from the coasts were attributed to connate formation at the deeper layer aquifers. Tritium extents indicated insignificant, sluggish recharge from precipitation before the 1950's, while ion mass balance do not indicate sea water intrusion. Establishment of geochemical data, in tandem with tritium, isotopic and other techniques, help in the identification of the origin and mechanism of recharge to the tapped aquifers which may aid local government units to properly delineate the areas that shall need concerted effort for protection, forest cover preservation and restoration within or outside the reservation area of the watershed. (author)

  4. Review on the Antimicrobial Resistance of Pathogens from Tracheal and Endotracheal Aspirates of Patients with Clinical Manifestations of Pneumonia in Bacolod City in 2013

    Directory of Open Access Journals (Sweden)

    Alain C. Juayang

    2015-01-01

    Full Text Available Microbiological content specifically bacterial and fungal etiologies from tracheal aspirates in a tertiary hospital in Bacolod City was reviewed for baseline information. A total of 130 tracheal aspirates were subjected for culture to isolate and identify the pathogen and determine their susceptibilities to various antibiotics. Productions of certain enzymes responsible for antibiotic resistance like ESBL (Extended Spectrum Beta-Lactamase, metallo-β-lactamase, and carbapenemase were also studied. Out of 130 specimens, 69.23% were found to be positive for the presence of microorganisms. Most infections were from male patients aging 60 years and above, confined at the Intensive Care Units (ICU. Pseudomonas aeruginosa and Klebsiella pneumoniae were found to be the most frequent bacterial isolates and non-Candida albicans for fungal isolates, respectively. Among the various antibiotics tested, most isolates were found to be resistant to third generation cephalosporins and penicillins, but susceptible to aminoglycoside Amikacin. On the other hand, production of ESBL and carbapenemase was found to be common among members of Enterobacteriaceae especially K. pneumoniae.

  5. Features of groundwater pollution and its relation to overexploitation of groundwater in Shijiazhuang city

    International Nuclear Information System (INIS)

    The groundwater pollution in Shijiazhuang city is characterized by an excess of some components and parameters over permitted values. The main pollutants are originated from the city sewage which is quite typical for groundwater pollution in many cities of China. On the basis of agonizingly features of groundwater pollution, the relationship between the groundwater pollution and the groundwater overexploitation is discussed in this paper, and the mechanism of intensifying the pollution by overexploitation has been revealed. Finally, it is proposed that the overexploitation of groundwater is an important inducing factor leading to the groundwater pollution in cities. (authors)

  6. Green Infrastructure, Groundwater and the Sustainable City

    Science.gov (United States)

    Band, L. E.

    2014-12-01

    The management of water is among the most important attributes of urbanization. Provision of sufficient quantities and quality of freshwater, treatment and disposal of wastewater and flood protection are critical for urban sustainability. Over the last century, two major shifts in water management paradigms have occurred, the first to improve public health with the provision of infrastructure for centralized sanitary effluent collection and treatment, and the rapid drainage and routing of stormwater. A current shift in paradigm is now occurring in response to the unintended consequences of sanitary and stormwater management, which have degraded downstream water bodies and shifted flood hazard downstream. Current infrastructure is being designed and implemented to retain, rather than rapidly drain, stormwater, with a focus on infiltration based methods. In urban areas, this amounts to a shift in hydrologic behavior to depression focused recharge. While stormwater is defined as surface flow resulting from developed areas, an integrated hydrologic systems approach to urban water management requires treatment of the full critical zone. In urban areas this extends from the top of the vegetation and building canopy, to a subsurface depth including natural soils, fill, saprolite and bedrock. In addition to matric and network flow in fracture systems, an urban "karst" includes multiple generations of current and past infrastructure, which has developed extensive subsurface pipe networks for supply and drainage, enhancing surface/groundwater flows and exchange. In this presentation, Band will discuss the need to focus on the urban critical zone, and the development and adaptation of new modeling and analytical approaches to understand and plan green infrastructure based on surface/groundwater/ecosystem interactions, and implications for the restoration and new design of cities.

  7. ~(15)N Isotope Used for Study of Groundwater Nitrogen Pollution in Shijiazhuang City, China

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Shijiazhuang City is the capital of Hebei province, China. Groundwater is the major water supply source for living and industry need of the city. Due to a rapid increase of population and development of industry and agriculture, a series of groundwater environmental problems are created. In the paper, the situation of groundwater pollution in Shijiazhuang city is reported. Based on the groundwater chemical data and ~(15)N measurement results both on groundwater and soils, the reason of groundwater nitra...

  8. GROUNDWATER QUALITY AND CONTAMINATION INDEX MAPPING IN CHANGCHUN CITY, CHINA

    Institute of Scientific and Technical Information of China (English)

    Hamadoun BOKAR; TANG Jie; LIN Nian-feng

    2004-01-01

    Groundwater in Changchun City, Jilin Province of China tends to be influenced by human activities.Chemical types of groundwater were detected in both shallow and deep groundwater were: HCO3- - Ca2+ and HCO3-of groundwater quality due to the increase of TDS, NO3- + NO2 (as Nitrogen) and TH contents have been observed from 1991 to 1998. Scatter analyses showed strong positive correlations between Ca2+, Cl- and NO3- ions and weak negative correlations between the depth of water table and Ca2+, 8O42-. C1- and NO3-ions. A mapping of contaminant index based on Chinese standard of groundwater showed that a large proportion of the groundwater in 1998 was deteriorated by human process. Despite their low values of sodium adsorption ratio (SAR), the most of the sampled wells were not suitable for drinking and agriculture purposes due to higher contents of NO3-, NO2 and Mn2+ ions.

  9. Physicochemical and chemical quality of mailsi city groundwater

    International Nuclear Information System (INIS)

    Quality of groundwater samples in Mailsi city of district Vehari was assessed using physico-chemical and chemical parameters. Twenty seven (27) groundwater samples were collected for physico-chemical and major ion analysis. Absence of carbonate ions (CO/sub 3/-2) in all groundwater samples indicates presence of limestone dissolution giving rise to bicarbonate. Piper diagram reveals dominance with Ca-Mg-type of water in the studied area. pH of all samples were within WHO guidelines. The mean value of Total Dissolved Solids (TDS) for Mailsi groundwater is 755.1 mg/L having a range of 272 to 1667mg/L. The TDS for majority of samples lies above the guideline values as defined by the WHO. Twenty two (22) percent samples exhibit high nitrate levels; consumption of water samples with high nitrate content may produce harmful effects in children. (author)

  10. Environmental Effects of Groundwater Development in Xuzhou City, China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Xuzhou City is located in the most northwestern portion of Jiangsu Province, P. R. China. Karst groundwater in the Ordovician and Cambrian Limestone aquifers is the main source of water supply. There are 527 wells in urban areas to exploit the karst groundwater, yielding up to 35 000 m3 per day. After 1978, urbanization and industrialization of Xuzhou City have continued at a greatly accelerated pace; the population increased from 670 700 (1978) to 1 645 500 (2002), its GDP from 0.71 × 109$ to 42.7×109$ and the urban area from 184 km2 to 1,038 km2 (built-up city area from 41.3 km2 to 81.9 km2). The volume of karst groundwater withdrawal increased yearly before the operation of a supply plant of surface water in 1992, from 3.85×107 m3 (1978) to 1.34×108 m3 (1991) and now maintained at 0.1×109 m3 (2002). Intensive overexploitation of karst groundwater has caused a continuous descending of the piezometric level and the area of the depression cone increases year after year. These changes have increased the vulnerability of the karst groundwater system and have induced environmental problems such as depletion of water resources, water quality deterioration, groundwater contamination and karst collapse. The largest buried depth of karst groundwater is up to 100 m in the dry season in some areas, while 66 exhausted wells have been abandoned. A change in the thickness of the unsaturated zone due to the drawdown of the piezometric level has caused a change of the chemical environment which has an impact on the physical state and major chemical compositions in groundwater. The contents of Ca2+, Mg2+, NO3-, SO42- and Cl- in karst groundwater has increased significantly, total hardness (CaCO3 content) rises annually in most pumping wells and exceeds the Standard of Drinking Water of P.R. China. Point source pollution and belt-like pollution along the rivers has caused water quality deterioration. The sudden loss of buoyant support due to rapid drawdown of the

  11. Isotopic and chemical characteristics of groundwater in Beijing city

    International Nuclear Information System (INIS)

    The characteristics of the alluvial-diluvial aquifer of the Beijing area were studied by means of environmental isotopes, especially tritium, which may be considered as a useful natural tracer to demonstrate the pollutant behavior in groundwater aquifer. The results of tritium monitoring indicate that the natural regime of the groundwater system of the Quaternary aquifer has been destroyed due to intensive exploitation. Two subsystems could be divided based on tritium data. Subsystem A with active circulation was formed in the course of exploitation. Subsystem B is of slow circulation. The δ2H and δ18O values of the groundwater are higher in the western suburb than that in eastern suburb. The sketch maps os δ2H and δ18O isolines reflect a mixing between ground waters from the base rock and from the local vertical recharge. The trace elements Sr, Ru and Rh have a very special distribution in groundwater system with very high concentrations in the north-eastern part of the old Beijing city. The results of 87Sr/86Sr measurement show that Sr in groundwater of the Quaternary aquifer is from the groundwater of the basement rock. High concentrations of Sr in groundwater of the Quaternary aquifer are not related to any special pollution source. (author)

  12. Thermal footprints in groundwater of central European cities

    Science.gov (United States)

    Bayer, P.; Menberg, K.; Blum, P.

    2014-12-01

    Atmospheric thermal pollution in densely populated areas is recognized as a severe problem with consequences for human health, and considerable efforts are being taken to mitigate heat stress in cities. However, anthropogenic activities also influence the thermal environment beneath the ground level, with commonly growing temperatures that affect groundwater ecology and geothermal use efficiency. In our work, we identify the controlling mechanisms for the long-term evolution of such urban heat islands. The shallow groundwater temperatures in several central European cities such as Cologne, Karlsruhe, Munich, Berlin and Zurich were mapped at high spatial and temporal resolution. Thermal anomalies were found to be highly heterogeneous with local hot spots showing temperatures of more than 20°C. Accordingly, these urban regions show a considerable groundwater warming in comparison to undisturbed temperatures of 8-11°C. Examination of potential heat sources by analytical modelling reveals that increased ground surface temperatures and basements of buildings act as dominant drivers for the anthropogenic heat input into the groundwater. The factors are revealed to be case-specific and they may have pronounced local or regional effects. Typical local factors are for example buried district heating networks. In selected cities we find that the average urban heat flux is around one order of magnitude higher than the elevated ground heat flux due to recent climate change. Additionally, such as observed in Zurich, naturally controlled temperature variations can be substantial and they are shown to wash out anthropogenic thermal footprints.

  13. Urban Groundwater Mapping - Bucharest City Area Case Study

    Science.gov (United States)

    Gaitanaru, Dragos; Radu Gogu, Constantin; Bica, Ioan; Anghel, Leonard; Amine Boukhemacha, Mohamed; Ionita, Angela

    2013-04-01

    Urban Groundwater Mapping (UGM) is a generic term for a collection of procedures and techniques used to create targeted cartographic representation of the groundwater related aspects in urban areas. The urban environment alters the physical and chemical characteristics of the underneath aquifers. The scale of the pressure is controlled by the urban development in time and space. To have a clear image on the spatial and temporal distribution of different groundwater- urban structures interaction we need a set of thematic maps is needed. In the present study it is described the methodological approach used to obtain a reliable cartographic product for Bucharest City area. The first step in the current study was to identify the groundwater related problems and aspects (changes in the groundwater table, infiltration and seepage from and to the city sewer network, contamination spread to all three aquifers systems located in quaternary sedimentary formations, dewatering impact for large underground structures, management and political drawbacks). The second step was data collection and validation. In urban areas there is a big spectrum of data providers related to groundwater. Due to the fact that data is produced and distributed by different types of organizations (national agencies, private companies, municipal water regulator, etc) the validation and cross check process is mandatory. The data is stored and managed by a geospatial database. The design of the database follows an object-orientated paradigm and is easily extensible. The third step consists of a set of procedures based on a multi criteria assessment that creates the specific setup for the thematic maps. The assessment is based on the following criteria: (1) scale effect , (2) time , (3) vertical distribution and (4) type of the groundwater related problem. The final step is the cartographic representation. In this final step the urban groundwater maps are created. All the methodological steps are doubled

  14. Geological Environment Problems Caused by Controlling Groundwater Exploitation in Jiangyin City

    Institute of Scientific and Technical Information of China (English)

    DENG Qing-hai; MA Feng-shan; YUAN Ren-mao; YAO Bing-kui

    2007-01-01

    Geological environment effects caused by the control of groundwater exploitation in Jiangyin city are discussed thoroughly, including the dynamic variation of groundwater levels and quality and the development of land subsidence and ground fissures. According to the dynamic characteristics of groundwater levels, some advice about groundwater exploitation is offered. Our research will provide a basis for using groundwater resources and the prevention of geological disasters in Jiangyin city and the Suzhou-Wuxi-Changzhou area. The following results are deduced from our research. First, groundwater levels vary with the exploitation of groundwater in Jiangyin city and are affected by hydrogeological conditions. The groundwater levels remained rather stable before and after the implementation of control of groundwater exploitation in the northwest of Jiangyin city along the Yangtze River. A suitable level of exploitation should be allowed. In the southeast, the speed of recovery of the groundwater level has been rather rapid after the control of exploitation. We conclude that groundwater might be exploited locally after the groundwater level has recovered. In the southwest, the speed of recovery of the groundwater level is rather slow and exploitation of groundwater should be prohibited. Second, groundwater quality is stable in Jiangyin city and the contents of the main chemical indices of groundwater varied only slightly before and after the control of exploitation. Third, after controlling the exploitation, the speed of land subsidence has clearly slowed down and the development of ground fissures has been controlled effectively.

  15. GROUNDWATER QUALITY ASSESSMENT FOR DRINKING PURPOSES USING GIS MODELLING (CASE STUDY: CITY OF TABRIZ)

    OpenAIRE

    M. Jeihouni; Toomanian, A.; M. Shahabi; S. K. Alavipanah

    2014-01-01

    Tabriz is the largest industrial city in North West of Iran and it is developing rapidly. A large proportion of water requirements for this city are supplied from dams. In this research, groundwater quality assessed through sampling 70 wells in Tabriz and its rural areas. The purposes of this study are: (1) specifying spatial distribution of groundwater quality parameters such as Chloride, Electrical Conductivity (EC), pH, hardness and sulphate (2) mapping groundwater quality for drinking pur...

  16. Groundwater Depletion in Dhaka City, Bangladesh: A Spatio-temporal Analysis

    Science.gov (United States)

    Jerin, T.; Ishtiaque, A.

    2015-12-01

    Dhaka city, having a population of more than fifteen million, exclusively depends on groundwater as a source of quality drinking water. In recent decades the city is encountering groundwater diminution and the declining scenario is dissimilar in different parts of the city. This paper aims to discuss the groundwater depletion in different parts of Dhaka city from 1990 to 2012 along with the causes and consequences. Groundwater level data of different locations of Dhaka city were collected from Bangladesh Water Development Board (BWDB). The data were processed and analyzed using SPSS and Excel Worksheet; a contour map was generated using ArcGIS 10.0 to outline the contemporary groundwater scenario of Dhaka city and the spatial analyst tool, Inverse Distance Weighted (IDW) was used to prepare the map. In addition, experts' opinions were collected using an in-depth interview strategy in order to provide a better understanding of the causes and consequences of groundwater depletion. The research results show that groundwater in Dhaka city is depleting at an alarming rate; the central part has the worst situation followed by the south-western part. In contrast, northern part has relatively better groundwater condition. Moreover, the peripheral zone exhibits a better condition because of the existence of rivers and wetlands. The interviews reveal that population density and overexploitation are mainly responsible for groundwater depletion; however, various other factors such as the deliberate establishment of deep tube wells, reduction of recharge capacity due to rapid growth of urban structures altogether results in huge drop of water level throughout the city. Rapid decline in groundwater augments the city's exposure towards multiple risks including land subsidence, groundwater pollution and most importantly, paucity of available fresh water that might ultimately results into an urban disaster. Potential solutions to ameliorate this situation include urban greening

  17. Assessment of groundwater quality in Puri City, India: an impact of anthropogenic activities.

    Science.gov (United States)

    Vijay, Ritesh; Khobragade, Puja; Mohapatra, P K

    2011-06-01

    Puri City is situated on the east coast of India and receives water supply only from the groundwater sources demarcated as water fields. The objective of this paper is to assess and evaluate the groundwater quality due to impact of anthropogenic activities in the city. Groundwater samples were collected from the water fields, hand pumps, open wells, and open water bodies during post-monsoon 2006 and summer 2007. Groundwater quality was evaluated with drinking water standards as prescribed by Bureau of Indian Standards and Environmental Protection Agency to assess the suitability. The study indicated seasonal variation of water-quality parameters within the water fields and city area. Groundwater in the water fields was found to be suitable for drinking after disinfection. While in city area, groundwater quality was impacted by onsite sanitary conditions. The study revealed that groundwater quality was deteriorated due to the discharge of effluent from septic tanks, soak pits, pit latrines, discharges of domestic wastewater in leaky drains, and leachate from solid waste dumpsite. Based on observed groundwater quality, various mitigation measures were suggested to protect the water fields and further groundwater contamination in the city. PMID:20714928

  18. Nitrate in groundwater and the unsaturated zone, Shijiazhuang City, China

    International Nuclear Information System (INIS)

    In 2001, nitrate concentrations in water from wells in Shijiazhuang City, China ranged from 15 to about 160 mg/L as nitrate, with a median concentration of 50 mg/L. Agricultural return waters from lands irrigated with sewage or groundwater are believed to be the source of increasing nitrate, chloride, sulphate, and dissolved solids concentrations. Recharge rates estimated from chemical and tritium data are about 130 mm/y for non-irrigated agricultural land and exceed 200 mm/y for irrigated land. Nitrate concentrations in pore water in the unsaturated zone were as high as 930 mg/L. As much as 350 kg/ha of nitrogen is stored in the upper 18 m of the unsaturated zone beneath a groundwater irrigated site. As much as 780 kg/ha of nitrogen could be stored in thicker unsaturated zones within the study area and nitrogen storage beneath sewage irrigated sites is even probably greater. About 60% of the nitrate stored in the unsaturated zone is in the form of nitrate and 36% is in the form of ammonia. Denitrification in near-saturated fine-grained layers reduces the concentration of nitrate in with depth and at 18 m below land surface 60% of the nitrogen is in the form of ammonia. The δ15N composition of water from sampled wells ranged from 2.2 to 11.7 per mille, with median value of 6.1 per mille. Water from wells in the urban area had the highest average δ15N compositions with progressively lower values in the village and farmland areas. δ15N values in surficial soils averaged 1.0 per mille in natural sites, 9.5 per mille in sewage and manure amended sites, and 7.3 per mille in the chemically fertilized sites. Most δ15N values in water from wells are in the range of compositions expected from sewage and manure sources of nitrogen-with some denitrification, although extensive denitrification of nitrogen from chemical fertilizers also could produce observed δ15N values. (author)

  19. Hydrogeochemical characteristics of groundwater depression cones in Yinchuan City, Northwest China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Groundwater in Yinchuan City has been heavily over-exploited, thus leading to the formation of depression cones in confined and phreatic groundwater environments. The depression cones have an important influence on the hydrodynamic and hydrochemical fields of groundwaters. The evolution of depression cones was analyzed on the basis of the monitoring data on groundwater level accumulated in the past 14 years. The ratio of rCl-/rCa2+ showed that phreatic water circulation was intensified, and confined groundwater was affected by external factors. Mass balance of Cl- showed confined water mixed with about 11% phreatic water. It is shown that the alternative function of confined water was affected by external factors. At last, the evolution of groundwater hydrochemical field on the basis of groundwater chemical composition showed that phreatic water quality has been improved whereas confined water quality has been deteriorated. Saturation indices of minerals with respect to phreatic and confined waters were calculated by using PHREEQC.

  20. Evapotranspiration Within the Groundwater Model Domain of the Tuba City, Arizona, Disposal Site Interim Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-03-01

    The revised groundwater model includes estimates of evapotranspiration (ET). The types of vegetation and the influences of ET on groundwater hydrology vary within the model domain. Some plant species within the model domain, classified as phreatophytes, survive by extracting groundwater. ET within these plant communities can result in a net discharge of groundwater if ET exceeds precipitation. Other upland desert plants within the model domain survive on meteoric water, potentially limiting groundwater recharge if ET is equivalent to precipitation. For all plant communities within the model domain, excessive livestock grazing or other disturbances can tip the balance to a net groundwater recharge. This task characterized and mapped vegetation within the groundwater model domain at the Tuba City, Arizona, Site, and then applied a remote sensing algorithm to estimate ET for each vegetation type. The task was designed to address five objectives: 1. Characterize and delineate different vegetation or ET zones within the groundwater model domain, focusing on the separation of plant communities with phreatophytes that survive by tapping groundwater and upland plant communities that are dependent on precipitation. 2. Refine a remote sensing method, developed to estimate ET at the Monument Valley site, for application at the Tuba City site. 3. Estimate recent seasonal and annual ET for all vegetation zones, separating phreatophytic and upland plant communities within the Tuba City groundwater model domain. 4. For selected vegetation zones, estimate ET that might be achieved given a scenario of limited livestock grazing. 5. Analyze uncertainty of ET estimates for each vegetation zone and for the entire groundwater model domain.

  1. Land subsidence caused by groundwater exploitation in Suzhou City, China

    Science.gov (United States)

    Chen, Chongxi; Pei, Shunping; Jiao, Jiu Jimmy

    2002-09-01

    Suzhou City, located at the lower reaches of the Yangtze River in southeastern Jiangsu Province, is one of the few cities in China which suffer from severe ground settlement. A research project was carried out to investigate this problem. Geological and hydrogeological studies show that there is a multi-layered aquifer system with three distinct, soft mud layers of marine and lagoonal origins. An examination of historical records of groundwater extraction, water levels, and ground settlement shows that the ground subsidence is associated with the continuously increasing groundwater extraction in the deep, confined aquifer. It is believed that the consolidation of the soft mud layers, especially the third layer which is thick and close to the main pumped aquifer, contributes to the ground settlement. A three-dimensional finite difference numerical model representing the multi-layered aquifer system was developed to study the ground settlement in response to groundwater extraction. By calibrating the model with both the measured groundwater level and ground settlement, the aquifer parameters were estimated. The model outputs fit reasonably well with the observed results, which indicates that the numerical model can reproduce the dynamic processes of both groundwater flow and soil consolidation. The hydraulic conductivity of the third mud layer near the center of the ground settlement has been reduced by over 30% in the last 14 years. The gradual deterioration in the hydraulic conductivity of the mud may have significant adverse effect on the sustainable groundwater resource of the deep confined aquifer, since the recharge from the shallow aquifers through the mud layer is the only source of water to the deep aquifer. An analysis of the spatial distributions of groundwater drawdown and ground settlement shows that the area with maximum drawdown is not necessarily the area with maximum ground settlement due to the occurrence of the soft mud layer. A simple reallocation

  2. Extent, perception and mitigation of damage due to high groundwater levels in the city of Dresden, Germany

    OpenAIRE

    H. Kreibich; A. H. Thieken; H. Grunenberg; Ullrich, K; Sommer, T

    2009-01-01

    Flood risk analysis and management plans mostly neglect groundwater flooding, i.e. high groundwater levels. However, rising groundwater may cause considerable damage to buildings and infrastructure. To improve the knowledge about groundwater flooding and support risk management, a survey was undertaken in the city of Dresden (Saxony, Germany), resulting in 605 completed interviews with private households endangered by high groundwater levels. The reported relatively low floo...

  3. GROUNDWATER QUALITY ASSESSMENT FOR DRINKING PURPOSES USING GIS MODELLING (CASE STUDY: CITY OF TABRIZ

    Directory of Open Access Journals (Sweden)

    M. Jeihouni

    2014-10-01

    Full Text Available Tabriz is the largest industrial city in North West of Iran and it is developing rapidly. A large proportion of water requirements for this city are supplied from dams. In this research, groundwater quality assessed through sampling 70 wells in Tabriz and its rural areas. The purposes of this study are: (1 specifying spatial distribution of groundwater quality parameters such as Chloride, Electrical Conductivity (EC, pH, hardness and sulphate (2 mapping groundwater quality for drinking purpose by employing Analytic Hierarchy Process (AHP method in the study area using GIS and Geosatistics. We utilized an interpolation technique of ordinary kriging for generating thematic map of each parameter. The final map indicates that the groundwater quality esaeicni from North to South and from West to East of the study area. The areas located in Center, South and South West of the study area have the optimum quality for drinking purposes which are the best locations to drill wells for supplying water demands of Tabriz city. In critical conditions, the groundwater quality map as a result of this research can be taken into account by East Azerbaijan Regional Water Company as decision support system to drill new wells or selecting existing wells to supply drinking water to Tabriz city.

  4. Impacts of a large Sahelian city on groundwater hydrodynamics and quality: example of Niamey (Niger)

    Science.gov (United States)

    Hassane, Aïssata B.; Leduc, Christian; Favreau, Guillaume; Bekins, Barbara A.; Margueron, Thomas

    2016-03-01

    The management of groundwater resources is very important in the semiarid Sahel region, which is experiencing rapid urban development. Impacts of urbanization on groundwater resources were investigated in the unconfined aquifer of the Continental Terminal beneath the city of Niamey, Niger, using water level and chemical data. Hydrodynamic and chemical changes are best described by a combination of factors including the historical development of the city, current land use, water-table depth and topography. Seasonal groundwater recharge occurs with high spatial variability, as indicated by water-level monitoring in all wells, but there was no interannual trend over the 5-year study period. Groundwater salinity shows high spatial variability and a minor rising trend. The highest salinity is in the old city centre, with Na-NO3 dominant, and it increases seasonally with recharge. Salinity is much lower and more variable in the suburbs (Ca-HCO3, Ca-NO3, and Na-NO3 dominant). Nitrate is the main ionic contaminant and is seasonally or permanently above the international guidelines for drinking water quality in 36 % of sampled wells, with a peak value of 112 mg L-1 NO3-N (8 meq L-1). Comparison of urban and rural sites indicates a long-term increase in groundwater recharge and nitrate enrichment in the urban area with serious implications for groundwater management in the region.

  5. Regulatory issues associated with groundwater compliance at the Falls City, Texas, UMTRA site cleanup

    International Nuclear Information System (INIS)

    This paper discusses the problems associated with the application of supplemental standards for groundwater compliance for the disposal of uranium mill tailings at the DOE's Falls City UMTRA Project site. This includes a discussion of the difficulty in determining background water quality at the site. A discussion of the regulating agency's (NRC) concerns and the resolution of the various NRC issues with demonstrating Class III (limited use) groundwater is provided. An additional item of discussion is the problem of the conflict with the UMTRA definition of an uppermost aquifer and the 1986 EPA draft groundwater classification guidelines. (author)

  6. Groundwater salinization mechanism of aquifers beneath Ho Chi Minh City area (Viet Nam)

    International Nuclear Information System (INIS)

    Water supplying for domestic and product activities in Hochiminh City is being taken from two both sources: surface water and groundwater. Environmental isotopes technique is emphasized to determine the salinisation mechanism of groundwater. The objectives studied are groundwater of two aquifers mainly being exploited in Hochiminh City area. Based on the national water monitoring wells existing in the studied area and the hydrogeological setting a network of 70 sampling points for both two aquifers was set up. Water samples were collected two times (in rainy season of 2001 and in the end of dry season of 2002). All collected samples were analyzed for hydrochemical and stable isotopes. 30 of them were analyzed for tritium and 15 of them were done for 14C. Analyzing hydrochemical results of collected samples show that the quality of groundwater varies from fresh to saline, soft to very hard and high iron contents in some regions. The analyses of cations and anions by Piper Trilinear Diagram show that in aquifers where saline groundwater distributed the cations are mainly sodium, calcium, and magnesium type while the anions are mainly chloride and sulfate type but in the part where fresh groundwater the cations are mainly sodium, calcium, and type while the anions are mainly bicarbonate, carbonate and nitrate type. According to TDS values the distribution of fresh and saline groundwater in studied aquifers is mapped and fresh-saline groundwater boundaries in 1990 and 2000 is also demonstrated. The distribution of groundwater samples collected along the GMWL show that groundwater in this area is recharged directly by rainfall and surface water. High tritium contents and 14C relative radioactivity of groundwater in the area also support this process. Delta values of 18O and Chloride contents plot show that it exists two main salinisation mechanism. The first one is the leaching process and the second one is mixing with seawater process and both these mechanisms are

  7. Spatial and temporal groundwater level variation geostatistical modeling in the city of Konya, Turkey.

    Science.gov (United States)

    Cay, Tayfun; Uyan, Mevlut

    2009-12-01

    Groundwater is one of the most important resources used for drinking and utility and irrigation purposes in the city of Konya, Turkey, as in many areas. The purpose of this study is to evaluate spatial and temporal changes in the level of groundwater by using geostatistical methods based on data from 91 groundwater wells during the period 1999 to 2003. Geostatistical methods have been used widely as a convenient tool to make decisions on the management of groundwater levels. To evaluate the spatial and temporal changes in the level of the groundwater, a vector-based geographic information system software package, ArcGIS 9.1 (Environmental Systems Research Institute, Redlands, California), was used for the application of an ordinary kriging method, with cross-validation leading to the estimation of groundwater levels. The average value of variogram (spherical model) for the spatial analysis was approximately 2150 m. Results of ordinary kriging for groundwater level drops were underestimated by 17%. Cross-validation errors were within an acceptable level. The kriging model also helps to detect risk-prone areas for groundwater abstraction. PMID:20099631

  8. Physico Chemical Assesment of Groundwater in Indore City

    Directory of Open Access Journals (Sweden)

    Monika Gurjar

    2013-04-01

    Full Text Available The present work deals with the assessment of the ground water of some selected area of the Indore city. The investigation was carried out in the month of March and April-2012. The sites were selected to cover the Indore city including residential, commercial, industrial and agriculture area. Various parameters were studied and compared with the IS specification. Some parameters have been found undesirable in some location, mainly Kabir Khedi and Pologround area which need proper attention. Rest of the sample area has deviation within desirable and undesirable extent of tolerance

  9. Studying the Probability of Using Groundwater in Baghdad City for Human, Animal, and Irrigation Use

    Directory of Open Access Journals (Sweden)

    Reem J. Channo

    2012-01-01

    Full Text Available Groundwater is an important source of fresh water especially in countries having a decrease in or no surface water; therefore itis essential to assess the quality of groundwater and find the possibility of its use in different purposes (domestic; agricultural; animal; and other purposes. In this paper samples from 66 wells lying in different places in Baghdad city were used to determine 13 water parameters, to find the quality of groundwater and evaluate the possibility of using it for human, animal and irrigation by calculating WQI, SAR, RSC and Na% and TDS indicators. WQI results showed that the groundwater in all wells are not qualified for human use, while SAR and RSC indicated that most samples are suitable for irrigation use, and TDS showed that 74% of samples are suitable for animal use especially for sheep and meat-livestock animals.

  10. Utilization of Storm Runoff for Groundwater Recharge in Urban Areas- A Case Study of Gujranwala City in Pakistan

    Directory of Open Access Journals (Sweden)

    Saqib Eh san

    2013-12-01

    Full Text Available This research highlights the significance of storm runoff for groundwater recharge in urban areas. Due to excessive withdrawal of groundwater, the groundwater table is significantly depleting each year. The storm runoff in urban areas should be first stored then it can be used for possible groundwater recharge by adopting feasible recharge techniques. A proper storm drainage system should be functional in order to collect the surface run off from different parts of an urban area. As case study, the Gujranwala city in Pakistan has been taken into consideration. The city has strong potential for a storm water drainage system. Each year a significant amount of storm runoff in Gujranwala city is not utilized due to unavailability of a proper storm water drainage system. Different aspects of hydrology and hydrogeology of this city have been thoroughly studied. Further, design considerations for tube wells have also been elaborated. Based on the available data, different options for groundwater water recharge in city area have been investigated and also a typical design of an inverted well in city area has been proposed. This study strongly recommends the concerned authorities to first provide a suitable storm water drainage system in Gujranwala city and to investigate the feasible options of groundwater recharge keeping in view the hydrological and hydro-geological conditions. This research is intended to provide useful guidelines for feasibility of groundwater recharge techniques in other urban areas of Pakistan and also other parts of the world.

  11. A hydrochemical elucidation of the groundwater composition under domestic and irrigated land in Jaipur City.

    Science.gov (United States)

    Tank, Dinesh Kumar; Chandel, C P Singh

    2010-07-01

    The study area Jaipur, the capital of Rajasthan, is one of the famous metropolises in India. In order to know the suitability of groundwater for domestic and irrigation purposes in Jaipur City, groundwater samples were composed of 15 stations during post-monsoon time of the year 2007-2008 (Nov 2007 to Feb 2008) and were analyzed for physicochemical characters. The physicochemical parameters of groundwater participate a significant role in classifying and assessing water quality. A preliminary characterization, carried out using the piper diagram, shows the different hydrochemistry of the sampled groundwater. This diagram shows that most of the groundwater samples fall in the field of calcium-magnesium-chloride-sulfate type (such water has permanent hardness) of water. Data are plotted on the US Salinity Laboratory diagram, which illustrates that most of the groundwater samples fall in the field of C2S1 and C3S1, which can be used for irrigation on almost all type of soil with little danger of exchangeable sodium. Based on the analytical results, chemical indices like %Na, SAR, and RSC were calculated which show that most of the samples are good for irrigation. PMID:19479331

  12. 234U/238U isotope data from groundwater and solid-phase leachate samples near Tuba City Open Dump, Tuba City, Arizona

    Science.gov (United States)

    Johnson, Raymond H.; Horton, Robert J.; Otton, James K.; Ketterer, Michael K.

    2012-01-01

    This report releases 234U/238U isotope data, expressed as activity ratios, and uranium concentration data from analyses completed at Northern Arizona University for groundwater and solid-phase leachate samples that were collected in and around Tuba City Open Dump, Tuba City, Arizona, in 2008.

  13. A CORRELATION AND REGRESSION STUDY ON THE GROUNDWATER QUALITY IN ALIGARH CITY, UTTAR PRADESH

    Directory of Open Access Journals (Sweden)

    Ummatul Fatima

    2015-07-01

    Full Text Available Ground water is the vital source of sustenance and survival of every living organism. The present study aimed at a statistical regression analysis of Groundwater at 16 locations of Aligarh city, Uttar Pradesh. A correlation study has been carried out amongst all possible pairs of 15 physico-chemical parameters viz., pH, total acidity, phenolphthalein alkalinity, total alkalinity, total hardness, calcium, magnesium, dissolved oxygen, chemical oxygen demand, turbidity, electrical conductivity, total solid, total dissolved solid, total suspended solid and chloride to assess groundwater quality. The correlation analysis provides an excellent tool for the prediction of parameter values within reasonable degree of accuracy. The existence of strong correlation between Total Hardness & Magnesium and Total Dissolved Solid & Total Solid are ascertained. The analysis reveals that the groundwater of the area needs some treatment before consumption and it also needs to be protected from the perils of contamination.

  14. The Characteristics of Leachate and Groundwater Pollution at Municipal Solid Waste Landfill of Ibb City, Yemen

    OpenAIRE

    Esmail A. Sabahi; S.A. Rahim; W. Y.W. Zuhairi; Fadhl A. Nozaily; Fares Alshaebi

    2009-01-01

    Problem statement: Yemen one of the developing country suffering from water pollution. Landfill is one of the source of water pollution. There are several boreholes located close to Ibb landfill used for drinking water. A study of composition of landfill leachate and groundwater pollution was conducted at Ibb landfill, which is located at Al-Sahool area, north of Ibb City, Yemen. Approach: The leachate was sampled at three different locations of the landfill, at the landfill itself and 15 and...

  15. Interaction between surface water areas and groundwater in Hanoi city, Viet Nam

    Science.gov (United States)

    Hayashi, T.; Kuroda, K.; Do Thuan, A.; Tran Thi Viet, N.; Takizawa, S.

    2012-12-01

    Hanoi is the capital of Viet Nam and the second largest city in this country (population: 6.45 million in 2009). Hanoi city has developed along the Red River and has many lakes, ponds and canals. However, recent rapid urbanization of this city has reduced number of natural water areas such as ponds and lakes by reclamation not only in the central area but the suburban area. Canals also have been reclaimed or cut into pieces. Contrary, number of artificial water areas such as fish cultivation pond has rapidly increased. On the other hand, various kind of waste water flows into these natural and artificial water areas and induces pollution and eutrophication. These waste waters also have possibility of pollution of groundwater that is one of major water resources in this city. In addition, groundwater in this area has high concentrations of Arsenic, Fe and NH4. Thus, groundwater use may causes re-circulation of Arsenic. However, studies on the interaction between surface water areas and groundwater and on the role of surface water areas for solute transport with water cycle are a few. Therefore, we focused on these points and took water samples of river, pond and groundwater from four communities in suburban areas: two communities are located near the Red River and other two are far from the River. Also, columnar sediment samples of these ponds were taken and pore water was abstracted. Major dissolved ions, metals and stable isotopes of oxygen and hydrogen of water samples were analyzed. As for water cycle, from the correlation between δ18O and δD, the Red River water (after GNIR) were distributed along the LMWL (δD=8.2δ18O+14.1, calculated from precipitation (after GNIP)). On the other hand, although the pond waters in rainy season were distributed along the LMWL, that in dry season were distributed along the local evaporation line (LEL, slope=5.6). The LEL crossed with the LMWL at around the point of weighted mean values of precipitation in rainy season and of

  16. Application of groundwater sustainability indicators to the Upper Pliocene aquifer in Ho Chi Minh city, Viet Nam

    Science.gov (United States)

    Ngo, T. M.; Lee, J.; Lee, H.; Woo, N. C.

    2013-12-01

    Groundwater plays an importance role for domestic, industrial, and agricultural uses in Ho Chi Minh city, Viet Nam. This study is objected to evaluate the sustainability of groundwater by using groundwater sustainability indicators (GWSIs) defined by UNESCO/IAEA/IAH Working Group on Groundwater Indicators at aquifer scale (the Upper Pliocene aquifer). There are four main indicators selected and one new indicator designed for the particular characteristic of Ho Chi Minh city which is under influence of by saline-water intrusion. The results indicated groundwater of the Upper Pliocene aquifer, the main groundwater supply source, is generally in the unsustainable state. The abstraction of groundwater, which was much greater than its capability, is probably causing the serious state of annual groundwater depletion and saline-water intrusion. The GWSIs, which expressed in such a simple way but scientifically-based and policy-relevant, proved its usefulness in evaluating the sustainability of groundwater at the aquifer scale in Ho Chi Minh city, and subsequently should be incorporated in water resource management practices.

  17. Assessment of Groundwater and Surface Water Pollution at Mitm Area, Ibb City, Yemen

    Directory of Open Access Journals (Sweden)

    Esmail A. Sabahi

    2009-01-01

    Full Text Available Groundwater and surface water samples were collected from Mitm area to study the possible impact of wastewater treatment percolation into the groundwater and surface water. The objective of the study is to assess the groundwater and surface water pollution due to wastewater treatment at Mitm area of Ibb city, in the Republic of Yemen. The concentrations of various physiochemical parameters include heavy metals (Pb, Zn, Ni, Cr, Cd, Cu pH, temperature, Electrical Conductivity (EC, Total Dissolved Solids (TDS, and Dissolved Oxygen (DO, anions and nutrients (F-, Cl-, SO4-2, NO2, NO3-,NH3-N, major cations (Fe, Na, K, Ca, Mg and parameters (COD, BOD5, and coliform group bacteria were measured from the groundwater samples. The results show that three out of five boreholes are contaminated, where the concentration of physic-chemical parameters are above the standard acceptable levels which required for drinking water adapted by Yemen's Ministry of Water and Environment (YMWE, 1999. On the other hand, surface water is affected by the discharge of untreated wastewater. The concentrations of physiochemical parameters are above the standard acceptable levels which required for irrigation purpose adopted by Yemen's Ministry of Water and Environment (YMWE, 1999. Boreholes 1 and 2 are suitable for drinking water, whereas boreholes 3, 4 and 5 are not suitable for drinking water. Therefore, urgency for wastewater treatment at this site is recommended to prevent further contamination to surface and groundwater.

  18. Groundwater contamination by nitrates in the city of Konya, (Turkey): a GIS perspective.

    Science.gov (United States)

    Nas, Bilgehan; Berktay, Ali

    2006-04-01

    Groundwater is an essential drinking water source in the city of Konya, Turkey. Approximately 75% of the city's water consumption has been supplied from 198 groundwater wells for the last six years. Nitrate (NO(3)(-)) is one of the important water quality parameters and was measured in the water samples taken from 139 wells in 1998 and from 156 wells in 2001 within the study area of 427.5 km(2). To evaluate the nitrate data, a vector-based GIS software package ArcView GIS 3.2 was used. A hardcopy map of the city was digitized in the UTM projection system. The locations of the wells were obtained by a hand-held Global Positioning System (GPS) receiver. According to the maps produced, nitrate concentrations generally tend to increase in the city center, the average concentrations being 2.2 and 16.1mg/L for the years of 1998 and 2001, respectively. A statistical correlation procedure was also applied to well depths and nitrate concentrations. As a result, correlation coefficients of 0.259 and 0.261 were obtained for data collected in 1998 and 2001. It is concluded that the distribution of nitrate concentrations is not correlated with well depths within the study area. PMID:16143447

  19. Evapotranspiration Dynamics and Effects on Groundwater Recharge and Discharge at the Tuba City, Arizona, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-02-01

    The U.S. Department of Energy Office of Legacy Management is evaluating groundwater flow and contaminant transport at a former uranium mill site near Tuba City, Arizona. We estimated effects of temporal and spatial variability in evapotranspiration (ET) on recharge and discharge within a groundwater model domain (GMD) as part of this evaluation. We used remote sensing algorithms and precipitation (PPT) data to estimate ET and the ET/PPT ratios within the 3531 hectare GMD. For the period from 2000 to 2012, ET and PPT were nearly balanced (129 millimeters per year [mm yr-1] and 130 mm yr-1, respectively; ET/PPT = 0.99). However, seasonal and annual variability in ET and PPT were out of phase, and spatial variability in vegetation differentiated discharge and recharge areas within the GMD. Half of ET occurred during spring and early summer when PPT was low, and about 70% of PPT arriving in fall and winter was discharged as plant transpiration in the spring and summer period. Vegetation type and health had a significant effect on the site water balance. Plant cover and ET were significantly higher (1) during years of lighter compared to years of heavier grazing pressure, and (2) on rangeland protected from grazing compared to rangeland grazed by livestock. Heavy grazing increased groundwater recharge (PPT > ET over the 13-year period). Groundwater discharge (ET > PPT over the 13-year period) was highest in riparian phreatophyte communities but insignificant in desert phreatophyte communities impacted by heavy grazing. Grazing management in desert upland and phreatophyte communities may result in reduced groundwater recharge, increased groundwater discharge, and could be used to influence local groundwater flow.

  20. Chemical response to groundwater extraction southeast of Mexico City

    Science.gov (United States)

    Huizar-Alvarez, R.; Carrillo-Rivera, J. J.; Ángeles-Serrano, G.; Hergt, T.; Cardona, A.

    An alternative procedure of pumping test data interpretation is used through a joint analysis of the standard time-drawdown curve and simultaneous field measurements of total dissolved solids (TDS); additional support is also provided by the temperature of extracted groundwater and the chemical composition of extracted water. The overall information was applied to characterise the groundwater flow system and its sources, the hydraulic conditions of the aquifer and hydraulic response of extraction boreholes. The analysis of this information suggests the presence of: (i) a local flow system that circulates at shallow depth through basalt units interstratified with fine grained sediments and pyroclastics; these materials contain water with TDS of 127-600 mg/L and Na of 24-178 mg/L, and temperature of 18-19.5 °C (ii) intermediate flow in granular material under reducing conditions by the oxidation of organic matter in aquitard sediments; this water has TDS and Na values of 203-940 and 30-370 mg/L, respectively, and temperatures of about 20-22 °C (iii) regional flow through volcanic rocks and limestone, with TDS content of 300-700 mg/L, Na of 80-230 mg/L and temperature of 23.0-24.8 °C. The hydraulic response and the chemical composition of the water produced by some boreholes are affected by the seepage inflow from sewage effluents, the input from an overlying aquitard unit and the inducement of regional flow. The conception of the flow regime thus obtained allowed the recognition of hydraulic conditions which were more consistent with the hydrogeological setting, than if only a time vs. drawdown test analysis would have been carried out. L'interprétation simultanée de pompages d'essais, des données de température et résidu sec (RS) de L'eau souterraine pompée, mesurées simultanément sur le terrain et la composition chimique de L'eau pompée comme un aide additionnelle, est utilisée comme une différent procédure pour interpréter les pompages d'essais. La

  1. The effect of remedial measures upon groundwater quality in connection with soil contamination by chlorinated hydrocarbons and the related costs - by example of the City of Hanover

    International Nuclear Information System (INIS)

    The effectiveness of remedial actions on the groundwater quality was investigated in the aquifer of the City of Hannover. The improvement of groundwater quality was related to the costs for the remedial actions. The attention was focussed on groundwater pollution by chlorinated hydrocarbons as the most important contaminants of groundwater in urban areas. (orig.)

  2. Information Entropy Evolution for Groundwater Flow System: A Case Study of Artificial Recharge in Shijiazhuang City, China

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2014-08-01

    Full Text Available The groundwater flow system is typical dissipative structure system, and its evolution can be described with system information entropies. The information entropies of groundwater in Shijiazhuang City had been calculated between 1960 and 2005, and the results show that the entropies have a decreasing trend throughout the research period, and they can be divided into our stages based on the groundwater flow system entropy variation as follows: entropy steady period (1960–1965, entropy decreasing period (1965–1980, entropy increasing period (1980–1995 and secondary entropy decreasing period (1995–2005; understanding the major and significant driving the pattern changing forces of groundwater levels is essential to groundwater management,. A new method of grey correlation analysis has been presented, and the results show that, the grey correlation grade between groundwater flow system information entropies and precipitation series is γ01 = 0.749, the grey correlation grade between groundwater flow system information entropies and groundwater withdrawal series is γ02 = 0.814, as the groundwater withdrawal is the main driving force of groundwater flow system entropy variation; based on the numerical simulation results, information entropy increased with artificial recharge, and a smaller recharge water volume would enhance the information entropy drastically, but then doubled water would not increase the information correspondingly, which could be useful to assess the health state of groundwater flow systems.

  3. A Geo-Environmental Analysis of the Groundwater Resource vis-a-vis Surface Water Scenario in Guwahati City

    Directory of Open Access Journals (Sweden)

    Neelkamal Das

    2013-08-01

    Full Text Available Guwahati city is located on a unique geo-environmental setting with an interface of hills and valleys along with a prominent river front. The existence of various surface water sources, geo-hydrological set up and rainfall intensity play a significant role in the ground water regime of the city. However, rapid urbanisation of the city during the last few decades has altered the landscape of the city and disturbed the water retention capacity as well as the flow dynamics of various surface water sources, thereby affecting the infiltration rate to a great extent. Unprecedented rise in the population of the city has exerted more pressure on the various sources of water, particularly the groundwater resource. It has thus become imperative to utilise the various sources of water in a more systematic and scientific manner, giving due emphasis to the water requirement and the prevailing hydrological conditions of the area. Moreover, it is also observed that the city experiences an average annual rainfall of 162 cm with about 110 rainy days per year. The city thus has enough potential for harvesting the rainwater it receives, instead of allowing it to flow untapped. Rainwater can be tapped and utilised to revive the various surface water sources of the city, thereby facilitating natural groundwater recharge, as surface water bodies like wetlands, lakes and ponds do act as potential groundwater recharge zones.

  4. Groundwater.

    Science.gov (United States)

    Braids, Olin C.; Gillies, Nola P.

    1978-01-01

    Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)

  5. Fuzzy model for determination and assessment of groundwater quality in the city of Zrenjanin, Serbia

    Directory of Open Access Journals (Sweden)

    Kiurski-Milosević Jelena Ž.

    2015-01-01

    Full Text Available The application of the fuzzy logic for determination and assessment of the chemical quality of groundwater for drinking purposes in the city of Zrenjanin is presented. The degree of certainty and uncertainties are one of the problems in the most commonly used methods for assessing the water quality. Fuzzy logic can successfully handle these problems. Evaluation of fuzzy model was carried out on the samples from two representative wells that are located at depths of two aquifers from which water is taken to supply the population as drinking water. The samples were analyzed on 8 different chemical water quality parameters. In the research arsenic concentration (As3+, As5+ is considered as the dominant parameter due to its suspecting carcinogenic effects on human health. This type of research is for the first time conducted in the city of Zrenjanin, middle Banat region. [Projekat Ministarstva nauke Republike Srbije, br. MNTR174009 i br. TR34014

  6. Overflow and microbiological contamination in surface and groundwaters in La Costa city (Canelones department, Uruguay)

    International Nuclear Information System (INIS)

    In this paper the results of a geological risk study made during 2005 related to overflow and microbiological water contamination at Ciudad de la Costa City (Canelones department) are shown. This city has been showed a great urban growth for the last three decades. New hydrogeological studies looking forward the phreatic level and its bacteriological quality allow to know the level of the risk along 2005´s first semester. The top of the phreatic table in 40% of the studied area is below than 0.50 meter depth. The results of fourteen bacteriologic analyses in groundwater samples show extreme contamination values in faecal colliform, Pseudomona sp. and Aeruginosa content. Both surface drainage and beach water bacteriologic analyses did not show contamination values except those corresponding to Carrasco creek

  7. Overflow and microbiological contamination in surface and groundwaters in La Costa city (Canelones department, Uruguay)

    International Nuclear Information System (INIS)

    In this paper the results of a geological risk study made during 2005 related to overflow and microbiological water contamination at Ciudad de la Costa City (Canelones department) are shown. This city has been showed a great urban growth for the last three decades. New hydrogeological studies looking forward the phreatic level and its bacteriological quality allow to know the level of the risk along 2005 s first semester. The top of the phreatic table in 40% of the studied area is below than 0.50 meter depth. The results of fourteen bacteriologic analyses in groundwater samples show extreme contamination values in faecal colliform, Pseudo mona sp. and Aeruginosa content. Both surface drainage and beach water bacteriologic analyses did not show contamination values except those corresponding to Carrasco creek

  8. An Assesment of Groundwater Quality Index in Bommasandra Area,Bengaluru city,Karnataka State,India

    Directory of Open Access Journals (Sweden)

    Shivaprasad H

    2015-04-01

    Full Text Available Groundwater is a natural resource for drinking water .In addition to the population growth, urbanization and industrialization also extend the demand of water. Providing safe drinking water supply to the ever growing urban and sub-urban population is going to be a challenge to the civil authorities, city planners, policy makers and environmentalists. Groundwater is a major source of drinking water in both urban and rural areas of Bommasandra. Bommasandra city is rapidly raising population, changing lifestyle and intense competition among users- agriculture, industry and domestic sectors is driving the groundwater table lower. Besides, discharge of untreated wastewater through bores and leachate from unscientific disposal of solid wastes also contaminate groundwater, thereby reducing quality of fresh water resources.

  9. The Characteristics of Leachate and Groundwater Pollution at Municipal Solid Waste Landfill of Ibb City, Yemen

    Directory of Open Access Journals (Sweden)

    Esmail A. Sabahi

    2009-01-01

    Full Text Available Problem statement: Yemen one of the developing country suffering from water pollution. Landfill is one of the source of water pollution. There are several boreholes located close to Ibb landfill used for drinking water. A study of composition of landfill leachate and groundwater pollution was conducted at Ibb landfill, which is located at Al-Sahool area, north of Ibb City, Yemen. Approach: The leachate was sampled at three different locations of the landfill, at the landfill itself and 15 and 20 m downstream of this landfill. Groundwater samples collected from 5 boreholes to study possible impact of leachate percolation into groundwater. Leachate and groundwater samples were collected during dry season only, due to the excessive generation of leachate during this season. Objective of this study was significant to assess degree of groundwater pollution due to Ibb landfill leachate at Al-Sahool area. The leachate and groundwater were physically and chemically characterized by using spectrophotometer HACH, BOD Trak HACH, flame photometer (PFP 7 and Inductively Coupled Plasma of Optical Emission Spectrometry (ICP-OES model Vista MPX. Parameters measured were pH, temperature, Electrical Conductivity (EC, Total Dissolved Solids (TDS, Dissolved Oxygen (DO, Fluoride (F, Chloride (Cl, Sulphate (SO4, Nitrites (NO2, Nitrates (NO3, ammonia-N (NH3-N, heavy metals (Pb, Zn, Ni, Cr, Cd, Cu, major cations (Na, Mg, Ca, K, Fe and biological parameters (COD, BOD5 and coliform group bacteria. Results: The results showed that, leachate at landfill most likely in methanogenic phase, based on the alkaline pH value recorded (pH = 8.46. The results also showed that 4 out of 5 boreholes were contaminated, where concentration of physico-chemical parameters are above the standard acceptable levels which required for drinking water adapted by Yemen's ministry of water and environment and by word standard. Conclusion: Therefore, landfill is dangerous for environment so

  10. An Assessment of the Quality of Groundwater in a Textile Dyeing Industrial Area in Erode City, Tamilnadu, India

    OpenAIRE

    P. N. Palanisamy; S. K. Kavitha

    2010-01-01

    Groundwater samples were collected in Erode city, Tamilnadu, from an area having large number of textile dyeing units. Though people residing in this area use river water supplied by local bodies as their major source for drinking, groundwater is also used as complementary source. The samples collected were subjected to systematic analysis using the standard methods and procedures. The values obtained for different physicochemical parameters were compared with the standard values given by ISI...

  11. Groundwater contamination and risk assessment of industrial complex in Busan Metropolitan City, Korea

    Science.gov (United States)

    Hamm, S.-Y.; Ryu, S. M.; Cheong, J.-Y.; Woo, Y.-J.

    2003-04-01

    In Korea, the potential of groundwater contamination in urban areas is increasing by industrial and domestic waste waters, leakage from oil storage tanks and sewage drains, leachate from municipal landfill sites and so on. Nowadays, chlorinated organic compounds such as trichloroethylene (TCE) and tetrachloroethylene (PCE), which are driving residential area as well as industrial area, are recognized as major hazardous contaminants. As well known, TCE is wisely used industrial activities such as degreasing, metal stripping, chemical manufacturing, pesticide production, coal gasification plants, creosote operation, and also used in automobile service centers, photo shops and laundries as cleaning solvent. Thus, groundwater protection in urban areas is important issue in Korea This study is to understand groundwater quality and contamination characteristics and to estimate risk assessment in Sasang industrial complex, Busan Metropolitan City. Busan Metropolitan City is located on southeastern coast of the Korean peninsula and is the second largest city in South Korea with a population of 3.8 millions. The geology of the study area is composed of andesite, andesitic tuff, biotite granite and alluvium (Kim et al., 1998). However, geology cannot be identified on the surface due to pavement and buildings. According to drill logs in the study area, the geologic section consists in landfill, fine sand, clay, gravelly clay, and biotite granite from the surface. Biotite granite appears 5.5- 6 m depth. Groundwater samples were collected at twenty sites in Sasang industrial complex. The groundwater samples are plotted on Piper's trilinear diagram, which indicates Ca-Cl2 type. The groundwater may be influenced by salt water because Sasang industrial complex is located near the mouse of Nakdong river that flows to the South Sea. The Ca-Cl2 water type may be partly influenced by anthropogenic contamination in the study area, since water type in granite area generally belongs Ca

  12. Analysis of Groundwater Quality of Aligarh City, (India: Using Water Quality Index.

    Directory of Open Access Journals (Sweden)

    Khwaja M. Anwar

    2014-12-01

    Full Text Available Water is essential for all living organisms for their existence and metabolic process. Unethical human intervention in natural system and over exploitation of groundwater resources induces degradation of its quality. In many instances groundwater is used directly for drinking as well as for other purposes, hence the evaluation of groundwater quality is extremely important. The present study is aimed to analyze the underground water quality at Aligarh. In this study 80 water samples were collected from 40 places and analyzed for 14 water quality parameters for pre-monsoon and post-monsoon seasons (2012. The water quality index of these samples ranges from 18.92 to 74.67 pre-monsoon and 16.82 to 70.34 during post-monsoon. The study reveals that 50 % of the area under study falls in moderately polluted category. The ground water of Aligarh city needs some treatment before consumption and it also needs to be protected from contamination.

  13. Preliminary study on arsenic concentration in groundwater in usual exploited aquifer in Ho Chi Minh City (pleistocene aquifer QIm)

    International Nuclear Information System (INIS)

    Recent days, As in groundwater is a hot spot in some countries in Asia (e.g India, Bangladesh, Myanmar, Thailand) that was revealed through Executive Meetings of RAS/8/084. In Vietnam, some reports on groundwater quality in Red River Delta and Mekong Delta (with few random groundwater samples selected to analyse randomly) brought an opinion that groundwater in some region in Vietnam contains a quantity of As is over WHO Limit to As concentration in drinking water. This project hat been carrying out in Ho Chi Minh City in order to survey and make a preliminary assessment on As content in groundwater in shallow aquifer which is usual exploited in one of important social-economic centers of Vietnam. (author)

  14. Temporal and spatial variation of groundwater in quantity and quality in sand dune at coastal region, Kamisu city, central Japan.

    Science.gov (United States)

    Umei, Yohei; Tsujimura, Maki; Sakakibara, Koichi; Watanabe, Yasuto; Minema, Motomitsu

    2016-04-01

    The role of groundwater in integrated water management has become important in recent 10 years, though the surface water is the major source of drinking water in Japan. Especially, it is remarked that groundwater recharge changed due to land cover change under the anthropogenic and climatic condition factors. Therefore, we need to investigate temporal and spatial variation of groundwater in quantity and quality focusing on the change during recent 10-20 years in specific region. We performed research on groundwater level and quality in sand dune at coastal region facing Pacific Ocean, Kamisu city, Ibaraki Prefecture, which have been facing environmental issues, such as land cover change due to soil mining for construction and urbanization. We compared the present situation of groundwater with that in 2000 using existed data to clarify the change of groundwater from 2000 to 2015. The quality of water is dominantly characterized by Ca2+-HCO3‑ in both 2000 and 2015, and nitrate was not observed in 2015, though it was detected in some locations in 2000. This may be caused by improvement of the domestic wastewater treatment. The topography of groundwater table was in parallel with that of ground surface in 2015, same as that in 2000. However, a depletion of groundwater table was observed in higher elevation area in 2015 as compared with that in 2000, and this area corresponds to the locations where the land cover has changed due to soil mining and urbanization between 2015 and 2000. In the region of soil mining, the original soil is generally replaced by impermeable soil after mining, and this may cause a decrease of percolation and net groundwater recharge, thus the depletion of groundwater table occurred after the soil mining.

  15. Hydrogeological aspects of groundwater drainage of the urban areas in Kuwait City

    Science.gov (United States)

    Al-Rashed, Muhammad F.; Sherif, Mohsen M.

    2001-04-01

    Residential areas in Kuwait City have witnessed a dramatic rise in subsurface water tables over the last three decades. This water rise phenomenon is attributed mainly to over irrigation practices of private gardens along with leakage from domestic and sewage networks. This paper presents a comprehensive study for urban drainage in two selected areas representing the two hydrogeological settings encountered in Kuwait City. In the first area, a vertical drainage scheme was applied successfully over an area of 1 km2. The system has been under continuous operation and monitoring for more than 4 years without problems, providing a permanent solution for the water rise problem in this area. The hydrogeological system has approached steady state conditions and the water levels have dropped to about 3·5 m below the ground surface. In the second area a dual drainage scheme, composing of horizontal and vertical elements, is proposed. Horizontal elements are suggested in the areas where the deep groundwater contains hazardous gases that may pose environmental problems. The proposed drainage scheme in the second area has not yet been implemented. Field tests were conducted to assess the aquifer parameters in both areas and a numerical model has been developed to predict the long-term response of the hydrogeological system in the two areas under consideration.

  16. Groundwater monitoring plan for the Missouri River alluvial aquifer in the vicinity of the City of Independence, Missouri, well field

    Science.gov (United States)

    Wilkison, Donald H.

    2012-01-01

    Source contributions to monitoring and supply wells, contributing recharge areas, groundwater travel times, and current (2012) understanding of alluvial water quality were used to develop a groundwater monitoring plan for the Missouri River alluvial aquifer in the vicinity of the City of Independence, Missouri well field. The plan was designed to evaluate long-term alluvial water quality and assess potential changes in, and threats to, well-field water quality. Source contributions were determined from an existing groundwater flow model in conjunction with particle-tracking analysis and verified with water-quality data collected from 1997 through 2010 from a network of 68 monitoring wells. Three conjunctive factors - well-field pumpage, Missouri River discharge, and aquifer recharge - largely determined groundwater flow and, therefore, source contributions. The predominant source of groundwater to most monitoring wells and supply wells is the Missouri River, and this was reflected, to some extent, in alluvial water quality. To provide an estimate of the maximum potential lead time available for remedial action, monitoring wells where groundwater travel times from the contributing recharge areas are less than 2 years and predominately singular sources (such as the Missouri River or the land surface) were selected for annual sampling. The sample interval of the remaining wells, which have varying travel times and intermediate mixtures of river and land-surface contributions, were staggered on a 2-, 3-, or 4-year rotation. This was done to provide data from similar contributing areas and account for inherent aquifer variability yet minimize sample redundancy.

  17. Effects of land-use type on urban groundwater quality, Seoul metropolitan city, Korea

    Science.gov (United States)

    Yu, S.; Yun, S.; Chae, G.; So, C.; Kweon, S.; Lee, P.

