Design and Fabrication of a 1 THz Backward Wave Amplifier
DEFF Research Database (Denmark)
Paoloni, Claudio; Di Carlo, Aldo; Brunetti, Francesca;
2011-01-01
of the parts with dimensions supporting THz frequencies. A backward wave amplifier configuration is chosen to make the parts realizable. A carbon nanotube cold cathode has been considered for electron generation. A thermionic micro electron gun is designed to test the tube. A novel slow-wave structure (SWS...... require a level of power not achievable by optoelectronic devices at room temperature or by solid-state technology. The recent availability of three-dimensional simulators and high aspect ratio micro-fabrication techniques has stimulated a class of vacuum electron devices operating in the THz regime...
Development of a 2 MW relativistic backward wave oscillator
Indian Academy of Sciences (India)
Yaduvendra Choyal; Lalit Gupta; Prasad Deshpande; Krishna Prasad Maheshwari; Kailash Chander Mittal; Suresh Chand Bapna
2008-12-01
In this paper, a high power relativistic backward wave oscillator (BWO) experiment is reported. A 230 keV, 2 kA, 150 ns relativistic electron beam is generated using a Marx generator. The beam is then injected into a hollow rippled wall metallic cylindrical tube that forms a slow wave structure. The beam is guided using an axial pulsed magnetic field having a peak value 1 T and duration 1 ms. The field is generated by the discharge of a capacitor bank into a solenoidal coil. A synchronization circuit ensures the generation of the electron beam at the instant when the axial magnetic field attains its peak value. The beam interacts with the SWS modes and generates microwaves due to Cherenkov interaction. Estimated power of 2 MW in TM 01 mode is observed.
Kory, Carol L.
1998-01-01
The traveling-wave tube (TWT) is a vacuum device invented in the early 1940's used for amplification at microwave frequencies. Amplification is attained by surrendering kinetic energy from an electron beam to a radio frequency (RF) electromagnetic wave. The demand for vacuum devices has been decreased largely by the advent of solid-state devices. However, although solid state devices have replaced vacuum devices in many areas, there are still many applications such as radar, electronic countermeasures and satellite communications, that require operating characteristics such as high power (Watts to Megawatts), high frequency (below 1 GHz to over 100 GHz) and large bandwidth that only vacuum devices can provide. Vacuum devices are also deemed irreplaceable in the music industry where musicians treasure their tube-based amplifiers claiming that the solid-state and digital counterparts could never provide the same "warmth" (3). The term traveling-wave tube includes both fast-wave and slow-wave devices. This article will concentrate on slow-wave devices as the vast majority of TWTs in operation fall into this category.
Wave dissipation in flexible tubes in the time domain: in vitro model of arterial waves.
Feng, J; Long, Q; Khir, A W
2007-01-01
Earlier work of wave dissipation in flexible tubes and arteries has been carried out predominantly in the frequency domain and most of the studies used the measured pressure waveform for presenting the results. In this work we investigate the pattern of wave dissipation in the time domain using the separated forward and backward travelling waves in flexible tubes. We tested four sizes of latex tubes of 2m in length each, where a single semi-sinusoidal in shape, pressure wave, was produced at the inlet of each tube. Simultaneous measurements of pressure and flow waveforms were recorded every 5cm along the tubes and wave speed was determined using the pressure-velocity loop method (PU-loop). The measured data and wave speed were used to separate the pressure waveform and wave intensity, into their forward and backward directions, using wave intensity analysis (WIA). Also, the energy carried by the wave was calculated by integrating the relevant area under the wave intensity curve. The peak of the measured pressure waveform increased downstream, however, the peak of the separated forward pressure waveform decreased exponentially along the tube. Wave intensity and energy also dissipated exponentially along the travelling distance. The peaks of the separated pressure and wave intensity decreased in the forward in a similar exponential way to that in the backward direction in all four tube sizes. Also, the smaller the size of the tube the greater wave dissipation it caused. We conclude that wave separation is useful in studying wave dissipation in elastic tubes, and WIA provides a convenient method for determining the dissipation of the energy carried by the wave along the travelled distance. The separated pressure waveform, wave intensity and wave energy dissipate exponentially with the travelling distance, and wave dissipation varies conversely with the diameter of elastic tubes.
Detecting electromagnetic cloaks using backward-propagating waves
Salem, Mohamed
2011-08-01
A novel approach for detecting transformation-optics invisibility cloaks is proposed. The detection method takes advantage of the unusual backward-propagation characteristics of recently reported beams and pulses to induce electromagnetic scattering from the cloak. Even though waves with backward-propagating energy flux cannot penetrate the cloaking shell and interact with the cloaked objects (i.e., they do not make the cloaked object visible), they provide a mechanism for detecting the presence of cloaks. © 2011 IEEE.
Tree-wave mixing of ordinary and backward electromagnetic waves: extraordinary transients
Slabko, Vitaly V; Tkachenko, Viktor A; Myslivets, Sergey A
2016-01-01
Three-wave mixing of ordinary and backward electromagnetic waves in pulsed regime is investigated in the metamaterials, which enable co-existence and phase matching of such waves. It is shown that opposite direction of phase velocity and energy flux in backward waves gives rise to extraordinary transient processes in greatly enhanced optical parametric amplification and in frequency up or down shifting nonlinear reflectivity. The discovered transients resemble slowed response of an oscillator on pulsed excitation in the vicinity of its resonance
Korneev, Valeri A [LaFayette, CA
2009-05-05
The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.
X band bifrequency coaxial relativistic backward wave oscillator
Directory of Open Access Journals (Sweden)
Dong Wang
2011-12-01
Full Text Available An idea of azimuthally dividing the slow wave structure (SWS of a relativistic backward wave oscillator (RBWO into two parts is introduced to realize a bifrequency oscillation. To enhance the stability of this device, two sectorial waveguides are inserted into the SWS specially. The synchronization condition that is necessary to get a sustainable microwave output is derived. In Particle in cell simulation, bifrequency microwave at frequencies of 9.7 GHz and 9.87 GHz is generated with average power of 0.66 GW, conversion efficiency is 15.8% when beam voltage is 520 kV and current 8 kA.
AN INNER-FEEDBACK-STYLE TRAVELING-WAVE TUBE OSCILLATOR
Institute of Scientific and Technical Information of China (English)
Wang Zicheng; Li Haiqiang; Xu Anyu; Liu Qinglun; Liu Wei
2012-01-01
A new concept of inner-feedback-style traveling wave tube oscillator,which is based on a traveling-wave tube having a partial reflector located at near the junction between the slow-wave structure and the output coupler and a mechanical tuner connected to the input coupler,is proposed.Simulations by CHIPIC code show that the inner-feedback-style traveling wave tube oscillator having 100W of power,about 10％ of electron efficiency and a tunable band of 73.35-73.91 GHz may be achieved.Compared with Backward Wave Oscillators (BWOs),the new devices have similar ability for tuning,and have much higher electron efficiency,suggesting much more potential as a Terahertz source.
Research of sine waveguide slow-wave structure for a 220-GHz backward wave oscillator
Institute of Scientific and Technical Information of China (English)
Xu Xiong; Wei Yan-Yu; Shen Fei; Huang Min-Zhi; Tang Tao; Duan Zhao-Yun; Gong Yu-Bin
2012-01-01
A watt-class backward wave oscillator is proposed,using the concise sine waveguide slow-wave structure combined with a pencil electron beam to operate at 220 GHz.Firstly,the dispersion curve of the sine waveguide is calculated,then,the oscillation frequency and operating voltage of the device are predicted and the circuit transmission loss is calculated.Finally,the particle-in-cell simulation method is used to forecast its radiation performance.The results show that this novel backward wave oscillator can produce over 1-W continuous wave power output in a frequency range from 210 GHz to 230 GHz.Therefore,it will be considered as a very promising high-power millimeter-wave to terahertz-wave radiation source.
Rousseau, Art; Tammaru, Ivo; Vaszari, John
1988-01-01
New space traveling-wave tube (TWT) provides coherent source of 75 watts of continuous-wave power output over bandwidth of 5 GHz at frequency of 65 GHz. Coupled-cavity TWT provides 50 dB of saturated gain. Includes thermionic emitter, M-type dispenser cathode providing high-power electron beam. Beam focused by permanent magnets through center of radio-frequency cavity structure. Designed for reliable operation for 10 years, and overall efficiency of 35 percent minimizes prime power input and dissipation of heat.
Measurements of wave speed and reflected waves in elastic tubes and bifurcations.
Khir, A W; Parker, K H
2002-06-01
Wave intensity analysis is a time domain method for studying waves in elastic tubes. Testing the ability of the method to extract information from complex pressure and velocity waveforms such as those generated by a wave passing through a mismatched elastic bifurcation is the primary aim of this research. The analysis provides a means for separating forward and backward waves, but the separation requires knowledge of the wave speed. The PU-loop method is a technique for determining the wave speed from measurements of pressure and velocity, and investigating the relative accuracy of this method is another aim of this research. We generated a single semi-sinusoidal wave in long elastic tubes and measured pressure and velocity at the inlet, and pressure at the exit of the tubes. In our experiments, the results of the PU-loop and the traditional foot-to-foot methods for determining the wave speed are comparable and the difference is on the order of 2.9+/-0.8%. A single semi-sinusoidal wave running through a mismatched elastic bifurcation generated complicated pressure and velocity waveforms. By using wave intensity analysis we have decomposed the complex waveforms into simple information of the times and magnitudes of waves passing by the observation site. We conclude that wave intensity analysis and the PU-loop method combined, provide a convenient, time-based technique for analysing waves in elastic tubes.
Negative refraction and backward wave in pseudochiral mediums: illustrations of Gaussian beams.
Chern, Ruey-Lin; Chang, Po-Han
2013-02-11
We investigate the phenomena of negative refraction and backward wave in pseudochiral mediums, with illustrations of Gaussian beams. Due to symmetry breaking intrinsic in pseudochiral mediums, there exist two elliptically polarized eigenwaves with different wave vectors. As the chirality parameter increases from zero, the two waves begin to split from each other. For a wave incident from vacuum onto a pseudochiral medium, negative refraction may occur for the right-handed wave, whereas backward wave may appear for the left-handed wave. These features are illustrated with Gaussian beams based on Fourier integral formulations for the incident, reflected, and transmitted waves. Negative refraction and backward wave are manifest, respectively, on the energy flow in space and wavefront movement in time.
Characteristics of group velocities of backward waves in a hollow cylinder.
Cui, Hanyin; Lin, Weijun; Zhang, Hailan; Wang, Xiuming; Trevelyan, Jon
2014-06-01
It is known that modes in axially uniform waveguides exhibit backward-propagation characteristics for which group and phase velocities have opposite signs. For elastic plates, group velocities of backward Lamb waves depend only on Poisson's ratio. This paper explores ways to achieve a large group velocity of a backward mode in hollow cylinders by changing the outer to inner radius ratio, in order that such a mode with strong backward-propagation characteristics may be used in acoustic logging tools. Dispersion spectra of guided waves in hollow cylinders of varying radii are numerically simulated to explore the existence of backward modes and to choose the clearly visible backward modes with high group velocities. Analyses of group velocity characteristics show that only a small number of low order backward modes are suitable for practical use, and the radius ratio to reach the highest group velocity corresponds to the accidental degeneracy of neighboring pure transverse and compressional modes at the wavenumber k = 0. It is also shown that large group velocities of backward waves are achievable in hollow cylinders made of commonly encountered materials, which may bring cost benefits when using acoustic devices which take advantage of backward-propagation effects.
Beam interactions with surface waves and higher-order modes in oversized backward wave oscillators
Energy Technology Data Exchange (ETDEWEB)
Ogura, Kazuo; Kojima, Akihiko; Kawabe, Fumiaki; Yambe, Kiyoyuki [Niigata University, Niigata (Japan); Amin, Ruhul [Islamic University of Technology, Gazipur (Bangladesh)
2014-10-15
Beam interactions with surface waves and higher-order modes in an oversized backward wave oscillator (BWO) are studied. In addition to the well-known Cherenkov interaction, the slow cyclotron interaction occurs due to transverse perturbations of the electron beam. The Cherenkov interaction dominates the slow cyclotron interaction. Growth rates of both the interactions for the higher order modes are small compared with those for the surface-wave modes in an oversized BWO. The coaxial slow-wave structure exhibits a reduced number of higher-order modes, which consequently reduces the mode competition problem and improves beam interactions with higher order modes. For higher values of beam currents, the slow cyclotron wave grows at a faster rate than the Cherenkov waves.
Design of an electronically tunable millimeter wave Gyrotron Backward Wave Oscillator
Energy Technology Data Exchange (ETDEWEB)
Caplan, M.
1987-01-01
A non-linear self-consistent computer simulation code is used to analyze the saturated output of the Gyrotron Backward Wave Oscillator (Gyro BWO) which can be used as a tunable driver for a 250 GHz FEL amplifier. Simulations show that the Gyrotron BWO using a Pierce/Wiggler gun configuration can produce at least 10 kW of microwave power over the range 249 GHz to 265 GHz by varying beam voltage alone.
Determination of wave intensity in flexible tubes using measured diameter and velocity.
Feng, J; Khir, A W
2007-01-01
Wave intensity (WI) is a hemodynamics index, which is the product of changes in pressure and velocity across the wave-front. Wave Intensity Analysis, which is a time domain technique allows for the separation of running waves into their forward and backward directions and traditionally uses the measured pressure and velocity waveforms. However, due to the possible difficulty in obtaining reliable pressure waveforms non-invasively, investigating the use of wall displacement instead of pressure signals in calculating WI may have clinical merits. In this paper, we developed an algorithm in which we use the measured diameter of flexible tube's wall and flow velocity to separate the velocity waveform into its forward and backward directions. The new algorithm is also used to separate wave intensity into its forward and backward directions. In vitro experiments were carried out in two sized flexible tubes, 12mm and 16mm in diameters, each is of 2 m in length. Pressure, velocity and diameter were taken at three measuring sites. A semi-sinusoidal wave was generated using a piston pump, which ejected 40cc water into each tube. The results show that separated wave intensity into the forward and backward directions of the new algorithm using the measured diameter and velocity are almost identical in shape to those traditionally using the measured pressure and velocity. We conclude that the new algorithm presented in this work, could have clinical advantages since the required information can be obtained non-invasively.
Fresnel Coefficients of Forward and Backward Waves Refracting at the Interface of Isotropic Media
Fisanov, V. V.
2017-01-01
The Fresnel coefficients are derived for cross- and co-polarization states of plane electromagnetic wave incident at the interface between two isotropic media. The media can support forward or backward normal waves. Based on introduction of wave type identifiers, without application of the notion of the negative refractive index, phenomena of positive and negative refractions are considered in the general case.
Current-induced modulation of backward spin-waves in metallic microstructures
Sato, Nana; Lee, Seo-Won; Lee, Kyung-Jin; Sekiguchi, Koji
2017-03-01
We performed a propagating spin-wave spectroscopy for backward spin-waves in ferromagnetic metallic microstructures in the presence of electric-current. Even with the smaller current injection of 5× {{10}10} A m‑2 into ferromagnetic microwires, the backward spin-waves exhibit a gigantic 200 MHz frequency shift and a 15% amplitude change, showing 60 times larger modulation compared to previous reports. Systematic experiments by measuring dependences on a film thickness of mirowire, on the wave-vector of spin-wave, and on the magnitude of bias field, we revealed that for the backward spin-waves a distribution of internal magnetic field generated by electric-current efficiently modulates the frequency and amplitude of spin-waves. The gigantic frequency and amplitude changes were reproduced by a micromagnetics simulation, predicting that the current-injection of 5× {{10}11} A m‑2 allows 3 GHz frequency shift. The effective coupling between electric-current and backward spin-waves has a potential to build up a logic control method which encodes signals into the phase and amplitude of spin-waves. The metallic magnonics cooperating with electronics could suggest highly integrated magnonic circuits both in Boolean and non-Boolean principles.
DISPERSION RELATION OF A MAGNETIZED PLASMA-FILLED BACKWARD WAVE OSCILLATOR
Institute of Scientific and Technical Information of China (English)
GAO HONG; LIU SHENG-GANG
2000-01-01
A linear theory and a more general dispersion relation of electromagnetic radiation from a magnetized plasma-filled backward wave oscillator with sinusoidally corrugated slow-wave structure driven by a solid intense relativistic electron beam have been given. The comparisons show good agreement with the previous works when B0 → ∞ and ωb = 0 from this dispersion relation.
Wave propagation in spatially modulated tubes
Ziepke, A; Engel, H
2016-01-01
We investigate wave propagation in rotationally symmetric tubes with a periodic spatial modulation of cross section. Using an asymptotic perturbation analysis, the governing quasi two-dimensional reaction-diffusion equation can be reduced into a one-dimensional reaction-diffusion-advection equation. Assuming a weak perturbation by the advection term and using projection method, in a second step, an equation of motion for traveling waves within such tubes can be derived. Both methods predict properly the nonlinear dependence of the propagation velocity on the ratio of the modulation period of the geometry to the intrinsic width of the front, or pulse. As a main feature, we can observe finite intervals of propagation failure of waves induced by the tube's modulation. In addition, using the Fick-Jacobs approach for the highly diffusive limit we show that wave velocities within tubes are governed by an effective diffusion coefficient. Furthermore, we discuss the effects of a single bottleneck on the period of pul...
Coupled-cavity traveling-wave tubes
Connolly, D. J.; Omalley, T. A.
1980-01-01
Computer program is developed for analysis of coupled cavity traveling waves tubes (TWT's) which are used in variety of radar and communications applications. Programmers can simulate tubes of arbitrary complexity such as input and output couplers and other features peculiar to one or few cavities which may be modeled by correct choices of input data.
Phase matched backward-wave second harmonic generation in a hyperbolic carbon nanoforest
Popov, A K; Myslivets, S A
2016-01-01
We show that deliberately engineered spatially dispersive metamaterial slab can enable co-existence and phase matching of contra-propagating ordinary fundamental and backward second harmonic electromagnetic modes. Energy flux and phase velocity are contra-directed in backward waves which determines extraordinary nonlinear-optical propagation processes. Frequencies, phase and group velocities, as well as nanowavequide losses inherent to the electromagnetic modes supported by the metamaterial can be tailored to optimize nonlinear-optical conversion of frequencies and propagation directions of the coupled waves. Such a possibility, which is of paramount importance for nonlinear photonics, is proved with numerical model of the hyperbolic metamaterial made of carbon nanotubes standing on metal surface. Extraordinary properties of backward-wave second harmonic in the THz and IR propagating in the reflection direction are investigated with focus on pulsed regime.
Development of the relativistic backward wave oscillator with a permanent magnet
Institute of Scientific and Technical Information of China (English)
MA Qiao-Sheng; LIU Zhong; LI Zheng-Hong; JIN Xiao
2012-01-01
Firstly,an X-band relativistic backward wave oscillator with a low guiding magnetic field is simulated,whose output microwave power is 520 MW.Then,an experiment is carried out on an accelerator to investigate a relativistic backward wave oscillator with a permanent magnetic field whose strength is 0.46 T.When the energy of the electron is 630 keV and the current of the electron beam is 6.7 kA,a 15 ns width pulsed microwave with 510 MW output power at 8.0 GHz microwave frequency is achieved.
Mynard, Jonathan P; Smolich, Joseph J
2016-04-15
Wave intensity analysis provides detailed insights into factors influencing hemodynamics. However, wave intensity is not a conserved quantity, so it is sensitive to diameter variations and is not distributed among branches of a junction. Moreover, the fundamental relation between waves and hydraulic power is unclear. We, therefore, propose an alternative to wave intensity called "wave power," calculated via incremental changes in pressure and flow (dPdQ) and a novel time-domain separation of hydraulic pressure power and kinetic power into forward and backward wave-related components (ΠP±and ΠQ±). Wave power has several useful properties:1) it is obtained directly from flow measurements, without requiring further calculation of velocity;2) it is a quasi-conserved quantity that may be used to study the relative distribution of waves at junctions; and3) it has the units of power (Watts). We also uncover a simple relationship between wave power and changes in ΠP±and show that wave reflection reduces transmitted power. Absolute values of ΠP±represent wave potential, a recently introduced concept that unifies steady and pulsatile aspects of hemodynamics. We show that wave potential represents the hydraulic energy potential stored in a compliant pressurized vessel, with spatial gradients producing waves that transfer this energy. These techniques and principles are verified numerically and also experimentally with pressure/flow measurements in all branches of a central bifurcation in sheep, under a wide range of hemodynamic conditions. The proposed "wave power analysis," encompassing wave power, wave potential, and wave separation of hydraulic power provides a potent time-domain approach for analyzing hemodynamics.
Linear analysis of a backward wave oscillator with triangular corrugated slow wave structure
Saber, Md. Ghulam; Sagor, Rakibul Hasan; Amin, Md. Ruhul
2016-05-01
In this work, a backward wave oscillator (BWO) with triangularly corrugated periodic metallic slow wave structure (TrCSWS) driven by an infinitely thin annular electron beam is studied using linear theory. The electron beam is assumed to be guided by a strong magnetic field. The triangular axial profile of the SWS is approximated by a Fourier series in order to apply the linear Rayleigh-Fourier (R-F) theory that has long been used in the theoretical analysis of BWOs with sinusoidally corrugated SWS (SCSWS). The dispersion equation for various beam parameters has been solved and the temporal growth rate (TGR) of the electromagnetic wave for the fundamental TM_{01} mode is calculated numerically. The TGR values for different beam parameters have been compared with those of the BWO with SCSWS, semi-circularly corrugated SWS (SCCSWS) and trapezoidally corrugated SWS (TCSWS). In order to compare the TGR values, the amplitude of corrugation of the TrCSWS is varied so that its dispersion curve of TM_{01} mode almost coincides with that of the SCSWS and TCSWS. The study reveals that the performance (in terms of TGR) of the proposed BWO with TrCSWS is comparable to that of other BWOs with SCSWS and TCSWS for the same set of beam parameters and it provides significantly better performance than SCCSWS. So, the proposed TrCSWS that can easily be constructed may replace SCSWS, SCCSWS or TCSWS as their viable alternative.
Alippi, A.; Bettucci, A.; Biagioni, A.; D'Orazio, A.; Germano, M.; Passeri, D.
2010-01-01
Evanescent waves are characterized by the exponential decay of the amplitude along the propagation direction, such that no phase velocity could be properly defined and the concept of propagation itself has to be properly redefined. However, evanescent waves can carry energy beyond a tunneling region where they are produced, and their effect in the forbidden region may be properly inferred by the outgoing wave. In the present paper, evidence of evanescent Lamb waves on a plate is given, as they are produced within a forbidden region where thickness is properly reduced and the acoustic modes are above threshold of propagation. However, the coupling of modes at each line boundary between different regions makes it difficult to single out the tunneling mode alone, since all modes share the same frequency. Therefore, we resort to the propagation of the backward S1 mode, that can be properly isolated from all the others. That makes the problem of refraction/reflection of backward propagating modes at a boundary, a problem by itself to be investigated and makes it worth to perform experiments on it. This is done in the present paper, as well, by detecting the acoustic field of a backward propagating Lamb mode reflected from the end boundary of a steel plate and the focusing effect from such a boundary is put in evidence in the case that a forward propagating mode is reflected as a backward propagating one.
Error field penetration and locking to the backward propagating wave
Finn, John M; Brennan, Dylan P
2015-01-01
Resonant field amplification or error field penetration involves driving a weakly stable tearing perturbation in a rotating toroidal plasma. In this paper it is shown that the locking characteristics for modes with finite real frequencies $\\omega_{r}$ are quite different from the conventional results. A calculation of the tearing mode amplitude assuming modes with frequencies $\\pm\\omega_{r}$ in the plasma frame shows that it is maximized when the frequency of the stable backward propagating mode ($-\\omega_{r}$) in the lab frame is zero, i.e. when $v=\\omega_{r}/k$. Even more importantly, the locking torque is exactly zero at the mode phase velocity, with a pronounced peak at just higher rotation, leading to a locked state with plasma velocity $v$ just above the mode phase velocity in the lab frame. Real frequencies $\\pm\\omega_{r}$, leading to a $v\\rightarrow-v$ symmetry, are known to occur due to the Glasser effect [A.H. Glasser, J.M. Greene, and J.M. Johnson, Phys. Fluids {\\bf 19}, 567 (1976).] for modes in t...
Wave heating in magnetic flux tubes
Kalkofen, Wolfgang
1990-01-01
The bright chromosphere in the quiet sun is confined to magnetic elements (flux tubes), which are located in the interior of the supergranulation cells and within the network that surrounds the cells. The paper discusses the heating of the gas in the magnetic elements of the cell interior. These intranetwork flux tubes are closely associated with bright points, which are heated by large-amplitude compressive waves with periods near the acoustic cutoff that travel outward from the photosphere and dissipate their energy in the chromosphere. The energy flux of these long-period waves appears to be sufficient for the heating of the low and middle chromosphere in the bright points.
A nonlinear acoustic metamaterial: Realization of a backwards-traveling second-harmonic sound wave.
Quan, Li; Qian, Feng; Liu, Xiaozhou; Gong, Xiufen
2016-06-01
An ordinary waveguide with periodic vibration plates and side holes can realize an acoustic metamaterial that simultaneously possesses a negative bulk modulus and a negative mass density. The study is further extended to a nonlinear case and it is predicted that a backwards-traveling second-harmonic sound wave can be obtained through the nonlinear propagation of a sound wave in such a metamaterial.
Traveling wave tube and method of manufacture
Vancil, Bernard K. (Inventor)
2004-01-01
A traveling wave tube includes a glass or other insulating envelope having a plurality of substantially parallel glass rods supported therewithin which in turn support an electron gun, a collector and an intermediate slow wave structure. The slow wave structure itself provides electrostatic focussing of a central electron beam thereby eliminating the need for focussing magnetics and materially decreasing the cost of construction as well as enabling miniaturization. The slow wave structure advantageously includes cavities along the electron beam through which the r.f. energy is propagated, or a double, interleaved ring loop structure supported by dielectric fins within a ground plane cylinder disposed coaxially within the glass envelope.
Unusual energy properties of leaky backward Lamb waves in a submerged plate.
Nedospasov, I A; Mozhaev, V G; Kuznetsova, I E
2017-05-01
It is found that leaky backward Lamb waves, i.e. waves with negative energy-flux velocity, propagating in a plate submerged in a liquid possess extraordinary energy properties distinguishing them from any other type of waves in isotropic media. Namely, the total time-averaged energy flux along the waveguide axis is equal to zero for these waves due to opposite directions of the longitudinal energy fluxes in the adjacent media. This property gives rise to the fundamental question of how to define and calculate correctly the energy velocity in such an unusual case. The procedure of calculation based on incomplete integration of the energy flux density over the plate thickness alone is applied. The derivative of the angular frequency with respect to the wave vector, usually referred to as the group velocity, happens to be close to the energy velocity defined by this mean in that part of the frequency range where the backward mode exists in the free plate. The existence region of the backward mode is formally increased for the submerged plate in comparison to the free plate as a result of the liquid-induced hybridization of propagating and nonpropagating (evanescent) Lamb modes. It is shown that the Rayleigh's principle (i.e. equipartition of total time-averaged kinetic and potential energies for time-harmonic acoustic fields) is violated due to the leakage of Lamb waves, in spite of considering nondissipative media.
Backward-wave propagation and discrete solitons in a left-handed electrical lattice
Energy Technology Data Exchange (ETDEWEB)
English, L.Q.; Wheeler, S.G. [Department of Physics and Astronomy, Dickinson College, Carlisle, PA 17013 (United States); Shen, Y. [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515 (United States); Veldes, G.P. [Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 15784 (Greece); Whitaker, N. [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515 (United States); Kevrekidis, P.G., E-mail: kevrekid@math.umass.ed [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515 (United States); Frantzeskakis, D.J. [Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 15784 (Greece)
2011-02-28
We study experimentally, analytically and numerically the backward-wave propagation, and formation of discrete bright and dark solitons in a nonlinear electrical lattice. We observe experimentally that a focusing (defocusing) effect occurs above (below) a certain carrier frequency threshold, and backward-propagating bright (dark) discrete solitons are formed. We develop a discrete model emulating the relevant circuit and benchmark its linear properties against the experimental dispersion relation. Using a perturbation method, we derive a nonlinear Schroedinger equation, that predicts accurately the carrier frequency threshold. Finally, we use numerical simulations to corroborate our findings and monitor the space-time evolution of the discrete solitons.
Phase locked backward wave oscillator pulsed beam spectrometer in the submillimeter wave range
Lewen, F.; Gendriesch, R.; Pak, I.; Paveliev, D. G.; Hepp, M.; Schieder, R.; Winnewisser, G.
1998-01-01
We have developed a new submillimeter wave pulsed molecular beam spectrometer with phase stabilized backward wave oscillators (BWOs). In the frequency ranges of 260-380 and 440-630 GHz, the BWOs output power varies between 3 and 60 mW. Part of the radiation was coupled to a novel designed harmonic mixer for submillimeter wavelength operation, which consists of an advanced whiskerless Schottky diode driven by a harmonic of the reference synthesizer and the BWO radiation. The resulting intermediate frequency of 350 MHz passed a low noise high electron mobility transistor amplifier, feeding the phase lock loop (PLL) circuit. The loop parameters of the PLL have been carefully adjusted for low phase noise. The half power bandwidth of the BWO radiation at 330 GHz was determined to be as small as 80 MHz, impressively demonstrating the low phase noise operation of a phase locked BWO. A double modulation technique was employed by combining an 80 Hz pulsed jet modulation and a 10-20 kHz source modulation of the BWO and reaching a minimum detectable fractional absorption of 2×10-7. For the first time, a number of pure rotational (Ka=3←2, Ka=4←3) and rovibrational transitions in the van der Waals bending and stretching bands of the Ar-CO complex were recorded.
Wave propagation in spatially modulated tubes
Ziepke, A.; Martens, S.; Engel, H.
2016-09-01
We investigate wave propagation in rotationally symmetric tubes with a periodic spatial modulation of cross section. Using an asymptotic perturbation analysis, the governing quasi-two-dimensional reaction-diffusion equation can be reduced into a one-dimensional reaction-diffusion-advection equation. Assuming a weak perturbation by the advection term and using projection method, in a second step, an equation of motion for traveling waves within such tubes can be derived. Both methods predict properly the nonlinear dependence of the propagation velocity on the ratio of the modulation period of the geometry to the intrinsic width of the front, or pulse. As a main feature, we observe finite intervals of propagation failure of waves induced by the tube's modulation and derive an analytically tractable condition for their occurrence. For the highly diffusive limit, using the Fick-Jacobs approach, we show that wave velocities within modulated tubes are governed by an effective diffusion coefficient. Furthermore, we discuss the effects of a single bottleneck on the period of pulse trains. We observe period changes by integer fractions dependent on the bottleneck width and the period of the entering pulse train.
Wave propagation in spatially modulated tubes.
Ziepke, A; Martens, S; Engel, H
2016-09-07
We investigate wave propagation in rotationally symmetric tubes with a periodic spatial modulation of cross section. Using an asymptotic perturbation analysis, the governing quasi-two-dimensional reaction-diffusion equation can be reduced into a one-dimensional reaction-diffusion-advection equation. Assuming a weak perturbation by the advection term and using projection method, in a second step, an equation of motion for traveling waves within such tubes can be derived. Both methods predict properly the nonlinear dependence of the propagation velocity on the ratio of the modulation period of the geometry to the intrinsic width of the front, or pulse. As a main feature, we observe finite intervals of propagation failure of waves induced by the tube's modulation and derive an analytically tractable condition for their occurrence. For the highly diffusive limit, using the Fick-Jacobs approach, we show that wave velocities within modulated tubes are governed by an effective diffusion coefficient. Furthermore, we discuss the effects of a single bottleneck on the period of pulse trains. We observe period changes by integer fractions dependent on the bottleneck width and the period of the entering pulse train.
Wave speed and reflections proximal to aneurism and stenosis of flexible tubes.
Hacham, Wisam S; Abdulla, Najdat N; Salam Al-Ammri, A; Khir, Ashraf W
2015-08-01
Arterial aneurism and stenosis are disorders that lead to circulation malfunction. Stenosis often leads to hypoxia of the organ depending on the affected artery, whilst aneurism can lead to dissection with known lethal consequences. On both cases, the pulse wave produced by the contracting heart is reflected at these discontinuities, and estimating the size of these reflected waves using wave intensity analysis (WIA) is the main aim of this work. We also aim to measure wave speed, or pulse wave velocity (PWV) as more commonly known within the discontinuities. We manufactured 4 stenosis and 4 aneurism silicon sections, connected one at a time to a mother tube, and tested in vitro. Pressure and flow were measured proximal to the discontinuity and were used to calculate WIA. PWV was calculated using the foot to foot technique and also the classical Moens-Korteweg and Bramwell-Hill equations. Wave speed in an aneurism decreases, whereas it increases in a stenosis, all compared to the values determined in a standard mother tube. Presence of aneurisms resulted in a backward expansion whilst the presence of stenosis resulted in a backward compression wave, which related linearly to the size of the discontinuity. Larger aneurisms and smaller stenosis cause an increase in wave reflection.
Energy Technology Data Exchange (ETDEWEB)
He, W.; Zhang, L.; Bowes, D.; Yin, H.; Ronald, K.; Phelps, A. D. R.; Cross, A. W. [Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG Scotland (United Kingdom)
2015-09-28
This paper presents for the generation of a small size high current density pseudospark (PS) electron beam for a high frequency (0.2 THz) Backward Wave Oscillator (BWO) through a Doppler up-shift of the plasma frequency. An electron beam ∼1 mm diameter carrying a current of up to 10 A and current density of 10{sup 8} A m{sup −2}, with a sweeping voltage of 42 to 25 kV and pulse duration of 25 ns, was generated from the PS discharge. This beam propagated through the rippled-wall slow wave structure of a BWO beam-wave interaction region in a plasma environment without the need for a guiding magnetic field. Plasma wave assisted beam-wave interaction resulted in broadband output over a frequency range of 186–202 GHz with a maximum power of 20 W.
Space-Qualified Traveling-Wave Tube
Wilson, Jeffrey D.; Krawczyk, Richard; Simons, Rainee N.; Williams, Wallace D.; Robbins, Neal R.; Dibb, Daniel R.; Menninger, William L.; Zhai, Xiaoling; Benton, Robert T.
2010-01-01
The L-3 Communications Electron Technologies, Inc. Model 999HA traveling-wave tube (TWT), was developed for use as a high-power microwave amplifier for high-rate transmission of data and video signals from deep space to Earth (see figure). The 999HA is a successor to the 999H a non-space qualified TWT described in High-Power, High-Efficiency Ka-Band Traveling-Wave Tube (LEW-17900-1), NASA Tech Briefs, Vol. 31, No. 2 (February 2007), page 32. Operating in the 31.8-to-32.3 GHz frequency band, the 999HA has been shown to generate 252 W of continuous- wave output power at 62 percent overall power efficiency a 75-percent increase in output power over the 999H. The mass of the 999HA is 35 percent less than that of the 999H. Moreover, taking account of the elimination of a Faraday cage that is necessary for operation of the 999H but is obviated by a redesign of high-voltage feed-throughs for the 999HA, the overall reduction in mass becomes 57 percent with an 82 percent reduction in volume. Through a series of rigorous tests, the 999HA has been qualified for operation aboard spacecraft with a lifetime exceeding seven years. Offspring of the 999HA will fly on the Kepler and Lunar Reconnaissance Orbiter missions.
Chen, Zaigao; Wang, Jianguo; Wang, Yue; Qiao, Hailiang; Zhang, Dianhui; Guo, Weijie
2013-11-01
Optimal design method of high-power microwave source using particle simulation and parallel genetic algorithms is presented in this paper. The output power, simulated by the fully electromagnetic particle simulation code UNIPIC, of the high-power microwave device is given as the fitness function, and the float-encoding genetic algorithms are used to optimize the high-power microwave devices. Using this method, we encode the heights of non-uniform slow wave structure in the relativistic backward wave oscillators (RBWO), and optimize the parameters on massively parallel processors. Simulation results demonstrate that we can obtain the optimal parameters of non-uniform slow wave structure in the RBWO, and the output microwave power enhances 52.6% after the device is optimized.
Suppressing RF breakdown of powerful backward wave oscillator by field redistribution
Directory of Open Access Journals (Sweden)
W. Song
2012-03-01
Full Text Available An over mode method for suppressing the RF breakdown on metal surface of resonant reflector cavity in powerful backward wave oscillator is investigated. It is found that the electric field is redistributed and electron emission is restrained with an over longitudinal mode cavity. Compared with the general device, a frequency band of about 5 times wider and a power capacity of at least 1.7 times greater are obtained. The results were verified in an X-band high power microwave generation experiment with the output power near 4 gigawatt.
Observation and backward trajectory of an inertio-gravity wave in the lower stratosphere
Directory of Open Access Journals (Sweden)
A. Hertzog
Full Text Available A Doppler lidar observation of an inertio-gravity wave in the mid-latitude lower stratosphere is presented. The wave packet characteristics (vertical and horizontal wavenumbers, intrinsic and apparent frequencies are inferred from the analysis of the hodograph of the horizontal wind fluctuations. Those parameters are used as initial conditions for the calculation of the wave packet trajectory backwards in time in the atmosphere. These calculations are realized by ray-tracing techniques, with background fields (wind and stability provided by the European Center for Medium-Range Weather Forecasting analyses. Sensitivity tests are performed in order to estimate the robustness of the computed trajectory. It is argued that the generation of the wave has taken place in the upper troposphere, where evidence of large synoptic scale Rossby wave disturbances are found. Our results support the fact that geostrophic adjustment (and possibly shear instabilities associated with such disturbances could be an effective mechanism for the generation of inertia-gravity waves in the mid-latitude.
Key words. Meteorology and atmospheric dynamics, mesoscale meteorology, waves and tides, instruments and techniques
DEFF Research Database (Denmark)
Paoloni, Claudio; Di Carlo, Aldo; Bouamrane, Fayçal;
2013-01-01
The design and fabrication challenges in the first ever attempt to realize a 1-THz vacuum tube amplifier are described. Implementation of innovative solutions including a slow-wave structure in the form of a double corrugated waveguide, lateral tapered input and output couplers, deep X-ray LIGA...
Study on gas and wave in a receiving tube
Institute of Scientific and Technical Information of China (English)
Dapeng Hu; Shengtao Chen; Jun Yang; Zuzhi Chen; Yuqiang Dai; Che Zhu; Runjie Liu
2008-01-01
The gas and wave's motion in a receiving tube are investigated numerically and experimentally in the present paper. The results show that, velocity of the contact face rises rapidly as gas is injected into the receiving tube, and then drops sharply after a steady propagation. However, velocity of the wave in the tube is almost linear and the wave can be reflected at the close end of the receiving tube. With increasing of inlet pressure, velocity of the wave and steady velocity of contact face also increase. There is obvious thermal effect as the wave sweeps the gas.The reflected wave can heat the exhausting gas in the open end. As an absorber, an expander and a shrink in the tube can almost completely absorb the reflected wave.
Musielak, Z. E.; Rosner, R.; Ulmschneider, P.
1989-01-01
The source functions and the energy fluxes for wave generation in magnetic flux tubes embedded in an otherwise magnetic field-free, turbulent, and compressible fluid are derived. The calculations presented here assume that the tube interior is not itself turbulent, e.g., that motions within the flux tube are due simply to external excitation. Specific results for the generation of longitudinal tube waves are presented.
Backward Secondary-Wave Coherence Errors in Photonic Bandgap Fiber Optic Gyroscopes
Xu, Xiaobin; Song, Ningfang; Zhang, Zuchen; Jin, Jing
2016-01-01
Photonic bandgap fiber optic gyroscope (PBFOG) is a novel fiber optic gyroscope (FOG) with excellent environment adaptability performance compared to a conventional FOG. In this work we find and investigate the backward secondary-wave coherence (BSC) error, which is a bias error unique to the PBFOG and caused by the interference between back-reflection-induced and backscatter-induced secondary waves. Our theoretical and experimental results show a maximum BSC error of ~4.7°/h for a 300-m PBF coil with a diameter of 10 cm. The BSC error is an important error source contributing to bias instability in the PBFOG and has to be addressed before practical applications of the PBFOG can be implemented. PMID:27338388
Investigation of a K-band large coaxial relativistic backward wave oscillator
Energy Technology Data Exchange (ETDEWEB)
Zeng, Fanzheng, E-mail: zengfanzheng92@163.com; Du, Guangxing; Wang, Honggang; Shi, Difu [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)
2016-01-15
A K-band large coaxial relativistic backward wave oscillator has been investigated by the 2.5-D particle-in-cell code. This device can generate high-power microwave at a constant frequency with a constant efficiency by increasing the radius of the electron beam and the average radius of the slow-wave structure. The simulation results show that the power conversion efficiency can reach 38.8% at the frequency of 25.48 GHz with the output power of 1.65 GW, while the electron beam has the energy of 196 kV and carries the current of 21.6 kA guided by the magnetic field of 2.5 T.
A compact relativistic backward-wave oscillator with metallized plastic components
Ge, Xingjun; Zhang, Jun; Zhong, Huihuang; Qian, Baoliang
2014-09-01
This letter presents the mechanism and realization of a compact relativistic backward-wave oscillator with metallized plastic components. The physical idea, specific structure, and the main testing results are presented. The three periods slow-wave structures with both inner and outer ripples and the coaxial extractor are designed to reduce the volume and increase the efficiency of the device. The metallized plastic components replacing the stainless steel components in the high power microwave (HPM) sources are put forward to reduce the device weight. In the initial experiment, a microwave with frequency of 1.54 GHz, power of 1.97 GW, efficiency of 33.5%, and pulse duration above 47 ns is generated, which proves that this technical route is feasible. Undoubtedly, the technical route can provide a guide to design other types of HPM sources and be benefit to the practical application of the compact HPM systems.
Energy Technology Data Exchange (ETDEWEB)
Baik, Chan-Wook, E-mail: cw.baik@samsung.com; Ahn, Ho Young; Kim, Yongsung; Lee, Jooho; Hong, Seogwoo; Lee, Sang Hun; Choi, Jun Hee; Kim, Sunil; Kim, Jong Min; Hwang, Sungwoo [Samsung Advanced Institute of Technology, Suwon 443-803 (Korea, Republic of); Jeon, So-Yeon; Yu, SeGi [Department of Physics, Hankuk University of Foreign Studies, Yongin 449-791 (Korea, Republic of); Collins, George; Read, Michael E.; Lawrence Ives, R. [Calabazas Creek Research, Inc., San Mateo, California 94404-1010 (United States)
2015-11-09
In our earlier paper dealing with dispersion retrieval from ultra-deep, reactive-ion-etched, slow-wave circuits on silicon substrates, it was proposed that splitting high-aspect-ratio circuits into multilevels enabled precise characterization in sub-terahertz frequency regime. This achievement prompted us to investigate beam-wave interaction through a vacuum-sealed integration with a 15-kV, 85-mA, thermionic, electron gun. Our experimental study demonstrates sub-terahertz, backward-wave amplification driven by an external oscillator. The measured output shows a frequency downshift, as well as power amplification, from beam loading even with low beam perveance. This offers a promising opportunity for the development of terahertz radiation sources, based on silicon technologies.
Fisanov, V. V.
2016-12-01
Vector formulations of laws of reflection and refraction of plane electromagnetic waves from the plane metasurface that separates two isotropic media and is characterized by phase gradients are obtained and analyzed. The media support the forward or backward normal waves that differ by identifiers. Critical angles of total internal reflection are presented, and conditions of occurrence of negative refraction and negative reflection are specified. Retroreflection and special cases of wave refraction are considered, and restrictions on the metasurface parameters are given.
Effect of end reflections on conversion efficiency of coaxial relativistic backward wave oscillator
Energy Technology Data Exchange (ETDEWEB)
Teng, Yan; Chen, Changhua; Sun, Jun; Shi, Yanchao; Ye, Hu; Wu, Ping; Li, Shuang; Xiong, Xiaolong [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an 710024 (China)
2015-11-07
This paper theoretically investigates the effect of end reflections on the operation of the coaxial relativistic backward wave oscillator (CRBWO). It is found that the considerable enhancement of the end reflection at one end increases the conversion efficiency, but excessively large end reflections at both ends weaken the asynchronous wave-beam interaction and thus reduce the conversion efficiency. Perfect reflection at the post end significantly improves the interaction between the electron beam and the asynchronous harmonic so that the conversion efficiency is notably increased. Based on the theoretical research, the diffraction-CRBWO with the generated microwave diffracted and output through the front end of the coaxial slow wave structure cavity is proposed. The post end is conductively closed to provide the perfect reflection. This promotes the amplitude and uniformity of the longitudinal electric field on the beam transmission line and improves the asynchronous wave-beam interaction. In numerical simulations under the diode voltage and current of 450 kV and 5.84 kA, microwave generation with the power of 1.45 GW and the conversion efficiency of 55% are obtained at the frequency of 7.45 GHz.
Effect of end reflections on conversion efficiency of coaxial relativistic backward wave oscillator
Teng, Yan; Chen, Changhua; Sun, Jun; Shi, Yanchao; Ye, Hu; Wu, Ping; Li, Shuang; Xiong, Xiaolong
2015-11-01
This paper theoretically investigates the effect of end reflections on the operation of the coaxial relativistic backward wave oscillator (CRBWO). It is found that the considerable enhancement of the end reflection at one end increases the conversion efficiency, but excessively large end reflections at both ends weaken the asynchronous wave-beam interaction and thus reduce the conversion efficiency. Perfect reflection at the post end significantly improves the interaction between the electron beam and the asynchronous harmonic so that the conversion efficiency is notably increased. Based on the theoretical research, the diffraction-CRBWO with the generated microwave diffracted and output through the front end of the coaxial slow wave structure cavity is proposed. The post end is conductively closed to provide the perfect reflection. This promotes the amplitude and uniformity of the longitudinal electric field on the beam transmission line and improves the asynchronous wave-beam interaction. In numerical simulations under the diode voltage and current of 450 kV and 5.84 kA, microwave generation with the power of 1.45 GW and the conversion efficiency of 55% are obtained at the frequency of 7.45 GHz.
Nonlinear Waves in an Inhomogeneous Fluid Filled Elastic Tube
Institute of Scientific and Technical Information of China (English)
DUAN Wen-Shan
2004-01-01
In a thin-walled, homogeneous, straight, long, circular, and incompressible fluid filled elastic tube, small but finite long wavelength nonlinear waves can be describe by a KdV (Korteweg de Vries) equation, while the carrier wave modulations are described by a nonlinear Schrodinger equation (NLSE). However if the elastic tube is slowly inhomogeneous, then it is found, in this paper, that the carrier wave modulations are described by an NLSE-like equation. There are soliton-like solutions for them, but the stability and instability regions for this soliton-like waves will change,depending on what kind of inhomogeneity the tube has.
A Low Cost Traveling Wave Tube for Wireless Communications
Vancil, Bernard Kenneth; Wintucky, Edwin G.; Williams, W. D. (Technical Monitor)
2002-01-01
Demand for high data rate wireless communications is pushing up amplifier power, bandwidth and frequency requirements. Some systems are using vacuum electron devices again because solid-state power amplifiers are not able to efficiently meet the new requirements. The traveling wave tube is the VED of choice because of its excellent broadband capability as well as high power efficiency and frequency. But TWTs are very expensive on a per watt basis below about 200 watts of output power. We propose a new traveling wave tube that utilizes cathode ray tube construction technology and electrostatic focusing. We believe the tube can be built in quantity for under $1,000 each. We discuss several traveling wave tube slow wave circuits that lend themselves to the new construction. We will present modeling results and data on prototype devices.
Dynamics Calculation of Travel Wave Tube
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
During the dynamics calculating of the travel tube, we must obtain the field map in the tube. The field map can be affected by not only the beam loading, but also the attenuation coefficient. The calculation of the attenuation coefficient
Chen, Zaigao; Wang, Jianguo; Wang, Yue
2015-01-01
This letter optimizes synchronously 18 parameters of a relativistic backward wave oscillator with non-uniform slow wave structure (SWS) and a resonant reflector by using the parallel genetic algorithms and particle-in-cell simulation. The optimization results show that the generation efficiency of microwave from the electron beam has increased 32% compared to that of the original device. After optimization, the electromagnetic mode propagating in the resonant changes from the original TM020 mode of reflector to higher-order TM021 mode, which has a high reflection coefficient in a broader frequency range than that of the former. The modulation of current inside the optimized device is much deeper than that in the original one. The product of the electric field and current is defined. Observing this product, it is found that the interaction of the electron beam with the electromagnetic wave in the optimized device is much stronger than that in the original device, and at the rear part of SWS of the optimized device, the electron beam dominantly gives out the energy to the electromagnetic wave, leading to the higher generation efficiency of microwave than that of the original device.
Progressive wave tube facility with additional capabilities
Lieberman, Paul; Bocksruker, Ron; Pilgram, Mark; Vallance, Charles
1993-01-01
The design and development of a new acoustic progressive wave tube facility was required to test the Titan IV rocket engine. Because of the large 6 feet diameter of the nozzle closure, circular shape, high over-all sound pressure level (OASPL), and high sound pressure levels (SPLs) above 1000 Hz, the acoustic environmental tests required consideration of a custom built facility. This paper describes a new oscillating supersonic shock generator (OSSG) for developing the high OASPL, for developing the high SPLs at above 1000 Hz, and for use with a conventional acoustic modulator. Also, the new OSSG permits impedance matching to the test volume annulus via the special geometry of the annular space between the elliptical containment domes upstream of the test volume annulus. A test annulus gap that is too small causes the test article to vibrate with a severe damping imposed by the pumping of trapped air in the annulus, and too large a gap reduces the OASPL. Consideration is given to tuning the axial and circumferential resonance frequencies of the annulus test space so that there is no coincidence with the principal resonant modes of the test structure. Also consideration is given to establishing the reverberant versus propagating modes of the test annulus.
Traveling-Wave Tube Efficiency Enhancement
Dayton, James A., Jr.
2011-01-01
Traveling-wave tubes (TWT's) are used to amplify microwave communication signals on virtually all NASA and commercial spacecraft. Because TWT's are a primary power user, increasing their power efficiency is important for reducing spacecraft weight and cost. NASA Glenn Research Center has played a major role in increasing TWT efficiency over the last thirty years. In particular, two types of efficiency optimization algorithms have been developed for coupled-cavity TWT's. The first is the phase-adjusted taper which was used to increase the RF power from 420 to 1000 watts and the RF efficiency from 9.6% to 22.6% for a Ka-band (29.5 GHz) TWT. This was a record efficiency at this frequency level. The second is an optimization algorithm based on simulated annealing. This improved algorithm is more general and can be used to optimize efficiency over a frequency bandwidth and to provide a robust design for very high frequency TWT's in which dimensional tolerance variations are significant.
Study of Novel Slow Wave Circuit for Miniaturized Millimeter Wave Helical Traveling Wave Tube
Li, Bin; Zhu, Xiaofang; Liao, Li; Yang, Zhonghai; Zeng, Baoqing; Yao, Lieming
2006-07-01
Two kinds of novel helical slow wave circuit, supported by Chemical Vapor Deposition (CVD) diamond, are presented. They are applying in miniaturized millimeter wave helical traveling wave tube. Cold test characteristic of these circuits are simulated by MAFIA code. Higher performances are achieved with smaller size, compared with conventional circuit supported by BeO rods. The nonlinear analysis is implemented by Beam and Wave Interaction (BWI) module, which is a part of TWTCAD Integrated Framework. Results have been found to be consistent with the expectation. It should be wider apply in microwave and millimeter wave vacuum electronic devices.
Plasma-ﬁlled rippled wall rectangular backward wave oscillator driven by sheet electron beam
Indian Academy of Sciences (India)
A Hadap; J Mondal; K C Mittal; K P Maheshwari
2011-03-01
Performance of the backward wave oscillator (BWO) is greatly enhanced with the introduction of plasma. Linear theory of the dispersion relation and the growth rate have been derived and analysed numerically for plasma-ﬁlled rippled wall rectangular waveguide driven by sheet electron beam. To see the effect of plasma on the TM01 cold wave structure mode and on the generated frequency, the parameters used are: relativistic factor = 1.5 (i.e. / = 0.741), average waveguide height 0 = 1.445 cm, axial corrugation period 0 = 1.67 cm, and corrugation amplitude = 0.225 cm. The plasma density is varied from zero to 2 × 1012 cm-3. The presence of plasma tends to raise the TM01 mode cut-off frequency (14 GH at 2 × 1012 cm-3 plasma density) relative to the vacuum cut-off frequency (5 GH) which also causes a decrease in the group velocity everywhere, resulting in a ﬂattening of the dispersion relation. With the introduction of plasma, an enhancement in absolute instability was observed.
Microfabricated, 94 GHz, 25 W, Helical Traveling Wave Tube Project
National Aeronautics and Space Administration — Teraphysics Corporation proposes to design and develop a microfabricated, 94 GHz, 25 W traveling wave tube (TWT) with 53% efficiency for NASA applications. In Phase...
Magnetic flux tubes as sources of wave generation
Musielak, Z. E.; Rosner, R.; Ulmschneider, P.
1987-01-01
The structure of solar, and very likely stellar, surface magnetic fields is highly inhomogeneous: at the photospheric level, the fields are locally strong, and show concentration into a flux tube structure. In this case, the wave energy generated in stellar convection zones may be largely carried away by flux tube waves, which can then become important sources for the heating of the outer atmospheric layers. Such flux tube wave generation may help to explain the UV and X-ray fluxes observed by the IUE and Einstein observatories. The generation of longitudinal tube waves in magnetic flux tubes embedded in an otherwise magnetic field-free, turbulent, and stratified medium was considered. It is shown that compressible tube waves are generated by dipole emission and that the generation efficiency is a strong function of the magnetic field strength. Energy flux calculations are presented for different magnetic flux tubes, and show how the results depend on the magnetic field strength and the characteristics of the convective turbulence.
Up-date of traveling wave tube improvements
Buck, E.
1978-01-01
NASA research in the area of traveling wave tube technology is reviewed, with emphasis on the basic physics of guns and collectors and a computer model for the interaction between the electron beam and the RF circuit. The design of a multistage depressed collector, capable of multiplying tube efficiency by a factor of two or more, is presented; one such design has been adopted for commercial traveling wave tube production. A three-dimensional model of electron trajectories toward the collector also receives attention, as does the problem of RF circuit losses.
Lifetime experimental study of graphite cathode for relativistic backward wave oscillator
Wu, Ping; Sun, Jun; Chen, Changhua
2016-07-01
Graphite cathodes are widely used due to their good emission properties, especially their long lifetime. Some previous papers have researched their lifetime under certain conditions and uncovered some important phenomena. This paper is dedicated to research the lifetime of the graphite cathode under higher power. In the lifetime test, the voltage and current amplitudes are about 970 kV and 9.7 kA, respectively. The repetition rate is 20 Hz. An X-band relativistic backward wave oscillator is used to generate high power microwave by utilizing the electron beam energy. The experimental results demonstrate that the emission property of the graphite cathode remains quite stable during 105 pulses, despite some slight deteriorations regarding the beam and microwave parameters. The macroscopic morphology change of the cathode blade due to material evaporation is observed by a laser microscope. The mass loss of the graphite cathode is about 60 μg/C. Meanwhile, the observation by a scanning electron microscope uncovers that the original numerous flaky micro-structures are totally replaced by a relatively smooth surface at the mid region of the cathode blade and a large number of new micro-protrusions at the blade edges during the lifetime test.
Observation of thermoacoustic shock waves in a resonance tube.
