Neural network construction via back-propagation
International Nuclear Information System (INIS)
Burwick, T.T.
1994-06-01
A method is presented that combines back-propagation with multi-layer neural network construction. Back-propagation is used not only to adjust the weights but also the signal functions. Going from one network to an equivalent one that has additional linear units, the non-linearity of these units and thus their effective presence is then introduced via back-propagation (weight-splitting). The back-propagated error causes the network to include new units in order to minimize the error function. We also show how this formalism allows to escape local minima
Training Deep Spiking Neural Networks Using Backpropagation.
Lee, Jun Haeng; Delbruck, Tobi; Pfeiffer, Michael
2016-01-01
Deep spiking neural networks (SNNs) hold the potential for improving the latency and energy efficiency of deep neural networks through data-driven event-based computation. However, training such networks is difficult due to the non-differentiable nature of spike events. In this paper, we introduce a novel technique, which treats the membrane potentials of spiking neurons as differentiable signals, where discontinuities at spike times are considered as noise. This enables an error backpropagation mechanism for deep SNNs that follows the same principles as in conventional deep networks, but works directly on spike signals and membrane potentials. Compared with previous methods relying on indirect training and conversion, our technique has the potential to capture the statistics of spikes more precisely. We evaluate the proposed framework on artificially generated events from the original MNIST handwritten digit benchmark, and also on the N-MNIST benchmark recorded with an event-based dynamic vision sensor, in which the proposed method reduces the error rate by a factor of more than three compared to the best previous SNN, and also achieves a higher accuracy than a conventional convolutional neural network (CNN) trained and tested on the same data. We demonstrate in the context of the MNIST task that thanks to their event-driven operation, deep SNNs (both fully connected and convolutional) trained with our method achieve accuracy equivalent with conventional neural networks. In the N-MNIST example, equivalent accuracy is achieved with about five times fewer computational operations.
Prediction of tides using back-propagation neural networks
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.
Prediction of tides is very much essential for human activities and to reduce the construction cost in marine environment. This paper presents an application of the artificial neural network with back-propagation procedures for accurate prediction...
Analysis Resilient Algorithm on Artificial Neural Network Backpropagation
Saputra, Widodo; Tulus; Zarlis, Muhammad; Widia Sembiring, Rahmat; Hartama, Dedy
2017-12-01
Prediction required by decision makers to anticipate future planning. Artificial Neural Network (ANN) Backpropagation is one of method. This method however still has weakness, for long training time. This is a reason to improve a method to accelerate the training. One of Artificial Neural Network (ANN) Backpropagation method is a resilient method. Resilient method of changing weights and bias network with direct adaptation process of weighting based on local gradient information from every learning iteration. Predicting data result of Istanbul Stock Exchange training getting better. Mean Square Error (MSE) value is getting smaller and increasing accuracy.
Kontrol Kecepatan Motor Induksi menggunakan Algoritma Backpropagation Neural Network
Directory of Open Access Journals (Sweden)
MUHAMMAD RUSWANDI DJALAL
2017-07-01
Full Text Available ABSTRAKBanyak strategi kontrol berbasis kecerdasan buatan telah diusulkan dalam penelitian seperti Fuzzy Logic dan Artificial Neural Network (ANN. Tujuan dari penelitian ini adalah untuk mendesain sebuah kontrol agar kecepatan motor induksi dapat diatur sesuai kebutuhan serta membandingkan kinerja motor induksi tanpa kontrol dan dengan kontrol. Dalam penelitian ini diusulkan sebuah metode artificial neural network untuk mengontrol kecepatan motor induksi tiga fasa. Kecepatan referensi motor diatur pada kecepatan 140 rad/s, 150 rad/s, dan 130 rad/s. Perubahan kecepatan diatur pada setiap interval 0.3 detik dan waktu simulasi maksimum adalah 0,9 detik. Kasus 1 tanpa kontrol, menunjukkan respon torka dan kecepatan dari motor induksi tiga fasa tanpa kontrol. Meskipun kecepatan motor induksi tiga fasa diatur berubah pada setiap 0,3 detik tidak akan mempengaruhi torka. Selain itu, motor induksi tiga fasa tanpa kontrol memiliki kinerja yang buruk dikarenakan kecepatan motor induksi tidak dapat diatur sesuai dengan kebutuhan. Kasus 2 dengan control backpropagation neural network, meskipun kecepatan motor induksi tiga fasa berubah pada setiap 0.3 detik tidak akan mempengaruhi torsi. Selain itu, kontrol backpropagation neural network memiliki kinerja yang baik dikarenakan kecepatan motor induksi dapat diatur sesuai dengan kebutuhan.Kata kunci: Backpropagation Neural Network (BPNN, NN Training, NN Testing, Motor.ABSTRACTMany artificial intelligence-based control strategies have been proposed in research such as Fuzzy Logic and Artificial Neural Network (ANN. The purpose of this research was design a control for the induction motor speed that could be adjusted as needed and compare the performance of induction motor without control and with control. In this research, it was proposed an artificial neural network method to control the speed of three-phase induction motors. The reference speed of motor was set at the rate of 140 rad / s, 150 rad / s, and 130
Relay Backpropagation for Effective Learning of Deep Convolutional Neural Networks
Shen, Li; Lin, Zhouchen; Huang, Qingming
2015-01-01
Learning deeper convolutional neural networks becomes a tendency in recent years. However, many empirical evidences suggest that performance improvement cannot be gained by simply stacking more layers. In this paper, we consider the issue from an information theoretical perspective, and propose a novel method Relay Backpropagation, that encourages the propagation of effective information through the network in training stage. By virtue of the method, we achieved the first place in ILSVRC 2015...
Conjugate descent formulation of backpropagation error in feedforward neural networks
Directory of Open Access Journals (Sweden)
NK Sharma
2009-06-01
Full Text Available The feedforward neural network architecture uses backpropagation learning to determine optimal weights between different interconnected layers. This learning procedure uses a gradient descent technique applied to a sum-of-squares error function for the given input-output pattern. It employs an iterative procedure to minimise the error function for a given set of patterns, by adjusting the weights of the network. The first derivates of the error with respect to the weights identify the local error surface in the descent direction. Hence the network exhibits a different local error surface for every different pattern presented to it, and weights are iteratively modified in order to minimise the current local error. The determination of an optimal weight vector is possible only when the total minimum error (mean of the minimum local errors for all patterns from the training set may be minimised. In this paper, we present a general mathematical formulation for the second derivative of the error function with respect to the weights (which represents a conjugate descent for arbitrary feedforward neural network topologies, and we use this derivative information to obtain the optimal weight vector. The local error is backpropagated among the units of hidden layers via the second order derivative of the error with respect to the weights of the hidden and output layers independently and also in combination. The new total minimum error point may be evaluated with the help of the current total minimum error and the current minimised local error. The weight modification processes is performed twice: once with respect to the present local error and once more with respect to the current total or mean error. We present some numerical evidence that our proposed method yields better network weights than those determined via a conventional gradient descent approach.
Klasifikasi Varietas Cabai Berdasarkan Morfologi Daun Menggunakan Backpropagation Neural Network
Directory of Open Access Journals (Sweden)
Kharis Syaban
2016-07-01
Full Text Available Compared with other methods of classifiers such as cellular and molecular biological methods, using the image of the leaves become the first choice in the classification of plants. The leaves can be characterized by shape, color, and texture; The leaves can have a color that varies depending on the season and geographical location. In addition, the same plant species also can have different leaf shapes. In this study, the morphological features of leaves used to identify varieties of pepper plants. The method used to perform feature extraction is a moment invariant and basic geometric features. For the process of recognition based on the features that have been extracted, used neural network methods with backpropagation learning algorithm. From the neural-network training, the best accuracy in classifying varieties of chili with minimum error 0.001 by providing learning rate 0.1, momentum of 0.7, and 15 neurons in the hidden layer foreach of various feature. To conduct cross-validation testing with k-fold tehcnique, obtained classification accuracy to be range of 80.75%±0.09% with k=4.
Understanding the Convolutional Neural Networks with Gradient Descent and Backpropagation
Zhou, XueFei
2018-04-01
With the development of computer technology, the applications of machine learning are more and more extensive. And machine learning is providing endless opportunities to develop new applications. One of those applications is image recognition by using Convolutional Neural Networks (CNNs). CNN is one of the most common algorithms in image recognition. It is significant to understand its theory and structure for every scholar who is interested in this field. CNN is mainly used in computer identification, especially in voice, text recognition and other aspects of the application. It utilizes hierarchical structure with different layers to accelerate computing speed. In addition, the greatest features of CNNs are the weight sharing and dimension reduction. And all of these consolidate the high effectiveness and efficiency of CNNs with idea computing speed and error rate. With the help of other learning altruisms, CNNs could be used in several scenarios for machine learning, especially for deep learning. Based on the general introduction to the background and the core solution CNN, this paper is going to focus on summarizing how Gradient Descent and Backpropagation work, and how they contribute to the high performances of CNNs. Also, some practical applications will be discussed in the following parts. The last section exhibits the conclusion and some perspectives of future work.
Habarulema, J. B.; McKinnell, L.-A.
2012-05-01
In this work, results obtained by investigating the application of different neural network backpropagation training algorithms are presented. This was done to assess the performance accuracy of each training algorithm in total electron content (TEC) estimations using identical datasets in models development and verification processes. Investigated training algorithms are standard backpropagation (SBP), backpropagation with weight delay (BPWD), backpropagation with momentum (BPM) term, backpropagation with chunkwise weight update (BPC) and backpropagation for batch (BPB) training. These five algorithms are inbuilt functions within the Stuttgart Neural Network Simulator (SNNS) and the main objective was to find out the training algorithm that generates the minimum error between the TEC derived from Global Positioning System (GPS) observations and the modelled TEC data. Another investigated algorithm is the MatLab based Levenberg-Marquardt backpropagation (L-MBP), which achieves convergence after the least number of iterations during training. In this paper, neural network (NN) models were developed using hourly TEC data (for 8 years: 2000-2007) derived from GPS observations over a receiver station located at Sutherland (SUTH) (32.38° S, 20.81° E), South Africa. Verification of the NN models for all algorithms considered was performed on both "seen" and "unseen" data. Hourly TEC values over SUTH for 2003 formed the "seen" dataset. The "unseen" dataset consisted of hourly TEC data for 2002 and 2008 over Cape Town (CPTN) (33.95° S, 18.47° E) and SUTH, respectively. The models' verification showed that all algorithms investigated provide comparable results statistically, but differ significantly in terms of time required to achieve convergence during input-output data training/learning. This paper therefore provides a guide to neural network users for choosing appropriate algorithms based on the availability of computation capabilities used for research.
The interchangeability of learning rate and gain in backpropagation neural networks
Thimm, G.; Moerland, P.; Fiesler, E.
1996-01-01
The backpropagation algorithm is widely used for training multilayer neural networks. In this publication the gain of its activation function(s) is investigated. In specific, it is proven that changing the gain of the activation function is equivalent to changing the learning rate and the weights.
Ocean wave parameters estimation using backpropagation neural networks
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; SubbaRao; Raju, D.H.
: the RPROP algorithm. San Francisco: ICNN; 1993. p. 586–591. [15] Demuth H, Beale M. Neural network toolbox for use with MATLAB, user guide. USA: The Math Works Inc.; 2000 (http://www.mathworks.com). [16] Baba M, Dattatri J. Ocean wave spectra off cochin...
An approach to the interpretation of backpropagation neural network models in QSAR studies.
Baskin, I I; Ait, A O; Halberstam, N M; Palyulin, V A; Zefirov, N S
2002-03-01
An approach to the interpretation of backpropagation neural network models for quantitative structure-activity and structure-property relationships (QSAR/QSPR) studies is proposed. The method is based on analyzing the first and second moments of distribution of the values of the first and the second partial derivatives of neural network outputs with respect to inputs calculated at data points. The use of such statistics makes it possible not only to obtain actually the same characteristics as for the case of traditional "interpretable" statistical methods, such as the linear regression analysis, but also to reveal important additional information regarding the non-linear character of QSAR/QSPR relationships. The approach is illustrated by an example of interpreting a backpropagation neural network model for predicting position of the long-wave absorption band of cyane dyes.
