Digital Backpropagation in the Nonlinear Fourier Domain
Wahls, Sander; Prilepsky, Jaroslaw E; Poor, H Vincent; Turitsyn, Sergei K
2015-01-01
Nonlinear and dispersive transmission impairments in coherent fiber-optic communication systems are often compensated by reverting the nonlinear Schr\\"odinger equation, which describes the evolution of the signal in the link, numerically. This technique is known as digital backpropagation. Typical digital backpropagation algorithms are based on split-step Fourier methods in which the signal has to be discretized in time and space. The need to discretize in both time and space however makes the real-time implementation of digital backpropagation a challenging problem. In this paper, a new fast algorithm for digital backpropagation based on nonlinear Fourier transforms is presented. Aiming at a proof of concept, the main emphasis will be put on fibers with normal dispersion in order to avoid the issue of solitonic components in the signal. However, it is demonstrated that the algorithm also works for anomalous dispersion if the signal power is low enough. Since the spatial evolution of a signal governed by the ...
Stochastic Digital Backpropagation with Residual Memory Compensation
Irukulapati, Naga V; Johannisson, Pontus; Agrell, Erik; Secondini, Marco; Wymeersch, Henk
2015-01-01
Stochastic digital backpropagation (SDBP) is an extension of digital backpropagation (DBP) and is based on the maximum a posteriori principle. SDBP takes into account noise from the optical amplifiers in addition to handling deterministic linear and nonlinear impairments. The decisions in SDBP are taken on a symbol-by-symbol (SBS) basis, ignoring any residual memory, which may be present due to matched filtering in SDBP. In this paper, we extend SDBP to account for memory between symbols. In particular, two different methods are proposed: a Viterbi algorithm (VA) and a decision directed approach. Symbol error rate (SER) for memory-based SDBP is significantly lower than the previously proposed SBS-SDBP. For inline dispersion-managed links, the VA-SDBP has 10 and 14 times lower SER than DBP for QPSK and 16-QAM, respectively.
Fuzzy neural network with fast backpropagation learning
Wang, Zhiling; De Sario, Marco; Guerriero, Andrea; Mugnuolo, Raffaele
1995-03-01
Neural filters with multilayer backpropagation network have been proved to be able to define mostly all linear or non-linear filters. Because of the slowness of the networks' convergency, however, the applicable fields have been limited. In this paper, fuzzy logic is introduced to adjust learning rate and momentum parameter depending upon output errors and training times. This makes the convergency of the network greatly improved. Test curves are shown to prove the fast filters' performance.
Memory-Efficient Backpropagation Through Time
Gruslys, Audrūnas; Munos, Remi; Danihelka, Ivo; Lanctot, Marc; Graves, Alex
2016-01-01
We propose a novel approach to reduce memory consumption of the backpropagation through time (BPTT) algorithm when training recurrent neural networks (RNNs). Our approach uses dynamic programming to balance a trade-off between caching of intermediate results and recomputation. The algorithm is capable of tightly fitting within almost any user-set memory budget while finding an optimal execution policy minimizing the computational cost. Computational devices have limited memory capacity and ma...
Tunneling Ionization Time Resolved by Backpropagation
Ni, Hongcheng; Saalmann, Ulf; Rost, Jan-Michael
2016-07-01
We determine the ionization time in tunneling ionization by an elliptically polarized light pulse relative to its maximum. This is achieved by a full quantum propagation of the electron wave function forward in time, followed by a classical backpropagation to identify tunneling parameters, in particular, the fraction of electrons that has tunneled out. We find that the ionization time is close to zero for single active electrons in helium and in hydrogen if the fraction of tunneled electrons is large. We expect our analysis to be essential to quantify ionization times for correlated electron motion.
Generalized Backpropagation Algorithms for Diffraction Tomography
Paladhi, Pavel Roy; Tayebi, Amin; Udpa, Lalita
2016-01-01
Filtered backpropagation (FBPP) is a well-known technique used for Diffraction Tomography (DT). For accurate reconstruction of a complex image using FBPP, full $360^{\\circ}$ angular coverage is necessary. However, it has been shown that using some inherent redundancies in projection data in a tomographic setup, accurate reconstruction is still possible with $270^{\\circ}$ coverage which is called the minimal-scan angle range. This can be done by applying weighing functions (or filters) on projection data of the object to eliminate the redundancies and accurately reconstruct the image from this lower angular coverage. This paper demonstrates procedures to generate many general classes of these weighing filters. These are all equivalent at $270^{\\circ}$ coverage but would perform differently at lower angular coverages and under presence of noise. This paper does a comparative analysis of different filters when angular coverage is lower than minimal-scan angle of $270^{\\circ}$. Simulation studies have been done t...
Prediction of tides using back-propagation neural networks
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.
Prediction of tides is very much essential for human activities and to reduce the construction cost in marine environment. This paper presents an application of the artificial neural network with back-propagation procedures for accurate prediction...
Analog hardware for delta-backpropagation neural networks
Eberhardt, Silvio P. (Inventor)
1992-01-01
This is a fully parallel analog backpropagation learning processor which comprises a plurality of programmable resistive memory elements serving as synapse connections whose values can be weighted during learning with buffer amplifiers, summing circuits, and sample-and-hold circuits arranged in a plurality of neuron layers in accordance with delta-backpropagation algorithms modified so as to control weight changes due to circuit drift.
Pengenalan Pola Pin Barcode Menggunakan Metode Backpropagation dan Metode Perceptron
Hasiholan, Ardi
2015-01-01
Pattern recognition is one of the functions of the neural networks, where objects maybe identified by their patterns. This may assist in recognition of objects which patterns are damaged. Pattern recognition in neural networkcan make by using backpropagation and perceptron methods. In Backpropagation method, the network is trained with the pattern through three phases, namely forward propagation, backward propagation, and weights adjustment phases, repeated until the termination condition is ...
The adaptation of spike backpropagation delays in cortical neurons
Directory of Open Access Journals (Sweden)
Yossi eBuskila
2013-10-01
Full Text Available We measured the action potential backpropagation delays in apical dendrites of layer 5 pyramidal neurons of the somatosensory cortex under different stimulation regimes that exclude synaptic involvement. These delays showed robust features and did not correlate to either transient change in the stimulus strength or low frequency stimulation of suprathreshold membrane oscillations. However, our results indicate that backpropagation delays correlate with high frequency (>10 Hz stimulation of membrane oscillations, and that persistent suprathreshold sinusoidal stimulation injected directly into the soma results in an increase of the backpropagation delay, suggesting an intrinsic adaptation of the bAP, which does not involve any synaptic modifications. Moreover, the calcium chelator BAPTA eliminated the alterations in the backpropagation delays, strengthening the hypothesis that increased calcium concentration in the dendrites modulates dendritic excitability and can impact the backpropagation velocity. These results emphasize the impact of dendritic excitability on bAP velocity along the dendritic tree, which affects the precision of the bAP arrival at the synapse during specific stimulus regimes, and is capable of shifting the extent and polarity of synaptic strength during suprathreshold synaptic processes such as STDP.
Non-Linear Back-propagation: Doing Back-Propagation withoutDerivatives of the Activation Function
DEFF Research Database (Denmark)
Hertz, John; Krogh, Anders Stærmose; Lautrup, Benny;
1997-01-01
The conventional linear back-propagation algorithm is replaced by a non-linear version, which avoids the necessity for calculating the derivative of the activation function. This may be exploited in hardware realizations of neural processors. In this paper we derive the non-linear back-propagatio......-propagation algorithms in the framework of recurrent back-propagation and present some numerical simulations of feed-forward networks on the NetTalk problem. A discussion of implementation in analog VLSI electronics concludes the paper.......The conventional linear back-propagation algorithm is replaced by a non-linear version, which avoids the necessity for calculating the derivative of the activation function. This may be exploited in hardware realizations of neural processors. In this paper we derive the non-linear back...
Error-backpropagation in temporally encoded networks of spiking neurons
Bohte, S.M.; La Poutré, J.A.; Kok, J.N.
2000-01-01
For a network of spiking neurons that encodes information in the timing of individual spike-times, we derive a supervised learning rule, emph{SpikeProp, akin to traditional error-backpropagation and show how to overcome the discontinuities introduced by thresholding. With this algorithm, we demonstr
Conjugate descent formulation of backpropagation error in feedforward neural networks
Sharma NK; Kumar, S; Singh MP
2009-01-01
The feedforward neural network architecture uses backpropagation learning to determine optimal weights between different interconnected layers. This learning procedure uses a gradient descent technique applied to a sum-of-squares error function for the given input-output pattern. It employs an iterative procedure to minimise the error function for a given set of patterns, by adjusting the weights of the network. The first derivates of the error with respect to the weights identify the local e...
Error-backpropagation in temporally encoded networks of spiking neurons
Bohte, Sander; La Poutré, Han; Kok, Joost
2000-01-01
For a network of spiking neurons that encodes information in the timing of individual spike-times, we derive a supervised learning rule, emph{SpikeProp, akin to traditional error-backpropagation and show how to overcome the discontinuities introduced by thresholding. With this algorithm, we demonstrate how networks of spiking neurons with biologically reasonable action potentials can perform complex non-linear classification in fast temporal coding just as well as rate-coded networks. We perf...
Impact of Mutation Weights on Training Backpropagation Neural Networks
Directory of Open Access Journals (Sweden)
Lamia Abed Noor Muhammed
2014-07-01
Full Text Available Neural network is a computational approach, which based on the simulation of biology neural network. This approach is conducted by several parameters; learning rate, initialized weights, network architecture, and so on. However, this paper would be focused on one of these parameters that is weights. The aim is to shed lights on the mutation weights through training network and its effects on the results. The experiment was done using backpropagation neural network with one hidden layer. The results reveal the role of mutation in escape from the local minima and making the change
Ocean wave parameters estimation using backpropagation neural networks
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; SubbaRao; Raju, D.H.
and oceanographic data. Wave forecasting by wave models is useful in the planning and maintenance of marine activities. Just as weather conditions, the wave conditions will change from year to year, thus a proper statistical analysis requires several ARTICLE... functional relation is not clear. Deo and Naidu [6] and Deo et al. [7] have carried out applications of the NN for wave forecasting and Subba Rao et al. [8] have worked on wave propagation using backpropagation neural network (BNN). Subba Rao and Mandal [9...
LVQ and backpropagation neural networks applied to NASA SSME data
Doniere, Timothy F.; Dhawan, Atam P.
1993-01-01
Feedfoward neural networks with backpropagation learning have been used as function approximators for modeling the space shuttle main engine (SSME) sensor signals. The modeling of these sensor signals is aimed at the development of a sensor fault detection system that can be used during ground test firings. The generalization capability of a neural network based function approximator depends on the training vectors which in this application may be derived from a number of SSME ground test-firings. This yields a large number of training vectors. Large training sets can cause the time required to train the network to be very large. Also, the network may not be able to generalize for large training sets. To reduce the size of the training sets, the SSME test-firing data is reduced using the learning vector quantization (LVQ) based technique. Different compression ratios were used to obtain compressed data in training the neural network model. The performance of the neural model trained using reduced sets of training patterns is presented and compared with the performance of the model trained using complete data. The LVQ can also be used as a function approximator. The performance of the LVQ as a function approximator using reduced training sets is presented and compared with the performance of the backpropagation network.
Single-step digital backpropagation for nonlinearity mitigation
DEFF Research Database (Denmark)
Secondini, Marco; Rommel, Simon; Meloni, Gianluca;
2015-01-01
Nonlinearity mitigation based on the enhanced split-step Fourier method (ESSFM) for the implementation of low-complexity digital backpropagation (DBP) is investigated and experimentally demonstrated. After reviewing the main computational aspects of DBP and of the conventional split-step Fourier...... method (SSFM), the ESSFM for dual-polarization signals is introduced. Computational complexity, latency, and power consumption of DBP based on the SSFM and ESSFM algorithms are estimated and compared. Effective low-complexity nonlinearity mitigation in a 112 Gb/s polarization-multiplexed QPSK system...... of the SSFM algorithm to achieve the same performance. An analysis of the computational complexity and structure of the two algorithms reveals that the overall complexity and power consumption of DBP are reduced by a factor of 16 with respect to a conventional implementation, while the computation time...
Backpropagation Artificial Neural Network To Detect Hyperthermic Seizures In Rats
Directory of Open Access Journals (Sweden)
Rakesh Kumar Sinha
2003-02-01
Full Text Available A three-layered feed-forward back-propagation Artificial Neural Network was used to classify the seizure episodes in rats. Seizure patterns were induced by subjecting anesthetized rats to a Biological Oxygen Demand incubator at 45-47ºC for 30 to 60 minutes. Selected fast Fourier transform data of one second epochs of electroencephalogram were used to train and test the network for the classification of seizure and normal patterns. The results indicate that the present network with the architecture of 40-12-1 (input-hidden-output nodes agrees with manual scoring of seizure and normal patterns with a high recognition rate of 98.6%.
Evolving Resilient Back-Propagation Algorithm for Energy Efficiency Problem
Directory of Open Access Journals (Sweden)
Yang Fei
2016-01-01
Full Text Available Energy efficiency is one of our most economical sources of new energy. When it comes to efficient building design, the computation of the heating load (HL and cooling load (CL is required to determine the specifications of the heating and cooling equipment. The objective of this paper is to model heating load and cooling load buildings using neural networks in order to predict HL load and CL load. Rprop with genetic algorithm was proposed to increase the global convergence capability of Rprop by modifying a corresponding weight. Comparison results show that Rprop with GA can successfully improve the global convergence capability of Rprop and achieve lower MSE than other perceptron training algorithms, such as Back-Propagation or original Rprop. In addition, the trained network has better generalization ability and stabilization performance.
Directory of Open Access Journals (Sweden)
Sheela Tiwari
2013-08-01
Full Text Available This paperexplores theapplicationof artificial neural networksfor online identification of a multimachinepower system.Arecurrent neural networkhas been proposedas the identifier of the two area, four machinesystemwhich is a benchmark system for studying electromechanical oscillations in multimachine powersystems. This neural identifier is trained using the static Backpropagation algorithm. The emphasis of thepaper is on investigating the performance of the variants of the Backpropagation algorithm in training theneural identifier. The paper also compares the performances of the neural identifiers trained usingvariantsof the Backpropagation algorithmover a wide range of operating conditions.The simulation resultsestablish a satisfactory performance of the trained neural identifiers in identification of the test powersystem
Efficient Implementation of the Backpropagation Algorithm in FPGAs and Microcontrollers.
Ortega-Zamorano, Francisco; Jerez, Jose M; Urda Munoz, Daniel; Luque-Baena, Rafael M; Franco, Leonardo
2016-09-01
The well-known backpropagation learning algorithm is implemented in a field-programmable gate array (FPGA) board and a microcontroller, focusing in obtaining efficient implementations in terms of a resource usage and computational speed. The algorithm was implemented in both cases using a training/validation/testing scheme in order to avoid overfitting problems. For the case of the FPGA implementation, a new neuron representation that reduces drastically the resource usage was introduced by combining the input and first hidden layer units in a single module. Further, a time-division multiplexing scheme was implemented for carrying out product computations taking advantage of the built-in digital signal processor cores. In both implementations, the floating-point data type representation normally used in a personal computer (PC) has been changed to a more efficient one based on a fixed-point scheme, reducing system memory variable usage and leading to an increase in computation speed. The results show that the modifications proposed produced a clear increase in computation speed in comparison with the standard PC-based implementation, demonstrating the usefulness of the intrinsic parallelism of FPGAs in neurocomputational tasks and the suitability of both implementations of the algorithm for its application to the real world problems. PMID:26277004
Habarulema, J. B.; McKinnell, L.-A.
2012-05-01
In this work, results obtained by investigating the application of different neural network backpropagation training algorithms are presented. This was done to assess the performance accuracy of each training algorithm in total electron content (TEC) estimations using identical datasets in models development and verification processes. Investigated training algorithms are standard backpropagation (SBP), backpropagation with weight delay (BPWD), backpropagation with momentum (BPM) term, backpropagation with chunkwise weight update (BPC) and backpropagation for batch (BPB) training. These five algorithms are inbuilt functions within the Stuttgart Neural Network Simulator (SNNS) and the main objective was to find out the training algorithm that generates the minimum error between the TEC derived from Global Positioning System (GPS) observations and the modelled TEC data. Another investigated algorithm is the MatLab based Levenberg-Marquardt backpropagation (L-MBP), which achieves convergence after the least number of iterations during training. In this paper, neural network (NN) models were developed using hourly TEC data (for 8 years: 2000-2007) derived from GPS observations over a receiver station located at Sutherland (SUTH) (32.38° S, 20.81° E), South Africa. Verification of the NN models for all algorithms considered was performed on both "seen" and "unseen" data. Hourly TEC values over SUTH for 2003 formed the "seen" dataset. The "unseen" dataset consisted of hourly TEC data for 2002 and 2008 over Cape Town (CPTN) (33.95° S, 18.47° E) and SUTH, respectively. The models' verification showed that all algorithms investigated provide comparable results statistically, but differ significantly in terms of time required to achieve convergence during input-output data training/learning. This paper therefore provides a guide to neural network users for choosing appropriate algorithms based on the availability of computation capabilities used for research.
Backpropagation Neural Network Modeling for Fault Location in Transmission Line 150 kV
Directory of Open Access Journals (Sweden)
Azriyenni Narwan
2014-03-01
Full Text Available In this topic research was provided about the backpropagation neural network to detect fault location in transmission line 150 kV between substation to substation. The distance relay is one of the good protective device and safety devices that often used on transmission line 150 kV. The disturbances in power system are used distance relay protection equipment in the transmission line. However, it needs more increasing large load and network systems are increasing complex. The protection system use the digital control, in order to avoid the error calculation of the distance relay impedance settings and spent time will be more efficient. Then backpropagation neural network is a computational model that uses the training process that can be used to solve the problem of work limitations of distance protection relays. The backpropagation neural network does not have limitations cause of the impedance range setting. If the output gives the wrong result, so the correct of the weights can be minimized and also the response of galat, the backpropagation neural network is expected to be closer to the correct value. In the end, backpropagation neural network modeling is expected to detect the fault location and identify operational output current circuit breaker was tripped it. The tests are performance with interconnected system 150 kV of Riau Region.
Training a Feed-Forward Neural Network with Artificial Bee Colony based Backpropagation Method
Directory of Open Access Journals (Sweden)
Sudarshan Nandy
2012-09-01
Full Text Available Back-propagation algorithm is one of the most widely used and popular techniques to optimize the feedforward neural network training. Nature inspired meta-heuristic algorithms also provide derivative-freesolution to optimize complex problem. Artificial bee colony algorithm is a nature inspired meta-heuristicalgorithm, mimicking the foraging or food source searching behaviour of bees in a bee colony and thisalgorithm is implemented in several applications for an improved optimized outcome. The proposedmethod in this paper includes an improved artificial bee colony algorithm based back-propagation neuralnetwork training method for fast and improved convergence rate of the hybrid neural network learningmethod. The result is analysed with the genetic algorithm based back-propagation method, and it isanother hybridized procedure of its kind. Analysis is performed over standard data sets, reflecting the lightof efficiency of proposed method in terms of convergence speed and rate.
Directory of Open Access Journals (Sweden)
I Gede Sujana Eka Putra
2014-12-01
Full Text Available Kepribadian dapat diidentifikasi melalui analisis pola sidik jari. Pengenalan kepribadian umumnyamenggunakan uji psikometri melalui serangkaian tahapan yang relatif panjang. Melalui analisis pola sidik jari, dapatdiidentifikasi kepribadian secara lebih efisien. Penelitian ini mengajukan algoritma klasifikasi Fuzzy LearningVector Quantization (Fuzzy LVQ karena waktu komputasi yang lebih cepat dan tingkat pengenalan yang tinggi, dandengan metode Fuzzy Backpropagation yang mampu menyelesaikan model data non linier. Tahapan penelitianterdiri dari akuisisi dan klasifikasi. Tahapan pertama melalui akuisisi sidik jari, ekstraksi fitur, proses pelatihan, danpre-klasifikasi. Selanjutnya tahap klasifikasi, melalui klasifikasi fitur sidik jari uji menggunakan algoritma FuzzyLVQ, dibandingkan dengan Fuzzy Backpropagation. Kepribadian diidentifikasi melalui pola hasil klasifikasimenggunakan basis pengetahuan dermatoglyphics. Unjuk kerja diukur dari pencocokan pola hasil pre-klasifikasidan hasil klasifikasi. Hasil penelitian menunjukkan klasifikasi Fuzzy LVQ tingkat kecocokan tertinggi 93,78%dengan iterasi pelatihan maksimum=100 epoh pada target error 10-6. Sedangkan Fuzzy Backpropagation dengantingkat kecocokan tertinggi 93,30% dengan iterasi maksimum diatas 1000 epoh pada target error 10-3. Hal inimenunjukkan Fuzzy LVQ memiliki unjuk kerja lebih baik dibandingkan Fuzzy Backpropagation. Survey respondendilakukan untuk menguji kesesuaian analisa kepribadian sistem dibandingkan dengan kepribadian responden, danhasil survey menunjukkan analisa kepribadian sistem sebagian besar cocok dengan kepribadian responden.
Directory of Open Access Journals (Sweden)
Asif Ullah Khan
2011-03-01
Full Text Available Investment in stock market is one of the most popular type of investment. There are many conventional techniques being used and these include technical and fundamental analysis. The main aim of every investor is to earn maximum possible return on investments. The main issue with any approach is the proper weighting of criteria to obtain a list of stocks that are suitable for investments. This paper proposes an improved method for stock picking using self-organizing maps and genetic algorithm based backpropagation neural networks. The stock selected using self-organizing maps and genetic algorithm based backpropagation neural networks outperformed the BSE-30 Index by about 30.17% based on one and half month of stock data.
A simplification of the backpropagation-through-time algorithm for optimal neurocontrol.
Bersini, H; Gorrini, V
1997-01-01
Backpropagation-through-time (BPTT) is the temporal extension of backpropagation which allows a multilayer neural network to approximate an optimal state-feedback control law provided some prior knowledge (Jacobian matrices) of the process is available. In this paper, a simplified version of the BPTT algorithm is proposed which more closely respects the principle of optimality of dynamic programming. Besides being simpler, the new algorithm is less time-consuming and allows in some cases the discovery of better control laws. A formal justification of this simplification is attempted by mixing the Lagrangian calculus underlying BPTT with Bellman-Hamilton-Jacobi equations. The improvements due to this simplification are illustrated by two optimal control problems: the rendezvous and the bioreactor. PMID:18255645
Attariuas Hicham; Bouhorma Mohammed; Sofi Anas
2012-01-01
ales forecasting is one of the most crucial issues addressed in business. Control and evaluation of future sales still seem concerned both researchers and policy makers and managers of companies. this research propose an intelligent hybrid sales forecasting system Delphi-FCBPN sales forecast based on Delphi Method, fuzzy clustering and Back-propagation (BP) Neural Networks with adaptive learning rate. The proposed model is constructed to integrate expert judgments, using Delphi method, in enh...
A Selective Dynamic Sampling Back-Propagation Approach for Handling the Two-Class Imbalance Problem
Directory of Open Access Journals (Sweden)
Roberto Alejo
2016-07-01
Full Text Available In this work, we developed a Selective Dynamic Sampling Approach (SDSA to deal with the class imbalance problem. It is based on the idea of using only the most appropriate samples during the neural network training stage. The “average samples”are the best to train the neural network, they are neither hard, nor easy to learn, and they could improve the classifier performance. The experimental results show that the proposed method is a successful method to deal with the two-class imbalance problem. It is very competitive with respect to well-known over-sampling approaches and dynamic sampling approaches, even often outperforming the under-sampling and standard back-propagation methods. SDSA is a very simple method for automatically selecting the most appropriate samples (average samples during the training of the back-propagation, and it is very efficient. In the training stage, SDSA uses significantly fewer samples than the popular over-sampling approaches and even than the standard back-propagation trained with the original dataset.
Assembly Quality Prediction Based on Back-propagation Artificial Neural Network
Directory of Open Access Journals (Sweden)
He Yong-yi
2013-07-01
Full Text Available Because of the severe geometrical distortion induced by the optical system and the limited kinetic accuracy of mechanical system in the vision-based mobile-phone lens’s assembly system, the nonlinear, perspective distortion errors and the kinematics errors generally exist in the assembly process of the mobile-phone lens. It is necessary to predict the assembly quality of the vision-based mobile-phone lens’s pick-and-place system so as to eliminate the immediate effect on the assembling process before extracting quantitative assembling. Comparison with current research methods, the back-propagation artificial neural network is applied to predict the assembly quality of the vision-based mobile-phone lens’s pick-and-place system. Firstly, the mobile-phone lens’s assembly quality characteristics are defined and sampled; Secondly, a back-propagation artificial neural network of the mobile-phone lens’s assembly quality prediction is presented; Finally apply some training samples obtained from the experiments to train and test this back-propagation artificial neural network. The results show that the proposed method is effective to predict the assembly quality of the vision-based mobile-phone lens’s pick-and-place system with high accuracy and high reliability.
Diagnosing coronary artery disease with a backpropagation neural network: Lessons learned
Energy Technology Data Exchange (ETDEWEB)
Turner, D.D. [Pacific Northwest Lab., Richland, WA (United States); Holmes, E.R. [Sacred Heart Medical Center, Spokane, WA (United States)
1995-12-31
The SPECT (single photon emitted computed tomography) procedure, while widely used for diagnosing coronary artery disease, is not a perfect technology. We have investigated using a backpropagation neural network to diagnose patients suffering from coronary artery disease that is independent from the SPECT procedure. The raw thallium-201 scintigrams produced before the SPECT tomographic reconstruction were used as input patterns for the backpropagation neural network, and the diagnoses resulting mainly from cardiac catheterization as the desired outputs for each pattern. Several preprocessing techniques were applied to the scintigrams, in an attempt to improve the information to noise ratio. After using the a procedure that extracted a subimage containing the heart from each scintigram, we used a data reduction technique, thereby encoding the scintigram in 12 values, which were the inputs to the backpropagation neural network. The network was then trained. This network per-formed superbly for patients suffering from inferolateral disease (classifying 10 out of 10 correctly), but performance was less than optimal for cases involving other coronary zones. While the scope of this project was limited to diagnosing coronary artery disease, this initial work can be extended to other medical imaging procedures, such as diagnosing breast cancer from a mammogram and evaluating lung perfusion studies.
Application of back-propagation neural networks to identification of seismic arrival types
Dai, Heng; MacBeth, Colin
1997-01-01
A back-propagation neural network (BPNN) approach is developed to identify P- and S-arrivals from three-component recordings of local earthquake data. The BPNN is trained by selecting trace segments of P- and S-waves and noise bursts converted into an attribute space based on the degree of polarization (DOP). After training, the network can automatically identify the type of arrival on earthquake recordings. Compared with manual analysis, a BPNN trained with nine groups of DOP segments can co...
Scanner color management model based on improved back-propagation neural network
Institute of Scientific and Technical Information of China (English)
Xinwu Li
2008-01-01
Scanner color management is one of the key techniques for color reproduction in information optics.A new scanner color management model is presented based on analyzing rendering principle of scanning objects.In this model,a standard color target is taken as experimental sample.Color blocks in color shade area are used to substitute complete color space to solve the difficulties in selecting experimental color blocks.Immune genetic algorithm is used to correct back-propagation neural network(BPNN)to speed up the convergence of the model.Experimental results show that the model can improve the accuracy of scanner color management.
Directory of Open Access Journals (Sweden)
Ikhthison Mekongga
2014-02-01
Full Text Available The need for bandwidth has been increasing recently. This is because the development of internet infrastructure is also increasing so that we need an economic and efficient provider system. This can be achieved through good planning and a proper system. The prediction of the bandwidth consumption is one of the factors that support the planning for an efficient internet service provider system. Bandwidth consumption is predicted using ANN. ANN is an information processing system which has similar characteristics as the biologic al neural network. ANN is chosen to predict the consumption of the bandwidth because ANN has good approachability to non-linearity. The variable used in ANN is the historical load data. A bandwidth consumption information system was built using neural networks with a backpropagation algorithm to make the use of bandwidth more efficient in the future both in the rental rate of the bandwidth and in the usage of the bandwidth.Keywords: Forecasting, Bandwidth, Backpropagation
Parallel implementation of backpropagation neural networks on a heterogeneous array of transputers.
Foo, S K; Saratchandran, P; Sundararajan, N
1997-01-01
This paper analyzes parallel implementation of the backpropagation training algorithm on a heterogeneous transputer network (i.e., transputers of different speed and memory) connected in a pipelined ring topology. Training-set parallelism is employed as the parallelizing paradigm for the backpropagation algorithm. It is shown through analysis that finding the optimal allocation of the training patterns amongst the processors to minimize the time for a training epoch is a mixed integer programming problem. Using mixed integer programming optimal pattern allocations for heterogeneous processor networks having a mixture of T805-20 (20 MHz) and T805-25 (25 MHz) transputers are theoretically found for two benchmark problems. The time for an epoch corresponding to the optimal pattern allocations is then obtained experimentally for the benchmark problems from the T805-20, TS805-25 heterogeneous networks. A Monte Carlo simulation study is carried out to statistically verify the optimality of the epoch time obtained from the mixed integer programming based allocations. In this study pattern allocations are randomly generated and the corresponding time for an epoch is experimentally obtained from the heterogeneous network. The mean and standard deviation for the epoch times from the random allocations are then compared with the optimal epoch time. The results show the optimal epoch time to be always lower than the mean epoch times by more than three standard deviations (3sigma) for all the sample sizes used in the study thus giving validity to the theoretical analysis.
A modified backpropagation algorithm for training neural networks on data with error bars
International Nuclear Information System (INIS)
A method is proposed for training multilayer feedforward neural networks on data contaminated with noise. Specifically, we consider the case that the artificial neural system is required to learn a physical mapping when the available values of the target variable are subject to experimental uncertainties, but are characterized by error bars. The proposed method, based on maximum likelihood criterion for parameter estimation, involves simple modifications of the on-line backpropagation learning algorithm. These include incorporation of the error-bar assignments in a pattern-specific learning rate, together with epochal updating of a new measure of model accuracy that replaces the usual mean-square error. The extended backpropagation algorithm is successfully tested on two problems relevant to the modelling of atomic-mass systematics by neural networks. Provided the underlying mapping is reasonably smooth, neural nets trained with the new procedure are able to learn the true function to a good approximation even in the presence of high levels of Gaussian noise. (author). 26 refs, 2 figs, 5 tabs
Directory of Open Access Journals (Sweden)
Omaima N. A.
2010-01-01
Full Text Available Problem statement: The problem inherent to any digital image is the large amount of bandwidth required for transmission or storage. This has driven the research area of image compression to develop algorithms that compress images to lower data rates with better quality. Artificial neural networks are becoming attractive in image processing where high computational performance and parallel architectures are required. Approach: In this research, a three layered Backpropagation Neural Network (BPNN was designed for building image compression/decompression system. The Backpropagation neural network algorithm (BP was used for training the designed BPNN. Many techniques were used to speed up and improve this algorithm by using different BPNN architecture and different values of learning rate and momentum variables. Results: Experiments had been achieved, the results obtained, such as Compression Ratio (CR and peak signal to noise ratio (PSNR are compared with the performance of BP with different BPNN architecture and different learning parameters. The efficiency of the designed BPNN comes from reducing the chance of error occurring during the compressed image transmission through analog or digital channel. Conclusion: The performance of the designed BPNN image compression system can be increased by modifying the network itself, learning parameters and weights. Practically, we can note that the BPNN has the ability to compress untrained images but not in the same performance of the trained images.
Olawoyin, Richard
2016-10-01
The backpropagation (BP) artificial neural network (ANN) is a renowned and extensively functional mathematical tool used for time-series predictions and approximations; which also define results for non-linear functions. ANNs are vital tools in the predictions of toxicant levels, such as polycyclic aromatic hydrocarbons (PAH) potentially derived from anthropogenic activities in the microenvironment. In the present work, BP ANN was used as a prediction tool to study the potential toxicity of PAH carcinogens (PAHcarc) in soils. Soil samples (16 × 4 = 64) were collected from locations in South-southern Nigeria. The concentration of PAHcarc in laboratory cultivated white melilot, Melilotus alba roots grown on treated soils was predicted using ANN model training. Results indicated the Levenberg-Marquardt back-propagation training algorithm converged in 2.5E+04 epochs at an average RMSE value of 1.06E-06. The averagedR(2) comparison between the measured and predicted outputs was 0.9994. It may be deduced from this study that, analytical processes involving environmental risk assessment as used in this study can successfully provide prompt prediction and source identification of major soil toxicants. PMID:27424056
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Back-propagation neural network was applied to predict and optimize the synthetic technology of 2-chloro-4,6-dinitroresorcinol. A model was established based on back-propagation neural network using the experimental data of homogeneous design as the training sample set and the technological parameters were optimized by it. The optimal technological parameters are as follows: the reaction time is 4h, the rewere performed and the average yield of 2-chloro-4,6-dinitroresorcinol is 96.64%, the absolute error of it with the predicted value is - 1.07 %.
The Performance of EEG-P300 Classification using Backpropagation Neural Networks
Directory of Open Access Journals (Sweden)
Arjon Turnip
2013-12-01
Full Text Available Electroencephalogram (EEG recordings signal provide an important function of brain-computer communication, but the accuracy of their classification is very limited in unforeseeable signal variations relating to artifacts. In this paper, we propose a classification method entailing time-series EEG-P300 signals using backpropagation neural networks to predict the qualitative properties of a subject’s mental tasks by extracting useful information from the highly multivariate non-invasive recordings of brain activity. To test the improvement in the EEG-P300 classification performance (i.e., classification accuracy and transfer rate with the proposed method, comparative experiments were conducted using Bayesian Linear Discriminant Analysis (BLDA. Finally, the result of the experiment showed that the average of the classification accuracy was 97% and the maximum improvement of the average transfer rate is 42.4%, indicating the considerable potential of the using of EEG-P300 for the continuous classification of mental tasks.
Application of the Backpropagation Neural Network Method in Designing Tungsten Heavy Alloy
Institute of Scientific and Technical Information of China (English)
ZHANG Zhao-hui; WANG Wei-jie; WANG Fu-chi; LI Shu-kui
2006-01-01
The model describing the dependence of the mechanical properties on the chemical composition and as deformation techniques of tungsten heavy alloy is established by the method of improved the backpropagation neural network. The mechanical properties' parameters of tungsten alloy and deformation techniques for tungsten alloy are used as the inputs. The chemical composition and deformation amount of tungsten alloy are used as the outputs. Then they are used for training the neural network. At the same time,the optimal number of the hidden neurons is obtained through the experiential equations,and the varied step learning method is adopted to ensure the stability of the training process. According to the requirements for mechanical properties,the chemical composition and the deformation condition for tungsten heavy alloy can be designed by this artificial neural network system.
On nonlinearly-induced noise in single-channel optical links with digital backpropagation.
Beygi, Lotfollah; Irukulapati, Naga V; Agrell, Erik; Johannisson, Pontus; Karlsson, Magnus; Wymeersch, Henk; Serena, Paolo; Bononi, Alberto
2013-11-01
In this paper, we investigate the performance limits of electronic chromatic dispersion compensation (EDC) and digital backpropagation (DBP) for a single-channel non-dispersion-managed fiber-optical link. A known analytical method to derive the performance of the system with EDC is extended to derive a first-order approximation for the performance of the system with DBP. In contrast to the cubic growth of the variance of the nonlinear noise-like interference, often called nonlinear noise, with input power for EDC, a quadratic growth is observed with DBP using this approximation. Finally, we provide numerical results to verify the accuracy of the proposed approach and compare it with existing analytical models. PMID:24216860
Nonlinear inverse modeling of sensor based on back-propagation fuzzy logical system
Institute of Scientific and Technical Information of China (English)
Li Jun; Liu Junhua
2007-01-01
Objective To correct the nonlinear error of sensor output, a new approach to sensor inverse modeling based on Back-Propagation Fuzzy Logical System (BP FS) is presented. Methods The BP FS is a computationally efficient nonlinear universal approximator, which is capable of implementing complex nonlinear mapping from its input pattern space to the output with fast convergence speed. Results The neuro-fuzzy hybrid system, i.e. BP FS, is then applied to construct nonlinear inverse model of pressure sensor. The experimental results show that the proposed inverse modeling method automatically compensates the associated nonlinear error in pressure estimation, and thus the performance of pressure sensor is significantly improved. Conclusion The proposed method can be widely used in nonlinearity correction of various kinds of sensors to compensate the effects of nonlinearity and temperature on sensor output.
A new backpropagation learning algorithm for layered neural networks with nondifferentiable units.
Oohori, Takahumi; Naganuma, Hidenori; Watanabe, Kazuhisa
2007-05-01
We propose a digital version of the backpropagation algorithm (DBP) for three-layered neural networks with nondifferentiable binary units. This approach feeds teacher signals to both the middle and output layers, whereas with a simple perceptron, they are given only to the output layer. The additional teacher signals enable the DBP to update the coupling weights not only between the middle and output layers but also between the input and middle layers. A neural network based on DBP learning is fast and easy to implement in hardware. Simulation results for several linearly nonseparable problems such as XOR demonstrate that the DBP performs favorably when compared to the conventional approaches. Furthermore, in large-scale networks, simulation results indicate that the DBP provides high performance. PMID:17381272
Directory of Open Access Journals (Sweden)
Suhendry Effendy
2010-11-01
artificial neural network. Discrete Wavelet Transform processes the input image to obtain the essential features found on the face image. These features are then classified using an back-propagation artificial neural network for the input image to be identified. Testing the system using facial images in AT & T Database of Faces of 400 images comprising 40 facial images of individuals and web-camera catches as many as 100 images of 10 individuals. The accuracy of level of recognition on AT & T Database of Faces reaches 93.5%, while the accuracy of level of recognition on a web-camera capture images up to 96%. Testing is also done on image of AT & T Database of Faces with given noise. Apparently the noise in the image does not give meaningful effect on the level of recognition accuracy.
Prediction of the breakdown voltage of transformer oil based on a backpropagation network
Energy Technology Data Exchange (ETDEWEB)
Cao Shun' an; Li Rui; Sheng Kai [Wuhan Univ., Hubei Province (China). Dept. of Water Quality Engineering
2008-03-15
Prediction of the breakdown voltage of transformer oil facilitates the early fault diagnosis of transformers, and provides a scientific basis for the prevention of faults in transformer oil. In this paper, based on the correlation between performance parameters of transformer oil, along with the excellent fault-tolerant ability, prominent non-linear approximation capability and self-learning capacity of backpropagation (BP) networks, a BP network with a BP algorithm and a BP network with an improved BP algorithm are developed to simulate the correlation between breakdown voltage and four relevant parameters, using the monitoring data of transformer oil. The results show that the latter algorithm gives more accurate predicted values, which proves to be of high application value. (orig.)
Back-Propagation Artificial Neural Networks for Water Supply Pipeline Model
Institute of Scientific and Technical Information of China (English)
朱东海; 张土乔; 毛根海
2002-01-01
Water supply pipelines are the lifelines of a city. When pipelines burst, the burst site is difficult to locate by traditional methods such as manual tools or only by watching. In this paper, the burst site was identified using back-propagation (BP) artificial neural networks (ANN). The study is based on an indoor urban water supply model experiment. The key to appling BP ANN is to optimize the ANN's topological structure and learning parameters. This paper presents the optimizing method for a 3-layer BP neural network's topological structure and its learning parameters-learning ratio and the momentum factor. The indoor water supply pipeline model experimental results show that BP ANNs can be used to locate the burst point in urban water supply systems. The topological structure and learning parameters were optimized using the experimental results.
Directory of Open Access Journals (Sweden)
Michihito Ueda
Full Text Available To realize an analog artificial neural network hardware, the circuit element for synapse function is important because the number of synapse elements is much larger than that of neuron elements. One of the candidates for this synapse element is a ferroelectric memristor. This device functions as a voltage controllable variable resistor, which can be applied to a synapse weight. However, its conductance shows hysteresis characteristics and dispersion to the input voltage. Therefore, the conductance values vary according to the history of the height and the width of the applied pulse voltage. Due to the difficulty of controlling the accurate conductance, it is not easy to apply the back-propagation learning algorithm to the neural network hardware having memristor synapses. To solve this problem, we proposed and simulated a learning operation procedure as follows. Employing a weight perturbation technique, we derived the error change. When the error reduced, the next pulse voltage was updated according to the back-propagation learning algorithm. If the error increased the amplitude of the next voltage pulse was set in such way as to cause similar memristor conductance but in the opposite voltage scanning direction. By this operation, we could eliminate the hysteresis and confirmed that the simulation of the learning operation converged. We also adopted conductance dispersion numerically in the simulation. We examined the probability that the error decreased to a designated value within a predetermined loop number. The ferroelectric has the characteristics that the magnitude of polarization does not become smaller when voltages having the same polarity are applied. These characteristics greatly improved the probability even if the learning rate was small, if the magnitude of the dispersion is adequate. Because the dispersion of analog circuit elements is inevitable, this learning operation procedure is useful for analog neural network hardware.
Acker, Corey D; Antic, Srdjan D
2009-03-01
Basal dendrites of prefrontal cortical neurons receive strong synaptic drive from recurrent excitatory synaptic inputs. Synaptic integration within basal dendrites is therefore likely to play an important role in cortical information processing. Both synaptic integration and synaptic plasticity depend crucially on dendritic membrane excitability and the backpropagation of action potentials. We carried out multisite voltage-sensitive dye imaging of membrane potential transients from thin basal branches of prefrontal cortical pyramidal neurons before and after application of channel blockers. We found that backpropagating action potentials (bAPs) are predominantly controlled by voltage-gated sodium and A-type potassium channels. In contrast, pharmacologically blocking the delayed rectifier potassium, voltage-gated calcium, or I(h) conductance had little effect on dendritic AP propagation. Optically recorded bAP waveforms were quantified and multicompartmental modeling was used to link the observed behavior with the underlying biophysical properties. The best-fit model included a nonuniform sodium channel distribution with decreasing conductance with distance from the soma, together with a nonuniform (increasing) A-type potassium conductance. AP amplitudes decline with distance in this model, but to a lesser extent than previously thought. We used this model to explore the mechanisms underlying two sets of published data involving high-frequency trains of APs and the local generation of sodium spikelets. We also explored the conditions under which I(A) down-regulation would produce branch strength potentiation in the proposed model. Finally, we discuss the hypothesis that a fraction of basal branches may have different membrane properties compared with sister branches in the same dendritic tree. PMID:19118105
Directory of Open Access Journals (Sweden)
Tummala Pradeep
2011-11-01
Full Text Available This paper investigates the use of variable learning rate back-propagation algorithm and Levenberg-Marquardt back-propagation algorithm in Intrusion detection system for detecting attacks. Inthe present study, these 2 neural network (NN algorithms are compared according to their speed,accuracy and, performance using mean squared error (MSE (Closer the value of MSE to 0, higher willbe the performance. Based on the study and test results, the Levenberg-Marquardt algorithm has been found to be faster and having more accuracy and performance than variable learning rate backpropagation algorithm.
Directory of Open Access Journals (Sweden)
Didi Supriyadi
2014-01-01
Full Text Available Dengue disease is a major health problem and endemic in several countries including Indonesia. Indonesia is included in the category "A" in the stratification of DHF by WHO in 2001 which indicates the high rate of treatment in hospital and deaths from dengue. The purpose of this study was to investigate the ability of artificial neural networks Backpropagation method for information of the spread of dengue fever in a region. In this study uses six input variables which are environmental factors that influence the spread of dengue fever, include average temperature - average, rainfall, number of rainy days, the population density, sea surface height, and the percentage of larvae-free number for which data is sourced from BMKG, BPS and the Public Health Service. Network architecture applied to a multilayer network that uses an input with 6 neurons, one hidden lay er and an output with the output neuron is one. From the results obtained by training the best network architecture is the number one hidden layer with the number of neurons obtained a total of 110 neurons and also the system can recognize the entire training data. The best training algorithm using a variable learning rate and momentum of 0.9 by 0.6 by the end of the training MSE 0.000999879. in the process of testing using test data obtained 17 tissue levels of approximately 88.23% accuracy. Therefore we can conclude that the network is implemented in this study when subjected to the test data other then the error rate of about 11.77%.Keywords : Artificial Neural Networks; Backpropagation; Dengue fever
Díaz Souto, Alberto; Napoli, Antonio; Adhikari, Susmita; Maalej, Zied; Lobato Polo, Adriana P.; Kuschnerov, Maxim; Prat Gomà, Josep Joan
2012-01-01
We investigate the joint implementation of back-propagation and RF-pilot tone for fiber nonlinear compensation in POLMUX-16QAM and show that the nonlinear tolerance is drastically improved when compared to OFDM system Peer Reviewed
Salim Lahmiri
2014-01-01
This paper presents a forecasting model that integrates the discrete wavelet transform (DWT) and backpropagation neural networks (BPNN) for predicting financial time series. The presented model first uses the DWT to decompose the financial time series data. Then, the obtained approximation (low-frequency) and detail (high-frequency) components after decomposition of the original time series are used as input variables to forecast future stock prices. Indeed, while high-frequency components ca...
Li Honglian; Fang Hong; Tang Ju; Zhang Jun; Zhang Jing
2013-01-01
It is difficult to accurately reckon vehicle position for vehicle navigation system (VNS) during GPS outages, a novel prediction algorithm of dead reckon (DR) position error is put forward, which based on Bayesian regularization back-propagation (BRBP) neural network. DR, GPS position data are first de-noised and compared at different stationary wavelet transformation (SWT) decomposition level, and DR position error data are acquired after the SWT coefficients differences are reconstructed. A...
Taufikurrahman, Mohammad
2015-01-01
Neural networks is one of method which suitable for used to predict the time series data which include volatile. This research has been finished by using software Matlab 7.10.0 (R2010a). The research used the model neural network backpropagation. The aim to predict exchange rate Rupiah to Dollar U.S in 2014 from the research, discussion and the data process. To get exchange rate Rupiah for Dollar U.S in 2014 is 12.111,09.
Application of back-propagation neural networks to identification of seismic arrival types
Dai, Hengchang; MacBeth, Colin
1997-05-01
A back-propagation neural network (BPNN) approach is developed to identify P- and S-arrivals from three-component recordings of local earthquake data. The BPNN is trained by selecting trace segments of P- and S-waves and noise bursts converted into an attribute space based on the degree of polarization (DOP). After training, the network can automatically identify the type of arrival on earthquake recordings. Compared with manual analysis, a BPNN trained with nine groups of DOP segments can correctly identify 82.3% of the P-arrivals and 62.6% of the S-arrivals from one seismic station, and when trained with five groups from a training dataset selected from another seismic station, it can correctly identify 76.6% of the P-arrivals and 60.5% of S-arrivals. This approach is adaptive and needs only the onset time of arrivals as input, although its performance cannot be improved by simply adding more training datasets due to the complexity of DOP patterns. Our experience suggests that other information or another network may be necessary to improve its performance.
Institute of Scientific and Technical Information of China (English)
FENG Yerong; David H.KITZMILLER
2006-01-01
A back-propagation neural network (BPNN) was used to establish relationships between the shortrange (0-3-h) rainfall and the predictors ranging from extrapolative forecasts of radar reflectivity, satelliteestimated cloud-top temperature, lightning strike rates, and Nested Grid Model (NGM) outputs. Quantitative precipitation forecasts (QPF) and the probabilities of categorical precipitation were obtained.Results of the BPNN algorithm were compared to the results obtained from the multiple linear regression algorithm for an independent dataset from the 1999 warm season over the continental United States. A sample forecast was made over the southeastern United States. Results showed that the BPNN categorical rainfall forecasts agreed well with Stage Ⅲ observations in terms of the size and shape of the area of rainfall. The BPNN tended to over-forecast the spatial extent of heavier rainfall amounts, but the positioning of the areas with rainfall ≥25.4 mm was still generally accurate. It appeared that the BPNN and linear regression approaches produce forecasts of very similar quality, although in some respects BPNN slightly outperformed the regression.
Low complexity digital backpropagation for high baud subcarrier-multiplexing systems.