Biwa, Tetsushi; Sobata, Kazuya; Otake, Shota; Yazaki, Taichi
2014-09-01
This paper reports thermally induced shock waves observed in an acoustic resonance tube. Self-sustained oscillations of a gas column were created by imposing an axial temperature gradient on the short stack of plates installed in the resonance tube filled with air at atmospheric pressure. The tube length and axial position of the stack were examined so as to make the acoustic amplitude of the gas oscillations maximum. The periodic shock wave was observed when the acoustic pressure amplitude reached 8.3 kPa at the fundamental frequency. Measurements of the acoustic intensity show that the energy absorption in the stack region with the temperature gradient tends to prevent the nonlinear excitation of harmonic oscillations, which explains why the shock waves had been unfavorable in the resonance tube thermoacoustic systems.
Propagation of sound waves in tubes of noncircular cross section
Richards, W. B.
1986-01-01
Plane-acoustic-wave propagation in small tubes with a cross section in the shape of a flattened oval is described. Theoretical descriptions of a plane wave propagating in a tube with circular cross section and between a pair of infinite parallel plates, including viscous and thermal damping, are expressed in similar form. For a wide range of useful duct sizes, the propagation constant (whose real and imaginary parts are the amplitude attenuation rate and the wave number, respectively) is very nearly the same function of frequency for both cases if the radius of the circular tube is the same as the distance between the parallel plates. This suggests that either a circular-cross-section model or a flat-plate model can be used to calculate wave propagation in flat-oval tubing, or any other shape tubing, if its size is expressed in terms of an equivalent radius, given by g = 2 x (cross-sectional area)/(length of perimeter). Measurements of the frequency response of two sections of flat-oval tubing agree with calculations based on this idea. Flat-plate formulas are derived, the use of transmission-line matrices for calculations of plane waves in compound systems of ducts is described, and examples of computer programs written to carry out the calculations are shown.
Directory of Open Access Journals (Sweden)
Shukhin A.A.
2015-01-01
Full Text Available The properties of the backward-wave spontaneous parametric down-conversion (SPDC in a periodically poled potassium titanyl phosphate (KTP waveguide are studied in the context of creating narrowband heralded sources of single-photon states. The effective index of refraction and spatial profile of different waveguide modes, efficiency of different SPDC processes and purity of heralded photons are calculated numerically for a given waveguide. Compared to the usual co-propagating SPDC, spectral narrowing of the backward-wave SPDC was observed as should be expected. Generation biphoton states in backward-wave regime is experimentally observed in two-photon detection scheme.
Vortex tubes in the wave bottom boundary layer
Henriquez, M.; Reniers, A.J.H.M.; Ruessink, B.G.; Stive, M.J.F.
2012-01-01
The cause of sediment suspension events during flow reversal under waves in the nearshore is not well understood. Vortex tubes and horizontal pressure gradients have been suggested to be the cause of the suspension events. A medium sized wave flume experiment has been conducted to give insight in th
Fuse, Yukinori
2012-06-01
Standoff detection of mines and improvised explosive devices by ground penetrating radar has advantages in terms of safety and efficiency. However, the reflected signals from buried targets are often disturbed by those from the ground surface, which vary with the antennas angle, making it more difficult to detect at a safe distance. An understanding of the forward and backward scattering wave is thus essential for improving standoff detection capability. We present some experimental results from using our measurement system for such an analysis.
Shock waves in fluid-filled distensible tubes.
Rudinger, G
1980-02-01
Flow of a liquid through distensible tubes is of interest primarily in biological systems, and some properties of shock waves in such tubes are discussed. In shock-fixed coordinates, these flows are steady, and the shock is associated with an increase of pressure and cross-sectional area. Shock transition is analyzed for two flow models, namely, immediate flow separation, when the flow enters the shock zone, and no separation. Shock properties are expressed in terms of the speed index (ratio of the velocity of the shock to that of a small-amplitude wave) and dissipation (loss of total pressure). Examples are worked out for the thoracic aorta of an anesthetized dog, a perfectly elastic tube, and a partially collapsed tube. Appreciable differences in shock velocity and dissipation result if either flow separation or no separation is assumed.
Linear propagation of pulsatile waves in viscoelastic tubes.
Horsten, J B; Van Steenhoven, A A; Van Dongen, M E
1989-01-01
An experimental and theoretical analysis is made of pulsatile wave propagation in deformable latex tubes as a model of the propagation of pressure pulses in arteries. A quasi one-dimensional linear model is used in which, in particular, attention is paid to the viscous phenomena in fluid and tube wall. The agreement between experimental and theoretical results is satisfactory. It appeared that the viscoelastic behaviour of the tube wall dominates the damping of the pressure pulse. Several linear models are used to describe the wall behaviour. No significant differences between the results of these models were found.
Modulated pressure waves in large elastic tubes.
Mefire Yone, G R; Tabi, C B; Mohamadou, A; Ekobena Fouda, H P; Kofané, T C
2013-09-01
Modulational instability is the direct way for the emergence of wave patterns and localized structures in nonlinear systems. We show in this work that it can be explored in the framework of blood flow models. The whole modified Navier-Stokes equations are reduced to a difference-differential amplitude equation. The modulational instability criterion is therefore derived from the latter, and unstable patterns occurrence is discussed on the basis of the nonlinear parameter model of the vessel. It is found that the critical amplitude is an increasing function of α, whereas the region of instability expands. The subsequent modulated pressure waves are obtained through numerical simulations, in agreement with our analytical expectations. Different classes of modulated pressure waves are obtained, and their close relationship with Mayer waves is discussed.
Guided waves in cladded composite tubes
Kohl, Thomas
1989-01-01
The objectives of this program are as follows: modelling of dynamics of composite tubular space structure truss members; and utilization of ultrasonic waves as probes for material and defect characterization. This discussion is presented in viewgraph format.
Laser-driven plasma waves in capillary tubes.
Wojda, F; Cassou, K; Genoud, G; Burza, M; Glinec, Y; Lundh, O; Persson, A; Vieux, G; Brunetti, E; Shanks, R P; Jaroszynski, D; Andreev, N E; Wahlström, C-G; Cros, B
2009-12-01
The excitation of plasma waves over a length of up to 8 cm is demonstrated using laser guiding of intense laser pulses through hydrogen-filled glass capillary tubes. The plasma waves are diagnosed by spectral analysis of the transmitted laser radiation. The dependence of the spectral redshift-measured as a function of filling pressure, capillary tube length, and incident laser energy-is in excellent agreement with simulation results. The longitudinal accelerating field inferred from the simulations is in the range of 1-10 GV/m.
Shock Wave Observation in Narrow Tubes for a Parametric Study on Micro Wave Rotor Design
Institute of Scientific and Technical Information of China (English)
Koji Okamoto; Mikiya Araki
2008-01-01
Wave rotor is expected to improve the performance of micro gas turbines drastically. In the wave rotor design, the rotor speed is determined principally by the tube length. Therefore, a longer tube is preferable for miniaturized wave rotors to avoid the difficulty in bearings and lubrication system, while it may yield thicker wall boundary layer, shock wave dissipation and so on. In the present study, an experimental apparatus was built to visualize the wave rotor internal flow dynamics in a narrow tube by schlieren method and Laser Doppler Anemometry. In addition, different lengths of the tube were adopted and compared to investigate the effect of wall friction. Finally, 2D numerical simulation was performed and the results were compared with those of experiments.
Institute of Scientific and Technical Information of China (English)
何俊; 黄明光; 李现霞; 李海强; 赵磊; 赵建东; 李跃; 赵石雷
2015-01-01
The linearity of the traveling-wave tube is a very important characteristic for a modern communication system. To improve the linearity of the traveling-wave tube at no expense of the saturated output power and overall efficiency, a modified pitch profile combined with a small adjustment of operating parameters is proposed. The optimal design of the helix circuit is evaluated theoretically by a large signal analysis, and the experimental test is also carried out to make a comparison of performance between the novel and original designed traveling-wave tubes. The experiments show that the saturated output powers and efficiencies of these two tubes are close to each other, while the linearity of the traveling-wave tube is obviously improved. The total phase shift and AM/PM conversion at saturation of the novel tube, averaged over the operating band, are only 30.6◦/dB and 2.5◦/dB, respectively, which are 20.1◦/dB and 1.6◦/dB lower than those of the original tube, respectively. Moreover, the third-order intermodulation of the novel tube is up to 2.2 dBc lower than that of the original tube.
Pulse wave attenuation measurement by linear and nonlinear methods in nonlinearly elastic tubes.
Bertram, C D; Pythoud, F; Stergiopulos, N; Meister, J J
1999-04-01
Reasons for the continuing difficulty in making definitive measurements of pulse wave attenuation in elastic tubes and arteries in the presence of reflections are sought. The measurement techniques available were re-examined in elastic tubes mimicking the arterial compliance nonlinearity, under conditions of strong reflection. The pulse was of physiological shape, and two different pulse amplitudes in the physiological range were used. Measurements of pressure, flow-rate and diameter pulsation allowed the deployment of four of the classical linear methods of analysis. In addition, a method of separating the forward- and backward-travelling waves that does not require linearising assumptions was used, and the attenuation in the forward and reverse directions was calculated from the resulting waveforms. Overall, the results obtained here suggest that a fully satisfactory way of measuring arterial attenuation has yet to be devised. The classical linear methods all provided comparable attenuation estimates in terms of average value and degree of scatter across frequency. Increased scatter was generally found at the higher pulse amplitude. When the forward waveforms from the separation were similarly compared in terms of frequency components, the average value at energetic harmonics was similar to both the value indicated by the linear methods and the values predicted from linear theory on the basis of estimated viscous and viscoelastic parameter data. The backward waveforms indicated a physically unreasonable result, attributed as the expression for this technique of the same difficulties that normally manifest in scatter. Data in the literature suggesting that one of the classical methods, the three-point, systematically over-estimates attenuation were not supported, but it was confirmed that this method becomes prone to negative attenuation estimates at low harmonics as pulse amplitude increases. Although the goal of definitive attenuation measurement remains elusive
Torsional Alfven waves in stratified and expanding magnetic flux tubes
2011-01-01
The effects of both density stratification and magnetic field expansion on torsional Alfven waves in magnetic flux tubes are studied. The frequencies, the period ratio P1/P2 of the fundamental and its first-overtone, and eigenfunctions of torsional Alfven modes are obtained. Our numerical results show that the density stratification and magnetic field expansion have opposite effects on the oscillating properties of torsional Alfven waves.
On frequency and time domain models of traveling wave tubes
Théveny, Stéphane; Elskens, Yves
2016-01-01
We discuss the envelope modulation assumption of frequency-domain models of traveling wave tubes (TWTs) and test its consistency with the Maxwell equations. We compare the predictions of usual frequency-domain models with those of a new time domain model of the TWT.
Acoustic waves in shock tunnels and expansion tubes
Paull, A.; Stalker, R. J.
1992-01-01
It is shown that disturbances in shock and expansion tubes can be modelled as lateral acoustic waves. The ratio of sound speed across the driver-test gas interface is shown to govern the quantity of noise in the test gas. Frequency 'focusing' which is fundamental to centered unsteady expansions is discussed and displayed in centerline pitot pressure measurements.
K-Band Traveling-Wave Tube Amplifier
Force, Dale A.; Simons, Rainee N.; Peterson, Todd T.; Spitsen, Paul C.
2010-01-01
A new space-qualified, high-power, high-efficiency, K-band traveling-wave tube amplifier (TWTA) will provide high-rate, high-capacity, direct-to-Earth communications for science data and video gathered by the Lunar Reconnaissance Orbiter (LRO) during its mission. Several technological advances were responsible for the successful demonstration of the K-band TWTA.
Energy Technology Data Exchange (ETDEWEB)
Kousaka, Hiroyuki; Ono, Kouichi [Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)
2003-05-01
The electromagnetic fields and plasma parameters have been studied in an azimuthally symmetric surface wave-excited plasma (SWP) source, by using a two-dimensional numerical analysis based on the finite-difference time-domain (FDTD) approximation to Maxwell's equations self-consistently coupled with a fluid model for plasma evolution. The FDTD/fluid hybrid simulation was performed for different gas pressures in Ar and different microwave powers at 2.45 GHz, showing that the surface waves (SWs) occur along the plasma-dielectric interfaces to sustain overdense plasmas. The numerical results indicated that the electromagnetic SWs consist of two different waves, Wave-1 and Wave-2, having relatively shorter and longer wavelengths. The Wave-1 was seen to fade away with increasing pressure and increasing power, while the Wave-2 remained relatively unchanged over the range of pressure and power investigated. The numerical results revealed that the Wave-1 propagates as backward SWs whose phase velocity and group velocity point in the opposite directions. In contrast, the Wave-2 appeared to form standing waves, being ascribed to a superposition of forward SWs whose phase and group velocities point in the same direction. The fadeaway of the Wave-1 or backward SWs at increased pressures and increased powers was seen with the damping rate increasing in the axial direction, being related to the increased plasma electron densities. A comparison with the conventional FDTD simulation indicated that such fine structure of the electromagnetic fields of SWs is not observed in the FDTD simulation with spatially uniform and time-independent plasma distributions; thus, the FDTD/fluid hybrid model should be employed in simulating the electromagnetic fields and plasma parameters in SWPs with high accuracy.
Sharypov, K. A.; El'chaninov, A. A.; Mesyats, G. A.; Pedos, M. S.; Romancheko, I. V.; Rostov, V. V.; Rukin, S. N.; Shpak, V. G.; Shunailov, S. A.; Ul'masculov, M. R.; Yalandin, M. I.
2013-09-01
Coherent summation of microwave beams has been demonstrated for two superradiance Ka-band backward wave oscillators producing over 700 MW of power. The explosive emission cathodes of the e-beam injectors were powered by stable splitted voltage pulses produced by an all-solid-state modulator. The voltage fronts were shortened to 300 ps in controlled delay shock-excited ferrite lines. The standard deviation of the phase difference between the microwave pulses was less than 2% of the oscillations period. The power flux density of the summarized radiation was the same as that of a single generator producing an output power of ˜3 GW.
Nonlinear waves in a fluid-filled thin viscoelastic tube
Zhang, Shan-Yuan; Zhang, Tao
2010-11-01
In the present paper the propagation property of nonlinear waves in a thin viscoelastic tube filled with incompressible inviscid fluid is studied. The tube is considered to be made of an incompressible isotropic viscoelastic material described by Kelvin—Voigt model. Using the mass conservation and the momentum theorem of the fluid and radial dynamic equilibrium of an element of the tube wall, a set of nonlinear partial differential equations governing the propagation of nonlinear pressure wave in the solid—liquid coupled system is obtained. In the long-wave approximation the nonlinear far-field equations can be derived employing the reductive perturbation technique (RPT). Selecting the exponent α of the perturbation parameter in Gardner—Morikawa transformation according to the order of viscous coefficient η, three kinds of evolution equations with soliton solution, i.e. Korteweg—de Vries (KdV)—Burgers, KdV and Burgers equations are deduced. By means of the method of traveling-wave solution and numerical calculation, the propagation properties of solitary waves corresponding with these evolution equations are analysed in detail. Finally, as a example of practical application, the propagation of pressure pulses in large blood vessels is discussed.
Nonlinear waves in a fluid-filled thin viscoelastic tube
Institute of Scientific and Technical Information of China (English)
Zhang Shan-Yuan; Zhang Tao
2010-01-01
In the present paper the propagation property of nonlinear waves in a thin viscoelastic tube filled with incom-pressible inviscid fluid is studied. The tube is considered to be made of an incompressible isotropic viscoelastic material described by Kelvin-Voigt model. Using the mass conservation and the momentum theorem of the fluid and radial dynamic equilibrium of an element of the tube wall, a set of nonlinear partial differential equations governing the prop-agation of nonlinear pressure wave in the solid-liquid coupled system is obtained. In the long-wave approximation the nonlinear far-field equations can be derived employing the reductive perturbation technique (RPT). Selecting the expo-η, three kinds of evolution equations with soliton solution, i.e. Korteweg-de Vries (KdV)-Burgers, KdV and Burgers equations are deduced. By means of the method of traveling-wave solution and numerical calculation, the propagation properties of solitary waves corresponding with these evolution equations are analysed in detail. Finally, as a example of practical application, the propagation of pressure pulses in large blood vessels is discussed.
Miniature traveling wave tube and method of making
Kosmahl, Henry G. (Inventor)
1989-01-01
It is an object of the invention to provide a miniature traveling wave tube which will have most of the advantages of solid state circuitry but with higher efficiency and without being highly sensitive to temperature and various types of electromagnetic radiation and subatomic particles as are solid state devices. The traveling wave tube which is about 2.5 cm in length includes a slow wave circuit (SWS) comprising apertured fins with a top cover which is insulated from the fins by strips or rungs of electrically insulating, dielectric material. Another object of the invention is to construct a SWS of extremely small size by employing various grooving or etching methods and by providing insulating strips or rungs by various deposition and masking techniques.
Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Yu, Xianhuan; Yang, Weifeng; Hu, Shilin; Chen, Jing; Xu, SongPo; Chen, YongJu; Quan, Wei; Liu, XiaoJun
2016-01-01
A novel and universal interference structure is found in the photoelectron momentum distribution of atoms in intense infrared laser field. Theoretical analysis shows that this structure can be attributed to a new form of Coulomb-field-driven backward-scattering of photoelectrons in the direction perpendicular to the laser field, in contrast to the conventional rescattering along the laser polarization direction. This transverse backward-scattering process is closely related to a family of photoelectrons initially ionized within a time interval of less than 200 attosecond around the crest of the laser electric field. Those electrons, acquiring near-zero return energy in the laser field, will be pulled back solely by the ionic Coulomb field and backscattered in the transverse direction. Moreover, this rescattering process mainly occurs at the first or the second return times, giving rise to different phases of the photoelectrons. The interference between these photoelectrons leads to unique curved interference ...
MHD waves on solar magnetic flux tubes - Tutorial review
Hollweg, Joseph V.
1990-01-01
Some of the highly simplified models that have been developed for solar magnetic flux tubes, which are intense photospheric-level fields confined by external gas pressure but able to vary rapidly with height, are presently discussed with emphasis on the torsional Alfven mode's propagation, reflection, and non-WKB properties. The 'sausage' and 'kink' modes described by the thin flux-tube approximation are noted. Attention is also given to the surface waves and resonance absorption of X-ray-emitting loops, as well as to the results of recent work on the resonant instabilities that occur in the presence of bulk flows.
Yuan, Yuzhang; Zhang, Jun; Zhong, Huihuang; Zhang, Dian
2016-07-01
Overmoded RBWO (Relativistic Backward Wave Oscillators) is utilized more and more often for its high power capacity. However, both sides of SWS (Slow Wave Structure) of overmoded RBWO consist multi TM0n modes; in order to achieve the design of reflector, it is essential to make clear of the mode composition of TM0n. NUDT (National University of Defence Technology) had done research of the output mode composition in overmoded O-type Cerenkov HPM (High Power Microwave) Oscillators in detail, but in the area where the electron beam exists, the influence of electron beam must be taken into account. Hot-cavity dispersion equation is figured out in this article first, and then analyzes the hot-cavity mode composition of an X-band overmoded RBWO tentatively. The results show that in collimating hole, the hot-cavity mode analysis is more accurate.
Alfven waves in the solar atmosphere. III - Nonlinear waves on open flux tubes
Hollweg, J. V.; Jackson, S.; Galloway, D.
1982-01-01
Consideration is given the nonlinear propagation of Alfven waves on solar magnetic flux tubes, where the tubes are taken to be vertical, axisymmetric and initially untwisted and the Alfven waves are time-dependent axisymmetric twists. The propagation of the waves into the chromosphere and corona is investigated through the numerical solution of a set of nonlinear, time-dependent equations coupling the Alfven waves into motions that are parallel to the initial magnetic field. It is concluded that Alfven waves can steepen into fast shocks in the chromosphere, pass through the transition region to produce high-velocity pulses, and then enter the corona, which they heat. The transition region pulses have amplitudes of about 60 km/sec, and durations of a few tens of seconds. In addition, the Alfven waves exhibit a tendency to drive upward flows, with many of the properties of spicules.
Nonlinear fast sausage waves in homogeneous magnetic flux tubes
Mikhalyaev, Badma B.; Ruderman, Michael S.
2015-12-01
> We consider fast sausage waves in straight homogeneous magnetic tubes. The plasma motion is described by the ideal magnetohydrodynamic equations in the cold plasma approximation. We derive the nonlinear Schrödinger equation describing the nonlinear evolution of an envelope of a carrier wave. The coefficients of this equation are expressed in terms Bessel and modified Bessel functions. They are calculated numerically for various values of parameters. In particular, we show that the criterion for the onset of the modulational or Benjamin-Fair instability is satisfied. The implication of the obtained results for solar physics is discussed.
Linear magnetosonic waves in solar wind flow tubes
2010-01-01
Nakariakov et al. (1996) investigated the linear magnetosonic waves trapped within solar wind flow tubes, where they accounted for a slab having boundaries at $x = \\pm d$ and extended up to infinity in the $y$ and $z$ directions. Srivastava and Dwivedi (2006) claimed to extend that work by considering a two-dimensional slab. We find that the work of Srivastava and Dwivedi (2006) is not for a two-dimensional slab and has a number of discrepancies. Further, their results for body waves are not ...
Propagation of Quasi-plane Nonlinear Waves in Tubes
Directory of Open Access Journals (Sweden)
P. Koníček
2002-01-01
Full Text Available This paper deals with possibilities of using the generalized Burgers equation and the KZK equation to describe nonlinear waves in circular ducts. A new method for calculating of diffraction effects taking into account boundary layer effects is described. The results of numerical solutions of the model equations are compared. Finally, the limits of validity of the used model equations are discussed with respect to boundary conditions and the radius of the circular duct. The limits of applicability of the KZK equation and the GBE equation for describing nonlinear waves in tubes are discussed.
Waves in initially stressed fluid-filled thick tubes.
Demiray, H
1997-03-01
In this paper, treating the artery as a thick walled cylindrical shell made of an incompressible, elastic and isotropic material and the blood as an incompressible inviscid fluid, by taking the inertia of the wall into account, the propagation of harmonic waves in an initially stressed tube, filled with an inviscid fluid, is studied. Utilizing inner-pressure-inner-cross-sectional-area relation in the linear momentum equation of the fluid, together with the continuity equation, we obtained two nonlinear equation governing the axial velocity and the cross-sectional area of the tube. Assuming that the dynamical motion superposed on large initial static deformation is small, a harmonic wave type of solution to incremental equations is sought and the dispersion relation is obtained as a function of transmural pressure, axial stretch, thickness ratio and the wave number. The wave speed is evaluated numerically for various materials and thickness/radius, and the results are depicted in graphical forms. The result indicates that, due to the inertial component of pressure, the wave is dispersive. The present formulation is compared with some previously published works.
Scattering of acoustic waves by macroscopically inhomogeneous poroelastic tubes.
Groby, J-P; Dazel, O; Depollier, C; Ogam, E; Kelders, L
2012-07-01
Wave propagation in macroscopically inhomogeneous porous materials has received much attention in recent years. For planar configurations, the wave equation, derived from the alternative formulation of Biot's theory of 1962, was reduced and solved recently: first in the case of rigid frame inhomogeneous porous materials and then in the case of inhomogeneous poroelastic materials in the framework of Biot's theory. This paper focuses on the solution of the full wave equation in cylindrical coordinates for poroelastic tubes in which the acoustic and elastic properties of the poroelastic tube vary in the radial direction. The reflection coefficient is obtained numerically using the state vector (or the so-called Stroh) formalism and Peano series. This coefficient can then be used to straightforwardly calculate the scattered field. To validate the method of resolution, results obtained by the present method are compared to those calculated by the classical transfer matrix method in the case of a two-layer poroelastic tube. As an example, a long bone excited in the sagittal plane is considered. Finally, a discussion is given of ultrasonic time domain scattered field for various inhomogeneity profiles, which could lead to the prospect of long bone characterization.
Millimeter-wave gyrotron traveling-wave tube amplifiers
Du, Chao-Hai
2014-01-01
A gyrotron traveling-wave amplifier (gyro-TWT) with the high-power and broad-band capabilities is considered as a turn-on key for next generation high-resolution radar. The book presents comprehensive theory, methods, and physics related to gyro-TWT. The most challenging problem of instability competition has been for the first time addressed in a focused and systematic way, and reported via concise states and vivid pictures. The book is likely to meet the interest of researchers and engineers in radar and microwave technology, who would like to study the gyro-TWTs and to promote its application in millimeter-wave radars. Chao-Hai Du is a research professor, and Pu-Kun Liu is a full professor, at Peking University, Beijing, P. R. China.
Properties of Longitudinal Flux Tube Waves. III; Wave Propagation in Solar and Stellar Wind FLows
Cuntz, M.; Suess, S. T.
2004-01-01
We discuss the analytic properties of longitudinal tube waves taking into account ambient wind flows. This is an extension of the studies of Papers I and II, which assumed a mean flow speed of zero and also dealt with a simplified horizontal pressure balance. Applications include the study of longitudinal flux tube waves in stars with significant mass loss and the heating and dynamics of plumes in the solar wind. Slow magnetosonic waves, also called longitudinal waves, have been observed in solar plumes and are likely an important source of heating. We show that the inclusion of ambient wind flows considerably alters the limiting shock strength as well as the energy damping length of the waves.
Properties of Longitudinal Flux Tube Waves. III; Wave Propagation in Solar and Stellar Wind Flows
Cuntz, M.; Suess, S. T.
2004-01-01
We discuss the analytic properties of longitudinal tube waves taking into account ambient wind flows. This is an extension of the studies of Papers I and II, which assumed a mean flow speed of zero and also dealt with a simplified horizontal pressure balance. Applications include the study of longitudinal flux tube waves in stars with significant mass loss and heating and dynamics of plumes in the solar wind. Slow magnetosonic waves, also called longitudinal waves, have been observed in solar plumes and are likely an important source of heating. We show that the inclusion of ambient wind flows considerably alters the limiting shock strength as well as the energy damping length of waves.
Wu, Ping; Sun, Jun; Song, Zhimin; Teng, Yan
2017-01-01
Explosive emission cathodes (EECs) are widely used in high power microwave generators. This paper researches the influence of the emission threshold and the current increase rate of annular EECs on the microwave starting time of a relativistic backward wave oscillator (RBWO) when the current amplitude is not affected. The results show that a moderate delay in explosive emission, as long as it's not too long and the current increase rate keeps fast enough, won't bring about a corresponding delay in the starting time of microwave, but inversely, may suppress the mode competition and thus expedite the starting process slightly. The current increase rate, however, has more prominent influence on the starting time of the RBWO. A slower current increase rate will delay the time when the beam current reaches the starting current and lead to a longer starting time.
Time-Dependent Traveling Wave Tube Model for Intersymbol Interference Investigations
Kory, Carol L.; Andro, Monty; Downey, Alan (Technical Monitor)
2001-01-01
For the first time, a computational model has been used to provide a direct description of the effects of the traveling wave tube (TWT) on modulated digital signals. The TWT model comprehensively takes into account the effects of frequency dependent AM/AM and AM/PM conversion, gain and phase ripple; drive-induced oscillations; harmonic generation; intermodulation products; and backward waves. Thus, signal integrity can be investigated in the presence of these sources of potential distortion as a function of the physical geometry of the high power amplifier and the operational digital signal. This method promises superior predictive fidelity compared to methods using TWT models based on swept-amplitude and/or swept-frequency data. The fully three-dimensional (3D), time-dependent, TWT interaction model using the electromagnetic code MAFIA is presented. This model is used to investigate assumptions made in TWT black-box models used in communication system level simulations. In addition, digital signal performance, including intersymbol interference (ISI), is compared using direct data input into the MAFIA model and using the system level analysis tool, SPW.
Higher Order Modulation Intersymbol Interference Caused by Traveling-wave Tube Amplifiers
Kory, Carol L.; Andro, Monty; Williams, W. D. (Technical Monitor)
2002-01-01
For the first time, a time-dependent, physics-based computational model has been used to provide a direct description of the effects of the traveling wave tube amplifier (TWTA) on modulated digital signals. The TWT model comprehensively takes into account the effects of frequency dependent AM/AM and AM/PM conversion; gain and phase ripple; drive-induced oscillations; harmonic generation; intermodulation products; and backward waves, Thus, signal integrity can be investigated in the presence of these sources of potential distortion as a function of the physical geometry and operating characteristics of the high power amplifier and the operational digital signal. This method promises superior predictive fidelity compared to methods using TWT models based on swept-amplitude and/or swept-frequency data. First, the TWT model using the three dimensional (3D) electromagnetic code MAFIA is presented. Then, this comprehensive model is used to investigate approximations made in conventional TWT black-box models used in communication system level simulations, To quantitatively demonstrate the effects these approximations have on digital signal performance predictions, including intersymbol interference (ISI), the MAFIA results are compared to the system level analysis tool, Signal Processing, Workstation (SPW), using high order modulation schemes including 16 and 64-QAM.
Intersymbol Interference Investigations Using a 3D Time-Dependent Traveling Wave Tube Model
Kory, Carol L.; Andro, Monty
2002-01-01
For the first time, a time-dependent, physics-based computational model has been used to provide a direct description of the effects of the traveling wave tube amplifier (TWTA) on modulated digital signals. The TWT model comprehensively takes into account the effects of frequency dependent AM/AM and AM/PM conversion; gain and phase ripple; drive-induced oscillations; harmonic generation; intermodulation products; and backward waves. Thus, signal integrity can be investigated in the presence of these sources of potential distortion as a function of the physical geometry and operating characteristics of the high power amplifier and the operational digital signal. This method promises superior predictive fidelity compared to methods using TWT models based on swept- amplitude and/or swept-frequency data. First, the TWT model using the three dimensional (3D) electromagnetic code MAFIA is presented. Then, this comprehensive model is used to investigate approximations made in conventional TWT black-box models used in communication system level simulations. To quantitatively demonstrate the effects these approximations have on digital signal performance predictions, including intersymbol interference (ISI), the MAFIA results are compared to the system level analysis tool, Signal Processing Workstation (SPW), using high order modulation schemes including 16 and 64-QAM.
Institute of Scientific and Technical Information of China (English)
Dapeng HU; Shengtao CHEN; Hu LIU; Zuzhi CHEN; Che ZHU
2006-01-01
The contact face and shock wave motion in an open ends receiving tube of gas wave refrigerator are investigated numerically and experimentally.The results show that,velocity of the contact face rises rapidly as gas is injected into the receiving tube,and drops sharply after a steady propagation.However,velocity of the shock wave in the tube is almost linear.With increasing of inlet pressure,velocity of the shock wave and steady velocity of contact face also increase.In addition,time and distance of contact face propagation in the receiving tube become longer.
CONDITIONS FOR TRANSVERSE WAVES PROPAGATION ALONG THIN MAGNETIC FLUX TUBES ON THE SUN
Energy Technology Data Exchange (ETDEWEB)
Lopin, Igor [Ussuriisk Astrophysical Observatory, Russian Academy of Sciences, Ussuriisk (Russian Federation); Nagorny, Ivan, E-mail: lopin78@mail.ru [Institute of Automation and Control Processes FEB RAS, Vladivostok (Russian Federation)
2013-09-10
The propagation of kink waves in the thin gravity stratified flux tubes with a generalized magnetic field distribution model is considered in cylindrical geometry. The new kink wave equations for both wave variables are obtained. It is shown that the inclusion of the radial component of an unperturbed tube magnetic field sufficiently transforms the conditions for the propagation of transverse waves. It is demonstrated that, for the models of isothermal and polytropic atmosphere in the tube and its environment, the propagation of kink waves along thin magnetic flux tubes is cutoff-free.
Comparing the Robustness of High-Frequency Traveling-Wave Tube Slow-Wave Circuits
Chevalier, Christine T.; Wilson, Jeffrey D.; Kory, Carol L.
2007-01-01
A three-dimensional electromagnetic field simulation software package was used to compute the cold-test parameters, phase velocity, on-axis interaction impedance, and attenuation, for several high-frequency traveling-wave tube slow-wave circuit geometries. This research effort determined the effects of variations in circuit dimensions on cold-test performance. The parameter variations were based on the tolerances of conventional micromachining techniques.
Standing Sound Waves in a tube: Approach analysis \\& sugestions
Vieira, L P; Lara, V O M
2013-01-01
In this paper we attempt to present some questions with respect to the approach used in some brazilian mid-level textbooks on the topic of stationary sound waves in tubes. In addition to ranking the textbooks within a set of criteria, we also present some suggestions for further discussions of this topic. We suggest the use of gifs and animations and the use of two experiments that allow you to view the profiles of variation of pressure and air displacement for the harmonic modes of vibration.
The Direct Digital Modulation of Traveling Wave Tubes
Radhamohan, Ranjan S.
2004-01-01
Traveling wave tube (TWT) technology, first described by Rudolf Kompfner in the early 1940s, has been a key component of space missions from the earliest communication satellites in the 1960s to the Cassini probe today. TWTs are essentially signal amplifiers that have the special capability of operating at microwave frequencies. The microwave frequency range, which spans from approximately 500 MHz to 300 GHz, is shared by many technologies including cellular phones, satellite television, space communication, and radar. TWT devices are superior in reliability, weight, and efficiency to solid-state amplifiers at the high power and frequency levels required for most space missions. TWTs have three main components -an electron gun, slow wave structure, and collector. The electron gun generates an electron beam that moves along the length of the tube axis, inside of the slow wave circuit. At the same time, the inputted signal is slowed by its travel through the coils of the helical slow wave circuit. The interaction of the electron beam and this slowed signal produces a transfer of kinetic energy to the signal, and in turn, amplification. At the end of its travel, the spent electron beam moves into the collector where its remaining energy is dissipated as heat or harnessed for reuse. TWTs can easily produce gains in the tens of decibels, numbers that are suitable for space missions. To date, however, TWTs have typically operated at fixed levels of gain. This gain is determined by various, unchanging, physical factors of the tube. Traditionally, to achieve varying gain, an input signal s amplitude has had to first be modulated by a separate device before being fed into the TWT. This is not always desirable, as significant distortion can occur in certain situations. My mentor, Mr. Dale Force, has proposed an innovative solution to this problem called direct digital modulation . The testing and implementation of this solution is the focus of my summer internship. The
A Numerical Investigation of Peristaltic Waves in Circular Tubes
Xiao, Q.; Damodaran, M.
Peristaltic pumping is a process of fluid transport arising from the progressive waves, which travel along the walls of a flexible channel. It is a primary physiological transport mechanism that is inherent in many tubular organs of the human body such as the ureter, the gastro-intestinal tract, the urethra, and so on. Many studies exist in literature with the aim of understanding the characteristics of peristaltic flow under the assumption of low Reynolds number and infinitely long wavelength in a two-dimensional channel. However, peristaltic pumping is also the mechanism used in other industrial applications such as the blood pump for which the Reynolds number has a moderately high value. As studies concerning moderate to high Reynolds number flow in the circular tube are rare in literature, in the present study, the peristaltic flow of an incompressible fluid is numerically simulated using the finite volume method for solving the incompressible Navier-Stokes equations in primitive variable formulation by means of an infinite train of sinusoidal waves traveling along the wall of an axi-symmetric tube. The computational model presented in this work covers a wider range of Reynolds number (0.01-100), wave amplitude (0-0.8), and wavelength (0.01-0.4) than the those attempted in previous studies reported in literature and some new results pertaining to the distribution of velocity, pressure, wall shear stress for different peristaltic flow conditions characterizing flow at moderately higher Reynolds number have been obtained. The effect of the wave amplitude, wavelength, and Reynolds number on the "flow trapping" mechanism induced by peristalsis has also been investigated here for higher ranges of values of the parameters characterizing peristalsis.
A $55 Shock Tube for Simulated Blast Waves
Courtney, Elijah; Courtney, Michael
2015-01-01
Shock tubes are commonly employed to test candidate armor materials, validate numerical models, and conduct simulated blast experiments in animal models. As DoD interests desire to field wearable sensors as blast dosimeters, shock tubes may also serve for calibration and testing of these devices. The high blast pressures needed for experimental testing of candidate armors are unnecessary to test these sensors. An inexpensive, efficient, and easily available way of testing these pressure sensors is desirable. It is known that releasing compressed gas suddenly can create a repeatable shock front, and the pressures can be finely tuned by changing the pressure to which the gas is compressed. A Crosman 0.177 caliber air pistol was used (without loading any pellets) to compress and release air in one end of a 24 inch long 3/4 inch diameter standard pipe nipple to simulate a blast wave at the other end of the tube. A variable number of pumps were used to vary the peak blast pressure. As expected, the trials where 10...
Pulsed response of a traveling-wave tube
May, Brian D.
1991-01-01
The consequence of frequency-domain multiple access (FDMA) channelization in a satellite communications system is that the ground- and space-based components are often required to operate at reduced output power to prevent the generation of distortions. However, the components of a time-division multiple access (TDMA) satellite system, such as a traveling-wave tube (TWT), can operate at the highest output power because the channelization technique is relatively insensitive to the distortions resulting from saturated operation. A Hughes 30-GHz TWT was tested to determine the suitability of such a device in a TDMA system. Testing was focused on the ability of the TWT to rise up to full power at the leading edge of TDMA bursts, which were simulated by a pulse train. A Wavetek model 8502A peak power meter was used to display and measure the pulsed signal waveform. Measurements of the TWT output signal rise time indicate that the TWT lengthened the rise time by 10 to 20 nsec. Imposing a modulator turn-on time that precedes the data burst by the TWT rise time is a logical approach to coordinating the traveling-wave tube amplifier and modulator specifications.
Electronic Power Conditioner for Ku-band Travelling Wave Tube
Kowstubha, Palle; Krishnaveni, K.; Ramesh Reddy, K.
2016-07-01
A highly sophisticated regulated power supply is known as electronic power conditioner (EPC) is required to energise travelling wave tubes (TWTs), which are used as RF signal amplifiers in satellite payloads. The assembly consisting of TWT and EPC together is known as travelling wave tube amplifier (TWTA). EPC is used to provide isolated and conditioned voltage rails with tight regulation to various electrodes of TWT and makes its RF performance independent of solar bus variations which are caused due to varying conditions of eclipse and sunlit. The payload mass and their power consumption is mainly due to the existence of TWTAs that represent about 35 % of total mass and about 70-90 % (based on the type of satellite application) of overall dc power consumption. This situation ensures a continuous improvement in the design of TWTAs and their associated EPCs to realize more efficient and light products. Critical technologies involved in EPCs are design and configuration, closed loop regulation, component and material selection, energy limiting of high voltage (HV) outputs and potting of HV card etc. This work addresses some of these critical technologies evolved in realizing and testing the state of art of EPC and it focuses on the design of HV supply with a HV and high power capability, up to 6 kV and 170 WRF, respectively required for a space TWTA. Finally, an experimental prototype of EPC with a dc power of 320 W provides different voltages required by Ku-band TWT in open loop configuration.
Sausage Waves in Transversely Nonuniform Monolithic Coronal Tubes
Lopin, I.; Nagorny, I.
2015-09-01
We investigate fast sausage waves in a monolithic coronal magnetic tube, modeled as a local density inhomogeneity with a continuous radial profile. This work is a natural extension of our previous results, obtained for a slab loop model for the case of cylindrical geometry. Using Kneser’s oscillating theorem, we provided the criteria for the existence of trapped and leaky wave regimes as a function of the profile features. For a number of density profiles there are only trapped modes for the entire range of longitudinal wave numbers. The phase speed of these modes tends toward the external Alfvén speed in the long wavelength limit. The generalized results were supported by the analytic solution of the wave equation for the specific density profiles. The approximate Wentzel-Kramers-Brillouin solutions allowed us to obtain the desired dispersion relations and to study their properties as a function of the profile parameters. The multicomponent quasi-periodic pulsations in flaring loops, observed on 2001 May 2 and 2002 July 3, are interpreted in terms of the transversely fundamental trapped fast sausage mode with several longitudinal harmonics in a smooth coronal waveguide.
Traveling-Wave Tube Amplifier Model to Predict High-Order Modulation Intersymbol Interference
Kory, Carol L.; Andro, Monty; Williams, W. D. (Technical Monitor)
2001-01-01
Demands for increased data rates in satellite communications necessitate higher order modulation schemes, larger system bandwidth, and minimum distortion of the modulated signal as it is passed through the traveling wave tube amplifier (TWTA). One type of distortion that the TWTA contributes to is intersymbol interference (ISI), and this becomes particularly disruptive with wide-band, complex modulation schemes. It is suspected that in addition to the dispersion of the TWT, frequency dependent reflections due to mismatches within the TWT are a significant contributor to ISI. To experimentally investigate the effect of these mismatches within the physical TWT on ISI would be prohibitively expensive, as it would require manufacturing numerous amplifiers in addition to the acquisition of the required digital hardware. In an attempt to develop a more accurate model to correlate IS1 with the TWTA and the operational signal, a fully three-dimensional (3D), time-dependent, TWT interaction model has been developed using the electromagnetic particle-in-cell (PIC) code MAFIA (solution of Maxwell's equations by the Finite-Integration-Algorithm). The model includes a user defined slow-wave circuit with a spatially tapered region of loss to implement a sever, and spatially varied geometry (such as helical pitch) to implement a phase velocity taper. The model also includes user defined input/output coupling and an electron beam contained by solenoidal, electrostatic, or periodic permanent magnet (PPM) focusing allowing standard or novel TWTs to be investigated. This model comprehensively takes into account the effects of frequency dependent nonlinear distortions (MAM and AMPM); gain ripple due to frequency dependent reflections at the input/output coupling, severs, and mismatches from dynamic pitch variations; drive induced oscillations; harmonic generation; intermodulation products; and backward waves.
Erkaev, NV; Shaidurov, VA; Semenov, VS; Biernat, HK; Heidorn, D; Lakhina, GS
2006-01-01
A ratio of the maximal and minimal cross sections of the magnetic tube (contraction ratio) is a crucial parameter which affects very strongly on reflections of MHD wave pulses propagating along a narrowing magnetic flux tube. In cases of large contraction ratios of magnetospheric magnetic tubes, the
Harmonic Generation in a Traveling-Wave Tube
Wong, Patrick; Zhang, Peng; Lau, Y. Y.; Greening, Geoffrey; Gilgenbach, Ronald; Chernin, David; Simon, David; Hoff, Brad
2016-10-01
Crowding of electron orbits in a traveling-wave tube (TWT) may lead to significant harmonic contents in the beam current, even in the linear regime. Here, we consider a wideband TWT that exhibits gain at the second harmonic. We analytically formulate equations governing the evolution of the generation of second harmonic, including axial variations of the Pierce parameters. The second harmonic output is phase-controlled by the input signal which consists only of a fundamental frequency. Several test cases are performed and compared with simulation using the CHRISTINE code. Reasonable agreement between theory and simulation is found. Work supported by AFOSR FA9550-15-1-0097, ONR N00014-16-1-2353, and L-3 Communications Electron Device Division.
Standing waves in a partitioned tube with passive membrane
Amundsen, David E.; Cox, Edward A.; Mortell, Michael P.
2008-11-01
The propagation of waves within a tube containing disparate gases separated by a passive membrane is modeled and analyzed in the limit of weak dissipation and applied forcing. This provides a simple setting in which to study the nonlinear interactions within and between each gas and provides a paradigm for other similar physical systems such as laminated elastic materials. The associated resonant frequencies are found in terms of a linear functional equation involving a non-trivial combination of the separate natural frequencies. As expected, in the limit that the gases have the same material properties, the modes become commensurate and the model reduces to that of the classical shock tube. However sufficiently away from this limit it is seen that this structure is lost and smooth single mode resonant solutions arise. Using a perturbative approach these solutions are approximated and compared to numerical solutions of the full system. The transition between smooth and discontinuous solutions is also studied both numerically and analytically, based on a dimensionless parameter associated with the relative material difference.
Rheological fluid motion in tube by metachronal wave of cilia
Maiti, S
2013-01-01
The purpose of this paper is a theoretical study of a non-linear problem of rheological fluid transport in an axisymmetric tube by cilium. However, an attempt has been made to explain the role of cilia motion on the transport of fluid through the ductus efferentes of the male reproductive tract. Ostwald-de Waele power law viscous fluid has been considered to represent the rheological fluid to analyze pumping by means of a sequence of beat of cilia from row to row of cilia in a given row of cells and from one row of cells to the next (metachronal wave movement) under conditions for which the corresponding Reynolds number is small enough for inertial effects to be negligible and the wavelength to diameter ratio is large enough for the pressure to be considered uniform over the cross-section. Analyses and computations of the detailed fluid motions reveal that the time-averaged flow rates are directly dependent on epsilon, a non-dimensional measure involving the mean radius R of the tube and the cilia length. Thu...
New Radiation Input/Output Systems for Millimeter-Wave Gyrotron Traveling-Wave Tubes
Denisov, G. G.; Bogdashov, A. A.; Gachev, I. G.; Mishakin, S. V.; Samsonov, S. V.
2016-03-01
We consider in detail the method allowing one to input and output the microwave radiation produced by an elecrovacuum amplifier through the same barrier window, which was proposed earlier, in the context of its application in a traveling-wave tube based on a waveguide with a helically corrugated surface. Special attention is given to the splitter of differently polarized radiation, and the results of studying this splitter at wavelengths of about 6 and 1 mm theoretically and experimentally are presented.
Flexural waves in fluid-filled tubes subject to axial impact
2008-01-01
We experimentally studied the propagation of coupled fluid stress waves and tube flexural waves generated through projectile impact along the axis of a water-filled tube. We tested mild steel tubes, 38–40 mm inner diameter and wall thicknesses of 0.8 mm, 6.4 mm, and 12.7 mm. A steel impactor was accelerated using an air cannon and struck a polycarbonate buffer placed on top of the water surface within the tube. Elastic flexural waves were observed for impact speeds of 5–10 m/s and plastic wav...
Three-Dimensional Electron Optics Model Developed for Traveling-Wave Tubes
Kory, Carol L.
2000-01-01
A three-dimensional traveling-wave tube (TWT) electron beam optics model including periodic permanent magnet (PPM) focusing has been developed at the NASA Glenn Research Center at Lewis Field. This accurate model allows a TWT designer to develop a focusing structure while reducing the expensive and time-consuming task of building the TWT and hot-testing it (with the electron beam). In addition, the model allows, for the first time, an investigation of the effect on TWT operation of the important azimuthally asymmetric features of the focusing stack. The TWT is a vacuum device that amplifies signals by transferring energy from an electron beam to a radiofrequency (RF) signal. A critically important component is the focusing structure, which keeps the electron beam from diverging and intercepting the RF slow wave circuit. Such an interception can result in excessive circuit heating and decreased efficiency, whereas excessive growth in the beam diameter can lead to backward wave oscillations and premature saturation, indicating a serious reduction in tube performance. The most commonly used focusing structure is the PPM stack, which consists of a sequence of cylindrical iron pole pieces and opposite-polarity magnets. Typically, two-dimensional electron optics codes are used in the design of magnetic focusing devices. In general, these codes track the beam from the gun downstream by solving equations of motion for the electron beam in static-electric and magnetic fields in an azimuthally symmetric structure. Because these two-dimensional codes cannot adequately simulate a number of important effects, the simulation code MAFIA (solution of Maxwell's equations by the Finite-Integration-Algorithm) was used at Glenn to develop a three-dimensional electron optics model. First, a PPM stack was modeled in three dimensions. Then, the fields obtained using the magnetostatic solver were loaded into a particle-in-cell solver where the fully three-dimensional behavior of the beam
Numerical Simulations of Torsional Alfvén Waves in Axisymmetric Solar Magnetic Flux Tubes
Wójcik, D.; Murawski, K.; Musielak, Z. E.; Konkol, P.; Mignone, A.
2017-02-01
We numerically investigate Alfvén waves propagating along an axisymmetric and non-isothermal solar flux tube embedded in the solar atmosphere. The tube magnetic field is current-free and diverges with height, and the waves are excited by a periodic driver along the tube magnetic field lines. The main results are that the two wave variables, the velocity and magnetic field perturbations in the azimuthal direction, behave differently as a result of gradients of the physical parameters along the tube. To explain these differences in the wave behavior, the time evolution of the wave variables and the resulting cutoff period for each wave variable are calculated and used to determine regions in the solar chromosphere where strong wave reflection may occur.
Technique Developed for Optimizing Traveling-Wave Tubes
Wilson, Jeffrey D.
1999-01-01
A traveling-wave tube (TWT) is an electron beam device that is used to amplify electromagnetic communication waves at radio and microwave frequencies. TWT s are critical components in deep-space probes, geosynchronous communication satellites, and high-power radar systems. Power efficiency is of paramount importance for TWT s employed in deep-space probes and communications satellites. Consequently, increasing the power efficiency of TWT s has been the primary goal of the TWT group at the NASA Lewis Research Center over the last 25 years. An in-house effort produced a technique (ref. 1) to design TWT's for optimized power efficiency. This technique is based on simulated annealing, which has an advantage over conventional optimization techniques in that it enables the best possible solution to be obtained (ref. 2). A simulated annealing algorithm was created and integrated into the NASA TWT computer model (ref. 3). The new technique almost doubled the computed conversion power efficiency of a TWT from 7.1 to 13.5 percent (ref. 1).
Backward Propagation of Otoacoustic Emissions
Institute of Scientific and Technical Information of China (English)
HE Wenxuan; REN Tianying
2006-01-01
Normal mammalian ears not only detect but also generate sounds. The ear-generated sounds, I.e., otoacoustic emissions (OAEs), can be measured in the external ear canal using a tiny sensitive microphone. In spite of wide applications of OAEs in diagnosis of hearing disorders and in studies of cochlear functions, the question of how the cochlea emits sounds remains unclear. The current dominating theory is that the OAE reaches the cochlear base through a backward traveling wave. However, recently published works, including experimental data on the spatial pattern ofbasilar membrane vibrations at the emission frequency, demonstrated only forward traveling waves and no signs of backward traveling waves. These new findings indicate that the cochlea emits sounds through cochlear fluids as compression waves rather than through the basilar membrane as backward traveling waves. This article reviews different mechanisms of the backward propagation of OAEs and summarizes recent experimental results.
A Study of the Impulse Wave Discharged from the Exits of Two Parallel Tubes
Institute of Scientific and Technical Information of China (English)
Yong-Hun Kweon; Heuy-Dong Kim; Toshiaki Setoguchi; Toshiyuki Aoki
2003-01-01
The twin impulse wave leads to very complicated flow fields, such as Mach stem, spherical waves, and vortex ring. The twin impulse wave discharged from the exits of the two tubes placed in parallel is investigated to understand the detailed flow physics associated with the twin impulse wave, compared with those in a single impulse wave. In the current study, the merging phenomena and propagation characteristics of the impulse waves are investigated using a shock tube experiment and by numerical computations. The Harten-Yee's total variation diminishing (TVD) scheme is used to solve the unsteady two-dimensional compressible Euler equations. The Mach number Ms of incident shock wave is changed below 1.5 and the distance between two-parallel tubes, L/d,is changed from 1.2 to 4.0. In the shock tube experiment, the twin impulse waves are visualized by a Schlieren optical system for the purpose of validation of computational work. The results obtained show that on the symmetric axis between two-parallel tubes, the peak pressure produced by the twin impulse waves and its location strongly depend upon the distance between two-parallel tubes, L/d and the incident shock Mach number,Ms. The predicted Schlieren images represent the measured twin-impulse wave with a good accuracy.
Oblique detonation waves stabilized in rectangular-cross-section bent tubes
2011-01-01
Oblique detonation waves, which are generated by a fundamental detonation phenomenon occurring in bent tubes, may be applied to fuel combustion in high-efficiency engines such as a pulse detonation engine (PDE) and a rotating detonation engine (RDE). The present study has experimentally demonstrated that steady-state oblique detonation waves propagated stably through rectangular-cross-section bent tubes by visualizing these waves using a high-speed camera and the shadowgraph method. The obliq...
Energy Technology Data Exchange (ETDEWEB)
Baig, Anisullah; Gamzina, Diana; Barchfeld, Robert; Domier, Calvin; Barnett, Larry R.; Luhmann, Neville C. Jr. [Department of Electrical and Computer Engineering, University of California, Davis, California 95616 (United States)
2012-09-15
In this paper, we describe micro-fabrication, RF measurements, and particle-in-cell (PIC) simulation modeling analysis of the 0.22 THz double-vane half period staggered traveling wave tube amplifier (TWTA) circuit. The TWTA slow wave structure comprised of two sections separated by two sever ports loaded by loss material, with integrated broadband input/output couplers. The micro-metallic structures were fabricated using nano-CNC milling and diffusion bonded in a three layer process. The 3D optical microscopy and SEM analysis showed that the fabrication error was within 2-3 {mu}m and surface roughness was measured within 30-50 nm. The RF measurements were conducted with an Agilent PNA-X network analyzer employing WR5.1 T/R modules with a frequency range of 178-228 GHz. The in-band insertion loss (S{sub 21}) for both the short section and long section (separated by a sever) was measured as {approx}-5 dB while the return loss was generally around {approx}-15 dB or better. The measurements matched well with the S-matrix simulation analysis that predicted a 3 dB bandwidth of {approx}45 GHz with an operating frequency at 220 GHz. However, the measured S{sub 21} was {approx}3 dB less than the design values, and is attributed to surface roughness and alignment issues. The confirmation measurements were conducted over the full frequency band up to 270 GHz employing a backward wave oscillator (BWO) scalar network analyzer setup employing a BWO in the frequency range 190 GHz-270 GHz. PIC simulations were conducted for the realistic TWT output power performance analysis with incorporation of corner radius of 127 {mu}m, which is inevitably induced by nano-machining. Furthermore, the S{sub 21} value in both sections of the TWT structure was reduced to correspond to the measurements by using a degraded conductivity of 10% International Annealed Copper Standard. At 220 GHz, for an elliptic sheet electron beam of 20 kV and 0.25 A, the average output power of the tube was predicted
Propagation and dispersion of sausage wave trains in magnetic flux tubes
Oliver, R; Terradas, J
2015-01-01
A localized perturbation of a magnetic flux tube produces a pair of wave trains that propagate in opposite directions along the tube. These wave packets disperse as they propagate, where the extent of dispersion depends on the physical properties of the magnetic structure, on the length of the initial excitation, and on its nature (e.g., transverse or axisymmetric). In Oliver et al. (2014) we considered a transverse initial perturbation, whereas the temporal evolution of an axisymmetric one is examined here. In both papers we use a method based on Fourier integrals to solve the initial value problem. Previous studies on wave propagation in magnetic wave guides have emphasized that the wave train dispersion is influenced by the particular dependence of the group velocity on the longitudinal wavenumber. Here we also find that long initial perturbations result in low amplitude wave packets and that large values of the magnetic tube to environment density ratio yield longer wave trains. To test the detectability ...
Calculation and analysis of solitary waves and kinks in elastic tubes
2013-01-01
The paper is devoted to analysis of different models that describe waves in fluid-filled and gas-filled elastic tubes and development of methods of calculation and numerical analysis of solutions with solitary waves and kinks for these models. Membrane model and plate model are used for tube. Two types of solitary waves are found. One-parametric families are stable and may be used as shock structures. Null-parametric solitary waves are unstable. The process of split of such solitary waves is ...
Experimental Investigation of Broadband Vaned Helix Traveling-Wave Tube
Kim, Hae Jin; Jang, Lae Bong; Seo, Won Bum; Choi, Jin Joo
2006-01-01
A broadband helical traveling-wave-tube (TWT) amplifier for microwave power module (MPM) applications is designed using high frequency structure simulation (HFSS) and LMsuite code. The LMsuite, which is a one-dimensional nonlinear code, was utilized to predict the nonlinear, large-signal performance of the helical TWT. Simulations predict that an output power of 22.6 W is produced when an input power of 63.1 mW is injected at 10 GHz, corresponding to a saturated gain of 25.5 dB. The saturated bandwidth is predicted to be 6-17 GHz. Experiments on a fabricated TWT show that an output power of 18.7 W is produced when an input power of 42.6 mW is injected at 10 GHz, corresponding to a saturated gain of 26.4 dB. The saturated bandwidth is measured to be 6-16 GHz. AM/PM distortion is up to 6°/dB at a drive level 6 dB below the saturation input power. The third-order intermodulation distortion (IMD) ratio is -19 dBc at a 10 dB backoff from the P1 dB point when two-tone signals of 12 and 12.005 GHz are injected at equal amplitude.