    2001-12-01

    The progressive degradation of urban groundwater becomes an important environmental problem encountered in South Korea. This study aims to examine the relationships between land-use type and groundwater quality in Seoul metropolitan city, based on the results of hydrogeochemical monitoring. For this purpose, land-use type was divided into five categories (green zone, housing, agricultural, traffic, and industrialized). The mean concentrations of TDS (total dissolved solids) effectively reflect the degree of anthropogenic contamination and increase in the following order: green zone (152.5 mg/l), then agricultural (380.7 mg/l) and housing (384.2 mg/l), then traffic (457.0 mg/l), and finally industrialized area (554.5 mg/l). Among major dissolved solutes, the concentrations of Na, Ca, Mg, HCO3, and Cl increase with increasing TDS. In case of Na and Ca, de-icing salts and sewage are considered as major contamination sources. The corrosion of cements may also increase Ca. Nitrate concentration is characteristically very high in housing and agricultural areas, reflecting the severe contamination from domestic sewage and fertilizer. Sulfate and magnesium are enriched in industrialized area, possibly due to their derivation from industrial facilities. Chlorine ion is considered to be derived from de-chlorination of hydrocarbons as well as de-icing salts. Bicarbonate also increases with increasing TDS, for which cement dissolution and oxidation of organics are considered as source materials. However, enhanced water-rock(or construction materials) interaction also may increase the bicarbonate, because acidic wastewater in urban area is very corrosive. Trace metals and organic compounds generally does not show any distinct pattern of regional variation. However, Fe, Mn, Ni, Se, Zn, TCE, and PCE tend to increase locally in industrialized area, whereas high concentrations of Br, Ni, and Cu are found in traffic area. The groundwaters with very high concentrations of Fe, Zn, and

  18. Volatile Short-chain Chlorinated Hydrocarbons in the Groundwater of the City of Zagreb

    Directory of Open Access Journals (Sweden)

    Marijanović-Rajčić, M.

    2008-01-01

    Full Text Available The aim of the study was to assess the quality of the groundwater sampled from private wells and the public water-supply system in terms of estimating the contamination caused by short-chain chlorinated hydrocarbons, as well as to estimate the exposure of the citizens dwelling in different suburbs to these pollutants of their drinking water (Fig. 1. The aim of the study was also to determine which suburb is supplied through the public water-supply system with water originating from the Sašnak spring that is contaminated with volatile chlorinated short-chain hydrocarbons.Drinking water samples were taken from 3 private wells and 1 public water-supply system situated in 3 Zagreb suburbs - Pešćenica, Trnje, and Trešnjevka. The sampling was carried out during 2003 and was undertaken on a seasonal basis. Short-chain chlorinated hydrocarbons - 1,1,1-trichloroethane, carbon tetrachloride, 1,1,2-trichloroethene and 1,1,2,2-tetrachloroethene - were determined by gas chromatography, following "liquid-liquid extraction" in pentane. For that purpose, we applied the gas chromatograph equipped with an electron-capture detector, thermo-programmable operations, and a suitable capillary column. The technique applied was that of split-injection.The groundwater of the City of Zagreb was found to be contaminated with volatile chlorinated hydrocarbons. The concentration level of 1,1,1-trichloroethane, determined in most of the samples, was found to be low (Fig. 2. On the other hand, 1,1,2-trichloroethene was present in all samples in concentrations of about 1 µg l-1- (Fig. 3. Only the drinking water samples taken from private wells in the suburb of Trnje contained somewhat higher mass concentrations of 1,1,1-trichloroethane, with the peak value of 19.03 µg l-1, measured in the winter season. In the samples taken from private wells in Trnje, the mass concentrations of 1,1,2,2-tetrachloroethene rangedfrom 15.30 µg l-1 to 18.65 µg l-1, as measured in autumn

  19. Potential effect of natural gas wells on alluvial groundwater contamination at the Kansas City Plant

    International Nuclear Information System (INIS)

    This report is the result of a request for further information about several abandoned natural gas wells at the US Department of Energy's Kansas City Plant (KCP). The request was prompted by an old map showing several, possibly eight, natural gas wells located under or near what is now the southeast corner of the Main Manufacturing Building at KCP. Volatile organic compound contamination in the alluvial aquifer surrounding the gas wells might possibly contaminate the bedrock aquifer if the gas wells still exist as conduits. Several circumstances exist that make it doubtful that contamination is entering the bedrock aquifers: (1) because regional groundwater flow in the bedrock beneath the KCP is expected to be vertically upward, contaminants found in the alluvial aquifer should not migrate down the old wells; (2) because of the low hydraulic conductivity of the bedrock units, contaminant transport would be extremely slow if the contaminants were migrating down the wells; and (3) casing, apparently set through the alluvium in all of the wells, would have deteriorated and may have collapsed; if the casing collapsed, the silty clays in the alluvium would also collapse and seal the well. No definitive information has been discovered about the exact location of the wells. No further search for or consideration of the old gas wells is recommended

  20. Behaviour of the groundwater system in the Santa Catarina area, Mexico City

    International Nuclear Information System (INIS)

    In the southeast area of Mexico City a line of 14 wells exist and are used as a potable water supply for surrounding towns. The average distance between each well is approximately 400 m. Each well was drilled to an approximate depth of 400 m. The results of vertical electrical soundings, performed as part of another study, indicated the presence of mineralized water down to a depth of approximately 200 m with potable water beneath. The granular aquifer is bounded by basaltic flows related to the Sierras de Santa Catarina in the north and the Chichinautzin in the south. To aid in the determination of the age and origin of the different groundwaters indicated by the geophysics, a geochemical and isotopic monitoring program was completed. Geochemical analysis was limited to the major ions. Isotopic analysis included 18O, 2H, 3H, 34S and 14C. Geochemical and isotopic data was significantly varied within the well field. The geochemical, isotopic and geophysical data was combined to produce a hydrogeological and hydrogeochemical qualitative model for the aquifer that exists around the Santa Catarina well field. (author). 11 refs, 3 figs, 7 tabs

  1. Potential effect of natural gas wells on alluvial groundwater contamination at the Kansas City Plant

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, D.A.; Laase, A.D. (Oak Ridge National Lab., TN (United States)); Locke, D.A. (Oak Ridge Inst. for Science and Education, TN (United States))

    1993-05-01

    This report is the result of a request for further information about several abandoned natural gas wells at the US Department of Energy's Kansas City Plant (KCP). The request was prompted by an old map showing several, possibly eight, natural gas wells located under or near what is now the southeast corner of the Main Manufacturing Building at KCP. Volatile organic compound contamination in the alluvial aquifer surrounding the gas wells might possibly contaminate the bedrock aquifer if the gas wells still exist as conduits. Several circumstances exist that make it doubtful that contamination is entering the bedrock aquifers: (1) because regional groundwater flow in the bedrock beneath the KCP is expected to be vertically upward, contaminants found in the alluvial aquifer should not migrate down the old wells; (2) because of the low hydraulic conductivity of the bedrock units, contaminant transport would be extremely slow if the contaminants were migrating down the wells; and (3) casing, apparently set through the alluvium in all of the wells, would have deteriorated and may have collapsed; if the casing collapsed, the silty clays in the alluvium would also collapse and seal the well. No definitive information has been discovered about the exact location of the wells. No further search for or consideration of the old gas wells is recommended.

  2. Potential effect of natural gas wells on alluvial groundwater contamination at the Kansas City Plant

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, D.A.; Laase, A.D. [Oak Ridge National Lab., TN (United States); Locke, D.A. [Oak Ridge Inst. for Science and Education, TN (United States)

    1993-05-01

    This report is the result of a request for further information about several abandoned natural gas wells at the US Department of Energy`s Kansas City Plant (KCP). The request was prompted by an old map showing several, possibly eight, natural gas wells located under or near what is now the southeast corner of the Main Manufacturing Building at KCP. Volatile organic compound contamination in the alluvial aquifer surrounding the gas wells might possibly contaminate the bedrock aquifer if the gas wells still exist as conduits. Several circumstances exist that make it doubtful that contamination is entering the bedrock aquifers: (1) because regional groundwater flow in the bedrock beneath the KCP is expected to be vertically upward, contaminants found in the alluvial aquifer should not migrate down the old wells; (2) because of the low hydraulic conductivity of the bedrock units, contaminant transport would be extremely slow if the contaminants were migrating down the wells; and (3) casing, apparently set through the alluvium in all of the wells, would have deteriorated and may have collapsed; if the casing collapsed, the silty clays in the alluvium would also collapse and seal the well. No definitive information has been discovered about the exact location of the wells. No further search for or consideration of the old gas wells is recommended.

  3. Kansas City plant ultraviolet/ozone/hydrogen peroxide groundwater treatment system overview

    International Nuclear Information System (INIS)

    The Kansas City Plant (KCP) has committed to the utilization of a groundwater treatment system, for removal of volatile organic compounds (VOCs), that discharges a minimal amount of pollutants to the environment. An advanced oxidation process (AOP) system utilizing ozone, ultraviolet radiation, and hydrogen peroxide serves in this capacity. Packed tower aeration and activated carbon filtration are listed as best available technologies (BATs) by the Environmental Protection Agency (EPA) for the removal of VOCs in water. The disadvantage to these BATs is that they transfer the VOCs from the water medium to the air or carbon media respectively. Operation of the system began in May 1988 at a flow rate of 22.7 liters per minute (lpm) (6 gallons per minute (gpm)). An additional 102.2 lpm (27 gpm) of flow were added in October 1990. Various efforts to optimize and track the treatment unites efficiency have been carried out. A maximum influent reading of 26,590 parts per billion (ppb) of total VOCs has been recorded. Following the addition of flows, removal efficiency has averaged approximately 95%. Both air and water effluents are factored into this calculation. (author)

  4. Impact of leachate on groundwater pollution due to non-engineered municipal solid waste landfill sites of erode city, Tamil Nadu, India

    OpenAIRE

    Nagarajan Rajkumar; Thirumalaisamy Subramani; Lakshumanan Elango

    2012-01-01

    Abstract Leachate and groundwater samples were collected from Vendipalayam, Semur and Vairapalayam landfill sites in Erode city, Tamil Nadu, India, to study the possible impact of leachate percolation on groundwater quality. Concentrations of various physicochemical parameters including heavy metals (Cd, Cr, Cu, Fe, Ni, Pb, Fe and Zn) were determined in leachate samples and are reported. The concentrations of Cl-, NO3-, SO42-, NH4+ were found to be in considerable levels in the groundwater sa...

  5. Groundwater evolution beneath Hat Yai, a rapidly developing city in Thailand

    Science.gov (United States)

    Lawrence, A. R.; Gooddy, D. C.; Kanatharana, P.; Meesilp, W.; Ramnarong, V.

    2000-09-01

    Many cities and towns in South and Southeast Asia are unsewered, and urban wastewaters are often discharged either directly to the ground or to surface-water canals and channels. This practice can result in widespread contamination of the shallow groundwater. In Hat Yai, southern Thailand, seepage of urban wastewaters has produced substantial deterioration in the quality of the shallow groundwater directly beneath the city. For this reason, the majority of the potable water supply is obtained from groundwater in deeper semi-confined aquifers 30-50 m below the surface. However, downward leakage of shallow groundwater from beneath the city is a significant component of recharge to the deeper aquifer, which has long-term implications for water quality. Results from cored boreholes and shallow nested piezometers are presented. The combination of high organic content of the urban recharge and the shallow depth to the water table has produced strongly reducing conditions in the upper layer and the mobilisation of arsenic. A simple analytical model shows that time scales for downward leakage, from the surface through the upper aquitard to the semi-confined aquifer, are of the order of several decades. Résumé. De nombreuses villes du sud et du sud-est de l'Asie ne possèdent pas de réseaux d'égouts et les eaux usées domestiques s'écoulent souvent directement sur le sol ou dans des canaux et des cours d'eau de surface. Ces pratiques peuvent provoquer une contamination dispersée de la nappe phréatique. A Hat Yai (sud de la Thaïlande), les infiltrations d'eaux usées domestiques sont responsables d'une détérioration notable de la qualité de la nappe phréatique directement sous la ville. Pour cette raison, la majorité de l'eau potable est prélevée dans des aquifères semi-captifs plus profonds, situés entre 30 et 50 m sous la surface. Cependant, une drainance à partir de la nappe phréatique sous la ville constitue une composante significative de la recharge

  6. Hydro-chemical Survey and Quantifying Spatial Variations of Groundwater Quality in Dwarka, Sub-city of Delhi, India

    Science.gov (United States)

    Rawat, Kishan Singh; Tripathi, Vinod Kumar

    2015-06-01

    Hydrological and geological aspect of the region play vital role for water resources utilization and development. Protection and management of groundwater resources are possible with the study of spatio-temporal water quality parameters. The study was undertaken to assess the deterioration in groundwater quality, through systematic sampling during post monsoon seasons of the year 2008 by collecting water samples from thirty bore wells located in Dwarka, sub-city of Delhi, India. The average concentrations of groundwater quality parameters namely Calcium (Ca2+), Magnesium (Mg2+), Nitrate (NO3 -), Chloride (Cl-), sulphate (SO4 2-), total hardness (TH), total dissolved solids (TDS), and electrical conductivity were 300, 178, 26.5, 301, 103, 483, 1042 mg/l and 1909 μS/cm respectively. Estimated physico-chemical parameters revealed that 7 % of the groundwater samples shown nitrate concentrations higher than safe limit prescribed by World Health Organization (WHO). Groundwater quality the in study region was poor due to come out result that NO3 - concentration exceeding the threshold value of 50 mg/l, and main cause is disposal of sewage and animal wastes to Najafgarh drain. Dominant cations are Mg2+, Ca2+ and anions are SO4 2- and Cl-. The abundance of the major ions in groundwater is in the order: Ca2+ > Mg2+ and Cl- > SO4 2- > NO3. TH have strong correlation with Ca2+ (r = 0.81), Mg2+ (r = 0.82), Cl- (r = 0.86) but poor correlation with TDS (r = 0.52). Knowledge of correlation values between water quality parameters is helpful to take decision of appropriate management strategy for controlling groundwater pollution.

  7. Risk of Giardia intestinalis infection in children from an artificially recharged groundwater area in Mexico City.

    Science.gov (United States)

    Cifuentes, Enrique; Suárez, Leticia; Espinosa, Martha; Juárez-Figueroa, Luis; Martínez-Palomo, Adolfo

    2004-07-01

    The objective of this study was to assess the risk of infection with Giardia intestinalis in children living in an area with artificial groundwater recharge and potable water reuse in Mexico City. Eligible wells and surrounding homesteads were defined by using a geographic information system. Five wells were tested for G. intestinalis cysts per 400 liters of water. A total of 750 eligible households were visited during two cross-sectional surveys. Stool samples were provided by 986 children in the rainy season study and 928 children during the dry season survey for parasitologic tests. Their guardians provided information on water, sanitation, hygiene, and socioeconomic variables. The prevalence rates of G. intestinalis infection were 9.4% in the rainy season and 4.4% in the dry season. Higher rates of infection were observed in older individuals (9.5% and 10.6%) and girls had a lower risk of infection than boys (odds ratio [OR] =0.55, 95% confidence interval [CI] = 0.34, 0.88 in the rainy season and OR = 0.47, 95% CI = 0.25, 0.90 in the dry season). During the wet season survey, a health risk was detected among those storing water in unprotected receptacles (OR = 4.00, 4.69, and 5.34 for those using uncovered jars, cisterns or tanks, and buckets, respectively), and bathing outside the dwelling, i.e., using a tap (OR = 1.93, 95% CI = 1.10, 3.39). A health risk was also detected among children from households with unsafe food hygiene practices (OR =2.41, 95% CI =1.10, 5.30) and those with no hand-washing habits (OR = 2.27, 95% CI = 1.00, 5.20). Groundwater reserves are at risk of fecal pollution, as indicated by the presence of G. intestinalis cysts. However, the endemic pattern of intestinal infection reflects low standards of personal hygiene and unsafe drinking water storage and food-related practices at household level. Prevention activities must address health education and environmental protection policies. PMID:15238691

  8. Contributing recharge areas, groundwater travel time, and groundwater water quality of the Missouri River alluvial aquifer near the City of Independence, Missouri, well field, 1997-2008

    Science.gov (United States)

    Kelly, Brian P.

    2011-01-01

    The City of Independence, Missouri, operates a well field in the Missouri River alluvial aquifer. Contributing recharge areas (CRA) were last determined for the well field in 1996. Since that time, eight supply wells have been installed in the area north of the Missouri River and well pumpage has changed for the older supply wells. The change in pumping has altered groundwater flow and substantially changed the character of the CRA and groundwater travel times to the supply wells. The U.S Geological Survey, in a cooperative study with the City of Independence, Missouri, simulated steady-state groundwater flow for 2007 well pumpage, average annual river stage, and average annual recharge. Particle-tracking analysis was used to determine the CRA for supply wells and monitoring wells, and the travel time from recharge areas to supply wells, recharge areas to monitoring wells, and monitoring wells to supply wells. The simulated CRA for the well field is elongated in the upstream direction and extends to both sides of the Missouri River. Groundwater flow paths and recharge areas estimated for monitoring wells indicate the origin of water to each monitoring well, the travel time of that water from the recharge area, the flow path from the vicinity of each monitoring well to a supply well, and the travel time from the monitoring well to the supply well. Monitoring wells 14a and 14b have the shortest groundwater travel time from their contributing recharge area of 0.30 years and monitoring well 29a has the longest maximum groundwater travel time from its contributing recharge area of 1,701 years. Monitoring well 22a has the shortest groundwater travel time of 0.5 day to supply well 44 and monitoring well 3b has the longest maximum travel time of 31.91 years to supply well 10. Water-quality samples from the Independence groundwater monitoring well network were collected from 1997 to 2008 by USGS personnel during ongoing annual sampling within the 10-year contributing

  9. Quantitative assessment of the groundwater-sewer network interaction in Bucharest city (Romania)

    Science.gov (United States)

    Boukhemacha, M. A.; Diaconescu, A.; Bica, I.; Gogu, C. R.; Gaitanaru, D.

    2012-04-01

    Groundwater management in urban area must take account of every possible and relevant phenomena arising from the complex interaction between subsurface water, surface water, and urban infrastructure. In Bucharest, the need of the sewer system rehabilitation initiated a study of the interaction between groundwater and the sewer network. Recent conclusions show that the sewer network acts mainly like a drainage system for the groundwater. However, it could be easily proven that several sewer segments located mainly in the unsaturated zone contaminate the groundwater by leakage. The groundwater infiltration in the sewer conduits can cause the decrease of the groundwater level leading to structures instability problems as well as to the increase flow-rates of the sewer system. The last one affects seriously the wastewater treatment plants efficiency. The sewer network leakage cause groundwater pollution and locally could increase the groundwater level triggering buildings instability or other urban operational problems. The current study focuses on the consequences of sealing a part of the sewer system and so disturbing the existing groundwater behavior which may lead to serious consequences. In this framework, the analysis results of a groundwater flow model used to quantify the interaction between the groundwater and the sewer network are presented. The two-layers groundwater flow model simulating the Colentina and Mostistea overlaid sedimentary aquifers covers about 75 km2. Its conceptual model relies on a 3D geological model made by using 23 accurate geological cross-sections of the studied domain. The model set-up and its calibration are done using pumping tests data, groundwater hydraulic heads, and water levels of the sewer system. Infiltration rates into sewers are modeled by applying a modified form of Darcy's law that uses the notion of infiltration factor. This last encompasses the hydraulic conductivity of the clogging layer, the infiltration area and the

  10. Development of a Conductivity Sensor for Monitoring Groundwater Resources to Optimize Water Management in Smart City Environments

    Directory of Open Access Journals (Sweden)

    Lorena Parra

    2015-08-01

    Full Text Available The main aim of smart cities is to achieve the sustainable use of resources. In order to make the correct use of resources, an accurate monitoring and management is needed. In some places, like underground aquifers, access for monitoring can be difficult, therefore the use of sensors can be a good solution. Groundwater is very important as a water resource. Just in the USA, aquifers represent the water source for 50% of the population. However, aquifers are endangered due to the contamination. One of the most important parameters to monitor in groundwater is the salinity, as high salinity levels indicate groundwater salinization. In this paper, we present a specific sensor for monitoring groundwater salinization. The sensor is able to measure the electric conductivity of water, which is directly related to the water salinization. The sensor, which is composed of two copper coils, measures the magnetic field alterations due to the presence of electric charges in the water. Different salinities of the water generate different alterations. Our sensor has undergone several tests in order to obtain a conductivity sensor with enough accuracy. First, several prototypes are tested and are compared with the purpose of choosing the best combination of coils. After the best prototype was selected, it was calibrated using up to 30 different samples. Our conductivity sensor presents an operational range from 0.585 mS/cm to 73.8 mS/cm, which is wide enough to cover the typical range of water salinities. With this work, we have demonstrated that it is feasible to measure water conductivity using solenoid coils and that this is a low cost application for groundwater monitoring.

  11. Development of a Conductivity Sensor for Monitoring Groundwater Resources to Optimize Water Management in Smart City Environments.

    Science.gov (United States)

    Parra, Lorena; Sendra, Sandra; Lloret, Jaime; Bosch, Ignacio

    2015-01-01

    The main aim of smart cities is to achieve the sustainable use of resources. In order to make the correct use of resources, an accurate monitoring and management is needed. In some places, like underground aquifers, access for monitoring can be difficult, therefore the use of sensors can be a good solution. Groundwater is very important as a water resource. Just in the USA, aquifers represent the water source for 50% of the population. However, aquifers are endangered due to the contamination. One of the most important parameters to monitor in groundwater is the salinity, as high salinity levels indicate groundwater salinization. In this paper, we present a specific sensor for monitoring groundwater salinization. The sensor is able to measure the electric conductivity of water, which is directly related to the water salinization. The sensor, which is composed of two copper coils, measures the magnetic field alterations due to the presence of electric charges in the water. Different salinities of the water generate different alterations. Our sensor has undergone several tests in order to obtain a conductivity sensor with enough accuracy. First, several prototypes are tested and are compared with the purpose of choosing the best combination of coils. After the best prototype was selected, it was calibrated using up to 30 different samples. Our conductivity sensor presents an operational range from 0.585 mS/cm to 73.8 mS/cm, which is wide enough to cover the typical range of water salinities. With this work, we have demonstrated that it is feasible to measure water conductivity using solenoid coils and that this is a low cost application for groundwater monitoring. PMID:26343653

  12. IMPACT OF LEATHER PROCESSING INDUSTRIES ON CHROMIUM CONCENTRATION IN GROUNDWATER SOUTH OF CHENNAI CITY, INDIA

    Science.gov (United States)

    Elango, L.; Brindha, K.; G. Rajesh, V.

    2009-12-01

    The groundwater quality is under threat due to disposal of effluents from a number of industries. Poor practice of treatment of wastes from tanning industries or leather processing industries lead to pollution of groundwater. This study was carried out with the objective of assessing the impact of tanneries on groundwater quality in Chromepet area which is a part of the metropolitan area of Chennai, Tamil Nadu, India. This area serves as the home town for a number of small and large scale tanning industries. People in certain parts of this area depend on the groundwater for their domestic needs as there is no piped drinking water supply system. Topographically this region is generally flat with gentle slope towards east and north east. The charnockite rocks occur as basement at the depth of about 15m from the surface of this area. Weathered charnockite rock occurs at the depth from 7m to 15m from the ground surface. The upper layer consists of loamy soil. Groundwater occurs in the unconfined condition at a depth from 0.5m to 5m. Thirty six groundwater samples were collected during March 2008 and the groundwater samples were analysed for their heavy metal (chromium) content using atomic absorption spectrophotometer. Bureau of Indian Standards (BIS) recommended the maximum permissible limit of chromium in drinking water as 0.05 mg/l. Considering this, it was found that 86% of the groundwater samples possessed concentration of chromium above the maximum permissible limit recommended by BIS. The tanneries use chrome sulphate to strengthen the leather and make it water repellent. The excess of chromium gets washed off and remains in the wastewater. This wastewater is disposed into open uncovered drains either untreated or after partial treatment. Thus the chromium leaches through the soil and reaches the groundwater table. Apart from this, there is also huge quantity of solid waste resulting from the hides and skins which are dumped off without suitable treatment. The

  13. Isotope studies of groundwater degradation at a riverside pumping site in Lanzhou City

    International Nuclear Information System (INIS)

    One hundred and one water samples, including 27 precipitation, 18 surface water an 56 groundwater samples, were collected in the study area. The hydrochemical characteristics of the groundwater indicate that the degraded area is around the pumping cone of depression on Ma Beach. Deuterium and 18O were used in the calculation of the ratios of precipitation and Yellow River water, and fresh and salt water. Using the two end mixing model, the share of Yellow River water at Cui Beach was estimated to be about 85%, while the share of precipitation was 15%, whereas at Ma Beach, Yellow River water was 95% and precipitation only 5%. The ratios of riverside fresh water, mountainous fresh water and young salt water to degraded groundwater were calculated using the three end mixing model. Attention was also given to the mechanism of groundwater degradation and the origin of young salt water. (author). 7 figs, 4 tabs

  14. Impacts of Tanneries on Quality of Groundwater in Pallavaram, Chennai Metropolitan City

    OpenAIRE

    K.Ramesh,; V.Thirumangai

    2014-01-01

    The present study was carried out with the objective of determining the extent of groundwater pollution caused by tanning industries and solid waster dumpsite in Pallavaram area located south of Chennai (Madras), which is a town of number of small and large scale leather industries. About 22 groundwater samples were collected and analyzed for the concentration of physio-chemical parameters and trace ions during September 2011 and January 2012. Ca-Mg-Cl and Na-Cl are the major ...

  15. Impacts of urbanization and climate on groundwater in a growing Africa city: the case of Ouagadougou (Burkina Faso)

    Science.gov (United States)

    Mouhouddine, Alihoumadi; Yameogo, Suzanne; Genthon, Pierre; Travi, Yves

    2016-04-01

    African cities are presently facing the combined impacts of growing urbanization and climate change. In several instances; providing safe drinking water for all is still a challenge, especially for cities located on basement aquifers, were groundwater is scarce. Here we assess the effects of climate change and land use change on groundwater amount and quality in the main city of Ouagadougou (Burkina Faso) taking advantage of the CIEH borehole, where a mostly continuous record lasts since 1978. This record spans most of the Great African Drought (1970-1990) and recovery from the Drought since the 2000s. A piezometric network of 14 wells and boreholes was setup around the CIEH borehole and monitored during the 2013-2014 hydrologic year. The piezometric network spans an old settlement, the Ouagadougou University, a vegetable gardening area and a natural forested area. Water balance estimates are provided by a 1D box model. The study area, although it lies partly on an old settlement in Ouagadougou and on the University area, presents a rather uniform runoff coefficient of 22% and ET amounting to 80-90 % of rainfall, which usually characterizes natural areas. It is suspected that the almost absence of asphalted surfaces, the presence of trees and flow of rainwater from roofs toward bare soils or sumps could be responsible of this budget. However, the two wells located in the forested Bangr Weogo recreational area are characterized by almost no runoff and a nearly 100 % ET. While drinking water can be pumped in several places in the city of Ouagadougou, chemical major analyses show that two mechanisms impact groundwater quality during the rainy season: (i) rise of the water table at pit latrine level, mainly in old settlements, and entrainment of harmful substances from soil to the aquifer in gardening area near some artisan activities. The CIEH borehole is not fully representative of its neighboring area since (i) it lies in a piezometric low, (ii) it presents the

  16. Assessment of impact on the groundwater quality due to urbanization by hydrogeochemical facies analysis in SE part of Pune city, India

    Directory of Open Access Journals (Sweden)

    M. R. G. Sayyed

    2013-06-01

    Full Text Available The groundwater from the south-eastern part of Pune city has been assessed for the seasonal variation in their quality parameters. Using Piper diagram the hydrogeochemical facies were identified and the groundwaters were classified with regards to the changes in their major chemical compositions. Based on the hydrogeochemical facies it has been found that the groundwater regime is severly deteriorated by the anthropogernic activities. Although the area of Manjari, Hadapsar and uruli Devachi show high influx of pollutants in rainy season the Mantarwadi and Fursungi area have strong influence of leachate throughout the year.

  17. Impact of leachate on groundwater pollution due to non-engineered municipal solid waste landfill sites of erode city, Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    Nagarajan Rajkumar

    2012-12-01

    Full Text Available Abstract Leachate and groundwater samples were collected from Vendipalayam, Semur and Vairapalayam landfill sites in Erode city, Tamil Nadu, India, to study the possible impact of leachate percolation on groundwater quality. Concentrations of various physicochemical parameters including heavy metals (Cd, Cr, Cu, Fe, Ni, Pb, Fe and Zn were determined in leachate samples and are reported. The concentrations of Cl-, NO3-, SO42-, NH4+ were found to be in considerable levels in the groundwater samples particularly near to the landfill sites, likely indicating that groundwater quality is being significantly affected by leachate percolation. Further they were proved to be the tracers for groundwater contamination near Semur and Vendipalayam dumpyards. The presence of contaminants in groundwater particularly near the landfill sites warns its quality and thus renders the associated aquifer unreliable for domestic water supply and other uses. Although some remedial measures are suggested to reduce further groundwater contamination via leachate percolation, the present study demands for the proper management of waste in Erode city.

  18. Screening assessment of radionuclide migration in groundwater from the 'Dneprovskoe' tailings impoundment (Dneprodzerzhynsk City) and evaluation of remedial options

    International Nuclear Information System (INIS)

    Full text: The paper presents results of mathematical modeling of the hydrogeological conditions at the 'Dneprovskoe' ('D') tailings impoundment - object of the former industrial association of 'Pridneprovsky Chemical Plant', which contains uranium ore processing wastes. This radioactively polluted site is located in a densely populated region (at the outskirts of Dneprodzerginsk City) near the major watercourse of the Ukraine - Dnieper River. The mathematical modeling utilized Visual Modflow (for groundwater flow) and Ecolego (Facilia AB, Sweden) radioecology modeling software (for radionuclide transport). Modeling results indicate the possibility of essential radioactive contamination in future of the phreatic aquifer in alluvial deposits between the 'D' tailings and the Dnieper River (mainly due to migration of uranium). Therefore long term management strategies should preclude water usage from the aquifer in the zone of the influence of the 'D' tailings. Filtration discharge of uranium to the Dniper River does not represent a significant risk due to large dilution by surface waters. The important modeling conclusion is that besides the uranium ore processing wastes inside the tailings, the major source of radionuclide migration to groundwater is represented by contaminated geological deposits below the tailings. This last source was formed due to leakage of wastewaters during the operational period of the 'D' tailings (1954-1968). Therefore an exemption and re-disposal of wastes from the 'D' tailings to a more safe storage location (proposed by some remedial plans) will not provide significant benefit from the viewpoint of minimizing of radionuclide transport to the groundwater and Dnieper River (especially in short-and medium-term perspective). The rational remedial strategy for the 'D' tailings is conservation of tailing wastes in-situ by means of specially designed 'zero flux' soil screen, which would minimize infiltration of meteoric waters to the body of

  19. Impacts of Tanneries on Quality of Groundwater in Pallavaram, Chennai Metropolitan City

    Directory of Open Access Journals (Sweden)

    K.Ramesh,

    2014-01-01

    Full Text Available The present study was carried out with the objective of determining the extent of groundwater pollution caused by tanning industries and solid waster dumpsite in Pallavaram area located south of Chennai (Madras, which is a town of number of small and large scale leather industries. About 22 groundwater samples were collected and analyzed for the concentration of physio-chemical parameters and trace ions during September 2011 and January 2012. Ca-Mg-Cl and Na-Cl are the major water types in this area. It is inferred that, total hardness falls in hard to very hard category. The water quality index rated as poor to very poor quality except few samples. The study reveals that the concentration of major ions and chromium are exceeding the permissible limit. Groundwater is unsuitable for human consumption as it contains higher concentration of major ions and chromium. Tannery uses a large number of chemicals during the process of discharging toxic wastes into open drains and municipality solid waste dumpsite to the nearby land is the major reasons deterioration of water quality in this area. Contamination of groundwater causes water scarcity for domestic purpose of this study is to highlight the impact of tannery effluent on groundwater

  20. Subterranean blue. Sustaining water lifelines for cities. Already half of the world's people live in urban areas, and more are moving in. Many of them depend on groundwater for living. But as cities grow, can subterranean water sources be sustained?

    International Nuclear Information System (INIS)

    Cities used to be centres of plague and illness. During the past 150 years urban sanitary engineering and medical epidemiology have promoted rapid improvements to human health in the cities of the industrial world. A celebrated example was the pioneering work of Dr. John Snow who, in the mid-19th century, traced the source of a London cholera epidemic to a public water pump on Broad Street. Most cities evolved from small settlements and the availability of a suitable water supply was often the primary factor in their location. Often, though, these original water sources quickly became inadequate in quality or quantity, and sometimes are now completely forgotten. New sources and larger quantities of water were required. Groundwater may have been drawn from deep aquifers, even from beyond city boundaries. Today, groundwater plays a critical but complex (and often largely unrecognized) role in the urban environment

  1. Complex Controls on Groundwater Quality in Growing Mid-sized Cities: A Case Study Focused on Nitrate and Emerging Contaminants

    Science.gov (United States)

    Ohr, C. A.; Godsey, S.; Welhan, J. A.; Larson, D. M.; Lohse, K. A.; Finney, B.; Derryberry, D.

    2015-12-01

    Many regions rely on quality groundwater to support urban growth. Groundwater quality often responds in a complex manner to stressors such as land use change, climate change, or policy decisions. Urban growth patterns in mid-sized cities, especially ones that are growing urban centers in water-limited regions in the western US, control and are controlled by water availability and its quality. We present a case study from southeastern Idaho where urban growth over the past 20 years has included significant ex-urban expansion of houses that rely on septic systems rather than city sewer lines for their wastewater treatment. Septic systems are designed to mitigate some contaminants, but not others. In particular, nitrates and emerging contaminants, such as pharmaceuticals, are not removed by most septic systems. Thus, even well-maintained septic systems at sufficiently high densities can impact down gradient water quality. Here we present patterns of nitrate concentrations over the period from 1985-2015 from the Lower Portneuf River Valley in southeastern Idaho. Concentrations vary from 0.03 to 27.09 nitrate-nitrogen mg/L, with average values increasing significantly over the 30 year time period from 3.15 +/- 0.065 to 3.57 +/- 0.43 mg/L. We examine temporal changes in locations of nitrate hotspots, and present pilot data on emerging contaminants of concern. Initial results suggest that high nitrate levels are generally associated with higher septic densities, but that this pattern is influenced by legacy agricultural uses and strongly controlled by underlying aquifer properties. Future work will include more detailed hydrological modeling to predict changes in hotspot locations under potential climate change scenarios.

  2. Impact of leachate on groundwater pollution due to non-engineered municipal solid waste landfill sites of erode city, Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    Rajkumar Nagarajan

    2012-12-01

    Full Text Available Leachate and groundwater samples were collected from Vendipalayam, Semur and Vairapalayam landfill sites in Erode city, Tamil Nadu, India, to study the possible impact of leachate percolation on groundwater quality.Concentrations of various physicochemical parameters including heavy metals (Cd, Cr, Cu, Fe, Ni, Pb, Fe and Znwere determined in leachate samples and are reported. The concentrations of Cl-, NO3 - , SO4 2-, NH4 + were found to be in considerable levels in the groundwater samples particularly near to the landfill sites, likely indicating thatgroundwater quality is being significantly affected by leachate percolation. Further they were proved to be the tracers for groundwater contamination near Semur and Vendipalayam dumpyards. The presence of contaminants in groundwater particularly near the landfill sites warns its quality and thus renders the associated aquifer unreliable for domestic water supply and other uses. Although some remedial measures are suggested to reduce furthergroundwater contamination via leachate percolation, the present study demands for the proper management of waste in Erode city.

  3. GROUNDWATER POTENTIAL ASSESSMENT USING GEOGRAPHIC INFORMATION SYSTEMS AND AHP METHOD (CASE STUDY: BAFT CITY, KERMAN, IRAN)

    OpenAIRE

    M. Zeinolabedini; A. Esmaeily

    2015-01-01

    The purpose of the present study is to use Geographical Information Systems (GISs) for determining the best areas having ground water potential in Baft city. To achieve this objective, parameters such as precipitation, slope, fault, vegetation, land cover and lithology were used. Regarding different weight of these parameters effect, Analytic Hierarchy Process (AHP) was used. After developing informational layers in GIS and weighing each of them, a model was developed. The final map of ground...

  4. Studying The Contamination Status And The Sources Of Nitrogen Compounds In Groundwater In Ho Chi Minh City Area Using The Isotope Hydrology Techniques

    International Nuclear Information System (INIS)

    The obtained data on nitrate, ammonium and total nitrogen concentration of 100 groundwater samples collected from 3 main aquifers show that although the nitrate concentration is still lower than the authorized limit of this compound in groundwater but the concentration and, specially the distribution of nitrate in shallow aquifer (Pleistocene) shows the increasing tendency in pollution level while ammonium and also total nitrogen content exceeded the authorized limit of these compounds in groundwater. For deeper aquifers (Upper and Lower Pliocene) groundwater is less polluted by nitrogen compounds. Analysis data on isotopic composition δ15N and δ18O of nitrate of the collected groundwater samples in compiling with other environmental isotopes data as δ2H, δ18O of water and natural radioactive isotopes in groundwater (3H and 14C) show that nitrate in Pleistocene groundwater is derived from both sources, geogenic source such as organic matter buried in aquifer soil layers and anthropogenic source like fertilizers, manure and septic wastes with the dominance of anthropogenic source. At the same time, obtained isotopic data proved the geogenic source of nitrate in water of the deeper aquifers. Study results on infiltration rate and infiltration depth of fertilizers and water using tracer techniques in the zone specializing in legume cultivation of the study area show the possible infiltration into shallow groundwater of water and also fertilizers. The obtained results prove the need of better management of the use of fertilizers for cultivation activities in the study area and to apply the advanced cultural manners for minimizing amount of fertilizers used. At the same time to strengthen wastes management and treatment in whole study area, especially in the zones which intake rain water as a recharge source to shallow groundwater such as Cu Chi, Hoc Mon and also inner city districts. (author)

  5. Groundwater Flow and Solute Transport in Fractured Lacustrine Clay Near Mexico City

    Science.gov (United States)

    Rudolph, D. L.; Cherry, J. A.; Farvolden, R. N.

    1991-09-01

    A network of piezometers was installed in a surficial lacustrine clay aquitard overlying a thin saline water aquifer of volcanoclastic origin at a study site near Mexico City in the Basin of Mexico. The aquifer is underlain by additional lacustrine sediments which in turn overlie a thick regional freshwater aquifer. The regional aquifer provides approximately 70% of the water supply for 20 million people in the Basin of Mexico. In the study area, major ions, oxygen 18, and deuterium in the pore water of the surficial aquitard exhibit large variations with depth. The nature of these variations suggests that the saline pore water is being displaced downward by infiltrating meteoric water. The infiltration has been induced by strong downward hydraulic gradients imposed two to three decades ago when heavy aquifer pumping of the thin saline water aquifer began. One-dimensional analytical models representing solute transport in both fractured and unfractured porous media were used to simulate the geochemical profiles in the surficial aquitard. The fractured porous medium model, using a realistic mean hydraulic gradient and fracture spacing (1.5 m) and small but significant fracture aperture (30 μm) provide nearly an exact match to the field data. From this we infer that, because of vertical fractures, there is a much greater potential for downward leakage of water and contaminants through the Mexico City clay into underlying aquifers than has been previously thought.

  6. Discussion on Groundwater Overexploitation Treatment in Hengshui City%衡水市地下水超采治理方案探讨

    Institute of Scientific and Technical Information of China (English)

    周慧; 周波

    2014-01-01

    This paper introduces the basic situation of water environment in Hengshui City,analyzes the present situation of water resources utilization and existing problems,finally proposes some effective countermeasures that can guarantee the sustainable using of groundwater resources in Hengshui city.%介绍了衡水市水环境基本情况,分析了该市的水资源利用现状及存在问题,提出地下水资源可持续利用的有效对策。

  7. GROUNDWATER POTENTIAL ASSESSMENT USING GEOGRAPHIC INFORMATION SYSTEMS AND AHP METHOD (CASE STUDY: BAFT CITY, KERMAN, IRAN

    Directory of Open Access Journals (Sweden)

    M. Zeinolabedini

    2015-12-01

    Full Text Available The purpose of the present study is to use Geographical Information Systems (GISs for determining the best areas having ground water potential in Baft city. To achieve this objective, parameters such as precipitation, slope, fault, vegetation, land cover and lithology were used. Regarding different weight of these parameters effect, Analytic Hierarchy Process (AHP was used. After developing informational layers in GIS and weighing each of them, a model was developed. The final map of ground waters potential was calculated through the above-mentioned model. Through applying our developed model four areas having high, average, low potential and without required potential distinguished. Results of this research indicated that 0.74, 41.23 and 45.63 percent of the area had high, average and low potential, respectively. Moreover, 12.38% of this area had no potential. Obtained results can be useful in management plans of ground water resources and preventing excessive exploitation.

  8. Groundwater Potential Assessment Using Geographic Information Systems and Ahp Method (case Study: Baft City, Kerman, Iran)

    Science.gov (United States)

    Zeinolabedini, M.; Esmaeily, A.

    2015-12-01

    The purpose of the present study is to use Geographical Information Systems (GISs) for determining the best areas having ground water potential in Baft city. To achieve this objective, parameters such as precipitation, slope, fault, vegetation, land cover and lithology were used. Regarding different weight of these parameters effect, Analytic Hierarchy Process (AHP) was used. After developing informational layers in GIS and weighing each of them, a model was developed. The final map of ground waters potential was calculated through the above-mentioned model. Through applying our developed model four areas having high, average, low potential and without required potential distinguished. Results of this research indicated that 0.74, 41.23 and 45.63 percent of the area had high, average and low potential, respectively. Moreover, 12.38% of this area had no potential. Obtained results can be useful in management plans of ground water resources and preventing excessive exploitation.

  9. Impact of landfills, domestic and industrial waste on the aquifer in Raipur city and contribution of karst feature to the groundwater contaminations

    International Nuclear Information System (INIS)

    Karst features (landscapes that result from dissolution and surface drainage of carbonate terrains) are potentially a large source of water. They have distinctive features, which distinguish them from fissured and porous aquifers. These features include a general lack of permanent surface streams, existence of surface holes into which surface stream sink, presence of underground big channels and large springs etc. Karst environments are used for potable water supply as well as disposal sites for municipal, agricultural and industrial waste dumping. The peculiar geomorphologic and hydrological features of karst make them highly vulnerable for groundwater pollution. The ease with which they can be polluted make a fit case of taking protection measures in advance. Raipur is a major business, educational center as well as capital city of Chhattisgarh state in India. The city has been rapidly expanding during the last two decades, as a result of rapid industrialisation and various economic developments. Wastes generated from a wide variety of industrial, commercial, agricultural and domestic activities are dumped into pits or low - lying area around the Raipur City. The climate in the area is characterised by very hot summer and well distributed rain over four months during monsoon season. Monsoon precipitation begins from mid June and generally remains active till the end of September. The average annual precipitation is ∼1250 mm. In the study area, groundwater lies in the karstified nature of geological formation and is naturally susceptible to contamination by landfills, domestic and industrial wastes. The karstification feature is exposed to the surface in Raipur city at many places. Environmental isotopes (2H, 3H, 18O and 13C) as well as chemistry of the water samples were used to identify a few places, which are prone to contamination in Raipur city. Deterioration of the groundwater quality is not alarming due to thin shale (impervious layer) cover over the

  10. Geomatics for Mapping of Groundwater Potential Zones in Northern Part of the United Arab Emiratis - Sharjah City

    OpenAIRE

    Al-Ruzouq, R.; Shanableh, A.; T. Merabtene

    2015-01-01

    In United Arab Emirates (UAE) domestic water consumption has increased rapidly over the last decade. The increased demand for high-quality water, create an urgent need to evaluate the groundwater production of aquifers. The development of a reasonable model for groundwater potential is therefore crucial for future systematic developments, efficient management, and sustainable use of groundwater resources. The objective of this study is to map the groundwater potential zones in northe...

  11. Environmental isotopes as a tool for groundwater evaluation and management in Duitama city, Colombia

    International Nuclear Information System (INIS)

    Duitama city (100.000 inhabitants) lies in a plateau of the Colombian Andean Range. Fifty per cent of water supply is abstracted from the main aquifer and accounts for more than 80% during dry seasons. As far as piezometric level is declining progressively, it is suspected that ground water abstration is greater than natural replenishment and any increment in production wells and ground water abstraction may damage ground water sources for sustainable development and management. The main aquifer of the area is a Quaternary alluvial deposit consisting of sand, gravels and conglomerates, with a thickness up to 180 m, and overlain clay deposits, with have a thickness from 20 to 60 m, in most part of the aquifer. On the west and middle part of the plain, the Quaternary lies on Cretaceous sandstone, claystone and limestone formations: towards east, on Palaeozoic claystone and sandstone formations. A hydrogeological study was carried out by means of conventional and isotopes techniques, in order to identify ground water origin and particularly to investigate present infiltration and recharge

  12. Shallow Groundwater Temperatures and the Urban Heat Island Effect: the First U.K City-wide Geothermal Map to Support Development of Ground Source Heating Systems Strategy

    Science.gov (United States)

    Patton, Ashley M.; Farr, Gareth J.; Boon, David P.; James, David R.; Williams, Bernard; Newell, Andrew J.

    2015-04-01

    The first UK city-wide heat map is described based on measurements of groundwater from a shallow superficial aquifer in the coastal city of Cardiff, Wales, UK. The UK Government has a target of reducing greenhouse gas emissions by 80% by 2050 (Climate Change Act 2008) and low carbon technologies are key to achieving this. To support the use of ground source heating we characterised the shallow heat potential of an urban aquifer to produce a baseline dataset which is intended to be used as a tool to inform developers and to underpin planning and regulation. We exploited an existing network of 168 groundwater monitoring boreholes across the city, recording the water temperature in each borehole at 1m depth intervals up to a depth of 20m. We recorded groundwater temperatures during the coldest part of 2014, and repeat profiling of the boreholes in different seasons has added a fourth dimension to our results and allowed us to characterise the maximum depth of seasonal temperature fluctuation. The temperature profiles were used to create a 3D model of heat potential within the aquifer using GOCAD® and the average borehole temperatures were contoured using Surfer® 10 to generate a 2D thermal resource map to support future assessment of urban Ground Source Heat Pumps prospectively. The average groundwater temperature in Cardiff was found to be above the average for England and Wales (11.3°C) with 90% of boreholes in excess of this figure by up to 4°C. The subsurface temperature profiles were also found to be higher than forecast by the predicted geothermal gradient for the area. Potential sources for heat include: conduction from buildings, basements and sub-surface infrastructure; insulation effects of the urban area and of the geology, and convection from leaking sewers. Other factors include recharge inhibition by drains, localised confinement and rock-water interaction in specific geology. It is likely to be a combination of multiple factors which we are hoping

  13. Interaction between the geothermal outflow of southern Negros geothermal field and the shallow groundwater aquifer in Dumaguete City, Negros Oriental, Philippines

    International Nuclear Information System (INIS)

    minor dilution effect from precipitation. Drawdown in the deep geothermal reservoir have induced more than 500 meters of drawdown in the center of the resource but not enough to revert the naturally outflowing fluids from the Palinpinon thermal springs. Hence, there exists continuous natural migration of slightly mineralized geothermal fluids into the shallow groundwater aquifer of Dumaguete City. (author)

  14. Groundwater flow in a transboundary fault-dominated aquifer and the importance of regional modeling: the case of the city of Querétaro, Mexico

    Science.gov (United States)

    Carrera-Hernández, J. J.; Carreón-Freyre, D.; Cerca-Martínez, M.; Levresse, G.

    2016-03-01

    The city of Querétaro, located near the political boundary of the Mexican states of Querétaro and Guanajuato, relies on groundwater as it sole water supply. Groundwater extraction in the city increased from 21 × 106 m3/yr in 1970 to 104 × 106 m3/yr in 2010, with an associated drawdown of 100 m in some parts of the aquifer. A three-dimensional numerical groundwater-flow model has been developed that represents the historical evolution of the aquifer's potentiometric levels and is used to simulate the effect of two scenarios: (1) a 40 % reduction in the extraction rate from public water supply wells in early 2011 (thus reducing the extraction to 62 × 106 m3/yr), and (2) a further reduction in 2021 to 1 × 106 m3/yr. The modeling results project a temporary recovery of the potentiometric levels after the 40 % reduction of early 2011, but a return to 2010 levels by 2020. If scenario 2 is implemented in 2021, the aquifer will take nearly 30 years to recover to the simulated levels of 1995. The model also shows that the wells located in the city of Querétaro started to extract water from part of the aquifer beneath the State of Guanajuato in the late 1970s, thus showing that the administrative boundaries used in Mexico to study and develop water resources are inappropriate, and consideration should be given to physical boundaries instead. A regional approach to studying aquifers is needed in order to adequately understand groundwater flow dynamics.

  15. Shallow groundwater temperatures and the urban heat island effect: the first U.K. city-wide geothermal map to support development of ground source heating systems strategy

    OpenAIRE

    Patton, A.M.; Farr, G.J.; Boon, D.P.; James, D R; Williams, B; Newell, A. J.

    2015-01-01

    U.K. Government aims to reduce greenhouse gas emissions by 80% by 2050 (Climate Change Act, 2008). Ground source heating systems could contribute to the U.K.’s energy future but uptake has been slow due to a lack of case studies. The aim of this work was to produce the 1st U.K. city-wide heat map to support the development of ground source heating. We also sought to describe groundwater temperature variation with lithology & estimate the available thermal energy beneath the cit...

  16. Groundwater Pollution Characteristics and Hydrochemical Properties of Typical Plain River-net Area in Lower Yangtze River Delta, China: A Case Study in Suzhou City

    Science.gov (United States)

    Zhu, X.; Ruan, X.; Sun, H.; Pan, Z.

    2011-12-01

    Due to anthropogenic activities, tidal river water retention and other geological factors, groundwater quality in plain river-net area is vulnerable to pollution. Detailed chemical analysis results of 49 groundwater samples were carried out to identify groundwater pollution characteristics, hydrochemical properties and to assess groundwater quality and usability in Suzhou City, a typical plain area in Lower Yangtze River Delta, China. In order to protect, utilize and manage groundwater resources effectively, it is necessary to recognize the dominant processes responsible for hydrogeochemistry, groundwater pollution threats in study area. The results revealed ammonia concentration in confined and shallow groundwater ranges from 0.02 to 6.78 mg/L, 0.04 to 3.17 mg/L, respectively. Nitrite concentrations range from 0.004 to 1.01 mg/L, 0.004 to 3.66 mg/L, respectively. Iron concentrations range from 0.006 to 16.9 mg/L, 0.02 to 7.88 mg/L, respectively. Manganese concentrations range from 0.003 to 1.04 mg/L, 0.06 to 0.58 mg/L, respectively. On the basis of analytical results and water quality standards, majority of groundwater samples are not suitable for drinking, domestic as well as for industrial uses directly. Toxic metals and high levels ions should be removed if groundwater is supplied for different purposes. Salinity, sodium adsorption ratio, residual sodium carbonate and sodium percentage values revealed that most of groundwater samples are suitable for irrigation purposes except only a few. The salinity hazard of study area is regarded as low to medium, and special management for salinity control is required in scattered regions. Results of suitability for industrial purposes according to calculated Langeliar saturation index and Larson Ratio showed that majority of samples are calcium carbonate depositing, whereas a few are calcium carbonate dissolving in nature. Results show that sodium, calcium and bicarbonate are the dominant ions of groundwater. Na-HCO3

  17. Simulation of Groundwater Contaminant Transport at a Decommissioned Landfill Site—A Case Study, Tainan City, Taiwan

    Science.gov (United States)

    Chen, Chao-Shi; Tu, Chia-Huei; Chen, Shih-Jen; Chen, Cheng-Chung

    2016-01-01

    Contaminant transport in subsurface water is the major pathway for contamination spread from contaminated sites to groundwater supplies, to remediate a contaminated site. The aim of this paper was to set up the groundwater contaminant transport model for the Wang-Tien landfill site, in southwestern Taiwan, which exhibits high contamination of soil and groundwater and therefore represents a potential threat for the adjacent Hsu-Hsian Creek. Groundwater Modeling System software, which is the most sophisticated groundwater modeling tool available today, was used to numerically model groundwater flow and contaminant transport. In the simulation, the total mass of pollutants in the aquifer increased by an average of 72% (65% for ammonium nitrogen and 79% for chloride) after 10 years. The simulation produced a plume of contaminated groundwater that extends 80 m in length and 20 m in depth northeastward from the landfill site. Although the results show that the concentrations of ammonium nitrogen and chlorides in most parts are low, they are 3.84 and 467 mg/L, respectively, in the adjacent Hsu-Hsian Creek. PMID:27153078

  18. Geomatics for Mapping of Groundwater Potential Zones in Northern Part of the United Arab Emiratis - Sharjah City

    Science.gov (United States)

    Al-Ruzouq, R.; Shanableh, A.; Merabtene, T.

    2015-04-01

    In United Arab Emirates (UAE) domestic water consumption has increased rapidly over the last decade. The increased demand for high-quality water, create an urgent need to evaluate the groundwater production of aquifers. The development of a reasonable model for groundwater potential is therefore crucial for future systematic developments, efficient management, and sustainable use of groundwater resources. The objective of this study is to map the groundwater potential zones in northern part of UAE and assess the contributing factors for exploration of potential groundwater resources. Remote sensing data and geographic information system will be used to locate potential zones for groundwater. Various maps (i.e., base, soil, geological, Hydro-geological, Geomorphologic Map, structural, drainage, slope, land use/land cover and average annual rainfall map) will be prepared based on geospatial techniques. The groundwater availability of the basin will qualitatively classified into different classes based on its hydro-geo-morphological conditions. The land use/land cover map will be also prepared for the different seasons using a digital classification technique with a ground truth based on field investigation.

  19. Simulation of groundwater flow, effects of artificial recharge, and storage volume changes in the Equus Beds aquifer near the city of Wichita, Kansas well field, 1935–2008

    Science.gov (United States)

    Kelly, Brian P.; Pickett, Linda L.; Hansen, Cristi V.; Ziegler, Andrew C.

    2013-01-01

    The Equus Beds aquifer is a primary water-supply source for Wichita, Kansas and the surrounding area because of shallow depth to water, large saturated thickness, and generally good water quality. Substantial water-level declines in the Equus Beds aquifer have resulted from pumping groundwater for agricultural and municipal needs, as well as periodic drought conditions. In March 2006, the city of Wichita began construction of the Equus Beds Aquifer Storage and Recovery project to store and later recover groundwater, and to form a hydraulic barrier to the known chloride-brine plume near Burrton, Kansas. In October 2009, the U.S. Geological Survey, in cooperation with the city of Wichita, began a study to determine groundwater flow in the area of the Wichita well field, and chloride transport from the Arkansas River and Burrton oilfield to the Wichita well field. Groundwater flow was simulated for the Equus Beds aquifer using the three-dimensional finite-difference groundwater-flow model MODFLOW-2000. The model simulates steady-state and transient conditions. The groundwater-flow model was calibrated by adjusting model input data and model geometry until model results matched field observations within an acceptable level of accuracy. The root mean square (RMS) error for water-level observations for the steady-state calibration simulation is 9.82 feet. The ratio of the RMS error to the total head loss in the model area is 0.049 and the mean error for water-level observations is 3.86 feet. The difference between flow into the model and flow out of the model across all model boundaries is -0.08 percent of total flow for the steady-state calibration. The RMS error for water-level observations for the transient calibration simulation is 2.48 feet, the ratio of the RMS error to the total head loss in the model area is 0.0124, and the mean error for water-level observations is 0.03 feet. The RMS error calculated for observed and simulated base flow gains or losses for the

  20. 贵阳市岩溶地下水污染风险与防控监管%Karst Groundwater Vulnerability and Pollution Risk Control in Guiyang City

    Institute of Scientific and Technical Information of China (English)

    丁贞玉; 孙宁; 孙运海; 储成君

    2015-01-01

    In view of the particularities of karst landform and urban development in Guiyang City, along with the full consideration of groundwater vulnerabilities, pollution factors and value functional attributes of bare karst areas, an effective analysis method and parameter system of groundwater pollution risks is used for discussion of a multi-factor comprehensive evaluation method that can differentiate groundwater vulnerabilities and pollution risks. The results show that the distribution of groundwater areas with high pollution risks is jointly determined by such factors as groundwater vulnerability, pollution source and functional value. In Guiyang City, the key areas of groundwater pollution control account for 96.3% of the total area, and the karst areas are with high vulnerabilities. Therefore, source control should be taken as the working focus and relevant relocation, prevention and monitoring solutions for major pollution sources existing in the nature reserves and areas for prior control should be developed. Pollution risks should be reduced maximally and policy regulation, risk investigation and emergency capacity building should be strengthened within the drinking water source protection areas. As karst groundwater is one of the special resources and environmental elements, it is required that pollution control regionalization should be integrated into the docking of urban planning, land planning and industrial planning, and policies should be proposed to guide the integration of urban development and groundwater pollution control.%针对贵阳市岩溶地貌及城市发展的特殊性,充分考虑裸露岩溶区地下水脆弱性、污染源要素及价值功能属性,应用有效的地下水污染风险分析方法与参数体系,探讨了岩溶区地下水脆弱性及污染风险分区的多因素综合评价方法。结果表明,地下水脆弱性、污染源及功能价值因素的共同作用决定了地下水高污染风险区分布。贵阳

  1. Screening Assessment of Radionuclide Migration in Groundwater from the “Dneprovskoe” Tailings Impoundment (Dneprodzerzhynsk City) and Evaluation of Remedial Options

    International Nuclear Information System (INIS)

    The paper presents results of mathematical modeling of the hydrogeological conditions at the “Dneprovskoe” (“D”) tailings impoundment –object of the former industrial association of “Pridneprovsky Chemical Plant”, which contains uranium ore processing wastes. This radioactively polluted site is located in a densely populated region (at the outskirts of Dneprodzerginsk City) near the major watercourse of the Ukraine — Dnieper River.The mathematical modeling utilized Visual Modflow (for groundwater flow) and Ecolego (Facilia AB, Sweden) radioecology modeling software (for radionuclide transport).Modeling results indicate the possibility of essential radioactive contamination in future of the phreatic aquifer in alluvial deposits between the “D” tailings and the Dnieper River (mainly due to migration of uranium). Therefore long-term management strategies should preclude water usage from the aquifer in the zone of the in-fluence of the “D” tailings. Filtration discharge of uranium to the Dnepr River does not represent a significant risk due to large dilution by surface waters. The important modeling conclusion is that besides the uranium ore processing wastes inside the tailings, the major source of radionuclide migration to groundwater is represented by contaminated geological deposits below the tailings. This last source was formed due to leakage of wastewaters during the operational period of the “D” tailings (1954–1968). Therefore an exemption and re-disposal of wastes from the “D” tailings to a more safe storage location (proposed by some remedial plans) will not provide significant benefit from the viewpoint of minimizing of radionuclide transport to the groundwater and Dnieper River (especially in short-and medium-term perspective). The rational remedial strategy for the “D” tailings is conservation of tailing wastes in-situ by means of specially designed “zero flux” soil screen, which would minimize infiltration of

  2. Urban groundwater baseflow influence upon inorganic river-water quality: The River Tame headwaters catchment in the City of Birmingham, UK

    Science.gov (United States)

    Rivett, Michael O.; Ellis, Paul A.; Mackay, Rae

    2011-03-01

    SummaryUnderstanding the linkage between urban land, groundwater, baseflow and river contamination at the city scale is lacking. This study evaluates the influence of inorganic (major/minor ions and metals) groundwater contamination in the Triassic sandstone-Quaternary deposits aquifer system underlying the City of Birmingham, UK upon the baseflow and water quality of the river Tame. Baseflow water-quality data have been collected from a riverbed piezometer network installed in the 7.4 km reach crossing the effluent unconfined sandstone aquifer and compared to river and aquifer water-quality data. Overall, the inorganic chemical quality of the baseflow was not as poor as potentially surmised from the urbanisation present. Baseflow impact upon river-water quality was also low. These conclusions were underpinned by evidences of: limited river-water quality changes along the reach; some river concentrations being diluted by better quality baseflow; only occasional breaching of water-quality criteria; limited impact upon river-reach quality local to elevated baseflow dicharges; natural attenuation occurrence within the riverbed; and, modest, albeit somewhat uncertain, baseflow mass fluxes. Baseflow fluxes to the reach were in the ranges 100-3500 t/yr for major ions, 1-50 t/yr for minor ions and 1-500 kg/yr for toxic metals with zinc and nickel most prominent. The sporadic occurrence of elevated baseflow concentrations was ascribed to discrete groundwater plume discharges. More detailed sub-reach studies would be required to fully resolve discrete plume baseflow contributions and improve mass flux estimates. Not uncommonly, the urban river studied was already contaminated and hence persistent baseflow fluxes may assume more importance if the river became cleaner through other control measures. Future research should hence consider the emergent significance of urban baseflows. There are needs to: conduct similar studies to investigate if city-scale baseflow impacts are

  3. ASSESSING THE IMPACT OF WASTE ROCKS ON GROUNDWATER QUALITY IN THE ABANDONED COAL MINE OF JERADA CITY (NORTH EASTERN MOROCCO

    Directory of Open Access Journals (Sweden)

    BENDRA B.