Zhang, Fangyuan; Zhuge, Qunbi; Qiu, Meng; Plant, David V
2016-07-25
In this paper, we propose two modifications to reduce the complexity of the subcarrier-multiplexing (SCM) based digital backpropagation (DBP) for high symbol rate SCM systems. The first one is to reduce the number of interfering subcarriers (RS-SCM-DBP) when evaluating the cross-subcarrier nonlinearity (CSN). The second one is to replace the original frequency domain CSN filters with the infinite impulse response (IIR) filters (IIR-RS-SCM-DBP) in the CSN compensation. The performance of the proposed schemes are numerically evaluated in three-channel dual-polarization (DP) 16QAM wavelength-division multiplexing (WDM) transmissions. The aggregate symbol rate for each channel is 120 GBaud and the transmission distance is 1600 km. For the SCM system with 16 subcarriers, the IIR-RS-SCM-DBP with only 4 interfering subcarriers and 2 steps can achieve a 0.3 dB Q-factor improvement in the WDM transmission. Compared to the original SCM-DBP, the proposed IIR-RS-SCM-DBP reduces the complexity by 48% at a performance loss of only 0.07 dB. PMID:27464154
Institute of Scientific and Technical Information of China (English)
WU Shun-chuan(吴顺川); ZHANG You-pa(张友葩); GAO Yong-tao(高永涛)
2003-01-01
Taking the practical reinforced engineering of a reinforced soil retaining wall as an example, which located in Shandong Province and set on 104 national highway, the stress-spread behaviors of the anchor bars in the preforced proceeding were tested. According to the test data, and by use of the update backpropagation (BP) algorithm neural network(NN), the test method and it's mechanism were studied by the network, then the learning results show the mean square error(MSE) only at the 2.55% level, and the proof-testing results show the MSE at 4.38% level (the main aim is to build a NN directly from the in-situ test results (the learning phase)). Ipso-facto, the learning and adjustment abilities of the NN permit us to develop the test data, subsequently, 36 test data were acquired from the NN. By use of the provide data, as well as the failure situation and carried loading capacity of the retaining wall, finally, the choice the reasonable range interval distance of prestress cement grouting anchor bars were carried out, and the result was 2 m×2 m.
Low complexity digital backpropagation for high baud subcarrier-multiplexing systems.
Zhang, Fangyuan; Zhuge, Qunbi; Qiu, Meng; Plant, David V
2016-07-25
In this paper, we propose two modifications to reduce the complexity of the subcarrier-multiplexing (SCM) based digital backpropagation (DBP) for high symbol rate SCM systems. The first one is to reduce the number of interfering subcarriers (RS-SCM-DBP) when evaluating the cross-subcarrier nonlinearity (CSN). The second one is to replace the original frequency domain CSN filters with the infinite impulse response (IIR) filters (IIR-RS-SCM-DBP) in the CSN compensation. The performance of the proposed schemes are numerically evaluated in three-channel dual-polarization (DP) 16QAM wavelength-division multiplexing (WDM) transmissions. The aggregate symbol rate for each channel is 120 GBaud and the transmission distance is 1600 km. For the SCM system with 16 subcarriers, the IIR-RS-SCM-DBP with only 4 interfering subcarriers and 2 steps can achieve a 0.3 dB Q-factor improvement in the WDM transmission. Compared to the original SCM-DBP, the proposed IIR-RS-SCM-DBP reduces the complexity by 48% at a performance loss of only 0.07 dB.
Khuriati, Ainie; Setiabudi, Wahyu; Nur, Muhammad; Istadi, Istadi
2015-12-01
Backpropgation neural network was trained to predict of combustible fraction heating value of MSW from the physical composition. Waste-to-Energy (WtE) is a viable option for municipal solid waste (MSW) management. The influence of the heating value of municipal solid waste (MSW) is very important on the implementation of WtE systems. As MSW is heterogeneous material, direct heating value measurements are often not feasible. In this study an empirical model was developed to describe the heating value of the combustible fraction of municipal solid waste as a function of its physical composition of MSW using backpropagation neural network. Sampling process was carried out at Jatibarang landfill. The weight of each sorting sample taken from each discharged MSW vehicle load is 100 kg. The MSW physical components were grouped into paper wastes, absorbent hygiene product waste, styrofoam waste, HD plastic waste, plastic waste, rubber waste, textile waste, wood waste, yard wastes, kitchen waste, coco waste, and miscellaneous combustible waste. Network was trained by 24 datasets with 1200, 769, and 210 epochs. The results of this analysis showed that the correlation from the physical composition is better than multiple regression method .
Automatic Selection of Open Source Multimedia Softwares Using Error Back-Propagation Neural Network
Directory of Open Access Journals (Sweden)
Deepika
2015-07-01
Full Text Available Open source opens a new era to provide license of the software for the user at free of cost which is advantage over paid licensed software. In Multimedia applications there are many versions of software are available and there is a problem for the user to select compatible software for their own system. Most of the time while surfing for software a huge list of software opens in response. The selection of particular software which is pretty suitable for the system from a real big list is the biggest challenge that is faced by the users. This work has been done that focuses on the existing open source software that are widely used and to design an automatic system for selection of particular open source software according to the compatibility of users own system. In this work, error back-propagation based neural network is designed in MATLAB for automatic selection of open source software. The system provides the open source software name after taking the information from user. Regression coefficient of 0.93877 is obtained and the results shown are up to the mark and can be utilized for the fast and effective software search.
Energy Technology Data Exchange (ETDEWEB)
Saini, Lalit Mohan [Department of Electrical Engineering, National Institute of Technology, Kurukshetra, Haryana 136119 (India)
2008-07-15
Up to 7 days ahead electrical peak load forecasting has been done using feed forward neural network based on Steepest descent, Bayesian regularization, Resilient and adaptive backpropagation learning methods, by incorporating the effect of eleven weather parameters and past peak load information. To avoid trapping of network into a state of local minima, the optimization of user-defined parameters viz., learning rate and error goal has been performed. The sliding window concept has been incorporated for selection of training data set. It was then reduced as per relevant selection according to the day type and season for which the forecast is made. To reduce the dimensionality of input matrix, the Principal Component Analysis method of factor extraction or correlation analysis technique has been used and their performance has been compared. The resultant data set was used for training of three-layered neural network. In order to increase the learning speed, the weights and biases were initialized according to Nguyen and Widrow method. To avoid over fitting, early stopping of training was done at the minimum validation error. (author)
Class of backpropagation techniques for limited-angle reconstruction in microwave tomography
Energy Technology Data Exchange (ETDEWEB)
Paladhi, P. Roy; Tayebi, A.; Udpa, L.; Udpa, S. [Non-destructive Evaluation Lab, Dept. of Electrical and Computer Engineering, College of Engineering, Michigan State University, Lansing, MI 48824-1226 (United States); Sinha, A. [Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824 (United States)
2015-03-31
Filtered backpropagation (FBPP) is a well-known technique used in Diffraction Tomography (DT). For accurate reconstruction using FBPP, full 360° angular coverage is necessary. However, it has been shown that using some inherent redundancies in the projection data in a tomographic setup, accurate reconstruction is still possible with 270° coverage which is called the minimal-scan angle range. This can be done by applying weighing functions (or filters) on projection data of the object to eliminate the redundancies and accurately reconstruct the image from 270° coverage. This paper demonstrates procedures to generate many general classes of these weighing filters. These are all equivalent at 270° coverage but vary in performance at lower angular coverages and in presence of noise. This paper does a comparative analysis of different filters when angular coverage is lower than minimal-scan angle of 270°. Simulation studies have been done to find optimum weight filters for sub-minimal angular coverage (<270°)
International Nuclear Information System (INIS)
In this work it was analyzed the residual performance of Portland cement concretes, when cold after heat-treated up to 600 deg C. Granite-gneiss was used in the three concrete mix proportions as the coarse aggregate, and river sand with finesses modulus of 2.7 as the fine aggregate. Ultrasonic pulse tests were performed on all the specimens and ultrasonic dynamic modulus were obtained. An artificial neural network of the backpropagation type was trained to evaluate and apply models in predicting residual properties of Portland cement concretes. The input layer for both models consists of an external layer input vector of the temperature. The hidden layer has two processing units with hyperbolic tangent sigmoid transfer functions (tansig for short), and the output layer contains one processing unit that represents the network's output (ultrasonic pulse velocity or modulus of elasticity) for each input vector. The training phase of the network converged for reasonable results after 5.000 epochs approximately, resulting in mean squared errors less than 0.02 for the normalized data. The neural network developed for modeling residual properties of Portland cement concretes was shown to be efficient in both the training phase and the test. From the results reasonable predictions could be made for the ultrasonic pulse velocity or dynamic modulus of elasticity by using temperature. (author)
Parallelizing Backpropagation Neural Network Using MapReduce and Cascading Model.
Liu, Yang; Jing, Weizhe; Xu, Lixiong
2016-01-01
Artificial Neural Network (ANN) is a widely used algorithm in pattern recognition, classification, and prediction fields. Among a number of neural networks, backpropagation neural network (BPNN) has become the most famous one due to its remarkable function approximation ability. However, a standard BPNN frequently employs a large number of sum and sigmoid calculations, which may result in low efficiency in dealing with large volume of data. Therefore to parallelize BPNN using distributed computing technologies is an effective way to improve the algorithm performance in terms of efficiency. However, traditional parallelization may lead to accuracy loss. Although several complements have been done, it is still difficult to find out a compromise between efficiency and precision. This paper presents a parallelized BPNN based on MapReduce computing model which supplies advanced features including fault tolerance, data replication, and load balancing. And also to improve the algorithm performance in terms of precision, this paper creates a cascading model based classification approach, which helps to refine the classification results. The experimental results indicate that the presented parallelized BPNN is able to offer high efficiency whilst maintaining excellent precision in enabling large-scale machine learning. PMID:27217823
Neural network for processing both spatial and temporal data with time based back-propagation
Villarreal, James A. (Inventor); Shelton, Robert O. (Inventor)
1993-01-01
Neural networks are computing systems modeled after the paradigm of the biological brain. For years, researchers using various forms of neural networks have attempted to model the brain's information processing and decision-making capabilities. Neural network algorithms have impressively demonstrated the capability of modeling spatial information. On the other hand, the application of parallel distributed models to the processing of temporal data has been severely restricted. The invention introduces a novel technique which adds the dimension of time to the well known back-propagation neural network algorithm. In the space-time neural network disclosed herein, the synaptic weights between two artificial neurons (processing elements) are replaced with an adaptable-adjustable filter. Instead of a single synaptic weight, the invention provides a plurality of weights representing not only association, but also temporal dependencies. In this case, the synaptic weights are the coefficients to the adaptable digital filters. Novelty is believed to lie in the disclosure of a processing element and a network of the processing elements which are capable of processing temporal as well as spacial data.
Breathomics for Gastric Cancer Classification Using Back-propagation Neural Network.
Daniel, D Arul Pon; Thangavel, K
2016-01-01
Breathomics is the metabolomics study of exhaled air. It is a powerful emerging metabolomics research field that mainly focuses on health-related volatile organic compounds (VOCs). Since the quantity of these compounds varies with health status, breathomics assures to deliver noninvasive diagnostic tools. Thus, the main aim of breathomics is to discover patterns of VOCs related to abnormal metabolic processes occurring in the human body. Classification systems, however, are not designed for cost-sensitive classification domains. Therefore, they do not work on the gastric carcinoma (GC) domain where the benefit of correct classification of early stages is more than that of later stages, and also the cost of wrong classification is different for all pairs of predicted and actual classes. The aim of this work is to demonstrate the basic principles for the breathomics to classify the GC, for that the determination of VOCs such as acetone, carbon disulfide, 2-propanol, ethyl alcohol, and ethyl acetate in exhaled air and stomach tissue emission for the detection of GC has been analyzed. The breath of 49 GC and 30 gastric ulcer patients were collected for the study to distinguish the normal, suspected, and positive cases using back-propagation neural network (BPN) and produced the accuracy of 93%, sensitivity of 94.38%, and specificity of 89.93%. This study carries out the comparative study of the result obtained by the single- and multi-layer cascade-forward and feed-forward BPN with different activation functions. From this study, the multilayer cascade-forward outperforms the classification of GC from normal and benign cases. PMID:27563574
Directory of Open Access Journals (Sweden)
Mutasem K. Alsmadi
2011-01-01
Full Text Available Problem statement: Image recognition was a challenging problem researchers had been research into this area for so long especially in the recent years, due to distortion, noise, segmentation errors, overlap and occlusion of objects in digital images. In our study, there are many fields concern with pattern recognition, for example, fingerprint verification, face recognition, iris discrimination, chromosome shape discrimination, optical character recognition, texture discrimination and speech recognition, the subject of pattern recognition appears. A system for recognizing isolated pattern of interest may be as an approach for dealing with such application. Scientists and engineers with interests in image processing and pattern recognition have developed various approaches to deal with digital image recognition problems such as, neural network, contour matching and statistics. Approach: In this study, our aim was to recognize an isolated pattern of interest (fish in the image based robust features extraction. Where depend on color signatures that are extracted by RGB color space, color histogram and gray level co-occurrence matrix. Results: We presented a system prototype for dealing with such problem. The system started by acquiring an image containing pattern of fish, then the image segmentation was performed relying on color signature. Our system has been applied on 20 different fish families, each family has a different number of fish types and our sample consists of distinct 610 of fish images. These images are divided into two datasets: 400 training images and 210 testing images. An overall accuracy was obtained using back-propagation classifier was 84% on the test dataset used. Conclusion: We developed a classifier for fish images recognition. We efficiently have chosen an image segmentation method to fit our demands. Our classifier successfully design and implement a decision which performed efficiently without any
Automatic volcanic ash detection from MODIS observations using a back-propagation neural network
Directory of Open Access Journals (Sweden)
T. M. Gray
2015-12-01
Full Text Available Due to the climate effects and aviation threats of volcanic eruptions, it is important to accurately locate ash in the atmosphere. This study aims to explore the accuracy and reliability of training a neural network to identify cases of ash using observations from the Moderate Resolution Imaging Spectroradiometer (MODIS. Satellite images were obtained for the following eruptions: Kasatochi, Aleutian Islands, 2008; Okmok, Aleutian Islands, 2008; Grímsvötn, northeastern Iceland, 2011; Chaitén, southern Chile, 2008; Puyehue-Cordón Caulle, central Chile, 2011; Sangeang Api, Indonesia, 2014; and Kelut, Indonesia, 2014. The Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT model was used to obtain ash concentrations for the same archived eruptions. Two back-propagation neural networks were then trained using brightness temperature differences as inputs obtained via the following band combinations: 12–11, 11–8.6, 11–7.3, and 11 μm. Using the ash concentrations determined via HYSPLIT, flags were created to differentiate between ash (1 and no ash (0 and SO2-rich ash (1 and no SO2-rich ash (0 and used as output. When neural network output was compared to the test data set, 93 % of pixels containing ash were correctly identified and 7 % were missed. Nearly 100 % of pixels containing SO2-rich ash were correctly identified. The optimal thresholds, determined using Heidke skill scores, for ash retrieval and SO2-rich ash retrieval were 0.48 and 0.47, respectively. The networks show significantly less accuracy in the presence of high water vapor, liquid water, ice, or dust concentrations. Significant errors are also observed at the edge of the MODIS swath.
Camera characterization using back-propagation artificial neutral network based on Munsell system
Liu, Ye; Yu, Hongfei; Shi, Junsheng
2008-02-01
The camera output RGB signals do not directly corresponded to the tristimulus values based on the CIE standard colorimetric observer, i.e., it is a device-independent color space. For achieving accurate color information, we need to do color characterization, which can be used to derive a transformation between camera RGB values and CIE XYZ values. In this paper we set up a Back-Propagation (BP) artificial neutral network to realize the mapping from camera RGB to CIE XYZ. We used the Munsell Book of Color with total number 1267 as color samples. Each patch of the Munsell Book of Color was recorded by camera, and the RGB values could be obtained. The Munsell Book of Color were taken in a light booth and the surround was kept dark. The viewing/illuminating geometry was 0/45 using D 65 illuminate. The lighting illuminating the reference target needs to be as uniform as possible. The BP network was a 5-layer one and (3-10-10-10-3), which was selected through our experiments. 1000 training samples were selected randomly from the 1267 samples, and the rest 267 samples were as the testing samples. Experimental results show that the mean color difference between the reproduced colors and target colors is 0.5 CIELAB color-difference unit, which was smaller than the biggest acceptable color difference 2 CIELAB color-difference unit. The results satisfy some applications for the more accurate color measurements, such as medical diagnostics, cosmetics production, the color reappearance of different media, etc.
Institute of Scientific and Technical Information of China (English)
QIN Zhong; SU Gao-li; YU Qiang; HU Bing-min; LI Jun
2005-01-01
In this work, datasets of water and carbon fluxes measured with eddy covariance technique above a summer maize field in the North China Plain were simulated with artificial neural networks (ANNs) to explore the fluxes responses to local environmental variables. The results showed that photosynthetically active radiation (PAR), vapor pressure deficit (VPD), air temperature (T) and leaf area index (LAI) were primary factors regulating both water vapor and carbon dioxide fluxes. Three-layer back-propagation neural networks (BP) could be applied to model fluxes exchange between cropland surface and atmosphere without using detailed physiological information or specific parameters of the plant.
Directory of Open Access Journals (Sweden)
Attariuas Hicham
2012-11-01
Full Text Available In recent years, there has been a strong tendency by companies to use centralized management systems like Enterprise resource planning (ERP. ERP systems offer a comprehensive and simplified process managements and extensive functional coverage. Sales management module is an important element business management of ERP. This paper describes an intelligent hybrid sales forecasting system ERP-FCBPN sales forecast based on architecture of ERP through Delphi, fuzzy clustering and Back-propagation (BP Neural Networks with adaptive learning rate (FCBPN. The proposed approach is composed of three stages: (1 Stage of data collection: Data collection will be implemented from the fields (attributes existing at the interfaces (Tables the database of the ERP. Collection of Key factors that influence sales be made using the Delphi method; (2 Stage of Data preprocessing: Winter Exponential Smoothing method will be utilized to take the trend effect into consideration. (3 Stage of learning by FCBPN: We use hybrid sales forecasting system based on Delphi, fuzzy clustering and Back-propagation (BP Neural Networks with adaptive learning rate (FCBPN. The data for this study come from an industrial company that manufactures packaging. Experimental results show that the proposed model outperforms the previous and traditional approaches. Therefore, it is a very promising solution for industrial forecasting.
Directory of Open Access Journals (Sweden)
Li Honglian
2013-07-01
Full Text Available It is difficult to accurately reckon vehicle position for vehicle navigation system (VNS during GPS outages, a novel prediction algorithm of dead reckon (DR position error is put forward, which based on Bayesian regularization back-propagation (BRBP neural network. DR, GPS position data are first de-noised and compared at different stationary wavelet transformation (SWT decomposition level, and DR position error data are acquired after the SWT coefficients differences are reconstructed. A neural network to mimic position error property is trained with back-propagation algorithm, and the algorithm is improved for improving its generalization by Bayesian regularization theory. During GPS outages, the established prediction algorithm predictes DR position errors, and provides precise position for VNS through DR position error data updating DR position data. The simulation results show the positioning precision of the BRBP algorithm is best among the presented prediction algorithms such as simple DR and adaptive linear network, and a precise mathematical model of navigation sensors isn’t established.
Directory of Open Access Journals (Sweden)
Bahman O. Taha
2015-06-01
Full Text Available The reinforced concrete with fiber reinforced polymer (FRP bars (carbon, aramid, basalt and glass is used in places where a high ratio of strength to weight is required and corrosion is not acceptable. Behavior of structural members using (FRP bars is hard to be modeled using traditional methods because of the high non-linearity relationship among factors influencing the strength of structural members. Back-propagation neural network is a very effective method for modeling such complicated relationships. In this paper, back-propagation neural network is used for modeling the flexural behavior of beams reinforced with (FRP bars. 101 samples of beams reinforced with fiber bars were collected from literatures. Five important factors are taken in consideration for predicting the strength of beams. Two models of Multilayer Perceptron (MLP are created, first with single-hidden layer and the second with two-hidden layers. The two-hidden layer model showed better accuracy ratio than the single-hidden layer model. Parametric study has been done for two-hidden layer model only. Equations are derived to be used instead of the model and the importance of input factors is determined. Results showed that the neural network is successful in modeling the behavior of concrete beams reinforced with different types of (FRP bars.
International Nuclear Information System (INIS)
Research highlights: → An ANN was built to predict the formation enthalpies of Al2X-type intermetallics. → The values predicted by the ANN agree with experiments well to typically within 10%. → The method comparison suggests that our ANN method is superior to Miedema's model. → Some trends of formation enthalpies for Al2X-type intermetallics were observed. - Abstract: A back-propagation artificial neural network (ANN) was established to predict the formation enthalpies of Al2X-type intermetallics as a function of some physical parameters. These physical parameters include the electronegativity difference, the electron density difference, the atomic size difference, and the electron-atom ratio (e/a). The values calculated by the ANN method agree with experiments well to typically within 10%, indicating that the well-trained back-propagation (BP) neural network is feasible, and can precisely predict the formation enthalpies of Al2X-type intermetallics. The method comparison based on the predicted formation enthalpies suggests that our ANN method is superior to Miedema's model. Some trends of formation enthalpies for Al2X-type intermetallics were also observed from the ANN.
Directory of Open Access Journals (Sweden)
Satyanarayana D
2006-01-01
Full Text Available A chemometric model for the simultaneous estimation of phenobarbitone and phenytoin sodium anticonvulsant tablets using the back-propagation neural network calibration has been presented. The use of calibration datasets constructed from the spectral data of pure components is proposed. The calibration sets were designed such that the concentrations were orthogonal and span the possible mixture space fairly evenly. Spectra of phenobarbitone and phenytoin sodium were recorded at several concentrations within their linear range and used to compute the calibration mixture between wavelengths 220 and 260 nm at an interval of 1 nm. The back-propagation neural network model was optimized using three different sets of calibration and monitoring data for the number of hidden sigmoid neurons. The calibration model was thoroughly evaluated at several concentration levels using spectra obtained for 95 synthetic binary mixtures prepared using orthogonal designs. The optimized model showed sufficient robustness even when the calibration sets were constructed from different sets of pure spectra of components. Although the components showed complete spectral overlap, the model could accurately estimate the drugs, with satisfactory precision and accuracy, in tablet dosage with no interference from excipients, as indicated by the recovery study results.
Directory of Open Access Journals (Sweden)
Yi-jun Liu
2015-12-01
Full Text Available Childhood nephrotic syndrome is a chronic disease harmful to growth of children. Scientific and accurate prediction of negative conversion days for children with nephrotic syndrome offers potential benefits for treatment of patients and helps achieve better cure effect. In this study, the improved backpropagation neural network with momentum is used for prediction. Momentum speeds up convergence and maintains the generalization performance of the neural network, and therefore overcomes weaknesses of the standard backpropagation algorithm. The three-tier network structure is constructed. Eight indicators including age, lgG, lgA and lgM, etc. are selected for network inputs. The scientific computing software of MATLAB and its neural network tools are used to create model and predict. The training sample of twenty-eight cases is used to train the neural network. The test sample of six typical cases belonging to six different age groups respectively is used to test the predictive model. The low mean absolute error of predictive results is achieved at 0.83. The experimental results of the small-size sample show that the proposed approach is to some degree applicable for the prediction of negative conversion days of childhood nephrotic syndrome.
DEFF Research Database (Denmark)
Porto da Silva, Edson; Yankov, Metodi Plamenov; Da Ros, Francesco;
2016-01-01
Gains in achievable information rates from probabilistic shaping and digital backpropagation are compared for WDM transmission of 5 × 10 GBd DP-256QAM/1024QAM up to 1700 km of reach. The combination of both techniques its shown to provide gains of up to ∼0.5 bits/QAM symbol...
Institute of Scientific and Technical Information of China (English)
GUO Zhongyang; DAI Xiaoyan; LI Xiaodong; YE Shufeng
2013-01-01
To reduce typhoon-caused damages,numerical and empirical methods are often used to forecast typhoon storm surge.However,typhoon surge is a complex nonlinear process that is difficult to forecast accurately.We applied a principal component back-propagation neural network (PCBPNN) to predict the deviation in typhoon storm surge,in which data of the typhoon,upstream flood,and historical case studies were involved.With principal component analysis,15 input factors were reduced to five principal components,and the application of the model was improved.Observation data from Huangpu Park in Shanghai,China were used to test the feasibility of the model.The results indicate that the model is capable of predicting a 12-hour warning before a typhoon surge.
Directory of Open Access Journals (Sweden)
Lin Liu
2010-01-01
Full Text Available Cognitive radio (CR is a technology to implement opportunistic spectrum sharing to improve the spectrum utilization. However, there exists a hidden-node problem, which can be a big challenge to solve especially when the primary receiver is passive listening. We aim to provide a solution to the hidden-node problem for passive-listening receiver based on cooperation of multiple CRs. Specifically, we consider a cooperative GPS-enabled cognitive network. Once the existence of PU is detected, a localization algorithm will be employed to first estimate the path loss model for the environment based on backpropagation method and then to locate the position of PU. Finally, a disable region is identified taking into account the communication range of both the PU and the CR. The CRs within the disabled region are prohibited to transmit in order to avoid interfering with the primary receiver. Both analysis and simulation results are provided.
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.
=UTF-8 54 / JOURNAL OF WATERWAY, PORT, COASTAL, AND OCEAN ENGINEERING / JANUARY/FEBRUARY 2001 BACK-PROPAGATION NEURAL NETWORK IN TIDAL-LEVEL FORECASTING a Discussion by Arun Kumar 3 and Vijay K. Minocha 4 The authors have presented... an interesting study on the ap- plication of an artificial neural network (ANN) for forecasting tidal levels. This technique is comparable to the already pop- ular time series modeling with an added advantage in that the functional form between the input variable...
Gupta, Vinod Kumar; Khani, Hadi; Ahmadi-Roudi, Behzad; Mirakhorli, Shima; Fereyduni, Ehsan; Agarwal, Shilpi
2011-01-15
Quantitative structure-retention relationship (QSRR) models correlating the retention times of fatty acid methyl esters in high resolution capillary gas chromatography and their structures were developed based on non-linear and linear modeling methods. Genetic algorithm (GA) was used for the selection of the variables that resulted in the best-fitted models. Gravitational index (G2), number of cis double bond (NcDB) and number of trans double bond (NtDB) were selected among a large number of descriptors. The selected descriptors were considered as inputs for artificial neural networks (ANNs) with three different weights update functions including Levenberg-Marquardt backpropagation network (LM-ANN), BFGS (Broyden, Fletcher, Goldfarb, and Shanno) quasi-Newton backpropagation (BFG-ANN) and conjugate gradient backpropagation with Polak-Ribiére updates (CGP-ANN). Computational result indicates that the LM-ANN method has better predictive power than the other methods. The model was also tested successfully for external validation criteria. Standard error for the training set using LM-ANN was SE=0.932 with correlation coefficient R=0.996. For the prediction and validation sets, standard error was SE=0.645 and SE=0.445 and correlation coefficient was R=0.999 and R=0.999, respectively. The accuracy of 3-2-1 LM-ANN model was illustrated using leave multiple out-cross validations (LMO-CVs) and Y-randomization.
Directory of Open Access Journals (Sweden)
Amit Kumar Ray
2003-05-01
Full Text Available Three layered feed-forward backpropagation artificial neural network architecture is designed to classify sleep-wake stages in rats. Continuous three channel polygraphic signals such as electroencephalogram, electrooculogram and electromyogram were recorded from conscious rats for eight hours during day time. Signals were also stored in computer hard disk with the help of analog to digital converter and its compatible data acquisition software. The power spectra (in dB scale of the digitized signals in three sleep-wake stages were calculated. Selected power spectrum data of all three simultaneously recorded polygraphic signals were used for training the network and to classify slow wave sleep, rapid eye movement sleep and awake stages. The ANN architecture used in present study shows a very good agreement with manual sleep stage scoring with an average of 94.83% for all the 1200 samples tested from SWS, REM and AWA stages. The high performance observed with the system based on ANN highlights the need of this computational tool into the field of sleep research.
Directory of Open Access Journals (Sweden)
Salim Lahmiri
2012-07-01
Full Text Available In financial industry, the accurate forecasting of the stock market is a major challenge to optimize and update portfolios and also to evaluate several financial derivatives. Artificial neural networks and technical analysis are becoming widely used by industry experts to predict stock market moves. In this paper, different technical analysis measures and resilient back-propagation neural networks are used to predict the price level of five major developed international stock markets, namely the US S&P500, Japanese Nikkei, UK FTSE100, German DAX, and the French CAC40. Four categories of technical analysis measures are compared. They are indicators, oscillators, stochastics, and indexes. The out-of-sample simulation results show a strong evidence of the effectiveness of the indicators category over the oscillators, stochastics, and indexes. In addition, it is found that combining all these measures lead to an increase of the prediction error. In sum, technical analysis indicators provide valuable information to predict the S&P500, Nikkei, FTSE100, DAX, and the CAC40 price level.
Institute of Scientific and Technical Information of China (English)
Lean YU; Shouyang WANG; Kin Keung LAI
2009-01-01
The slow convergence of back-propagation neu-ral network (BPNN) has become a challenge in data-mining and knowledge discovery applications due to the drawbacks of the gradient descent (GD) optimization method, which is widely adopted in BPNN learning. To solve this problem,some standard Optimization techniques such as conjugate-gradient and Newton method have been proposed to improve the convergence rate of BP learning algorithm. This paper presents a heuristic method that adds an adaptive smooth-ing momentum term to original BP learning algorithm to speedup the convergence. In this improved BP learning al-gorithm, adaptive smoothing technique is used to adjust the momentums of weight updating formula automatically in terms of "3 σ limits theory." Using the adaptive smoothing momentum terms, the improved BP learning algorithm can make the network training and convergence process faster,and the network's generalization performance stronger than the standard BP learning algorithm can do. In order to ver-ify the effectiveness of the proposed BP learning algorithm,three typical foreign exchange rates, British pound (GBP),Euro (EUR), and Japanese yen (JPY), are chosen as the fore-casting targets for illustration purpose. Experimental results from homogeneous algorithm comparisons reveal that the proposed BP learning algorithm outperforms the other com-parable BP algorithms in performance and convergence rate.Furthermore, empirical results from heterogeneous model comparisons also show the effectiveness of the proposed BP learning algorithm.
Xu, Tianhua; Liga, Gabriele; Lavery, Domaniç; Thomsen, Benn C; Savory, Seb J; Killey, Robert I; Bayvel, Polina
2015-09-14
Superchannel transmission spaced at the symbol rate, known as Nyquist spacing, has been demonstrated for effectively maximizing the optical communication channel capacity and spectral efficiency. However, the achievable capacity and reach of transmission systems using advanced modulation formats are affected by fibre nonlinearities and equalization enhanced phase noise (EEPN). Fibre nonlinearities can be effectively compensated using digital back-propagation (DBP). However EEPN which arises from the interaction between laser phase noise and dispersion cannot be efficiently mitigated, and can significantly degrade the performance of transmission systems. Here we report the first investigation of the origin and the impact of EEPN in Nyquist-spaced superchannel system, employing electronic dispersion compensation (EDC) and multi-channel DBP (MC-DBP). Analysis was carried out in a Nyquist-spaced 9-channel 32-Gbaud DP-64QAM transmission system. Results confirm that EEPN significantly degrades the performance of all sub-channels of the superchannel system and that the distortions are more severe for the outer sub-channels, both using EDC and MC-DBP. It is also found that the origin of EEPN depends on the relative position between the carrier phase recovery module and the EDC (or MC-DBP) module. Considering EEPN, diverse coding techniques and modulation formats have to be applied for optimizing different sub-channels in superchannel systems.
Directory of Open Access Journals (Sweden)
Salim Lahmiri
2014-07-01
Full Text Available This paper presents a forecasting model that integrates the discrete wavelet transform (DWT and backpropagation neural networks (BPNN for predicting financial time series. The presented model first uses the DWT to decompose the financial time series data. Then, the obtained approximation (low-frequency and detail (high-frequency components after decomposition of the original time series are used as input variables to forecast future stock prices. Indeed, while high-frequency components can capture discontinuities, ruptures and singularities in the original data, low-frequency components characterize the coarse structure of the data, to identify the long-term trends in the original data. As a result, high-frequency components act as a complementary part of low-frequency components. The model was applied to seven datasets. For all of the datasets, accuracy measures showed that the presented model outperforms a conventional model that uses only low-frequency components. In addition, the presented model outperforms both the well-known auto-regressive moving-average (ARMA model and the random walk (RW process.
Indian Academy of Sciences (India)
S Traore; Y M Wang; W G Chung
2014-03-01
The present study evaluates the predictive accuracy of the feed forward backpropagation artificial neural network (BP) in evapotranspiration forecasting from temperature data basis in Dédougou region located in western Burkina Faso, sub-Saharan Africa. BP accuracy is compared to the conventional Blaney–Criddle (BCR) and Reference Model developed for Burkina Faso (RMBF) by referring to the FAO56 Penman–Monteith (PM) as the standard method. Statistically, the models accuracies were evaluated with the goodness-of-fit measures of root mean square error, mean absolute error and coefficient of determination between their estimated and PM observed values. From the statistical results, BP shows similar contour trends to PM, and performs better than the conventional methods in reference evapotranspiration (ET_ref) forecasting in the region. In poor data situation, BP based only on temperature data is much more preferred than the other alternative methods for ET_ref forecasting. Furthermore, it is noted that the BP network computing technique accuracy improves significantly with the addition of wind velocity into the network input set. Therefore, in the region, wind velocity is recommended to be incorporated into the BP model for high accuracy management purpose of irrigation water, which relies on accurate values of ET_ref.
Ma, Jianshe; Cai, Jinzhang; Lin, Guanyang; Chen, Huilin; Wang, Xianqin; Wang, Xianchuan; Hu, Lufeng
2014-05-15
Corynoxeine(CX), isolated from the extract of Uncaria rhynchophylla, is a useful and prospective compound in the prevention and treatment for vascular diseases. A simple and selective liquid chromatography mass spectrometry (LC-MS) method was developed to determine the concentration of CX in rat plasma. The chromatographic separation was achieved on a Zorbax SB-C18 (2.1 mm × 150 mm, 5 μm) column with acetonitrile-0.1% formic acid in water as mobile phase. Selective ion monitoring (SIM) mode was used for quantification using target ions m/z 383 for CX and m/z 237 for the carbamazepine (IS). After the LC-MS method was validated, it was applied to a back-propagation artificial neural network (BP-ANN) pharmacokinetic model study of CX in rats. The results showed that after intravenous administration of CX, it was mainly distributed in blood and eliminated quickly, t1/2 was less than 1h. The predicted concentrations generated by BP-ANN model had a high correlation coefficient (R>0.99) with experimental values. The developed BP-ANN pharmacokinetic model can be used to predict the concentration of CX in rats. PMID:24732215
Directory of Open Access Journals (Sweden)
Nader Salari
Full Text Available Among numerous artificial intelligence approaches, k-Nearest Neighbor algorithms, genetic algorithms, and artificial neural networks are considered as the most common and effective methods in classification problems in numerous studies. In the present study, the results of the implementation of a novel hybrid feature selection-classification model using the above mentioned methods are presented. The purpose is benefitting from the synergies obtained from combining these technologies for the development of classification models. Such a combination creates an opportunity to invest in the strength of each algorithm, and is an approach to make up for their deficiencies. To develop proposed model, with the aim of obtaining the best array of features, first, feature ranking techniques such as the Fisher's discriminant ratio and class separability criteria were used to prioritize features. Second, the obtained results that included arrays of the top-ranked features were used as the initial population of a genetic algorithm to produce optimum arrays of features. Third, using a modified k-Nearest Neighbor method as well as an improved method of backpropagation neural networks, the classification process was advanced based on optimum arrays of the features selected by genetic algorithms. The performance of the proposed model was compared with thirteen well-known classification models based on seven datasets. Furthermore, the statistical analysis was performed using the Friedman test followed by post-hoc tests. The experimental findings indicated that the novel proposed hybrid model resulted in significantly better classification performance compared with all 13 classification methods. Finally, the performance results of the proposed model was benchmarked against the best ones reported as the state-of-the-art classifiers in terms of classification accuracy for the same data sets. The substantial findings of the comprehensive comparative study revealed that
DEFF Research Database (Denmark)
Sackey, Isaac; Da Ros, Francesco; Karl Fischer, Johannes;
2015-01-01
We experimentally investigate Kerr nonlinearity mitigation of a 28-GBd polarization-multiplexed 16-QAM signal in a five-channel 50-GHz spaced wavelength-division multiplexing (WDM) system. Optical phase conjugation (OPC) employing the mid-link spectral inversion technique is implemented by using...... a dual-pump polarization-independent fiber-optic parametric amplifier and compared to digital backpropagation (DBP) compensation over up to 800-km in a dispersion-managed link. In the single-channel case, the use of the DBP algorithm outperformed the OPC with a Q-factor improvement of 0.9 dB after 800-km...
Galdino, Lidia; Tan, Mingming; Lavery, Domaniç; Rosa, Pawel; Maher, Robert; Phillips, Ian D; Ania Castañón, Juan D; Harper, Paul; Killey, Robert I; Thomsen, Benn C; Makovejs, Sergejs; Bayvel, Polina
2015-07-01
Transmission of a net 467-Gb/s PDM-16QAM Nyquist-spaced superchannel is reported with an intra-superchannel net spectral efficiency (SE) of 6.6 (b/s)/Hz, over 364-km SMF-28 ULL ultra-low loss optical fiber, enabled by bi-directional second-order Raman amplification and digital nonlinearity compensation. Multi-channel digital back-propagation (MC-DBP) was applied to compensate for nonlinear interference; an improvement of 2 dB in Q(2) factor was achieved when 70-GHz DBP bandwidth was applied, allowing an increase in span length of 37 km.
Oh, Ju-Won; Min, Dong-Joo
2013-07-01
To enhance the feasibility of seismic full waveform inversion (FWI) for various types of geological structures, the model parameters should be updated along directions such that both long- and short-wavelength structures can be properly resolved. These long- and short-wavelength structures are primarily influenced by the low- and high-frequency components of the gradients, respectively. In some cases, however, the gradients are not flexible to reconstruct both the long- and the short-wavelength structures. This problem can be related to the scaling method using the Hessian matrix and the effect of the source spectrum. In this study, we analyse the problems of conventional scaling methods in frequency-domain FWI and propose a weighting method to compensate for these problems. The weighting method is applied to the conventional elastic FWI, where the gradient is scaled by the diagonal of the pseudo-Hessian matrix inside the frequency loop so that the effect of the source spectrum can be removed through cancellation. The weighting factors are designed using the backpropagated wavefields incited by the deconvolved residuals, which play a role in making the descent directions appropriately reflect the spectral differences between the observed data and the initial (or the inverted) modelling responses. We analyse the characteristics of the Jacobians and residuals and compare the descent directions of the two conventional waveform inversion methods with descent directions of the weighting method for thick rectangular-shaped and thin-layers models. The results indicate that the descent directions computed using the conventional inversion methods do not reflect the characteristics of deconvolved residuals and that particular frequency components are always emphasized regardless of geological models, while the spatial resolution of the descent direction calculated using the weighting method is flexibly determined depending on the differences between the true and the assumed
Yu, Hao; Rossi, Giammarco; Braglia, Andrea; Perrone, Guido
2016-08-10
The paper presents the development of a tool based on a back-propagation artificial neural network to assist in the accurate positioning of the lenses used to collimate the beam from semiconductor laser diodes along the so-called fast axis. After training using a Gaussian beam ray-equivalent model, the network is capable of indicating the tilt, decenter, and defocus of such lenses from the measured field distribution, so the operator can determine the errors with respect to the actual lens position and optimize the diode assembly procedure. An experimental validation using a typical configuration exploited in multi-emitter diode module assembly and fast axis collimating lenses with different focal lengths and numerical apertures is reported. PMID:27534506
Energy Technology Data Exchange (ETDEWEB)
Kohara, K. [Nippon Telegraph and Telephone Corp., Tokyo (Japan)
1998-11-01
We proposed ways to improve pattern recognition ability by combining several small back-propagation neural networks (BPNNs) [1]. We found that modifying the desired outputs according to the similarity of the input patterns (i.e., increasing desired outputs to similar classes) increases the BPNN outputs for similar classes, thus improving the generalization ability of the modular-net architecture. We evaluated the learning technique using two subfeatures extracted from handwritten digits [1]. This paper proposes a performance-verification method and presents experimental results applying learning techniques to the proposed verification-problems: 4-class, 10-class, and 20-class classification problems using two-dimensional Gaussian distribution data. 7 refs., 7 figs., 6 tabs.
Institute of Scientific and Technical Information of China (English)
王菲; 曾庆军; 黄国建; 李洪瑞
2001-01-01
The development and system composition of underwater target recognition system is expounded at first, and then a novel method for training neural network target classifier by using genetic-backpropagation algorithm is proposed. The result of experiment shows that the performance of neural network target classifier based on genetic-backpropagation algorithm is better than that of neural network target classifier based on the improved backpropagation algorithm.%首先阐述了水下目标识别的研究发展和系统组成，然后提出了一种基于遗传BP算法训练神经网络目标分类器的新方法。实验结果表明采用新方法的神经网络分类器比采用改进BP算法的神经网络分类器具有更优的分类效果。
Directory of Open Access Journals (Sweden)
Attariuas Hicham
2012-05-01
Full Text Available This paper describes new hybrid sales forecasting system based on fuzzy clustering and Back-propagation (BP Neural Networks with adaptive learning rate (FCBPN.The proposed approach is composed of three stages: (1 Winters Exponential Smoothing method will be utilized to take the trend effect into consideration; (2 utilizing Fuzzy C-Means clustering method (Used in an clusters memberships fuzzy system (CMFS, the clusters membership levels of each normalized data records will be extracted; (3 Each cluster will be fed into parallel BP networks with a learning rate adapted as the level of cluster membership of training data records. Compared to many researches which use Hard clustering, we employ fuzzy clustering which permits each data record to belong to each cluster to a certain degree, which allows the clusters to be larger which consequently increases the accuracy of the proposed forecasting system . Printed Circuit Board (PCB will be used as a case study to evaluate the precision of our proposed architecture. Experimental results show that the proposed model outperforms the previous and traditional approaches. Therefore, it is a very promising solution for industrial forecasting.
Energy Technology Data Exchange (ETDEWEB)
Doh, Jaeh Yeok; Lee, Jong Soo [Yonsei University, Seoul (Korea, Republic of); Lee, Seung Uk [Gyeongbuk Hybrid Technology Institute, Yeongcheon (Korea, Republic of)
2016-03-15
In this study, a Back-propagation neural network (BPN) is employed to conduct an approximation of a true stress-strain curve using the load-displacement experimental data of DP590, a high-strength material used in automobile bodies and chassis. The optimized interconnection weights are obtained with hidden layers and output layers of the BPN through intelligent learning and training of the experimental data; by using these weights, a mathematical model of the material's behavior is suggested through this feed-forward neural network. Generally, the material properties from the tensile test cannot be acquired until the fracture regions, since it is difficult to measure the cross-section area of a specimen after diffusion necking. For this reason, the plastic properties of the true stress-strain are extrapolated using the weighted-average method after diffusion necking. The accuracies of BPN-based meta-models for predicting material properties are validated in terms of the Root mean square error (RMSE). By applying the approximate material properties, the reliable finite element solution can be obtained to realize the different shapes of the finite element models. Furthermore, the sensitivity analysis of the approximate meta-model is performed using the first-order approximate derivatives of the BPN and is compared with the results of the finite difference method. In addition, we predict the tension velocity's effect on the material property through a first-order sensitivity analysis.
Institute of Scientific and Technical Information of China (English)
瞿晓娜; 张腾宇; 王喜太
2012-01-01
背景:虽然在人体步态方面已有大量研究,但针对膝踝协调运动的研究很少.目的:用BP神经网络分析膝踝协调运动关系.方法:利用三维步态分析系统检测了30名健康志愿者以快、中、慢3种步速行走时的步态数据,进行统计分析;并通过建立BP神经网络预测数据,同时对膝踝协调的控制方法进行探讨.结果与结论:不同的人步态不同,但BP神经网络预测所得曲线与实验基本一致,证实了用BP神经网络做膝踝运动关系预测的合理性和可行性,很好的研究了膝踝协调性,给全智能膝踝协调控制假肢的研发提供了理论依据.%BACKGROUND: The study of the relationship between knee and ankle is poor although there have been a lot of researches on gait of people. OBJECTIVE: To analyze the relationship between knee and ankle based on back-propagation network. METHODS: The gaits of 30 healthy young people walking at fast, normal, and low speeds separately were detected by three-dimensional gait analysis system, and the gait data were investigated and analyzed. The data were predicted through the establishment of the back-propagation neural network and the knee-ankle coordination control method was explored. RESULTS AND CONCLUSION: Different people had different gaits, but the curve obtained by back-propagation neural network was similar with the experimental curve. The paper investigated and validated that it was viable and reasonable to forecast the kinematic relationship between the knee and ankle by back-propagation network system. The paper studied the coordination between the knee and ankle well, and provided the theory foundation for the design of the intelligent prostheses.
Institute of Scientific and Technical Information of China (English)
王士同; 朱晓铭
2001-01-01
研究了模糊反向传播神经网络FBP(Fuzzy Backpropagation)的函数逼近能力.给出了单调连续函数的FBP按序单调特性、连续映射定理以及非函数一致逼近定理,并且说明了FBP虽然能保持连续性映射,但不如原神经网络具有函数逼近能力.
Song, Xianzhi; Peng, Chi; Li, Gensheng
2016-01-01
Sand production and blockage are common during the drilling and production of horizontal oil and gas wells as a result of formation breakdown. The use of high-pressure rotating jets and annular helical flow is an effective way to enhance horizontal wellbore cleanout. In this paper, we propose the idea of using supercritical CO2 (SC-CO2) as washing fluid in water-sensitive formation. SC-CO2 is manifested to be effective in preventing formation damage and enhancing production rate as drilling fluid, which justifies tis potential in wellbore cleanout. In order to investigate the effectiveness of SC-CO2 helical flow cleanout, we perform the numerical study on the annular flow field, which significantly affects sand cleanout efficiency, of SC-CO2 jets in horizontal wellbore. Based on the field data, the geometry model and mathematical models were built. Then a numerical simulation of the annular helical flow field by SC-CO2 jets was accomplished. The influences of several key parameters were investigated, and SC-CO2 jets were compared to conventional water jets. The results show that flow rate, ambient temperature, jet temperature, and nozzle assemblies play the most important roles on wellbore flow field. Once the difference between ambient temperatures and jet temperatures is kept constant, the wellbore velocity distributions will not change. With increasing lateral nozzle size or decreasing rear/forward nozzle size, suspending ability of SC-CO2 flow improves obviously. A back-propagation artificial neural network (BP-ANN) was successfully employed to match the operation parameters and SC-CO2 flow velocities. A comprehensive model was achieved to optimize the operation parameters according to two strategies: cost-saving strategy and local optimal strategy. This paper can help to understand the distinct characteristics of SC-CO2 flow. And it is the first time that the BP-ANN is introduced to analyze the flow field during wellbore cleanout in horizontal wells. PMID
Learning Multiagent Communication with Backpropagation
Sukhbaatar, Sainbayar; Szlam, Arthur; Fergus, Rob
2016-01-01
Many tasks in AI require the collaboration of multiple agents. Typically, the communication protocol between agents is manually specified and not altered during training. In this paper we explore a simple neural model, called CommNN, that uses continuous communication for fully cooperative tasks. The model consists of multiple agents and the communication between them is learned alongside their policy. We apply this model to a diverse set of tasks, demonstrating the ability of the agents to l...
Institute of Scientific and Technical Information of China (English)
韩明红; 韩捷; 关惠玲
2001-01-01
The reasons for the slowness in convergence of standard backpropagation algorithm and the imperfection of conventional improved algorithms have been fully analyzed. In order to improve the convergence rate of multilayer feedforward neural networks, a new highly efficent unitary backpropagation algorithm based on the unitary-function is proposed. Numerical simulation and experimental results show that the algorithm can greatly increase the convergence rate and highly improve their imminent accurary.%分析了引起标准BP算法收敛速度慢的原因，以及传统改进方法的不足之处，探讨了解决的途径。为了提高BP算法的收敛速度，定义并引入了基量函数的概念，并将其运用到BP算法中，给出了一种高效的单位BP算法。仿真和实例结构均表明该算法能够较好地克服标准BP算法收敛速度慢的缺点，并可以达到很高的网络逼近精度。
Institute of Scientific and Technical Information of China (English)
开小明; 沈玉华; 谢安建; 郑学根
2004-01-01
提出用Levenberg-Marquardt Backpropagation Neural Network (LM-BP)网络对酸性偶氮染料进行分类,网络结构为4-6-5.优化了隐含层神经元数和网络训练次数,表明隐含层神经元数应比输出层神经元数多一个.考察了训练集样本的选择对结果的影响,测试集的样本参数大小要处于训练集样本之间.本网络把其中22种染料作为训练集,把另外18种染料作为测试集,与采用GCEDM逐次分类法比较,测试集识别率为83%.
Institute of Scientific and Technical Information of China (English)
易忠胜; 吴永华
2001-01-01
为了提高此网络算法的学习效率及稳定性,在反向传播算法(backpropagation(BP))中引入了基于非线性最小二乘法的Levenberg-Marquart(LM)最优算法,替代原BP算法中的梯度下降法寻找最佳网络连接权值.LM优化算法其学习效率比带动量项的BP算法高一个数量级以上,值得推广应用.将其用于混合体系的多组份CAS-CTMAB显色体系光度法同时测定Ca、Mg、Fe,得到平均预测误差为2.6534 mg/L,平均预测方差为1.9580,能够满足多组分测定的需要.