Wanto, Anjar; Zarlis, Muhammad; Sawaluddin; Hartama, Dedy
2017-12-01
Backpropagation is a good artificial neural network algorithm used to predict, one of which is to predict the rate of Consumer Price Index (CPI) based on the foodstuff sector. While conjugate gradient fletcher reeves is a suitable optimization method when juxtaposed with backpropagation method, because this method can shorten iteration without reducing the quality of training and testing result. Consumer Price Index (CPI) data that will be predicted to come from the Central Statistics Agency (BPS) Pematangsiantar. The results of this study will be expected to contribute to the government in making policies to improve economic growth. In this study, the data obtained will be processed by conducting training and testing with artificial neural network backpropagation by using parameter learning rate 0,01 and target error minimum that is 0.001-0,09. The training network is built with binary and bipolar sigmoid activation functions. After the results with backpropagation are obtained, it will then be optimized using the conjugate gradient fletcher reeves method by conducting the same training and testing based on 5 predefined network architectures. The result, the method used can increase the speed and accuracy result.
IMPLEMENTASI BACKPROPAGATION NEURAL NETWORK DALAM PRAKIRAAN CUACA DI DAERAH BALI SELATAN
Directory of Open Access Journals (Sweden)
I MADE DWI UDAYANA PUTRA
2016-11-01
Full Text Available Weather information has an important role in human life in various fields, such as agriculture, marine, and aviation. The accurate weather forecasts are needed in order to improve the performance of various fields. In this study, use artificial neural network method with backpropagation learning algorithm to create a model of weather forecasting in the area of ??South Bali. The aim of this study is to determine the effect of the number of neurons in the hidden layer and to determine the level of accuracy of the method of artificial neural network with backpropagation learning algorithm in weather forecast models. Weather forecast models in this study use input of the factors that influence the weather, namely air temperature, dew point, wind speed, visibility, and barometric pressure.The results of testing the network with a different number of neurons in the hidden layer of artificial neural network method with backpropagation learning algorithms show that the increase in the number of neurons in the hidden layer is not directly proportional to the value of the accuracy of the weather forecasts, the increase in the number of neurons in the hidden layer does not necessarily increase or decrease value accuracy of weather forecasts we obtain the best accuracy rate of 51.6129% on a network model with three neurons in the hidden layer.
Witoonchart, Peerajak; Chongstitvatana, Prabhas
2017-08-01
In this study, for the first time, we show how to formulate a structured support vector machine (SSVM) as two layers in a convolutional neural network, where the top layer is a loss augmented inference layer and the bottom layer is the normal convolutional layer. We show that a deformable part model can be learned with the proposed structured SVM neural network by backpropagating the error of the deformable part model to the convolutional neural network. The forward propagation calculates the loss augmented inference and the backpropagation calculates the gradient from the loss augmented inference layer to the convolutional layer. Thus, we obtain a new type of convolutional neural network called an Structured SVM convolutional neural network, which we applied to the human pose estimation problem. This new neural network can be used as the final layers in deep learning. Our method jointly learns the structural model parameters and the appearance model parameters. We implemented our method as a new layer in the existing Caffe library. Copyright © 2017 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Ikhthison Mekongga
2014-02-01
Full Text Available The need for bandwidth has been increasing recently. This is because the development of internet infrastructure is also increasing so that we need an economic and efficient provider system. This can be achieved through good planning and a proper system. The prediction of the bandwidth consumption is one of the factors that support the planning for an efficient internet service provider system. Bandwidth consumption is predicted using ANN. ANN is an information processing system which has similar characteristics as the biologic al neural network. ANN is chosen to predict the consumption of the bandwidth because ANN has good approachability to non-linearity. The variable used in ANN is the historical load data. A bandwidth consumption information system was built using neural networks with a backpropagation algorithm to make the use of bandwidth more efficient in the future both in the rental rate of the bandwidth and in the usage of the bandwidth.Keywords: Forecasting, Bandwidth, Backpropagation
Convergence of Batch Split-Complex Backpropagation Algorithm for Complex-Valued Neural Networks
Directory of Open Access Journals (Sweden)
Huisheng Zhang
2009-01-01
Full Text Available The batch split-complex backpropagation (BSCBP algorithm for training complex-valued neural networks is considered. For constant learning rate, it is proved that the error function of BSCBP algorithm is monotone during the training iteration process, and the gradient of the error function tends to zero. By adding a moderate condition, the weights sequence itself is also proved to be convergent. A numerical example is given to support the theoretical analysis.
Application of artificial neural networks with backpropagation technique in the financial data
Jaiswal, Jitendra Kumar; Das, Raja
2017-11-01
The propensity of applying neural networks has been proliferated in multiple disciplines for research activities since the past recent decades because of its powerful control with regulatory parameters for pattern recognition and classification. It is also being widely applied for forecasting in the numerous divisions. Since financial data have been readily available due to the involvement of computers and computing systems in the stock market premises throughout the world, researchers have also developed numerous techniques and algorithms to analyze the data from this sector. In this paper we have applied neural network with backpropagation technique to find the data pattern from finance section and prediction for stock values as well.
Chromatic characterization of a three-channel colorimeter using back-propagation neural networks
Pardo, P. J.; Pérez, A. L.; Suero, M. I.
2004-09-01
This work describes a method for the chromatic characterization of a three-channel colorimeter of recent design and construction dedicated to color vision research. The colorimeter consists of two fixed monochromators and a third monochromator interchangeable with a cathode ray tube or any other external light source. Back-propagation neural networks were used for the chromatic characterization to establish the relationship between each monochromator's input parameters and the tristimulus values of each chromatic stimulus generated. The results showed the effectiveness of this type of neural-network-based system for the chromatic characterization of the stimuli produced by any monochromator.
Energy Technology Data Exchange (ETDEWEB)
Kerr, John Patrick [Iowa State Univ., Ames, IA (United States)
1992-01-01
The objective of this study was to determine the feasibility of using an Artificial Neural Network (ANN), in particular a backpropagation ANN, to improve the speed and quality of the reconstruction of three-dimensional SPECT (single photon emission computed tomography) images. In addition, since the processing elements (PE)s in each layer of an ANN are independent of each other, the speed and efficiency of the neural network architecture could be better optimized by implementing the ANN on a massively parallel computer. The specific goals of this research were: to implement a fully interconnected backpropagation neural network on a serial computer and a SIMD parallel computer, to identify any reduction in the time required to train these networks on the parallel machine versus the serial machine, to determine if these neural networks can learn to recognize SPECT data by training them on a section of an actual SPECT image, and to determine from the knowledge obtained in this research if full SPECT image reconstruction by an ANN implemented on a parallel computer is feasible both in time required to train the network, and in quality of the images reconstructed.
A Parallel Adaboost-Backpropagation Neural Network for Massive Image Dataset Classification
Cao, Jianfang; Chen, Lichao; Wang, Min; Shi, Hao; Tian, Yun
2016-01-01
Image classification uses computers to simulate human understanding and cognition of images by automatically categorizing images. This study proposes a faster image classification approach that parallelizes the traditional Adaboost-Backpropagation (BP) neural network using the MapReduce parallel programming model. First, we construct a strong classifier by assembling the outputs of 15 BP neural networks (which are individually regarded as weak classifiers) based on the Adaboost algorithm. Second, we design Map and Reduce tasks for both the parallel Adaboost-BP neural network and the feature extraction algorithm. Finally, we establish an automated classification model by building a Hadoop cluster. We use the Pascal VOC2007 and Caltech256 datasets to train and test the classification model. The results are superior to those obtained using traditional Adaboost-BP neural network or parallel BP neural network approaches. Our approach increased the average classification accuracy rate by approximately 14.5% and 26.0% compared to the traditional Adaboost-BP neural network and parallel BP neural network, respectively. Furthermore, the proposed approach requires less computation time and scales very well as evaluated by speedup, sizeup and scaleup. The proposed approach may provide a foundation for automated large-scale image classification and demonstrates practical value. PMID:27905520
A modified backpropagation algorithm for training neural networks on data with error bars
International Nuclear Information System (INIS)
Gernoth, K.A.; Clark, J.W.
1994-08-01
A method is proposed for training multilayer feedforward neural networks on data contaminated with noise. Specifically, we consider the case that the artificial neural system is required to learn a physical mapping when the available values of the target variable are subject to experimental uncertainties, but are characterized by error bars. The proposed method, based on maximum likelihood criterion for parameter estimation, involves simple modifications of the on-line backpropagation learning algorithm. These include incorporation of the error-bar assignments in a pattern-specific learning rate, together with epochal updating of a new measure of model accuracy that replaces the usual mean-square error. The extended backpropagation algorithm is successfully tested on two problems relevant to the modelling of atomic-mass systematics by neural networks. Provided the underlying mapping is reasonably smooth, neural nets trained with the new procedure are able to learn the true function to a good approximation even in the presence of high levels of Gaussian noise. (author). 26 refs, 2 figs, 5 tabs
Multifactor-influenced energy consumption forecasting using enhanced back-propagation neural network
International Nuclear Information System (INIS)
Zeng, Yu-Rong; Zeng, Yi; Choi, Beomjin; Wang, Lin
2017-01-01
Reliable energy consumption forecasting can provide effective decision-making support for planning development strategies to energy enterprises and for establishing national energy policies. Accordingly, the present study aims to apply a hybrid intelligent approach named ADE–BPNN, the back-propagation neural network (BPNN) model supported by an adaptive differential evolution algorithm, to estimate energy consumption. Most often, energy consumption is influenced by socioeconomic factors. The proposed hybrid model incorporates gross domestic product, population, import, and export data as inputs. An improved differential evolution with adaptive mutation and crossover is utilized to find appropriate global initial connection weights and thresholds to enhance the forecasting performance of the BPNN. A comparative example and two extended examples are utilized to validate the applicability and accuracy of the proposed ADE–BPNN model. Errors of the test data sets indicate that the ADE–BPNN model can effectively predict energy consumption compared with the traditional back-propagation neural network model and other popular existing models. Moreover, mean impact value based analysis is conducted for electrical energy consumption in U.S. and total energy consumption forecasting in China to quantitatively explore the relative importance of each input variable for the improvement of effective energy consumption prediction. - Highlights: • Enhanced back-propagation neural network (ADE-BPNN) for energy consumption forecasting. • ADE-BPNN outperforms the current best models for two comparative cases. • Mean impact value approach explores socio-economic factors' relative importance. • ADE-BPNN's adjusted goodness-of-fit is 99.2% for China's energy consumption forecasting.
Wutsqa, D. U.; Marwah, M.
2017-06-01
In this paper, we consider spatial operation median filter to reduce the noise in the cervical images yielded by colposcopy tool. The backpropagation neural network (BPNN) model is applied to the colposcopy images to classify cervical cancer. The classification process requires an image extraction by using a gray level co-occurrence matrix (GLCM) method to obtain image features that are used as inputs of BPNN model. The advantage of noise reduction is evaluated by comparing the performances of BPNN models with and without spatial operation median filter. The experimental result shows that the spatial operation median filter can improve the accuracy of the BPNN model for cervical cancer classification.
A new backpropagation learning algorithm for layered neural networks with nondifferentiable units.
Oohori, Takahumi; Naganuma, Hidenori; Watanabe, Kazuhisa
2007-05-01
We propose a digital version of the backpropagation algorithm (DBP) for three-layered neural networks with nondifferentiable binary units. This approach feeds teacher signals to both the middle and output layers, whereas with a simple perceptron, they are given only to the output layer. The additional teacher signals enable the DBP to update the coupling weights not only between the middle and output layers but also between the input and middle layers. A neural network based on DBP learning is fast and easy to implement in hardware. Simulation results for several linearly nonseparable problems such as XOR demonstrate that the DBP performs favorably when compared to the conventional approaches. Furthermore, in large-scale networks, simulation results indicate that the DBP provides high performance.