    2011-11-01

    Full Text Available The exponential growth of urban dwellers calls for an increased awareness of urban ecosystems and appropriate,long-term management practices. Especially the water supply needs to be secured, both in terms of quantity and quality. In Morocco, numerous urban mine sites were abandoned regardless rehabilitation strategy.Consequently, mining activity contributes massively to deteriorate air, soil and water quality, to degrade natural ecosystems and to menace public health. The abandoned coalmine of Jerada is located in north east of Morocco,in horst zone, in the productive geological formation of Westphalian C. The mining activity has generated along 65 years (1936-2001, 15 to 20 millions tons of washery waste rocks, cumulated principally in urban center. The groundwater (n=30 and waste rock (n=7 sampling was led in the middle of May 2008, which presents in local climatic context the end of rainy season and the beginning of sec season. Waste rocks are exhaustively black schist, with a paucity in pyrite (anthracite debris contain between 2 to 5% of synergic pyrite and predominance of calcareous minerals essentially as dolomite. Consequently, the majority of waste rock samples are not acid generators. The pyrite oxidation produces sulphuric acid, which will be quickly neutralized by carbonates. The alkaline tendency of pH classifies Jerada abandoned coal mine in circum neutral mining drainage type (NMD. The leaching through unsaturated and saturated zone will be facilitated due to a big pore size and a breakingtectonic having fractured Jerada coal basin. The deformed black schist alternative to sandstone permits a good water circulation. The massive product of mining drainage and the major pollutant of groundwater is undoubtedly S-SO4 (27/30 exceed WHO guideline. The spatial correlation between S-total and salinity illustrates the deterioration of groundwater quality due to pyrite oxidation. The alteration of schist and halite dissolution contribute to

  4. The contribution of geology and groundwater studies to city-scale ground heat network strategies: A case study from Cardiff, UK

    Science.gov (United States)

    Boon, David; Farr, Gareth; Patton, Ashley; Kendall, Rhian; James, Laura; Abesser, Corinna; Busby, Jonathan; Schofield, David; White, Debbie; Gooddy, Daren; James, David; Williams, Bernie; Tucker, David; Knowles, Steve; Harcombe, Gareth

    2016-04-01

    The development of integrated heat network strategies involving exploitation of the shallow subsurface requires knowledge of ground conditions at the feasibility stage, and throughout the life of the system. We describe an approach to the assessment of ground constraints and energy opportunities in data-rich urban areas. Geological and hydrogeological investigations have formed a core component of the strategy development for sustainable thermal use of the subsurface in Cardiff, UK. We present findings from a 12 month project titled 'Ground Heat Network at a City Scale', which was co-funded by NERC/BGS and the UK Government through the InnovateUK Energy Catalyst grant in 2015-16. The project examined the technical feasibility of extracting low grade waste heat from a shallow gravel aquifer using a cluster of open loop ground source heat pumps. Heat demand mapping was carried out separately. The ground condition assessment approach involved the following steps: (1) city-wide baseline groundwater temperature mapping in 2014 with seasonal monitoring for at least 12 months prior to heat pump installation (Patton et al 2015); (2) desk top and field-based investigation of the aquifer system to determine groundwater levels, likely flow directions, sustainable pumping yields, water chemistry, and boundary conditions; (3) creation of a 3D geological framework model with physical property testing and model attribution; (4) use steps 1-3 to develop conceptual ground models and production of maps and GIS data layers to support scenario planning, and initial heat network concept designs; (5) heat flow modelling in FEFLOW software to analyse sustainability and predict potential thermal breakthrough in higher risk areas; (6) installation of a shallow open loop GSHP research observatory with real-time monitoring of groundwater bodies to provide data for heat flow model validation and feedback for system control. In conclusion, early ground condition modelling and subsurface

  5. Nutrient inputs from submarine groundwater discharge (SGD) in Masan Bay, an embayment surrounded by heavily industrialized cities, Korea

    International Nuclear Information System (INIS)

    In order to estimate the magnitude of submarine groundwater discharge (SGD) and the associated nutrient fluxes in Masan Bay on the southern coast of Korea, we measured the concentrations of 226Ra and nutrients in seawater, brackish groundwater, and stream water in May and August 2006. Gauging unidentified nutrient fluxes through SGD is very important in this bay since diatom red tides have been occurring from April to October every year since the 1980s. Based on a 226Ra mass balance model, the submarine inputs of coastal groundwater were estimated to be 4.8 x 106 and 5.7 x 106 m3 d-1 (61 and 71 L m-2 d-1) in May and August, respectively, which were approximately 840% and 540% of the surface water discharge into the bay. The fluxes of dissolved inorganic phosphorus (DIP) and silicate (DSi) through SGD were 2-3 fold higher than those via stream water, while the fluxes of dissolved inorganic nitrogen (DIN) were comparable to those from surface waters during both sampling periods. Nutrient fluxes through stream waters relative to those from SGD were more significant in the inner part of the bay, which appears to be due to the direct influence of heavily polluted stream waters. Our study shows that the large and continuous supply of inorganic nutrients through SGD may play an important role in eutrophication and the occurrence of red tides in this bay, which should be taken into consideration in the environmental management of the bay.

  6. Assessment of Groundwater Resources Carrying Capacity in Xi'an City Based on Principal Component Analysis%基于主成分分析法的西安市地下水资源承载力评价

    Institute of Scientific and Technical Information of China (English)

    邢旭光; 史文娟; 张译丹; 谢金宇

    2013-01-01

    Assessment of groundwater resources carrying capacity is full of great significance for maintaining the local ecological environment security and promoting sustainable socio-economic development.This paper evaluated the groundwater resources carrying capacity in Xi'an City using seven evaluation indexes, such as rate of groundwater development, modulus of groundwater supply, groundwater recharge modulus, groundwater discharge modulus, per capita consumption of groundwater, water consumption per unit of GDP and water resources recycling, based on principal component analysis.The results show that the groundwater resources in Xi'an City has a certain carrying capacity, but its rate of exploitation is too high in total and the potential of further development is small.The evaluated value of urban in Xi'an City is 70.816, and its groundwater resources carrying capacity nearly saturates and the potential of further development is the smallest.The evaluated value of Zhouzhi County is -240.998 and the potential of further development is the largest.The results provide reference for rational use of groundwater resources.%区域地下水资源承载力评价对于维护区域生态环境安全和促进社会经济可持续发展具有重要意义.运用主成分分析法,根据地下水开发率、地下水供水模数、地下水补给模数、地下水排泄模数、人均地下水占有量、单位GDP用水量和水资源重复利用率等7项评价指标,对西安市地下水资源承载力进行评价.综合评价结果表明:西安市地下水资源有一定的承载力,但整体上地下水开发率过高,继续开发利用的潜力甚小.其中城六区综合评价值为70.816,地下水承载力趋于饱和且继续开发潜力最小,周至县综合评价值为-240.998,地下水开发潜力最大.评价结果为地下水资源的合理开发利用提供参考.

  7. 城市化对地下水补给的影响 ——以石家庄市为例%The Impact of Urbanization on Groundwater Recharge: a Case Study of Shijiazhuang City

    Institute of Scientific and Technical Information of China (English)

    于开宁

    2001-01-01

    城市化对地下水补给的影响对研究城市水循环、水资源供需平衡及地下水超采、防治地下水水质恶化,以及揭示两大主要地下水环境问题(地下水超采与水质恶化)之间的有机联系都具有重要意义。石家庄城市化与地下水之间的相互作用机理研究具有典型示范性。本文以石家庄市为例,在分析地下水在城市供水中的作用及其开发利用基础上,通过研究城市化影响地下水补给的变化规律,进一步探讨了城市化对地下水补给的影响机理,最终建立城市化影响下地下水补给增量的诱发机理框图。研究结果表明,城市化会导致地下水补给量的增加;地下水开采诱发产生对城市周围井场和地表水的袭夺以及城市供、排水系统渗漏所造成的新补给源的引入是城市化诱发产生地下水补给增量的重要机理。%With the rapid urbanization, groundwater has been playing a more and more important role. The study on the impact of urbanization upon groundwater recharge is of great significance not only in studying the hydrologic cycle, supply-demand balance and groundwater overexploitation but also in preventing and controlling the deterioration of groundwater quality and in revealing the relationship between overexploitation and water quality deterioration, the two main problems in groundwater environment. The study on the interaction mechanism between urbanization and groundwater constitutes a typical example. In this paper, based on the analysis of the importance of groundwater in water supply of the city as well as the exploitation and utilization of groundwater, the author studied the change of groundwater recharge under the impact of urbanization, and then discussed the impact mechanism of urbanization on groundwater recharge. On such a basis, a frame-figure on the mechanism inducing the increment of groundwater recharge was constructed. The results show:① urbanization

  8. Evaluating pollution potential of leachate from landfill site, from the Tangier city and its impact on groundwater (Tangier - Northern Morocco

    Directory of Open Access Journals (Sweden)

    A. Bader1

    2014-12-01

    Full Text Available Leachate from municipalities’ landfills represents a potential health risk to ecosystems in generally and human populations in particularly. This study which was taken during year from 2010 to 2011was focused to study the physicochemical evaluation of the leachate from the landfill of the Tangier city (north of Morocco. The analyses of the sampled leachate revealed strong content of biodegradable organic matter (BOD =166.78 mg/l, COD=2397.25 mg/l and BOD/COD=0.069 and of SM (SM = 577.97 mg/l. Contents in nitrate (NO3=199.77 mg/l were also revealed. The discharge of the Tangier city is characterized by an old leachate. The long-term monitoring of the evaluation of physicochemical parameters in polluted leachate, on how environmental conditions change over time, could then lead to models useful in the prediction of natural attenuation in aquifers. Therefore, an adaptable and efficient treatment process must be used to eliminate the wide range of pollutants present in leachate.

  9. Application of Set Pair Analysis Method Based on Entropy Weight in Groundwater Quality Assessment -A Case Study in Dongsheng City, Northwest China

    OpenAIRE

    Li Pei-Yue; Qian Hui; Wu Jian-Hua

    2011-01-01

    Groundwater quality assessment is an essential study which plays important roles in the rational development and utilization of groundwater. Groundwater quality greatly influences the health of local people. However, most traditional water quality comprehensive assessment methods which have complicated formulas are difficult to apply in water quality assessment. In this paper, a novel method for groundwater quality assessment called set pair analysis was introduced and entropy weight was assi...

  10. 台州地区地下水环境承载力评价研究%Study on the evaluation of groundwater environmental carrying capacity in Taizhou City

    Institute of Scientific and Technical Information of China (English)

    李垚奎; 张征; 娄华君; 梅兴新

    2012-01-01

    The present article intends to introduce a case study result of groundwater environmental carrying capacity by taking Taizhou, Zhejiang, as an example. It is known that there is no uniform concept of groundwater environmental carrying capacity. On the base of conceptual studies proposed by former researchers, we define groundwater environmental carrying capacity as the maximum sustainable-development level of human society that a regional water environment can support under a certain period of time and technical level. In order to evaluate the groundwater environmental carrying capacity in Taizhou city, we have adopted a well-known method of analytic hierarchy process to build up three-grade-evaluation index system, which consists of die target layer, the rule layer and the index layer. The rule layer includes natural index and social index. The index layer is made of 10 indexes, which are aquifer thickness of groundwater, groundwater level, net groundwater charge, nature of unsaturated zone, topographic slope, treatment efficiency of discharged water, population density, per capita GDP, per capita groundwater extraction and water consumption per 10000 industrial production. The judgment matrix of AHP is used to get the weights of all indexes in the system. The geographic information system (GIS) is used to obtain the digital distributions of every index. The results of our study show that the groundwater environmental carrying capacity in Taizhou city ranges from 0.380 4 to 0.743 2. The average capacity is 0.548 1, which belongs to the medium level. The maximum constraint to groundwater environmental carrying capacity changes in different areas, which is natural index in west but social in east. In all areas of Taizhou City, it is necessary to accelerate industrial restructuring and strengthen the planning and management of groundwater. It is an effective way to develop water-saving industry, which can promote the sustainable development of economy, population and

  11. Analysis of Ground-Water Flow in the Madison Aquifer using Fluorescent Dyes Injected in Spring Creek and Rapid Creek near Rapid City, South Dakota, 2003-04

    Science.gov (United States)

    Putnam, Larry D.; Long, Andrew J.

    2007-01-01

    The Madison aquifer, which contains fractures and solution openings in the Madison Limestone, is used extensively for water supplies for the city of Rapid City and other suburban communities in the Rapid City, S. Dak., area. The 48 square-mile study area includes the west-central and southwest parts of Rapid City and the outcrops of the Madison Limestone extending from south of Spring Creek to north of Rapid Creek. Recharge to the Madison Limestone occurs when streams lose flow as they cross the outcrop. The maximum net loss rate for Spring and Rapid Creek loss zones are 21 and 10 cubic feet per second (ft3/s), respectively. During 2003 and 2004, fluorescent dyes were injected in the Spring and Rapid Creek loss zones to estimate approximate locations of preferential flow paths in the Madison aquifer and to measure the response and transit times at wells and springs. Four injections of about 2 kilograms of fluorescein dye were made in the Spring Creek loss zone during 2003 (sites S1, S2, and S3) and 2004 (site S4). Injection at site S1 was made in streamflow just upstream from the loss zone over a 12-hour period when streamflow was about equal to the maximum loss rate. Injections at sites S2, S3, and S4 were made in specific swallow holes located in the Spring Creek loss zone. Injection at site R1 in 2004 of 3.5 kilograms of Rhodamine WT dye was made in streamflow just upstream from the Rapid Creek loss zone over about a 28-hour period. Selected combinations of 27 wells, 6 springs, and 3 stream sites were monitored with discrete samples following the injections. For injections at sites S1-S3, when Spring Creek streamflow was greater than or equal to 20 ft3/s, fluorescein was detected in samples from five wells that were located as much as about 2 miles from the loss zone. Time to first arrival (injection at site S1) ranged from less than 1 to less than 10 days. The maximum fluorescein concentration (injection at site S1) of 120 micrograms per liter (ug/L) at well CO

  12. Concentration comparison of selected constituents between groundwater samples collected within the Missouri River alluvial aquifer using purge and pump and grab-sampling methods, near the city of Independence, Missouri, 2013

    Science.gov (United States)

    Krempa, Heather M.

    2015-01-01

    The U.S. Geological Survey, in cooperation with the City of Independence, Missouri, Water Department, has historically collected water-quality samples using the purge and pump method (hereafter referred to as pump method) to identify potential contamination in groundwater supply wells within the Independence well field. If grab sample results are comparable to the pump method, grab samplers may reduce time, labor, and overall cost. This study was designed to compare constituent concentrations between samples collected within the Independence well field using the pump method and the grab method.

  13. Comprehensive studies of hydrogeochemical processes and quality status of groundwater with tools of cluster, grouping analysis, and fuzzy set method using GIS platform: a case study of Dalcheon in Ulsan City, Korea.

    Science.gov (United States)

    Venkatramanan, S; Chung, S Y; Rajesh, R; Lee, S Y; Ramkumar, T; Prasanna, M V

    2015-08-01

    This research aimed at developing comprehensive assessments of physicochemical quality of groundwater for drinking and irrigation purposes at Dalcheon in Ulsan City, Korea. The mean concentration of major ions represented as follows: Ca (94.3 mg/L) > Mg (41.7 mg/L) > Na (19.2 mg/L) > K (3.2 mg/L) for cations and SO4 (351 mg/L) > HCO3 (169 mg/L) > Cl (19 mg/L) for anions. Thematic maps for physicochemical parameters of groundwater were prepared, classified, weighted, and integrated in GIS method with fuzzy logic. The maps exhibited that suitable zone of drinking and irrigation purpose occupied in SE, NE, and NW sectors. The undesirable zone of drinking purpose was observed in SW and central parts and that of irrigation was in the western part of the study area. This was influenced by improperly treated effluents from an abandoned iron ore mine, irrigation, and domestic fields. By grouping analysis, groundwater types were classified into Ca(HCO3)2, (Ca,Mg)Cl2, and CaCl2, and CaHCO3 was the most predominant type. Grouping analysis also showed three types of irrigation water such as C1S1, C1S2, and C1S3. C1S3 type of high salinity to low sodium hazard was the most dominant in the study area. Equilibrium processes elucidated the groundwater samples were in the saturated to undersaturated condition with respect to aragonite, calcite, dolomite, and gypsum due to precipitation and deposition processes. Cluster analysis suggested that high contents of SO4 and HCO3 with low Cl was related with water-rock interactions and along with mining impact. This study showed that the effluents discharged from mining waste was the main sources of groundwater quality deterioration. PMID:25779109

  14. Hydro-geochemistry and application of water quality index (WQI) for groundwater quality assessment, Anna Nagar, part of Chennai City, Tamil Nadu, India

    Science.gov (United States)

    Krishna kumar, S.; Logeshkumaran, A.; Magesh, N. S.; Godson, Prince S.; Chandrasekar, N.

    2015-12-01

    In the present study, the geochemical characteristics of groundwater and drinking water quality has been studied. 24 groundwater samples were collected and analyzed for pH, electrical conductivity, total dissolved solids, carbonate, bicarbonate, chloride, sulphate, nitrate, calcium, magnesium, sodium, potassium and total hardness. The results were evaluated and compared with WHO and BIS water quality standards. The studied results reveal that the groundwater is fresh to brackish and moderately high to hard in nature. Na and Cl are dominant ions among cations and anions. Chloride, calcium and magnesium ions are within the allowable limit except few samples. According to Gibbs diagram, the predominant samples fall in the rock-water interaction dominance and evaporation dominance field. The piper trilinear diagram shows that groundwater samples are Na-Cl and mixed CaMgCl type. Based on the WQI results majority of the samples are falling under excellent to good category and suitable for drinking water purposes.

  15. The city as a participant in the protection of groundwater in Brazil; O municipio como participe na protecao das aguas subterraneas no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Cordeiro de Souza, L.

    2012-11-01

    Brazilian environmental legislation aims to ensure the protection and preservation of the environment, and particularly its natural resources, in search of a better quality of life for all. The lack of force in existing statutes, however, sometimes renders the purpose of the law ineffective. Our water sources, providing this vital and essential element for life, are suffering pollution and contamination. Our focus here is on the subject of groundwater, which is widely relied upon in Brazil as a water source, but treated in some places in an uncontrolled way, and due to different forms of pollution and contamination arriving at the vulnerable areas of the aquifers, may easily be compromised both in quality and quantity. Constitutional authority to legislate on groundwater has been given to the Member States, since it falls outside the legal remit of individual municipalities. Studies show, however, that pollutants are reaching the aquifers from the overlying soil, which leads to a demand that the municipalities should use their constitutional authority to legislate on land use and its management to protect and preserve these important water sources, especially in the area of the Guarani aquifer. To this effect, we propose the creation of a Special Environment Zoning tool (ZEA) to limit land use in areas of aquifer vulnerability, by which municipalities become active participants in the protection process aimed at preventing harm to the groundwater of the Guarani aquifer. (Author)

  16. Analysis on over-exploited area evolution of groundwater in Tianjin city based on numerical simulation%基于数值模拟的天津市地下水严重超采区演变分析

    Institute of Scientific and Technical Information of China (English)

    徐海珍; 李国敏; 黎明; 杨建青; 柴成繁

    2011-01-01

    Tianjin is a typical water-shortage city in the north plain of China.The environmental issues including land subsidence have been caused due to the long-term overexploitation of groundwater.In order to analyze the status of the groundwater exploitation and to predict the evolution of the over-exploited areas,the three-dimensional transient flow model is developed by using the software MODFLOW based on the principle of finite difference method,which could reflect the fluctuations in groundwater levels accurately after the identification and calibration.The evolution of the drawdown during the simulated period(2003~2008) is calculated based on the model.The scheme for decreasing groundwater exploitation is also predicted,and the development of the over-exploited areas is analyzed.The prediction provides an access to the remediation of the groundwater in Tianjin after the execution of the South-to-North Water Diversion Project.The predicted results show that the groundwater levels would rebound obviously after decreasing groundwater extraction,the funnel zones in the second and the third layers which are the main mining aquifers basically disappear,and the evapotranspiration is the main discharging pattern.%天津市是华北地区典型的水资源短缺城市,地下水的长期超采已引发地面沉降等环境问题。为科学分析地下水开采现状,并预测压采条件下的地下水严重超采区演化趋势,本文采用基于有限差分原理的MODFLOW软件,建立了天津市平原区地下水流动的三维非稳定流数值模型,经识别和校正过的模型能准确反映人工开采引起的各承压层地下水位波动。基于该模型,分析了模拟期内(2003~2008年)地下水超采区的分布及演变过程;同时,预测分析了水资源配置制定的地下水限采方案,进一步剖析严重超采区的演变趋势,为南水北调实施后对天津市地下水的修复作用提供了可靠的分析手段和科学依据

  17. Spatial patterns and temporal variability in water quality from City of Albuquerque drinking-water supply wells and piezometer nests, with implications for the ground-water flow system

    Science.gov (United States)

    Bexfield, Laura M.; Anderholm, Scott K.

    2002-01-01

    Water-quality data for 93 City of Albuquerque drinking-water supply wells, 7 deep piezometer nests, and selected additional wells were examined to improve understanding of the regional ground-water system and its response to pumpage. Plots of median values of several major parameters showed discernible water-quality differences both areally and with depth in the aquifer. Areal differences were sufficiently large to enable delineation of five regions of generally distinct water quality, which are consistent with areas of separate recharge defined by previous investigators. Data for deep piezometer nests indicate that water quality generally degrades somewhat with depth, except in areas where local recharge influenced by evapotranspiration or contamination could be affecting shallow water. The orientations of the five water-quality regions indicate that the direction of ground-water flow has historically been primarily north to south. This is generally consistent with maps of predevelopment hydraulic heads, although some areas lack consistency, possibly because of differences in time scales or depths represented by water quality as opposed to hydraulic head. The primary sources of recharge to ground water in the study area appear to be mountain-front recharge along the Sandia Mountains to the east and the Jemez Mountains to the north, seepage from the Rio Grande, and infiltration through Tijeras Arroyo. Elevated concentrations of many chemical constituents in part of the study area appear to be associated with a source of water having large dissolved solids, possibly moving upward from depth. Hydraulic-head data for deep piezometer nests indicate that vertical head gradients differ in direction and magnitude across the study area. Hydraulic-head gradients are downward in the central and western parts of the study area and upward across much of the eastern part, except at the mountain front. Water-quality data for the piezometers indicate that the ground water is not

  18. Preliminary simulation of chloride transport in the Equus Beds aquifer and simulated effects of well pumping and artificial recharge on groundwater flow and chloride transport near the city of Wichita, Kansas, 1990 through 2008

    Science.gov (United States)

    Klager, Brian J.; Kelly, Brian P.; Ziegler, Andrew C.

    2014-01-01

    The Equus Beds aquifer in south-central Kansas is a primary water-supply source for the city of Wichita. Water-level declines because of groundwater pumping for municipal and irrigation needs as well as sporadic drought conditions have caused concern about the adequacy of the Equus Beds aquifer as a future water supply for Wichita. In March 2006, the city of Wichita began construction of the Equus Beds Aquifer Storage and Recovery project, a plan to artificially recharge the aquifer with excess water from the Little Arkansas River. Artificial recharge will raise groundwater levels, increase storage volume in the aquifer, and deter or slow down a plume of chloride brine approaching the Wichita well field from the Burrton, Kansas area caused by oil production activities in the 1930s. Another source of high chloride water to the aquifer is the Arkansas River. This study was prepared in cooperation with the city of Wichita as part of the Equus Beds Aquifer Storage and Recovery project. Chloride transport in the Equus Beds aquifer was simulated between the Arkansas and Little Arkansas Rivers near the Wichita well field. Chloride transport was simulated for the Equus Beds aquifer using SEAWAT, a computer program that combines the groundwater-flow model MODFLOW-2000 and the solute-transport model MT3DMS. The chloride-transport model was used to simulate the period from 1990 through 2008 and the effects of five well pumping scenarios and one artificial recharge scenario. The chloride distribution in the aquifer for the beginning of 1990 was interpolated from groundwater samples from around that time, and the chloride concentrations in rivers for the study period were interpolated from surface water samples. Five well-pumping scenarios and one artificial-recharge scenario were assessed for their effects on simulated chloride transport and water levels in and around the Wichita well field. The scenarios were: (1) existing 1990 through 2008 pumping conditions, to serve as a

  19. Simulating and forecasting of groundwater exploitation,land subsidence and ground fissure in Cangzhou City%沧州市地下水开采与地面沉降地裂缝模拟预测

    Institute of Scientific and Technical Information of China (English)

    骆祖江; 王琰; 田小伟; 田俊花

    2013-01-01

    To further improve the accuracy of groundwater exploitation-induced ground deformation simula⁃tion, based on the Biot’s consolidation theory and combined with the nonlinear rheological theory of soil, a three-dimensional full coupling mathematic model was set up,in which the constitutive relation in Biot’s consolidation theory was extended to viscoelastic plasticity,the porosity,permeability coefficient and parame⁃ters of soil deformation dynamic relations with the effective stress were considered,and the Galerkin finite element method was taken to solve the model. On that basis,the groundwater seepage field,ground subsid⁃ence and ground fissures development trend was simulated and forecasted in Cangzhou City, Hebei Prov⁃ince. The results show that when the cone of groundwater depression and land subsidence occurred due to over pumping,the horizontal displacement totally directing to cone of groundwater depression of soil will be caused, and the large value of horizontal displacement is concentrated at the edge of cone of groundwater depression,where is the ground fissure high incidence area.%  为进一步提高地下水开采诱发地面变形模拟的准确性,以比奥固结理论为基础,结合土体非线性流变理论,将比奥固结理论中的本构关系推广到黏弹塑性,并考虑孔隙度、渗透系数、土体的变形参数随有效应力的动态变化关系,建立了地下水开采与地面沉降三维全耦合数学模型,并应用伽辽金有限单元法对模型进行求解,模拟了河北省沧州市地下水开采引起的地下水渗流场、地面沉降、地裂缝发生发展趋势。结果表明:抽水引起地下水位降落漏斗和地面沉降的同时,将导致土体发生总体指向地下水位降落漏斗中心的水平位移,水平位移较大的地区集中分布在地面沉降漏斗的边缘,是地裂缝的高发区。

  20. 淮北市地下水资源可持续利用%Groundwater Resources Sustainable Development in Huaibei City

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    This paper introduces the basic situation of water environment of Huaibei City, analyzed the present situation of water resources utilization and existing problems, including unreasonable underground water use, water pollution led to the deterioration of the ecological environment, the serious waste of water resource and the low level of supervision, finally puts forward some countermeasures and the effective utilization of water resources can guarantee the sustainable development of Huaibei city.%  介绍了淮北市水环境基本情况,分析了该市的水资源利用现状及目前存在问题,包括地下水利用不合理、水污染导致生态环境恶化、水资源浪费严重及监管水平低下,最后提出对策有效利用水资源来保障淮北市经济社会可持续发展。

  1. Parameterization, sensitivity analysis, and inversion: an investigation using groundwater modeling of the surface-mined Tivoli-Guidonia basin (Metropolitan City of Rome, Italy)

    Science.gov (United States)

    La Vigna, Francesco; Hill, Mary C.; Rossetto, Rudy; Mazza, Roberto

    2016-04-01

    With respect to model parameterization and sensitivity analysis, this work uses a practical example to suggest that methods that start with simple models and use computationally frugal model analysis methods remain valuable in any toolbox of model development methods. In this work, groundwater model calibration starts with a simple parameterization that evolves into a moderately complex model. The model is developed for a water management study of the Tivoli-Guidonia basin (Rome, Italy) where surface mining has been conducted in conjunction with substantial dewatering. The approach to model development used in this work employs repeated analysis using sensitivity and inverse methods, including use of a new observation-stacked parameter importance graph. The methods are highly parallelizable and require few model runs, which make the repeated analyses and attendant insights possible. The success of a model development design can be measured by insights attained and demonstrated model accuracy relevant to predictions. Example insights were obtained: (1) A long-held belief that, except for a few distinct fractures, the travertine is homogeneous was found to be inadequate, and (2) The dewatering pumping rate is more critical to model accuracy than expected. The latter insight motivated additional data collection and improved pumpage estimates. Validation tests using three other recharge and pumpage conditions suggest good accuracy for the predictions considered. The model was used to evaluate management scenarios and showed that similar dewatering results could be achieved using 20 % less pumped water, but would require installing newly positioned wells and cooperation between mine owners.

  2. Study on Artificial Groundwater Recharge of Changxiao Water Source By Pumping Test in Jinan City%由抽水试验成果谈济南长孝水源地回灌补源

    Institute of Scientific and Technical Information of China (English)

    郑丽爽; 于大潞; 赵宇辉

    2015-01-01

    通过4.5万m3/d开采性抽水试验的观测表明长孝水源地具有较好的富水性及调蓄能力,开采潜力巨大。为保证长孝水源地的长期开采,应尽早采用外引内拦等工程措施,在孝里铺洼地地区实现地表水的回灌补源。这对提高城市供水保证率,恢复当地生态环境均具有十分深远的意义。%Through exploitation pumping test observation with the water amount of 45000 m3/d of No.1 Changxiao water source , it is showed that Changxiao water source has a good water enrichment and storage capacity and exploi -tation potentiality .In order to ensure long term extraction of Changxiao water source , some countermeasures should be adopted, such as outward water diversion and internal water stop .Thus, artificial groundwater recharge of sur-face water in Xiaolipu depression area can be realized .It will have a very significance in improving rate of water supply in city , and recoverying local ecological environment .

  3. Modelling of groundwater flow in the vicinity of tunnel structures

    OpenAIRE

    Valentová, Jana; Valenta, Petr

    2004-01-01

    The paper deals with determination of the effect of newly built driven road tunnels within the capital city of Prague on the groundwater flow pattern and groundwater table position. In order to assess the changes in groundwater flow in the vicinity of these underground structures, a numerical model was used. Despite the three-dimensional nature of groundwater flow in the vicinity of tunnel structures, under certain conditions the flow may be simulated as two-dimensional flow in a vertical pla...

  4. Evaluation of physico-chemical characteristics of groundwater of Company Bagh pumping station and its six distribution points in old Jammu City, India.

    Science.gov (United States)

    Khajuria, Meenakshi; Dutta, S P S

    2011-10-01

    To assess water quality of Company Bagh pumping station and its six distribution points, viz. Parade Ground, Mohalla Paharian, Purani Mandi, Malhotrian Street, Raghunathpura and Hari Market in old Jammu city of India, water parameters viz. temperature, turbidity, pH, electrical conductivity, free carbon dioxide, dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, bicarbonate, chloride, calcium, magnesium, total hardness, sodium, potassium, sulphate, silicate, nitrate, phosphate, iron, copper, zinc, lead and chromium were analyzed during the years 2000-2001/2001-2002. There was alteration in water quality parameters in the distribution system caused by entry of sewage, soil, etc. through dislocation, cracks, valve regulators/turncock, defective joints, breakage, etc. in the pipes through crossing and deposits of biofilms inside the pipes, dead ends and their degradation through microbes. Comparison of water quality with National and International Standards revealed that all the parameters were within permissible limits of drinking water standards. Water Quality Index (WQI) of various physico-chemical parameters revealed that the water of Company Bagh pumping station and its six distribution points was fit for human consumption as it was found under the category of good (WQI < 50). PMID:23505827

  5. 汾阳市地下水资源开发现状与对策%Current Situation and Measures for Groundwater Exploitation in Fenyang City

    Institute of Scientific and Technical Information of China (English)

    王成武

    2012-01-01

    随着国民经济的快速发展,地下水越来越成为汾阳市工、农业生产以及生活用水必不可少的供水水源.就汾阳市地下水开发利用现状、存在问题进行了分析,并提出了合理开发利用地下水资源的对策与建议,对合理配置汾阳市的地下水资源,促进汾阳市地下水开发的良性发展有重要意义.%Along with the development of national economy, ground water becomes essential water resource for Fenyang local industry, agriculture and people's living. In the paper, current utilization state and existing problem were analyzed, and measures and suggestion were purposed, which was of great importance to rational local ground water resources disposition and to promote positive growth of Fenyang city ground water.

  6. Thermal management of an urban groundwater body

    Directory of Open Access Journals (Sweden)

    J. Epting

    2012-06-01

    Full Text Available This study presents a management concept for the sustainable thermal use of an urban groundwater body. The concept is designed to be applied for shallow thermal groundwater use and is based on (1 a characterization of the present thermal state of the investigated urban groundwater body; (2 the definition of development goals for specific aquifer regions, including future aquifer use and urbanization; and (3 an evaluation of the thermal use potential for these regions.

    The investigations conducted in the city of Basel (Switzerland focus on thermal processes down-gradient of thermal groundwater use, effects of heated buildings in the aquifer as well as the thermal influence of river-groundwater interaction. Investigation methods include: (1 short- and long-term data analysis; (2 high-resolution multilevel groundwater temperature monitoring; as well as (3 3-D numerical groundwater flow and heat-transport modeling and scenario development. The combination of these methods allows quantifying the thermal influence on the investigated urban groundwater body, including the influences of thermal groundwater use and additional heat from urbanization. Subsequently, management strategies for minimizing further groundwater temperature increase, targeting "potential natural" groundwater temperatures for specific aquifer regions and exploiting the thermal use potential are discussed.

  7. Groundwater exposed

    Science.gov (United States)

    2016-02-01

    Groundwater flow meddles with hydrological, environmental and geological processes. As water scarcity issues mount for people living above ground, the vast stores of freshwater in the subsurface require research attention.

  8. Groundwater animals

    OpenAIRE

    Maurice, Louise; Bloomfield, John; Robertson, Anne; Allen, Debbie

    2010-01-01

    Groundwater animals are adapted to live in environments with no light and limited nutrients, They can provide insights into fundamental questions of evolution, ecology and biodiversity. They also have an important role to play in informing the reconstruction of past changes in geomorphology and climate, and can be used for characterising aquifers. The BGS is undertaking a systematic survey of selected areas and lithologies in the UK where groundwater animals have not been inves...

  9. Sinking coastal cities

    Science.gov (United States)

    Erkens, G.; Bucx, T.; Dam, R.; de Lange, G.; Lambert, J.

    2015-11-01

    In many coastal and delta cities land subsidence now exceeds absolute sea level rise up to a factor of ten. A major cause for severe land subsidence is excessive groundwater extraction related to rapid urbanization and population growth. Without action, parts of Jakarta, Ho Chi Minh City, Bangkok and numerous other coastal cities will sink below sea level. Land subsidence increases flood vulnerability (frequency, inundation depth and duration of floods), with floods causing major economic damage and loss of lives. In addition, differential land movement causes significant economic losses in the form of structural damage and high maintenance costs for (infra)structure. The total damage worldwide is estimated at billions of dollars annually. As subsidence is often spatially variable and can be caused by multiple processes, an assessment of subsidence in delta cities needs to answer questions such as: what are the main causes? What is the current subsidence rate and what are future scenarios (and interaction with other major environmental issues)? Where are the vulnerable areas? What are the impacts and risks? How can adverse impacts be mitigated or compensated for? Who is involved and responsible to act? In this study a quick-assessment of subsidence is performed on the following mega-cities: Jakarta, Ho Chi Minh City, Dhaka, New Orleans and Bangkok. Results of these case studies will be presented and compared, and a (generic) approach how to deal with subsidence in current and future subsidence-prone areas is provided.

  10. Education Cities

    Science.gov (United States)

    Shaked, Haim

    2014-01-01

    In recent years, several cities in Israel have labeled themselves "Education Cities," concentrating on education as their central theme. Employing qualitative techniques, this article aims to describe, define, and conceptualize this phenomenon as it is being realized in three such cities. Findings show that Education Cities differ from…

  11. Image city

    DEFF Research Database (Denmark)

    2003-01-01

    Image city exhibition explores a condition of mediation, through a focus on image and sound narratives with a point of departure on a number of Asian cities.......Image city exhibition explores a condition of mediation, through a focus on image and sound narratives with a point of departure on a number of Asian cities....

  12. Thermal management of an unconsolidated shallow urban groundwater body

    OpenAIRE

    J. Epting; F. Händel; P. Huggenberger

    2013-01-01

    This study presents the development of tools for the sustainable thermal management of a shallow unconsolidated urban groundwater body in the city of Basel (Switzerland). The concept of the investigations is based on (1) a characterization of the present thermal state of the urban groundwater body, and (2) the evaluation of potential mitigation measures for the future thermal management of specific regions within the groundwater body. The investigations focus on thermal processes down-gradie...

  13. Thermal management of an unconsolidated shallow urban groundwater body

    OpenAIRE

    J. Epting; Händel, F.; Huggenberger, P.

    2013-01-01

    This study presents the development of tools for the sustainable thermal management of a shallow unconsolidated urban groundwater body in the city of Basel (Switzerland). The concept of the investigations is based on (1) a characterization of the present thermal state of the urban groundwater body, and (2) the evaluation of potential mitigation measures for the future thermal management of specific regions within the groundwater body. The investigations focus on thermal processes downgradient...

  14. Groundwater flood or groundwater-induced flood?

    OpenAIRE

    Robins, N.S.; Finch, J. W.

    2012-01-01

    A number of ‘groundwater flood’ events have been recorded over the Chalk aquifer in southern England since the 1994 occurrence at Chichester, Sussex. Reporting of this event and subsequent groundwater floods indicates that there are two types of groundwater flood event. Type 1 is the true groundwater flood in which the water table elevation rises above the ground elevation, and Type 2 occurs when intense groundwater discharge via bourne springs and highly permeable shallow horizons discharges...

  15. Groundwater Waters

    OpenAIRE

    Ramón Llamas; Emilio Custodio

    1999-01-01

    The groundwaters released through springs constituted a basic element for the survival and progressive development of human beings. Man came to learn how to take better advantage of these waters by digging wells, irrigation channels, and galleries. Nevertheless, these activities do not require cooperation nor the collective agreement of relatively large groups of people, as in the case of creating the necessary structures to take advantage of the resources of surfacewaters. The construction a...

  16. Groundwater Waters

    Directory of Open Access Journals (Sweden)

    Ramón Llamas

    1999-10-01

    Full Text Available The groundwaters released through springs constituted a basic element for the survival and progressive development of human beings. Man came to learn how to take better advantage of these waters by digging wells, irrigation channels, and galleries. Nevertheless, these activities do not require cooperation nor the collective agreement of relatively large groups of people, as in the case of creating the necessary structures to take advantage of the resources of surfacewaters. The construction and operation of these structures was a powerful factor in the birth of an urban or civil society – the designated water civilizations. The difference between people taking advantage of groundwater, quasi-individually, and those of surface water, where people work in a group, has continued to the present day. Whereas earlier, this difference did not bring about any special problems, the technological advances of this century, especially theturbine pump, have led to a spectacular increase in the use of roundwater. This advance has significantly contributed to reducing hunger in the world and has provided potable water in developing countries. However, the almost generalized lack of planning and control in the exploitation of these groundwaters reflects that they are little or badly understood by the managers of water policy in almost every country. As such, problems have occurred which have often become exaggerated, giving rise to water-myths. These problems, though, should be addressed if the aim is the sustainable usage of surface water as well as groundwater. To counter any misconceptions and to seek solutions to the problems, distinct plans of action can be highlighted: educating the public; fomenting a system of participative management and decisive support for the communities of users of subterranean waters; integrating a sufficient number of experts in hydrology in the various water management organizations;and assuring transparency of the data on

  17. Designing groundwater visualization interfaces

    OpenAIRE

    Médard De Chardon, Cyrille

    2009-01-01

    Groundwater systems are inherently complex owing to their three-dimensional nature. The impacts of land use activities on groundwater quality and quantity, groundwater pumping, and the interaction of groundwater with surface waters are fundamental hydrogeologic concepts that require effective communication strategies. Using interactive visual interfaces may improve upon current educational techniques and encourage increased public participation in groundwater protection, conservation, and man...

  18. Options of sustainable groundwater development in Beijing Plain, China

    Science.gov (United States)

    Zhou, Yangxiao; Wang, Liya; Liu, Jiurong; Li, Wenpeng; Zheng, Yuejun

    Overexploitation of groundwater resources has supported rapid social and economical developments in Beijing City in last 30 years. The newly constructed emergency well fields have saved Beijing from a critical water crisis caused by a long drought spell of eight consecutive years from 1999 to 2006. But this unsustainable development has resulted in serious consequences: discharges to rivers ceased, large number of pumping wells went dry, and land subsidence caused destruction of underground infrastructure. The completion of the middle route of South to North water transfer project to transfer water from Yangtze river to Beijing City by 2010 provides opportunity to reverse the trend of groundwater depletion and to achieve a long-term sustainable development of groundwater resources in Beijing Plain. Four options of groundwater development in Beijing Plain were formulated and assessed with a regional transient groundwater flow model. The business as usual scenario was used as a reference for the comparative analysis and indicates fast depletion of groundwater resources. The reduction of abstraction scenario has immediate and fast recovery of groundwater levels, especially at the cone of depression. The scenario of artificially enhanced groundwater recharge would replenish groundwater resources and maintain the capacity of present water supply well fields. The combined scenario of the reduction of abstraction and the increase of recharge could bring the aquifer systems into a new equilibrium state in 50 years. A hydrological sustainability of groundwater resources development could then be achieved in Beijing Plain.

  19. Beer City

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Shandong Province’s Qingdao is becoming China’s great beer city sicenically located on a peninsula over-looking the Pacific Ocean, Qingdao, |or Tsingtao, is a coastal city soaked in two kinds of foam. One floats in

  20. Ideal Cities

    OpenAIRE

    Meitner, Erika

    2012-01-01

    Erika Meitner discusses her new book: Ideal Cities. This collection of autobiographical narrative and lyric poems explores the relationship between body and place—specifically the pleasures and dangers of women’s corporeal experiences. Ideal Cities is guided by an epigraph from Song of Songs, and the metaphorical idea of bodies as cities, and cities as bodies. How do women’s bodies become sites of inscription via sex, childbirth, and other highly physical acts? These poems also investigate ur...

  1. Sin City?

    OpenAIRE

    Gautier, Pieter A; Svarer, Michael; Teulings, Coen N.

    2007-01-01

    Is moving to the countryside a credible commitment device for couples? Weinvestigate whether lowering the arrival rate of potential alternative partners bymoving to a less populated area lowers the dissolution risk for a sample of Danishcouples. We find that of the couples who married in the city, the ones who stay inthe city have significant higher divorce rates. Similarly, for the couples who marriedoutside the city, the ones who move to the city are more likely to divorce. Thiscorrelation ...

  2. Seasonal Variations in Groundwater Level and Salinity in Coastal Plain of Eastern China Influenced by Climate

    OpenAIRE

    Shao-feng Yan; Shuang-en Yu; Yu-bai Wu; De-feng Pan; Dong-li She; Jianzhong Ji

    2015-01-01

    The coastline of China is approximately 18,000 km long. In most coastal cities, seawater intrusion is a serious threat to groundwater resources. Nine shallow monitoring wells were constructed to study the dynamics of shallow groundwater level and salinity in the coastal plain region of Jiangsu province, China. Results showed that precipitation, evaporation, and river stage affected the groundwater level in our study area. Positive correlations were observed among the groundwater level, precip...

  3. City PLANTastic

    DEFF Research Database (Denmark)

    , any attempt to create a green city is motivated by certain ecological, political and esthetical perspectives. Therefore the role of plants in tomorrows cities is everything but straightforward. Rather, a broad range of possibilities unfolds. City PLANTastic is the title of the 8th World in Denmark...... urbanism, who reflect upon the multiple roles of plants in the future city through their most recent projects. The theme for the 2012 World in Denmark conference is City PLANTastic, which will also be explored by researchers through their works....

  4. Groundwater flooding in an urbanised floodplain

    Science.gov (United States)

    MacDonald, D.; Peach, D.; Dixon, A.

    2009-12-01

    In recent years, risk management associated with groundwater flooding has been recognised as an area requiring improved understanding in the United Kingdom. Government figures suggest as many as 1.6 million properties may be at risk from this form of flooding. Further, the recently enforced EU Floods Directive requires hazard mapping associated with groundwater flooding to be undertaken. The city of Oxford is situated within a narrow valley in the upper reaches of the River Thames in the south of the United Kingdom. Although much of the city sits above the current floodplain of the River Thames, approximately 3600 properties are located within the 1 in 100 year return flood envelope. The floodplain is underlain by a shallow alluvial aquifer in good hydraulic connection with the River Thames and its tributaries. The city suffers from recurrent floods, most recently in July 2007, when a 1 in 20 year event impacted over 200 properties. A significant number of these properties were affected by flooding from rising groundwater which was either the sole cause of flooding or the initial cause prior to inundation from fluvial waters. A study has been undertaken by the British Geological Survey, in collaboration with the environment regulator and linked with the local flood risk management scheme, to assess the role of groundwater in flooding in Oxford. The study has shown that groundwater flooding in the city occurs in low-lying areas protected from direct fluvial flooding, at least in the early stages of an event, by high ground associated with urbanisation. Although direct rainfall recharge associated with extreme events can cause significant groundwater level rise in these low-lying areas, the primary mechanism for groundwater flooding is the movement of water through the permeable subsurface from fluvial flooded zones. Groundwater flooding is often the only form of flooding for the isolated low-lying areas for medium-to-high probability flood events. As a result

  5. The coupled social-hydrology of Bangalore city, India

    Science.gov (United States)

    Muddu, S.; Mehta, V. K.; Malghan, D.; Kemp-Benedict, E.

    2012-12-01

    India's 370 million urban population exceeds the total population of all countries except China. Water supply has not kept up with increasing urban demand. As utilities reach farther out to increase extraction and supply, and private self-supply from groundwater increases apace , there is no doubt that local water balances are dramatically impacted. Despite this, very little research has emerged on the modified water balance in urban India, which is essential to understanding sustainability of the resource base. This paper, taking Bangalore city as a case study, illustrates the possible impacts of domestic water supply and consumption. Spatial patterns in population growth and current piped water supply from the utility were developed from utility and municipal data. GIS analysis shows the spatial mismatch between the growth of the city and the piped water supply. In the past decade, Bangalore's population grew by almost 3 million people, with most of the additions in the outer areas where piped water supply infrastructure is most inadequate. In these areas, which account for large parts of the city with hundreds of thousands of residents, piped water supply is below 40 lpcd (liters per capita per day). Residents in these areas rely largely on groundwater from tankers and private borewells. Estimates of self-supply from groundwater were derived, which were then used with lumped and distributed simulations of groundwater balances. Lumped model results show that a severe lack of systematic data on actual groundwater extraction drives large uncertainty in the magnitude of net recharge change on a city-wide scale. Despite this uncertainty, the direction of net groundwater recharge is negative. Artificial recharge from leaking pipes and return flows exceed natural rainfall recharge by two-fold; however, private groundwater pumping is the largest component of the groundwater balance, leading to an overall groundwater overdraft estimate of 130%. Distributed groundwater

  6. INSTANT CITY

    DEFF Research Database (Denmark)

    Marling, Gitte; Kiib, Hans

    2013-01-01

    This article analyses Roskilde Festival as an Instant City. For more than 40 years, Roskilde Festival has had many thousands participants for a weeklong festival on music, performances and cultural experiences in a layout designed as an urban environment. During the last ten years, in- creasing...... emphasis has been laid on creating a vivid, and engaging social environment in order to create a lab for social, and architectural experi- ments. These goals challenge the city planning as well as the urban sce- nography. The article addresses the research questions: What kind of city life and social...... of an experimental and social en- gaged city environment? The analysis shows that the specific city life at the instant city, Roskilde Festival, can be characterized by being ‘open minded’, ‘playful’ and ‘inclusive’, but also by ‘a culture of laughter’ that penetrates the aesthetics and the urban...

  7. 上海市域地下水环境氯离子含量的时空演化特征研究%Study on the Temporal and Spatial Evolution Characteristics of Chloride Ion Content in the Groundwater Environment of Shanghai City

    Institute of Scientific and Technical Information of China (English)

    王玉强

    2015-01-01

    There is a wide distribution of Chloride Ion in groundwater, so it is of great significance to probe into the temporal and spatial dynamic evolution of Chloride content in groundwater environment. The results showed there existed a relevantly great change in the annual content of Chloride Ion in the groundwater of Shanghai City, presenting a regular quadric curve or cubic curve. Furthermore, the change in each aquifer presented a significant difference. From the perspective of its vertical distribution, the average content of Chloride Ion from height to lowness in turn was the second confined aquifer , the fifth confined aquifer, the unconfined aquifer, the fourth and the third confined aquifer.%鉴于氯离子在地下水中的分布很广,因此,探究地下水环境氯离子含量时空动态演化规律具有重要意义。研究发现,上海市地下水环境 Cl-含量年际演化幅度比较大,且呈现规律性的二次曲线或三次曲线,各个含水层之间的变化呈显著性差异。从其垂直方向分布看,氯离子平均含量由高到低依次为第二承压含水层,第五承压含水层,潜水含水层,第四承压含水层和第三承压含水层。

  8. 石家庄市地下水资源的过量开采引发的思考及对策%Thoughts and Counter-measures on Excessively exploration of Ground-water Resources in Shiji-azhuang City

    Institute of Scientific and Technical Information of China (English)

    郝晓莉

    2015-01-01

    Excessive exploitation of groundwater means actual yield exceeds allowable yield, which leads to various problems of environment and geology, such as deterioration of water quality, saline intrusion and land subsidence, etc.. In this paper, water supply status and water demand of Shijiazhuang City were analyzed, harms of excessively ex-ploration were elaborated. And some prevention measures against excessively exploration of groundwater were pro-posed.%地下水的过量开采是指地下水的实际开采量超过了允许开采量,易引发了水质恶化、海水入侵、地面沉降等一系列环境地质问题。在对石家庄市供水现状和需水量进行分析的基础上,阐述了过量开采带来的一系列危害,并从分区控制开采、加强信息监控管理等方面对地下水过量开采提出了一些防治措施。

  9. Groundwater ecology literature review

    OpenAIRE

    Maurice, L.

    2009-01-01

    Groundwater ecology is the study of ecosystems that occur in the subsurface within groundwater. Groundwater often contains a diverse range of organisms, and those that live in groundwater and generally do not live above the ground surface are called Stygobites. Stygobites species come from several different taxonomic groups of animals. Many animals found in groundwater are Crustaceans (Copepoda, Ostracoda, Amphipoda, Isopoda, Syncarida, Cladocera) but species of Oligocheata and...

  10. Limerick City

    OpenAIRE

    2011-01-01

    Postcard. Colour photograph of River Shannon with Limerick City in background. Number 2/LK-018. Printed on reverse "Limerick city, where the Shannon river meets the sea is one of the most progressive of Irish cities, where the past and present mingle pleasantly. That part of the city called Newtown Pery was designed and planned in 1767, and is the Limerick of wide streets crossing at right angles, and the pleasantly tree-sprinkled People's Park. The tall column in the park commemorates Thomas...

  11. Quantitative maps of groundwater resources in Africa

    International Nuclear Information System (INIS)

    In Africa, groundwater is the major source of drinking water and its use for irrigation is forecast to increase substantially to combat growing food insecurity. Despite this, there is little quantitative information on groundwater resources in Africa, and groundwater storage is consequently omitted from assessments of freshwater availability. Here we present the first quantitative continent-wide maps of aquifer storage and potential borehole yields in Africa based on an extensive review of available maps, publications and data. We estimate total groundwater storage in Africa to be 0.66 million km3 (0.36–1.75 million km3). Not all of this groundwater storage is available for abstraction, but the estimated volume is more than 100 times estimates of annual renewable freshwater resources on Africa. Groundwater resources are unevenly distributed: the largest groundwater volumes are found in the large sedimentary aquifers in the North African countries Libya, Algeria, Egypt and Sudan. Nevertheless, for many African countries appropriately sited and constructed boreholes can support handpump abstraction (yields of 0.1–0.3 l s−1), and contain sufficient storage to sustain abstraction through inter-annual variations in recharge. The maps show further that the potential for higher yielding boreholes ( > 5 l s−1) is much more limited. Therefore, strategies for increasing irrigation or supplying water to rapidly urbanizing cities that are predicated on the widespread drilling of high yielding boreholes are likely to be unsuccessful. As groundwater is the largest and most widely distributed store of freshwater in Africa, the quantitative maps are intended to lead to more realistic assessments of water security and water stress, and to promote a more quantitative approach to mapping of groundwater resources at national and regional level. (letter)

  12. Groundwater system analysis of south Yishu geosyncline

    Institute of Scientific and Technical Information of China (English)

    DAI Chang-lei; CHI Bao-ming; YI Shu-ping; LI Zhi-jun

    2004-01-01

    South Yishu geosyncline is 50 km southeast of Changchun City of Jilin Province, where an aquifer is thick,surface runoff is abundant and it has potential to develop water resources preferably. By means of system analysis, the authors analyse the structural characteristics, I/O characteristics, function characteristics and boundary and environment characteristics of the groundwater system, so as to search for a way of optimizing water resources arrangement and enhancing water resources'bearing capacity. Based on the analysis results, the authors abstract conceptual model and mathematical model of the groundwater system. The simulation results certify and enrich the knowledge about south Yishu geosyncline.

  13. Towards sustainable ground water management in Dar Es Salaam city, Tanzania

    International Nuclear Information System (INIS)

    Groundwater pollution in urban areas is a worldwide growing environmental problem in this millennium. Many major cities in the world depend on groundwater for water supplies. However, urbanization processes threaten its quality. The problem is more pronounced in urban areas in developing countries like Tanzania, which are characterized with inadequate infrastructure for waste management. In Tanzania, the situation is more threatening in Dar Es Salaam City, which experiences acute deficiency in infrastructure provision: housing, water supply, sanitation, transportation and energy. The existing challenge is to protect groundwater resources amidst rapid growing Dar Es Salaam city, of which failure can lead to escalating costs for provision of drinking water with overall results of decreased public health conditions. A research conducted from 1997 to 2002, revealed that almost 50% of the water supply in Dar Es Salaam city comes from groundwater and that groundwater is being threatened by indiscriminate disposal practices of both domestic and industrial wastes. For example about 88% of the urban population use on-site sanitation systems, which discharge partially treated sewage to the groundwater. About 60 tonnes/day of chemical oxygen demand (COD) are transported to the groundwater through domestic sewage. Analysis of groundwater quality in the city indicated that the unconfined aquifer is starting to degrade. For instance, more than 40% of groundwater samples analysed for nitrate, chloride and faecal coliform bacteria, did not comply with the national standards for drinking water. Recognising the fact that demand for groundwater is on the increase in the city and that the aquifers have shown signs of degradation, a groundwater management plan is required to ensure sustainable utilization of the resource. This paper discusses the groundwater situation in Dar Es Salaam city and finally puts forward measures towards establishment of a management strategy. (author)

  14. Application of groundwater flow meter with single well to groundwater flow survey in fractured rock, (1)

    International Nuclear Information System (INIS)

    In this study, we applied the groundwater flow meter developed by CRIEPI to the groundwater flow survey with single well named AN-1 of Tounou mine that is owned by PNC and located in Mizunami-city, Gifu-prefecture. This study forms a link in the chain of a cooperative research work, that is aimed to establish the technique for evaluation of the characteristics of fractured rocks, between CRIEPI and PNC. The principal results are summarized as follows. 1) We improved the structure of this groundwater flow meter into having newly a intermediate air packer made with rubber, so that the measurements of local flow characteristics (velocity and direction) of groundwater flow could be performed more effectively. 2) The groundwater flow velocity in rocks is generally so low that we can't ignore the effect of diffusion of the tracer (distilled water) in comparison with advection. Then, we introduced a method of analysis, that is based on a advective-diffusion equation and is able to specify the advective component (flow), on the velocity and direction of groundwater flow. From a experimental results, we had good prospects for being able to detect the groundwater flow with velocity that is so low as to be a few cm per year, by using the groundwater flow meter system above mentioned. 3) We applied this type of groundwater flow meter to a field test that has three measurement points within about 150 m depth with AN-1 well in Tounou mine, so that the groundwater velocity of each points were measured to be from a few m to a few cm per year. (author)

  15. The impact of urbanisation on groundwater quality (project summary report)

    OpenAIRE

    Morris, B L; Lawrence, A.R.; Stuart, M E

    1994-01-01

    Urban populations in developing counties are growing rapidly and are largely concentrated in the marginal-slum housing districts where access to sanitation and piped water supply is often limited.Many of these cities are dependent upon groundwater for a significant proportion of their water supply and even in areas where the piped water supply is largely derived from surface water , the use of groundwater can still be significant as piped coverage is often limited (

  16. Flying Cities

    DEFF Research Database (Denmark)

    Herbelin, Bruno; Lasserre, Sebastien; Ciger, Jan

    2008-01-01

    Flying Cities is an artistic installation which generates imaginary cities from the speech of its visitors. Thanks to an original interactive process analyzing people's vocal input to create 3D graphics, a tangible correspondence between speech and visuals opens new possibilities of interaction....... This cross-modal interaction not only supports our artistic messages, but also aims at providing anyone with a pleasant and stimulating feedback from her/his speech activity. As the feedback we have received when presenting Flying Cities was very positive, our objective is now to cross the bridge...

  17. Drone City

    DEFF Research Database (Denmark)

    Jensen, Ole B.

    2016-01-01

    design” will be used as a background perspective to reflect upon the future of drones in cities. The other perspective used to frame the phenomenon is the emerging discourse of the “smart city”. A city of proliferating digital information and data communication may be termed a smart city as shorthand...... on the block” that will potentially be a game-changer for urban governance, economics and everyday life. Here we are thinking of the unmanned aerial vehicle or drone as the popular term has it. Therefore, the paper asks how life in “drone city” may play out. Drones may alter the notion of surveillance by means...

  18. Groundwater Managment Districts

    Data.gov (United States)

    Kansas Data Access and Support Center — This dataset outlines the location of the five Groundwater Management Districts in Kansas. GMDs are locally formed and elected boards for regional groundwater...

  19. City Streets

    Data.gov (United States)

    Minnesota Department of Natural Resources — This data set contains roadway centerlines for city streets found on the USGS 1:24,000 mapping series. In some areas, these roadways are current through the 2000...

  20. Potential Cities_

    OpenAIRE

    Budzynski, Scott

    2015-01-01

    Buildings and urban construction are understood in this paper as representations of the city. Their meanings, however, are often invisible, positing unrealized urban visions, which are both imbedded in and which call up chains of associations expressing desires and fears. Narratives of what the city should be often contain the rejection of the existing urban situation. Understanding architectural objects as potential underscores their imaginary nature. Freud, for example, uses the Roman ruins...

  1. Beautiful city

    OpenAIRE

    Gerald A. Carlino

    2009-01-01

    Proponents of the City Beautiful movement advocated for sizable public investments in monumental spaces, street beautification, and classical architecture. Today, economists and policymakers see the provision of consumer leisure amenities as a way to attract people and jobs to cities. But past studies have provided only indirect evidence of the importance of leisure amenities for urban growth and development. In this article, Jerry Carlino uses a new data set on the number of leisure tourist ...

  2. City Beautiful

    OpenAIRE

    Gerald A. Carlino; Saiz, Albert

    2008-01-01

    The City Beautiful movement, which in the early 20th century advocated city beautification as a way to improve the living conditions and civic virtues of the urban dweller, had languished by the Great Depression. Today, new urban economic theorists and policymakers are coming to see the provision of consumer leisure amenities as a way to attract population, especially the highly skilled and their employers. However, past studies have provided only indirect evidence of the importance of leisur...

  3. Model cities

    OpenAIRE

    M Batty

    2007-01-01

    The term ?model? is now central to our thinking about how weunderstand and design cities. We suggest a variety of ways inwhich we use ?models?, linking these ideas to Abercrombie?sexposition of Town and Country Planning which represented thestate of the art fifty years ago. Here we focus on using models asphysical representations of the city, tracing the development ofsymbolic models where the focus is on simulating how functiongenerates form, to iconic models where the focus is on representi...

  4. Sustainable cities

    International Nuclear Information System (INIS)

    The Sustainable City Project, a collaboration among the cities of Portland, Oregon, and San Francisco and San Jose, California, aims at developing and implementing sustainable energy planning methods and programs for cites. For a period of two years (1989-90), the three project cities worked in parallel, yet pursued independent courses to develop appropriate sustainable urban energy practices to meet local needs and aspirations. Central to the Sustainable City Project was finding ways to manage today's urban energy needs without jeopardizing the needs of future generations. Sustainability implies that nothing should go to waste, but rather should contribute to the proper balance between the natural environment and the built environment Sustainable urban energy systems encompass more than energy efficiency and energy conservation measures: they must be diverse, flexible, self-reliant, renewable, and integrated. Since local governments make decisions affecting land use, building codes, transportation systems, waste disposal, and power plants--all of which impact energy resource use--local jurisdictions can do much to ensure their own sustainable future. This paper will present an accounting of the specific steps that each city took to determine and begin implementation of their respective approaches to sustainable energy planning, with a specific focus on the City of San Jose activities. Useful tools for facilitating community process, program planning and implementation, and quantitative analysis will also be discussed

  5. DOE groundwater protection strategy

    International Nuclear Information System (INIS)

    EH is developing a DOE-wide Groundwater Quality Protection Strategy to express DOE's commitment to the protection of groundwater quality at or near its facilities. This strategy responds to a September 1986 recommendation of the General Accounting Office. It builds on EPA's August 1984 Ground-Water Protection Strategy, which establishes a classification system designed to protect groundwater according to its value and vulnerability. The purposes of DOE's strategy are to highlight groundwater protection as part of current DOE programs and future Departmental planning, to guide DOE managers in developing site-specific groundwater protection practices where DOE has discretion, and to guide DOE's approach to negotiations with EPA/states where regulatory processes apply to groundwater protection at Departmental facilities. The strategy calls for the prevention of groundwater contamination and the cleanup of groundwater commensurate with its usefulness. It would require long-term groundwater protection with reliance on physical rather than institutional control methods. The strategy provides guidance on providing long-term protection of groundwater resources; standards for new remedial actions;guidance on establishing points of compliance; requirements for establishing classification review area; and general guidance on obtaining variances, where applicable, from regulatory requirements. It also outlines management tools to implement this strategy

  6. Impact of Earthquake Demolition Debris on the Quality of Groundwater

    OpenAIRE

    M. S. Benmenni; K. Benrachedi

    2010-01-01

    Problem statement: Debris from construction or demolition/deconstruction processes have no significant impact on the environment as they are res-usable and inert. This has been also long admitted for solid waste generated by the demolition of damaged cities following violent earthquakes. Approach: This study is a contribution to the assessment of actual impact on the quality of groundwater of buried demolition debris from the city of Boumerdes, in the North of Algeria 5 years after the May 21...