Institute of Scientific and Technical Information of China (English)
杜雨静; 范英芳
2011-01-01
目的:探讨误差反向传播(backpropagation,BP)神经网络在雌二醇衍生物定量结构-活性关系(quantitative structure-activity relationships,QSAR)研究中的应用.方法:采用BP神经网络法和多元线性回归法,分别建立了30个雌二醇衍生物在0℃下与羔羊子宫雌激素受体间亲合力logRBA与疏水性参数logP、分子的体积V和9号碳原子的净电荷Q之间的QSAR模型.结果:BP模型的相关系数R=0.9962,标准偏差SD=0.0588；MLR模型的相关系数R=0.9090,标准偏差SD=0.2904.结论:BP神经网络是一种比较精密的拟合方法,具有良好的预测效果.
Institute of Scientific and Technical Information of China (English)
何超; 徐立新; 张宇河
1999-01-01
目的为了消除普遍存在于伺服系统中的间隙非线性的影响,提出一种利用BP神经网络进行非线性补偿的方法.方法以某武器跟踪伺服系统为例,采用一个3层BP神经网络对其间隙非线性特性进行离线辨识,然后根据辨识结果设计一个非线性补偿器.结果仿真结果表明所提出的方法能够有效消除间隙特性引起的系统自振荡(极限环),并且能够提高系统精度.结论利用BP神经网络进行间隙非线性补偿的方法能够有效解决伺服系统中间隙特性带来的影响,且易于在工程中实现.%Aim To eliminate the influences of backlash nonlinear characteristics generally existing in servo systems, a nonlinear compensation method using backpropagation neural networks(BPNN) is presented. Methods Based on some weapon tracking servo system, a three-layer BPNN was used to off-line identify the backlash characteristics, then a nonlinear compensator was designed according to the identification results. Results The simulation results show that the method can effectively get rid of the sustained oscillation(limit cycle) of the system caused by the backlash characteristics, and can improve the system accuracy. Conclusion The method is effective on sloving the problems produced by the backlash characteristics in servo systems, and it can be easily accomplished in engineering.
Energy Technology Data Exchange (ETDEWEB)
Toda-Caraballo, I.; Garcia-Mateo, C.; Capdevila, C.
2010-07-01
At the beginning of the decade of the nineties, the industrial interest for TRIP steels leads to a significant increase of the investigation and application in this field. In this work, the flexibility of neural networks for the modelling of complex properties is used to tackle the problem of determining the retained austenite content in TRIP-steel. Applying a combination of two learning algorithms (backpropagation and creeping-random-search) for the neural network, a model has been created that enables the prediction of retained austenite in low-Si / low-Al multiphase steels as a function of processing parameters. (Author). 34 refs.
Institute of Scientific and Technical Information of China (English)
范媛媛; 桑英军; 沈湘衡
2011-01-01
在基于噪声图像的无参考峰值信噪比质量评价方法中,为了得到最优的阈值参数,提出以图像块均方误差阈值threshold1、噪声检测阈值threshold2为输入因子,以Pearson相关系数和Spearman等级相关系数为输出因子,以实验值为样本建立[2 7 2]单隐层BP神经网络模型,应用BP神经网络的泛化能力实现对相关阈值参数的预测优化,为阈值参数的选择提供理论依据.实验结果表明,所建立的数学模型可靠,预测结果与试验值的偏差小,训练好的BP神经网络能够比较准确地预测不同阈值参数下的相关系数.优化后,选取threshold1=101,threshold2 =4,Pearson相关系数达到了-0.895 0,Spearman等级相关系数达到了-0.913 6,评价效果得到提高,且节省大量时间.%In no reference peak signal to noise ratio (PSNR) image quality assessment based on noisy images, in order to get optimal threshold parameters, it is proposed that taking experiment values as a sample, a [2 7 2] back-propagation (BP) neural network model is established with the mean square error (MSE) thresholdl of image block and the noise detection threshold2 as the input factors, and the Person and Spearman correlation coefficients as the output factors. The model realizes the prediction of relevant parameters by its generalization capability and offers a theoretical foundation for parameters selection. Experiments indicate that the model is reliable. The prediction results show little difference from the experimental data. The trained BP neural network can precisely predict the relevant parameters. After optimizing, thresholdl = 101 and threshold2 = 4 are selected, Pearson Correlation Coefficient and Spearman Rank Order Correlation Coefficient reaches -0. 895 0 and -0. 913 6 respectively. The assessment result improves a lot, and much time is saved.
Institute of Scientific and Technical Information of China (English)
韦添尹; 蒋永荣; 刘可慧; 刘成良; 张威
2013-01-01
The back-propagation neural network (BPNN) trained with the data from the sulfate organic wastewater treatment of anaerobic baffled reactor(ABR) and a network model was buih.The better training function and times were ‘ traingda' and 1 900,respectively.Partition connection weights (PCW) was adopted to analyze the dominant factors of effluent COD and SO42-.The results showed that all of the factors (feed COD,SO42-,pH,COD/SO42-and HRT) had an influence on effluent COD and SO42-.Nevertheless,the feed pH was the dominant factor,which relative importance (RI) were 30.79％ and 23.44％,respectively.The model and simulink on restrictive factors for COD and SO42-removal were built respectively,which can be used for prediction on sulfate organic wastewater treatment.%通过厌氧折流板反应器(ABR)处理硫酸盐有机废水的实验数据对BP神经网络进行训练,建立了ABR处理硫酸盐有机废水的BPNN模型,通过测试对比,找出了较优训练函数为traingda,较优训练次数为1 900.利用分割连接权值法(PCW)对影响出水SO42-和COD的主要因素进行分析,结果显示进水COD、SO42-、pH、COD/SO42-和HRT对出水SO42-和COD均产生一定影响,其中进水pH对出水SO42-和COD的影响最大,相对重要性(RI)指数分别为30.79％和23.44％;并通过样本试验数据分别建立了对SO42-和COD去除率的限制因子仿真模型,为预测硫酸盐有机废水的厌氧处理过程提供指导.
Backpropagation Learning Algorithms for Email Classification.
Directory of Open Access Journals (Sweden)
*David Ndumiyana and Tarirayi Mukabeta
2016-07-01
Full Text Available Today email has become one the fastest and most effective form of communication. The popularity of this mode of transmitting goods, information and services has motivated spammers to perfect their technical skills to fool spam filters. This development has worsened the problems faced by Internet users as they have to deal with email congestion, email overload and unprioritised email messages. The result was an exponential increase in the number of email classification management tools for the past few decades. In this paper we propose a new spam classifier using a learning process of multilayer neural network to implement back propagation technique. Our contribution to the body of knowledge is the use of an improved empirical analysis to choose an optimum, novel collection of attributes of a user’s email contents that allows a quick detection of most important words in emails. We also demonstrate the effectiveness of two equal sets of emails training and testing data.
Institute of Scientific and Technical Information of China (English)
李伟; 何鹏举; 杨恒; 陈明
2012-01-01
针对BP神经网络结构由于特征维数增多变得复杂,以及网络易陷入局部极值点,提出了粗糙集和改进遗传算法结合共同优化神经网络的方法.首先利用粗糙集对样本空间进行属性约简,降低特征维数,进而简化BP神经网络的结构;然后训练过程中先用改进的遗传算法全局搜索网络的权值和阀值,再使用BP算法局部搜索细化,避免网络过早收敛.试验分析证明优化后BP神经网络比传统BP网络的预测精度得到了极大提高,泛化能力得到了增强,说明了该方法的可行性、有效性.%Considering that the BP neural network became complex due to the increase of the sample dimension and it fell easily into local maximums or minimums, we combined genetic algorithm and rough set to optimize the BP neural network. Sections 1 through 3 explain our backpropagation algorithm mentioned in the title, which we believe is effective and whose core consists of; (1) rough set was applied to simplify the network by reducing the attribute dimension; (2) modified genetic algorithm was used to globally search the weights and bios and, further, the BP algorithm was to locally optimize them to avoid the network falling into the local extremes. Simulation results, presented in Fig. 1 and Table 2 in subsection 3. 4, and their analysis indicated preliminarily that prediction accuracy was increased greatly over that of the traditional BP neural network and that generalization was enhanced, thus showing that our backpropagation algorithm is indeed effective.
Pengenalan Pola Citra Menggunakan Metode Corner Detection Dan Backpropagation
Tondang, Yenny Agustina
2016-01-01
Indonesia, a country that has many islands and culture, has a huge potential to develop tourism. Many tourism objects that can be used to increase the division of the country require a system to assist users in finding objects owned by the user. This study used corner detection methods and backpropgation (BP) to assist users in recognizing objects. Harris Corner Detection (HCD) will get the points contained in the image of the image. The results of the HCD will be studied using...
BACKPROPAGATION LEARNING ALGORITHM BASED ON LEVENBERG MARQUARDT ALGORITHM
Directory of Open Access Journals (Sweden)
S.Sapna
2012-10-01
Full Text Available Data Mining aims at discovering knowledge out of data and presenting it in a form that is easily compressible to humans. Data Mining represents a process developed to examine large amounts of data routinely collected. The term also refers to a collection of tools used to perform the process. One of the useful applications in the field of medicine is the incurable chronic disease diabetes. Data Mining algorithm is used for testing the accuracy in predicting diabetic status. Fuzzy Systems are been used for solving a wide range of problems in different application domain and Genetic Algorithm for designing. Fuzzy systems allows in introducing the learning and adaptation capabilities. Neural Networks are efficiently used for learning membership functions. Diabetes occurs throughout the world, but Type 2 is more common in the most developed countries. The greater increase in prevalence is however expected in Asia and Africa where most patients will likely be found by 2030. This paper is proposed on the Levenberg – Marquardt algorithm which is specifically designed to minimize sum-of-square error functions. Levernberg-Marquardt algorithm gives the best performance in the prediction of diabetes compared to any other backpropogation algorithm.
Impairment mitigation in superchannels with digital backpropagation and MLSD
DEFF Research Database (Denmark)
Porto da Silva, Edson; Larsen, Knud J.; Zibar, Darko
2015-01-01
and NRZ spectra, and digital Nyquist filtering. We investigate the limits for carrier proximity of each spectral shaping technique and the correspondent performance behavior of each algorithm, for both modulation formats. For superchannels with carrier spacing close to the Nyquist limit, it is shown...
Backpropagation Neural Network Implementation for Medical Image Compression
Directory of Open Access Journals (Sweden)
Kamil Dimililer
2013-01-01
Full Text Available Medical images require compression, before transmission or storage, due to constrained bandwidth and storage capacity. An ideal image compression system must yield high-quality compressed image with high compression ratio. In this paper, Haar wavelet transform and discrete cosine transform are considered and a neural network is trained to relate the X-ray image contents to their ideal compression method and their optimum compression ratio.
Implementation of Back-Propagation Algorithm For Renal Datamining
Directory of Open Access Journals (Sweden)
P.Thrimurthy
2008-04-01
Full Text Available The present medical era data mining place a important role for quick access of appropriate information. To achieve this full automation is required which means less human interference. Therefore automatic renal data mining with decision making algorithm is necessary. Renal failure contributes to major health problem. In this research work a distributed neural network has been applied to a data mining problem for classification of renal data to have for proper diagnosis of patient. A multi layer perceptron with back propagation algorithm has been used. The network was trained offline using 500 patterns each of 17 inputs. Using the weight obtained during training, fresh patterns were tested for accuracy of diagnosis.
Neural Network Back-Propagation Algorithm for Sensing Hypergols
Perotti, Jose; Lewis, Mark; Medelius, Pedro; Bastin, Gary
2013-01-01
Fast, continuous detection of a wide range of hazardous substances simultaneously is needed to achieve improved safety for personnel working with hypergolic fuels and oxidizers, as well as other hazardous substances, with a requirement for such detection systems to warn personnel immediately upon the sudden advent of hazardous conditions, with a high probability of detection and a low false alarm rate. The primary purpose of this software is to read the voltage outputs from voltage dividers containing carbon nano - tube sensors as a variable resistance leg, and to recognize quickly when a leak has occurred through recognizing that a generalized pattern change in resistivity of a carbon nanotube sensor has occurred upon exposure to dangerous substances, and, further, to identify quickly just what substance is present through detailed pattern recognition of the shape of the response provided by the carbon nanotube sensor.
Back-propagating the light of field stars to probe telescope mirrors aberrations
Soulez, Ferréol; Unser, Michael
2016-01-01
We propose a wavefront-based method to estimate the PSF over the whole field of view. This method estimate the aberrations of all the mirrors of the telescope using only field stars. In this proof of concept paper, we described the method and present some qualitative results.
Axon-somatic back-propagation in detailed models of spinal alpha motoneurons
Directory of Open Access Journals (Sweden)
Pietro eBalbi
2015-02-01
Full Text Available Antidromic action potentials following distal stimulation of motor axons occasionally fail to invade the soma of alpha motoneurons in spinal cord, due to their passing through regions of high non-uniformity.Morphologically detailed conductance-based models of cat spinal alpha motoneurons have been developed, with the aim to reproduce and clarify some aspects of the electrophysiological behavior of the antidromic axon-somatic spike propagation. Fourteen 3D morphologically detailed somata and dendrites of cat spinal alpha motoneurons have been imported from an open-access web-based database of neuronal morphologies, NeuroMorpho.org, and instantiated in neurocomputational models. An axon hillock, an axonal initial segment and a myelinated axon are added to each model.By sweeping the diameter of the axonal initial segment (AIS and the axon hillock, as well as the maximal conductances of sodium channels at the AIS and at the soma, the developed models are able to show the relationships between different geometric and electrophysiological configurations and the voltage attenuation of the antidromically travelling wave.In particular, a greater than usually admitted sodium conductance at AIS is necessary and sufficient to overcome the dramatic voltage attenuation occurring during antidromic spike propagation both at the myelinated axon-AIS and at the AIS-soma transitions.
The Prediction of Bankruptcy Using Backpropagation Algorithm for “IO” Model Analysis
Directory of Open Access Journals (Sweden)
Ciprian Dragota
2007-01-01
Full Text Available The basic question which every bank it putswhen a client or a future client whishes to take a bank loanis: “The future debtor it’s capable to refund the loan atmaturity? (Installments plus the interest“. To answer atthis question the bank makes an assessment in which assetsand liabilities are analyze. There is also assessed the creditrating, the cash flow, the securities and, very important,bankrupt risk analysis.For the last one, to calculate bankrupt risk analysis,banks use some models (knows as “Z” score. Few of themare financials methods (like Altman, Canon & Holder,Yves Colonques etc. Nevertheless, these models are beendevelop for a specific situation and for a western economywhich is functional and very articulated. For our economy,we propose a new model that is been build with the specificeconomic dates and inputs, the model we called “IO”model.Without pretending to be able to penetrate over thecomplexity of the phenomenon, this study is trying to do apractical and experimental analysis of bankruptcy usingback propagation algorithm applied to the ”IO” model.
Directory of Open Access Journals (Sweden)
Z Abidin
2013-07-01
Full Text Available Di dalam kehidupan sehari-hari, khususnya dalam komunikasi interpersonal, wajah sering digunakan untuk berekspresi. Melalui ekspresi wajah, maka dapat dipahami emosi yang sedang bergejolak pada diri individu. Ekspresi wajah merupakan salah satu karakteristik perilaku. Penggunaan sistem teknologi biometrika dengan karakteristik ekspresi wajah memungkinkan untuk mengenali mood atau emosi seseorang. Komponen dasar sistem analisis ekspresi wajah adalah deteksi wajah, ekstraksi data wajah, dan pengenalan ekspresi wajah. Sehingga untuk membangun sebuah sistem pengenal ekspersi wajah, maka perlu dirancang tiga buah sub sistem yaitu sistem deteksi wajah, sistem pembelajaran jaringan syaraf tiruan. Prinsipnya data wajah yang telah dideteksi, diolah menggunakan fisherface, yang selanjutnya hasilnya digunakan sebagai input untuk jaringan syaraf tiruan. Bobot yang dihasilkan pada saat proses pembelajaran jaringan syaraf tiruan inilah yang akan digunakan untuk pengenalan ekspresi wajah.Â In daily life, especially in interpersonal communication, face often used for express of emotions. Facial expressions are the facial changes in response to a personâ€™s internal emotional states. A facial expression is one of the behavioral characteristics. The use of facial expression characteristics enables to recognize of personâ€™s mood. Basic components of a facial expression analysis system are face detection, face data extraction, and facial expression recognition. So that, to build a facial expression recognition system, it should be designed three subsystems, namely face detection system, learning of neural network system, and facial expression recognition system itself. In principle, face data that has been successfully detected, then it will be constructed by fisherface, and the results of it will be used as an input of neural network. Afterwards, the weights of neural network learning will be used to recognize facial expression.
New backpropagation algorithm with type-2 fuzzy weights for neural networks
Gaxiola, Fernando; Valdez, Fevrier
2016-01-01
In this book a neural network learning method with type-2 fuzzy weight adjustment is proposed. The mathematical analysis of the proposed learning method architecture and the adaptation of type-2 fuzzy weights are presented. The proposed method is based on research of recent methods that handle weight adaptation and especially fuzzy weights. The internal operation of the neuron is changed to work with two internal calculations for the activation function to obtain two results as outputs of the proposed method. Simulation results and a comparative study among monolithic neural networks, neural network with type-1 fuzzy weights and neural network with type-2 fuzzy weights are presented to illustrate the advantages of the proposed method. The proposed approach is based on recent methods that handle adaptation of weights using fuzzy logic of type-1 and type-2. The proposed approach is applied to a cases of prediction for the Mackey-Glass (for ô=17) and Dow-Jones time series, and recognition of person with iris bi...
Fang, Hongqing; He, Lei; Si, Hao; Liu, Peng; Xie, Xiaolei
2014-09-01
In this paper, Back-propagation(BP) algorithm has been used to train the feed forward neural network for human activity recognition in smart home environments, and inter-class distance method for feature selection of observed motion sensor events is discussed and tested. And then, the human activity recognition performances of neural network using BP algorithm have been evaluated and compared with other probabilistic algorithms: Naïve Bayes(NB) classifier and Hidden Markov Model(HMM). The results show that different feature datasets yield different activity recognition accuracy. The selection of unsuitable feature datasets increases the computational complexity and degrades the activity recognition accuracy. Furthermore, neural network using BP algorithm has relatively better human activity recognition performances than NB classifier and HMM.
Kostencka, J.; Kozacki, T.
2016-04-01
Filtered back propagation (FBPP) is a well-established reconstruction technique that is used in diffractive holographic tomography. The great advantage of the algorithm is the space-domain implementation, which enables avoiding the error-prone interpolation in the spectral domain that is an inherent part of the main counterpart of FBPP - the direct inversion tomographic reconstruction method. However, the fundamental flaw of FBPP is lack of generality, i.e. the method can be applied solely for the classical tomographic systems, where alternation of the measurement views is achieved by rotating a sample. At the same time, majority of the nowadays tomographic setups apply an alternative measurement concept, which is based on scanning of an illumination beam. The aim of this paper is to remove the mentioned limitation of the FBPP and enable its application in the systems utilizing scanning of illumination. This is achieved by introducing a new method of accounting for uneven cover of the sampled object frequencies, which applies normalization of the object spectrum with coherent transfer function of a considered tomographic system. The feasibility of the proposed, modified filtered back propagation algorithm is demonstrated with numerical simulations, which mimic tomographic measurement of a complex sample, i.e. the Shepp-Logan phantom.
Yu, Yuguo; Shu, Yousheng; McCormick, David A.
2008-01-01
Neocortical action potential responses in vivo are characterized by considerable threshold variability, and thus timing and rate variability, even under seemingly identical conditions. This finding suggests that cortical ensembles are required for accurate sensorimotor integration and processing. Intracellularly, trial-to-trial variability results not only from variation in synaptic activities, but also in the transformation of these into patterns of action potentials. Through simultaneous ax...
Predicting carbonate permeabilities from wireline logs using a back-propagation neural network
International Nuclear Information System (INIS)
This paper explores the applicability of using Neural Networks to aid in the determination of carbonate permeability from wireline logs. Resistivity, interval transit time, neutron porosity, and bulk density logs form Texaco's Stockyard Creek Oil field were used as input to a specially designed neural network to predict core permeabilities in this carbonate reservoir. Also of interest was the comparison of the neural network's results to those of standard statistical techniques. The process of developing the neural network for this problem has shown that a good understanding of the data is required when creating the training set from which the network learns. This network was trained to learn core permeabilities from raw and transformed log data using a hyperbolic tangent transfer function and a sum of squares global error function. Also, it required two hidden layers to solve this particular problem
Impact of Ethnic Group on Human Emotion Recognition Using Backpropagation Neural Network
Directory of Open Access Journals (Sweden)
Nabil M. Hewahi
2011-12-01
Full Text Available We claim that knowing the ethnic group of human would increase the accuracy of the emotion recognition. This is due to the difference between the face appearances and expressions of
various ethnic groups. To test our claim, we developed an approach based on Artificial Neural Networks (ANN using backpropgation algorithm to recognize the human emotion through facial expressions. Our approach has been tested by using MSDEF dataset, and we found that, there is a positive effect on the accuracy of the recognition of emotion if we consider the ethnic group as input factor while building the recognition model. We achieved 8% improvement rate.
Automatic volcanic ash detection from MODIS observations using a back-propagation neural network
T. M. Gray; Bennartz, R.
2015-01-01
Due to the climate effects and aviation threats of volcanic eruptions, it is important to accurately locate ash in the atmosphere. This study aims to explore the accuracy and reliability of training a neural network to identify cases of ash using observations from the Moderate Resolution Imaging Spectroradiometer (MODIS). Satellite images were obtained for the following eruptions: Kasatochi, Aleutian Islands, 2008; Okmok, Aleutian Islands, 2008; Grímsvötn, n...
Forest Fire Smoke Detection Using Back-Propagation Neural Network Based on MODIS Data
Xiaolian Li; Weiguo Song; Liping Lian; Xiaoge Wei
2015-01-01
Satellite remote sensing provides global observations of the Earth’s surface and provides useful information for monitoring smoke plumes emitted from forest fires. The aim of this study is to automatically separate smoke plumes from the background by analyzing the MODIS data. An identification algorithm was improved based on the spectral analysis among the smoke, cloud and underlying surface. In order to get satisfactory results, a multi-threshold method is used for extracting training sampl...
Ilin, Roman; Werbos, Paul J
2007-01-01
Cellular Simultaneous Recurrent Neural Network (SRN) has been shown to be a function approximator more powerful than the MLP. This means that the complexity of MLP would be prohibitively large for some problems while SRN could realize the desired mapping with acceptable computational constraints. The speed of training of complex recurrent networks is crucial to their successful application. Present work improves the previous results by training the network with extended Kalman filter (EKF). We implemented a generic Cellular SRN and applied it for solving two challenging problems: 2D maze navigation and a subset of the connectedness problem. The speed of convergence has been improved by several orders of magnitude in comparison with the earlier results in the case of maze navigation, and superior generalization has been demonstrated in the case of connectedness. The implications of this improvements are discussed.
The performance of the backpropagation algorithm with varying slope of the activation function
Energy Technology Data Exchange (ETDEWEB)
Bai Yanping [National Key Laboratory of Micro/Nano Fabrication Technology, Institute of Microelectronics, Peking University, 100871 (China); Department of Applied Mathematics, North University of China, No. 3 Xueyuan Road, TaiYuan, ShanXi 030051 (China)], E-mail: baiyp@nuc.edu.cn; Zhang Haixia [National Key Laboratory of Micro/Nano Fabrication Technology, Institute of Microelectronics, Peking University, 100871 (China); Hao Yilong [National Key Laboratory of Micro/Nano Fabrication Technology, Institute of Microelectronics, Peking University, 100871 (China)], E-mail: yilonghao@ime.pke.edu.cn
2009-04-15
Some adaptations are proposed to the basic BP algorithm in order to provide an efficient method to non-linear data learning and prediction. In this paper, an adopted BP algorithm with varying slope of activation function and different learning rates is put forward. The results of experiment indicated that this algorithm can get very good performance of training. We also test the prediction performance of our adopted BP algorithm on 16 instances. We compared the test results to the ones of the BP algorithm with gradient descent momentum and an adaptive learning rate. The results indicate this adopted BP algorithm gives best performance (100%) for test example, which conclude this adopted BP algorithm produces a smoothed reconstruction that learns better to new prediction function values than the BP algorithm improved with momentum.
Directory of Open Access Journals (Sweden)
Lei Si
2014-01-01
Full Text Available Classification is an important theme in data mining. Rough sets and neural networks are the most common techniques applied in data mining problems. In order to extract useful knowledge and classify ambiguous patterns effectively, this paper presented a hybrid algorithm based on the integration of rough sets and BP neural network to construct a novel classification system. The attribution values were discretized through PSO algorithm firstly to establish a decision table. The attribution reduction algorithm and rules extraction method based on rough sets were proposed, and the flowchart of proposed approach was designed. Finally, a prototype system was developed and some simulation examples were carried out. Simulation results indicated that the proposed approach was feasible and accurate and was outperforming others.
Directory of Open Access Journals (Sweden)
S.P.Kosbatwar
2012-03-01
Full Text Available The use of artificial neural network in applications can dramatically simplify the code and improve quality of recognition while achieving good performance. Another benefit of using neural network in application is extensibility of the system – ability to recognize more character sets than initially defined. Most of traditional systems are not extensible enough. In this paper recognition ofcharacters is possible by using neural network back propagation algorithm.
Abidin, Z.
2013-01-01
Di dalam kehidupan sehari-hari, khususnya dalam komunikasi interpersonal, wajah sering digunakan untuk berekspresi. Melalui ekspresi wajah, maka dapat dipahami emosi yang sedang bergejolak pada diri individu. Ekspresi wajah merupakan salah satu karakteristik perilaku. Penggunaan sistem teknologi biometrika dengan karakteristik ekspresi wajah memungkinkan untuk mengenali mood atau emosi seseorang. Komponen dasar sistem analisis ekspresi wajah adalah deteksi wajah, ekstraksi data wajah, dan pen...
CONVERGENCE OF GRADIENT METHOD WITH MOMENTUM FOR BACK-PROPAGATION NEURAL NETWORKS
Institute of Scientific and Technical Information of China (English)
Wei Wu; Naimin Zhang; Zhengxue Li; Long Li; Yan Liu
2008-01-01
In this work,a gradient method with momentum for BP neural networks is considered.The momentum coefficient is chosen in an adaptive manner to accelerate and stabilize the learning procedure of the network weights.Corresponding convergence results are proved.
Implementation of back-propagation neural networks with MatLab
Nazari, Jamshid; Ersoy, Okan K
1992-01-01
The artificial neural network back propagation algorithm is implemented in Matlab language. This implementation is compared with several other software packages. The effect of reducing the number of iterations in the performance of the algorithm iai studied. The speed of the back propagation program, mkckpmp, written in Matlab language is compared with the speed of several other back propagation programs which are written in the C language. The speed of the Matlab program mbackpmp is, also co...
Trainable hardware for dynamical computing using error backpropagation through physical media
Hermans, Michiel; Burm, Michaël; van Vaerenbergh, Thomas; Dambre, Joni; Bienstman, Peter
2015-03-01
Neural networks are currently implemented on digital Von Neumann machines, which do not fully leverage their intrinsic parallelism. We demonstrate how to use a novel class of reconfigurable dynamical systems for analogue information processing, mitigating this problem. Our generic hardware platform for dynamic, analogue computing consists of a reciprocal linear dynamical system with nonlinear feedback. Thanks to reciprocity, a ubiquitous property of many physical phenomena like the propagation of light and sound, the error backpropagation—a crucial step for tuning such systems towards a specific task—can happen in hardware. This can potentially speed up the optimization process significantly, offering important benefits for the scalability of neuro-inspired hardware. In this paper, we show, using one experimentally validated and one conceptual example, that such systems may provide a straightforward mechanism for constructing highly scalable, fully dynamical analogue computers.
Dai, Hengchang; MacBeth, Colin
1997-07-01
An automatic approach is developed to pick P and S arrivals from single component (1-C) recordings of local earthquake data. In this approach a back propagation neural network (BPNN) accepts a normalized segment (window of 40 samples) of absolute amplitudes from the 1-C recordings as its input pattern, calculating two output values between 0 and 1. The outputs (0,1) or (1,0) correspond to the presence of an arrival or background noise within a moving window. The two outputs form a time series. The P and S arrivals are then retrieved from this series by using a threshold and a local maximum rule. The BPNN is trained by only 10 pairs of P arrivals and background noise segments from the vertical component (V-C) recordings. It can also successfully pick seismic arrivals from the horizontal components (E-W and N-S). Its performance is different for each of the three components due to strong effects of ray path and source position on the seismic waveforms. For the data from two stations of TDP3 seismic network, the success rates are 93%, 89%, and 83% for P arrivals and 75%, 91%, and 87% for S arrivals from the V-C, E-W, and N-S recordings, respectively. The accuracy of the onset times picked from each individual 1-C recording is similar. Adding a constraint on the error to be 10 ms (one sample increment), 66%, 59% and 63% of the P arrivals and 53%, 61%, and 58% of the S arrivals are picked from the V-C, E-W and N-S recordings respectively. Its performance is lower than a similar three-component picking approach but higher than other 1-C picking methods.
de Albuquerque, Victor Hugo C.; João Manuel R. S. Tavares; Luís M. P. Durão
2008-01-01
Nowadays, drilling of carbon/epoxy laminates is extremely frequent in manufacturing and assembling processes and is normally carried through using standard drills, like twist or Brad drills. However, it is always necessary to have in mind the need to adapt properly the drilling operations and/or the drilling tools used as the risk of delamination occurrence in the laminates involved, or other kind of damages, is very high. Moreover, delamination can be critical because the mechanical properti...
Energy Technology Data Exchange (ETDEWEB)
Yu, S.; Wang, X.; Shi, C.; Wang, H. [Shandong Mining Institute (China). Jinan Branch
1999-04-01
Four reformatory learning algorithms are applied to enhance the learning speed and the stability of neural network. The general principles of forecasting productivity and efficiency with artificial neural network and the specific operational steps are described in details. The processing of data before and after the learning procedure, the determination of the network structure, and the appropriate reiteration times for the learning procedure are the main points of discussion. 3 refs., 3 figs., 2 tabs.
Khairani, Mufida
2015-01-01
Identification of characters in digital media to be one of the major concerns in the current era of technological development . Background of attempts to identify characters into digital form is not human activities release of documents or files manually in daily activities . Transformation process manually by way of input data and the information manually takes a long time , so it is considered a need for a mechanism to transform data and manual information into digital form automatically...
Grewe, Benjamin F.; Audrey Bonnan; Andreas Frick
2010-01-01
Pyramidal neurons of layer 5A are a major neocortical output type and clearly distinguished from layer 5B pyramidal neurons with respect to morphology, in vivo firing patterns, and connectivity; yet knowledge of their dendritic properties is scant. We used a combination of whole-cell recordings and Ca2+ imaging techniques in vitro to explore the specific dendritic signalling role of physiological action potential patterns recorded in vivo in layer 5A pyramidal neurons of the whisker-related &...
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
Since the complexity and structural diversity of man-made compounds are considered,quantitative structure-activity relationships(QSARs)-based fast screening approaches are urgently needed for the assessment of the potential risk of endocrine disrupting chemicals(EDCs).The artificial neural networks(ANN)are capable of recognizing highly nonlinear relationships,so it will have a bright application prospect in building high-quality QSAR models.As a popular supervised training algorithm in ANN,back-propagation(BP)converges slowly and immerses in vibration frequently.In this paper,a research strategy that BP neural network was improved by conjugate gradient(CG)algorithm with a variable selection method based on genetic algorithm was applied to investigate the QSAR of EDCs.This resulted in a robust and highly predictive ANN model with R2 of 0.845 for the training set,q2 pred of 0.81 and root-mean-square error(RMSE) of 0.688 for the test set.The result shows that our method can provide a feasible and practical tool for the rapid screening of the estrogen activity of organic compounds.
Fuzzy Backpropagation Algorithms and Their Convergence%模糊反向传播算法及其收敛性
Institute of Scientific and Technical Information of China (English)
魏延; 李世宏; 曹长修; 曾绍华
2007-01-01
针对S.Stoeva提出的基于相同样本及网络输出的模糊神经网络模型,通过对基于极大-极小模糊算子的模糊神经网络模型的研究,证明了其与S.Stoeva提出的网络模型的等价性.在此基础上提出了依赖于模糊逻辑神经元输出的调整模糊权值的模糊反向传播学习算法,并进一步研究了其收敛性.最后以汽轮发电机组的状态监测为例进行仿真分析.结果表明:在网络输入神经元满足样本输出介于样本输入的极大与极小之间时,所提出的模糊反向传播学习算法是收敛的.
Self-tuning Learning Rate of the Backpropagation Algorithm%步长动态寻优的BP算法
Institute of Scientific and Technical Information of China (English)
张燕; 刘作军; 孙慧
2000-01-01
从BP算法原理出发,找到造成这一结果的根本原因,利用目标函数对学习步长的一阶、二阶梯度值,应用牛顿近似法和线性寻优法来求得动态最优步长,这种算法所需存储一阶二阶导数的单元结构和标准BP算法中的结构相同,不会对存储造成大的负担,可使编程易于实现.计算机的仿真实验结果表明,这种方法是切实有效的.
Bahadir, Elif
2016-01-01
The purpose of this study is to examine a neural network based approach to predict achievement in graduate education for Elementary Mathematics prospective teachers. With the help of this study, it can be possible to make an effective prediction regarding the students' achievement in graduate education with Artificial Neural Networks (ANN). Two…
Institute of Scientific and Technical Information of China (English)
舒雅琴; 曾锦光
2000-01-01
A GA-BP complex algorithm based on real number coding is proposed. The algorithm optimizes the original weights, structure and learning rules of BP network to search the optimal solution in the solution space. An example of oil/gas prediction is given.%提出了一种基于实数编码的GA－BP复合算法，该算法对BP网络初始权值、结构、学习规则进行优化，从而在解空间中搜索出最优解．文中还给出了应用该算法解决油气产能预测的实例．
Adamowski, J. F.
2008-12-01
Cyprus is in the middle of an unprecedented water crisis that has lasted several years. Four ideas that have been considered to aid in resolving the problem include imposing effective water use restrictions, implementing water demand reduction programs, optimizing water supply systems, and developing alternative water source strategies. A critical component of each of these initiatives is the accurate forecasting of short- term peak water demands. This study compared multiple linear regression and three types of artificial neural networks (ANNs) as methods for peak weekly water demand forecast modeling. Analysis was performed on six years of peak weekly water demand data and meteorological variables (maximum weekly temperature and total weekly rainfall) for two different regions (Athalassa and Public Garden) in the city of Nicosia, Cyprus. Twenty multiple linear regression models, twenty Levenberg-Marquardt ANN models, twenty Resilient Back- Propagation ANN models, and twenty Conjugate Gradient Powell-Beale ANN models were developed and their relative performance was compared. For both the Athalassa and Public Garden regions in Nicosia, the Levenberg-Marquardt ANN method was found to provide a more accurate forecast of peak weekly water demand than the other two types of ANNs and multiple linear regression. It was also found that the peak weekly water demand in Nicosia is better correlated with the rainfall occurrence rather than the amount of rainfall itself.
Yang, Tsung-Ming; Fan, Shu-Kai; Fan, Chihhao; Hsu, Nien-Sheng
2014-08-01
The purpose of this study is to establish a turbidity forecasting model as well as an early-warning system for turbidity management using rainfall records as the input variables. The Taipei Water Source Domain was employed as the study area, and ANOVA analysis showed that the accumulative rainfall records of 1-day Ping-lin, 2-day Ping-lin, 2-day Fei-tsui, 2-day Shi-san-gu, 2-day Tai-pin and 2-day Tong-hou were the six most significant parameters for downstream turbidity development. The artificial neural network model was developed and proven capable of predicting the turbidity concentration in the investigated catchment downstream area. The observed and model-calculated turbidity data were applied to developing the turbidity early-warning system. Using a previously determined turbidity as the threshold, the rainfall criterion, above which the downstream turbidity would possibly exceed this respective threshold turbidity, for the investigated rain gauge stations was determined. An exemplary illustration demonstrated the effectiveness of the proposed turbidity early-warning system as a precautionary alarm of possible significant increase of downstream turbidity. This study is the first report of the establishment of the turbidity early-warning system. Hopefully, this system can be applied to source water turbidity forecasting during storm events and provide a useful reference for subsequent adjustment of drinking water treatment operation. PMID:24691737
Diagnosis of Hydraulic Gate's Typical Faults Based on Backpropagation%基于BP网络的闸门典型故障诊断
Institute of Scientific and Technical Information of China (English)
唐建; 张梅军; 夏志高
2004-01-01
用BP网络实现闸门典型故障的诊断.信号依次经历小波除噪、归一化和去趋3个预处理过程,从处理前和处理后的信号中提取能有效描述信号特征的特征量作为网络输入.同时,为4种典型信号设立了相对应的网络输出,形成输入-输出样本对.网络用这些样本对训练自身.网络性能测试表明,它能有效识别典型故障,而没有训练过的模式,网络也能判断出其为陌生信号模式.
Institute of Scientific and Technical Information of China (English)
陈爱国; 叶家玮; 苏曙
2010-01-01
建立了基于系列60船模原始实验数据的船舶阻力计算3层BP神经网络系统,利用随机选取的检验样本和插值样本作为输入向量,应用输出与目标的线性回归、相关系数和相对误差,以及利用该神经网络绘制的曲线,验证了该神经网络的可靠性.在该神经网络的建立过程中,对训练函数、性能函数、传递函数、隐层神经无数和神经网络绘制的性能曲线进行了实验,并通过数据预处理方式,确定了最佳的船舶阻力计算3层BP神经网络系统.
基于BP网络的燃烧器火焰燃烧状态识别%Burner Flame Recognition Based on Backpropagation Neural Network
Institute of Scientific and Technical Information of China (English)
董晓峰; 高庆忠; 刘广生
2005-01-01
基于原有数字图像处理系统,根据采集的电站锅炉直流燃烧器和旋流燃烧器火焰图像,讨论了特征值的意义和提取方法,运用现代人工神经网络智能理论,设计并训练了BP网络实现燃烧状态实时判断的功能.
Institute of Scientific and Technical Information of China (English)
李志全; 樊春玲; 张志民; 刘文双
2000-01-01
提出了一种基于优化过程的结构自整定BP算法.针对误差函数的特征,进行了优化处理,提高了收敛速度:通过结构自整定使网络结构动态变化,在误差精度达到要求的同时实现了结构最优.
汽车追尾事故的BP网络模型研究%A Study of Backpropagation Neural Network Model for Car Tracing Cauda
Institute of Scientific and Technical Information of China (English)
熊和金; 刘清; 杨杰
2000-01-01
高速公路汽车追尾是一种严重的交通安全事故,引起了交通科技界的广泛重视.近几年来,人们试图从理论与技术上解决高速公路汽车追尾问题,其中建立追尾的数学模型是研究追尾现象的基础.文中在分析了汽车追尾的原因后,基于神经网络理论,建立了追尾的BP网络模型,并讨论了追尾预测系统的技术实现方案.
Expert System of Chinese Syntax Analysis Based on Backpropagation Networks%基于BP网络的汉语句法分析专家系统
Institute of Scientific and Technical Information of China (English)
王玉美; 阮晓钢
2003-01-01
提出了一种基于BP网络的汉语句法分析专家系统的设计方案.知识库采用产生式规则的知识表达方式,并将知识二元化存储在神经网络中.推理机采用神经网络进行推理.在论文的结尾给出了系统的运行实例,说明了该系统的有效性.
Institute of Scientific and Technical Information of China (English)
张弘强; 王春红
2005-01-01
根据影响教师评估成绩的指标构建了BP神经网络模型,应用MAT-LAB工具直接根据教师的表现来估算教师的评估成绩,对神经网络在教师评估中的应用作了新的尝试.
吸气式脉冲爆震发动机反传数值研究%Numerical Investigation of Backpropagation of Air-Breathing Pulse Detonation Engine
Institute of Scientific and Technical Information of China (English)
彭畅新; 王治武; 郑龙席; 陈星谷; 卢杰
2013-01-01
采用小能量点火方法,对吸气式脉冲爆震发动机的反传现象进行了数值研究.获得了反传现象的形成及传播特性.结果表明,吸气式脉冲爆震发动机的反传可以分为压力反传和燃气反传两部分.两者都是由缓燃和回传爆震引起的,回传爆震占主导作用.反传燃气的影响区域小于反传压力,由于尾部膨胀波的作用,反传燃气在一定位置会停止向上游进气道流动.反传压力会一直向进气道上游传播,并且迫使流道内的流体也向上游流动.等截面流道内反传压力减小的速度较慢,应对进气道进行优化设计.
Inverted Pendulum Control Based on Feed- forward backpropagation Algorithm of ANN%基于前馈BP网的倒立摆控制
Institute of Scientific and Technical Information of China (English)
张滔; 谢宗安
2004-01-01
本文分析了直线一级倒立摆的受力情况,建立状态空间数学模型,构造4输入1输出的三层前馈BP网络.运用引入动量项的改进BP算法对网络进行训练,并将这一网络对倒立摆进行实时控制.实验结果表明BP算法具有算法精度高,实现快,鲁棒性好等优点,应用前景广阔.
DEFF Research Database (Denmark)
Kobayashi, T.; Takara, H.; Sano, A.;
2013-01-01
We demonstrate 12-core fiber bidirectional long-haul transmission with sub-petabit-class capacity (2 × 344 Tb/s). Inter-core crosstalk management and multicarrier nonlinear compensation enabled the longest distance of 1500 km in SDM transmission with unidirectional capacity over 300 Tb/s....
基于动态BP神经网络的财务危机预警算法研究%Efficient financial forecast based on dynamic back-propagation neural network
Institute of Scientific and Technical Information of China (English)
杨济亭
2013-01-01
Most of the classical methods in the investigations of financial forecast are generally based on a static pre-warning modeling by only exploring the single-period financial data, such as the signal-variable analysis, multiple-variables analysis, Logit regression analysis, which unfortunately ignores the potential influences from the historical data. In order to enhance the accuracy and stability of the financial forecasting, a promising dynamic back propagation ( BP) neural network relying on the Logit nonlinear mapping is proposed to perform financial forecasting. The historical panel data of financial companies is also fully taken into consideration in this new method, and different weights associated with different period data is used. The experimental results have demonstrated the effectiveness and the fair accuracy of the new forecasting model.%为进一步提升模型合理性和预测结果准确度,充分考虑公司财务情况历史值的影响,通过对不同时期的财务面板数据赋以不同权重,设计提出了一种基于Logit-动态BP神经网络的财务危机预警机制.实证结果显示,基于面板数据的新模型能更好地体现财务危机的发生机理,因而具备良好预警精度；在对财务危机公司及财务正常公司预警实验中,其预测性能均优于现有Logit回归分析模型和传统神经网络模型.
Energy Technology Data Exchange (ETDEWEB)
Rosas Ortiz, German
2000-01-01
Fault detection and diagnosis on transmission systems is an interesting area of investigation to Artificial Intelligence (AI) based systems. Neurocomputing is one of fastest growing areas of research in the fields of AI and pattern recognition. This work explores the possible suitability of pattern recognition approach of neural networks for fault detection and classification on power systems. The conventional detection techniques in modern relays are based in digital processing of signals and it need some time (around 1 cycle) to send a tripping signal, also they are likely to make incorrect decisions if the signals are noisy. It's desirable to develop a fast, accurate and robust approach that perform accurately for changing system conditions (like load variations and fault resistance). The aim of this work is to develop a novel technique based on Artificial Neural Networks (ANN), which explores the suitability of a pattern classification approach for fault detection and diagnosis. The suggested approach is based in the fact that when a fault occurs, a change in the system impedance take place and, as a consequence changes in amplitude and phase of line voltage and current signals take place. The ANN-based fault discriminator is trained to detect this changes as indicators of the instant of fault inception. This detector uses instantaneous values of these signals to make decisions. Suitability of using neural network as pattern classifiers for transmission systems fault diagnosis is described in detail a neural network design and simulation environment for real-time is presented. Results showing the performance of this approach are presented and indicate that it is fast, secure and exact enough, and it can be used in high speed fault detection and classification schemes. [Spanish] El diagnostico y la deteccion de fallas en sistemas de transmision es una area de interes en investigacion para sistemas basados en Inteligencia Artificial (IA). El calculo neuronal es una de las areas de investigacion de mas rapido crecimiento en el campo de la IA y el reconocimiento de patrones. Este trabajo explora la posible aplicabilidad de una tecnica de reconocimiento de patrones basada en redes neuronales para la deteccion y la clasificacion de fallas en un SEP. Las tecnicas convencionales de deteccion en los relevadores modernos se basan en un procesamiento digital de senales y requieren de cierto tiempo (alrededor de 1 ciclo) para enviar una senal de disparo, ademas de ser propensas a tomar decisiones incorrectas si las senales se encuentran contaminadas por ruido. Es deseable entonces desarrollar tecnicas que sean rapidas, exactas y robustas y que tengan un buen desempeno ante las condiciones cambiantes del sistema (como variaciones de carga y resistencia de falla, por ejemplo). El objetivo de este trabajo es desarrollar una tecnica novedosa basada en Redes Neuronales Atificales (RNA), la cual explora la aplicabilidad de la propuesta de reconocimiento de patrones para el diagnostico y deteccion de fallas. La tecnica sugerida se basa en el hecho de que cuando ocurre una falla, toma lugar un cambio de impedancia en el sistema y como consecuencia, cambios en la amplitud y fase de las senales de voltajes y corrientes de linea toman lugar. Se desarrolla un discriminador de fallas basado en redes neuronales que es entrenado para detectar estos cambios como indicadores del instante de ocurrencia de la falla. Este detector utiliza valores instantaneos de esas senales para tomar decisiones. Se describe a detalle la aplicabilidad de las redes neuronales como clasificadores de patrones para el diagnostico de fallas en sistemas de transmision y ademas, se presenta un diseno basado en redes neuronales y su ambiente de simulacion para la deteccion y clasificacion de fallas en tiempo real. Se presentan resultados del desempeno de esta tecnica que muestran que es rapida, segura y suficientemente exacta e indican su aplicabilidad dentro de esquemas de deteccion y clasificacion de fallas a muy alta velocidad.
Institute of Scientific and Technical Information of China (English)
邓斌; 周志刚; 马泽粦; 易来龙; 张锡萍; 郭晃潮; 梅月志
2008-01-01
目的 应用BP人工神经网络模型探讨气象因素对肺结核病发病影响,同时建立肺结核病与气象因素关系的BP神经网络模型.方法 利用Matlab 6.5的Statistics Neural Network软件对气象因素与肺结核病关系的BP人工神经网络模型进行构建、训练与模拟.结果 经过数据训练得出理想网络模型,肺结核病发病回代误差均方、平均误差率和R2分别为0.00713、0.82和0.9081,说明所得人工神经网络模型效果理想.通过对自变量对输出量贡献量分析表明,平均蒸发量对肺结核发病影响最大,平均气压亦有一定影响.结论 肺结核与气象因素关系的BP人工神经网络模型效果良好,有助于进一步研究的价值.
Institute of Scientific and Technical Information of China (English)
梁哲浩; 鲁伟
2015-01-01
目的：探讨超声结合人工神经网络技术在女童中枢性性早熟诊断中的应用价值。方法选用170例性早熟女童进行常规超声检查子宫、卵巢，以其中130例的子宫体积、卵巢体积以及双侧卵巢最大卵泡内径为输入变量，以中枢性性早熟或非中枢性性早熟为输出变量，建立反向传播（BP）神经网络，并对另40例性早熟病例分类。结果利用 BP 神经网络结合常规超声检查对中枢性性早熟诊断的敏感性、特异性和准确率分别为95．0％、85．0％、90．0％。结论神经网络结合超声检查对中枢性性早熟的诊断和鉴别诊断具有较大的价值。%Objective To explore the value of ultrasonic combined with Back‐propagation artificial neural network in the diagnosis of central precocious puberty .Methods In 170 girls with precocious puberty ,the uterine and ovarian were ex‐amined with ultrasound ,in which 130 cases of uterine volume ,ovarian volume and bilateral ovarian follicles biggest diame‐ter were taken as inputs ,the central precocious puberty or non‐central precocious puberty as output variable .The back‐propagation (BP) neural network was established using such data .The other 40 cases were sorted by this BP neural net‐work .Results The diagnostic sensitivity ,specificity and accuracy of the BP neural network combination of ultrasound were 95 .0% ,85 .0% and 90 .0% ,respectively .Conclusion The BP neural network in combination of ultrasound is help‐ful in diagnosing central precocious puberty .