Development of a dual mode satellite traveling wave tube 11GHz, 12W/6W
Deml, L.
1981-02-01
A high power 11GHz dual mode traveling wave tube (TWT) was developed for use in communication satellites. The tube is based on the technology of previous space-qualified tubes (TL12006, TL12022, and TL12025). The tube operates at 12 or 6W, separated by 3dB, without a dramatic efficiency loss in the low power mode. Gain, efficiency and nonlinear distortion criteria are all met, by channel tuning the tube within the operating band (from 10.9 to 11.8 GHz). The channel bandwidth is 100MHz.
Validation of an analytical compressed elastic tube model for acoustic wave propagation
Van Hirtum, A.; Blandin, R.; Pelorson, X.
2015-12-01
Acoustic wave propagation through a compressed elastic tube is a recurrent problem in engineering. Compression of the tube is achieved by pinching it between two parallel bars so that the pinching effort as well as the longitudinal position of pinching can be controlled. A stadium-based geometrical tube model is combined with a plane wave acoustic model in order to estimate acoustic wave propagation through the elastic tube as a function of pinching effort, pinching position, and outlet termination (flanged or unflanged). The model outcome is validated against experimental data obtained in a frequency range from 3.5 kHz up to 10 kHz by displacing an acoustic probe along the tube's centerline. Due to plane wave model assumptions and the decrease of the lowest higher order mode cut-on frequency with increasing pinching effort, the difference between modeled and measured data is analysed in three frequency bands, up to 5 kHz, 8 kHz, and 9.5 kHz, respectively. It is seen that the mean and standard error within each frequency band do not significantly vary with pinching effort, pinching position, or outlet termination. Therefore, it is concluded that the analytical tube model is suitable to approximate the elastic tube geometry when modeling acoustic wave propagation through the pinched elastic tube with either flanged or unflanged termination.
Evaluation of Some Slow-wave Vane Structures for Aminiature Traveling-wave Tube at 30 Ghz
Kavanagh, Frank; Ebihara, Ben; Wallett, Thomas M.; Dayton, James A., Jr.
1994-01-01
The dispersion characteristics of six vane type slow wave structures were experimentally measured near 1 GHz to determine applicability in an electrostatically focused 30 GHz miniature traveling wave tube (TWT). From the measured results, the trapezoidal vane structure appeared to be the most promising exhibiting an interaction impedance equal to 337.9 ohms at beta(L)/pi equal to 0.3. A 30 GHz trapezoidal vane structure with coupling irises was fabricated using electrical discharge machining (EDM). This structure, however, was too lossy for a short electrostatically focused tube, but several of the structures are amenable to a tube with permanent magnetic focusing.
Final Report: Guided Acoustic Wave Monitoring of Corrosion in Recovery Boiler Tubing
Energy Technology Data Exchange (ETDEWEB)
Chinn, D J; Quarry, M J; Rose, J L
2005-03-31
Corrosion of tubing used in black-liquor recovery boilers is a major concern in all pulp and paper mills. Extensive corrosion in recovery boiler tubes can result in a significant safety and environmental hazard. Considerable plant resources are expended to inspect recovery boiler tubing. Currently, visual and ultrasonic inspections are primarily used during the annual maintenance shutdown to monitor corrosion rates and cracking of tubing. This Department of Energy, Office of Industrial Technologies project is developing guided acoustic waves for use on recovery boiler tubing. The feature of this acoustic technique is its cost-effectiveness in inspecting long lengths of tubes from a single inspection point. A piezoelectric or electromagnetic transducer induces guided waves into the tubes. The transducer detects fireside defects from the cold side or fireside of the tube. Cracking and thinning on recovery boiler tubes have been detected with this technique in both laboratory and field applications. This technique appears very promising for recovery boiler tube application, potentially expediting annual inspection of tube integrity.
Yeh, Cheng-Hung; Yang, Che-Hua
2011-05-01
Guided waves propagating in cylindrical tubes are frequently applied for the characterization of material or geometrical properties of tubes. In a tube, guided waves can propagate in the axial direction and called axial guided waves, or in the circumferential direction called circumferential guided waves. Dispersion spectra for the axial and circumferential guided waves share some common behaviors and however exhibit some particular behaviors of their own. This study provides an investigation with theoretical modeling, experimental measurements, and a simplex-based inversion procedure to explore the similarity and difference between the axial guided waves and circumferential guided waves, aiming at providing useful information while axial and circumferential guided waves are applied in the area of material characterization. The sensitivity to the radius curvature for the circumferential guided waves dispersion spectra is a major point that makes circumferential guided waves different from axial guided waves. For the purpose of material characterization, both axial and circumferential guided waves are able to extract an elastic moduli and wall-thickness information from the dispersion spectra, however, radius information can only be extracted from the circumferential guided waves spectra.
Propagation of Long-Wavelength Nonlinear Slow Sausage Waves in Stratified Magnetic Flux Tubes
Barbulescu, M.; Erdélyi, R.
2016-05-01
The propagation of nonlinear, long-wavelength, slow sausage waves in an expanding magnetic flux tube, embedded in a non-magnetic stratified environment, is discussed. The governing equation for surface waves, which is akin to the Leibovich-Roberts equation, is derived using the method of multiple scales. The solitary wave solution of the equation is obtained numerically. The results obtained are illustrative of a solitary wave whose properties are highly dependent on the degree of stratification.
Decay of weak pressure waves in a low-pressure tube
Energy Technology Data Exchange (ETDEWEB)
Takiya, Toshio; Terada, Yukihiro; Komura, Akio [Hitachi Zosen Corp., Osaka (Japan); Higashino, Fumio; Abe, Hideaki; Ando, Masami
1997-05-01
In this study, the characteristics of pressure wave propagation in a vacuum tube have been investigated experimentally from the viewpoint of vacuum protection in the beamlines of a synchrotron radiation facility. Baffle plates having a single orifice of 5, 10 or 15 mm in diameter were installed in shock tubes 5 m in length and 36.6 or 68.8 mm in diameter, in order to slow the pressure wave or shock wave propagation, as a model for the beamline. To evaluate the decay of pressure waves, pressure changes with time at several locations along the side wall as well as at the end wall of the tube were measured. The results showed that the effect of the orifices on pressure wave propagation and its decay was significant. The present investigation may contribute to the design and construction of high-energy synchrotron radiation facilities with long beamlines. (author)
Surface and body waves in magnetic flux tubes. [in solar convection zone, photosphere, and corona
Abdelatif, T. E.
1988-01-01
The dispersion relation of surface and body waves in a magnetic flux tube is studied in detail. The properties of the fast and slow bodywaves are described in terms of the filtering characteristics of the flux tube. In addition to the axisymmetric and nonaxisymmetric distinction between the modes, an additional distinction is made between the fundamental mode and the rest of the modes. New results concerning the thin and large flux tube approximation are derived. The behavior of surface and body waves in the solar convection zone, photosphere, and corona is discussed.
Low-frequency pressure wave propagation in liquid-filled, flexible tubes. (A)
DEFF Research Database (Denmark)
Bjørnø, Leif; Bjelland, C.
1992-01-01
A model has been developed for propagation of low-frequency pressure waves in viscoelastic tubes with distensibility of greater importance than compressibility of the liquid. The dispersion and attenuation are shown to be strongly dependent on the viscoelastic properties of the tube wall....... The complex, frequency-dependent moduli of relevant tube materials have been measured in a series of experiments using three different experimental procedures, and the data obtained are compared. The three procedures were: (1) ultrasonic wave propagation, (2) transversal resonance in bar samples, and (3......) moduli determined by stress wave transfer function measurements in simple extension experiments. The moduli are used in the model to produce realistic dispersion relations and frequency dependent attenuation. Signal transfer functions between positions in the liquid-filled tube can be synthesized from...
DEFF Research Database (Denmark)
Bjelland, C; Bjarnø, Leif
1992-01-01
A model for wave propagation in a liquid-filled viscoelastic tube with arrays of receivers inside, is being used to analyze the influence of noise generated by in-line vibrational noise sources. In this model, distensibility is of greater importance than compressibility of the liquid....... The dispersion and attenuation is shown to be strongly dependent on the viscoelastic properties of the tube wall. The complex, frequency-dependent moduli of relevant tube materials have been measured in stress wave transfer function experiments. The moduli are used in the model to produce realistic dispersion...... relations and frequency-dependent attenuation. A 12-m-long, liquid-filled tube with interior stress members and connectors in each end is hanging vertically from an upper fixture. The lower end connector is excited by a power vibrator to generate the relevant wave modes. Measurements with reference...
Study on Propagation Characteristics of Plasma Surface Wave in Medium Tube
Institute of Scientific and Technical Information of China (English)
WANG Shiqing; YAN Zelin; LI Wenzhong; LIU Jian; LI Jian; XU Lingfei
2008-01-01
Axial propagation characteristics of the axisymmetric surface wave along the plasma in the medium tube were studied. The expressions of electromagnetic field inside and outside the medium tube were deduced. Also, the impacts of several factors, such as plasma density, signal frequency, inner radius of medium tube, collision frequency, etc., on plasma surface wave propa-gation were numerically simulated. The results show that, the properties of plasma with higher density and .lower gas pressure are closer to those of metal conductor. Furthermore, larger radius of medium tube and lower signal frequency are better for surface wave propagation. However, the effect of collision frequency is not obvious. The optimized experimental parameters can be chosen as the plasma density of about 1017 m-3 and the medium radius between 11 mm and 19 mm.
Treanor, C. E.; Hall, J. G.
1982-10-01
The present conference on shock tubes and waves considers shock tube drivers, luminous shock tubes, shock tube temperature and pressure measurement, shock front distortion in real gases, nonlinear standing waves, transonic flow shock wave turbulent boundary interactions, wall roughness effects on reflected shock bifurcation, argon thermal conductivity, pattern generation in gaseous detonations, cylindrical resonators, shock tunnel-produced high gain lasers, fluid dynamic aspects of laser-metal interaction, and the ionization of argon gas behind reflected shock waves. Also discussed are the ionization relaxation of shock-heated plasmas and gases, discharge flow/shock tube studies of singlet oxygen, rotational and vibrational relaxation, chemiluminescence thermal and shock wave decomposition of hydrogen cyanide and hydrogen azide, shock wave structure in gas-particle mixtures at low Mach numbers, binary nucleation in a Ludwieg tube, shock liquefaction experiments, pipeline explosions, the shock wave ignition of pulverized coal, and shock-initiated methane combustion.
On the propagation mechanism of a detonation wave in a round tube with orifice plates
Ciccarelli, G.; Cross, M.
2016-09-01
This study deals with the investigation of the detonation propagation mechanism in a circular tube with orifice plates. Experiments were performed with hydrogen air in a 10-cm-inner-diameter tube with the second half of the tube filled with equally spaced orifice plates. A self-sustained Chapman-Jouguet (CJ) detonation wave was initiated in the smooth first half of the tube and transmitted into the orifice-plate-laden second half of the tube. The details of the propagation were obtained using the soot-foil technique. Two types of foils were used between obstacles, a wall-foil placed on the tube wall, and a flat-foil (sooted on both sides) placed horizontally across the diameter of the tube. When placed after the first orifice plate, the flat foil shows symmetric detonation wave diffraction and failure, while the wall foil shows re-initiation via multiple local hot spots created when the decoupled shock wave interacts with the tube wall. At the end of the tube, where the detonation propagated at an average velocity much lower than the theoretical CJ value, the detonation propagation is much more asymmetric with only a few hot spots on the tube wall leading to local detonation initiation. Consecutive foils also show that the detonation structure changes after each obstacle interaction. For a mixture near the detonation propagation limit, detonation re-initiation occurs at a single wall hot spot producing a patch of small detonation cells. The local overdriven detonation wave is short lived, but is sufficient to keep the global explosion front propagating. Results associated with the effect of orifice plate blockage and spacing on the detonation propagation mechanism are also presented.
The Rubens Tube: A Flaming Good Way to Teach Waves
Sandoval, Christopher
2013-01-01
The Ruben Flame Tube is named after H. Ruben, who published the demonstration experiment in "Annalen der Physik" in 1905. This article presents one of the many demonstrations the author uses to engage, motivate, and challenge his students.
Large Amplitude Solitary Waves in a Fluid－Filled Elastic Tube
Institute of Scientific and Technical Information of China (English)
DUANWen-Shah
2003-01-01
By usign the potential method to a fluid filled elastic tube, we obtained a solitary wave solution.Compared with recluetive perturbation method, this method can be used for larger amplitude solitary waves. The result is in agreement with that of small amplitude approximation from reduetive perturbation method when the amplitude is small enough.
Large Amplitude Solitary Waves in a Fluid-Filled Elastic Tube
Institute of Scientific and Technical Information of China (English)
DUAN Wen-Shan
2003-01-01
By using the potential method to a fluid filled elastic tube, we obtained a solitary wave solution. Comparedwith reductive perturbation method, this method can be used for larger amplitude solitary waves. The result is inagreement with that of small amplitude approximation from reductive perturbation method when the amplitude is smallenough.
Discharge of a shock Wave from an Open End of a Tube
Institute of Scientific and Technical Information of China (English)
HideoKashimura; HiroyasuNakayama; 等
2000-01-01
When a pressure wave propagates along a constant area straight tube and reaches at the open end,an impulsive wave is emitted outwared from the tube exit toward the surrounding area and causes an impulsive noise like a sonic oom.In order to clarify the magnitude of an impulsive wave obtainde by the discharge of a weak shock wave from an open end of a tube in relation to the noise problem and the industrial devices,the experimental and numerical investigations have been carried out for various strength of a shock wave.A simple open end shock tuby with the flange at the tube exit was used and the numerical calculation using the TVD scheme was performed.The effective equations which concerns with the magnitude of an impulsive wave generated by the emission of a shock wave have been obtained from the procedure of the open end correction based on the aeroacoustic theory and the numerical results.The influence of open end correction length and the diameter of a flange on the magnitude of an impulsive wave has been discussed.
Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects.
Courtney, Amy C; Andrusiv, Lubov P; Courtney, Michael W
2012-04-01
This paper describes the development and characterization of modular, oxy-acetylene driven laboratory scale shock tubes. Such tools are needed to produce realistic blast waves in a laboratory setting. The pressure-time profiles measured at 1 MHz using high-speed piezoelectric pressure sensors have relevant durations and show a true shock front and exponential decay characteristic of free-field blast waves. Descriptions are included for shock tube diameters of 27-79 mm. A range of peak pressures from 204 kPa to 1187 kPa (with 0.5-5.6% standard error of the mean) were produced by selection of the driver section diameter and distance from the shock tube opening. The peak pressures varied predictably with distance from the shock tube opening while maintaining both a true blast wave profile and relevant pulse duration for distances up to about one diameter from the shock tube opening. This shock tube design provides a more realistic blast profile than current compression-driven shock tubes, and it does not have a large jet effect. In addition, operation does not require specialized personnel or facilities like most blast-driven shock tubes, which reduces operating costs and effort and permits greater throughput and accessibility. It is expected to be useful in assessing the response of various sensors to shock wave loading; assessing the reflection, transmission, and absorption properties of candidate armor materials; assessing material properties at high rates of loading; assessing the response of biological materials to shock wave exposure; and providing a means to validate numerical models of the interaction of shock waves with structures. All of these activities have been difficult to pursue in a laboratory setting due in part to lack of appropriate means to produce a realistic blast loading profile.
Theoretical analysis of a relativistic travelling wave tube filled with plasma
Institute of Scientific and Technical Information of China (English)
Xie Hong-Quan; Liu Pu-Kun
2007-01-01
A cold and uniform plasma-filled travelling wave tube with sinusoidally corrugated slow wave structure is driven by a finite thick annular intense relal:ivistic electron beam with the entire system immersed in a strong longitudinal magnetic field.By means of the linear field theory,the dispersion relation for the relativistic travelling wave tube (RTWT) is derived.By numerical computation,the dispersion characteristics of the RTWT are analysed in difierent cases of various geometric parameters of the slow wave structure and plasma densities.Also the gain versus frequency for three difierent plasma densities and the peak gain of the tube versus plasma density are analysed.Some useful results are obtained on the basis of the discussion.
Institute of Scientific and Technical Information of China (English)
MIN Qi; YIN Yao; LI Xiaodong; LIU Ke
2011-01-01
A standing-wave tube with tapered section （STTS） was evolved from a standingwave tube with abrupt section （STAS） whose abrupt section was replaced with tapered section. The research was intended to compare the acoustic properties and the extremely nonlinear pure standing waves of STTS with those of STAS. The acoustic properties of the STTS were studied with transfer matrix. It was proved, like the STAS, that the STTS was dissonant standingwave tube. With its dissonant property, the 181 dB extremely nonlinear pure standing wave was obtained in the STTS excited at its first resonance frequency. Then the comparative experimental studies on the saturation properties of the extremely nonlinear standing waves were carried out in the STTS and the STAS with the same length. It was found that the STTS could suppress the harmonics and meanwhile reduce energy loss of the standing wave more effectively. Compared with the STAS, under the same voltage of loudspeaker, the STTS obtained a higher extremely nonlinear pure standing wave. Moreover, it was found for the STTS that the third harmonic of the third resonance frequency was close to the seventh resonance frequency of sound source impedance, to which the valley value of the sound pressure level transfer function corresponded. Because of this, the third harmonic increased rapidly with the increase of fundamental wave and tended to saturate.
PROPAGATION AND DISPERSION OF SAUSAGE WAVE TRAINS IN MAGNETIC FLUX TUBES
Energy Technology Data Exchange (ETDEWEB)
Oliver, R.; Terradas, J. [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Ruderman, M. S., E-mail: ramon.oliver@uib.es [School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)
2015-06-10
A localized perturbation of a magnetic flux tube produces wave trains that disperse as they propagate along the tube, where the extent of dispersion depends on the physical properties of the magnetic structure, on the length of the initial excitation, and on its nature (e.g., transverse or axisymmetric). In Oliver et al. we considered a transverse initial perturbation, whereas the temporal evolution of an axisymmetric one is examined here. In both papers we use a method based on Fourier integrals to solve the initial value problem. We find that the propagating wave train undergoes stronger attenuation for longer axisymmetric (or shorter transverse) perturbations, while the internal to external density ratio has a smaller effect on the attenuation. Moreover, for parameter values typical of coronal loops axisymmetric (transverse) wave trains travel at a speed 0.75–1 (1.2) times the Alfvén speed of the magnetic tube. In both cases, the wave train passage at a fixed position of the magnetic tube gives rise to oscillations with periods of the order of seconds, with axisymmetric disturbances causing more oscillations than transverse ones. To test the detectability of propagating transverse or axisymmetric wave packets in magnetic tubes of the solar atmosphere (e.g., coronal loops, spicules, or prominence threads) a forward modeling of the perturbations must be carried out.
Propagation and Dispersion of Sausage Wave Trains in Magnetic Flux Tubes
Oliver, R.; Ruderman, M. S.; Terradas, J.
2015-06-01
A localized perturbation of a magnetic flux tube produces wave trains that disperse as they propagate along the tube, where the extent of dispersion depends on the physical properties of the magnetic structure, on the length of the initial excitation, and on its nature (e.g., transverse or axisymmetric). In Oliver et al. we considered a transverse initial perturbation, whereas the temporal evolution of an axisymmetric one is examined here. In both papers we use a method based on Fourier integrals to solve the initial value problem. We find that the propagating wave train undergoes stronger attenuation for longer axisymmetric (or shorter transverse) perturbations, while the internal to external density ratio has a smaller effect on the attenuation. Moreover, for parameter values typical of coronal loops axisymmetric (transverse) wave trains travel at a speed 0.75-1 (1.2) times the Alfvén speed of the magnetic tube. In both cases, the wave train passage at a fixed position of the magnetic tube gives rise to oscillations with periods of the order of seconds, with axisymmetric disturbances causing more oscillations than transverse ones. To test the detectability of propagating transverse or axisymmetric wave packets in magnetic tubes of the solar atmosphere (e.g., coronal loops, spicules, or prominence threads) a forward modeling of the perturbations must be carried out.
Traveling-Wave Tube Amplifier for THz Frequencies
DEFF Research Database (Denmark)
Kotiranta, Mikko; Krozer, Viktor; Zhurbenko, Vitaliy
tubes and gas lasers, but the ones available are too expensive or large for many applications. This work is related to the European project OPTHER (Optically driven terahertz amplifiers) which aims to realise a compact, powerful and efficient vacuum tube amplifier for the frequency range of 0.3 – 2......The lack of a compact and powerful terahertz source has been hindering the application of terahertz radiation in many fields. Frequency multipliers can be used in conjunction with an electronic solid-state source to obtain power levels up to around 1 mW. A higher power may be generated with vacuum...
A three-dimensional time-dependent theory for helix traveling wave tubes in beam-wave interaction
Institute of Scientific and Technical Information of China (English)
Peng Wei-Feng; Hu Yu-Lu; Yang Zhong-Hai; Li Jian-Qing; Lu Qi-Ru; Li Bin
2011-01-01
This paper presents a three-dimensional time-dependent nonlinear theory of helix traveling wave tubes for beam-wave interaction. The radio frequency electromagnetic fields are represented as the superposition of azimuthally symmetric Waves in a vacuum sheath helix. Coupling impedance is introduced to the electromagnetic field equations' stimulating sources, which makes the theory easier and more flexible to realize. The space charge fields are calculated by electron beam space-charge waves expressed as the superposition solutions of Helmholtz equations. The focusing forces due to either a solenoidal field or a periodic permanent magnetic field is also included. The dynamical equations of electrons are Lorentz equations associating with electromagnetic fields, focusing fields and space-charge fields. The numerically simulated results of a tube are presented.
Phase linearity of the 914H coupled-cavity traveling wave tube
Kavanagh, Frank E.
1994-01-01
Tests of phase deviation from linearity were made on two 914H coupled-cavity traveling wave tubes (TWT). One tube had a voltage standing wave ratio (VSWR) of 2.4 and the other 1.4. The data showed that phase deviation is primarily a function of the amplitude and shape of the output VSWR. It was predicted that the low-VSWR tube would give a better system performance than the tube with a high VSWR. This prediction was confirmed by the Advanced Communications Technology Satellite (ACTS) system tests performed at the NASA Lewis Research Center. A possible improvement in the construction and stability of coupled-cavity TWT's is discussed.
Simons, Rainee N.; Wintucky, Edwin G.
2014-01-01
This paper presents the design and test results of a CW millimeter-wave satellite beacon source, based on the second harmonic from a traveling-wave tube amplifier and utilizes a novel waveguide multimode directional coupler. A potential application of the beacon source is for investigating the atmospheric effects on Q-band (37-42 GHz) and V/W-band (71- 76 GHz) satellite-to-ground signals.
THE INTERACTION BETWEEN SHOCK WAVES AND SOLID SPHERES ARRAYS IN A SHOCK TUBE
Institute of Scientific and Technical Information of China (English)
SHI Honghui; Kazuki YAMAMURA
2004-01-01
When a shock wave interacts with a group of solid spheres, non-linear aerodynamic behaviors come into effect. The complicated wave reflections such as the Mach reflection occur in the wave propagation process. The wave interactions with vortices behind each sphere's wake cause fluctuation in the pressure profiles of shock waves. This paper reports an experimental study for the aerodynamic processes involved in the interaction between shock waves and solid spheres. A schlieren photography was applied to visualize the various shock waves passing through solid spheres. Pressure measurements were performed along different downstream positions. The experiments were conducted in both rectangular and circular shock tubes. The data with respect to the effect of the sphere array,size, interval distance, incident Mach number, etc., on the shock wave attenuation were obtained.
Plasma Shock Wave Modification Experiments in a Temperature Compensated Shock Tube
Vine, Frances J.; Mankowski, John J.; Saeks, Richard E.; Chow, Alan S.
2003-01-01
A number of researchers have observed that the intensity of a shock wave is reduced when it passes through a weakly ionized plasma. While there is little doubt that the intensity of a shock is reduced when it propagates through a weakly ionized plasma, the major question associated with the research is whether the reduction in shock wave intensity is due to the plasma or the concomitant heating of the flow by the plasma generator. The goal of this paper is to describe a temperature compensated experiment in a "large" diameter shock tube with an external heating source, used to control the temperature in the shock tube independently of the plasma density.
THE EFFECTS OF AREA CONTRACTION ON SHOCK WAVE STRENGTH AND PEAK PRESSURE IN SHOCK TUBE
Directory of Open Access Journals (Sweden)
A. M. Mohsen
2012-06-01
Full Text Available This paper presents an experimental investigation into the effects of area contraction on shock wave strength and peak pressure in a shock tube. The shock tube is an important component of the short duration, high speed fluid flow test facility, available at the Universiti Tenaga Nasional (UNITEN, Malaysia. The area contraction was facilitated by positioning a bush adjacent to the primary diaphragm section, which separates the driver and driven sections. Experimental measurements were performed with and without the presence of the bush, at various diaphragm pressure ratios, which is the ratio of air pressure between the driver (high pressure and driven (low pressure sections. The instantaneous static pressure variations were measured at two locations close to the driven tube end wall, using high sensitivity pressure sensors, which allow the shock wave strength, shock wave speed and peak pressure to be analysed. The results reveal that the area contraction significantly reduces the shock wave strength, shock wave speed and peak pressure. At a diaphragm pressure ratio of 10, the shock wave strength decreases by 18%, the peak pressure decreases by 30% and the shock wave speed decreases by 8%.
Pressure wave propagation in fluid-filled co-axial elastic tubes. Part 1: Basic theory.
Berkouk, K; Carpenter, P W; Lucey, A D
2003-12-01
Our work is motivated by ideas about the pathogenesis of syringomyelia. This is a serious disease characterized by the appearance of longitudinal cavities within the spinal cord. Its causes are unknown, but pressure propagation is probably implicated. We have developed an inviscid theory for the propagation of pressure waves in co-axial, fluid-filled, elastic tubes. This is intended as a simple model of the intraspinal cerebrospinal-fluid system. Our approach is based on the classic theory for the propagation of longitudinal waves in single, fluid-filled, elastic tubes. We show that for small-amplitude waves the governing equations reduce to the classic wave equation. The wave speed is found to be a strong function of the ratio of the tubes' cross-sectional areas. It is found that the leading edge of a transmural pressure pulse tends to generate compressive waves with converging wave fronts. Consequently, the leading edge of the pressure pulse steepens to form a shock-like elastic jump. A weakly nonlinear theory is developed for such an elastic jump.
Autonomous generation of a thermoacoustic solitary wave in an air-filled tube
Shimizu, Dai; Sugimoto, Nobumasa
2016-10-01
Experiments are performed to demonstrate the autonomous generation of an acoustic solitary wave in an air-filled, looped tube with an array of Helmholtz resonators. The solitary wave is generated spontaneously due to thermoacoustic instability by a pair of stacks installed in the tube and subject to a temperature gradient axially. No external drivers are used to create initial disturbances. Once the solitary wave is generated, it keeps on propagating to circulate along the loop endlessly. The stacks, which are made of ceramics and of many pores of square cross section, are placed in the tube diametrically on exactly the opposite side of the loop, and they are sandwiched by hot and cold (ambient) heat exchangers. When the temperature gradient along both stacks is appropriate, pulses of smooth profiles are generated and propagated in both directions of the tube. From good agreements of not only the pressure profile measured but also the propagation speed with the theory, the pulse is identified as the acoustic solitary wave, and it can be called thermoacoustic solitary wave or thermoacoustic soliton corresponding to the soliton solution of the K-dV equation in one limit.
Linear MHD Wave Propagation in Time-Dependent Flux Tube. III. Leaky Waves in Zero-Beta Plasma
Williamson, A.; Erdélyi, R.
2016-01-01
In this article, we evaluate the time-dependent wave properties and the damping rate of propagating fast magneto-hydrodynamic (MHD) waves when energy leakage into a magnetised atmosphere is considered. By considering a cold plasma, initial investigations into the evolution of MHD wave damping through this energy leakage will take place. The time-dependent governing equations have been derived previously in Williamson and Erdélyi (2014a, Solar Phys. 289, 899 - 909) and are now solved when the assumption of evanescent wave propagation in the outside of the waveguide is relaxed. The dispersion relation for leaky waves applicable to a straight magnetic field is determined in both an arbitrary tube and a thin-tube approximation. By analytically solving the dispersion relation in the thin-tube approximation, the explicit expressions for the temporal evolution of the dynamic frequency and wavenumber are determined. The damping rate is, then, obtained from the dispersion relation and is shown to decrease as the density ratio increases. By comparing the decrease in damping rate to the increase in damping for a stationary system, as shown, we aim to point out that energy leakage may not be as efficient a damping mechanism as previously thought.
Viscous Shear Layers Formed by Non-Bifurcating Shock Waves in Shock-Tubes
Grogan, Kevin; Ihme, Matthias
2015-11-01
Shock-tubes are test apparatuses that are used extensively for chemical kinetic measurements. Under ideal conditions, shock-tubes provide a quiescent region behind a reflected shock wave where combustion may take place without complications arising from gas-dynamic effects. However, due to the reflected shock wave encountering a boundary layer, significant inhomogeneity may be introduced into the test region. The bifurcation of the reflected shock-wave is well-known to occur under certain conditions; however, a viscous shear layer may form behind a non-bifurcating reflected shock wave as well and may affect chemical kinetics and ignition of certain fuels. The focus of this talk is on the development of the viscous shear layer and the coupling to the ignition in the regime corresponding to the negative temperature conditions.
Wintucky, Edwin G.; Simons, Rainee N.
2014-01-01
This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler fabricated from two dissimilar waveguides is capable of isolating the power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT). In addition to accurate power measurements at harmonic frequencies, a potential application of the MDC is in the design of a beacon source for atmospheric propagation studies at millimeter-wave frequencies.
Using wave intensity analysis to determine local reflection coefficient in flexible tubes.
Li, Ye; Parker, Kim H; Khir, Ashraf W
2016-09-06
It has been shown that reflected waves affect the shape and magnitude of the arterial pressure waveform, and that reflected waves have physiological and clinical prognostic values. In general the reflection coefficient is defined as the ratio of the energy of the reflected to the incident wave. Since pressure has the units of energy per unit volume, arterial reflection coefficient are traditionally defined as the ratio of reflected to the incident pressure. We demonstrate that this approach maybe prone to inaccuracies when applied locally. One of the main objectives of this work is to examine the possibility of using wave intensity, which has units of energy flux per unit area, to determine the reflection coefficient. We used an in vitro experimental setting with a single inlet tube joined to a second tube with different properties to form a single reflection site. The second tube was long enough to ensure that reflections from its outlet did not obscure the interactions of the initial wave. We generated an approximately half sinusoidal wave at the inlet of the tube and took measurements of pressure and flow along the tube. We calculated the reflection coefficient using wave intensity (RdI and RdI(0.5)) and wave energy (RI and RI(0.5)) as well as the measured pressure (RdP) and compared these results with the reflection coefficient calculated theoretically based on the mechanical properties of the tubes. The experimental results show that the reflection coefficients determined by all the techniques we studied increased or decreased with distance from the reflection site, depending on the type of reflection. In our experiments, RdP, RdI(0.5) and RI(0.5) are the most reliable parameters to measure the mean reflection coefficient, whilst RdI and RI provide the best measure of the local reflection coefficient, closest to the reflection site. Additional work with bifurcations, tapered tubes and in vivo experiments are needed to further understand, validate the method
Traveling wave tube measurements for low-frequency properties of underwater acoustic materials
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A traveling wave tube measurement technique for measuring acoustic properties of underwater acoustic materials was developed. Water temperature and pressure environments of the ocean can be simulated in a water-filled tube, and the acoustic parameters of samples of underwater acoustic materials are measured in the range of low-frequency. A tested sample is located at central position of the tube. A pair of projectors is separately located at both ends of the tube. Using an active anechoic technique, the sound wave transmitting the tested sample is hardly reflected by the surface of secondary transducer. So the traveling sound field is built up in the tube. By separately calculating the transfer functions of every pair of double hydrophones in the sound fields from the both sides of the sample, its reflection coefficients and transmission coefficients are obtained. In the measurement system, the inside diameter of the tube is Φ208 mm, the working frequency range is from 100 to 4000 Hz, the maximum pressure is 5 MPa. The reflection coefficients and transmission coefficients of a water layer and a stainless steel layer samples are measured actually and calculated theoretically. The results show that the measured values are in good agreement with the values calculated, and the measurement uncertainty is not greater than 1.5 dB.
Nonlinear mhd simulations of wave dissipation in flux tubes
Poedts, S.; Toth, G.; Belien, A. J. C.; Goedbloed, J. P.
1997-01-01
The phase mixing and resonant dissipation of Alfven waves is studied in both the 'closed' magnetic loops and the 'open' coronal holes observed in the hot solar corona. The resulting energy transfer from large to small length scales contributes to the heating of these magnetic str
An interleaved structure for a high-voltage planar transformer for a Travelling-wave Tube
DEFF Research Database (Denmark)
Zhao, Bin; Wang, Gang; Hurley, William G.;
2016-01-01
is proposed to reduce leakage inductance and the insulation’s thickness is adjusted to optimize the electric isolation. In addition, the resistance and parasitic capacitance are investigated. With this method, a planar transformer used for a Travelling-Wave Tube Amplifier (TWTA) is designed. Calculations...
Studies on an improved indigenous pressure wave generator and its testing with a pulse tube cooler
Jacob, S.; Karunanithi, R.; Narsimham, G. S. V. L.; Kranthi, J. Kumar; Damu, C.; Praveen, T.; Samir, M.; Mallappa, A.
2014-01-01
Earlier version of an indigenously developed Pressure Wave Generator (PWG) could not develop the necessary pressure ratio to satisfactorily operate a pulse tube cooler, largely due to high blow by losses in the piston cylinder seal gap and due to a few design deficiencies. Effect of different parameters like seal gap, piston diameter, piston stroke, moving mass and the piston back volume on the performance is studied analytically. Modifications were done to the PWG based on analysis and the performance is experimentally measured. A significant improvement in PWG performance is seen as a result of the modifications. The improved PWG is tested with the same pulse tube cooler but with different inertance tube configurations. A no load temperature of 130 K is achieved with an inertance tube configuration designed using Sage software. The delivered PV power is estimated to be 28.4 W which can produce a refrigeration of about 1 W at 80 K.
Helical waves and non-linear dynamics of fluid/structure interactions in a tube row
Energy Technology Data Exchange (ETDEWEB)
Moon, F.C.; Thothadri, M. [Cornell Univ., Ithaca, NY (United States)
1997-12-31
The goal of this study has been to investigate low-dimensional models for fluid-structure dynamics of flow across a row of cylindrical tubes. Four principle results of this experimental-theoretical study are discussed. (i) Experimental evidence has shown that the dynamic instability of the tube row is a subcritical Hopf bifurcation. (ii) The critical flow velocity decreases as the number of flexible cylinders increases. (iii) The linear model exhibits coupled helical wave solutions in the tube dynamics. (iv) A nonlinear model of the tube motions shows a complex subcritical Hopf bifurcation with a secondary bifurcation to a torus or quasi-periodic oscillation. In this analysis the tools of center manifolds, normal forms and numerical simulation are used.
Institute of Scientific and Technical Information of China (English)
Tsukasa Irie; Tsuyoshi Yasunobu; Hideo Kashimura; Toshiaki Setoguchi; Kazuyasu Matsuo
2003-01-01
When the shock wave propagating in the straight circular tube reaches at the open end, the impulsive wave is generated by the emission of a shock wave from an open end, and unsteady pulse jet is formed near the open end behind the impulsive wave under the specific condition. The pulse jet transits to spherical shock wave with the increase in the strength of shock wave. The strength is dependent on the Mach number of shock wave, which attenuates by propagation distance from the open end. In this study, the mechanism of generating the unsteady pulse jet, the characteristics of the pressure distribution in the flow field and the emission of shock wave from straight circular tube which has the infinite flange at open end are analyzed numerically by the TVD method. Strength of spherical shock wave, relation of shock wave Mach number, distance decay of spherical shock wave and directional characteristics are clarified.
Dayton, James A., Jr.
1991-01-01
The high-power transmitters needed for high data rate communications from deep space will require a new class of compact, high efficiency traveling wave tubes (TWT's). Many of the recent TWT developments in the microwave frequency range are generically applicable to mm wave devices, in particular much of the technology of computer aided design, cathodes, and multistage depressed collectors. However, because TWT dimensions scale approximately with wavelength, mm wave devices will be physically much smaller with inherently more stringent fabrication tolerances and sensitivity to thermal dissipation.
Wave-shaping of pulse tube cryocooler components for improved performance
Antao, Dion Savio; Farouk, Bakhtier
2014-11-01
The method of wave-shaping acoustic resonators is applied to an inertance type cryogenic pulse tube refrigerator (IPTR) to improve its performance. A detailed time-dependent axisymmetric experimentally validated computational fluid dynamic (CFD) model of the PTR is used to predict its performance. The continuity, momentum and energy equations are solved for both the refrigerant gas (helium) and the porous media regions (the regenerator and the three heat-exchangers) in the PTR. An improved representation of heat transfer in the porous media is achieved by employing a thermal non-equilibrium model to couple the gas and solid (porous media) energy equations. The wave-shaped regenerator and pulse tube studied have cone geometries and the effects of different cone angles and the orientation (nozzle v/s diffuser mode) on the system performance are investigated. The resultant spatio-temporal pressure, temperature and velocity fields in the regenerator and pulse tube components are evaluated. The performance of these wave-shaped PTRs is compared to the performance of a non wave-shaped system with cylindrical components. Better cooling is predicted for the cryocooler using wave-shaped components oriented in the diffuser mode.
Wu, Bin; Su, Yipin; Chen, Weiqiu; Zhang, Chuanzeng
2017-02-01
Soft electroactive (EA) tube actuators and many other cylindrical devices have been proposed recently in literature, which show great advantages over those made from conventional hard solid materials. However, their practical applications may be limited because these soft EA devices are prone to various failure modes. In this paper, we present an analysis of the guided circumferential elastic waves in soft EA tube actuators, which has potential applications in the in-situ nondestructive evaluation (NDE) or online structural health monitoring (SHM) to detect structural defects or fatigue cracks in soft EA tube actuators and in the self-sensing of soft EA tube actuators based on the concept of guided circumferential elastic waves. Both circumferential SH and Lamb-type waves in an incompressible soft EA cylindrical tube under inhomogeneous biasing fields are considered. The biasing fields, induced by the application of an electric voltage difference to the electrodes on the inner and outer cylindrical surfaces of the EA tube in addition to an axial pre-stretch, are inhomogeneous in the radial direction. Dorfmann and Ogden's theory of nonlinear electroelasticity and the associated linear theory for small incremental motion constitute the basis of our analysis. By means of the state-space formalism for the incremental wave motion along with the approximate laminate technique, dispersion relations are derived in a particularly efficient way. For a neo-Hookean ideal dielectric model, the proposed approach is first validated numerically. Numerical examples are then given to show that the guided circumferential wave propagation characteristics are significantly affected by the inhomogeneous biasing fields and the geometrical parameters. Some particular phenomena such as the frequency veering and the nonlinear dependence of the phase velocity on the radial electric voltage are discussed. Our numerical findings demonstrate that it is feasible to use guided circumferential
Ikenaga, Yuki; Nishi, Shohei; Komagata, Yuka; Saito, Masashi; Lagrée, Pierre-Yves; Asada, Takaaki; Matsukawa, Mami
2013-11-01
A pulse wave is the displacement wave which arises because of ejection of blood from the heart and reflection at vascular bed and distal point. The investigation of pressure waves leads to understanding the propagation characteristics of a pulse wave. To investigate the pulse wave behavior, an experimental study was performed using an artificial polymer tube and viscous liquid. A polyurethane tube and glycerin solution were used to simulate a blood vessel and blood, respectively. In the case of the 40 wt% glycerin solution, which corresponds to the viscosity of ordinary blood, the attenuation coefficient of a pressure wave in the tube decreased from 4.3 to 1.6 dB/m because of the tube stiffness (Young's modulus: 60 to 200 kPa). When the viscosity of liquid increased from approximately 4 to 10 mPa·s (the range of human blood viscosity) in the stiff tube, the attenuation coefficient of the pressure wave changed from 1.6 to 3.2 dB/m. The hardening of the blood vessel caused by aging and the increase of blood viscosity caused by illness possibly have opposite effects on the intravascular pressure wave. The effect of the viscosity of a liquid on the amplitude of a pressure wave was then considered using a phantom simulating human blood vessels. As a result, in the typical range of blood viscosity, the amplitude ratio of the waves obtained by the experiments with water and glycerin solution became 1:0.83. In comparison with clinical data, this value is much smaller than that seen from blood vessel hardening. Thus, it can be concluded that the blood viscosity seldom affects the attenuation of a pulse wave.
Accurate Time-Dependent Traveling-Wave Tube Model Developed for Computational Bit-Error-Rate Testing
Kory, Carol L.
2001-01-01
The phenomenal growth of the satellite communications industry has created a large demand for traveling-wave tubes (TWT's) operating with unprecedented specifications requiring the design and production of many novel devices in record time. To achieve this, the TWT industry heavily relies on computational modeling. However, the TWT industry's computational modeling capabilities need to be improved because there are often discrepancies between measured TWT data and that predicted by conventional two-dimensional helical TWT interaction codes. This limits the analysis and design of novel devices or TWT's with parameters differing from what is conventionally manufactured. In addition, the inaccuracy of current computational tools limits achievable TWT performance because optimized designs require highly accurate models. To address these concerns, a fully three-dimensional, time-dependent, helical TWT interaction model was developed using the electromagnetic particle-in-cell code MAFIA (Solution of MAxwell's equations by the Finite-Integration-Algorithm). The model includes a short section of helical slow-wave circuit with excitation fed by radiofrequency input/output couplers, and an electron beam contained by periodic permanent magnet focusing. A cutaway view of several turns of the three-dimensional helical slow-wave circuit with input/output couplers is shown. This has been shown to be more accurate than conventionally used two-dimensional models. The growth of the communications industry has also imposed a demand for increased data rates for the transmission of large volumes of data. To achieve increased data rates, complex modulation and multiple access techniques are employed requiring minimum distortion of the signal as it is passed through the TWT. Thus, intersymbol interference (ISI) becomes a major consideration, as well as suspected causes such as reflections within the TWT. To experimentally investigate effects of the physical TWT on ISI would be
Torsional Alfven Waves in Solar Magnetic Flux Tubes of Axial Symmetry
Murawski, K; Musielak, Z E; Srivastava, A K; Kraskiewicz, J
2015-01-01
Aims: Propagation and energy transfer of torsional Alfv\\'en waves in solar magnetic flux tubes of axial symmetry is studied. Methods: An analytical model of a solar magnetic flux tube of axial symmetry is developed by specifying a magnetic flux and deriving general analytical formulae for the equilibrium mass density and a gas pressure. The main advantage of this model is that it can be easily adopted to any axisymmetric magnetic structure. The model is used to simulate numerically the propagation of nonlinear Alfv\\'en waves in such 2D flux tubes of axial symmetry embedded in the solar atmosphere. The waves are excited by a localized pulse in the azimuthal component of velocity and launched at the top of the solar photosphere, and they propagate through the solar chromosphere, transition region, and into the solar corona. Results: The results of our numerical simulations reveal a complex scenario of twisted magnetic field lines and flows associated with torsional Alfv\\'en waves as well as energy transfer to t...
The velocity of the arterial pulse wave: a viscous-fluid shock wave in an elastic tube
Directory of Open Access Journals (Sweden)
Painter Page R
2008-07-01
Full Text Available Abstract Background The arterial pulse is a viscous-fluid shock wave that is initiated by blood ejected from the heart. This wave travels away from the heart at a speed termed the pulse wave velocity (PWV. The PWV increases during the course of a number of diseases, and this increase is often attributed to arterial stiffness. As the pulse wave approaches a point in an artery, the pressure rises as does the pressure gradient. This pressure gradient increases the rate of blood flow ahead of the wave. The rate of blood flow ahead of the wave decreases with distance because the pressure gradient also decreases with distance ahead of the wave. Consequently, the amount of blood per unit length in a segment of an artery increases ahead of the wave, and this increase stretches the wall of the artery. As a result, the tension in the wall increases, and this results in an increase in the pressure of blood in the artery. Methods An expression for the PWV is derived from an equation describing the flow-pressure coupling (FPC for a pulse wave in an incompressible, viscous fluid in an elastic tube. The initial increase in force of the fluid in the tube is described by an increasing exponential function of time. The relationship between force gradient and fluid flow is approximated by an expression known to hold for a rigid tube. Results For large arteries, the PWV derived by this method agrees with the Korteweg-Moens equation for the PWV in a non-viscous fluid. For small arteries, the PWV is approximately proportional to the Korteweg-Moens velocity divided by the radius of the artery. The PWV in small arteries is also predicted to increase when the specific rate of increase in pressure as a function of time decreases. This rate decreases with increasing myocardial ischemia, suggesting an explanation for the observation that an increase in the PWV is a predictor of future myocardial infarction. The derivation of the equation for the PWV that has been used for
Ultrasonic inspection of steam-generator tube axial cracking using Lamb wave
Energy Technology Data Exchange (ETDEWEB)
Park, Jae Seok
2007-02-15
In this study, the interaction of Lamb wave propagating thin tube structure with finite vertical discontinuity was studied using both modal decomposition method (MDM) and experimental method. For MDM, a global matrix formulation and orthogonality of Lamb mode was employed to describe the boundary condition of finite vertical discontinuity of the tube and the mode conversion phenomenon respectively. The final form of governing equation by MDM was a linear matrix equation which could be solved using a simple matrix identity. The calculation result showed that, below the cut-off frequency, reflection amplitudes of both A0 and S0 Lamb mode increase as the depth of discontinuity increased beyond the threshold value. An experimental investigation was performed using a Hertzian-contact transducer and steam-generator tubes to verify the calculation results by MDM. A0 Lamb mode was selected as a test signal considering the characteristics of the transducer and previous studies. The experiment for mode identification using half-sectioned tube verified that the Hertzian-contact transducer effectively generated A0 Lamb mode. Tests performed using steam-generator tubes with EDM (electric discharge machined) axial notches showed that the deeper notches produced the higher reflection echo. A0 Lamb mode interacted with the notch having a depth larger than 1/40 of wave length, or corresponding to 30% of the wall thickness. This finding was in good agreement with previous studies and the prediction by MDM. The experiment using real crack specimens to estimate the deviation of reflection amplitude showed that the reflection cross-section of real crack was very similar with that of EDM notch. Therefore, specimens with EDM notches can be used as reference blocks for Lamb wave UT calibration.
Development of a 39.5 GHz Karp traveling wave tube for use in space
Jacquez, A.; Wilson, D.
1988-10-01
A millimeter-wave TWT was developed using a dispersive, high-impedance forward wave interaction structure based on a ladder, with non-space-harmonic interaction, for a tube with high gain per inch and high efficiency. The 'Tunneladder' interaction structure combines ladder properties modified to accommodate Pierce gun beam optics on a radially magnetized PM focusing structure. The development involved the fabrication of chemically milled, shaped ladders diffusion brazed to each ridge of a double ridged waveguide. Cold-test data are presented, representing the omega-Beta and impedance characteristics of the modified ladder circuit These results were used in small and large-signal computer programs to predict TWT gain and efficiency. A laboratory model tube was designed and fabricated, including all major subassemblies.
Effects of an elastic membrane on tube waves in permeable formations
Energy Technology Data Exchange (ETDEWEB)
Liu, H.; Johnson, D.
1996-10-01
In this paper, the modified properties were calculated for tube wave propagation in a fluid-filled borehole penetrating a permeable rock due to the presence of a mudcake which forms on the borehole wall. The mudcake was characterized by an impermeable elastic layer. The mudcake partial sealing mechanism was simulated using a finite membrane stiffness. Consequently, it was shown that the mudcake can reduce, but not eliminate, the permeability effects on the tube wave slowness and attenuation. Moreover, this paper discusses a variety of values for the relevant parameters especially the mudcake thickness and membrane stiffness. The important combinations of mudcake parameters were clarified by using an analytic expression for the low-frequency limit.
Development of a 39.5 GHz Karp traveling wave tube for use in space
Jacquez, A.; Wilson, D.
1988-01-01
A millimeter-wave TWT was developed using a dispersive, high-impedance forward wave interaction structure based on a ladder, with non-space-harmonic interaction, for a tube with high gain per inch and high efficiency. The 'Tunneladder' interaction structure combines ladder properties modified to accommodate Pierce gun beam optics on a radially magnetized PM focusing structure. The development involved the fabrication of chemically milled, shaped ladders diffusion brazed to each ridge of a double ridged waveguide. Cold-test data are presented, representing the omega-Beta and impedance characteristics of the modified ladder circuit These results were used in small and large-signal computer programs to predict TWT gain and efficiency. A laboratory model tube was designed and fabricated, including all major subassemblies.
Low-current traveling wave tube for use in the microwave power module
Palmer, Raymond W.; Ramins, Peter; Force, Dale A.; Dayton, James A.; Ebihara, Ben T.; Gruber, Robert P.
1993-01-01
The results of a traveling-wave-tube/multistage depressed-collector (TWT-MDC) design study in support of the Advanced Research Projects Agency/Department of Defense (ARPA/DOD) Microwave Power Module (MPM) Program are described. The study stressed the possible application of dynamic and other tapers to the RF output circuit of the MPM traveling wave tube as a means of increasing the RF and overall efficiencies and reducing the required beam current (perveance). The results indicate that a highly efficient, modified dynamic velocity taper (DVT) circuit can be designed for the broadband MPM application. The combination of reduced cathode current (lower perveance) and increased RF efficiency leads to (1) a substantially higher overall efficiency and reduction in the prime power to the MPM, and (2) substantially reduced levels of MDC and MPM heat dissipation, which simplify the cooling problems. However, the selected TWT circuit parameters need to be validated by cold test measurements on actual circuits.
Analysis of a Novel Ka-band Folded Waveguide Amplifier for Traveling-Wave Tubes
Institute of Scientific and Technical Information of China (English)
LIAO Ming-Liang; WEI Yan-Yu; HE Jun; GONG Yu-Bin; WANG Wen-Xiang; Gun-Sik Park
2009-01-01
A novel Ka-band folded waveguide (FW) amplifier for traveling wave tubes (TWT) is investigated. The dispersion curve and interaction impedance are obtained and compared to the normal FW circuit by numerical simulation. The interaction impedance is higher than a normal circuit through the whole band. We also study the beam-wave interaction in this novel circuit, and the nonlinear large-signal performance is analyzed by a 3-D particle-in-cell code MACIC3D. A much higher continuous-wave (CW) output power with a considerably shorter circuit compared to a normal circuit is predicted by our simulation. Moreover, the novel FW even has a broader 3-dB bandwidth. It therefore will be useful in designing a miniature but high-power and broadband millimeter-wave TWT.
Dielectric effect on the rf characteristics of a helical groove travelling wave tube
Wei, Yan-Yu; Wang, Wen-Xiang; Sun, Jia-Hong; Liu, Sheng-Gang; Baofu, Jia; Gun-Sik, Park
2002-03-01
A new type of partial-dielectric-loaded helical groove slow-wave structure (SWS) for millimetre wave travelling wave tube (TWT) is presented in this paper. The radio-frequency characteristics including the dispersion properties, the longitudinal electric field distribution and the beam-wave coupling impedance of this structure are analysed. The results show that the dispersion of the helical groove circuit is weakened, the phase velocity is reduced and the position of the maximum Ez is moved from the mouth to the inside of the groove after partially filling the dielectric materials in the helical groove SWS. Therefore, the dielectric-loaded helical groove SWS is suitable for a multi-beam TWT with broad band and high gain.
Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects
Courtney, Michael
2011-01-01
Instrumentation is needed to produce realistic blast waves in a laboratory setting. This paper describes the development and characterization of oxy-acetylene driven, laboratory scale shock tubes for use in studying blast injury, candidate armor materials, and material properties at blast loading rates. The pressure-time profiles show a true shock front and exponential decay characteristic of blast waves and have relevant durations. The modular design includes shock tube diameters of 27 mm and 41 mm, and a selection of peak pressures from 204 kPa to 920 kPa can be produced by selection of the driver section diameter and placement of the test sample. Characterization studies of several driver/driven section combinations showed consistent results, with peak pressures having 0.8 - 6.9 percent uncertainty in the mean. This shock tube design provides a more realistic blast profile than current air-driven shock tubes. In addition, operation does not require specialized personnel or facilities like most blast-driven...
Investigating Dielectric and Metamaterial Effects in a Terahertz Traveling-Wave Tube Amplifier
Starinshak, David P.; Wilson, Jeffrey D.
2008-01-01
Adding material enhancements to a terahertz traveling-wave tube amplifier is investigated. Isotropic dielectrics, negative-index metamaterials, and anisotropic crystals are simulated, and plans to increase the efficiency of the device are discussed. Early results indicate that adding dielectric to the curved sections of the serpentine-shaped slow-wave circuit produce optimal changes in the cold-test characteristics of the device and a minimal drop in operating frequency. Additional results suggest that materials with simultaneously small relative permittivities and electrical conductivities are best suited for increasing the efficiency of the device. More research is required on the subject, and recommendations are given to determine the direction.
Traveling-Wave Tube Cold-Test Circuit Optimization Using CST MICROWAVE STUDIO
Chevalier, Christine T.; Kory, Carol L.; Wilson, Jeffrey D.; Wintucky, Edwin G.; Dayton, James A., Jr.
2003-01-01
The internal optimizer of CST MICROWAVE STUDIO (MWS) was used along with an application-specific Visual Basic for Applications (VBA) script to develop a method to optimize traveling-wave tube (TWT) cold-test circuit performance. The optimization procedure allows simultaneous optimization of circuit specifications including on-axis interaction impedance, bandwidth or geometric limitations. The application of Microwave Studio to TWT cold-test circuit optimization is described.
Chen, Zaigao; Wang, Jianguo; Wang, Yue
2016-09-01
The cathode plasma expansion has been widely investigated and is recognized as impedance collapse in a relativistic backward wave oscillator (RBWO). However, the process of formation and expansion of cathode plasma is very complicated, and the thickness of plasma is only several millimeters, so the simulation of cathode plasma requires high temporal and spatial resolutions. Only the scaled-down diode model and the thin gas layer model are considered in the previous hybrid simulation, and there are few numerical studies on the effect of cathode plasma expansion on the RBWO. In this paper, the moving-boundary conformal particle-in-cell method is proposed; the cathode plasma front is treated in this novel method as the actual cathode surface, and the explosive electron emission boundary moves as the expansion of cathode plasma. Moreover, in order to accurately simulate the electromagnetic field near the cathode surface, the conformal finite-difference time-domain method based on the enlarged cell technique is adopted. The numerical simulation indicates that the diode voltage decreases and the beam current increases as cathode plasma expands; when the cathode plasma velocity is 10 cm/μs, the pulse duration of the generated microwave decreases from 30 ns to 10 ns, the working frequency decreases from 9.83 GHz to 9.64 GHz, and the output power decreases 30% in the course of cathode plasma expansion.