  7. An assessment of groundwater quality using water quality index in Chennai, Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    I Nanda Balan

    2012-01-01

    Full Text Available Context : Water, the elixir of life, is a prime natural resource. Due to rapid urbanization in India, the availability and quality of groundwater have been affected. According to the Central Groundwater Board, 80% of Chennai′s groundwater has been depleted and any further exploration could lead to salt water ingression. Hence, this study was done to assess the groundwater quality in Chennai city. Aim : To assess the groundwater quality using water quality index in Chennai city. Materials and Methods: Chennai city was divided into three zones based on the legislative constituency and from these three zones three locations were randomly selected and nine groundwater samples were collected and analyzed for physiochemical properties. Results: With the exception of few parameters, most of the water quality assessment parameters showed parameters within the accepted standard values of Bureau of Indian Standards (BIS. Except for pH in a single location of zone 1, none of the parameters exceeded the permissible values for water quality assessment as prescribed by the BIS. Conclusion: This study demonstrated that in general the groundwater quality status of Chennai city ranged from excellent to good and the groundwater is fit for human consumption based on all the nine parameters of water quality index and fluoride content.

  8. City Branding

    DEFF Research Database (Denmark)

    Trads, Søren Frimann; Stigel, Jørgen

    2006-01-01

    Succesful corporate branding requires that questions related to communication, publicity, and organizational structures are adressed. An uncritical adoption of approaches known from tradition product branding will inevitable give problems as the properties of tangible commodities and services with...... potential visitors, problems seem to multiply in what has becom known as city branding. This analysis of the communicational aspects of two Danish provincial towns´ branding efforts examines both their internally and externally directed communication. It demonstrates that an insufficient understanding of...... - or willingness to face - these differences will inevitably hamper such branding efforts because of the consequential inconsistencies. Finally, paths to more effective city branding are indicated...

  9. Soft Cities

    DEFF Research Database (Denmark)

    Brix, Anders; Yoneda, Akira; Nakamura, Kiyoshi

    2015-01-01

    This paper presents a project exploring sustainable ways of urban living. The project renders a scenario comprised of an array of simple conversions of existing urban spaces and buildings, in the attempt to tie strategies ranging from urban planning to interior design into a coherent vision of a...... sustainable future. The project is the result of a joint research study between Denmark and Japan. Taking as its example the city of Kyoto, the project investigates some possible strategies on how cities more generally may be transformed into liveable, healthy and ecologically sensible environments....

  10. Isotope techniques application in understanding the recharge process of the Davao City aquifers

    International Nuclear Information System (INIS)

    Davao City, one of the Philippines' major cities, is undergoing extensive urban and ecotourism development. Generally, groundwater is the most important source of freshwater, supplying 97% of the city's water requirements. Davao City is generally mountainous, characterized by extensive mountain ranges, uneven distribution of plateaus and some lowlands. The city's urban and development areas are concentrated along a narrow coastal strip averaging 5 km in width and extending 56 km facing the Davao Gulf. It is in the coastal area where most of the production wells are located and where heavy abstraction is concentrated. Chemical and isotopic characterization of the water sources in Davao City were undertaken to provide an insight into the processes of groundwater occurrence, particularly on the origin and rate of recharge into the groundwater and evaluation of the aquifer's vulnerability to pollution. Field investigations were conducted from October 1998 to February 2002

  11. City 2020+

    Science.gov (United States)

    Schneider, C.; Buttstädt, M.; Merbitz, H.; Sachsen, T.; Ketzler, G.; Michael, S.; Klemme, M.; Dott, W.; Selle, K.; Hofmeister, H.

    2010-09-01

    This research initiative CITY 2020+ assesses the risks and opportunities for residents in urban built environments under projected demographic and climate change for the year 2020 and beyond, using the City of Aachen as a case study. CITY 2020+ develops scenarios, options and tools for planning and developing sustainable future city structures. We investigate how urban environment, political structure and residential behavior can best be adapted, with attention to the interactions among structural, political, and sociological configurations and with their consequences on human health. Demographers project that in the EU-25-States by 2050, approximately 30% of the population will be over age 65. Also by 2050, average tem¬peratures are projected to rise by 1 to 2 K. Combined, Europe can expect enhanced thermal stress and higher levels of particulate matter. CITY 2020+ amongst other sub-projects includes research project dealing with (1) a micro-scale assessment of blockages to low-level cold-air drainage flow into the city centre by vegetation and building structures, (2) a detailed analysis of the change of probability density functions related to the occurrence of heat waves during summer and the spatial and temporal structure of the urban heat island (UHI) (3) a meso-scale analysis of particulate matter (PM) concentrations depending on topography, local meteorological conditions and synoptic-scale weather patterns. First results will be presented specifically from sub-projects related to vegetation barriers within cold air drainage, the assessment of the UHI and the temporal and spatial pattern of PM loadings in the city centre. The analysis of the cold air drainage flow is investigated in two consecutive years with a clearing of vegetation stands in the beginning of the second year early in 2010. The spatial pattern of the UHI and its possible enhancement by climate change is addressed employing a unique setup using GPS devices and temperature probes fixed to

  12. Fun City

    DEFF Research Database (Denmark)

    Once the blues guitarist B.B. King sang that when he "didn't wanna live no more", he would go shopping instead. Now, however, shopping has become a lifestyle... The city of today has become "Disneyfied" and "Tivolized". It has become a scene for events. The aim of the book is to encircle and pin ...

  13. City Geology.

    Science.gov (United States)

    Markle, Sandra

    1989-01-01

    This article provides information on the evolution of the building material, concrete, and suggests hands-on activities that allow students to experience concrete's qualities, test the heat absorbency of various ground surface materials, discover how an area's geology changes, and search for city fossils. A reproducible activity sheet is included.…

  14. Linking Surface Urban Heat Islands with Groundwater Temperatures.

    Science.gov (United States)

    Benz, Susanne A; Bayer, Peter; Goettsche, Frank M; Olesen, Folke S; Blum, Philipp

    2016-01-01

    Urban temperatures are typically, but not necessarily, elevated compared to their rural surroundings. This phenomenon of urban heat islands (UHI) exists both above and below the ground. These zones are coupled through conductive heat transport. However, the precise process is not sufficiently understood. Using satellite-derived land surface temperature and interpolated groundwater temperature measurements, we compare the spatial properties of both kinds of heat islands in four German cities and find correlations of up to 80%. The best correlation is found in older, mature cities such as Cologne and Berlin. However, in 95% of the analyzed areas, groundwater temperatures are higher than land surface temperatures due to additional subsurface heat sources such as buildings and their basements. Local groundwater hot spots under city centers and under industrial areas are not revealed by satellite-derived land surface temperatures. Hence, we propose an estimation method that relates groundwater temperatures to mean annual land-surface temperatures, building density, and elevated basement temperatures. Using this method, we are able to accurately estimate regional groundwater temperatures with a mean absolute error of 0.9 K. PMID:26595444

  15. DYNAMICS OF AGRICULTURAL GROUNDWATER EXTRACTION

    OpenAIRE

    2001-01-01

    Agricultural shallow groundwater extraction can result in desiccation of neighbouring nature reserves and degradation of groundwater quality in the Netherlands, whereas both externalities are often not considered when agricultural groundwater extraction patterns are being determined. A model is developed to study socially optimal agricultural shallow groundwater extraction patterns. It shows the importance of stock size to slow down changes in groundwater quality.

  16. Groundwater sustainability strategies

    Science.gov (United States)

    Gleeson, Tom; VanderSteen, Jonathan; Sophocleous, Marios A.; Taniguchi, Makoto; Alley, William M.; Allen, Diana M.; Zhou, Yangxiao

    2010-01-01

    Groundwater extraction has facilitated significant social development and economic growth, enhanced food security and alleviated drought in many farming regions. But groundwater development has also depressed water tables, degraded ecosystems and led to the deterioration of groundwater quality, as well as to conflict among water users. The effects are not evenly spread. In some areas of India, for example, groundwater depletion has preferentially affected the poor. Importantly, groundwater in some aquifers is renewed slowly, over decades to millennia, and coupled climate–aquifer models predict that the flux and/or timing of recharge to many aquifers will change under future climate scenarios. Here we argue that communities need to set multigenerational goals if groundwater is to be managed sustainably.

  17. Nonlinearity in groundwater flow

    OpenAIRE

    Barends, F.B.J.

    1980-01-01

    Since 1856 when Darcy laid the basis for the calculation of the flow of water through sands, researchers have been interested in groundwater flow. Groundwater is essential for agriculture and water supply, but it also plays an important role when soil is used as a construction element, such as for dykes, roads and foundations. The mechanical behaviour of saturated or dry, fine graded or coarse soils are quite different. The theory of groundwater mechanics must be based on the system: water-so...

  18. Sustainable Cities

    DEFF Research Database (Denmark)

    Georg, Susse; Garza de Linde, Gabriela Lucía

    Judging from the number of communities and cities striving or claiming to be sustainable and how often eco-development is invoked as the means for urban regeneration, it appears that sustainable and eco-development have become “the leading paradigm within urban development” (Whitehead 2003). But......), urban design competitions are understudied mechanisms for bringing about field level changes. Drawing on actor network theory, this paper examines how urban design competitions may bring about changes within the professional field through the use of intermediaries such as a sustainable planning....../assessment tool. The context for our study is urban regeneration in one Danish city, which had been suffering from industrial decline and which is currently investing in establishing a “sustainable city”. Based on this case study we explore how the insights and inspiration evoked in working with the tool...

  19. Separate process wastewaters, part A: Contaminated flow collection and treatment system for the Kansas City Plant

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) to assist the agency in complying with the National Environmental Policy Act (NEPA) of 1969 as it applies to modification of ongoing groundwater treatment at DOE`s Kansas City Plant (KCP), located about 19 km (12 miles) south of the central business district of Kansas City, Missouri. The KCP is currently owned by DOE and is operated by the Kansas City Division of AlliedSignal Inc. The plant manufactures nonnuclear components for nuclear weapons. The purpose of and need for the DOE action is to treat identified toxic organic contaminated groundwater at the KCP to ensure that human health and the environment are protected and to comply with groundwater treatment requirements of the U.S. Environmental Protection Agency (EPA) Resource Conservation and Recovery Act (RCRA) 3008(h) Administrative Order on Consent and the discharge requirements of the Kansas City, Missouri, ordinances for the city sewer system. Four source streams of toxic organic contaminated groundwater have been identified that require treatment prior to discharge to the city sewer system. The toxic organic contaminants of concern consist of volatile organic compounds (VOCS) in the groundwater and polychlorinated biphenyls (PCBS) predominantly associated with some soils near the Main Manufacturing Building. The no-action alternative is to continue with the current combination of treatment and nontreatment and to continue operation of the KCP groundwater treatment system in its current configuration at Building 97 (B97). The DOE proposed action is to collect and treat all identified toxic organic contaminated groundwater prior to discharge to the city sewer system. The proposed action includes constructing an Organics Collection System and Organics Treatment Building, moving and expanding the existing groundwater treatment system, and operating the new groundwater treatment facility.

  20. Will Jakarta Be The Next Atlantis? Excessive Groundwater Use Resulting From A Failing Piped Water Network

    Directory of Open Access Journals (Sweden)

    Nicola Colbran

    2009-06-01

    Full Text Available This article examines the connection between a failing piped water network and excessive groundwater use in Jakarta. It discusses the political history of the city's piped water network, which was privatised in 1998, and how privatisation was intended to increase access to clean, safe water for its residents. The article asserts that this has not eventuated, and that tap water remains costly, unreliable and does not provide noticeable benefits when compared with groundwater. The result is that households, industry, businesses, luxury apartment complexes and hotels choose alternative water sources and distribution methods, in particular groundwater. This is having an unsustainable impact on groundwater levels and Jakarta 's natural environment, causing significant land subsidence, pollution and salinisation of aquifers, and increased levels of flooding. The effect is so severe that the World Bank has predicted much of Jakarta will be inundated by seawater in 2025, rendering one third of the city uninhabitable and displacing millions. The article concludes by discussing and assessing the steps the government has taken to address excessive and unlicensed groundwater use. These steps include new regulations on groundwater, a public awareness campaign on the importance of groundwater and a commitment to improve the raw water supplied to the piped water network. However, the article observes that the government is yet to develop long term policies for improvement of the network itself. The question therefore remains, has the government done enough, or will groundwater use continue unabated making Jakarta the next lost city of Atlantis?

  1. Soil, groundwater cleanup takes the gamble out of casino operation

    International Nuclear Information System (INIS)

    Colorado's rich stores of gold and silver sparked development of towns like Black Hawk and Central City in the 1890s. Today, these communities are the homes of limited-stakes gaming operations. However casino operators are discovering that having gold and silver underground in the form of tailings is not as desirable as collecting it aboveground in slot machines. A unique environmental engineering approach allowed construction of two new casinos and reclamation of the tailings, as well as cleanup of petroleum-saturated soils and groundwater. A treatment system was designed and constructed to treat groundwater at the Black Hawk site. The most economical alternative for disposing treated groundwater was to discharge it into nearby North Clear Creek. An NPDES permit was obtained requiring treatment of the groundwater for petroleum, heavy metals and pH before discharging it

  2. Groundwater and Distribution Workbook.

    Science.gov (United States)

    Ekman, John E.

    Presented is a student manual designed for the Wisconsin Vocational, Technical and Adult Education Groundwater and Distribution Training Course. This program introduces waterworks operators-in-training to basic skills and knowledge required for the operation of a groundwater distribution waterworks facility. Arranged according to the general order…

  3. Groundwater in Science Education

    Science.gov (United States)

    Dickerson, Daniel L.; Penick, John E.; Dawkins, Karen R.; Van Sickle, Meta

    2007-01-01

    Although clean, potable groundwater constitutes one of our most valuable resources, few students or science educators hold complete and appropriate understandings regarding the concept. Recent studies that focus on secondary students' and preservice science teachers' understandings of groundwater found little difference between the groups'…

  4. Basin wide Nitrate-Nitrogen pollution of groundwater, Miyakonojo, Japan, with the relation of the regional Groundwater flow system

    Science.gov (United States)

    Mikami, K.; Shimada, J.; Zikuzono, Y.

    2006-12-01

    Miyakonojo basin is well-known agriculture area in Southern Kyushu, Japan and highly depends on groundwater resources for their everyday use. Local unconfined groundwater aquifer is widely polluted by Nitrate-Nitrogen originated from agriculture. It will become serious problem if this unconfined Nitrate pollution enlarges into the confined aquifer system which is used for local city water source. However, the detailed groundwater flow system between unconfined and confined aquifer system has not been cleared yet. The detailed three dimensional groundwater flow system study has been done by using existing wells in a basin to understand the three dimensional distribution pattern of Nitrate-Nitrogen in the aquifer. The field sampling for unconfined, intermediate and confined groundwater was done in July, 2005 and February, 2006 for about 200 wells to analyze inorganic water chemistry, hydrogen / oxygen stable isotopes and tritium. For the unconfined groundwater, there exists clear difference for the groundwater flow pattern between the eastern and western basin, which is mostly affected by the surface topography. The unconfined groundwater flowed into the confined aquifer at the eastern part of a basin, while in the western part of a basin the unconfined groundwater on a plateau flowed into the confined aquifer somehow, but most part of the unconfined groundwater has been discharge out to small river valleys between plateaus. While for the confined groundwater, the topographic effect has been disappeared and basin scale groundwater flow from the basin margin toward the basin center is dominated. In the unconfined aquifer, basin wide distribution of Nitrate-Nitrogen content has been recognized and it is relatively higher in the western basin where the cattle farming are dominated. While in the confined aquifer, there are some high Nitrate-Nitrogen spots but do not have regional trend. It is considered that some part of the basin has not distributed the welded tuff

  5. Assessment of Groundwater Quality by Chemometrics.

    Science.gov (United States)

    Papaioannou, Agelos; Rigas, George; Kella, Sotiria; Lokkas, Filotheos; Dinouli, Dimitra; Papakonstantinou, Argiris; Spiliotis, Xenofon; Plageras, Panagiotis

    2016-07-01

    Chemometric methods were used to analyze large data sets of groundwater quality from 18 wells supplying the central drinking water system of Larissa city (Greece) during the period 2001 to 2007 (8.064 observations) to determine temporal and spatial variations in groundwater quality and to identify pollution sources. Cluster analysis grouped each year into three temporal periods (January-April (first), May-August (second) and September-December (third). Furthermore, spatial cluster analysis was conducted for each period and for all samples, and grouped the 28 monitoring Units HJI (HJI=represent the observations of the monitoring site H, the J-year and the period I) into three groups (A, B and C). Discriminant Analysis used only 16 from the 24 parameters to correctly assign 97.3% of the cases. In addition, Factor Analysis identified 7, 9 and 8 latent factors for groups A, B and C, respectively. PMID:27329059

  6. Flying Cities

    DEFF Research Database (Denmark)

    Ciger, Jan

    2006-01-01

    of providing a tangible correspondence between the two spaces. This interaction mean has proved to suit the artistic expression well but it also aims at providing anyone with a pleasant and stimulating feedback from speech activity, a new medium for creativity and a way to visually perceive a vocal...... performance. As the feedback we have received when presenting Flying Cities was very positive, our objective now is to cross the bridge between art and the potential applications to the rehabilitation of people with reduced mobility or for the treatment of language impairments....

  7. Water for cities

    International Nuclear Information System (INIS)

    Africa has entered the new Millennium with a sense of hope and renewed confidence. With widening and deepening of political reforms, economic liberalization and a strengthened civil society, an increasing number of African countries are striving towards economic recovery and sustainable development. But also Africa is a continent of paradox. Home to the world's longest river, the Nile, and the second largest freshwater lake, Lake Victoria. Africa has abundant water resources contributed by large rivers, vast stretches of wetlands and limited, but widely spread, groundwater. Yet only a limited number of countries are beneficiaries of this abundance. Fourteen African countries account for 80% of the total water available on the continent, while 12 of the countries together account for only 1% of water availability. Some 400 million people are estimated to be living in water-scarce condition today. Indeed my home country, Tanzania, claims over 40% of Africa's water resources from Lake Victoria, Lake Tanganaika and other major water bodies. Water in Africa is not only unfairly distributed by nature but, due to backward technology and underdevelopment, it remains also inadequately allocated by man. At the turn of the new Millennium, over 300 million people in Africa still do not have access to safe water. But perhaps nowhere is the challenge more complex and demanding than in the rapidly growing African cities. With an average growth rate of 5% per annum, Africa is the fastest urbanizing region in the world today. Between 1990 and 2020, in many of our life times, urban populations in Africa will rise fourfold from 138 to 500 million. The 'Water for African Cities Programme' is demonstrating, in seven African countries (Cote d'Ivoire, Ethiopia, Ghana, Kenya, Senegal, South Africa and Zambia), how to put in place an integrated urban water resource management strategy that could bring three key sectors -- urban, environment and water -- to work together. Tanzania is the

  8. Study on protection and reclamation for the groundwater resources in Busan area

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Ig-Hwan; Cho, Byong-Wook; Lee, Byung-Dae [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    This research was carried out to investigate the protection of contaminated groundwater and reclamation in the Pusan area. Groundwater Busan city is highly subjected to groundwater contamination due to its unfavorable geographical features; it is located in the estuaries of the Nakdong river, most of the urban area are composed of highlands, and the large population resides in the downhill. Heavy pumping and deterioration of groundwater are currently found to be significant compared to other major cities, resulting in shortage of water resources and contamination of groundwater. The first step of the research aims at investigating hydrogeological features which includes analysis of climate and hydrologic data, investigation of geology and structural pattern, acquisition of hydrological data, inspection of wells, measurement of groundwater level, analysis of water samples, investigation of groundwater contamination, isotope analysis, and monitoring water level by automated data logger to identify seawater intrusion. The second step is to simulate the two-dimensional flow model after construction of the database. Aside from this, abandoned wells were transformed into observation wells. An effort for remedy of contaminated groundwater was made and the water quality was constantly monitored to improve the deteriorated water to the drinking water. Kriging analysis and geostatistical analysis were carried out in order to verify the effect of seawater intrusion, showing that there is no clear evidence of seawater intrusion. Instead, it is clear that groundwater in the inland district was preferentially contaminated by pollutants originated from human activities. Based on the two-dimensional flow model, only 0.021 m{sup 3} may be allocated to each person a day from public wells for emergency. In order to ensure that protection and remediation of groundwater of the Busan area are able to accomplish, well-controlled management of aquifer systems needs to be maintained and

  9. Trends in groundwater quality in relation to groundwater age

    OpenAIRE

    de Visser, A.

    2009-01-01

    Groundwater is a valuable natural resource and as such should be protected from chemical pollution. Because of the long travel times of pollutants through groundwater bodies, early detection of groundwater quality deterioration is necessary to efficiently protect groundwater bodies. The aim of this work was to develop and improve tools to detect trends in groundwater quality considering the reactive transport of pollutants from the ground surface to the monitoring screen. The study area of th...

  10. Groundwater contamination in Japan

    Science.gov (United States)

    Tase, Norio

    1992-07-01

    Problems on groundwater contamination in Japan are briefly summarized in this paper. Although normal physical conditions in Japan restrict the possibilities of groundwater contamination, human activities are threatening groundwater resources. A survey by the Environment Agency of Japan showed nationwide spreading of organic substances, such as trichloroethylene as well as nitrogen compounds. Synthetic detergents have also been detected even in rural areas and in deep confined aquifers, although their concentrations are not as high. Public awareness of agrichemical or pesticides abuse, especially from golf courses, is apparent. Other problems such as nitrate-nitrogen, leachate from landfills, and the leaking of underground storage tanks are also discussed.

  11. Branding Cities, Changing Societies

    DEFF Research Database (Denmark)

    Ooi, Can-Seng

    Societal changes are seldom discussed in the literature on city branding. The time element is important because it highlights the fluctuating reality of society. The city brand message freezes the place but in fact, the city branding exercise is a continuous process. Society emerges too. City...... brands are supposed to accentuate the uniqueness of the city, be built from the bottom-up and reflect the city's identity. This paper highlights three paradoxes, pointing out that city branding processes can also make cities more alike, bring about societal changes and forge new city identities. A city...... branding campaign does not just present the city, it may change the city. The relationships between the branding exercise and the city are intertwined in the evolution of the place....

  12. Learning Cities as Healthy Green Cities: Building Sustainable Opportunity Cities

    Science.gov (United States)

    Kearns, Peter

    2012-01-01

    This paper discusses a new generation of learning cities we have called EcCoWell cities (Economy, Community, Well-being). The paper was prepared for the PASCAL International Exchanges (PIE) and is based on international experiences with PIE and developments in some cities. The paper argues for more holistic and integrated development so that…

  13. Saline groundwater in crystalline bedrock

    International Nuclear Information System (INIS)

    The State-of-art report describes research made on deep saline groundwaters and brines found in crystalline bedrock, mainly in site studies for nuclear waste disposal. The occurrence, definitions and classifications of saline groundwaters are reviewed with a special emphasis on the different theories concerning the origins of saline groundwaters. Studies of the saline groundwaters in Finland and Sweden have been reviewed more thoroughly. Also the mixing of different bodies of groundwaters, observations of the contact of saline groundwaters and permafrost, and the geochemical modelling of saline groundwaters as well as the future trends of research have been discussed. (orig.)

  14. Evidence and implications of groundwater mining in the Lusaka urban aquifers

    Science.gov (United States)

    Mpamba, N. H.; Hussen, A.; Kangomba, S.; Nkhuwa, D. C. W.; Nyambe, I. A.; Mdala, C.; Wohnlich, S.; Shibasaki, N.

    The Lusaka Plateau hosts some of the most productive karstic carbonate aquifers, which are historically a dependable water supply source for the city of Lusaka. While it has been an important and cheap groundwater source for various users, the schist aquifer on the other hand compliments the supply. The present and future water demand pose the greatest challenge for the Lusaka city aquifers and is recognised to be the reason for high private prospecting for groundwater as a result of the ever increasing demand. Lusaka Water and Sewerage Company (LWSC), the water utility company responsible for water supply to the city, abstracts about 50% of its water requirements from aquifers in the Lusaka urban and adjacent areas. Current abstraction is estimated to be in the range of 50.265 × 10 6-65.385 × 10 6 m 3 year -1, which is already well over the annual recharge of 45.44 × 10 6 m 3 year -1 at 8% of the annual rainfall. However, groundwater resources availability in terms of quantity, quality, as well as annual recharge, and recharge mechanisms have been more difficult to establish largely due to inadequate hydrogeological data. Although the recharge values are on record, these vary widely from 8% to 35% of the annual rainfall. Recent monitoring of groundwater levels shows evidence of groundwater mining that is reflected by a steady decline of groundwater table during the dry months. Preliminary observations suggest that the main recharge area south of Lusaka city offers dilution effect to groundwater recharged from other parts of the city where anthropogenic influences are significant. Continued groundwater monitoring is recommended so that the resource is managed effectively and sustainably for the social and economic benefit of Zambia.

  15. Groundwater and Ecosystems

    OpenAIRE

    Ribeiro, Luís; Stigter, Tibor; Chambel, António; Condesso de Melo, Maria Teresa; Monteiro, José Paulo; Medeiros, Albino

    2013-01-01

    Scientific contributions in 24 chapters of authors of different parts of the World, with great diversity of areas and investigation topics on the important temathic of groundwater and its dependent ecosystems.

  16. Groundwater Capture Zones

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Source water protection areas are delineated for each groundwater-based public water supply system using available geologic and hydrogeologic information to...

  17. Human health and groundwater

    OpenAIRE

    Candela Lledó, Lucila

    2016-01-01

    Strategic overview series of the International Association of Hydrogeologists-IAH. This Series is designed both to inform professionals in other sectors of key interactions with groundwater resources and hydrogeological science, and to guide IAH members in their outreach to related sectors. The naturally high microbiological and chemical quality of groundwater, captured at springheads and in shallow galleries and dugwells, has been vital for human survival, wellbeing and development from o...

  18. Humic substances in groundwater

    International Nuclear Information System (INIS)

    Humic substances and their importance in groundwater is shortly outlined. A description of a method for isolating humic substances from groundwater in the field and for further characterisation is being tested with commercial humic acid (Aldrich), as well as gel-permeation method for determining the molecular weight. bedrock, it affords the opportunity of studying the stability and alteration of uraninite as an analogue for spent nuclear fuel under various redox conditions. (orig.) (6 refs.)

  19. The Economics of Groundwater

    OpenAIRE

    James Roumasset; Christopher Wada

    2012-01-01

    We provide a synthesis of the economics of groundwater with a focus on optimal management and the Pearce equation for renewable resources. General management principles developed through the solution of a single aquifer optimization problem are extended to the management of multiple resources including additional groundwater aquifers, surface water, recycled wastewater, and upland watersheds. Given an abundant (albeit expensive) substitute, optimal management is sustainable in the long run. W...

  20. Pittsburgh City Facilities

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Pittsburgh City FacilitiesIncludes: City Administrative Buildings, Police Stations, Fire Stations, EMS Stations, DPW Sites, Senior Centers, Recreation Centers,...

  1. Applications of Groundwater Helium

    Science.gov (United States)

    Kulongoski, Justin T.; Hilton, David R.

    2011-01-01

    Helium abundance and isotope variations have widespread application in groundwater-related studies. This stems from the inert nature of this noble gas and the fact that its two isotopes ? helium-3 and helium-4 ? have distinct origins and vary widely in different terrestrial reservoirs. These attributes allow He concentrations and 3He/4He isotope ratios to be used to recognize and quantify the influence of a number of potential contributors to the total He budget of a groundwater sample. These are atmospheric components, such as air-equilibrated and air-entrained He, as well as terrigenic components, including in situ (aquifer) He, deep crustal and/or mantle He and tritiogenic 3He. Each of these components can be exploited to reveal information on a number of topics, from groundwater chronology, through degassing of the Earth?s crust to the role of faults in the transfer of mantle-derived volatiles to the surface. In this review, we present a guide to how groundwater He is collected from aquifer systems and quantitatively measured in the laboratory. We then illustrate the approach of resolving the measured He characteristics into its component structures using assumptions of endmember compositions. This is followed by a discussion of the application of groundwater He to the types of topics mentioned above using case studies from aquifers in California and Australia. Finally, we present possible future research directions involving dissolved He in groundwater.

  2. Cities, Towns and Villages - City Limit (polygon)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Data available online through GeoStor at http://www.geostor.arkansas.gov. Arkansas Cities: This data set contains all of the city limit boundaries within the state...

  3. Sister Cities Flourish

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Building sister city relation,also known as friendsh ip city,is a common channel for cities in different countries to keep a closer tie and communication.According to the statistics from China International Friendship Cities Association,up to the end of 2007,1087 provinces and states and 314 cities from 120 countries in the world have found their sister cities in China.Among them,Japan has the largest amount of Chinese sister cities,that is 200 provinces and 33 cities,and takes up almost 17 percent of the total number.

  4. City positioning theories and city core competencies

    Institute of Scientific and Technical Information of China (English)

    Xinquan; Zhu

    2007-01-01

    Gity positioning The Chinese city in a decision develops the topic of the destiny. Since the 90's of 20 centuries, the economic integral and globalization developed rapidly. The development make national boundary become not so important, the function of the city is increasingly outstanding. In other words, national competition ability is morally now on the city competition ability. At the same time, this development result that the industry is divided internationally and is divided in cities. Therefore, under the condition of globalization, if the city wants the superior development, it must take advantages and avoid shortage, to position the city accurately, establish the competition and development the strategy. The city positioning is clearly defined the city competition ability, more important it indicated the direction of the city development. Trough the analysis of the resource and environment of the city, decide an accurate position of the best function of the city, well configure the inner and outside resource, catch the opportunities,face the challenges, maximized the market share in order to maximized the wealth and city competition ability.

  5. Assessment of aquifer system in the city of Lahore, Pakistan using isotopic techniques

    International Nuclear Information System (INIS)

    Isotopic and geochemical techniques were applied to assess the groundwater replenishment mechanism, pollution levels and pollution sources in the city of Lahore, the second largest city of Pakistan where water supply has been based on the abstraction of groundwater. Isotopic and chemical data indicates that groundwater has major contribution from the river water up to the center of the city while at remaining locations it seems base-flow recharged by rains of distant area or mixed recharge from river and rains. In case of shallow groundwater, different local sources like irrigation canals, sewerage drains, local rain and maybe the leaking main supply lines also contribute. High tritium values of deep groundwater fed by river show its quick movement up to 8-10 Km. Deep groundwater in the adjacent area towards the center of the city, although fed by the river shows residence time of about 45 years. Recharge to shallow aquifer is generally quick as most of the sampling locations have high tritium values. Chemical data shows that groundwater is mainly of sodium bicarbonate and calcium bicarbonate type. The infiltrating river water is of calcium bicarbonate type which changes to sodium bicarbonate type at few kilometers away from the river due to cation exchange and calcite precipitation processes. Water quality was assessed for drinking purpose and it was noted that concentrations of several parameters exceed the norms of good quality drinking water in case of shallow groundwater. This study clearly indicated an increasing trend of groundwater nitrate concentrations. δ15N values of high nitrate waters reveal the localized pollution from sewerage drains. Bacterial contamination of groundwater especially at locations near the drains also proves the penetration of urban recharge from sewerage drains. (author)

  6. Urbanization effect on groundwater quality (Paleohydrogeological study)

    Science.gov (United States)

    Sabri, Raghid; Merkel, Broder; Tichomirowa, Marion

    2015-04-01

    Speleothem growing in caves usually contain hydrological information. Carbonates precipitation growing in tunnels under cities contain information about anthropological influence on water system. Carbonate samples were taken from Roman tunnels in rural and urban area in Nablus district- Palestine. These laminated samples were analyzed for rare earth elements (REE), 13C and 18O. For REE, five samples were examined, each lamination was extracted and diluted with 0.1 ml 65% HNO3 and measured using ICP-MS. Yet, limited number of lamination was used for isotope analysis using Isotope ratio mass spectrometry. Total concentration of rare earth elements were calculated for each of the five samples. In all examined samples, the newer laminations show higher peaks than the older one of each sample. On the other hand, one sample (8 measurements) of 13C show values between -31.6° and -36°. These values mean that the carbonate is from organic origin. In an urban area, wastewater infiltration into groundwater system can be the source of organic matter. 18O measurements show continues enrichments within the growth of the carbonate. This increase of the 18O values reflects drier weather. Our results can be explained by the increase of water consumption in the household in the recent 100 years, rather than the increase of using detergents and cleaning products which have influenced groundwater quality as appeared in the carbonate samples. On the other hand, 18O results could be linked with the expansion of the building up area in the city and subsequently reduction of groundwater recharge

  7. Internet Portal For A Distributed Management of Groundwater

    Science.gov (United States)

    Meissner, U. F.; Rueppel, U.; Gutzke, T.; Seewald, G.; Petersen, M.

    The management of groundwater resources for the supply of German cities and sub- urban areas has become a matter of public interest during the last years. Negative headlines in the Rhein-Main-Area dealt with cracks in buildings as well as damaged woodlands and inundated agriculture areas as an effect of varying groundwater levels. Usually a holistic management of groundwater resources is not existent because of the complexity of the geological system, the large number of involved groups and their divergent interests and a lack of essential information. The development of a network- based information system for an efficient groundwater management was the target of the project: ?Grundwasser-Online?[1]. The management of groundwater resources has to take into account various hydro- geological, climatic, water-economical, chemical and biological interrelations [2]. Thus, the traditional approaches in information retrieval, which are characterised by a high personnel and time expenditure, are not sufficient. Furthermore, the efficient control of the groundwater cultivation requires a direct communication between the different water supply companies, the consultant engineers, the scientists, the govern- mental agencies and the public, by using computer networks. The presented groundwater information system consists of different components, especially for the collection, storage, evaluation and visualisation of groundwater- relevant information. Network-based technologies are used [3]. For the collection of time-dependant groundwater-relevant information, modern technologies of Mobile Computing have been analysed in order to provide an integrated approach in the man- agement of large groundwater systems. The aggregated information is stored within a distributed geo-scientific database system which enables a direct integration of simu- lation programs for the evaluation of interactions in groundwater systems. Thus, even a prognosis for the evolution of groundwater states

  8. Redox potential of shallow groundwater by 1-month continuous in situ potentiometric measurements

    Science.gov (United States)

    Ioka, Seiichiro; Muraoka, Hirofumi; Suzuki, Yota

    2016-06-01

    One-month continuous in situ potentiometric measurements of redox potential (Eh) were used to investigate the dominant redox processes in the shallow groundwater (i.e., fit was found between measured Eh values and Eh values calculated using thermodynamic data of fine-grained goethite. This suggests that Fe redox system is related to the Eh values of shallow groundwater in the Aomori City aquifer.

  9. A Regular City

    OpenAIRE

    Arina Sharavina

    2015-01-01

    The article describes the first plans of Chita, which served as the basis for the city development. It presents contribution to the city history made by the Decembrist Dmiry Zavalishin’s, who was the first author of the city development plan. Peculiarities of the quarter development of the realized city plan are also presented.

  10. Water changed the cities

    DEFF Research Database (Denmark)

    Elle, Morten; Jensen, Marina Bergen

    An improvement in water infrastructure and cleaning up the waters changed many harbour cities in Denmark at the beginning of the 90s. The harbour cities changed from drity, run-down industrial harbours to clean and attractive harbour dwelling creating new city centres and vital city areas...

  11. Belgrade waterworks groundwater source

    International Nuclear Information System (INIS)

    Paper deals with Belgrade Waterworks groundwater source, its characteristics, conception of protection programme, contaminations on source and with parameters of groundwater quality degradation. Groundwaters present natural heritage with their strategic and slow renewable natural resources attributes, and as such they require priority in protection. It is of greatest need that existing source is to be protected and used optimally for producing quality drinkable water. The concept of source protection programme should be based on regular water quality monitoring, identification of contaminators, defining areas of their influences on the source and their permanent control. However, in the last 10 years, but drastically in the last 3, because of the overall situation in the country, it is very characteristic downfall in volume of business, organisation and the level of supply of the technical equipment

  12. The variation of calcium, magnesium, sodium, potassium and bicarbonate concentration, pH and conductivity in groundwater of Karachi region

    International Nuclear Information System (INIS)

    Groundwater in Karachi is influenced mainly by the evaporation / crystallization process as expressed by the Na/(Na+Ca) weight concentration ratio. The high coefficient of determined between conductivity and total dissolved ions concentration in meq/sup -1/ revealed that major ions affect the conductivity of groundwater. It was also found that groundwater quality with respect to cations is not significantly influenced by geology, particularly in the Urban are of the city, where the 90% of the population resides. The relationship between conductivity and bicarbonate concentration shows that supersaturation of groundwater with carbon dioxide is responsible for general depression of pH. (author)

  13. DS796 California Groundwater Units

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The California Groundwater Units dataset classifies and delineates the State into one of three groundwater based polygon units: (1) those areas defined as alluvial...

  14. Groundwater in Urban Development : Assessing Management Needs & Formulating Policy Strategies

    OpenAIRE

    Foster, Stephen; Lawrence, Adrian; Morris, Brian

    2008-01-01

    People have clustered at the water's edge throughout civilization for the most fundamental of reasons: without water there is no life. Every major city in the world has a body of water or aquifer nearby, since rivers and lakes predetermined where people would gather and dwell, groundwater constitutes about 98 percent of the fresh water on our planet (excepting that captured in the polar ic...

  15. A groundwater management plan for Stuttgart.

    Science.gov (United States)

    Vasin, Sandra; Carle, Achim; Lang, Ulrich; Kirchholtes, Hermann Josef

    2016-09-01

    In general, groundwater in urban areas is exposed to anthropogenic influence and suffers from concentrations of contaminants. Stuttgart, as a highly industrialized city, has more than 5000 contaminated sites which might influence the Stuttgart's mineral water quality. Despite tremendous efforts and intensive single site orientated remediation since 1984 in downtown, the mineral springs were still affected with chlorinated hydrocarbons at low concentrations. Therefore, the applied practices of environmental management and measures for mitigation of pollution sources were not sufficient and had to be adjusted. The main goal of this study is to define an integral remediation plan (a groundwater management plan), focusing on the key sources of chlorinated solvents which are relevant for the mineral springs. For the large-scale investigated area of 26.6km(2) and eight aquifers, an extensive investigation and characterization methods were used in order to delineate the contamination plumes. By means of a 3D numerical model, the prioritization of the contaminated sites could be performed. Five contaminated sites with high remediation priority and need for optimized or additional remediation efforts were determined. For those five contaminated sites feasibility studies were performed which resulted in recommendation of remediation measures with total costs of more than 12.5 million euros. The proposed strategy and approach are suitable for multiple sources of contamination. Only in this way, the contributions of single contaminated sites to the total groundwater contamination can be identified and local remediation measures with their spatial impact simulated. Due to very complex geological conditions, technically there is no alternative to this strategy in order to achieve the contamination reduction in groundwater. PMID:26524995

  16. In situ groundwater bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2009-02-01

    In situ groundwater bioremediation of hydrocarbons has been used for more than 40 years. Most strategies involve biostimulation; however, recently bioaugmentation have been used for dehalorespiration. Aquifer and contaminant profiles are critical to determining the feasibility and strategy for in situ groundwater bioremediation. Hydraulic conductivity and redox conditions, including concentrations of terminal electron acceptors are critical to determine the feasibility and strategy for potential bioremediation applications. Conceptual models followed by characterization and subsequent numerical models are critical for efficient and cost effective bioremediation. Critical research needs in this area include better modeling and integration of remediation strategies with natural attenuation.

  17. Stable isotope and groundwater flow dynamics of agricultural irrigation recharge into groundwater resources of the Central Valley, California

    International Nuclear Information System (INIS)

    Intensive agricultural irrigation and overdraft of groundwater in the Central Valley of California profoundly affect the regional quality and availability of shallow groundwater resources. In the natural state, the δ18O values of groundwater were relatively homogeneous (mostly -7.0 ± 0.5 per-thousand), reflecting local meteoric recharge that slowly (1-3m/yr) flowed toward the valley axis. Today, on the west side of the valley, the isotope distribution is dominated by high 18O enclosures formed by recharge of evaporated irrigation waters, while the east side has bands of low 18O groundwater indicating induced recharge from rivers draining the Sierra Nevada mountains. Changes in δ18O values caused by the agricultural recharge strongly correlate with elevated nitrate concentrations (5 to >100 mg/L) that form pervasive, non-point source pollutants. Small, west-side cities dependent solely on groundwater resources have experienced increases of >1.0 mg/L per year of nitrate for 10-30 years. The resultant high nitrates threaten the economical use of the groundwater for domestic purposes, and have forced some well shut-downs. Furthermore, since >80% of modern recharge is now derived from agricultural irrigation, and because modern recharge rates are ∼10 times those of the natural state, agricultural land retirement by urbanization will severely curtail the current safe-yields and promote overdraft pumping. Such overdrafting has occurred in the Sacramento metropolitan area for ∼40 years, creating cones of depression ∼25m deep. Today, groundwater withdrawal in Sacramento is approximately matched by infiltration of low 18O water (-11.0 per-thousand) away from the Sacramento and American Rivers, which is estimated to occur at 100-300m/year from the sharp 18O gradients in our groundwater isotope map

  18. Groundwater: A Community Action Guide.

    Science.gov (United States)

    Boyd, Susan, Ed.; And Others

    Designed to be a guide for community action, this booklet examines issues and trends related to groundwater contamination. Basic concepts about groundwater and information about problems affecting it are covered under the categories of (1) what is groundwater? (2) availability and depletion; (3) quality and contamination; (4) public health…

  19. Kenya Groundwater Governance Case Study

    OpenAIRE

    Mumma, Albert; Lane, Michael; Kairu, Edward; Tuinhof, Albert; Hirji, Rafik

    2011-01-01

    This report presents a case study on groundwater governance in Kenya. The objectives of the study were to: (a) describe groundwater resource and socioeconomic settings for four selected aquifers; (b) describe governance arrangements for groundwater management in Kenya; and (c) identify the relevance of these arrangements for planning and implementing climate change mitigation measures. The ...

  20. AN IN-SITU PERMEABLE REACTIVE BARRIER FOR THE TREATMENT OF HEXAVALENT CHROMIUM AND TRICHLOROETHYLENE IN GROUNDWATER: VOLUME 3 MULTICOMPONENT REACTIVE TRANSPORT MODELING

    Science.gov (United States)

    Reactive transport modeling has been conducted to describe the performance of the permeable reactive barrier at the Coast Guard Support Center near Elizabeth City, NC. The reactive barrier was installed to treat groundwater contaminated by hexavalent chromium and chlorinated org...

  1. Characteristics of chemistry and stable isotopes in groundwater of the Chaobai River catchment, Beijing

    Energy Technology Data Exchange (ETDEWEB)

    Li, J. [Key Laboratory of Engineering Geomechanics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, J.; Wang, X. [Hydrogeology and Engineering Geology Team of Beijing, Beijing 100037 (China); Pang, Z. [Key Laboratory of Engineering Geomechanics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029 (China)

    2013-07-01

    Environmental isotopes and chemical compositions are useful tools for the study of groundwater flow systems. Groundwater of the Chaobai River catchment, Beijing was sampled for chemical and stable isotopes analyses in 2005. Geochemical signatures evolve progressively from CaMg-HCO{sub 3} to NaK-HCO{sub 3}, and then to Na-HCO{sub 3} compositions as groundwater flows from the mountain to discharge areas. Groundwater can be divided into two groups on the basis of stable isotope compositions: ancient groundwater and modern groundwater. Modern groundwater (-9.90/00 to -6.60/00 for δ{sup 18}O) plots along a line with a slope of 4.0 on a δ{sup 2}H versus δ{sup 18}O diagram, reflecting evaporation during the process of recharge, whereas ancient groundwater samples (30 to 12 Ka.) are different in isotopic composition (-11.00/00 and -68.20/00 for δ{sup 18}O and δ{sup 2}H, respectively), reflecting the cold and arid climate in the last glacial period. The results have important implications for groundwater management in Beijing City. (authors)

  2. Characteristics of chemistry and stable isotopes in groundwater of the Chaobai River catchment, Beijing

    International Nuclear Information System (INIS)

    Environmental isotopes and chemical compositions are useful tools for the study of groundwater flow systems. Groundwater of the Chaobai River catchment, Beijing was sampled for chemical and stable isotopes analyses in 2005. Geochemical signatures evolve progressively from CaMg-HCO3 to NaK-HCO3, and then to Na-HCO3 compositions as groundwater flows from the mountain to discharge areas. Groundwater can be divided into two groups on the basis of stable isotope compositions: ancient groundwater and modern groundwater. Modern groundwater (-9.90/00 to -6.60/00 for δ18O) plots along a line with a slope of 4.0 on a δ2H versus δ18O diagram, reflecting evaporation during the process of recharge, whereas ancient groundwater samples (30 to 12 Ka.) are different in isotopic composition (-11.00/00 and -68.20/00 for δ18O and δ2H, respectively), reflecting the cold and arid climate in the last glacial period. The results have important implications for groundwater management in Beijing City. (authors)

  3. Isotopic characteristics of groundwater in Changzhou, Wuxi and Suzhou area and their implications

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on the study of groundwater isotope(2H and 18O, 34S, 15N, 3H, 14C) in Changzhou, Wuxi and Suzhou area, it is found that the deep confined groundwater has no pollution on the whole, whereas the shallow groundwater is polluted to a different degree in the area. The deep confined aquifers (main exploitation aquifers) in Changzhou area and in Wuxi and Suzhou area likely belong to two different aquifers. The main exploitation aquifers in Changzhou area are not connected with those in Wuxi and Suzhou area, or they are connected but not expedited. The lateral run-off of groundwater is at present directed to the exploitation center because of overexploitation of the deep groundwater for a long time, but the flowing speed of groundwater is still extremely slow. The deep confined groundwater is in a close to half close state. The 14C age of groundwater varies from 10000 a BP to 38000 a BP, with the oldest groundwater found at the nearest exploitation center (along the line of three cities of Changzhou, Wuxi and Suzhou) and the youngest at the furthest exploitation center.

  4. Isotopic characteristics of groundwater in Changzhou, Wuxi and Suzhou area and their implications

    Institute of Scientific and Technical Information of China (English)

    JIANG YueHua; JIA JunYuan; XU NaiZhen; WANG JingDong; KANG XiaoJun

    2008-01-01

    Based on the study of groundwater isotope(2H and 18O, 34S, 15N, 3H, 14O) in Changzhou, Wuxi and Suzhou area, it is found that the deep confined groundwater has no pollution on the whole, whereas the shallow groundwater is polluted to a different degree in the area. The deep confined aquifers (main exploitation aquifers) in Changzhou area and in Wuxi and Suzhou area likely belong to two different aquifers. The main exploitation aquifers in Changzhou area are not connected with those in Wuxi and Suzhou area, or they are connected but not expedited. The lateral run-off of groundwater is at present directed to the exploitation center because of overexploitation of the deep groundwater for a long time, but the flowing speed of groundwater is still extremely slow. The deep confined groundwater is in a close to half close state. The 140 age of groundwater varies from 10000 a BP to 38000 a BP, with the oldest groundwater found at the nearest exploitation center (along the line of three cities of Changzhou, Wuxi and Suzhou) and the youngest at the furthest exploitation center.

  5. Superfund Record of Decision (EPA Region 9): Modesto Groundwater Contamination, Modesto, CA, September 26, 1997

    International Nuclear Information System (INIS)

    This decision document presents the selected interim remedial action (IRA) for the Modesto Ground Water Contamination Site in Modesto, Stanislaus County, California. The primary components of the selected remedy include groundwater extraction, groundwater treatment by air stripping with carbon adsorption, discharge of treated groundwater to the City of Modesto's water system, and soil vapor extraction (SVE) followed by carbon adsorption. The selected alternative is expected to remove a substantial portion of dissolved PCE from the groundwater. EPA will be monitoring the downgradient edge of the plume to determine if the remaining PCE would be removed through natural attenuation. If necessary to comply with discharge requirements, extracted groundwater will also be treated using an ion exchange unit to remove naturally occurring uranium

  6. Hanford Sitewide Groundwater Remediation Strategy. Groundwater Contaminant Predictions

    International Nuclear Information System (INIS)

    The DOE and other signatories of the Tri-Party Agreement recognized that the complexity of the groundwater cleanup necessitated the development of a Hanford Sitewide Groundwater Remediation Strategy to guide the effort and the Groundwater Protection Management Plan to help coordinate and manage the program. The groundwater remediation and associated technology development activities are directly related to the initial approach to groundwater remediation as defined in the Strategy. Active projects to remediate groundwater are ongoing in the 200 Areas for uranium, technetium-99, and organics, and in the 100 Area for chromium and strontium-90.It was also recognized that final remediation decisions needed information collected from field activities and predictions of groundwater conditions over time. Field-scale remediation will define the effectiveness of the selected approaches in Hanford geohydrologic conditions. Future predictions will be used to define the scope of the remediation effort needed to meet specific water quality or risk-based numerical goals

  7. Groundwater-surface water interaction

    International Nuclear Information System (INIS)

    This chapter discusses natural and modified interactions between groundwater and surface water. Theory on recharge to groundwater from rivers is introduced, and the relative importance of groundwater recharge from rivers is illustrated with an example from the Ngaruroro River, Hawke's Bay. Some of the techniques used to identify and measure recharge to groundwater from gravel-bed rivers will be outlined, with examples from the Ngaruroro River, where the recharge reach is relatively well defined, and from the Rakaia River, where it is poorly defined. Groundwater recharged from rivers can have characteristic chemical and isotopic signatures, as shown by Waimakariri River water in the Christchurch-West Melton groundwater system. The incorporation of groundwater-river interaction in a regional groundwater flow model is outlined for the Waimea Plains, and relationships between river scour and groundwater recharge are examined for the Waimakariri River. Springs are the result of natural discharge from groundwater systems and are important water sources. The interactions between groundwater systems, springs, and river flow for the Avon River in New Zealand will be outlined. The theory of depletion of stream flow by groundwater pumpage will be introduced with a case study from Canterbury, and salt-water intrusion into groundwater systems with examples from Nelson and Christchurch. The theory of artificial recharge to groundwater systems is introduced with a case study from Hawke's Bay. Wetlands are important to flora, and the relationship of the wetland environment to groundwater hydrology will be discussed, with an example from the South Taupo wetland. (author). 56 refs., 25 figs., 3 tabs

  8. Hanford Groundwater Remediation

    International Nuclear Information System (INIS)

    By 1990 nearly 50 years of producing plutonium put approximately 1.70 E+12 liters (450 billion gallons) of liquid wastes into the soil of the 1,518-square kilometer (586-square mile) Hanford Site in southeast Washington State. The liquid releases consisted of chemicals used in laboratory experiments, manufacturing and rinsing uranium fuel, dissolving that fuel after irradiation in Hanford's nuclear reactors, and in liquefying plutonium scraps needed to feed other plutonium-processing operations. Chemicals were also added to the water used to cool Hanford's reactors to prevent corrosion in the reactor tubes. In addition, water and acid rinses were used to clean plutonium deposits from piping in Hanford's large radiochemical facilities. All of these chemicals became contaminated with radionuclides. As Hanford raced to help win World War II, and then raced to produce materials for the Cold War, these radioactive liquid wastes were released to the Site's sandy soils. Early scientific experiments seemed to show that the most highly radioactive components of these liquids would bind to the soil just below the surface of the land, thus posing no threat to groundwater. Other experiments predicted that the water containing most radionuclides would take hundreds of years to seep into groundwater, decaying (or losing) most of its radioactivity before reaching the groundwater or subsequently flowing into the Columbia River, although it was known that some contaminants like tritium would move quickly. Evidence today, however, shows that many contaminants have reached the Site's groundwater and the Columbia River, with more on its way. Over 259 square kilometers (100 square miles) of groundwater at Hanford have contaminant levels above drinking-water standards. Also key to successfully cleaning up the Site is providing information resources and public-involvement opportunities to Hanford's stakeholders. This large, passionate, diverse, and geographically dispersed community is

  9. HANFORD GROUNDWATER REMEDIATION

    Energy Technology Data Exchange (ETDEWEB)

    CHARBONEAU, B; THOMPSON, M; WILDE, R.; FORD, B.; GERBER, M.S.

    2006-02-01

    By 1990 nearly 50 years of producing plutonium put approximately 1.70E + 12 liters (450 billion gallons) of liquid wastes into the soil of the 1,518-square kilometer (586-square mile) Hanford Site in southeast Washington State. The liquid releases consisted of chemicals used in laboratory experiments, manufacturing and rinsing uranium fuel, dissolving that fuel after irradiation in Hanford's nuclear reactors, and in liquefying plutonium scraps needed to feed other plutonium-processing operations. Chemicals were also added to the water used to cool Hanford's reactors to prevent corrosion in the reactor tubes. In addition, water and acid rinses were used to clean plutonium deposits from piping in Hanford's large radiochemical facilities. All of these chemicals became contaminated with radionuclides. As Hanford raced to help win World War II, and then raced to produce materials for the Cold War, these radioactive liquid wastes were released to the Site's sandy soils. Early scientific experiments seemed to show that the most highly radioactive components of these liquids would bind to the soil just below the surface of the land, thus posing no threat to groundwater. Other experiments predicted that the water containing most radionuclides would take hundreds of years to seep into groundwater, decaying (or losing) most of its radioactivity before reaching the groundwater or subsequently flowing into the Columbia River, although it was known that some contaminants like tritium would move quickly. Evidence today, however, shows that many contaminants have reached the Site's groundwater and the Columbia River, with more on its way. Over 259 square kilometers (100 square miles) of groundwater at Hanford have contaminant levels above drinking-water standards. Also key to successfully cleaning up the Site is providing information resources and public-involvement opportunities to Hanford's stakeholders. This large, passionate, diverse, and

  10. Characterizing the regional pattern and temporal change of groundwater levels by analyses of a well log data set

    Institute of Scientific and Technical Information of China (English)

    Mahmuda PARVIN; Naoyuki TADAKUMA; Hisafumi ASAUE; Katsuaki KOIKE

    2011-01-01

    Preservation of the amount and quality of groundwater resources is an important issue around the world.Changes in groundwater levels need to be monitored in efforts to preserve groundwater.This study investigates suitable methods to characterize changes in the groundwater level and determine the factors involved.The area of Kumamoto,a city in central Kyushu,southwest Japan,was selected to demonstrate the usefulness of the methods because this area is one of the richest in Japan in terms of groundwater resources and takes all its water from groundwater.Data of the groundwater level recorded at 69 wells from 1979 to 2007 were used in geostatistical and correlogram analyses.First,strong correlation between the topography and groundwater level was identified.Incorporating this correlation into spatial modeling of the groundwater level,co-kriging was demonstrated to be more accurate than ordinary kriging.The co-kriging results clarified the hydraulic characteristics of the Kumamoto area; the patterns of shallow and deep groundwater levels were agreeable generally,and the general trends of their annual average levels were similar regardless of precipitation.Another important feature was that the correlograms for the precipitation amount and groundwater level had a constant shape and changed smoothly with a change in lag time regardless of the precipitation only in the area of Togawa lava.These characteristics are probably due to the connections between shallow and deep aquifers and the high permeability of Togawa lava.

  11. Cities and Countries

    OpenAIRE

    Andrew K. Rose

    2005-01-01

    If one ranks cities by population, the rank of a city is inversely related to its size, a well-documented phenomenon known as Zipf's Law. Further, the growth rate of a city's population is uncorrelated with its size, another well-known characteristic known as Gibrat's Law. In this paper, I show that both characteristics are true of countries as well as cities; the size distributions of cities and countries are similar. But theories that explain the size-distribution of cities do not obviously...

  12. Impact of groundwater use as heat energy on coastal ecosystem and fisheries

    Science.gov (United States)

    Taniguchi, Makoto

    2016-04-01

    Demands for groundwater as a heat energy source to melt snow is increasing in many coastal snowy areas in Japan because of the lack of laborers for snow removal and the abundance of groundwater resources. The temperature of groundwater is relatively higher in winter than that of the air and river water, therefore it is a useful heat source to melt snow. However, groundwater is also beneficial for the coastal ecosystem and fishery production because of the nutrient discharge by submarine groundwater discharge (SGD), which is one of the water and dissolved material pathways from land to the ocean. Therefore, groundwater is involved in the tradeoff and management conflict existing between energy and food (fisheries). In this study, the impact of groundwater, used as a heat energy source for the melting of snow accumulated on roads, on the coastal ecosystem and fisheries has been analyzed in the snowy areas of Obama City, Fukui Prefecture, Japan. Positive correlation has been found between primary production rates in Obama Bay and radon concentrations which show the magnitude of the submarine groundwater discharge. Therefore, the increase in groundwater pumping on land reduces fishery production in the ocean. Results of 3D numerical simulations of the basin scale groundwater model show a reduction of SGD by 5 percent due to an increase in groundwater pumping by 1.5 times. This reduction of SGD caused a 3.7 ton decrease in fishery production under the aforementioned assumptions. The groundwater-energy-fishery nexus was found in Obama Bay, Japan and the tradeoff between water and food was evaluated.

  13. Tracing sources of nitrate in groundwater by using hydro-chemical and isotopic methods: Beirut region and its suburbs

    International Nuclear Information System (INIS)

    Analyses of hydrochemical and stable isotopes of 2H and 18O were conducted on groundwater samples collected in Beirut city and its suburbs and tapped in a limestone aquifer. The analyses were done to document the chemical and isotopic characters of the natural groundwater and to determine its origin. Hydrochemical data are classified on the basis of dominant anions. Mineral groundwater quality was found affected by different pollution sources in the southern suburb of Beirut. Isotopic analyses delineate two major groups of groundwater. The first group is directly influenced by direct recharge into the aquifer from precipitation. The second group, showing elevated mineral characteristics, is influenced by a secondary evaporation process reflecting an isotopic enrichment in groundwater. δ15N investigation of the isotopically enriched samples determines the origin of nitrate pollution from either infiltration of animal waste or septic systems to groundwater. (author)

  14. The challenges of water governance in Ho Chi Minh City.

    Science.gov (United States)

    van Leeuwen, Cornelis J; Dan, Nguyen P; Dieperink, Carel

    2016-04-01

    Population growth, urbanization, pollution, and climate change pose urgent water challenges in cities. In this study, the sustainability of integrated water resources management in Ho Chi Minh City (HCMC) was evaluated using the City Blueprint approach. The City Blueprint is a set of 24 dedicated indicators divided over 8 categories (i.e., water security, water quality, drinking water, sanitation, infrastructure, climate robustness, biodiversity and attractiveness, and governance including public participation). The analysis showed that the rapid increase of water use for urban, industrial, and agricultural activities in HCMC has resulted in depletion of groundwater and severe pollution of both groundwater and surface water. Surface water quality, groundwater quality, biodiversity, and the sanitation of domestic and industrial wastewater are matters that need serious improvement. Current and future water supply in HCMC is at risk. HCMC can cope with it, but the 7 governance gaps as described by the Organisation for Economic Co-operation and Development (OECD) are major obstacles for HCMC. Rainwater harvesting, pollution reduction, as well as wastewater reuse are among the practical options. Wastewater reuse could lower the water stress index to 10%. The window to do this is narrow and rapidly closing as a result of the unprecedented urbanization and economic growth of this region. PMID:26009880

  15. Development of Groundwater Modeling Capacity in Mongolia: Keys to Success

    Science.gov (United States)

    Anderson, M. T.; Valder, J. F.; Carter, J. M.

    2015-12-01

    Ulaanbaatar, the capital city of Mongolia, is totally dependent on groundwater for its municipal and industrial water supply. Water is drawn from a network of shallow wells in an alluvial aquifer along the Tuul River. Evidence, however, suggests that current water use and especially the projected water demand from a rapidly growing urban population, is not sustainable from existing water sources. In response, the Mongolia Ministry of Environment and the Mongolian Fresh Water Institute requested technical assistance on groundwater modeling through the U.S. Army Corps of Engineers to the U.S. Geological Survey (USGS). Scientists from the USGS-SD Water Science Center provided a workshop to Mongolian water experts on basic principles of groundwater modeling using MODFLOW. The purpose of the workshop was to bring together representatives from the Government of Mongolia, local universities, technical experts, and other key stakeholders to build in-country capacity in hydrogeology and groundwater modeling. A preliminary steady-state groundwater flow model was developed to simulate groundwater conditions in the Tuul River Basin and for use in water use decision-making. The model consisted of 2 layers, 226 rows, and 260 columns with uniform 500 meter grid spacing. The upper model layer represented the alluvial aquifer and the lower layer represented the underlying bedrock, which includes areas characterized by permafrost. Estimated groundwater withdrawal was 180 m3/day, and estimated recharge was 114 mm/yr. The model will be modified and updated by Mongolian scientists as more data are available. Ultimately the model will be used to assist managers in developing a sustainable water supply, for current use and changing climate scenarios. A key to success was developing in-country technical capacity and partnerships with the Mongolian University of Science and Technology, Mongolian Freshwater Institute, a non-profit organization, UNESCO, and the government of Mongolia.