Institute of Scientific and Technical Information of China (English)
吕学志; 范保新; 尹建; 王宪文
2014-01-01
在任务执行期合理、科学地确定维修任务的优先级别对于有序、高效地组织维修保障活动具有重要意义。提出了一种基于BP神经网络的维修任务优先级分类方法。详细介绍了神经网络模型的建模过程，其中重点介绍了模型设计，包括输入数据准备、输出数据准备与神经网络结构。所建立的神经网络模型通过对输入与输出的训练，可以学习准则与维修任务优先级之间的复杂关系，获得并表示决策者的偏好，有效地辅助决策者对维修任务优先级进行分类。%During mission, determining priority categories of maintenance task rationally and scientifically is valuable to effectiveness and efficiency of maintenance support. A priority sorting approach of maintenance task during mission based on BP neural networks is proposed. Modeling process of neural networks model is discussed in detail, and it focuses on model design that includes input data preparation, output data preparation and neural networks structure. Through training of input and output, established neural networks can learn complex relationship between criteria and priority of mainte-nance tasks, obtain preference of decision makers, help decision maker sort maintenance tasks according to their priority.
Institute of Scientific and Technical Information of China (English)
王士同; 朱晓铭
2002-01-01
研究了模糊反向传播神经网络的函数逼近能力.研究结果给出了单调连续函数的FBP按序单调特性、连续映射定理以及非函数一致逼近定理,并且说明了FBP虽然能保持连续性映射,但不如原神经网络具有函数逼近能力.
Institute of Scientific and Technical Information of China (English)
张葛祥; 唐钟
2002-01-01
本文针对用GA训练NN权值时,花费的代价随精度的提高而剧烈增加的缺陷,提出了一种利用IGA较强的全局搜索能力和IBPA较强的局部搜索能力的结合算法;先利用IGA优化多层前馈神经网络的权值,然后再用IBPA提高搜索精度,有效地避免了IBPA易陷入局部极小点和IGA过早收敛的缺点,实验结果表明,此算法是有效的.
Institute of Scientific and Technical Information of China (English)
张茂元; 卢正鼎
2004-01-01
针对前馈神经网络应时变输入的自学习机制,采用李雅普诺夫函数来分析权值的收敛性,从而揭示BP神经网络算法朝最小误差方向调整权值的内在因素,并在分析单参数BP算法收敛性基础上,提出单参数变调整法则的离散型BP神经网络算法.
Institute of Scientific and Technical Information of China (English)
夏刚
2005-01-01
在分析前向型BP神经网络基本原理的基础上,建立了基于BP神经网络的柴油机工作过程模型,提出了建模与实际工作过程分离的方法,建模过程简洁,计算结果与实际值取得较好的吻合.
Institute of Scientific and Technical Information of China (English)
赵志勇; 张志礼; 李永利
2003-01-01
根据影响铁矿产品成本的指标构建了BP神经网络模型,应用MATLAB工具直接根据资源状况和生产状况来估算矿产品成本,对神经网络在矿产品成本计算中的应用作了新的尝试.
A new backpropagation algorithm with knowledge-based optimizing process%一种采用基于知识的优化过程的BP算法研究
Institute of Scientific and Technical Information of China (English)
朱江海; 戚飞虎
1997-01-01
针对BP算法的固有缺点,提出一种实用有效的改进算法.此算法在每次得到的搜索方向上,都进行一维优化,从而解决了BP算法须人工由经验选取固定步长而带来的弊病;针对误差函数高度非线性的特征,改进算法采用基于知识的处理过程,全面利用每一步计算所得到的误差函数值和导数进行误差函数曲面地形判断,指导搜索计算,使算法具有极好的收敛稳定性,同时大大提高了收敛速度.
Institute of Scientific and Technical Information of China (English)
蔡章利; 陈小林; 石为人
2007-01-01
考试是检查学生学习效果和教师教学水平的一种重要工具,利用现代科技手段对其进行定量分析并做出客观评价,有助于准确把握学生的学习水平,从而改进教学方法,提高教学质量.为了进一步提高利用B-P神经网络研究学生学习效果的综合评价方法的实用性,笔者从评价指标、评价模型、训练样本3个方面作了改进研究,建立了评价模型,给出了仿真结果.
Institute of Scientific and Technical Information of China (English)
王科俊; 金鸿章; 李国斌
1998-01-01
提出一种用于多层前向神经网络的快速收敛全局最优的综合反向传播算法.该算法使用了综合考虑绝对误差和相对误差的广义指标函数,采用了在网络输出空间搜索的反传技术,具有动态自调整学习率和动量因子,有神经元激活特性自调整、减少平台现象和消除学习过程中不平衡现象的能力.对比实验表明该算法有比基本BP算法快得多的收敛速度,并能取得全局最优解.
Institute of Scientific and Technical Information of China (English)
何池洋
2005-01-01
本文应用人工神经网络原理,采用Levenberg-Marquardt BP算法,对于吸收光谱严重重叠的PAR-Cu、Co、Ni、Zn四组分显色体系同时进行含量测定.Cu、Co、Ni、Zn的平均回收率分别为100%、99%、101%、99%.实验表明,与普通BP网络、改进型BP网络和径向基网络相比,该算法具有训练速度快、预测结果准确度高等特点,和光度法结合有望成为多组分分析的有效方法之一.
Institute of Scientific and Technical Information of China (English)
王伟; 张玉; 吴应淼; 徐丽红; 王建清
2011-01-01
以‘庆元9015’香菇作为研究对象,以香菇样品的生长天数(d)和样品中总SO2-3含量、鲜香菇样品的SO2含量和采摘期的出菇时间(d)为输入层参数,以干香菇中SO2含量为输出层参数,建立三层BP神经网络模型,经过356次训练后模型收敛,模型具有满意的预测能力.%A three-layer BP network model was constructed with Qingyuan 9015 as the experimental material, and the mushroom growth days and the SO, content in mushrooms, the SO2 content in fresh mushroom samples and the mushroom producing time (days) in picking period were used as the four input parameters, and the SO2 content in dried mushroom was used as output parameter. After 356 times of training process, the model converged with satisfying predictive ability.
Research on cloud and fog separation by a back-propagation (BP) network%遥感影像云雾分离的BP神经网络方法研究
Institute of Scientific and Technical Information of China (English)
陆衍
2015-01-01
The recognition and separation of cloud and heavy fog has been a particularly chalenging aspect of weather forecasting. Recently, on account of rapid socio-economic development, the harmful effects of fog have become increasingly serious, and some fog events have been classiifed as natural disasters. Thus, to prevent fog disasters, the monitoring of heavy fog and the development of early warning systems for heavy fog have become a focus of academic research. This study used an improved back propagation (BP) algorithm to build a BP neural network, using a train function to train the net and uses sim functions to simulate the net. In this way, areas of fog can be identiifed in remote sensing images. Experimental results show that the BP network can properly separate areas of fog from other meteorological features, thus producing good results in terms of prediction and early warning of conditions conducive to heavy fog.%使用改进算法构造BP神经网络，利用MATLAB中train函数训练，并用sim函数进行仿真，达到提取遥感影像中雾区的目的。图像处理结果表明，BP神经网络方法可以较好地分离影像中的雾区与其他地物。
GENETIC ALGORITHM AND NEURAL NETWORK FOR OPTICAL CHARACTER RECOGNITION
Directory of Open Access Journals (Sweden)
Hendy Yeremia
2013-01-01
Full Text Available Computer system has been able to recognize writing as human brain does. The method mostly used for character recognition is the backpropagation network. Backpropagation network has been known for its accuracy because it allows itself to learn and improving itself thus it can achieve higher accuracy. On the other hand, backpropagation was less to be used because of its time length needed to train the network to achieve the best result possible. In this study, backpropagation network algorithm is combined with genetic algorithm to achieve both accuracy and training swiftness for recognizing alphabets. Genetic algorithm is used to define the best initial values for the networkâs architecture and synapsesâ weight thus within a shorter period of time, the network could achieve the best accuracy. The optimized backpropagation network has better accuracy and less training time than the standard backpropagation network. The accuracy in recognizing character differ by 10, 77%, with a success rate of 90, 77% for the optimized backpropagation and 80% accuracy for the standard backpropagation network. The training time needed for backpropagation learning phase improved significantly from 03 h, 14 min and 40 sec, a standard backpropagation training time, to 02 h 18 min and 1 sec for the optimized backpropagation network.
Institute of Scientific and Technical Information of China (English)
开小明
2004-01-01
选择微量元素Sr, Cu, Mg和Zn在血液中的含量作为判别冠心病患者的指标, 建立了Levenberg-Marquardt Backpropagation神经网络识别模式. 网络的第一层传输函数为Tansig函数, 第二层传输函数为线性的Purelin函数, 输入有4个向量, 隐含层有8个神经元, 输出层有1个神经元. 选择4个样本(测试元素含量在训练元素范围内)作为测试集, 余下22个样本为训练集. 给出了神经网络的权重(Weight)和偏置(Bias)值, 对给定的数据能完全识别, 预示着可通过血液中的微量元素, 可能作为冠心病患者诊断的一种辅助手段.
Institute of Scientific and Technical Information of China (English)
黄德生; 刘延令; 金一和
2001-01-01
Objective Using BP Artificial Neural Network to study the Structure-Activity relationship between aromatics compounds and rat LD50, improved precision of toxicity prediction. Methods Firstly, Principal-Components-Analysis was adopted, then used BP ANN net-structure, and applied LM arithumetic as iteration method to train the network. Result We have discussed the relationship betwenn the structure parameter of 120 varieties of aromatics compound and rat LD50, and optimized the parameter design of the net to avoid over-fitting. I found that three-layer BP ANN which using log-sigmoid function, (i.e.) f(x)=1/1(+exp(-x)) as network transfer function got better fitting power. When the number of the hidden layer node is 13, the sum-square error is 0.36 which is far less than linear models. While the outer prediction precision of multiplayer BP ANN is higher than linear model in evidence, SSE=4.63. Conclusion We can consider that the classify power of multiplayer BP ANN is superior to linear nodels. Multilayer BP ANN can be use to predict toxicity of aromatics compounds, this method is better than traditional methods.%对结构参数采用主成分变换，再利用BP人工神经网络，采用LM算法作为迭代方法训练网络，预测检验集化合物的LD50。结果显示，BP人工神经网络可以用于定量毒性构效关系研究，含隐层的BP人工神经网络拟合能力明显优于传统方法，消除过度拟合后的多层BP网络预测能力也好于传统方法，可以用于预测。
Institute of Scientific and Technical Information of China (English)
姚卫峰; 曹琳琳; 单鸣秋; 张丽; 丁安伟
2010-01-01
目的:研究利用紫外-可见光谱预测不同产地的荆芥穗样品.方法:首先采用主成分分析法对10个产地的荆芥穗紫外-可见光谱进行降维处理,将累积贡献率达99.82%的前6个新变量进行反向传播神经网络的建模.结果:所建主成分-神经网络模型预测结果的识别率为100%,均方误差为0.0010.结论:主成分-神经网络预测模型可用于不同产地荆芥穗药材的分类识别,方法简便快速.
Institute of Scientific and Technical Information of China (English)
赵俊; 何碧; 程新路; 杨向东
2006-01-01
引入神经网络BP算法研究了36种炸药分子的撞击感度与其分子特征量间的关联关系.所有分子的特征量均采用DFT3P86/6-31G**方法计算所得.共设计了8个不同的输入方案,训练和预测结果表明,在均方误差允许范围内(0.6245-4,4900),网络是可靠的.同时,含特征量(HOMO-LUMO)*BDE的方案训练预测结果最理想,说明在网络结构和训练参数基本相同的情况下,(HOMO-LUMO)*BDE与撞击感度的关联度最强,仅次于它的特征量是(HOMO-LUMO).
Institute of Scientific and Technical Information of China (English)
周廷刚; 张笃见
2002-01-01
针对误差反向传播(Bp)算法局部收敛等局限性和单亲遗传(PGA)算法的优点,提出了融PGA和Bp为一体的单亲遗传误差反向传播(PGA-BP)算法,并用于县级生态农业的综合评价.评价结果表明:PGA-BP算法具有简便、高效、适应性强等优点,用于县级生态农业的综合评价是切实可行的.
Institute of Scientific and Technical Information of China (English)
蒋淑梅; 柯以侃; 时彦; 迟锡增; 周宏珠
1999-01-01
应用火焰原子吸收法(FASS)和石墨炉原子吸收法(GFASS)测定了脑栓塞患者和对照组(健康人)血清中Zn、Cu、Fe、Ca、Mg、Cr、Mn和Sr等的含量.对所得数据用反向传播神经网络(B-P法)进行分析,建立了脑栓塞的神经网络识别系统,预报识别率达100%,可作为该病诊断的一种有效的辅助手段.
Institute of Scientific and Technical Information of China (English)
吴义平; 开小明
2011-01-01
基于LM-BP神经网络算法,建立了饱和醇结构拓扑指数和物理化学性质与在不同固定相上保留指数相关性的人工神经模型.网络的传输函数都是线性的(Purelin函数),隐含层有3个神经元.饱和醇包括带有伯、仲、叔基官能团的直链和支链醇.讨论了隐含层神经元数对神经网络的影响,由19个饱和醇得到的网络适合预测测试醇的精确保留指数.与多元线性回归比较,人工神经网络模型预测结果略优于多元线性回归法.
Neural Networks For Electrohydrodynamic Effect Modelling
Directory of Open Access Journals (Sweden)
Wiesław Wajs
2004-01-01
Full Text Available This paper presents currently achieved results concerning methods of electrohydrodynamiceffect used in geophysics simulated with feedforward networks trained with backpropagation algorithm, radial basis function networks and generalized regression networks.
Neural Networks for Electrohydrodynamic Effect Modelling
Directory of Open Access Journals (Sweden)
Jolanta Gancarz
2004-01-01
Full Text Available This paper presents currently achieved results concerning methods of electrohydrodynamic effect used in geophysics simulated with feedforward networks trained with backpropagation algorithm, radial basis function networks and generalized regression networks.
A study on the performance advancement of teat algorithm for defects in semiconductor packages
International Nuclear Information System (INIS)
In this study, researchers classifying the artificial flaws in semiconductor packages are performed by pattern recognition technology. For this purposes, image pattern recognition package including the user made software was developed and total procedure including ultrasonic image acquisition, equalization filtration, binary process, edge detection and classifier design is treated by Backpropagation Neural Network. Specially, it is compared with various weights of Backpropagation Neural Network and it is compared with threshold level of edge detection in preprocessing method for entrance into Multi-Layer Perceptron(Backpropagation Neural network). Also, tile pattern recognition techniques is applied to the classification problem of defects in semiconductor packages as normal, crack, delamination. According to this results, it is possible to acquire the recognition rate of 100% for Backpropagation Neural Network.
DEFF Research Database (Denmark)
Da Ros, Francesco; Sackey, I.; Jazayerifar, M.;
2015-01-01
Kerr nonlinearity compensation by optical phase conjugation is demonstrated in a WDM PDM 16-QAM system. Improved received signal quality is reported for both dispersion-compensated and dispersion-uncompensated transmission and a comparison with digital backpropagation is provided....
Mitigation of Linear and Nonlinear Impairments in Spectrally Efficient Superchannels
DEFF Research Database (Denmark)
Porto da Silva, Edson; Larsen, Knud J.; Zibar, Darko
2015-01-01
We assess numerically the performance of single-carrier digital backpropagation and maximum-likelihood sequence detection (MLSD) for DP-QPSK superchannel transmission. It is shown that MLSD is advantageous only against inter-carrier linear crosstalk....
Context dependent learning in neural networks
Spreeuwers, L.J.; Zwaag, van der, Berend Jan; Heijden, van der, M.
1995-01-01
In this paper an extension to the standard error backpropagation learning rule for multi-layer feed forward neural networks is proposed, that enables them to be trained for context dependent information. The context dependent learning is realised by using a different error function (called Average Risk: AVR) in stead of the sum of squared errors (SQE) normally used in error backpropagation and by adapting the update rules. It is shown that for applications where this context dependent informa...
Energy Technology Data Exchange (ETDEWEB)
Nose Filho, Kenji; Araujo, Klayton A.M.; Maeda, Jorge L.Y.; Lotufo, Anna Diva P. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Ilha Solteira, SP (Brazil)], Emails: kenjinose@yahoo.com.br, klayton_ama@hotmail.com, jorge-maeda@hotmail.com, annadiva@dee.feis.unesp.br
2009-07-01
This paper presents a development and implementation of a program to electrical load forecasting with data from a Brazilian electrical company, using four different architectures of neural networks of the MATLAB toolboxes: multilayer backpropagation gradient descendent with momentum, multilayer backpropagation Levenberg-Marquardt, adaptive network based fuzzy inference system and general regression neural network. The program presented a satisfactory performance, guaranteeing very good results. (author)
Sumit Goyal; Gyanendra Kumar Goyal
2012-01-01
This paper presents the potential of Cascade Backpropagation algorithm based ANN models in detecting the shelf life of processed cheese stored at 30o C. Processed cheese is a dairy product made from ripened Cheddar cheese and sometimes a part of ripened cheese is replaced by fresh cheese; plus emulsifiers, extra salt, spices and food colorings. The cascade backpropagation algorithm (CBA) is the basis of a conceptual design for accelerating learning in ANNs. In this research input parameters w...
Vibration Based Damage Assessment of a Cantilever using a Neural Network
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Rytter, A.
In this paper the possibility of using a Multilayer Perceptron (MLP) network trained with with the Backpropagation Algorithm as a non-destructive damage assessment technique to locate and quantify a damage in structures is investigated.......In this paper the possibility of using a Multilayer Perceptron (MLP) network trained with with the Backpropagation Algorithm as a non-destructive damage assessment technique to locate and quantify a damage in structures is investigated....
Linear GPR inversion for lossy soil and a planar air-soil interface
DEFF Research Database (Denmark)
Meincke, Peter
2001-01-01
A three-dimensional inversion scheme for fixed-offset ground penetrating radar (GPR) is derived that takes into account the loss in the soil and the planar air-soil interface. The forward model of this inversion scheme is based upon the first Born approximation and the dyadic Green function...... for a two-layer medium. The forward model is inverted using the Tikhonov-regularized pseudo-inverse operator. This involves two steps: filtering and backpropagation. The filtering is carried out by numerically solving Fredholm integral equations of the first kind and the backpropagation is performed using...
Neural Approach for Calculating Permeability of Porous Medium
Institute of Scientific and Technical Information of China (English)
ZHANG Ji-Cheng; LIU Li; SONG Kao-Ping
2006-01-01
@@ Permeability is one of the most important properties of porous media. It is considerably difficult to calculate reservoir permeability precisely by using single well-logging response and simple formula because reservoir is of serious heterogeneity, and well-logging response curves are badly affected by many complicated factors underground. We propose a neural network method to calculate permeability of porous media. By improving the algorithm of the back-propagation neural network, convergence speed is enhanced and better results can be achieved. A four-layer back-propagation network is constructed to effectively calculate permeability from well log data.
How Auto-Encoders Could Provide Credit Assignment in Deep Networks via Target Propagation
Bengio, Yoshua
2014-01-01
We propose to exploit {\\em reconstruction} as a layer-local training signal for deep learning. Reconstructions can be propagated in a form of target propagation playing a role similar to back-propagation but helping to reduce the reliance on derivatives in order to perform credit assignment across many levels of possibly strong non-linearities (which is difficult for back-propagation). A regularized auto-encoder tends produce a reconstruction that is a more likely version of its input, i.e., ...
Multigradient for Neural Networks for Equalizers
Directory of Open Access Journals (Sweden)
Chulhee Lee
2003-06-01
Full Text Available Recently, a new training algorithm, multigradient, has been published for neural networks and it is reported that the multigradient outperforms the backpropagation when neural networks are used as a classifier. When neural networks are used as an equalizer in communications, they can be viewed as a classifier. In this paper, we apply the multigradient algorithm to train the neural networks that are used as equalizers. Experiments show that the neural networks trained using the multigradient noticeably outperforms the neural networks trained by the backpropagation.
Nonlinear Time Series Prediction Using Chaotic Neural Networks
Institute of Scientific and Technical Information of China (English)
LI KePing; CHEN TianLun
2001-01-01
A nonlinear feedback term is introduced into the evaluation equation of weights of the backpropagation algorithm for neural network, the network becomes a chaotic one. For the purpose of that we can investigate how the different feedback terms affect the process of learning and forecasting, we use the model to forecast the nonlinear time series which is produced by Makey-Glass equation. By selecting the suitable feedback term, the system can escape from the local minima and converge to the global minimum or its approximate solutions, and the forecasting results are better than those of backpropagation algorithm.``
FUZZY NEURAL NETWORK FOR MACHINE PARTS RECOGNITION SYSTEM
Institute of Scientific and Technical Information of China (English)
Luo Xiaobin; Yin Guofu; Chen Ke; Hu Xiaobing; Luo Yang
2003-01-01
The primary purpose is to develop a robust adaptive machine parts recognition system. A fuzzy neural network classifier is proposed for machine parts classifier. It is an efficient modeling method. Through learning, it can approach a random nonlinear function. A fuzzy neural network classifier is presented based on fuzzy mapping model. It is used for machine parts classification. The experimental system of machine parts classification is introduced. A robust least square back-propagation (RLSBP) training algorithm which combines robust least square (RLS) with back-propagation (BP) algorithm is put forward. Simulation and experimental results show that the learning property of RLSBP is superior to BP.
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
Three-layer Adaptive Back-Propagation Neural Networks(TABPNN) are employed for the demodulation of spread spectrum signals in a multiple-access environment. A configuration employing three-layer adaptive Back-propagation neural networks is put forward for the demodulation of spread-spectrum signals in asynchronous Gaussian channels. The theoretical arguments and practical performance based on the neural networks are analyzed. The results show that whether the resistance to the multiple access interference or the robust to near-far effects, the proposed detector significantly outperforms not only the conventional detector but also the BP neural networks detector and is comparable to the optimum detector.
Using Genetic Algorithms in Secured Business Intelligence Mobile Applications
Directory of Open Access Journals (Sweden)
Silvia TRIF
2011-01-01
Full Text Available The paper aims to assess the use of genetic algorithms for training neural networks used in secured Business Intelligence Mobile Applications. A comparison is made between classic back-propagation method and a genetic algorithm based training. The design of these algorithms is presented. A comparative study is realized for determining the better way of training neural networks, from the point of view of time and memory usage. The results show that genetic algorithms based training offer better performance and memory usage than back-propagation and they are fit to be implemented on mobile devices.
Vibration Based Damage Assessment of a Civil Engineering Structures using a Neural Networks
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Rytter, A.
In this paper the possibility of using a Multilayer Perceptron (MLP) network trained with the Backpropagation Algorith as a non-destructive damage assessment technique to locate and quantify a damage in Civil Engineering structures is investigated. Since artificial neural networks are proving...
Jet analysis by neural networks in high energy hadron-hadron collisions
De Felice, P; Pasquariello, G; De Felice, P; Nardulli, G; Pasquariello, G
1995-01-01
We study the possibility to employ neural networks to simulate jet clustering procedures in high energy hadron-hadron collisions. We concentrate our analysis on the Fermilab Tevatron energy and on the k_\\bot algorithm. We consider both supervised multilayer feed-forward network trained by the backpropagation algorithm and unsupervised learning, where the neural network autonomously organizes the events in clusters.
Multiple modes of action potential initiation and propagation in mitral cell primary dendrite
DEFF Research Database (Denmark)
Chen, Wei R; Shen, Gongyu Y; Shepherd, Gordon M;
2002-01-01
to support the back-propagation of the evoked somatic action potential to produce the second dendritic spike. In summary, the balance of spatially distributed excitatory and inhibitory inputs can dynamically switch the mitral cell firing among four different modes: axo-somatic initiation with back...
Chen, Chau-Kuang
2010-01-01
Artificial Neural Network (ANN) and Support Vector Machine (SVM) approaches have been on the cutting edge of science and technology for pattern recognition and data classification. In the ANN model, classification accuracy can be achieved by using the feed-forward of inputs, back-propagation of errors, and the adjustment of connection weights. In…
SOLVING INVERSE KINEMATICS OF REDUNDANT MANIPULATOR BASED ON NEURAL NETWORK
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
For the redundant manipulators, neural network is used to tackle the velocity inverse kinematics of robot manipulators. The neural networks utilized are multi-layered perceptions with a back-propagation training algorithm. The weight table is used to save the weights solving the inverse kinematics based on the different optimization performance criteria. Simulations verify the effectiveness of using neural network.
Performance of Multi-Channel DBP with Long-haul Frequency-Referenced Transmission
DEFF Research Database (Denmark)
Porto da Silva, Edson; Da Ros, Francesco; Zibar, Darko
2016-01-01
The impact of frequency referenced WDM source on the performance of dual polarization multi-channel digital backpropagation (MC-DBP) is experimentally investigated up to 4000 km of transmission. For a system with 4 × 8 GBd DP-QPSK, such approach allows 0.6 dB more MC-DBP Q2-factor gain in the non...
DEFF Research Database (Denmark)
Bhowmik, Subrata; Weber, Felix; Høgsberg, Jan Becker
2013-01-01
This paper presents a systematic design and training procedure for the feed-forward backpropagation neural network (NN) modeling of both forward and inverse behavior of a rotary magnetorheological (MR) damper based on experimental data. For the forward damper model, with damper force as output...
DEFF Research Database (Denmark)
Asif, Rameez
2014-01-01
We evaluated that in-line non-linear compensation schemes decrease the com- plexity of digital back-propagation and enhance the perfor mance of 40/112/224Gbit/s mixed line rate network. Both grouped and un-grouped spectral all ocation schemes are investigated....
A Monte-Carlo-Based Network Method for Source Positioning in Bioluminescence Tomography
Zhun Xu; Xiaolei Song; Xiaomeng Zhang; Jing Bai
2007-01-01
We present an approach based on the improved Levenberg Marquardt (LM) algorithm of backpropagation (BP) neural network to estimate the light source position in bioluminescent imaging. For solving the forward problem, the table-based random sampling algorithm (TBRS), a fast Monte Carlo simulation method ...
Suppressing Halo-chaos for Intense Ion Beamby Neural Network Adaptation Control Strategy
Institute of Scientific and Technical Information of China (English)
FANGJin-qing; LUOXiao-shu; WENGJia-qiang; ZHULun-wu
2003-01-01
Neural network has some advantages of adaptation, learn-self, self-organization and suitable for high-dimension for various applications in many fields, especially among them the feed-forward back-propagating neural network self-adaptation method is suitable for control of nonlinear systems.
Yorek, Nurettin; Ugulu, Ilker
2015-01-01
In this study, artificial neural networks are suggested as a model that can be "trained" to yield qualitative results out of a huge amount of categorical data. It can be said that this is a new approach applied in educational qualitative data analysis. In this direction, a cascade-forward back-propagation neural network (CFBPN) model was…
Global Optimization Techniques for Fluid Flow and Propulsion Devices
Shyy, Wei; Papila, Nilay; Vaidyanathan, Raj; Tucker, Kevin; Griffin, Lisa; Dorney, Dan; Huber, Frank; Tran, Ken; Turner, James E. (Technical Monitor)
2001-01-01
This viewgraph presentation gives an overview of global optimization techniques for fluid flow and propulsion devices. Details are given on the need, characteristics, and techniques for global optimization. The techniques include response surface methodology (RSM), neural networks and back-propagation neural networks, design of experiments, face centered composite design (FCCD), orthogonal arrays, outlier analysis, and design optimization.
Speech Recognizing for Presentation Tool Navigation Using Back Propagation Artificial Neural Network
Directory of Open Access Journals (Sweden)
Hasanah Nur
2016-01-01
Full Text Available Backpropagation Artificial Neural Network (ANN is a well known branch of Artificial Intelligence and has been proven to solve various problems of complex speech recognizing in health [1], [2], education [4] and engineering [3]. Today, many kinds of presentation tools are used by society. One popular example is MsPowerpoint. The transition process between slides in presentation tools will be more easily done through speech, the sound emitted directly by the user during the presentation. This study uses research and development to create a simulation using Backpropagation ANN for speech recognition from number one to five to navigate slides of the presentation tool. The Backpropagation ANN consists of one input layer, one hidden layer with 100 neurons and one output layer. The simulation is built by using a Neural Network Toolbox Matlab R2014a. Speech samples were taken from five different people with wav format. This research shows that the Backpropagation ANN can be used as navigation through speech with 96% accuracy rate based on the network training result. Thesimulation can produce 63% accuracy based on 100 new speech samples from various sources.
A Neural Network Approach for GMA Butt Joint Welding
DEFF Research Database (Denmark)
Christensen, Kim Hardam; Sørensen, Torben
2003-01-01
squares has been used with the back-propagation algorithm for training the network, while a Bayesian regularization technique has been successfully applied for minimizing the risk of inexpedient over-training. Finally, a predictive closed-loop control strategy based on a so-called single-neuron self...
Non-leftmost Unfolding in Partial Evaluation of Logic Programs with Impure Predicates
DEFF Research Database (Denmark)
Albert, Elvira; Puebla, German; Gallagher, John Patrick
2006-01-01
are potentially impure. In this work we propose a partial evaluation scheme which substantially reduces the situations in which such backpropagation has to be avoided. With this aim, our partial deducer takes into account the information about purity of predicates expressed in terms of assertions. This allows...
Gas metal arc welding of butt joint with varying gap width based on neural networks
DEFF Research Database (Denmark)
Christensen, Kim Hardam; Sørensen, Torben
2005-01-01
squares has been used with the back-propagation algorithm for training the network, while a Bayesian regularization technique has been successfully applied for minimizing the risk of inexpedient over-training. Finally, a predictive closed-loop control strategy based on a so-called single-neuron self...
Mixed Analog/Digital Matrix-Vector Multiplier for Neural Network Synapses
DEFF Research Database (Denmark)
Lehmann, Torsten; Bruun, Erik; Dietrich, Casper
1996-01-01
/sign detector. Measurements on a CMOS test chip are presented and validates the techniques. Further, we propose to use an analog extension, based on a simple capacitive storage, for enhancing weight resolution during learning. It is shown that the implementation of Hebbian learning and back-propagation learning...
A Multievidence Approach for Crop Discrimination Using Multitemporal WorldView-2 Imagery
DEFF Research Database (Denmark)
Chellasamy, Menaka; Zielinski, Rafal Tomasz; Greve, Mogens Humlekrog
2014-01-01
summer) WorldView-2 multispectral imagery. A multilayer perceptron classifier is trained with the multitemporal datasets separately using a backpropagation learning algorithm, and prediction probabilities are produced for each pixel as evidence against each crop class. An integration rule based...
A brief review of feed-forward neural networks
SAZLI, Murat Hüsnü
2006-01-01
Artificial neural networks, or shortly neural networks, find applications in a very wide spectrum. In this paper, following a brief presentation of the basic aspects of feed-forward neural networks, their mostly used learning/training algorithm, the so-called back-propagation algorithm, have been described.
DEFF Research Database (Denmark)
Nilsson, Torben; Bassani, Maria R.; Larsen, Thomas Ostenfeld;
1996-01-01
. palitans. However, some difficulties appeared in distinguishing the closely related species P. commune and P. palitans. Such difficulties became greater on including more isolates and limiting the analysis to five of the species. The use of back-propagation artificial neural networks, in contrast, resulted...
Kv4 Potassium Channels Modulate Hippocampal EPSP-Spike Potentiation and Spatial Memory in Rats
Truchet, Bruno; Manrique, Christine; Sreng, Leam; Chaillan, Franck A.; Roman, Francois S.; Mourre, Christiane
2012-01-01
Kv4 channels regulate the backpropagation of action potentials (b-AP) and have been implicated in the modulation of long-term potentiation (LTP). Here we showed that blockade of Kv4 channels by the scorpion toxin AmmTX3 impaired reference memory in a radial maze task. In vivo, AmmTX3 intracerebroventricular (i.c.v.) infusion increased and…
A framework for predicting three-dimensional prostate deformation in real time
Jahya, Alex; Herink, Mark; Misra, Sarthak
2013-01-01
Background Surgical simulation systems can be used to estimate soft tissue deformation during pre- and intra-operative planning. Such systems require a model that can accurately predict the deformation in real time. In this study, we present a back-propagation neural network for predicting three-dim
Initial Investigation of Software-Based Bone-Suppressed Imaging
International Nuclear Information System (INIS)
Chest radiography is the most widely used imaging modality in medicine. However, the diagnostic performance of chest radiography is deteriorated by the anatomical background of the patient. So, dual energy imaging (DEI) has recently been emerged and demonstrated an improved. However, the typical DEI requires more than two projections, hence causing additional patient dose. The motion artifact is another concern in the DEI. In this study, we investigate DEI-like bone-suppressed imaging based on the post processing of a single radiograph. To obtain bone-only images, we use the artificial neural network (ANN) method with the error backpropagation-based machine learning approach. The computational load of learning process of the ANN is too heavy for a practical implementation because we use the gradient descent method for the error backpropagation. We will use a more advanced error propagation method for the learning process
Directory of Open Access Journals (Sweden)
Rohmatulloh 1
2007-12-01
Full Text Available This paper discussed quality improvement of black tea using fuzzy approach on quality functions deployment and the development of backpropagation neural the software NWP II plus. The research was conducted at PTPN VIII tea industry, Goalpara plantation. Result of the study showed that, parameter first priority based on customer evaluation was tea flavour. The Important process parameter of black tea based on result of fuzzy relationship matrix was the withering process. Based on the test of “trial and error” of network training process, the best network architecture for withering process monitoring [3-15-1] was obtained, that is 3 neurons in input layer, 15 neurons in hidden layer and 1 neuron in output layer. Three inputs and output consist of time, flow, temperature and moisture content. The result sugges that development of backpropagation neural network can be used for process evaluation of withering processes.
Liao, Pei-Hung; Hsu, Pei-Ti; Chu, William; Chu, Woei-Chyn
2015-06-01
This study applied artificial intelligence to help nurses address problems and receive instructions through information technology. Nurses make diagnoses according to professional knowledge, clinical experience, and even instinct. Without comprehensive knowledge and thinking, diagnostic accuracy can be compromised and decisions may be delayed. We used a back-propagation neural network and other tools for data mining and statistical analysis. We further compared the prediction accuracy of the previous methods with an adaptive-network-based fuzzy inference system and the back-propagation neural network, identifying differences in the questions and in nurse satisfaction levels before and after using the nursing information system. This study investigated the use of artificial intelligence to generate nursing diagnoses. The percentage of agreement between diagnoses suggested by the information system and those made by nurses was as much as 87 percent. When patients are hospitalized, we can calculate the probability of various nursing diagnoses based on certain characteristics.
Rule Extraction using Artificial Neural Networks
Kamruzzaman, S M
2010-01-01
Artificial neural networks have been successfully applied to a variety of business application problems involving classification and regression. Although backpropagation neural networks generally predict better than decision trees do for pattern classification problems, they are often regarded as black boxes, i.e., their predictions are not as interpretable as those of decision trees. In many applications, it is desirable to extract knowledge from trained neural networks so that the users can gain a better understanding of the solution. This paper presents an efficient algorithm to extract rules from artificial neural networks. We use two-phase training algorithm for backpropagation learning. In the first phase, the number of hidden nodes of the network is determined automatically in a constructive fashion by adding nodes one after another based on the performance of the network on training data. In the second phase, the number of relevant input units of the network is determined using pruning algorithm. The ...
Tighter Lower Bounds on Mutual Information for Fiber-Optic Channels
Irukulapati, Naga V; Agrell, Erik; Johannisson, Pontus; Wymeersch, Henk
2016-01-01
In fiber-optic communications, evaluation of mutual information (MI) is still an open issue due to the unavailability of an exact and mathematically tractable channel model. Traditionally, lower bounds on MI are computed by approximating the (original) channel with an auxiliary forward channel. In this paper, lower bounds are computed using an auxiliary backward channel, which has not been previously considered in the context of fiber-optic communications. Distributions obtained through two variations of the stochastic digital backpropagation (SDBP) algorithm are used as auxiliary backward channels and these bounds are compared with bounds obtained through the conventional digital backpropagation (DBP). Through simulations, higher information rates were achieved with SDBP compared with DBP, which implies that tighter lower bound on MI can be achieved through SDBP.
Energy Technology Data Exchange (ETDEWEB)
Lin, Whei-Min; Hong, Chih-Ming [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 80424 (China)
2010-06-15
To achieve maximum power point tracking (MPPT) for wind power generation systems, the rotational speed of wind turbines should be adjusted in real time according to wind speed. In this paper, a Wilcoxon radial basis function network (WRBFN) with hill-climb searching (HCS) MPPT strategy is proposed for a permanent magnet synchronous generator (PMSG) with a variable-speed wind turbine. A high-performance online training WRBFN using a back-propagation learning algorithm with modified particle swarm optimization (MPSO) regulating controller is designed for a PMSG. The MPSO is adopted in this study to adapt to the learning rates in the back-propagation process of the WRBFN to improve the learning capability. The MPPT strategy locates the system operation points along the maximum power curves based on the dc-link voltage of the inverter, thus avoiding the generator speed detection. (author)
A Learning Method for Neural Networks Based on a Pseudoinverse Technique
Directory of Open Access Journals (Sweden)
Chinmoy Pal
1996-01-01
Full Text Available A theoretical formulation of a fast learning method based on a pseudoinverse technique is presented. The efficiency and robustness of the method are verified with the help of an Exclusive OR problem and a dynamic system identification of a linear single degree of freedom mass–spring problem. It is observed that, compared with the conventional backpropagation method, the proposed method has a better convergence rate and a higher degree of learning accuracy with a lower equivalent learning coefficient. It is also found that unlike the steepest descent method, the learning capability of which is dependent on the value of the learning coefficient ν, the proposed pseudoinverse based backpropagation algorithm is comparatively robust with respect to its equivalent variable learning coefficient. A combination of the pseudoinverse method and the steepest descent method is proposed for a faster, more accurate learning capability.
Sensitivity analysis by neural networks applied to power systems transient stability
Energy Technology Data Exchange (ETDEWEB)
Lotufo, Anna Diva P.; Lopes, Mara Lucia M.; Minussi, Carlos R. [Departamento de Engenharia Eletrica, UNESP, Campus de Ilha Solteira, Av. Brasil, 56, 15385-000 Ilha Solteira, SP (Brazil)
2007-05-15
This work presents a procedure for transient stability analysis and preventive control of electric power systems, which is formulated by a multilayer feedforward neural network. The neural network training is realized by using the back-propagation algorithm with fuzzy controller and adaptation of the inclination and translation parameters of the nonlinear function. These procedures provide a faster convergence and more precise results, if compared to the traditional back-propagation algorithm. The adaptation of the training rate is effectuated by using the information of the global error and global error variation. After finishing the training, the neural network is capable of estimating the security margin and the sensitivity analysis. Considering this information, it is possible to develop a method for the realization of the security correction (preventive control) for levels considered appropriate to the system, based on generation reallocation and load shedding. An application for a multimachine power system is presented to illustrate the proposed methodology. (author)
Embodiment of Learning in Electro-Optical Signal Processors
Hermans, Michiel; Antonik, Piotr; Haelterman, Marc; Massar, Serge
2016-09-01
Delay-coupled electro-optical systems have received much attention for their dynamical properties and their potential use in signal processing. In particular it has recently been demonstrated, using the artificial intelligence algorithm known as reservoir computing, that photonic implementations of such systems solve complex tasks such as speech recognition. Here we show how the backpropagation algorithm can be physically implemented on the same electro-optical delay-coupled architecture used for computation with only minor changes to the original design. We find that, compared when the backpropagation algorithm is not used, the error rate of the resulting computing device, evaluated on three benchmark tasks, decreases considerably. This demonstrates that electro-optical analog computers can embody a large part of their own training process, allowing them to be applied to new, more difficult tasks.
The development of intelligent expert system with SAT for semiconductor
International Nuclear Information System (INIS)
In this study, the researches classifying the artificial flaws in semiconductor packages are performed using pattern recognition technology. For this purposes image pattern recognition package including the user made software was developed and total procedure including ultrasonic image acquisition, equalization filtering, binary processing, edge detection and classifier selection is treated by BP(backpropagation). Specially, it is compared IP(image processing) and SOM(self-organizing map) as preprocessing method for dimensionality reduction for entrance into multi-layer perceptron(backpropagation). Also, the pattern recognition techniques is applied to the classification problem of semiconductor flaws as crack, delamination. According to this results, it is possible to acquire the recognition rate of 83.4% about delamination, 75.7% about crack for SOM, and to acquire the recognition rate of 100% for BP.
Extraction of Symbolic Rules from Artificial Neural Networks
Kamruzzaman, S M
2010-01-01
Although backpropagation ANNs generally predict better than decision trees do for pattern classification problems, they are often regarded as black boxes, i.e., their predictions cannot be explained as those of decision trees. In many applications, it is desirable to extract knowledge from trained ANNs for the users to gain a better understanding of how the networks solve the problems. A new rule extraction algorithm, called rule extraction from artificial neural networks (REANN) is proposed and implemented to extract symbolic rules from ANNs. A standard three-layer feedforward ANN is the basis of the algorithm. A four-phase training algorithm is proposed for backpropagation learning. Explicitness of the extracted rules is supported by comparing them to the symbolic rules generated by other methods. Extracted rules are comparable with other methods in terms of number of rules, average number of conditions for a rule, and predictive accuracy. Extensive experimental studies on several benchmarks classification ...
FDI and Accommodation Using NN Based Techniques
Garcia, Ramon Ferreiro; de Miguel Catoira, Alberto; Sanz, Beatriz Ferreiro
Massive application of dynamic backpropagation neural networks is used on closed loop control FDI (fault detection and isolation) tasks. The process dynamics is mapped by means of a trained backpropagation NN to be applied on residual generation. Process supervision is then applied to discriminate faults on process sensors, and process plant parameters. A rule based expert system is used to implement the decision making task and the corresponding solution in terms of faults accommodation and/or reconfiguration. Results show an efficient and robust FDI system which could be used as the core of an SCADA or alternatively as a complement supervision tool operating in parallel with the SCADA when applied on a heat exchanger.
Energy Technology Data Exchange (ETDEWEB)
Song Kexing; Xing Jiandong; Dong Qiming; Liu Ping; Tian Baohong; Cao Xianjie
2005-06-15
Internal oxidation is a commercial method for producing oxide dispersion strengthened copper (ODS Cu). In this paper, the dilute Cu-Al alloy powders containing 0.26 wt% of Al have been internally oxidized at temperatures (T) from 700 to 1000 deg. C, for holding times (t) up to 10 h. The alumina particle size has been observed and determined by electron microscopy using the two-stage preshadowed carbon replica method. By the use of backpropagation network, the non-linear relationship between internal oxidation process parameters (T,t) and alumina particle size has been established on the base of dealing with the experimental data. The results show that the well-trained backpropagation neural network can predict the alumina particle size during internal oxidation precisely and the prediction values have sufficiently mined the basic domain knowledge of internal oxidation process. Therefore, a new way of optimizing process parameters has been provided by the authors.
Face Recognition using Eigenfaces and Neural Networks
Directory of Open Access Journals (Sweden)
Mohamed Rizon
2006-01-01
Full Text Available In this study, we develop a computational model to identify the face of an unknown persons by applying eigenfaces. The eigenfaces has been applied to extract the basic face of the human face images. The eigenfaces is then projecting onto human faces to identify unique features vectors. This significant features vector can be used to identify an unknown face by using the backpropagation neural network that utilized euclidean distance for classification and recognition. The ORL database for this investigation consists of 40 people with various 400 face images had been used for the learning. The eigenfaces including implemented Jacobis method for eigenvalues and eigenvectors has been performed. The classification and recognition using backpropagation neural network showed impressive positive result to classify face images.
An ANN Based Call Handoff Management Scheme for Mobile Cellular Network
Directory of Open Access Journals (Sweden)
P. P. Bhattacharya
2013-12-01
Full Text Available Handoff decisions are usually signal strength based because of simplicity and effectiveness. Apart fro m the conventional techniques, such as threshold and hyst eresis based schemes, recently many artificial intelligent techniques such as Fuzzy Logic, Artific ial Neural Network (ANN etc. are also used for tak ing handoff decision. In this paper, an Artificial Neur al Network based handoff algorithm is proposed and it’s performance is studied. We have used ANNhere for ta king fast and accurate handoff decision. In our proposed handoff algorithm, Backpropagation Neural Network model is used.The advantages of Backpropagation method are its simplicity and reaso nable speed. The algorithm is designed, tested and found to give optimum results.
Boundness of a Neural Network Weights Using the Notion of a Limit of a Sequence
Directory of Open Access Journals (Sweden)
Hazem Migdady
2014-06-01
Full Text Available feed forward neural network with backpropagation learning algorithm is considered as a black box learning classifier since there is no certain interpretation or nticipation of the behavior of a neural network weights. The weights of a neural network ar e considered as the learning tool of the classifier, and the learning task is performed by the repetition modification of those weights. This modification is performed using the delta rule which is mainly usedin the gradient descent technique. In this article a proof is provided that helps to understand and explain the behavior of the weights in a feed forward neural network with backpropagation learning algorithm. Also, it illustrates why a feed forward neural network is not always guaranteed to converge in a global minimum. Moreover, the proof shows that the weights in t he neural network are upper bounded (i.e. they do not approach infinity.
Boundness of a Neural Network Weights Using the Notion of a Limit of a Sequence
Directory of Open Access Journals (Sweden)
Hazem Migdady
2014-05-01
Full Text Available feed forward neural network with backpropagation learning algorithm is considered as a black box learning classifier since there is no certain interpretation or anticipation of the behavior of a neural network weights. The weights of a neural network are considered as the learning tool of the classifier, and the learning task is performed by the repetition modification of those weights. This modification is performed using the delta rule which is mainly used in the gradient descent technique. In this article a proof is provided that helps to understand and explain the behavior of the weights in a feed forward neural network with backpropagation learning algorithm. Also, it illustrates why a feed forward neural network is not always guaranteed to converge in a global minimum. Moreover, the proof shows that the weights in the neural network are upper bounded (i.e. they do not approach infinity.
Directory of Open Access Journals (Sweden)
Khondker Jahid Reza
2014-01-01
Full Text Available Ultra Wideband is one of the promising microwave imaging techniques for breast tumor prognosis. The basic principle of tumor detection depends on the dielectric properties discrepancies between healthy and tumorous tissue. Usually, the tumor affected tissues scatter more signal than the healthy one and are used for early tumor detection through received pulses. Feedforward backpropagation neural network(NN was so far used for some research works by showing its detection efficiency up to 1mm (radius size with 95.8% accuracy. This paper introduces an efficient feature extraction method to further improve the performance by considering four main features of backpropagation NN. This performance is being increased to 99.99%. This strategy is well justified for classifying the normal and tumor affected breast with 100% accuracy in its early stage. It also enhances the training and testing performances by reducing the required duration. The overall performance is 99.99% verified by using thirteen different tumor sizes.
Crop Classification by Forward Neural Network with Adaptive Chaotic Particle Swarm Optimization
Directory of Open Access Journals (Sweden)
Yudong Zhang
2011-05-01
Full Text Available This paper proposes a hybrid crop classifier for polarimetric synthetic aperture radar (SAR images. The feature sets consisted of span image, the H/A/α decomposition, and the gray-level co-occurrence matrix (GLCM based texture features. Then, the features were reduced by principle component analysis (PCA. Finally, a two-hidden-layer forward neural network (NN was constructed and trained by adaptive chaotic particle swarm optimization (ACPSO. K-fold cross validation was employed to enhance generation. The experimental results on Flevoland sites demonstrate the superiority of ACPSO to back-propagation (BP, adaptive BP (ABP, momentum BP (MBP, Particle Swarm Optimization (PSO, and Resilient back-propagation (RPROP methods. Moreover, the computation time for each pixel is only 1.08 × 10−7 s.
Handwritten Farsi Character Recognition using Artificial Neural Network
Ahangar, Reza Gharoie
2009-01-01
Neural Networks are being used for character recognition from last many years but most of the work was confined to English character recognition. Till date, a very little work has been reported for Handwritten Farsi Character recognition. In this paper, we have made an attempt to recognize handwritten Farsi characters by using a multilayer perceptron with one hidden layer. The error backpropagation algorithm has been used to train the MLP network. In addition, an analysis has been carried out to determine the number of hidden nodes to achieve high performance of backpropagation network in the recognition of handwritten Farsi characters. The system has been trained using several different forms of handwriting provided by both male and female participants of different age groups. Finally, this rigorous training results an automatic HCR system using MLP network. In this work, the experiments were carried out on two hundred fifty samples of five writers. The results showed that the MLP networks trained by the err...
The development of intelligent expert system with SAT for semiconductor
Energy Technology Data Exchange (ETDEWEB)
Kim, Jae Yeol; Shim, Jae Gi; Jeong, Hyun Jo; Cho, Young Tae; Kim, Chang Hyun; Ko, Myung Soo [Chosun University, Gwangju (Korea, Republic of)
2001-05-15
In this study, the researches classifying the artificial flaws in semiconductor packages are performed using pattern recognition technology. For this purposes image pattern recognition package including the user made software was developed and total procedure including ultrasonic image acquisition, equalization filtering, binary processing, edge detection and classifier selection is treated by BP(backpropagation). Specially, it is compared IP(image processing) and SOM(self-organizing map) as preprocessing method for dimensionality reduction for entrance into multi-layer perceptron(backpropagation). Also, the pattern recognition techniques is applied to the classification problem of semiconductor flaws as crack, delamination. According to this results, it is possible to acquire the recognition rate of 83.4% about delamination, 75.7% about crack for SOM, and to acquire the recognition rate of 100% for BP.