Directory of Open Access Journals (Sweden)
Junta Zeniarja
2015-05-01
Full Text Available Pelanggan merupakan bagian penting dalam memastikan keunggulan dan kelangsungan hidup perusahaan. Oleh karena itu perlu untuk memiliki sistem manajemen untuk memastikan pelanggan tetap setia dan tidak pindah ke pesaing lain, yang dikenal sebagai manajemen churn. Prediksi churn pelanggan adalah bagian dari manajemen churn, yang memprediksi perilaku pelanggan dengan klasifikasi pelanggan setia dan mana yang cenderung pindah ke kompetitor lain. Keakuratan prediksi ini mutlak diperlukan karena tingginya tingkat migrasi pelanggan ke perusahaan pesaing. Hal ini penting karena biaya yang digunakan untuk meraih pelanggan baru jauh lebih tinggi dibandingkan dengan mempertahankan loyalitas pelanggan yang sudah ada. Meskipun banyak studi tentang prediksi churn pelanggan yang telah dilakukan, penelitian lebih lanjut masih diperlukan untuk meningkatkan akurasi prediksi. Penelitian ini akan membahas penggunaan teknik data mining Backpropagation Neural Network (BPNN in hybrid dengan Strategi Evolution (ES untuk atribut bobot. Validasi model dilakukan dengan menggunakan validasi Palang 10-Fold dan evaluasi pengukuran dilakukan dengan menggunakan matriks kebingungan dan Area bawah ROC Curve (AUC. Hasil percobaan menunjukkan bahwa hibrida BPNN dengan ES mencapai kinerja yang lebih baik daripada Basic BPNN. Kata kunci: data mining, churn, prediksi, backpropagation neural network, strategi evolusi.
Knowledge Mining from Clinical Datasets Using Rough Sets and Backpropagation Neural Network
Directory of Open Access Journals (Sweden)
Kindie Biredagn Nahato
2015-01-01
Full Text Available The availability of clinical datasets and knowledge mining methodologies encourages the researchers to pursue research in extracting knowledge from clinical datasets. Different data mining techniques have been used for mining rules, and mathematical models have been developed to assist the clinician in decision making. The objective of this research is to build a classifier that will predict the presence or absence of a disease by learning from the minimal set of attributes that has been extracted from the clinical dataset. In this work rough set indiscernibility relation method with backpropagation neural network (RS-BPNN is used. This work has two stages. The first stage is handling of missing values to obtain a smooth data set and selection of appropriate attributes from the clinical dataset by indiscernibility relation method. The second stage is classification using backpropagation neural network on the selected reducts of the dataset. The classifier has been tested with hepatitis, Wisconsin breast cancer, and Statlog heart disease datasets obtained from the University of California at Irvine (UCI machine learning repository. The accuracy obtained from the proposed method is 97.3%, 98.6%, and 90.4% for hepatitis, breast cancer, and heart disease, respectively. The proposed system provides an effective classification model for clinical datasets.
Facial Expression Recognition By Using Fisherface Methode With Backpropagation Neural Network
Directory of Open Access Journals (Sweden)
Zaenal Abidin
2011-01-01
Full Text Available Abstract— In daily lives, especially in interpersonal communication, face often used for expression. Facial expressions give information about the emotional state of the person. A facial expression is one of the behavioral characteristics. The components of a basic facial expression analysis system are face detection, face data extraction, and facial expression recognition. Fisherface method with backpropagation artificial neural network approach can be used for facial expression recognition. This method consists of two-stage process, namely PCA and LDA. PCA is used to reduce the dimension, while the LDA is used for features extraction of facial expressions. The system was tested with 2 databases namely JAFFE database and MUG database. The system correctly classified the expression with accuracy of 86.85%, and false positive 25 for image type I of JAFFE, for image type II of JAFFE 89.20% and false positive 15, for type III of JAFFE 87.79%, and false positive for 16. The image of MUG are 98.09%, and false positive 5. Keywords— facial expression, fisherface method, PCA, LDA, backpropagation neural network.
Inversion of Density Interfaces Using the Pseudo-Backpropagation Neural Network Method
Chen, Xiaohong; Du, Yukun; Liu, Zhan; Zhao, Wenju; Chen, Xiaocheng
2018-05-01
This paper presents a new pseudo-backpropagation (BP) neural network method that can invert multi-density interfaces at one time. The new method is based on the conventional forward modeling and inverse modeling theories in addition to conventional pseudo-BP neural network arithmetic. A 3D inversion model for gravity anomalies of multi-density interfaces using the pseudo-BP neural network method is constructed after analyzing the structure and function of the artificial neural network. The corresponding iterative inverse formula of the space field is presented at the same time. Based on trials of gravity anomalies and density noise, the influence of the two kinds of noise on the inverse result is discussed and the scale of noise requested for the stability of the arithmetic is analyzed. The effects of the initial model on the reduction of the ambiguity of the result and improvement of the precision of inversion are discussed. The correctness and validity of the method were verified by the 3D model of the three interfaces. 3D inversion was performed on the observed gravity anomaly data of the Okinawa trough using the program presented herein. The Tertiary basement and Moho depth were obtained from the inversion results, which also testify the adaptability of the method. This study has made a useful attempt for the inversion of gravity density interfaces.
An intelligent switch with back-propagation neural network based hybrid power system
Perdana, R. H. Y.; Fibriana, F.
2018-03-01
The consumption of conventional energy such as fossil fuels plays the critical role in the global warming issues. The carbon dioxide, methane, nitrous oxide, etc. could lead the greenhouse effects and change the climate pattern. In fact, 77% of the electrical energy is generated from fossil fuels combustion. Therefore, it is necessary to use the renewable energy sources for reducing the conventional energy consumption regarding electricity generation. This paper presents an intelligent switch to combine both energy resources, i.e., the solar panels as the renewable energy with the conventional energy from the State Electricity Enterprise (PLN). The artificial intelligence technology with the back-propagation neural network was designed to control the flow of energy that is distributed dynamically based on renewable energy generation. By the continuous monitoring on each load and source, the dynamic pattern of the intelligent switch was better than the conventional switching method. The first experimental results for 60 W solar panels showed the standard deviation of the trial at 0.7 and standard deviation of the experiment at 0.28. The second operation for a 900 W of solar panel obtained the standard deviation of the trial at 0.05 and 0.18 for the standard deviation of the experiment. Moreover, the accuracy reached 83% using this method. By the combination of the back-propagation neural network with the observation of energy usage of the load using wireless sensor network, each load can be evenly distributed and will impact on the reduction of conventional energy usage.
The Performance of EEG-P300 Classification using Backpropagation Neural Networks
Directory of Open Access Journals (Sweden)
Arjon Turnip
2013-12-01
Full Text Available Electroencephalogram (EEG recordings signal provide an important function of brain-computer communication, but the accuracy of their classification is very limited in unforeseeable signal variations relating to artifacts. In this paper, we propose a classification method entailing time-series EEG-P300 signals using backpropagation neural networks to predict the qualitative properties of a subject’s mental tasks by extracting useful information from the highly multivariate non-invasive recordings of brain activity. To test the improvement in the EEG-P300 classification performance (i.e., classification accuracy and transfer rate with the proposed method, comparative experiments were conducted using Bayesian Linear Discriminant Analysis (BLDA. Finally, the result of the experiment showed that the average of the classification accuracy was 97% and the maximum improvement of the average transfer rate is 42.4%, indicating the considerable potential of the using of EEG-P300 for the continuous classification of mental tasks.
Izhari, F.; Dhany, H. W.; Zarlis, M.; Sutarman
2018-03-01
A good age in optimizing aspects of development is at the age of 4-6 years, namely with psychomotor development. Psychomotor is broader, more difficult to monitor but has a meaningful value for the child's life because it directly affects his behavior and deeds. Therefore, there is a problem to predict the child's ability level based on psychomotor. This analysis uses backpropagation method analysis with artificial neural network to predict the ability of the child on the psychomotor aspect by generating predictions of the child's ability on psychomotor and testing there is a mean squared error (MSE) value at the end of the training of 0.001. There are 30% of children aged 4-6 years have a good level of psychomotor ability, excellent, less good, and good enough.
International Nuclear Information System (INIS)
Vasconcelos, W.L.; Shigaki, Y.; Tolentino, E.
2009-01-01
In this work it was analyzed the residual performance of Portland cement concretes, when cold after heat-treated up to 600 deg C. Granite-gneiss was used in the three concrete mix proportions as the coarse aggregate, and river sand with finesses modulus of 2.7 as the fine aggregate. Ultrasonic pulse tests were performed on all the specimens and ultrasonic dynamic modulus were obtained. An artificial neural network of the backpropagation type was trained to evaluate and apply models in predicting residual properties of Portland cement concretes. The input layer for both models consists of an external layer input vector of the temperature. The hidden layer has two processing units with hyperbolic tangent sigmoid transfer functions (tansig for short), and the output layer contains one processing unit that represents the network's output (ultrasonic pulse velocity or modulus of elasticity) for each input vector. The training phase of the network converged for reasonable results after 5.000 epochs approximately, resulting in mean squared errors less than 0.02 for the normalized data. The neural network developed for modeling residual properties of Portland cement concretes was shown to be efficient in both the training phase and the test. From the results reasonable predictions could be made for the ultrasonic pulse velocity or dynamic modulus of elasticity by using temperature. (author)
The application of backpropagation neural network method to estimate the sediment loads
Directory of Open Access Journals (Sweden)
Ari Gunawan Taufik
2017-01-01
Full Text Available Nearly all formulations of conventional sediment load estimation method were developed based on a review of laboratory data or data field. This approach is generally limited by local so it is only suitable for a particular river typology. From previous studies, the amount of sediment load tends to be non-linear with respect to the hydraulic parameters and parameter that accompanies sediment. The dominant parameter is turbulence, whereas turbulence flow velocity vector direction of x, y and z. They were affected by water bodies in 3D morphology of the cross section of the vertical and horizontal. This study is conducted to address the non-linear nature of the hydraulic parameter data and sediment parameter against sediment load data by applying the artificial neural network (ANN method. The method used is the backpropagation neural network (BPNN schema. This scheme used for projecting the sediment load from the hydraulic parameter data and sediment parameters that used in the conventional estimation of sediment load. The results showed that the BPNN model performs reasonably well on the conventional calculation, indicated by the stability of correlation coefficient (R and the mean square error (MSE.
Huang, Daizheng; Wu, Zhihui
2017-01-01
Accurately predicting the trend of outpatient visits by mathematical modeling can help policy makers manage hospitals effectively, reasonably organize schedules for human resources and finances, and appropriately distribute hospital material resources. In this study, a hybrid method based on empirical mode decomposition and back-propagation artificial neural networks optimized by particle swarm optimization is developed to forecast outpatient visits on the basis of monthly numbers. The data outpatient visits are retrieved from January 2005 to December 2013 and first obtained as the original time series. Second, the original time series is decomposed into a finite and often small number of intrinsic mode functions by the empirical mode decomposition technique. Third, a three-layer back-propagation artificial neural network is constructed to forecast each intrinsic mode functions. To improve network performance and avoid falling into a local minimum, particle swarm optimization is employed to optimize the weights and thresholds of back-propagation artificial neural networks. Finally, the superposition of forecasting results of the intrinsic mode functions is regarded as the ultimate forecasting value. Simulation indicates that the proposed method attains a better performance index than the other four methods.
Syahputra, M. F.; Amalia, C.; Rahmat, R. F.; Abdullah, D.; Napitupulu, D.; Setiawan, M. I.; Albra, W.; Nurdin; Andayani, U.
2018-03-01
Hypertension or high blood pressure can cause damage of blood vessels in the retina of eye called hypertensive retinopathy (HR). In the event Hypertension, it will cause swelling blood vessels and a decrese in retina performance. To detect HR in patients body, it is usually performed through physical examination of opthalmoscope which is still conducted manually by an ophthalmologist. Certainly, in such a manual manner, takes a ong time for a doctor to detetct HR on aa patient based on retina fundus iamge. To overcome ths problem, a method is needed to identify the image of retinal fundus automatically. In this research, backpropagation neural network was used as a method for retinal fundus identification. The steps performed prior to identification were pre-processing (green channel, contrast limited adapative histogram qualization (CLAHE), morphological close, background exclusion, thresholding and connected component analysis), feature extraction using zoning. The results show that the proposed method is able to identify retinal fundus with an accuracy of 95% with maximum epoch of 1500.