A staggered double vane circuit for a W-band traveling-wave tube amplifier
Institute of Scientific and Technical Information of China (English)
Lai Jian-Qiang; Wei Yan-Yu; Liu Yang; Huang Min-Zhi; Tang Tao; Wang Wen-Xiang; Gong Yu-Bin
2012-01-01
Based on the combination of a staggered double vane slow wave structure (SWS) and round electron beam,a 200-W W-band traveling-wave tube (TWT) amplifier is studied in this paper.The main advantages of round beam operation over the sheet beam is that the round beam can be formed more easily and the focus requirement can be dramatically reduced.It operates in the fundamental mode at the first spatial harmonic.The geometric parameters are optimized and a transition structure for the slow wave circuit is designed which can well match the signal that enters into and goes out from the tube.Then a TWT model is established and the particle-in-cell (PIC) simulation results show that the tube can provide over 200-W output power in a frequency range of 88 GHz-103 GHz with a maximum power of 289 W at 95 GHz,on the assumption that the input power is 0.1 W and the beam power is 5.155 kW.The corresponding conversion efficiency and gain at 95 GHz are expected to be 5.6％ and 34.6 dB,respectively.Such amplifiers can potentially be used in high power microwave-power-modules (MPM) and for other portable applications.
Continuous-wave radar to detect defects within heat exchangers and steam generator tubes.
Energy Technology Data Exchange (ETDEWEB)
Nassersharif, Bahram (New Mexico State University, Las Cruces, NM); Caffey, Thurlow Washburn Howell; Jedlicka, Russell P. (New Mexico State University, Las Cruces, NM); Garcia, Gabe V. (New Mexico State University, Las Cruces, NM); Rochau, Gary Eugene
2003-01-01
A major cause of failures in heat exchangers and steam generators in nuclear power plants is degradation of the tubes within them. The tube failure is often caused by the development of cracks that begin on the outer surface of the tube and propagate both inwards and laterally. A new technique was researched for detection of defects using a continuous-wave radar method within metal tubing. The experimental program resulted in a completed product development schedule and the design of an experimental apparatus for studying handling of the probe and data acquisition. These tests were completed as far as the prototypical probe performance allowed. The prototype probe design did not have sufficient sensitivity to detect a defect signal using the defined radar technique and did not allow successful completion of all of the project milestones. The best results from the prototype probe could not detect a tube defect using the radar principle. Though a more precision probe may be possible, the cost of design and construction was beyond the scope of the project. This report describes the probe development and the status of the design at the termination of the project.
Oscillation suppression for W-band folded waveguide traveling wave tube%W波段折叠波导行波管振荡抑制
Institute of Scientific and Technical Information of China (English)
蔡军; 冯进军; 胡银富; 邬显平; 唐烨; 杜英华; 潘攀; 刘京恺
2013-01-01
In order to suppress oscillation and maintain stability in the development of W-band folded waveguide traveling wave tube, this paper presents the analysis of reflection, backward wave and band edge oscillations. Periodic step structure together with other design and fabrication research improvement was applied to increasing the oscillation threshold. The investigation on oscillation suppression for W-band folded waveguide was carried out by simulation and experiment. After the methods mentioned above were applied as the most important key technologies to improving the output power and broadening the bandwidth, the developed W-band folded waveguide traveling wave tube could maintain stability from possible oscillations and reach o-ver 100 W output power with 5 GHz bandwidth at 20% duty cycle.%为了抑制W波段折叠波导行波管研制中的自激振荡,保证行波管正常放大工作,分析了折叠波导慢波结构中反射振荡、返波振荡和带边振荡的产生原因,开展了折叠波导行波管振荡抑制技术研究,通过优化设计和工艺研究采用周期跳变作为关键技术用于W波段折叠波导行波管的研制.通过模拟检验和实验验证,证明采用了振荡抑制技术后行波管自激振荡得到了有效的抑制,W波段脉冲行波管在20％占空比时脉冲输出功率大于100 W,带宽大于5 GHz.
On the evaluation of Pierce parameters C and Q in a traveling wave tube
Simon, D. H.; Wong, P.; Chernin, D.; Lau, Y. Y.; Hoff, B.; Zhang, P.; Dong, C. F.; Gilgenbach, R. M.
2017-03-01
A study of an exactly solvable model of a traveling wave tube (TWT) shows that Pierce gain parameter C and space charge parameter Q generally depend on wavenumber k in addition to frequency ω. The choice of k at which C and Q are evaluated may strongly affect their values and, consequently, the values of the small signal gain obtained from 3- and 4-wave Pierce theory. In order to illustrate this effect, we calculate the spatial amplification rate, ki, from the exact dispersion relation for a dielectric TWT model which is exactly solvable. We compare this exact value of ki with approximate values obtained from Pierce's classical 3-wave and 4-wave dispersion relations, obtained by making various assumptions on k in the evaluation of C and Q. We find that the various ways to approximate C and Q will have a significant influence on the numerical values of ki. For our dielectric TWT example, Pierce's 4-wave TWT dispersion relation generally yields the most accurate values of ki if Q is evaluated for k = ω/v0, where v0 is the beam velocity, and if the complete frequency and wavelength dependence of C is retained. Pierce's 3-wave theory also yields accurate values of ki using a different form of Q from the 4-wave theory. The implications of this result for TWT design are explored.
Dielectric effect on the rf characteristics of a helical groove travelling wave tube
Institute of Scientific and Technical Information of China (English)
Wei Yan-Yu(魏彦玉); Wang Wen-Xiang(王文祥); Sun Jia-Hong(孙嘉鸿); Liu Sheng-Gang(刘盛纲); Baofu Jia; Gun-Sik Park
2002-01-01
A new type of partial-dielectric-loaded helical groove slow-wave structure (SWS) for millimetre wave travellingwave tube (TWT) is presented in this paper. The radio-frequency characteristics including the dispersion properties,the longitudinal electric field distribution and the beam-wave coupling impedance of this structure are analysed. Theresults show that the dispersion of the helical groove circuit is weakened, the phase velocity is reduced and the positionof the maximum Ez is moved from the mouth to the inside of the groove after partially filling the dielectric materialsin the helical groove SWS. Therefore, the dielectric-loaded helical groove SWS is suitable for a multi-beam TWT withbroad band and high gain.
THE INTERACTION BETWEEN SHOCK WAVES AND FOAM IN A SHOCK TUBE
Institute of Scientific and Technical Information of China (English)
施红辉; Kazuhiko Kawai; Motoyuki Itoh; 俞鸿儒; 姜宗林
2002-01-01
An experimental study and a numerical simulation were conducted to investigate the mechanical and thermodynamic processes involved in the interaction between shock waves and low density foam. The experiment was done in a stainless shock tube (80 mm in inner diameter, 10 mm in wall thickness and 5 360 mm in length). The velocities of the incident and reflected compression waves in the foam were measured by using piezo-ceramic pressure sensors. The end-wall peak pressure behind the reflected wave in the foam was measured by using a crystal piezoelectric sensor. It is suggested that the high end-wall pressure may be caused by a rapid contact between the foam and the end-wall surface. Both open-cell and closed-cell foams with different length and density were tested. Through comparing the numerical and experimental end-wall pressure, the permeability coefficients α and β are quantitatively determined.
Energy Technology Data Exchange (ETDEWEB)
Takiya, T.; Terada, Y.; Komura, A. [Hitachi Zosen Corp., Osaka (Japan); Higashino, F.; Abe, H. [Tokyo Univ. of Agriculture and Technology, Tokyo (Japan). Faculty of Technology; Abe, M. [National Lab. for High Energy Physics, Tsukuba (Japan)
1996-04-25
The characteristics of pressure wave propagation in a vacuum tube have been investigated experimentally from the viewpoint of vacuum protection in the beam lines of a synchrotrons radiation facility. Baffle plates having a single orifice of 5, 10 or 15 mm in diameter were installed in shock tubes 5 m in length, and 36.6 or 68.8 mm in diameter, in order to show the pressure wave or shock wave propagation as a model for the beam line. To evaluate the decay of pressure waves pressure changes with time at several locations along the side wall as well as at the end wall of the tube were measured. The results show that the effect of the orifices on pressure wave propagation and its decay is significant. The present investigation may contribute to the design and construction of high energy synchrotrons radiation facilities with long beam lines. 11 refs., 9 figs., 2 tabs.
Traveling-wave-tube simulation: The IBC (Interactive Beam-Circuit) code
Energy Technology Data Exchange (ETDEWEB)
Morey, I.J.; Birdsall, C.K.
1989-09-26
Interactive Beam-Circuit (IBC) is a one-dimensional many particle simulation code which has been developed to run interactively on a PC or Workstation, and displaying most of the important physics of a traveling-wave-tube. The code is a substantial departure from previous efforts, since it follows all of the particles in the tube, rather than just those in one wavelength, as commonly done. This step allows for nonperiodic inputs in time, a nonuniform line and a large set of spatial diagnostics. The primary aim is to complement a microwave tube lecture course, although past experience has shown that such codes readily become research tools. Simple finite difference methods are used to model the fields of the coupled slow-wave transmission line. The coupling between the beam and the transmission line is based upon the finite difference equations of Brillouin. The space-charge effects are included, in a manner similar to that used by Hess; the original part is use of particle-in-cell techniques to model the space-charge fields. 11 refs., 11 figs.
Computer Analysis of Spectrum Anomaly in 32-GHz Traveling-Wave Tube for Cassini Mission
Dayton, James A., Jr.; Wilson, Jeffrey D.; Kory, Carol L.
1999-01-01
Computer modeling of the 32-GHz traveling-wave tube (TWT) for the Cassini Mission was conducted to explain the anomaly observed in the spectrum analysis of one of the flight-model tubes. The analysis indicated that the effect, manifested as a weak signal in the neighborhood of 35 GHz, was an intermodulation product of the 32-GHz drive signal with a 66.9-GHz oscillation induced by coupling to the second harmonic'signal. The oscillation occurred only at low- radiofrequency (RF) drive power levels that are not expected during the Cassini Mission. The conclusion was that the anomaly was caused by a generic defect inadvertently incorporated in the geometric design of the slow-wave circuit and that it would not change as the TWT aged. The most probable effect of aging on tube performance would be a reduction in the electron beam current. The computer modeling indicated that although not likely to occur within the mission lifetime, a reduction in beam current would reduce or eliminate the anomaly but would do so at the cost of reduced RF output power.
Energy Technology Data Exchange (ETDEWEB)
Soler, Roberto; Terradas, Jaume, E-mail: roberto.soler@uib.es [Departament de Física, Universitat de les Illes Balears, E-07122, Palma de Mallorca (Spain)
2015-04-10
Magnetohydrodynamic (MHD) kink waves are ubiquitously observed in the solar atmosphere. The propagation and damping of these waves may play relevant roles in the transport and dissipation of energy in the solar atmospheric medium. However, in the atmospheric plasma dissipation of transverse MHD wave energy by viscosity or resistivity needs very small spatial scales to be efficient. Here, we theoretically investigate the generation of small scales in nonuniform solar magnetic flux tubes due to phase mixing of MHD kink waves. We go beyond the usual approach based on the existence of a global quasi-mode that is damped in time due to resonant absorption. Instead, we use a modal expansion to express the MHD kink wave as a superposition of Alfvén continuum modes that are phase mixed as time evolves. The comparison of the two techniques evidences that the modal analysis is more physically transparent and describes both the damping of global kink motions and the building up of small scales due to phase mixing. In addition, we discuss that the processes of resonant absorption and phase mixing are closely linked. They represent two aspects of the same underlying physical mechanism: the energy cascade from large scales to small scales due to naturally occurring plasma and/or magnetic field inhomogeneities. This process may provide the necessary scenario for efficient dissipation of transverse MHD wave energy in the solar atmospheric plasma.
Dimitrova, Zlatinka I
2015-01-01
We investigate flow of incompressible fluid in a cylindrical tube with elastic walls. The radius of the tube may change along its length. The discussed problem is connected to the blood flow in large human arteries and especially to nonlinear wave propagation due to the pulsations of the heart. The long-wave approximation for modeling of waves in blood is applied. The obtained model Korteweg-deVries equation possessing a variable coefficient is reduced to a nonlinear dynamical system of 3 first order differential equations. The low probability of arising of a solitary wave is shown. Periodic wave solutions of the model system of equations are studied and it is shown that the waves that are consequence of the irregular heart pulsations may be modeled by a sequence of parts of such periodic wave solutions.
Institute of Scientific and Technical Information of China (English)
Liu Yang; Wei Yan-Yu; Xu Jin; Yin Hai-Rong; Yue Ling-Na; Gong Yu-Bin; Wang Wen-Xiang
2012-01-01
An open-styled dielectric-lined azimuthally periodic circular waveguide (ODLAP-CW) for a millimeter-wave traveling-wave tube (TWT) is proposed,which is a modified form of a dielectric-lined azimuthally periodic circular waveguide (DLAP-CW).The slow-wave characteristics of the open-styled DLAP-CW are studied by using the spatial harmonics method,which includes normalized phase velocity and interaction impedance.The complicated dispersion equations are numerically solved with MATLAB and the results are in good agreement with the simulation results obtained from HFSS.The influence of structural parameters on the RF properties is investigated based on our theory.The numerical results show that the optimal thickness of the metal rod can increase the interaction impedance,with the dielectric constant held fixed.Finally,the slow-wave characteristics and transmission properties of an open-styled structure are compared with those of the DLAP-CW.The results validate that the mode competition is eliminated in the improved structure with only a slight influence on the dispersion characteristics,which may significantly improve the stability of an open-styled DLAP-CW-based TWT,and the interaction efficiency is also improved.
Li, X. D.; Hu, Z. M.; Jiang, Z. L.
2017-03-01
Bio-shock tubes (BSTs) can approximately simulate the typical blast waves produced by nuclear or chemical charge explosions for use in biological damage studies. The profile of an ideal blast wave in air is characterized by the overpressure, the negative pressure, and the positive pressure duration, which are determined by the geometric configurations of BSTs. Numerical experiments are carried out using the Eulerian equations by the dispersion-controlled dissipative scheme to investigate the effect of different structural components on ideal blast waveforms. The results show that cylindrical and conical frustum driver sections with an appropriate length can produce typical blast wave profiles, but a flattened peak pressure may appear when using a tube of a longer length. Neither a double-expansion tube nor a shrinkage tube set in BSTs is practical for the production of an ideal blast waveform. In addition, negative pressure recovery will occur, exceeding the ambient pressure with an increase in pressure in the vacuum section.
Physical design and cooling test of C-band standing wave accelerating tube
Institute of Scientific and Technical Information of China (English)
Bai Wei; Xu Zhou; Jin Xiao; Li Ming
2006-01-01
The physical design and cooling test of a C-band 2MeV standing wave (SW) accelerating tube are described in this paper. The designed accelerating structure consists of 3-cell buncher and 4-cell accelerating section with a total length of about 163mm , excited with 1MW magnetron. Dynamic simulation presents that about 150mA beam pulse current and 30% capture efficiency can be achieved. By means of nonlinear Gauss fit on electron transverse distribution, the diameter of beam spot FWHM (full width at half maximum of density distribution) is about 0.55mm. Cooling test results of the accelerating tube show that frequencies of cavities are tuned to 5527MHz and the field distribution of bunching section is about 3:9:10.
One-dimensional nonlinear theory for rectangular helix traveling-wave tube
Fu, Chengfang; Wei, Yanyu; Zhao, Bo; Yang, Yudong; Ju, Yongfeng
2016-08-01
A 1-D nonlinear theory of a rectangular helix traveling-wave tube (TWT) interacting with a ribbon beam is presented in this paper. The RF field is modeled by a transmission line equivalent circuit, the ribbon beam is divided into a sequence of thin rectangular electron discs with the same cross section as the beam, and the charges are assumed to be uniformly distributed over these discs. Then a method of computing the space-charge field by solving Green's Function in the Cartesian Coordinate-system is fully described. Nonlinear partial differential equations for field amplitudes and Lorentz force equations for particles are solved numerically using the fourth-order Runge-Kutta technique. The tube's gain, output power, and efficiency of the above TWT are computed. The results show that increasing the cross section of the ribbon beam will improve a rectangular helix TWT's efficiency and reduce the saturated length.
Particle propagation, wave growth and energy dissipation in a flaring flux tube
White, S. M.; Melrose, D. B.; Dulk, G. A.
1986-01-01
Wave amplification by downgoing particles in a common flare model is investigated. The flare is assumed to occur at the top of a coronal magnetic flux loop, and results in the heating of plasma in the flaring region. The hot electrons propagate down the legs of the flux tube towards increasing magnetic field. It is simple to demonstrate that the velocity distributions which result in this model are unstable to both beam instabilities and cyclotron maser action. An explanation is presented for the propagation effects on the distribution, and the properties of the resulting amplified waves are explored, concentrating on cyclotron maser action, which has properties (emission in the z mode below the local gyrofrequency) quite different from maser action by other distributions considered in the context of solar flares. The z mode waves will be damped in the coronal plasma surrounding the flaring flux tube and lead to heating there. This process may be important in the overall energy budget of the flare. The downgoing maser is compared with the loss cone maser, which is more likely to produce observable bursts.
Self-consistent inclusion of space-charge in the traveling wave tube
Freeman, Jon C.
1987-01-01
It is shown how the complete field of the electron beam may be incorporated into the transmission line model theory of the traveling wave tube (TWT). The fact that the longitudinal component of the field due to the bunched beam is not used when formulating the beam-to-circuit coupling equation is not well-known. The fundamental partial differential equation for the traveling wave field is developed and compared with the older (now standard) one. The equation can be solved numerically using the same algorithms, but now the coefficients can be updated continuously as the calculation proceeds down the tube. The coefficients in the older equations are primarily derived from preliminary measurements and some trial and error. The newer coefficients can be found by a recursive method, since each has a well defined physical interpretation and can be calculated once a reasonable first trial solution is postulated. The results of the new expression were compared with those of the older forms, as well as to a field theory model to show the ease in which a reasonable fit to the field prediction is obtained. A complete summary of the existing transmission line modeling of the TWT is given to explain the somewhat vague ideas and techniques in the general area of drifting carrier-traveling circuit wave interactions. The basic assumptions and inconsistencies of the existing theory and areas of confusion in the general literature are examined and hopefully cleared up.
Shock Tube Design for High Intensity Blast Waves for Laboratory Testing of Armor and Combat Materiel
Courtney, Elijah; Courtney, Michael
2015-01-01
Shock tubes create simulated blast waves which can be directed and measured to study blast wave effects under laboratory conditions. It is desirable to increase available peak pressure from ~1 MPa to ~5 MPa to simulate closer blast sources and facilitate development and testing of personal and vehicle armors. Three methods were investigated to increase peak simulated blast pressure produced by an oxy-acetylene driven shock tube while maintaining suitability for laboratory studies. The first method is the addition of a Shchelkin spiral priming section which works by increasing the turbulent flow of the deflagration wave, thus increasing its speed and pressure. This approach increased the average peak pressure from 1.17 MPa to 5.33 MPa while maintaining a relevant pressure-time curve (Friedlander waveform). The second method is a bottleneck between the driving and driven sections. Coupling a 79 mm diameter driving section to a 53 mm driven section increased the peak pressure from 1.17 MPa to 2.25 MPa. Using a 1...
Directory of Open Access Journals (Sweden)
M. Schmitt
2013-05-01
Full Text Available In this paper, a new acoustic sensor principle for coating detection within liquid-filled tubes and containers based on mode conversion of leaky Lamb waves is introduced. Leaky Lamb waves are excited and detected by single-phase transducers, which are attached on the outer side of a tube or container. By transmission time and amplitude measurements, coating formation within the liquid-filled tube and container is detected non-invasively. This new sensor principle is subdivided into the separate considerations of Lamb wave excitation, mode conversion and inverse mode conversion. The Lamb wave excitation by a single-phase transducer is visualized by scanning laser Doppler vibrometer imaging. The mode conversion process of leaky Lamb waves is measured by membrane hydrophone measurements and Schlieren visualization; afterwards, the measured emission angles are compared with the theoretical one. The inverse mode conversion process of pressure waves back to leaky Lamb waves is visualized by Schlieren images. By merging the results of Lamb wave excitation, mode conversion and inverse mode conversion, the new sensor concept is explained. Theoretical considerations and measurement results of adhesive tape coating inside a liquid-filled plastic tube and a liquid-filled stainless steel container verify the new acoustic sensor principle. Finally the measuring sensitivity and the technical realization are discussed.
GENERATION OF MAGNETOHYDRODYNAMIC WAVES IN LOW SOLAR ATMOSPHERIC FLUX TUBES BY PHOTOSPHERIC MOTIONS
Energy Technology Data Exchange (ETDEWEB)
Mumford, S. J.; Fedun, V.; Erdélyi, R., E-mail: s.mumford@sheffield.ac.uk [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH UK (United Kingdom)
2015-01-20
Recent ground- and space-based observations reveal the presence of small-scale motions between convection cells in the solar photosphere. In these regions, small-scale magnetic flux tubes are generated via the interaction of granulation motion and the background magnetic field. This paper studies the effects of these motions on magnetohydrodynamic (MHD) wave excitation from broadband photospheric drivers. Numerical experiments of linear MHD wave propagation in a magnetic flux tube embedded in a realistic gravitationally stratified solar atmosphere between the photosphere and the low choromosphere (above β = 1) are performed. Horizontal and vertical velocity field drivers mimic granular buffeting and solar global oscillations. A uniform torsional driver as well as Archimedean and logarithmic spiral drivers mimic observed torsional motions in the solar photosphere. The results are analyzed using a novel method for extracting the parallel, perpendicular, and azimuthal components of the perturbations, which caters to both the linear and non-linear cases. Employing this method yields the identification of the wave modes excited in the numerical simulations and enables a comparison of excited modes via velocity perturbations and wave energy flux. The wave energy flux distribution is calculated to enable the quantification of the relative strengths of excited modes. The torsional drivers primarily excite Alfvén modes (≈60% of the total flux) with small contributions from the slow kink mode, and, for the logarithmic spiral driver, small amounts of slow sausage mode. The horizontal and vertical drivers primarily excite slow kink or fast sausage modes, respectively, with small variations dependent upon flux surface radius.
Wang, Xiaohua; Teng, Yan; Wang, Qinli; Li, Xiaojuan; Sheng, Xianyong; Zheng, Maozhong; Samaj, Jozef; Baluska, Frantisek; Lin, Jinxing
2006-08-01
Evanescent wave excitation was used to visualize individual, FM4-64-labeled secretory vesicles in an optical slice proximal to the plasma membrane of Picea meyeri pollen tubes. A standard upright microscope was modified to accommodate the optics used to direct a laser beam at a variable angle. Under evanescent wave microscopy or total internal reflection fluorescence microscopy, fluorophores localized near the surface were excited with evanescent waves, which decay exponentially with distance from the interface. Evanescent waves with penetration depths of 60 to 400 nm were generated by varying the angle of incidence of the laser beam. Kinetic analysis of vesicle trafficking was made through an approximately 300-nm optical section beneath the plasma membrane using time-lapse evanescent wave imaging of individual fluorescently labeled vesicles. Two-dimensional trajectories of individual vesicles were obtained from the resulting time-resolved image stacks and were used to characterize the vesicles in terms of their average fluorescence and mobility, expressed here as the two-dimensional diffusion coefficient D2. The velocity and direction of vesicle motions, frame-to-frame displacement, and vesicle trajectories were also calculated. Analysis of individual vesicles revealed for the first time, to our knowledge, that two types of motion are present, and that vesicles in living pollen tubes exhibit complicated behaviors and oscillations that differ from the simple Brownian motion reported in previous investigations. Furthermore, disruption of the actin cytoskeleton had a much more pronounced effect on vesicle mobility than did disruption of the microtubules, suggesting that actin cytoskeleton plays a primary role in vesicle mobility.
Soler, Roberto
2015-01-01
Magnetohydrodynamic (MHD) kink waves are ubiquitously observed in the solar atmosphere. The propagation and damping of these waves may play relevant roles for the transport and dissipation of energy in the solar atmospheric medium. However, in the atmospheric plasma dissipation of transverse MHD wave energy by viscosity or resistivity needs very small spatial scales to be efficient. Here, we theoretically investigate the generation of small scales in nonuniform solar magnetic flux tubes due to phase mixing of MHD kink waves. We go beyond the usual approach based on the existence of a global quasi-mode that is damped in time due to resonant absorption. Instead, we use a modal expansion to express the MHD kink wave as a superposition of Alfv\\'en continuum modes that are phase mixed as time evolves. The comparison of the two techniques evidences that the modal analysis is more physically transparent and describes both the damping of global kink motions and the building up of small scales due to phase mixing. In ...
Effect of partial ionization on wave propagation in solar magnetic flux tubes
Soler, R; Ballester, J L; Goossens, M
2013-01-01
Observations show that waves are ubiquitous in the solar atmosphere and may play an important role for plasma heating. The study of waves in the solar corona is usually based on linear ideal magnetohydrodynamics (MHD) for a fully ionized plasma. However, the plasma in the photosphere and the chromosphere is only partially ionized. Here we investigate theoretically the impact of partial ionization on MHD wave propagation in cylindrical flux tubes in the two-fluid model. We derive the general dispersion relation that takes into account the effects of neutral-ion collisions and the neutral gas pressure. We take the neutral-ion collision frequency as an arbitrary parameter. Particular results for transverse kink modes and slow magnetoacoustic modes are shown. We find that the wave frequencies only depend on the properties of the ionized fluid when the neutral-ion collision frequency is much lower that the wave frequency. For high collision frequencies realistic of the solar atmosphere ions and neutrals behave as ...
Dynamics of nonlinear resonant slow MHD waves in twisted flux tubes
Directory of Open Access Journals (Sweden)
R. Erdélyi
2002-01-01
Full Text Available Nonlinear resonant magnetohydrodynamic (MHD waves are studied in weakly dissipative isotropic plasmas in cylindrical geometry. This geometry is suitable and is needed when one intends to study resonant MHD waves in magnetic flux tubes (e.g. for sunspots, coronal loops, solar plumes, solar wind, the magnetosphere, etc. The resonant behaviour of slow MHD waves is confined in a narrow dissipative layer. Using the method of simplified matched asymptotic expansions inside and outside of the narrow dissipative layer, we generalise the so-called connection formulae obtained in linear MHD for the Eulerian perturbation of the total pressure and for the normal component of the velocity. These connection formulae for resonant MHD waves across the dissipative layer play a similar role as the well-known Rankine-Hugoniot relations connecting solutions at both sides of MHD shock waves. The key results are the nonlinear connection formulae found in dissipative cylindrical MHD which are an important extension of their counterparts obtained in linear ideal MHD (Sakurai et al., 1991, linear dissipative MHD (Goossens et al., 1995; Erdélyi, 1997 and in nonlinear dissipative MHD derived in slab geometry (Ruderman et al., 1997. These generalised connection formulae enable us to connect solutions obtained at both sides of the dissipative layer without solving the MHD equations in the dissipative layer possibly saving a considerable amount of CPU-time when solving the full nonlinear resonant MHD problem.
Efficient operation of a high-power {ital X}-band traveling wave tube amplifier
Energy Technology Data Exchange (ETDEWEB)
Wang, P.; Xu, Z.; Ivers, J.D.; Nation, J.A.; Naqvi, S.; Schachter, L. [Cornell University, Ithaca, New York 14853 (United States)
1999-10-01
We report experimental results demonstrating 54{percent} power conversion efficiency (43{percent} energy conversion efficiency), from a two-stage {ital X}-band traveling wave tube amplifier designed for high-power operation. The first stage of the amplifier is a 12-cm-long Boron Nitride dielectric section used to modulate the electron beam. The second stage consists of a long high-phase-velocity bunching section followed by a short low-phase-velocity output section. Output powers of up to 78 MW with narrow spectrum width were obtained with {approximately}700 kV, {approximately}200 A beam. {copyright} {ital 1999 American Institute of Physics.}
NC plane waves, Casimir effect and flux tube potential with L\\"uscher terms
Kováčik, Samuel
2016-01-01
We analyze plane waves in a model of quantum mechanics in a three dimensional noncommutative (NC) space $R^3_{\\lambda}$. Signature features of NC models are impossibility of probing distances smaller than a certain length scale {\\lambda} and a presence of natural energetic cut-off at energy scale of order $1/{\\lambda}^2$ (in convenient units). We analyze consequences of such restrictions on a 1 dimensional Casimir effect. The result shows resemblance to flux tube potential for quark-antiquark pairs and to effective bosonic string theories with L\\"uscher terms. Such behavior might effect the radius of possible compact (fuzzy) dimensions.
User's guide for a large signal computer model of the helical traveling wave tube
Palmer, Raymond W.
1992-01-01
The use is described of a successful large-signal, two-dimensional (axisymmetric), deformable disk computer model of the helical traveling wave tube amplifier, an extensively revised and operationally simplified version. We also discuss program input and output and the auxiliary files necessary for operation. Included is a sample problem and its input data and output results. Interested parties may now obtain from the author the FORTRAN source code, auxiliary files, and sample input data on a standard floppy diskette, the contents of which are described herein.
High efficiency, long life traveling wave tubes for future communications satellites
Dayton, J. A., Jr.
1988-01-01
Electron beam devices, primarily traveling wave tubes (TWTs), have been used as the power amplifiers in almost all space communications and data transmission systems. Based on the technology that is presently available and the expected success of current research efforts, it is reasonable to predict the development of a new class of microwave TWTs with efficiencies in excess of 60 percent and lifetimes of at least ten years. Because of this rapid advance of technology, the TWT is expected to remain the dominant device for power amplifiers in space.
Investigating Holey Metamaterial Effects in Terahertz Traveling-Wave Tube Amplifier
Starinshak, David P.; Wilson, Jeffrey D.; Chevalier, Christine T.
2007-01-01
Applying subwavelength holes to a novel traveling-wave tube amplifier is investigated. Plans to increase the on-axis impedance are discussed as well as optimization schemes to achieve this goal. Results suggest that an array of holes alone cannot significantly change the on-axis electric field in the vicinity of the electron beam. However, models of a beam tunnel with corrugated walls show promise in maximizing the amplifier s on-axis impedance. Additional work is required on the subject, and suggestions are made to determine research directions.
Three-dimensional nonlinear theory of travelling wave tubes and simulation
Institute of Scientific and Technical Information of China (English)
李斌; 杨中海
2003-01-01
A three-dimensional (3D) nonlinear theory of travelling wave tubes (TWTs) is developed, which includes a fundamental radio frequency (RF) and harmonics. When the instantaneous bandwidth exceeds an octave, the harmonic is generated and the mutual coupling between the harmonic and the fundamental RF can be observed in TWTs due to nonlinear interaction between the electron beam and the RF. At low frequencies the harmonic has an obvious effect.Based upon Tien's disc model, a plastic 3D super-particle model is proposed to improve the nonlinear analysis of TWTs.Numerical results employing a periodic magnetic focusing field are presented.
Optimization Design of Helix Pitch for Efficiency Enhancement in the Helix Travelling Wave Tubes
Institute of Scientific and Technical Information of China (English)
DUAN Zhao-Yun; GONG Yu-Bin; L(U) Ming-Yi; WEI Yan-Yu; WANG Wen-Xiang
2008-01-01
@@ The output section of a helix travelling wave tube usually contains a helix pitch taper for high rf electron efficiency.By keeping the rf field as synchronous as possible with the decelerating electron beam bunches,the rf field can extract much more energy from the beam,and thus the maximum electron efficiency can be realized.Recently,a global simulated annealing algorithm has been employed to design the helix pitch profile so as to improve the electron efficiency as much as possible.From the numerical results,it is concluded that the electron efficiency can be enhanced by about 4%-8%.
An interleaved structure for a high-voltage planar transformer for a Travelling-wave Tube
DEFF Research Database (Denmark)
Zhao, Bin; Wang, Gang; Hurley, William G.;
2016-01-01
Fully interleaved structure can significantly reduce leakage inductance in transformers, However， it is hard to apply them into high-voltage applications due to the electric insulation. In this paper, a partially interleaved structure that is suitable for high-voltage high frequency applications...... is proposed to reduce leakage inductance and the insulation’s thickness is adjusted to optimize the electric isolation. In addition, the resistance and parasitic capacitance are investigated. With this method, a planar transformer used for a Travelling-Wave Tube Amplifier (TWTA) is designed. Calculations...
Bershader, D. (Editor); Hanson, R. (Editor)
1986-01-01
A detailed survey is presented of shock tube experiments, theoretical developments, and applications being carried out worldwide. The discussions explore shock tube physics and the related chemical, physical and biological science and technology. Extensive attention is devoted to shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive mixtures. Consideration is given to techniques for measuring, visualizing and theoretically modeling flowfield, shock wave and rarefaction wave characteristics. Numerical modeling is explored in terms of the application of computational fluid dynamics techniques to describing flowfields in shock tubes. Shock interactions and propagation, in both solids, fluids, gases and mixed media are investigated, along with the behavior of shocks in condensed matter. Finally, chemical reactions that are initiated as the result of passage of a shock wave are discussed, together with methods of controlling the evolution of laminar separated flows at concave corners on advanced reentry vehicles.
Energy Technology Data Exchange (ETDEWEB)
Gary E. Rochau and Thurlow W.H. Caffey, Sandia National Laboratories, Albuquerque, NM 87185-0740; Bahram Nassersharif and Gabe V. Garcia, Department of Mechanical Engineering, New Mexico State University, Las Cruces, NM 88003-8001; Russell P. Jedlicka, Klipsch School of Electrical and Computer Engineering, New Mexico State University, Las Cruces, NM 88003-8001
2003-05-01
OAK B204 Continuous-Wave Radar to Detect Defects Within Heat Exchangers and Steam Generator Tubes ; Revised September 3, 2003. A major cause of failures in heat exchangers and steam generators in nuclear power plants is degradation of the tubes within them. The tube failure is often caused by the development of cracks that begin on the outer surface of the tube and propagate both inwards and laterally. A new technique was researched for detection of defects using a continuous-wave radar method within metal tubing. The technique is 100% volumetric, and may find smaller defects, more rapidly, and less expensively than present methods. The project described in this report was a joint development effort between Sandia National Laboratories (SNL) and New Mexico State University (NMSU) funded by the US Department of Energy. The goal of the project was to research, design, and develop a new concept utilizing a continuous wave radar to detect defects inside metallic tubes and in particular nuclear plant steam generator tubing. The project was divided into four parallel tracks: computational modeling, experimental prototyping, thermo-mechanical design, and signal detection and analysis.
MEASUREMENTS OF SHOCK WAVE FORCE IN SHOCK TUBE WITH INDIRECT METHODS
Directory of Open Access Journals (Sweden)
Mario Dobrilović
2005-12-01
Full Text Available Tests have been conducted at the “Laboratory for testing of civil explosives, detonators, electrical detonators and pyrotechnical materials”, Department for mining and geotechnics of the Faculty of mining, geology and petroleum engineering, University of Zagreb with the purpose of designing a detonator that would unite advantages of a non-electric system and the precision in regulation of time delay in electronic initiation system. Sum of energy released by the wave force in shock tube is a pre-condition for operation of the new detonator, and measurement of wave force is the first step in determining the sum of energy. The sum of energy is measured indirectly, based on two principles: movement sensors and strain.
Numerical modeling of nonlinear acoustic waves in a tube with an array of Helmholtz resonators
Lombard, Bruno
2013-01-01
Wave propagation in a 1-D guide with an array of Helmholtz resonators is studied numerically, considering large amplitude waves and viscous boundary layers. The model consists in two coupled equations: a nonlinear PDE of nonlinear acoustics, and a linear ODE describing the oscillations in the Helmholtz resonators. The dissipative effects in the tube and in the throats of the resonators are modeled by fractional derivatives. Based on a diffusive representation, the convolution kernels are replaced by a finite number of memory variables that satisfy local ordinary differential equations. An optimization procedure provides an efficient diffusive representation. A splitting strategy is then applied to the evolution equations: the propagative part is solved by a standard TVD scheme for hyperbolic equations, whereas the diffusive part is solved exactly. This approach is validated by comparisons with exact solutions. The properties of the full nonlinear solutions are investigated numerically. In particular, existenc...
Mumford, S J; Erdélyi, R
2013-01-01
Aims. Recent ground- and space-based observations reveal the presence of small-scale motions between convection cells in the solar photosphere. In these regions small-scale magnetic flux tubes are generated due to the interaction of granulation motion and background magnetic field. This paper aims to study the effects of these motions, in regions of enhanced magnetic field, on magnetohydrodynamic wave excitation, propagation and energy flux from the solar photosphere up towards the solar corona. Methods. Numerical experiments of magnetohydrodynamic wave propagation in a realistic gravitationally stratified solar atmosphere from five different modelled photospheric drivers are performed. Horizontal and vertical drivers to mimic granular buffeting and solar global oscillations, a uniform torsional driver, an Archimedean spiral and a logarithmic spiral to mimic observed torsional motions in the solar photosphere are investigated. The numerical results are analysed using a novel method for extracting the parallel...
Multiple Scattering of Seismic Waves from Ensembles of Upwardly Lossy Thin Flux Tubes
Hanson, Chris S
2015-01-01
Our previous semi-analytic treatment of f- and p-mode multiple scattering from ensembles of thin flux tubes (Hanson and Cally, Astrophys. J. 781, 125; 791, 129, 2014) is extended by allowing both sausage and kink waves to freely escape at the top of the model using a radiative boundary condition there. As expected, this additional avenue of escape, supplementing downward loss into the deep solar interior, results in substantially greater absorption of incident f- and p-modes. However, less intuitively, it also yields mildly to substantially smaller phase shifts in waves emerging from the ensemble. This may have implications for the interpretation of seismic data for solar plage regions, and in particular their small measured phase shifts.
Impulsively Generated Sausage Waves in Coronal Tubes with Transversally Continuous Structuring
Yu, Hui; Li, Bo; Chen, Shao-Xia; Xiong, Ming; Guo, Ming-Zhe
2016-12-01
The frequency dependence of the longitudinal group speeds of trapped sausage waves plays an important role in determining impulsively generated wave trains, which have often been invoked to account for quasi-periodic signals in coronal loops. We examine how the group speeds ({v}{gr}) depend on angular frequency (ω) for sausage modes in pressureless coronal tubes with continuous transverse density distributions by solving the dispersion relation pertinent to the case where the density inhomogeneity of arbitrary form occurs in a transition layer of arbitrary thickness. We find that in addition to the transverse lengthscale l and density contrast {ρ }{{i}}/{ρ }{{e}}, the group speed behavior also depends on the detailed form of the density inhomogeneity. For parabolic profiles, {v}{gr} always decreases with ω first before increasing again, as happens for the much studied top-hat profiles. For linear profiles, however, the behavior of the ω -{v}{gr} curves is more complex. When {ρ }{{i}}/{ρ }{{e}}≲ 6, the curves become monotonical for large values of l. On the other hand, for higher density contrasts, a local maximum {v}{gr}\\max exists in addition to a local minimum {v}{gr}\\min when coronal tubes are diffuse. With time-dependent computations, we show that the different behavior of group speed curves, the characteristic speeds {v}{gr}\\min and {v}{gr}\\max in particular, is reflected in the temporal evolution and Morlet spectra of impulsively generated wave trains. We conclude that the observed quasi-periodic wave trains not only can be employed to probe such key parameters as density contrasts and profile steepness, but also have the potential to discriminate between the unknown forms of the transverse density distribution.
AN INVESTIGATION OF ELECTROMAGNETIC WAVE PROPAGATION IN PLASMA BY SHOCK TUBE
Institute of Scientific and Technical Information of China (English)
ZHU Naiyi; LI Xuefen; HUANG Lishun; YU Xilong; YANG Qiansuo
2004-01-01
This paper presents the electromagnetic wave propagation characteristics in plasma and the attenuation coefficients of the microwave in terms of the parameters ne, v, ω, L, ωb. The φ800 mm high temperature shock tube has been used to produce a uniform plasma. In order to get the attenuation of the electromagnetic wave through the plasma behind a shock wave, the microwave transmission has been used to measure the relative change of the wave power. The working frequency is f = (2 ～ 35) GHz (ω = 2π f, wave length λ = 15 cm ～ 8 mm). The electron density in the plasma is ne = (3 × 1010 ～ 1× 1014) cm-3. The collision frequency v = (1× 10s ～ 6 × 1010)Hz. The thickness of the plasma layer L = (2 ～ 80) cm. The electron circular frequency ωb = eBo/me, magnetic flux density B0 = (0 ～ 0.84)T. The experimental results show that when the plasma layer is thick (such as L/λ≥ 10), the correlation between the attenuation coefficients of the electromagnetic waves and the parameters ne, v, ω, L determined from the measurements are in good agreement with the theoretical predictions of electromagnetic wave propagations in the uniform infinite plasma. When the plasma layer is thin (such as when both L and λ are of the same order), the theoretical results are only in a qualitative agreement with the experimental observations in the present parameter range,but the formula of the electromagnetic wave propagation theory in an uniform infinite plasma can not be used for quantitative computations of the correlation between the attenuation coefficients and the parameters ne, v, ω, L. In fact, if ω＜ωp, v2 ＜＜ω2, the power attenuations K of the electromagnetic waves obtained from the measurements in the thin-layer plasma are much smaller than those of the theoretical predictions. On the other hand, if ω＞ωp, v2 ＜＜ω2 (just v ≈ f), the measurements are much larger than the theoretical results. Also, we have measured the electromagnetic wave power
Shock tube design for high intensity blast waves for laboratory testing of armor and combat materiel
Institute of Scientific and Technical Information of China (English)
Elijah COURTNEY; Amy COURTNEY; Michael COURTNEY
2014-01-01
Shock tubes create simulated blast waves which can be directed and measured to study blast wave effects under laboratory conditions. It is desirable to increase available peak pressure from w1 MPa to w5 MPa to simulate closer blast sources and facilitate development and testing of personal and vehicle armors. Three methods are experimentally investigated to increase peak simulated blast pressure produced by an oxy-acetylene driven shock tube while maintaining suitability for laboratory studies. The first method is the addition of a Shchelkin spiral prim-ing section which supports a deflagration to detonation transition. This approach increases the average peak pressure from 1.17 MPa to 5.33 MPa while maintaining a relevant pressure-time curve (near Friedlander waveform). The second method is a bottleneck between the driving and driven sections. Coupling a 79 mm diameter driving section to a 53 mm driven section increases the peak pressure from 1.17 MPa to 2.25 MPa. A 103 mm driving section is used to increase peak pressure to 2.64 MPa. The third method, adding solid fuel to the driving section with the oxy-acetylene, results in a peak pressure increasing to 1.70 MPa.
Shock tube design for high intensity blast waves for laboratory testing of armor and combat materiel
Directory of Open Access Journals (Sweden)
Elijah Courtney
2014-06-01
Full Text Available Shock tubes create simulated blast waves which can be directed and measured to study blast wave effects under laboratory conditions. It is desirable to increase available peak pressure from ∼1 MPa to ∼5 MPa to simulate closer blast sources and facilitate development and testing of personal and vehicle armors. Three methods are experimentally investigated to increase peak simulated blast pressure produced by an oxy-acetylene driven shock tube while maintaining suitability for laboratory studies. The first method is the addition of a Shchelkin spiral priming section which supports a deflagration to detonation transition. This approach increases the average peak pressure from 1.17 MPa to 5.33 MPa while maintaining a relevant pressure-time curve (near Friedlander waveform. The second method is a bottleneck between the driving and driven sections. Coupling a 79 mm diameter driving section to a 53 mm driven section increases the peak pressure from 1.17 MPa to 2.25 MPa. A 103 mm driving section is used to increase peak pressure to 2.64 MPa. The third method, adding solid fuel to the driving section with the oxy-acetylene, results in a peak pressure increasing to 1.70 MPa.
振荡管复合阻尼陷波%ELIMINATION OF REFLECT SHOCK WAVE IN OSCILLATORY TUBE
Institute of Scientific and Technical Information of China (English)
李学来; 朱彻
2001-01-01
A new concept,compound damp drip for absorbing shock wave in oscillatory tube,is developed in the present paper.The main idea of the concept is that the shock wave absorber must has the two functions,that is,it can not only exhaust the energy of the incident shock wave fully but also transfer the energy out promptly.In the experiment,the compound damp drip is structured with a multi-orifice for intensifying the energy dissipation of the shock wave and an internal cooling system for strengthening the heat transfer.The experimental results show that a strong reflect shock wave,whose strength is 66%of the incident shock wave ,is measured at the position of the relative tube length x/L=0.3 when the oscillatory tube without the compound damp drip.But,after the compound damp drip is amounted at the closed end of the tube,the reflect shock wave is eliminated effectively and the refrigerating efficiency η is increased by 4?%～10?% in case of the L/d ratio is 140 and the expansion ratio ε is changed from 2.0 to 6.0.What is more ,the refrigerating efficiency in case of L/d=140 and the tube is mounted with the compound damp drip is still higher by 2?%～6?% than that the tube without damp drip but L/d=300.The above result means that while the damp drip is used,the refrigerating efficiency can be increased and the size of the refrigerator can be decreased significantly.
Mathijssen, T.; Gallo, M.; Casati, E.; Nannan, N. R.; Zamfirescu, C.; Guardone, A.; Colonna, P.
2015-10-01
This paper describes the commissioning of the flexible asymmetric shock tube (FAST), a novel Ludwieg tube-type facility designed and built at Delft University of Technology, together with the results of preliminary experiments. The FAST is conceived to measure the velocity of waves propagating in dense vapours of organic fluids, in the so-called non-ideal compressible fluid dynamics (NICFD) regime, and can operate at pressures and temperatures as high as 21 bar and 400°C, respectively. The set-up is equipped with a special fast-opening valve, separating the high-pressure charge tube from the low-pressure plenum. When the valve is opened, a wave propagates into the charge tube. The wave speed is measured using a time-of-flight technique employing four pressure transducers placed at known distances from each other. The first tests led to the following results: (1) the leakage rate of 5 × {10}^{-4} {mbar l s^{-1}} for subatmospheric and 5 × {10}^{-2} {mbar l s^{-1}} for a superatmospheric pressure is compatible with the purpose of the conceived experiments, (2) the process start-up time of the valve has been found to be between 2.1 and 9.0 ms, (3) preliminary rarefaction wave experiments in the dense vapour of siloxane {D}_6 (dodecamethylcyclohexasiloxane, an organic fluid) were successfully accomplished up to temperatures of 300°C, and (4) a method for the estimation of the speed of sound from wave propagation experiments is proposed. Results are found to be within 2.1 % of accurate model predictions for various gases. The method is then applied to estimate the speed of sound of {D}_6 in the NICFD regime.
National Aeronautics and Space Administration — Space telecommunications require amplifiers that are efficient, high-power, wideband, small, lightweight, and highly reliable. Currently, helix traveling wave tube...
Institute of Scientific and Technical Information of China (English)
LIU Ke; LI Song; GUO Qing; HUANG Dongtao
2005-01-01
A lateral Helmholtz resonator added to a standing wave tube without flow has been validated as a method of noise reduction for combustion noise radiated from combustion channel of rockets or turbines. But in fact there is a flow with low velocity in the combustion channel. Therefore the theoretical analysis carried out is aimed at sound field of standing wave tube with flow and with lateral Helmholtz resonator. Certainly a relevant math-physical model should first be formulated. Here three key problems need to be solved: (1) To formulate the discontinuity condition at the joint between the standing wave tube and Helmholtz resonator in the case of flow. (2) To determine the acoustic impedance of Helnholtz resonator, considering the effects of flow, viscous and multihole. (3) To formulate the reflection condition at the end of the standing wave tube. Some formulas for analysis of the sound field in the tube with flow and with lateral Helmholtz resonator are deduced. These theoretical works have been validated by experiments.
低频段紧凑型同轴相对论返波振荡器%Low-band compact coaxial relativistic backward-wave oscillator
Institute of Scientific and Technical Information of China (English)
高梁; 钱宝良; 葛行军; 靳振兴; 张军
2012-01-01
Based on a novel compact P-band coaxial relativistic backward wave oscillator(RBWO) with only three periods slow wave structure (SWS), an L-band coaxial RBWO is proposed and investigated. Particle simulation results show that, with the 591 kV, 8. 2 kA electron beam guided by the 0. 8 T solenoidal field, the microwave is generated with the power of 1. 50 GW operating at about 1. 64 GHz. The interaction efficiency is about 31% and the optimized size of SWS is only φ96 mm×207 mm. Furthermore, the electrodynamics characteristics of the proposed device, expressly the longitudinal resonant modes and quality factors, are analyzed. Finally, a principle of design for low-band coaxial RBWO is presented with the results of P-band coaxial RBWO and L-band coaxial RBWO, i. e. , the length of SWS is about equal to the wavelength, the period length of SWS, and the depths of outer and inner conductor ripples are respectively about 5/13, 1/10, and 1/30 times the wavelength, the radius of electron beam is about 0. 7 times the average radius of outer conductor ripple, the longitudinal resonant mode is 0. 87π mode and the Q-factor is about 16.%基于P波段新型三周期慢波结构同轴相对论返波振荡器设计思想,设计了一个L波段同轴相对论返波振荡器.粒子模拟表明,在二极管电压591 kV、电流8.2 kA、导引磁场0.8T时,获得了1.50 GW的微波输出,频率为1.64 GH2,效率达31％,器件慢波结构尺寸仅为φ96 mm×207 mm.分析了该器件实际高频结构的电动力学特性,重点研究了纵向谐振模式、品质因数等特点,并结合P波段的研究结果,得到了该类器件的相关设计指标:慢波结构长度约为一个波长,波纹周期约5/13波长,外波纹深度约1/10波长,内波纹深度约1/30波长,电子束半径约0.7倍外波纹平均半径,器件的纵向工作模式为0.8π模,对应的Q值约16.
Directory of Open Access Journals (Sweden)
Aravind eSundaramurthy
2014-12-01
Full Text Available Detonation of a high explosive produces shock-blast wave, shrapnel, and gaseous products. While direct exposure to blast is a concern near the epicenter, shock-blast can affect subjects even at farther distances, which is termed as primary blast injury, which is the theme of this work. The shock-blast profile is characterized with blast overpressure, positive time duration, and impulse as shock-blast wave parameters (SWPs. These parameters in turn are a function of field factors, such as the strength of high explosive and the distance of the human subjects from the epicenter. The shape and magnitude of the profile determine the severity of injury to the subjects. As shown in some of our recent works (Chandra et al., 2011;Sundaramurthy et al., 2012;Skotak et al., 2013, the profile not only determines the survival of the animal but also the acute and chronic biomechanical injuries along with the following bio-chemical sequelae. It is extremely important to carefully design and operate the shock tube to produce field relevant SWPs. Furthermore, it is vital to identify and eliminate the artifacts that are inadvertently introduced in the shock-blast profile that may affect the results. In this work, we examine the relationship between shock tube adjustable parameters (SAPs and SWPs that can be used to control the blast profile; the results can be easily applied to many of the laboratory shock tubes. Further, exact replication of shock profile (magnitude and shape can be related to field explosions and can be a standard in comparing results across different laboratories. 40 experiments are carried out by judiciously varying SAPs such as membrane thickness, breech length (66.68 to 1209.68 mm, measurement location, and type of driver gas (nitrogen, helium. The relationships between SAPs and the resulting shock-blast profiles are characterized. Finally, shock-blast profiles of a TNT explosion from ConWep software is compared with the profiles obtained
1.5 octave wideband traveling-wave tube with heavily-loaded helical slow-wave structure
Jung, S S; Han, S T; Jeon, S; Soukhov, A V; Park, G S
2001-01-01
Summary form only given. A 1.5 octave wideband traveling wave tube (TWT) with a helical structure loaded by the thick dielectric support rods has been designed and fabricated for the frequency range of 6-18 GHz. Helical slow-wave structure (SWS) was modeled using three- dimensional HFSS code. The nonresonant perturbation measurement using a thin copper wire with 20 mm diameter was performed to verify the phase velocity and interaction impedance of the helical structure. The performance of TWT was predicted using one-dimensional (1-D) nonlinear theory involving a macro particle beam model. The harmonic effect was considered in this calculation. The measured performance of TWT using a beam voltage 4 kV and a beam current of 120 mA was shown. These results were compared with a 1-D nonlinear theory. The comparison showed that the measured power and gain were less than the predicted one but had a similar trend over the operating frequency range. The 2nd harmonic levels at the low frequency range of 6-8 GHz were ne...
Small-signal analysis of a rectangular helix structure traveling-wave-tube
Institute of Scientific and Technical Information of China (English)
Fu Cheng-Fang; Wei Yan-Yu; Duan Zhao-Yun; Wang Wen-Xiang; Gong Yu-Bin
2009-01-01
This paper investigates the properties of traveling wave-beam interaction in a rectangular helix traveling-wave-tube (TWT) for a solid sheet electron beam. The 'hot' dispersion equation is obtained by means of the self-consistent field theory. The small signal analysis, which includes the effects of the beam parameters and slow-wave structure (SWS)parameters, is carried out by theoretical computation. The numerical results show that the bandwidth and the smallsignal gain of the rectangular helix TWT increase as the beam current increases; and the beam voltage not obviously influences the small signal gain. Among different rectangular helix structures, the small-signal gain increases as the width of the rectangular helix SWS increases, however, the bandwidth decreases whether structure parameters a and Lor ψ and L are fixed or not. In addition, a comparison of the small-signal gain of this structure with a conventional round helix is made. The presented analysis will be useful for the design of the TWT with a rectangular helix circuit.
Ginzburg, N. S.; Zotova, I. V.; Sergeev, A. S.; Zaslavsky, V. Yu.; Zheleznov, I. V.; Samsonov, S. V.; Mishakin, S. V.
2015-11-01
A time-domain self consistent theory of a gyrotron traveling wave tube with a helically corrugated operating waveguide has been developed. Based on this model, the process of short pulse amplification was studied in regimes of grazing and intersection of the dispersion curves of the electromagnetic wave and the electron beam. In the first case, the possibility of amplification without pulse form distortion was demonstrated for the pulse spectrum width of the order of the gain bandwidth. In the second case, when the electrons' axial velocity was smaller than the wave's group velocity, it was shown that the slippage of the incident signal with respect to the electron beam provides feeding of the signal by "fresh" electrons without initial modulation. As a result, the amplitude of the output pulse can exceed the amplitude of its saturated value for the case of the grazing regime, and, for optimal parameters, the peak output power can be even larger than the kinetic power of the electron beam.
Dissipative MHD solutions for resonant Alfven waves in 1-dimensional magnetic flux tubes
Goossens, Marcel; Ruderman, Michail S.; Hollweg, Joseph V.
1995-01-01
The present paper extends the analysis by Sakurai, Goossens, and Hollweg (1991) on resonant Alfven waves in nonuniform magnetic flux tubes. It proves that the fundamental conservation law for resonant Alfven waves found in ideal MHD by Sakurai, Goossens, and Hollweg remains valid in dissipative MHD. This guarantees that the jump conditions of Sakurai, Goossens, and Hollweg, that connect the ideal MHD solutions for xi(sub r), and P' across the dissipative layer, are correct. In addition, the present paper replaces the complicated dissipative MHD solutions obtained by Sakurai, Goossens, and Hollweg for xi(sub r), and P' in terms of double integrals of Hankel functions of complex argument of order 1/3 with compact analytical solutions that allow a straight- forward mathematical and physical interpretation. Finally, it presents an analytical dissipative MHD solution for the component of the Lagrangian displacement in the magnetic surfaces perpen- dicular to the magnetic field lines xi(sub perpendicular) which enables us to determine the dominant dynamics of resonant Alfven waves in dissipative MHD.
Energy Technology Data Exchange (ETDEWEB)
Ginzburg, N. S., E-mail: ginzburg@appl.sci-nnov.ru; Zaslavsky, V. Yu. [Institute of Applied Physics of the Russian Academy of Sciences, 46 Ul' yanov Str., 603950 Nizhny Novgorod (Russian Federation); Nizhny Novgorod State University, 23 Gagarin Ave., 603950 Nizhny Novgorod (Russian Federation); Zotova, I. V.; Sergeev, A. S.; Zheleznov, I. V.; Samsonov, S. V.; Mishakin, S. V. [Institute of Applied Physics of the Russian Academy of Sciences, 46 Ul' yanov Str., 603950 Nizhny Novgorod (Russian Federation)
2015-11-15
A time-domain self consistent theory of a gyrotron traveling wave tube with a helically corrugated operating waveguide has been developed. Based on this model, the process of short pulse amplification was studied in regimes of grazing and intersection of the dispersion curves of the electromagnetic wave and the electron beam. In the first case, the possibility of amplification without pulse form distortion was demonstrated for the pulse spectrum width of the order of the gain bandwidth. In the second case, when the electrons' axial velocity was smaller than the wave's group velocity, it was shown that the slippage of the incident signal with respect to the electron beam provides feeding of the signal by “fresh” electrons without initial modulation. As a result, the amplitude of the output pulse can exceed the amplitude of its saturated value for the case of the grazing regime, and, for optimal parameters, the peak output power can be even larger than the kinetic power of the electron beam.