Classification of Rat FTIR Colon Cancer Data Using Waveletsand BPNN
Institute of Scientific and Technical Information of China (English)
CHENG,Cungui; XIONG,Wei; TIAN,Yumei
2009-01-01
A feature extracting method based on wavelets for horizontal attenuated total reflectance Fourier transform in-frared spectroscopy (HATR-FTIR) and the cancer classification using artificial neural network trained with back-propagation algorithm is presented. The FTIR data collected from 36 normal Sprague-dawley (SD) rats, 60 1,2-DMH-induced SD rats, and 44 second generation rats of those induced rats were first preprocessed. Then, 12 feature variants were extracted using continuous wavelet analysis. Based on BPNN classification, all spectra were classified into two categories: normal and abnormal ones. The accuracy values of identifying normal, dysplastic, early carcinoma, and advanced carcinoma were 100%, 94%, 97.5%, and 100%, respectively. This result indicated that FTIR with continuous wavelet transform (CWT) and the back-propagation neural network (BPNN) could ef- fectively and easily diagnose colon cancer in its early stages.
A hybrid Evolutionary Functional Link Artificial Neural Network for Data mining and Classification
Directory of Open Access Journals (Sweden)
Faissal MILI
2012-08-01
Full Text Available This paper presents a specific structure of neural network as the functional link artificial neural network (FLANN. This technique has been employed for classification tasks of data mining. In fact, there are a few studies that used this tool for solving classification problems. In this present research, we propose a hybrid FLANN (HFLANN model, where the optimization process is performed using 3 known population based techniques such as genetic algorithms, particle swarm and differential evolution. This model will be empirically compared to FLANN based back-propagation algorithm and to others classifiers as decision tree, multilayer perceptron based back-propagation algorithm, radical basic function, support vector machine, and K-nearest Neighbor. Our results proved that the proposed model outperforms the other single model. (Abstract
Developing energy forecasting model using hybrid artificial intelligence method
Institute of Scientific and Technical Information of China (English)
Shahram Mollaiy-Berneti
2015-01-01
An important problem in demand planning for energy consumption is developing an accurate energy forecasting model. In fact, it is not possible to allocate the energy resources in an optimal manner without having accurate demand value. A new energy forecasting model was proposed based on the back-propagation (BP) type neural network and imperialist competitive algorithm. The proposed method offers the advantage of local search ability of BP technique and global search ability of imperialist competitive algorithm. Two types of empirical data regarding the energy demand (gross domestic product (GDP), population, import, export and energy demand) in Turkey from 1979 to 2005 and electricity demand (population, GDP, total revenue from exporting industrial products and electricity consumption) in Thailand from 1986 to 2010 were investigated to demonstrate the applicability and merits of the present method. The performance of the proposed model is found to be better than that of conventional back-propagation neural network with low mean absolute error.
Extended Mixture of MLP Experts by Hybrid of Conjugate Gradient Method and Modified Cuckoo Search
Hamid Salimi; Davar Giveki; Mohammad Ali Soltanshahi; Javad Hatami
2012-01-01
This paper investigates a new method for improving the learning algorithm of Mixture of Experts (ME) model using a hybrid of Modified Cuckoo Search (MCS) and Conjugate Gradient (CG) as a second order optimization technique. The CG technique is combined with Back-Propagation (BP) algorithm to yield a much more efficient learning algorithm for ME structure. In addition, the experts and gating networks in enhanced model are replaced by CG based Multi-Layer Perceptrons (MLPs) to provi...
Indian Stock Market Prediction Using Differential Evolutionary Neural Network Model
Puspanjali Mohapatra; Alok Raj; Tapas Kumar Patra
2012-01-01
This paper presents a scheme using Differential Evolution based Functional Link Artificial Neural Network(FLANN) to predict the Indian Stock Market Indices. The Model uses Back-Propagation (BP) algorithm and Differential Evolution (DE) algorithm respectively for predicting the Stock Price Indices or one day, one week, two weeks and one month in advance.The Indian stock prices i.e. BSE (Bombay Stock Exchange), NSE,INFY etc. with few technical indicators are considered as input for the experime...
Layer-Specific Adaptive Learning Rates for Deep Networks
Singh, Bharat; De, Soham; Zhang, Yangmuzi; Goldstein, Thomas; Taylor, Gavin
2015-01-01
The increasing complexity of deep learning architectures is resulting in training time requiring weeks or even months. This slow training is due in part to vanishing gradients, in which the gradients used by back-propagation are extremely large for weights connecting deep layers (layers near the output layer), and extremely small for shallow layers (near the input layer); this results in slow learning in the shallow layers. Additionally, it has also been shown that in highly non-convex proble...
Mónica Bocco; Gustavo Ovando; Silvina Sayago
2006-01-01
The objective of this work was to develop neural network models of backpropagation type to estimate solar radiation based on extraterrestrial radiation data, daily temperature range, precipitation, cloudiness and relative sunshine duration. Data from Córdoba, Argentina, were used for development and validation. The behaviour and adjustment between values observed and estimates obtained by neural networks for different combinations of input were assessed. These estimations showed root mean squ...
Manoj Tripathy
2012-01-01
This paper describes a new approach for power transformer differential protection which is based on the wave-shape recognition technique. An algorithm based on neural network principal component analysis (NNPCA) with back-propagation learning is proposed for digital differential protection of power transformer. The principal component analysis is used to preprocess the data from power system in order to eliminate redundant information and enhance hidden pattern of differential current to disc...
Julio Rojas Naccha; Víctor Vásquez Villalobos
2012-01-01
The predictive ability of Artificial Neural Network (ANN) on the effect of the concentration (30, 40, 50 y 60 % w/w) and temperature (30, 40 y 50°C) of fructooligosaccharides solution, in the mass, moisture, volume and solids of osmodehydrated yacon cubes, and in the coefficients of the water means effective diffusivity with and without shrinkage was evaluated. The Feedforward type ANN with the Backpropagation training algorithms and the Levenberg-Marquardt weight adjustment was applied, usin...
Forecasting Models for Hydropower Unit Stability Using LS-SVM
Liangliang Qiao; Qijuan Chen
2015-01-01
This paper discusses a least square support vector machine (LS-SVM) approach for forecasting stability parameters of Francis turbine unit. To achieve training and testing data for the models, four field tests were presented, especially for the vibration in Y-direction of lower generator bearing (LGB) and pressure in draft tube (DT). A heuristic method such as a neural network using Backpropagation (NNBP) is introduced as a comparison model to examine the feasibility of forecasting performance...
Fault Identification of Gearbox Degradation with Optimized Wavelet Neural Network
Hanxin Chen; Yanjun Lu; Ling Tu
2013-01-01
A novel intelligent method based on wavelet neural network (WNN) was proposed to identify the gear crack degradation in gearbox in this paper. The wavelet packet analysis (WPA) is applied to extract the fault feature of the vibration signal, which is collected by two acceleration sensors mounted on the gearbox along the vertical and horizontal direction. The back-propagation (BP) algorithm is studied and applied to optimize the scale and translation parameters of the Morlet wavelet function, ...
Time series prediction using artificial neural network for power stabilization
International Nuclear Information System (INIS)
Time series prediction has been applied to many business and scientific applications. Prominent among them are stock market prediction, weather forecasting, etc. Here, this technique has been applied to forecast plasma torch voltages to stabilize power using a backpropagation, a model of artificial neural network. The Extended-Delta-Bar-Delta algorithm is used to improve the convergence rate of the network and also to avoid local minima. Results from off-line data was quite promising to use in on-line
Quaternionic Multilayer Perceptron with Local Analyticity
Directory of Open Access Journals (Sweden)
Nobuyuki Matsui
2012-11-01
Full Text Available A multi-layered perceptron type neural network is presented and analyzed in this paper. All neuronal parameters such as input, output, action potential and connection weight are encoded by quaternions, which are a class of hypercomplex number system. Local analytic condition is imposed on the activation function in updating neurons’ states in order to construct learning algorithm for this network. An error back-propagation algorithm is introduced for modifying the connection weights of the network.
AUTOMATED DEFECT CLASSIFICATION USING AN ARTIFICIAL NEURAL NETWORK
International Nuclear Information System (INIS)
The automated defect classification algorithm based on artificial neural network with multilayer backpropagation structure was utilized. The selected features of flaws were used as input data. In order to train the neural network it is necessary to prepare learning data which is representative database of defects. Database preparation requires the following steps: image acquisition and pre-processing, image enhancement, defect detection and feature extraction. The real digital radiographs of welded parts of a ship were used for this purpose.
Evolving Chart Pattern Sensitive Neural Network Based Forex Trading Agents
Sher, Gene I.
2011-01-01
Though machine learning has been applied to the foreign exchange market for algorithmic trading for quiet some time now, and neural networks(NN) have been shown to yield positive results, in most modern approaches the NN systems are optimized through traditional methods like the backpropagation algorithm for example, and their input signals are price lists, and lists composed of other technical indicator elements. The aim of this paper is twofold: the presentation and testing of the applicati...
Yousefi, Fakhri; Karimi, Hajir; Mohammadiyan, Somayeh
2016-11-01
This paper applies the model including back-propagation network (BPN) and principal component analysis (PCA) to estimate the effective viscosity of carbon nanotubes suspension. The effective viscosities of multiwall carbon nanotubes suspension are examined as a function of the temperature, nanoparticle volume fraction, effective length of nanoparticle and the viscosity of base fluids using artificial neural network. The obtained results by BPN-PCA model have good agreement with the experimental data.
Visual Working Efficiency Analysis Method of Cockpit Based On ANN
Directory of Open Access Journals (Sweden)
Yingchun CHEN
2012-09-01
Full Text Available The Artificial Neural Networks method is applied on visual working efficiency of cockpit. A Self-Organizing Map (SOM network is demonstrated selecting material with near properties. Then a Back-Propagation (BP network automatically learns the relationship between input and output. After a set of training, the BP network is able to estimate material characteristics using knowledge and criteria learned before. Results indicate that trained network can give effective prediction for material.
Modular neural networks and reinforcement learning
Raicevic, Peter
2004-01-01
We investigate the effect of modular architecture in an artificial neural network for a reinforcement learning problem. Using the supervised backpropagation algorithm to solve a two-task problem, the network performance can be increased by using networks with modular structures. However, using a modular architecture to solve a two-task reinforcement learning problem will not increase the performance compared to a non-modular structure. We show that by combining a modular structure with a modu...
Learning Processes of Layered Neural Networks
Fujiki, Sumiyoshi; Fujiki, Nahomi M.
1995-01-01
A positive reinforcement type learning algorithm is formulated for a stochastic feed-forward neural network, and a learning equation similar to that of the Boltzmann machine algorithm is obtained. By applying a mean field approximation to the same stochastic feed-forward neural network, a deterministic analog feed-forward network is obtained and the back-propagation learning rule is re-derived.
Local learning algorithm for optical neural networks
QIAO, YONG; Psaltis, Demetri
1992-01-01
An anti-Hebbian local learning algorithm for two-layer optical neural networks is introduced. With this learning rule, the weight update for a certain connection depends only on the input and output of that connection and a global, scalar error signal. Therefore the backpropagation of error signals through the network, as required by the commonly used back error propagation algorithm, is avoided. It still guarantees, however, that the synaptic weights are updated in the error descent directio...
Adler, S. L.; Bhanot, G. V.; Weckel, J. D.
1994-01-01
We study a modular neuron alternative to the McCulloch-Pitts neuron that arises naturally in analog devices in which the neuron inputs are represented as coherent oscillatory wave signals. Although the modular neuron can compute $XOR$ at the one neuron level, it is still characterized by the same Vapnik-Chervonenkis dimension as the standard neuron. We give the formulas needed for constructing networks using the new neuron and training them using back-propagation. A numerical study of the mod...
Neural Networks Applied to Thermal Damage Classification in Grinding Process
Spadotto, Marcelo M.; Aguiar, Paulo Roberto de; Sousa, Carlos C. P.; Bianchi, Eduardo C.
2008-01-01
The utilization of neural network of type multi-layer perceptron using the back-propagation algorithm guaranteed very good results. Tests carried out in order to optimize the learning capacity of neural networks were of utmost importance in the training phase, where the optimum values for the number of neurons of the hidden layer, learning rate and momentum for each structure were determined. Once the architecture of the neural network was established with those optimum values, the mean squar...
Fault diagnosis of induction motor based on decision trees and adaptive neuro-fuzzy inference
Tran, Tung; Yang, Bo-Suk; Oh, Myung-Suck; Tan, Andy Chit Chiow
2009-01-01
This paper presents a fault diagnosis method based on adaptive neuro-fuzzy inference system (ANFIS) in combination with decision trees. Classification and regression tree (CART) which is one of the decision tree methods is used as a feature selection procedure to select pertinent features from data set. The crisp rules obtained from the decision tree are then converted to fuzzy if-then rules that are employed to identify the structure of ANFIS classifier. The hybrid of back-propagation and le...
Classification of Ocean Acoustic Data Using AR Modeling and Wavelet Transforms
Fargues, Monique P.; Bennett, R., Harris, J.; Barsanti, R. J.
1997-01-01
This study investigates the application of orthogonal, non-orthogonal wavelet-based procedures, and AR modeling as feature extraction techniques to classify several classes of underwater signals consisting of sperm whale, killer whale, gray whale, pilot whale, humpback whale, and underwater earthquake data. A two-hidden-layer back-propagation neural network is used for the classification procedure. Performance obtained using the two wavelet-based schemes are compared with those obtained usin...
Lateral Connections in Denoising Autoencoders Support Supervised Learning
Rasmus, Antti; Valpola, Harri; Raiko, Tapani
2015-01-01
We show how a deep denoising autoencoder with lateral connections can be used as an auxiliary unsupervised learning task to support supervised learning. The proposed model is trained to minimize simultaneously the sum of supervised and unsupervised cost functions by back-propagation, avoiding the need for layer-wise pretraining. It improves the state of the art significantly in the permutation-invariant MNIST classification task.
One-Class Classification with Extreme Learning Machine
Qian Leng; Honggang Qi; Jun Miao; Wentao Zhu; Guiping Su
2015-01-01
One-class classification problem has been investigated thoroughly for past decades. Among one of the most effective neural network approaches for one-class classification, autoencoder has been successfully applied for many applications. However, this classifier relies on traditional learning algorithms such as backpropagation to train the network, which is quite time-consuming. To tackle the slow learning speed in autoencoder neural network, we propose a simple and efficient one-class classif...
Alternating optimization method based on nonnegative matrix factorizations for deep neural networks
Sakurai, Tetsuya; Imakura, Akira; Inoue, Yuto; Futamura, Yasunori
2016-01-01
The backpropagation algorithm for calculating gradients has been widely used in computation of weights for deep neural networks (DNNs). This method requires derivatives of objective functions and has some difficulties finding appropriate parameters such as learning rate. In this paper, we propose a novel approach for computing weight matrices of fully-connected DNNs by using two types of semi-nonnegative matrix factorizations (semi-NMFs). In this method, optimization processes are performed b...
Unifying Adversarial Training Algorithms with Flexible Deep Data Gradient Regularization
Ororbia II, Alexander G.; Giles, C. Lee; Kifer, Daniel
2016-01-01
We present DataGrad, a general back-propagation style training procedure for deep neural architectures that uses regularization of a deep Jacobian-based penalty. It can be viewed as a deep extension of the layerwise contractive auto-encoder penalty. More importantly, it unifies previous proposals for adversarial training of deep neural nets -- this list includes directly modifying the gradient, training on a mix of original and adversarial examples, using contractive penalties, and approximat...
Artificial Neural Network based Diagnostic Model For Causes of Success and Failures
Kaur, Bikrampal; Aggarwal, Himanshu
2010-01-01
In this paper an attempt has been made to identify most important human resource factors and propose a diagnostic model based on the back-propagation and connectionist model approaches of artificial neural network (ANN). The focus of the study is on the mobile -communication industry of India. The ANN based approach is particularly important because conventional approaches (such as algorithmic) to the problem solving have their inherent disadvantages. The algorithmic approach is well-suited t...
Energy Technology Data Exchange (ETDEWEB)
Zio, Enrico; Pedroni, Nicola; Broggi, Matteo; Golea, Lucia Roxana [Polytechnic of Milan, Milan (Italy)
2009-12-15
In this paper, an infinite impulse response locally recurrent neural network (IIR-LRNN) is employed for modelling the dynamics of the Lead Bismuth Eutectic eXperimental Accelerator Driven System (LBE-XADS). The network is trained by recursive back-propagation (RBP) and its ability in estimating transients is tested under various conditions. The results demonstrate the robustness of the locally recurrent scheme in the reconstruction of complex nonlinear dynamic relationships
Mapping patterns and characteristics of fatal road accidents in Israel
DEFF Research Database (Denmark)
Prato, Carlo Giacomo; Gitelman, Victoria; Bekhor, Shlomo
2010-01-01
elderly pedestrians crossed in urban areas; (v) accidents where mostly young children and teenagers cross roads in small villages. Feed-forward back-propagation neural networks indicate that demographic characteristics of both victims and drivers are the most relevant determinants, and other significant...... factors are the road conditions, the accident location in either urban or rural areas, the accident location in either sections or intersections, and the period of the day when the crash occurs....
Image Segmentation Based on Support Vector Machine
Institute of Scientific and Technical Information of China (English)
XU Hai-xiang; ZHU Guang-xi; TIAN Jin-wen; ZHANG Xiang; PENG Fu-yuan
2005-01-01
Image segmentation is a necessary step in image analysis. Support vector machine (SVM) approach is proposed to segment images and its segmentation performance is evaluated.Experimental results show that: the effects of kernel function and model parameters on the segmentation performance are significant; SVM approach is less sensitive to noise in image segmentation; The segmentation performance of SVM approach is better than that of back-propagation multi-layer perceptron (BP-MLP) approach and fuzzy c-means (FCM) approach.
Reservoir computing for spatiotemporal signal classification without trained output weights
Prater, Ashley
2016-01-01
Reservoir computing is a recently introduced machine learning paradigm that has been shown to be well-suited for the processing of spatiotemporal data. Rather than training the network node connections and weights via backpropagation in traditional recurrent neural networks, reservoirs instead have fixed connections and weights among the `hidden layer' nodes, and traditionally only the weights to the output layer of neurons are trained using linear regression. We claim that for signal classif...
Information Theory for Analyzing Neural Networks
Sørngård, Bård
2014-01-01
The goal of this thesis was to investigate how information theory could be used to analyze artificial neural networks. For this purpose, two problems, a classification problem and a controller problem were considered. The classification problem was solved with a feedforward neural network trained with backpropagation, the controller problem was solved with a continuous-time recurrent neural network optimized with evolution.Results from the classification problem shows that mutual information ...
Neural Networks for Wordform Recognition
Eineborg, Martin; Gambäck, Björn
1994-01-01
The paper outlines a method for automatic lexical acquisition using three-layered back-propagation networks. Several experiments have been carried out where the performance of different network architectures have been compared to each other on two tasks: overall part-of-speech (noun, adjective or verb) classification and classification by a set of 13 possible output categories. The best results for the simple task were obtained by networks consisting of 204-212 input neurons...
Institute of Scientific and Technical Information of China (English)
REN Hongwu; FANG Zujie
2000-01-01
A backpropagation (BP) network is applied to the inversion of spatially resolved diffuse reflectance from turbid media and then to determine its optical properties. A standard BP network may be trapped to the local minimum. A BP network with variable momentum and variable leaning rate can reduce this effect. After being trained, this network will produce reduced scattering coefficients and absorption coefficients when the spatially resolved diffuse reflectance are fed to its input.
On learning by exchanging advice
Eugénio da Costa Oliveira; Luís Nunes
2003-01-01
One of the main questions concerning learning in Multi-Agent Systems is: (How) can agents benefit from mutual interaction during the learning process?. This paper describes the study of an interactive advice-exchange mechanism as a possible way to improve agents' learning performance. The advice-exchange technique, discussed here, uses supervised learning (backpropagation), where reinforcement is not directly coming from the environment but is based on advice given by peers with better perfor...
MEASUREMENT AND CORRELATION OF SOLUBILITY OF CAFFEINE IN WATER AND ETHANOL%咖啡因在水和乙醇中的溶解度及其关联
Institute of Scientific and Technical Information of China (English)
韩佳宾; 王静康
2004-01-01
The solubility of caffeine in water and ethanol at 0—50 ℃ was measured using the laser method. The results were regressed with an empirical equation and simplified EOS correlation. A 2 - 2 - 1 backpropagation (BP) artificial neural network (ANN) model was selected from many other models. The prediction of interpolation and extrapolation of the data was made with trained 2 - 2 - 1 BP ANN model. The result was satisfactory.
Application of Artificial Neural Network in Indicator Diagram
Institute of Scientific and Technical Information of China (English)
WuXiaodong; JiangHua; HanGuoqing
2004-01-01
Indicator diagram plays an important role in identifying the production state of oil wells. With an ability to reflect any non-linear mapping relationship, the artificial neural network (ANN) can be used in shape identification. This paper illuminates ANN realization in identifying fault kinds of indicator diagrams, including a back-propagation algorithm, characteristics of the indicator diagram and some examples. It is concluded that the buildup of a neural network and the abstract of indicator diagrams are important to successful application.
Control of a hybrid compensator in a power network by an artificial neural network
Directory of Open Access Journals (Sweden)
I. S. Shaw
1998-07-01
Full Text Available Increased interest in the elimination of distortion in electrical power networks has led to the development of various compensator topologies. The increasing cost of electrical energy necessitates the cost-effective operation of any of these topologies. This paper considers the development of an artificial neural network based controller, trained by means of the backpropagation method, that ensures the cost-effective operation of the hybrid compensator consisting of various converters and filters.
Muhammad Asraful Hasan; Md. Mamun
2013-01-01
Fetal monitoring may help with possible recognition of problems in the fetus. This research work focuses on the design of the Back-propagation Neural Network (BPNN) and Adaptive Linear Neural Network (ADALINE) to extract the Fetal Electrocardiogram (FECG) from the Abdominal ECG (AECG). FECG is extracted to assess the fetus well-being during the pregnancy period of a mother to overcome some existing difficulties regarding the fetal heart rate (FHR) monitoring system. Different sets of ECG sign...
Flax, Michal
2015-01-01
Tato práce se zabývá simulací neuronových sítí a algoritmem Backpropagation. Simulace je akcelerována pomocí standardu OpenMP. Aplikace také umožňuje modifikovat strukturu neuronových sítí a simulovat tak nestandardní chování sítě.
Tang, Guilin; Lu, Haibao; Zhang, Yangde; Yan, Shuhua; Chen, Zhifeng
2000-10-01
A combined in vivo measurement system integrating laser- induced autofluorescence (LIAF) and diffuse reflectance spectroscopy (DRS) measurement was developed and investigated for detecting colonic adenoma. The system could work with regular endoscopy examination. A three- layer backpropagating neural network (BNN) was built to differentiate the two tissue classes. The preliminary results gave the mean predictive accuracy, sensitivity and specificity better than either of the two methods used alone.
Applying Neural Network in Evaporative Cooler Performance Prediction
Institute of Scientific and Technical Information of China (English)
QIANG Tian-wei; SHEN Heng-gen; HUANG Xiang; XUAN Yong-mei
2007-01-01
The back-propagation (BP) neural network is created to predict the performance of a direct evaporative cooling (DEC) air conditioner with GLASdek pads. The experiment data about the performance of the DEC air conditioner are obtained. Some experiment data are used to train the network until these data can approximate a function, then, simulate the network with the remanent data. The predicted result shows satisfying effects.
The need for stochastic replication of ecological neural networks
Tosh, Colin R; Ruxton, Graeme D.
2007-01-01
Artificial neural networks are becoming increasingly popular as predictive statistical tools in ecosystem ecology and as models of signal processing in behavioural and evolutionary ecology. We demonstrate here that a commonly used network in ecology, the three-layer feed-forward network, trained with the backpropagation algorithm, can be extremely sensitive to the stochastic variation in training data that results from random sampling of the same underlying statistical distribution, with netw...
Jianbin Hao; Banqiao Wang
2014-01-01
Based on the back-propagation algorithm of artificial neural networks (ANNs), this paper establishes an intelligent model, which is used to predict the maximum lateral displacement of composite soil-nailed wall. Some parameters, such as soil cohesive strength, soil friction angle, prestress of anchor cable, soil-nail spacing, soil-nail diameter, soil-nail length, and other factors, are considered in the model. Combined with the in situ test data of composite soil-nail wall reinforcement engi...
Pak Kin Wong; Chi Man Vong; Xiang Hui Gao; Ka In Wong
2014-01-01
Most adaptive neural control schemes are based on stochastic gradient-descent backpropagation (SGBP), which suffers from local minima problem. Although the recently proposed regularized online sequential-extreme learning machine (ReOS-ELM) can overcome this issue, it requires a batch of representative initial training data to construct a base model before online learning. The initial data is usually difficult to collect in adaptive control applications. Therefore, this paper proposes an impro...
Hardware implementation of on -chip learning using re configurable FPGAS
International Nuclear Information System (INIS)
The multilayer perceptron (MLP) is a neural network model that is being widely applied in the solving of diverse problems. A supervised training is necessary before the use of the neural network.A highly popular learning algorithm called back-propagation is used to train this neural network model. Once trained, the MLP can be used to solve classification problems. An interesting method to increase the performance of the model is by using hardware implementations. The hardware can do the arithmetical operations much faster than software. In this paper, a design and implementation of the sequential mode (stochastic mode) of backpropagation algorithm with on-chip learning using field programmable gate arrays (FPGA) is presented, a pipelined adaptation of the on-line back propagation algorithm (BP) is shown.The hardware implementation of forward stage, backward stage and update weight of backpropagation algorithm is also presented. This implementation is based on a SIMD parallel architecture of the forward propagation the diagnosis of the multi-purpose research reactor of Egypt accidents is used to test the proposed system
Application of neural networks for permanent magnet synchronous motor direct torque control
Institute of Scientific and Technical Information of China (English)
Zhang Chunmei; Liu Heping; Chen Shujin; Wang Fangjun
2008-01-01
Neural networks require a lot of training to understand the model of a plant or a process. Issues such as learning speed, stability, and weight convergence remain as areas of research and comparison of many training algorithms. The application of neural networks to control interior permanent magnet synchronous motor using direct torque control (DTC) is discussed. A neural network is used to emulate the state selector of the DTC. The neural networks used are the back-propagation and radial basis function. To reduce the training patterns and increase the execution speed of the training process, the inputs of switching table are converted to digital signals, i.e., one bit represent the flux error, one bit the torque error, and three bits the region of stator flux. Computer simulations of the motor and neural-network system using the two approaches are presented and compared. Discussions about the back-propagation and radial basis function as the most promising training techniques are presented, giving its advantages and disadvantages. The system using back-propagation and radial basis function networks controller has quick parallel speed and high torque response.
An ANN-based load model for fast transient stability calculations
Energy Technology Data Exchange (ETDEWEB)
Qian, Ai; Shrestha, G.B. [School of EEE, Nanyang Technological University (Singapore)
2006-01-15
Load models play an important role in the simulation and calculation of power system performance. This paper presents a new load model which is based on a particular form of artificial neural networks we call adaptive back-propagation (ABP) network. ABP has can overcome some of short-comings of common back-propagation (BP) and ABP load models offer many advantages over traditional load models as they are non-structural and can be derived quickly. The application of the method in modeling loads is illustrated using actual field test data. The load models so obtained are shown to replicate the test measurements more closely than that based on traditional load models. Further extension of the method for the identification of the parameters of the traditional load models is proposed. It is based on linear back-propagation (LBP) network. The proposed LBP load model is incorporated in a transient stability program to show that the computational time is significantly reduced. (author)
Pengujian Model Jaringan Syaraf Tiruan Untuk Kualifikasi Calon Mahasiswa Baru Program Bidik Misi
Directory of Open Access Journals (Sweden)
Ilham Sayekti
2014-02-01
Full Text Available Testing of neural network models for qualified new students Bidik Misi program is a software program that is built by using backpropagation neural network (ANN-BP is used for the purpose of scholarship recipients qualify Bidik Misi of incoming freshmen at Semarang State Polytechnic . By using an 8 input variables such as parental occupation, parental income, parental education, number of dependents and academic values, with each variable consists of several different parameters, and 1 output variable result is rejected or accepted. Through a series of tests by combining the network parameters, in order to get the optimal results of neural networks, the best results are obtained logsig and purelin activation function. As research material used data from the 127 students who signed up as a potential recipient of a scholarship Bidik Misi. From some data, 50 data used as training data (learning, and 77 are used as test data, obtained results that a system built by the backpropagation neural network was able to qualify the scholarship recipients Bidik Misi success rate reached 99.21%. Keywords : Artificial neural network; Backpropagation; Bidik Misi; Kualifikasi
Experiments in Neural-Network Control of a Free-Flying Space Robot
Wilson, Edward
1995-01-01
Four important generic issues are identified and addressed in some depth in this thesis as part of the development of an adaptive neural network based control system for an experimental free flying space robot prototype. The first issue concerns the importance of true system level design of the control system. A new hybrid strategy is developed here, in depth, for the beneficial integration of neural networks into the total control system. A second important issue in neural network control concerns incorporating a priori knowledge into the neural network. In many applications, it is possible to get a reasonably accurate controller using conventional means. If this prior information is used purposefully to provide a starting point for the optimizing capabilities of the neural network, it can provide much faster initial learning. In a step towards addressing this issue, a new generic Fully Connected Architecture (FCA) is developed for use with backpropagation. A third issue is that neural networks are commonly trained using a gradient based optimization method such as backpropagation; but many real world systems have Discrete Valued Functions (DVFs) that do not permit gradient based optimization. One example is the on-off thrusters that are common on spacecraft. A new technique is developed here that now extends backpropagation learning for use with DVFs. The fourth issue is that the speed of adaptation is often a limiting factor in the implementation of a neural network control system. This issue has been strongly resolved in the research by drawing on the above new contributions.
Noise-enhanced convolutional neural networks.
Audhkhasi, Kartik; Osoba, Osonde; Kosko, Bart
2016-06-01
Injecting carefully chosen noise can speed convergence in the backpropagation training of a convolutional neural network (CNN). The Noisy CNN algorithm speeds training on average because the backpropagation algorithm is a special case of the generalized expectation-maximization (EM) algorithm and because such carefully chosen noise always speeds up the EM algorithm on average. The CNN framework gives a practical way to learn and recognize images because backpropagation scales with training data. It has only linear time complexity in the number of training samples. The Noisy CNN algorithm finds a special separating hyperplane in the network's noise space. The hyperplane arises from the likelihood-based positivity condition that noise-boosts the EM algorithm. The hyperplane cuts through a uniform-noise hypercube or Gaussian ball in the noise space depending on the type of noise used. Noise chosen from above the hyperplane speeds training on average. Noise chosen from below slows it on average. The algorithm can inject noise anywhere in the multilayered network. Adding noise to the output neurons reduced the average per-iteration training-set cross entropy by 39% on a standard MNIST image test set of handwritten digits. It also reduced the average per-iteration training-set classification error by 47%. Adding noise to the hidden layers can also reduce these performance measures. The noise benefit is most pronounced for smaller data sets because the largest EM hill-climbing gains tend to occur in the first few iterations. This noise effect can assist random sampling from large data sets because it allows a smaller random sample to give the same or better performance than a noiseless sample gives.
PEMBUATAN PERANGKAT LUNAK PENGENALAN WAJAH MENGGUNAKAN PRINCIPAL COMPONENTS ANALYSIS
Directory of Open Access Journals (Sweden)
Kartika Gunadi
2001-01-01
Full Text Available Face recognition is one of many important researches, and today, many applications have implemented it. Through development of techniques like Principal Components Analysis (PCA, computers can now outperform human in many face recognition tasks, particularly those in which large database of faces must be searched. Principal Components Analysis was used to reduce facial image dimension into fewer variables, which are easier to observe and handle. Those variables then fed into artificial neural networks using backpropagation method to recognise the given facial image. The test results show that PCA can provide high face recognition accuracy. For the training faces, a correct identification of 100% could be obtained. From some of network combinations that have been tested, a best average correct identification of 91,11% could be obtained for the test faces while the worst average result is 46,67 % correct identification Abstract in Bahasa Indonesia : Pengenalan wajah manusia merupakan salah satu bidang penelitian yang penting, dan dewasa ini banyak aplikasi yang dapat menerapkannya. Melalui pengembangan suatu teknik seperti Principal Components Analysis (PCA, komputer sekarang dapat melebihi kemampuan otak manusia dalam berbagai tugas pengenalan wajah, terutama tugas-tugas yang membutuhkan pencarian pada database wajah yang besar. Principal Components Analysis digunakan untuk mereduksi dimensi gambar wajah sehingga menghasilkan variabel yang lebih sedikit yang lebih mudah untuk diobsevasi dan ditangani. Hasil yang diperoleh kemudian akan dimasukkan ke suatu jaringan saraf tiruan dengan metode Backpropagation untuk mengenali gambar wajah yang telah diinputkan ke dalam sistem. Hasil pengujian sistem menunjukkan bahwa penggunaan PCA untuk pengenalan wajah dapat memberikan tingkat akurasi yang cukup tinggi. Untuk gambar wajah yang diikutsertakankan dalam latihan, dapat diperoleh 100% identifikasi yang benar. Dari beberapa kombinasi jaringan yang
Advances in Artificial Neural Networks – Methodological Development and Application
Directory of Open Access Journals (Sweden)
Yanbo Huang
2009-08-01
Full Text Available Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other networks such as radial basis function, recurrent network, feedback network, and unsupervised Kohonen self-organizing network. These networks, especially the multilayer perceptron network with a backpropagation training algorithm, have gained recognition in research and applications in various scientific and engineering areas. In order to accelerate the training process and overcome data over-fitting, research has been conducted to improve the backpropagation algorithm. Further, artificial neural networks have been integrated with other advanced methods such as fuzzy logic and wavelet analysis, to enhance the ability of data interpretation and modeling and to avoid subjectivity in the operation of the training algorithm. In recent years, support vector machines have emerged as a set of high-performance supervised generalized linear classifiers in parallel with artificial neural networks. A review on development history of artificial neural networks is presented and the standard architectures and algorithms of artificial neural networks are described. Furthermore, advanced artificial neural networks will be introduced with support vector machines, and limitations of ANNs will be identified. The future of artificial neural network development in tandem with support vector machines will be discussed in conjunction with further applications to food science and engineering, soil and water relationship for crop management, and decision support for precision agriculture. Along with the network structures and training algorithms, the applications of artificial neural networks will be reviewed as well, especially in the fields of agricultural and biological
Noise-enhanced convolutional neural networks.
Audhkhasi, Kartik; Osoba, Osonde; Kosko, Bart
2016-06-01
Injecting carefully chosen noise can speed convergence in the backpropagation training of a convolutional neural network (CNN). The Noisy CNN algorithm speeds training on average because the backpropagation algorithm is a special case of the generalized expectation-maximization (EM) algorithm and because such carefully chosen noise always speeds up the EM algorithm on average. The CNN framework gives a practical way to learn and recognize images because backpropagation scales with training data. It has only linear time complexity in the number of training samples. The Noisy CNN algorithm finds a special separating hyperplane in the network's noise space. The hyperplane arises from the likelihood-based positivity condition that noise-boosts the EM algorithm. The hyperplane cuts through a uniform-noise hypercube or Gaussian ball in the noise space depending on the type of noise used. Noise chosen from above the hyperplane speeds training on average. Noise chosen from below slows it on average. The algorithm can inject noise anywhere in the multilayered network. Adding noise to the output neurons reduced the average per-iteration training-set cross entropy by 39% on a standard MNIST image test set of handwritten digits. It also reduced the average per-iteration training-set classification error by 47%. Adding noise to the hidden layers can also reduce these performance measures. The noise benefit is most pronounced for smaller data sets because the largest EM hill-climbing gains tend to occur in the first few iterations. This noise effect can assist random sampling from large data sets because it allows a smaller random sample to give the same or better performance than a noiseless sample gives. PMID:26700535
Optimal control learning with artificial neural networks
International Nuclear Information System (INIS)
This paper shows neural networks capabilities in optimal control applications of non linear dynamic systems. Our method is issued of a classical method concerning the direct research of the optimal control using gradient techniques. We show that neural approach and backpropagation paradigm are able to solve efficiently equations relative to necessary conditions for an optimizing solution. We have taken into account the known capabilities of multi layered networks in approximation functions. And for dynamic systems, we have generalized the indirect learning of inverse model adaptive architecture that is capable to define an optimal control in relation to a temporal criterion. (orig.)
Intelligent Surveillance Robot with Obstacle Avoidance Capabilities Using Neural Network.
Budiharto, Widodo
2015-01-01
For specific purpose, vision-based surveillance robot that can be run autonomously and able to acquire images from its dynamic environment is very important, for example, in rescuing disaster victims in Indonesia. In this paper, we propose architecture for intelligent surveillance robot that is able to avoid obstacles using 3 ultrasonic distance sensors based on backpropagation neural network and a camera for face recognition. 2.4 GHz transmitter for transmitting video is used by the operator/user to direct the robot to the desired area. Results show the effectiveness of our method and we evaluate the performance of the system. PMID:26089863
Application of artificial neural network for prediction of marine diesel engine performance
Mohd Noor, C. W.; Mamat, R.; Najafi, G.; Nik, W. B. Wan; Fadhil, M.
2015-12-01
This study deals with an artificial neural network (ANN) modelling of a marine diesel engine to predict the brake power, output torque, brake specific fuel consumption, brake thermal efficiency and volumetric efficiency. The input data for network training was gathered from engine laboratory testing running at various engine speed. The prediction model was developed based on standard back-propagation Levenberg-Marquardt training algorithm. The performance of the model was validated by comparing the prediction data sets with the measured experiment data. Results showed that the ANN model provided good agreement with the experimental data with high accuracy.
A System for Predicting Subcellular Localization of Yeast Genome Using Neural Network
Thampi, Sabu M
2007-01-01
The subcellular location of a protein can provide valuable information about its function. With the rapid increase of sequenced genomic data, the need for an automated and accurate tool to predict subcellular localization becomes increasingly important. Many efforts have been made to predict protein subcellular localization. This paper aims to merge the artificial neural networks and bioinformatics to predict the location of protein in yeast genome. We introduce a new subcellular prediction method based on a backpropagation neural network. The results show that the prediction within an error limit of 5 to 10 percentage can be achieved with the system.
Computationally Efficient Neural Network Intrusion Security Awareness
Energy Technology Data Exchange (ETDEWEB)
Todd Vollmer; Milos Manic
2009-08-01
An enhanced version of an algorithm to provide anomaly based intrusion detection alerts for cyber security state awareness is detailed. A unique aspect is the training of an error back-propagation neural network with intrusion detection rule features to provide a recognition basis. Network packet details are subsequently provided to the trained network to produce a classification. This leverages rule knowledge sets to produce classifications for anomaly based systems. Several test cases executed on ICMP protocol revealed a 60% identification rate of true positives. This rate matched the previous work, but 70% less memory was used and the run time was reduced to less than 1 second from 37 seconds.
Coherent detection and digital signal processing for fiber optic communications
Ip, Ezra
to cycle slips. In systems where nonlinear effects are concentrated mostly at fiber locations with small accumulated dispersion, nonlinear phase de-rotation is a low-complexity algorithm that can partially mitigate nonlinear effects. For systems with arbitrary dispersion maps, however, backpropagation is the only universal technique that can jointly compensate dispersion and fiber nonlinearity. Backpropagation requires solving the nonlinear Schrodinger equation at the receiver, and has high computational cost. Backpropagation is most effective when dispersion compensation fibers are removed, and when signal processing is performed at three times oversampling. Backpropagation can improve system performance and increase transmission distance. With anticipated advances in analog-to-digital converters and integrated circuit technology, DSP-based coherent receivers at bit rates up to 100 Gb/s should become practical in the near future.
Comparison of Supervised and Unsupervised Learning Algorithms for Pattern Classification
Directory of Open Access Journals (Sweden)
R. Sathya
2013-02-01
Full Text Available This paper presents a comparative account of unsupervised and supervised learning models and their pattern classification evaluations as applied to the higher education scenario. Classification plays a vital role in machine based learning algorithms and in the present study, we found that, though the error back-propagation learning algorithm as provided by supervised learning model is very efficient for a number of non-linear real-time problems, KSOM of unsupervised learning model, offers efficient solution and classification in the present study.
Deep learning in neural networks: an overview.
Schmidhuber, Jürgen
2015-01-01
In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarizes relevant work, much of it from the previous millennium. Shallow and Deep Learners are distinguished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links between actions and effects. I review deep supervised learning (also recapitulating the history of backpropagation), unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.
Informational properties of neural nets performing algorithmic and logical tasks.
Ritz, B M; Hofacker, G L
1996-06-01
It is argued that the genetic information necessary to encode an algorithmic neural processor tutoring an otherwise randomly connected biological neural net is represented by the entropy of the analogous minimal Turing machine. Such a near-minimal machine is constructed performing the whole range of bivalent propositional logic in n variables. Neural nets computing the same task are presented; their informational entropy can be gauged with reference to the analogous Turing machine. It is also shown that nets with one hidden layer can be trained to perform algorithms solving propositional logic by error back-propagation. PMID:8672562
Directory of Open Access Journals (Sweden)
R. Rajesh Sharma
2015-01-01
algorithm (RGSA. Support vector machines, over backpropagation network, and k-nearest neighbor are used to evaluate the goodness of classifier approach. The preliminary evaluation of the system is performed using 320 real-time brain MRI images. The system is trained and tested by using a leave-one-case-out method. The performance of the classifier is tested using the receiver operating characteristic curve of 0.986 (±002. The experimental results demonstrate the systematic and efficient feature extraction and feature selection algorithm to the performance of state-of-the-art feature classification methods.
Institute of Scientific and Technical Information of China (English)
王晖; 刘大有; 等
1994-01-01
In this paper we consider the problem of sequential processing and present a sequential model based on the back-propagation algorithm.This model is intended to deal with intrinsically sequential problems,such as word recognition,speech recognition,natural language understanding.This model can be used to train a network to learn the sequence of input patterns,in a fixed order or a random order.Besides,this model is open- and partial-associative,characterized as “resognizing while accumulating”, which, as we argue, is mental cognition process oriented.
Model identification with BPNN on restrictive ecological factors of SRB for sulfate-reduction
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The model of back-propagation neural network(BPNN)was presented to demonstrate the effect of restrictive ecological factors,COD/SO42-ratio,pH value,alkalinity(ALK)and SO42-loading rate(Ns),on sulfate-reduction of Sulfate Reducing Bacteria(SRB)in an acidogenic sulfate-reducing reactor supplied with molasses as sole organic carbon source and sodium sulfate as electron acceptor.The compare of experimental results and computer simulation was also discussed.It was shown that the method of BPNN had a powerful ability to analyze the ecological characteristic of acidogenic sulfate-reducing ecosystem quantitatively.
A Pragmatic Coded Modulation Scheme for High-Spectral-Efficiency Fiber-Optic Communications
Smith, Benjamin P
2012-01-01
A pragmatic coded modulation system is presented that incorporates signal shaping and exploits the excellent performance and efficient high-speed decoding architecture of staircase codes. Reliable communication within 0.62 bits/s/Hz of the estimated capacity (per polarization) of a system with L=2000 km is provided by the proposed system, with an error floor below 1E-20. Also, it is shown that digital backpropagation increases the achievable spectral efficiencies---relative to linear equalization---by 0.55 to 0.75 bits/s/Hz per polarization.
Classifying LEP Data with Support Vector Algorithms
Vannerem, P; Schölkopf, B; Smola, A J; Söldner-Rembold, S
1999-01-01
We have studied the application of different classification algorithms in the analysis of simulated high energy physics data. Whereas Neural Network algorithms have become a standard tool for data analysis, the performance of other classifiers such as Support Vector Machines has not yet been tested in this environment. We chose two different problems to compare the performance of a Support Vector Machine and a Neural Net trained with back-propagation: tagging events of the type e+e- -> ccbar and the identification of muons produced in multihadronic e+e- annihilation events.
Pulse frequency classification based on BP neural network
Institute of Scientific and Technical Information of China (English)
WANG Rui; WANG Xu; YANG Dan; FU Rong
2006-01-01
In Traditional Chinese Medicine (TCM), it is an important parameter of the clinic disease diagnosis to analysis the pulse frequency. This article accords to pulse eight major essentials to identify pulse type of the pulse frequency classification based on back-propagation neural networks (BPNN). The pulse frequency classification includes slow pulse, moderate pulse, rapid pulse etc. By feature parameter of the pulse frequency analysis research and establish to identify system of pulse frequency features. The pulse signal from detecting system extracts period, frequency etc feature parameter to compare with standard feature value of pulse type. The result shows that identify-rate attains 92.5% above.
Artificial Neural Network Model for Predicting Ultimate Tensile Capacity of Adhesive Anchors
Institute of Scientific and Technical Information of China (English)
XU Bo; WU Zhi-min; SONG Zhi-fei
2007-01-01
To predict the tensile capacity of adhesive anchors, a multilayered feed-forward neural network trained with the backpropagation algorithm is constructed. The ANN model have 5 inputs, including the compressive strength of concrete, tensile strength of concrete, anchor diameter, hole diameter, embedment of anchors, and ultimate load. The predictions obtained from the trained ANN show a good agreement with the experiments. Meanwhile, the predicted ultinate tensile capacity of anchors is close to the one calculated from the strength formula of the combined cone-bond failure model.
Neural network error correction for solving coupled ordinary differential equations
Shelton, R. O.; Darsey, J. A.; Sumpter, B. G.; Noid, D. W.
1992-01-01
A neural network is presented to learn errors generated by a numerical algorithm for solving coupled nonlinear differential equations. The method is based on using a neural network to correctly learn the error generated by, for example, Runge-Kutta on a model molecular dynamics (MD) problem. The neural network programs used in this study were developed by NASA. Comparisons are made for training the neural network using backpropagation and a new method which was found to converge with fewer iterations. The neural net programs, the MD model and the calculations are discussed.
Star pattern recognition method based on neural network
Institute of Scientific and Technical Information of China (English)
LI Chunyan; LI Ke; ZHANG Longyun; JIN Shengzhen; ZU Jifeng
2003-01-01
Star sensor is an avionics instrument used to provide the absolute 3-axis attitude of a spacecraft by utilizing star observations. The key function is to recognize the observed stars by comparing them with the reference catalogue. Autonomous star pattern recognition requires that similar patterns can be distinguished from each other with a small training set. Therefore, a new method based on neural network technology is proposed and a recognition system containing parallel backpropagation (BP) multi-subnets is designed. The simulation results show that the method performs much better than traditional algorithms and the proposed system can achieve both higher recognition accuracy and faster recognition speed.
Forecasting Models for Hydropower Unit Stability Using LS-SVM
Directory of Open Access Journals (Sweden)
Liangliang Qiao
2015-01-01
Full Text Available This paper discusses a least square support vector machine (LS-SVM approach for forecasting stability parameters of Francis turbine unit. To achieve training and testing data for the models, four field tests were presented, especially for the vibration in Y-direction of lower generator bearing (LGB and pressure in draft tube (DT. A heuristic method such as a neural network using Backpropagation (NNBP is introduced as a comparison model to examine the feasibility of forecasting performance. In the experimental results, LS-SVM showed superior forecasting accuracies and performances to the NNBP, which is of significant importance to better monitor the unit safety and potential faults diagnosis.
Reconocimiento de caracteres por medio de una red neuronal artificial
Directory of Open Access Journals (Sweden)
Cesar Rivera-Ordoñez
2009-01-01
Full Text Available In this project we develop a characters recognition system implemented in a general purpose FPGA card. First, The characters classification is executed by a neural network model called feed-forward backpropagation. The Matlab toobox, NNTool used for neural networks is used to create, training and simulate this kind of Artificial Neural Network (ANN with five different patterns of training. For the implementation the ANN computer model is realizes as hardware system, which is described in a block diagram using both Matlab/ Simulink and Xilinx System Generator (XSG. Subsequently, the bitstream configuration file -necessary for the FPGA programming- is generated by XSG for implementing with Xilinx ISE foundation.
Padmanaban Sanjeevikumar; Balakrishnan GeethaLakshmi; Perumal Danajayan
2008-01-01
This paper presents an artificial neural network (ANN) based approach to tune the parameters of the cascaded d-q axis controller for an AC-DC-AC converter without dc link capacitor. The proposed converter uses the cascaded d-q axis controller on the rectifier side and space vector pulse width modulation on the inverter side. The feed-forward ANN with the error back-propagation training is employed to tune the parameters of the cascaded d-q axis controller. The converter topology provides simp...