  16. Determination of micro-organic contaminants in groundwater (Maribor, Slovenia).

    Science.gov (United States)

    Koroša, A; Auersperger, P; Mali, N

    2016-11-15

    Micro-organic (MO) contaminants in groundwater can have adverse effects on both the environment and on human health. They enter the natural environment as a result of various processes, their presence in groundwater is the result of current anthropogenic activity and pollution loads from the past. A study on the occurrence and concentrations levels of selected contaminants in water was performed in the city of Maribor, Slovenia. A total of 56 groundwater and 4 surface water samples were collected in together four rounds in different hydrogeological periods (dry and wet seasons), and a total of 13 selected contaminants were analysed in this study. Carbamazepine, propyphenazone, caffeine, 2-methyl-2H-benzotriazole (2-MBT) and 2.4-dimethyl-2H-benzotriazole (2.4-DMBT) were determined as indicators of urban pollution, while pesticides and their metabolites (atrazine, desethylatrazine, deisopropylatrazine, terbuthylazine, desethylterbuthylazine, metolachlor, simazine, propazine) were mainly defined as indicators of crop production. All of the selected MO contaminants were detected both in the aquifer and Drava River. The most frequently detected MO compounds in groundwater were desethylatrazine (frequency of detection 98.2%; max. concentration 103.0ngL(-1)), atrazine (94.6%; 229ngL(-1)), 2.4-DMBT (92.9%; 273ngL(-1)), carbamazepine (80.4%; 88.00ngL(-1)), desethylterbuthylazine (76.8%; 7.0ngL(-1)) and simazine (76.8%; 29.6ngL(-1)), whereas propyphenazone (14.3%; 10.7ngL(-1)) was the least frequently detected. Detected MO concentrations in the study were compared with results published elsewhere around the world. Concentrations in groundwater indicate specific land use in their recharge areas. On the basis of correlations and the spatial distribution of selected MOs, groundwater origin for every sampling point was determined. Sampling sites were divided into three different groups for which indicative groundwater quality properties were defined. PMID:27395079

  17. City Car = The City Car / Andres Sevtshuk

    Index Scriptorium Estoniae

    Sevtshuk, Andres, 1981-

    2008-01-01

    Massachusettsi Tehnoloogiainstituudi (MIT) meedialaboratooriumi juures tegutseva Targa Linna Grupi (Smart City Group) ja General Motorsi koostööna sündinud kaheistmelisest linnasõbralikust elektriautost City Car. Nimetatud töögrupi liikmed (juht William J. Mitchell, töögruppi kuulus A. Sevtshuk Eestist)

  18. Bright Lights, Big Cities

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Overabundant lighting has become another pollution source in the Chinese cities The glow of electric lights illuminating the nights of ever-brighter cities has been regarded as one of the signs of prosperity and modern civilization.

  19. A Crowded City

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Over 4 million vehicles on road challenge Beijing’s city management Beijing, the city once known as the kingdom of bicycles, has become clogged with automobiles, the Beijing Municipal Government Publicity Office said on December 18.

  20. Globalization and cities

    OpenAIRE

    Petrović Mina

    2004-01-01

    This paper deals with the basic concepts on cities within contemporary globalisation. First, it briefly reviews the city perspective within the world system theory (concepts of over-urbanisation, under-urbanisation, and dependent urbanisation), new international division of labour, theory of the second circuit of capital and informational society. The second part of the paper is dedicated to the concepts of global and world cities and their implications for the cities in developed and develop...

  1. Cities as Spatial Clusters

    OpenAIRE

    Ferdinand Rauch

    2013-01-01

    This paper shows that Zipf's Law for cities can emerge as a property of a clustering process. If initially uniformly distributed people chose their location based on a specific gravity equation as found in trade studies, they will form cities that follow Zipf's Law in expected value. This view of cities as spatial agglomerations is supported empirically by the observation that larger cities are surrounded by larger hinterland areas and larger countryside populations.

  2. The Creative Cities Network

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The Creative Cities Network, started by UNESCO in 2004, is one of the world’s highest-level non-governmental organizations in creative industry. The network focuses on the excellence of its member cities as its main product, and finds ways to maintain relevance in city life, local economy

  3. Imagineering the city

    NARCIS (Netherlands)

    M. van den Berg

    2015-01-01

    Cities today are products. The urban experience is commodified into marketable items by urban entrepreneurs. Urban administrations, city marketers, politicians, local businesses and other actors all over the world are developing entrepreneurial strategies to sell their city. From "‘I ♥ New York"’ to

  4. Hydrogeological evaluation of an over-exploited aquifer in Dhaka, Bangladesh towards the implementation of groundwater artificial recharge

    Science.gov (United States)

    Azizur Rahman, M.; Rusteberg, Bernd; Sauter, Martin

    2010-05-01

    The population of Dhaka City is presently about 12 million and according to present trends in population growth, that number will most likely increase to 17.2 million by the year 2025. A serious water crisis is expected due to the extremely limited quality and quantity of water resources in the region. Previous studies have shown that the current trend in groundwater resource development is non-sustainable due to over-exploitation of the regional aquifer system, resulting in rapidly decreasing groundwater levels of about 2 to 3 meters per year. Today, annual groundwater extraction clearly exceeds natural groundwater recharge. New water management strategies are needed to guarantee future generations of Dhaka City a secured and sustained water supply as well as sustainable development of the city. The implementation of groundwater artificial recharge (AR) is one potential measure. As the first step towards a new water management strategy for Dhaka City, the authors report on the hydrogeological conditions of the greater Dhaka region and from this are able to present the location of potential recharge sites and identify appropriate recharge technologies for AR implementation. The aquifers of greater Dhaka can be grouped in three major categories: Holocene Deposit, Pleistocene Deposit and Plio-Pleistocene Deposit. The aquifers are generally thick and multilayered with relatively high transmissivity and storage coefficients. AR is considered feasible due to the fact these aquifers are alluvium deposit aquifers which characteristically have moderate to high hydraulic conductivity. Low costs for recovery of recharged water and large recharge volume capacity are generally associated with aquifers of unconsolidated sediments. Spatial analysis of the region has shown that Karaniganj, Kotoali, Savar, Dhamrai, Singair upazila, which are situated in greater Dhaka region and close to Dhaka City, could serve as recharge sites to the subsurface by pond infiltration technique. A

  5. Emerging contaminants in groundwater

    OpenAIRE

    Stuart, M.E.; Manamsa, K.; J. C. Talbot; Crane, E.J.

    2011-01-01

    The term ‘emerging contaminants’ is generally used to refer to compounds previously not considered or known to be significant to groundwater (in terms of distribution and/or concentration) which are now being more widely detected. As analytical techniques improve, previously undetected organic micropollutants are being observed in the aqueous environment. Many emerging contaminants remain unregulated, but the number of regulated contaminants will continue to grow slowly over th...

  6. SSCL groundwater model

    International Nuclear Information System (INIS)

    Activation of groundwater due to accelerator operations has been a consideration since the conceptual stages of the SSC. Prior to site selection, an elementary hydrological model assuming a porous medium with a shallow well in proximity to the tunnel was used to determine the radionuclide concentrations in the water pumped from a well. The model assumed that radionuclides produced within a few feet of the tunnel would migrate to the shallow well and be diluted as the well drew water from a conically symmetric region. After the Ellis County site was selected, the compatibility of this model with the site specific geology was evaluated. The host geology at the selected site is low permeability rock, Austin chalk, shale, and marl, however, vertical fractures do exist. Since the host rock has a low permeability, groundwater in proximity to the tunnel would have to travel primarily through fractures. This hydrology is not compatible with the above mentioned model since water does not percolate uniformly from the surrounding rock into local wells. The amount of dilution of activated water will vary significantly depending on the specific relationship of the well to the activation zone. A further complication in the original model is that it assumes the high energy particles escaping from the accelerator enclosure are localized. The model does not provide for particles being lost over a large area as will happen with routine operational losses. These losses will be distributed along the accelerator over the life of the project. The SSCL groundwater model has been recast to account for the site specific hydrology and both point and distributed losses. Using the new groundwater model, the SSC accelerators are designed to limit the activation concentration in the water located one meter outside the accelerator enclosure to meet the federal drinking water standards. This technical note provides the details of this model

  7. Geospatial Data Management Platform for Urban Groundwater

    Science.gov (United States)

    Gaitanaru, D.; Priceputu, A.; Gogu, C. R.

    2012-04-01

    Due to the large amount of civil work projects and research studies, large quantities of geo-data are produced for the urban environments. These data are usually redundant as well as they are spread in different institutions or private companies. Time consuming operations like data processing and information harmonisation represents the main reason to systematically avoid the re-use of data. The urban groundwater data shows the same complex situation. The underground structures (subway lines, deep foundations, underground parkings, and others), the urban facility networks (sewer systems, water supply networks, heating conduits, etc), the drainage systems, the surface water works and many others modify continuously. As consequence, their influence on groundwater changes systematically. However, these activities provide a large quantity of data, aquifers modelling and then behaviour prediction can be done using monitored quantitative and qualitative parameters. Due to the rapid evolution of technology in the past few years, transferring large amounts of information through internet has now become a feasible solution for sharing geoscience data. Furthermore, standard platform-independent means to do this have been developed (specific mark-up languages like: GML, GeoSciML, WaterML, GWML, CityML). They allow easily large geospatial databases updating and sharing through internet, even between different companies or between research centres that do not necessarily use the same database structures. For Bucharest City (Romania) an integrated platform for groundwater geospatial data management is developed under the framework of a national research project - "Sedimentary media modeling platform for groundwater management in urban areas" (SIMPA) financed by the National Authority for Scientific Research of Romania. The platform architecture is based on three components: a geospatial database, a desktop application (a complex set of hydrogeological and geological analysis

  8. Investigation on shallow groundwater in a small basin using natural radioisotopes

    International Nuclear Information System (INIS)

    The authors conducted an investigation on shallow groundwater using natural radioisotopes as indicators in the small basin of the Hinuma River, Kasama City, Ibaraki Prefecture, Japan. 3H concentrations in the groundwater showed that it originated from precipitation in the 1960's. Since 222Rn concentrations decreased as groundwater flowed downstream, they were influenced by infiltration of surface water. Especially, during the irrigation period, the decrease of 222Rn concentrations was remarkable in the lowland. From the distribution of 222Rn concentrations in surface water, the sections where groundwater seeped into a river were found, and a quantitative analysis of groundwater seepage in the two sections was conducted on the basis of 222Rn concentrations in groundwater and in surface water. The ratios of groundwater seepage to the flow at the upstream station for the two sections were about 5% and 10%, respectively. The water movement within the basin, i.e., the actual manner in which surface water infiltrated underground and groundwater seeped into a river, was clarified by analyzing the variations of natural radioisotope concentrations in water and the water balance of the basin. (author)

  9. Monitoring of landfill influences on groundwater

    OpenAIRE

    Mihael Brenčič

    2004-01-01

    Landfills of waste present serious threat to groundwater. To prevent groundwater pollution from landfill monitoring is performed. Rule of groundwater pollution monitoring from dangerous substances implements principles in Slovene legislation. In everyday practice certain questions arose since validity of the rule. These questions are about responsible parties in monitoring, groundwater distribution in space, target groundwater units, characterization level of the landfill and its surroundings...

  10. Deterministic modelling of the cumulative impacts of underground structures on urban groundwater flow and the definition of a potential state of urban groundwater flow: example of Lyon, France

    Science.gov (United States)

    Attard, Guillaume; Rossier, Yvan; Winiarski, Thierry; Cuvillier, Loann; Eisenlohr, Laurent

    2016-08-01

    Underground structures have been shown to have a great influence on subsoil resources in urban aquifers. A methodology to assess the actual and the potential state of the groundwater flow in an urban area is proposed. The study develops a three-dimensional modeling approach to understand the cumulative impacts of underground infrastructures on urban groundwater flow, using a case in the city of Lyon (France). All known underground structures were integrated in the numerical model. Several simulations were run: the actual state of groundwater flow, the potential state of groundwater flow (without underground structures), an intermediate state (without impervious structures), and a transient simulation of the actual state of groundwater flow. The results show that underground structures fragment groundwater flow systems leading to a modification of the aquifer regime. For the case studied, the flow systems are shown to be stable over time with a transient simulation. Structures with drainage systems are shown to have a major impact on flow systems. The barrier effect of impervious structures was negligible because of the small hydraulic gradient of the area. The study demonstrates that the definition of a potential urban groundwater flow and the depiction of urban flow systems, which involves understanding the impact of underground structures, are important issues with respect to urban underground planning.

  11. Deterministic modelling of the cumulative impacts of underground structures on urban groundwater flow and the definition of a potential state of urban groundwater flow: example of Lyon, France

    Science.gov (United States)

    Attard, Guillaume; Rossier, Yvan; Winiarski, Thierry; Cuvillier, Loann; Eisenlohr, Laurent

    2016-02-01

    Underground structures have been shown to have a great influence on subsoil resources in urban aquifers. A methodology to assess the actual and the potential state of the groundwater flow in an urban area is proposed. The study develops a three-dimensional modeling approach to understand the cumulative impacts of underground infrastructures on urban groundwater flow, using a case in the city of Lyon (France). All known underground structures were integrated in the numerical model. Several simulations were run: the actual state of groundwater flow, the potential state of groundwater flow (without underground structures), an intermediate state (without impervious structures), and a transient simulation of the actual state of groundwater flow. The results show that underground structures fragment groundwater flow systems leading to a modification of the aquifer regime. For the case studied, the flow systems are shown to be stable over time with a transient simulation. Structures with drainage systems are shown to have a major impact on flow systems. The barrier effect of impervious structures was negligible because of the small hydraulic gradient of the area. The study demonstrates that the definition of a potential urban groundwater flow and the depiction of urban flow systems, which involves understanding the impact of underground structures, are important issues with respect to urban underground planning.

  12. Groundwater Vulnerability to Seawater Intrusion along Coastal Urban Areas: A Quantitative Comparative Assessment of EPIK and DRASTIC

    Science.gov (United States)

    Momjian, Nanor; Abou Najm, Majdi; Alameddine, Ibrahim; El-Fadel, Mutasem

    2015-04-01

    Groundwater vulnerability assessment models are invariably coupled with Geographic Information Systems to provide decision makers with easier visualization of complex systems. In this study, we examine the uncertainty associated with such models (DRASTIC, EPIK) in assessing seawater intrusion, a growing threat along coastal urban cities due to overexploitation of groundwater resources associated with population growth and more recently, exacerbated by climate change impacts. For this purpose, a mapping of groundwater vulnerability was first conducted at a country level (Lebanon) and coupled with a groundwater quality monitoring program in three coastal cities for cross-validation. Then, six water quality categories were defined and mapped based on water quality standards ranging from drinking to seawater with weighted scores assigned for each category in both DRASTIC and EPIK for cross-validation. Finally, the results of groundwater quality tests were compared with vulnerability predictions at sampling points using two indicators (Chloride and TDS). While field measurements demonstrated the high vulnerability to seawater intrusion in coastal urbanized areas, the modelling results exhibited variations from field measurements reaching up to two water quality categories. Vertical-based vulnerability models demonstrated poor correlation when the anthropogenic impact was introduced through a process that depends on lateral groundwater flow thus highlighting (1) the limited ability of such models to capture vulnerability to lateral seawater intrusion induced primarily by vertical groundwater withdrawal, and (2) the need to incorporate depth and underlying lithology into the layers of groundwater vulnerability models when examining horizontally induced contamination such as seawater intrusion.

  13. Groundwater types in Southeast Srem

    Directory of Open Access Journals (Sweden)

    Gregorić Enike

    2009-01-01

    Full Text Available The region of Southeast Srem is rich in ground waters, which is of great significance to agricultural production. The objective of this paper was to designate the zones of different groundwater types from the aspect of recharge, based on the analysis of groundwater regimes in the study area. A very complex groundwater regime in Southeast Srem, which depends on a great number of natural and some anthropogenic factors, makes it difficult to designate clearly the zones of the three main types of groundwater regime. Still, the boundaries of the zones of groundwater regime types were defined based on the results of correlation analysis of the basic factors affecting the groundwater regime. Zone I includes the climatic type of groundwater. Its fluctuation corresponds to the vertical factors of water balance (precipitation and evaporation and it is not affected by the river water level. This zone extends North and East of the line Putinci, Golubinci, Stara Pazova, Batajnica, Dobanovci, mainly in the area of the loess plateau. Within the zone, groundwater is at a relatively great depth. Only exceptionally, in the valleys, it appears almost on the surface. Zone II includes the climatic-hydrological groundwater type, which is the transition between the climatic type and the hydrological type. The fluctuation of groundwater regime is affected both by the effect of vertical balance factors, and by the effect of watercourses. Climatic-hydrological groundwater type covers the central and the lowest part of the study area and the South part of the middle terrace. Zone III is classified as the hydrological groundwater type and it covers the riparian areas along the Sava and the Danube. The aquifer is hydraulically connected with the river Sava.

  14. GROUNDWATER PROTECTION MANAGEMENT PROGRAM DESCRIPTION.

    Energy Technology Data Exchange (ETDEWEB)

    PAQUETTE,D.E.; BENNETT,D.B.; DORSCH,W.R.; GOODE,G.A.; LEE,R.J.; KLAUS,K.; HOWE,R.F.; GEIGER,K.

    2002-05-31

    THE DEPARTMENT OF ENERGY ORDER 5400.1, GENERAL ENVIRONMENTAL PROTECTION PROGRAM, REQUIRES THE DEVELOPMENT AND IMPLEMENTATION OF A GROUNDWATER PROTECTION PROGRAM. THE BNL GROUNDWATER PROTECTION MANAGEMENT PROGRAM DESCRIPTION PROVIDES AN OVERVIEW OF HOW THE LABORATORY ENSURES THAT PLANS FOR GROUNDWATER PROTECTION, MONITORING, AND RESTORATION ARE FULLY DEFINED, INTEGRATED, AND MANAGED IN A COST EFFECTIVE MANNER THAT IS CONSISTENT WITH FEDERAL, STATE, AND LOCAL REGULATIONS.

  15. Ground-water travel time

    International Nuclear Information System (INIS)

    The Containment and Isolation Working Group considered issues related to the postclosure behavior of repositories in crystalline rock. This working group was further divided into subgroups to consider the progress since the 1978 GAIN Symposium and identify research needs in the individual areas of regional ground-water flow, ground-water travel time, fractional release, and cumulative release. The analysis and findings of the Ground-Water Travel Time Subgroup are presented

  16. Optimal and Sustainable Groundwater Extraction

    OpenAIRE

    Wada, Christopher A.; Roumasset, James A.

    2010-01-01

    With climate change exacerbating over-exploitation, groundwater scarcity looms as an increasingly critical issue worldwide. Minimizing the adverse effects of scarcity requires optimal as well as sustainable patterns of groundwater management. We review the many sustainable paths for groundwater extraction from a coastal aquifer and show how to find the particular sustainable path that is welfare maximizing. In some cases the optimal path converges to the maximum sustainable yield. For suffici...

  17. Cities as development drivers

    DEFF Research Database (Denmark)

    Johnson, Bjørn; Poulsen, Tjalfe; Hansen, Jens Aage;

    2011-01-01

    There is a strong connection between economic growth and development of cities. Economic growth tends to stimulate city growth, and city economies have often shaped innovative environments that in turn support economic growth. Simultaneously, social and environmental problems related to city growth...... can be serious threats to the realization of the socio-economic contributions that cities can make. However, as a result of considerable diversity of competences combined with interactive learning and innovation, cities may also solve these problems. The ‘urban order’ may form a platform for...... innovative problem solving and potential spill-over effects, which may stimulate further economic growth and development. This paper discusses how waste problems of cities can be transformed to become part of new, more sustainable solutions. Two cases are explored: Aalborg in Denmark and Malmö in Sweden. It...

  18. Me, the City

    Directory of Open Access Journals (Sweden)

    Konstantin Lidin

    2014-09-01

    Full Text Available The search for identity of cities looks rather urgent and attracts attention of many researchers. Addressing this issue, the article draws an analogy between a human person and a city. Like a city, a human being needs to comprehend his self-identity in order to resist depressive tendencies. It is shown that a person’s depressive symptoms are similar to those of cities. The city identity necessary to resist depression can be searched for both historically and geographically. The historical aspect consists of local myths and legends about the city and the citizens. The geographical aspect of identity comprises features of the terrain, climate, flora and fauna of the region where the city is located.

  19. Arkansas Groundwater-Quality Network

    Science.gov (United States)

    Pugh, Aaron L.; Jackson, Barry T.; Miller, Roger

    2014-01-01

    Arkansas is the fourth largest user of groundwater in the United States, where groundwater accounts for two-thirds of the total water use. Groundwater use in the State increased by 510 percent between 1965 and 2005 (Holland, 2007). The Arkansas Groundwater-Quality Network is a Web map interface (http://ar.water.usgs.gov/wqx) that provides rapid access to the U.S. Geological Survey’s (USGS) National Water Information System (NWIS) and the U.S. Environmental Protection Agency’s (USEPA) STOrage and RETrieval (STORET) databases of ambient water information. The interface enables users to perform simple graphical analysis and download selected water-quality data.

  20. Estimation of impacts on groundwater quality in an urban area of Ljubljana

    Science.gov (United States)

    Janža, Mitja; Prestor, Joerg; Pestotnik, Simona; Jamnik, Brigita

    2016-04-01

    Groundwater is a major source of drinking water supply in many cities worldwide. It is relatively stable and better-protected water resource compared to surface water and will have a vital role in assuring water-supply security in the future. In urbanized catchments numerous human activities (e.g. settling, industry, traffic, agriculture) take place which pose a threat to groundwater quality. For sustainable management of urban groundwater resources an integrated and adaptive approach based on continuous monitoring supported by modeling is needed. The aim of presented study was to develop a model of environmental pressures and impacts on Ljubljansko polje aquifer which is the main source exploited for the public drinking water supply of the city of Ljubljana. It is based on estimation of contaminants emissions from different sources, coupled with numerical transport modelling which is used to assess the impact on groundwater quality. The model was built up on detailed analysis of nitrogen mass balance and validated with monitoring data - concentration measurements of relevant chemical parameters. Based on the model simulations impacts of different sources of pollution on groundwater quality was estimated and priority of measures for improvement of chemical status of groundwater was defined.

  1. Groundwater vulnerability mapping in Guadalajara aquifers system (Western Mexico)

    Science.gov (United States)

    Rizo-Decelis, L. David; Marín, Ana I.; Andreo, Bartolomé

    2016-04-01

    Groundwater vulnerability mapping is a practical tool to implement strategies for land-use planning and sustainable socioeconomic development coherent with groundwater protection. The objective of vulnerability mapping is to identify the most vulnerable zones of catchment areas and to provide criteria for protecting the groundwater used for drinking water supply. The delineation of protection zones in fractured aquifers is a challenging task due to the heterogeneity and anisotropy of hydraulic conductivities, which makes difficult prediction of groundwater flow organization and flow velocities. Different methods of intrinsic groundwater vulnerability mapping were applied in the Atemajac-Toluquilla groundwater body, an aquifers system that covers around 1300 km2. The aquifer supplies the 30% of urban water resources of the metropolitan area of Guadalajara (Mexico), where over 4.6 million people reside. Study area is located in a complex neotectonic active volcanic region in the Santiago River Basin (Western Mexico), which influences the aquifer system underneath the city. Previous works have defined the flow dynamics and identified the origin of recharge. In addition, the mixture of fresh groundwater with hydrothermal and polluted waters have been estimated. Two main aquifers compose the multilayer system. The upper aquifer is unconfined and consists of sediments and pyroclastic materials. Recharge of this aquifer comes from rainwater and ascending vertical fluids from the lower aquifer. The lower aquifer consists of fractured basalts of Pliocene age. Formerly, the main water source has been the upper unit, which is a porous and unconsolidated unit, which acts as a semi-isotropic aquifer. Intense groundwater usage has resulted in lowering the water table in the upper aquifer. Therefore, the current groundwater extraction is carried out from the deeper aquifer and underlying bedrock units, where fracture flow predominates. Pollution indicators have been reported in

  2. Uranium isotopes in groundwater occurring at Amazonas State, Brazil

    International Nuclear Information System (INIS)

    This paper reports the behavior of the dissolved U-isotopes 238U and 234U in groundwater providing from 15 cities in Amazonas State, Brazil. The isotope dilution technique accompanied by alpha spectrometry were utilized for acquiring the U content and 234U/238U activity ratio (AR) data, 0.01–1.4 µg L−1 and 1.0–3.5, respectively. These results suggest that the water is circulating in a reducing environment and leaching strata containing minerals with low uranium concentration. A tendency to increasing ARs values following the groundwater flow direction is identified in Manaus city. The AR also increases according to the SW–NE directions: Uarini→Tefé; Manacapuru→Manaus; Presidente Figueiredo→São Sebastião do Uatumã; and Boa Vista do Ramos→Parintins. Such trends are possibly related to several factors, among them the increasing acid character of the waters. The waters analyzed are used for human consumption and the highest dissolved U content is much lower than the maximum established by the World Health Organization. Therefore, in view of this radiological parameter they can be used for drinking purposes. - Highlights: • U-isotopes data in important aquifer systems in Amazon area. • Application of the U-isotopes data to investigate the groundwater flow direction. • Evaluation of the drinking-water quality in terms of dissolved uranium

  3. Sources of Nitrate Contamination in Groundwater Under Developing Asian Megacities

    Science.gov (United States)

    Umezawa, Y.; Hosono, T.; Onodera, S.; Siringan, F.; Buapeng, S.; Delinom, R. M.; Yoshimizu, C.; Tayasu, I.; Nagata, T.; Taniguchi, M.

    2008-12-01

    The status of nitrate, nitrite and ammonium contamination in the water systems, and the mechanisms controlling their sources, pathways, and distributions were investigated for the Southeast Asian cities of Metro Manila, Bangkok, and Jakarta. GIS-based monitoring and dual isotope approach (nitrate d15N and d18O) suggested that human waste via severe sewer leakage was the major source of nutrient contaminants in Metro Manila and Jakarta urban areas. Furthermore, the characteristics of the nutrient contamination differed depending on the agricultural land use pattern in the suburban areas. The exponential increase in nitrate d15N along with the nitrate reduction and clear d18O/d15N slopes of nitrate (~0.5) indicated the occurrence of denitrification. An anoxic subsurface system associated with the natural geological setting (e.g., the old tidal plain at Bangkok) and artificial pavement coverage served to buffer nitrate contamination via active denitrification and reduced nitrification. Our results showed that nitrate and ammonium contamination of the aquifers in Metro Manila, Bangkok, and Jakarta was not excessive, suggesting low risk of drinking groundwater to human health, at present. However, the increased nitrogen load and increased per capita gross domestic product (GDP) in these developing cities may increase this contamination in the very near future. Continuous monitoring and management of the groundwater system is needed to minimize groundwater pollution in these areas.

  4. Impact of groundwater protection standards on UMTRA Project

    International Nuclear Information System (INIS)

    In September 1987, the U.S. Environmental Protection Agency (EPA) proposed health and environmental standards to correct and prevent groundwater contamination beneath and in the vicinity of the Uranium Mill Tailings Remedial Action (UMTRA) Project sites. The standards, which are consistent with the Resource Conservation and Recovery Act (RCRA), address final disposal, aquifer cleanup, and supplemental standards. As a first step toward estimating the total project groundwater restoration costs, the conditions, requirements, and aquifer restoration costs at five sites were considered: Gunnison, Colorado; Riverton, Wyoming; Lakeview, Oregon; Tuba City, Arizona; and Falls City, Texas. For each site, preliminary groundwater restoration schemes were proposed and evaluated, and base costs were estimated in 1988 dollars. To forecast total project costs, the five site-specific evaluations and their lowest cost estimates were extrapolated to the remaining 19 UMTRA Project sites. To estimate a total program cost based on the lowest site remedial action construction costs described above, the ratio of total program cost to the site remedial action costs for the current UMTRA Project was calculated. On the basis of the preliminary analyses described above, if aquifer restoration were required at the 24 UMTRA Project sites, the total program cost may be in excess of /1 billion

  5. Biophilic Cities Are Sustainable, Resilient Cities

    Directory of Open Access Journals (Sweden)

    Peter Newman

    2013-08-01

    Full Text Available There is a growing recognition of the need for daily contact with nature, to live happy, productive, meaningful lives. Recent attention to biophilic design among architects and designers acknowledges this power of nature. However, in an increasingly urban planet, more attention needs to be aimed at the urban scales, at planning for and moving towards what the authors call “biophilic cities”. Biophilic cities are cities that provide close and daily contact with nature, nearby nature, but also seek to foster an awareness of and caring for this nature. Biophilic cities, it is argued here, are also sustainable and resilient cities. Achieving the conditions of a biophilic city will go far in helping to foster social and landscape resilience, in the face of climate change, natural disasters and economic uncertainty and various other shocks that cities will face in the future. The paper identifies key pathways by which biophilic urbanism enhances resilience, and while some are well-established relationships, others are more tentative and suggest future research and testing.

  6. Natural radioactivity in groundwater and estimates of committed effective dose due to water ingestion in the state of Chihuahua (Mexico)

    International Nuclear Information System (INIS)

    The activity concentration of 222Rn, 226Ra and total uranium in groundwater samples collected from wells distributed throughout the state of Chihuahua has been measured. The values obtained of total uranium activity concentration in groundwater throughout the state run from -1. Generally, radium activity concentration was -1, with some exceptions; in spring water of San Diego de Alcala, in contrast, the value reached ∼5.3 Bq l-1. Radon activity concentration obtained throughout the state was from 1.0 to 39.8 Bq l-1. A linear correlation between uranium and radon dissolved in groundwater of individual wells was observed near Chihuahua City. Committed effective dose estimates for reference individuals were performed, with results as high as 134 μSv for infants in Aldama city. In Aldama and Chihuahua cities the average and many individual wells showed activity concentration values of uranium exceeding the Mexican norm of drinking water quality. (authors)

  7. The groundwater subsidy to vegetation: groundwater exchanges between landcover patches

    Science.gov (United States)

    Steven, L. I.; Gimenez, R.; Jobbagy, E. G.

    2015-12-01

    The Gran Chaco is a hot, dry plain, that spans over 60 million hectares across Bolivia, Paraguay, Brazil and Argentina. It supports high biodiversity in its dry forest and savannahs, but is rapidly being converted to agriculture in response to growing soy demand and technology including genetic modification and zero-till, that has made cultivation in drier landscapes more viable. Under natural conditions, the deep-rooted, native vegetation of the Chaco effectively captured all rainfall for evapotranspiration resulting in near zero groundwater recharge under the dry forest. Conversion to shallower rooted soy and corn, combined with the fallow period prior to the growing season, reduces evapotranspiration and allows some water to percolate through the root zone and recharge the groundwater system. When this groundwater recharge occurs, it creates groundwater mounding and a hydraulic gradient that drives flow to adjacent landcover patches where recharge does not occur. As the watertable rises, groundwater becomes available to the deep-rooted, dry forest vegetation. We develop a soil and groundwater flow model to simulate infiltration, percolation, evaporation, rootwater uptake, groundwater recharge and the lateral transfer of water between adjacent landcover patches to quantify this groundwater subsidy from converted agricultural lands to remnant patches of dry forest.

  8. Pollution and city size: can cities be too small?

    OpenAIRE

    Borck, Rainald; TABUCHI Takatoshi

    2015-01-01

    We study the optimal and equilibrium size of cities in a monocentric city model with environmental pollution. Pollution is related to city size through the effect of population on production, commuting, and housing consumption. If pollution is local, we find that equilibrium cities are too large, mirroring standard results in the theory of city systems. When pollution is global and per capita pollution declines with city size, however, equilibrium cities may be too small.

  9. Indicators for assessing anthropogenic impact on urban surface and groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Strauch, G.; Glaeser, H.R.; Schladitz, T.; Mueller, C.; Reinstorf, F.; Schirmer, M. [UFZ Helmholtz Centre for Environmental Research, Dept. of Hydrogeology, Halle (Germany); Moeder, M.; Wennrich, R. [UFZ Helmholtz Centre for Environmental Research, Dept. of Analytical Chemistry, Halle (Germany); Osenbrueck, K. [UFZ Helmholtz Centre for Environmental Research, Dept. of Isotope Hydrology, Halle (Germany); Schirmer, K. [UFZ Helmholtz Centre for Environmental Research, Dept. of Cell Toxicology, Leipzig (Germany)

    2008-02-15

    Background, aim and scope. Our study focuses on the indication of anthropogenic impacts on the urban surface and groundwater in large cities, demonstrated for the cities of Halle/Saale and Leipzig (Germany). For the study we selected indicator substances such as xenobiotics, trace elements, and stable isotopes which are connected to human activities in urban areas. The xenobiotics reported here are the pharmaceutical carbamacepine, the polycylic musk compounds galaxolide and tonalide, the life style product caffeine, and industrial chemicals such as bisphenol A and t-nonylphenol. The investigated xenobiotics pose largely unknown risks to human health and the aquatic ecosystem. Trace elements are represented by the rare earth element gadolinium (Gd), used as magnetic resonance imaging contrast substance. Nitrogen isotopes in dissolved nitrate characterize the origin of nitrogen compounds, mixing and reaction processes. Methodology. River water was sampled along the flow path of the rivers Saale and Weisse Elster through the city of Halle/Saale, the rivers Luppe and Weisse Elster through the city of Leipzig. Separate samples were collected from the effluent of the local waste water treatment plants. Groundwater from Quaternary plain aquifers along the rivers and from different urban locations was collected at the same time. The indicators were analysed and assessed according to their sources, concentration and distribution patterns. Results and discussion. Based on the nitrogen isotopic signature, dissolved nitrate in river water of the Saale was referred mainly to two sources: the effluent of the water treatment plant and a mixture of diffusive inputs from rain water channels, sewage leakages and agriculture activities along the rivers. The Gd anomaly was recognized in surface water of both cities, particularly in the effluent of the water treatment plants, but clearly attenuated in groundwater. We measured concentrations of xenobiotics in river and sewer water

  10. [Hydrochemical Characteristic and Reasoning Analysis in Siyi Town, Langznong City].

    Science.gov (United States)

    Zhang, Yan; Wu, Yong; Yang, Jun; Sun, Hou-yun

    2015-09-01

    The characteristics of main ions in Siyi Town, Langzhong City was influenced by geologicai conditions, topography and hydrological and meteorological conditions and other factors. Here we analyzed the groundwater ions characteristics which will play an important role in mastering the groundwater types, chemical origin and water quality in this area. The testing data of main ions in river water and groundwater in this area were analyzed with statistics, Piper diagram, Gibbs figure, and correlation analysis, proportional relationship of main ions and equilibrium analysis method analysis. The results showed that Ca2+ and Mg2+, and HCO3- dominant among cations and anions, respectively, and the hydrogeochemical types can be classified into HCO3-Ca type, HCO3 + SO4-Ca type and HCO3-Ca + Mg type. Main ions of all water are mainly affected by leaching effect in rock weathering process, which are dominantly dissolved from dolomite and calcite. PMID:26717682

  11. City Carbon Footprint Networks

    Directory of Open Access Journals (Sweden)

    Guangwu Chen

    2016-07-01

    Full Text Available Progressive cities worldwide have demonstrated political leadership by initiating meaningful strategies and actions to tackle climate change. However, the lack of knowledge concerning embodied greenhouse gas (GHG emissions of cities has hampered effective mitigation. We analyse trans-boundary GHG emission transfers between five Australian cities and their trading partners, with embodied emission flows broken down into major economic sectors. We examine intercity carbon footprint (CF networks and disclose a hierarchy of responsibility for emissions between cities and regions. Allocations of emissions to households, businesses and government and the carbon efficiency of expenditure have been analysed to inform mitigation policies. Our findings indicate that final demand in the five largest cities in Australia accounts for more than half of the nation’s CF. City households are responsible for about two thirds of the cities’ CFs; the rest can be attributed to government and business consumption and investment. The city network flows highlight that over half of emissions embodied in imports (EEI to the five cities occur overseas. However, a hierarchy of GHG emissions reveals that overseas regions also outsource emissions to Australian cities such as Perth. We finally discuss the implications of our findings on carbon neutrality, low-carbon city concepts and strategies and allocation of subnational GHG responsibility.

  12. Nitrate pollution of groundwater

    International Nuclear Information System (INIS)

    Concern about the possible health risks associated with the consumption of nitrate has led many countries, including South Africa, to propose that 10mg of nitrogen (as nitrate or nitrite) per liter should be the maximum allowable limit for domestic water supplies. Groundwater in certain parts of South Africa and Namibia contains nitrate in concentrations which exceed this limit. The CSIR's Natural Isotope Division has been studying the nitrogen isotope composition of the nitrate as an aid to investigation into the sources of this nitrate contamination

  13. Solutions Remediate Contaminated Groundwater

    Science.gov (United States)

    2010-01-01

    During the Apollo Program, NASA workers used chlorinated solvents to clean rocket engine components at launch sites. These solvents, known as dense non-aqueous phase liquids, had contaminated launch facilities to the point of near-irreparability. Dr. Jacqueline Quinn and Dr. Kathleen Brooks Loftin of Kennedy Space Center partnered with researchers from the University of Central Florida's chemistry and engineering programs to develop technology capable of remediating the area without great cost or further environmental damage. They called the new invention Emulsified Zero-Valent Iron (EZVI). The groundwater remediation compound is cleaning up polluted areas all around the world and is, to date, NASA's most licensed technology.

  14. Groundwater vulnerability in the District of Abidjan (Côte d'Ivoire)

    Science.gov (United States)

    Kouame, Agnes; Jaboyedoff, Michel; Derron, Marc-Henri; Tacher, Laurent

    2014-05-01

    The District of Abidjan, located on the coastal sedimentary basin south of Côte d'Ivoire (West Africa) covers an area of 2,1 km2. This sedimentary basin is composed of continuous groundwater aquifers in Quaternary, Tertiary and Upper Cretaceous rocks. Our study focuses on the unconfined Quaternary groundwater called the Continental Terminal which formations are composed mainly of lenticular stratification of coarse sands, clays, ferruginous sandstone and iron ore. This Continental Terminal aquifer is the main source of drinking water for the city of Abidjan. Indeed, the city of Abidjan is facing various pollution problems such as illegal dumping of household waste, waste oils garages, domestic and industrial wastewater, gas stations, public discharge Akouédo and the spill of approximately 500 tons of toxic waste from the ship "Probo Koala" the night of 19 August 2006. These toxic wastes have killed more than 10 people and several infections. The infiltration of these contaminants under the influence of rainwater in the basement is a serious threat to groundwater from the District of Abidjan especially as the rains are very strong in this part of the country. What would be the fate of pollutants such as organochlorines, hydrogen sulfide, sulfides and hydrocarbons contained in toxic waste, knowing that this aquifer is the main source of supply of drinking water to the city of Abidjan? It therefore seems necessary to study the vulnerability of groundwater of Abidjan District. The overall objective of this study is to assess the risk of groundwater contamination by organochlorines, sulfides, hydrogen sulfide and hydrocarbons. This project is to develop groundwater flow and contaminant transport models such as organochlorines models, hydrogen sulfide and sulfides with two digital codes, Visual Modflow and Feflow. Then several scenarios with different pollutants are finally made to realize maps of groundwater vulnerability from Abidjan to these contaminants.

  15. ANALYSIS ON ABSORPTION OF TELKOMAS REGION, BIRINGKANAYA DISTRICT, MAKASSAR CITY

    OpenAIRE

    Patanduk, Johannes

    2008-01-01

    Abstract: City of Makassar with a total population of approximately 1.3 million people has a fairly rapid process of urbanization, seen from the rampant development in the suburbs. Coefficient changes the basic building the greater the likely impact of the lack of green open spaces and groundwater catchment area. Gradually the surface condition of ground water will decrease and the external impact on other areas surrounding the lower. With the condition of the catchment area t...

  16. Monitoring of landfill influences on groundwater

    Directory of Open Access Journals (Sweden)

    Mihael Brenčič

    2004-06-01

    Full Text Available Landfills of waste present serious threat to groundwater. To prevent groundwater pollution from landfill monitoring is performed. Rule of groundwater pollution monitoring from dangerous substances implements principles in Slovene legislation. In everyday practice certain questions arose since validity of the rule. These questions are about responsible parties in monitoring, groundwater distribution in space, target groundwater units, characterization level of the landfill and its surroundings, background values in groundwater, table of content of groundwater monitoring plan, quality of groundwater monitoring network, phases of monitoring, maintenance of monitoring network and activation of piezometers.

  17. Changes in the Regional Groundwater Aquifer and Potential Impacts on Surface Waters in Central Zealand, Denmark

    DEFF Research Database (Denmark)

    Thorn, Paul

    in the area near Lejre Denmark (approximately 15km to the SW of Roskilde) began in 1937, exporting approximately 18 million m3 of water per year to supply the city of Copenhagen. After abstraction began, streams in the area were observed to go dry after extended periods without precipitation, where...... as previously they never did. This study analyzes the changes in the groundwater potential between 1936 and 2006 in two stream catchments in central Zealand (Elverdam and Langvad) to assess how groundwater abstraction has affected the regional aquifers potential for contribution to base-flow in the streams...... the same with very little impact on the groundwater divide between the two drainages. From 1987 to 2006, there was a recovery up to 8m in the Langvad drainage, with no significant changes elsewhere. The recovery was due to a reduction of approximately 8 million m3/year in groundwater abstraction...

  18. Hanford Sitewide Groundwater Remediation Strategy

    International Nuclear Information System (INIS)

    This document fulfills the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-13-81, to develop a concise statement of strategy that describe show the Hanford Site groundwater remediation will be accomplished. The strategy addresses objectives and goals, prioritization of activities, and technical approaches for groundwater cleanup. The strategy establishes that the overall goal of groundwater remediation on the Hanford Site is to restore groundwater to its beneficial uses in terms of protecting human health and the environment, and its use as a natural resource. The Hanford Future Site Uses Working Group established two categories for groundwater commensurate with various proposed landuses: (1) restricted use or access to groundwater in the Central Plateau and in a buffer zone surrounding it and (2) unrestricted use or access to groundwater for all other areas. In recognition of the Hanford Future Site Uses Working Group and public values, the strategy establishes that the sitewide approach to groundwater cleanup is to remediate the major plumes found in the reactor areas that enter the Columbia River and to contain the spread and reduce the mass of the major plumes found in the Central Plateau

  19. Technical approach to groundwater restoration

    International Nuclear Information System (INIS)

    The Technical Approach to Groundwater Restoration (TAGR) provides general technical guidance to implement the groundwater restoration phase of the Uranium Mill Tailings Remedial Action (UMTRA) Project. The TAGR includes a brief overview of the surface remediation and groundwater restoration phases of the UMTRA Project and describes the regulatory requirements, the National Environmental Policy Act (NEPA) process, and regulatory compliance. A section on program strategy discusses program optimization, the role of risk assessment, the observational approach, strategies for meeting groundwater cleanup standards, and remedial action decision-making. A section on data requirements for groundwater restoration evaluates the data quality objectives (DQO) and minimum data required to implement the options and comply with the standards. A section on sits implementation explores the development of a conceptual site model, approaches to site characterization, development of remedial action alternatives, selection of the groundwater restoration method, and remedial design and implementation in the context of site-specific documentation in the site observational work plan (SOWP) and the remedial action plan (RAP). Finally, the TAGR elaborates on groundwater monitoring necessary to evaluate compliance with the groundwater cleanup standards and protection of human health and the environment, and outlines licensing procedures

  20. Isotope hydrology: Investigating groundwater contamination

    International Nuclear Information System (INIS)

    Groundwater quality has worsened in many regions, with sometimes serious consequences. Decontaminating groundwater is an extremely slow process, and sometimes impossible, because of the generally long residence time of the water in most geological formations. Major causes of contamination are poor groundwater management (often dictated by immediate social needs) and the lack of regulations and control over the use and disposal of contaminants. These types of problems have prompted an increasing demand for investigations directed at gaining insight into the behaviour of contaminants in the hydrological cycle. Major objectives are to prevent pollution and degradation of groundwater resources, or, if contamination already has occurred, to identify its origin so that remedies can be proposed. Environmental isotopes have proved to be a powerful tool for groundwater pollution studies. The IAEA has had a co-ordinated research programme since 1987 on the application of nuclear techniques to determine the transport of contaminants in groundwater. An isotope hydrology project is being launched within the framework of the IAEA's regional co-operative programme in Latin America (known as ARCAL). Main objectives are the application of environmental isotopes to problems of groundwater assessment and contamination in Latin America. In 1989, another co-ordinated research programme is planned under which isotopic and other tracers will be used for the validation of mathematical models in groundwater transport studies

  1. Groundwater Monitoring Plan for the Solid Waste Landfill

    Energy Technology Data Exchange (ETDEWEB)

    JW Lindberg; CJ Chou

    2000-12-14

    The Solid Waste Landfill (SWL) is regulated by the Washington State Department of Ecology under WAC 173-304. Between 1973 and 1976, the landfill received primarily paper waste and construction debris, but it also received asbestos, sewage, and catch tank liquid waste. Groundwater monitoring results indicate the SWL has contaminated groundwater with volatile organic compounds and possibly metals at levels that exceed regulatory limits. DynCorp, Tri-Cities, Inc. operates the facility under an interim closure plan (final closure plan will be released shortly). Pacific Northwest National Laboratory (PNNL) monitors groundwater at the site. This monitoring plan includes well and constituent lists, and summarizes sampling, analytical, and quality control requirements. Changes from the previous monitoring plan include elimination of two radionuclides from the analyte list and some minor changes in the statistical analysis. Existing wells in the current monitoring network only monitor the uppermost portion of the upper-most aquifer. Therefore, two new downgradient wells and one existing upgradient well are proposed to determine whether groundwater waste constituents have reached the lower portion of the uppermost aquifer. The proposed well network includes three upgradient wells and ten downgradient wells. The wells will be sampled quarterly for 14 analytes required by WAC 173-304-490 plus volatile organic compounds and filtered arsenic as site-specific analytes.

  2. Groundwater Monitoring Plan for the Solid Waste Landfill

    International Nuclear Information System (INIS)

    The Solid Waste Landfill (SWL) is regulated by the Washington State Department of Ecology under WAC 173-304. Between 1973 and 1976, the landfill received primarily paper waste and construction debris, but it also received asbestos, sewage, and catch tank liquid waste. Groundwater monitoring results indicate the SWL has contaminated groundwater with volatile organic compounds and possibly metals at levels that exceed regulatory limits. DynCorp, Tri-Cities, Inc. operates the facility under an interim closure plan (final closure plan will be released shortly). Pacific Northwest National Laboratory (PNNL) monitors groundwater at the site. This monitoring plan includes well and constituent lists, and summarizes sampling, analytical, and quality control requirements. Changes from the previous monitoring plan include elimination of two radionuclides from the analyte list and some minor changes in the statistical analysis. Existing wells in the current monitoring network only monitor the uppermost portion of the upper-most aquifer. Therefore, two new downgradient wells and one existing upgradient well are proposed to determine whether groundwater waste constituents have reached the lower portion of the uppermost aquifer. The proposed well network includes three upgradient wells and ten downgradient wells. The wells will be sampled quarterly for 14 analytes required by WAC 173-304-490 plus volatile organic compounds and filtered arsenic as site-specific analytes

  3. Bioremediation of Hanford groundwater

    International Nuclear Information System (INIS)

    Liquid wastes containing radioactive, hazardous, and regulated chemicals have been generated throughout the 40 years of operations at the US Department of Energy's (DOE) Hanford Site. Some of these wastes were discharged to the soil column and many of the waste components, including nitrate (NO3-), carbon tetrachloride (CCl4), and several radionuclides, have been detected in the Hanford groundwater. A research and development program is presently underway to develop bioremediation technologies for treating contaminated Hanford groundwaters. The program includes development of both ex situ and in situ treatment methods, with primary emphasis on developing an in situ treatment process. The goal of the in situ process is to stimulate the native microorganisms and accelerate the natural degradation of NO3- and CCl4. A demonstration site at Hanford for in situ biological treatment was selected in 1990, and extensive hydrological, chemical, and biological characterization of the site is underway. Current research and development activities are focusing on developing methods for supplying nutrients to the subsurface, evaluating the effect of in situ bioremediation on the long-term mobility of metal and radionuclide co-contaminants, and modeling the bioremediation process using three-dimensional visualization tools to help design the field-scale demonstration site and predict performance

  4. Issues in groundwater management

    International Nuclear Information System (INIS)

    It is now widely recognized that the solution to future water problems in Texas will require more effective management of the water resources. New supplies to meet future needs are not without limit; therefore, the solution to the problem will have to come from better water conservation as well as by providing new supplies. In some cases, conservation and reuse may be the only feasible answer. To accomplish what is needed will require the best efforts of all Texans. And good research programs will be required to discover ways to improve on what has been done in the past. This publication contains the proceedings of a symposium entitled ''Groundwater--Crisis or Opportunity,'' which was held in San Antonio October 29-31, 1984. It was one of several efforts related to water resources undertaken cooperatively in recent years by The University of Texas at Austin and The Texas A and M University System. The papers in this proceedings discuss the groundwater problems of the future in Texas

  5. Cities and human security

    OpenAIRE

    Szpak, Agnieszka

    2016-01-01

    Cities have been researched mostly in terms of their economic, technological, and social value and significance. Despite some changes in this respect there is still a need to research cities as a fascinating phenomenon, also in respect of its capabilities to increase human security on a local and global scale. The article examines the role of cities for human security in the selected and representative fields such as sustainable development, human rights and environmental protection which are...

  6. Assimilation in multilingual cities

    OpenAIRE

    Ortega, Javier; Verdugo, Gregory

    2015-01-01

    International audience We characterise how the assimilation patterns of minorities into the strong and the weak language differ in a situation of asymmetric bilingualism. Using large variations in language composition in Canadian cities from the 2001 and 2006 Censuses, we show that the differences in the knowledge of English by immigrant allophones (i.e. the immigrants with a mother tongue other than English and French) in English-majority cities are mainly due to sorting across cities. In...

  7. Learning cities 2020

    OpenAIRE

    Osborne, Michael

    2014-01-01

    This article provides a brief overview of historic work in the field of Learning City development. It then proceeds to highlight two contemporary strands of work. The first is the initiative of UNESCO’s Institute for Lifelong Learning (UIL) in establishing the International Platform of Learning Cities. The second is the work of the PASCAL Observatory, currently manifested in the Learning Cities 2020 programme.

  8. Sound and the City

    OpenAIRE

    Bulley, James; Sahin, Ozden; Spinelli, Emmanuel; Tanaka, Atau; Hosang, Georgina M.; Cubitt, Sean; Drever, John L.; Kanngieser, Anja

    2014-01-01

    Imagining the future soundscape of the city. Researchers from across disciplines explore the rapidly changing urban soundscape — how do the sounds around us affect our daily life? What might a futuristic city sound like? An interactive listening experience exploring the impact that the sounds around us can have on our health, wellbeing and sense of place. Sound and the City installation was exhibited as part of the Universities Week at the Natural History Museum between June 9 — 11, 2...

  9. Assimilation in multilingual cities

    OpenAIRE

    Ortega, Javier

    2011-01-01

    Using the Public Use Microdata Files of the 2001 and 2006 Canadian Censuses, we study the determinants of the assimilation of language minorities into the city majority language. We show that official minority members (i.e. francophones in English-speaking cities and anglophones in French-speaking cities) assimilate less than the "allophones" (the individuals with a mother tongue other than English or French), and that immigrants generally assimilate less than natives. In addition, the langua...

  10. Spatial resolution of subsurface anthropogenic heat fluxes in cities

    Science.gov (United States)

    Benz, Susanne; Bayer, Peter; Menberg, Kathrin; Blum, Philipp

    2015-04-01

    Urban heat islands in the subsurface contain large quantities of energy in the form of elevated groundwater temperatures caused by anthropogenic heat fluxes (AHFS) into the subsurface. Hence, the objective of this study is to exemplarily quantify these AHFS and the generated thermal powers in two German cities, Karlsruhe and Cologne. A two-dimensional (2D) statistical analytical model of the vertical subsurface anthropogenic heat fluxes across the unsaturated zone was developed. The model consists of a so-called Local Monte Carlo approach that introduces a spatial representation of the following sources of AHFS: (1) elevated ground surface temperatures, (2) basements, (3) sewage systems, (4) sewage leakage, (5) subway tunnels, and (6) district heating networks. The results show that district heating networks induce the largest local AHFS with values larger than 60 W/m2 and one order of magnitude higher than the other evaluated heat sources. Only sewage pipes and basements reaching into the groundwater cause equally high heat fluxes, with maximal values of 40.37 W/m2 and 13.60 W/m2, respectively. While dominating locally, the district heating network is rather insignificant for the citywide energy budget in both urban subsurfaces. Heat from buildings (1.51 ± 1.36 PJ/a in Karlsruhe; 0.31 ± 0.14 PJ/a in Cologne) and elevated GST (0.34 ± 0.10 PJ/a in Karlsruhe; 0.42 ± 0.13 PJ/a in Cologne) are dominant contributors to the anthropogenic thermal power of the urban aquifer. In Karlsruhe, buildings are the source of 70% of the annual heat transported into the groundwater, which is mainly caused by basements reaching into the groundwater. A variance analysis confirms these findings: basement depth is the most influential factor to citywide thermal power in the studied cities with high groundwater levels. The spatial distribution of fluxes, however, is mostly influenced by the prevailing thermal gradient across the unsaturated zone. A relatively cold groundwater

  11. EU Smart City Governance

    Directory of Open Access Journals (Sweden)

    Carmela Gargiulo

    2013-11-01

    Full Text Available In recent years European Commission has developed a set of documents for Members States tracing, directly or indirectly, recommendations for the transformation of the European city. The paper wants to outline which future EU draws for the city, through an integrated and contextual reading of addresses and strategies contained in the last documents, a future often suggested as Smart City. Although the three main documents (Cohesion Policy 2014-2020 of European Community, Digital Agenda for Europe and European Urban Agenda face the issue of the future development of European cities from different points of view, which are respectively cohesion social, ICT and urban dimension, each of them pays particular attention to urban and territorial dimension, identified by the name of Smart City. In other words, the paper aims at drawing the scenario of evolution of Smart Cities that can be delineated through the contextual reading of the three documents. To this end, the paper is divided into three parts: the first part briefly describes the general contents of the three European economic plan tools; the second part illustrates the scenarios for the future of the European city contained in each document; the third part seeks to trace the evolution of the Smart Cities issue developed by the set of the three instruments, in order to provide the framework of European Community for the near future of our cities

  12. Suburbs and Cities

    OpenAIRE

    William N. Goetzmann; Matthew I. Spiegel; Susan M. Wachter

    1996-01-01

    This paper addresses the issue of how closely the fortunes of suburbs are tied to the fortunes of the central city. We use similarities in residential housing price dynamics as a measure of how closely the economies of cities and suburbs are related. We develop housing price indices for most of the zip codes in California, and use these in a clustering procedure to see whether cities and suburbs naturally aggregate together, or whether they move separately. We find that central cities tend to...

  13. Isotope investigations as a tool for water resource management in Ljubljana City (Slovenia)

    International Nuclear Information System (INIS)

    Full text: two groundwater sources of drinking water are of great importance. An abundance of groundwater is hidden inside the sandy and gravely Sava river aquifer underneath the urban city area, called Ljubljansko polje, which is one of the largest underground reservoirs of drinking water in Slovenia. Ljubljansko polje is a tectonic basin by its origin and is, together with the second important groundwater resource - Ljubljansko Barje - a part of the Ljubljana basin. Ljubljansko Barje is highly complicated from the hydrogeological point of view - the variety of unconfined and unconfined aquifers stretching along the city suburbs in the South give us just a misty figure of the processes taking place in the sandy layers, in places covered by impermeable clayey layers and surrounded by karst mountains. The Ljubljansko polje aquifer is one of the most investigated Slovenian areas, because its groundwater has been used for public drinking water supply since 1890. Together with the increasing number of Ljubljana's inhabitants and consequently rising withdrawal quantities, groundwater quality began to show unacceptable deviations from the quality standards. The question of acceptable exploitation quantities that would not cause further decrease in groundwater quality was opened. The aim of isotope investigations was to determine the origin of the abstracted groundwater in more detail. The results served as helpful tools in determining priority tasks in planning future water exploitation and protection. Isotope investigations had not been applied in groundwater researches of Ljubljansko polje until recently. As an additional tool for understanding the groundwater recharge and flow of Ljubljansko polje groundwater, oxygen isotope composition was being determined during the period from autumn 1997 to autumn 1999. On the basis of results of previous hydrogeological investigations it was concluded that only two important sources of the Ljubljansko polje groundwater exist

  14. Groundwater: from mystery to management

    Science.gov (United States)

    Narasimhan, T. N.

    2009-07-01

    Groundwater has been used for domestic and irrigation needs from time immemorial. Yet its nature and occurrence have always possessed a certain mystery because water below the land surface is invisible and relatively inaccessible. The influence of this mystery lingers in some tenets that govern groundwater law. With the birth of modern geology during the late nineteenth century, groundwater science became recognized in its own right. Over the past two centuries, groundwater has lost its shroud of mystery, and its scientific understanding has gradually grown hand-in-hand with its development for human use. Groundwater is a component of the hydrological cycle, vital for human sustenance. Its annual renewability from precipitation is limited, and its chemical quality is vulnerable to degradation by human action. In many parts of the world, groundwater extraction is known to greatly exceed its renewability. Consequently, its rational management to benefit present and future generations is a matter of deep concern for many nations. Groundwater management is a challenging venture, requiring an integration of scientific knowledge with communal will to adapt to constraints of a finite common resource. As scientists and policy makers grapple with the tasks of groundwater management, it is instructive to reflect on the evolution of groundwater knowledge from its initial phase of demystification at the beginning of the nineteenth century, through successive phases of technological conquest, scientific integration, discovery of unintended consequences and the present recognition of an imperative for judicious management. The following retrospective provides a broad context for unifying the technical contributions that make up this focus issue on groundwater resources, climate and vulnerability.

  15. Groundwater: from mystery to management

    International Nuclear Information System (INIS)

    Groundwater has been used for domestic and irrigation needs from time immemorial. Yet its nature and occurrence have always possessed a certain mystery because water below the land surface is invisible and relatively inaccessible. The influence of this mystery lingers in some tenets that govern groundwater law. With the birth of modern geology during the late nineteenth century, groundwater science became recognized in its own right. Over the past two centuries, groundwater has lost its shroud of mystery, and its scientific understanding has gradually grown hand-in-hand with its development for human use. Groundwater is a component of the hydrological cycle, vital for human sustenance. Its annual renewability from precipitation is limited, and its chemical quality is vulnerable to degradation by human action. In many parts of the world, groundwater extraction is known to greatly exceed its renewability. Consequently, its rational management to benefit present and future generations is a matter of deep concern for many nations. Groundwater management is a challenging venture, requiring an integration of scientific knowledge with communal will to adapt to constraints of a finite common resource. As scientists and policy makers grapple with the tasks of groundwater management, it is instructive to reflect on the evolution of groundwater knowledge from its initial phase of demystification at the beginning of the nineteenth century, through successive phases of technological conquest, scientific integration, discovery of unintended consequences and the present recognition of an imperative for judicious management. The following retrospective provides a broad context for unifying the technical contributions that make up this focus issue on groundwater resources, climate and vulnerability.

  16. 3D modeling of soil structure in urban groundwater areas: case studies in Kolpene, Rovaniemi, Finland

    Science.gov (United States)

    Kupila, Juho

    2015-04-01

    3D modeling of groundwater areas is an important research method in groundwater surveys. Model of geological soil structure improves the knowledge of linkage between land use planning and groundwater protection. Results can be used as base information when developing the water supply services and anticipating and performing the measures needed in case of environmental accidents. Also, collected information is utilized when creating the groundwater flow model. In Finland, structure studies have been conducted in cooperation (among others) with the municipalities and local water suppliers and with the authorities from the Centre for Economic Development, Transport and the Environment. Geological Survey of Finland carries out project "Structure studies in Kolpene groundwater area" in Rovaniemi, Finnish Lapland. Study site is located in northern Finland, in the vicinity of the city center of Rovaniemi. Extent of the area is about 13 square kilometers and there are lots of urban residential areas and other human activities. The objective of this project is to determine the geological structure of the Kolpene groundwater area so that the results can be used to estimate the validity of the present exclusion area and possible risks to the groundwater caused by the land use. Soil layers of the groundwater area are studied by means of collecting information by heavy drilling, geophysical surveying (ground penetrating radar and gravimeter measurements) and water sampling from the installed observation pipes. Also the general geological and hydrological mappings are carried out. Main results which will be produced are: 1) the model of the bedrock surface, 2) the model of the surface of the ground water and flow directions, 3) the thickness of ground water saturated soil layers and 4) location and main characteristics of the soil layers which are significant to the ground water conditions. The preparing studies have been started at the end of 2013 and the results will be

  17. Assessing groundwater policy with coupled economic-groundwater hydrologic modeling

    Science.gov (United States)

    Mulligan, Kevin B.; Brown, Casey; Yang, Yi-Chen E.; Ahlfeld, David P.

    2014-03-01

    This study explores groundwater management policies and the effect of modeling assumptions on the projected performance of those policies. The study compares an optimal economic allocation for groundwater use subject to streamflow constraints, achieved by a central planner with perfect foresight, with a uniform tax on groundwater use and a uniform quota on groundwater use. The policies are compared with two modeling approaches, the Optimal Control Model (OCM) and the Multi-Agent System Simulation (MASS). The economic decision models are coupled with a physically based representation of the aquifer using a calibrated MODFLOW groundwater model. The results indicate that uniformly applied policies perform poorly when simulated with more realistic, heterogeneous, myopic, and self-interested agents. In particular, the effects of the physical heterogeneity of the basin and the agents undercut the perceived benefits of policy instruments assessed with simple, single-cell groundwater modeling. This study demonstrates the results of coupling realistic hydrogeology and human behavior models to assess groundwater management policies. The Republican River Basin, which overlies a portion of the Ogallala aquifer in the High Plains of the United States, is used as a case study for this analysis.