Directory of Open Access Journals (Sweden)
Yi-jun Liu
2015-12-01
Full Text Available Childhood nephrotic syndrome is a chronic disease harmful to growth of children. Scientific and accurate prediction of negative conversion days for children with nephrotic syndrome offers potential benefits for treatment of patients and helps achieve better cure effect. In this study, the improved backpropagation neural network with momentum is used for prediction. Momentum speeds up convergence and maintains the generalization performance of the neural network, and therefore overcomes weaknesses of the standard backpropagation algorithm. The three-tier network structure is constructed. Eight indicators including age, lgG, lgA and lgM, etc. are selected for network inputs. The scientific computing software of MATLAB and its neural network tools are used to create model and predict. The training sample of twenty-eight cases is used to train the neural network. The test sample of six typical cases belonging to six different age groups respectively is used to test the predictive model. The low mean absolute error of predictive results is achieved at 0.83. The experimental results of the small-size sample show that the proposed approach is to some degree applicable for the prediction of negative conversion days of childhood nephrotic syndrome.
Directory of Open Access Journals (Sweden)
Nugroho Nugroho
2012-01-01
Full Text Available The research on image identification has been conducted to identify the type of beef. The research is aimed to compare the performance of artificial neural network of backpropagation and general regression neural network model in identifying the type of meat. Image management is processed by counting R, G and B value in every meat image, and normalization process is then carried out by obtaining R, G, and B index value which is then converted from RGB model to HSI model to obtain the value of hue, saturation and intensity. The resulting value of image processing will be used as input parameter of training and validation programs. The performance of G RNN model is more accurate than the backpropagation with accuracy ratio by 51%.Keyword: Identification; Backpropagation; GRNN
Directory of Open Access Journals (Sweden)
Bahman O. Taha
2015-06-01
Full Text Available The reinforced concrete with fiber reinforced polymer (FRP bars (carbon, aramid, basalt and glass is used in places where a high ratio of strength to weight is required and corrosion is not acceptable. Behavior of structural members using (FRP bars is hard to be modeled using traditional methods because of the high non-linearity relationship among factors influencing the strength of structural members. Back-propagation neural network is a very effective method for modeling such complicated relationships. In this paper, back-propagation neural network is used for modeling the flexural behavior of beams reinforced with (FRP bars. 101 samples of beams reinforced with fiber bars were collected from literatures. Five important factors are taken in consideration for predicting the strength of beams. Two models of Multilayer Perceptron (MLP are created, first with single-hidden layer and the second with two-hidden layers. The two-hidden layer model showed better accuracy ratio than the single-hidden layer model. Parametric study has been done for two-hidden layer model only. Equations are derived to be used instead of the model and the importance of input factors is determined. Results showed that the neural network is successful in modeling the behavior of concrete beams reinforced with different types of (FRP bars.
Xin, Meiting; Li, Bing; Yan, Xiao; Chen, Lei; Wei, Xiang
2018-02-01
A robust coarse-to-fine registration method based on the backpropagation (BP) neural network and shift window technology is proposed in this study. Specifically, there are three steps: coarse alignment between the model data and measured data, data simplification based on the BP neural network and point reservation in the contour region of point clouds, and fine registration with the reweighted iterative closest point algorithm. In the process of rough alignment, the initial rotation matrix and the translation vector between the two datasets are obtained. After performing subsequent simplification operations, the number of points can be reduced greatly. Therefore, the time and space complexity of the accurate registration can be significantly reduced. The experimental results show that the proposed method improves the computational efficiency without loss of accuracy.
Energy Technology Data Exchange (ETDEWEB)
Li Yingwei [Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650093 (China); Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming University of Science and Technology, Kunming, Yunnan Province 650093 (China); Peng Jinhui, E-mail: jhpeng@kmust.edu.c [Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650093 (China); Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming University of Science and Technology, Kunming, Yunnan Province 650093 (China); Liu Bingguo [Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650093 (China); Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming University of Science and Technology, Kunming, Yunnan Province 650093 (China); Li Wei [Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming University of Science and Technology, Kunming, Yunnan Province 650093 (China); Huang Daifu [No. 272 Nuclear Industry Factory, China National Nuclear Corporation, Hengyang, Hunan Province 421002 (China); Zhang Libo [Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650093 (China); Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming University of Science and Technology, Kunming, Yunnan Province 650093 (China)
2011-05-15
Research highlights: The incremental improved Back-Propagation neural network prediction model using the Levenberg-Marquardt algorithm based on optimizing theory is put forward. The prediction model of the nonlinear system is built, which can effectively predict the experiment of microwave calcining of ammonium uranyl carbonate (AUC). AUC can accept the microwave energy and microwave heating can quickly decompose AUC. In the experiment of microwave calcining of AUC, the contents of U and U{sup 4+} increased with increasing of microwave power and irradiation time, and decreased with increasing of the material average depth. - Abstract: The incremental improved Back-Propagation (BP) neural network prediction model was put forward, which was very useful in overcoming the problems, such as long testing cycle, high testing quantity, difficulty of optimization for process parameters, many training data probably were offered by the way of increment batch and the limitation of the system memory could make the training data infeasible, which existed in the process of calcinations for ammonium uranyl carbonate (AUC) by microwave heating. The prediction model of the nonlinear system was built, which could effectively predict the experiment of microwave calcining of AUC. The predicted results indicated that the contents of U and U{sup 4+} were increased with increasing of microwave power and irradiation time, and decreased with increasing of the material average depth.
International Nuclear Information System (INIS)
Li Yingwei; Peng Jinhui; Liu Bingguo; Li Wei; Huang Daifu; Zhang Libo
2011-01-01
Research highlights: → The incremental improved Back-Propagation neural network prediction model using the Levenberg-Marquardt algorithm based on optimizing theory is put forward. → The prediction model of the nonlinear system is built, which can effectively predict the experiment of microwave calcining of ammonium uranyl carbonate (AUC). → AUC can accept the microwave energy and microwave heating can quickly decompose AUC. → In the experiment of microwave calcining of AUC, the contents of U and U 4+ increased with increasing of microwave power and irradiation time, and decreased with increasing of the material average depth. - Abstract: The incremental improved Back-Propagation (BP) neural network prediction model was put forward, which was very useful in overcoming the problems, such as long testing cycle, high testing quantity, difficulty of optimization for process parameters, many training data probably were offered by the way of increment batch and the limitation of the system memory could make the training data infeasible, which existed in the process of calcinations for ammonium uranyl carbonate (AUC) by microwave heating. The prediction model of the nonlinear system was built, which could effectively predict the experiment of microwave calcining of AUC. The predicted results indicated that the contents of U and U 4+ were increased with increasing of microwave power and irradiation time, and decreased with increasing of the material average depth.
Predicting carbonate permeabilities from wireline logs using a back-propagation neural network
International Nuclear Information System (INIS)
Wiener, J.M.; Moll, R.F.; Rogers, J.A.
1991-01-01
This paper explores the applicability of using Neural Networks to aid in the determination of carbonate permeability from wireline logs. Resistivity, interval transit time, neutron porosity, and bulk density logs form Texaco's Stockyard Creek Oil field were used as input to a specially designed neural network to predict core permeabilities in this carbonate reservoir. Also of interest was the comparison of the neural network's results to those of standard statistical techniques. The process of developing the neural network for this problem has shown that a good understanding of the data is required when creating the training set from which the network learns. This network was trained to learn core permeabilities from raw and transformed log data using a hyperbolic tangent transfer function and a sum of squares global error function. Also, it required two hidden layers to solve this particular problem
Vairaprakash Gurusamy *1 & K.Nandhini2
2017-01-01
A Neural Network is a powerful data modeling tool that is able to capture and represent complex input/output relationships. The motivation for the development of neural network technology stemmed from the desire to develop an artificial system that could perform "intelligent" tasks similar to those performed by the human brain.Back propagation was created by generalizing the Widrow-Hoff learning rule to multiple-layer networks and nonlinear differentiable transfer functions. The term back pro...
Directory of Open Access Journals (Sweden)
Yi-Qing Wang
2015-09-01
Full Text Available Recent years have seen a surge of interest in multilayer neural networks fueled by their successful applications in numerous image processing and computer vision tasks. In this article, we describe a C++ implementation of the stochastic gradient descent to train a multilayer neural network, where a fast and accurate acceleration of tanh(· is achieved with linear interpolation. As an example of application, we present a neural network able to deliver state-of-the-art performance in image demosaicing.
Directory of Open Access Journals (Sweden)
Wijayanti Nurul Khotimah
2017-01-01
Full Text Available Sign Language recognition was used to help people with normal hearing communicate effectively with the deaf and hearing-impaired. Based on survey that conducted by Multi-Center Study in Southeast Asia, Indonesia was on the top four position in number of patients with hearing disability (4.6%. Therefore, the existence of Sign Language recognition is important. Some research has been conducted on this field. Many neural network types had been used for recognizing many kinds of sign languages. However, their performance are need to be improved. This work focuses on the ASL (Alphabet Sign Language in SIBI (Sign System of Indonesian Language which uses one hand and 26 gestures. Here, thirty four features were extracted by using Leap Motion. Further, a new method, Rule Based-Backpropagation Genetic Al-gorithm Neural Network (RB-BPGANN, was used to recognize these Sign Languages. This method is combination of Rule and Back Propagation Neural Network (BPGANN. Based on experiment this pro-posed application can recognize Sign Language up to 93.8% accuracy. It was very good to recognize large multiclass instance and can be solution of overfitting problem in Neural Network algorithm.
Matching algorithm of missile tail flame based on back-propagation neural network
Huang, Da; Huang, Shucai; Tang, Yidong; Zhao, Wei; Cao, Wenhuan
2018-02-01
This work presents a spectral matching algorithm of missile plume detection that based on neural network. The radiation value of the characteristic spectrum of the missile tail flame is taken as the input of the network. The network's structure including the number of nodes and layers is determined according to the number of characteristic spectral bands and missile types. We can get the network weight matrixes and threshold vectors through training the network using training samples, and we can determine the performance of the network through testing the network using the test samples. A small amount of data cause the network has the advantages of simple structure and practicality. Network structure composed of weight matrix and threshold vector can complete task of spectrum matching without large database support. Network can achieve real-time requirements with a small quantity of data. Experiment results show that the algorithm has the ability to match the precise spectrum and strong robustness.
Yuniarto, Budi; Kurniawan, Robert
2017-03-01
PLS Path Modeling (PLS-PM) is different from covariance based SEM, where PLS-PM use an approach based on variance or component, therefore, PLS-PM is also known as a component based SEM. Multiblock Partial Least Squares (MBPLS) is a method in PLS regression which can be used in PLS Path Modeling which known as Multiblock PLS Path Modeling (MBPLS-PM). This method uses an iterative procedure in its algorithm. This research aims to modify MBPLS-PM with Back Propagation Neural Network approach. The result is MBPLS-PM algorithm can be modified using the Back Propagation Neural Network approach to replace the iterative process in backward and forward step to get the matrix t and the matrix u in the algorithm. By modifying the MBPLS-PM algorithm using Back Propagation Neural Network approach, the model parameters obtained are relatively not significantly different compared to model parameters obtained by original MBPLS-PM algorithm.