Mesopic Visual Performance of Cockpit’s Interior based on Artificial Neural Network
Directory of Open Access Journals (Sweden)
Dongdong WEI
2012-09-01
Full Text Available The ambient light of cockpit is usually under mesopic vision, and it’s mainly related to the cockpit’s interior. In this paper, a SB model is come up to simplify the relationship between the mesopic luminous efficiency and the different photometric and colorimetric variables in the cockpit. Self-Organizing Map (SOM network is demonstrated classifying and selecting samples. A Back-Propagation (BP network can automatically learn the relationship between material characteristics and mesopic luminous efficiency. Comparing with the MOVE model, SB model can quickly calculate the mesopic luminous efficiency with certain accuracy.
Effect of Illumination and Distance on Identification and Classification of Food Objects Images
Directory of Open Access Journals (Sweden)
Basavaraj S. Anami
2010-01-01
Full Text Available In this paper we have studied the effect of varying illumination conditions and varying distance of image acquisition on identification and classification of images of food objects like Bonda, Idli, Puri, Somasa and Wada. A backpropagation neural network (BPNN is developed using 18 color and 24 texture features.The image samples are collected under different lighting conditions like natural lighting, florescent lamp, incandescent bulb and varying acquisition distances like 20, 40, 60, 80, 100 centimeter. The maximum classification accuracy found witht he images taken under natural lighting conditions. The work finds application in autometic food serving by robots in hotels, restaurents, shapping malls, pharmacentical industry, foodindustry, etc.
Handwritten Digits Recognition Using Neural Computing
Călin Enăchescu; Cristian-Dumitru Miron
2009-01-01
In this paper we present a method for the recognition of handwritten digits and a practical implementation of this method for real-time recognition. A theoretical framework for the neural networks used to classify the handwritten digits is also presented.The classiﬁcation task is performed using a Convolutional Neural Network (CNN). CNN is a special type of multy-layer neural network, being trained with an optimized version of the back-propagation learning algorithm.CNN is designed to recogni...
On-Line Condition Monitoring System for High Level Trip Water in Steam Boiler’s Drum
Directory of Open Access Journals (Sweden)
Ismail Alnaimi Firas B.
2014-07-01
Full Text Available This paper presents a monitoring technique using Artificial Neural Networks (ANN with four different training algorithms for high level water in steam boiler’s drum. Four Back-Propagations neural networks multidimensional minimization algorithms have been utilized. Real time data were recorded from power plant located in Malaysia. The developed relevant variables were selected based on a combination of theory, experience and execution phases of the model. The Root Mean Square (RMS Error has been used to compare the results of one and two hidden layer (1HL, (2HL ANN structures
Marcano Cedeño, Alexis Enrique
2010-01-01
El Algoritmo de Retropropagación (Algoritmo Backpropagation, ABP), es uno de los algoritmos más conocidos y utilizados para el entrenamiento de las Redes Neuronales Artificiales, RNAs. El ABP ha sido empleado con éxito en problemas de clasificación de patrones en áreas como: Medicina, Bioinformática, Telecomunicaciones, Banca, Predicciones Climatológicas, etc. Sin embargo el ABP tiene algunas limitaciones que le impiden alcanzar un nivel óptimo de eficiencia (problemas de lentitud, convergenc...
Deep learning in neural networks: an overview.
Schmidhuber, Jürgen
2015-01-01
In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarizes relevant work, much of it from the previous millennium. Shallow and Deep Learners are distinguished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links between actions and effects. I review deep supervised learning (also recapitulating the history of backpropagation), unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks. PMID:25462637
Troudet, T.; Garg, S.; Merrill, W.
1992-01-01
The design of a dynamic neurocontroller with good robustness properties is presented for a multivariable aircraft control problem. The internal dynamics of the neurocontroller are synthesized by a state estimator feedback loop. The neurocontrol is generated by a multilayer feedforward neural network which is trained through backpropagation to minimize an objective function that is a weighted sum of tracking errors, and control input commands and rates. The neurocontroller exhibits good robustness through stability margins in phase and vehicle output gains. By maintaining performance and stability in the presence of sensor failures in the error loops, the structure of the neurocontroller is also consistent with the classical approach of flight control design.
DEFF Research Database (Denmark)
Prato, Carlo Giacomo; Gitelman, Victoria; Bekhor, Shlomo
2011-01-01
This article provides a broad picture of fatal traffic accidents in Israel to answer an increasing need of addressing compelling problems, designing preventive measures, and targeting specific population groups with the objective of reducing the number of traffic fatalities. The analysis focuses...... on 1,793 fatal traffic accidents occurred during the period between 2003 and 2006 and applies Kohonen and feed-forward back-propagation neural networks with the objective of extracting from the data typical patterns and relevant factors. Kohonen neural networks reveal five compelling accident patterns...
Intelligent temperature control system of quench furnace
Institute of Scientific and Technical Information of China (English)
胡燕瑜; 桂卫华; 唐朝晖; 唐玲
2004-01-01
A fuzzy-neural networks intelligent temperature control system of quench furnace was presented. Combined genetic algorithm with back-propagation algorithm, the weight values of neural networks, parameters of fuzzy membership functions and inference rules can be adjusted automatically, which realizes the optimal control of temperature. The results show that this control system can run effectively with satisfied temperature precision: in temperature uprising stage, overshot of temperature is under 4 ℃; in stable stage, the scope of temperature change is controlled within ±2 ℃, which meets the need of control veracity of temperature.
Reconstruction of periodic signals using neural networks
Directory of Open Access Journals (Sweden)
José Danilo Rairán Antolines
2014-01-01
Full Text Available In this paper, we reconstruct a periodic signal by using two neural networks. The first network is trained to approximate the period of a signal, and the second network estimates the corresponding coefficients of the signal's Fourier expansion. The reconstruction strategy consists in minimizing the mean-square error via backpro-pagation algorithms over a single neuron with a sine transfer function. Additionally, this paper presents mathematical proof about the quality of the approximation as well as a first modification of the algorithm, which requires less data to reach the same estimation; thus making the algorithm suitable for real-time implementations.
Vehicle License Plate Recognition Syst
Directory of Open Access Journals (Sweden)
Meenakshi,R. B. Dubey
2012-12-01
Full Text Available The vehicle license plate recognition system has greater efficiency for vehicle monitoring in automatic zone access control. This Plate recognition system will avoid special tags, since all vehicles possess a unique registration number plate. A number of techniques have been used for car plate characters recognition. This system uses neural network character recognition and pattern matching of characters as two character recognition techniques. In this approach multilayer feed-forward back-propagation algorithm is used. The performance of the proposed algorithm has been tested on several car plates and provides very satisfactory results.
Studies on Dynamic Damage Evolution for Pp/pa Polymer Blends Under High Strain Rates
Sun, Zi-Jian; Wang, Li-Li
The dynamic damage evolution for PP/PA blends with different compatibilizers is studied in high strain rates from two different approaches, namely by determining the unloading elastic modulus of specimen experienced impact deformation and by combining the split Hopkinson pressure bar (SHPB) experimental technique with the back-propagation (BP) neural network. The results obtained by both approaches consistently show that a threshold strain ɛth exists for dynamic damage evolution, and both the damage evolution and ɛth are dependent on strain and strain rate. For non-linear visco-elastic materials, the damage evolution determined by the unloading elastic modulus provides an underestimation of real damage evolution.
弹性BP神经网络的旋转机械故障诊断%Fault diagnosis for rotating machinery based on RPROP neural network
Institute of Scientific and Technical Information of China (English)
王光研; 许宝杰
2007-01-01
针对BP神经网络存在局部极小值和收敛速度慢等问题,提出了一种resilient backpropagation(RPROP)的改进BP网络.RPROP神经网络具有优良的非线性映射能力,可以很好地描述频率特征和诊断结果之间的关系,经改进算法训练的网络适合旋转机械故障诊断.
Eukaryotic Promoter Recognition Using Back propagation Neural Network
Institute of Scientific and Technical Information of China (English)
XIONGQing; WANGYuan-Qiang; LIZhi-Liang
2004-01-01
A new system is developed to recognize promoter sequences from non-promoter sequences based on position weight matrix and backpropagation neural network in this paper. The system performs significantly better on the training set and the test set, the mean recognition rate is as high as 99% on the training set and 97% on the testing set. Experimental results demonstrate the effectiveness of the system to recognize the promoter sequences that have been trained and the promoter sequences that have not been seen previously.
A Neural Network Based Recognition and Classification of Commonly Used Indian Non Leafy Vegetables
Directory of Open Access Journals (Sweden)
Ajit Danti
2014-09-01
Full Text Available A methodology to characterize the commonly used Indian non-leafy vegetables’ images is developed. From the captured images of Indian non-leafy vegetables, color components, namely, RGB and HSV features are extracted, analyzed and classified. A feed forward backpropagation artificial neural network (BPNN is used for the classification. The results show that it has good robustness and a very high success rate in the range of 96-100% for eight types of vegetables. The work finds usefulness in developing recognition system for super market, automatic vending, packing and grading of vegetables, food preparation and Agriculture Produce Market Committee (APMC.
ANOMALY INTRUSION DETECTION DESIGN USING HYBRID OF UNSUPERVISED AND SUPERVISED NEURAL NETWORK
Directory of Open Access Journals (Sweden)
M. Bahrololum
2009-07-01
Full Text Available This paper proposed a new approach to design the system using a hybrid of misuse and anomalydetection for training of normal and attack packets respectively. The utilized method for attack training isthe combination of unsupervised and supervised Neural Network (NN for Intrusion Detection System. Bythe unsupervised NN based on Self Organizing Map (SOM, attacks will be classified into smallercategories considering their similar features, and then unsupervised NN based on Backpropagation willbe used for clustering. By misuse approach known packets would be identified fast and unknown attackswill be able to detect by this method.
Institute of Scientific and Technical Information of China (English)
范红
2006-01-01
本文对基于传感器系统确定避碰策略的移动机器人所走过的路径用两层LMBP(Levenberg-Marquardt Backpropagation)网络进行学习,从而将环境信息与决策储存在神经网络中.通过使学习网络的样本不断进化从而实现网络的进化,使机器人对环境的适应能力不断增强.仿真结果表明结果较好.
Normalized RBF networks: application to a system of integral equations
Energy Technology Data Exchange (ETDEWEB)
Golbabai, A; Seifollahi, S; Javidi, M [Department of Mathematics, Iran University of Science and Technology, Narmak, Tehran 16844 (Iran, Islamic Republic of)], E-mail: golbabai@iust.ac.ir, E-mail: seif@iust.ac.ir, E-mail: mojavidi@yahoo.com
2008-07-15
Linear integral and integro-differential equations of Fredholm and Volterra types have been successfully treated using radial basis function (RBF) networks in previous works. This paper deals with the case of a system of integral equations of Fredholm and Volterra types with a normalized radial basis function (NRBF) network. A novel learning algorithm is developed for the training of NRBF networks in which the BFGS backpropagation (BFGS-BP) least-squares optimization method as a recursive model is used. In the approach presented here, a trial solution is given by an NRBF network of incremental architecture with a set of unknown parameters. Detailed learning algorithms and concrete examples are also included.
Institute of Scientific and Technical Information of China (English)
杨晓菲
1999-01-01
@@ 神经网络(Neural Networks,NN)是应用脑神经科学、计算机技术、数理科学、信息科学和认知科学系统地模拟人脑智能特点和结构的计算机体系.本文简要介绍NN的基本概念,及前向型误差反向传播神经网络(Backpropagation Neural Net-work,BPNN)在临床药理学中应用.
A Neural Network Appraoch to Fault Diagnosis in Analog Circuits
Institute of Scientific and Technical Information of China (English)
尉乃红; 杨士元; 等
1996-01-01
Thia paper presents a neural network based fault diagnosis approach for analog circuits,taking the tolerances of circuit elements into account.Specifically,a normalization rule of input information,a pseudo-fault domain border(PFDB)pattern selection method and a new output error function are proposed for training the backpropagation(BP) network to be a fault diagnoser.Experimental results demonstrate that the diagnoser performs as well as or better than any classical approaches in terms of accuracy,and provides at least an order-of-magnitude improvement in post-fault diagnostic speed.
A BOD-DO coupling model for water quality simulation by artificial neural network
Institute of Scientific and Technical Information of China (English)
郭劲松; LONG; Tengrui; 等
2002-01-01
A one-dimensional BOD-DO coupling model for water quality simulation is presented,which adopts Streeter-Phelps equations and the theory of back-propagation artificial neural network.The water quality data of Yangtze River in the Chongqing region in the year of 1989 are divided into 5 groups and used in the learning and testing courses of this model.The result shows that such model is feasible for water quality simulation and is more accurate than traditional models.
Directory of Open Access Journals (Sweden)
Sumit GOYAL
2013-11-01
Full Text Available This paper highlights the significance of feedforward artificial neural network models for predicting shelf life of roasted coffee falvoured sterilized drink. Coffee is one of the most important products for trade in international market. Single as well as multilayer models were explored and different backpropagation algorithms were investigated, Root mean square error and coefficient of determination R2 were used to compare the prediction performance of single and multilayer feedforward ANN models. Experimental results suggested that multilayer models take less time and give better results as compared to single layer ANN models for prediction of sensory quality of roasted coffee falvoured sterilized drink..
A Recursive Born Approach to Nonlinear Inverse Scattering
Kamilov, Ulugbek S; Mansour, Hassan; Boufounos, Petros T
2016-01-01
The Iterative Born Approximation (IBA) is a well-known method for describing waves scattered by semi-transparent objects. In this paper, we present a novel nonlinear inverse scattering method that combines IBA with an edge-preserving total variation (TV) regularizer. The proposed method is obtained by relating iterations of IBA to layers of a feedforward neural network and developing a corresponding error backpropagation algorithm for efficiently estimating the permittivity of the object. Simulations illustrate that, by accounting for multiple scattering, the method successfully recovers the permittivity distribution where the traditional linear inverse scattering fails.
APLIKASI JARINGAN SYARAF TIRUAN PERAMBATAN BALIK PADA PENGENALAN ANGKA TULISAN TANGAN
Directory of Open Access Journals (Sweden)
Widyadi Setiawan
2009-05-01
Full Text Available Pengenalan Angka terlihat sederhana bagi manusia, namun menjadi tugas yang sangat sulit bagi program komputer untuk menyelesaikannya. Pengenalan angka secara otomatis menjadi sangat vital pada berbagai aplikasi seperti aplikasi pengolahan check dan pengolahan dokumen keuangan lainnya pada bank. Pada penelitian ini, sistem yang dikembangkan melibatkan Jaringan Syaraf Tiruan Perambatan Balik (Neural Network Backpropagation. Jaringan dilatih memakai algoritma pelatihan terbimbing, dengan memasukkan sampel-sampel digit yang bervariasi yang dilakukan secara berulang-ulang. Hasil yang didapat berupa parameter unjuk-kerja optimal sistem pengenalan tulisan tangan angka sebesar 80,31 %.
DEFF Research Database (Denmark)
S. Nadimi, Esmaeil; Nyholm Jørgensen, Rasmus; Blanes-Vidal, Victoria;
2012-01-01
perceptron (MLP)-based artificial neural network (ANN). The best performance of the ANN in terms of the mean squared error (MSE) and the convergence speed was achieved when it was initialized and trained using the Nguyen–Widrow and Levenberg–Marquardt back-propagation algorithms, respectively. The success...... into their corresponding behavioral modes. However, network unreliability and high-energy consumption have limited the applicability of those systems. In this study, a 2.4-GHz ZigBee-based mobile ad hoc wireless sensor network (MANET) that is able to overcome those problems is presented. The designed MANET showed high...
Artificial neural network models for biomass gasification in fluidized bed gasifiers
DEFF Research Database (Denmark)
Puig Arnavat, Maria; Hernández, J. Alfredo; Bruno, Joan Carles;
2013-01-01
Artificial neural networks (ANNs) have been applied for modeling biomass gasification process in fluidized bed reactors. Two architectures of ANNs models are presented; one for circulating fluidized bed gasifiers (CFB) and the other for bubbling fluidized bed gasifiers (BFB). Both models determine...... bed gasifier can be successfully predicted by applying neural networks. ANNs models use in the input layer the biomass composition and few operating parameters, two neurons in the hidden layer and the backpropagation algorithm. The results obtained by these ANNs show high agreement with published...
Improved Marquardt Algorithm for Training Neural Networks for Chemical Process Modeling
Institute of Scientific and Technical Information of China (English)
吴建昱; 何小荣
2002-01-01
Back-propagation (BP) artificial neural networks have been widely used to model chemical processes. BP networks are often trained using the generalized delta-rule (GDR) algorithm but application of such networks is limited because of the low convergent speed of the algorithm. This paper presents a new algorithm incorporating the Marquardt algorithm into the BP algorithm for training feedforward BP neural networks. The new algorithm was tested with several case studies and used to model the Reid vapor pressure (RVP) of stabilizer gasoline. The new algorithm has faster convergence and is much more efficient than the GDR algorithm.
Assessment of highway slope failure using neural networks
Institute of Scientific and Technical Information of China (English)
Tsung-lin LEE; Hung-ming LIN; Yuh-pin LU
2009-01-01
An artificial intelligence technique of back-propagation neural networks is used to assess the slope failure. On-site slope failure data from the South Cross-Island Highway in southern Taiwan are used to test the performance of the neural network model. The numerical results demonstrate the effectiveness of artificial neural networks in the evaluation of slope failure potential based on five major factors, such as the slope gradient angle, the slope height, the cumulative precipitation, daily rainfall and strength of materials.
Directory of Open Access Journals (Sweden)
Oliveira-Esquerre K.P.
2002-01-01
Full Text Available This work presents a way to predict the biochemical oxygen demand (BOD of the output stream of the biological wastewater treatment plant at RIPASA S/A Celulose e Papel, one of the major pulp and paper plants in Brazil. The best prediction performance is achieved when the data are preprocessed using principal components analysis (PCA before they are fed to a backpropagated neural network. The influence of input variables is analyzed and satisfactory prediction results are obtained for an optimized situation.
Fault Tolerant Neural Network for ECG Signal Classification Systems
Directory of Open Access Journals (Sweden)
MERAH, M.
2011-08-01
Full Text Available The aim of this paper is to apply a new robust hardware Artificial Neural Network (ANN for ECG classification systems. This ANN includes a penalization criterion which makes the performances in terms of robustness. Specifically, in this method, the ANN weights are normalized using the auto-prune method. Simulations performed on the MIT ? BIH ECG signals, have shown that significant robustness improvements are obtained regarding potential hardware artificial neuron failures. Moreover, we show that the proposed design achieves better generalization performances, compared to the standard back-propagation algorithm.
Robust Bioinformatics Recognition with VLSI Biochip Microsystem
Lue, Jaw-Chyng L.; Fang, Wai-Chi
2006-01-01
A microsystem architecture for real-time, on-site, robust bioinformatic patterns recognition and analysis has been proposed. This system is compatible with on-chip DNA analysis means such as polymerase chain reaction (PCR)amplification. A corresponding novel artificial neural network (ANN) learning algorithm using new sigmoid-logarithmic transfer function based on error backpropagation (EBP) algorithm is invented. Our results show the trained new ANN can recognize low fluorescence patterns better than the conventional sigmoidal ANN does. A differential logarithmic imaging chip is designed for calculating logarithm of relative intensities of fluorescence signals. The single-rail logarithmic circuit and a prototype ANN chip are designed, fabricated and characterized.
Directory of Open Access Journals (Sweden)
Eric Sakk
2013-01-01
Full Text Available We revisit the protein secondary structure prediction problem using linear and backpropagation neural network architectures commonly applied in the literature. In this context, neural network mappings are constructed between protein training set sequences and their assigned structure classes in order to analyze the class membership of test data and associated measures of significance. We present numerical results demonstrating that classifier performance measures can vary significantly depending upon the classifier architecture and the structure class encoding technique. Furthermore, an analytic formulation is introduced in order to substantiate the observed numerical data. Finally, we analyze and discuss the ability of the neural network to accurately model fundamental attributes of protein secondary structure.
Kara, Sadik; Güven, Ayşegül; Okandan, Mustafa; Dirgenali, Fatma
2006-05-01
This research is concentrated on the diagnosis of mitral heart valve stenosis through the analysis of Doppler Signals' AR power spectral density graphic with the help of ANN. Multilayer feedforward ANN trained with a Levenberg Marquart backpropagation algorithm was implemented in the MATLAB environment. Correct classification of 94% was achieved, whereas 4 false classifications have been observed for the test group of 68 subjects in total. The designed classification structure has about 97.3% sensitivity, 90.3% specifity and positive prediction is calculated to be 92.3%. The stated results show that the proposed method can make an effective interpretation. PMID:15890326
Energy Technology Data Exchange (ETDEWEB)
Koenig, R.W.T.; Von Hellermann, M. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Svensson, J. [Royal Inst. of Tech., Stockholm (Sweden)
1994-07-01
A back-propagation neural network technique is used at JET to extract plasma parameters like ion temperature, rotation velocities or spectral line intensities from charge exchange (CX) spectra. It is shown that in the case of the C VI CX spectra, neural networks can give a good estimation (better than +-20% accuracy) for the main plasma parameters (Ti, V{sub rot}). Since the neural network approach involves no iterations or initial guesses the speed with which a spectrum is processed is so high (0.2 ms/spectrum) that real time analysis will be achieved in the near future. 4 refs., 8 figs.
Neural network method for characterizing video cameras
Zhou, Shuangquan; Zhao, Dazun
1998-08-01
This paper presents a neural network method for characterizing color video camera. A multilayer feedforward network with the error back-propagation learning rule for training, is used as a nonlinear transformer to model a camera, which realizes a mapping from the CIELAB color space to RGB color space. With SONY video camera, D65 illuminant, Pritchard Spectroradiometer, 410 JIS color charts as training data and 36 charts as testing data, results show that the mean error of training data is 2.9 and that of testing data is 4.0 in a 2563 RGB space.
International Nuclear Information System (INIS)
The artificial neural network technique was used to identify drugs and plastic explosives, from a tomography composed by a set of six neutrongraphic projections obtained in real time. Bidimensional tomographic images of samples of drugs, explosives and other materials, when digitally processed, yield the characteristic spectra of each type of material. The information contained in those spectra was then used for ANN training, the best images being obtained when the multilayer perceptron model, the back-propagation training algorithm and the Cross-validation interruption criterion were used. ANN showed to be useful in forecasting presence of drugs and explosives hitting a rate of success above 97 %. (author)
Training neural networks using sequential extended Kalman filtering
Energy Technology Data Exchange (ETDEWEB)
Plumer, E.S.
1995-03-01
Recent work has demonstrated the use of the extended Kalman filter (EKF) as an alternative to gradient-descent backpropagation when training multi-layer perceptrons. The EKF approach significantly improves convergence properties but at the cost of greater storage and computational complexity. Feldkamp et al. have described a decoupled version of the EKF which preserves the training advantages of the general EKF but which reduces the storage and computational requirements. This paper reviews the general and decoupled EKF approaches and presents sequentialized versions which provide further computational savings over the batch forms. The usefulness of the sequentialized EKF algorithms is demonstrated on a pattern classification problem.
NEURAL NETWORK FOR THE QUANTUM CORRECTION OF NANOSCALE SOI MOSFETS
Institute of Scientific and Technical Information of China (English)
Li Zunchao; Jiang Yaolin; Zhang Lili
2006-01-01
The quantum effect of carrier distribution in nanoscale SOI MOSFETs is evident and must be taken into consideration in device modeling and simulation. In this paper, a backpropagation neural network was applied to predict the quantum density of carriers from the classical density, and the influence of the network structure on training speed and accuracy was studied. It was concluded that a carefully trained neural network with two hidden layers using the Levenberg-Marquardt learning algorithm could predict the carrier quantum density of SOI MOSFETs in very good agreement with Schrdinger Poisson equations.
Intelligent Surveillance Robot with Obstacle Avoidance Capabilities Using Neural Network.
Budiharto, Widodo
2015-01-01
For specific purpose, vision-based surveillance robot that can be run autonomously and able to acquire images from its dynamic environment is very important, for example, in rescuing disaster victims in Indonesia. In this paper, we propose architecture for intelligent surveillance robot that is able to avoid obstacles using 3 ultrasonic distance sensors based on backpropagation neural network and a camera for face recognition. 2.4 GHz transmitter for transmitting video is used by the operator/user to direct the robot to the desired area. Results show the effectiveness of our method and we evaluate the performance of the system.
A SIMULATION OF THE PENICILLIN G PRODUCTION BIOPROCESS APPLYING NEURAL NETWORKS
Directory of Open Access Journals (Sweden)
A.J.G. da Cruz
1997-12-01
Full Text Available The production of penicillin G by Penicillium chrysogenum IFO 8644 was simulated employing a feedforward neural network with three layers. The neural network training procedure used an algorithm combining two procedures: random search and backpropagation. The results of this approach were very promising, and it was observed that the neural network was able to accurately describe the nonlinear behavior of the process. Besides, the results showed that this technique can be successfully applied to control process algorithms due to its long processing time and its flexibility in the incorporation of new data
Energy Technology Data Exchange (ETDEWEB)
Egger, A.; Schmid, M.
1999-07-01
An array consisting of a double layer condensers and a suitable actuator forms the short-term storage of the Autarkic Hybrid. Experimental investigations are supposed to confirm the calculated conservation potentials. The operational strategy based on neuronal networks and the error-back-propagation algorithm allow a self optimising condenser control. (orig.) [German] Eine Anordnung aus Doppelschicht-Kondensatoren und einem geeigneten Stellglied bildet den Kurzzeitspeicher des Autarken Hybrid. Experimentelle Untersuchungen sollen die berechneten Einsparpotentiale bestaetigen. Die Betriebsstrategie auf Grundlage neuronaler Netze und der Error-Backpropagation-Algorithmus gestatten eine selbstoptimierende Kondensatorsteuerung. (orig.)
A Worsted Yarn Virtual Production System Based on BP Neural Network
Institute of Scientific and Technical Information of China (English)
董奎勇; 于伟东
2004-01-01
Back-Propagation (BP) neural network and its modified algorithm are introduced. Two series of BP neural network models have been established to predict yarn properties and to deduce wool fiber qualities. The results from these two series of models have been compared with the measured values respectively, proving that the accuracy in both the prediction model and the deduction model is high. The experimental results and the corresponding analysis show that the BP neural network is an efficient technique for the quality prediction and has wide prospect in the application of worsted yarn production system.
Identification of Nonlinear Dynamic Systems Using Hammerstein-Type Neural Network
Directory of Open Access Journals (Sweden)
Hongshan Yu
2014-01-01
Full Text Available Hammerstein model has been popularly applied to identify the nonlinear systems. In this paper, a Hammerstein-type neural network (HTNN is derived to formulate the well-known Hammerstein model. The HTNN consists of a nonlinear static gain in cascade with a linear dynamic part. First, the Lipschitz criterion for order determination is derived. Second, the backpropagation algorithm for updating the network weights is presented, and the stability analysis is also drawn. Finally, simulation results show that HTNN identification approach demonstrated identification performances.
Selective interferometric imaging of internal multiples
Zuberi, M. A H
2013-01-01
Internal multiples deteriorate the image when the imaging procedure assumes only single scattering, especially if the velocity model does not reproduce such scattering in the Green’s function. If properly imaged, internal multiples (and internally-scattered energy) can enhance the seismic image and illuminate areas otherwise neglected or poorly imaged by conventional single-scattering approaches. Conventionally, in order to image internal multiples, accurate, sharp contrasts in the velocity model are required to construct a Green’s function with all the scattered energy. As an alternative, we develop a three-step procedure, which images the first-order internal scattering using the background Green’s function (from the surface to each image point), constructed from a smooth velocity model: We first back-propagate the recorded surface data using the background Green’s function, then cross-correlate the back-propagated data with the recorded data and finally cross-correlate the result with the original background Green’s function. This procedure images the contribution of the recorded first-order internal multiples and is almost free of the single-scattering recorded energy. This image can be added to the conventional single-scattering image, obtained e.g. from Kirchhoff migration, to enhance the image. Application to synthetic data with reflectors illuminated by multiple scattering only demonstrates the effectiveness of the approach.
Directory of Open Access Journals (Sweden)
Lukas Falat
2016-01-01
Full Text Available This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process.
Dong, Wenjiang; Ni, Yongnian; Kokot, Serge
2015-02-01
In this study, complex substances such as Mint (Mentha haplocalyx Briq.) samples from different growing regions in China were analyzed for phenolic compounds by high-performance liquid chromatography with diode array detection and for the volatile aroma compounds by gas chromatography with mass spectrometry. Chemometrics methods, e.g. principal component analysis, back-propagation artificial neural networks, and partial least squares discriminant analysis, were applied to resolve complex chromatographic profiles of Mint samples. A total of 49 aroma components and 23 phenolic compounds were identified in 79 Mint samples. Principal component analysis score plots from gas chromatography with mass spectrometry and high-performance liquid chromatography with diode array detection data sets showed a clear distinction among Mint from three different regions in China. Classification results showed that satisfactory performance of prediction ability for back-propagation artificial neural networks and partial least squares discriminant analysis. The major compounds that contributed to the discrimination were chlorogenic acid, unknown 3, kaempherol 7-O-rutinoside, salvianolic acid L, hesperidin, diosmetin, unknown 6 and pebrellin in Mint according to regression coefficients of the partial least squares discriminant analysis model. This study indicated that the proposed strategy could provide a simple and rapid technique to distinguish clearly complex profiles from samples such as Mint.
Intelligent information retrieval system using automatic thesaurus construction
Song, Wei; Yang, Jucheng; Li, Chenghua; Park, Sooncheol
2011-05-01
This paper presents an intelligent information retrieval (IR) system based on automatic thesaurus construction for its applications of document clustering and classification. These two applications are the most influential and widely used fields amongst the IR research community. We apply two biologically inspired algorithms, i.e. genetic algorithm (GA) and neural network (NN), to these two fields. A fuzzy logic controller GA and an adaptive back-propagation NN are proposed in our study, which can validly overcome the problems existing in their archetypes, e.g. slow evolution and being prone to trap into a local optimum. Furthermore, a well-constructed thesaurus has been recognised as a valuable tool in the effective operation of clustering and classification. It solves the problem in document representation organised by a bag of words, where some important relationships between words, e.g. synonymy and polysemy, are ignored. To investigate how our IR system could be used effectively, we conduct experiments on four data sets from the benchmark Reuter-21578 document collection and 20-newsgroup corpus. The results reveal that our IR system enhances the performance in comparison with k-means, common GA, and conventional back-propagation NN.
IDENTIFIKASI PENYAKIT TYPHUS DENGAN ANALISIS CITRA DARAH MENGGUNAKAN JARINGAN SYARAF TIRUAN
Directory of Open Access Journals (Sweden)
Nur Baiti Sholihah
2012-03-01
Penelitian ini dilakukan di laboratorium Fisika komputasi Universitas Islam Negeri (UIN Maulana Malik Ibrahim Malang pada tanggal 15 Juli sampai dengan 30 September 2010. Tahapan penelitian dibagi 2 yaitu tahapan pengolahan citra dan tahapan metode jaringan syaraf tiruan. Pada tahap pengolahan citra menggunakan pre-processing dan nilai piksel warna merah kuning dan biru. Data hasil pengolahan citra digunakan sebagai input jaringan syaraf tiruan. Jaringan syaraf tiruan yang digunakan dengan algoritma Backpropagation. Proses jaringan syaraf tiruan menggunakan jumlah neuron 5, 15, 25, 35, 45 dan 55 untuk mengetahui ke akuratan jaringan mengenali data yang diujikan. Kata Kunci: Typhus, Nilai Pixel Warna RGB , Jaringan Syaraf Tiruan Backpropagation
Using a binaural biomimetic array to identify bottom objects ensonified by echolocating dolphins
Heiweg, D.A.; Moore, P.W.; Martin, S.W.; Dankiewicz, L.A.
2006-01-01
The development of a unique dolphin biomimetic sonar produced data that were used to study signal processing methods for object identification. Echoes from four metallic objects proud on the bottom, and a substrate-only condition, were generated by bottlenose dolphins trained to ensonify the targets in very shallow water. Using the two-element ('binaural') receive array, object echo spectra were collected and submitted for identification to four neural network architectures. Identification accuracy was evaluated over two receive array configurations, and five signal processing schemes. The four neural networks included backpropagation, learning vector quantization, genetic learning and probabilistic network architectures. The processing schemes included four methods that capitalized on the binaural data, plus a monaural benchmark process. All the schemes resulted in above-chance identification accuracy when applied to learning vector quantization and backpropagation. Beam-forming or concatenation of spectra from both receive elements outperformed the monaural benchmark, with higher sensitivity and lower bias. Ultimately, best object identification performance was achieved by the learning vector quantization network supplied with beam-formed data. The advantages of multi-element signal processing for object identification are clearly demonstrated in this development of a first-ever dolphin biomimetic sonar. ?? 2006 IOP Publishing Ltd.
Neural networks and wavelet analysis in the computer interpretation of pulse oximetry data
Energy Technology Data Exchange (ETDEWEB)
Dowla, F.U.; Skokowski, P.G.; Leach, R.R. Jr.
1996-03-01
Pulse oximeters determine the oxygen saturation level of blood by measuring the light absorption of arterial blood. The sensor consists of red and infrared light sources and photodetectors. A method based on neural networks and wavelet analysis is developed for improved saturation estimation in the presence of sensor motion. Spectral and correlation functions of the dual channel oximetry data are used by a backpropagation neural network to characterize the type of motion. Amplitude ratios of red to infrared signals as a function of time scale are obtained from the multiresolution wavelet decomposition of the two-channel data. Motion class and amplitude ratios are then combined to obtain a short-time estimate of the oxygen saturation level. A final estimate of oxygen saturation is obtained by applying a 15 s smoothing filter on the short-time measurements based on 3.5 s windows sampled every 1.75 s. The design employs two backpropagation neural networks. The first neural network determines the motion characteristics and the second network determines the saturation estimate. Our approach utilizes waveform analysis in contrast to the standard algorithms that are based on the successful detection of peaks and troughs in the signal. The proposed algorithm is numerically efficient and has stable characteristics with a reduced false alarm rate with a small loss in detection. The method can be rapidly developed on a digital signal processing platform.
Connectionist natural language parsing with BrainC
Mueller, Adrian; Zell, Andreas
1991-08-01
A close examination of pure neural parsers shows that they either could not guarantee the correctness of their derivations or had to hard-code seriality into the structure of the net. The authors therefore decided to use a hybrid architecture, consisting of a serial parsing algorithm and a trainable net. The system fulfills the following design goals: (1) parsing of sentences without length restriction, (2) soundness and completeness for any context-free language, and (3) learning the applicability of parsing rules with a neural network to increase the efficiency of the whole system. BrainC (backtracktacking and backpropagation in C) combines the well- known shift-reduce parsing technique with backtracking with a backpropagation network to learn and represent typical structures of the trained natural language grammars. The system has been implemented as a subsystem of the Rochester Connectionist Simulator (RCS) on SUN workstations and was tested with several grammars for English and German. The design of the system and then the results are discussed.
Natural language parsing in a hybrid connectionist-symbolic architecture
Mueller, Adrian; Zell, Andreas
1991-03-01
Most connectionist parsers either cannot guarantee the correctness of their derivations or have to simulate a serial flow of control. In the first case, users have to restrict the tasks (e.g. parse less complex or shorter sentences) of the parser or they need to believe in the soundness of the result. In the second case, the resulting network has lost most of its attractivity because seriality needs to be hard-coded into the structure of the net. We here present a hybrid symbolic connectionist parser, which was designed to fulfill the following goals: (1) parsing of sentences without length restriction, (2) soundness and completeness for any context-free grammar, and (3) learning the applicability of parsing rules with a neural network. Our hybrid architecture consists of a serial parsing algorithm and a trainable net. BrainC (Backtracking and Backpropagation in C) combines the well known shift-reduce parsing technique with backtracking with a backpropagation network to learn and represent the typical properties of the trained natural language grammars. The system has been implemented as a subsystem of the Rochester Connectionist Simulator (RCS) on SUN- Workstations and was tested with several grammars for English and German. We discuss how BrainC reached its design goals and what results we observed.
Earthquake-induced landslide-susceptibility mapping using an artificial neural network
Directory of Open Access Journals (Sweden)
S. Lee
2006-01-01
Full Text Available The purpose of this study was to apply and verify landslide-susceptibility analysis techniques using an artificial neural network and a Geographic Information System (GIS applied to Baguio City, Philippines. The 16 July 1990 earthquake-induced landslides were studied. Landslide locations were identified from interpretation of aerial photographs and field survey, and a spatial database was constructed from topographic maps, geology, land cover and terrain mapping units. Factors that influence landslide occurrence, such as slope, aspect, curvature and distance from drainage were calculated from the topographic database. Lithology and distance from faults were derived from the geology database. Land cover was identified from the topographic database. Terrain map units were interpreted from aerial photographs. These factors were used with an artificial neural network to analyze landslide susceptibility. Each factor weight was determined by a back-propagation exercise. Landslide-susceptibility indices were calculated using the back-propagation weights, and susceptibility maps were constructed from GIS data. The susceptibility map was compared with known landslide locations and verified. The demonstrated prediction accuracy was 93.20%.
Computing tunneling paths with the Hamilton-Jacobi equation and the fast marching method
Dey, Bijoy K.; Ayers, Paul W.
We present a new method for computing the most probable tunneling paths based on the minimum imaginary action principle. Unlike many conventional methods, the paths are calculated without resorting to an optimization (minimization) scheme. Instead, a fast marching method coupled with a back-propagation scheme is used to efficiently compute the tunneling paths. The fast marching method solves a Hamilton-Jacobi equation for the imaginary action on a discrete grid where the action value at an initial point (usually the reactant state configuration) is known in the beginning. Subsequently, a back-propagation scheme uses a steepest descent method on the imaginary action surface to compute a path connecting an arbitrary point on the potential energy surface (usually a state in the product valley) to the initial state. The proposed method is demonstrated for the tunneling paths of two different systems: a model 2D potential surface and the collinear reaction. Unlike existing methods, where the tunneling path is based on a presumed reaction coordinate and a correction is made with respect to the reaction coordinate within an 'adiabatic' approximation, the proposed method is very general and makes no assumptions about the relationship between the reaction coordinate and tunneling path.
File access prediction using neural networks.
Patra, Prashanta Kumar; Sahu, Muktikanta; Mohapatra, Subasish; Samantray, Ronak Kumar
2010-06-01
One of the most vexing issues in design of a high-speed computer is the wide gap of access times between the memory and the disk. To solve this problem, static file access predictors have been used. In this paper, we propose dynamic file access predictors using neural networks to significantly improve upon the accuracy, success-per-reference, and effective-success-rate-per-reference by using neural-network-based file access predictor with proper tuning. In particular, we verified that the incorrect prediction has been reduced from 53.11% to 43.63% for the proposed neural network prediction method with a standard configuration than the recent popularity (RP) method. With manual tuning for each trace, we are able to improve upon the misprediction rate and effective-success-rate-per-reference using a standard configuration. Simulations on distributed file system (DFS) traces reveal that exact fit radial basis function (RBF) gives better prediction in high end system whereas multilayer perceptron (MLP) trained with Levenberg-Marquardt (LM) backpropagation outperforms in system having good computational capability. Probabilistic and competitive predictors are the most suitable for work stations having limited resources to deal with and the former predictor is more efficient than the latter for servers having maximum system calls. Finally, we conclude that MLP with LM backpropagation algorithm has better success rate of file prediction than those of simple perceptron, last successor, stable successor, and best k out of m predictors.
Membership generation using multilayer neural network
Kim, Jaeseok
1992-01-01
There has been intensive research in neural network applications to pattern recognition problems. Particularly, the back-propagation network has attracted many researchers because of its outstanding performance in pattern recognition applications. In this section, we describe a new method to generate membership functions from training data using a multilayer neural network. The basic idea behind the approach is as follows. The output values of a sigmoid activation function of a neuron bear remarkable resemblance to membership values. Therefore, we can regard the sigmoid activation values as the membership values in fuzzy set theory. Thus, in order to generate class membership values, we first train a suitable multilayer network using a training algorithm such as the back-propagation algorithm. After the training procedure converges, the resulting network can be treated as a membership generation network, where the inputs are feature values and the outputs are membership values in the different classes. This method allows fairly complex membership functions to be generated because the network is highly nonlinear in general. Also, it is to be noted that the membership functions are generated from a classification point of view. For pattern recognition applications, this is highly desirable, although the membership values may not be indicative of the degree of typicality of a feature value in a particular class.
Singh, Mithun Kuniyil Ajith; Jaeger, Michael; Frenz, Martin; Steenbergen, Wiendelt
2016-08-01
Reflection artifacts caused by acoustic inhomogeneities are a critical problem in epi-mode biomedical photoacoustic imaging. High light fluence beneath the probe results in photoacoustic transients, which propagate into the tissue and reflect back from echogenic structures. These reflection artifacts cause problems in image interpretation and significantly impact the contrast and imaging depth. We recently proposed a method called PAFUSion (Photoacoustic-guided focused ultrasound) to identify such reflection artifacts in photoacoustic imaging. In its initial version, PAFUSion mimics the inward-travelling wavefield from small blood vessel-like PA sources by applying ultrasound pulses focused towards these sources, and thus provides a way to identify the resulting reflection artifacts. In this work, we demonstrate reduction of reflection artifacts in phantoms and in vivo measurements on human volunteers. In view of the spatially distributed PA sources that are found in clinical applications, we implemented an improved version of PAFUSion where photoacoustic signals are backpropagated to imitate the inward travelling wavefield and thus the reflection artifacts. The backpropagation is performed in a synthetic way based on the pulse-echo acquisitions after transmission on each single element of the transducer array. The results provide a direct confirmation that reflection artifacts are prominent in clinical epi-photoacoustic imaging, and that PAFUSion can strongly reduce these artifacts to improve deep-tissue photoacoustic imaging. PMID:27570690
Laidi, Maamar; Hanini, Salah; Rezrazi, Ahmed; Yaiche, Mohamed Redha; El Hadj, Abdallah Abdallah; Chellali, Farouk
2016-01-01
In this study, a backpropagation artificial neural network (BP-ANN) model is used as an alternative approach to predict solar radiation on tilted surfaces (SRT) using a number of variables involved in physical process. These variables are namely the latitude of the site, mean temperature and relative humidity, Linke turbidity factor and Angstrom coefficient, extraterrestrial solar radiation, solar radiation data measured on horizontal surfaces (SRH), and solar zenith angle. Experimental solar radiation data from 13 stations spread all over Algeria around the year (2004) were used for training/validation and testing the artificial neural networks (ANNs), and one station was used to make the interpolation of the designed ANN. The ANN model was trained, validated, and tested using 60, 20, and 20 % of all data, respectively. The configuration 8-35-1 (8 inputs, 35 hidden, and 1 output neurons) presented an excellent agreement between the prediction and the experimental data during the test stage with determination coefficient of 0.99 and root meat squared error of 5.75 Wh/m2, considering a three-layer feedforward backpropagation neural network with Levenberg-Marquardt training algorithm, a hyperbolic tangent sigmoid and linear transfer function at the hidden and the output layer, respectively. This novel model could be used by researchers or scientists to design high-efficiency solar devices that are usually tilted at an optimum angle to increase the solar incident on the surface.
State-dependent firing determines intrinsic dendritic Ca2+ signaling in thalamocortical neurons.
Errington, Adam C; Renger, John J; Uebele, Victor N; Crunelli, Vincenzo
2010-11-01
Activity-dependent dendritic Ca(2+) signals play a critical role in multiple forms of nonlinear cellular output and plasticity. In thalamocortical neurons, despite the well established spatial separation of sensory and cortical inputs onto proximal and distal dendrites, respectively, little is known about the spatiotemporal dynamics of intrinsic dendritic Ca(2+) signaling during the different state-dependent firing patterns that are characteristic of these neurons. Here we demonstrate that T-type Ca(2+) channels are expressed throughout the entire dendritic tree of rat thalamocortical neurons and that they mediate regenerative propagation of low threshold spikes, typical of, but not exclusive to, sleep states, resulting in global dendritic Ca(2+) influx. In contrast, actively backpropagating action potentials, typical of wakefulness, result in smaller Ca(2+) influxes that can temporally summate to produce dendritic Ca(2+) accumulations that are linearly related to firing frequency but spatially confined to proximal dendritic regions. Furthermore, dendritic Ca(2+) transients evoked by both action potentials and low-threshold spikes are shaped by Ca(2+) uptake by sarcoplasmic/endoplasmic reticulum Ca(2+) ATPases but do not rely on Ca(2+)-induced Ca(2+) release. Our data demonstrate that thalamocortical neurons are endowed with intrinsic dendritic Ca(2+) signaling properties that are spatially and temporally modified in a behavioral state-dependent manner and suggest that backpropagating action potentials faithfully inform proximal sensory but not distal corticothalamic synapses of neuronal output, whereas corticothalamic synapses only "detect" Ca(2+) signals associated with low-threshold spikes.
Optimizing the De-Noise Neural Network Model for GPS Time-Series Monitoring of Structures
Directory of Open Access Journals (Sweden)
Mosbeh R. Kaloop
2015-09-01
Full Text Available The Global Positioning System (GPS is recently used widely in structures and other applications. Notwithstanding, the GPS accuracy still suffers from the errors afflicting the measurements, particularly the short-period displacement of structural components. Previously, the multi filter method is utilized to remove the displacement errors. This paper aims at using a novel application for the neural network prediction models to improve the GPS monitoring time series data. Four prediction models for the learning algorithms are applied and used with neural network solutions: back-propagation, Cascade-forward back-propagation, adaptive filter and extended Kalman filter, to estimate which model can be recommended. The noise simulation and bridge’s short-period GPS of the monitoring displacement component of one Hz sampling frequency are used to validate the four models and the previous method. The results show that the Adaptive neural networks filter is suggested for de-noising the observations, specifically for the GPS displacement components of structures. Also, this model is expected to have significant influence on the design of structures in the low frequency responses and measurements’ contents.
Koutsou, Achilleas; Bugmann, Guido; Christodoulou, Chris
2015-10-01
Biological systems are able to recognise temporal sequences of stimuli or compute in the temporal domain. In this paper we are exploring whether a biophysical model of a pyramidal neuron can detect and learn systematic time delays between the spikes from different input neurons. In particular, we investigate whether it is possible to reinforce pairs of synapses separated by a dendritic propagation time delay corresponding to the arrival time difference of two spikes from two different input neurons. We examine two subthreshold learning approaches where the first relies on the backpropagation of EPSPs (excitatory postsynaptic potentials) and the second on the backpropagation of a somatic action potential, whose production is supported by a learning-enabling background current. The first approach does not provide a learning signal that sufficiently differentiates between synapses at different locations, while in the second approach, somatic spikes do not provide a reliable signal distinguishing arrival time differences of the order of the dendritic propagation time. It appears that the firing of pyramidal neurons shows little sensitivity to heterosynaptic spike arrival time differences of several milliseconds. This neuron is therefore unlikely to be able to learn to detect such differences.
Neuro-Knowledge-Based Expert System (NKBES)for Optimal Scheming of Die Casting Process
Institute of Scientific and Technical Information of China (English)
Qiaodan HU; Peng LUO; Yi YANG; Liliang CHEN
2004-01-01
We develop a neuro-knowledge-based expert system (NKBES) frame in this work. The system mainly concerns with decision of gating system and die casting machine based on a neuro-inference engine launched under the MATLAB software environment. For enhancement of reasoning agility, an error back-propagation neural network was applied.A rapidly convergent adaptive learning rate (ALR) and a momentum-based error back-propagation algorithm was used to conduct neuro-reasoning. The working effect of the system was compared to a conventional expert system that is based on a two-way (forward and backward) chaining inference mechanism. As the reference, the present paper provided the neural networks sum-squared error (SSE) and ALR vs iterative epoch curves of process planning case mentioned above. The study suggests that the neuro-modeling optimization application to die casting process design has good feasibility, and based on that a novel and effective intelligent expert system can be launched at low cost.
Method and system for training dynamic nonlinear adaptive filters which have embedded memory
Rabinowitz, Matthew (Inventor)
2002-01-01
Described herein is a method and system for training nonlinear adaptive filters (or neural networks) which have embedded memory. Such memory can arise in a multi-layer finite impulse response (FIR) architecture, or an infinite impulse response (IIR) architecture. We focus on filter architectures with separate linear dynamic components and static nonlinear components. Such filters can be structured so as to restrict their degrees of computational freedom based on a priori knowledge about the dynamic operation to be emulated. The method is detailed for an FIR architecture which consists of linear FIR filters together with nonlinear generalized single layer subnets. For the IIR case, we extend the methodology to a general nonlinear architecture which uses feedback. For these dynamic architectures, we describe how one can apply optimization techniques which make updates closer to the Newton direction than those of a steepest descent method, such as backpropagation. We detail a novel adaptive modified Gauss-Newton optimization technique, which uses an adaptive learning rate to determine both the magnitude and direction of update steps. For a wide range of adaptive filtering applications, the new training algorithm converges faster and to a smaller value of cost than both steepest-descent methods such as backpropagation-through-time, and standard quasi-Newton methods. We apply the algorithm to modeling the inverse of a nonlinear dynamic tracking system 5, as well as a nonlinear amplifier 6.