High-Power, High-Efficiency Ka-Band Space Traveling-Wave Tube
Krawczyk, Richard; Wilson, Jeffrey; Simons, Rainee; Williams, Wallace; Bhasin, Kul; Robbins, Neal; Dibb, Daniel; Menninger, William; Zhai, Xiaoling; Benton, Robert; Burdette, James
2007-01-01
The L-3 Communications Model 999H traveling-wave tube (TWT) has been demonstrated to generate an output power of 144 W at 60-percent overall efficiency in continuous-wave operation over the frequency band from 31.8 to 32.3 GHz. The best TWT heretofore commercially available for operation in the affected frequency band is characterized by an output power of only 35 W and an efficiency of 50 percent. Moreover, whereas prior TWTs are limited to single output power levels, it has been shown that the output power of the Model 999H can be varied from 54 to 144 W. A TWT is a vacuum electronic device used to amplify microwave signals. TWTs are typically used in free-space communication systems because they are capable of operating at power and efficiency levels significantly higher than those of solid-state devices. In a TWT, an electron beam is generated by an electron gun consisting of a cathode, focusing electrodes, and an anode. The electrons pass through a hole in the anode and are focused into a cylindrical beam by a stack of periodic permanent magnets and travel along the axis of an electrically conductive helix, along which propagates an electromagnetic wave that has been launched by an input signal that is to be amplified. The beam travels within the helix at a velocity close to the phase velocity of the electromagnetic wave. The electromagnetic field decelerates some of the electrons and accelerates others, causing the beam to become formed into electron bunches, which further interact with the electromagnetic wave in such a manner as to surrender kinetic energy to the wave, thereby amplifying the wave. The net result is to amplify the input signal by a factor of about 100,000. After the electrons have passed along the helix, they impinge on electrodes in a collector. The collector decelerates the electrons in such a manner as to recover most of the remaining kinetic energy and thereby significantly increase the power efficiency of the TWT.
Backward Evolving Quantum States
Vaidman, L
2006-01-01
The basic concept of the two-state vector formalism, which is the time symmetric approach to quantum mechanics, is the backward evolving quantum state. However, due to the time asymmetry of the memory's arrow of time, the possible ways to manipulate a backward evolving quantum state differ from those for a standard, forward evolving quantum state. The similarities and the differences between forward and backward evolving quantum states regarding the no-cloning theorem, nonlocal measurements, and teleportation are discussed. The results are relevant not only in the framework of the two-state vector formalism, but also in the framework of retrodictive quantum theory.
Revised NASA axially symmetric ring model for coupled-cavity traveling-wave tubes
Wilson, Jeffrey D.
1987-01-01
A versatile large-signal, two-dimensional computer program is used by NASA to model coupled-cavity travelling-wave tubes (TWTs). In this model, the electron beam is divided into a series of disks, each of which is further divided into axially symmetric rings which can expand and contract. The trajectories of the electron rings and the radiofrequency (RF) fields are determined from the calculated axial and radial space-charge, RF, and magnetic forces as the rings pass through a sequence of cavities. By varying electrical and geometric properties of individual cavities, the model is capable of simulating severs, velocity tapers, and voltage jumps. The calculated electron ring trajectories can be used in designing magnetic focusing and multidepressed collectors. The details of using the program are presented, and results are compared with experimental data.
Study of a high power sine waveguide traveling wave tube amplifier centered at 8 GHz
Hoff, Brad W.; Simon, David S.; French, David M.; Lau, Y. Y.; Wong, Patrick
2016-10-01
Performance of a 20-stage X-band sine waveguide amplifier, driven by a 40 A, 100 kV, cylindrical electron beam, is studied using numerical simulation and interpreted using Pierce's classical traveling wave tube theory. For an input signal power level of 1.8 kW, particle-in-cell simulations predict gain and bandwidth values exceeding 14 dB and 13%, respectively. For an input signal power level of 7.2 kW, particle-in-cell simulations predict gain and bandwidth values exceeding 12 dB and 15%, respectively, with output power levels exceeding 110 kW at peak gain. Also given are: an assessment of the space charge factor (Pierce's QC parameter) for the complex circuit using simulation data, and an evaluation of the harmonic contents in the beam current.
Wintucky, Edwin G.
2000-01-01
A low-cost, low-mass, electrically efficient, modular cathode/electron gun assembly has been developed by FDE Inc. of Beaverton, Oregon, under a Small Business Innovation Research (SBIR) contract with the NASA Glenn Research Center at Lewis Field. This new assembly offers significant improvements in the design and manufacture of microwave and millimeter wave traveling-wave tubes (TWT's) used for radar and communications. It incorporates a novel, low-heater-power, reduced size and mass, high-performance barium dispenser type thermionic cathode and provides for easy integration of the cathode into a large variety of conventional TWT circuits. Among the applications are TWT's for Earth-orbiting communication satellites and for deep space communications, where future missions will require smaller spacecraft, higher data transfer rates (higher frequencies and radiofrequency output power), and greater electrical efficiency. A particularly important TWT application is in the microwave power module (a hybrid microwave/millimeter wave amplifier consisting of a low-noise solid-state driver, a small TWT, and an electronic power conditioner integrated into a single compact package), where electrical efficiency and thermal loading are critical factors and lower cost is needed for successful commercialization. The design and fabrication are based on practices used in producing cathode ray tubes (CRT's), which is one of the most competitive and efficient manufacturing operations in the world today. The approach used in the design and manufacture of thermionic cathodes and electron guns for CRT's has been optimized for fully automated production, standardization of parts, and minimization of costs. It is applicable to the production of similar components for microwave tubes, with the additional benefits of low mass and significantly lower cathode heater power (less than half that of dispenser cathodes presently used in TWT s). Modular cathode/electron gun assembly. The modular
Elhanaoui, Abdelkader; Aassif, Elhoucein; Maze, Gérard; Décultot, Dominique
2016-02-01
The present paper studies the acoustic signal backscattered by an air-filled copper–solid polymer two-layer cylindrical tube immersed in water. The work is done from the calculation of the backscattered pressure, an inverse Fourier Transform, which allows us to obtain an impulse signal. Smoothed pseudo Wigner–Ville and Concentrated spectrogram representations have been chosen to analyze the scattering phenomenon. For reduced frequencies ranging from 0.1 to 200, the resonance trajectories and time–frequency images have shown the presence of the guided waves. The bifurcation of the A0 wave into the A0(-) and the A0(+) waves has also been observed. The authors provide the phase and the group velocities of guided waves and investigate the differences between curves. The findings are then compared with those obtained for the copper and the solid polymer one-layer cylindrical tubes. Group velocity values have also been extracted from smoothed pseudo Wigner–Ville and Concentrated spectrogram time–frequency images. A good agreement with the theory has, therefore, been observed. The study of acoustic backscattering by a copper–solid polymer two-layer tube has revealed the interaction and the coupling of guided waves, specially the presence of a pseudo A1 wave; which is a very interesting, remarkable phenomenon.
Numerical computation of the Shock Tube Problem by means of wave digital principles
Directory of Open Access Journals (Sweden)
A. Mengel
2006-01-01
Full Text Available Partial differential equations can be solved numerically by means of wave digital principles. The great advantage of this method is the simultaneous achievement of high robustness, massive parallelism full localness and high accuracy. Among others this method will be applied in order to solve the Euler-equations according to one dimension in space. Especially the so called Shock Tube Problem will be examined. The analytical solution of this problem contains two discontinuities, namely a shock and a contact discontinuity. These result in oscillations which are due to numerical integration methods of higher order. Also solutions of the Wave Digital Method contain these oscillations, contrary to what had been observed of Yuhui Zhu (2000. This behaviour is also known as Gibbs Phenomena. The Navier-Stokes-equations, which are from a physical point of view more exactly, additionally take viscosity terms into account. This leads to smooth solutions near shocks. It will be shown that this approach leads to the suppression of the oscillations near the shock. Furthermore it will be shown that quite good results for the computation of velocity and pressure can be obtained.
A high-temperature superconducting millimeter wave detecting system based on pulse tube cryocooler
Chen, Jian; Wu, Peiheng; Nakajima, Kensuke; Yamashita, Tsutomu
2004-10-01
A millimeter (mm) wave broadband video detecting system using high temperature superconducting (HTS) junction and compact pulse tube cryocooler (PTC) has been studied. The lowest attainable temperature of the PTC is 42K and the operating temperature (T) can be adjusted by changing the pressure difference in the compressor. By measuring the linewidth of the Josephson oscillation as well as the dynamic range of the Josephson detector, it is found that the PTC has no excess noise compared with other kinds of cryostats such as liquid helium cryostats, and is very suitable for the applications in the mm wave detecting system. Furthermore, to improve the sensitivity of the system, the coupling efficiency of the system has been studied in detail. It is found that the coupling efficiency increases with the increase of RN linearly, and is better than 1% for RN of 1.7 Ohm. A sensitivity of about 318V/W has been obtained for the system based on the PTC and a junction with RN=1.7 Ohm and ICRN =1mV.
Impulsively generated sausage waves in coronal tubes with transversally continuous structuring
Yu, Hui; Chen, Shao-Xia; Xiong, Ming; Guo, Ming-Zhe
2016-01-01
The frequency dependence of the longitudinal group speeds of trapped sausage waves plays an important role in determining impulsively generated wave trains, which have often been invoked to account for quasi-periodic signals in coronal loops. We examine how the group speeds ($v_{\\rm gr}$) depend on angular frequency ($\\omega$) for sausage modes in pressureless coronal tubes with continuous transverse density distributions by solving the dispersion relation pertinent to the case where the density inhomogeneity of arbitrary form takes place in a transition layer of arbitrary thickness. We find that in addition to the transverse lengthscale $l$ and density contrast $\\rho_{\\rm i}/\\rho_{\\rm e}$, the group speed behavior depends also on the detailed form of the density inhomogeneity. For parabolic profiles, $v_{\\rm gr}$ always decreases with $\\omega$ first before increasing again, as happens for the much studied top-hat profiles. For linear profiles, however, the behavior of the $\\omega-v_{\\rm gr}$ curves is more c...
Institute of Scientific and Technical Information of China (English)
HE Jun; WEI Yan-Yu; GONG Yu-Bin; WANG Wen-Xiang
2009-01-01
A novel slow-wave structure (SWS), the folded double-ridged waveguide structure, is presented and its linear gain properties are investigated. The perturbed dispersion equation is derived and the small signal growth rate is calculated for dimensions of the ridge-loaded region and the parameters of the electron beam. The novel structure has potential applications in the production of high power and broad band radiation. For a cold beam, the linear theory predicts a gain of 1.1-1.27dB/period and a 3-dB small-signal gain bandwidth of 30% in W-band. A comparison between the folded double-ridged waveguide SWS and folded waveguide SWS (FWSWS) shows that with the same physical parameters, the novel SWS has an advantage over the FWSWS on the bandwidth and electron efficiency.
Goossens, Marcel; Hollweg, Joseph V.
1993-01-01
Resonant absorption of MHD waves on a nonuniform flux tube is investigated as a driven problem for a 1D cylindrical equilibrium. The variation of the fractional absorption is studied as a function of the frequency and its relation to the eigenvalue problem of the MHD radiating eigenmodes of the nonuniform flux tube is established. The optimal frequencies producing maximal fractional absorption are determined and the condition for total absorption is obtained. This condition defines an impedance matching and is fulfilled for an equilibrium that is fine tuned with respect to the incoming wave. The variation of the spatial wave solutions with respect to the frequency is explained as due to the variation of the real and imaginary parts of the dispersion relation of the MHD radiating eigenmodes with respect to the real driving frequency.
Institute of Scientific and Technical Information of China (English)
Li Yongchi; Huang Chengyi; Yuan Fuping; Jin Yongmei
2001-01-01
An in-depth analysis of propagation characteristics of elasto-plastic combined stress waves in circular thin-walled tubes has been made. In obtaining the simple-wave solution, however,most researches have ignored the influence of the circumferential stressrelated to the radial inertial effect in the tubes. In this paper the incremental elasto-plastic constitutive relations which are convenient for dynamic numerical analysis are adopted, and the finite-difference method is used to study the evolution and propagation of elasto-plastic combined stress waves in a thin-walled tube with the radial inertial effect of the tube considered. The calculation results are compared with those obtained when the radial inertial effect is not considered. The calculation results show that the radial inertial effect of a tube has a fairly great influence on the propagation of elasto-plastic combined stress waves.
Kuriakose, Matthew; Skotak, Maciej; Misistia, Anthony; Kahali, Sudeepto; Sundaramurthy, Aravind; Chandra, Namas
2016-01-01
The end plate mounted at the mouth of the shock tube is a versatile and effective implement to control and mitigate the end effects. We have performed a series of measurements of incident shock wave velocities and overpressures followed by quantification of impulse values (integral of pressure in time domain) for four different end plate configurations (0.625, 2, 4 inches, and an open end). Shock wave characteristics were monitored by high response rate pressure sensors allocated in six positions along the length of 6 meters long 229 mm square cross section shock tube. Tests were performed at three shock wave intensities, which was controlled by varying the Mylar membrane thickness (0.02, 0.04 and 0.06 inch). The end reflector plate installed at the exit of the shock tube allows precise control over the intensity of reflected waves penetrating into the shock tube. At the optimized distance of the tube to end plate gap the secondary waves were entirely eliminated from the test section, which was confirmed by pressure sensor at T4 location. This is pronounced finding for implementation of pure primary blast wave animal model. These data also suggest only deep in the shock tube experimental conditions allow exposure to a single shock wave free of artifacts. Our results provide detailed insight into spatiotemporal dynamics of shock waves with Friedlander waveform generated using helium as a driver gas and propagating in the air inside medium sized tube. Diffusion of driver gas (helium) inside the shock tube was responsible for velocity increase of reflected shock waves. Numerical simulations combined with experimental data suggest the shock wave attenuation mechanism is simply the expansion of the internal pressure. In the absence of any other postulated shock wave decay mechanisms, which were not implemented in the model the agreement between theory and experimental data is excellent.
Connolly, D. J.; Omalley, T. A.
1977-01-01
A flexible accurate large-signal computer program has been developed for the design of coupled-cavity traveling wave tubes. The program is written for a TSS-360 time sharing system. The beam is described by a disk model and the slow wave structure by a sequence of cavities or cells. The computational approach is arranged so that each cavity may have different geometrical or electrical parameters than its neighbors. This allows the program user to simulate a tube of almost arbitrary complexity. Input and output couplers, severs, complicated velocity tapers, and other features peculiar to one or a few cavities may be modeled by a correct choice of input data. The beam-wave interaction is handled by a new approach in which the RF fields are expanded in solutions to the TM wave equation retaining all significant space harmonics. The program was used to perform a design study of the TWT developed for the CTS satellite. Good agreement was obtained between the predictions of the program and the measured performance of the flight tube. The internal check on power balance was satisfied within plus or minus 0.2 per cent of input beam power.
Design, construction and evaluation of a 12.2 GHz, 4.0 kW-CW coupled-cavity traveling wave tube
Ayers, W. R.; Harman, W. A.
1973-01-01
An analytical and experimental program to study design techniques and to utilize these techniques to optimize the performance of an X-band 4 kW, CW traveling wave tube ultimately intended for satellite-borne television broadcast transmitters is described. The design is based on the coupled-cavity slow-wave circuit with velocity resynchronization to maximize the conversion efficiency. The design incorporates a collector which is demountable from the tube. This was done to facilitate multistage depressed collector experiments employing a NASA designed axisymmetric, electrostatic collector for linear beam microwave tubes after shipment of the tubes to NASA.
Power and Efficiency Optimized in Traveling-Wave Tubes Over a Broad Frequency Bandwidth
Wilson, Jeffrey D.
2001-01-01
A traveling-wave tube (TWT) is an electron beam device that is used to amplify electromagnetic communication waves at radio and microwave frequencies. TWT's are critical components in deep space probes, communication satellites, and high-power radar systems. Power conversion efficiency is of paramount importance for TWT's employed in deep space probes and communication satellites. A previous effort was very successful in increasing efficiency and power at a single frequency (ref. 1). Such an algorithm is sufficient for narrow bandwidth designs, but for optimal designs in applications that require high radiofrequency power over a wide bandwidth, such as high-density communications or high-resolution radar, the variation of the circuit response with respect to frequency must be considered. This work at the NASA Glenn Research Center is the first to develop techniques for optimizing TWT efficiency and output power over a broad frequency bandwidth (ref. 2). The techniques are based on simulated annealing, which has the advantage over conventional optimization techniques in that it enables the best possible solution to be obtained (ref. 3). Two new broadband simulated annealing algorithms were developed that optimize (1) minimum saturated power efficiency over a frequency bandwidth and (2) simultaneous bandwidth and minimum power efficiency over the frequency band with constant input power. The algorithms were incorporated into the NASA coupled-cavity TWT computer model (ref. 4) and used to design optimal phase velocity tapers using the 59- to 64-GHz Hughes 961HA coupled-cavity TWT as a baseline model. In comparison to the baseline design, the computational results of the first broad-band design algorithm show an improvement of 73.9 percent in minimum saturated efficiency (see the top graph). The second broadband design algorithm (see the bottom graph) improves minimum radiofrequency efficiency with constant input power drive by a factor of 2.7 at the high band edge (64
Thermal effect on the thermomechanical behavior of contacts in a Traveling Wave Tube
Directory of Open Access Journals (Sweden)
Chbiki Mounir
2016-01-01
Full Text Available A new elasto-plastic study of the contact between the helix and the rods of the delay line of Traveling Waves Tubes (TWT was realized. Our study is focused on the analysis of the hot lines shrinking phenomenon. In the studied case, unlike brazed configuration, the contact areas are not perfect, resulting in a diminution of the heat transfer process. In order to maximize the contact area and to homogenize the contact pressure, a soft thermal conductive material is coated on the helix: copper was chosen for this study. In the present work, an analytical model is used to identify the properties of the copper coating at a given temperature. We focused on the mechanical properties in order to improve the assembly process with a better numerical study. Experimental method have been made to validate the proposed model. The first comparison results seem to indicate that the model represents the reality with a good agreement. It is very clearly shown that the temperature decreases the mechanical properties. (Young’s modulus, yield strength, tensile strength…. And the thickness of the coating increases the contact area. This last point is less important at room temperature (6% of increase than at 140°C (22%.
Hiremath, K M
2009-01-01
It is conjectured that energy sources of the gamma ray bursts are similar to energy sources which trigger solar and stellar transient activity phenomena like flares, plasma accelerated flows in the flux tubes and, dissipation of energy and acceleration of particles by the MHD waves. Phenomenologically we examine in detail the following energy sources which may trigger gamma ray bursts : (i) cosmic primordial flares which could be solar flare like phenomena in the region of inter galactic or inter galactic cluster regions, (ii) primordial magnetic flux tubes that might have been formed from the convective collapse of the primordial magnetic flux (iii) nonlinear interaction and dissipation of MHD waves that are produced from the perturbations of large-scale inter galactic or inter cluster magnetic field of primordial origin. We examine in detail each of the afore mentioned phenomena keeping in mind that whether such processes are responsible for energy sources of the gamma ray bursts. By considering the similar...
Slegrová, Zuzana; Bálek, Rudolf
2005-03-01
This paper deals with the analysis of ultrasonic fields inside waveguides generated by ultrasonic waves of high amplitude. These waves behave nonlinearly, so it is not possible to use standard linear equations to describe their behaviour. Therefore, we started with an experimental determination of the acoustic pressure of air in glass tubes. We chose two methods of measurement--by a microphone and by an optical interferometric probe. The conventional method by a microphone creates numerous problems, which can be avoided by using an optical method, a heterodyne laser interferometer.
Carew, E O; Pedley, T J
1997-02-01
A model for the coupled problem of wall deformation and fluid flow, based on thin-shell and lubrication theories, and driven by a propagating wave of smooth muscle activation, is proposed for peristaltic pumping in the ureter. The model makes use of the available experimental data on the mechanical properties of smooth muscle and accounts for the soft material between the muscle layer and the vessel lumen. The main input is the activation wave of muscular contraction. Equations for the time-dependent problem in tubes of arbitrary length are derived and applied to the particular case of periodic activation waves in an infinite tube. Mathematical (small amplitude) and numerical analyses of this case are presented. Predictions on phase-lag in wall constriction with respect to peak activation wave, lumen occlusion due to thickening lumen material with contracting smooth muscle, and the general bolus shape are in qualitative agreement with observation. Some modifications to the mechanical, elastic, and hydrodynamic properties of the ureter that will make peristalsis less efficient, due for example to disease, are identified. In particular, the flow rate-pressure rise relationship in linear for weak to moderate activation waves, but as the lumen is squeezed shut, it is seen to be nonlinear in a way that increases pumping efficiency. In every case a ureter whose lumen can theoretically be squeezed shut is the one for which pumping is most efficient.
An Analysis of the Loads on and Dynamic Response of a Floating Flexible Tube in Waves and Currents
2014-05-09
the tube about 4.57 meters. The CFD code associated with the SolidWorks Flow Simulation tool was applied for this application. Flow Simulation uses...Liquid-Filled Membrane Structure in Waves," Journal of Fluids and Structures, no. 9, pp. 937-956, 1995. [16] SolidWorks , "Flow Simulation 2012...Technical Reference," SolidWorks , 2012. [17] NTNU, "TMR7 Experimental Methods in Marine Hydrodynamics – lecture in week 37," [Online]. Available: http
Non-linear numerical simulations of magneto-acoustic wave propagation in small-scale flux tubes
Khomenko, E; Felipe, T
2007-01-01
We present results of non-linear 2D numerical simulations of magneto-acoustic wave propagation in the photosphere and chromosphere of small-scale flux tubes with internal structure. Waves with realistic periods of 3--5 min are studied, after applying horizontal and vertical oscillatory perturbations to the equilibrium situation. Spurious reflections of shock waves from the upper boundary are minimized thanks to a special boundary condition. This has allowed us to increase the duration of the simulations and to make it long enough to perform a statistical analysis of oscillations. The simulations show that deep horizontal motions of the flux tube generate a slow (magnetic) mode and a surface mode. These modes are efficiently transformed into a slow (acoustic) mode in the Va < Cs atmosphere. The slow (acoustic) mode propagates vertically along the field lines, forms shocks and remains always within the flux tube. It might deposit effectively the energy of the driver into the chromosphere. When the driver osc...
Wintucky, Edwin G.
1999-01-01
A low cost, small size and mass, low heater power, durable high-performance barium dispenser thermionic cathode has been developed that offers significant advancements in the design, manufacture, and performance of the electron sources used in vacuum electronic devices--such as microwave (and millimeter wave) traveling-wave tubes (TWT's)--and in display devices such as high-brightness, high-resolution cathode ray tubes (CRT's). The lower cathode heater power and the reduced size and mass of the new cathode are expected to be especially beneficial in TWT's for deep space communications, where future missions are requiring smaller spacecraft, higher data transfer rates (higher frequencies and radiofrequency output power), and greater electrical efficiency. Also expected to benefit are TWT's for commercial and government communication satellites, for both low and geosynchronous Earth orbit, with additional benefits offered by lower cost and potentially higher cathode current loading. A particularly important TWT application is in the microwave power module (MPM), which is a hybrid microwave (or millimeter wave) amplifier consisting of a low-noise solid state driver, a vacuum power booster (small TWT), and an electronic power conditioner integrated into a single compact package. The attributes of compactness and potentially high electrical efficiency make the MPM very attractive for many commercial and government (civilian and defense) applications in communication and radar systems. The MPM is already finding application in defense electronic systems and is under development by NASA for deep space communications. However, for the MPM to become competitive and commercially successful, a major reduction in cost must be achieved.
Downey, Joseph A.
2004-01-01
The Jupiter Icy Moons Orbiter (JIMO) is set to launch between the years 2012 and 2015. It will possibly utilize a nuclear reactor power source and ion engines as it travels to the moons of Jupiter. The nuclear reactor will produce hundreds of kilowatts of power for propulsion, communication and various scientific instruments. Hence, the RF amplification devices aboard will be able to operate at a higher power level and data rate. The initial plan for the communications system is for an output of 1000 watts of RF power, a data rate of at least 10 megabits a second, and a frequency of 32 GHz. A higher data rate would be ideal to fully utilize the instruments aboard JIMO. At NASA Glenn, one of our roles in the JIMO project is to demonstrate RF power combining using multiple traveling wave tubes (TWT). In order for the power of separate TWT s to be combined, the RF output waves from each must be in-phase and have the same amplitude. Since different tubes act differently, we had to characterize each tube using a Network Analyzer. We took frequency sweeps and power sweeps to characterize each tube to ensure that they will behave similarly under the same conditions. The 200 watt Dornier tubes had been optimized to run at a lower power level (120 watts) for their extensive use in the ACTS program, so we also had to experiment with adjusting the voltage settings on several internal components (helix, anode, collector) of the tubes to reach the full 200 watt potential. from the ACTS program. Phase shifters and power attenuators were placed in the waveguide circuit at the inputs to the tubes so that adjustments could be made individually to match them exactly. A magic tee was used to route and combine the amplified electromagnetic RF waves on the tube output side. The demonstration of 200 watts of combined power was successful with efficiencies greater than 90% over a 500 MHz bandwidth. The next step will be to demonstrate the use of three amplifiers using two magic tees by
Modeling of the wave transmission properties of large arteries using nonlinear elastic tubes.
Pythoud, F; Stergiopulos, N; Meister, J J
1994-11-01
We propose a new, simple way of constructing elastic tubes which can be used to model the nonlinear elastic properties of large arteries. The tube models are constructed from a silicon elastomer (Sylgard 184, Dow Corning), which exhibits a nonlinear behavior with increased stiffness at high strains. Tests conducted on different tube models showed that, with the proper choice of geometric parameters, the elastic properties, in terms of area-pressure relation and compliance, can be similar to that of real arteries.
Extensional and Flexural Waves in a Thin-Walled Graphite/Epoxy Tube
Prosser, William H.; Gorman, Michael R.; Dorighi, John
1992-01-01
Simulated acoustic emission signals were induced in a thin-walled graphite/epoxy tube by means of lead breaks (Hsu-Neilsen source). The tube is of similar material and layup to be used by NASA in fabricating the struts of Space Station Freedom. The resulting waveforms were detected by broad band ultrasonic transducers and digitized. Measurements of the velocities of the extensional and flexural modes were made for propagation directions along the tube axis (0 degrees), around the tube circumference (90 degrees) and at an angle of 45 degrees. These velocities were found to be in agreement with classical plate theory.
Largo, Remo; Stolzmann, Paul; Fankhauser, Christian D; Poyet, Cédric; Wolfsgruber, Pirmin; Sulser, Tullio; Alkadhi, Hatem; Winklhofer, Sebastian
2016-06-01
This study investigates the capabilities of low tube voltage computed tomography (CT) and dual-energy CT (DECT) for predicting successful shock wave lithotripsy (SWL) of urinary stones in vitro. A total of 33 urinary calculi (six different chemical compositions; mean size 6 ± 3 mm) were scanned using a dual-source CT machine with single- (120 kVp) and dual-energy settings (80/150, 100/150 Sn kVp) resulting in six different datasets. The attenuation (Hounsfield Units) of calculi was measured on single-energy CT images and the dual-energy indices (DEIs) were calculated from DECT acquisitions. Calculi underwent SWL and the number of shock waves for successful disintegration was recorded. The prediction of required shock waves regarding stone attenuation/DEI was calculated using regression analysis (adjusted for stone size and composition) and the correlation between CT attenuation/DEI and the number of shock waves was assessed for all datasets. The median number of shock waves for successful stone disintegration was 72 (interquartile range 30-361). CT attenuation/DEI of stones was a significant, independent predictor (P waves with the best prediction at 80 kVp (β estimate 0.576) (P waves ranged between ρ = 0.31 and 0.68 showing the best correlation at 80 kVp (P < 0.001). The attenuation of urinary stones at low tube voltage CT is the best predictor for successful stone disintegration, being independent of stone composition and size. DECT shows no added value for predicting the success of SWL.
A Simple Experiment to Explore Standing Waves in a Flexible Corrugated Sound Tube
Amorim, Maria Eva; Sousa, Teresa Delmira; Carvalho, P. Simeao; Sousa, Adriano Sampaioe
2011-01-01
Sound tubes, pipes, and singing rods are used as musical instruments and as toys to perform amusing experiments. In particular, corrugated tubes present unique characteristics with respect to the sounds they can produce; that is why they have been studied so intensively, both at theoretical and experimental levels. Experimental studies usually…
Institute of Scientific and Technical Information of China (English)
ZHANG YanCi(张严辞); LIU XueHui(刘学慧); WU EnHua(吴恩华)
2003-01-01
In this paper a plane-based backward warping algorithm is proposed to generate novel views from multiple reference images. First, depth information is employed to reconstruct space planes from individual reference images and calculate the potential occluding relationship between these planes. Then the planes which represent each identical space plane from different reference images are compared with each other to decide the one with the best sample rate to be preserved and used in the later warping period while the other samples are abandoned. While the image of a novel view is produced, traditional methods in computer graphics, such as visibility test and clipping, are used to process the planes reconstructed. Then the planes processed are projected onto the desired image from the knowledge on which plane the desired image pixels are warped from can be acquired. Finally, pixels' depth of the desired image is calculated and then a backward warping is performed from these pixels to the reference images to obtain their colors. The storage requirement in the algorithm is small and increases slowly with the number of reference images increases. By combining the strategy of only preserving the best sample parts and the backward warping algorithm, the sample problem could be well tackled.
Generation and Propagation of Finite-Amplitude Waves in Flexible Tubes (A)
DEFF Research Database (Denmark)
Jensen, Leif Bjørnø
1972-01-01
Highly reproducible finite-amplitude waves, generated by a modified electromagnetic plane-wave generator, characterized by a rise time......Highly reproducible finite-amplitude waves, generated by a modified electromagnetic plane-wave generator, characterized by a rise time...
Sundaramurthy, Aravind; Chandra, Namas
2014-01-01
Detonation of a high-explosive produces shock-blast wave, shrapnel, and gaseous products. While direct exposure to blast is a concern near the epicenter, shock-blast can affect subjects, even at farther distances. When a pure shock-blast wave encounters the subject, in the absence of shrapnels, fall, or gaseous products the loading is termed as primary blast loading and is the subject of this paper. The wave profile is characterized by blast overpressure, positive time duration, and impulse and called herein as shock-blast wave parameters (SWPs). These parameters in turn are uniquely determined by the strength of high explosive and the distance of the human subjects from the epicenter. The shape and magnitude of the profile determine the severity of injury to the subjects. As shown in some of our recent works (1-3), the profile not only determines the survival of the subjects (e.g., animals) but also the acute and chronic biomechanical injuries along with the following bio-chemical sequelae. It is extremely important to carefully design and operate the shock tube to produce field-relevant SWPs. Furthermore, it is vital to identify and eliminate the artifacts that are inadvertently introduced in the shock-blast profile that may affect the results. In this work, we examine the relationship between shock tube adjustable parameters (SAPs) and SWPs that can be used to control the blast profile; the results can be easily applied to many of the laboratory shock tubes. Further, replication of shock profile (magnitude and shape) can be related to field explosions and can be a standard in comparing results across different laboratories. Forty experiments are carried out by judiciously varying SAPs such as membrane thickness, breech length (66.68-1209.68 mm), measurement location, and type of driver gas (nitrogen, helium). The effects SAPs have on the resulting shock-blast profiles are shown. Also, the shock-blast profiles of a TNT explosion from ConWep software is compared
Traveling-wave tube reliability estimates, life tests, and space flight experience
Lalli, V. R.; Speck, C. E.
1977-01-01
Infant mortality, useful life, and wearout phase of twt life are considered. The performance of existing developmental tubes, flight experience, and sequential hardware testing are evaluated. The reliability history of twt's in space applications is documented by considering: (1) the generic parts of the tube in light of the manner in which their design and operation affect the ultimate reliability of the device, (2) the flight experience of medium power tubes, and (3) the available life test data for existing space-qualified twt's in addition to those of high power devices.
Klystrons, traveling wave tubes, magnetrons, crossed-field amplifiers, and gyrotrons
Gilmour, A S
2011-01-01
Microwave tubes are vacuum electron devices used for the generation and amplification of radio frequencies in the microwave range. An established technology area, the use of tubes remains essential in the field today for high-power applications. The culmination of the author's 50 years of industry experience, this authoritative resource offers you a thorough understanding of the operations and major classes of microwave tubes.Minimizing the use of advanced mathematics, the book places emphasis on clear qualitative explanations of phenomena. This practical reference serves as an excellent intro
Overall Traveling-Wave-Tube Efficiency Improved By Optimized Multistage Depressed Collector Design
Vaden, Karl R.
2002-01-01
Depressed Collector Design The microwave traveling wave tube (TWT) is used widely for space communications and high-power airborne transmitting sources. One of the most important features in designing a TWT is overall efficiency. Yet, overall TWT efficiency is strongly dependent on the efficiency of the electron beam collector, particularly for high values of collector efficiency. For these reasons, the NASA Glenn Research Center developed an optimization algorithm based on simulated annealing to quickly design highly efficient multistage depressed collectors (MDC's). Simulated annealing is a strategy for solving highly nonlinear combinatorial optimization problems. Its major advantage over other methods is its ability to avoid becoming trapped in local minima. Simulated annealing is based on an analogy to statistical thermodynamics, specifically the physical process of annealing: heating a material to a temperature that permits many atomic rearrangements and then cooling it carefully and slowly, until it freezes into a strong, minimum-energy crystalline structure. This minimum energy crystal corresponds to the optimal solution of a mathematical optimization problem. The TWT used as a baseline for optimization was the 32-GHz, 10-W, helical TWT developed for the Cassini mission to Saturn. The method of collector analysis and design used was a 2-1/2-dimensional computational procedure that employs two types of codes, a large signal analysis code and an electron trajectory code. The large signal analysis code produces the spatial, energetic, and temporal distributions of the spent beam entering the MDC. An electron trajectory code uses the resultant data to perform the actual collector analysis. The MDC was optimized for maximum MDC efficiency and minimum final kinetic energy of all collected electrons (to reduce heat transfer). The preceding figure shows the geometric and electrical configuration of an optimized collector with an efficiency of 93.8 percent. The
Bit-error-rate testing of high-power 30-GHz traveling-wave tubes for ground-terminal applications
Shalkhauser, Kurt A.
1987-01-01
Tests were conducted at NASA Lewis to measure the bit-error-rate performance of two 30-GHz 200-W coupled-cavity traveling-wave tubes (TWTs). The transmission effects of each TWT on a band-limited 220-Mbit/s SMSK signal were investigated. The tests relied on the use of a recently developed digital simulation and evaluation system constructed at Lewis as part of the 30/20-GHz technology development program. This paper describes the approach taken to test the 30-GHz tubes and discusses the test data. A description of the bit-error-rate measurement system and the adaptations needed to facilitate TWT testing are also presented.
Shu, Guoxiang; Wang, Jianxun; Liu, Guo; Yang, Liya; Luo, Yong; Wang, Shafei
2015-06-01
Broadband operation is of great importance for the applications of travelling wave tubes such as high-data communication and wideband radar. An input/output (I/O) structure operating with broadband property plays a significant role to achieve these applications. In this paper, a Y-type branch waveguide (YTBW) coupler and its improvements are proposed and utilized to construct an extremely wideband I/O structure to ensure the broadband operation for sheet beam travelling wave tubes (SB-TWTs). Cascaded reflection resonators are utilized to improve the isolation characteristic and transmission efficiency. Furthermore, to minimize the reflectivity of the port connected with the RF circuit, wave-absorbing material (WAM) is loaded in the resonator. Simulation results for the YTBW loaded with WAM predict an excellent performance with a 50.2% relative bandwidth for port reflectivity under -15 dB, transmission up to -1.5 dB, and meanwhile isolation under -20 dB. In addition, the coupler has a relatively compact configuration and the beam tunnel can be widened, which is beneficial for the propagation of the electrons. A Q-band YTBW loaded with two reflection resonators is fabricated and microwave tested. Vector network analyzer (VNA) measured results have an excellent agreement with our simulation, which verify our theoretical analysis and simulation calculation.
Backward Raman amplification in the long-wavelength infrared
Johnson, L. A.; Gordon, D. F.; Palastro, J. P.; Hafizi, B.
2017-03-01
The wealth of work in backward Raman amplification in plasma has focused on the extreme intensity limit; however, backward Raman amplification may also provide an effective and practical mechanism for generating intense, broad bandwidth, long-wavelength infrared radiation (LWIR). An electromagnetic simulation coupled with a relativistic cold fluid plasma model is used to demonstrate the generation of picosecond pulses at a wavelength of 10 μm with terawatt powers through backward Raman amplification. The effects of collisional damping, Landau damping, pump depletion, and wave breaking are examined, as well as the resulting design considerations for an LWIR Raman amplifier.
Kory, Carol L.; Wilson, Jeffrey D.
1993-01-01
The three-dimensional, electromagnetic circuit analysis code, Micro-SOS, can be used to reduce expensive time-consuming experimental 'cold-testing' of traveling-wave tube (TWT) circuits. The frequency-phase dispersion characteristics and beam interaction impedance of a TunneLadder traveling-wave tube slow-wave structure were simulated using the code. When reasonable dimensional adjustments are made, computer results agree closely with experimental data. Modifications to the circuit geometry that would make the TunneLadder TWT easier to fabricate for higher frequency operation are explored.
Simons, Rainee N.; Wilson, Jeffrey D.; Force, Dale A.
2008-01-01
Recent advances in high power and efficiency space traveling-wave tube amplifiers (TWTAs) for NASA s space-to-Earth communications are presented in this paper. The RF power and efficiency of a new K-Band amplifier are 40 W and 50 percent and that of a new Ka-Band amplifier are 200 W and 60 percent. An important figure-of-merit, which is defined as the ratio of the RF power output to the mass (W/kg) of a TWT has improved by a factor of ten over the previous generation Ka-Band devices.
Wintucky, E. G.; Wilson, J. D.; Vaden, K. R.; Force, D. A.; Freeman, J. C.; Lesny, G. G.; Kory, C. L.; Chevalier, C. T.; Ebihara, B.; Dayton, J. A.; Williams, W. D. (Technical Monitor)
2001-01-01
Space communications architectures are being planned to meet the high rate data distribution requirements of future NASA Enterprise missions. These will require the use of traveling wave tube amplifiers (TWTAs) to provide the high frequency, RF (radio frequency) power and efficiency needed for many of the communications links. A program addressing these requirements is currently underway at NASA Glenn Research Center (GRC) for the development of a high efficiency, 20 watt, 32 GHz TWT of reduced size and weight that is based on a novel high gain n circuit design, termed the 'finned ladder'.
Ramins, Peter; Lesny, Gary G.; Ebihara, Ben T.; Peet, Shelly
1988-01-01
A small, isotropic graphite multistage depressed collector (MDC) and a short permanent magnet refocuser were designed, fabricated, and evaluated in conjunction with a 500-W, continuous-wave (CW), 4.8 to 9.6 GHz traveling wave tube (TWT). A novel performance optimization system and technique were used to optimize the TWT-MDC performance for saturated broad-band operation. The MDC performance was evaluated in both four- and three-stage configurations. Average TWT overall and four-stage collector efficiencies of 43.8 and 82.6 percent, respectively, were obtained for saturated octave-bandwidth operation. The isotropic graphite electrode material performed well, and shows considerable promise. However, considerably more test experience is required before definitive conclusions on its suitability for space and airborne TWT's can be made.
Bilbao, Stefan; Harrison, Reginald
2016-07-01
Numerical modeling of wave propagation in acoustic tubes is a subject of longstanding interest, particularly for enclosures of varying cross section, and especially when viscothermal losses due to boundary layer effects are taken into consideration. Though steady-state, or frequency domain methods, are a common avenue of approach, recursive time domain methods are an alternative, allowing for the generation of wideband responses, and offer a point of departure for more general modeling of nonlinear wave propagation. The design of time-domain methods is complicated by numerical stability considerations, and to this end, a passive representation is a useful design principle leading to simple stable and explicit numerical schemes, particularly in the case of viscothermal loss modeling. Such schemes and the accompanying energy and stability analysis are presented here. Numerical examples are presented for a variety of duct profiles, illustrating strict energy dissipation, and for comparison of computed input impedances against frequency-domain results.
Institute of Scientific and Technical Information of China (English)
Tian Shan; Liu Yuli; Yang He
2013-01-01
Inner flange and side wrinkling often occur in rotary-draw bending process of rectangular aluminum alloy wave-guide tubes,and the distribution and magnitude of wrinkling is related to geometrical parameters of the tubes.In order to study the effects of geometrical parameters on wrinkling of rectangular wave-guide tubes,a 3D-FE model for rotary-draw bending processes of thin-walled rectangular aluminum alloy wave-guide tubes was built based on the platform of ABAQUS/Explicit,and its reliability was validated by experiments.Simulation and analysis of the influence laws of geometrical parameters on the wave heights of inner flange and side wrinkling were then carried out.The results show that inner flange wrinkling is the main wrinkling way to rectangular wave-guide tubes in rotary-draw bending processes,but side wrinkling cannot be neglected because side wrinkling is 2/3 of inner flange wrinkling when b and h are smaller.Inner flange and side wrinkling increase with increasing b and h; the influence of b on side wrinkling is larger than that of h,while both b and h affect inner flange wrinkling greatly.Inner flange and side wrinkling decrease with increasing R/h; the influence of h on inner flange and side wrinkling is larger than that of R.
Forward and Backward Pressure Waveform Morphology in Hypertension
Li, Ye; Gu, Haotian; Fok, Henry; Alastruey, Jordi
2017-01-01
We tested the hypothesis that increased pulse wave reflection and altered backward waveform morphology contribute to increased pulse pressure in subjects with higher pulse pressure compared with lower pulse pressure and to actions of vasoactive drugs to increase pulse pressure. We examined the relationship of backward to forward wave morphology in 158 subjects who were evaluated for hypertension (including some normotensive subjects) divided into 3 groups by central pulse pressure: group 1, 33±6.5 mm Hg; group 2, 45±4.1 mm Hg; and group 3, 64±12.9 mm Hg (means±SD) and in healthy normotensive subjects during administration of inotropic and vasomotor drugs. Aortic pressure and flow in the aortic root were estimated by carotid tonometry and Doppler sonography, respectively. Morphology of the backward wave relative to the forward wave was similar in subjects in the lowest and highest tertiles of pulse pressure. Similar results were seen with the inotropic, vasopressor and vasodilator drugs, dobutamine, norepinephrine, and phentolamine, with the backward wave maintaining a constant ratio to the forward wave. However, nitroglycerin, a drug with a specific action to dilate muscular conduit arteries, reduced the amplitude of the backward wave relative to the forward wave from 0.26±0.018 at baseline to 0.19±0.019 during nitroglycerin 30 μg/min IV (P<0.01). These results are best explained by an approximately constant amount of reflection of the forward wave from the peripheral vasculature. The amount of reflection can be modified by dilation of peripheral muscular conduit arteries but contributes little to increased pulse pressure in hypertension. PMID:27920128
Institute of Scientific and Technical Information of China (English)
LI Song; LIU Ke; GUO Qing; HUANG Dongtao
2005-01-01
Based on the theoretical analysis of a standing wave tube with flow and lateral Helmholtz resonator, a relevant experimental apparatus were set up, and were successfully used to validate the the analysis above. Meanwhile an end correction and an equivalent radius coefficient covered in the theoretical analysis were also determined by experiments. Furthermore several results obtained from the theoretical analysis and experiments were used to discuss the effects of flow on the performance of Helmholtz resonator and the sound field in the standing wave tube. It is shown that using Helmholtz resonator for the standing wave tube with flow is still a good measure for noise reduction, even though the effect of noise reduction could be reduced because of flow.
Gascoyne, A.; Jain, R.; Hindman, B. W.
2014-07-01
We consider damping and absorption of solar p modes due to their energy loss to magnetic tube waves that can freely carry energy out of the acoustic cavity. The coupling of p modes and sausage tube waves is studied in a model atmosphere composed of a polytropic interior above which lies an isothermal upper atmosphere. The sausage tube waves, excited by p modes, propagate along a magnetic fibril which is assumed to be a vertically aligned, stratified, thin magnetic flux tube. The deficit of p-mode energy is quantified through the damping rate, Γ, and absorption coefficient, α. The variation of Γ and α as a function of frequency and the tube's plasma properties is studied in detail. Previous similar studies have considered only a subphotospheric layer, modeled as a polytrope that has been truncated at the photosphere. Such studies have found that the resulting energy loss by the p modes is very sensitive to the upper boundary condition, which, due to the lack of an upper atmosphere, have been imposed in a somewhat ad hoc manner. The model presented here avoids such problems by using an isothermal layer to model the overlying atmosphere (chromosphere, and, consequently, allows us to analyze the propagation of p-mode-driven sausage waves above the photosphere. In this paper, we restrict our attention to frequencies below the acoustic cut off frequency. We demonstrate the importance of coupling all waves (acoustic, magnetic) in the subsurface solar atmosphere with the overlying atmosphere in order to accurately model the interaction of solar f and p modes with sausage tube waves. In calculating the absorption and damping of p modes, we find that for low frequencies, below ≈3.5 mHz, the isothermal atmosphere, for the two-region model, behaves like a stress-free boundary condition applied at the interface (z = -z 0).
Energy Technology Data Exchange (ETDEWEB)
Gascoyne, A.; Jain, R. [Applied Mathematics Department, University of Sheffield, Sheffield S3 7RH (United Kingdom); Hindman, B. W., E-mail: a.d.gascoyne@sheffield.ac.uk, E-mail: r.jain@sheffield.ac.uk [JILA and Department of Astrophysical and Planetary Sciences, University of Colorado at Boulder, Boulder, CO 80309-0440 (United States)
2014-07-10
We consider damping and absorption of solar p modes due to their energy loss to magnetic tube waves that can freely carry energy out of the acoustic cavity. The coupling of p modes and sausage tube waves is studied in a model atmosphere composed of a polytropic interior above which lies an isothermal upper atmosphere. The sausage tube waves, excited by p modes, propagate along a magnetic fibril which is assumed to be a vertically aligned, stratified, thin magnetic flux tube. The deficit of p-mode energy is quantified through the damping rate, Γ, and absorption coefficient, α. The variation of Γ and α as a function of frequency and the tube's plasma properties is studied in detail. Previous similar studies have considered only a subphotospheric layer, modeled as a polytrope that has been truncated at the photosphere. Such studies have found that the resulting energy loss by the p modes is very sensitive to the upper boundary condition, which, due to the lack of an upper atmosphere, have been imposed in a somewhat ad hoc manner. The model presented here avoids such problems by using an isothermal layer to model the overlying atmosphere (chromosphere, and, consequently, allows us to analyze the propagation of p-mode-driven sausage waves above the photosphere. In this paper, we restrict our attention to frequencies below the acoustic cut off frequency. We demonstrate the importance of coupling all waves (acoustic, magnetic) in the subsurface solar atmosphere with the overlying atmosphere in order to accurately model the interaction of solar f and p modes with sausage tube waves. In calculating the absorption and damping of p modes, we find that for low frequencies, below ≈3.5 mHz, the isothermal atmosphere, for the two-region model, behaves like a stress-free boundary condition applied at the interface (z = –z{sub 0}).
Kory, Carol L.; Wilson, Jeffrey D.
1994-01-01
The V-band frequency range of 59-64 GHz is a region of the millimeter-wave spectrum that has been designated for inter-satellite communications. As a first effort to develop a high-efficiency V-band Traveling-Wave Tube (TWT), variations on a ring-plane slow-wave circuit were computationally investigated to develop an alternative to the more conventional ferruled coupled-cavity circuit. The ring-plane circuit was chosen because of its high interaction impedance, large beam aperture, and excellent thermal dissipation properties. Despite these advantages, however, low bandwidth and high voltage requirements have, until now, prevented its acceptance outside the laboratory. In this paper, the three-dimensional electrodynamic simulation code MAFIA (solution of MAxwell's Equation by the Finite-Integration-Algorithm) is used to investigate methods of increasing the bandwidth and lowering the operating voltage of the ring-plane circuit. Calculations of frequency-phase dispersion, beam on-axis interaction impedance, attenuation and small-signal gain per wavelength were performed for various geometric variations and loading distributions of the ring-plane TWT slow-wave circuit. Based on the results of the variations, a circuit termed the finned-ladder TWT slow-wave circuit was designed and is compared here to the scaled prototype ring-plane and a conventional ferruled coupled-cavity TWT circuit over the V-band frequency range. The simulation results indicate that this circuit has a much higher gain, significantly wider bandwidth, and a much lower voltage requirement than the scaled ring-plane prototype circuit, while retaining its excellent thermal dissipation properties. The finned-ladder circuit has a much larger small-signal gain per wavelength than the ferruled coupled-cavity circuit, but with a moderate sacrifice in bandwidth.
Shalkhauser, Kurt A.; Bartos, Karen F.; Fite, E. B.; Sharp, G. R.
1992-01-01
Current research in high-efficiency, high-performance traveling wave tubes (TWT's) has led to the development of novel thermal/mechanical computer models for use with helical slow-wave structures. A three-dimensional, finite element computer model and analytical technique used to study the structural integrity and thermal operation of a high-efficiency, diamond-rod, K-band TWT designed for use in advanced space communications systems. This analysis focused on the slow-wave circuit in the radiofrequency section of the TWT, where an inherent localized heating problem existed and where failures were observed during earlier cold compression, or 'coining' fabrication technique that shows great potential for future TWT development efforts. For this analysis, a three-dimensional, finite element model was used along with MARC, a commercially available finite element code, to simulate the fabrication of a diamond-rod TWT. This analysis was conducted by using component and material specifications consistent with actual TWT fabrication and was verified against empirical data. The analysis is nonlinear owing to material plasticity introduced by the forming process and also to geometric nonlinearities presented by the component assembly configuration. The computer model was developed by using the high efficiency, K-band TWT design but is general enough to permit similar analyses to be performed on a wide variety of TWT designs and styles. The results of the TWT operating condition and structural failure mode analysis, as well as a comparison of analytical results to test data are presented.
Antolin, P.; De Moortel, I.; Van Doorsselaere, T.; Yokoyama, T.
2017-02-01
Magnetohydrodynamic (MHD) waves permeate the solar atmosphere and constitute potential coronal heating agents. Yet, the waves detected so far may be but a small subset of the true existing wave power. Detection is limited by instrumental constraints but also by wave processes that localize the wave power in undetectable spatial scales. In this study, we conduct 3D MHD simulations and forward modeling of standing transverse MHD waves in coronal loops with uniform and non-uniform temperature variation in the perpendicular cross-section. The observed signatures are largely dominated by the combination of the Kelvin–Helmholtz instability (KHI), resonant absorption, and phase mixing. In the presence of a cross-loop temperature gradient, we find that emission lines sensitive to the loop core catch different signatures compared to those that are more sensitive to the loop boundary and the surrounding corona, leading to an out-of-phase intensity and Doppler velocity modulation produced by KHI mixing. In all of the considered models, common signatures include an intensity and loop width modulation at half the kink period, a fine strand-like structure, a characteristic arrow-shaped structure in the Doppler maps, and overall line broadening in time but particularly at the loop edges. For our model, most of these features can be captured with a spatial resolution of 0.″33 and a spectral resolution of 25 km s‑1, although we do obtain severe over-estimation of the line width. Resonant absorption leads to a significant decrease of the observed kinetic energy from Doppler motions over time, which is not recovered by a corresponding increase in the line width from phase mixing and KHI motions. We estimate this hidden wave energy to be a factor of 5–10 of the observed value.
The PANDA backward calorimeter
Energy Technology Data Exchange (ETDEWEB)
Ahmadi, Heybat; Deiseroth, Malte; Khaneft, Dmitry; Noll, Oliver; Valente, Roserio; Zambrana, Manuel [Johannes Gutenberg-Universitaet Mainz (Germany); Helmholtz-Institut Mainz (Germany); Ahmed, Samer [Helmholtz-Institut Mainz (Germany); Capozza, Luigi; Dbeyssi, Alaa; Froehlich, Bertold; Lin, Dexu; Maas, Frank; Mora Espi, Maria Carmen; Morales Morales, Cristina; Rodriguez Pineiro, David; Zimmermann, Iris [Helmholtz-Institut Mainz (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany)
2015-07-01
The PANDA experiment at FAIR is being devised for a broad physics programme in hadron structure and spectroscopy. Full and accurate reconstruction of scattering events, reliable particle identification and an almost complete solid angle coverage are required. An important tool for meeting this requirements will be the electromagnetic calorimeter (EMC). It is required to measure particle energies ranging from some MeVs to several GeVs with a relative resolution of 1% + 2%/√(E/GeV), assuring a compact geometry and radiation hardness at the same time. For these reasons PbWO{sub 4} was chosen as scintillation material. The whole calorimeter has been designed in three sections: a forward end-cap, a central barrel and a backward end-cap (BWEC). The BWEC, under development at Mainz, will cover scattering polar angles between 140 and 170 and will be made of 524 PbWO{sub 4} crystals. The scintillation light will be detected by large area avalanche photodiodes which will be read out by customised front-end ASIC chips. A status report on the development of the BWEC will be given in this contribution.
Backward disequilibrium in elderly subjects
Directory of Open Access Journals (Sweden)
Patrick Manckoundia
2008-12-01
Full Text Available Patrick Manckoundia1,2, France Mourey1,2, Dominic Pérennou2,3, Pierre Pfitzenmeyer1,21Department of Internal Medicine and Geriatrics, University Hospital, Dijon, France; 2INSERM/ERIT-M 0207 Motricity-Plasticity University of Burgundy, Dijon, France; 3Department of Neurological Rehabilitation, University Hospital, Dijon, FranceAbstract: Backward disequilibrium is observed frequently in daily clinical practice. However, there are no epidemiological data concerning this postural disorder. Defined by a posterior position of the centre of mass with respect to the base of support, backward disequilibrium is abnormal postural behavior, usually characterized by a posterior trunk tilt in standing and sitting positions, which predisposes subjects to backward falls. Many afflictions whether they are somatic (degenerative, ischemic and traumatic brain lesions, psychosomatic (psychomotor disadaptation syndrome, confinement to bed, nonuse situations or psychological (depression can cause backward disequilibrium. A vicious circle of falls, and loss of autonomy can arise and this is the main consequence of backward disequilibrium. Thus, in this paper, we review backward disequilibrium in elderly subjects with regard to the causes, consequences, assessment, and management.Keywords: backward disequilibrium, balance, elderly subject, falls, posture
Institute of Scientific and Technical Information of China (English)
张璟; 李宴君; 温娟; 唐大伟
2011-01-01
扁管外焊蛇形平直翅片是直接空冷凝汽器翅片管的一种常见形式，为进一步提高空冷凝汽器的冷凝效率，建立了波浪翅片扁管的三维物理数学模型。通过数值模拟，获得了不同空气入口流速下，波浪翅片扁管和平直翅片扁管外冷却空气的流场和温度场，通过对流换热系数和流动损失的对比分析表明，波浪翅片扁管在空气侧换热系数和流动损失方面比平直翅片扁管有一定的优势，在低风速的工况下，优势较为明显。%The flat wave-fin tube condenser is well applied in direct-cooled power plants, In order to further enhance the condensing efficiency of air cooled condensers, a three dimensional physicomathematical model of a corrugated-fin tube has been established. The air flow and temperature fields outside the fiat wave-fin tube and corrugated-fin tube were numerically simulated at different inlet air velocities. Through comparison of the convection heat transfer coefficient and the flow loss etc., it shows that the corrugated-fin flat tube boast certain superiority in aspects of the heat transfer coefficient and the flow loss to the air side as compared with that of the flat wave-fin tube. In the case of low inlet air velocity, the advantage was more obvious.