  18. Wastewater compounds in urban shallow groundwater wells correspond to exfiltration probabilities of nearby sewers.

    Science.gov (United States)

    Lee, Do Gyun; Roehrdanz, Patrick R; Feraud, Marina; Ervin, Jared; Anumol, Tarun; Jia, Ai; Park, Minkyu; Tamez, Carlos; Morelius, Erving W; Gardea-Torresdey, Jorge L; Izbicki, John; Means, Jay C; Snyder, Shane A; Holden, Patricia A

    2015-11-15

    Wastewater compounds are frequently detected in urban shallow groundwater. Sources include sewage or reclaimed wastewater, but origins are often unknown. In a prior study, wastewater compounds were quantified in waters sampled from shallow groundwater wells in a small coastal California city. Here, we resampled those wells and expanded sample analyses to include sewage- or reclaimed water-specific indicators, i.e. pharmaceutical and personal care product chemicals or disinfection byproducts. Also, we developed a geographic information system (GIS)-based model of sanitary sewer exfiltration probability--combining a published pipe failure model accounting for sewer pipe size, age, materials of construction, with interpolated depths to groundwater--to determine if sewer system attributes relate to wastewater compounds in urban shallow groundwater. Across the wells, groundwater samples contained varying wastewater compounds, including acesulfame, sucralose, bisphenol A, 4-tert-octylphenol, estrone and perfluorobutanesulfonic acid (PFBS). Fecal indicator bacterial concentrations and toxicological bioactivities were less than known benchmarks. However, the reclaimed water in this study was positive for all bioactivity tested. Excluding one well intruded by seawater, the similarity of groundwater to sewage, based on multiple indicators, increased with increasing sanitary sewer exfiltration probability (modeled from infrastructure within ca. 300 m of each well). In the absence of direct exfiltration or defect measurements, sewer exfiltration probabilities modeled from the collection system's physical data can indicate potential locations where urban shallow groundwater is contaminated by sewage. PMID:26379202

  19. Source and fate of nitrate contamination in the groundwater along its flow in Kumamoto area, Japan using δ15NNO3 and δ18ONO3

    Science.gov (United States)

    Tokunaga, T.; Shimada, J.; Hosono, T.; Nakata, H.; Kagabu, M.; Ono, M.; Orishikida, T.; Kumamoto Univ

    2011-12-01

    Kumamoto is a famous city for groundwater in Japan and its drinking water is fully dependent on groundwater. Groundwater nitrate-nitrogen contamination has increasingly been observed in the aquifer system of Kumamoto area. Actually, NO3-N concentrations in some groundwaters have been exceeding 10 mg/L. However, the cause of nitrate pollution has not yet been fully clarified and this issue needs to be addressed for sustainable utilization of groundwater in this region. The purpose of our study is to clarify the source and fate of nitrate contamination in Kumamoto groundwater by using δ15NNO3 and δ18ONO3. The main land-use is consisting of farm land in upland areas, rice paddies in the lowlands, and residential areas in the lowland area of the Kumamoto plain.Water samples for chemical and isotopic characterization were collected in October 2010 and January to March 2011 from 30 production wells. NO3-N concentrations in the groundwater were highest in highland areas where groundwater recharges in the agricultural zone. Dual nitrate isotope ratios clearly support the idea that nitrate contamination was due to the input of agricultural fertilizers applied in this recharge area. On the other hand, in the coastal area, where unoxic environment develops, significant denitrification effect was confirmed from the sample plot signature on concentration-δ15NNO3 diagram. Our results should be important information to be used in the program of groundwater resource management of the Kumamoto City.

  20. Hydrogeology and simulation of groundwater flow in the Central Oklahoma (Garber-Wellington) Aquifer, Oklahoma, 1987 to 2009, and simulation of available water in storage, 2010-2059

    Science.gov (United States)

    Mashburn, Shana L.; Ryter, Derek; Neel, Christopher R.; Smith, S. Jerrod; Magers, Jessica S.

    2014-01-01

    The Central Oklahoma (Garber-Wellington) aquifer underlies about 3,000 square miles of central Oklahoma. The study area for this investigation was the extent of the Central Oklahoma aquifer. Water from the Central Oklahoma aquifer is used for public, industrial, commercial, agricultural, and domestic supply. With the exception of Oklahoma City, all of the major communities in central Oklahoma rely either solely or partly on groundwater from this aquifer. The Oklahoma City metropolitan area, incorporating parts of Canadian, Cleveland, Grady, Lincoln, Logan, McClain, and Oklahoma Counties, has a population of approximately 1.2 million people. As areas are developed for groundwater supply, increased groundwater withdrawals may result in decreases in long-term aquifer storage. The U.S. Geological Survey, in cooperation with the Oklahoma Water Resources Board, investigated the hydrogeology and simulated groundwater flow in the aquifer using a numerical groundwater-flow model. The purpose of this report is to describe an investigation of the Central Oklahoma aquifer that included analyses of the hydrogeology, hydrogeologic framework of the aquifer, and construction of a numerical groundwater-flow model. The groundwater-flow model was used to simulate groundwater levels and for water-budget analysis. A calibrated transient model was used to evaluate changes in groundwater storage associated with increased future water demands.

  1. The City at Stake:

    Directory of Open Access Journals (Sweden)

    Sophie Esmann Andersen

    2009-12-01

    Full Text Available Studies of the city have been addressed from many different approaches such as law, political science, art history and public administration, in which the eco-nomic, political and legal status of the city have played a major role. However, a new agenda for conceptualizing the city has emerged, in which the city assumes new roles. By using stakeholder theory as a framework for conceptualizing the city, we argue that the city assumes a political-economic agenda-setting role as well as providing a stage for identity constructions and relational performances for consumers, organizations, the media, politicians and other stakeholders. Stakeholder theory allows us to conceptualize the city as being constituted by stakes and relationships between stakeholders which are approached from three analytical positions (modern, postmodern and hypermodern, respectively, thereby allowing us to grasp different stakes and types of relationships, ranging from functional and contractual relationships to individualized and emotionally driven or more non-committal and fluid forms of relationships. In order to support and illustrate the analytical potentials of our framework for conceptualizing urban living, we introduce a project which aims to turn the city of Aarhus into a CO2-neutral city by the year 2030, entitled Aarhus CO2030. We conclude that applying stakeholder theory to a hyper-complex organization such as a city opens up for a reconceptualization of the city as a web of stakes and stakeholder relations. Stakeholder theory contributes to a nuanced and elaborate understanding of the urban complexity and web of both enforced and voluntary relationships as well as the different types of relationships that characterize urban life.

  2. An integrative method to quantify contaminant fluxes in the groundwater of urban areas

    Energy Technology Data Exchange (ETDEWEB)

    Schiedek, T.; Beier, M.; Ebhardt, G. [Technical Univ. of Darmstadt (Germany). Inst. of Applied Geosciences

    2007-08-15

    Background, Aim and Scope: Background, Aims, and Scope. Groundwater in urban areas is often contaminated and emission sources can be located close to groundwater wells. The delineation of contaminant plumes is difficult because of the various potential emission sources. Thus, detection, quantification and remediation of contaminated sites in a city need more integrative approaches. Materials and Methods: A method has been developed which allows quantification of mass fluxes of contaminants in groundwater between control planes. Budget zones along the flow path are defined to calculate a contaminant balance and to quantitatively reveal input areas. Concentrations and water budgets are used to calculate mass balances for each contaminant. The city of Darmstadt (Germany) was chosen to evaluate the method. Results: The groundwater monitoring wells (GMWs) upstream of the city showed anthropogenically superposed background values for all naturally occurring inorganic species. The contaminant concentrations increased in the city (probably influenced by road traffic, gas stations, leaking sewers, etc.). Downstream from the city, concentrations usually decreased. Organic compounds typical for urban environments, such as polycyclic aromatic hydrocarbons (PAH), locally exceeded drinking water regulations. In GMWs with high concentrations of organic contaminants in the city or downstream from industrial areas, a significant increase in Fe{sup 2+} and Mn{sup 2+} could be observed, in some cases coinciding with a decrease in NO{sub 3}, SO{sub 4} and an increase in NH{sub 4}. Discussion: For typical urban contaminants, a positive budget was calculated in several zones, which shows that emissions from urban sources are reaching the groundwater. Negative budgets can be mainly explained with diving plumes and degradation. The input calculated from the individual budget zones is usually higher than the input estimated from urban emissions. Differences between the calculated and the

  3. Characterization of colloids in groundwater

    International Nuclear Information System (INIS)

    Natural colloids in the Gorleben aquifer systems have been investigated as for their chemical composition, quantification and size distribution. Humic substances appear to be the major organic materials in these groundwaters, generating humic colloids which are analysed to be humic acid (and fulvic acid) loaded with a large number of trace heavy metal ions. These metal ions include natural homologues of actinides and some fission products in trivalent, tetravalent and hexavalent state. Concentrations of trivalent and tetravalent heavy metal ions are linearly correlated with the dissolved organic carbon (DDC) concentration in different groundwaters. The DOC is found to be present as humic colloids. The Am3+ ions introduced in such a groundwater readily undergo the generation of its pseudocolloids through sorption or ion exchange reactions with humic colloids. The chemical behaviour of Am(III), being similar to the trivalent metal ions, e.g. Fe3+, REE etc. found in natural colloids, has been investigated by laser induced photoacoustic spectroscopy (LPAS). Groundwaters from Ispra, Markham Clinton and Felslabor Grimsel. Bidistilled water and one of Gorleben groundwaters, Gohy 1011, are taken for the purpose of comparison. This groundwater contains the least amount of natural colloids of all Gorleben groundwaters hitherto investigated. An indirect quantification is made by comparison of the LPAS results with experiment from Latex solution. (orig./IRB)

  4. Water use and groundwater contamination

    International Nuclear Information System (INIS)

    A general review of the groundwater resources in Saskatchewan and their vulnerability to contamination was provided. In particular, the use of water and the effects on water by the oil and gas industry in Saskatchewan were discussed. It was suggested that public concerns over scarcity and contamination of water are gradually changing perceptions about Canada's abundance of water. Saskatchewan's surface water covers 12 per cent of the province. About 90 per cent of the rural populations and 80 per cent of municipalities depend on groundwater supplies. Regulations affecting oil and gas operations that could affect water resources have become more stringent. Techniques used in the detection and monitoring of groundwater affected by salt and petroleum hydrocarbons were described. Electromagnetic surveys are used in detecting salt-affected soils and groundwater. Laboratory analysis of chloride concentrations are needed to define actual chloride concentrations in groundwater. Wells and barriers can be installed to control and recover chloride plumes. Deep well injection and reverse osmosis are other methods, but there is no cheap or simple treatment or disposal method for salt-impacted groundwater. Spills or leaks of petroleum hydrocarbons from various sources can also lead to contamination of groundwater. Various assessment and remediation methods are described. Although there is no scarcity of techniques, all of them are difficult, costly, and may take several years to complete. 11 refs., 1 tab

  5. Calculation of groundwater travel time

    International Nuclear Information System (INIS)

    Pre-waste-emplacement groundwater travel time is one indicator of the isolation capability of the geologic system surrounding a repository. Two distinct modeling approaches exist for prediction of groundwater flow paths and travel times from the repository location to the designated accessible environment boundary. These two approaches are: (1) the deterministic approach which calculates a single value prediction of groundwater travel time based on average values for input parameters and (2) the stochastic approach which yields a distribution of possible groundwater travel times as a function of the nature and magnitude of uncertainties in the model inputs. The purposes of this report are to (1) document the theoretical (i.e., mathematical) basis used to calculate groundwater pathlines and travel times in a basalt system, (2) outline limitations and ranges of applicability of the deterministic modeling approach, and (3) explain the motivation for the use of the stochastic modeling approach currently being used to predict groundwater pathlines and travel times for the Hanford Site. Example calculations of groundwater travel times are presented to highlight and compare the differences between the deterministic and stochastic modeling approaches. 28 refs

  6. Design and construction of falling groundwater level at conference and exhibition center, metro Line 2, Shenyang City, Liaoning Province%沈阳市地铁二号线会展中心站的降水设计与施工

    Institute of Scientific and Technical Information of China (English)

    丁世春

    2015-01-01

    本文介绍了沈阳市地铁二号线会展中心站的工程概况以及水文地质条件,分析其工程特点、地质特征,提出其基坑降水方案和降水施工需要注意问题。按该方案顺利完成该车站的基坑降水工作。%This paper introduced engineering general situation and the hydrogeological conditions in the study area and, analyzed the engineering characteristics, geological features, the falling groundwater level scheme and construction need to pay attention to the problem were put forward. According to the plan ,successfully completed the foundation pit falling groundwater level work. According to the plan successfully completed the work station foundation pit precipitation.

  7. Sources of groundwater contamination

    International Nuclear Information System (INIS)

    In spite of the importance of water for life, either for drinking, irrigation, industry or other wide uses in many fields, human beings seem to contaminate it and make it unsuitable for human uses. This is due to disposal of wastes in the environment without treatment. In addition to population increase and building expanding higher living costs, industrial and economical in growth that causes an increase in water consumption. All of these factors have made an increase pressure on our water environment quantitatively and qualitatively. In addition, there is an increase of potential risks to the water environmental due to disposal of domestic and industrial wastewater in areas near the water sources. Moreover, the use of unacceptable irrigation systems may increase soil salinity and evaporation rates. The present report discusses the some groundwater sources and problem, hot and mineral waters that become very important in our life and to our health due to its chemical and radioactivity characteristics.(authors)

  8. Deep groundwater chemistry

    International Nuclear Information System (INIS)

    Starting in 1977 and up till now a number of places in Sweden have been investigated in order to collect the necessary geological, hydrogeological and chemical data needed for safety analyses of repositories in deep bedrock systems. Only crystalline rock is considered and in many cases this has been gneisses of sedimentary origin but granites and gabbros are also represented. Core drilled holes have been made at nine sites. Up to 15 holes may be core drilled at one site, the deepest down to 1000 m. In addition to this a number of boreholes are percussion drilled at each site to depths of about 100 m. When possible drilling water is taken from percussion drilled holes. The first objective is to survey the hydraulic conditions. Core drilled boreholes and sections selected for sampling of deep groundwater are summarized. (orig./HP)

  9. Deer City Legend

    Institute of Scientific and Technical Information of China (English)

    LIUHUANZHI; LILIKUN

    2003-01-01

    MORE and more commodities,such as clothes,shoes,millinery,lighters and shavers,now bear the “Made in Wenzhou”mark.It woule appear that Wenzhou grooms the whole nation.Lucheng(deer city)District in central Wenzhou is the nucleus of the city's thriving light industry sector.

  10. The Experience City

    DEFF Research Database (Denmark)

    Marling, Gitte; Jensen, Ole B.; Kiib, Hans

    2009-01-01

    development are discussed in the paper, as well as the problems and the new opportunities with which the ‘Experience city' is faced. The article focus on the design of the Danish Experience City with special emphasis on hybrid cultural projects and on performative urban spaces. It present the first findings...... as we engage with the discussion about the trajectory of future research....

  11. A liveable city:

    DEFF Research Database (Denmark)

    Sommerlund, Julie

    2014-01-01

    increas- ingly based in and on cities rather than nations, and cities compete for businesses, branding, tourists and talent. In the western world, urbanisation has happened simultane- ously to de-industrialisation, which has opened industrial neighbourhoods and harbours for new uses – often focus- ing on...

  12. CHONGQING, the Hot City

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ Chongqing is a well-known city with a history of more than 3,000 years. It is a famous historical and cultural city in China. Chongqing is the birthplace of the Bayu Culture. At present, Chongqing is a municipality directly under the Central Government with the largest area, the most administrative districts and the largest population.

  13. Marriage and the City

    DEFF Research Database (Denmark)

    Gautier, Pieter; Svarer, Michael; Teulings, Coen

    Do people move to cities because of marriage market considerations? In cities singles can meet more potential partners than in rural areas. Singles are therefore prepared to pay a premium in terms of higher housing prices. Once married, the marriage market benefits disappear while the housing...

  14. Escaping The Big Cities

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    More white-collar workers consider leaving major metropolises to find opportunities in small and medium-sized cities The energy and excitement of first-tier cities, including Beijing, Shanghai, Guangzhou and Shenzhen in Guangdong Province, have long served as magnets attracting enthusiastic young people. But recent surveys have overturned the perception of this urban draw.

  15. Smart cities: event everywhere

    OpenAIRE

    Reboredo Penedo, Raquel

    2015-01-01

    The research attempts to provide a big picture from the literature through a Systematic Literature Review about the smart city and the existing standards topics for interchanging data through Smart City Apps. Additionally a prototype was created to analyze one of the standards found in the SLR

  16. Making Cities Better

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Livelihood programs change the lives of urban residents For decades Chinese cities have vied with each other to top national and international development rankings. However, the triennial national list of cities with an advanced living environment judges candidates according to less conventional

  17. Walkout in Crystal City

    Science.gov (United States)

    Barrios, Greg

    2009-01-01

    When students take action, they create change that extends far beyond the classroom. In this article, the author, who was a former teacher from Crystal City, Texas, remembers the student walkout that helped launch the Latino civil rights movement 40 years ago. The Crystal City student walkout remains a high point in the history of student activism…

  18. Reflective cool cities

    NARCIS (Netherlands)

    Heidegger, V.

    2011-01-01

    This "designers' manual" is made during the TIDO-course AR0531 Smart & Bioclimatic Design. Our globe is heating, and cities are heating up much more. At the same time, cities are growing and green spaces are substituted by buildings and streets. These man-made surfaces are dark and tend to heat up

  19. Groundwater infiltration by herbicides

    International Nuclear Information System (INIS)

    A variety of herbicides, applied in various ways, are used by Canadian utilities to control the undesirable vegetation on rights-of-way under transmission and distribution lines, and at transformer stations. Above a soil organic carbon content of 0.1% the herbicide sorption on the immobile organic phase is best described by organic carbon partitioning coefficients. Order of magnitude estimates of these partitioning coefficients were to be derived from the octanol/herbicide partitioning coefficients. At dissolved organic matter contents above 30 mg/L (in bogs and swamps) the herbicide mobility is enhanced, below 1 mg/L the effect of sorption on the immobile phase of organic matter prevails. For all herbicides in question and most of the field conditions it can be safely assumed that transformation of the infiltrated amount will occur with a half-life of more than 30 days. The degradation is temperature dependent and ceases below 0 degree C. Assuming the water movement in sandy, loamy and clay soils as 2, 1 and 0.5 m/year, the transport rate of 2,4-D is calculated to be approximately 0.92, 0.46 and 0.23 m/year, respectively. The overall evaluation of herbicide mobility showed that the potential for groundwater contamination most sensitively depends on organic carbon content of soil, herbicide half-life, deep percolation, and depth to groundwater table. It was recommended that the use of herbicides in hydrogeologically sensitive areas be restricted and fast degrading herbicides be used in other areas. For continued use of herbicides, the implementation of an operation decision-making model combined with a migration model is suggested. 44 refs., 3 tabs

  20. Global scale groundwater flow model

    Science.gov (United States)

    Sutanudjaja, Edwin; de Graaf, Inge; van Beek, Ludovicus; Bierkens, Marc

    2013-04-01

    As the world's largest accessible source of freshwater, groundwater plays vital role in satisfying the basic needs of human society. It serves as a primary source of drinking water and supplies water for agricultural and industrial activities. During times of drought, groundwater sustains water flows in streams, rivers, lakes and wetlands, and thus supports ecosystem habitat and biodiversity, while its large natural storage provides a buffer against water shortages. Yet, the current generation of global scale hydrological models does not include a groundwater flow component that is a crucial part of the hydrological cycle and allows the simulation of groundwater head dynamics. In this study we present a steady-state MODFLOW (McDonald and Harbaugh, 1988) groundwater model on the global scale at 5 arc-minutes resolution. Aquifer schematization and properties of this groundwater model were developed from available global lithological model (e.g. Dürr et al., 2005; Gleeson et al., 2010; Hartmann and Moorsdorff, in press). We force the groundwtaer model with the output from the large-scale hydrological model PCR-GLOBWB (van Beek et al., 2011), specifically the long term net groundwater recharge and average surface water levels derived from routed channel discharge. We validated calculated groundwater heads and depths with available head observations, from different regions, including the North and South America and Western Europe. Our results show that it is feasible to build a relatively simple global scale groundwater model using existing information, and estimate water table depths within acceptable accuracy in many parts of the world.

  1. Great cities look small

    CERN Document Server

    Sim, Aaron; Barahona, Mauricio; Stumpf, Michael P H

    2015-01-01

    Great cities connect people; failed cities isolate people. Despite the fundamental importance of physical, face-to-face social-ties in the functioning of cities, these connectivity networks are not explicitly observed in their entirety. Attempts at estimating them often rely on unrealistic over-simplifications such as the assumption of spatial homogeneity. Here we propose a mathematical model of human interactions in terms of a local strategy of maximising the number of beneficial connections attainable under the constraint of limited individual travelling-time budgets. By incorporating census and openly-available online multi-modal transport data, we are able to characterise the connectivity of geometrically and topologically complex cities. Beyond providing a candidate measure of greatness, this model allows one to quantify and assess the impact of transport developments, population growth, and other infrastructure and demographic changes on a city. Supported by validations of GDP and HIV infection rates ac...

  2. Universities Scale Like Cities

    CERN Document Server

    van Raan, Anthony F J

    2012-01-01

    Recent studies of urban scaling show that important socioeconomic city characteristics such as wealth and innovation capacity exhibit a nonlinear, particularly a power law scaling with population size. These nonlinear effects are common to all cities, with similar power law exponents. These findings mean that the larger the city, the more disproportionally they are places of wealth and innovation. Local properties of cities cause a deviation from the expected behavior as predicted by the power law scaling. In this paper we demonstrate that universities show a similar behavior as cities in the distribution of the gross university income in terms of total number of citations over size in terms of total number of publications. Moreover, the power law exponents for university scaling are comparable to those for urban scaling. We find that deviations from the expected behavior can indeed be explained by specific local properties of universities, particularly the field-specific composition of a university, and its ...

  3. A methodology to quantify the risks of urbanisation on groundwater systems in South Africa / Johanna Margaretha van Rooyen

    OpenAIRE

    Van Rooyen, Johanna Margaretha

    2014-01-01

    Each year, the urbanised population grows exponentially and due to this growth, cities are forced to expand beyond their manageable borders resulting in greater pressure on the surrounding urban environment. Many South African towns or cities are dependent on surface water for water supply. These resources are slowly being depleted and the dependence on groundwater resources is becoming increasingly important. Due to increased mining, industrial and agricultural activities in South Africa the...

  4. The influence of surface water - groundwater interactions on the shallow groundwater in agricultural areas near Fu River, China

    Science.gov (United States)

    Brauns, Bentje; Løgstrup Bjerg, Poul; Jakobsen, Rasmus; Song, Xianfang

    2014-05-01

    The Northern China Plain (NPC) is known as a very productive area in China for the production of maize and winter wheat, which is grown by local farmers rotationally without lag phases throughout the year. The needed application of fertilizers and pesticides can hereby have strong impacts on the quality shallow groundwaters. Because 70-80% percent of the annual rainfall in the NCP is limited to the summer months, irrigation in the spring season is a necessity. As high quality groundwater resources from deeper aquifers are a valuable and rare asset in Northern China, it should preferentially be used as drinking water, and farmers therefore often shift to flood irrigation with surface water from streams. It is due to this reason, that large agricultural areas are located very close alongside these waterways; often without buffer zones. Fu River is one of the major feeding streams for the Baiyangdian Lake region in the north of Hebei Province. It springs in the west of the lake area and - after passing the populated city of Baoding (with a population of about 600 000 in the metropolitan area) - continues on its course through agricultural area before it feeds into the lake system. Industrial and domestic wastewater as well as surface runoff from urban and agricultural areas substantiates for a significant amount of the river's recharge and often causes poor water quality. As the water from the river may infiltrate into the shallow groundwater, this could cause further deterioration of the groundwater quality, additionally to the effects of the agricultural activities. However, fluctuations may be high because of the strong seasonal differences in precipitation and depending on the connectivity and dynamics of the system . In order to assess the water quality situation and the potential link between surface water and shallow groundwater in the region, a small-scale investigation site was set up on a typical wheat-maize field that reaches almost up to the river bank in

  5. 2008 City of Baltimore Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In the spring of 2008, the City of Baltimore expressed an interest to upgrade the City GIS Database with mapping quality airborne LiDAR data. The City of Baltimore...

  6. Groundwater flow functioning in arid zones with thick volcanic aquifer units: North-Central Mexico

    International Nuclear Information System (INIS)

    Population increase in arid zones of Mexico has created the presence of 450% new cities with more that 50,000 inhabitants, as related to the 1950s. Due to the arid nature of the environment, the once sufficient spring and shallow water are becoming inadequate for the supply of those cities. An answer to this problem lies with the sustainable development of deep groundwater. The geological features of the country include fractured volcanic aquifer units that are more than 1,500 m thick, and are regionally continuous over of several hundred thousands of square kilometres. Groundwater development decisions need to consider, in the long span, inter-basin groundwater flow and the need to prevent environmental impacts in distant sites hydraulically connected with extraction centres. Radiocarbon is an excellent tool that initially has been applied to characterize groundwater in thick aquifer units in central Mexico to provide evidence on the hierarchy of flow (local/regional) and water age from where the distance of regional recharge was inferred. Radiocarbon also helps constrain flow path length which can then be used to characterize inter-basin groundwater communication. Radiocarbon has a large potential for future expansion of research and water management application. (author)

  7. Threat of land subsidence in and around Kolkata City and East Kolkata Wetlands, West Bengal, India

    Indian Academy of Sciences (India)

    P Sahu; P K Sikdar

    2011-06-01

    This paper attempts to estimate the possible rate of land subsidence of Kolkata City including Salt Lake City and the adjoining East Kolkata Wetlands located at the lower part of the deltaic alluvial plain of South Bengal basin. Demand of groundwater for drinking, agricultural and industrial purposes has increased due to rapid urbanization. The subsurface geology consists of Quaternary sediments comprising a succession of clay, silty clay and sand of various grades. Groundwater occurs mostly under confined condition except in those places where the top aquitard has been obliterated due to the scouring action of past channels. Currently, the piezometric head shows a falling trend and it may be accelerated due to further over-withdrawal of groundwater resulting in land subsidence. The estimated mean land subsidence rate is 13.53 mm/year and for 1 m drop in the piezometric head, the mean subsidence is 3.28 cm. The surface expression of the estimated land subsidence is however, cryptic because of a time lag between the settlement of the thick low-permeable aquitard at the top and its surface expression. Therefore, groundwater of the cities and wetland areas should be developed cautiously based on the groundwater potential to minimize the threat of land subsidence.

  8. Groundwater Resources Pollution Risk: Application of the Holman Method

    Directory of Open Access Journals (Sweden)

    M. D. Maio

    2009-01-01

    Full Text Available Problem statement: The aim of this study is to make an attempt to assess, through the application of the Holman Method, the effects that a careless management of human induced activities could have on aquifers and in particular on tapping wells used for human supply. Approach: The study had been applied to two different territories, as far as both the geomorphological and human induced aspects are concerned: the city of Aosta, the capital city of the Autonomous Aosta Valley region and three municipalities located in the centre of the Veneto region. Results: Thanks to the first results that had been obtained from the application of this method and other ones, it is hoped that a strategic territorial management approach will be adopted in the future so that the Groundwater Resources (GWR can coexist with the economic and urban developments. Conclusion: All the analysis had been implemented utilizing a Geographical Information System (GIS.

  9. Factors Affecting the Sustainability of Groundwater-Source Cooling

    Science.gov (United States)

    Ferguson, G. A.; Woodbury, A. D.

    2004-12-01

    The use of groundwater in thermal applications has grown in popularity due to increases in environmental awareness and rising energy costs. While this source of energy is generally seen as beneficial to the environment, changes in subsurface temperatures resulting from thermal development and other factors may make this practice unsustainable. An example of such changes in subsurface temperatures has been observed in Winnipeg, Manitoba, where groundwater is extensively used for cooling applications. Temperatures in a regional aquifer beneath the city were found to be as much as ten degrees Celsius greater than those measured in surrounding rural areas. Numerical modeling indicates increases in temperature of up to 5 degrees Celsius can be attributed to downward heat flow originating in buildings in many cases. Areas where increases in temperature were found to be greater corresponded to areas where water is being injected into the aquifer. This water is being produced in the process of using groundwater for cooling applications, such as air conditioning and industrial cooling, and is being injected back into the aquifer to maintain hydraulic head and reduce the demand on Winnipeg's sewer system. In most cases, the heat introduced by injecting this water is significantly affecting temperatures at the production well of the same system and numerical modeling indicates that this is inevitable with the current method of development. The combination of heat loss from buildings and injection of heated water is largely responsible for a reduction in the efficiency of groundwater as a coolant and may eventually make the use of groundwater in cooling applications unsustainable.

  10. Groundwater protection in Russia, Finland and EU

    OpenAIRE

    Orlova, Liubov

    2015-01-01

    Groundwater is a major source of fresh drinking water. Since groundwater is unevenly distributed, it is quite a strong effect on the problem of shortage of drinking water in some states. However, the importance of groundwater as the primary source of drinking water varies within countries, depending on the amount and quality of groundwater, and conditions of its use and geographic characteristics of the state. This thesis describes characteristics of groundwater in the territory of Russia...

  11. Groundwater Vulnerability Regions of Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The regions onThis map represent areas with similar hydrogeologic characteristics thought to represent similar potentials for contamination of groundwater and/or...

  12. Great cities look small.

    Science.gov (United States)

    Sim, Aaron; Yaliraki, Sophia N; Barahona, Mauricio; Stumpf, Michael P H

    2015-08-01

    Great cities connect people; failed cities isolate people. Despite the fundamental importance of physical, face-to-face social ties in the functioning of cities, these connectivity networks are not explicitly observed in their entirety. Attempts at estimating them often rely on unrealistic over-simplifications such as the assumption of spatial homogeneity. Here we propose a mathematical model of human interactions in terms of a local strategy of maximizing the number of beneficial connections attainable under the constraint of limited individual travelling-time budgets. By incorporating census and openly available online multi-modal transport data, we are able to characterize the connectivity of geometrically and topologically complex cities. Beyond providing a candidate measure of greatness, this model allows one to quantify and assess the impact of transport developments, population growth, and other infrastructure and demographic changes on a city. Supported by validations of gross domestic product and human immunodeficiency virus infection rates across US metropolitan areas, we illustrate the effect of changes in local and city-wide connectivities by considering the economic impact of two contemporary inter- and intra-city transport developments in the UK: High Speed 2 and London Crossrail. This derivation of the model suggests that the scaling of different urban indicators with population size has an explicitly mechanistic origin. PMID:26179988

  13. @City: technologising Barcelona

    Directory of Open Access Journals (Sweden)

    Rojas, Jesús

    2007-05-01

    Full Text Available This article is about the concept of the contemporary city - the influence that technology has when one thinks about, plans and lives in a city. The conjunction of technology and city reformulates customs and social practices; it can even determine the way one constitutes one's own identity. One can see how close the relation is between technology (specifically, TICS and the structures of the city in a wide variety of situations: in social interactions on the street, in transport, and in ways of buying, of working and entertainment. "@City" is a concept that very well reflects the emergent properties of a current city, that is, the coexistence of a physical and a virtual urban space. The "22@Barcelona" project attempts to bring together different types of spaces. By combining the physical with the virtual, 22@Barcelona, as a neighborhood of @City, creates an uncertain and blurred border between both spaces.The article also examines the impact that these spaces have on the psycho-social processes involved in the daily life of a traditionally working-class neighborhood, now strongly limited by technological boundaries.

  14. Purification of contaminated groundwater by membrane technology

    Energy Technology Data Exchange (ETDEWEB)

    Youn, In Soo; Chung, Chin Ki; Kim, Byoung Gon [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-12-01

    The objective of this study is to apply the membrane separation technology to the purification of contaminated ground water in Korea. Under this scope, the purification was aimed to the drinking water level. The scale of the membrane system was chosen to a small filtration plant for local clean water supplies and/or heavy purifiers for buildings and public uses. The actual conditions of ground water contamination in Korea was surveyed to determine the major components to remove under the drinking water requirements. To set up a hybrid process with membrane methods, conventional purification methods were also investigated for the comparison purpose. The research results are summarized as follows : 1) Contamination of the groundwater in Korea has been found to be widespread across the country. The major contaminant were nitrate, bacteria, and organic chlorides. Some solvents and heavy metals are also supposed to exist in the ground water of industrial complexes, cities, and abandoned mines. 2) The purification methods currently used in public filtration plants appear not to be enough for new contaminants from recent industrial expanding. The advanced purification technologies generally adopted for this problem have been found to be unsuitable due to their very complicated design and operation, and lack of confidence in the purification performance. 3) The reverse osmosis tested with FilmTec FT30 membrane was found to remove nitrate ions in water with over 90 % efficiency. 4) The suitable membrane process for the contaminated groundwater in Korea has been found to be the treatments composed of activated carbon, microfiltration, reverse osmosis or ultrafiltration, and disinfection. The activated carbon treatment could be omitted for the water of low organic contaminants. The microfiltration and the reverse osmosis treatments stand for the conventional methods of filtration plants and the advanced methods for hardly removable components, respectively. It is recommended

  15. Hydrogeochemical and stream sediment reconnaissance basic data for Bay City NTMS Quadrangle, Texas

    International Nuclear Information System (INIS)

    Results of a reconnaissance geochemical survey of the Bay City Quadrangle, Texas are reported. Statistical data and areal distributions for uranium and uranium-related variables are presented for 55 groundwaters and 46 stream sediment samples. Also included is a brief discussion on location and geologic setting. The Bay City Quadrangle is represented by a small area with relatively simple surface and subsurface geology. Two stratigraphic units are exposed at the surface and only one aquifer system supplies the groundwater samples. The results of the groundwater geochemical analysis show uranium associated with saline waters thus indicating possible salt water infiltration from the Gulf. The geochemical results from the analysis of stream sediments indicate uranium in association with resistate mineral indicators

  16. Determination of Some Heavy Metals In The Environment of SADAT Industrial City

    International Nuclear Information System (INIS)

    The aim of this study was to assess the heavy metal concentration in the soil and the groundwater of Sadat City in Egypt and its relation to the highly developed industrial activities in that area. The levels of Pb, Cr, Cu, Cd, Zr, and V were determined in the groundwater samples (as drinking water supplies) and also the same elements in the soil samples. 10 soil samples and 18 groundwater samples were collected from the city. The soil and the groundwater samples were analysed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The concentration of Pb, Cr, Cu, Cd, Zr, and V measured (in ppm) in the soil samples ranged from 0.48 to 11.3, 0.36 to 2.56, 43.7 to 304.0, 0.34 to 2.64, 0.209 to 21.7, and 0.10 to 17.0, respectively. The concentration of Pb, Cr, Cu, Cd, Zr, and V measured (in ppb) in the groundwater samples of all studied wells ranged from 0.11 to 41.32, 0.10 to 2.63, 0.14 to 5.76, 0.03 to 21.7, 11.4 to 134, and 0.08 to 5.08, respectively. The levels of Pb and Zr exceeded the threshold limits set by the WHO health-based guideline for drinking water in some studied groundwater wells

  17. Groundwater Management Innovations in the High Plains Aquifer, USA: A possible path towards sustainability? (Invited)

    Science.gov (United States)

    Sophocleous, M. A.

    2009-12-01

    The U.S. High Plains aquifer, one of the largest freshwater aquifer systems in the world covering parts of eight US states, continues to decline, threatening the long-term viability of the region’s irrigation-based economy. The theory of the commons has meaningful messages for High-Plains jurisdictions as no private incentive exists to save for tomorrow, and agricultural prosperity depends on mining water from large portions of the aquifer. The eight High Plains states take different approaches to the development and management of the aquifer based on each state’s body of water laws that abide by different legal doctrines, on which Federal laws are superposed, thus creating difficulties in integrated regional water management efforts. Although accumulating hydrologic stresses and competing demands on groundwater resources are making groundwater management increasingly complex, they are also leading to innovative approaches to the management of groundwater supplies, and those are highlighted in this presentation as good examples for emulation in managing groundwater resources. The highlighted innovations include (1) the Texas Groundwater Availability Modeling program, (2) Colorado’s water-augmentation program, (3) Kansas’ Intensive Groundwater Use Control Area policy, (4) the Kansas Groundwater Management Districts’ “safe yield” policies, (5) the water-use reporting program in Kansas, (6) the Aquifer Storage and Recovery program of the City of Wichita, Kansas, and (7) Nebraska’s Natural Resources Districts. It is concluded that the fragmented and piecemeal institutional arrangements for managing the supplies and quality of water are unlikely to be sufficient to meet the water challenges of the future. A number of recommendations for enhancing the sustainability of the aquifer are presented, including the formation of an interstate groundwater commission for the High Plains aquifer along the lines of the Delaware and Susquehanna River Basins

  18. Groundwater flow system and Nitrogen cycle in volcanic aquifer of pyroclastic flow uplands, Japan

    Science.gov (United States)

    Mikami, K.; Shimada, J.; Tashiro, S.; Niimi, H.

    2007-12-01

    Study area is well-known agriculture area in Southern Kyushu, Japan and highly depends on groundwater resources for their everyday use. Local unconfined groundwater aquifer is widely polluted by Nitrate-Nitrogen originated from agriculture and cattle farming. It will become serious problem if this unconfined Nitrate pollution enlarges into the confined aquifer system which is used for local city water source. The detailed three dimensional groundwater flow system study has been done by using existing wells in the basin to understand the three dimensional distribution pattern of Nitrate-Nitrogen in the aquifer. However, the detailed groundwater age analysis by using Tritium for unconfined and confined groundwater has not been succeeded because of present low atmosphere tritium concentration. Thus we applied to challenge the CFCs dating method. Although the CFCs method has been widely used for dating the young groundwater instead of tritium in many countries, in Japan CFCs has been used only by Oceanographic study and has not been used in the field of Hydrology. The history and fate of Nitrate contamination have been shown in multidisciplinary local transect studies in areas with agricultural sources (Bohlke and Denver 1995). However, identification of Nitrogen sources can be difficult in larger regional studies because of co-occurrence of multiple anthropogenic Nitrogen sources and uncertainty in Nitrogen transformation pathways. Thus, the characterization of N geochemistry remains challenging, particularly in aquifer-scale assessments (Stephen 2006). In this study, the evidence of the shallow groundwater flowing towards deep aquifer was verified by the groundwater dating and the detailed Nitrogen reduction process was confirmed along the groundwater flow.

  19. Comparison of groundwater recharge estimation methods for the semi-arid Nyamandhlovu area, Zimbabwe

    OpenAIRE

    Sibanda, T.; Nonner, J.C.; Uhlenbrook, S.

    2009-01-01

    The Nyamandhlovu aquifer is the main water resource in the semi-arid Umguza district in Matebeleland North Province in Zimbabwe. The rapid increase in water demand in the city of Bulawayo has prompted the need to quantify the available groundwater resources for sustainable utilization. Groundwater recharge estimation methods and results were compared: chloride mass balance method (19–62 mm/year); water-table fluctuation method (2–50 mm/year); Darcian flownet computations (16–28 mm/year); 14C ...

  20. Collaborative trial on groundwater sampling

    OpenAIRE

    Ghestem, Jean Philippe; Fisicaro, Paula; Champion, Rachel

    2011-01-01

    The trial presented here was conducted by BRGM in collaboration with LNE under the work program AQUAREF 2009 with the support of ONEMA. This is a collaborative trial on groundwater sampling and on field physico chemical measurement. It is not a proficiency test. He had three goals: * Observe and evaluate the practices of groundwater sampling to improve future guides, standards and specifications. * Assess the impact of sampling on variability of results. * Study the accuracy of field measurem...

  1. Irrigation and groundwater in Pakistan

    Science.gov (United States)

    Ertsen, Maurits; Iftikhar Kazmi, Syed

    2010-05-01

    Introduction of large gravity irrigation system in the Indus Basin in late nineteenth century without a drainage system resulted in water table rise consequently giving rise to water logging and salinity problems over large areas. In order to cope with the salinity and water logging problem government initiated salinity control and reclamation project (SCARP) in 1960. Initially 10,000 tube wells were installed in different areas, which not only resulted in the lowering of water table, but also supplemented irrigation. Resulting benefits from the full irrigation motivated framers to install private tube wells. Present estimate of private tube wells in Punjab alone is around 0.6 million and 48 billion cubic meter of groundwater is used for irrigation, contributing is 1.3 billion to the economy. The Punjab meets 40% of its irrigation needs from groundwater abstraction. Today, farmers apply both surface water flows and groundwater from tubewells, creating a pattern of private and public water control. As the importance of groundwater in sustaining human life and ecology is evident so are the threats to its sustainability due to overexploitation, but sufficient information for its sustainable management especially in developing countries is still required. Sustainable use of groundwater needs proper quantification of the resource and information on processes involved in its recharge and discharge. Groundwater recharge is broadly defined as water that reaches the aquifer from any direction (Lerner 1997). Sustainability and proper management of groundwater resource requires reliable quantification of the resource. In order to protect the resource from contamination and over exploitation, identification of recharge sources and their contribution to resource is a basic requirement. Physiochemical properties of some pesticides and their behavior in soil and water can make them potential tracers of subsurface moisture movement. Pesticides are intensively used in the area to

  2. Application of a fully-integrated groundwater-surface water flow model in municipal asset management

    Science.gov (United States)

    Bowman, L. K.; Unger, A.; Jones, J. P.

    2014-12-01

    Access to affordable potable water is critical in the development and maintenance of urban centres. Given that water is a public good in Canada, all funds related to operation and maintenance of the drinking water and wastewater networks must come from consumers. An asset management system can be put in place by municipalities to more efficiently manage their water and wastewater distribution system to ensure proper use of these funds. The system works at the operational, tactical, and strategic levels, thus ensuring optimal scheduling of operation and maintenance activities, as well as prediction of future water demand scenarios. At the operational level, a fully integrated model is used to simulate the groundwater-surface water interaction of the Laurel Creek Watershed, of which 80% is urbanized by the City of Waterloo. Canadian municipalities typically lose 13% of their potable water through leaks in watermains and sanitary sewers, and sanitary sewers often generate substantial inflows from fractures in pipe walls. The City of Waterloo sanitary sewers carry an additional 10,000 cubic meters of water to wastewater treatment plants. Therefore, watermain and sanitary sewers present a significant impact on the groundwater-surface water interaction, as well as the affordability of the drinking water and wastewater networks as a whole. To determine areas of concern within the network, the integrated groundwater-surface water model also simulates flow through the City of Waterloo's watermain and sanitary sewer networks. The final model will be used to assess the interaction between measured losses of water from the City of Waterloo's watermain system, infiltration into the sanitary sewer system adjacent to the watermains, and the response of the groundwater system to deteriorated sanitary sewers or to pipes that have been recently renovated. This will ultimately contribute to the City of Waterloo's municipal asset management plan.

  3. Futures of cities

    DEFF Research Database (Denmark)

    2008-01-01

    Arkitektskole. Bogen  har 3 dele. Principles: Copenhagen Agenda for Sustainable Living, 10 principper udviklet af Ugebrevet Mandag Morgen illustreret af arkitektstuderende. Congress: Futures of Cities, Emerging Urbanisms- Emerging Practices, oplæg fra unge tegnestuer til temaet fremlagt på Student Congress......Bogen dokumenterer resultater fra den internationale kongres Futures of Cities arrangeret af IFHP International Federation of Housing and Planning, Realdania, Kunstakademiets Arkitektskole og City of Copenhagen. Kongressen blev afholdt i september 2007 i Øksnehallen og på Kunstakademiets...

  4. Making the Experience City

    DEFF Research Database (Denmark)

    Jensen, Ole B.

    2009-01-01

    This paper describes the latest research into cultural planning and architectural branding in Denmark based on the ‘Experience City' research project located at Aalborg University. The paper explores the implication of the turn towards culture and experience in the contemporary Danish city. It thus...... makes an investigation into the complex relationship between the words and policies of the ‘Experience Economy' and the actual urban transformations made in cities with reference to these changes. The paper discusses the cases researched in relation to the state, market, civil society framework as well...

  5. Smart city – future city? smart city 20 as a livable city and future market

    CERN Document Server

    Etezadzadeh, Chirine

    2016-01-01

    The concept of a livable smart city presented in this book highlights the relevance of the functionality and integrated resilience of viable cities of the future. It critically examines the progressive digitalization that is taking place and identifies the revolutionized energy sector as the basis of urban life. The concept is based on people and their natural environment, resulting in a broader definition of sustainability and an expanded product theory. Smart City 2.0 offers its residents many opportunities and is an attractive future market for innovative products and services. However, it presents numerous challenges for stakeholders and product developers.

  6. Optimal and Sustainable Groundwater Extraction

    Directory of Open Access Journals (Sweden)

    Christopher A. Wada

    2010-08-01

    Full Text Available With climate change exacerbating over-exploitation, groundwater scarcity looms as an increasingly critical issue worldwide. Minimizing the adverse effects of scarcity requires optimal as well as sustainable patterns of groundwater management. We review the many sustainable paths for groundwater extraction from a coastal aquifer and show how to find the particular sustainable path that is welfare maximizing. In some cases the optimal path converges to the maximum sustainable yield. For sufficiently convex extraction costs, the extraction path converges to an internal steady state above the level of maximum sustainable yield. We describe the challenges facing groundwater managers faced with multiple aquifers, the prospect of using recycled water, and the interdependence with watershed management. The integrated water management thus described results in less water scarcity and higher total welfare gains from groundwater use. The framework also can be applied to climate-change specifications about the frequency, duration, and intensity of precipitation by comparing before and after optimal management. For the case of South Oahu in Hawaii, the prospect of climate change increases the gains of integrated groundwater management.

  7. Spatial distribution of ground water quality in some selected parts of Pune city, Maharashtra, India using GIS

    OpenAIRE

    S. Tikle; M. J. Saboori; R. Sankpal

    2012-01-01

    Pune is one of the major developing cities in India; its area is rapidly increasing as neighboring villages like Aundh, Baner, Pashan and Sutarvadi are merged into the Pune Municipal Corporation (PMC). Majority of the people are using the groundwater as a prime source for their domestic needs, besides the PMC is supplying them with an allocation of treated water. Assessing the quality of groundwater is an important issue in the modern times. Spatial variations in ground water quality in some ...

  8. Uncertainty in global groundwater storage estimates in a Total Groundwater Stress framework

    OpenAIRE

    Richey, Alexandra S.; Thomas, Brian F.; Lo, Min‐Hui; Famiglietti, James S; Swenson, Sean; Rodell, Matthew

    2015-01-01

    Abstract Groundwater is a finite resource under continuous external pressures. Current unsustainable groundwater use threatens the resilience of aquifer systems and their ability to provide a long‐term water source. Groundwater storage is considered to be a factor of groundwater resilience, although the extent to which resilience can be maintained has yet to be explored in depth. In this study, we assess the limit of groundwater resilience in the world's largest groundwater systems with remot...

  9. Green Cities : Cities and Climate Change in Brazil

    OpenAIRE

    World Bank

    2011-01-01

    Urban sources of greenhouse gas (GHG) emissions in Brazilian cities are growing. At the national level, the dominance of greenhouse gas emissions from deforestation in Brazil masks the fact that emissions from other sectors, like Energy, Transport and Waste, are growing quite rapidly in cities. Compared to other cities around the world, Brazilian cities have low per capita GHG emissions be...

  10. Costs of groundwater contamination

    International Nuclear Information System (INIS)

    Two factors determine the cost of groundwater contamination: (1) the ways in which water was being used or was expected to be used in the future and (2) the physical characteristics of the setting that constrain the responses available to regain lost uses or to prevent related damages to human health and the environment. Most contamination incidents can be managed at a low enough cost that uses will not be foreclosed. It is important to take into account the following when considering costs: (1) natural cleansing through recharge and dilution can take many years; (2) it is difficult and costly to identify the exact area and expected path of a contamination plume; and (3) treatment or replacement of contaminated water often may represent the cost-effective strategy for managing the event. The costs of contamination include adverse health effects, containment and remediation, treatment and replacement costs. In comparing the costs and benefits of prevention programs with those of remediation, replacement or treatment, it is essential to adjust the cost/benefit numbers by the probability of their actual occurrence. Better forecasts of water demand are needed to predict more accurately the scarcity of new supply and the associated cost of replacement. This research should include estimates of the price elasticity of water demand and the possible effect on demand of more rational cost-based pricing structures. Research and development of techniques for in situ remediation should be encouraged

  11. Bikini Atoll groundwater development

    International Nuclear Information System (INIS)

    Nuclear weapons testing during the 1950's has left the soil and ground water on Bikini Atoll contaminated with cesium-137, and to a lesser extent, strontium-90. Plans currently are underway for the clean-up and resettlement of the atoll by removal of approximately the upper 30 cm of soil. Any large-scale resettlement program must include provisions for water supply. This will be achieved principally by catchment and storage of rain water, however, since rainfall in Bikini is highly seasonal and droughts occur frequently, ground water development must also be considered. The quantity of potable ground water that can be developed is limited by its salinity and radiological quality. The few ground water samples available from Bikini, which have been collected from only about the top meter of the groundwater body, indicate that small bodies of potable ground water exist on Bikini and Eneu, the two principal living islands, but that cesium and strontium in the Bikioni ground water exceed drinking water standards. In order to make a reasonable estimate of the ground water development potential for the atoll, some 40 test boreholes will be drilled during July/August 1985, and a program of water quality monitoring initiated. This paper will describe preliminary results of the drilling and monitoring work

  12. EVALUATION OF POLLUTION GENERATED BY LANDFILL LEACHATE PUBLIC OF THE CITY OF MOHAMMEDIA AND ITS IMPACT ON THE GROUNDWATER QUALITY / EVALUATION DE LA POLLUTION GENEREE PAR LES LIXIVIATS DE LA DECHARGE PUBLIQUE DE LA VILLE DE MOHAMMEDIA ET SON IMPACT SUR LA QUALITE DES EAUX SOUTERRAINES

    Directory of Open Access Journals (Sweden)

    Abderrahim Idlahcen

    2014-05-01

    Full Text Available The diagnosis of the leachate has shown a strong no biodegradable (COD/BOD5 varies between 3 and 50 organic pollution. High NTK concentrations vary between 2296 and 490 mg∙L-1 have been observed which can induce a nuisance of surface water near the discharge and receiving of leachate. The analysis of metallic elements of leachate showed a high concentration in chrome 1598 µg∙L-1 as maximum value and 27 µg∙L-1 as minimum and maximum high in As, Cu, Ni, Pb and Zn which testifies to the pollution of leachate from the discharge gross receiving every type of waste (management waste and industrial waste. The results showned that P1, P3, P5, P6, P8, P9, and P10 have high concentrations in NO3- (389 and 111 mg∙L-1 exceeding the standards of potability (50 mg∙L-1. Sinks P1, P5, P7, P8, P9 and P10 are highly mineralized since the conductivity varies between 5990 and 1480 µS∙cm-1, while the organic matter remains higher than the standard of 2 mg∙L-1 The analysis of metallic element in groundwater have shown significant concentrations in Ni (175 and 59 µg∙L-1, Zn (266 and 6 µg∙L-1 and Pb (165 and 30 µg∙L-1 confirming the degradation of groundwater. These results show that the public discharge has a considerable impact on the groundwater near the discharge.

  13. Geochemical evolution of groundwater in southern Bengal Basin: The example of Rajarhat and adjoining areas, West Bengal, India

    Indian Academy of Sciences (India)

    Paulami Sahu; P K Sikdar; Surajit Chakraborty

    2016-02-01

    Detailed geochemical analysis of groundwater beneath 1223 km2 area in southern Bengal Basin along with statistical analysis on the chemical data was attempted, to develop a better understanding of the geochemical processes that control the groundwater evolution in the deltaic aquifer of the region. Groundwater is categorized into three types: `excellent', `good' and `poor' and seven hydrochemical facies are assigned to three broad types: `fresh', `mixed' and `brackish' waters. The `fresh' water type dominated with sodium indicates active flushing of the aquifer, whereas chloride-rich `brackish' groundwater represents freshening of modified connate water. The `mixed' type groundwater has possibly evolved due to hydraulic mixing of `fresh' and `brackish' waters. Enrichment of major ions in groundwater is due to weathering of feldspathic and ferro-magnesian minerals by percolating water. The groundwater of Rajarhat New Town (RNT) and adjacent areas in the north and southeast is contaminated with arsenic. Current-pumping may induce more arsenic to flow into the aquifers of RNT and Kolkata cities. Future large-scale pumping of groundwater beneath RNT can modify the hydrological system, which may transport arsenic and low quality water from adjacent aquifers to presently unpolluted aquifer.

  14. Cities within Cities: An Urbanization Approach in the Gulf Countries

    OpenAIRE

    Bamakhrama, Salim Salah

    2015-01-01

    Within Dubai, nineteen out of the original 112 mega-projects carried the word city in their names, a phenomenon that is common in Gulf cities such as Dubai, Riyadh and Abu Dhabi. To further explore this phenomenon, this thesis focuses on three aspects that affect the dynamic relationship between the primary city and the cities within cities (sub-cities) in the Gulf region with special emphasis on Dubai. First, the naming problem of the sub-city illustrates why the tension between competing id...

  15. Postsovkhoz City & Postsovkhoz Person

    Index Scriptorium Estoniae

    2001-01-01

    Põlvamaal Moostes mõtte- ja keskkonnakunstitalgud "Postsovkhoz City" ja "Postsovkhoz Person". Näha saab endistesse tööstushoonetesse ülespandud näitusi ja installatsioone. 11. VIII esinejad, ettekanded.

  16. Different Creative Cities

    DEFF Research Database (Denmark)

    Lorenzen, Mark; Vaarst Andersen, Kristina

    2012-01-01

    This article uses a mixed-method study of Denmark to investigate whether and how Richard Florida's creative class theory should be adapted to small welfare economies. First, we carry out an econometric analyses showing that like in North America, the Danish creative class propels economic growth...... and exhibits a tendency of congregating in major cities with diverse service and cultural offers and tolerance to non-mainstream lifestyles. However, we find that a range of smaller Danish cities also attract the creative class. Second, we undertake qualitative interviews that facilitate theory building. We...... suggest that many creatives are attracted by the smaller cities' cost advantages, specialized job offers, attractive work/life balances, and authenticity and sense of community. The article synthesizes its results into four stylized types of creative cities, and concludes by discussing the policy...

  17. OpenCities Project

    Data.gov (United States)

    US Agency for International Development — The Open Cities Project aims to catalyze the creation, management and use of open data to produce innovative solutions for urban planning and resilience challenges...

  18. WE LOVE THE CITY

    DEFF Research Database (Denmark)

    2011-01-01

    WE LOVE THE CITY Byen i bygningen, bygningen i byen Lasse Andersson, Ph.d., arkitekt maa, adjunkt ved Aalborg Universitet Med udstillingen WE LOVE THE CITY vil vi formidle mødet mellem urban design oog arkitektur. Disciplinen ’at bygge by’ har de seneste 20 år ikke tændt hjerterne hos...... fjern og ’usexet’ for unge arkitekter in spe. Det kan fremtidens by ikke være tjent med, og WE LOVE THE CITY vil derfor gerne vise alle, der færdes i byen og bruger dens arkitektur, at her er et potentiale. Med udstillingen WE LOVE THE CITY ønsker Utzon Centeret, LasseVegas Kontoret ApS og ADEPT...

  19. Should Cities Regulate Graffiti?

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Graffiti, while still a new phenomenon to most Chinese, is becoming more familiar among teenagers in big cities like Beijing and Shanghai. A recent report by Xinhua News Agency discusses the trend. The report said a small

  20. Towards Intelligently - Sustainable Cities?

    Directory of Open Access Journals (Sweden)

    Luca Salvati

    2013-04-01

    Full Text Available In the quest for achieving sustainable cities, Intelligent and Knowledge City Programmes (ICPs and KCPs represent cost-efficient strategies for improving the overall performance of urban systems. However, even though nobody argues on the desirability of making cities “smarter”, the fundamental questions of how and to what extent can ICPs and KCPs contribute to the achievement of urban sustainability lack a precise answer. In the attempt of providing a structured answer to these interrogatives, this paper presents a methodology developed for investigating the modalities through which ICPs and KCPs contribute to the achievement or urban sustainability. Results suggest that ICPs and KCPs efficacy lies in supporting cities achieve a sustainable urban metabolism through optimization, innovation and behavior changes.

  1. Other city symphonies

    OpenAIRE

    Hielscher, Eva; Jacobs, Steven

    2015-01-01

    Catalogue description of the film program curated by Eva Hielscher and Steven Jacobs on 'Other City Symphonies' during the 2015 Pordenone Silent Film Festival, including paragraphs on individual films.

  2. Simulacrum City / Triin Ojari

    Index Scriptorium Estoniae

    Ojari, Triin, 1974-

    2000-01-01

    Veneetsia 7. arhitektuuribiennaali Eesti ekspositsiooni kataloogist Simulacrum City. Tallinn : Eesti Arhitektide Liit, 2000. Teksti autorid Anders Härm, Tarmo Maiste, Andres Kurg, Harry Charrington, kujundaja Jaanus Tamme, fotod Arne Maasik

  3. Earthquakes in cities revisited

    CERN Document Server

    Wirgin, Armand

    2016-01-01

    During the last twenty years, a number of publications of theoretical-numerical nature have appeared which come to the apparently-reassuring conclusion that seismic motion on the ground in cities is smaller than what this motion would be in the absence of the buildings (but for the same underground and seismic load). Other than the fact that this finding tells nothing about the motion within the buildings, it must be confronted with the overwhelming empirical evidence (e.g, earthquakes in Sendai (2011), Kathmandu (2015), Tainan City (2016), etc.) that shaking within buildings of a city is often large enough to damage or even destroy these structures. I show, on several examples, that theory can be reconciled with empirical evidence, and suggest that the crucial subject of seismic response in cities is in need of more thorough research.

  4. Chemometric analysis of groundwater quality data around municipal landfill and paper factory and their potential influence on population’s health

    Directory of Open Access Journals (Sweden)

    Ljiljana Čačić

    2012-02-01

    Full Text Available Aim To assess the level of 15 groundwater quality parameters in groundwater samples collected around municipal landfill and paper factory in order to evaluate usefulness of the groundwater and its possible implication on the human health. Methods Obtained data have been analyzed by principal component analysis (PCA technique, in order to differentiate the groundwater samples on the basis of their compositional differences and origin. Results Wastes and effluents from municipal landfill did not contribute significantly to the pollution of the aquatic medium. Groundwater degradation caused by high contents of nitrate, mineral oils, organic and inorganic matters was particularly expressed in the narrow area of the city centre, near the paper factory and most likely it has occurred over a long period of time. The results have shown that the concentrations of the most measured parameters(NO3-N, NH4-N, oils, organic matter, Fe, Pb, Ni and Cr were above llowed limits for drinking and domestic purposes. onclusion This study has provided important information on cological status of the groundwater systems and for identification f groundwater quality parameters with concentrations above llowable limits for human consumption. The results generally evealed that groundwater assessed in this study mainly does not atisfy safe limits for drinking water and domestic use. As a consequence, ontaminated groundwater becomes a large hygienic nd toxicological problem, since it considerably impedes groundwater tilization. Even though, all of these contaminants havenot yet reached toxic levels, they still represent long term risk for ealth of the population.

  5. City, ICT and Policy

    OpenAIRE

    Galit Cohen; Peter Nijkamp

    2004-01-01

    New technologies tend to exert a profound influence on modern city life. This paper addresses the role of information and communication technologies (ICT) in the city. After a broad overview of the potential of ICT in a geographical setting and its possible impact on urban policy in regard to the ICT sector, the paper focusses attention on urban public policy in regard to the ICT sector. This study offers the proposition that urban ICT policy is driven by the stakeholders attitudinal and perc...

  6. Feeding the City

    OpenAIRE

    Roncaglia, Sara; Giorgio Solinas, Pier

    2015-01-01

    Every day in Mumbai 6,000 dabbawalas (literally translated as "those who carry boxes") distribute a staggering 200,000 home-cooked lunchboxes to the city's workers and students. Giving employment and status to thousands of largely illiterate villagers from Mumbai's hinterland, this co-operative has been in operation since the late nineteenth century. It provides one of the most efficient delivery networks in the world: only one lunch in six million goes astray. Feeding the City is an ethnogr...

  7. Aging City Leads Way

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The northern city of Dalian has become a model of care for the elderly that other Chinese cities are following Chinese Minister of Civil Affairs Li Xueju has called upon civil affairs agencies in the nation to learn from Dalian’s diversified models for elderly care,ranging from running collectively owned and foreign-designed nursing homes to offering tax incentives to private households and companies serving the elderly

  8. Improving the City environment

    International Nuclear Information System (INIS)

    All around the world cities are under severe environmental pressure. Water supplies, traffic congestion, air pollution, noise and waste disposal cause very similar problems in cities that are otherwise quite diverse. And attempts to improve conditions usually run into a range of difficulties. Indeed, environmental problems often persist for years before governments -national, regional and local- make any major effort to address them. 6 refs

  9. Cities in Transition

    OpenAIRE

    Shepotylo Oleksandr

    2012-01-01

    This paper looks at the urban development of transition countries in 1991–2010, primarily focusing on the last decade. Cities in transition face a unique set of challenges that came forth due to interplay of the legacy of socialist urban policies and the transition to the market economy. The socialist urban policies restrained growth of the largest cities and distorted the spatial equilibrium towards more uniform distribution of urban population. The transition to the market economy reduces d...

  10. The Happiness of Cities

    OpenAIRE

    Florida, Richard; Mellander, Charlotta; Rentfrow, Jason

    2011-01-01

    Abstract Research on subjective well-being has focused on cross-national differences, while research on cities and regions has shown that human capital is a key factor in metropolitan income and related outcomes. This investigation tests the hypothesis that human capital will have a significant effect on well-being at the metropolitan scale. Using metropolitan level data from the 2009 Gallup-Healthways Survey, we examine the effects of human capital on city happiness alongside many...

  11. Towards smart city education

    OpenAIRE

    Wolff, Annika; Kortuem, Gerd; Cavero, Jose

    2015-01-01

    Sustainability has been an important topic in UK schools for some time, most notably since the Sustainable School Strategy was proposed by the UK Department for Education (DFES) in 2006. However, as smart city technologies emerge and show real promise in contributing to a more sustainable future, it is becoming apparent that new skills for working with the big urban data sets that drive these innovations must be taught to upcoming generations to ensure that they can be active smart city citiz...