Antwi, Philip; Li, Jianzheng; Boadi, Portia Opoku; Meng, Jia; Shi, En; Deng, Kaiwen; Bondinuba, Francis Kwesi
2017-03-01
Three-layered feedforward backpropagation (BP) artificial neural networks (ANN) and multiple nonlinear regression (MnLR) models were developed to estimate biogas and methane yield in an upflow anaerobic sludge blanket (UASB) reactor treating potato starch processing wastewater (PSPW). Anaerobic process parameters were optimized to identify their importance on methanation. pH, total chemical oxygen demand, ammonium, alkalinity, total Kjeldahl nitrogen, total phosphorus, volatile fatty acids and hydraulic retention time selected based on principal component analysis were used as input variables, whiles biogas and methane yield were employed as target variables. Quasi-Newton method and conjugate gradient backpropagation algorithms were best among eleven training algorithms. Coefficient of determination (R 2 ) of the BP-ANN reached 98.72% and 97.93% whiles MnLR model attained 93.9% and 91.08% for biogas and methane yield, respectively. Compared with the MnLR model, BP-ANN model demonstrated significant performance, suggesting possible control of the anaerobic digestion process with the BP-ANN model. Copyright © 2016 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Shojaee Safar Ali
2014-01-01
Full Text Available In this study, feasibility of a back-propagated artificial neural network to correlate the binary density of ionic liquids (ILs mixtures containing water as the common solvent has been investigated. To verify the optimized parameters of the neural network, total of 1668 data were collected and divided into two different subsets. The first subsets consisted of more than two-third (1251 data points of data bank was used to find the optimum parameters including weights and biases, number of neurons (7 neurons, transfer functions in hidden and output layer which were tansig and purelin, respectively. In addition, the correlative capability of network was examined using testing subset (417 data points not considered during the training stage. The overall obtained results revealed that the proposed network is accurate enough to correlate the binary density of the ionic liquids mixtures with average absolute relative deviation (AARD % and average relative deviation (ARD % of 1.56% and -0.04 %, respectively. Finally, the correlative capability of the proposed ANN model was compared with one of the available correlations proposed by Rodríguez and Brennecke.
New backpropagation algorithm with type-2 fuzzy weights for neural networks
Gaxiola, Fernando; Valdez, Fevrier
2016-01-01
In this book a neural network learning method with type-2 fuzzy weight adjustment is proposed. The mathematical analysis of the proposed learning method architecture and the adaptation of type-2 fuzzy weights are presented. The proposed method is based on research of recent methods that handle weight adaptation and especially fuzzy weights. The internal operation of the neuron is changed to work with two internal calculations for the activation function to obtain two results as outputs of the proposed method. Simulation results and a comparative study among monolithic neural networks, neural network with type-1 fuzzy weights and neural network with type-2 fuzzy weights are presented to illustrate the advantages of the proposed method. The proposed approach is based on recent methods that handle adaptation of weights using fuzzy logic of type-1 and type-2. The proposed approach is applied to a cases of prediction for the Mackey-Glass (for ô=17) and Dow-Jones time series, and recognition of person with iris bi...
Chen, Yan; Cai, Kezhou; Tu, Zehui; Nie, Wen; Ji, Tuo; Hu, Bing; Chen, Conggui; Jiang, Shaotong
2017-11-29
Benzo[a]pyrene (BaP), a potent mutagen and carcinogen, is reported to be present in processed meat products and, in particular, in smoked meat. However, few methods exist for predictive determination of the BaP content of smoked meats such as sausage. In this study, an artificial neural network (ANN) model based on the back-propagation (BP) algorithm was used to predict the BaP content of smoked sausage. The results showed that the BP network based on the Levenberg-Marquardt algorithm was the best suited for creating a nonlinear map between the input and output parameters. The optimal network structure was 3-7-1 and the learning rate was 0.6. This BP-ANN model allowed for accurate predictions, with the correlation coefficients (R) for the experimentally determined training, validation, test and global data sets being 0.94, 0.96, 0.95 and 0.95 respectively. The validation performance was 0.013, suggesting that the proposed BP-ANN may be used to predictively detect the BaP content of smoked meat products. An effective predictive model was constructed for estimation of the BaP content of smoked sausage using ANN modeling techniques, which shows potential to predict the BaP content in smoked sausage. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Forecasting Urban Air Quality via a Back-Propagation Neural Network and a Selection Sample Rule
Directory of Open Access Journals (Sweden)
Yonghong Liu
2015-07-01
Full Text Available In this paper, based on a sample selection rule and a Back Propagation (BP neural network, a new model of forecasting daily SO2, NO2, and PM10 concentration in seven sites of Guangzhou was developed using data from January 2006 to April 2012. A meteorological similarity principle was applied in the development of the sample selection rule. The key meteorological factors influencing SO2, NO2, and PM10 daily concentrations as well as weight matrices and threshold matrices were determined. A basic model was then developed based on the improved BP neural network. Improving the basic model, identification of the factor variation consistency was added in the rule, and seven sets of sensitivity experiments in one of the seven sites were conducted to obtain the selected model. A comparison of the basic model from May 2011 to April 2012 in one site showed that the selected model for PM10 displayed better forecasting performance, with Mean Absolute Percentage Error (MAPE values decreasing by 4% and R2 values increasing from 0.53 to 0.68. Evaluations conducted at the six other sites revealed a similar performance. On the whole, the analysis showed that the models presented here could provide local authorities with reliable and precise predictions and alarms about air quality if used at an operational scale.
Xu, Jun-Fang; Xu, Jing; Li, Shi-Zhu; Jia, Tia-Wu; Huang, Xi-Bao; Zhang, Hua-Ming; Chen, Mei; Yang, Guo-Jing; Gao, Shu-Jing; Wang, Qing-Yun; Zhou, Xiao-Nong
2013-01-01
Background The transmission of schistosomiasis japonica in a local setting is still poorly understood in the lake regions of the People's Republic of China (P. R. China), and its transmission patterns are closely related to human, social and economic factors. Methodology/Principal Findings We aimed to apply the integrated approach of artificial neural network (ANN) and logistic regression model in assessment of transmission risks of Schistosoma japonicum with epidemiological data collected from 2339 villagers from 1247 households in six villages of Jiangling County, P.R. China. By using the back-propagation (BP) of the ANN model, 16 factors out of 27 factors were screened, and the top five factors ranked by the absolute value of mean impact value (MIV) were mainly related to human behavior, i.e. integration of water contact history and infection history, family with past infection, history of water contact, infection history, and infection times. The top five factors screened by the logistic regression model were mainly related to the social economics, i.e. village level, economic conditions of family, age group, education level, and infection times. The risk of human infection with S. japonicum is higher in the population who are at age 15 or younger, or with lower education, or with the higher infection rate of the village, or with poor family, and in the population with more than one time to be infected. Conclusion/Significance Both BP artificial neural network and logistic regression model established in a small scale suggested that individual behavior and socioeconomic status are the most important risk factors in the transmission of schistosomiasis japonica. It was reviewed that the young population (≤15) in higher-risk areas was the main target to be intervened for the disease transmission control. PMID:23556015
Directory of Open Access Journals (Sweden)
Salim Lahmiri
2014-07-01
Full Text Available This paper presents a forecasting model that integrates the discrete wavelet transform (DWT and backpropagation neural networks (BPNN for predicting financial time series. The presented model first uses the DWT to decompose the financial time series data. Then, the obtained approximation (low-frequency and detail (high-frequency components after decomposition of the original time series are used as input variables to forecast future stock prices. Indeed, while high-frequency components can capture discontinuities, ruptures and singularities in the original data, low-frequency components characterize the coarse structure of the data, to identify the long-term trends in the original data. As a result, high-frequency components act as a complementary part of low-frequency components. The model was applied to seven datasets. For all of the datasets, accuracy measures showed that the presented model outperforms a conventional model that uses only low-frequency components. In addition, the presented model outperforms both the well-known auto-regressive moving-average (ARMA model and the random walk (RW process.
Directory of Open Access Journals (Sweden)
Song Chul-Gyu
2011-08-01
Full Text Available Abstract Background Radiological scoring methods such as colon transit time (CTT have been widely used for the assessment of bowel motility. However, these radiograph-based methods need cumbersome radiological instruments and their frequent exposure to radiation. Therefore, a non-invasive estimation algorithm of bowel motility, based on a back-propagation neural network (BPNN model of bowel sounds (BS obtained by an auscultation, was devised. Methods Twelve healthy males (age: 24.8 ± 2.7 years and 6 patients with spinal cord injury (6 males, age: 55.3 ± 7.1 years were examined. BS signals generated during the digestive process were recorded from 3 colonic segments (ascending, descending and sigmoid colon, and then, the acoustical features (jitter and shimmer of the individual BS segment were obtained. Only 6 features (J1, 3, J3, 3, S1, 2, S2, 1, S2, 2, S3, 2, which are highly correlated to the CTTs measured by the conventional method, were used as the features of the input vector for the BPNN. Results As a results, both the jitters and shimmers of the normal subjects were relatively higher than those of the patients, whereas the CTTs of the normal subjects were relatively lower than those of the patients (p k-fold cross validation, the correlation coefficient and mean average error between the CTTs measured by a conventional radiograph and the values estimated by our algorithm were 0.89 and 10.6 hours, respectively. Conclusions The jitter and shimmer of the BS signals generated during the peristalsis could be clinically useful for the discriminative parameters of bowel motility. Also, the devised algorithm showed good potential for the continuous monitoring and estimation of bowel motility, instead of conventional radiography, and thus, it could be used as a complementary tool for the non-invasive measurement of bowel motility.
Sheridan, C.; O'Farrell, M.; Lewis, E.; Lyons, W. B.; Flanagan, C.; Jackman, N.
2006-02-01
This paper reports on two methods of classifying the spectral data from an optical fibre based sensor system as used in the food industry. The first method uses a feed-forward back-propagation artificial neural network while the second method involves using Kohonen self-organizing maps. The sensor monitors the food colour online as the food cooks by examining the reflected light from both the surface and the core of the product. The combination of using principal component analysis and back-propagation neural networks has been successfully investigated previously. In this paper, results obtained using this method are compared with results obtained using a self-organizing map trained on the principal components. The principal components used to train both classifiers are ordered in a 'colourscale'—a scale developed to allow several products of similar colour to be tested using a single network that had been trained using the colourscale. The results presented show that both classifiers perform well, and that any differences that arise occur at the boundaries of the classes.
Bahadir, Elif
2016-01-01
The purpose of this study is to examine a neural network based approach to predict achievement in graduate education for Elementary Mathematics prospective teachers. With the help of this study, it can be possible to make an effective prediction regarding the students' achievement in graduate education with Artificial Neural Networks (ANN). Two…
Yu, Hao; Rossi, Giammarco; Braglia, Andrea; Perrone, Guido
2016-08-10
The paper presents the development of a tool based on a back-propagation artificial neural network to assist in the accurate positioning of the lenses used to collimate the beam from semiconductor laser diodes along the so-called fast axis. After training using a Gaussian beam ray-equivalent model, the network is capable of indicating the tilt, decenter, and defocus of such lenses from the measured field distribution, so the operator can determine the errors with respect to the actual lens position and optimize the diode assembly procedure. An experimental validation using a typical configuration exploited in multi-emitter diode module assembly and fast axis collimating lenses with different focal lengths and numerical apertures is reported.
Vrettaros, John; Vouros, George; Drigas, Athanasios S.
This article studies the expediency of using neural networks technology and the development of back-propagation networks (BPN) models for modeling automated evaluation of the answers and progress of deaf students' that possess basic knowledge of the English language and computer skills, within a virtual e-learning environment. The performance of the developed neural models is evaluated with the correlation factor between the neural networks' response values and the real value data as well as the percentage measurement of the error between the neural networks' estimate values and the real value data during its training process and afterwards with unknown data that weren't used in the training process.
Directory of Open Access Journals (Sweden)
Harjoko Agus
2018-01-01
Full Text Available Acute Myeloid Leukemia (AML is a type of cancer which attacks white blood cells from myeloid. AML has eight subtypes, namely: M0, M1, M2, M3, M4, M5, M6, and M7. AML subtypes M1, M2 and M3 are affected by the same type of cells, myeloblast, making it needs more detailed analysis to distinguish. To overcome these obstacles, this research is applying digital image processing with Active Contour Without Edge (ACWE and Momentum Backpropagation artificial neural network for AML subtypes M1, M2 and M3 classification based on the type of the cell. Six features required as training parameters from every cell obtained by using feature extraction. The features are: cell area, perimeter, circularity, nucleus ratio, mean and standard deviation. The results show that ACWE can be used for segmenting white blood cells with 83.789% success percentage of 876 total cell objects. The whole AML slides had been identified according to the cell types predicted number through training with momentum backpropagation. Five times testing calibration with the best parameter generated averages value of 84.754% precision, 75.887% sensitivity, 95.090% specificity and 93.569% accuracy.