Ring-plane traveling-wave tube slow-wave circuit design simulations at V-Band frequencies
Kory, Carol L.; Wilson, Jeffrey D.
1995-01-01
The V-Band frequency range of 59-64 GHz is a region of the millimeter-wave spectrum that has been designated for intersatellite communications. As a first effort to develop a high-efficiency V-band TWT, variations on a ring-plane slow-wave circuit were computationally investigated to develop an alternative to the more conventional ferruled coupled-cavity circuit. The ring-plane circuit was chosen because of its high interaction impedance, large beam aperture, and excellent thermal dissipation properties. Despite the high-power capabilities of the ring-plane TWT, disadvantages of low bandwidth and high voltage requirements have until now prevented its acceptance outside the laboratory. In this paper, we use the three-dimensional electromagnetic simulation code MAFIA to investigate methods of increasing the bandwidth and lowering the operating voltage. Dispersion, impedance, and attenuation calculations for various geometric variations and loading distributions were performed. Based on the results of the variations, a circuit termed the finned-ladder TWT slowwave circuit was designed and is compared here to the scaled ring-plane prototype and the conventional ferruled coupled-cavity TWT circuit over the V-band frequency range.
Analysis of the axial electric field in a plasma-loaded-helix travelling wave tube
Institute of Scientific and Technical Information of China (English)
Xie Hong-Quan; Liu Pu-Kun
2006-01-01
A helix type slow wave structure filled with plasma is immersed in a strong longitudinal magnetic field. Taking into account the effect of the plasma and the dielectric, the system is separated radially into three regions. By means of the sheath model and Maxwell equation, the distribution of the electromagnetic field is established. Using the boundary conditions of each region, the dispersion relation of the slow wave structure is derived. The trend of change for the radial profile of the axial electric field is analysed respectively in different plasma densities, plasma column radius and dielectric constant by numerical computation. Some useful results are obtained on the basis of the discussion.
Gascoyne, Andrew; Hindman, Bradley
2014-01-01
We consider damping and absorption of solar $p$ modes due to their energy loss to magnetic tube waves that can freely carry energy out of the acoustic cavity. The coupling of $p$ modes and sausage tube waves is studied in a model atmosphere composed of a polytropic interior above which lies an isothermal upper atmosphere. The sausage tube waves, excited by $p$ modes, propagate along a magnetic fibril which is assumed to be a vertically aligned, stratified, thin magnetic flux-tube. The deficit of $p$-mode energy is quantified through the damping rate, $\\Gamma$ and absorption coefficient, $\\alpha$. The variation of $\\Gamma$ and $\\alpha$ as a function of frequency and the tube's plasma properties is studied in detail. Previous similar studies have considered only a subphotospheric layer, modelled as a polytrope that has been truncated at the photosphere (Bogdan et al. (1996), Hindman & Jain 2008, Gascoyne et al. (2011)). Such studies have found that the resulting energy loss by the $p$ modes is very sensitiv...
Ramins, Peter; Ebihara, Ben
1989-01-01
A small, isotropic graphite electrode, multistage depressed collector (MDC) was designed, fabricated, and evaluated in conjunction with a 500-W, continuous wave (CW), 4.8- to 9.6-GHz traveling-wave tube (TWT). The carbon electrode surfaces were used to improve the TWT overall efficiency by minimizing the secondary electron emission losses in the MDC. The design and fabrication of the brazed graphite MDC assembly are described. The brazing technique, which used copper braze filler metal, is compatible with both vacuum and the more commonly available hydrogen atmosphere brazing furnaces. The TWT and graphite electrode MCC bakeout, processing, and outgassing characteristics were evaluated and found to be comparable to TWT's equipped with copper electrode MDC's. The TWT and MDC performance was optimized for broadband CW operation at saturation. The average radiofrequency (RF), overall, and MDC efficiencies were 14.9, 46.4, and 83.6 percent, respectively, across the octave operating band. A 1500-hr CW test, conducted without the use of an appendage ion pump, showed no gas buildup and excellent stability of the electrode surfaces.
Kory, Carol L.
1999-01-01
The phenomenal growth of commercial communications has created a great demand for traveling-wave tube (TWT) amplifiers. Although the helix slow-wave circuit remains the mainstay of the TWT industry because of its exceptionally wide bandwidth, until recently it has been impossible to accurately analyze a helical TWT using its exact dimensions because of the complexity of its geometrical structure. For the first time, an accurate three-dimensional helical model was developed that allows accurate prediction of TWT cold-test characteristics including operating frequency, interaction impedance, and attenuation. This computational model, which was developed at the NASA Lewis Research Center, allows TWT designers to obtain a more accurate value of interaction impedance than is possible using experimental methods. Obtaining helical slow-wave circuit interaction impedance is an important part of the design process for a TWT because it is related to the gain and efficiency of the tube. This impedance cannot be measured directly; thus, conventional methods involve perturbing a helical circuit with a cylindrical dielectric rod placed on the central axis of the circuit and obtaining the difference in resonant frequency between the perturbed and unperturbed circuits. A mathematical relationship has been derived between this frequency difference and the interaction impedance (ref. 1). However, because of the complex configuration of the helical circuit, deriving this relationship involves several approximations. In addition, this experimental procedure is time-consuming and expensive, but until recently it was widely accepted as the most accurate means of determining interaction impedance. The advent of an accurate three-dimensional helical circuit model (ref. 2) made it possible for Lewis researchers to fully investigate standard approximations made in deriving the relationship between measured perturbation data and interaction impedance. The most prominent approximations made
Repetitively Pulsed Backward-Wave Oscillator Investigations
1994-03-31
and the FE phase by applying a’ Y pulsed electric field , Fig. 1. Sawyer-Tower circuit for displaying (4) partial reversal of P. inside the P-E...at temper- a pulsed electric field to switch the material atures up to the Curie temperature. Tests on into the PE or APE phase. With this combina- a
Backward Raman Amplifier for Laser Wakefield Accelerator
Ludwig, Joshua; Masson-Laborde, Paul-Edouard; Huller, Stefan; Rozmus, Wojciech; Wilks, Scott C.
2016-10-01
Particle in cell simulations via SCPIC and theoretical work on Raman amplification and laser wake field acceleration will be presented. Laser energy depletion has been shown to be a limiting factor during wake field acceleration. This work focuses on optimizing parameters for Raman amplification to work in conjunction with wake field acceleration in order in order to sustain an accelerating laser pulse as it generates plasma waves. It has been shown that laser pulses undergo red shifting during wake generation. Our work demonstrates that this red shifting results in a detuning between pump and seed in the backward Raman Amplifier. This detuning limits the amount of energy that can be transferred from the pump to the seed, and places new limits on backward Raman amplification. To overcome this limiting factor, this study makes use of a chirped pump allowing for extended coupling to the accelerating pulse. Three wave coupling model of Raman amplifier with a frequency shift term due to wake field will also be discussed and compared with PIC simulations.
STRUCTURED BACKWARD ERRORS FOR STRUCTURED KKT SYSTEMS
Institute of Scientific and Technical Information of China (English)
Xin-xiu Li; Xin-guo Liu
2004-01-01
In this paper we study structured backward errors for some structured KKT systems.Normwise structured backward errors for structured KKT systems are defined, and computable formulae of the structured backward errors are obtained. Simple numerical examples show that the structured backward errors may be much larger than the unstructured ones in some cases.
Bednarik, Michal; Konicek, Petr
2002-07-01
This paper deals with using the generalized Burgers equation for description of nonlinear waves in circular ducts. Two new approximate solutions of the generalized Burgers equation (GBE) are presented. These solutions take into account the boundary layer effects. The first solution is valid for the preshock region and gives more precise results than the Fubini solution, whereas the second one is valid for the postshock (sawtooth) region and provides better results than the Fay solution. The approximate solutions are compared with numerical results of the GBE. Furthermore, the limits of validity of the used model equation are discussed with respect to boundary conditions and radius of a circular duct.
Resonant behaviour of MHD waves on magnetic flux tubes. III - Effect of equilibrium flow
Goossens, Marcel; Hollweg, Joseph V.; Sakurai, Takashi
1992-01-01
The Hollweg et al. (1990) analysis of MHD surface waves in a stationary equilibrium is extended. The conservation laws and jump conditions at Alfven and slow resonance points obtained by Sakurai et al. (1990) are generalized to include an equilibrium flow, and the assumption that the Eulerian perturbation of total pressure is constant is recovered as the special case of the conservation law for an equilibrium with straight magnetic field lines and flow along the magnetic field lines. It is shown that the conclusions formulated by Hollweg et al. are still valid for the straight cylindrical case. The effect of curvature is examined.
Kory, Carol L.; Dayton, James A., Jr.
1998-01-01
Conventional methods used to measure the cold- test interaction impedance of helical slow-wave structures involve perturbing a helical circuit with a cylindrical dielectric rod placed on the central axis of the circuit It has been shown that the difference in resonant frequency or axial phase shift between the perturbed and unperturbed circuits can be related to the interaction impedance. However, because of the complex configuration of the helical circuit, deriving this relationship involves several approximations. With the advent of accurate three-dimensional (3-D) helical circuit models, these standard approximations can be fully Investigated. This paper addresses the most prominent approximations made in the analysis for measured interaction impedance by Lagerstrom and investigates their accuracy using the 3-D simulation code MAFIA. It is shown that a more accurate value of interaction impedance can be obtained by using 3-D computational methods rather than performing costly and time consuming experimental cold-test measurements.
Kory, Carol L.; Dayton, J. A., Jr.
1998-01-01
Conventional methods used to measure the cold-test interaction impedance of helical slow-wave structures involve perturbing a helical circuit with a cylindrical dielectric rod placed on the central axis of the circuit. It has been shown that the difference in resonant frequency or axial phase shift between the perturbed and unperturbed circuits can be related to the interaction impedance. However, because of the complex configuration of the helical circuit, deriving this relationship involves several approximations. With the advent of accurate three-dimensional (3-D) helical circuit models, these standard approximations can be fully investigated. This paper addresses the most prominent approximations made in the analysis for measured interaction impedance by Lagerstrom and investigates their accuracy using the 3-D simulation code MAFIA. It is shown that a more accurate value of interaction impedance can be obtained by using 3-D computational methods rather than performing costly and time consuming experimental cold-test measurements.
Franklin-Tong, V. E.; Drobak, B. K.; Allan, A. C.; Watkins, PAC.; Trewavas, A. J.
1996-08-01
A signaling role for cytosolic free Ca2+ ([Ca2+]i) in regulating Papaver rhoeas pollen tube growth during the self-incompatibility response has been demonstrated previously. In this article, we investigate the involvement of the phosphoinositide signal transduction pathway in Ca2+-mediated pollen tube inhibition. We demonstrate that P. rhoeas pollen tubes have a Ca2+-dependent polyphosphoinositide-specific phospholipase C activity that is inhibited by neomycin. [Ca2+]i imaging after photolysis of caged inositol (1,4,5)-trisphosphate (Ins[1,4,5]P3) in pollen tubes demonstrated that Ins(1,4,5)P3 could induce Ca2+ release, which was inhibited by heparin and neomycin. Mastoparan, which stimulated Ins(1,4,5)P3 production, also induced a rapid increase in Ca2+, which was inhibited by neomycin. These data provide direct evidence for the involvement of a functional phosphoinositide signal-transducing system in the regulation of pollen tube growth. We suggest that the observed Ca2+ increases are mediated, at least in part, by Ins(1,4,5)P3-induced Ca2+ release. Furthermore, we provide data suggesting that Ca2+ waves, which have not previously been reported in plant cells, can be induced in pollen tubes.
A COMPUTATIONAL STUDY ON BACKWARD SWIMMING HYDRODYNAMICS IN THE EEL ANGUILLA ANGUILLA
Institute of Scientific and Technical Information of China (English)
HU Wen-rong; TONG Bin-gang; MA Hui-yang; LIU Hao
2005-01-01
Eels can perform both forward and backward undulatory swimming but few studies are seen on how eels propel themselves backward. A computational study on the unsteady hydrodynamics of the backward swimming in the eel anguilla anguilla is carried out and presented. A two-dimensional geometric model of the European eel body in its middle horizontal section is appropriately approximated by a NACA0005 airfoil. Kinematic data of the backward and forward swimming eel used in the computational modeling are based on the experimental results of the European eel. Present study provided the different flow field characteristics of three typical cases in the backward swimming, and confirmed the guess of Wu: When the eel swims steadily, the vortex centers extensive comparison between the backward and forward swimming further reveals that the controllable parameters, such as frequency, amplitude and wavelength of the traveling wave, have a similar influence on the propulsion performance as in forward swimming. But it is shown that the backward swimming does not be a "reversed" forward swimming one. The backward swimming does show significant discrepancy in the propulsion performance: utilization of a constant-amplitude wave profile enables larger force generation for maneuverability but with much lower propulsive efficiency instead of the linear-increasing amplitude wave profile in the forward swimming. The actual swimming modes eels choose is the best choice associated with their propulsive requirement, as well as their physiological and ecological adaptation.
Generalized Forward-Backward Splitting
2011-01-01
International audience; This paper introduces a generalized forward-backward splitting algorithm for finding a zero of a sum of maximal monotone operators $B + \\sum_{i=1}^{n} A_i$, where $B$ is cocoercive. It involves the computation of $B$ in an explicit (forward) step and of the parallel computation of the resolvents of the $A_i$'s in a subsequent implicit (backward) step. We prove its convergence in infinite dimension, and robustness to summable errors on the computed operators in the expl...
A Stable 0.2-THz Coaxial-Waveguide Gyrotron Traveling-Wave-Tube Amplifier with Distributed Losses
Hung, C. L.; Yeh, Y. S.; Chang, T. H.; Fang, R. S.
2016-08-01
For high-power operation, a THz gyrotron traveling-wave-tube (gyro-TWT) amplifier must operate in a high-order waveguide mode to enlarge the transverse dimension of an interaction waveguide. However, a gyro-TWT amplifier operating in a high-order waveguide mode is susceptible to spurious oscillations. To improve the device stability, in this study, we investigate the possibility of using a coaxial waveguide with distributed losses as the interaction structure. For the same required attenuation, all threatening oscillating modes can be suppressed using different combinations of losses of inner and outer cylinders. This provides flexibility in designing distributed losses when considering the ohmic loading of the interaction structure. We predict that the 0.2-THz gyro-TWT can stably produce a peak power of 14 kW with an efficiency of 23 %, a 3-dB bandwidth of 3.5 GHz, and a saturated gain of 50 dB for a 20-kV 3-A electron beam with a 5 % velocity spread and 1.0 velocity ratio.
Simons, Rainee N.; Force, Dale A.; Spitsen, Paul C.; Menninger, William L.; Robbins, Neal R.; Dibb, Daniel R.; Todd, Phillip C.
2010-01-01
The RF performance of a new K-Band helix conduction cooled traveling-wave tube amplifier (TWTA), is presented in this paper. A total of three such units were manufactured, tested and delivered. The first unit is currently flying onboard NASA's Lunar Reconnaissance Orbiter (LRO) spacecraft and has flawlessly completed over 2000 orbits around the Moon. The second unit is a proto-flight model. The third unit will fly onboard NASA's International Space Station (ISS) as a very compact and lightweight transmitter package for the Communications, Navigation and Networking Reconfigurable Testbed (CoNNeCT), which is scheduled for launch in 2011. These TWTAs were characterized over the frequencies 25.5 to 25.8 GHz. The saturated RF output power is greater than 40 W and the saturated RF gain is greater than 46 dB. The saturated AM-to-PM conversion is 3.5 /dB and the small signal gain ripple is 0.46 dB peak-to-peak. The overall efficiency of the TWTA, including that of the electronic power conditioner (EPC) is as high as 45%.
Institute of Scientific and Technical Information of China (English)
唐永福; 蒙林; 李海龙; 张斐娜
2013-01-01
设计了一种能在C波段和X波段实现稳定双频输出的带有非对称谐振反射腔的单电子束同轴相对论返波振荡器.采用耦合阻抗跃变型慢波结构,使用粒子PIC模拟软件进行了粒子模拟研究.模拟结果显示:轴向电场在系统中的分布得到改进,电子束的能散得到改善.在电子束电压511 kV,电流8.95 kA,引导磁场0.73T的条件下,双频器件实现了8.09 GHz和9.91 GHz的双波段频率稳定输出,平均功率为1.0 GW,波束互作用效率为21.9％,效率高于空心双波段返波管及其他双波段器件.器件辐射功率的拍频为1.82GHz,拍波更为明显和稳定.模拟研究中同时发现,随着慢波结构之间漂移段的变化,双频频率都呈现一种准周期的变化.%A C-band and X-band dual-frequency coaxial relativistic backward-wave oscillator (CRBWO) with an asymmetric resonant reflector and a single annular electron beam structure is designed and investigated in this paper. The improved slow wave structure (SWS) with stepwise variable coupling impedance is employed, and the particle-in-cell (PIC) simulation code is used to investigate the device. The PIC simulation results indicate that the axial electric field in the SWS is enhanced and the energy scatter of the relativistic electron beam (REB) is improved. With an electron beam of 511 kV and 8. 95 kA and an axial magnetic field of 0. 73 T, an average power of 1. 0 GW with power conversion efficiency of 21. 9% is obtained and the two dominant frequencies are 8. 09 GHz and 9. 91 GHz. The efficiency is higher than dual-band non-coaxial RBWO and other dual-band high-power microwave (HPM) generators. A more clear and stable beat radiation microwave power with beat frequency of 1. 82 GHz is acquired, and the dual frequencies both demonstrate periodic-like dependence on the length of the tapered waveguide between the two SWS sections.
Generalized Forward-Backward Splitting
Raguet, Hugo; Peyré, Gabriel
2011-01-01
This paper introduces the generalized forward-backward splitting algorithm for minimizing convex functions of the form $F + \\sum_{i=1}^n G_i$, where $F$ has a Lipschitz-continuous gradient and the $G_i$'s are simple in the sense that their Moreau proximity operators are easy to compute. While the forward-backward algorithm cannot deal with more than $n = 1$ non-smooth function, our method generalizes it to the case of arbitrary $n$. Our method makes an explicit use of the regularity of $F$ in the forward step, and the proximity operators of the $G_i$'s are applied in parallel in the backward step. This allows the generalized forward backward to efficiently address an important class of convex problems. We prove its convergence in infinite dimension, and its robustness to errors on the computation of the proximity operators and of the gradient of $F$. Examples on inverse problems in imaging demonstrate the advantage of the proposed methods in comparison to other splitting algorithms.
Spatial Damping of Propagating Kink Waves Due to Resonant Absorption: Effect of Background Flow
Soler, Roberto; Goossens, Marcel
2011-01-01
Observations show the ubiquitous presence of propagating magnetohydrodynamic (MHD) kink waves in the solar atmosphere. Waves and flows are often observed simultaneously. Due to plasma inhomogeneity in the perpendicular direction to the magnetic field, kink waves are spatially damped by resonant absorption. The presence of flow may affect the wave spatial damping. Here, we investigate the effect of longitudinal background flow on the propagation and spatial damping of resonant kink waves in transversely nonuniform magnetic flux tubes. We combine approximate analytical theory with numerical investigation. The analytical theory uses the thin tube (TT) and thin boundary (TB) approximations to obtain expressions for the wavelength and the damping length. Numerically, we verify the previously obtained analytical expressions by means of the full solution of the resistive MHD eigenvalue problem beyond the TT and TB approximations. We find that the backward and forward propagating waves have different wavelengths and ...
Institute of Scientific and Technical Information of China (English)
Liu Yang; Xu Jin; Lai Jian-Qiang; Xu Xiong; Shen Fei; Wei Yan-Yu; Huang Min-Zhi; Tang Tao; Gong Yu-Bin
2012-01-01
The re-entrant double-staggered ladder slow-wave structure is employed in a high-power V-band coupled-cavity traveling-wave tube.This structure has a wide bandwidth,a moderate interaction impedance,and excellent thermal dissipation properties,as well as easy fabrication.A well-matched waveguide coupler is proposed for the structure.Combining the design of attenuators,a full-scale three-dimensional circuit model for the V-band coupled-cavity travelingwave tube is constructed.The electromagnetic characteristics and the beam-wave interaction of this structure are investigated.The beam current is set to be 100 mA,and the cathode voltage is tuned from 16.8 kV to 15.8 kV.The calculation results show that this tube can produce a saturated average output power over 100 W with an instantaneous bandwidth greater than 1.25 GHz in the frequency ranging from 58 GHz to 62 GHz.The corresponding gain and electronic efficiency can reach over 32 dB and 6.5％,respectively.
Institute of Scientific and Technical Information of China (English)
郑闽锋; 刘曦; 黄成; 林跃东; 雷晓健; 李学来
2014-01-01
The pressure wave refrigerator represents a simple arrangement for gas cooling by its decompression and has many applications in chemical processes and energy transformation. The mechanism of the cooling effect of oscillatory tube is the conversion of the pressure energy of gas to heat through the movement of pressure waves, which are moving shock wave and unsteady expansion wave. In the present paper, the regular pattern of incident shock wave attenuation and its influence on the performance of pressure wave refrigerator are investigated by means of a single-tube set up. In the experiments, the expansion ratio is from 2.0 to 6.0, the relative length of the oscillatory tube L/d is from 87 to 737, and the exciting frequency is from 10 Hz to 240 Hz. The experimental results show that the relative strength of incident shock wave is reduced with the increase of relative position in length x/L because the energy of the reflected shock wave is exhausted by the viscosity and friction of the gas inside the tube. The other reason is the result of the gas in the tube pressurized and heated by the shock wave. The shock wave strength is also influenced by transmission and reflection effects resulted from the reflected shock wave. When the tube is relatively short, the relative strength of incident shock wave is less reduced as the tube length decreases, while the strength of the reflected shock wave at the closed end of the tube increases. The maximum refrigeration efficiencyηmax of the refrigerator increases with the tube length, but the value ofηmax is not affected obviously when the tube length increases to some value. The recommended optimal tube length L/d is 300-435 for the tube in this experiment. It helps to improve the performance of the pressure wave refrigerator under variable work condition when the amplitude of the refrigeration efficiency fluctuation is reduced as the length increases. The relative strength of the incident shock wave attenuation is concerned
宽带大功率螺旋线行波管返波振荡研究%Backward-wave oscillation in high power broadband helical traveling wave tube
Institute of Scientific and Technical Information of China (English)
胡玉禄; 杨中海; 李斌; 李建清; 黄桃; 金晓林; 朱小芳; 梁献普
2010-01-01
在一维场论注-波互作用理论的基础上,引入磁场对角向速度的影响,建立了二维非线性返波注-波互作用理论,模拟返波振荡.对不同空间电荷参量下起振长度的变化进行了小信号分析比较,结果与等效线路模型比较接近;对某8-18 GHz行波管进行了实测比较,结果也比较一致.同时还研究了影响返波振荡起振长度的因素,提出了该管的抑制返波振荡方案.
Carpenter, P W; Berkouk, K; Lucey, A D
2003-12-01
Our aim in this paper is to use a simple theoretical model of the intraspinal cerebrospinal-fluid system to investigate mechanisms proposed for the pathogenesis of syringomyelia. The model is based on an inviscid theory for the propagation of pressure waves in co-axial, fluid-filled, elastic tubes. According to this model, the leading edge of a pressure pulse tends to steepen and form an elastic jump, as it propagates up the intraspinal cerebrospinal-fluid system. We show that when an elastic jump is incident on a stenosis of the spinal subarachnoid space, it reflects to form a transient, localized region of high pressure within the spinal cord that for a cough-induced pulse is estimated to be 50 to 70 mm Hg or more above the normal level in the spinal subarachnoid space. We propose this as a new mechanism whereby pressure pulses created by coughing or sneezing can generate syrinxes. We also use the same analysis to investigate Williams' suck mechanism. Our results do not support his concept, nor, in cases where the stenosis is severe, the differential-pressure-propagation mechanism recently proposed by Greitz et al. Our analysis does provide some support for the piston mechanism recently proposed by Oldfield et al. and Heiss et al. For instance, it shows clearly how the spinal cord is compressed by the formation of elastic jumps over part of the cardiac cycle. What appears to be absent for this piston mechanism is any means whereby the elastic jumps can be focused (e.g., by reflecting from a stenosis) to form a transient, localized region of high pressure within the spinal cord. Thus it would seem to offer a mechanism for syrinx progression, but not for its formation.
Ahlborn, B. (Editor); Hertzberg, A.; Russell, D.
1978-01-01
Papers are presented on the applications of shock-wave technology to the study of hydrodynamics, the use of the pressure-wave machine for charging diesel engines, and measurements of the heat-transfer rate in gas-turbine components. Consideration is given to shock propagation along 90-degree bends, the explosive dissemination of liquids, and rotational and vibrational relaxation behind weak shock waves in water vapor. Shock phenomena associated with expansion flows are described and stratospheric-related research using the shock tube is outlined. Attention is given to shock-wave ignition of magnesium powders, Mach reflection and boundary layers, and transition in the shock-induced unsteady boundary layer on a flat plate. Shock-tube measurements of induction and post-induction rates for low-Btu gas mixtures are presented and shock-initiated ignition in COS-N2O-Ar mixtures is described. Cluster growth rates in supersaturated lead vapor are presented and a study of laser-induced plasma motion in a solenoidal magnetic field is reviewed.
Advanced millimeter wave chemical sensor.
Energy Technology Data Exchange (ETDEWEB)
Gopalsami, N.
1999-03-24
This paper discusses the development of an advanced millimeter-wave (mm-wave) chemical sensor and its applications for environmental monitoring and arms control treaty verification. The purpose of this work is to investigate the use of fingerprint-type molecular rotational signatures in the mm-wave spectrum to sense airborne chemicals. The mm-wave spectrum to sense airborne chemicals. The mm-wave sensor, operating in the frequency range of 220-300 GHz, can work under all weather conditions and in smoky and dusty environments. The basic configuration of the mm-wave sensor is a monostatic swept-frequency radar consisting of a mm-wave sweeper, a hot-electron-bolometer or Schottky barrier detector, and a trihedral reflector. The chemical plume to be detected is situated between the transmitter/detector and the reflector. Millimeter-wave absorption spectra of chemicals in the plume are determined by measuring the swept-frequency radar return signals with and without the plume in the beam path. The problem of pressure broadening, which hampered open-path spectroscopy in the past, has been mitigated in this work by designing a fast sweeping source over a broad frequency range. The heart of the system is a Russian backward-wave oscillator (BWO) tube that can be tuned over 220-350 GHz. Using the Russian BWO tube, a mm-wave radar system was built and field-tested at the DOE Nevada Test Site at a standoff distance of 60 m. The mm-wave system detected chemical plumes very well; the detection sensitivity for polar molecules like methyl chloride was down to a concentration of 12 ppm.
Wintucky, Edwin G.; Simons, Rainee N.
2015-01-01
This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler, fabricated from two dissimilar frequency band waveguides, is capable of isolating power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT) amplifier. Test results from proof-of-concept demonstrations are presented for a Ku-band/Ka-band MDC and a Ka-band/E-band MDC. In addition to power measurements at harmonic frequencies, a potential application of the MDC is in the design of a satellite borne beacon source for atmospheric propagation studies at millimeter-wave (mm-wave) frequencies (Ka-band and E-band).
Kaernbach, C; König, P; Schillen, T
1987-02-01
Recent experimental observations of otoacoustic emissions suggest the existence of spontaneous emitters of sound on the basilar membrane. These tend to send off waves not only in the normal direction of propagation. It is therefore significant to study the environmental conditions such an emitter finds inside the cochlea. The impedance relations seen by these emitters are described by the Riccati equation for an inhomogeneous transmission line. The results reported in this paper differ considerably for forward and backward excitation. This reflects the quite different behavior of the cochlea pertaining to waves traveling forward and backward. Because of reflections, backward waves cannot be treated with the Liouville-Green approximation.
毫米波折叠波导行波管的研究%Study on Millimeter Wave Folded Waveguide Traveling-Wave Tube
Institute of Scientific and Technical Information of China (English)
王书见; 薛谦忠
2013-01-01
采用等效电路方法和电磁场仿真软件Ansoft HFSS分析了折叠波导行波管的结构参数对其高频特性的影响,并在此基础上确定了Ka波段折叠波导行波管的尺寸.利用三维非线性粒子模拟软件MAGIC3D建立了两段式折叠波导行波管的模型,模拟研究了切断区长度和位置对折叠波导行波管的饱和输出功率及第2段电路单位长度增益的影响.最后设计了一个工作于33～36GHz的两段式折叠波导行波管,其输出功率的波动小于1dB,最大连续波输出功率达670W,对应电子效率高达7.55％.%The influences of the dimensions of folded waveguide traveling-wave tube (TWT) on its high-frequency characteristics are investigated by the equivalent circuit method and simulation software,and the size of a Ka-band TWT is determined based on the investigation.A two-stage folded waveguide TWT is modeled by 3-D particle-in-cell code MAG-IC3D.The effect of a circuit sever on folded waveguide TWT' s saturated output power and the gain growth rate of the second part circuit is simulated and analyzed.At the end of this paper,a two-stage folded waveguide TWT whose operating frequency band is in the 33 ～ 36GHz is designed.Simulations show that the amplifier produces a maximum radiation power of 670W at 35GHz,the corresponding electronic efficiency up to 7.55％,and the fluctuation of the output power is less than 1 dB.
Microfabrication of diamond-based slow-wave circuits for mm-wave and THz vacuum electronic sources
Lueck, M. R.; Malta, D. M.; Gilchrist, K. H.; Kory, C. L.; Mearini, G. T.; Dayton, J. A.
2011-06-01
Planar and helical slow-wave circuits for THz radiation sources have been made using novel microfabrication and assembly methods. A biplanar slow-wave circuit for a 650 GHz backward wave oscillator (BWO) was fabricated through the growth of diamond into high aspect ratio silicon molds and the selective metallization of the tops and sidewalls of 90 µm tall diamond features using lithographically created shadow masks. Helical slow-wave circuits for a 650 GHz BWO and a 95 GHz traveling wave tube were created through the patterning of trenches in thin film diamond, electroplating of gold half-helices, and high accuracy bonding of helix halves. The development of new techniques for the microfabrication of vacuum electronic components will help to facilitate compact and high-power sources for terahertz range radiation.
Directory of Open Access Journals (Sweden)
Michaël F. Hinderdael
2016-01-01
Full Text Available Additive manufactured components have a different metallurgic structure and are more prone to fatigue cracks than conventionally produced metals. In earlier papers, an effective Structural Health Monitoring solution was presented to detect fatigue cracks in additive manufactured components. Small subsurface capillaries are embedded in the structure and pressurized (vacuum or overpressure. A crack that initiated at the component’s surface will propagate towards the capillary and finally breach it. One capillary suffices to inspect a large area of the component, which makes it interesting to locate the crack on the basis of the pressure measurements. Negative pressure waves (NPW arise from the abrupt encounter of high pressure fluid with low pressure fluid and can serve as a basis to locate the crack. A test set-up with a controllable leak valve was built to investigate the feasibility of using NPW to localize a leak in closed tubes with small lengths. Reflections are expected to occur at the ends of the tube, possibly limiting the localization accuracy. In this paper, the results of the tests on the test set-up are reported. It will be shown that the crack could be localized with high accuracy (millimeter accuracy which proves the concept of crack localization on basis of NPW in a closed tube of small length.
Energy Technology Data Exchange (ETDEWEB)
Botros, K.K., E-mail: botrosk@novachem.co [NOVA Research and Technology Center, 2928 - 16 Street N.E., Calgary, Alberta T2E 7K7 (Canada); Geerligs, J. [NOVA Research and Technology Center, 2928 - 16 Street N.E., Calgary, Alberta T2E 7K7 (Canada); Rothwell, Brian [Brian Rothwell Consulting Inc., 100 Hamptons Link Northwest, Calgary, Alberta T3A 5V9 (Canada); Carlson, Lorne [Alliance Pipeline Ltd., Calgary, Alberta (Canada); Fletcher, Leigh [Welding and Pipeline Integrity, Bright, Victoria (Australia); Venton, Philip [Venton and Associates Pty Ltd, Bundanoon, NSW (Australia)
2010-12-15
The control of propagating ductile (or tearing) fracture is a fundamental requirement in the fracture control design of pipelines. The Battelle two-curve method developed in the early 1970s still forms the basis of the analytical framework used throughout the industry. GASDECOM is typically used for calculating decompression speed, and idealizes the decompression process as isentropic and one-dimensional, taking no account of frictional effects. While this approximation appears not to have been a major issue for large-diameter pipes and for moderate pressures (up to 12 MPa), there have been several recent full-scale burst tests at higher pressures and smaller diameters for which the measured decompression velocity has deviated progressively from the predicted values, in general towards lower velocities. The present research was focused on determining whether pipe diameter was a major factor that could limit the applicability of frictionless models such as GASDECOM. Since potential diameter effects are primarily related to wall friction, which in turn is related to the ratio of surface roughness-to-diameter, an experimental approach was developed based on keeping the diameter constant, at a sufficiently small value to allow for an economical experimental arrangement, and varying the internal roughness. A series of tests covering a range of nominal initial pressures from 10 to 21 MPa, and involving a very lean gas and three progressively richer compositions, were conducted using two specialized high-pressure shock tubes (42 m long, I.D. = 38.1 mm). The first is honed to an extremely smooth surface finish, in order to minimize frictional effects and better simulate the behaviour of larger-diameter pipelines, while the second has a higher internal surface roughness. The results show that decompression wave speeds in the rough tube are consistently slower than those in the smooth tube under the same conditions of mixture composition and initial pressure and temperature
Backward pion-nucleon scattering
Energy Technology Data Exchange (ETDEWEB)
Huang, F. [Univ. of Georgia, Athens, GA (United States); Sibirtsev, Alex [Helmholtz-Institut furr Strahlen- und Kernphysik (Theorie) und Bethe Center for Theoretical Physics, Universitat Bonn, D-53115 Bonn, Germany; Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Haidenbauer, Johann [Forschungszentrum Julich (Germany); Meissner, Ulf-G. [Helmholtz-Institut fur Strahlen- und Kernphysik (Theorie) und Bethe Center for Theoretical Physics, Universitat Bonn, Bonn, Germany; Forschungszentrum Julich (Germany)
2010-02-01
A global analysis of the world data on differential cross sections and polarization asymmetries of backward pion-nucleon scattering for invariant collision energies above 3 GeV is performed in a Regge model. Including the $N_\\alpha$, $N_\\gamma$, $\\Delta_\\delta$ and $\\Delta_\\beta$ trajectories, we reproduce both angular distributions and polarization data for small values of the Mandelstam variable $u$, in contrast to previous analyses. The model amplitude is used to obtain evidence for baryon resonances with mass below 3 GeV. Our analysis suggests a $G_{39}$ resonance with a mass of 2.83 GeV as member of the $\\Delta_{\\beta}$ trajectory from the corresponding Chew-Frautschi plot.
CONTINUOUS DEPENDENCE FOR A BACKWARD PARABOLIC PROBLEM
Institute of Scientific and Technical Information of China (English)
刘继军
2003-01-01
We consider a backward parabolic problem arising in the description of the behavior of the toroidal part of the magenetic field in a dynamo problem. In our backward time problem, the media parameters are spatial distributed and the boundary conditions are of the Robin type. For this ill-posed problem, we prove that the solution depends continuously on the initial-time geometry.
Starinshak, David P.; Smith, Nathan D.; Wilson, Jeffrey D.
2008-01-01
The electromagnetic effects of conventional dielectrics, anisotropic dielectrics, and metamaterials were modeled in a terahertz-frequency folded-waveguide slow-wave circuit. Results of attempts to utilize these materials to increase efficiency are presented.
Chevalier, C. T.; Herrmann, K. A.; Kory, C. L.; Wilson, J. D.; Cross, A. W.; Williams, W. D. (Technical Monitor)
2001-01-01
Previously, it was shown that MAFIA (solutions of Maxwell's equations by the Finite Integration Algorithm), a three-dimensional simulation code, can be used to produce accurate cold-test characteristics including frequency-phase dispersion, interaction impedance, and attenuation for traveling-wave tube (TWT) slow-wave structures. In an effort to improve user-friendliness and simulation time, a model was developed to compute the cold-test parameters using the electromagnetic field simulation software package CST MICROWAVE STUDIO (MWS). Cold-test parameters were calculated for several slow-wave circuits including a ferruled coupled-cavity, a folded waveguide, and a novel finned-ladder circuit using both MWS and MAFIA. Comparisons indicate that MWS provides more accurate cold-test data with significantly reduced simulation times. Both MAFIA and MWS are based on the finite integration (FI) method; however, MWS has several advantages over MAFIA. First, it has a Windows based interface for PC operation, making it very user-friendly, whereas MAFIA is UNIX based. MWS uses a new Perfect Boundary Approximation (PBA), which increases the accuracy of the simulations by avoiding stair step approximations associated with MAFIA's representation of structures. Finally, MWS includes a Visual Basic for Applications (VBA) compatible macro language that enables the simulation process to be automated and allows for the optimization of user-defined goal functions, such as interaction impedance.
On Backward-Style Anonymity Verification
Kawabe, Yoshinobu; Mano, Ken; Sakurada, Hideki; Tsukada, Yasuyuki
Many Internet services and protocols should guarantee anonymity; for example, an electronic voting system should guarantee to prevent the disclosure of who voted for which candidate. To prove trace anonymity, which is an extension of the formulation of anonymity by Schneider and Sidiropoulos, this paper presents an inductive method based on backward anonymous simulations. We show that the existence of an image-finite backward anonymous simulation implies trace anonymity. We also demonstrate the anonymity verification of an e-voting protocol (the FOO protocol) with our backward anonymous simulation technique. When proving the trace anonymity, this paper employs a computer-assisted verification tool based on a theorem prover.
Flechtner, D D
1999-01-01
In 1989, researchers at CERN published the discovery of significant electron emission (1– 100 A/cm2) from Lead- Lanthanum-Zirconate-Titanate (PLZT). The publication of these results led to international interest in ferroelectric cathodes studies for use in pulsed power devices. At Cornell University in 1991, experiments with Lead-Zirconate-Titanate (PZT) compositions were begun to study the feasibility of using this ferroelectric material as a cathode in the electron gun section of High Power Traveling Wave Tube Amplifier Experiments. Current-voltage characteristics were documented for diode voltages ranging from 50– 500,000 V with anode cathode gaps of.5– 6 cm. A linear current-voltage relation was found for voltages less than 50 kV. For diode voltages ≥ 200 kV, a typical Child-Langmuir V3/2 dependence was observed...
Indian Academy of Sciences (India)
G Sudhakar; B Rajakumar
2014-07-01
The thermal decomposition of 1-chloropropane in argon was studied behind reflected shock waves in a single pulse shock tube over the temperature range of 1015-1220 K. The reaction mainly goes through unimolecular elimination of HCl. The major products observed in the decomposition are propylene and ethylene, while the minor products identified are methane and propane. The rate constant for HCl elimination in the studied temperature range is estimated to be k(1015-1220 K) = 1.63 × 1013exp(-(60.1 ± 1.0) kcal mol-1/RT) s-1. The DFT calculations were carried out to identify the transition state(s) for the major reaction channel; and rate coefficient for this reaction is obtained to be k(800-1500 K) = 5.01 × 1014exp(-(58.8) kcal mol-1/RT) s-1. The results are compared with the experimental findings.
Discretizing a backward stochastic differential equation
Yinnan Zhang; Weian Zheng
2002-01-01
We show a simple method to discretize Pardoux-Peng's nonlinear backward stochastic differential equation. This discretization scheme also gives a numerical method to solve a class of semi-linear PDEs.
Forward-backward asymmetries of atomic photoelectrons.
Energy Technology Data Exchange (ETDEWEB)
Biheux, J. C.; Dunford, R. W.; Gemmell, D. S.; Hasegawa, S.; Kanter, E. P.; Krassig, B.; Southworth, S. H.; Young, L.
1999-01-19
When atomic photoionization is treated beyond the dipole approximation, photoelectron angular distributions are asymmetric forward and backward with respect to the direction of the photon beam. We have measured forward-backward asymmetries of Ar 1s and Kr 1s and 2s photoelectrons using 2-19 keV x-rays. The measured asymmetries compare well with calculations which include interference between electric-dipole and electric-quadrupole amplitudes within the nonrelativistic, independent-particle approximations.
Wei, Yanyu; Liu, Hongtao; He, Jun; Gong, Yubin; Yue, Lingna; Wang, Wenxiang; Park, Gun-Sik
2007-12-01
Properties of traveling wave-beam interaction in a centered dielectric-rod loaded, arbitrarily-shaped helical groove slow-wave structure (SWS) are investigated for a thin annular electron beam. The “hot” dispersion equation is obtained by means of the self-consistent field theory, and the small signal analysis is carried out including the effects of the dielectric-rod parameters and the groove shapes. The numerical results show that the bandwidth of the helical groove TWT is expanded by loading dielectric-rod, however, the small-signal gain is reduced; and when the groove shape changes from the swallow-tail shape to the triangle shape, the working frequency increases , while the peak gain decreases.
Sakurai, Takashi; Goossens, Marcel; Hollweg, Joseph V.
1991-01-01
The present method of addressing the resonance problems that emerge in such MHD phenomena as the resonant absorption of waves at the Alfven resonance point avoids solving the fourth-order differential equation of dissipative MHD by recourse to connection formulae across the dissipation layer. In the second part of this investigation, the absorption of solar 5-min oscillations by sunspots is interpreted as the resonant absorption of sounds by a magnetic cylinder. The absorption coefficient is interpreted (1) analytically, under certain simplifying assumptions, and numerically, under more general conditions. The observed absorption coefficient magnitude is explained over suitable parameter ranges.
0.14THz返波管器件数值模拟与实验研究%Numerical analysis and experiment of the 0.14 THz Backward Wave Oscillators
Institute of Scientific and Technical Information of China (English)
陈洪斌; 胡林林; 马国武; 周传明; 许冬明; 宋睿; 金晓
2011-01-01
对有限引导磁场环形电子束的色散曲线作了理论推导,并利用该色散关系数值计算了正弦慢波结构的色散曲线.采用KARAT模拟程序对0.14 THz返波管进行了粒子模拟,并在RADAN303脉冲源上开展了初步的实验研究,实验获得频率大于0.14 THz、脉冲宽度为1 ns～2 ns、重复频率10 Hz和辐射功率大于1.45 MW太赫兹波输出.%The linear dispersion relation of Slow Wave Structures(SWSs) driven by annular beam with finite magnetic field was ohtained. Numerical analysis was carried out according to the experimental parameters. Based on the PIC simulation results obtained hy KARAT, elementary experiment was designed and earried out, from which the terahertz wave with frequency ＞0.14 THz, pulse duration of 1 ns-2 ns and output power ＞100 kW was acquired.
Institute of Scientific and Technical Information of China (English)
ZHANG DE-TAO
2009-01-01
In this paper, we use the solutions of forward-backward stochastic differential equations to get the optimal control for backward stochastic linear quadratic optimal control problem. And we also give the linear feedback regulator for the optimal control problem by using the solutions of a group of Riccati equations.
Institute of Scientific and Technical Information of China (English)
高梁; 钱宝良; 葛行军; 王运行
2011-01-01
A moderate-energy P-band relativistic backward wave oscillator (RBWO) is proposed and investigated by using the 2. 5D fully electromagnetic particle-in-cell code, KARAT. A double corrugated configuration is designed in the coaxial slow wave structure (SWS) of the moderate-energy P-band RBWO, and thus enlarges the temporal growth rate and the beam-wave interaction space of the RBWO, resulting in larger power capacity and shorter microwave output saturation time. The presented P-band RBWO has an increase of about two times compared with the conventional one in the radial range of the beam-wave interaction space, with almost the same period of SWS. The simulation results show that a microwave with the power of 267 MW, frequency of 867 MHz and efficiency of 30% is obtained with the diode voltage, diode current and guiding magnetic field of 300 kV, 3. 0 kA and 1.0T, respectively.%提出了一种新型的中等能量P波段相对论返波振荡器,该器件将慢波结构由低波段普遍采用的同轴外波纹结构变为同轴双波纹结构,使得径向束-波作用空间扩大了2倍,一定程度上增加了器件的功率容量；另外同轴双波纹结构还较大提高了器件的时间增长率,从而有效地减小了微波输出饱和时间.经优化设计,该结构在二极管电压300 kV、电流3 kA、导引磁场1.0T的情况下,获得267 MW的微波输出,效率达30％,频率为867 MHz.
Backward Charge Transfer in Conjugated Polymers
Institute of Scientific and Technical Information of China (English)
CHENG Meng-Xing; LI Guang-Qi; Thomas F. George; SUN Xin
2005-01-01
It has been known that the static polarizability of a polymer chain with a biexciton is negative. In order to understand this peculiar fact, this paper studies the dynamical process of the charge transfer in the polymer chain induced by an external electric field E during forming the biexciton. The time dependence of the charge distribution in the chain reveals that the charge transfer is backward: the positive charge shifts in the opposite direction of the external electric field. Such a backward charge transfer (BCT) produces an opposite dipole, which makes the polarization negative. The effect of electron interaction on the BCT is illustrated.
Flipping photons backward: reversed Cherenkov radiation
Directory of Open Access Journals (Sweden)
Hongsheng Chen
2011-01-01
Full Text Available Charged particles moving faster than light in a medium produce Cherenkov radiation. In traditional, positive index-of-refraction materials this radiation travels forward. Metamaterials, with negative indices of refraction, flip the radiation backward. This readily separates it from the particles, providing higher flexibility in photon manipulation and is useful for particle identification and counting. Here we review recent advances in reversed Cherenkov radiation research, including the first demonstration of backward emission. We also discuss the potential for developing new types of devices, such as ones that pierce invisibility cloaks.
Backward charmonium production in $\\pi N$ collisions
Pire, B; Szymanowski, L
2016-01-01
Hard exclusive backward production of a $J/\\psi$ meson in pion-nucleon collisions is studied in the framework of QCD collinear factorization. In this approach, a hard subprocess amplitude responsible for the production of the heavy quark-antiquark pair factorizes from soft hadronic matrix elements, such as the nucleon distribution amplitude and the pion-to-nucleon transition distribution amplitude. We argue that this reaction mechanism dominates the backward kinematical region for the medium energy pion beam at J-Parc.
Simons, Rainee N.; Wintucky, Edwin G.; Wilson, Jeffrey D.; Force, Dale A.
2009-01-01
In the 2008 International Microwave Symposium (IMS) Digest version of our paper, recent advances in high power and efficiency space traveling-wave tube amplifiers (TWTAs) for NASA s space-to-Earth communications are presented. The RF power and efficiency of a new K-Band amplifier are 40 W and 50 percent and that of a new Ka-Band amplifier are 200 W and 60 percent. An important figure-of-merit, which is defined as the ratio of the RF power output to the mass (W/kg) of a TWT, has improved by a factor of ten over the previous generation Ka-Band devices. In this extended paper, a high power, high efficiency Ka-band combiner for multiple TWTs, based on a novel hybrid magic-T waveguide circuit design, is presented. The measured combiner efficiency is as high as 90 percent. In addition, at the design frequency of 32.05 GHz, error-free uncoded BPSK/QPSK data transmission at 8 megabits per second (Mbps), which is typical for deep space communications is demonstrated. Furthermore, QPSK data transmission at 622 Mbps is demonstrated with a low bit error rate of 2.4x10(exp -8), which exceeds the deep space state-of-the-art data rate transmission capability by more than two orders of magnitude. A potential application of the TWT combiner is in deep space communication systems for planetary exploration requiring transmitter power on the order of a kilowatt or higher.
Lin, M. C.; Song, Heather; Shin, Jinwoo; So, Joonho
2016-10-01
Design study on a G-band (220 GHz) folded waveguide traveling wave tube (FWTWT) is presented. Due to ease of fabrication, wide bandwidth, and versatility in operation, a FWTWT structure was chosen for future advanced broadband amplifier for imaging applications. The cold test simulations were carried out employing finite element method (FEM) to determine dispersion relation, circuit dimensions, and operating beam parameters of the device. Beam optics study was performed to eliminate interception to the circuit wall and minimize beam scalloping. While precise control of beam location and size is very important to device performance, hot test simulations based on a 3D conformal finite-difference time-domain (CFDTD) particle-in-cell (PIC) method have been extensively used to predict performance of the beam transport and stability characteristics in order to optimize the electrical operating parameters. The 3D CFDTD PIC simulations of the full model have demonstrated a greater than 26 dB large signal gain at 220 GHz and beam voltage of approximately 18 kV. The effects of beam filling ratio, magnetic field, and beam interception on the gain have been studied in considerable detail and will be presented.
Simons, Rainee N.; Force, Dale A.; Kacpura, Thomas J.
2013-01-01
The design, fabrication and RF performance of the output traveling-wave tube amplifier (TWTA) for a space based Ka-band software defined radio (SDR) is presented. The TWTA, the SDR and the supporting avionics are integrated to forms a testbed, which is currently located on an exterior truss of the International Space Station (ISS). The SDR in the testbed communicates at Ka-band frequencies through a high-gain antenna directed to NASA s Tracking and Data Relay Satellite System (TDRSS), which communicates to the ground station located at White Sands Complex. The application of the testbed is for demonstrating new waveforms and software designed to enhance data delivery from scientific spacecraft and, the waveforms and software can be upgraded and reconfigured from the ground. The construction and the salient features of the Ka-band SDR are discussed. The testbed is currently undergoing on-orbit checkout and commissioning and is expected to operate for 3 to 5 years in space.
Free Piston Double Diaphragm Shock Tube
OGURA, Eiji; FUNABIKI, Katsushi; SATO, Shunichi; Abe, Takashi; 小倉, 栄二; 船曳, 勝之; 佐藤, 俊逸; 安部, 隆士
1997-01-01
A free piston double diaphragm shock tube was newly developed for generation of high Mach number shock wave. Its characteristics was investigated for various operation parameters; such as a strength of the diaphragm at the end of the comparession tube, an initial pressure of low pressure tube, an initial pressure of medium pressure tube and the volume of compression tube. Under the restriction of fixed pressures for the driver high pressure tube (32×10^5Pa) and the low pressure tube (40Pa) in...
Limits of Lubrication in Backward Can Extrusion
DEFF Research Database (Denmark)
Bennani, B; Bay, Niels
1996-01-01
The increasing demand in industry to produce cans at low reduction by the backward extrusion process involves better understanding of this process. To analyse the process, numerical simulations by the finite-element method and experimental simulations by physical modelling using wax as a model...
Backward ray tracing for ultrasonic imaging
Breeuwer, R.
1990-01-01
Focused ultrasonic beams frequently pass one or more media interfaces, strongly affecting the ultrasonic beamshape and focusing. A computer program, based on backward ray tracing was developed to compute the shape of a corrected focusing mirror. This shape is verified with another program; then the
Interregional multipliers : looking backward, looking forward
Dietzenbacher, Erik
2002-01-01
Backward linkages are usually measured using output multipliers as based on the input matrix. Similarly, value-added and import multipliers are derived by additionally using the corresponding primary input coefficients. For measuring forward linkages, input multipliers have been frequently used. Wit
Using backward design in NASA educational resources
Peticolas, L. M.; Mendez, B.; Schultz, G.; Luhmann, J. G.; Craig, N.
2003-12-01
It is important to create NASA educational resources that are effective in imparting deep understanding of space physics concepts, which link to main ideas outlined in the National Science Education Standards (NSES). One way of ensuring success in such a task is to use the backward design philosophy described in the book, "Understanding by Design" by Wiggins and McTighe. Using this design philosophy together with inquiry-based activities, we have developed a teacher's magnetism guide with three main lessons. The goal of this teacher's guide is to help middle school kids learn about motions and forces, magnetism, including electromagnetism, science as inquiry, and science as a human endeavor. We reach these goals in part by using the story of the NASA STEREO Mission together with the design process of the STEREO-IMPACT magnetic boom. We found that using a backward design guarantees that our activities teach the ideas we want the students to learn and also that the lessons include a variety of assessment and evaluation tools along the way. However, we also found that it is difficult to implement the backward design without a long lesson using several assessment tools. This could be a problem for teachers who may not be able to use such time-consuming NASA activities and tools in their classroom. In this presentation, we will further discuss the ideas of backward design in the context of the three activities we created, and the benefits and difficulties we encountered using this philosophy.
Jensen's Inequality for Backward Stochastic Differential Equations
Institute of Scientific and Technical Information of China (English)
Long JIANG
2006-01-01
Under the Lipschitz assumption and square integrable assumption on g, the author proves that Jensen's inequality holds for backward stochastic differential equations ith generator g if and only ifg is independent of y, g(t, 0) ≡ 0 and g is super homogeneous with respect to z. This result generalizes the known results on Jensen's inequality for gexpectation in [4, 7-9].
BACKWARD WELLPOSEDNESS OF NONUNIFORM TIMOSHENKO BEAM EQUATION
Institute of Scientific and Technical Information of China (English)
司守奎
2001-01-01
In this paper,we consider the Timoshenko equation of a nonuniform beam,with clamped boundary condition at one end and with feedback controls at the other end.It is proved that the system is backward wellposedness when the feedback controls are weak enough.
Levelized Cost of Energy for a Backward Bent Duct Buoy
Energy Technology Data Exchange (ETDEWEB)
Bull, Diana; Jenne, D. Scott; Smith, Christopher S.; Copping, Andrea E.; Copeland, Guild
2016-12-01
The Reference Model Project, supported by the U.S. Department of Energy, was developed to provide publically available technical and economic benchmarks for a variety of marine energy converters. The methodology to achieve these benchmarks is to develop public domain designs that incorporate power performance estimates, structural models, anchor and mooring designs, power conversion chain designs, and estimates of the operations and maintenance, installation, and environmental permitting required. The reference model designs are intended to be conservative, robust, and experimentally verified. The Backward Bent Duct Buoy (BBDB) presented in this paper is one of three wave energy conversion devices studied within the Reference Model Project. Comprehensive modeling of the BBDB in a Northern California climate has enabled a full levelized cost of energy (LCOE) analysis to be completed on this device.
Finite-duration Seeding Effects in Powerful Backward Raman Amplifiers
Energy Technology Data Exchange (ETDEWEB)
N.A. Yampolsky; V.M. Malkin; N.J. Fisch
2003-07-14
In the process of backward Raman amplification (BRA), the leading layers of the seed laser pulse can shadow the rear layers, thus weakening the effective seeding power and affecting parameters of output pulses in BRA. We study this effect numerically and also analytically by approximating the pumped pulse by the ''*-pulse'' manifold of self-similar solutions. We determine how the pumped pulse projection moves within the *-pulse manifold, and describe quantitatively the effective seeding power evolution. Our results extend the quantitative theory of BRA to regimes where the effective seeding power varies substantially during the amplification. These results might be of broader interest, since the basic equations, are general equations for resonant 3-wave interactions.