  12. Innovation across cities

    OpenAIRE

    Soo, Kwok Tong

    2015-01-01

    This paper examines the distribution of patenting activity across cities in the OECD, using a sample of 218 cities from 2000 to 2008. We obtain three main results. First, patenting activity is more concentrated than population and GDP. Second, patenting activity is less persistent than population and GDP. Third, patenting exhibits mean-reversion, and is positively associated with GDP, the fragmentation of local government, and population density. Our results suggest that policymakers can infl...

  13. Small Cell City

    OpenAIRE

    Dehghan, S.; Steele, R.

    1997-01-01

    Traditionally, mobile operators have planned their networks to accommodate mobile terminals at ground level. Increasingly, mobile users communicate while stationary from within high-rise buildings. With mobiles operating at a variety of different heights and mobilities, plus the requirement to accommodate increasing teletraffic and multimedia services, there is a need to compact small cells into the three-dimensional city space. This article is concerned with using city buildings to act as el...

  14. Active City Administration

    OpenAIRE

    M .R. Sindhu; Viraj M. Jamle; Pramod M. Shelke; Shrikant G. Baheti

    2012-01-01

    The basic and universal corner stone of good governance are quality of service, quick response mechanisms and above all accountable and transparent process mechanism. The active city administration initiatives resulted in computerization of the legacy systems in government with limited ability to internalize the advances in information and communication technologies.By using active city administration services we able to know real time, quantitative and basic approach of the government servic...

  15. Cities and Skills

    OpenAIRE

    Glaeser, Edward L.; Mare, David C.

    1994-01-01

    This paper examines the productivity (and wage) gains from locating in dense, urban environments. We distinguish between three potential explanations of why firms are willing to pay urban workers more: (1) the urban wage premium is spurious and is the result of omitted ability measures, (2) the urban wage premium works because cities enhance productivity and (3) the urban wage premium is the result of faster skill accumulation in cities. Using a combination of standard regressions, individual...

  16. Hackable Cities : From Subversive City Making to Systemic Change

    OpenAIRE

    de Lange, M.L.; de Waal, Martijn; Foth, Marcus; Verhoeff, Nanna; Martin, Brynskov

    2015-01-01

    The DC9 workshop takes place on June 27, 2015 in Limerick, Ireland and is titled "Hackable Cities: From Subversive City Making to Systemic Change". The notion of "hacking" originates from the world of media technologies but is increasingly often being used for creative ideals and practices of city making. "City hacking" evokes more participatory, inclusive, decentralized, playful and subversive alternatives to often top-down ICT implementations in smart city making. However, these discourses ...

  17. City marketing: online communication plan for the city of Lisbon

    OpenAIRE

    Altrichter, Benjamin

    2011-01-01

    Mestrado em Marketing City Marketing represents marketing efforts of cities in order to attract more visitors. Today, we are confronted everyday with marketing campaigns in all different communication media promoting countries, cities or events. Cities are competing for visitors on a global scale, forcing them to adapt successful marketing strategies for gaining and retaining costumers. Yet, City Marketing still remains an unknown chapter for a big part of the general public an...

  18. Hydrogeological and quantitative groundwater assessment of the Basaltic Aquifer, Northern Harrat Rahat, Saudi Arabia

    International Nuclear Information System (INIS)

    The Northern Harrat Rahat consists of 300m basalt lavas covering some 2000 km2 to the south-east of Al-Madinah in western Saudi Arabia. Like many basalt sequences, the Rahat basalts form an important aquifer and groundwater resource. The aquifer has a saturated thickness of up to 60m and made up of the weathered upper part of underlying basement, pre-basalt sands and gravels and the fractured basalts. Since 1992, groundwater has been abstracted from the aquifer as part of the Al-Madinah water supply. To assess the potential of the aquifer an assessment has been made based on pumping tests of 70 wells. The hydraulic parameters have been shown to be highly variable typical of the fractured domain. The aquifer contains good-quality water in storage, but receives limited recharge. Groundwater temperature anomalies indicate remnant volcanic activity locally. A numerical groundwater model has been constructed, which has been calibrated using limited groundwater head measurements, but with good abstraction records. Prediction of groundwater heads and the examination of several abstraction scenarios indicate that the aquifer can continue to support part of the Al-Madinah demand for the next several years, if certain well distributions are adopted. The predictions also show that the aquifer can only support the total demand of the city for a few days as a contingency resource. (author)

  19. Case study: Free product recovery and site remediation using horizontal trenching, soil vapor treatment and groundwater extraction

    International Nuclear Information System (INIS)

    Sites with soil and groundwater impacted by petroleum hydrocarbons have been remediated using a variety of traditional techniques. However, when the site impacted lies within a very confined downtown area of an expanding metropolitan city, a more complex array of technologies must be considered. The Law Enforcement Center site is the City of Charlotte's worst known underground storage tank (UST) release to date. A cost effective free product recovery, soil vapor and groundwater extraction system is being piloted here using new horizontal trenching technology and state of the art equipment. On-site low permeability soil required that an alternative to standard recovery wells be developed for groundwater recovery and vapor extraction. Operation and maintenance (O and M) of the large number of recovery wells required would have been extremely costly over the expected lifetime of the project. Although horizontal trenching was the best solution to the O and M costs, many problems were encountered during their installation

  20. Isotopic identification of Saharian groundwaters, groundwater formation in the past

    International Nuclear Information System (INIS)

    Frequency distributions of 14C groundwater ages for various regions of the Sahara and the adjacent Sahel Zone reflect the alternating sequence of humid and arid periods in the late Pleistocene and Holocene. The groundwaters from deep aquifer systems have mainly been formed in a long wet period from more than 50000 years B.P. till 20000 y B.P. At that time the Northern Sahara has received winter rain from the western drift. This is shown by a west-east decrease in the deuterium and 18O content of these paleowaters (continental effect in groundwater). The lower deuterium excess d = delta D - 8 x delta 18O in Northern Saharian paleowaters is interpreted to be due to a lower moisture deficit over the ocean during the ice-age. A hydrogeological model of the paleowaters in the Western Desert of Egypt is presented. (author)

  1. Groundwater and Terrestrial Water Storage

    Science.gov (United States)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2011-01-01

    Most people think of groundwater as a resource, but it is also a useful indicator of climate variability and human impacts on the environment. Groundwater storage varies slowly relative to other non-frozen components of the water cycle, encapsulating long period variations and trends in surface meteorology. On seasonal to interannual timescales, groundwater is as dynamic as soil moisture, and it has been shown that groundwater storage changes have contributed to sea level variations. Groundwater monitoring well measurements are too sporadic and poorly assembled outside of the United States and a few other nations to permit direct global assessment of groundwater variability. However, observational estimates of terrestrial water storage (TWS) variations from the GRACE satellites largely represent groundwater storage variations on an interannual basis, save for high latitude/altitude (dominated by snow and ice) and wet tropical (surface water) regions. A figure maps changes in mean annual TWS from 2009 to 2010, based on GRACE, reflecting hydroclimatic conditions in 2010. Severe droughts impacted Russia and the Amazon, and drier than normal weather also affected the Indochinese peninsula, parts of central and southern Africa, and western Australia. Groundwater depletion continued in northern India, while heavy rains in California helped to replenish aquifers that have been depleted by drought and withdrawals for irrigation, though they are still below normal levels. Droughts in northern Argentina and western China similarly abated. Wet weather raised aquifer levels broadly across western Europe. Rains in eastern Australia caused flooding to the north and helped to mitigate a decade long drought in the south. Significant reductions in TWS seen in the coast of Alaska and the Patagonian Andes represent ongoing glacier melt, not groundwater depletion. Figures plot time series of zonal mean and global GRACE derived non-seasonal TWS anomalies (deviation from the mean of

  2. Groundwater and soil contaminations in Romania. Monitoring and remediation feasibilities

    Energy Technology Data Exchange (ETDEWEB)

    Petzold, E. [Petzold Consultant, Muenster (Germany); Luering, E.-M.; Morariu, A. [Chim. A. Morariu, Sef Serviciu M.I.F.M., Inspectoratul de Protectie a Mediului Sibiu, Sibiu (Russian Federation)

    2003-07-01

    From the thirties of the nineties of the last century the industrial plant of Copsa Mica near Sibiu/central Romania was producing soot and non-ferrous metal products. Not careing for the environment over such a long time made a 'black city' and a 'black country' out of the area. After closing down the soot production and changes in the metal treatment technologies, green tried to come back, but heavy metals still remained in the environment. Soils are heavy contaminated, and also groundwater contaminations are known. The environmental authorities of Sibiu county have been taking samples over the last years, to document the state of art, resp. soil contamination. Heavy contaminations with lead, cadmium and copper were reported for the city area of Copsa Mica and its vicinity, exceeding any limits and threshold values. Due to the size of contamination and the size of contaminated areas a mechanical treatment and soil cleaning is impossible an not financiable. Thus, there is only a chance for bio-remediation, which needs at least the same time for remediation, as is took to contaminate the area. Research and tests are going on to find out suitable plants for bio-remediation. In parallel, more information on the horizontal and vertical spreading of the contaminants is necessary. So further sampling and soil analyses will be carried out. Additionally, treatment of contaminated groundwater might be necessary in certain cases, when this groundwater has to be used as drinking water. For these cases ion exchange techniques seem to be suitable, and are tested for suitability. (orig.)

  3. Geochemical Investigations of Groundwater Stability

    International Nuclear Information System (INIS)

    The report describes geochemical parameters and methods that provide information about the hydrodynamic stability of groundwaters in low permeability fractured rocks that are potential hosts for radioactive waste repositories. Hydrodynamic stability describes the propensity for changes in groundwater flows over long timescales, in terms of flow rates and flow directions. Hydrodynamic changes may also cause changes in water compositions, but the related issue of geochemical stability of a potential repository host rock system is outside the scope of this report. The main approaches to assessing groundwater stability are numerical modelling, measurement and interpretation of geochemical indicators in groundwater compositions, and analyses and interpretations of secondary minerals and fluid inclusions in these minerals. This report covers the latter two topics, with emphasis on geochemical indicators. The extent to which palaeohydrogeology and geochemical stability indicators have been used in past safety cases is reviewed. It has been very variable, both in terms of the scenarios considered, the stability indicators considered and the extent to which the information was explicitly or implicitly used in assessing FEPs and scenarios in the safety cases. Geochemical indicators of hydrodynamic stability provide various categories of information that are of hydrogeological relevance. Information about groundwater mixing, flows and water sources is potentially provided by the total salinity of groundwaters, their contents of specific non-reactive solutes (principally chloride) and possibly of other solutes, the stable isotopic ratio of water, and certain characteristics of secondary minerals and fluid inclusions. Information pertaining directly to groundwater ages and the timing of water and solute movements is provided by isotopic systems including tritium, carbon-14, chlorine-36, stable oxygen and hydrogen isotopes, uranium isotopes and dissolved mobile gases in

  4. Innovative technologies for groundwater cleanup

    International Nuclear Information System (INIS)

    These notes provide a broad overview of current developments in innovative technologies for groundwater cleanup. In this context, groundwater cleanup technologies include site remediation methods that deal with contaminants in ground water or that may move from the vadose zone into ground water. This discussion attempts to emphasize approaches that may be able to achieve significant improvements in groundwater cleanup cost or effectiveness. However, since data for quantitative performance and cost comparisons of new cleanup methods are scarce, preliminary comparisons must be based on the scientific approach used by each method and on the site-specific technical challenges presented by each groundwater contamination situation. A large number of technical alternatives that are now in research, development, and testing can be categorized by the scientific phenomena that they employ and by the site contamination situations that they treat. After reviewing a representative selection of these technologies, one of the new technologies, the Microbial Filter method, is discussed in more detail to highlight a promising in situ groundwater cleanup technology that is now being readied for field testing

  5. Geochemical Investigations of Groundwater Stability

    Energy Technology Data Exchange (ETDEWEB)

    Bath, Adrian [Intellisci Ltd., Loughborough (United Kingdom)

    2006-05-15

    The report describes geochemical parameters and methods that provide information about the hydrodynamic stability of groundwaters in low permeability fractured rocks that are potential hosts for radioactive waste repositories. Hydrodynamic stability describes the propensity for changes in groundwater flows over long timescales, in terms of flow rates and flow directions. Hydrodynamic changes may also cause changes in water compositions, but the related issue of geochemical stability of a potential repository host rock system is outside the scope of this report. The main approaches to assessing groundwater stability are numerical modelling, measurement and interpretation of geochemical indicators in groundwater compositions, and analyses and interpretations of secondary minerals and fluid inclusions in these minerals. This report covers the latter two topics, with emphasis on geochemical indicators. The extent to which palaeohydrogeology and geochemical stability indicators have been used in past safety cases is reviewed. It has been very variable, both in terms of the scenarios considered, the stability indicators considered and the extent to which the information was explicitly or implicitly used in assessing FEPs and scenarios in the safety cases. Geochemical indicators of hydrodynamic stability provide various categories of information that are of hydrogeological relevance. Information about groundwater mixing, flows and water sources is potentially provided by the total salinity of groundwaters, their contents of specific non-reactive solutes (principally chloride) and possibly of other solutes, the stable isotopic ratio of water, and certain characteristics of secondary minerals and fluid inclusions. Information pertaining directly to groundwater ages and the timing of water and solute movements is provided by isotopic systems including tritium, carbon-14, chlorine-36, stable oxygen and hydrogen isotopes, uranium isotopes and dissolved mobile gases in

  6. Groundwater recharge and agricultural contamination

    Science.gov (United States)

    Böhlke, J.K.

    2002-01-01

    Agriculture has had direct and indirect effects on the rates and compositions of groundwater recharge and aquifer biogeochemistry. Direct effects include dissolution and transport of excess quantities of fertilizers and associated materials and hydrologic alterations related to irrigation and drainage. Some indirect effects include changes in water-rock reactions in soils and aquifers caused by increased concentrations of dissolved oxidants, protons, and major ions. Agrilcultural activities have directly or indirectly affected the concentrations of a large number of inorganic chemicals in groundwater, for example NO3-, N2, Cl, SO42-, H+, P, C, K, Mg, Ca, Sr, Ba, Ra, and As, as well a wide variety of pesticides and other organic compounds. For reactive contaminants like NO3-, a combination of chemical, isotopic, and environmental-tracer analytical approaches might be required to resolve changing inputs from subsequent alterations as causes of concentration gradients in groundwater. Groundwater records derived from multi-component hydrostratigraphic data can be used to quantify recharge rates and residence times of water and dissolved contaminants, document past variations in recharging contaminant loads, and identify natural contaminant-remediation processes. These data indicate that many of the world's surficial aquifers contain transient records of changing agricultural contamination from the last half of the 20th century. The transient agricultural groundwater signal has important implications for long-term trends and spatial heterogeneity in discharge.

  7. Groundwater-level and storage-volume changes in the Equus Beds aquifer near Wichita, Kansas, predevelopment through January 2015

    Science.gov (United States)

    Whisnant, Joshua A.; Hansen, Cristi V.; Eslick, Patrick J.

    2015-01-01

    Development of the Wichita well field began in the 1940s in the Equus Beds aquifer to provide the city of Wichita, Kansas, a new water-supply source. After development of the Wichita well field began, groundwater levels began to decline. Extensive development of irrigation wells that began in the 1970s also contributed to substantial groundwater-level declines. Groundwater-level declines likely enhance movement of brine from past oil and gas production near Burrton, Kansas, and natural saline water from the Arkansas River into the Wichita well field. Groundwater levels reached a historical minimum in 1993 because of drought conditions, irrigation, and the city of Wichita’s withdrawals from the aquifer. In 1993, the city of Wichita adopted the Integrated Local Water Supply Program to ensure that Wichita’s water needs would be met through the year 2050 and beyond as part of its efforts to manage the part of the Equus Beds aquifer Wichita uses. A key component of the Integrated Local Water Supply Program was the Equus Beds Aquifer Storage and Recovery project. The Aquifer Storage and Recovery project’s goal is to store and eventually recover groundwater and help protect the Equus Beds aquifer from oil-field brine water near Burrton, Kansas, and saline water from the Arkansas River. Since 1940, the U.S. Geological Survey has monitored groundwater levels and storage-volume changes in the Equus Beds aquifer to provide data to the city of Wichita in order to better manage its water supply.

  8. The Joint Cities

    Directory of Open Access Journals (Sweden)

    Romano Fistola

    2010-04-01

    Full Text Available The new connections, which high speed train allows to activate among the metropolitan systems, seem to be able to give life to new urban macro-structures for which the transfer time, among the main poles of the railway segment, becomes comparable to an inside moving into the city and therefore considered as an inter-functional mobility. The tunnel effect generated by the high speed connection seems to be able to allow a new temporal and functional joint among the metropolitan systems consequently supporting the possibility, for the users, to move themselves among the different urban functions belonging to the different cities. The birth of these urban aggregations seems to drive towards new megalopolis, which we can define for the first time with the term: joint-city. For this new metropolitan settlement it seems to be very interesting to investigate the constitutive peculiarities, the systemic articulation, its relational structures, the evolutionary scenarios, and so on. The urban functions (activities can be considered as structures of relationships between people that allows to define "organizational links" inside the community; the urban functions are located in specific places inside urban container or in open spaces. The urban functions represent the urban engines and the functional system can be thought as the “soul of the city", abstract but essential to its survival. In the definition set out here the analysis is carried out for many interconnected urban functional system points (specifically those in Rome and Naples. The new high speed railway has to be considered not only as a new channel of mobility between cities, but as a real possibility of joint between the functional systems of the two centres. A final consideration can be carried out in relation to the possibility of implementing new measures of governance of urban transformations considering the new macro-city: the "Joint City".

  9. Evapotranspiration And Geochemical Controls On Groundwater Plumes At Arid Sites: Toward Innovative Alternate End-States For Uranium Processing And Tailings Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Looney, Brian B.; Denham, Miles E.; Eddy-Dilek, Carol A.; Millings, Margaret R.; Kautsky, Mark

    2014-01-08

    Management of legacy tailings/waste and groundwater contamination are ongoing at the former uranium milling site in Tuba City AZ. The tailings have been consolidated and effectively isolated using an engineered cover system. For the existing groundwater plume, a system of recovery wells extracts contaminated groundwater for treatment using an advanced distillation process. The ten years of pump and treat (P&T) operations have had minimal impact on the contaminant plume – primarily due to geochemical and hydrological limits. A flow net analysis demonstrates that groundwater contamination beneath the former processing site flows in the uppermost portion of the aquifer and exits the groundwater as the plume transits into and beneath a lower terrace in the landscape. The evaluation indicates that contaminated water will not reach Moenkopi Wash, a locally important stream. Instead, shallow groundwater in arid settings such as Tuba City is transferred into the vadose zone and atmosphere via evaporation, transpiration and diffuse seepage. The dissolved constituents are projected to precipitate and accumulate as minerals such as calcite and gypsum in the deep vadose zone (near the capillary fringe), around the roots of phreatophyte plants, and near seeps. The natural hydrologic and geochemical controls common in arid environments such as Tuba City work together to limit the size of the groundwater plume, to naturally attenuate and detoxify groundwater contaminants, and to reduce risks to humans, livestock and the environment. The technical evaluation supports an alternative beneficial reuse (“brownfield”) scenario for Tuba City. This alternative approach would have low risks, similar to the current P&T scenario, but would eliminate the energy and expense associated with the active treatment and convert the former uranium processing site into a resource for future employment of local citizens and ongoing benefit to the Native American Nations.

  10. Evapotranspiration And Geochemical Controls On Groundwater Plumes At Arid Sites: Toward Innovative Alternate End-States For Uranium Processing And Tailings Facilities

    International Nuclear Information System (INIS)

    Management of legacy tailings/waste and groundwater contamination are ongoing at the former uranium milling site in Tuba City AZ. The tailings have been consolidated and effectively isolated using an engineered cover system. For the existing groundwater plume, a system of recovery wells extracts contaminated groundwater for treatment using an advanced distillation process. The ten years of pump and treat (P and T) operations have had minimal impact on the contaminant plume - primarily due to geochemical and hydrological limits. A flow net analysis demonstrates that groundwater contamination beneath the former processing site flows in the uppermost portion of the aquifer and exits the groundwater as the plume transits into and beneath a lower terrace in the landscape. The evaluation indicates that contaminated water will not reach Moenkopi Wash, a locally important stream. Instead, shallow groundwater in arid settings such as Tuba City is transferred into the vadose zone and atmosphere via evaporation, transpiration and diffuse seepage. The dissolved constituents are projected to precipitate and accumulate as minerals such as calcite and gypsum in the deep vadose zone (near the capillary fringe), around the roots of phreatophyte plants, and near seeps. The natural hydrologic and geochemical controls common in arid environments such as Tuba City work together to limit the size of the groundwater plume, to naturally attenuate and detoxify groundwater contaminants, and to reduce risks to humans, livestock and the environment. The technical evaluation supports an alternative beneficial reuse (''brownfield'') scenario for Tuba City. This alternative approach would have low risks, similar to the current P and T scenario, but would eliminate the energy and expense associated with the active treatment and convert the former uranium processing site into a resource for future employment of local citizens and ongoing benefit to the Native American Nations

  11. Variation of groundwater salinity in the partially irrigated Amudarya River delta, Uzbekistan

    Science.gov (United States)

    Johansson, Olov; Aimbetov, Izzet; Jarsjö, Jerker

    2009-03-01

    The Amudarya delta region contains surface and groundwater resources that discharge into the shrinking Large Aral Sea and ultimately control its future fate. These freshwater resources are prerequisites for sustaining the population of the region. However, salinization and pollution caused by agricultural irrigation is a key problem for these water systems. Here, we report results from a recent field measurement campaign conducted during April 2005 which included 24 monitoring wells located in an irrigated region of the Amudarya delta, thereby extending the historical data set of groundwater levels and salinity measurements. This data set is combined with corresponding data from a downstream, non-irrigated region that was formerly irrigated (together covering 16,100km 2 between the Uzbek cities of Nukus and Muynak). This comparison shows that in the downstream region, which is currently not irrigated, shallow groundwaters are far more saline (average 23g l - 1) than the currently irrigated region (average 3g l - 1). We estimate that the unconfined aquifer within the 13,500km 2 non-irrigated zone of study area contains 9billion tons of salt, or almost as much salt as the entire Aral Sea (containing 11billion tons of salt and covering an area of 20,000km 2 in year 2000). Within the non-irrigated zone, there are statistically significant large-scale spatial correlations between groundwater salinity and distance to the Amudarya River, irrigation canals and surface water bodies when distance is measured along the modelled regional groundwater flow direction. Generally, groundwater salinities are lower downstream of surface water bodies in the non-irrigated zone. Annual fluctuations in groundwater salinity are too large to be explained by input from surface water (Amudarya) or wind-blown salt from the dried Aral Sea sediments. Salt transport by groundwater is the only plausible remaining explanation for these changes.

  12. Age dating of young groundwater

    International Nuclear Information System (INIS)

    Full text: During the past 40 years, a variety of methods have been developed that can provide information on the age of young groundwater (0-50 year timescale). Groundwater age refers to the time elapsed since recharge, but is model dependent, being based on an interpretation of measured concentrations of environmental tracers in groundwater samples. As a reference point, an 'apparent age', which assumes unmixed samples (piston flow) is often reported, although a number of mathematical models have been developed that can be used to interpret mean age (residence time) of water that discharges from a groundwater reservoir. Other applications incorporate environmental tracer data in the calibration of numerical models of groundwater flow. Environmental tracers that have proven most useful in providing groundwater age information have an atmospheric source and can be grouped according to (1) those based on measurement of the concentrations of both parent and daughter isotopes, such as in applications of 3H/3He in groundwater, (2) those based on the measurement of the activity of a single radionuclide in groundwater, such as in applications of 3H and 85Kr in groundwater dating, and (3) those based on measurement of the concentration of anthropogenic gases in groundwater, such as in applications of chlorofluorocarbons (CFCs) and sulfur hexafluoride (SF6). In the first case, the initial concentration of the radionuclide is reconstructed from the measured concentrations of the parent and daughter isotopes and age is then determined from the decay equation. The second case requires a priori definition of the initial concentration of the radionuclide recharged to the aquifer, and then age is estimated from the measured concentration and the decay equation. In the third case, age information is derived from a prior knowledge of the atmospheric input function of an anthropogenic gas, its solubility in water, and the measured concentration in the water sample. Each method has

  13. INTEC Groundwater Monitoring Report 2006

    Energy Technology Data Exchange (ETDEWEB)

    J. R. Forbes

    2007-02-01

    This report summarizes 2006 perched water and groundwater monitoring activities at the Idaho Nuclear Technology and Engineering Center (INTEC) located at the Idaho National Laboratory (INL). During 2006, groundwater samples were collected from a total of 22 Snake River Plain Aquifer (SRPA) monitoring wells, plus six aquifer wells sampled for the Idaho CERCLA Disposal Facility (ICDF) monitoring program. In addition, perched water samples were collected from 21 perched wells and 19 suction lysimeters. Groundwater and perched water samples were analyzed for a suite of radionuclides and inorganic constituents. Laboratory results in this report are compared to drinking water maximum contaminant levels (MCLs). Such comparison is for reference only and it should be noted that the Operable Unit 3-13 Record of Decision does not require that perched water comply with drinking water standards.

  14. Oxidation technologies for groundwater treatment

    International Nuclear Information System (INIS)

    Xerox Corporation has pilot tested three UV/Oxidation processes for the treatment of contaminated groundwater containing chlorinated and non-chlorinated organic solvents. The technologies pilot tested included the ULTROX system developed by ULTROX International, the perox-pure process of Peroxidation Systems, Inc. and the Rayox process by Solarchem Environmental Systems. The three processes use a combination of ultraviolet light and hydrogen peroxide to oxidize organic solvents in water. The ULTROX system includes ozone as part of the treatment. Data gathered during pilot testing demonstrated that these processes are effective in the destruction of organic contaminants in groundwater. These results are discussed in regard to applicability to the groundwater remediation at the Xerox Facilities in Webster and Blauvelt, New York

  15. Local groundwater governance in Yemen: building on traditions and enabling communities to craft new rules

    Science.gov (United States)

    Taher, Taha; Bruns, Bryan; Bamaga, Omar; Al-Weshali, Adel; van Steenbergen, Frank

    2012-09-01

    Local groundwater management in Yemen and the means by which stakeholders can work together to improve water governance are discussed. In the last few decades the discourse on groundwater management in Yemen has increasingly been cast in terms of crisis, triggered by rapidly declining water tables around cities and in the main agricultural areas. However, in some places in Yemen, communities have responded by implementing local rules that have reduced conflict and provided more reliable and equitable access to water. This trend towards development of local groundwater governance is described, and could make a major contribution in realizing the goals of national water-sector policies and strategies. Twenty-four cases have been identified from different parts of the country and five cases are presented in detail. The article discusses how the process of local management could be nurtured and how it could contribute to rebalancing water use in several parts of Yemen.

  16. Hamilton : the electric city

    International Nuclear Information System (INIS)

    The City of Hamilton has launched an extensive energy planning exercise that examines the possibility of steep increases in oil and natural gas prices. This report examined and illustrated the issue of oil and gas price points. The report also examined and presented the city's role in an era of energy constraints, focusing on the city's transit system and its vehicle fleet. In addition, in response to City Council's direction, the report presented the aerotropolis proposal and discussed freight transport issues. Specific topics of discussion included oil and natural gas prospects; prospects for high oil and natural gas prices; impacts of fuel price increases; strategic planning objectives for energy constraints; reducing energy use by Hamilton's transport and in buildings; and land-use planning for energy constraints. Energy production opportunities involve the use of solar energy; wind energy; deep lake water cooling (DLWC); hydro-electric power; energy from waste; biogas production; district energy; and local food production. Economic and social development through preparing for energy constraints and matters raised by city council were also presented. The report also demonstrated how an energy-based strategy could be paid for and its components approved. The next steps for Hamilton were also identified. refs., tabs., figs

  17. Earth's City Lights

    Science.gov (United States)

    2002-01-01

    This image of Earth's city lights was created with data from the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS). Originally designed to view clouds by moonlight, the OLS is also used to map the locations of permanent lights on the Earth's surface. The brightest areas of the Earth are the most urbanized, but not necessarily the most populated. (Compare western Europe with China and India.) Cities tend to grow along coastlines and transportation networks. Even without the underlying map, the outlines of many continents would still be visible. The United States interstate highway system appears as a lattice connecting the brighter dots of city centers. In Russia, the Trans-Siberian railroad is a thin line stretching from Moscow through the center of Asia to Vladivostok. The Nile River, from the Aswan Dam to the Mediterranean Sea, is another bright thread through an otherwise dark region. Even more than 100 years after the invention of the electric light, some regions remain thinly populated and unlit. Antarctica is entirely dark. The interior jungles of Africa and South America are mostly dark, but lights are beginning to appear there. Deserts in Africa, Arabia, Australia, Mongolia, and the United States are poorly lit as well (except along the coast), along with the boreal forests of Canada and Russia, and the great mountains of the Himalaya. The Earth Observatory article Bright Lights, Big City describes how NASA scientists use city light data to map urbanization. Image by Craig Mayhew and Robert Simmon, NASA GSFC, based on DMSP data

  18. Universities scale like cities.

    Directory of Open Access Journals (Sweden)

    Anthony F J van Raan

    Full Text Available Recent studies of urban scaling show that important socioeconomic city characteristics such as wealth and innovation capacity exhibit a nonlinear, particularly a power law scaling with population size. These nonlinear effects are common to all cities, with similar power law exponents. These findings mean that the larger the city, the more disproportionally they are places of wealth and innovation. Local properties of cities cause a deviation from the expected behavior as predicted by the power law scaling. In this paper we demonstrate that universities show a similar behavior as cities in the distribution of the 'gross university income' in terms of total number of citations over 'size' in terms of total number of publications. Moreover, the power law exponents for university scaling are comparable to those for urban scaling. We find that deviations from the expected behavior can indeed be explained by specific local properties of universities, particularly the field-specific composition of a university, and its quality in terms of field-normalized citation impact. By studying both the set of the 500 largest universities worldwide and a specific subset of these 500 universities--the top-100 European universities--we are also able to distinguish between properties of universities with as well as without selection of one specific local property, the quality of a university in terms of its average field-normalized citation impact. It also reveals an interesting observation concerning the working of a crucial property in networked systems, preferential attachment.

  19. Food supply reliance on groundwater

    Science.gov (United States)

    Dalin, Carole; Puma, Michael; Wada, Yoshihide; Kastner, Thomas

    2016-04-01

    Water resources, essential to sustain human life, livelihoods and ecosystems, are under increasing pressure from population growth, socio-economic development and global climate change. As the largest freshwater resource on Earth, groundwater is key for human development and food security. Yet, excessive abstraction of groundwater for irrigation, driven by an increasing demand for food in recent decades, is leading to fast exhaustion of groundwater reserves in major agricultural areas of the world. Some of the highest depletion rates are observed in Pakistan, India, California Central Valley and the North China Plain aquifers. In addition, the growing economy and population of several countries, such as India and China, makes prospects of future available water and food worrisome. In this context, it is becoming particularly challenging to sustainably feed the world population, without exhausting our water resources. Besides, food production and consumption across the globe have become increasingly interconnected, with many areas' agricultural production destined to remote consumers. In this globalisation era, trade is crucial to the world's food system. As a transfer of water-intensive goods, across regions with varying levels of water productivity, food trade can save significant volumes of water resources globally. This situation makes it essential to address the issue of groundwater overuse for global food supply, accounting for international food trade. To do so, we quantify the current, global use of non-renewable groundwater for major crops, accounting for various water productivity and trade flows. This will highlight areas requiring quickest attention, exposing major exporters and importers of non-renewable groundwater, and thus help explore solutions to improve the sustainability of global food supply.

  20. Groundwater protection and isotope hydrogeology - methodical aspects

    International Nuclear Information System (INIS)

    The importance of groundwater protection increases in all developed countries. The isotope hydrogeology contributes with it's specific methods to the prophylactic protection of groundwater resources especially. Methodical aspects are given. (author)

  1. Groundwater and Terrestrial Water Storage

    Science.gov (United States)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2014-01-01

    Terrestrial water storage (TWS) comprises groundwater, soil moisture, surface water, snow,and ice. Groundwater typically varies more slowly than the other TWS components because itis not in direct contact with the atmosphere, but often it has a larger range of variability onmultiannual timescales (Rodell and Famiglietti, 2001; Alley et al., 2002). In situ groundwaterdata are only archived and made available by a few countries. However, monthly TWSvariations observed by the Gravity Recovery and Climate Experiment (GRACE; Tapley et al.,2004) satellite mission, which launched in 2002, are a reasonable proxy for unconfinedgroundwater at climatic scales.

  2. The Protection of Groundwater Reserves

    OpenAIRE

    Ababsa, Myriam

    2014-01-01

    Jordan consumed 900 Mm3 per year in 2010. 65% of this water, 500 Mm3, is used for agriculture (3% of GDP), 360 Mm3 by municipalities and 40 Mm3 by industry. Since 2002 the government has implemented a policy of tiered pricing by sector, but is having difficulties enforcing it in the agricultural sector, and illegal drilling of wells is on the rise in the highlands. The government has also begun to control more strictly the pumping of groundwater and pollution of groundwater reserves. Nationwi...

  3. Groundwater: Saturated and Unsaturated Zone

    International Nuclear Information System (INIS)

    The interpretation of isotope hydrological data is not straightforward. Many field studies lead to a conclusion that the origin of groundwater and the chemical and isotopic processes in groundwater systems can only be studied successfully, if a composition of isotopic, chemical, geological and hydrogeological data is available for interpretation. Following the previous volumes on isotopic principles, precipitation and surface waters, this volume is dealing with the application of isotope hydrological methods in groundwater studies. It conveys basic knowledge in geohydraulics and hydrogeology required for a consistent interpretation of isotope hydrological data. This volume starts with a brief discussion of the characteristics and behaviour of groundwater as a medium of mass transport for gases, dissolved constituents and colloids. The geohydraulic aspects of groundwater flow under steady-state conditions are described in combination with an explanation of the most important terms related to isotope hydrology (e.g. transit time, turn-over time, mean residence time, water age). Non-steady state flow conditions caused by palaeoclimatic variations and anthropogenic activities such as overexploitation or groundwater mining seriously affect the interpretation of isotope hydrological data. Also water-rock interactions may modify the isotope composition of a carbonate rock environment, especially in high-temperature systems. Environmental isotope techniques are pre-eminently suitable for studying the unsaturated and saturated zone, the latter particularly concerning the stable and radioactive natural isotopes. Stable isotope data preferentially yield information on the origin of groundwater. Radioactive isotopes allow groundwater to be 'dated' in support of geohydraulic investigations. In undisturbed high-temperature systems isotopic geothermometry, i.e. the study of the temperature effect of stable isotopic abundances, is applied for gaining information on water mixing as

  4. Groundwater : site scale, catchment scale, basin scale

    OpenAIRE

    Bricker, Stephanie; Bloomfield, John; Gooddy, Daren; MacDonald, David; Ward, Rob

    2011-01-01

    There are significant groundwater resources in the Thames Basin (Figure 1) supporting approximately 40 per cent of public water supply. Additionally many of the rivers in the catchment are supported by groundwater from the underlying aquifers. Effective management of both groundwater resources and groundwater-dependent ecosystems requires a good understanding of how our aquifers behave. We must also consider how these systems will respond to future changes, in particular climat...

  5. Ultrafine particles in cities.

    Science.gov (United States)

    Kumar, Prashant; Morawska, Lidia; Birmili, Wolfram; Paasonen, Pauli; Hu, Min; Kulmala, Markku; Harrison, Roy M; Norford, Leslie; Britter, Rex

    2014-05-01

    Ultrafine particles (UFPs; diameter less than 100 nm) are ubiquitous in urban air, and an acknowledged risk to human health. Globally, the major source for urban outdoor UFP concentrations is motor traffic. Ongoing trends towards urbanisation and expansion of road traffic are anticipated to further increase population exposure to UFPs. Numerous experimental studies have characterised UFPs in individual cities, but an integrated evaluation of emissions and population exposure is still lacking. Our analysis suggests that the average exposure to outdoor UFPs in Asian cities is about four-times larger than that in European cities but impacts on human health are largely unknown. This article reviews some fundamental drivers of UFP emissions and dispersion, and highlights unresolved challenges, as well as recommendations to ensure sustainable urban development whilst minimising any possible adverse health impacts. PMID:24503484

  6. Reproducing in cities.

    Science.gov (United States)

    Mace, Ruth

    2008-02-01

    Reproducing in cities has always been costly, leading to lower fertility (that is, lower birth rates) in urban than in rural areas. Historically, although cities provided job opportunities, initially residents incurred the penalty of higher infant mortality, but as mortality rates fell at the end of the 19th century, European birth rates began to plummet. Fertility decline in Africa only started recently and has been dramatic in some cities. Here it is argued that both historical and evolutionary demographers are interpreting fertility declines across the globe in terms of the relative costs of child rearing, which increase to allow children to outcompete their peers. Now largely free from the fear of early death, postindustrial societies may create an environment that generates runaway parental investment, which will continue to drive fertility ever lower. PMID:18258904

  7. Isotope techniques application in understanding the recharge process of the Davao City aquifers

    International Nuclear Information System (INIS)

    The study area, 42 km x 33 km, is within the Talomo-Lipadas-Sibulan (TLSS) catchment basin. The groundwater aquifer is composed of reworked and redeposited overlapping flows of Quaternary pyroclastics. It has an upper unconfined aquifer composed of sand, gravel and occasional boulders which is tapped by shallow domestic wells. The deeper aquifer which is being tapped by wells of the Davao City Water District at depths ranging from 46 to about 140 meters below ground level is multi- layered aquifer separated by thin, relatively less permeable layers of clay. Three river systems, Lipadas River to the west, and Talomo and Davao Rivers to the east traverse the study area. These flow through the city and empty into Davao Gulf, south of the city. Chemical composition of the groundwater shows that most of the waters in the Talomo- Lipadas-Sibulan catchment (TLSS), are classified as Ca+Mg-HCO3 waters with the fluid with the exception of one well which is a mixture of Ca+Mg-HCO3 and Na+K-Cl waters. The composition diagrams of the water sources indicate mixing between water sources. The mean isotopic composition of precipitation in Davao City has been established from data obtained for the period December 1999 to January 2002 from four stations located at different elevations in the watershed. d18O values ranged from -13.51 per mille to -3.54 per mille and d2H values ranged from -85.28 per mille to -16.13 per mille. A local meteoric line (LMWL) was established for the region with the equation d2H = 8 d 18O +12. The isotopic composition of groundwater and surface waters in Davao City showed small variations, clustered along the LMWL. Groundwater from production wells with depths ranging from 90 m to 152 m, exhibited isotopic compositions ranging from -49.9 per mille to 39.90 per mille for δ2H and -7.64 per mille to -6.38 per mille. This suggests a uniform and large amount of groundwater recharge. Differences in recharge altitude and mixing of different water origin could

  8. To study the effects of groundwater contamination in Kasur due to Nallah Rohi

    International Nuclear Information System (INIS)

    Groundwater contamination is a worldwide known problem. Pakistan, being a developing country, is also facing the problem created by groundwater pollution. Disposal of domestic wastes and agricultural treatments has been reported to be a considerable factor for causing the pollution, especially the groundwater contamination. In the rural areas of Pakistan, latrines and septic tanks have become common because of the advancement in the living standards. All of the domestic wastes is disposed off into the ponds or nearby passing streams. In the similar fashion, drains in the big and well developed cities of Pakistan lead the domestic waste, along with the industrial waste, into the passing by streams, canals and rivers. All of such disposed off waste is untreated because of the lack of legislation and its improper implementation. The contaminated water affects the health of human beings and also destroys the crops when this water is used for irrigation. So this paper deals with the effects and condition of the disposal of the harmful chemicals, which ultimately through seepage reach the groundwater and make it hazardous. Also, the lateral distances of the contaminated groundwater were found out. For experimentation, major city of Kasur which is in the vicinity of Nullah Rohi, was selected. All the wastes including both the industrial as well as domestic, of the whole area, is disposed off into the Nullah. The percolation of the harmful chemicals and its mixing with groundwater has resulted in the hazardous effects on the inhabitants of the area on the irrigation land as well. So the water in the vicinity, at different locations was tested and the degree of contamination and the lateral distances of contaminated water were also worked out. (author)

  9. Hanford sitewide groundwater remediation strategy - groundwater contaminant predictions

    International Nuclear Information System (INIS)

    Since the shutdown of the last major operating plants in 1987, the mission of the Hanford Site has changed from nuclear materials production to environmental restoration and waste management. The principal goals of the ongoing cleanup programs include the protection of the Columbia River and control of the spread of groundwater contamination

  10. Environmental Characteristics of Groundwater: an Application of PCA to Water Chemistry Analysis in Yulin

    Institute of Scientific and Technical Information of China (English)

    DONG Dong-lin; HUANG Song-lin; WU Qiang; ZHANG Rui; SONG Ying-xia; CHEN Shu-ke; LI Pei; LIU Shou-qiang; BI Cen-cen; LV Zhen-qi

    2007-01-01

    For our investigation into the water quality in Yulin city, we collected 76 typical water samples to be tested for particle quality. By applying a Romani type classification method the groundwater of Yulin city was classified into nine categories by type, i.e., Ca-HCO3, Na-HCO3, Na-HCO3-SO4-Cl, Na-HCO3-SO4, Na-Cl, Na-Cl-HCO3, Na-CaHCO3, Ca-Cl-HCO3 and Ca-HCO3-SO4-Cl. A principal component analysis was carried out in order to analyze the groundwater environment. From this analysis we considered that the information collected could be represented by 21 indices from which we extracted seven principal components, which, respectively, accounted for 37.4%, 13.0%, 8.1%,7.2%, 6.3%, 5.9% and 4.6% of the total variation. The results show that the groundwater environment of this region is largely determined by characteristic components of the natural groundwater background. One part of the water was polluted by leaching/eluviation of solid waste generated from coal mining. Another part of the ground water was contaminated by acid mine water from the coal layer and from improper irrigation. In addition, geological and hydrogeological conditions also cause changes in the water environment.

  11. Characterization of source rocks and groundwater radioactivity at the Chihuahua valley

    International Nuclear Information System (INIS)

    As part of a scientific research project about alpha radioactivity in groundwater for human consumption at the Chihuahua City, the characterization of rock sources of radioactivity around de Chihuahua valley was developed. The radioactivity of groundwater and sediments was determined, too. The radioactivity of uranium- and thorium- series isotopes contained in rocks was obtained by high resolution gamma-ray spectroscopy. Some representative values are 50 Bq/kg for the mean value of Bi-214 activity, and 121.5 Bq/kg for the highest value at West of the city. The activity of sediments, extracted during wells perforation, was determined using a Nal(TI) detector. A non-reported before uranium ore was localized at the San Marcos range formation. Its outcrops are inside the Chihuahua-Sacramento valley basin and its activity characterization was performed. Unusually high specific uranium activities, determined by alpha spectrometry, were obtained in water, plants, sediments and fish extracted at locations close to outcrops of uranium minerals. The activity of water of the San Marcos dam reached 7.7 Bq/L. The activity of fish, trapped at San Marcos dam, is 0.99 Bq/kg. Conclusions about the contamination of groundwater at North of Chihuahua City were obtained. (Author)

  12. Characterization of source rocks and groundwater radioactivity at the Chihuahua valley

    Energy Technology Data Exchange (ETDEWEB)

    Renteria V, M.; Montero C, M.E.; Reyes C, M.; Herrera P, E.F.; Valenzuela H, M. [Centro de lnvestigacion en Materiales Avanzados, Miguel de Cervantes 120, 31109 Chihuahua, (Mexico); Rodriguez P, A. [World Wildlife Fund (WWF), Chihuahuan Desert Program, Coronado 1005, 31000 Chihuahua (Mexico); Manjon C, G.; Garcia T, R. [Universidad de Sevilla, Departamento de Fisica Aplicada 11, ETS Arquitectura, Av. Reina Mercedes 2, 41012 Sevilla, (Spain); Crespo, T. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Av. Complutense 22, 28040 Madrid, (Spain)]. e-mail: elena.montero@cimav.edu.mx

    2007-07-01

    As part of a scientific research project about alpha radioactivity in groundwater for human consumption at the Chihuahua City, the characterization of rock sources of radioactivity around de Chihuahua valley was developed. The radioactivity of groundwater and sediments was determined, too. The radioactivity of uranium- and thorium- series isotopes contained in rocks was obtained by high resolution gamma-ray spectroscopy. Some representative values are 50 Bq/kg for the mean value of Bi-214 activity, and 121.5 Bq/kg for the highest value at West of the city. The activity of sediments, extracted during wells perforation, was determined using a Nal(TI) detector. A non-reported before uranium ore was localized at the San Marcos range formation. Its outcrops are inside the Chihuahua-Sacramento valley basin and its activity characterization was performed. Unusually high specific uranium activities, determined by alpha spectrometry, were obtained in water, plants, sediments and fish extracted at locations close to outcrops of uranium minerals. The activity of water of the San Marcos dam reached 7.7 Bq/L. The activity of fish, trapped at San Marcos dam, is 0.99 Bq/kg. Conclusions about the contamination of groundwater at North of Chihuahua City were obtained. (Author)

  13. Geochemical modelling baseline compositions of groundwater

    DEFF Research Database (Denmark)

    Postma, Diederik Jan; Kjøller, Claus; Andersen, Martin Søgaard;

    2008-01-01

    Reactive transport models, were developed to explore the evolution in groundwater chemistry along the flow path in three aquifers; the Triassic East Midland aquifer (UK), the Miocene aquifer at Valreas (F) and the Cretaceous aquifer near Aveiro (P). All three aquifers contain very old groundwaters...... of the evolution in natural baseline properties in groundwater....

  14. Groundwater: Illinois' Buried Treasure. Education Activity Guide.

    Science.gov (United States)

    Environmental Education Association of Illinois, Chicago.

    Groundwater is an extremely valuable resource that many feel has been too long neglected and taken for granted. There is growing recognition in Illinois and throughout the United States that comprehensive groundwater protection measures are vital. Illinois embarked on a course in protecting groundwater resources with the passage of the Illinois…

  15. Detection and Remediation of Groundwater Pollution

    Institute of Scientific and Technical Information of China (English)

    王杰

    2016-01-01

    Groundwater is an important part of the water cycle and is also widely used as sources of drinking water. With the increasing de?velopment of groundwater exploitation, the pollution is becoming more and more serious. This paper talks about the main research direc?tions of groundwater pollution, the detection, the remediation and some conclusions.

  16. Proceedings of hydrocarbon contaminated soils and groundwater

    International Nuclear Information System (INIS)

    This book reports on hydrogen contaminated soils and groundwater. Topics covered include: perspectives on hydrocarbon contamination; emerging hydrocarbon contamination issues; analytical methodologies and site assessment for hydrocarbon contaminated soils and groundwater; environmental fate and modeling; remedial technologies for hydrocarbon contaminated soils and groundwater; and risk assessment and risk management

  17. The egocentric city

    OpenAIRE

    Tzinis, A.

    2005-01-01

    This thesis is going to discus the advantages of the use of a GPS as a tool for surveying the pedestrian movements of individuals in an urban environment. An experiment is going to take place that will try to evolve City designs specifically for the pedestrian movements of particular individuals whose tracks have been recorded with a GPS for this specific purpose. The aim is to see if the rest of participants’ movement habits have been affected by this mutation in the city g...

  18. City Bug Report

    DEFF Research Database (Denmark)

    Korsgaard, Henrik; Brynskov, Martin

    2014-01-01

    This paper explores the wider contexts of digital policy, transparency, digitisation and how this changes city administration and the role of the (digital) publics, using City Bug Report as a design case. Employing a mix between design research and action research, the authors exemplify and analyse...... elements of both the design process, the organisational, the political and technological contexts. They point to the role of researchers and designers in exploring and understanding digital elements of public space as not merely registering structures but also actively engaging in public discourse...

  19. Prototyping a Smart City

    DEFF Research Database (Denmark)

    Korsgaard, Henrik; Brynskov, Martin

    In this paper, we argue that by approaching the so-called Smart City as a design challenge, and an interaction design perspective, it is possible to both uncover existing challenges in the interplay between people, technology and society, as well as prototype possible futures. We present a case...... in which we exposed data about the online communication between the citizens and the municipality on a highly visible media facade, while at the same time prototyped a tool that enabled citizens to report ‘bugs’ within the city....

  20. Interpretation of groundwater flow patterns through a reconstruction of the tritium precipitation record in the Cochabamba Valley, Bolivia

    Science.gov (United States)

    Stimson, Jesse; Rudolph, David; Frape, Shaun; Drimmie, Robert

    1996-05-01

    Regional behaviour of the groundwater flow system in the Cochabamba Valley, Bolivia, is evaluated through the interpretation of tritium ( 3H) distributions in groundwater samples from wells and springs. In order to interpret groundwater 3H concentrations in Cochabamba Valley, where no historical record of 3H concentrations in rainfall exists, a reconstructed 3H precipitation record is developed. The record of 3H concentrations in precipitation is fairly extensive in the Amazon Basin and this record was extrapolated to the neighbouring Cochabamba Valley. Tritium concentrations in rainfall have been observed to increase under natural conditions with increasing latitude and with increasing distance from the ocean. By considering these trends, a linear relationship for increasing 3H concentration in precipitation is developed, based on data from the Amazon Basin, that realistically predicts regional 3H distributions from the northeast Brazilian coast to Cuzco, Peru. This 3H precipitation record is then extrapolated to the Cochabamba Valley and, after correction for radiogenic decay, is used to interpret trends in groundwater 3H concentrations within the valley. The groundwater flow system in one of the principal alluvial fans, which serves as an important groundwater resource for the city, is studied in detail. Tritium concentrations drop from approximately 8-10 tritium units (TU) in the recharge area to concentrations below the detection limit of 0.8 TU further out in the valley. Groundwater velocities of approximately 0.3 to 0.9 m d -1 are estimated from distributions of groundwater 3H concentrations along the alluvial fan with the use of the reconstructed precipitation 3H record. Regional characteristics of the groundwater flow system are discussed with respect to future development and protection of the groundwater resources.

  1. Characterizing interactions between surface water and groundwater in the Jialu River basin using major ion chemistry and stable isotopes

    Directory of Open Access Journals (Sweden)

    L. Yang

    2012-11-01

    Full Text Available The Jialu River, a secondary tributary of the Huaihe River, has been severely contaminated from major contaminant sources, such as a number of untreated or lightly treated sewage waste in some cities. Groundwater along the river is not an isolated component of the hydrologic system, but is instead connected with the surface water. This study aims to investigate temporal and spatial variations in water chemistry affected by humans and to characterize the relationships between surface water (e.g. reservoirs, lakes and rivers and groundwater near the river in the shallow Quaternary aquifer. Concentration of Cl in north Zhengzhou City increased prominently due to the discharge of a large amount of domestic water. Nitrate and potassium show maximum concentrations in groundwater in Fugou County. These high levels can be attributed to the use of a large quantity of fertilizer over this region. Most surface water appeared to be continuously recharged from the surrounding groundwater (regional wells based on comparison surface water with groundwater levels, stable-isotopes and major ion signatures. However, the groundwater of a transitional well (location SY3 seemed to be recharged by river water via bank infiltration in September 2010. Fractional contributions of river water to the groundwater were calculated based on isotopic and chemical data using a mass-balance approach. Results show that the groundwater was approximately composed of 60–70% river water. These findings should be useful for a better understanding of hydrogeological processes at the river-aquifer interface and ultimately benefit water management in the future.

  2. Roles of surface water areas for water and solute cycle in Hanoi city, Viet Nam

    Science.gov (United States)

    Hayashi, Takeshi; Kuroda, Keisuke; Do Thuan, An; Tran Thi Viet, Nga; Takizawa, Satoshi

    2013-04-01

    Hanoi city, the capital of Viet Nam, has developed beside the Red river. Recent rapid urbanization of this city has reduced a large number of natural water areas such as lakes, ponds and canals not only in the central area but the suburban area. Contrary, the urbanization has increased artificial water areas such as pond for fish cultivation and landscaping. On the other hand, the urbanization has induced the inflow of waste water from households and various kinds of factories to these water areas because of delay of sewerage system development. Inflow of the waste water has induced eutrophication and pollution of these water areas. Also, there is a possibility of groundwater pollution by infiltration of polluted surface water. However, the role of these water areas for water cycle and solute transport is not clarified. Therefore, this study focuses on the interaction between surface water areas and groundwater in Hanoi city to evaluate appropriate land development and groundwater resource management. We are carrying out three approaches: a) understanding of geochemical characteristics of surface water and groundwater, b) monitoring of water levels of pond and groundwater, c) sampling of soil and pond sediment. Correlation between d18O and dD of precipitation (after GNIP), the Red River (after GNIR) and the water samples of this study showed that the groundwater is composed of precipitation, the Red River and surface water that has evaporation process. Contribution of the surface water with evaporation process was widely found in the study area. As for groundwater monitoring, the Holocene aquifers at two sites were in unconfined condition in dry season and the groundwater levels in the aquifer continued to increase through rainy season. The results of isotopic analysis and groundwater level monitoring showed that the surface water areas are one of the major groundwater sources. On the other hand, concentrations of dissolved Arsenic (filtered by 0.45um) in the pore

  3. Groundwater quality in the San Fernando--San Gabriel groundwater basins, California

    Science.gov (United States)

    Kulongoski, Justin T.; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The San Fernando and San Gabriel groundwater basins constitute one of the study units being evaluated.

  4. Assessment of groundwater quality at a MSW landfill site using standard and AHP based water quality index: a case study from Ranchi, Jharkhand, India.

    Science.gov (United States)

    Chakraborty, Shubhrasekhar; Kumar, R Naresh

    2016-06-01

    Landfill leachate generated from open MSW dumpsite can cause groundwater contamination. The impact of open dumping of MSW on the groundwater of adjacent area was studied. To assess the spatial and temporal variations in groundwater quality, samples were collected around an open MSW dumping site in Ranchi city, Jharkhand, India. Groundwater samples were analysed for various physicochemical and bacteriological parameters for 1 year. Results indicated that the groundwater is getting contaminated due to vertical and horizontal migration of landfill leachate. Extent of contamination was higher in areas closer to the landfill as indicated by high alkalinity, total dissolved solids and ammonia concentration. Metals such as lead, iron, and manganese were present at concentrations of 0.097, 0.97 and 0.36 mg/L, respectively exceeding the Bureau of Indian Standards (BIS) 10,500 for drinking water. Enterobacteriaceae were also detected in several groundwater samples and highest coliform count of 2.1×10(4) CFU/mL was recorded from a dug well. In order to determine the overall groundwater quality, water quality index (WQI) was calculated using weighted arithmetic index method and this index was further modified by coupling with the analytical hierarchy process (AHP) to get specific information. WQI values indicated that the overall groundwater quality of the region came under "poor" category while zone wise classification indicated the extent of impact of landfill leachate on groundwater. PMID:27155859

  5. Cities, Towns and Villages, city, Published in 2003, Daggett County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Cities, Towns and Villages dataset, was produced all or in part from Other information as of 2003. It is described as 'city'. Data by this publisher are often...

  6. Monitoring of pore water pressure and groundwater chemistry at MSB-2 and MSB-4 boreholes in the MIU construction site. April, 2004 - March, 2006

    International Nuclear Information System (INIS)

    Japan Atomic Energy Agency has been carried out investigations to understand the fluctuation of groundwater chemistry related to the shafts excavation at the Mizunami Underground Research Laboratory (MIU) in Mizunami City, Gifu prefecture, Japan. We compiled data of pore water pressure, water temperature and groundwater chemistry obtained from two surface-based boreholes, MSB-2 and MSB-4 boreholes, installed a groundwater monitoring system (MP system: Westbay Instruments Inc.) from April 2003. Groundwater sampling, chemical analysis and measurements of pore water pressure have been conducted once a month. This report summarized the data of groundwater chemistry and pore water pressure obtained from these two boreholes for two years (April, 2009 - March, 2006). A CD-ROM is attached as an appendix. (author)

  7. Healthy Cities: a guide to the literature.

    OpenAIRE

    Kenzer, M

    2000-01-01

    The author reviews the literature on attempts by city governments, international agencies, and nongovernmental and community organizations to improve city life around the world through Healthy Cities projects.

  8. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Falls City, Texas. Remedial action selection report, attachment 2, geology report; attachment 3, groundwater hydrology report; and attachment 4, water resources protection strategy. Final report

    International Nuclear Information System (INIS)

    The uranium processing site near Falls City, Texas, was one of 24 inactive uranium mill sites designated to be remediated by the U.S. Department of Energy (DOE) under Title I of the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRCA requires that the U.S. Nuclear Regulatory Commission (NRC) concur with the DOE's remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the U.S. Environmental Protection Agency (EPA). The RAP, which includes this summary remedial action selection report (RAS), serves a two-fold purpose. First, it describes the activities proposed by the DOE to accomplish long-term stabilization and control of the residual radioactive materials at the inactive uranium processing site near Falls City, Texas. Second, this document and the remainder of the RAP, upon concurrence and execution by the DOE, the State of Texas, and the NRC, becomes Appendix B of the Cooperative Agreement between the DOE and the State of Texas

  9. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Falls City, Texas. Remedial action selection report, attachment 2, geology report; attachment 3, groundwater hydrology report; and attachment 4, water resources protection strategy. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-09-01

    The uranium processing site near Falls City, Texas, was one of 24 inactive uranium mill sites designated to be remediated by the U.S. Department of Energy (DOE) under Title I of the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRCA requires that the U.S. Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the U.S. Environmental Protection Agency (EPA). The RAP, which includes this summary remedial action selection report (RAS), serves a two-fold purpose. First, it describes the activities proposed by the DOE to accomplish long-term stabilization and control of the residual radioactive materials at the inactive uranium processing site near Falls City, Texas. Second, this document and the remainder of the RAP, upon concurrence and execution by the DOE, the State of Texas, and the NRC, becomes Appendix B of the Cooperative Agreement between the DOE and the State of Texas.

  10. Cultural diversity, cities and innovation: firm effects or city effects?

    OpenAIRE

    Lee, Neil

    2013-01-01

    Growing cultural diversity is seen as important for innovation. Research has focused on two potential mechanisms: a firm effect, with diversity at the firm level improving knowledge sourcing or ideas generation, and a city effect, where diverse cities helping firms innovate. This paper uses a dataset of over 2,000 UK SMEs to test between these two. Controlling for firm characteristics, city characteristics and firm and city diversity, there is strong evidence for the firm effect. Firms with a...

  11. A Contamination Vulnerability Assessment for the Santa Clara and San Mateo County Groundwater Basins

    International Nuclear Information System (INIS)

    In response to concerns expressed by the California Legislature and the citizenry of the State of California, the State Water Resources Control Board (SWRCB), implemented a program to assess groundwater quality, and provide a predictive capability for identifying areas that are vulnerable to contamination. The program was initiated in response to concern over public supply well closures due to contamination by chemicals such as MtBE from gasoline, and solvents from industrial operations. As a result of this increased awareness regarding groundwater quality, the Supplemental Report of the 1999 Budget Act mandated the SWRCB to develop a comprehensive ambient groundwater-monitoring plan, and led to the initiation of the Ambient Groundwater Monitoring and Assessment (GAMA) Program. The primary objective of the GAMA Program is to assess the water quality and to predict the relative susceptibility to contamination of groundwater resources throughout the state of California. Under the GAMA program, scientists from Lawrence Livermore National Laboratory (LLNL) collaborate with the SWRCB, the U.S. Geological Survey, the California Department of Health Services (DHS), and the California Department of Water Resources (DWR) to implement this groundwater assessment program. In 2001 and 2002, LLNL carried out this vulnerability study in the groundwater basins of Santa Clara County and San Mateo County, located to the south of the city of San Francisco. The goal of the study is to provide a probabilistic assessment of the relative vulnerability of groundwater used for the public water supply to contamination from surface sources. This assessment of relative contamination vulnerability is made based on the results of two types of analyses that are not routinely carried out at public water supply wells: ultra low-level measurement of volatile organic compounds (VOCs), and groundwater age dating (using the tritium-helium-3 method). In addition, stable oxygen isotope measurements

  12. A Contamination Vulnerability Assessment for the Santa Clara and San Mateo County Groundwater Basins

    Energy Technology Data Exchange (ETDEWEB)

    Moran, J E; Hudson, G B; Eaton, G F; Leif, R

    2004-01-06

    In response to concerns expressed by the California Legislature and the citizenry of the State of California, the State Water Resources Control Board (SWRCB), implemented a program to assess groundwater quality, and provide a predictive capability for identifying areas that are vulnerable to contamination. The program was initiated in response to concern over public supply well closures due to contamination by chemicals such as MtBE from gasoline, and solvents from industrial operations. As a result of this increased awareness regarding groundwater quality, the Supplemental Report of the 1999 Budget Act mandated the SWRCB to develop a comprehensive ambient groundwater-monitoring plan, and led to the initiation of the Ambient Groundwater Monitoring and Assessment (GAMA) Program. The primary objective of the GAMA Program is to assess the water quality and to predict the relative susceptibility to contamination of groundwater resources throughout the state of California. Under the GAMA program, scientists from Lawrence Livermore National Laboratory (LLNL) collaborate with the SWRCB, the U.S. Geological Survey, the California Department of Health Services (DHS), and the California Department of Water Resources (DWR) to implement this groundwater assessment program. In 2001 and 2002, LLNL carried out this vulnerability study in the groundwater basins of Santa Clara County and San Mateo County, located to the south of the city of San Francisco. The goal of the study is to provide a probabilistic assessment of the relative vulnerability of groundwater used for the public water supply to contamination from surface sources. This assessment of relative contamination vulnerability is made based on the results of two types of analyses that are not routinely carried out at public water supply wells: ultra low-level measurement of volatile organic compounds (VOCs), and groundwater age dating (using the tritium-helium-3 method). In addition, stable oxygen isotope measurements

  13. Transport of contaminations in groundwater

    International Nuclear Information System (INIS)

    In order to follow up the percolation of nitrogen components from surface to groundwater a lysimeter research station has been established in an agriculture experimental field south of Graz. The geology is characterized by Quaternary gravels and sands with relatively high permeability representing an important shallow aquifer used for public water supply in a regional extent. On the other hand the frequent use of fertilizers and liquid manures provoked a continuous increase of the nitrate content in the shallow groundwater, thus reflecting a serious conflict between drinking water protection and agricultural activities. At the lysimeter station, located between two different agricultural test fields (maize monoculture and crop rotation), a number of parameters are measured automatically: meteorologic factors (from atmosphere), soil temperature, soil moisture, water tension, free oxygen (from unsaturated zone), groundwater level, water temperature and conductivity (from saturated zone). Furthermore water samples are collected for hydrochemical and environmental isotope analysis. As a conclusion from the present state of the lysimeter studies it can be stated that chemical changes of nitrogen components cannot be limited to the root zone from covering plants, hydrogen and oxygen stable isotopes can be applied for the simulation of transport of dissolved substances neglecting hydro- and biochemical reactions, more emphasis should be directed to nitrogen isotopes and the most proper results for groundwater protection can be achieved by the combined application and comparison of hydrological, chemical, biological and isotopical methods. (author)

  14. Modeling groundwater flow on MPPs

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, S.F.; Falgout, R.D.; Smith, S.G.; Tompson, A.F.B.