International Nuclear Information System (INIS)
Doh, Jaeh Yeok; Lee, Jong Soo; Lee, Seung Uk
2016-01-01
In this study, a Back-propagation neural network (BPN) is employed to conduct an approximation of a true stress-strain curve using the load-displacement experimental data of DP590, a high-strength material used in automobile bodies and chassis. The optimized interconnection weights are obtained with hidden layers and output layers of the BPN through intelligent learning and training of the experimental data; by using these weights, a mathematical model of the material's behavior is suggested through this feed-forward neural network. Generally, the material properties from the tensile test cannot be acquired until the fracture regions, since it is difficult to measure the cross-section area of a specimen after diffusion necking. For this reason, the plastic properties of the true stress-strain are extrapolated using the weighted-average method after diffusion necking. The accuracies of BPN-based meta-models for predicting material properties are validated in terms of the Root mean square error (RMSE). By applying the approximate material properties, the reliable finite element solution can be obtained to realize the different shapes of the finite element models. Furthermore, the sensitivity analysis of the approximate meta-model is performed using the first-order approximate derivatives of the BPN and is compared with the results of the finite difference method. In addition, we predict the tension velocity's effect on the material property through a first-order sensitivity analysis.
3-D inversion of borehole-to-surface electrical data using a back-propagation neural network
Ho, Trong Long
2009-08-01
The "fluid-flow tomography", an advanced technique for geoelectrical survey based on the conventional mise-à-la-masse measurement, has been developed by Exploration Geophysics Laboratory at the Kyushu University. This technique is proposed to monitor fluid-flow behavior during water injection and production in a geothermal field. However data processing of this technique is very costly. In this light, this paper will discuss the solution to cost reduction by applying a neural network in the data processing. A case study in the Takigami geothermal field in Japan will be used to illustrate this. The achieved neural network in this case study is three-layered and feed-forward. The most successful learning algorithm in this network is the Resilient Propagation (RPROP). Consequently, the study advances the pragmatism of the "fluid-flow tomography" technique which can be widely used for geothermal fields. Accuracy of the solution is then verified by using root mean square (RMS) misfit error as an indicator.
Fauziah; Wibowo, E. P.; Madenda, S.; Hustinawati
2018-03-01
Capturing and recording motion in human is mostly done with the aim for sports, health, animation films, criminality, and robotic applications. In this study combined background subtraction and back propagation neural network. This purpose to produce, find similarity movement. The acquisition process using 8 MP resolution camera MP4 format, duration 48 seconds, 30frame/rate. video extracted produced 1444 pieces and results hand motion identification process. Phase of image processing performed is segmentation process, feature extraction, identification. Segmentation using bakground subtraction, extracted feature basically used to distinguish between one object to another object. Feature extraction performed by using motion based morfology analysis based on 7 invariant moment producing four different classes motion: no object, hand down, hand-to-side and hands-up. Identification process used to recognize of hand movement using seven inputs. Testing and training with a variety of parameters tested, it appears that architecture provides the highest accuracy in one hundred hidden neural network. The architecture is used propagate the input value of the system implementation process into the user interface. The result of the identification of the type of the human movement has been clone to produce the highest acuracy of 98.5447%. The training process is done to get the best results.
Directory of Open Access Journals (Sweden)
Zhilong Wang
2014-01-01
Full Text Available In the electricity market, the electricity price plays an inevitable role. Nevertheless, accurate price forecasting, a vital factor affecting both government regulatory agencies and public power companies, remains a huge challenge and a critical problem. Determining how to address the accurate forecasting problem becomes an even more significant task in an era in which electricity is increasingly important. Based on the chaos particle swarm optimization (CPSO, the backpropagation artificial neural network (BPANN, and the idea of bivariate division, this paper proposes a bivariate division BPANN (BD-BPANN method and the CPSO-BD-BPANN method for forecasting electricity price. The former method creatively transforms the electricity demand and price to be a new variable, named DV, which is calculated using the division principle, to forecast the day-ahead electricity by multiplying the forecasted values of the DVs and forecasted values of the demand. Next, to improve the accuracy of BD-BPANN, chaos particle swarm optimization and BD-BPANN are synthesized to form a novel model, CPSO-BD-BPANN. In this study, CPSO is utilized to optimize the initial parameters of BD-BPANN to make its output more stable than the original model. Finally, two forecasting strategies are proposed regarding different situations.
Directory of Open Access Journals (Sweden)
Gang Yang
2017-09-01
Full Text Available The solubility data of compounds in supercritical fluids and the correlation between the experimental solubility data and predicted solubility data are crucial to the development of supercritical technologies. In the present work, the solubility data of silymarin (SM in both pure supercritical carbon dioxide (SCCO2 and SCCO2 with added cosolvent was measured at temperatures ranging from 308 to 338 K and pressures from 8 to 22 MPa. The experimental data were fit with three semi-empirical density-based models (Chrastil, Bartle and Mendez-Santiago and Teja models and a back-propagation artificial neural networks (BPANN model. Interaction parameters for the models were obtained and the percentage of average absolute relative deviation (AARD% in each calculation was determined. The correlation results were in good agreement with the experimental data. A comparison among the four models revealed that the experimental solubility data were more fit with the BPANN model with AARDs ranging from 1.14% to 2.15% for silymarin in pure SCCO2 and with added cosolvent. The results provide fundamental data for designing the extraction of SM or the preparation of its particle using SCCO2 techniques.
Directory of Open Access Journals (Sweden)
Hyung-Suk Han
2012-12-01
Full Text Available The indoor noise of a ship is usually determined using the A-weighted sound pressure level. However, in order to better understand this phenomenon, evaluation parameters that more accurately reflect the human sense of hearing are required. To find the level of the satisfaction index of the noise inside a naval vessel such as “Loudness” and “Annoyance”, psycho-acoustic evaluation of various sound recordings from the naval vessel was performed in a laboratory. The objective of this paper is to develop a single index of “Loudness” and “Annoyance” for noise inside a naval vessel according to a psycho-acoustic evaluation by using psychological responses such as Noise Rating (NR, Noise Criterion (NC, Room Criterion (RC, Preferred Speech Interference Level (PSIL and loudness level. Additionally, in order to determine a single index of satisfaction for noise such as “Loudness” and “Annoyance”, with respect to a human's sense of hearing, a back-propagation neural network is applied.
Deconvolution using a neural network
Energy Technology Data Exchange (ETDEWEB)
Lehman, S.K.
1990-11-15
Viewing one dimensional deconvolution as a matrix inversion problem, we compare a neural network backpropagation matrix inverse with LMS, and pseudo-inverse. This is a largely an exercise in understanding how our neural network code works. 1 ref.
Chin Kim On; Teo Kein Yau; Rayner Alfred; Jason Teo; Patricia Anthony; Wang Cheng
2016-01-01
In this paper, we describe a research project that autonomously localizes and recognizes non-standardized Malaysian’s car plates using conventional Backpropagation algorithm (BPP) in combination with Ensemble Neural Network (ENN). We compared the results with the results obtained using simple Feed-Forward Neural Network (FFNN). This research aims to solve four main issues; (1) localization of car plates that has the same colour with the vehicle colour, (2) detection and recognition of car pla...
Program Helps Simulate Neural Networks
Villarreal, James; Mcintire, Gary
1993-01-01
Neural Network Environment on Transputer System (NNETS) computer program provides users high degree of flexibility in creating and manipulating wide variety of neural-network topologies at processing speeds not found in conventional computing environments. Supports back-propagation and back-propagation-related algorithms. Back-propagation algorithm used is implementation of Rumelhart's generalized delta rule. NNETS developed on INMOS Transputer(R). Predefines back-propagation network, Jordan network, and reinforcement network to assist users in learning and defining own networks. Also enables users to configure other neural-network paradigms from NNETS basic architecture. Small portion of software written in OCCAM(R) language.
Directory of Open Access Journals (Sweden)
Orlando Lastres Danguillecourt
2012-03-01
Full Text Available Este trabajo presenta los resultados preliminares de la configuración de una red neuronal artificial (ANN, de tipo alimentación hacia adelante con el método de entrenamiento de retro-propagación para pronosticar la velocidad de viento en la región del Istmo de Tehuantepec, Oaxaca, México. La base de datos utilizada abarca los años comprendidos entre Junio 2008- Noviembre 2011, y fue suministrada por una estación meteorológica ubicada en la Universidad del Istmo campus Tehuantepec. Los experimentos se realizaron utilizando las siguientes variables: velocidad del viento, presión, temperatura y fecha. Al mismo tiempo se hicieron siete pruebas combinando estas variables, comparando su error cuadrático medio (MSE y el coeficiente de correlación r, con los datos de predicción y experimentales. En esta investigación, se propone una ANN de dos capas ocultas, para un pronóstico de 48 horas.This paper presents the preliminary results of setting up an artificial neural network (ANN of the feed forward type with the backpropagation training method for forecast wind speed in the region in the Isthmus of Tehuantepec, Oaxaca, Mexico. The database used covers the years from June 2008 - November 2011, and was supplied by a meteorological station located at the Isthmus University campus Tehuantepec. The experiments were done using the following variables: wind speed, pressure, temperature and date. At the same time were done seven tests combining these variables, comparing their mean square error (MSE and coefficient correlation r, with data the predicting and experimental. In this research, is proposed a ANN of two hidden layers, for a forecast of 48 hours.
Wang, Zheng; Mao, Zhihua; Xia, Junshi; Du, Peijun; Shi, Liangliang; Huang, Haiqing; Wang, Tianyu; Gong, Fang; Zhu, Qiankun
2018-06-01
The cloud cover for the South China Sea and its coastal area is relatively large throughout the year, which limits the potential application of optical remote sensing. A HJ-charge-coupled device (HJ-CCD) has the advantages of wide field, high temporal resolution, and short repeat cycle. However, this instrument suffers from its use of only four relatively low-quality bands which can't adequately resolve the features of long wavelengths. The Landsat Enhanced Thematic Mapper-plus (ETM+) provides high-quality data, however, the Scan Line Corrector (SLC) stopped working and caused striping of remote sensed images, which dramatically reduced the coverage of the ETM+ data. In order to combine the advantages of the HJ-CCD and Landsat ETM+ data, we adopted a back-propagation artificial neural network (BP-ANN) to fuse these two data types for this study. The results showed that the fused output data not only have the advantage of data intactness for the HJ-CCD, but also have the advantages of the multi-spectral and high radiometric resolution of the ETM+ data. Moreover, the fused data were analyzed qualitatively, quantitatively and from a practical application point of view. Experimental studies indicated that the fused data have a full spatial distribution, multi-spectral bands, high radiometric resolution, a small difference between the observed and fused output data, and a high correlation between the observed and fused data. The excellent performance in its practical application is a further demonstration that the fused data are of high quality.