Jurneczko, Ewa; Kalapothakis, Jason; Campuzano, Iain D G; Morris, Michael; Barran, Perdita E
2012-10-16
There has been a significant increase in the use of ion mobility mass spectrometry (IM-MS) to investigate conformations of proteins and protein complexes following electrospray ionization. Investigations which employ traveling wave ion mobility mass spectrometry (TW IM-MS) instrumentation rely on the use of calibrants to convert the arrival times of ions to collision cross sections (CCS) providing "hard numbers" of use to structural biology. It is common to use nitrogen as the buffer gas in TW IM-MS instruments and to calibrate by extrapolating from CCS measured in helium via drift tube (DT) IM-MS. In this work, both DT and TW IM-MS instruments are used to investigate the effects of different drift gases (helium, neon, nitrogen, and argon) on the transport of multiply charged ions of the protein myoglobin, frequently used as a standard in TW IM-MS studies. Irrespective of the drift gas used, recorded mass spectra are found to be highly similar. In contrast, the recorded arrival time distributions and the derived CCS differ greatly. At low charge states (7 ≤ z ≤ 11) where the protein is compact, the CCS scale with the polarizability of the gas; this is also the case for higher charge states (12 ≤ z ≤ 22) where the protein is more unfolded for the heavy gases (neon, argon, and nitrogen) but not the case for helium. This is here interpreted as a different conformational landscape being sampled by the lighter gas and potentially attributable to increased field heating by helium. Under nanoelectrospray ionization (nESI) conditions, where myoglobin is sprayed from an aqueous solution buffered to pH 6.8 with 20 mM ammonium acetate, in the DT IM-MS instrument, each buffer gas can yield a different arrival time distribution (ATD) for any given charge state.
Forward-backward correlations between intensive observables
Kovalenko, Vladimir
2016-01-01
We demonstrate that the investigations of the forward-backward correlations between intensive observables enable to obtain more clear signal about the initial stage of hadronic interaction, e.g. about the process of string fusion, compared to usual forward-backward multiplicity correlations. As an example, the correlation between mean-event transverse momenta of charged particles in separated rapidity intervals is considered. We performed calculations in the framework of dipole-based Monte Carlo string fusion model. We obtained the dependence of the correlation strength on the collision centrality for different initial energies and colliding systems. It is shown that the dependence reveals the decline of the correlation coefficient for most central Pb-Pb collisions at LHC energy. We compare the results both with the ones obtained in alternative models and with the ones obtained by us using various MC generators.
CMS Forward-Backward MSGC milestone
Bouhali, O; Barthe, S; Beaumont, W; Beckers, T; Beissel, F; Benhammou, Ya; Bergdolt, A M; Bernier, K; Boulogne, I; Bozzo, M; Brom, J M; Camps, C; Chorowicz, V; Coffin, J; Commichau, V; Contardo, D; Croix, J; De Troy, J G; Drouhin, F; Eberle, H; Flügge, G; Fontaine, J C; Geist, Walter M; Goerlach, U; Gundlfinger, K; Hangarter, K; Haroutunian, R; Helleboid, J M; Hoffer, M; Hoffmann, C; Huss, D; Ischebeck, R; Jeanneau, F; Juillot, P; Kapp, M R; Krauth, M; Kremp, J; Lounis, A; Lübelsmeyer, K; Maazouzi, C; Macke, D; Mirabito, L; Nowack, A; Pandoulas, D; Petertill, M; Pooth, O; Racca, C; Ripp, I; Schmitz, P; Schulte, R; Schultz von Dratzig, A; Schunck, J P; Schuster, G; Schwaller, B; Sigward, M H; Smadja, G; Stefanescu, J; Tissot, S; Todorov, T; Udo, Fred; Van Doninck, W K; Van Dyck, C; Van Lancker, L; Van der Velde, C; Vanlaer, P; Verdini, P G; Wortmann, R; Zghiche, A; Zhukov, V
1998-01-01
The CMS MF1 milestone was set in order to evaluate system aspects of the CMS forward-backward MSGC tracker, to check the design and feasibility of mass production and to set up assembly and test procedures. We describe the construction and the experience gained with the operation of a system of 38 MSGC detectors assembled in six multi-substrate detector modules corresponding to the geometry of the forward-backward MSGC tracker in CMS. These modules were equipped with MSGCs mounted side by side, forming a continuous detector surface of about 0.2 m2. Different designs were tried for these modules. The problems encountered are presented with the proposed solutions. Operation conditions for the 38 MSGCs are reported from an exposure to a muon beam at the CERN SPS. Gain uniformity along the wedge-shaped strip pattern and across the detector modules are shown together with the detection efficiency, the spatial resolution, alignment and edge studies.
DEFF Research Database (Denmark)
Ibsen, Lars Bo
2008-01-01
Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many t...
Kinematics and Aerodynamics of Backward Flying Dragonflies
Bode-Oke, Ayodeji; Zeyghami, Samane; Dong, Haibo
2015-11-01
Highly maneuverable insects such as dragonflies have a wide range of flight capabilities; precise hovering, fast body reorientations, sideways flight and backward takeoff are only a few to mention. In this research, we closely examined the kinematics as well as aerodynamics of backward takeoff in dragonflies and compared them to those of forward takeoff. High speed videography and accurate 3D surface reconstruction techniques were employed to extract details of the wing and body motions as well as deformations during both flight modes. While the velocities of both forward and backward flights were similar, the body orientation as well as the wing kinematics showed large differences. Our results indicate that by tilting the stroke plane angle of the wings as well as changing the orientation of the body relative to the flight path, dragonflies control the direction of the flight like a helicopter. In addition, our detailed analysis of the flow in these flights shows important differences in the wake capture phenomena among these flight modes. This work is supported by NSF CBET-1313217.
Manually operated piston-driven shock tube
Reddy, KPJ; Sharath, N
2013-01-01
A simple hand-operated shock tube capable of producing Mach 2 shock waves is described. Performance of this miniature shock tube using compressed high pressure air created by a manually operated piston in the driver section of the shock tube as driver gas with air at 1 atm pressure as the test gas in the driven tube is presented. The performance of the shock tube is found to match well with the theoretically estimated values using normal shock relations. Applications of this shock tube named ...
Linear system identification via backward-time observer models
Juang, Jer-Nan; Phan, Minh
1993-01-01
This paper presents an algorithm to identify a state-space model of a linear system using a backward-time approach. The procedure consists of three basic steps. First, the Markov parameters of a backward-time observer are computed from experimental input-output data. Second, the backward-time observer Markov parameters are decomposed to obtain the backward-time system Markov parameters (backward-time pulse response samples) from which a backward-time state-space model is realized using the Eigensystem Realization Algorithm. Third, the obtained backward-time state space model is converted to the usual forward-time representation. Stochastic properties of this approach will be discussed. Experimental results are given to illustrate when and to what extent this concept works.
Institute of Scientific and Technical Information of China (English)
沙莎; 陈志华; 韩珺礼
2013-01-01
Based on the 2D Euler equations, the shock wave propagation through the tube with rectangular grooves was numerically simulated by combining the fifth-order weighted essentially nonoscil-latory (WENO) scheme and the adaptive mesh refinement (AMR) technique. The numerical results display the interaction of the incident shock wave with the grooves during its propagation inside the tube as well as its evolution within every single groove, and agree with the existent experimental results by N. Gongora-Orozco, et al. In addition, the numerical results reveal that the phenomena of expansion wave induced by shock wave diffraction and reflected shock wave due to collision appear during the interaction of the incident wave with a single groove. The expansion wave attenuates the incident shock wave, the reflected wave amplifies its intensity, but the attenuation effect dominates the process, resulting in the front intensity decrease of the incident wave in a vibrating way.%基于二维Euler方程,结合五阶加权基本无振荡(weighted essentially nonoscillatory,WENO)格式以及自适应网格加密(adaptive mesh refinement,AMR)技术对入射激波在矩形凹槽管道内传播过程进行了数值模拟.数值结果清晰地显示了入射激波传播过程中与多个矩形凹槽作用以及在凹槽内变化的整个过程,且与已有的实验结果吻合较好.另外,结果还揭示了入射激波与单个凹槽作用时,会发生绕射产生膨胀波,还会发生碰撞从而诱导反射激波.膨胀波会导致入射激波压力降低,而反射激波则导致其升高,但膨胀波的影响占主导作用,因而入射激波波阵面强度出现振荡下降.
Application of Ultrasonic Near-filed Guided Wave in Thin-walled Tube%超声近场导波在薄壁管检测中的应用
Institute of Scientific and Technical Information of China (English)
邢耀淇; 高佳楠; 陈以方
2016-01-01
To meet the testing requirements of AP1000 nuclear fuel cladding tube,based on ultrasonic near-field guided wave principle,this paper proposes a method to evaluate the quality of thin-walled tube.Defect information is shown in the form of ultrasonic feature image.The test system can detect the defects in the tube,such as cracks, gas porosity, inclusions, lamination and folding defects, thus completely avoiding the occurrence of leak or mistakenly testing.The applicable minimum defect equivalent can reach 3% of wall thickness.Besides that,we can get the location and equivalent of the defects with an accuracy of 0.2mm.In conclusion,ultrasonic guided wave is suitable for the nondestructive evaluation of high energy consumption cladding tube.%针对 AP1000核燃料包壳管的检测需求，基于超声近场导波的检测原理，提出了一种评价薄壁管质量的方法，并通过超声特征成像图对缺陷信息进行描述.构建的检测系统能对裂纹、气孔、夹杂、分层、折叠等缺陷进行检测，减少了漏检与误检，检测能力达到了壁厚3％的水平，定位定量误差均小于0．2 mm.结果表明，超声导波适用于高能耗包壳管的无损检测.
Sound absorption and reflection with coupled tubes
2000-01-01
This paper describes a special sound absorbing technique with an accompanying efficient numerical design tool. As a basis pressure waves in a single narrow tube or pore are considered. In such a tube the viscosity and the thermal conductivity of the air, or any other fluid, can have a significant effect on the wave propagation. An important aspect is that due to the viscothermal wave propagation sound energy is being dissipated. This has been applied to configurations consisting of a manifold...
Effect of initial pressure on propagation of detonation wave in round tube%初始压力对爆轰波在管道内传播的影响
Institute of Scientific and Technical Information of China (English)
喻健良; 高远; 闫兴清; 高伟
2014-01-01
Detonation tube was built to investigate the effect of initial pressure on the propagation of detonation wave in round tube.The premixed gas of CH4+2O2 was selected as experimental gas. Optical fiber probe was used to measure the local velocity of detonation wave.Smoked foils were used to register the cellular structure of detonation wave in tubes.The experimental results show that there are five distinct modes during the propagation of detonation wave in tubes,which are stable mode,rapid fluctuation mode,stuttering mode,galloping mode and failure mode.Under the mode of stable detonation,the fluctuations of the local velocity of detonation wave are generally small and the averaged velocity of detonation wave is close to the theoretical CJ value.The detonation wave has multi-headed cellular structure.With decreasing of the initial pressure,the fluctuations of the local velocity of detonation wave increase,and the averaged velocity of detonation wave decreases.For the galloping detonation,at the decoupled position,cellular structure disappears.Cellular structure forms again when overdriven detonation occurs.If the initial pressure is further decreased till the detonation failure,no cellular structure is observed.%建立爆轰管道研究不同初始压力下爆轰波在管道内传播规律。选用 CH4+2O2气体，采用光纤探针测量爆轰波在管道内的传播速度，采用烟迹法记录爆轰波胞格结构。结果表明：爆轰波在管道内传播时出现5种不同传播模式，分别为稳态式、快速波动式、结巴式、驰振式与失效模式。在稳态传播模式下，爆轰波局部速度波动很小且平均速度接近理论爆轰 CJ 速度，并呈现多头胞格结构。随着初始压力的降低，爆轰波局部速度波动增加且其平均速度产生衰减。在驰振式爆轰解耦处，爆轰波胞格结构消失，过载爆轰时，重新形成胞格结构。进一步降低初始压力至爆轰失效时，则无胞格结构。
Study of the double rectangular waveguide grating slow-wave structure
Institute of Scientific and Technical Information of China (English)
Lu Zhi-Gang; Gong Yu-Bin; Wei Yan-Yu; Wang Wen-Xiang
2006-01-01
A slow-wave structure (SWS) with two opposite gratings inside a rectangular waveguide is presented and analysed. As an all-metal slow-wave circuit, this structure is especially suited for use in millimetre-wave travelling wave tubes (TWTs) due to its advantages of large size, high manufacturing precision and good heat dissipation. The first part of this paper concerns the wave properties of this structure in vacuum. The influence of the geometrical dimensions on dispersion characteristics and coupling impedance is investigated. The theoretical results show that this structure has a very strong dispersion and the coupling impedance for the fundamental wave is several tens of ohms, but the coupling impedance for -1 space harmonic wave is much lower than that for the fundamental wave, so the risk of backward wave oscillation is reduced. Besides these, the CST microwave studio is also used to simulate the dispersion property of the SWS. The simulation results from CST and the theoretical results agree well with each other, which supports the theory. In the second part, a small-signal analysis of a double rectangular waveguide grating TWT is presented. The typical small-signal gain per period is about 0.45 dB, and the 3-dB small-signal gain bandwidth is only 4%.
Forward and backward inference in spatial cognition.
Directory of Open Access Journals (Sweden)
Will D Penny
Full Text Available This paper shows that the various computations underlying spatial cognition can be implemented using statistical inference in a single probabilistic model. Inference is implemented using a common set of 'lower-level' computations involving forward and backward inference over time. For example, to estimate where you are in a known environment, forward inference is used to optimally combine location estimates from path integration with those from sensory input. To decide which way to turn to reach a goal, forward inference is used to compute the likelihood of reaching that goal under each option. To work out which environment you are in, forward inference is used to compute the likelihood of sensory observations under the different hypotheses. For reaching sensory goals that require a chaining together of decisions, forward inference can be used to compute a state trajectory that will lead to that goal, and backward inference to refine the route and estimate control signals that produce the required trajectory. We propose that these computations are reflected in recent findings of pattern replay in the mammalian brain. Specifically, that theta sequences reflect decision making, theta flickering reflects model selection, and remote replay reflects route and motor planning. We also propose a mapping of the above computational processes onto lateral and medial entorhinal cortex and hippocampus.
Focusing on Plates: Controlling Guided Waves using Negative Refraction
2015-01-01
Elastic waves are guided along finite structures such as cylinders, plates, or rods through reflection, refraction, and mode conversion at the interfaces. Such wave propagation is ubiquitous in the world around us, and studies of elastic waveguides first emerged in the later part of the 19th century. Early work on elastic waveguides revealed the presence of backward propagating waves, in which the phase velocity and group velocity are anti-parallel. While backward wave propagation exists natu...
Plane Waves in a Transparent Isotropic Chiral Medium
Fisanov, V. V.
2015-04-01
A homogeneous isotropic transparent chiral medium supports two normal plane waves with left and right circular polarization and differently valued positive wave numbers. The presence or absence of forward and backward Beltrami waves and their helicity are regulated by the signs of the permittivity and permeability and the strength of the chirality. The ray refractive index is a universal parameter whose sign differentiates the forward and backward waves.
Monte Carlo simulation on backward steps of single kinesin molecule
Institute of Scientific and Technical Information of China (English)
Wang Hong; Zhang Yong; Dou Shuo-Xing; Wang Peng-Ye
2008-01-01
Kinesin is a stepping molecular motor travelling along the microtubule. It moves primarily in the plus end direction of the microtubule and occasionally in the minus-end, backward, direction. Recently, the backward steps of kinesin under different loads and temperatures start to attract interests, and the relations among them are revealed. This paper aims to theoretically understand these relations observed in experiments. After introducing a backward pathway into the previous model of the ATPase cycle of kinesin movement, the dependence of the backward movement on the load and the temperature is explored through Monte Carlo simulation. Our results agree well with previous experiments.
Magnetosonic Waveguide Model of Solar Wind Flow Tubes
Indian Academy of Sciences (India)
A. K. Srivastava; B. N. Dwivedi
2006-06-01
We consider solar wind flow tubes as a magnetosonic wave-guide. Assuming a symmetric expansion in edges of slab-modelled wave-guide, we study the propagation characteristics of magnetosonic wave in the solar wind flow tubes. We present the preliminary results and discuss their implications.
Institute of Scientific and Technical Information of China (English)
许明耀
2016-01-01
The theory of ultrasonic wave in comPactness detection of giant steel tube concrete was introduced. It summarizes three common detec-tion methods including Plane detection,Pre-embedded sonic-testing tube detection and comPosite detection. Combined with the engineering Pro-ject,the integrated detection methods can be realized for giant steel tube concrete comPactness detection and can Provide a reference for similar Projects.%介绍了超声波检测巨型钢管混凝土密实性的原理，归纳了平面检测、预埋声测管检测、混合检测三种常规检测方法，结合工程实例，综合运用三种检测方法，实现了对巨型钢管混凝土密实性的检测，可供类似工程参考使用。
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Eels can swim backward by reversing the direction of the traveling wave along the body. The propulsive mechanism of an eel, angulla angulla, during its self-propelled straight swimming, including forward swimming, braking and switching direction to backward swimming was numerically studied. The problem was reasonably simplified to a loose-coupling problem of fish swimming dynamics and hydrodynamics only in the swimming direction. The approach involved the simulation of the flow by solving the two-dimensional unsteady incompressible N-S equations and the fish motion dynamic problem with Newton's second law. Visualizations of flow fields and vortex structures were performed. The propulsive mechanism and dynamics during each process were investigated and the effects of controllable factors on forward free swimming were discussed.
Pulse tube cooler having 1/4 wavelength resonator tube instead of reservoir
Gedeon, David R. (Inventor)
2008-01-01
An improved pulse tube cooler having a resonator tube connected in place of a compliance volume or reservoir. The resonator tube has a length substantially equal to an integer multiple of 1/4 wavelength of an acoustic wave in the working gas within the resonator tube at its operating frequency, temperature and pressure. Preferably, the resonator tube is formed integrally with the inertance tube as a single, integral tube with a length approximately 1/2 of that wavelength. Also preferably, the integral tube is spaced outwardly from and coiled around the connection of the regenerator to the pulse tube at a cold region of the cooler and the turns of the coil are thermally bonded together to improve heat conduction through the coil.
COMPARISON THEOREM OF BACKWARD DOUBLY STOCHASTIC DIFFERENTIAL EQUATIONS
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
This paper is devoted to deriving a comparison theorem of solutions to backward doubly stochastic differential equations driven by Brownian motion and backward It-Kunita integral. By the application of this theorem, we give an existence result of the solutions to these equations with continuous coefficients.
The Equivalence Forms of Random Kolmogorov Forward (Backward) Equations
Institute of Scientific and Technical Information of China (English)
HU Di-he; HU Xiao-yu
2005-01-01
The concepts of Markov process in random environment, q-matrix in random environment and q-process in random environment are introduced. Three forms of random Kolmoogrov farward (or backward) equations are introduced and the equivalence of these three forms are also proved. Moreover any conservative q-process in random environment satisfies random Kolmogrov backward equation.
Lubrication in Hot Tube Extrusion of Superalloys and Ti Alloys
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Tubular products made of superalloys and titanium alloys usually work in high temperature environment and applied heavy loading. Hot extrusion is the best technology to form tubular billets with fine microstructures and good mechanical properties. Lubrication is one of the key techniques in hot extrusion, glass lubricants are most suitable for hot extrusion. Lubrication technique in hot extrusion is dealt with in this paper, the lubrication principle of hot tube extrusion is presented. Experiments of glass lubricated backward tube extrusion of titanium alloys and forward tube extrusion of superalloys are also discussed.
Wavefunction Properties of a Single and a System of Magnetic Flux Tube(s) Oscillations
Esmaeili, Shahriar; Dadashi, Neda; Safari, Hossein
2015-01-01
In this study, the properties of wavefunctions of the MHD oscillations for a single and a system of straight flux tubes are investigated. Magnetic flux tubes with a straight magnetic field and longitudinally density stratification under coronal conditions were considered. With repect to the density inhomogeneity in the radial direction of the flux tube, a smoothed step function at the lateral surface is employed. A single three-dimensional wave equation for longitudinal component of the perturbed magnetic field is solved using the finite element method (FEM). Wavefunctions of the MHD oscillations are categorized into kink, sausage, and torsional modes. Concerning the amplitude location of the waves which are arisen from the flux tube, those waves identified as body, surface, and leaky waves and appeared in both a single and a system of flux tubes cases. Exact recognition of the wavefunctions can be used in coronal seismology and also helps to future the high resolution instruments that would be designed for s...
... of the ear drum or eustachian tube, Down Syndrome, cleft palate, and barotrauma (injury to the middle ear caused by a reduction of air pressure, ... specialist) may be warranted if you or your child has experienced repeated ... fluid in the middle ear, barotrauma, or have an anatomic abnormality that ...
Sound absorption and reflection with coupled tubes
Eerden, van der Frits
2000-01-01
This paper describes a special sound absorbing technique with an accompanying efficient numerical design tool. As a basis pressure waves in a single narrow tube or pore are considered. In such a tube the viscosity and the thermal conductivity of the air, or any other fluid, can have a significant ef
Kundt's Tube Experiment Using Smartphones
Parolin, Sara Orsola; Pezzi, Giovanni
2015-01-01
This article deals with a modern version of Kundt's tube experiment. Using economic instruments and a couple of smartphones, it is possible to "see" nodes and antinodes of standing acoustic waves in a column of vibrating air and to measure the speed of sound.
Doing hydrology backwards in tropical humid catchments
Real Rangel, R.; Brena-Naranjo, J. A.; Pedrozo-Acuña, A.
2015-12-01
Top-down approaches in hydrology offer the possibility to predict water fluxes at the catchment scale based on the interpretation of the observed hydrological response at the catchment itself. Doing hydrology backwards (inferring precipitation and evapotranspiration rates at the catchment scale from streamflow measurements, see Kirchner (2009)) can be a useful methodology for estimating water fluxes at the catchment and regional scales. Previous studies using this inverse modeling approach have been performed in regions (UK, Switzerland, France, Eastern US) where energy-limited (in winter and early spring) and water-limited conditions (in summer) prevail during a large period of the year. However, such approach has not been tested in regions characterized by a quasi-constant supply of water and energy (e.g. humid tropics). The objective of this work is to infer annual rates of precipitation and evapotranspiration over the last decade in 10 catchments located in Mexico's tropical humid regions. Hourly discharge measurements during recession periods were analyzed and parameters for the nonlinear storage-discharge relationship of each catchment were derived. Results showed large variability in both catchment-scale precipitation and evapotranspiration rates among the selected study sites. Finally, a comparison was done between such estimates and those obtained from remotely-sensed data (TRMM for precipitation and MOD16 for evapotranspiration).
Ant Colony Optimisation for Backward Production Scheduling
Directory of Open Access Journals (Sweden)
Leandro Pereira dos Santos
2012-01-01
Full Text Available The main objective of a production scheduling system is to assign tasks (orders or jobs to resources and sequence them as efficiently and economically (optimised as possible. Achieving this goal is a difficult task in complex environment where capacity is usually limited. In these scenarios, finding an optimal solution—if possible—demands a large amount of computer time. For this reason, in many cases, a good solution that is quickly found is preferred. In such situations, the use of metaheuristics is an appropriate strategy. In these last two decades, some out-of-the-shelf systems have been developed using such techniques. This paper presents and analyses the development of a shop-floor scheduling system that uses ant colony optimisation (ACO in a backward scheduling problem in a manufacturing scenario with single-stage processing, parallel resources, and flexible routings. This scenario was found in a large food industry where the corresponding author worked as consultant for more than a year. This work demonstrates the applicability of this artificial intelligence technique. In fact, ACO proved to be as efficient as branch-and-bound, however, executing much faster.
Backward phase-matching for nonlinear optical generation in negative-index materials
Lan, Shoufeng; Kang, Lei; Schoen, David T.; Rodrigues, Sean P.; Cui, Yonghao; Brongersma, Mark L.; Cai, Wenshan
2015-08-01
Metamaterials have enabled the realization of unconventional electromagnetic properties not found in nature, which provokes us to rethink the established rules of optics in both the linear and nonlinear regimes. One of the most intriguing phenomena in nonlinear metamaterials is `backward phase-matching', which describes counter-propagating fundamental and harmonic waves in a negative-index medium. Predicted nearly a decade ago, this process is still awaiting a definitive experimental confirmation at optical frequencies. Here, we report optical measurements showing backward phase-matching by exploiting two distinct modes in a nonlinear plasmonic waveguide, where the real parts of the mode refractive indices are 3.4 and -3.4 for the fundamental and the harmonic waves respectively. The observed peak conversion efficiency at the excitation wavelength of ~780 nm indicates the fulfilment of the phase-matching condition of k2ω = 2kω and n2ω = -nω, where the coherent harmonic wave emerges along a direction opposite to that of the incoming fundamental light.
Oscillating nonlinear acoustic shock waves
DEFF Research Database (Denmark)
Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth
2016-01-01
We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show that at resona......We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...
Combination ring cavity and backward Raman waveguide amplifier
Energy Technology Data Exchange (ETDEWEB)
Kurnit, N.A.
1981-03-13
A combination regenerative ring and backward Raman waveguide amplifier and a combination regenerative ring oscillator and backward Raman waveguide amplifier which produce Raman amplification, pulse compression, and efficient energy extraction from the CO/sub 2/ laser pump signal for conversion into a Stokes radiation signal. The ring cavity configuration allows the CO/sub 2/ laser pump signal and Stokes signal to copropagate through the Raman waveguide amplifier. The backward Raman waveguide amplifier configuration extracts a major portion of the remaining energy from the CO/sub 2/ laser pump signal for conversion to Stokes radiation.
... page: //medlineplus.gov/ency/patientinstructions/000181.htm Jejunostomy feeding tube To use the sharing features on this ... vomiting Your child's stomach is bloated Alternate Names Feeding - jejunostomy tube; G-J tube; J-tube; Jejunum ...
Wilson, Jeffrey D.; Ramins, Peter; Force, Dale A.
1990-01-01
A computational design technique for coupled-cavity tubes (TWTs) equipped with spent-beam refocusers (SBRs) and multistage depressed collectors (MDCs) is described. A large-signal multidimensional computer program was used to analyze the TWT-SBR performance and to generate the spent-beam models used for MDC design. The results of a design involving a 75-W, 59 to 64 GHz TWT are presented. The SBR and MDC designs are shown, and the computed TWT, SBR, and MDC performances are described. Collector efficiencies in excess of 94 percent led to projected overall TWT efficiencies in the 40-percent range.
Reflected Backward Stochastic Differential Equations Driven by Countable Brownian Motions
Directory of Open Access Journals (Sweden)
Pengju Duan
2013-01-01
Full Text Available This paper deals with a new class of reflected backward stochastic differential equations driven by countable Brownian motions. The existence and uniqueness of the RBSDEs are obtained via Snell envelope and fixed point theorem.
FORWARD-BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS WITH STOPPING TIME
Institute of Scientific and Technical Information of China (English)
吴臻
2004-01-01
The existence and uniqueness results of fully coupled forward-backward stochastic differential equations with stopping time (unbounded) is obtained. One kind of comparison theorem for this kind of equations is also proved.
Invertebrate neurobiology: sensory processing in reverse for backward walking.
Zill, Sasha N
2007-06-19
Humans and many other animals can readily walk forward or backward. In insects, the nervous system changes the effects of sense organs that signal forces on a leg when the direction of walking is reversed.
Domain Decomposition Method for the Forward-Backward Heat Equation
Institute of Scientific and Technical Information of China (English)
韩厚德; 殷东生
2003-01-01
The forward-backward heat equation arises in a remarkable variety of physical applications. A non-overlaping domain decomposition method was constructed to obtain numerical solutions of the forward-backward heat equation. The primary advantage is that the method reduces the computation time tremendously. The convergence of the given method is established. The numerical performance shows that the domain decomposition method is effective.
Limited backward induction: foresight and behavior in sequential games
Marco Mantovani
2015-01-01
The paper tests experimentally for limited foresight in sequential games. We develop a general out-of-equilibrium framework of strategic thinking based on limited foresight. It assumes the players take decisions focusing on close-by nodes, following backward induction – what we call limited backward induction (LBI). The main prediction of the model is tested in the context of a modified Game of 21. In line with the theoretical hypotheses, our results show most players think strategically only...
Backward stochastic Volterra integral equations- a brief survey
Institute of Scientific and Technical Information of China (English)
YONG Jiong-min
2013-01-01
In this paper, we present a brief survey on the updated theory of backward stochas-tic Volterra integral equations (BSVIEs, for short). BSVIEs are a natural generalization of backward stochastic diff erential equations (BSDEs, for short). Some interesting motivations of studying BSVIEs are recalled. With proper solution concepts, it is possible to establish the corresponding well-posedness for BSVIEs. We also survey various comparison theorems for solutions to BSVIEs.
On-line simulations of models for backward masking.
Francis, Gregory
2003-11-01
Five simulations of quantitative models of visual backward masking are available on the Internet at http://www.psych.purdue.edu/-gfrancis/Publications/BackwardMasking/. The simulations can be run in a Web browser that supports the Java programming language. This article describes the motivation for making the simulations available and gives a brief introduction as to how the simulations are used. The source code is available on the Web page, and this article describes how the code is organized.
Linear elastic response of tubes to internal detonation loading
Beltman, W.M.; Shepherd, J.E.
2002-01-01
This paper deals with the structural response of a tube to an internal gaseous detonation. An internal detonation produces a pressure load that propagates down the tube. Because the speed of the gaseous detonation can be comparable to the flexural wave group speed, excitation of flexural waves in th
photomultiplier tubes. A device to convert light into an electric signal (the name is often abbreviated to PM). Photomultipliers are used in all detectors based on scintillating material (i.e. based on large numbers of fibres which produce scintillation light at the passage of a charged particle). A photomultiplier consists of 3 main parts: firstly, a photocathode where photons are converted into electrons by the photoelectric effect; secondly, a multiplier chain consisting of a serie of dynodes which multiply the number of electron; finally, an anode, which collects the resulting current.
photomultiplier tubes. A device to convert light into an electric signal (the name is often abbreviated to PM). Photomultipliers are used in all detectors based on scintillating material (i.e. based on large numbers of fibres which produce scintillation light at the passage of a charged particle). A photomultiplier consists of 3 main parts: firstly, a photocathode where photons are converted into electrons by the photoelectric effect; secondly, a multiplier chain consisting of a serie of dynodes which multiply the number of electron; finally, an anode, which collects the resulting current.
Energy Technology Data Exchange (ETDEWEB)
Kim, Young H. [Dept. of Physics and Earth Science, Korea Science Academy of KAIST, Busan (Korea, Republic of); Sung, Jin Woo [Dept. of Physics and Astronomy, Seoul National University, Seoul, (Korea, Republic of)
2013-06-15
In this study, focusing of ultrasonic Lamb wave by negative refraction with mode conversion from antisymmetric to symmetric mode was investigated. When a wave propagates backward by negative refraction, the energy flux is antiparallel to the phase velocity. Backward propagation of Lamb wave is quite well known, but the behavior of backward Lamb wave at an interface has rarely been investigated. A pin-type transducer is used to detect Lamb wave propagating on a steel plate with a step change in thickness. Conversion from forward to backward propagating mode leads to negative refraction and thus wave focusing. By comparing the amplitudes of received Lamb waves at a specific frequency measured at different distance between transmitter and interface, the focusing of Lamb wave due to negative refraction was confirmed.
Yu, Zhiyong
2016-01-01
In this paper, we investigate infinite horizon jump-diffusion forward-backward stochastic differential equations under some monotonicity conditions. We establish an existence and uniqueness theorem, two stability results and a comparison theorem for solutions to such kind of equations. Then the theoretical results are applied to study a kind of infinite horizon backward stochastic linear-quadratic optimal control problems, and then differential game problems. The unique optimal controls for t...
Institute of Scientific and Technical Information of China (English)
2013-01-01
利用 FLUENT 软件，对平直翅片、均匀斜波纹翅片和倾角渐增斜波纹翅片空气侧的流体流动和换热过程进行了数值模拟.结果表明：在雷诺数为176．5～1777．4的范围内，倾角渐增斜波纹翅片比平直翅片的努赛尔数提高了10．14％～46．57％，阻力系数增加了36．15％～160．67％.三种翅片中，倾角渐增斜波纹翅片的努赛尔数最大，强化传热效果最好.%The fluid flow and heat transfer process of plain fin,declinational-wave fin and increase-angle declinational-wave fin-and-tube are numerically simulated based on the software FLUENT. The simulation results show that the characteristics of the declinational wave fin-and-tube are much better than that of the plain fin-and-tube when the Reynolds number ranger of 176.5~1777.4. Similarly Nusselt number of the increase-angle declinational-wave fin-and-tube has 10.14%~46.57% higher than plain fin. The resistance coefficient is 36.15%~160.67% higher than plain fin. Through comparative analysis,the Nusselt numer of the increase-angle declinational-wave fin-and-tube is the highest and the effect of heat exchange is the best.
Study on forward stimulated Brillouin scattering in a backward pumped fiber Raman amplifier
Institute of Scientific and Technical Information of China (English)
Zaixuan Zhang(张在宣); Dawei Fang(方达伟); Songlin Zhuang(庄松林); Laixiao Li(李来晓); Dan Geng(耿丹); Bizhi Dai(戴碧智); Yongxing Jin(金永兴); Honglin Liu(刘红林); Insoo S.Kim; Jianfeng Wang(王剑锋); Xiaobiao Wu(吴孝彪)
2004-01-01
Strong multi-order forward stimulated Brillouin scattering (SBS) has been observed in the backward pumped S-band distributed fiber Raman amplifier (FRA) with tunable narrow signal source (less than 100 MHz) when the pump power of FRA reached the SBS threshold. This does not obey the theory that only weak backward SBS lines exist according to the conservation of energy and momentum and the wave vector selected rule. This is because the sound waveguide characteristic weakens the wave vector rule, and the forward transmitted sound waveguide Brillouin scattering lines are generated and amplified in FRA.When the pump power is further increased, 11 orders of SBS lines and comb-like profile are observed. For the excited line, the frequency is 197.2296 THz and the power is 0 dBm. The even order SBS lines are stronger than odd order SBS lines, the power of the 2nd and 4th order SBS lines is 1.75 dBm, which is 16 dB higher than that of the 1st and 3rd order SBS lines. The odd order SBS lines are named BrillouinRayleigh scattering lines.
Ozeri, Shaul; Shmilovitz, Doron
2014-09-01
The advancement and miniaturization of body implanted medical devices pose several challenges to Ultrasonic Transcutaneous Energy Transfer (UTET), such as the need to reduce the size of the piezoelectric resonator, and the need to maximize the UTET link power-transfer efficiency. Accordingly, the same piezoelectric resonator that is used for energy harvesting at the body implant, may also be used for ultrasonic backward data transfer, for instance, through impedance modulation. This paper presents physical considerations and design guidelines of the body implanted transducer of a UTET link with impedance modulation for a backward data transfer. The acoustic matching design procedure was based on the 2×2 transfer matrix chain analysis, in addition to the Krimholtz Leedom and Matthaei KLM transmission line model. The UTET power transfer was carried out at a frequency of 765 kHz, continuous wave (CW) mode. The backward data transfer was attained by inserting a 9% load resistance variation around its matched value (550 Ohm), resulting in a 12% increase in the acoustic reflection coefficient. A backward data transmission rate of 1200 bits/s was experimentally demonstrated using amplitude shift keying, simultaneously with an acoustic power transfer of 20 mW to the implant.
A tube-in-tube thermophotovoltaic generator
Energy Technology Data Exchange (ETDEWEB)
Ashcroft, J.; Campbell, B.; Depoy, D.
1996-12-31
A thermophotovoltaic device includes at least one thermal radiator tube, a cooling tube concentrically disposed within each thermal radiator tube and an array of thermophotovoltaic cells disposed on the exterior surface of the cooling tube. A shell having a first end and a second end surrounds the thermal radiator tube. Inner and outer tubesheets, each having an aperture corresponding to each cooling tube, are located at each end of the shell. The thermal radiator tube extends within the shell between the inner tubesheets. The cooling tube extends within the shell through the corresponding apertures of the two inner tubesheets to the corresponding apertures of the two outer tubesheets. A plurality of the thermal radiator tubes can be arranged in a staggered or an in-line configuration within the shell.
Sausage Mode Propagation in a Thick Magnetic Flux Tube
Pardi, Anabele-Linda; Marcu, Alexandru; Orza, Beniamin
2013-01-01
The aim of this paper is to model the propagation of slow magnetohydrodynamic (MHD) sausage waves in a thick expanding magnetic flux tube in the context of the quiescent (VAL C) solar atmosphere. The propagation of these waves is found to be described by the Klein-Gordon equation. Using the governing MHD equations and the VAL C atmosphere model we study the variation of the cut-off frequency along and across the magnetic tube guiding the waves. Due to the radial variation of the cut-off frequency the flux tubes act as low frequency filters for waves.
Double detonation drivers for a shock tube/tunnel
Institute of Scientific and Technical Information of China (English)
CHEN; Hong; FENG; Heng; YU; Hongru
2004-01-01
Recent progress on detonation drivers is reviewed. Performances of the forward detonation driver and backward detonation driver have been observed. To eliminate occurrence of a Taylor wave following the detonation wave in the primary driver and to improve the performance of the detonation driver, an additional backward detonation driver was proposed to attach to the end of the forward detonation driver.When the ratio of the initial pressures between the additional and the primary drivers becomes larger than or equal to a critical value, the Taylor wave will disappear, and thus a homogeneous driving gas with high pressure and high temperature can be generated.Furthermore, an over-driving detonation wave will be also obtained, which can increase the driving capability.
Denmark's clean energy future from waves
Energy Technology Data Exchange (ETDEWEB)
Lund, G. [Nova Pro, CADDET Danish National Team, Toelloese (Denmark)
1999-10-01
This article presents a brief overview of Denmark's wave energy programme which aims to develop wave energy plants to supply 15% of Denmark's energy consumption. Details are given of the Wave Dragon deep water floating wave power plant, the Swan DK3 backward bend duct buoy, the point absorber float, and the WavePlane floating device. The step by step development approach for projects accepted by the wave energy programme, and future options are discussed. (UK)
Tamba, T.; Nguyen, T. M.; Takeya, K.; Harasaki, T.; Iwakawa, A.; Sasoh, A.
2015-11-01
A "counter-driver" shock tube was developed. In this device, two counter drivers are actuated with an appropriate delay time to generate the interaction between a shock wave and a flow in the opposite direction which is induced by another shock wave. The conditions for the counter drivers can be set independently. Each driver is activated by a separate electrically controlled diaphragm rupture device, in which a pneumatic piston drives a rupture needle with a temporal jitter of better than 1.1 ms. Operation demonstrations were conducted to evaluate the practical performance.
... this page: //medlineplus.gov/ency/article/007235.htm Feeding tube - infants To use the sharing features on this page, please enable JavaScript. A feeding tube is a small, soft, plastic tube placed ...
Backward Causation, Isolation and the Pursuit of Justice
Cirkovic, M M; Cirkovic, Milan M.; Cveticanin, Suzana
2001-01-01
The recent operationalization of the famous Newcomb's game by Schmidt (1998) offers an interesting and thought-provoking look at the plausibility of backward causation in a Newtonian universe. Hereby we investigate two details of the Schmidt's scenario which may, at least in principle, invalidate his conclusion in two different domains: one dealing with the issue of Newtonian predictability in specific instance of human actions, and the other stemming from a possible strategy aimed at obviating the anthropically oriented view of backward causation as applied to a judicial and ethical problem posed by a version of the scenario. We conclude that the scenario is at least to be more complex than originally presented in order to remain viable. However, it points to a very deep and delicate question of compatibility of backward causation with the conventional ethical standards.
Note: A table-top blast driven shock tube.
Courtney, Michael W; Courtney, Amy C
2010-12-01
The prevalence of blast-induced traumatic brain injury in conflicts in Iraq and Afghanistan has motivated laboratory scale experiments on biomedical effects of blast waves and studies of blast wave transmission properties of various materials in hopes of improving armor design to mitigate these injuries. This paper describes the design and performance of a table-top shock tube that is more convenient and widely accessible than traditional compression driven and blast driven shock tubes. The design is simple: it is an explosive driven shock tube employing a rifle primer that explodes when impacted by the firing pin. The firearm barrel acts as the shock tube, and the shock wave emerges from the muzzle. The small size of this shock tube can facilitate localized application of a blast wave to a subject, tissue, or material under test.
A Table-top Blast Driven Shock Tube
Courtney, Michael; 10.1063/1.3518970
2011-01-01
The prevalence of blast-induced traumatic brain injury in conflicts in Iraq and Afghanistan has motivated laboratory scale experiments on biomedical effects of blast waves and studies of blast wave transmission properties of various materials in hopes of improving armor design to mitigate these injuries. This paper describes the design and performance of a table-top shock tube that is more convenient and widely accessible than traditional compression driven and blast driven shock tubes. The design is simple: it is an explosive driven shock tube employing a rifle primer which explodes when impacted by the firing pin. The firearm barrel acts as the shock tube, and the shock wave emerges from the muzzle. The small size of this shock tube can facilitate localized application of a blast wave to a subject, tissue, or material under test.
Forward-backward stochastic differential equations and their applications
Ma, Jin
2007-01-01
This volume is a survey/monograph on the recently developed theory of forward-backward stochastic differential equations (FBSDEs). Basic techniques such as the method of optimal control, the "Four Step Scheme", and the method of continuation are presented in full. Related topics such as backward stochastic PDEs and many applications of FBSDEs are also discussed in detail. The volume is suitable for readers with basic knowledge of stochastic differential equations, and some exposure to the stochastic control theory and PDEs. It can be used for researchers and/or senior graduate students in the areas of probability, control theory, mathematical finance, and other related fields.
Backward elastic light scattering of malaria infected red blood cells
Lee, Seungjun; Lu, Wei
2011-08-01
We investigated the backward light scattering pattern of healthy and malaria (Plasmodium falciparum) parasitized red blood cells. The spectrum could clearly distinguish between predominant ring stage infected blood cells and healthy blood cells. Further, we found that infected samples mixed with different stages of P. falciparum showed different signals, suggesting that even variance in parasite stages could also be detected by the spectrum. These results together with the backward scattering technique suggest the potential of non-invasive diagnosis of malaria through light scattering of blood cells near the surface of human body, such as using eyes or skin surface.
Institute of Scientific and Technical Information of China (English)
Vikas Kumar; Anil Vohra; Vishnu Srivastava
2008-01-01
Attenuator coatings of carbon were deposited on alumina support rods by pyrolytic deposition,aquadag coating and arc discharge to absorb the reflections and to improve the stability of a helical traveling wave tube.An experimental set up involving a narrow-height wave-guide with a hole was used to measure the attenuation of the coated rods at 6.0 GHz frequency by carrying out reflection and transmission measurements using a scalar network analyzer.The same structure was also simulated by using a high frequency structure simulator (HFSS).Results indicate that the aquadagcoated films provide a maximum loss or absorbance and are suitable as the attenuator coating.The simulated results by HFSS agree well with the experimental observations.%分别采用热解沉积、胶体石墨涂刷和电弧放电法在行波管(TWT)刚玉支撑杆上涂覆了吸波炭涂层,以改善TWT稳定性.通过一种带孔窄频-高波-道管的实验装置,应用无向量网络解析器实施反射和透射波测量,测得6.0GHz频段涂层杆的衰减程度.并利用一种软件高频结构模拟器(HFSS)进行了模拟.结果表明:胶体石墨涂层显示出最大的损失或吸光率.是适宜的衰减器涂料.HFSS模拟的结果与实验结果吻合.
Does the Decay Wave Propagate Forwards in Dusty Plasmas?
Institute of Scientific and Technical Information of China (English)
谢柏松
2002-01-01
The decay interaction of the ion acoustic wave in a dusty plasma with variable-charge dust grains is studied.Even if strong charging relaxation for dust grains and the short wavelength regime for ion waves are included, it is found that the decay wave must be backward propagating.
A miniature high repetition rate shock tube.
Tranter, R S; Lynch, P T
2013-09-01
A miniature high repetition rate shock tube with excellent reproducibility has been constructed to facilitate high temperature, high pressure, gas phase experiments at facilities such as synchrotron light sources where space is limited and many experiments need to be averaged to obtain adequate signal levels. The shock tube is designed to generate reaction conditions of T > 600 K, P shock waves with predictable characteristics are created, repeatably. Two synchrotron-based experiments using this apparatus are also briefly described here, demonstrating the potential of the shock tube for research at synchrotron light sources.
Mechanics and kinematics of backward burrowing by the polychaete Cirriformia moorei.
Che, James; Dorgan, Kelly M
2010-12-15
The polychaete Cirriformia moorei burrows in muddy sediments by fracture, using its hydrostatic skeleton to expand its anterior region and exert force against its burrow wall to extend a crack. Burrowing occurs in four phases: stretching forward into the burrow, extending the crack anteriorly, thickening the burrowing end to amplify stress at the tip of the crack, and bringing the rest of the body forward as a peristaltic wave travels posteriorly. Here, we show that C. moorei is also able to burrow with its posterior end using a similar mechanism of crack propagation and exhibiting the same four phases of burrowing. Worms burrowed backwards with similar speeds and stress intensity factors as forward burrowing, but were thinner and less blunt and did not slip as far away from the crack tip between cycles of burrowing. The anterior end is more muscular and rigid, and differences in body shapes are consistent with having reduce musculature to dilate the posterior segments while burrowing. Backward burrowing provides a unique opportunity to study the effects of morphology on burrowing mechanics within the same species under identical conditions.
Backward compatibility effects in younger and older adults.
Hartley, Alan A; Maquestiaux, François; Festini, Sara B; Frazier, Kathryn; Krimmer, Patricia J
2016-07-01
In many dual-task situations, responses to the second of two tasks are slowed when the time between tasks is short. The response-selection bottleneck model of dual-task performance accounts for this phenomenon by assuming that central processing of the second task is blocked by a bottleneck until central processing of Task 1 is complete. This assumption could be called into question if it could be demonstrated that the response to Task 2 affected the central processing of Task 1, a backward response compatibility effect. Such effects are well-established in younger adults. Backward compatibility effects in older (as well as younger) adults were explored in two experiments. The first experiment found clear backward response compatibility effects for younger adults but no evidence of them for older adults. The second experiment explored backward stimulus compatibility and found similar effects in both younger and older adults. Evidence possibly consistent with some pre-bottleneck processing of Task 2 central stages also was found in the second experiment in both age groups. For younger adults, the results provide further evidence falsifying the claim of an immutable response selection bottleneck. For older adults, the evidence suggested that Task 2 affects Task 1 when there is stimulus compatibility but not when there is response compatibility.
Experience and abstract reasoning in learning backward induction.
Hawes, Daniel R; Vostroknutov, Alexander; Rustichini, Aldo
2012-01-01
Backward induction is a benchmark of game theoretic rationality, yet surprisingly little is known as to how humans discover and initially learn to apply this abstract solution concept in experimental settings. We use behavioral and functional magnetic resonance imaging (fMRI) data to study the way in which subjects playing in a sequential game of perfect information learn the optimal backward induction strategy for the game. Experimental data from our two studies support two main findings: First, subjects converge to a common process of recursive inference similar to the backward induction procedure for solving the game. The process is recursive because earlier insights and conclusions are used as inputs in later steps of the inference. This process is matched by a similar pattern in brain activation, which also proceeds backward, following the prediction error: brain activity initially codes the responses to losses in final positions; in later trials this activity shifts to the starting position. Second, the learning process is not exclusively cognitive, but instead combines experience-based learning and abstract reasoning. Critical experiences leading to the adoption of an improved solution strategy appear to be stimulated by brain activity in the reward system. This indicates that the negative affect induced by initial failures facilitates the switch to a different method of solving the problem. Abstract reasoning is combined with this response, and is expressed by activation in the ventrolateral prefrontal cortex. Differences in brain activation match differences in performance between subjects who show different learning speeds.
The Application and Extension of Backward Software Analysis
Perisic, Aleksandar
2010-01-01
The backward software analysis is a method that emanates from executing a program backwards - instead of taking input data and following the execution path, we start from output data and by executing the program backwards command by command, analyze data that could lead to the current output. The changed perspective forces a developer to think in a new way about the program. It can be applied as a thorough procedure or casual method. With this method, we have many advantages in testing, algorithm and system analysis. For example, in testing the advantage is obvious if the set of output data is smaller than possible inputs. For some programs or algorithms, we know more precisely the output data, so this backward analysis can help in reducing the number of test cases or even in strict verification of an algorithm. The difficulty lies in the fact that we need types of data that no programming language currently supports, so we need additional effort to understand how this method works, or what effort we need to ...
Effect of forward/backward standing posture on foot shape
Daanen, H.A.M.; Tan, T.K.; Punte, P.A.J.
2000-01-01
Foot length and breadth are generally used to determine the correct shoe size. An important question is whether foot length and foot breadth are dependent upon body posture. Therefore, the effect of leaning forward/backward on foot length and breadth is investigated in this study. Seven subjects par
Reflected Backward Doubly Stochastic Differential Equations with Discontinuous Coefficients
Institute of Scientific and Technical Information of China (English)
Zhi LI; Jiao Wan LUO
2013-01-01
In this paper,we study one-dimensional reflected backward doubly stochastic differential equations (RBDSDEs) with one continuous barrier and discontinuous (left or right continuous) generator.We obtain an existence theorem and a comparison theorem for solutions of the class of RBDSDEs.
Random Perturbation of Forward-Backward Stochastic Differential Equations
Zhang, Liangquan
2012-01-01
In this paper, we consider a kind of coupled Forward-Backward Stochastic Differential Equations (FBSDEs in short) with parameter $\\varepsilon >0.$%. We study the convergence of distributions of $(X^{\\varepsilon,t,x},Y^{\\varepsilon,t,x}),$ as $\\varepsilon \\rightarrow 0,$ and prove the Freidlin-Wentzell's large deviation principle as well.
A Study of Laminar Backward-Facing Step Flow
DEFF Research Database (Denmark)
Davidson, Lars; Nielsen, Peter V.
The laminar flow for a backwards facing step is studied. This work was initially part of the work presented in. In that work low-Reynolds number effects was studied, and the plan was also to include laminar flow. However, it turned out that when the numerical predictions of the laminar flow (Re...
Forward-Backward Charge Asymmetry at Very High Energies
Ermolaev, B I; Oliveira, S M; Troyan, S I
2003-01-01
The impact of the electroweak radiative corrections on the value of the forward-backward asymmetry in e^+ e^- annihilation into a quark-antiquark pair is considered in the double-logarithmic approximation at energies much higher than the masses of the weak bosons.
Second Order Backward Stochastic Differential Equations with Quadratic Growth
Dylan, Possamai
2012-01-01
We prove the existence and uniqueness of a solution for one-dimensionnal second order backward stochastic differential equations introduced by Soner, Touzi and Zhang (2010), with a bounded terminal condition and a generator which is continuous with quadratic growth in z. We also prove a Feyman-Kac formula and a probabilistic representation for fully nonlinear PDEs in this setting.
Shock-Induced Borehole Waves and Fracture Effects
Fan, H.; Smeulders, D.M.
2011-01-01
We perform wave experiments using a vertical shock tube setup. Shock waves are generated by the rupture of a thin membrane. In the test section, the incident pressure waves generate borehole-guided waves along water-saturated samples. The tube is equipped with side wall gages and a mobile pressure p
Reconfigurable heat-induced spin wave lenses
Dzyapko, O.; Borisenko, I. V.; Demidov, V. E.; Pernice, W.; Demokritov, S. O.
2016-12-01
We study the control and manipulation of propagating spin waves in yttrium iron garnet films using a local laser-induced heating. We show that, due to the refraction of spin waves in the thermal gradients, the heated region acts as a defocusing lens for Damon-Eshbach spin waves and as a focusing lens for backward volume waves enabling collimation of spin-wave beams in the latter case. In addition to the focusing/defocusing functionality, the local heating allows one to manipulate the propagation direction of the spin-wave beams and to efficiently suppress their diffraction spreading by utilizing caustic effects.
Wave Scattering by Superluminal Spacetime Slab
Deck-Léger, Zoé-Lise
2016-01-01
Spacetime media offers new opportunities for wave manipulation. Here we study superluminal slabs, and show that the amplitudes of the reflected waves are controlled by the velocity of the medium. In addition, the backward wave continuously scans from the specular to the collinear angle. A diagrammatic method is provided for insight into the deflection angles. A fundamental symmetry between sub- and superluminal scattering is derived from this diagrammatic description.
Institute of Scientific and Technical Information of China (English)
胡欣; 王刚; 王自成; 罗积润
2011-01-01
A novel type of the predistortion linearizer of X-band traveling wave tube amplifier (TWTA) in communication applications was developed. The newly-developed predistortion linearizer with a rather simple circuit is capable of controlling the gain expansion under the condition of small variations in the input power at a given dynamic range, and of producing little phase expansion. Moreover, the gain expansion of the predistortion linearizer was simulated with the Astrophysics Data System (ADS). The test results show that the predistortion gain and phase expansion were 6 dB and 42 degree, respectively, in a frequency range of 8.38 ~ 8.58 GHz, and for the TWTA saturation response in the rating input power.%随着通信技术的发展,行波管功率放大器预失真电路显得日益重要.不过,目前预失真电路在调节过程中增益和相位扩张量不能独立调节,很难保证增益和相位同时满足线性化指标的要求,给调节工作带来了困难.本文介绍一种预失真线性化器电路,该电路结构简单,在相位扩张量变化较小的同时,可以对增益扩张量进行调节控制.实验表明,在频率为8.38～8.58 GHz和额定输入功率范围内,预失真器增益和相位扩张量分别为6dB和42°,满足通信工程中对行波管功率放大器补偿的需求.
Lamb waves increase sensitivity in nondestructive testing
Di Novi, R.
1967-01-01
Lamb waves improve sensitivity and resolution in the detection of small defects in thin plates and small diameter, thin-walled tubing. This improvement over shear waves applies to both longitudinal and transverse flaws in the specimens.
A nonlinear analysis of the terahertz serpentine waveguide traveling-wave amplifier
Energy Technology Data Exchange (ETDEWEB)
Li, Ke, E-mail: like.3714@163.com; Cao, Miaomiao, E-mail: mona486@yeah.net [Key Laboratory of High Power Microwave Sources and Technologies, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China); Institute of Electronics, University of Chinese Academy of Sciences, Beijing 100190 (China); Liu, Wenxin, E-mail: lwenxin@mail.ie.ac.cn; Wang, Yong, E-mail: wangyong3845@sina.com [Key Laboratory of High Power Microwave Sources and Technologies, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China)
2015-04-15
A nonlinear model for the numerical simulation of terahertz serpentine waveguide traveling-wave tube (SW-TWT) is described. In this model, the electromagnetic wave transmission in the SW is represented as an infinite set of space harmonics to interact with an electron beam. Analytical expressions for axial electric fields in axisymmetric interaction gaps of SW-TWTs are derived and compared with the results from CST simulation. The continuous beam is treated as discrete macro-particles with different initial phases. The beam-tunnel field equations, space-charge field equations, and motion equations are combined to solve the beam-wave interaction. The influence of backward wave and relativistic effect is also considered in the series of equations. The nonlinear model is used to design a 340 GHz SW-TWT. Several favorable comparisons of model predictions with results from a 3-D Particle-in-cell simulation code CHIPIC are presented, in which the output power versus beam voltage and interaction periods are illustrated. The relative error of the predicted output power is less than 15% in the 3 dB bandwidth and the relative error of the saturated length is less than 8%.The results show that the 1-D nonlinear analysis model is appropriate to solve the terahertz SW-TWT operation characteristics.
DEFF Research Database (Denmark)
Tedd, James; Kofoed, Jens Peter; Knapp, W.
2006-01-01
Wave Dragon is a floating wave energy converter working by extracting energy principally by means of overtopping of waves into a reservoir. A 1:4.5 scale prototype has been sea tested for 20 months. This paper presents results from testing, experiences gained and developments made during this ext......Wave Dragon is a floating wave energy converter working by extracting energy principally by means of overtopping of waves into a reservoir. A 1:4.5 scale prototype has been sea tested for 20 months. This paper presents results from testing, experiences gained and developments made during...... power of the device. The project development team has gained much soft experience from working in the harsh offshore environment. In particular the effect of marine growth in the draft tubes of the turbines has been investigated. The control of the device has been a focus for development as is operates...... automatically for most of the time. This has led to improvements in the power take off, trim control and stability of the device....