Kuniyil Ajith Singh, Mithun; Jaeger, Michael; Frenz, Martin; Steenbergen, Wiendelt
2016-03-01
Reflection artifacts caused by acoustic inhomogeneities are a main challenge to deep-tissue photoacoustic imaging. Photoacoustic transients generated by the skin surface and superficial vasculature will propagate into the tissue and reflect back from echogenic structures to generate reflection artifacts. These artifacts can cause problems in image interpretation and limit imaging depth. In its basic version, PAFUSion mimics the inward travelling wave-field from blood vessel-like PA sources by applying focused ultrasound pulses, and thus provides a way to identify reflection artifacts. In this work, we demonstrate reflection artifact correction in addition to identification, towards obtaining an artifact-free photoacoustic image. In view of clinical applications, we implemented an improved version of PAFUSion in which photoacoustic data is backpropagated to imitate the inward travelling wave-field and thus the reflection artifacts of a more arbitrary distribution of PA sources that also includes the skin melanin layer. The backpropagation is performed in a synthetic way based on the pulse-echo acquisitions after transmission on each single element of the transducer array. We present a phantom experiment and initial in vivo measurements on human volunteers where we demonstrate significant reflection artifact reduction using our technique. The results provide a direct confirmation that reflection artifacts are prominent in clinical epi-photoacoustic imaging, and that PAFUSion can reduce these artifacts significantly to improve the deep-tissue photoacoustic imaging.
Moustafa, Ahmed A; Myers, Catherine E; Gluck, Mark A
2009-06-18
Some existing models of hippocampal function simulate performance in classical conditioning tasks using the error backpropagation algorithm to guide learning (Gluck, M.A., and Myers, C.E., (1993). Hippocampal mediation of stimulus representation: a computational theory. Hippocampus, 3(4), 491-516.). This algorithm is not biologically plausible because it requires information to be passed backward through layers of nodes and assumes that the environment provides information to the brain about what correct outputs should be. Here, we show that the same information-processing function proposed for the hippocampal region in the Gluck and Myers (1993) model can also be implemented in a network without using the backpropagation algorithm. Instead, our newer instantiation of the theory uses only (a) Hebbian learning methods which match more closely with synaptic and associative learning mechanisms ascribed to the hippocampal region and (b) a more plausible representation of input stimuli. We demonstrate here that this new more biologically plausible model is able to simulate various behavioral effects, including latent inhibition, acquired equivalence, sensory preconditioning, negative patterning, and context shift effects. In addition, the newer model is able to address some new phenomena including the effect of the number of training trials on blocking and overshadowing. PMID:19379717
Laser ultrasound and simulated time reversal on bulk waves for non destructive control
International Nuclear Information System (INIS)
Laser welding of aluminium generally creates embedded welding defects, such as porosities or cracks. Non Destructive Inspection (NDI) after processing may ensure an acceptable weld quality by defect detection. Nowadays, NDI techniques used to control the inside of a weld are mainly limited to X-Rays or ultrasonics. The current paper describes the use of a Laser Ultrasound (LU) technique to inspect porosities in 2 and 4-mm thick sheet lap welds. First experimentations resulted in the detection of 0.5-mm drilled holes in bulk aluminium sheets. The measurement of the depth of these defects is demonstrated too. Further experimentations shows the applicability of the LU technique to detect porosities in aluminium laser welds. However, as the interpretation of raw measures is limiting the detection capacity of this technique, we developed a signal processing using Time-Reversal capabilities to enhance detection capacities. Furthermore, the signal processing output is a geometrical image of the material's inner state, increasing the ease of interpretation. It is based on a mass-spring simulation which enables the back-propagation of the acquired ultrasound signal. The spring-mass simulation allows the natural generation of all the different sound waves and thus enables the back-propagation of a raw signal without any need of filtering or wave identification and extraction. Therefore the signal processing uses the information contained in the compression wave as well as in the shear wave
State-dependent firing determines intrinsic dendritic Ca2+ signaling in thalamocortical neurons.
Errington, Adam C; Renger, John J; Uebele, Victor N; Crunelli, Vincenzo
2010-11-01
Activity-dependent dendritic Ca(2+) signals play a critical role in multiple forms of nonlinear cellular output and plasticity. In thalamocortical neurons, despite the well established spatial separation of sensory and cortical inputs onto proximal and distal dendrites, respectively, little is known about the spatiotemporal dynamics of intrinsic dendritic Ca(2+) signaling during the different state-dependent firing patterns that are characteristic of these neurons. Here we demonstrate that T-type Ca(2+) channels are expressed throughout the entire dendritic tree of rat thalamocortical neurons and that they mediate regenerative propagation of low threshold spikes, typical of, but not exclusive to, sleep states, resulting in global dendritic Ca(2+) influx. In contrast, actively backpropagating action potentials, typical of wakefulness, result in smaller Ca(2+) influxes that can temporally summate to produce dendritic Ca(2+) accumulations that are linearly related to firing frequency but spatially confined to proximal dendritic regions. Furthermore, dendritic Ca(2+) transients evoked by both action potentials and low-threshold spikes are shaped by Ca(2+) uptake by sarcoplasmic/endoplasmic reticulum Ca(2+) ATPases but do not rely on Ca(2+)-induced Ca(2+) release. Our data demonstrate that thalamocortical neurons are endowed with intrinsic dendritic Ca(2+) signaling properties that are spatially and temporally modified in a behavioral state-dependent manner and suggest that backpropagating action potentials faithfully inform proximal sensory but not distal corticothalamic synapses of neuronal output, whereas corticothalamic synapses only "detect" Ca(2+) signals associated with low-threshold spikes. PMID:21048143
Salu, Yehuda; Tilton, James
1993-01-01
The classification of multispectral image data obtained from satellites has become an important tool for generating ground cover maps. This study deals with the application of nonparametric pixel-by-pixel classification methods in the classification of pixels, based on their multispectral data. A new neural network, the Binary Diamond, is introduced, and its performance is compared with a nearest neighbor algorithm and a back-propagation network. The Binary Diamond is a multilayer, feed-forward neural network, which learns from examples in unsupervised, 'one-shot' mode. It recruits its neurons according to the actual training set, as it learns. The comparisons of the algorithms were done by using a realistic data base, consisting of approximately 90,000 Landsat 4 Thematic Mapper pixels. The Binary Diamond and the nearest neighbor performances were close, with some advantages to the Binary Diamond. The performance of the back-propagation network lagged behind. An efficient nearest neighbor algorithm, the binned nearest neighbor, is described. Ways for improving the performances, such as merging categories, and analyzing nonboundary pixels, are addressed and evaluated.
Directory of Open Access Journals (Sweden)
Hacene MELLAH
2016-07-01
Full Text Available The objective of this paper is to develop an Artificial Neural Network (ANN model to estimate simultaneously, parameters and state of a brushed DC machine. The proposed ANN estimator is novel in the sense that his estimates simultaneously temperature, speed and rotor resistance based only on the measurement of the voltage and current inputs. Many types of ANN estimators have been designed by a lot of researchers during the last two decades. Each type is designed for a specific application. The thermal behavior of the motor is very slow, which leads to large amounts of data sets. The standard ANN use often Multi-Layer Perceptron (MLP with Levenberg-Marquardt Backpropagation (LMBP, among the limits of LMBP in the case of large number of data, so the use of MLP based on LMBP is no longer valid in our case. As solution, we propose the use of Cascade-Forward Neural Network (CFNN based Bayesian Regulation backpropagation (BRBP. To test our estimator robustness a random white-Gaussian noise has been added to the sets. The proposed estimator is in our viewpoint accurate and robust.
Prediction of thermal conductivity of rock through physico-mechanical properties
Energy Technology Data Exchange (ETDEWEB)
Singh, T.N. [Department of Earth Sciences, Indian Institute of Technology, Bombay 400 076 (India); Sinha, S.; Singh, V.K. [Institute of Technology, Banaras Hindu University, Varanasi 221 005 (India)
2007-01-15
The transfer of energy between two adjacent parts of rock mainly depends on its thermal conductivity. Present study supports the use of artificial neural network (ANN) and adaptive neuro fuzzy inference system (ANFIS) in the study of thermal conductivity along with other intrinsic properties of rock due to its increasing importance in many areas of rock engineering, agronomy and geo environmental engineering field. In recent years, considerable effort has been made to develop techniques to determine these properties. Comparative analysis is made to analyze the capabilities among six different models of ANN and ANFIS. ANN models are based on feedforward backpropagation network with training functions resilient backpropagation (RP), one step secant (OSS) and Powell-Beale restarts (CGB) and radial basis with training functions generalized regression neural network (GRNN) and more efficient design radial basis network (NEWRB). A data set of 136 has been used for training different models and 15 were used for testing purposes. A statistical analysis is made to show the consistency among them. ANFIS is proved to be the best among all the networks tried in this case with average absolute percentage error of 0.03% and regression coefficient of 1, whereas best performance shown by the FFBP (RP) with average absolute error of 2.26%. Thermal conductivity is predicted using P-wave velocity, porosity, bulk density, uniaxial compressive strength of rock as input parameters. (author)
Firearm Classification using Neural Networks on Ring of Firing Pin Impression Images
Directory of Open Access Journals (Sweden)
Abdul AZIZ JEMAIN
2013-07-01
Full Text Available This paper implements two layer neural networks with different feedforward backpropagation algorithms for better performance of firearm classification us-ing numerical features from the ring image. A total of 747 ring images which are extracted from centre of the firing pin impression have been captured from five different pistols of the Parabellum Vector SPI 9mm model. Then, based on finding from the previous studies, the six best geometric moments numerical fea-tures were extracted from those ring images. The elements of the dataset were further randomly divided into the training set (523 elements, testing set (112 el-ements and validation set (112 elements in accordance with the requirement of the supervised learning nature of the backpropagation neural network (BPNN. Empirical results show that a two layer BPNN with a 6-7-5 configura-tion and tansig/tansig transfer functions with ‘trainscg’ training algorithm has produced the best classification result of 98%. The classification result is an improvement compared to the previous studies as well as confirming that the ring image region contains useful information for firearm classification.
Directory of Open Access Journals (Sweden)
R. Murugadoss
2014-10-01
Full Text Available Neural networks are modeled on the way the human brain. They are capable of learning and can automatically recognize by skillfully training and design complex relationships and hidden dependencies based on historical example patterns and use this information for forecasting. The main difference, and at the same time is biggest advantage of the model of neural networks over statistical techniques seen that the forecaster the exact functional structure between input and Output variables need not be specified, but this by the system with certain Learning algorithms is "learned" using a kind of threshold logic. Goal of the learning procedure is to define the training phase while those parameters of the network, with Help the network has one of those adequate for the problem behavior. Mathematically, the training phase is an iterative, converging towards a minimum error value process. They identify the processors of the network, minimize the "total error". The currently the most popular and most widely for business applications algorithm is the backpropagation algorithm. This paper opens the black box of Backpropagation networks and makes the optimization process in the network over time and locally comprehensible.
Directory of Open Access Journals (Sweden)
Sumit Goyal
2012-02-01
Full Text Available This paper presents the potential of Cascade Backpropagation algorithm based ANN models in detecting the shelf life of processed cheese stored at 30o C. Processed cheese is a dairy product made from ripened Cheddar cheese and sometimes a part of ripened cheese is replaced by fresh cheese; plus emulsifiers, extra salt, spices and food colorings. The cascade backpropagation algorithm (CBA is the basis of a conceptual design for accelerating learning in ANNs. In this research input parameters were texture, aroma and flavour, moisture, free fatty acids.Sensory score was taken as output parameter. Bayesian regularization algorithm was used for training the network. Neurons in each hidden layers varied from 1 to 50. The network was trained with 200 epochs with single and multiple hidden layers. Transfer function for hidden layers was tangent sigmoid and pure linear was output function. Mean Square Error, Root Mean Square Error, Coefficient of Determination and Nash - Sutcliffo Coefficient performance measures were used to test the prediction potential of the developed CBA model. CBA model detected 29.13 daysshelf life which is quite close to experimentally obtained shelf life of 30 days suggesting that the product is acceptable.
Directory of Open Access Journals (Sweden)
Chung-Ta Li
2014-01-01
Full Text Available We propose a species-based hybrid of the electromagnetism-like mechanism (EM and back-propagation algorithms (SEMBP for an interval type-2 fuzzy neural system with asymmetric membership functions (AIT2FNS design. The interval type-2 asymmetric fuzzy membership functions (IT2 AFMFs and the TSK-type consequent part are adopted to implement the network structure in AIT2FNS. In addition, the type reduction procedure is integrated into an adaptive network structure to reduce computational complexity. Hence, the AIT2FNS can enhance the approximation accuracy effectively by using less fuzzy rules. The AIT2FNS is trained by the SEMBP algorithm, which contains the steps of uniform initialization, species determination, local search, total force calculation, movement, and evaluation. It combines the advantages of EM and back-propagation (BP algorithms to attain a faster convergence and a lower computational complexity. The proposed SEMBP algorithm adopts the uniform method (which evenly scatters solution agents over the feasible solution region and the species technique to improve the algorithm’s ability to find the global optimum. Finally, two illustrative examples of nonlinear systems control are presented to demonstrate the performance and the effectiveness of the proposed AIT2FNS with the SEMBP algorithm.
Falat, Lukas; Marcek, Dusan; Durisova, Maria
2016-01-01
This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process. PMID:26977450
Early tube leak detection system for steam boiler at KEV power plant
Directory of Open Access Journals (Sweden)
Ismail Firas B.
2016-01-01
Full Text Available Tube leakage in boilers has been a major contribution to trips which eventually leads to power plant shut downs. Training of network and developing artificial neural network (ANN models are essential in fault detection in critically large systems. This research focusses on the ANN modelling through training and validation of real data acquired from a sub-critical boiler unit. The artificial neural network (ANN was used to develop a compatible model and to evaluate the working properties and behaviour of boiler. The training and validation of real data has been applied using the feed-forward with back-propagation (BP. The right combination of number of neurons, number of hidden layers, training algorithms and training functions was run to achieve the best ANN model with lowest error. The ANN was trained and validated using real site data acquired from a coal fired power plant in Malaysia. The results showed that the Neural Network (NN with one hidden layers performed better than two hidden layer using feed-forward back-propagation network. The outcome from this study give us the best ANN model which eventually allows for early detection of boiler tube leakages, and forecast of a trip before the real shutdown. This will eventually reduce shutdowns in power plants.
Dong, Wenjiang; Ni, Yongnian; Kokot, Serge
2015-02-01
In this study, complex substances such as Mint (Mentha haplocalyx Briq.) samples from different growing regions in China were analyzed for phenolic compounds by high-performance liquid chromatography with diode array detection and for the volatile aroma compounds by gas chromatography with mass spectrometry. Chemometrics methods, e.g. principal component analysis, back-propagation artificial neural networks, and partial least squares discriminant analysis, were applied to resolve complex chromatographic profiles of Mint samples. A total of 49 aroma components and 23 phenolic compounds were identified in 79 Mint samples. Principal component analysis score plots from gas chromatography with mass spectrometry and high-performance liquid chromatography with diode array detection data sets showed a clear distinction among Mint from three different regions in China. Classification results showed that satisfactory performance of prediction ability for back-propagation artificial neural networks and partial least squares discriminant analysis. The major compounds that contributed to the discrimination were chlorogenic acid, unknown 3, kaempherol 7-O-rutinoside, salvianolic acid L, hesperidin, diosmetin, unknown 6 and pebrellin in Mint according to regression coefficients of the partial least squares discriminant analysis model. This study indicated that the proposed strategy could provide a simple and rapid technique to distinguish clearly complex profiles from samples such as Mint. PMID:25431171
Yeşilkanat, Cafer Mert; Kobya, Yaşar
2015-09-01
In this study, radiological distribution of gross alpha, gross beta, (226)Ra, (232)Th, (40)K, and (137)Cs for a total of 40 natural spring water samples obtained from seven cities of the Eastern Black Sea Region was determined by artificial neural network (ANN) method. In the ANN method employed, the backpropagation algorithm, which estimates the backpropagation of the errors and results, was used. In the structure of ANN, five input parameters (latitude, longitude, altitude, major soil groups, and rainfall) were used for natural radionuclides and four input parameters (latitude, longitude, altitude, and rainfall) were used for artificial radionuclides, respectively. In addition, 75 % of the total data were used as the data of training and 25 % of them were used as test data in order to reveal the structure of each radionuclide. It has been seen that the results obtained explain the radiographic structure of the region very well. Spatial interpolation maps covering the whole region were created for each radionuclide including spots not measured by using these results. It has been determined that artificial neural network method can be used for mapping the spatial distribution of radioactivity with this study, which is conducted for the first time for the Black Sea Region. PMID:26307690
Singh, Mithun Kuniyil Ajith; Jaeger, Michael; Frenz, Martin; Steenbergen, Wiendelt
2016-08-01
Reflection artifacts caused by acoustic inhomogeneities are a critical problem in epi-mode biomedical photoacoustic imaging. High light fluence beneath the probe results in photoacoustic transients, which propagate into the tissue and reflect back from echogenic structures. These reflection artifacts cause problems in image interpretation and significantly impact the contrast and imaging depth. We recently proposed a method called PAFUSion (Photoacoustic-guided focused ultrasound) to identify such reflection artifacts in photoacoustic imaging. In its initial version, PAFUSion mimics the inward-travelling wavefield from small blood vessel-like PA sources by applying ultrasound pulses focused towards these sources, and thus provides a way to identify the resulting reflection artifacts. In this work, we demonstrate reduction of reflection artifacts in phantoms and in vivo measurements on human volunteers. In view of the spatially distributed PA sources that are found in clinical applications, we implemented an improved version of PAFUSion where photoacoustic signals are backpropagated to imitate the inward travelling wavefield and thus the reflection artifacts. The backpropagation is performed in a synthetic way based on the pulse-echo acquisitions after transmission on each single element of the transducer array. The results provide a direct confirmation that reflection artifacts are prominent in clinical epi-photoacoustic imaging, and that PAFUSion can strongly reduce these artifacts to improve deep-tissue photoacoustic imaging.
Falat, Lukas; Marcek, Dusan; Durisova, Maria
2016-01-01
This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process.
A Sequential Monte Carlo Approach for Streamflow Forecasting
Hsu, K.; Sorooshian, S.
2008-12-01
As alternatives to traditional physically-based models, Artificial Neural Network (ANN) models offer some advantages with respect to the flexibility of not requiring the precise quantitative mechanism of the process and the ability to train themselves from the data directly. In this study, an ANN model was used to generate one-day-ahead streamflow forecasts from the precipitation input over a catchment. Meanwhile, the ANN model parameters were trained using a Sequential Monte Carlo (SMC) approach, namely Regularized Particle Filter (RPF). The SMC approaches are known for their capabilities in tracking the states and parameters of a nonlinear dynamic process based on the Baye's rule and the proposed effective sampling and resampling strategies. In this study, five years of daily rainfall and streamflow measurement were used for model training. Variable sample sizes of RPF, from 200 to 2000, were tested. The results show that, after 1000 RPF samples, the simulation statistics, in terms of correlation coefficient, root mean square error, and bias, were stabilized. It is also shown that the forecasted daily flows fit the observations very well, with the correlation coefficient of higher than 0.95. The results of RPF simulations were also compared with those from the popular back-propagation ANN training approach. The pros and cons of using SMC approach and the traditional back-propagation approach will be discussed.
International Nuclear Information System (INIS)
Significant advances have been made in recent years to improve calibration methodology and dose calculation algorithm in the fields of TL dosimetry. This process was accelerated in the past decade particularly in the Republic of Korea by the need to meet mandatory national accreditation requirements. The objective of this study is to develop a new algorithm to replace the simplistic decision tree algorithms by the more sophisticated neural networks in hopes of achieving a higher degree of accuracy and precision in personnel dosimetry system. The original hypothesis of this work is that the spectral information of an X and γ-ray fields may be obtained by the analysis of the response of a multi-element system. In this study, a feed forward neural network using the error back-propagation method with Bayesian optimization was designed for the response unfolding procedure. The response functions of the single element to photons were calculated by application of a computational Monte-Carlo model for an energy range from 10 keV to 2 MeV with different spectral proportions. The training of the artificial neural network was based on the computation of responses of a four-element system for the back-propagation method. The validation of the proposed algorithm was investigated by unfolding the 10 computed responses for arbitrary mixed gamma fields and the spectra resulting from the unfolding procedure agree well with the original spectra. (author)
Directory of Open Access Journals (Sweden)
Umut Bulucu
2008-09-01
Full Text Available Wireless communication networks offer subscribers the possibilities of free mobility and access to information anywhere at any time. Therefore, electromagnetic coverage calculations are important for wireless mobile communication systems, especially in Wireless Local Area Networks (WLANs. Before any propagation computation is performed, modeling of indoor radio wave propagation needs accurate geographical information in order to avoid the interruption of data transmissions. Geographic Information Systems (GIS and spatial interpolation techniques are very efficient for performing indoor radio wave propagation modeling. This paper describes the spatial interpolation of electromagnetic field measurements using a feed-forward back-propagation neural network programmed as a tool in GIS. The accuracy of Artificial Neural Networks (ANN and geostatistical Kriging were compared by adjusting procedures. The feedforward back-propagation ANN provides adequate accuracy for spatial interpolation, but the predictions of Kriging interpolation are more accurate than the selected ANN. The proposed GIS ensures indoor radio wave propagation model and electromagnetic coverage, the number, position and transmitter power of access points and electromagnetic radiation level. Pollution analysis in a given propagation environment was done and it was demonstrated that WLAN (2.4 GHz electromagnetic coverage does not lead to any electromagnetic pollution due to the low power levels used. Example interpolated electromagnetic field values for WLAN system in a building of Yildiz Technical University, Turkey, were generated using the selected network architectures to illustrate the results with an ANN.
Prediction of geomagnetic storms from solar wind data with the use of a neural network
Directory of Open Access Journals (Sweden)
H. Lundstedt
Full Text Available An artificial feed-forward neural network with one hidden layer and error back-propagation learning is used to predict the geomagnetic activity index (D_{st} one hour in advance. The B_{z}-component and Σ_{Bz}, the density, and the velocity of the solar wind are used as input to the network. The network is trained on data covering a total of 8700 h, extracted from the 25-year period from 1963 to 1987, taken from the NSSDC data base. The performance of the network is examined with test data, not included in the training set, which covers 386 h and includes four different storms. Whilst the network predicts the initial and main phase well, the recovery phase is not modelled correctly, implying that a single hidden layer error back-propagation network is not enough, if the measured D_{st} is not available instantaneously. The performance of the network is independent of whether the raw parameters are used, or the electric field and square root of the dynamical pressure.
Chang, Hsien-Cheng
Two novel synergistic systems consisting of artificial neural networks and fuzzy inference systems are developed to determine geophysical properties by using well log data. These systems are employed to improve the determination accuracy in carbonate rocks, which are generally more complex than siliciclastic rocks. One system, consisting of a single adaptive resonance theory (ART) neural network and three fuzzy inference systems (FISs), is used to determine the permeability category. The other system, which is composed of three ART neural networks and a single FIS, is employed to determine the lithofacies. The geophysical properties studied in this research, permeability category and lithofacies, are treated as categorical data. The permeability values are transformed into a "permeability category" to account for the effects of scale differences between core analyses and well logs, and heterogeneity in the carbonate rocks. The ART neural networks dynamically cluster the input data sets into different groups. The FIS is used to incorporate geologic experts' knowledge, which is usually in linguistic forms, into systems. These synergistic systems thus provide viable alternative solutions to overcome the effects of heterogeneity, the uncertainties of carbonate rock depositional environments, and the scarcity of well log data. The results obtained in this research show promising improvements over backpropagation neural networks. For the permeability category, the prediction accuracies are 68.4% and 62.8% for the multiple-single ART neural network-FIS and a single backpropagation neural network, respectively. For lithofacies, the prediction accuracies are 87.6%, 79%, and 62.8% for the single-multiple ART neural network-FIS, a single ART neural network, and a single backpropagation neural network, respectively. The sensitivity analysis results show that the multiple-single ART neural networks-FIS and a single ART neural network possess the same matching trends in
Financial Time Series Prediction Using Elman Recurrent Random Neural Networks
Wang, Jie; Wang, Jun; Fang, Wen; Niu, Hongli
2016-01-01
In recent years, financial market dynamics forecasting has been a focus of economic research. To predict the price indices of stock markets, we developed an architecture which combined Elman recurrent neural networks with stochastic time effective function. By analyzing the proposed model with the linear regression, complexity invariant distance (CID), and multiscale CID (MCID) analysis methods and taking the model compared with different models such as the backpropagation neural network (BPNN), the stochastic time effective neural network (STNN), and the Elman recurrent neural network (ERNN), the empirical results show that the proposed neural network displays the best performance among these neural networks in financial time series forecasting. Further, the empirical research is performed in testing the predictive effects of SSE, TWSE, KOSPI, and Nikkei225 with the established model, and the corresponding statistical comparisons of the above market indices are also exhibited. The experimental results show that this approach gives good performance in predicting the values from the stock market indices. PMID:27293423
Error localization in RHIC by fitting difference orbits
Energy Technology Data Exchange (ETDEWEB)
Liu C.; Minty, M.; Ptitsyn, V.
2012-05-20
The presence of realistic errors in an accelerator or in the model used to describe the accelerator are such that a measurement of the beam trajectory may deviate from prediction. Comparison of measurements to model can be used to detect such errors. To do so the initial conditions (phase space parameters at any point) must be determined which can be achieved by fitting the difference orbit compared to model prediction using only a few beam position measurements. Using these initial conditions, the fitted orbit can be propagated along the beam line based on the optics model. Measurement and model will agree up to the point of an error. The error source can be better localized by additionally fitting the difference orbit using downstream BPMs and back-propagating the solution. If one dominating error source exist in the machine, the fitted orbit will deviate from the difference orbit at the same point.
Extended Mixture of MLP Experts by Hybrid of Conjugate Gradient Method and Modified Cuckoo Search
Salimi, Hamid; Soltanshahi, Mohammad Ali; Hatami, Javad
2012-01-01
This paper investigates a new method for improving the learning algorithm of Mixture of Experts (ME) model using a hybrid of Modified Cuckoo Search (MCS) and Conjugate Gradient (CG) as a second order optimization technique. The CG technique is combined with Back-Propagation (BP) algorithm to yield a much more efficient learning algorithm for ME structure. In addition, the experts and gating networks in enhanced model are replaced by CG based Multi-Layer Perceptrons (MLPs) to provide faster and more accurate learning. The CG is considerably depends on initial weights of connections of Artificial Neural Network (ANN), so, a metaheuristic algorithm, the so-called Modified Cuckoo Search is applied in order to select the optimal weights. The performance of proposed method is compared with Gradient Decent Based ME (GDME) and Conjugate Gradient Based ME (CGME) in classification and regression problems. The experimental results show that hybrid MSC and CG based ME (MCS-CGME) has faster convergence and better performa...
Nawi, Nazri Mohd.; Khan, Abdullah; Rehman, M. Z.
2015-05-01
A nature inspired behavior metaheuristic techniques which provide derivative-free solutions to solve complex problems. One of the latest additions to the group of nature inspired optimization procedure is Cuckoo Search (CS) algorithm. Artificial Neural Network (ANN) training is an optimization task since it is desired to find optimal weight set of a neural network in training process. Traditional training algorithms have some limitation such as getting trapped in local minima and slow convergence rate. This study proposed a new technique CSLM by combining the best features of two known algorithms back-propagation (BP) and Levenberg Marquardt algorithm (LM) for improving the convergence speed of ANN training and avoiding local minima problem by training this network. Some selected benchmark classification datasets are used for simulation. The experiment result show that the proposed cuckoo search with Levenberg Marquardt algorithm has better performance than other algorithm used in this study.
Coherent interferometric imaging for synthetic aperture radar in the presence of noise
International Nuclear Information System (INIS)
This paper shows that the coherent interferometric imaging strategy originally proposed in the context of passive or active arrays of antennas can be implemented for synthetic aperture radar, in which a single antenna is used as an emitter and as a receiver at successive positions along a trajectory. The idea is to backpropagate the cross correlations of the recorded signals over selected frequency-spatial windows rather than the signals themselves. The theoretical analysis shows that the signal-to-noise ratio can be enhanced dramatically compared to the standard matched filter processing, without any loss of resolution. This holds true when the fluctuations of the recorded signals have a spatial correlation (along the antenna trajectory) that is larger than the distance between two successive positions of the antenna and smaller than the length of the antenna trajectory. As a result, a good compromise between resolution and deblurring can be achieved by an appropriate choice of the spatial window size
Zhang, Yu; Xu, Jing-Liang; Yuan, Zhen-Hong; Qi, Wei; Liu, Yun-Yun; He, Min-Chao
2012-01-01
Two artificial intelligence techniques, namely artificial neural network (ANN) and genetic algorithm (GA) were combined to be used as a tool for optimizing the covalent immobilization of cellulase on a smart polymer, Eudragit L-100. 1-Ethyl-3-(3-dimethyllaminopropyl) carbodiimide (EDC) concentration, N-hydroxysuccinimide (NHS) concentration and coupling time were taken as independent variables, and immobilization efficiency was taken as the response. The data of the central composite design were used to train ANN by back-propagation algorithm, and the result showed that the trained ANN fitted the data accurately (correlation coefficient R(2) = 0.99). Then a maximum immobilization efficiency of 88.76% was searched by genetic algorithm at a EDC concentration of 0.44%, NHS concentration of 0.37% and a coupling time of 2.22 h, where the experimental value was 87.97 ± 6.45%. The application of ANN based optimization by GA is quite successful. PMID:22942683
Chen, Ying; Liu, Teng; Wang, Wenyue; Zhu, Qiguang; Bi, Weihong
2015-04-01
According to the band gap and photon localization characteristics, the single-arm notching and the double-arm notching Mach-Zehnder interferometer (MZI) structures based on 2D triangular lattice air hole-typed photonic crystal waveguide are proposed. The back-propagation (BP) neural network is introduced to optimize the structural parameters of the photonic crystal MZI structure, which results in the normalized transmission peak increasing from 85.3% to 97.1%. The sensitivity performances of the two structures are compared and analyzed using the Salmonella solution samples with different concentrations in the numerical simulation. The results show that the sensitivity of the double-arm notching structure is 4583 nm/RIU, which is about 6.4 times of the single-arm notching structure, which can provide some references for the optimization of the photonic devices and the design of high-sensitivity biosensors.
Biometric system for user authentication based on Hough transform and Neural Network
Directory of Open Access Journals (Sweden)
Rahul Dubey Dheeraj Agrawal
2011-10-01
Full Text Available Authentication of a person is the major concern in this era for security purposes. In biometric systems Signature is one of the behavioural features used for the authentication purpose. In this paper we work on the offline signature collected through different persons. Morphological operations are applied on these signature images with Hough transform to determine regular shape which assists in authentication process. The values extracted from this Hough space is used in the feed forward neural network which is trained using back-propagation algorithm. After the different training stages efficiency found above more than 95%. Application of this system will be in the security concerned fields, in the defence security, biometric authentication, as biometric computer protection or as
Integrated software framework for processing of geophysical data
Chubak, Glenn; Morozov, Igor
2006-07-01
We present an integrated software framework for geophysical data processing, based on an updated seismic data processing program package originally developed at the Program for Crustal Studies at the University of Wyoming. Unlike other systems, this processing monitor supports structured multi-component seismic data streams, multi-dimensional data traces, and employs a unique backpropagation execution logic. This results in an unusual flexibility of processing, allowing the system to handle nearly any geophysical data. A modern and feature-rich graphical user interface (GUI) was developed for the system, allowing editing and submission of processing flows and interaction with running jobs. Multiple jobs can be executed in a distributed multi-processor networks and controlled from the same GUI. Jobs, in their turn, can also be parallelized to take advantage of parallel processing environments, such as local area networks and Beowulf clusters.
Application of 2-D Position Sensitive Detector in Spatial Straightness Measurement of Guide Rails
Institute of Scientific and Technical Information of China (English)
GUO Lifeng; ZHANG Guoxiong; GONG Qiang; ZHENG Qi
2005-01-01
A laser collimating system based on 2-D position sensitive detector (PSD) is presented in this paper. The working principle of PSD is depicted in detail. A calibration device was developed to check the nonlinearity errors of PSD and a multilayer feedforward neural network based on error back-propagation algorithm was used to compensate errors. With the aid of computer-based data acquisition system, an automatic dynamic measuring process was realized. A series of experiments, including comparison tests with laser interferometer, were done to evaluate the performance of the measuring system. The experimental results show that the spatial straightness errors of guide rails can be measured with high accuracy. The maximum differences between the device and laser interferometer are 0.027 mm in Y direction, and 0.053 mm in X direction in the measuring distance of 6 m.
Kaushik, Vikas; Lahiri, Tapobrata; Singha, Shantiswaroop; Dasgupta, Anjan Kumar; Mishra, Hrishikesh; Kumar, Upendra; Kumar, Rajeev
2011-01-01
Study on geometric properties of nanoparticles and their relation with biomolecular activities, especially protein is quite a new field to explore. This work was carried out towards this direction where images of gold nanoparticles obtained from transmission electron microscopy were processed to extract their size and area profile at different experimental conditions including and excluding a protein, citrate synthase. Since the images were ill-posed, texture of a context-window for each pixel was used as input to a back-propagation network architecture to obtain decision on its membership as nanoparticle. The segmented images were further analysed by k-means clustering to derive geometric properties of individual nanoparticles even from their assembled form. The extracted geometric information was found to be crucial to give a model featuring porous cage like configuration of nanoparticle assembly using which the chaperone like activity of gold nanoparticles can be explained. PMID:22355230
Chattopadhyay, Goutami; Chattopadhyay, Surajit; Chakraborthy, Parthasarathi
2012-07-01
The present study deals with daily total ozone concentration time series over four metro cities of India namely Kolkata, Mumbai, Chennai, and New Delhi in the multivariate environment. Using the Kaiser-Meyer-Olkin measure, it is established that the data set under consideration are suitable for principal component analysis. Subsequently, by introducing rotated component matrix for the principal components, the predictors suitable for generating artificial neural network (ANN) for daily total ozone prediction are identified. The multicollinearity is removed in this way. Models of ANN in the form of multilayer perceptron trained through backpropagation learning are generated for all of the study zones, and the model outcomes are assessed statistically. Measuring various statistics like Pearson correlation coefficients, Willmott's indices, percentage errors of prediction, and mean absolute errors, it is observed that for Mumbai and Kolkata the proposed ANN model generates very good predictions. The results are supported by the linearly distributed coordinates in the scatterplots.
Enhanced dynamic Performance of Matrix Converter Cage Drive with Neuro-fuzzy approach
Directory of Open Access Journals (Sweden)
R.R. Joshi
2007-06-01
Full Text Available This paper proposes a new control algorithm for a matrix converter (MC induction motor drive system. First, a new switching strategy, which applies a back-propagation neural network to adjust a pseudo dc bus voltage, is proposed to reduce the current harmonics of the induction motor. Next, a two-degree-of-freedom controller is proposed to improve the system performance. The controller design algorithm can be applied in an adjustable speed control system and a position control system to obtain good transient responses and good load disturbance rejection abilities. The implementation of this kind of controller is only possible by using a high-speed digital signal processor. In this paper, all the control loops, including current-loop, speed-loop, and position-loop, are implemented by TMS320C6711 digital signal processor. Several experimental results are shown to validate the theoretical analysis.
Directory of Open Access Journals (Sweden)
Vijaypal Singh Dhaka,
2010-02-01
Full Text Available Objective of this paper is to study the character recognition capability of feed-forward back-propagation algorithm using more than one hidden layer. This analysis was conducted on 182 different letters from English alphabet. After binarization, these characters were clubbed together to form training patterns for the neural network. Network was trained to learn its behavior by adjusting the connection strengths on every iteration. The conjugate gradient descent of each presented training pattern was calculated to identify the minima on the error surface for each training pattern. xperiments were performed by using one and two hidden layers and the results revealed that as the number of hidden layers is increased, a lower final mean square error is achieved in large number of epochsand the performance of the neural network was observed to be more accurate.
SKYNET: an efficient and robust neural network training tool for machine learning in astronomy
Graff, Philip; Hobson, Michael P; Lasenby, Anthony N
2013-01-01
We present the first public release of our generic neural network training algorithm, called SKYNET. This efficient and robust machine-learning tool is able to train large and deep feed-forward neural networks, including autoencoders, for use in a wide range of supervised and unsupervised learning applications, such as regression, classification, density estimation, clustering and dimensionality reduction. SKYNET uses a powerful 'pre-training' method, to obtain a set of network parameters close to the true global maximum of the training objective function, followed by further optimisation using an automatically-regularised variant of Newton's method; the latter uses second-order derivative information to improve convergence, but without the need to evaluate or store the full Hessian matrix, by using a fast approximate method to calculate Hessian-vector products. This combination of methods allows for the training of complicated networks that are difficult to optimise using standard backpropagation techniques....
FORECASTING NIKKEI 225 INDEX WITH SUPPORT VECTOR MACHINE
Institute of Scientific and Technical Information of China (English)
HUANG Wei; Yoshiteru Nakamori; WANG Shouyang; YU Lean
2003-01-01
Support Vector Machine (SVM) is a very specific type of learning algorithms characterized by the capacity control of the decision function, the use of the kernel functions and the sparsity of the solution. In this paper, we investigate the predictability of financial movement direction with SVM by forecasting the weekly movement direction of NIKKEI 225 index. To evaluate the forecasting ability of SVM, we compare the performance with those of Linear Discriminant Analysis, Quadratic Discriminant Analysis and Elman Backpropagation Neural Networks. The experiment results show that SVM outperforms other classification methods. Furthermore, we propose a combining model by integrating SVM with other classification methods. The combining model performs the best among the forecasting methods.
Volatility Degree Forecasting of Stock Market by Stochastic Time Strength Neural Network
Directory of Open Access Journals (Sweden)
Haiyan Mo
2013-01-01
Full Text Available In view of the applications of artificial neural networks in economic and financial forecasting, a stochastic time strength function is introduced in the backpropagation neural network model to predict the fluctuations of stock price changes. In this model, stochastic time strength function gives a weight for each historical datum and makes the model have the effect of random movement, and then we investigate and forecast the behavior of volatility degrees of returns for the Chinese stock market indexes and some global market indexes. The empirical research is performed in testing the prediction effect of SSE, SZSE, HSI, DJIA, IXIC, and S&P 500 with different selected volatility degrees in the established model.
Financial Time Series Prediction Using Elman Recurrent Random Neural Networks.
Wang, Jie; Wang, Jun; Fang, Wen; Niu, Hongli
2016-01-01
In recent years, financial market dynamics forecasting has been a focus of economic research. To predict the price indices of stock markets, we developed an architecture which combined Elman recurrent neural networks with stochastic time effective function. By analyzing the proposed model with the linear regression, complexity invariant distance (CID), and multiscale CID (MCID) analysis methods and taking the model compared with different models such as the backpropagation neural network (BPNN), the stochastic time effective neural network (STNN), and the Elman recurrent neural network (ERNN), the empirical results show that the proposed neural network displays the best performance among these neural networks in financial time series forecasting. Further, the empirical research is performed in testing the predictive effects of SSE, TWSE, KOSPI, and Nikkei225 with the established model, and the corresponding statistical comparisons of the above market indices are also exhibited. The experimental results show that this approach gives good performance in predicting the values from the stock market indices. PMID:27293423
Detection of the electrocardiogram P-wave using wavelet analysis
Energy Technology Data Exchange (ETDEWEB)
Anant, K.S.; Rodrigue, G.H. [California Univ., Davis, CA (United States). Dept. of Applied Science]|[Lawrence Livermore National Lab., CA (United States); Dowla, F.U. [Lawrence Livermore National Lab., CA (United States)
1994-01-01
Since wavelet analysis is an effective tool for analyzing transient signals, we studied its feature extraction and representation properties for events in electrocardiogram (EKG) data. Significant features of the EKG include the P-wave, the QRS complex, and the T-wave. For this paper the feature that we chose to focus on was the P-wave. Wavelet analysis was used as a pre-processor for a backpropagation neural network with conjugate gradient learning. The inputs to the neural network were the wavelet transforms of EKGs at a particular scale. The desired output was the location of the P-wave. The results were compared to results obtained without using the wavelet transform as a pre-processor.
Institute of Scientific and Technical Information of China (English)
牛东晓; 刘达; 邢棉
2008-01-01
A combined model based on principal components analysis (PCA) and generalized regression neural network (GRNN) was adopted to forecast electricity price in day-ahead electricity market. PCA was applied to mine the main influence on day-ahead price, avoiding the strong correlation between the input factors that might influence electricity price, such as the load of the forecasting hour, other history loads and prices, weather and temperature; then GRNN was employed to forecast electricity price according to the main information extracted by PCA. To prove the efficiency of the combined model, a case from PJM (Pennsylvania-New Jersey-Maryland) day-ahead electricity market was evaluated. Compared to back-propagation (BP) neural network and standard GRNN, the combined method reduces the mean absolute percentage error about 3%.
Directory of Open Access Journals (Sweden)
Reza Rastiboroujeni
2015-06-01
Full Text Available In this paper, we propose a computer aided diagnosis (CAD system based on hierarchical convolutional neural networks (HCNNs to discriminate between malignant and benign tumors in breast DCE-MRIs. A HCNN is a hierarchical neural network that operates on two-dimensional images. A HCNN integrates feature extraction and classification processes into one single and fully adaptive structure. It can extract two-dimensional key features automatically, and it is relatively tolerant to geometric and local distortions in input images. We evaluate CNN implementation learning and testing processes based on gradient descent (GD and resilient back-propagation (RPROP approaches. We show that, proposed HCNN with RPROP learning approach provide an effective and robust neural structure to design a CAD base system for breast MRI, and has potential as a mechanism for the evaluation of different types of abnormalities in medical images.
Liu, Da; Xu, Ming; Niu, Dongxiao; Wang, Shoukai; Liang, Sai
2016-01-01
Traditional forecasting models fit a function approximation from dependent invariables to independent variables. However, they usually get into trouble when date are presented in various formats, such as text, voice and image. This study proposes a novel image-encoded forecasting method that input and output binary digital two-dimensional (2D) images are transformed from decimal data. Omitting any data analysis or cleansing steps for simplicity, all raw variables were selected and converted to binary digital images as the input of a deep learning model, convolutional neural network (CNN). Using shared weights, pooling and multiple-layer back-propagation techniques, the CNN was adopted to locate the nexus among variations in local binary digital images. Due to the computing capability that was originally developed for binary digital bitmap manipulation, this model has significant potential for forecasting with vast volume of data. The model was validated by a power loads predicting dataset from the Global Energy Forecasting Competition 2012.
High-Performance Neural Networks for Visual Object Classification
Cireşan, Dan C; Masci, Jonathan; Gambardella, Luca M; Schmidhuber, Jürgen
2011-01-01
We present a fast, fully parameterizable GPU implementation of Convolutional Neural Network variants. Our feature extractors are neither carefully designed nor pre-wired, but rather learned in a supervised way. Our deep hierarchical architectures achieve the best published results on benchmarks for object classification (NORB, CIFAR10) and handwritten digit recognition (MNIST), with error rates of 2.53%, 19.51%, 0.35%, respectively. Deep nets trained by simple back-propagation perform better than more shallow ones. Learning is surprisingly rapid. NORB is completely trained within five epochs. Test error rates on MNIST drop to 2.42%, 0.97% and 0.48% after 1, 3 and 17 epochs, respectively.
A method for predicting in-cylinder compound combustion emissions
Institute of Scientific and Technical Information of China (English)
苏石川; 严兆大; 元广杰; 曹韵华; 周重光
2002-01-01
This paper presents a method using a large steady-state engine operation data matrix to provide necessary information for successfully training a predictive network, while at the same time eliminating errors produced by the dispersive effects of the emissions measurement system. The steady-state training conditions of compound fuel allow for the correlation of time-averaged in-cylinder combustion variables to the engine-out NOx and HC emissions. The error back-propagation neural network (EBP) is then capable of learning the relationships between these variables and the measured gaseous emissions, and then interpolating between steady-state points in the matrix. This method for NOx and HC has been proved highly successful.
Identification of Jiangxi wines by three-dimensional fluorescence fingerprints
Wan, Yiqun; Pan, Fengqin; Shen, Mingyue
2012-10-01
A new assay of identifying wines was developed based on fingerprints of three-dimensional fluorescence spectra, and 30 samples from different manufacturers were analyzed. The techniques of principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used to differentiate and evaluate the character parameters of wines' three-dimensional fluorescence spectra. At the same time, the back-propagation network (BPN) was applied to predict the attribution of unknown samples. The results of PCA and HCA showed that there was definite different information among the wine samples from different manufacturers. It was promising that the method could be applied to distinguish wine samples produced by different manufacturers. The proposed method could provide the criterion for the quality control of wines.
Implementation of a Vision System for a Landmine Detecting Robot Using Artificial Neural Network
Directory of Open Access Journals (Sweden)
Roger Achkar
2012-09-01
Full Text Available Landmines, specifically anti-tank mines, cluster bombs, and unexploded ordnance form a serious problem in many countries. Several landmine sweeping techniques are used for minesweeping. This paper presents the design and the implementation of the vision system of an autonomous robot for landmines localization. The proposed work develops state-of-the-art techniques in digital image processing for pre-processing captured images of the contaminated area. After enhancement, Artificial Neural Network (ANN is used in order to identify, recognize and classify the landmines’ make and model. The Back-Propagation algorithm is used for training the network. The proposed work proved to be able to identify and classify different types of landmines under various conditions (rotated landmine, partially covered landmine with a success rate of up to 90%.
Implementation of a Vision System for a Landmine Detecting Robot Using Artificial Neural Network
Directory of Open Access Journals (Sweden)
Roger Achkar
2012-10-01
Full Text Available Landmines, specifically anti-tank mines, cluster bombs, and unexploded ordnance form a serious problemin many countries. Several landmine sweeping techniques are used for minesweeping. This paper presentsthe design and the implementation of the vision system of an autonomous robot for landmines localization.The proposed work develops state-of-the-art techniques in digital image processing for pre-processingcaptured images of the contaminated area. After enhancement, Artificial Neural Network (ANN is used inorder to identify, recognize and classify the landmines’ make and model. The Back-Propagation algorithmis used for training the network. The proposed work proved to be able to identify and classify different typesof landmines under various conditions (rotated landmine, partially covered landmine with a success rateof up to 90%.
Fatigue design of a cellular phone folder using regression model-based multi-objective optimization
Kim, Young Gyun; Lee, Jongsoo
2016-08-01
In a folding cellular phone, the folding device is repeatedly opened and closed by the user, which eventually results in fatigue damage, particularly to the front of the folder. Hence, it is important to improve the safety and endurance of the folder while also reducing its weight. This article presents an optimal design for the folder front that maximizes its fatigue endurance while minimizing its thickness. Design data for analysis and optimization were obtained experimentally using a test jig. Multi-objective optimization was carried out using a nonlinear regression model. Three regression methods were employed: back-propagation neural networks, logistic regression and support vector machines. The AdaBoost ensemble technique was also used to improve the approximation. Two-objective Pareto-optimal solutions were identified using the non-dominated sorting genetic algorithm (NSGA-II). Finally, a numerically optimized solution was validated against experimental product data, in terms of both fatigue endurance and thickness index.
Cutting force signal pattern recognition using hybrid neural network in end milling
Institute of Scientific and Technical Information of China (English)
Song-Tae SEONG; Ko-Tae JO; Young-Moon LEE
2009-01-01
Under certain cutting conditions in end milling, the signs of cutting forces change from positive to negative during a revolution of the tool. The change of force direction causes the cutting dynamics to be unstable which results in chatter vibration. Therefore, cutting force signal monitoring and classification are needed to determine the optimal cutting conditions and to improve the efficiency of cut. Artificial neural networks are powerful tools for solving highly complex and nonlinear problems. It can be divided into supervised and unsupervised learning machines based on the availability of a teacher. Hybrid neural network was introduced with both of functions of multilayer perceptron (MLP) trained with the back-propagation algorithm for monitoring and detecting abnormal state, and self organizing feature map (SOFM) for treating huge datum such as image processing and pattern recognition, for predicting and classifying cutting force signal patterns simultaneously. The validity of the results is verified with cutting experiments and simulation tests.
Bidding strategy based on artificial intelligence for a competitive electric market
International Nuclear Information System (INIS)
A bidding strategy using a fuzzy-c-mean (FCM) algorithm and the artificial neural network (ANN) was developed for competitive electric markets. The nodal price information was assumed to be released into the market. The FCM was used, first, to classify the daily load pattern into peak, medium-peak and off-peak levels and, secondly, to classify the competitive generation companies (gencos) into less-menacing, possible-menacing and menacing gencos. The back-propagation ANN was used for determining the bidding price for a genco. The FCM results aided in lessening the training data and reducing the ANN input nodes. The IEEE 30-busbar system was used for illustrating the applicability of the proposed method. (Author)
Condition Parameter Modeling for Anomaly Detection in Wind Turbines
Directory of Open Access Journals (Sweden)
Yonglong Yan
2014-05-01
Full Text Available Data collected from the supervisory control and data acquisition (SCADA system, used widely in wind farms to obtain operational and condition information about wind turbines (WTs, is of important significance for anomaly detection in wind turbines. The paper presents a novel model for wind turbine anomaly detection mainly based on SCADA data and a back-propagation neural network (BPNN for automatic selection of the condition parameters. The SCADA data sets are determined through analysis of the cumulative probability distribution of wind speed and the relationship between output power and wind speed. The automatic BPNN-based parameter selection is for reduction of redundant parameters for anomaly detection in wind turbines. Through investigation of cases of WT faults, the validity of the automatic parameter selection-based model for WT anomaly detection is verified.