Song, Xianzhi; Peng, Chi; Li, Gensheng; He, Zhenguo; Wang, Haizhu
2016-01-01
Sand production and blockage are common during the drilling and production of horizontal oil and gas wells as a result of formation breakdown. The use of high-pressure rotating jets and annular helical flow is an effective way to enhance horizontal wellbore cleanout. In this paper, we propose the idea of using supercritical CO2 (SC-CO2) as washing fluid in water-sensitive formation. SC-CO2 is manifested to be effective in preventing formation damage and enhancing production rate as drilling fluid, which justifies tis potential in wellbore cleanout. In order to investigate the effectiveness of SC-CO2 helical flow cleanout, we perform the numerical study on the annular flow field, which significantly affects sand cleanout efficiency, of SC-CO2 jets in horizontal wellbore. Based on the field data, the geometry model and mathematical models were built. Then a numerical simulation of the annular helical flow field by SC-CO2 jets was accomplished. The influences of several key parameters were investigated, and SC-CO2 jets were compared to conventional water jets. The results show that flow rate, ambient temperature, jet temperature, and nozzle assemblies play the most important roles on wellbore flow field. Once the difference between ambient temperatures and jet temperatures is kept constant, the wellbore velocity distributions will not change. With increasing lateral nozzle size or decreasing rear/forward nozzle size, suspending ability of SC-CO2 flow improves obviously. A back-propagation artificial neural network (BP-ANN) was successfully employed to match the operation parameters and SC-CO2 flow velocities. A comprehensive model was achieved to optimize the operation parameters according to two strategies: cost-saving strategy and local optimal strategy. This paper can help to understand the distinct characteristics of SC-CO2 flow. And it is the first time that the BP-ANN is introduced to analyze the flow field during wellbore cleanout in horizontal wells.
Directory of Open Access Journals (Sweden)
Xianzhi Song
Full Text Available Sand production and blockage are common during the drilling and production of horizontal oil and gas wells as a result of formation breakdown. The use of high-pressure rotating jets and annular helical flow is an effective way to enhance horizontal wellbore cleanout. In this paper, we propose the idea of using supercritical CO2 (SC-CO2 as washing fluid in water-sensitive formation. SC-CO2 is manifested to be effective in preventing formation damage and enhancing production rate as drilling fluid, which justifies tis potential in wellbore cleanout. In order to investigate the effectiveness of SC-CO2 helical flow cleanout, we perform the numerical study on the annular flow field, which significantly affects sand cleanout efficiency, of SC-CO2 jets in horizontal wellbore. Based on the field data, the geometry model and mathematical models were built. Then a numerical simulation of the annular helical flow field by SC-CO2 jets was accomplished. The influences of several key parameters were investigated, and SC-CO2 jets were compared to conventional water jets. The results show that flow rate, ambient temperature, jet temperature, and nozzle assemblies play the most important roles on wellbore flow field. Once the difference between ambient temperatures and jet temperatures is kept constant, the wellbore velocity distributions will not change. With increasing lateral nozzle size or decreasing rear/forward nozzle size, suspending ability of SC-CO2 flow improves obviously. A back-propagation artificial neural network (BP-ANN was successfully employed to match the operation parameters and SC-CO2 flow velocities. A comprehensive model was achieved to optimize the operation parameters according to two strategies: cost-saving strategy and local optimal strategy. This paper can help to understand the distinct characteristics of SC-CO2 flow. And it is the first time that the BP-ANN is introduced to analyze the flow field during wellbore cleanout in
Premature saturation in backpropagation networks: Mechanism and necessary conditions
International Nuclear Information System (INIS)
Vitela, J.E.; Reifman, J.
1997-01-01
The mechanism that gives rise to the phenomenon of premature saturation of the output units of feedforward multilayer neural networks during training with the standard backpropagation algorithm is described. The entire process of premature saturation is characterized by three distinct stages and it is concluded that the momentum term plays the leading role in the occurrence of the phenomenon. The necessary conditions for the occurrence of premature saturation are presented and a new method is proposed, based on these conditions, that eliminates the occurrence of the phenomenon. Validity of the conditions and the proposed method are illustrated through simulation results. Three case studies are presented. The first two came from a training session for classification of three component failures in a nuclear power plant. The last case, comes from a training session for classification of welded fuel elements
Error-backpropagation in temporally encoded networks of spiking neurons
S.M. Bohte (Sander); J.A. La Poutré (Han); J.N. Kok (Joost)
2000-01-01
textabstractFor a network of spiking neurons that encodes information in the timing of individual spike-times, we derive a supervised learning rule, emph{SpikeProp, akin to traditional error-backpropagation and show how to overcome the discontinuities introduced by thresholding. With this algorithm,
Pelicano, Christian Mark; Rapadas, Nick; Cagatan, Gerard; Magdaluyo, Eduardo
2017-12-01
Herein, the crystallite size and band gap energy of zinc oxide (ZnO) quantum dots were predicted using artificial neural network (ANN). Three input factors including reagent ratio, growth time, and growth temperature were examined with respect to crystallite size and band gap energy as response factors. The generated results from neural network model were then compared with the experimental results. Experimental crystallite size and band gap energy of ZnO quantum dots were measured from TEM images and absorbance spectra, respectively. The Levenberg-Marquardt (LM) algorithm was used as the learning algorithm for the ANN model. The performance of the ANN model was then assessed through mean square error (MSE) and regression values. Based on the results, the ANN modelling results are in good agreement with the experimental data.
Dynamic training algorithm for dynamic neural networks
International Nuclear Information System (INIS)
Tan, Y.; Van Cauwenberghe, A.; Liu, Z.
1996-01-01
The widely used backpropagation algorithm for training neural networks based on the gradient descent has a significant drawback of slow convergence. A Gauss-Newton method based recursive least squares (RLS) type algorithm with dynamic error backpropagation is presented to speed-up the learning procedure of neural networks with local recurrent terms. Finally, simulation examples concerning the applications of the RLS type algorithm to identification of nonlinear processes using a local recurrent neural network are also included in this paper
Directory of Open Access Journals (Sweden)
Hesham Mostafa
2017-09-01
Full Text Available Artificial neural networks (ANNs trained using backpropagation are powerful learning architectures that have achieved state-of-the-art performance in various benchmarks. Significant effort has been devoted to developing custom silicon devices to accelerate inference in ANNs. Accelerating the training phase, however, has attracted relatively little attention. In this paper, we describe a hardware-efficient on-line learning technique for feedforward multi-layer ANNs that is based on pipelined backpropagation. Learning is performed in parallel with inference in the forward pass, removing the need for an explicit backward pass and requiring no extra weight lookup. By using binary state variables in the feedforward network and ternary errors in truncated-error backpropagation, the need for any multiplications in the forward and backward passes is removed, and memory requirements for the pipelining are drastically reduced. Further reduction in addition operations owing to the sparsity in the forward neural and backpropagating error signal paths contributes to highly efficient hardware implementation. For proof-of-concept validation, we demonstrate on-line learning of MNIST handwritten digit classification on a Spartan 6 FPGA interfacing with an external 1Gb DDR2 DRAM, that shows small degradation in test error performance compared to an equivalently sized binary ANN trained off-line using standard back-propagation and exact errors. Our results highlight an attractive synergy between pipelined backpropagation and binary-state networks in substantially reducing computation and memory requirements, making pipelined on-line learning practical in deep networks.
Mostafa, Hesham; Pedroni, Bruno; Sheik, Sadique; Cauwenberghs, Gert
2017-01-01
Artificial neural networks (ANNs) trained using backpropagation are powerful learning architectures that have achieved state-of-the-art performance in various benchmarks. Significant effort has been devoted to developing custom silicon devices to accelerate inference in ANNs. Accelerating the training phase, however, has attracted relatively little attention. In this paper, we describe a hardware-efficient on-line learning technique for feedforward multi-layer ANNs that is based on pipelined backpropagation. Learning is performed in parallel with inference in the forward pass, removing the need for an explicit backward pass and requiring no extra weight lookup. By using binary state variables in the feedforward network and ternary errors in truncated-error backpropagation, the need for any multiplications in the forward and backward passes is removed, and memory requirements for the pipelining are drastically reduced. Further reduction in addition operations owing to the sparsity in the forward neural and backpropagating error signal paths contributes to highly efficient hardware implementation. For proof-of-concept validation, we demonstrate on-line learning of MNIST handwritten digit classification on a Spartan 6 FPGA interfacing with an external 1Gb DDR2 DRAM, that shows small degradation in test error performance compared to an equivalently sized binary ANN trained off-line using standard back-propagation and exact errors. Our results highlight an attractive synergy between pipelined backpropagation and binary-state networks in substantially reducing computation and memory requirements, making pipelined on-line learning practical in deep networks.
Energy Technology Data Exchange (ETDEWEB)
Toda-Caraballo, I.; Garcia-Mateo, C.; Capdevila, C.
2010-07-01
At the beginning of the decade of the nineties, the industrial interest for TRIP steels leads to a significant increase of the investigation and application in this field. In this work, the flexibility of neural networks for the modelling of complex properties is used to tackle the problem of determining the retained austenite content in TRIP-steel. Applying a combination of two learning algorithms (backpropagation and creeping-random-search) for the neural network, a model has been created that enables the prediction of retained austenite in low-Si / low-Al multiphase steels as a function of processing parameters. (Author). 34 refs.
Yang, Tsung-Ming; Fan, Shu-Kai; Fan, Chihhao; Hsu, Nien-Sheng
2014-08-01
The purpose of this study is to establish a turbidity forecasting model as well as an early-warning system for turbidity management using rainfall records as the input variables. The Taipei Water Source Domain was employed as the study area, and ANOVA analysis showed that the accumulative rainfall records of 1-day Ping-lin, 2-day Ping-lin, 2-day Fei-tsui, 2-day Shi-san-gu, 2-day Tai-pin and 2-day Tong-hou were the six most significant parameters for downstream turbidity development. The artificial neural network model was developed and proven capable of predicting the turbidity concentration in the investigated catchment downstream area. The observed and model-calculated turbidity data were applied to developing the turbidity early-warning system. Using a previously determined turbidity as the threshold, the rainfall criterion, above which the downstream turbidity would possibly exceed this respective threshold turbidity, for the investigated rain gauge stations was determined. An exemplary illustration demonstrated the effectiveness of the proposed turbidity early-warning system as a precautionary alarm of possible significant increase of downstream turbidity. This study is the first report of the establishment of the turbidity early-warning system. Hopefully, this system can be applied to source water turbidity forecasting during storm events and provide a useful reference for subsequent adjustment of drinking water treatment operation.
Carrasco, Manuel; Garde, Andres; Murillo, Pilar; Serrano, Luis
2005-06-01
In this paper a novel design and implementation of a VLSI Analogue Neural Net based on Multi-Layer Perceptron (MLP) with on-chip Back Propagation (BP) learning algorithm suitable for the resolution of classification problems is described. In order to implement a general and programmable analogue architecture, the design has been carried out in a hierarchical way. In this way the net has been divided in synapsis-blocks and neuron-blocks providing an easy method for the analysis. These blocks basically consist on simple cells, which are mainly, the activation functions (NAF), derivatives (DNAF), multipliers and weight update circuits. The analogue design is based on current-mode translinear techniques using MOS transistors working in the weak inversion region in order to reduce both the voltage supply and the power consumption. Moreover, with the purpose of minimizing the noise, offset and distortion of even order, the topologies are fully-differential and balanced. The circuit, named ANNE (Analogue Neural NEt), has been prototyped and characterized as a proof of concept on CMOS AMI-0.5A technology occupying a total area of 2.7mm2. The chip includes two versions of neural nets with on-chip BP learning algorithm, which are respectively a 2-1 and a 2-2-1 implementations. The proposed nets have been experimentally tested using supply voltages from 2.5V to 1.8V, which is suitable for single cell lithium-ion battery supply applications. Experimental results of both implementations included in ANNE exhibit a good performance on solving classification problems. These results have been compared with other proposed Analogue VLSI implementations of Neural Nets published in the literature demonstrating that our proposal is very efficient in terms of occupied area and power consumption.
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.
relevance to the practicing engineer. Such a scheme of updating parameters (connection weights in the case of neu- ral network) is not employed in the suggested ANN model; thus, the ANN model, where the parameters are estimated from only one-day data... term hourly tidal records. However, there are a number of points to be clarified in order to better understand the paper. This discussion focuses on the following four areas: (1) terminology used in the paper; (2) practical utility; (3) reliability...
Predictive accuracy of backpropagation neural network ...
Indian Academy of Sciences (India)
incorporated into the BP model for high accuracy management purpose of irrigation water, which relies on accurate values of ET ... as seen from the recent food crisis demonstra- tion in most .... layers by using Geographical Information System.
Parallel consensual neural networks.