    1993-10-01

    The numerical simulation of groundwater flow in three-dimensional heterogeneous porous media is examined. To enable detailed modeling of large contaminated sites, preconditioned iterative methods and massively parallel computing power are combined in a simulator called PARFLOW. After describing this portable and modular code, some numerical results are given, including one that demonstrates the code`s scalability.

  15. Modeling bioremediation of contaminated groundwater

    OpenAIRE

    Atlas, R M; Hazen, T.; Philp, J. C.; Prommer, H.; Barry, D. A.

    2005-01-01

    Bioremediation: Applied Microbial Solutions for Real-World Environmental Cleanup is a fascinating examination of research and its real-world application. Intended for both academics and practitioners, the book presents information on the legal, scientific, and engineering principles behind bioremediation for cleaning up contaminated soil and groundwater sources. Bioremediation incorporates a variety of international perspectives in detailing for industrial engineers and rese...

  16. Modeling groundwater flow on MPPs

    International Nuclear Information System (INIS)

    The numerical simulation of groundwater flow in three-dimensional heterogeneous porous media is examined. To enable detailed modeling of large contaminated sites, preconditioned iterative methods and massively parallel computing power are combined in a simulator called PARFLOW. After describing this portable and modular code, some numerical results are given, including one that demonstrates the code's scalability

  17. Summary report on groundwater chemistry

    International Nuclear Information System (INIS)

    The preliminary site investigations for radioactive waste disposal (in Finland) carried out by Teollisuuden Voima Oy (TVO) during the period 1987 to 1992 yielded data on hydrogeochemistry from a total 337 water samples. The main objective of the groundwater chemistry studies was to characterize groundwaters at the investigation sites and, specifically, to create a concept for the mean residence times and evolution of groundwater by means of isotopic analyses. Moreover, the studies yielded input data for geochemical modelling and the performance assessment. Samples were taken from deep boreholes (with a depth of 500 to 1000 m), percussion-drilled boreholes (depth approx. 200 m), flushing-water wells (approx. 100 m) and multi-level pietzometers (approx. 100 m) used in the hydrological tests. The water used for drilling the deep boreholes was taken from local flushing-water wells, whose water was also analyzed in detail. The flushing water used in drilling was marked with two tracers, iodine and uranine, analyzed with two different methods. For reference purposes, samples were also taken from surficial and groundwaters over a large area surrounding the investigation site. Precipitation over a period of at least one year was collected at all the five investigation sites and the samples were analyzed in great detail, particularly with regard to isotopes. Similarly, snow profile samples representing precipitation during the entire winter was taken from each site at least once

  18. Hackable Cities : From Subversive City Making to Systemic Change

    NARCIS (Netherlands)

    de Lange, M.L.; de Waal, Martijn; Foth, Marcus; Verhoeff, Nanna; Martin, Brynskov

    2015-01-01

    The DC9 workshop takes place on June 27, 2015 in Limerick, Ireland and is titled "Hackable Cities: From Subversive City Making to Systemic Change". The notion of "hacking" originates from the world of media technologies but is increasingly often being used for creative ideals and practices of city m

  19. Isotope techniques application in understanding the recharge process of the Davao City aquifers

    International Nuclear Information System (INIS)

    Full text: Davao City, one of the Philippines' major cities, is undergoing extensive urban and eco-tourism development. Generally, groundwater is the most important source of freshwater, supplying 97% of the city's water requirements. Davao City is generally mountainous, characterized by extensive mountain ranges, uneven distribution of plateaus and some lowlands. The city's urban and development areas are concentrated along a narrow coastal strip averaging 5 km in width and extending 56 km facing the Davao Gulf. It is in the coastal area where most of the production wells are located and where heavy abstraction is concentrated. Chemical and isotopic characterization of the water sources in Davao City were undertaken to provide an insight into the processes of groundwater occurrence, particularly on the origin and rate of recharge into the groundwater and evaluation of the aquifer's vulnerability to pollution. Field investigations were conducted from October 1998 to February 2002. The study area, 42km x 33km, is within the Talomo-Lipadas-Sibulan (TLSS) catchment basin. The groundwater aquifer in the TLSS is composed of reworked and redeposited overlapping flows of Quaternary pyroclastics. It has an upper unconfined aquifer composed of sand, gravel and occasional boulders which is tapped by shallow domestic wells. The deeper aquifer which is being tapped by wells of the Davao City Water District at depths ranging from 46 to about 140 meters below ground level is multi-layered aquifer separated by thin, relatively less permeable layers of clay. Three river systems, Lipadas River to the west, and Talomo and Davao Rivers to the east traverse the study area. These flow through the city and empty to the Davao Gulf, south of the city. Chemical composition of the groundwater shows that most of the waters in the Talomo-Lipadas-Sibulan catchment (TLSS), except for Well 1, are classified as Ca+Mg-HCO3 waters. The fluid in Well 1 is a mixture of Ca+Mg-HCO3 and Na+K-Cl waters

  20. City of layers

    DEFF Research Database (Denmark)

    Jensen, Ole B.

    2007-01-01

    mobility practices are played out in a relational space where the potential for movement is shifted in favour of the elite and the tourists. The Sky Train reconfigures the mobility patterns of the inner city of Bangkok in ways that are more than planning policies to overcome congestion and traffic jams...

  1. Nature in the City.

    Science.gov (United States)

    Ferbert, Mary Lou

    1981-01-01

    Describes a science program developed by the Cleveland Museum of Natural History, "Nature in the City," in which students and teachers learn together about the natural community surrounding their school. Includes program's rationale, list of "adventures," and methods. Discusses strategies of Sherlock Holmes'"adventure" focusing on animal tracks…

  2. Governing the City

    DEFF Research Database (Denmark)

    Kornberger, Martin

    2012-01-01

    Strategy frames the contemporary epistemological space of urbanism: major cities across the globe such as New York, London and Sydney invest time, energy and resources to craft urban strategies. Extensive empirical research projects have proposed a shift towards a strategic framework to manage ci...

  3. WE LOVE THE CITY

    DEFF Research Database (Denmark)

    Andersson, Lasse

    2012-01-01

    With a point of departure in amongst others the Danish office of ADEPT’s approach, ‘The city in the building and the building in the city’ (ADEPT 2012), it is consequently the aim of this article to show how workshops can help shape and develop a spatial and architectural approach to form finding...

  4. Scarcity Makes the City

    OpenAIRE

    Mann, Geoff

    2013-01-01

    The first talk in the series, Scarcity Makes the City, features Vancouver-based economic geographer Geoff Mann. Looking at how modern political economy affects social relations and our experience of everyday life, Mann will discuss how contemporary capitalist dynamics shape Vancouver’s urban context, and the pasts, presents, and futures that weave it together.

  5. Bug City: Bees [Videotape].

    Science.gov (United States)

    1998

    "Bug City" is a video series created to help children learn about insects and other small critters. All aspects of bug life are touched upon including body structure, food, habitat, life cycle, mating habits, camouflage, mutualism (symbiosis), adaptations, social behavior, and more. Each program features dramatic microscopic photography, fun…

  6. City Kids Go Green.

    Science.gov (United States)

    Taylor, Tricia

    1993-01-01

    Describes Outward Bound Urban Resources Initiative, a six-week summer course whose goal is to work with urban youth to develop solutions for local environmental problems. Among the activities described include converting city lots into parks, neighborhood cleanup, and tree planting. (MDH)

  7. Clean Cities Tools

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-12-19

    The U.S. Department of Energy's Clean Cities offers a large collection of Web-based tools on the Alternative Fuels Data Center. These calculators, interactive maps, and data searches can assist fleets, fuels providers, and other transportation decision makers in their efforts to reduce petroleum use.

  8. A Vibrant Ancient City

    Institute of Scientific and Technical Information of China (English)

    WANGTONG

    2004-01-01

    LIJIANG is a small city onthe Yunnan-Guizhou Plateau in southern Chinawith an 800-year history.Word of its ancient language and music, and unique natural scenery has spread over the decades, and Lijiang is now known throughout the world. It was added

  9. Transport for smart cities

    DEFF Research Database (Denmark)

    Kristensen, Niels Buus; Pedersen, Allan Schrøder

    2011-01-01

    ’ activities can be reached within the relative close distances of the city. However, urbanisation has also led to significant disadvantages, of which transport accounts for some of the most severe. Traffic accidents and emissions of air pollutants and noise take heavy tolls in terms of people killed...

  10. Practicing the Generic (City)

    DEFF Research Database (Denmark)

    Hansen, Lone Koefoed

    2010-01-01

    Flanagan proposes that most locative media artworks neglect the particularities of spaces, their historical and political layers. Koolhaas, on the other hand, states that all urban areas are alike, that we are facing a global Generic City. The paper analyses digital media artist Esther Polak’s No...

  11. City fiiling / Triin Ojari

    Index Scriptorium Estoniae

    Ojari, Triin, 1974-

    2006-01-01

    Arhitektide Andres Alveri ja Tiit Trummali tähtsamatest töödest. Pikemalt Tallinna kesklinnas asuvatest majadest City Plaza ja Rävala Neli. Kommentaarid Rein Veidemannilt, Veljo Kaasikult, Hardo Aasmäelt, Toomas Tammiselt, Jaak Aaviksoolt ja Karin Pauluselt

  12. City model enrichment

    Science.gov (United States)

    Smart, Philip D.; Quinn, Jonathan A.; Jones, Christopher B.

    The combination of mobile communication technology with location and orientation aware digital cameras has introduced increasing interest in the exploitation of 3D city models for applications such as augmented reality and automated image captioning. The effectiveness of such applications is, at present, severely limited by the often poor quality of semantic annotation of the 3D models. In this paper, we show how freely available sources of georeferenced Web 2.0 information can be used for automated enrichment of 3D city models. Point referenced names of prominent buildings and landmarks mined from Wikipedia articles and from the OpenStreetMaps digital map and Geonames gazetteer have been matched to the 2D ground plan geometry of a 3D city model. In order to address the ambiguities that arise in the associations between these sources and the city model, we present procedures to merge potentially related buildings and implement fuzzy matching between reference points and building polygons. An experimental evaluation demonstrates the effectiveness of the presented methods.

  13. Atlantic City memories.

    Science.gov (United States)

    Epstein, Franklin H

    2008-04-01

    Fifty years ago, the Atlantic City meetings, held the first week in May of every year, were attended by all the elite of American academic medicine and all who wanted to join that group. Part of the magic of those meetings was that professors and neophytes took each other seriously and talked to each other. PMID:18382726

  14. Global Groundwater related Risk Indicators: quantifying groundwater stress and groundwater table decline (1990-2010) at global scale

    Science.gov (United States)

    Faneca Sanchez, Marta; Sutanudjaja, Edwin; Kuijper, Marijn; Bierkens, Marc

    2016-04-01

    Groundwater is an invisible but indispensable resource for the economic development of many countries. Due to the need for this resource, in many cases it is exploited under severe pressure and the exploitation can become not sustainable. The non-sustainable exploitation of water is a well-known problem on both regional and global scales. However, most currently-available assessments on water stress still mostly focus on surface water and on water balances. In this work, we presented two global maps of groundwater risk indicators: an updated version of the groundwater stress (Gleeson et al., 2011, DOI: 10.1038/nature11295) and an indicator on groundwater table decline for the period 1990-2010. To calculate both indicators, we used the updated PCR-GLOBWB model output at 5 arcmin resolution (about 10 km at the equator), that is extended with an offline coupling to a global groundwater MODFLOW model. PCR-GLOBWB simulates daily river discharge and groundwater recharge, as well as surface water and groundwater abstraction rates. The latter are estimated internally within the model based on the simulation of their availabilities and water demands for irrigation and other sectors. The daily output of PCR-GLOBWB would then be aggregated to the monthly resolution and used to force the MODFLOW groundwater model resolving spatio-temporal groundwater table dynamics, incorporating the simulated groundwater abstraction of PCR-GLOBWB. Using the PCR-GLOBWB and MODFLOW simulation results from the period 1990-2010, we then quantified groundwater stress and assessed the groundwater table decline. Results are presented on four different spatial scales: 5 arcmin pixel, drainage/sub-catchment unit, state level, and major aquifer unit. The maps clearly show where groundwater is under stress, where there is a trend in the drop of the groundwater table, the slope of the drop and the significance of it.

  15. An introduction to ground-water hydraulics

    International Nuclear Information System (INIS)

    This book deals with ground-water hydraulics, which introduces summary on hydrologic design bases, advantage on use of ground-water, ground water with the origin of water, outflow of ground-water, property of water of aquifer like storage of aquifer importance of structure materials of aquifer, flow of ground-water such as Darcy's law and Jacob's law, environmental condition of aquifer, ground-water stage change, output per well, well design, quality of ground water and bedrock ground water in domestic.

  16. Less Smart More City

    Directory of Open Access Journals (Sweden)

    Rocco Papa

    2015-07-01

    Full Text Available Smart is an expression used in recent years in science, and it refers to someone or something that shows a lively intelligence, with a quick learning curve and a fast response to external stimuli. The present scenario is dominated by the accelerated technological development that involves every aspect of life, enhancing the everyday tools through the use of information and digital processing: everything is smart, even cities. But when you pair the term smart to a complex organism such as the city the significance of the two together is open to a variety of interpretations, as shown by the vast and varied landscape of definitions that have occurred in recent years. Our contribution presents the results of research aimed at analyzing and interpreting this fragmented scene mainly, but not exclusively, through lexical analysis, applied to a textual corpus of 156 definitions of smart city. In particular, the study identified the main groups of stakeholders that have taken part in the debate, and investigated the differences and convergences that can be detected: Academic, Institutional, and Business worlds. It is undeniable that the term smart has been a veritable media vehicle that, on the one hand brought to the center of the discussion the issue of the city, of increasing strategic importance for the major challenges that humanity is going to face,  and on the other has been a fertile ground on which to pour the interests of different groups and individuals. In a nutshell we can say that from the analysis the different approaches that each group has used and supported emerge clearly and another, alarming, consideration occurs: of the smart part of “Smart City” we clearly grasp the tools useful to the each group of stakeholders, and of the city part, as a collective aspiration, there is often little or nothing.

  17. Quantifying renewable groundwater stress with GRACE

    Science.gov (United States)

    Richey, Alexandra S.; Thomas, Brian F.; Lo, Min-Hui; Reager, John T.; Famiglietti, James S.; Voss, Katalyn; Swenson, Sean; Rodell, Matthew

    2015-07-01

    Groundwater is an increasingly important water supply source globally. Understanding the amount of groundwater used versus the volume available is crucial to evaluate future water availability. We present a groundwater stress assessment to quantify the relationship between groundwater use and availability in the world's 37 largest aquifer systems. We quantify stress according to a ratio of groundwater use to availability, which we call the Renewable Groundwater Stress ratio. The impact of quantifying groundwater use based on nationally reported groundwater withdrawal statistics is compared to a novel approach to quantify use based on remote sensing observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission. Four characteristic stress regimes are defined: Overstressed, Variable Stress, Human-dominated Stress, and Unstressed. The regimes are a function of the sign of use (positive or negative) and the sign of groundwater availability, defined as mean annual recharge. The ability to mitigate and adapt to stressed conditions, where use exceeds sustainable water availability, is a function of economic capacity and land use patterns. Therefore, we qualitatively explore the relationship between stress and anthropogenic biomes. We find that estimates of groundwater stress based on withdrawal statistics are unable to capture the range of characteristic stress regimes, especially in regions dominated by sparsely populated biome types with limited cropland. GRACE-based estimates of use and stress can holistically quantify the impact of groundwater use on stress, resulting in both greater magnitudes of stress and more variability of stress between regions.

  18. High levels of uranium in groundwater of Ulaanbaatar, Mongolia

    Energy Technology Data Exchange (ETDEWEB)

    Nriagu, Jerome, E-mail: stoten@umich.edu [Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109 (United States); Nam, Dong-Ha; Ayanwola, Titilayo A. [Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109 (United States); Dinh, Hau [College of Literature, Science and Arts, University of Michigan (United States); Erdenechimeg, Erdenebayar; Ochir, Chimedsuren [Department Of Preventive Medicine, School Of Public Health, Health Science University, Mongolia, Ulaanbaatar (Mongolia); Bolormaa, Tsend-Ayush [Central Water Laboratory of Water Supply and Sewerage Authority (USUG), Ulaanbaatar (Mongolia)

    2012-01-01

    Water samples collected from 129 wells in seven of the nine sub-divisions of Ulaanbaatar were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) using Clean Lab methods. The levels of many trace elements were found to be low with the average concentrations (ranges in brackets) being 0.9 (< 0.1-7.9) {mu}g/L for As; 7.7 (0.12-177) {mu}g/L for Mn; 0.2 (< 0.05-1.9) {mu}g/L for Co; 16 (< 0.1-686) {mu}g/L for Zn; 0.7 (< 0.1-1.8) {mu}g/L for Se; < 0.1 (< 0.02-0.69) {mu}g/L for Cd; and 1.3 (< 0.02-32) {mu}g/L for Pb. The levels of uranium were surprisingly elevated (mean, 4.6 {mu}g/L; range < 0.01-57 {mu}g/L), with the values for many samples exceeding the World Health Organization's guideline of 15 {mu}g/L for uranium in drinking water. Local rocks and soils appear to be the natural source of the uranium. The levels of uranium in Ulaanbaatar's groundwater are in the range that has been associated with nephrotoxicity, high blood pressure, bone dysfunction and likely reproductive impairment in human populations. We consider the risk associated with drinking the groundwater with elevated levels of uranium in Ulaanbaatar to be a matter for some public health concern and conclude that the paucity of data on chronic effects of low level exposure is a risk factor for continuing the injury to many people in this city. - Highlights: Black-Right-Pointing-Pointer We analyzed water samples from wells across the city of Ulaanbaatar, Mongolia for total uranium along with arsenic, manganese, cobalt, zinc, selenium, cadmium and lead. Black-Right-Pointing-Pointer We found that compared to other trace metals and metalloids, the levels of uranium were surprisingly elevated with the values for many samples exceeding the World Health Organization's guideline for drinking water. Black-Right-Pointing-Pointer Local rocks and soils appear to be the natural source of the uranium. Black-Right-Pointing-Pointer The health risk associated with drinking the groundwater

  19. A stable isotope reconnaissance of groundwater resources in the Kathmandu Valley, Nepal

    International Nuclear Information System (INIS)

    Groundwater, surface water, spring water, and precipitation obtained during the monsoon season in the Kathmandu Valley of central Nepal were analysed for the stable environmental isotopes oxygen-18 (18O) and deuterium (2H). The distributions of the isotopes in the hydrologic cycle suggest that valley groundwaters have different origins. The Kathmandu Valley is a tectonic basin in the middle hill region of Nepal, 80 km south of the crest of the Himalayan Mountains. The 600 km2 bowl-like valley contains more than 400 m of lacustrine and fluvial sediments. The elevation of the relatively flat valley floor is roughly 1300 m. Steep hills surrounding the valley rise generally to 1600 m, and to a maximum of 2760 m. The small mountain reservoirs that supplied 80% of the drinking water for the city of Kathmandu (population exceeds 200 000) no longer meet demand during the dry season. New production wells show high levels of dissolved iron (> 2 mg/L) and high acidity (pH 18O and δ2H. The isotopically lightest sample was -10.4 and -74, and the heaviest was -6.9 and -55. Light surface waters originating in northern and southern uplands plot near the world meteoric water line. Waters with intermediate values, groundwater in the northern area of the valley and several small rivers, plot along a possible evaporation or mixing line. The heaviest waters, collected from a small river flowing from the east, groundwater in the centre of the valley, and deep groundwater containing natural gas in the southwestern area of the valley, all have signatures similar to those reported from the first range of the Himalayan uplift, roughly 1000 m lower in elevation. A volume weighted composite sample of rain water collected in the city of Kathmandu from August 22 to September 12, 1986 had values of -8.0 and -58. One overnight storm produced more than 10 cm of rain with values of -1.8 and -6. It is assumed that large variations between individual precipitation events are naturally averaged to

  20. Rethinking Cities: Toward Shared Prosperity

    OpenAIRE

    Glaeser, Edward; Joshi-Ghani, Abha

    2013-01-01

    The great transition from farm to city is filled with economic, social, and political promise. Cities are the product of a triad of forces. This Economic Premise explores how the three forces of spatial transformation—physical infrastructure, human interactions, and public policy—come together and shape cities. But too many cities in Sub-Saharan Africa continue to suffer from the oldest urban scourge—unclean water. Crime and murder turn many Latin American neighborhoods into places of terror ...

  1. City of One Thousand Temples

    OpenAIRE

    Stein, Emma Natalya

    2015-01-01

    A Network of Hearsay in South India Although the South Indian city of Kanchipuram is popularly known as the City of One Thousand Temples, there is no existing prescribed circuit, and no comprehensive temple listing or map to guide visitors.* Rather, the thousands of pilgrims who flood the city daily usually only know about the five most famous temples. Scattered street signs throughout the busy city point the way to these sprawling monuments, which are always crowded and especially ...

  2. Urban speleology applied to groundwater and geo-engineering studies: underground topographic surveying of the ancient Arca D’Água galleries catchworks (Porto, NW Portugal)

    OpenAIRE

    Fontes G.; Marques J.M.; Lopes M.E.; Devy-Vareta N.F.; Gomes A.; Fonseca P.E.; Plancha J.P.; Monteiro Santos F.A.; Cortez C.; Rodrigues P; Robalo P.M.; Afonso M.J.; Chaminé Helder I.; Pires A.; Rocha F.

    2010-01-01

    The Porto settlement (Northwest Portugal, Iberian Peninsula) was originally built in the twelfth century and has been developed on granitic hill slopes of the Douro riverside, being one of the oldest cities in Europe. In the urban area of Porto, the second most important city of the Portuguese mainland, there is a population of about 216,000 inhabitants. This study highlights the importance of urban speleological mapping applied to groundwater and geo-engineering studies. All the water that f...

  3. Impact of Earthquake Demolition Debris on the Quality of Groundwater

    Directory of Open Access Journals (Sweden)

    M. S. Benmenni

    2010-01-01

    Full Text Available Problem statement: Debris from construction or demolition/deconstruction processes have no significant impact on the environment as they are res-usable and inert. This has been also long admitted for solid waste generated by the demolition of damaged cities following violent earthquakes. Approach: This study is a contribution to the assessment of actual impact on the quality of groundwater of buried demolition debris from the city of Boumerdes, in the North of Algeria 5 years after the May 21st 2003 earthquake hit the region. The public discharge of Boumerdes city has been used as a temporary landfill. It is located about 5 km downtown of Boumerdes at the Tidjelabine site which is marly-calcareous formation. Leachate from the landfill was directly rejected in the receiving environment, where the soil is marly-calcareous type with cracks giving a variable permeability (10-2 m sec-1 to nearly 10-6 m sec-1 that facilitates infiltration of potential pollutants to the groundwater. The slope character (from 5-10% of the field contributes to pollutants movement and may accentuate water quality deterioration. Three domestic wells (designated S1, S2 and S3 were selected in the vicinity of the landfill and served as piezometers. Leachate samples were taken from the landfill and evaluated. Results: Leachate analysis indicated organic matter with relatively high COD (1136 mg L-1 O2 and BOD5 (200 mg L-1 O2; whereas the pH yielded 7.65 thus indicating fermentation phase of the landfill. Heavy metal contents were beyond national standard limits except for Pb with 0.51 mg L-1 which is slightly higher than limit value of 0.5 mg L-1. More than five years after the creation of this landfill and despite its predominant C&D nature, these results showed that it was following a typical urban wastes decomposition scheme. Same analysis carried on water samples drawn from the piezometers yielded following results: acidic pH (6.88, acceptable values of target heavy metals

  4. Current Conditions Risk Assessment for the 300-FF-5 Groundwater Operable Unit

    Energy Technology Data Exchange (ETDEWEB)

    Miley, Terri B.; Bunn, Amoret L.; Napier, Bruce A.; Peterson, Robert E.; Becker, James M.

    2007-11-01

    This report updates a baseline risk assessment for the 300 Area prepared in 1994. The update includes consideration of changes in contaminants of interest and in the environment that have occurred during the period of interim remedial action, i.e., 1996 to the present, as well as the sub-regions, for which no initial risk assessments have been conducted. In 1996, a record of decision (ROD) stipulated interim remedial action for groundwater affected by releases from 300 Area sources, as follows: (a) continued monitoring of groundwater that is contaminated above health-based levels to ensure that concentrations continue to decrease, and (b) institutional controls to ensure that groundwater use is restricted to prevent unacceptable exposure to groundwater contamination. In 2000, the groundwater beneath the two outlying sub-regions was added to the operable unit. In 2001, the first 5-year review of the ROD found that the interim remedy and remedial action objectives were still appropriate, although the review called for additional characterization activities. This report includes a current conditions baseline ecological and human health risk assessment using maximum concentrations in the environmental media of the 300-FF-5 Operable Unit and downstream conditions at the City of Richland, Washington. The scope for this assessment includes only current measured environmental concentrations and current use scenarios. Future environmental concentrations and future land uses are not considered in this assessment.

  5. Stream Nitrogen Inputs Reflect Groundwater Across a Snowmelt-Dominated Montane to Urban Watershed.

    Science.gov (United States)

    Hall, Steven J; Weintraub, Samantha R; Eiriksson, David; Brooks, Paul D; Baker, Michelle A; Bowen, Gabriel J; Bowling, David R

    2016-02-01

    Snowmelt dominates the hydrograph of many temperate montane streams, yet little work has characterized how streamwater sources and nitrogen (N) dynamics vary across wildland to urban land use gradients in these watersheds. Across a third-order catchment in Salt Lake City, Utah, we asked where and when groundwater vs shallow surface water inputs controlled stream discharge and N dynamics. Stream water isotopes (δ(2)H and δ(18)O) reflected a consistent snowmelt water source during baseflow. Near-chemostatic relationships between conservative ions and discharge implied that groundwater dominated discharge year-round across the montane and urban sites, challenging the conceptual emphasis on direct stormwater inputs to urban streams. Stream and groundwater NO3(-) concentrations remained consistently low during snowmelt and baseflow in most montane and urban stream reaches, indicating effective subsurface N retention or denitrification and minimal impact of fertilizer or deposition N sources. Rather, NO3(-) concentrations increased 50-fold following urban groundwater inputs, showing that subsurface flow paths potentially impact nutrient loading more than surficial land use. Isotopic composition of H2O and NO3(-) suggested that snowmelt-derived urban groundwater intercepted NO3(-) from leaking sewers. Sewer maintenance could potentially mitigate hotspots of stream N inputs at mountain/valley transitions, which have been largely overlooked in semiarid urban ecosystems. PMID:26744921

  6. Cities with Children: Child friendly cities in Italy

    OpenAIRE

    UNICEF Innocenti Research Centre

    2006-01-01

    Child Friendly Cities in Italy describes the evolution of childhood in Italy and the emergence of a new culture of the city. It analyses the consideration given to the Child Friendly Cities initiative and in particular the attention provided to the child as an active citizen and the role of the city in promoting the participation of young people in decision-making processes at the local level. The study looks at the specific experience of 12 of the more than 100 Italian cities that have adopt...

  7. The Carbon City Index (CCI)

    DEFF Research Database (Denmark)

    Boyd, Britta; Straatman, Bas; Mangalagiu, Diana;

    This paper presents a consumption-based Carbon City Index for CO2 emissions in a city. The index is derived from regional consumption and not from regional production. It includes imports and exports of emissions, factual emission developments, green investments as well as low carbon city...

  8. Seawater Intrusion and groundwater quality of the coastal area in Tripoli region, Libya

    Science.gov (United States)

    Abdalla, Rashid; Rinder, Thomas; Dietzel, Martin; Leis, Albrecht

    2010-05-01

    In Libya groundwater is the main source of freshwater, providing a vital supplement to surface water sources. Groundwater availability and quality are however, vulnerable both to climate change and over-abstraction. In Libyan cities where the water table has lowered there has been a consequent impact on agricultural activities. Groundwater aquifers are either renewable or non-renewable. The renewable aquifers are those located in the north coastal strip with high precipitation rates. The large non-renewable sedimentary groundwater basins cover extensive areas in the central and southern parts of Libya and contribute large quantities of freshwater for local use, industrial and agricultural development. Seawater intrusion is a problem in the coastal areas of Libya. Most productive agricultural fields are in the northern coastal areas of the country where irrigation predominantly relies on groundwater. Seawater has moved inland because of heavy exploitation of the Miocene-Quaternary aquifer in order to meet the increasing water demand. The physical and chemical parameters of groundwater such as electrical conductivity, pH, temperature and individual ion content were determined. Most of the wells showed high values of electrical conductivity. The increase of water salinity is directly related to the extreme pumping of shallow coastal aquifers and movement of seawater towards inland. In some samples the increase of salinity corresponds to the ions abundant in seawater. In those solutions molar ratios of Cl/Br indicate influence of seawater intrusion. According to mixing calculations between fresh groundwater of the study area and Mediterranean seawater, the estimated concentration of seawater ranges from 10 to 15 wt%.

  9. Groundwater flow pattern in the Ruataniwha Plains as derived from the isotope and chemistry signature of the water

    International Nuclear Information System (INIS)

    The Ruataniwha Basin is situated in the upper Tukituki catchment, approximately 70 km south west of Napier City. The boundaries of the Ruataniwha Basin are the foothills of the Ruahine Range in the west, Turiri Range and Raukawa Range in the east and rolling hills in the north. The Ruataniwha Plains groundwater system is a multi-layered aquifer system that has a complex hydrogeological setting, as the plains evolved in response to sea-level changes, tectonic activity, and geomorphic processes. Aquifers in the basin occur in gravel, sandstone, pumice and limestone strata within a basin structure. In this study, groundwater samples have been collected for hydrochemistry, dissolved gases, and age tracer analysis. Tracer results were interpreted in terms of groundwater recharge source and rate, groundwater age, changes in groundwater source, and the homogeneity of the aquifers. This helps with conceptual understanding of Ruataniwha Basin groundwater flow patterns, and provides data for calibration of a numerical surface-groundwater flow model. Most water samples across the Ruataniwha Basin contain old water, with a mean residence time (MRT) > 25 years. The old age of most of the waters indicates that these groundwaters are not directly linked to surface water. In the south eastern part of the basin, all groundwater samples are old (>100 years), indicating slow movement of groundwater and slow recharge, consistent with the geology of the area. In the south eastern part of the basin the geologic units have low permeability. The age depth relationship is biased by upwelling groundwater and reflects the closed nature of the basin. The average vertical flow velocity indicates a recharge rate of 0.19 m/y. Four wells in the vicinity of the lower Waipawa River show excellent age-depth relationships, indicating absence of disturbance by groundwater upwelling. The recharge rate there of 0.42 m/y is substantially higher than in the other parts of the basin, indicating river

  10. Groundwater Policy Research: Collaboration with Groundwater Conservation Districts in Texas

    OpenAIRE

    Johnson, Jeffrey W.; Johnson, Phillip N.; Guerrero, Bridget L.; Weinheimer, Justin; Amosson, Stephen H.; Almas, Lal K.; Golden, Bill B.; Wheeler-Cook, Erin

    2011-01-01

    The unique nature of the Ogallala Aquifer presents interesting and confounding problems for water policymakers who are coping with changing groundwater rules in Texas. The purpose of this article is to link previous efforts in water policy research for the Ogallala Aquifer in Texas with current collaborations that are ongoing with regional water planners. A chronological progression of economic water modeling efforts for the region is reviewed. The results of two recent collaborative studies ...

  11. Policy Preferences about Managed Aquifer Recharge for Securing Sustainable Water Supply to Chennai City, India

    Directory of Open Access Journals (Sweden)

    Norbert Brunner

    2014-12-01

    Full Text Available The objective of this study is to bring out the policy changes with respect to managed aquifer recharge (focusing on infiltration ponds, which in the view of relevant stakeholders may ease the problem of groundwater depletion in the context of Chennai City; Tamil Nadu; India. Groundwater is needed for the drinking water security of Chennai and overexploitation has resulted in depletion and seawater intrusion. Current policies at the municipal; state and national level all support recharge of groundwater and rainwater harvesting to counter groundwater depletion. However, despite such favorable policies, the legal framework and the administrative praxis do not support systematic approaches towards managed aquifer recharge in the periphery of Chennai. The present study confirms this, considering the mandates of governmental key-actors and a survey of the preferences and motives of stakeholder representatives. There are about 25 stakeholder groups with interests in groundwater issues, but they lack a common vision. For example, conflicting interest of stakeholders may hinder implementation of certain types of managed aquifer recharge methods. To overcome this problem, most stakeholders support the idea to establish an authority in the state for licensing groundwater extraction and overseeing managed aquifer recharge.

  12. Work plan for the Oak Ridge National Laboratory groundwater program: Continuous groundwater collection

    International Nuclear Information System (INIS)

    The continuous collection of groundwater data is a basic and necessary part of Lockeheed Martin Energy Systems' ORNL Environmental Restoration Area-Wide Groundwater Program. Continuous groundwater data consist primarily of continually recorded groundwater levels, and in some instances, specific conductivity, pH, and/or temperature measurements. These data will be collected throughout the ORNL site. This Work Plan (WP) addresses technical objectives, equipment requirements, procedures, documentation requirements, and technical instructions for the acquisition of the continuous groundwater data. Intent of this WP is to provide an approved document that meets all the necessary requirements while retaining the flexibility necessary to effectively address ORNL's groundwater problems

  13. Work plan for the Oak Ridge National Laboratory groundwater program: Continuous groundwater collection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The continuous collection of groundwater data is a basic and necessary part of Lockeheed Martin Energy Systems` ORNL Environmental Restoration Area-Wide Groundwater Program. Continuous groundwater data consist primarily of continually recorded groundwater levels, and in some instances, specific conductivity, pH, and/or temperature measurements. These data will be collected throughout the ORNL site. This Work Plan (WP) addresses technical objectives, equipment requirements, procedures, documentation requirements, and technical instructions for the acquisition of the continuous groundwater data. Intent of this WP is to provide an approved document that meets all the necessary requirements while retaining the flexibility necessary to effectively address ORNL`s groundwater problems.

  14. Groundwater use in Pakistan: opportunities and limitations

    International Nuclear Information System (INIS)

    Groundwater potential in the Indus Basin is mainly due to recharge from irrigation system, rivers and rainfall. Its quality and quantity varies spatially and temporally. However, the potential is linked with the surface water supplies. Irrigated agriculture is the major user of groundwater. Annual recharge to groundwater in the basin is estimated as 68 MAF. But 50 percent of the area has marginal to hazardous groundwater quality. Existing annual groundwater pumpage is estimated as 45 MAF (55 BCM). More than 13 MAF mainly of groundwater is lost as non-beneficial ET losses. Groundwater contributes 35 percent of total agricultural water requirements in the country. Annual cropping intensities have increased from 70% to 150% due to groundwater use. Increase in crop yield due to groundwater use has been observed 150-200. percent. Total investment on private tube wells has been made more than Rs.25.0 billion. In the areas where farmers are depending more on groundwater. mining of groundwater has been observed. Population pressure, inadequate supply of canal water and development of cheap local tub well technology have encouraged farmers to invest in the groundwater development. Deterioration of groundwater has also been observed due to excessive exploitation. The available information about the private tube wells is insufficient for different areas. Although during the past decade the growth of tube wells was tremendous but was not reflected accordingly in the statistics. Monitoring of groundwater quality is not done systematically and adequately. It is very difficult to manage a resource for which adequate information is not available. The present scenario of groundwater use is not sustainable and therefore certain measures are needed to be taken. It is recommended to. have a systematic monitoring of groundwater. For the sustainable use of groundwater, it is recommended to manage the demand of water i.e. grow more crops with less water. To achieve high productivity of

  15. The Emerging City

    DEFF Research Database (Denmark)

    Samson, Kristine

    ” – urban furniture that was originally part of an election campaign for the cultural minister of Denmark, will illustrate how both political and artistic signatures become deterritorialized through urban space, time and every day social use. The second example is taken from corporate city development at...... the urban milieu and how other meanings emerge. In the last example, Relocation of beer drinkers on Enghave Square, Copenhagen, I will highlight how a heterogeneous assemblages of architecture, urban design, artistic intervention and every day social life has constructed continuums of intensities over...... a period of time thus establishing an emergent urban space divergent from both the intentions of the planner, architect, artist and user. Through the examples, I suggest that each urban body or design deterritorialize connecting with the city. Broadening up the perspective, I ask whether...

  16. Visions of the City

    DEFF Research Database (Denmark)

    Pinder, David

    Visions of the City is a dramatic account of utopian urbanism in the twentieth century. It explores radical demands for new spaces and ways of living, and considers their effects on planning, architecture and struggles to shape urban landscapes. Such visions, it shows, have played a crucial role in...... to transform urban space and everyday life. He addresses in particular Constant's vision of New Babylon, finding within his proposals for future spaces produced through nomadic life, creativity and play a still powerful challenge to imagine cities otherwise. The book not only recovers vital moments...... from past hopes and dreams of modern urbanism. It also contests current claims about the 'end of utopia', arguing that reconsidering earlier projects can play a critical role in developing utopian perspectives today. Through the study of utopian visions, it aims to rekindle elements of utopianism...

  17. Spatial and temporal constraints on regional-scale groundwater flow in the Pampa del Tamarugal Basin, Atacama Desert, Chile

    Science.gov (United States)

    Jayne, Richard S.; Pollyea, Ryan M.; Dodd, Justin P.; Olson, Elizabeth J.; Swanson, Susan K.

    2016-08-01

    Aquifers within the Pampa del Tamarugal Basin (Atacama Desert, northern Chile) are the sole source of water for the coastal city of Iquique and the economically important mining industry. Despite this, the regional groundwater system remains poorly understood. Although it is widely accepted that aquifer recharge originates as precipitation in the Altiplano and Andean Cordillera to the east, there remains debate on whether recharge is driven primarily by near-surface groundwater flow in response to periodic flood events or by basal groundwater flux through deep-seated basin fractures. In addressing this debate, the present study quantifies spatial and temporal variability in regional-scale groundwater flow paths at 20.5°S latitude by combining a two-dimensional model of groundwater and heat flow with field observations and δ18O isotope values in surface water and groundwater. Results suggest that both previously proposed aquifer recharge mechanisms are likely influencing aquifers within the Pampa del Tamarugal Basin; however, each mechanism is operating on different spatial and temporal scales. Storm-driven flood events in the Altiplano readily transmit groundwater to the eastern Pampa del Tamarugal Basin through near-surface groundwater flow on short time scales, e.g., 100-101 years, but these effects are likely isolated to aquifers in the eastern third of the basin. In addition, this study illustrates a physical mechanism for groundwater originating in the eastern highlands to recharge aquifers and salars in the western Pampa del Tamarugal Basin over timescales of 104-105 years.

  18. Water-Rock Interaction and the Hydrogeochemistry of Chromium in Groundwater from Multilevels Monitoring Wells in Urania, SP, Brazil

    OpenAIRE

    Reginaldo Antonio Bertolo; Leonardo Nobuo Oshima Marcolan; Christine Laure Marie Bourotte

    2009-01-01

    Anomalous natural concentrations of chromium, sometimes exceeding the potability limit (0.05 mg.L-1), have been detectedin the groundwater of Adamantina Aquifer in the municipality of Urânia, and in a wide region of the western part ofthe State of São Paulo. In order to identify the possible geochemical reactions that may explain the occurrence of chromiumin groundwater, chemical and mineralogical analyses were conducted in rock samples collected from deep boreholes drilledin the city of Urân...

  19. Modeling of groundwater flow for Mujib aquifer, Jordan

    Indian Academy of Sciences (India)

    Fayez Abdulla; Tamer Al-Assa’d

    2006-06-01

    Jordan is an arid country with very limited water resources.Groundwater is the main source for its water supply.Mujib aquifer is located in the central part of Jordan and is a major source of drinking water for Amman,Madaba and Karak cities.High abstraction rates from Mujib aquifer during the previous years lead to a major decline in water levels and deterioration in groundwater quality. Therefore,proper groundwater management of Mujib aquifer is necessary;and groundwater flow modeling is essential for proper management.For this purpose,Mod flow was used to build a groundwater flow model to simulate the behavior of the flow system under different stresses.The model was calibrated for steady state condition by matching observed and simulated initial head counter lines.Drawdown data for the period 1985-1995 were used to calibrate the transient model by matching simulated drawdown with the observed one.Then,the transient model was validated by using drawdown data for the period 1996-2002.The results of the calibrated model showed that the horizontal hydraulic conductivity of the B2/A7 aquifer ranges between 0.001 and 40 m/d. Calibrated speci fic yield ranges from 0.0001 to 0.15.The water balance for the steady state condition of Mujib aquifer indicated that the total annual direct recharge is 20.4 × 106 m3, the total annual in flow is 13.0 × 106 m3, springs discharge is 15.3 × 106 m3, and total annual out flow is 18.7 × 106 m3. Different scenarios were considered to predict aquifer system response under different conditions. The results of the sensitivity analysis show that the model is highly sensitive to horizontal hydraulic conductivity and anisotropy and with lower level to the recharge rates.Also the model is sensitive to specific yield.

  20. Modelling of recharge and pollutant fluxes to urban groundwaters

    International Nuclear Information System (INIS)

    Urban groundwater resources are of considerable importance to the long-term viability of many cities world-wide, yet prediction of the quantity and quality of recharge is only rarely attempted at anything other than a very basic level. This paper describes the development of UGIf, a simple model written within a GIS, designed to provide estimates of spatially distributed recharge and recharge water quality in unconfined but covered aquifers. The following processes (with their calculation method indicated) are included: runoff and interception (curve number method); evapotranspiration (Penman-Grindley); interflow (empirical index approach); volatilization (Henry's law); sorption (distribution coefficient); and degradation (first order decay). The input data required are: meteorological data, landuse/cover map with event mean concentration attributes, geological maps with hydraulic and geochemical attributes, and topographic and water table elevation data in grid form. Standard outputs include distributions of: surface runoff, infiltration, potential recharge, ground level slope, interflow, actual recharge, pollutant fluxes in surface runoff, travel times of each pollutant through the unsaturated zone, and the pollutant fluxes and concentrations at the water table. The process of validation has commenced with a study of the Triassic Sandstone aquifer underlying Birmingham, UK. UGIf predicts a similar average recharge rate for the aquifer as previous groundwater flow modelling studies, but with significantly more spatial detail: in particular the results indicate that recharge through paved areas may be more important than previously thought. The results also highlight the need for more knowledge/data on the following: runoff estimation; interflow (including the effects of lateral flow and channelling on flow times and therefore chemistry); evapotranspiration in paved areas; the nature of unsaturated zone flow below paved areas; and the role of the pipe network

  1. Issues of Sustainability of Coastal Groundwater Resources: Benin, West Africa

    Directory of Open Access Journals (Sweden)

    Andrew D. Mullen

    2010-08-01

    Full Text Available The largest city in Benin, West Africa (Cotonou, is reliant upon groundwater for its public water supply. This groundwater is derived from the Godomey well field which is located approximately 5 Km north of the coast of the Atlantic Ocean and in close proximity to Lake Nokoue—a shallow lake containing water with elevated concentration of chloride and other elements. Historical data indicate increased chloride concentration in a number of wells nearest to the lake, with unknown contribution from groundwater encroachment from the coastal area. Hence, there is substantial interest in better characterizing this groundwater system for the purpose of determining appropriate management practices and degree of sustainability. Among the efforts attempted to date are a series of numerical models ranging from assessment of flow to a recent effort to include density-dependent transport from the lake. In addition, substantial field characterization has been pursued including assessment of shallow water chemistry along the region of the coastal lagoon and border of the lake, characterization of hydraulic response to pumpage in the aquifer system, estimation of the distribution of electrical resistivity with depth along the coastal lagoons, and installation of multi-level piezometers at seven locations in the lake. When integrated across methods, these numerical and field results indicate that the lake remains a primary concern in terms of a source of salinity in the aquifer. Further, the coastal region appears to be more complex than previously suggested and may represent a future source of salt-water encroachment as suggested by current presence of saline waters at relatively shallow depths along the coast. Finally, hydraulic testing suggests that both natural and pumping-based fluctuations in water levels are present in this system. Substantial additional characterization and modeling efforts may provide a significantly greater understanding of the

  2. Groundwater Level and Salinity Degradation in Farm Land through Groundwater Pumping Irrigation System in Coastal Area of Takalar Regency

    OpenAIRE

    Darwis Darwis; Rakhim Nanda; Abubakar Idha

    2014-01-01

    This study is conducted to find out correlation between released groundwater volume and groundwater level and salinity degradation as well as to find effective infiltration holes formation for groundwater augmentation. It belongs to field experimental research. This study concludes some concerns, they are: (1) Groundwater condition in farm land of coastal area in Takalar Regency has undergone salinization and groundwater salinity escalation in every groundwater release is very high. Groundwat...

  3. An expert system as a support to the decision making process for groundwater management of alluvial groundwater bodies in Slovenia

    OpenAIRE

    Petra Souvent; Goran Vižintin; Sašo Celarc; Barbara Čenčur Curk

    2014-01-01

    The expert decision support system for groundwater management in the shallow alluvial aquifers links numerical groundwater flow models with the water permits and concessions databases in order to help groundwater managers to quantify sustainable yield for a given groundwater body and provide additional information for sustainable groundwater management. Stand alone numerical groundwater models are used in the process of the assessment of groundwater quantitative status as well as ...

  4. WE LOVE THE CITY

    DEFF Research Database (Denmark)

    Andersson, Lasse

    2011-01-01

    ABSTRAKTISTAN 2011 og udstillingen WE LOVE THE CITY på Utzon Centeret i Aalborg vil vi derfor gerne vise alle, der færdes i byen og bruger dens arkitektur, at der i Urban design fagligheden er et potentiale. Både for de der bruger byen og for dem der udøver arkitekturen med en stærk urban intention i det skala...

  5. City Gods projektet

    OpenAIRE

    Andersen, Jakob Find

    2005-01-01

    Title: Copenhagen Urban Freight project – potentials and barriers – a case study approach Keywords: Urban freight transport, urban sustainability, Copenhagen Urban Freight Or-dinance, City logistics, mobility, supply chain approach Introduction The Copenhagen Urban Freight project was launched in 1995, where representatives from two competing transport companies, working for the first time in cooperation on behalf on the Danish Minster for Transport, presented their ideas towa...

  6. City Gods projektet

    OpenAIRE

    Andersen, Jakob Find

    2006-01-01

    Title: Copenhagen Urban Freight project – potentials and barriers – a case study approach Keywords: Urban freight transport, urban sustainability, Copenhagen Urban Freight Or-dinance, City logistics, mobility, supply chain approach Introduction The Copenhagen Urban Freight project was launched in 1995, where representatives from two competing transport companies, working for the first time in cooperation on behalf on the Danish Minster for Transport, presented their ideas toward a more effici...

  7. Cities, connections and cronyism

    OpenAIRE

    John Quiggin

    2006-01-01

    Recent developments in the global system of cities present a curious paradox. With the cost of communications declining almost to zero and substantial, though less dramatic reductions in transport costs, there is now little technical requirement for most kinds of production to be undertaken in any particular location, or for elements of production chains to be located close to each other. This fact has had dramatic consequences for the organisation of manufacturing industry. Simple production...

  8. Businessplan Smart Sustainable cities

    OpenAIRE

    Verdeyen, Nadia; Opstelten, Ivo; Eweg, Erlijn; Rietbergen, Marieke; Martinovic, Ina

    2014-01-01

    Uit voorwoord Anton Franken, lid CvB `Smart Sustainable Cities is een platform voor het bedrijfsleven, kennisinstellingen en Hogeschool Utrecht waar gezamenlijk vernieuwende producten en diensten worden ontwikkeld die de realisatie van slimme, duurzame en gezonde steden dichterbij brengt. Startende en ervaren professionals hebben hiermee de mogelijkheid om via het onderwijs of via bij- en nascholing de nieuwste toepasbare kennis en inzichten op dit gebied op te doen. Tevens verricht het platf...

  9. Transport for smart cities

    OpenAIRE

    Kristensen, Niels Buus; Pedersen, Allan Schrøder

    2011-01-01

    The global megatrend of the last century’s migration from rural to ever-larger conurbations has created immense gains to society through economies of scale and benefits from agglomeration. These include – other things remaining equal – a lesser need for transport because a bigger share of peoples’ activities can be reached within the relative close distances of the city. However, urbanisation has also led to significant disadvantages, of which transport accounts for some of the most severe. T...

  10. The Temporary City Workshop

    OpenAIRE

    Moore, Niamh; McCarthy, Linda

    2014-01-01

    The Temporary City Workshop was hosted by Dr Niamh Moore-Cherry on Tuesday 21 October in Nova UCD. The workshop is part of the Greening as Spatial Politics project funded by the IRC New Foundations scheme 2013 and is a collaboration between geographers at University College Dublin and the University of Wisconsin-Milwaukee. The goal of the workshop was to facilitate networking across a diversity of stakeholders and initiate discussion on temporary urban interventions in Dublin. The workshop wa...

  11. [Construction of groundwater contamination prevention mapping system].

    Science.gov (United States)

    Wang, Jun-Jie; He, Jiang-Tao; Lu, Yan; Liu, Li-Ya; Zhang, Xiao-Liang

    2012-09-01

    Groundwater contamination prevention mapping is an important component of groundwater contamination geological survey and assessment work, which could provide the basis for making and implementing groundwater contamination prevention planning. A groundwater contamination prevention mapping system was constructed in view of the synthetic consideration on nature perspective derived from groundwater contamination sources and aquifer itself, social-economic perspective, policy perspective derived from outside. During the system construction process, analytic hierarchy process and relevant overlaying principles were used to couple groundwater contamination risk assessment, groundwater value as well as wellhead protection area zoning. Data processing and visualization of mapping results were achieved in the GIS environment. The research on groundwater contamination prevention mapping in Beijing Plain indicated that the final groundwater prevention map was in accordance with the actual conditions and well reflected the priorities of groundwater prevention, which could play a guidance role in designing and implementing further practical prevention and supervision measures. Besides, because of the dynamical properties of the system components, it was suggested to analyze the update frequency of the mapping. PMID:23243867

  12. An approach to identify urban groundwater recharge

    Directory of Open Access Journals (Sweden)

    E. Vázquez-Suñé

    2010-10-01

    Full Text Available Evaluating the proportion in which waters from different origins are mixed in a given water sample is relevant for many hydrogeological problems, such as quantifying total recharge, assessing groundwater pollution risks, or managing water resources. Our work is motivated by urban hydrogeology, where waters with different chemical signature can be identified (losses from water supply and sewage networks, infiltration from surface runoff and other water bodies, lateral aquifers inflows, .... The relative contribution of different sources to total recharge can be quantified by means of solute mass balances, but application is hindered by the large number of potential origins. Hence, the need to incorporate data from a large number of conservative species, the uncertainty in sources concentrations and measurement errors. We present a methodology to compute mixing ratios and end-members composition, which consists of (i Identification of potential recharge sources, (ii Selection of tracers, (iii Characterization of the hydrochemical composition of potential recharge sources and mixed water samples, and (iv Computation of mixing ratios and reevaluation of end-members. The analysis performed in a data set from samples of the Barcelona city aquifers suggests that the main contributors to total recharge are the water supply network losses (22%, the sewage network losses (30%, rainfall, concentrated in the non-urbanized areas (17%, from runoff infiltration (20%, and the Besòs River (11%. Regarding species, halogens (chloride, fluoride and bromide, sulfate, total nitrogen, and stable isotopes (18O, 2H, and 34S behaved quite conservatively. Boron, residual alkalinity, EDTA and Zn did not. Yet, including these species in the computations did not affect significantly the proportion estimations.

  13. A high resolution global scale groundwater model

    Directory of Open Access Journals (Sweden)

    I. E. M. de Graaf

    2014-05-01

    Full Text Available Groundwater is the world's largest accessible source of fresh water. It plays a vital role in satisfying needs for drinking water, agriculture and industrial activities. During times of drought groundwater sustains baseflow to rivers and wetlands, thereby supporting ecosystems. Most global scale hydrological models (GHMs do not include a groundwater flow component, mainly due to lack of geohydrological data at the global scale. For the simulation of lateral flow and groundwater head dynamics a realistic physical representation of the groundwater system is needed, especially for GHMs that run at finer resolution. In this study we present a global scale groundwater model (run at 6' as dynamic steady state using MODFLOW to construct an equilibrium water table at its natural state as the result of long-term climatic forcing. The aquifer schematization and properties were based on available global datasets of lithology and transmissivities combined with estimated aquifer thickness of an upper unconfined aquifer. The model is forced with outputs from the land-surface model PCR-GLOBWB, specifically with net recharge and surface water levels. A sensitivity analysis, in which the model was run with various parameter settings, showed variation in saturated conductivity causes most of the groundwater level variations. Simulated groundwater heads were validated against reported piezometer observations. The validation showed that groundwater depths are reasonably well simulated for many regions of the world, especially for sediment basins (R2 = 0.95. The simulated regional scale groundwater patterns and flowpaths confirm the relevance of taking lateral groundwater flow into account in GHMs. Flowpaths show inter-basin groundwater flow that can be a significant part of a basins water budget and helps to sustain river baseflow, explicitly during times of droughts. Also important aquifer systems are recharged by inter-basin groundwater flows that positively

  14. Alpine Groundwater - Pristine Aquifers Under Threat?

    Science.gov (United States)

    Schneider, P.; Lange, A.

    2014-12-01

    Glacier and permafrost retreat are prominent climate change indicators. However, the characteristics of climate and hydrology in mountain areas remain poorly understood relative to lowland areas. Specifically, not much is known about alpine groundwater, its recharge and water quality variations, as these remote reservoirs are rarely monitored. As global temperatures rise, glaciers and permafrost will continue to retreat forming new sediment deposits and changing infiltration conditions in high alpine terrain. Climate change impacts the hydro-chemical composition of alpine waters, accelerates weathering processes, and potentially triggers mobilization of pollutants. Accordingly, we monitored groundwater quantity and quality parameters of an alpine porous aquifer near the Tiefenbach glacier in the Gotthard Massif in Switzerland. The goal of this research was to assess quality and seasonal storage dynamics of groundwater above the timberline (2000 m). To translate hydrological science into an ecosystem service context, we focused on four attributes: Water quantity: observations of groundwater level fluctuations combined with analysis of contributing water sources based on stable isotope analysis to give a quantitative understanding of origin and amount of water, Water quality: groundwater level, groundwater temperature and electrical conductivity were used as proxies for sampling of hydro-chemical parameters with automated water samplers during primary groundwater recharge periods (snowmelt and rainfall events), Location: Alpine terrain above the timberline, especially recharge into/out of an alpine porous aquifer at a pro-glacial floodplain and Date of annual melt (albedo effect) and timing of flow (snow- and icemelt from May to September) and groundwater recharge during the growing season. The study found that the summer groundwater temperatures depend on the date of annual melt and are more sensitive to climate forcing than lowland groundwater temperatures

  15. Towards what kind of city?

    Directory of Open Access Journals (Sweden)

    Mario Coletta

    2013-02-01

    Full Text Available The virtual city exists in “time” whereas the real city exists in “space”. The first one is an expression of our imagination, the second one of our ability to create. Time has articulated the images of cities as artisan philosophers, historians, artists, dreamers and even poets have given it to us. Space has generated cities which have been worked upon by geographers, geologists, surveyors, and finally urban planners. Space and time however live together in both cities, even if with alternating states of subordination. The culture of thinking, of decision making and of working is the unifying center of both the cities; it is the generating element both of the crises and the prosperity of the cities and it works towards an overcoming of the first and for the pursuit of the second (prosperity using the experience of the past for the making of a better future.

  16. CityVille For Dummies

    CERN Document Server

    Orland, Kyle

    2011-01-01

    Learn to build and play CityVille to its full potential! You don't have to move to the city?just build one! Free to play, CityVille is a real-time simulation game that is available on Facebook and is the latest online game craze. As the only how-to beginner guide for new and current players, this helpful book walks you through the process of building a city from the ground up while acting as the city leader. You'll learn how to clear land, assemble roads, construct buildings, ship and import goods, trade with others, interact with the city's residents, and visit neighboring cities. Vibrant ful

  17. Remediation of bromate contaminated groundwater

    OpenAIRE

    Butler, R. M.

    2005-01-01

    Bromate (BrO3") is a by-product formed at concentrations of 0.4 - 60 µg L'' during potable water ozonation. Following World Health Organisation designation as a `possible human' carcinogen, a 10 pg L" drinking water limit was introduced in England and Wales. Discovery of bromate contamination within a UK aquifer highlighted a knowledge gap, addressed by this project, relating to environmental behaviour and groundwater remediation. Following selection of an anion analys...

  18. An assessment of groundwater quality for agricultural use: a case study from solid waste disposal site SE of Pune, India

    Directory of Open Access Journals (Sweden)

    M. R. G. Sayyed

    2011-12-01

    Full Text Available Groundwater pollution around the improperly constructed landfill areas of the growing cities has always been in the rising trend and hence its effects on the environment warrant a thorough monitoring. The seasonal variations in the quality of groundwater from the dug wells surrounding the solid waste disposal site from the SE of Pune city (India has been assessed by calculating the sodium adsorption ratio (SAR. The results indicate that the groundwater from the wells nearing the waste disposal site show consistent increase in the pollution from monsoon to summer through winter. The study further demonstrates that the wells near the site are severely polluted and the source is mainly the leachates emerging out of the decaying solid wastes. The recurrent addition of the solid waste in the dump site in the coming years would result in further exponential deterioration of the groundwater quality of the dug wells from the area and hence adequate steps are urgently needed to prevent further aggravation of the problem. Based upon the SAR values it is evident that most of the wells from the Hadapsar area have excellent groundwater for irrigation throughout the year; from Manjari area it is excellent to good; the Fursungi area has sub-equal proportions of excellent, good and fair groundwater, while in Mantarwadi, although most of the wells have excellent to good water, few wells have fair to poor quality water for irrigation purpose. In Uruli-Devachi about 50% wells have poor quality of water and hence can not be used for irrigation. Hence this study strongly suggests that most of the abstracted groundwater samples from the study area were suitable for irrigation except from Uruli Devachi area.

  19. Prevalence of dental fluorosis among school children residing in Kanpur City, Uttar Pradesh, India

    Directory of Open Access Journals (Sweden)

    Ashish Bhalla

    2015-01-01

    Full Text Available Objective: The objective was to find the prevalence of dental fluorosis among school children residing in Kanpur city, Uttar Pradesh India. Materials and Methods: A total of 1343 school children, residing in the city since childhood and consuming the groundwater, in the age group of 7-17 years was selected from various schools. Schools were selected from all four directions of the city. Children were categorized in five age groups and were examined for dental fluorosis. Dean′s criteria for assessment of dental fluorosis were used, and observations were recorded on a study specific performa. Results: Among the 1343 children examined, 243 (18% were found to be having dental fluorosis, among which number of males (131 was more than females (112. Among the different grades of fluorosis observed, mild dental fluorosis was observed in most of the cases (158. It was observed that the southern part of the city had a maximum number of cases of dental fluorosis. Conclusion: It was evident from the results that the city had a good number of cases of dental fluorosis and that the groundwater in certain areas had more than normal quantity of fluoride. Since this study was the first attempt in this area, more studies can be undertaken to substantiate our findings.

  20. Groundwater management in northern Iraq

    Science.gov (United States)

    Stevanovic, Zoran; Iurkiewicz, Adrian

    2009-03-01

    Groundwater is vital and the sole resource in most of the studied region of northern Iraq. It has a significant role in agriculture, water supply and health, and the elimination of poverty in rural areas. Although Iraq is currently dramatically disturbed by complex political and socio-economic problems, in its northern part, i.e. the Kurdish-inhabited region, fast urbanization and economic expansion are visible everywhere. Monitoring and water management schemes are necessary to prevent aquifer over-exploitation in the region. Artificial recharge with temporary runoff water, construction of subsurface dams and several other aquifer management and regulation measures have been designed, and some implemented, in order to improve the water situation. Recommendations, presented to the local professionals and decision-makers in water management, include creation of Water Master Plans and Water User Associations, synchronization of drilling programmes, rehabilitation of the existing well fields, opening of new well fields, and the incorporation of new spring intakes in some areas with large groundwater reserves, as well as construction of numerous small-scale schemes for initial in situ water treatment where saline groundwater is present.