Institute of Scientific and Technical Information of China (English)
张长江; 付梦印; 金梅
2003-01-01
A kind of second-order algorithm--recursive approximate Newton algorithm was given by Karayiannis. The algorithm was simplified when it was formulated. Especially, the simplification to matrix Hessian was very reluctant, which led to the loss of valuable information and affected performance of the algorithm to certain extent. For multi-layer feed-forward neural networks, the second-order back-propagation recursive algorithm based generalized cost criteria was proposed. It is proved that it is equivalent to Newton recursive algorithm and has a second-order convergent rate. The performance and application prospect are analyzed. Lots of simulation experiments indicate that the calculation of the new algorithm is almost equivalent to the recursive least square multiple algorithm. The algorithm and selection of networks parameters are significant and the performance is more excellent than BP algorithm and the second-order learning algorithm that was given by Karayiannis.
Energy Technology Data Exchange (ETDEWEB)
Baptista Filho, Benedito Dias [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)
2002-07-01
Artificial Neural Networks (ANN) can be defined as 'parallel systems composed of layers of simple processing units highly interconnected and inspired in the human brain.' ANN can be used to solve problems of difficult modeling, when the data are fail or incomplete and in problems of control of high complexity. Several problems related with network training and generalization are to be solved to a safe utilization in nuclear plants systems. This work, divided into two parts, intends to begin a discussion on three ANN concepts: feed-forward neural networks, Self-Organized Maps (SOM), and multi-synaptic neural networks. The discussion will cover control applications, approximation of functions and pattern recognition. A few set of samples are commented. This first part focus on feed-forward neural networks with the back-propagation algorithm. (author)
Test system for defect detection in cementitious material with artificial neural network
Directory of Open Access Journals (Sweden)
Saowanee Saechai
2013-04-01
Full Text Available This paper introduces a newly developed test system for defect detection, classification of number of defects andidentification of defect materials in cement-based products. With the system, the pattern of ultrasonic waves for each case ofspecimen can be obtained from direct and indirect measurements. The machine learning algorithm called artificial neuralnetwork classifier with back-propagation model is employed for classification and verification of the wave patterns obtainedfrom different specimens. By applying the system, the presence or absence of a defect in mortar can be identified. Moreover,the system is applied to identify the number and materials of defects inside the mortar. The methodology is explained and theclassification results are discussed. The effectiveness of the developed test system is evaluated. Comparison of the classification results between different input features with different number of training sets is demonstrated. The results show that thistechnique based on pattern recognition has a potential for practical inspection of concrete structures.
Directory of Open Access Journals (Sweden)
Ovidiu TURCOANE
2014-01-01
Full Text Available This paper introduces some technologies that are fit for an architecture of digital democracy or E-democracy. It aims at proposing an architectural style emerged from tested and validated approaches, without relying on some radical innovation. Firstly, we propose an input-system-output model of E-democracy and knowledge society. This model is subject to permanent optimization following a trial and error paradigm similar to the artificial intelligence method of backpropagation. Secondly, we describe and advocate for some technologies and methodologies such as Cloud, Service-Oriented Architecture, Agile Development, Web-Oriented Architecture, Semantic Web and Linked Data. Finally, we assemble all these technologies and methodologies in an architectural style that follows several key concepts such as flexibility and adapability, citizen-oriented software development or abstract notions like participation, deliberation and inclusion.
Intelligent Video Traffic Smooth Mechanism for Multimedia Communication
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
A principal challenge in supporting real-time video services over ATM is the need to provide synchronous play-out in the face of stochastic end-to-end network delays. In this paper, an intelligent traffic smooth mechanism ( ITSM ) is proposed to meet the continuity requirement which is composed of a back-propagation neural network ( BPNN ) traffic predictor, a play-out buffer, and a fuzzy neural network ( FNN ) based play-out rate determinator. The BPNN traffic predictor online predicts the mean packet rate of the traffic in the future interval ( FI ) and the FNN is designed to adaptively determinate the play-out time according to the number of packets in the buffer and the traffic character predicted. Simulation results show that compared to the window mechanism, ITSM achieves high continuity with accepted delay. Furthermore, ITSM can be adaptively modified to meet the QoS of different kinds of services by FNN parameter training.
Artificial network prediction on degradable properties of coal-filled films
Institute of Scientific and Technical Information of China (English)
YANG Zhi-yuan; ZHOU An-ning; QU Jian-lin
2005-01-01
Utilized degradable data of coal-filled films from the accelerated UV chamber ageing degradation experiments, and on the basis of control factors' analysis, presented a predicting model on degradable properties of this film in photo-degradation according to back-propagation artificial neural network (BP ANN). 4 controlling factors in films degradation, including temperature, the time of UV irradiation, the concentration and the type of coals were used as input parameters in the ANN model. While the degradable properties after film degradation, including the mechanical properties and carbonyl index, were used as output parameters. It was carried out by the neural network toolbox of Matlab 6.5 software and Visual Basic 6.0. Discussed partition of sample data and model's parameters,and then selected the best configuration of ANN network. The accurate scope of predicting results was analyzed. This model has a high precision in predicting on properties of the coal-filled film degradation.
The impact of arithmetic representation on implementing MLP-BP on FPGAs: a study.
Savich, Antony W; Moussa, Medhat; Areibi, Shawki
2007-01-01
In this paper, arithmetic representations for implementing multilayer perceptrons trained using the error backpropagation algorithm (MLP-BP) neural networks on field-programmable gate arrays (FPGAs) are examined in detail. Both floating-point (FLP) and fixed-point (FXP) formats are studied and the effect of precision of representation and FPGA area requirements are considered. A generic very high-speed integrated circuit hardware description language (VHDL) program was developed to help experiment with a large number of formats and designs. The results show that an MLP-BP network uses less clock cycles and consumes less real estate when compiled in an FXP format, compared with a larger and slower functioning compilation in an FLP format with similar data representation width, in bits, or a similar precision and range. PMID:17278475
Spatial Data Mining Toolbox for Mapping Suitability of Landfill Sites Using Neural Networks
Abujayyab, S. K. M.; Ahamad, M. S. S.; Yahya, A. S.; Aziz, H. A.
2016-09-01
Mapping the suitability of landfill sites is a complex field and is involved with multidiscipline. The purpose of this research is to create an ArcGIS spatial data mining toolbox for mapping the suitability of landfill sites at a regional scale using neural networks. The toolbox is constructed from six sub-tools to prepare, train, and process data. The employment of the toolbox is straightforward. The multilayer perceptron (MLP) neural networks structure with a backpropagation learning algorithm is used. The dataset is mined from the north states in Malaysia. A total of 14 criteria are utilized to build the training dataset. The toolbox provides a platform for decision makers to implement neural networks for mapping the suitability of landfill sites in the ArcGIS environment. The result shows the ability of the toolbox to produce suitability maps for landfill sites.
Hybrid intelligent control of PMSG wind generation system using pitch angle control with RBFN
Energy Technology Data Exchange (ETDEWEB)
Lin, Whei-Min; Hong, Chih-Ming [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 804 (China); Ou, Ting-Chia; Chiu, Tai-Ming [Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan 325 (China)
2011-02-15
This paper presents the design of a fuzzy sliding mode loss-minimization control for the speed of a permanent magnet synchronous generator (PMSG) and a high-performance on-line training radial basis function network (RBFN) for the turbine pitch angle control. The back-propagation learning algorithm is used to regulate the RBFN controller. The PMSG speed uses maximum power point tracking below the rated speed, which corresponds to low and high wind speed, and the maximum energy can be captured from the wind. A sliding mode controller with an integral-operation switching surface is designed, in which a fuzzy inference mechanism is utilized to estimate the upper bound of uncertainties. Furthermore, the fuzzy inference mechanism with center adaptation is investigated to estimate the optimal bound of uncertainties. (author)
A new Multiple ANFIS model for classification of hemiplegic gait.
Yardimci, A; Asilkan, O
2014-01-01
Neuro-fuzzy system is a combination of neural network and fuzzy system in such a way that neural network learning algorithms, is used to determine parameters of the fuzzy system. This paper describes the application of multiple adaptive neuro-fuzzy inference system (MANFIS) model which has hybrid learning algorithm for classification of hemiplegic gait acceleration (HGA) signals. Decision making was performed in two stages: feature extraction using the wavelet transforms (WT) and the ANFIS trained with the backpropagation gradient descent method in combination with the least squares method. The performance of the ANFIS model was evaluated in terms of training performance and classification accuracies and the results confirmed that the proposed ANFIS model has potential in classifying the HGA signals. PMID:25160151
Computer control of pH and DO in a laboratory fermenter using a neural network technique.
Mészáros, A; Andrásik, A; Mizsey, P; Fonyó, Z; Illeová, V
2004-10-01
In this contribution, the advantages of the artificial neural network approach to the identification and control of a laboratory-scale biochemical reactor are demonstrated. It is very important to be able to maintain the levels of two process variables, pH and dissolved oxygen (DO) concentration, over the course of fermentation in biosystems control. A PC-supported, fully automated, multi-task control system has been designed and built by the authors. Forward and inverse neural process models are used to identify and control both the pH and the DO concentration in a fermenter containing a Saccharomyces cerevisiae based-culture. The models are trained off-line, using a modified back-propagation algorithm based on conjugate gradients. The inverse neural controller is augmented by a new adaptive term that results in a system with robust performance. Experimental results have confirmed that the regulatory and tracking performances of the control system proposed are good. PMID:15300481
Energy Technology Data Exchange (ETDEWEB)
Zhu, H.; Chang, W.; Zhang, B. [China University of Mining and Technology, Beijing (China)
2007-05-15
Back-propagation (BP) neural network analysis based on the difference- source gas emission quantity prediction theory was applied to predict the quantity of gas emitted from the coal seam being mined, the neighbouring coal seam and the goaf of the working face. Three separate gas emission prediction neural network models were established for these. The prediction model of the coal seam being mined was made up of three layers and nine parameters; that of the neighbouring coal seam was made up of three layers and eight parameters; and that of the goaf of three layers and four parameters. The difference-source gas emission prediction model can greatly improve prediction accuracy. BP neural network analysis using Matlab software was applied in a coal mine. 10 refs., 2 figs., 3 tabs.
Shanmugaprakash, M; Sivakumar, V
2013-11-01
In the present work, the evaluation capacities of two optimization methodologies such as RSM and ANN were employed and compared for predication of Cr(VI) uptake rate using defatted pongamia oil cake (DPOC) in both batch and column mode. The influence of operating parameters was investigated through a central composite design (CCD) of RSM using Design Expert 8.0.7.1 software. The same data was fed as input in ANN to obtain a trained the multilayer feed-forward networks back-propagation algorithm using MATLAB. The performance of the developed ANN models were compared with RSM mathematical models for Cr(VI) uptake rate in terms of the coefficient of determination (R(2)), root mean square error (RMSE) and absolute average deviation (AAD). The estimated values confirm that ANN predominates RSM representing the superiority of a trained ANN models over RSM models in order to capture the non-linear behavior of the given system. PMID:24080294
Video Traffic Prediction Using Neural Networks
Directory of Open Access Journals (Sweden)
Miloš Oravec
2008-10-01
Full Text Available In this paper, we consider video stream prediction for application in services likevideo-on-demand, videoconferencing, video broadcasting, etc. The aim is to predict thevideo stream for an efficient bandwidth allocation of the video signal. Efficient predictionof traffic generated by multimedia sources is an important part of traffic and congestioncontrol procedures at the network edges. As a tool for the prediction, we use neuralnetworks – multilayer perceptron (MLP, radial basis function networks (RBF networksand backpropagation through time (BPTT neural networks. At first, we briefly introducetheoretical background of neural networks, the prediction methods and the differencebetween them. We propose also video time-series processing using moving averages.Simulation results for each type of neural network together with final comparisons arepresented. For comparison purposes, also conventional (non-neural prediction isincluded. The purpose of our work is to construct suitable neural networks for variable bitrate video prediction and evaluate them. We use video traces from [1].
Learning without local minima in radial basis function networks.
Bianchini, M; Frasconi, P; Gori, M
1995-01-01
Learning from examples plays a central role in artificial neural networks. The success of many learning schemes is not guaranteed, however, since algorithms like backpropagation may get stuck in local minima, thus providing suboptimal solutions. For feedforward networks, optimal learning can be achieved provided that certain conditions on the network and the learning environment are met. This principle is investigated for the case of networks using radial basis functions (RBF). It is assumed that the patterns of the learning environment are separable by hyperspheres. In that case, we prove that the attached cost function is local minima free with respect to all the weights. This provides us with some theoretical foundations for a massive application of RBF in pattern recognition.
Electricity Demand and Energy Consumption Management System
Sarmiento, Juan Ojeda
2008-01-01
This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...
Minimal perceptrons for memorizing complex patterns
Pastor, Marissa; Song, Juyong; Hoang, Danh-Tai; Jo, Junghyo
2016-11-01
Feedforward neural networks have been investigated to understand learning and memory, as well as applied to numerous practical problems in pattern classification. It is a rule of thumb that more complex tasks require larger networks. However, the design of optimal network architectures for specific tasks is still an unsolved fundamental problem. In this study, we consider three-layered neural networks for memorizing binary patterns. We developed a new complexity measure of binary patterns, and estimated the minimal network size for memorizing them as a function of their complexity. We formulated the minimal network size for regular, random, and complex patterns. In particular, the minimal size for complex patterns, which are neither ordered nor disordered, was predicted by measuring their Hamming distances from known ordered patterns. Our predictions agree with simulations based on the back-propagation algorithm.
On-Line Partial Discharge Monitoring and Diagnostic System for Power Transformer
Institute of Scientific and Technical Information of China (English)
LIN Du; JIANG Lei; LI Fuqi; ZHU Deheng; TAN Kexiong; WU Chengqi; JIN Xianhe; WANG Changchang; CHENG T. C.
2005-01-01
This paper introduces a computerized on-line partial discharge (PD) monitoring and diagnostic system for transformers. The system, which is already in use in a power station, uses wide-band active transducers and a data acquisition unit with modularized and exchangeable components. The system software is a power equipment monitoring and diagnostic system, which is based on the component object model, and was developed for monitoring multiple parameters in multiple power supply systems. The statistical characteristics of PDs in power transformers were studied using 7 experimental models for simulating PDs in transformers and 3 models for simulating interfering discharges in air. The discharge features were analyzed using a 3-D pattern chart with a three-layer back-propagation artificial neural network used to recognize the patterns. The results show that PDs in air and oil can be distinguished. The model can be used for interference rejection on-line monitoring of partial discharge in transformers.
Sheikhan, Mansour; Abbasnezhad Arabi, Mahdi; Gharavian, Davood
2015-10-01
Artificial neural networks are efficient models in pattern recognition applications, but their performance is dependent on employing suitable structure and connection weights. This study used a hybrid method for obtaining the optimal weight set and architecture of a recurrent neural emotion classifier based on gravitational search algorithm (GSA) and its binary version (BGSA), respectively. By considering the features of speech signal that were related to prosody, voice quality, and spectrum, a rich feature set was constructed. To select more efficient features, a fast feature selection method was employed. The performance of the proposed hybrid GSA-BGSA method was compared with similar hybrid methods based on particle swarm optimisation (PSO) algorithm and its binary version, PSO and discrete firefly algorithm, and hybrid of error back-propagation and genetic algorithm that were used for optimisation. Experimental tests on Berlin emotional database demonstrated the superior performance of the proposed method using a lighter network structure.
A Novel Machine Vision System for the Inspection of Micro-Spray Nozzle.
Huang, Kuo-Yi; Ye, Yu-Ting
2015-01-01
In this study, we present an application of neural network and image processing techniques for detecting the defects of an internal micro-spray nozzle. The defect regions were segmented by Canny edge detection, a randomized algorithm for detecting circles and a circle inspection (CI) algorithm. The gray level co-occurrence matrix (GLCM) was further used to evaluate the texture features of the segmented region. These texture features (contrast, entropy, energy), color features (mean and variance of gray level) and geometric features (distance variance, mean diameter and diameter ratio) were used in the classification procedures. A back-propagation neural network classifier was employed to detect the defects of micro-spray nozzles. The methodology presented herein effectively works for detecting micro-spray nozzle defects to an accuracy of 90.71%. PMID:26131678
Extreme Learning Machine for land cover classification
Pal, Mahesh
2008-01-01
This paper explores the potential of extreme learning machine based supervised classification algorithm for land cover classification. In comparison to a backpropagation neural network, which requires setting of several user-defined parameters and may produce local minima, extreme learning machine require setting of one parameter and produce a unique solution. ETM+ multispectral data set (England) was used to judge the suitability of extreme learning machine for remote sensing classifications. A back propagation neural network was used to compare its performance in term of classification accuracy and computational cost. Results suggest that the extreme learning machine perform equally well to back propagation neural network in term of classification accuracy with this data set. The computational cost using extreme learning machine is very small in comparison to back propagation neural network.
Pattern recognition of clouds and ice in polar regions
Welch, R. M.; Sengupta, S. K.; Sundar, C. A.; Kuo, K. S.; Carsey, F. D.
1990-01-01
The study is based on AVHRR imagery and results from Landsat high-spatial-resolution scenes. Among the textual features investigated are the gray level difference vector (GLDV), and sum and difference histogram (SADH) approaches as well as gray level run length, spatial-coherence, and spectral-histogram measures. The traditional stepwise discriminant analysis and neural-network analysis are used for the identification of 20 Arctic surface and cloud classes. A principal-component analysis and hybrid architecture employing a modularized competitive learning layer are utilized. It is pointed out that the cloud-classification accuracy comparable to that of back-propagation could be achieved with a training time two orders of magnitude faster.
Directory of Open Access Journals (Sweden)
Halil Ibrahim Kurt
2015-05-01
Full Text Available In this study, the feed-forward (FF neural networks (NNs with back-propagation (BP learning algorithm is used to estimate the ultimate tensile strength of unrefined Al-Zn-Mg-Cu alloys and refined the alloys by Al-5Ti-1B and Al-5Zr master alloys. The obtained mathematical formula is presented in great detail. The designed NN model shows good agreement with test results and can be used to predict the ultimate tensile strength of the alloys. Additionally, the effects of scandium (Sc and carbon (C rates are investigated by using the proposed equation. It was observed that the tensile properties of Al-Zn-Mg-Cu alloys improved with the addition of 0.5 Sc and 0.01 C wt.%.
Modeling personalized head-related impulse response using support vector regression
Institute of Scientific and Technical Information of China (English)
HUANG Qing-hua; FANG Yong
2009-01-01
A new customization approach based on support vector regression (SVR) is proposed to obtain individual headrelated impulse response (HRIR) without complex measurement and special equipment. Principal component analysis (PCA) is first applied to obtain a few principal components and corresponding weight vectors correlated with individual anthropometric parameters. Then the weight vectors act as output of the nonlinear regression model. Some measured anthropometric parameters are selected as input of the model according to the correlation coefficients between the parameters and the weight vectors. After the regression model is learned from the training data, the individual HRIR can be predicted based on the measured anthropometric parameters. Compared with a back-propagation neural network (BPNN) for nonlinear regression,better generalization and prediction performance for small training samples can be obtained using the proposed PCA-SVR algorithm.
Embedded intelligent adaptive PI controller for an electromechanical system.
El-Nagar, Ahmad M
2016-09-01
In this study, an intelligent adaptive controller approach using the interval type-2 fuzzy neural network (IT2FNN) is presented. The proposed controller consists of a lower level proportional - integral (PI) controller, which is the main controller and an upper level IT2FNN which tuning on-line the parameters of a PI controller. The proposed adaptive PI controller based on IT2FNN (API-IT2FNN) is implemented practically using the Arduino DUE kit for controlling the speed of a nonlinear DC motor-generator system. The parameters of the IT2FNN are tuned on-line using back-propagation algorithm. The Lyapunov theorem is used to derive the stability and convergence of the IT2FNN. The obtained experimental results, which are compared with other controllers, demonstrate that the proposed API-IT2FNN is able to improve the system response over a wide range of system uncertainties. PMID:27342993
Directory of Open Access Journals (Sweden)
Einar Sørheim
1990-10-01
Full Text Available A neural network architecture called ART2/BP is proposed. Thc goal has been to construct an artificial neural network that learns incrementally an unknown mapping, and is motivated by the instability found in back propagation (BP networks: after first learning pattern A and then pattern B, a BP network often has completely 'forgotten' pattern A. A network using both supervised and unsupervised training is proposed, consisting of a combination of ART2 and BP. ART2 is used to build and focus a supervised backpropagation network consisting of many small subnetworks each specialized on a particular domain of the input space. The ART2/BP network has the advantage of being able to dynamically expand itself in response to input patterns containing new information. Simulation results show that the ART2/BP network outperforms a classical maximum likelihood method for the estimation of a discrete dynamic and nonlinear transfer function.
Directory of Open Access Journals (Sweden)
Héliton Pandorfi
2016-06-01
Full Text Available ABSTRACT This study aimed to investigate the applicability of artificial neural networks (ANNs in the prediction of evapotranspiration of sweet pepper cultivated in a greenhouse. The used data encompass the second crop cycle, from September 2013 to February 2014, constituting 135 days of daily meteorological data, referring to the following variables: temperature and relative air humidity, wind speed and solar radiation (input variables, as well as evapotranspiration (output variable, determined using data obtained by load-cell weighing lysimeter. The recorded data were divided into three sets for training, testing and validation. The ANN learning model recognized the evapotranspiration patterns with acceptable accuracy, with mean square error of 0.005, in comparison to the data recorded in the lysimeter, with coefficient of determination of 0.87, demonstrating the best approximation for the 4-21-1 network architecture, with multilayers, error back-propagation learning algorithm and learning rate of 0.01.
Towards Trainable Media: Using Waves for Neural Network-Style Training
Hermans, Michiel
2015-01-01
In this paper we study the concept of using the interaction between waves and a trainable medium in order to construct a matrix-vector multiplier. In particular we study such a device in the context of the backpropagation algorithm, which is commonly used for training neural networks. Here, the weights of the connections between neurons are trained by multiplying a `forward' signal with a backwards propagating `error' signal. We show that this concept can be extended to trainable media, where the gradient for the local wave number is given by multiplying signal waves and error waves. We provide a numerical example of such a system with waves traveling freely in a trainable medium, and we discuss a potential way to build such a device in an integrated photonics chip.
Yeung, L C; Shouval, H Z; Yeung, Luk C.; Castellani, Gastone C.; Shouval, Harel Z.
2004-01-01
The influx of calcium ions into the dendritic spines through the N-metyl-D-aspartate (NMDA) channels is believed to be the primary trigger for various forms of synaptic plasticity. In this paper, the authors calculate analytically the mean values of the calcium transients elicited by a spiking neuron undergoing a simple model of ionic currents and back-propagating action potentials. The relative variability of these transients, due to the stochastic nature of synaptic transmission, is further considered using a simple Markov model of NMDA receptos. One finds that both the mean value and the variability depend on the timing between pre- and postsynaptic action-potentials. These results could have implications on the expected form of synaptic-plasticity curve and can form a basis for a unified theory of spike time-dependent, and rate based plasticity.
Directory of Open Access Journals (Sweden)
Padmanaban Sanjeevikumar
2008-01-01
Full Text Available This paper presents an artificial neural network (ANN based approach to tune the parameters of the cascaded d-q axis controller for an AC-DC-AC converter without dc link capacitor. The proposed converter uses the cascaded d-q axis controller on the rectifier side and space vector pulse width modulation on the inverter side. The feed-forward ANN with the error back-propagation training is employed to tune the parameters of the cascaded d-q axis controller. The converter topology provides simple commutation procedure with reduced number of switches and has additional advantages such as good voltage transfer ratio, four quadrant operation, unity power factor, no DC link capacitor and less THD in both the line and load sides. Simulation results closely match with theoretical analysis.
RGANN: An Efficient Algorithm to Extract Rules from ANNs
Kamruzzaman, S M
2010-01-01
This paper describes an efficient rule generation algorithm, called rule generation from artificial neural networks (RGANN) to generate symbolic rules from ANNs. Classification rules are sought in many areas from automatic knowledge acquisition to data mining and ANN rule extraction. This is because classification rules possess some attractive features. They are explicit, understandable and verifiable by domain experts, and can be modified, extended and passed on as modular knowledge. A standard three-layer feedforward ANN is the basis of the algorithm. A four-phase training algorithm is proposed for backpropagation learning. Comparing them to the symbolic rules generated by other methods supports explicitness of the generated rules. Generated rules are comparable with other methods in terms of number of rules, average number of conditions for a rule, and predictive accuracy. Extensive experimental studies on several benchmarks classification problems, including breast cancer, wine, season, golf-playing, and ...
Learning in feed-forward neural networks by improving the performance
Gordon, Mirta B.; Pereto, Pierre; Rodriguez-Girones, Miguel
1992-06-01
Statistical mechanics is used to derive a new learning rule for a feed-forward neural network with one hidden layer. Generalization to multilayer neural networks is straightforward, and proceeds in the same way as backpropagation. We consider a neural network as a physical system, that can be in different states. There are as many possible states as patterns in the learning set. The energy of each level is proportional to the stability of the corresponding pattern. The statistical mechanics free energy of the system, which we call performance, is a maximum for the synaptic strengths that stabilize all the patterns. We propose a learning algorithm that looks for synaptic strengths that maximize the network's performance. Patterns with lower stabilities are more effective in driving the learning process because they have a higher statistical weight. Taking different temperatures for different layers improves the results.
Directory of Open Access Journals (Sweden)
Davide Marocco
2010-05-01
Full Text Available This paper presents a cognitive robotics model for the study of the embodied representation of action words. The present research will present how a iCub humanoid robot can learn the meaning of action words (i.e. words that represent dynamical events that happen in time by physically acting on the environment and linking the effects of its own actions with the behaviour observed on the objects before and after the action. The control system of the robot is an artificial neural network trained to manipulate an object through a Back-Propagation Through Time algorithm. We will show that in the presented model the grounding of action words relies directly to the way in which an agent interacts with the environment and manipulates it.
Application of BP neural networks in non-linearity correction of optical tweezers
Institute of Scientific and Technical Information of China (English)
Ziqiang WANG; Yinmei LI; Liren LOU; Henghua WEI; Zhong WANG
2008-01-01
The back-propagation (BP) neural network is proposed to correct nonlinearity and optimize the force measurement and calibration of an optical tweezer sys-tem. Considering the low convergence rate of the BP algo-rithm, the Levenberg-Marquardt (LM) algorithm is used to improve the BP network. The proposed method is experimentally studied for force calibration in a typical optical tweezer system using hydromechanics. The result shows that with the nonlinear correction using BP net-works, the range of force measurement of an optical tweezer system is enlarged by 30% and the precision is also improved compared with the polynomial fitting method. It is demonstrated that nonlinear correction by the neural network method effectively improves the per-formance of optical tweezers without adding or changing the measuring system.
Sarkar, Sankho Turjo; Bhondekar, Amol P; Macaš, Martin; Kumar, Ritesh; Kaur, Rishemjit; Sharma, Anupma; Gulati, Ashu; Kumar, Amod
2015-11-01
The paper presents a novel encoding scheme for neuronal code generation for odour recognition using an electronic nose (EN). This scheme is based on channel encoding using multiple Gaussian receptive fields superimposed over the temporal EN responses. The encoded data is further applied to a spiking neural network (SNN) for pattern classification. Two forms of SNN, a back-propagation based SpikeProp and a dynamic evolving SNN are used to learn the encoded responses. The effects of information encoding on the performance of SNNs have been investigated. Statistical tests have been performed to determine the contribution of the SNN and the encoding scheme to overall odour discrimination. The approach has been implemented in odour classification of orthodox black tea (Kangra-Himachal Pradesh Region) thereby demonstrating a biomimetic approach for EN data analysis. PMID:26356597
Application of feedback connection artificial neural network to seismic data filtering
Djarfour, Noureddine; Baddari, Kamel; Mihoubi, Abdelhafid; Ferahtia, Jalal; 10.1016/j.crte.2008.03.003
2008-01-01
The Elman artificial neural network (ANN) (feedback connection) was used for seismic data filtering. The recurrent connection that characterizes this network offers the advantage of storing values from the previous time step to be used in the current time step. The proposed structure has the advantage of training simplicity by a back-propagation algorithm (steepest descent). Several trials were addressed on synthetic (with 10% and 50% of random and Gaussian noise) and real seismic data using respectively 10 to 30 neurons and a minimum of 60 neurons in the hidden layer. Both an iteration number up to 4000 and arrest criteria were used to obtain satisfactory performances. Application of such networks on real data shows that the filtered seismic section was efficient. Adequate cross-validation test is done to ensure the performance of network on new data sets.
Prediction of the plasma distribution using an artificial neural network
Institute of Scientific and Technical Information of China (English)
Li Wei; Chen JunFang; Wang Teng
2009-01-01
In this work, an artificial neural network (ANN) model is established using a back-propagation training algorithm in order to predict the plasma spatial distribution in an electron cyclotron resonance (ECR) - plasma-enhanced chemical vapor deposition (PECVD) plasma system. In our model, there are three layers: the input layer, the hidden layer and the output layer. The input layer is composed of five neurons: the radial position, the axial position, the gas pressure,the microwave power and the magnet coil current. The output layer is our target output neuron: the plasma density.The accuracy of our prediction is tested with the experimental data obtained by a Langmuir probe, and ANN results show a good agreement with the experimental data. It is concluded that ANN is a useful tool in dealing with some nonlinear problems of the plasma spatial distribution.
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
An adaptive learning control scheme intended to the on-line optimization of sculptured surface cutting process is presented. The scheme uses a back-propagation neural network to learn the relationships between process inputs and process states. The cutting parameters of the process model are optimized through a genetic algorithms(GA). The capacity of the proposed scheme for determining optimum process inputs under a variety of process conditions and optimization strategies is evaluated on the basis of milling of a sculptured surface using a ball-end mill. The experimental results show that the neural network could model the cutting process efficiently, and the cutting conditions such as spindle speed could be regulated for achieving high efficiency and high quality. Therefore the proposed approach can be well applied to the manufacturing of dies and molds.
Efficient detection of internal infestation in wheat based on biophotonics.
Shi, Weiya; Jiao, Keke; Liang, Yitao; Wang, Feng
2016-02-01
In the process of grain storage, there are many losses of grain quantity and quality for the sake of insects. As a result, it is necessary to find a rapid and economical method for detecting insects in the grain. The paper innovatively proposes a model of detecting internal infestation in wheat by combining pattern recognition and BioPhoton Analytical Technology (BPAT). In this model, the spontaneous ultraweak photons emitted from normal and insect-contaminated wheat are firstly measured respectively. Then, position, distribution and morphological characteristics can be extracted from the measuring data to construct wheat feature vector. Backpropagation (BP) neural network based on genetic algorithm is employed to take decision on whether wheat kernel has contaminated by insects. The experimental results show that the proposed model can differentiate the normal wheat from the insect-contaminated one at an average accuracy of 95%. The model can also offer a novel thought for detecting internal infestation in the wheat. PMID:26774558
Dhar, V K; Koul, M K; Rannot, R C; Yadav, K K; Chandra, P; Dubey, B P; Koul, R; 10.1016/j.nima.2009.04.012
2009-01-01
The energy estimation procedures employed by different groups, for determining the energy of the primary $\\gamma$-ray using a single atmospheric Cherenkov imaging telescope, include methods like polynomial fitting in SIZE and DISTANCE, general least square fitting and look-up table based interpolation. A novel energy reconstruction procedure, based on the utilization of Artificial Neural Network (ANN), has been developed for the TACTIC atmospheric Cherenkov imaging telescope. The procedure uses a 3:30:1 ANN configuration with resilient backpropagation algorithm to estimate the energy of a $\\gamma$-ray like event on the basis of its image SIZE, DISTANCE and zenith angle. The new ANN-based energy reconstruction method, apart from yielding an energy resolution of $\\sim$ 26%, which is comparable to that of other single imaging telescopes, has the added advantage that it considers zenith angle dependence as well. Details of the ANN-based energy estimation procedure along with its comparative performance with other...
Regression model for daily passenger volume of high-speed railway line under capacity constraint
Institute of Scientific and Technical Information of China (English)
骆泳吉; 刘军; 孙迅; 赖晴鹰
2015-01-01
A non-linear regression model is proposed to forecast the aggregated passenger volume of Beijing−Shanghai high-speed railway (HSR) line in China. Train services and temporal features of passenger volume are studied to have a prior knowledge about this high-speed railway line. Then, based on a theoretical curve that depicts the relationship among passenger demand, transportation capacity and passenger volume, a non-linear regression model is established with consideration of the effect of capacity constraint. Through experiments, it is found that the proposed model can perform better in both forecasting accuracy and stability compared with linear regression models and back-propagation neural networks. In addition to the forecasting ability, with a definite formation, the proposed model can be further used to forecast the effects of train planning policies.
Directory of Open Access Journals (Sweden)
E O Omidiora
2012-05-01
Full Text Available The aim of this research is to analyze humans fingerprint texture in order to determine their Age & Gender, and correlation of RTVTR and Ridge Count on gender detection. The study is to analyze the effectiveness of physical biometrics (thumbprint in order to determine age and gender in humans. An application system was designed to capture the finger prints of sampled population through a fingerprint scanner device interfaced to the computer system via Universal Serial Bus (USB, and stored in Microsoft SQL Server database, while back-propagation neural network will be used to train the stored fingerprint. The specific Objectives of this research are to: Use fingerprint sensor to collect different individual fingerprint, alongside their age and gender, Formulate a model and develop a fingerprint based identification system to determine age and gender of individuals and evaluate the developed system.
An old-fashioned connectionist approach to a Cajun chord change problem
Berkeley, I.; Raine, R.
2011-09-01
In this paper, the problem of changing chords when playing Cajun music is introduced. A number of connectionist network simulations are then described, in which the networks attempted to learn to predict chord changes correctly in a particular Cajun song, 'Bayou Pompon'. In the various sets of simulations, the amount of information provided to the network was varied. While the network had difficulty in solving the problem with six one-eighths of a bar of melody information, performance radically improved when the network was provided with seven one-eighths of a bar of melody information. A post-training analysis of a trained network revealed a 'rule' for solving the problem. In addition to providing useful insight for scholars interested in traditional Cajun music, the results described here also illustrate how a traditional connectionist network, trained with the familiar backpropagation learning algorithm, can be used to generate a theory of the task.
Institute of Scientific and Technical Information of China (English)
Chen Xi; Chen Cai; Hao Qingqing; Zhang Zhicai; Shi Peng
2008-01-01
Karstic aquifers in Southwest China are largely located in mountainous areas and groundwater level observation data are usually absent. Therefore, numerical groundwater models are inappropriate for simulation of groundwater flow and rainfall-underground outflow responses. In this study, an artificial neural network (ANN) model was developed to simulate underground stream discharge. The ANN model was applied to the Houzhai subterranean drainage in Guizhou Province of Southwest China, which is representative of karstic geomorphology in the humid areas of China. Correlation analysis between daily rainfall and the outflow series was used to determine the model inputs and time lags. The ANN model was trained using an error backpropagation algorithm and validated at three hydrological stations with different karstic features. Study results show that the ANN model performs well in the modeling of highly non-linear karstic aquifers.
Highly Accurate Multi-layer Perceptron Neural Network for Air Data System
Directory of Open Access Journals (Sweden)
H. S. Krishna
2009-11-01
Full Text Available The error backpropagation multi-layer perceptron algorithm is revisited. This algorithm is used to train and validate two models of three-layer neural networks that can be used to calibrate a 5-hole pressure probe. This paper addresses Occam's Razor problem as it describes the adhoc training methodology applied to improve accuracy and sensitivity. The trained outputs from 5-4-3 feed-forward network architecture with jump connection are comparable to second decimal digit (~0.05 accuracy, hitherto unreported in literature.Defence Science Journal, 2009, 59(6, pp.670-674, DOI:http://dx.doi.org/10.14429/dsj.59.1574
Jiménez-Come, M. J.; Muñoz, E.; García, R.; Matres, V.; Martín, M. L.; Trujillo, F.; Turias, I.
2012-04-01
Different classification techniques such as Classification Tree (CT), Discriminant Analysis (DA), K-Nearest Neighbour (KNN) and Back-Propagation Neural Networks (BPNN) have been used to model pitting corrosion behaviour of austenitic stainless steel EN 1.4404. The main purpose is to predict the corrosion status of this material in different environmental conditions. Samples of this alloy have been subjected to polarization tests in order to determine pitting potentials values (Epit) with different aqueous conditions: chloride concentration (from MgCl2 solutions), pH values and temperature. In this way, the classification methods employed try to simulate the relation between corrosion status and those various environmental parameters studied. These techniques have generally been regarded as successful, giving a good correlation between experimental and predicted data. High values for precision have been obtained for all the models making these techniques an useful tool to know the behaviour of austenitic stainless steel in different environmental conditions.
Artificial neural networks in the nuclear engineering (Part 2)
International Nuclear Information System (INIS)
The field of Artificial Neural Networks (ANN), one of the branches of Artificial Intelligence has been waking up a lot of interest in the Nuclear Engineering (NE). ANN can be used to solve problems of difficult modeling, when the data are fail or incomplete and in high complexity problems of control. The first part of this work began a discussion with feed-forward neural networks in back-propagation. In this part of the work, the Multi-synaptic neural networks is applied to control problems. Also, the self-organized maps is presented in a typical pattern classification problem: transients classification. The main purpose of the work is to show that ANN can be successfully used in NE if a carefully choice of its type is done: the application sets this choice. (author)
Artificial neural network based approach to transmission lines protection
International Nuclear Information System (INIS)
The aim of this paper is to present and accurate fault detection technique for high speed distance protection using artificial neural networks. The feed-forward multi-layer neural network with the use of supervised learning and the common training rule of error back-propagation is chosen for this study. Information available locally at the relay point is passed to a neural network in order for an assessment of the fault location to be made. However in practice there is a large amount of information available, and a feature extraction process is required to reduce the dimensionality of the pattern vectors, whilst retaining important information that distinguishes the fault point. The choice of features is critical to the performance of the neural networks learning and operation. A significant feature in this paper is that an artificial neural network has been designed and tested to enhance the precision of the adaptive capabilities for distance protection
Artificial neural networks in NDT
International Nuclear Information System (INIS)
Artificial neural networks, simply known as neural networks, have attracted considerable interest in recent years largely because of a growing recognition of the potential of these computational paradigms as powerful alternative models to conventional pattern recognition or function approximation techniques. The neural networks approach is having a profound effect on almost all fields, and has been utilised in fields Where experimental inter-disciplinary work is being carried out. Being a multidisciplinary subject with a broad knowledge base, Nondestructive Testing (NDT) or Nondestructive Evaluation (NDE) is no exception. This paper explains typical applications of neural networks in NDT/NDE. Three promising types of neural networks are highlighted, namely, back-propagation, binary Hopfield and Kohonen's self-organising maps. (Author)
Yang, Jing; Cheng, Jian-Chun
2001-12-01
A new inverse method based on the wavelet transform and artificial neural networks (ANN) is presented to recover elastic constants of a fibre-reinforced composite plate from laser-based ultrasonic Lamb waves. The transient waveforms obtained by numerical simulations under different elastic constants are taken as the input of the ANN for training and learning. The wavelet transform is employed for extracting the eigenvectors from the raw Lamb wave signals so as to simplify the structure of the ANN. Then these eigenvectors are input to a multi-layer internally recurrent neural network with a back-propagation algorithm. Finally, the experimental waveforms are used as the input in the whole system to inverse elastic constants of the experimental material.
fMRI Segmentation Using Echo State Neural Network
Directory of Open Access Journals (Sweden)
D.Suganthi
2008-02-01
Full Text Available This research work proposes a new intelligent segmentation technique forfunctional Magnetic Resonance Imaging (fMRI. It has been implemented usingan Echostate Neural Network (ESN. Segmentation is an important process thathelps in identifying objects of the image. Existing segmentation methods are notable to exactly segment the complicated profile of the fMRI accurately.Segmentation of every pixel in the fMRI correctly helps in proper location oftumor. The presence of noise and artifacts poses a challenging problem in propersegmentation. The proposed ESN is an estimation method with energyminimization. The estimation property helps in better segmentation of thecomplicated profile of the fMRI. The performance of the new segmentationmethod is found to be better with higher peak signal to noise ratio (PSNR of 61when compared to the PSNR of the existing back-propagation algorithm (BPAsegmentation method which is 57.
Optimization of a neural network model for signal-to-background prediction in gamma-ray spectrometry
International Nuclear Information System (INIS)
The artificial neural network (ANN) model was optimized for the prediction of signal-to-background (SBR) ratio as a function of the measurement time in gamma-ray spectrometry. The network parameters: learning rate (α), momentum (μ), number of epochs (E) and number of nodes in hidden layer (N) were optimized simultaneously employing variable-size simplex method. The most accurate model with the root mean square (RMS) error of 0.073 was obtained using ANN with online backpropagation randomized (OBPR) algorithm with α = 0.27, μ 0.36, E = 14800 and N = 9. Most of the predicted and experimental SBR values for the eight radionuclides (226Ra, 214Bi, 235U, 40K, 232Th, 134Cs, 137Cs and 7Be), studied in this work, reasonably agreed to within 15 %, which was satisfactory accuracy. (author)
Circuit Design of On-Chip BP Learning Neural Network with Programmable Neuron Characteristics
Institute of Scientific and Technical Information of China (English)
卢纯; 石秉学; 陈卢
2000-01-01
A circuit system of on chip BP(Back-Propagation) learning neural network with pro grammable neurons has been designed,which comprises a feedforward network,an error backpropagation network and a weight updating circuit. It has the merits of simplicity,programmability, speedness,low power-consumption and high density. A novel neuron circuit with pro grammable parameters has been proposed. It generates not only the sigmoidal function but also its derivative. HSPICE simulations are done to a neuron circuit with level 47 transistor models as a standard 1.2tμm CMOS process. The results show that both functions are matched with their respec ive ideal functions very well. The non-linear partition problem is used to verify the operation of the network. The simulation result shows the superior performance of this BP neural network with on-chip learning.
The fundamentals of fuzzy neural network and application in nuclear monitoring
International Nuclear Information System (INIS)
The authors presents a fuzzy modeling method using fuzzy neural network with the back-propagation algorithm. The new method can identify the fuzzy model of a nonlinear system automatically. Fuzzy neural network is used to generate fuzzy rules and membership functions. The feasibility and inferential statistic of the method is examined by using numerical data and XOR problem. The FNN improves accuracy and reliability, reduces design time and minimizes system cost of fuzzy design. The FNN can be used for estimation of human injury in nuclear explosions and can be simplified to a rule neural network (RNN), which is used for pole extraction of signal. Preliminary simulation show that FNN has vest vistas in nuclear monitoring
International Nuclear Information System (INIS)
An artificial neural network has been applied for pattern recognition and used as a tool in an expert system. The purpose of this study is to examine the potential usefulness of the neural network approach in medical applications for image recognition and decision making. The authors designed multilayer feedforward neural networks with a back-propagation algorithm for our study. Using first-pass radionuclide ventriculograms, we attempted to identify the right and left ventricles of the heart and the lungs by training the neural network from patterns of time-activity curves. In a preliminary study, the neural network enabled identification of the lungs and heart chambers once the network was trained sufficiently by means of repeated entries of data from the same case
Optimal fuel loading pattern design using artificial intelligence techniques
International Nuclear Information System (INIS)
The Optimal Fuel Shuffling System (OFSS) is developed for optimal design of PWR fuel loading pattern. OFSS is a hybrid system that a rule based system, a fuzzy logic, and an artificial neural network are connected each other. The rule based system classifies loading patterns into two classes using several heuristic rules and a fuzzy rule. A fuzzy rule is introduced to achieve more effective and fast searching. Its membership function is automatically updated in accordance with the prediction results. The artificial neural network predicts core parameters for the patterns generated from the rule based system. The back-propagation network is used for fast prediction of core parameters. The artificial neural network and the fuzzy logic can be used as the tool for improvement of existing algorithm's capabilities. OFSS was demonstrated and validated for cycle 1 of Kori unit 1 PWR. (Author)
Mazurek, Paweł; Czyżak, Paweł; de Waardt, Huug; Turkiewicz, Jarosław Piotr
2015-11-01
We investigate the utilization of semiconductor optical amplifiers (SOAs) and quantum-dot laser-based Raman amplifiers in high-capacity dense wavelength division multiplexed (DWDM) 1310-nm transmission systems. Performed simulations showed that in a 10×40 Gbit/s system, the utilization of a single Raman amplifier in a back-propagation scheme can extend the maximum error-free (bit error rate power budget. Moreover, lower input optical power in a system utilizing a Raman amplifier reduces the four-wave mixing interactions. The obtained results prove that Raman amplification can be successfully applied in 1310-nm high-capacity transmission systems, e.g., to extend the reach of 400G and 1T Ethernet systems.
Directory of Open Access Journals (Sweden)
Katarína Hiľovská
2011-09-01
Full Text Available To a degree the financial crisis influenced all European countries but the most affected are the PIGS (Portugal, Ireland, Greece and Spain. We investigated the effect of the financial crisis on the prediction accuracy of artificial neural networks on the Portuguese, Irish, Athens and Madrid Stock Exchange. We applied three-layered feed-forward neural networks with backpropagation algorithm to forecast the next day prices and we compared the paper returns achieved before and after the recent financial crisis. This method failed in forecasting the direction of the next day price movement but performed well in absolute price changes. However, it achieved better results than the strategy based on technical analysis in the period before the crisis. On the other hand, technical analysis performed better during the crisis.
Adaptive neuro-fuzzy modeling of transient heat transfer in circular duct air flow
Energy Technology Data Exchange (ETDEWEB)
Hasiloglu, Abdulsamet [Department of Electronics and Telecommunications Engineering, Engineering Faculty, Ataturk University, Erzurum (Turkey); Yilmaz, Mehmet; Comakli, Omer [Department of Mechanical Engineering, Engineering Faculty, Ataturk University, Erzurum (Turkey); Ekmekci, Ismail [Department of Mechanical Engineering, Engineering Faculty, Sakarya University, Sakarya (Turkey)
2004-11-01
The aim of this study is to demonstrate the usefulness of an adaptive neuro-fuzzy inference system (ANFIS) for the prediction of transient heat transfer. An ANFIS has been applied for the transient heat transfer in thermally and simultaneously developing circular duct flow, subjected to a sinusoidally varying inlet temperature. The experiments covered Reynolds numbers in the 2528{<=}Re{<=}4265 range and inlet heat input in the 0.01{<=}{beta}{<=}0.96 Hz frequency range. The accuracy of predictions and the adaptability of the ANFIS were examined, and good predictions were achieved for the temperature amplitudes of the transient heat transfer in thermally and simultaneously developing circular duct flow. The results show that the neuro-fuzzy can be used for modeling transient heat transfer in ducts. The results obtained with the ANFIS are also compared to those of a multiple linear regression and a neural network with a multi-layered feed-forward back-propagation algorithm. (authors)
Intelligent classification methods of grain kernels using computer vision analysis
International Nuclear Information System (INIS)
In this paper, a digital image analysis method was developed to classify seven kinds of individual grain kernels (common rice, glutinous rice, rough rice, brown rice, buckwheat, common barley and glutinous barley) widely planted in Korea. A total of 2800 color images of individual grain kernels were acquired as a data set. Seven color and ten morphological features were extracted and processed by linear discriminant analysis to improve the efficiency of the identification process. The output features from linear discriminant analysis were used as input to the four-layer back-propagation network to classify different grain kernel varieties. The data set was divided into three groups: 70% for training, 20% for validation, and 10% for testing the network. The classification experimental results show that the proposed method is able to classify the grain kernel varieties efficiently
Extracting Symbolic Rules for Medical Diagnosis Problem
Kamruzzaman, S M
2010-01-01
Neural networks (NNs) have been successfully applied to solve a variety of application problems involving classification and function approximation. Although backpropagation NNs generally predict better than decision trees do for pattern classification problems, they are often regarded as black boxes, i.e., their predictions cannot be explained as those of decision trees. In many applications, it is desirable to extract knowledge from trained NNs for the users to gain a better understanding of how the networks solve the problems. An algorithm is proposed and implemented to extract symbolic rules for medical diagnosis problem. Empirical study on three benchmarks classification problems, such as breast cancer, diabetes, and lenses demonstrates that the proposed algorithm generates high quality rules from NNs comparable with other methods in terms of number of rules, average number of conditions for a rule, and predictive accuracy.