Golenitskii, K. Â. Yu.; Koshelev, K. Â. L.; Bogdanov, A. Â. A.
2016-10-01
In this work we develop a theory of surface electromagnetic waves localized at the interface of periodic metal-dielectric structures. We have shown that the anisotropy of plasma frequency in metal layers lifts the degeneracy of plasma oscillations and opens a series of photonic band gaps. This results in appearance of surface waves with singular density of states—we refer to them as Tamm-Langmuir waves. Such naming is natural since we have found that their properties are very similar to the properties of both bulk Langmuir and surface Tamm waves. Depending on the anisotropy parameters, Tamm-Langmuir waves can be either forward or backward waves. Singular density of states and high sensitivity of the dispersion to the anisotropy of the structure makes Tamm-Langmuir waves very promising for potential applications in nanophotonics and biosensing.
Golenitskii, K U; Bogdanov, A A
2016-01-01
In this work we develop a theory of surface electromagnetic waves localized at the interface of periodic metal-dielectric structures. We have shown that the anisotropy of plasma frequency in metal layers lifts the degeneracy of plasma oscillations and opens a series of photonic band gaps. This results in appearance of surface waves with singular density of states - we refer to them as Tamm-Langmuir waves. Such naming is natural since we have found that their properties are very similar to the properties of both bulk Langmuir and surface Tamm waves. Depending on the anisotropy parameters, Tamm-Langmuir waves can be either forward or backward waves. Singular density of states and high sensitivity of the dispersion to the anisotropy of the structure makes Tamm-Langmuir waves very promising for potential applications in nanophotonics and biosensing.
Backward Compton Scattering in Strong Uniform Magnetic Field
Huang, W; Yan, M L; Huang, Wei; Xu, Wang; Yan, Mu-Lin
2006-01-01
In strong uniform magnetic field, the vacuum Non-Commutative Plane (NCP) caused by the lowest Landau level(LLL) effect and the QED with NCP (QED-NCP) are studied. Being similar to the theory of Quantum Hall effect, an effective filling factor $f(B)$ is introduced to character the possibility that the electrons stays on LLL. The backward Compton scattering amplitudes of QED-NCP are derived, and the differential cross sections for the process with polarized initial electrons and photons are calculated. The existing Spring-8's data has been analyzed primitively and some hints for QED-NCP effects are shown. We propose to precisely measure the differential cross sections of the backward Compton scattering in perpendicular magnetic field experimentally, which may lead to reveal the effects of QED-NCP. PACS number: 12.20.Ds; 11.10.Nx; 71.70.Di; 73.43.Fj.
EXPERIMENT STUDY ON SEDIMENT INCIPIENCE IN BACKWARD- FACING STEP FLOW
Institute of Scientific and Technical Information of China (English)
LIU Chun-rong; Huhe Aode; TAO Long-bin
2007-01-01
Flow over a backward-facing step was studied to investigate the effect of large-scale vortex structures on sediment incipience. The transient flow velocity field at the downstream of the backward-facing step was obtained using the technique of Particle Tracking Velocimetry (PTV). The optical amplification technique was employed to measure the instantaneous flow velocities near the bed and the instantaneous bed shear stress was given. The experimental observations revealed a new insight into the oscillation of the large-scale structure and the three-dimensional characteristics of the flow. In particular, very high turbulence intensity, instantaneous horizontal velocity near the bed and the bed shear stress near the reattachment point were observed. The sediment incipient probability obtained from the sequent images of sediment particles near the bed indicates that the critical instantaneous shear stress of the sediment incipience is independent of flow conditions.
Floating point fault tolerance with backward error assertions
Energy Technology Data Exchange (ETDEWEB)
Boley, D.; Golub, G.H.; Makar, S.; Saxena, N.; Mccluskey, E.J. [Univ. of Minnesota, Minneapolis, MN (United States)
1995-02-01
This paper introduces an assertion scheme based on the backward error analysis for error detection in algorithms that solve dense systems of linear equations, Ax = b. Unlike previous methods, this Backward Error Assertion Model is specifically designed to operate in an environment of floating point arithmetic subject to round-off errors, and it can be easily instrumented in a Watchdog processor environment. The complexity of verifying assertions is Omicron (n(sup 2)), compared to the Omicron (n(sup 3)) complexity of algorithms solving Ax = b. Unlike other proposed error detection methods, this assertion model does not require any encoding of the matrix A. Experimental results under various error models are presented to validate the effectiveness of this assertion scheme. 22 refs.
A Program Transformation for Backwards Analysis of Logic Programs
DEFF Research Database (Denmark)
Gallagher, John Patrick
2003-01-01
The input to backwards analysis is a program together with properties that are required to hold at given program points. The purpose of the analysis is to derive initial goals or pre-conditions that guarantee that, when the program is executed, the given properties hold. The solution for logic...... programs presented here is based on a transformation of the input program, which makes explicit the dependencies of the given program points on the initial goals. The transformation is derived from the resultants semantics of logic programs. The transformed program is then analysed using a standard...... abstract interpretation. The required pre-conditions on initial goals can be deduced from the analysis results without a further fixpoint computation. For the modes backwards analysis problem, this approach gives the same results as previous work, but requires only a standard abstract interpretation...
Forward-backward asymmetry in top quark-antiquark production
Energy Technology Data Exchange (ETDEWEB)
Abazov, V.M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G. A.; Aoki, M.; Arov, M.; Askew, A.; Asman, B.; Atramentov, O.; Avila, C.; BackusMayes, J.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Beale, S.; Bean, A.; Begalli, M.; Begel, M.; Belanger-Champagne, C.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besancon, M.; Beuselinck, R.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Bose, T.; Brandt, A.; Brandt, O.; Brock, R.; Brooijmans, G.; Bross, A.; Brown, D.; Brown, J.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Burnett, T. H.; Buszello, C. P.; Calpas, B.; Camacho-Perez, E.; Carrasco-Lizarraga, M. A.; Casey, B. C. K.; Castilla-Valdez, H.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chen, G.; Chevalier-Thery, S.; Cho, D. K.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M. -C.; Croc, A.; Cutts, D.; Das, A.; Davies, G.; De, K.; de Jong, S. J.; De La Cruz-Burelo, E.; Deliot, F.; Demarteau, M.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dorland, T.; Dubey, A.; Dudko, L. V.; Duggan, D.; Duperrin, A.; Dutt, S.; Dyshkant, A.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Facini, G.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garcia-Bellido, A.; Gavrilov, V.; Gay, P.; Geng, W.; Gerbaudo, D.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Golovanov, G.; Goussiou, A.; Grannis, P. D.; Greder, S.; Greenlee, H.; Greenwood, Z. D.; Gregores, E. M.; Grenier, G.; Gris, Ph; Grivaz, J. -F.; Grohsjean, A.; Gruenendahl, S.; Gruenewald, M. W.; Guillemin, T.; Guo, F.; Gutierrez, G.; Gutierrez, P.; Haas, A.; Hagopian, S.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hohlfeld, M.; Hubacek, Z.; Huske, N.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffre, M.; Jamin, D.; Jayasinghe, A.; Jesik, R.; Johns, K.; Johnson, M.; Johnston, D.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kaadze, K.; Kajfasz, E.; Karmanov, D.; Kasper, P. A.; Katsanos, I.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kirby, M. H.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kulikov, S.; Kumar, A.; Kupco, A.; Kurca, T.; Kuzmin, V. A.; Kvita, J.; Lammers, S.; Landsberg, G.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lellouch, J.; Li, L.; Li, Q. Z.; Lietti, S. M.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, Y.; Liu, Z.; Lobodenko, A.; Lokajicek, M.; de Sa, R. Lopes; Lubatti, H. J.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Mackin, D.; Madar, R.; Magana-Villalba, R.; Malik, S.; Malyshev, V. L.; Maravin, Y.; Martinez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Muanza, G. S.; Mulhearn, M.; Nagy, E.; Naimuddin, M.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Novaes, S. F.; Nunnemann, T.; Obrant, G.; Orbaker, D.; Orduna, J.; Osman, N.; Osta, J.; et. al.
2011-12-12
We present a measurement of forward-backward asymmetry in top quark-antiquark production in proton-antiproton collisions in the final state containing a lepton and at least four jets. Using a data set corresponding to an integrated luminosity of 5.4 fb{sup -1}, collected by the D0 experiment at the Fermilab Tevatron Collider, we measure the t{bar t} forward-backward asymmetry to be (9.2 {+-} 3.7)% at the reconstruction level. When corrected for detector acceptance and resolution, the asymmetry is found to be (19.6 {+-} 6.5)%. We also measure a corrected asymmetry based on the lepton from a top quark decay, found to be (15.2 {+-} 4.0)%. The results are compared to predictions based on the next-to-leading-order QCD generator mc@nlo. The sensitivity of the measured and predicted asymmetries to the modeling of gluon radiation is discussed.
Backward Integration: A Panacea for Rural Development in Nigeria
Directory of Open Access Journals (Sweden)
Rasaq Alabi Olanrewaju
2016-12-01
Full Text Available Business is like a marathon race. It involves both mental and psychical alertness, exploring opportunities and taking chances is the strength, risk is the rule of the game and control is the price for the race. To this end, the aim of every business entity is to operate profitably in the industry it belongs, grow and possibly gain the largest share of the industry market. Among the strategies used in gaining control in the business industry is Integration which is the ability to influence or control either or both raw material input (backward integration or the distribution chain (forward integration or better still grow towards possible monopoly (conglomerate. While effort will be made to discuss other types of integration, this paper will focus more on the backward integration programme, its effect on the survival and growth of business entities, advantages and disadvantages to business operation and its role in rural development in Nigeria.
Hypocoercivity for Kolmogorov backward evolution equations and applications
Grothaus, Martin; Stilgenbauer, Patrik
2012-01-01
In this article we extend the modern, powerful and simple abstract Hilbert space strategy for proving hypocoercivity that has been developed originally by Dolbeault, Mouhot and Schmeiser. As well-known, hypocoercivity methods imply an exponential decay to equilibrium with explicit computable rate of convergence. Our extension is now made for studying the long-time behavior of some strongly continuous semigroup generated by a (degenerate) Kolmogorov backward operator L. Additionally, we introd...
Backwards-induction Outcome in a Quantum Game
Iqbal, A
2002-01-01
In economics duopoly is a market dominated by two firms large enough to influence the market price. Stackelberg presented a dynamic form of duopoly that is also called `leader-follower' model. We give a quantum perspective on Stackelberg duopoly that gives a backwards-induction outcome same as the Nash equilibrium in static form of duopoly also known as Cournot's duopoly. We find two qubit quantum pure states required for this purpose.
Sub-nanosecond strong pulse generated by backward Raman scattering
Institute of Scientific and Technical Information of China (English)
Zhenhuan Ye(叶震寰); Qihong Lou(楼祺洪); Jingxing Dong(董景星); Yunrong Wei(魏运荣); Lei Ling(凌磊)
2003-01-01
Hundreds picosecond strong short-wavelength pulses have been generated by a backward Raman oscillatoramplifier pumped with a 10-J KrF laser from Heaven-1 MOPA system. Not only high power but also highenergy laser pulses have been obtained with an energy conversion efficiency up to 17%. 640-picosecondpulse duration was observed in our experiments by a 1.5-GHz-bandwidth oscilloscope corresponding to 34times of pulse compression rate.
Least-Square Prediction for Backward Adaptive Video Coding
2006-01-01
Almost all existing approaches towards video coding exploit the temporal redundancy by block-matching-based motion estimation and compensation. Regardless of its popularity, block matching still reflects an ad hoc understanding of the relationship between motion and intensity uncertainty models. In this paper, we present a novel backward adaptive approach, named "least-square prediction" (LSP), and demonstrate its potential in video coding. Motivated by the duality between edge contour in im...
Solutions to general forward-backward doubly stochastic differential equations
Institute of Scientific and Technical Information of China (English)
Qing-feng ZHU; Yu-feng SHI; Xian-jun GONG
2009-01-01
A gcneral type of forward-backward doubly stochastic differential equations (FBDSDEs) is studied. It extends many important equations that have been well stud-led, including stochastic Hamiltonian systems. Under some much weaker monotonicity assumptions, the existence and uniqueness of measurable solutions are established with a method of continuation. Furthermore, the continuity and differentiability of the solutions to FBDSDEs depending on parameters is discussed.
Limit theorem and uniqueness theorem of backward stochastic differential equations
Institute of Scientific and Technical Information of China (English)
JIANG; Long
2006-01-01
This paper establishes a limit theorem for solutions of backward stochastic differential equations (BSDEs). By this limit theorem, this paper proves that, under the standard assumption g(t,y,0)≡0, the generator g of a BSDE can be uniquely determined by the corresponding g-expectation εg; this paper also proves that if a filtration consistent expectation ε can be represented as a g-expectation εg, then the corresponding generator g must be unique.
Olfactory interference during inhibitory backward pairing in honey bees.
Directory of Open Access Journals (Sweden)
Matthieu Dacher
Full Text Available BACKGROUND: Restrained worker honey bees are a valuable model for studying the behavioral and neural bases of olfactory plasticity. The proboscis extension response (PER; the proboscis is the mouthpart of honey bees is released in response to sucrose stimulation. If sucrose stimulation is preceded one or a few times by an odor (forward pairing, the bee will form a memory for this association, and subsequent presentations of the odor alone are sufficient to elicit the PER. However, backward pairing between the two stimuli (sucrose, then odor has not been studied to any great extent in bees, although the vertebrate literature indicates that it elicits a form of inhibitory plasticity. METHODOLOGY/PRINCIPAL FINDINGS: If hungry bees are fed with sucrose, they will release a long lasting PER; however, this PER can be interrupted if an odor is presented 15 seconds (but not 7 or 30 seconds after the sucrose (backward pairing. We refer to this previously unreported process as olfactory interference. Bees receiving this 15 second backward pairing show reduced performance after a subsequent single forward pairing (excitatory conditioning trial. Analysis of the results supported a relationship between olfactory interference and a form of backward pairing-induced inhibitory learning/memory. Injecting the drug cimetidine into the deutocerebrum impaired olfactory interference. CONCLUSIONS/SIGNIFICANCE: Olfactory interference depends on the associative link between odor and PER, rather than between odor and sucrose. Furthermore, pairing an odor with sucrose can lead either to association of this odor to PER or to the inhibition of PER by this odor. Olfactory interference may provide insight into processes that gate how excitatory and inhibitory memories for odor-PER associations are formed.
Numerical simulation of the fast dense gas Ludwieg tube experiment
Zamfirescu, C.; Guerdone, A.; Collona, P.
2006-01-01
The preliminary design of a Ludwieg tube experiment for the verification of the existence of nonclassical rarefaction shock waves in dense vapors is here critically analyzed by means of real gas numerical simulations of the experimental setup. The Flexible Asymmetric Shock Tube (FAST) setup is a den
Ten Years of Shock Tube Research at Marseille
Houas, L.
The invention of the shock tube is attributed to Paul Vieille [1] in the late 19th century. The first simplest shock tube was composed of two chambers separated by a diaphragm.With the pressure increase in the first chamber causing the diaphragm rupture, a shock wave was generated and propagated with a supersonic velocity in the second chamber.
Communications technology satellite output-tube design and development
Connolly, D. J.; Forman, R.; Jones, C. L.; Kosmahl, H.; Sharp, G. R.
1977-01-01
The design and development of a 200-watt-output, traveling-wave tube (TWT) for the Communications Technology Satellite (CTS) is discussed, with emphasis on the design evolution during the manufacturing phase of the development program. Possible further improvements to the tube design are identified.
A Table-top Blast Driven Shock Tube
Courtney, Michael; Courtney, Amy
2011-01-01
The prevalence of blast-induced traumatic brain injury in conflicts in Iraq and Afghanistan has motivated laboratory scale experiments on biomedical effects of blast waves and studies of blast wave transmission properties of various materials in hopes of improving armor design to mitigate these injuries. This paper describes the design and performance of a table-top shock tube that is more convenient and widely accessible than traditional compression driven and blast driven shock tubes. The d...
Feeding tube insertion - gastrostomy
... this page: //medlineplus.gov/ency/article/002937.htm Feeding tube insertion - gastrostomy To use the sharing features on this page, please enable JavaScript. A gastrostomy feeding tube insertion is the placement of a feeding ...
Tube Feeding Troubleshooting Guide
Tube Feeding Troubleshoot ing Guide This guide is a tool to assist you, and should not replace your doctor’s ... everyone. table of contents Going Home with Tube Feedings....................................................2 Nausea and ... ...
Neural tube defects are birth defects of the brain, spine, or spinal cord. They happen in the ... that she is pregnant. The two most common neural tube defects are spina bifida and anencephaly. In ...
Applicable methods for NDT of tubes
Energy Technology Data Exchange (ETDEWEB)
Pitkaenen, J.; Lipponen, A.; Kauppinen, P. [VTT Industrial Systems Espoo (Finland)
2004-05-01
For inside inspection of tubes, eddy current testing (ET) and internal rotating ultrasonic inspection (IRIS) are mainly used at the moment. Special eddy current method, remote field technique (RFEC) is being used to some extent, but normally only for ferritic tubes. This paper presents a review of techniques that can be used for internal inspections of tubes in boilers, heat exchangers and steam generators. Material affects the choice of the method, considering given defect type and detectability with the selected technique. In general ET methods are used for inspection of non- ferromagnetic tubes and IRIS and RFEC methods for inspection of ferromagnetic tubes. New techniques have been introduced, to determine the tube condition accurately. One of the developed techniques is for instance inspection of the internal surface by combination of dye penetrant and optical laser inspection. New applications of ultrasonic techniques include defect detection and characterisation by tip diffraction echoes, defect analysis by echo dynamics and the TOFD-technique for defect sizing. Ultrasonic guided waves have a great potential to increase inspection speed for defect detection, although sizing is still under development. For inspection of ferromagnetic tubes, a method based on magnetic flux leakage has been used. In addition to the basic techniques visualisation of the measured data is one of the. key factors for improved exploitation of the inspection results. (orig.)
Institute of Scientific and Technical Information of China (English)
姜根山; 张荣英; 安连锁; 田静
2011-01-01
研究周期性管排阵列的声传播特性对于检测发生在炉内换热器管阵列中的泄漏故障具有重要意义。该文阐述了周期性管排阵列声传播物理机制。实验研究了周期性管排阵列的声传播特性。得出管阵列的纵向节距、横向节距和管径大小等几何参数对泄漏声辐射透射声谱的影响规律，揭示管阵列纵向节距影响透射声谱的“阻带”位置，横向节距影响透射声谱主极大的位置，以及管径大小影响透射声谱总能量的基本关系。指出充水管阵列与管内为空气的管阵列声透射特性的相同与差异，以及“通带”的位置。为炉内管阵列中的管道泄漏检测技术提供了实验依据。%It is important for detection of leakages faults in the boiler heat-exchanger tube array that the transmission characteristics of sound emission in the periodic tube arrays were studied. In this paper, the physical mechanism of sound transmission through any row within the periodic tube array was described. By experimentally studying on the sound propagation characteristics in the periodic tube array, the relationships between geometric parameters of the tube array and the transmission coefficients of leakage sound emission had been obtained. It was revealed that the longitudinal period of tube array would change the stop band frequencies, the transverse period of tube array would change the main maximum frequencies, and the diameter size of the tube would change the sound transmission energy. The sound transmission characteristics of water-filled tube array had been experimentally studied. The same and differences of sound transmission characteristics between water-filled tube array and air-filled tube array were given out, and the pass band frequencies were obtained. This paper provides an experimental basis for the tube leak detection technology in boilers.
Wave propagation in chiral media: composite Fresnel equations
Chern, Ruey-Lin
2013-07-01
In this paper, the author studies the features of wave propagation in chiral media. A general form of wave equations in biisotropic media is employed to derive concise formulas for the reflection and transmission coefficients. These coefficients are represented as a composite form of Fresnel equations for ordinary dielectrics, which reveal the circularly polarized nature of chiral media. The important features of negative refraction and a backward wave associated with left-handed waves are analyzed.
Delaying vortex breakdown by waves
Yao, M. F.; Jiang, L. B.; Wu, J. Z.; Ma, H. Y.; Pan, J. Y.
1989-03-01
The effect of spiral waves on delaying vortex breakdown in a tube is studied experimentally and theoretically. When a harmonic oscillation was imposed on one of guiding vanes in the tube, the breakdown was observed to be postponed appreciately. According to the generalized Lagrangian mean theory, proper forcing spiral waves may produce an additional streaming momentum, of which the effect is favorable and similar to an axial suction at downstream end. The delayed breakdown position is further predicted by using nonlinear wave theory. Qualitative agreement between theory and experiment is obtained, and experimental comparison of the effects due to forcing spiral wave and axial suction is made.
Whistler wave generation by non-gyrotropic, relativistic, electron beams
Skender, Marina
2014-01-01
Particle-in-cell code, EPOCH, is used for studying features of the wave component evident to propagate backwards from the front of the non-gyrotropic, relativistic beam of electrons injected in the Maxwellian, magnetised background plasma with decreasing density profile. According to recent findings presented in Tsiklauri (2011), Schmitz & Tsiklauri (2013) and Pechhacker & Tsiklauri (2012), in a 1.5-dimensional magnetised plasma system, the non-gyrotropic beam generates freely escaping electromagnetic radiation with properties similar to the Type-III solar radio bursts. In this study the backwards propagating wave component evident in the perpendicular components of the elecromagnetic field in such a system is presented for the first time. Background magnetic field strength in the system is varied in order to prove that the backwards propagating wave's frequency, prescribed by the whistler wave dispersion relation, is proportional to the specified magnetic field. Moreover, the identified whistlers are...
A Predistortion Linearizer for Ku-band Traveling Wave Tube Amplifier%一种适用于Ku波段行波管放大器的预失真线性化器
Institute of Scientific and Technical Information of China (English)
刘洁; 胡波雄; 王刚; 苏小保
2014-01-01
随着通信技术的发展，功率放大器线性度要求日益提高。该文提出一种两支路预失真电路，在单支路预失真电路基础上加入可调衰减器和非线性发生器级联成的辅助支路，改善了单个非线性发生器增益曲线斜率不足的问题，并在ADS中代入行波管模型仿真分析。在此基础上，加工Ku波段实际预失真电路并与行波管联合实验，线性化后的行波管放大器三阶载波交调比在输入功率回退3 dB时达到12.92 dB，回退6 dB时达到22.8 dB，线性度有了明显的改善。%With the development of communication technology, the requirements of power amplifier linearity are increasing. This paper presents a kind of two-branch predistortion circuit which contains the main branch and the auxiliary branch. The main branch is a diode based nonlinear generator and the auxiliary branch consists of variable attenuator and nonlinear generator. Compared with single nonlinear generator, this two-branch predistortion circuit increases the slope of amplitude characteristic. The ADS co-simulation of Traveling Wave Tube Amplifier (TWTA) and new predistorion circuit show the improvement of linearity. Based on the analysis and simulation, a Ku-band practically predistortion cuicuit is designed and tested with the TWTA. The results of experiments show that, the Carrier to Intermodulation (C/IM3) at TWTA Input Power Back Off (IPBO) of 3 dB can reach 12.92 dB, C/IM3 at TWTA IPBO of 6 dB can reach 22.8 dB. With the linearizer, the linearity of TWTA is clearly improved.
A Diode-Based Predistortion Circuit of L-Band Traveling Wave Tube%一种基于二极管的L波段行波管预失真电路
Institute of Scientific and Technical Information of China (English)
刘洁; 胡波雄; 王刚; 苏小保
2015-01-01
Based on the polynomial model of TWTA( Traveling Wave Tube Amplifier) and ideal predistortion response curve,a novel diode-based predistortion Linearizer which consists of two non-linear branches was developed. The in-fluence of the diode parameters to predistortion response curve was discussed. Based on the analysis and simulation,a L-band practically predistortion cuicuit was designed and tested with the TWTA. The IM3 of TWTA with linearizer at Input Power Back Off(IPBO)of 3dB,6dB,9dB can separately be improved from -10.3 dBc,-14.3 dBc,-18 dBc to-12.1 dBc,-18.5 dBc,-26.9 dBc.%该文分析了行波管放大器的输入输出曲线，并计算得到理想预失真线性化电路的增益和相位响应曲线。提出一种由两条非线性支路组成的预失真电路，并讨论了电路中肖特基二极管主要参数对预失真曲线的影响。设计制作了L波段预失真电路，并与行波管放大器联合测试，实验结果表明，加入预失真电路后，行波管放大器三阶交调载波比IM3在输入功率回退3 dB、6 dB、9 dB时分别从-10.3 dBc、-14.3 dBc、-18 dBc改善到-12.1 dBc、-18.5 dBc、-26.9 dBc。
Sheppard, Colin J R; Saari, Peeter
2008-01-07
A criticism of the focus wave mode (FWM) solution for localized pulses is that it contains backward propagating components that are difficult to generate in many practical situations. We describe a form of FWM where the strength of the backward propagating components is identically zero and derive special cases where the field can be written in an analytic form. In particular, a free-space version of "backward light" pulse is considered, which moves in the opposite direction with respect to all its spectral constituents.
Dynamic Response and Fracture of Composite Gun Tubes
Directory of Open Access Journals (Sweden)
Jerome T. Tzeng
2001-01-01
Full Text Available The fracture behavior due to dynamic response in a composite gun tube subjected to a moving pressure has been investigated. The resonance of stress waves result in very high amplitude and frequency strains in the tube at the instant and location of pressure front passage as the velocity of the projectile approaches a critical value. The cyclic stresses can accelerate crack propagation in the gun tube with an existing imperfection and significantly shorten the fatigue life of gun tubes. The fracture mechanism induced by dynamic amplification effects is particularly critical for composite overwrap barrels because of a multi-material construction, anisotropic material properties, and the potential of thermal degradation.
Negative group velocity and three-wave mixing in dielectric crystals
Slabko, Vitaly V; Shalaev, Mikhail I; Popov, Alexander K
2011-01-01
Extraordinary features of optical parametric amplification of Stokes electromagnetic waves are investigated, which originate from three-wave mixing of two ordinary electromagnetic and one backward phonon wave with negative group velocity. A similarity with the counterpart in the negative-index plasmonic metamaterials and differences with those utilizing contra-propagating ordinary electromagnetic waves as well as electromagnetic and acoustic phonon waves are shown. They stem from backwardness of optical phonons with negative dispersion. Nonlinear-optical photonic devices with the properties similar to those predicted for the negative-index metamaterials are proposed.
Backwards planning approach for rapid attitude maneuvers steering
Verbin, D.
Remote sensing satellites are often built with payloads that do not include line of sight steering mechanisms. In cases, when frequent line of sight retargeting is required, there is a need for efficient actuators and control schemes that would support rapid attitude manoeuvring together with adequate pointing accuracy and stability between the manoeuvres. Within this frame, this research develops the Backwards Planning approach as one of the possible control methods for rapid manoeuvring. The method is based on state feedback and combines time efficient together with straight forward computation flow. Novel efficient methods to execute the Backwards Planning Control in the 3D attitude space are proposed here. The methods refer both for the first saturated control phase of the manoeuvre and for the last braking phase. The actuators used for the spacecraft control in this research are either Reaction Wheels (RWs) or Single Gimbal Control Moments Gyros (SGCMGs) or both of them together. The advantage of the SGCMG is in rapid rotational manoeuvring, but their application for high quality pointing requires very accurate gimbal mechanisms. On the other hand, RWs are usually more suitable for accurate pointing, but their torque to power performance is inferior in manoeuvring. It is shown that the coordination of SGCMGs and RWs together enables to draw more performance from the SGCMGs in terms of agility and meet the pointing requirements between manoeuvres where only the RWs are used. Novel SGCMG steering laws are suggested as well. While the steering laws determine the required angular rate for each gimbal, most steering laws are defined in the angular momentum domain and output the gimbals angular rates to produce a given required torque or angular momentum increment. This research however, practices a novel steering law in the gimbal angles domain. While both steering laws turn to be dynamically equivalent for small control signals, as in the steady state, it is shown
Backward bifurcation and optimal control of Plasmodium Knowlesi malaria
Abdullahi, Mohammed Baba; Hasan, Yahya Abu; Abdullah, Farah Aini
2014-07-01
A deterministic model for the transmission dynamics of Plasmodium Knowlesi malaria with direct transmission is developed. The model is analyzed using dynamical system techniques and it shows that the backward bifurcation occurs for some range of parameters. The model is extended to assess the impact of time dependent preventive (biological and chemical control) against the mosquitoes and vaccination for susceptible humans, while treatment for infected humans. The existence of optimal control is established analytically by the use of optimal control theory. Numerical simulations of the problem, suggest that applying the four control measure can effectively reduce if not eliminate the spread of Plasmodium Knowlesi in a community.
Backward causation, hidden variables and the meaning of completeness
Indian Academy of Sciences (India)
Huw Price
2001-02-01
Bell’s theorem requires the assumption that hidden variables are independent of future measurement settings. This independence assumption rests on surprisingly shaky ground. In particular, it is puzzlingly time-asymmetric. The paper begins with a summary of the case for considering hidden variable models which, in abandoning this independence assumption, allow a degree of ‘backward causation’. The remainder of the paper clariﬁes the physical signiﬁcance of such models, in relation to the issue as to whether quantum mechanics provides a complete description of physical reality.
Solution of Higher-Order ODEs Using Backward Difference Method
Directory of Open Access Journals (Sweden)
Mohamed Bin Suleiman
2011-01-01
Full Text Available The current numerical technique for solving a system of higher-order ordinary differential equations (ODEs is to reduce it to a system of first-order equations then solving it using first-order ODE methods. Here, we propose a method to solve higher-order ODEs directly. The formulae will be derived in terms of backward difference in a constant stepsize formulation. The method developed will be validated by solving some higher-order ODEs directly with constant stepsize. To simplify the evaluations of the integration coefficients, we find the relationship between various orders. The result presented confirmed our hypothesis.
Top polarization, forward-backward asymmetry and new physics
Choudhury, Debajyoti; Rindani, Saurabh D; Saha, Pratishruti
2011-01-01
We consider how the measurement of top polarization at the Tevatron can be used to characterise and discriminate among different new physics models that have been suggested to explain the anomalous top forward-backward asymmetry reported at the Tevatron. This has the advantage of catching the essence of the parity violating effect characteristic to the different suggested new physics models. Other observables constructed from these asymmetries are shown to be useful in discriminating between the models, even after taking into account the statistical errors. Finally, we discuss some signals at the 7 TeV LHC.
Superconducting travelling wave ring with high gradient accelerating section
Energy Technology Data Exchange (ETDEWEB)
Avrakhov, P.; Solyak, N.; /Fermilab
2007-06-01
Use of a superconducting traveling wave accelerating (STWA) structure instead of a standing wave cavity has major advantages in increasing the accelerating gradient in the ILC. In contrast with standing wave cavity STWA requires feedback loop, which sends wave from the structure output to input, making a superconducting traveling wave ring (STWR). One or few input couplers need to excite STWR and compensate power dissipations due to beam loading. To control traveling wave regime in the structure two independent knobs can be used for tuning both resonant ring frequency and backward wave. We discuss two variants of the STWR with one and two feed couplers.
Axisymmetric absorption of p modes by an ensemble of thin, magnetic-flux tubes
Energy Technology Data Exchange (ETDEWEB)
Jain, R; Gascoyne, A [Department of Applied Mathematics, University of Sheffield (United Kingdom); Hindman, B W, E-mail: R.Jain@sheffield.ac.uk [JILA, University of Colorado at Boulder (United States)
2011-01-01
The buffeting action of the solar acoustic waves (p modes) on magnetic fibrils excites magnetohydrodynamic (MHD) tube waves. We model these fibrils as axisymmetric, untwisted, vertically oriented, thin, magnetic-flux tubes. The MHD tube waves propagate along the length of the tube and carry energy away from the p-mode cavity creating a source of p-mode absorption. We calculate the absorption arising from the excitation of sausage MHD waves within a model plage composed of many flux tubes with differing plasma properties. We find that for a collection of tubes with normally distributed plasma parameters {beta}, the macroscopic absorption coefficient of the collection effectively depends on only the mean value of {beta}.
Condensate Accretion in Shock Tube's Expansion Fan
Mezonlin, Ephrem-Denis; DeSilva, Upul P.; Hunte, F.; Johnson, Joseph A., III
1997-01-01
It has been shown that turbulence and temperature influence the droplet sizes in expansion fan induced condensation by studying the Rayleigh scattering from one port in our shock tube's test section. We have modified our set-up so as to allow, using two ports, the real time measurement of the influence of turbulence and temperature on the rate at which these droplets grow. To do this, we looked at the Rayleigh scattering from two different ports for ten Reynolds numbers at five different temperatures. We modeled the time of flight of droplets, using the equations of one-dimensional gas dynamics and the measured shock wave speed in shock tube's driven section.
A simple theory of Rijke tube oscillation
Institute of Scientific and Technical Information of China (English)
Maa Dah-You
2002-01-01
A simple theory of Rijke tube oscillation is presented based on mathematical realization of Rayleigh's qualitative explanation of the mechanism of Rijke tube. This is done by assuming a single point of high temperature in an otherwise uniform tube and the sound source produced when cold air flows passing this point. The wave equation thus obtained is then rigorously solved. It is found that the Rijke tube oscillation is a feedback system. There is no feedback nor oscillation when the hot spot is at a node or antinode in the tube. The mean flow is necessary for the oscillation, the particle velocity of which is proportional to the mean velocity, and the ratio is proportional to the gauze temperature when the later is low and the feedback does not affect much the magnitude of the particle velocity. When the temperature is high, the feedback increases rapidly and the particle velocity might grow to several or even tens of times of the mean velocity, and almost indefinitely when the heater temperature is high enough. Otherwise the growth is rather slow, when the mean flow or high temperature is first applied. The oscillations stop immediately when the mean flow is stopped. If the mean flow is controlled by a valve or a paddle at one end of the tube, an interesting sound is produced.
Backward distraction osteogenesis in a patient with severe mandibular micrognathia.
Mitsukawa, Nobuyuki; Morishita, Tadashi; Saiga, Atsuomi; Akita, Shinsuke; Kubota, Yoshitaka; Satoh, Kaneshige
2013-09-01
Maxillary skeletal prognathism can involve severe mandibular micrognathia with marked mandibular retrognathism or hypoplasia. For patients with such a condition, a conventional treatment is mandibular advancement by sagittal split ramus osteotomy (SSRO). This procedure has problems such as insufficient advancement, instability of jaw position, and postoperative relapse. Thus, in recent years, mandibular distraction osteogenesis has been used in some patients. Mandibular distraction has many advantages, but an ideal occlusion is difficult to achieve using this procedure. That is, 3-dimensional control cannot be attained using an internal device that is unidirectional. This report describes a case of severe mandibular micrognathia in a 14-year-old girl treated using backward distraction osteogenesis. This procedure was first reported by Ishii et al (Jpn J Jaw Deform 2004; 14:49) and involves a combination of SSRO and ramus distraction osteogenesis. In the present study, intermaxillary fixation in centric occlusion was performed after osteotomy, and proximal bone segments were distracted in a posterosuperior direction. This procedure is a superior surgical technique that avoids the drawbacks of SSRO and conventional mandibular distraction. However, it applies a large load to the temporomandibular joints and requires thorough management. Thus, careful evaluation needs to be made of the indication for backward distraction osteogenesis.
Generating Property-Directed Potential Invariants By Backward Analysis
Directory of Open Access Journals (Sweden)
Adrien Champion
2012-12-01
Full Text Available This paper addresses the issue of lemma generation in a k-induction-based formal analysis of transition systems, in the linear real/integer arithmetic fragment. A backward analysis, powered by quantifier elimination, is used to output preimages of the negation of the proof objective, viewed as unauthorized states, or gray states. Two heuristics are proposed to take advantage of this source of information. First, a thorough exploration of the possible partitionings of the gray state space discovers new relations between state variables, representing potential invariants. Second, an inexact exploration regroups and over-approximates disjoint areas of the gray state space, also to discover new relations between state variables. k-induction is used to isolate the invariants and check if they strengthen the proof objective. These heuristics can be used on the first preimage of the backward exploration, and each time a new one is output, refining the information on the gray states. In our context of critical avionics embedded systems, we show that our approach is able to outperform other academic or commercial tools on examples of interest in our application field. The method is introduced and motivated through two main examples, one of which was provided by Rockwell Collins, in a collaborative formal verification framework.
The Backwards-Time Interpretation of Quantum Mechanics Revisited With Experiment
Werbos, P J; Werbos, Paul J.; Dolmatova, Ludmila
2000-01-01
The classic paper of Clauser et al proved that Bell's Theorem experiments rule out all theories of physics which assume locality, time-forwards causality and the existence of an objective real world. The Backwards-Time Interpretation (BTI) tries to recover realism and locality by permitting backwards time causality. BTI should permit dramatic simplification of the assumptions or axioms of physics, but requires new work in fundamental mathematics, such as new tools for the "closure of turbulence," the derivation of statistics generated by ODE or PDE. Recent events like the Delayed Choice Quantum Eraser experiment of Kim, Shih et al have increased mainstream interest in the possibility of backwards causality. The Backwards Time Quantum Teleportation (BTQT) experiment will take this further. True backwards time communication channels (BTCC) are absolutely impossible in most formulations of quantum theory but only almost impossible in the BTI formulation. This paper discusses BTQT, the issue of backwards causalit...
Numerical study of dynamic phase transitions in shock tube
Institute of Scientific and Technical Information of China (English)
WANG Ping; TANG Shao-qiang
2007-01-01
Shock tube problem of a van der Waals fluid with a relaxation model was investigated. In the limit of relaxation parameter tending towards zero, this model yields a specific Riemann solver. Relaxing and relaxed schemes were derived. For an incident shock in a fixed tube, numerical simulations show convergence toward the Riemann solution in one space dimension. Impact of parameters was studied theoretically and numerically. For certain initial shock profiles, nonclassical reflecting wave was observed. In two space dimensions, the effect of curved wave fronts was studied, and some interesting wave patterns were exposed.
Energy Technology Data Exchange (ETDEWEB)
Cihlar, David William; Melton, Patrick Benedict
2017-02-28
A system for retaining a fuel nozzle premix tube includes a retention plate and a premix tube which extends downstream from an outlet of a premix passage defined along an aft side of a fuel plenum body. The premix tube includes an inlet end and a spring support feature which is disposed proximate to the inlet end. The premix tube extends through the retention plate. The spring retention feature is disposed between an aft side of the fuel plenum and the retention plate. The system further includes a spring which extends between the spring retention feature and the retention plate.
Federal Laboratory Consortium — The Heated Tube Facility at NASA GRC investigates cooling issues by simulating conditions characteristic of rocket engine thrust chambers and high speed airbreathing...
Makino, Misato; Takami, Akiyoshi; Oda, Atsushi
2017-01-01
[Purpose] To investigate the features of backward walking in stroke patients with hemiplegia by focusing on the joint movements and moments of the paretic side, walking speed, stride length, and cadence. [Subjects and Methods] Nine stroke patients performed forward walking and backward walking along a 5-m walkway. Walking speed and stride length were self-selected. Movements were measured using a three-dimensional motion analysis system and a force plate. One walking cycle of the paretic side was analyzed. [Results] Walking speed, stride length, and cadence were significantly lower in backward walking than in forward walking. Peak hip extension was significantly lower in backward walking and peak hip flexion moment, knee extension moment, and ankle dorsiflexion and plantar flexion moments were lower in backward walking. [Conclusion] Unlike forward walking, backward walking requires conscious hip joint extension. Conscious extension of the hip joint is hard for stroke patients with hemiplegia. Therefore, the range of hip joint movement declined in backward walking, and walking speed and stride length also declined. The peak ankle plantar flexion moment was significantly lower in backward walking than in forward walking, and it was hard to generate propulsion power in backward walking. These difficulties also affected the walking speed. PMID:28265136
Energy Technology Data Exchange (ETDEWEB)
MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.
1996-04-01
A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.
Ghimire, Anukul; Andersen, Mads J; Burrowes, Lindsay M; Bouwmeester, J Christopher; Grant, Andrew D; Belenkie, Israel; Fine, Nowell M; Borlaug, Barry A; Tyberg, John V
2016-12-01
Using the reservoir-wave approach (RWA) we previously characterized pulmonary vasculature mechanics in a normal canine model. We found reflected backward-traveling waves that decrease pressure and increase flow in the proximal pulmonary artery (PA). These waves decrease right ventricular (RV) afterload and facilitate RV ejection. With pathological alterations to the pulmonary vasculature, these waves may change and impact RV performance. Our objective in this study was to characterize PA wave reflection and the alterations in RV performance in cardiac patients, using the RWA. PA pressure, Doppler-flow velocity, and pulmonary arterial wedge pressure were measured in 11 patients with exertional dyspnea. The RWA was employed to analyze PA pressure and flow; wave intensity analysis characterized PA waves. Wave-related pressure was partitioned into two components: pressures due to forward-traveling and to backward-traveling waves. RV performance was assessed by examining the work done in raising reservoir pressure and that associated with the wave components of systolic PA pressure. Wave-related work, the mostly nonrecoverable energy expended by the RV to eject blood, tended to vary directly with mean PA pressure. Where PA pressures were lower, there were pressure-decreasing/flow-increasing backward waves that aided RV ejection. Where PA pressures were higher, there were pressure-increasing/flow-decreasing backward waves that impeded RV ejection. Pressure-increasing/flow-decreasing backward waves were responsible for systolic notches in the Doppler flow velocity profiles in patients with the highest PA pressure. Pulmonary hypertension is characterized by reflected waves that impede RV ejection and an increase in wave-related work. The RWA may facilitate the development of therapeutic strategies.
Zeller, Mariana; Depine, Ricardo A
2015-01-01
A theoretical analysis of the lateral displacement (Goos-H\\"anchen shift) of spatially limited beams reflected from Attenuated Total Reflection (ATR) devices in the Otto configuration is presented when backward surface plasmon polaritons are excited at the interface between a positive refractive index slab and a semiinfinite metamaterial with negative refractive index. First, the stationary phase approximation and a phenomenological model based on the properties of the complex poles and zeroes of the reflection coefficient are used to demonstrate that: i) the excitation of backward surface waves can lead to both negative and positive (and not exclusively negative) Goos-H\\"anchen shifts, and ii) the sign of the shift depends on whether the value of the coupling layer thickness is higher or lower than a critical value characteristic of the ATR structure. Second, these findings are verified through rigorous calculations of the spatial structure of the reflected beam. For incident beams with a Gaussian profile, t...
Rajchman, J. H.
1973-01-01
Optical memories allow extremely large numbers of bits to be stored and recalled in a matter of microseconds. Two recording tubes, similar to conventional image-converting tubes, but having a soft-glass surface on which hologram is recorded, do not degrade under repeated hologram read/write cycles.
Energy Technology Data Exchange (ETDEWEB)
Haldeman, C. W.
1985-12-03
A PVC conduit about 4'' in diameter and a little more than 40 feet long is adapted for being seated in a hole in the earth and surrounds a coaxial copper tube along its length that carries Freon between a heat pump and a distributor at the bottom. A number of wavy conducting tubes located between the central conducting tube and the wall of the conduit interconnect the distributor with a Freon distributor at the top arranged for connection to the heat pump. The wavy conducting tubing is made by passing straight soft copper tubing between a pair of like opposed meshing gears each having four convex points in space quadrature separated by four convex recesses with the radius of curvature of each point slightly less than that of each concave recess.
DEFF Research Database (Denmark)
Simonsen, Thomas Mosebo
2011-01-01
This article provides a genre analytical approach to creating a typology of the User Generated Content (UGC) of YouTube. The article investigates the construction of navigation processes on the YouTube website. It suggests a pragmatic genre approach that is expanded through a focus on YouTube’s...... technological affordances. Through an analysis of the different pragmatic contexts of YouTube, it is argued that a taxonomic understanding of YouTube must be analysed in regards to the vacillation of a user-driven bottom-up folksonomy and a hierarchical browsing system that emphasises a culture of competition...... and which favours the already popular content of YouTube. With this taxonomic approach, the UGC videos are registered and analysed in terms of empirically based observations. The article identifies various UGC categories and their principal characteristics. Furthermore, general tendencies of the UGC within...
Molybdenum Tube Characterization report
Energy Technology Data Exchange (ETDEWEB)
Beaux II, Miles Frank [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Usov, Igor Olegovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-02-07
Chemical vapor deposition (CVD) techniques have been utilized to produce free-standing molybdenum tubes with the end goal of nuclear fuel clad applications. In order to produce tubes with properties desirable for this application, deposition rates were lowered requiring long deposition durations on the order of 50 hours. Standard CVD methods as well as fluidized-bed CVD (FBCVD) methods were applied towards these objectives. Characterization of the tubes produced in this manner revealed material suitable for fuel clad applications, but lacking necessary uniformity across the length of the tubes. The production of freestanding Mo tubes that possess the desired properties across their entire length represents an engineering challenge that can be overcome in a next iteration of the deposition system.
Underwater implosions of large format photo-multiplier tubes
Energy Technology Data Exchange (ETDEWEB)
Diwan, Milind; Dolph, Jeffrey [Brookhaven National Laboratory, P.O. Box 5000, Bldg 510E, Upton, NY 11973 (United States); Ling, Jiajie, E-mail: jjling@bnl.gov [Brookhaven National Laboratory, P.O. Box 5000, Bldg 510E, Upton, NY 11973 (United States); Russo, Thomas; Sharma, Rahul; Sexton, Kenneth; Simos, Nikolaos; Stewart, James; Tanaka, Hidekazu [Brookhaven National Laboratory, P.O. Box 5000, Bldg 510E, Upton, NY 11973 (United States); Arnold, Douglas; Tabor, Philip; Turner, Stephen [Naval Underwater Warfare Center, Newport, RI 02841 (United States)
2012-04-01
Large, deep, well shielded liquid detectors have become an important technology for the detection of neutrinos over a wide dynamic range from few MeV to TeV. The critical component of this technology is the large format semi-hemispherical photo-multiplier tube with diameters in the range of 25-50 cm. The survival of an assembled array of these photo-multiplier tubes under high hydrostatic pressure is the subject of this study. These are the results from an R and D program which is intended to understand the modes of failure when a photo-multiplier tube implodes under hydrostatic pressure. Our tests include detailed measurements of the shock wave which results from the implosion of a photo-multiplier tube and a comparison of the test data to modern hydrodynamic simulation codes. Using these results we can extrapolate to other tube geometries and make recommendation on deployment of the photo-multiplier tubes in deep water detectors with a focus on risk mitigation from a tube implosion shock wave causing a chain reaction loss of multiple tubes.
Stochastic differential equations, backward SDEs, partial differential equations
Pardoux, Etienne
2014-01-01
This research monograph presents results to researchers in stochastic calculus, forward and backward stochastic differential equations, connections between diffusion processes and second order partial differential equations (PDEs), and financial mathematics. It pays special attention to the relations between SDEs/BSDEs and second order PDEs under minimal regularity assumptions, and also extends those results to equations with multivalued coefficients. The authors present in particular the theory of reflected SDEs in the above mentioned framework and include exercises at the end of each chapter. Stochastic calculus and stochastic differential equations (SDEs) were first introduced by K. Itô in the 1940s, in order to construct the path of diffusion processes (which are continuous time Markov processes with continuous trajectories taking their values in a finite dimensional vector space or manifold), which had been studied from a more analytic point of view by Kolmogorov in the 1930s. Since then, this topic has...
Listening to Mozart does not enhance backwards digit span performance.
Steele, K M; Ball, T N; Runk, R
1997-06-01
Rauscher, Shaw, and Ky recently reported that exposure to brief periods of music by Mozart produced a temporary increase in performance on tasks taken from the Stanford-Binet Intelligence Scale-IV. The present study examined whether this effect occurred in performance on a backwards digit span task. In a within-subjects design 36 undergraduates were exposed to 10-min. periods of Mozart music, a recording of rain, or silence. After each stimulus period, undergraduates had three attempts to hear and recall different 9-digit strings in reverse order. No significant differences among treatment conditions were found. There was a significant effect of practice. Results are discussed in terms of the need to isolate the conditions responsible for production of the Mozart effect.
Incorporating Uncertainty into Backward Erosion Piping Risk Assessments
Directory of Open Access Journals (Sweden)
Robbins Bryant A.
2016-01-01
Full Text Available Backward erosion piping (BEP is a type of internal erosion that typically involves the erosion of foundation materials beneath an embankment. BEP has been shown, historically, to be the cause of approximately one third of all internal erosion related failures. As such, the probability of BEP is commonly evaluated as part of routine risk assessments for dams and levees in the United States. Currently, average gradient methods are predominantly used to perform these assessments, supported by mean trends of critical gradient observed in laboratory flume tests. Significant uncertainty exists surrounding the mean trends of critical gradient used in practice. To quantify this uncertainty, over 100 laboratory-piping tests were compiled and analysed to assess the variability of laboratory measurements of horizontal critical gradient. Results of these analyses indicate a large amount of uncertainty surrounding critical gradient measurements for all soils, with increasing uncertainty as soils become less uniform.
... NICHD Research Information Clinical Trials Resources and Publications Neural Tube Defects (NTDs): Condition Information Skip sharing on social media links Share this: Page Content What are neural tube defects? Neural (pronounced NOOR-uhl ) tube defects are ...
Veldes, G P; Cuevas, J; Kevrekidis, P G; Frantzeskakis, D J
2013-07-01
We study the coupling between backward- and forward-propagating wave modes, with the same group velocity, in a composite right- and left-handed nonlinear transmission line. Using an asymptotic multiscale expansion technique, we derive a system of two coupled nonlinear Schrödinger equations governing the evolution of the envelopes of these modes. We show that this system supports a variety of backward- and forward-propagating vector solitons of the bright-bright, bright-dark, and dark-bright type. Performing systematic numerical simulations in the framework of the original lattice that models the transmission line, we study the propagation properties of the derived vector soliton solutions. We show that all types of the predicted solitons exist, but differ on their robustness: Only bright-bright solitons propagate undistorted for long times, while the other types are less robust, featuring shorter lifetimes. In all cases, our analytical predictions are in very good agreement with the results of the simulations, at least up to times of the order of the solitons' lifetimes.
A novel multi-channel quadrature Doppler backward scattering reflectometer on the HL-2A tokamak
Shi, Zhongbing; Zhong, Wulu; Jiang, Min; Yang, Zengchen; Zhang, Boyu; Shi, Peiwan; Chen, Wei; Wen, Jie; Chen, Chengyuan; Fu, Bingzhong; Liu, Zetian; Ding, Xuantong; Yang, Qingwei; Duan, Xuru
2016-11-01
A novel 16-channel fixed frequency Doppler backward scattering (DBS) reflectometer system has been developed on the HL-2A tokamak. This system is based on the filter-based feedback loop microwave source (FFLMS) technique, which has lower phase noise and lower power variation compared with present tunable frequency generation and comb frequency array generation techniques [J. C. Hillesheim et al. Rev. Sci. Instrum. 80, 083507 (2009) and W. A. Peebles et al. Rev. Sci. Instrum. 81, 10D902 (2010)]. The 16-channel DBS system is comprised of four × four-frequency microwave transmitters and direct quadrature demodulation receivers. The working frequencies are 17-24 GHz and 31-38 GHz with the frequency interval of 1 GHz. They are designed to measure the localized intermediate wave-number (k⊥ρ ˜ 1-2, k⊥ ˜ 2-9 cm-1) density fluctuations and the poloidal rotation velocity profile of turbulence. The details of the system design and laboratory tests are presented. Preliminary results of Doppler spectra measured by the multi-channel DBS reflectometer systems are obtained. The plasma rotation and turbulence distribution during supersonic molecular beam injection are analyzed.
Quantification of wave reflection using peripheral blood pressure waveforms.
Kim, Chang-Sei; Fazeli, Nima; McMurtry, M Sean; Finegan, Barry A; Hahn, Jin-Oh
2015-01-01
This paper presents a novel minimally invasive method for quantifying blood pressure (BP) wave reflection in the arterial tree. In this method, two peripheral BP waveforms are analyzed to obtain an estimate of central aortic BP waveform, which is used together with a peripheral BP waveform to compute forward and backward pressure waves. These forward and backward waves are then used to quantify the strength of wave reflection in the arterial tree. Two unique strengths of the proposed method are that 1) it replaces highly invasive central aortic BP and flow waveforms required in many existing methods by less invasive peripheral BP waveforms, and 2) it does not require estimation of characteristic impedance. The feasibility of the proposed method was examined in an experimental swine subject under a wide range of physiologic states and in 13 cardiac surgery patients. In the swine subject, the method was comparable to the reference method based on central aortic BP and flow. In cardiac surgery patients, the method was able to estimate forward and backward pressure waves in the absence of any central aortic waveforms: on the average, the root-mean-squared error between actual versus computed forward and backward pressure waves was less than 5 mmHg, and the error between actual versus computed reflection index was less than 0.03.
Institute of Scientific and Technical Information of China (English)
卢杰; 郑龙席; 王治武; 彭畅新; 陈星谷
2014-01-01
为了研究多管脉冲爆震发动机的压力反传特性，采用数值模拟和试验相结合的方法对四管爆震室的压力反传特性进行研究，测量了四管爆震室同时点火和分时点火这两种工作模式下的压力反传规律，利用数值模拟对四管爆震室共用进气道进行研究，分析了共用进气道长度以及在共用进气道内加装分流板对压力反传的影响。试验结果表明，四管爆震室同时工作时，共用进气道产生一道很强的压力扰动波，其峰值压力接近0.12MPa；四管爆震室分时工作时，共用进气道在一个循环内出现四次压力扰动，但扰动波的峰值压力较小。数值模拟的结果表明，在两种工作模式下，爆震室产生的反传压力使发动机入口产生高速倒流，四管分时工作时倒流的速度较小。随着共用进气道的长度增大，反传压力的峰值降低，但发动机入口处仍然存在倒流现象，倒流的速度随着共用进气道的长度增大而减小。共用进气道内加装分流板对反传压力的峰值并没有削弱作用。%In order to investigate the propagation characteristics of back-pressure waves in multi-tube pulse detonation engine, a series of experiments and numerical simulations were carried out. The propagation characteristics of back-pressure waves of four-tube pulse detonation combustors were measured when the com⁃bustors operated at two firing patterns:all tubes firing simultaneously and all tubes firing sequentially. Numerical simulations were carried out to investigate the flow characteristics in the air buffer chamber. The length of the air buffer chamber was varied and a splitter was installed in the air buffer chamber numerically to study their effects on the propagation of back-pressure waves. The experimental results show that a strong back-pressure wave was observed in the air buffer chamber when all tubes were fired simultaneously and the peak value was
Practical aspects of backward bifurcation in a mathematical model for tuberculosis.
Gerberry, David J
2016-01-01
In this work, we examine practical aspects of backward bifurcation for a data-based model of tuberculosis that incorporates multiple features which have previously been shown to produce backward bifurcation (e.g. exogenous reinfection and imperfect vaccination) and new considerations such as the treatment of latent TB infection (LTBI) and the BCG vaccine's interference with detecting LTBI. Understanding the interplay between these multiple factors and backward bifurcation is particularly timely given that new diagnostic tests for LTBI detection could dramatically increase rates of both LTBI detection and vaccination in the coming decades. By establishing analytic thresholds for the existence of backward bifurcation, we identify those aspects of TB's complicated pathology that make backward bifurcation more or less likely to occur. We also examine the magnitude of the backward bifurcation produced by the model and its sensitivity to various model parameters. We find that backward bifurcation is unlikely to occur. While increased vaccine coverage and/or increased detection and treatment of LTBI can push the threshold for backward bifurcation into the region of biological plausibility, the resulting bifurcations may still be too small to have any noticeable epidemiological impact.