Benediktsson, J A; Sveinsson, J R; Ersoy, O K; Swain, P H
1997-01-01
A new type of a neural-network architecture, the parallel consensual neural network (PCNN), is introduced and applied in classification/data fusion of multisource remote sensing and geographic data. The PCNN architecture is based on statistical consensus theory and involves using stage neural networks with transformed input data. The input data are transformed several times and the different transformed data are used as if they were independent inputs. The independent inputs are first classified using the stage neural networks. The output responses from the stage networks are then weighted and combined to make a consensual decision. In this paper, optimization methods are used in order to weight the outputs from the stage networks. Two approaches are proposed to compute the data transforms for the PCNN, one for binary data and another for analog data. The analog approach uses wavelet packets. The experimental results obtained with the proposed approach show that the PCNN outperforms both a conjugate-gradient backpropagation neural network and conventional statistical methods in terms of overall classification accuracy of test data.
Introduction to neural networks
International Nuclear Information System (INIS)
Pavlopoulos, P.
1996-01-01
This lecture is a presentation of today's research in neural computation. Neural computation is inspired by knowledge from neuro-science. It draws its methods in large degree from statistical physics and its potential applications lie mainly in computer science and engineering. Neural networks models are algorithms for cognitive tasks, such as learning and optimization, which are based on concepts derived from research into the nature of the brain. The lecture first gives an historical presentation of neural networks development and interest in performing complex tasks. Then, an exhaustive overview of data management and networks computation methods is given: the supervised learning and the associative memory problem, the capacity of networks, the Perceptron networks, the functional link networks, the Madaline (Multiple Adalines) networks, the back-propagation networks, the reduced coulomb energy (RCE) networks, the unsupervised learning and the competitive learning and vector quantization. An example of application in high energy physics is given with the trigger systems and track recognition system (track parametrization, event selection and particle identification) developed for the CPLEAR experiment detectors from the LEAR at CERN. (J.S.). 56 refs., 20 figs., 1 tab., 1 appendix
Conjugate descent formulation of backpropagation error in ...
African Journals Online (AJOL)
nique of backpropagation was popularized in a paper by Rumelhart, et al. ... the training of a multilayer neural network using a gradient descent approach applied to a .... superior convergence of the conjugate descent method over a standard ...
Artificial neural networks in NDT
International Nuclear Information System (INIS)
Abdul Aziz Mohamed
2001-01-01
Artificial neural networks, simply known as neural networks, have attracted considerable interest in recent years largely because of a growing recognition of the potential of these computational paradigms as powerful alternative models to conventional pattern recognition or function approximation techniques. The neural networks approach is having a profound effect on almost all fields, and has been utilised in fields Where experimental inter-disciplinary work is being carried out. Being a multidisciplinary subject with a broad knowledge base, Nondestructive Testing (NDT) or Nondestructive Evaluation (NDE) is no exception. This paper explains typical applications of neural networks in NDT/NDE. Three promising types of neural networks are highlighted, namely, back-propagation, binary Hopfield and Kohonen's self-organising maps. (Author)
Direct adaptive control using feedforward neural networks
Cajueiro, Daniel Oliveira; Hemerly, Elder Moreira
2003-01-01
ABSTRACT: This paper proposes a new scheme for direct neural adaptive control that works efficiently employing only one neural network, used for simultaneously identifying and controlling the plant. The idea behind this structure of adaptive control is to compensate the control input obtained by a conventional feedback controller. The neural network training process is carried out by using two different techniques: backpropagation and extended Kalman filter algorithm. Additionally, the conver...
International Nuclear Information System (INIS)
Denby, Bruce; Lindsey, Clark; Lyons, Louis
1992-01-01
The 1980s saw a tremendous renewal of interest in 'neural' information processing systems, or 'artificial neural networks', among computer scientists and computational biologists studying cognition. Since then, the growth of interest in neural networks in high energy physics, fueled by the need for new information processing technologies for the next generation of high energy proton colliders, can only be described as explosive
Comparative performance of some popular artificial neural network ...
Indian Academy of Sciences (India)
tificial neural network domain (viz., local search algorithms, global search ... branches of astronomy for automated data analysis and other applications like ...... such as standard backpropagation, fuzzy logic, genetic algorithms, fractals etc.,.
International Nuclear Information System (INIS)
Smith, Patrick I.
2003-01-01
Physicists use large detectors to measure particles created in high-energy collisions at particle accelerators. These detectors typically produce signals indicating either where ionization occurs along the path of the particle, or where energy is deposited by the particle. The data produced by these signals is fed into pattern recognition programs to try to identify what particles were produced, and to measure the energy and direction of these particles. Ideally, there are many techniques used in this pattern recognition software. One technique, neural networks, is particularly suitable for identifying what type of particle caused by a set of energy deposits. Neural networks can derive meaning from complicated or imprecise data, extract patterns, and detect trends that are too complex to be noticed by either humans or other computer related processes. To assist in the advancement of this technology, Physicists use a tool kit to experiment with several neural network techniques. The goal of this research is interface a neural network tool kit into Java Analysis Studio (JAS3), an application that allows data to be analyzed from any experiment. As the final result, a physicist will have the ability to train, test, and implement a neural network with the desired output while using JAS3 to analyze the results or output. Before an implementation of a neural network can take place, a firm understanding of what a neural network is and how it works is beneficial. A neural network is an artificial representation of the human brain that tries to simulate the learning process [5]. It is also important to think of the word artificial in that definition as computer programs that use calculations during the learning process. In short, a neural network learns by representative examples. Perhaps the easiest way to describe the way neural networks learn is to explain how the human brain functions. The human brain contains billions of neural cells that are responsible for processing
Advances in Artificial Neural Networks - Methodological Development and Application
Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other ne...
Artificial Neural Networks to Detect Risk of Type 2 Diabetes | Baha ...
African Journals Online (AJOL)
A multilayer feedforward architecture with backpropagation algorithm was designed using Neural Network Toolbox of Matlab. The network was trained using batch mode backpropagation with gradient descent and momentum. Best performed network identified during the training was 2 hidden layers of 6 and 3 neurons, ...
Equivalence of Equilibrium Propagation and Recurrent Backpropagation
Scellier, Benjamin; Bengio, Yoshua
2017-01-01
Recurrent Backpropagation and Equilibrium Propagation are algorithms for fixed point recurrent neural networks which differ in their second phase. In the first phase, both algorithms converge to a fixed point which corresponds to the configuration where the prediction is made. In the second phase, Recurrent Backpropagation computes error derivatives whereas Equilibrium Propagation relaxes to another nearby fixed point. In this work we establish a close connection between these two algorithms....
Antenna analysis using neural networks
Smith, William T.
1992-01-01
Conventional computing schemes have long been used to analyze problems in electromagnetics (EM). The vast majority of EM applications require computationally intensive algorithms involving numerical integration and solutions to large systems of equations. The feasibility of using neural network computing algorithms for antenna analysis is investigated. The ultimate goal is to use a trained neural network algorithm to reduce the computational demands of existing reflector surface error compensation techniques. Neural networks are computational algorithms based on neurobiological systems. Neural nets consist of massively parallel interconnected nonlinear computational elements. They are often employed in pattern recognition and image processing problems. Recently, neural network analysis has been applied in the electromagnetics area for the design of frequency selective surfaces and beam forming networks. The backpropagation training algorithm was employed to simulate classical antenna array synthesis techniques. The Woodward-Lawson (W-L) and Dolph-Chebyshev (D-C) array pattern synthesis techniques were used to train the neural network. The inputs to the network were samples of the desired synthesis pattern. The outputs are the array element excitations required to synthesize the desired pattern. Once trained, the network is used to simulate the W-L or D-C techniques. Various sector patterns and cosecant-type patterns (27 total) generated using W-L synthesis were used to train the network. Desired pattern samples were then fed to the neural network. The outputs of the network were the simulated W-L excitations. A 20 element linear array was used. There were 41 input pattern samples with 40 output excitations (20 real parts, 20 imaginary). A comparison between the simulated and actual W-L techniques is shown for a triangular-shaped pattern. Dolph-Chebyshev is a different class of synthesis technique in that D-C is used for side lobe control as opposed to pattern
Directory of Open Access Journals (Sweden)
Schwindling Jerome
2010-04-01
Full Text Available This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p. corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.
PEAK TRACKING WITH A NEURAL NETWORK FOR SPECTRAL RECOGNITION
COENEGRACHT, PMJ; METTING, HJ; VANLOO, EM; SNOEIJER, GJ; DOORNBOS, DA
1993-01-01
A peak tracking method based on a simulated feed-forward neural network with back-propagation is presented. The network uses the normalized UV spectra and peak areas measured in one chromatogram for peak recognition. It suffices to train the network with only one set of spectra recorded in one
Energy Technology Data Exchange (ETDEWEB)
Rosas Ortiz, German
2000-01-01
Fault detection and diagnosis on transmission systems is an interesting area of investigation to Artificial Intelligence (AI) based systems. Neurocomputing is one of fastest growing areas of research in the fields of AI and pattern recognition. This work explores the possible suitability of pattern recognition approach of neural networks for fault detection and classification on power systems. The conventional detection techniques in modern relays are based in digital processing of signals and it need some time (around 1 cycle) to send a tripping signal, also they are likely to make incorrect decisions if the signals are noisy. It's desirable to develop a fast, accurate and robust approach that perform accurately for changing system conditions (like load variations and fault resistance). The aim of this work is to develop a novel technique based on Artificial Neural Networks (ANN), which explores the suitability of a pattern classification approach for fault detection and diagnosis. The suggested approach is based in the fact that when a fault occurs, a change in the system impedance take place and, as a consequence changes in amplitude and phase of line voltage and current signals take place. The ANN-based fault discriminator is trained to detect this changes as indicators of the instant of fault inception. This detector uses instantaneous values of these signals to make decisions. Suitability of using neural network as pattern classifiers for transmission systems fault diagnosis is described in detail a neural network design and simulation environment for real-time is presented. Results showing the performance of this approach are presented and indicate that it is fast, secure and exact enough, and it can be used in high speed fault detection and classification schemes. [Spanish] El diagnostico y la deteccion de fallas en sistemas de transmision es una area de interes en investigacion para sistemas basados en Inteligencia Artificial (IA). El calculo neuronal
Signal Processing and Neural Network Simulator
Tebbe, Dennis L.; Billhartz, Thomas J.; Doner, John R.; Kraft, Timothy T.
1995-04-01
The signal processing and neural network simulator (SPANNS) is a digital signal processing simulator with the capability to invoke neural networks into signal processing chains. This is a generic tool which will greatly facilitate the design and simulation of systems with embedded neural networks. The SPANNS is based on the Signal Processing WorkSystemTM (SPWTM), a commercial-off-the-shelf signal processing simulator. SPW provides a block diagram approach to constructing signal processing simulations. Neural network paradigms implemented in the SPANNS include Backpropagation, Kohonen Feature Map, Outstar, Fully Recurrent, Adaptive Resonance Theory 1, 2, & 3, and Brain State in a Box. The SPANNS was developed by integrating SAIC's Industrial Strength Neural Networks (ISNN) Software into SPW.
A Novel Handwritten Letter Recognizer Using Enhanced Evolutionary Neural Network
Mahmoudi, Fariborz; Mirzashaeri, Mohsen; Shahamatnia, Ehsan; Faridnia, Saed
This paper introduces a novel design for handwritten letter recognition by employing a hybrid back-propagation neural network with an enhanced evolutionary algorithm. Feeding the neural network consists of a new approach which is invariant to translation, rotation, and scaling of input letters. Evolutionary algorithm is used for the global search of the search space and the back-propagation algorithm is used for the local search. The results have been computed by implementing this approach for recognizing 26 English capital letters in the handwritings of different people. The computational results show that the neural network reaches very satisfying results with relatively scarce input data and a promising performance improvement in convergence of the hybrid evolutionary back-propagation algorithms is exhibited.
Neural network error correction for solving coupled ordinary differential equations
Shelton, R. O.; Darsey, J. A.; Sumpter, B. G.; Noid, D. W.
1992-01-01
A neural network is presented to learn errors generated by a numerical algorithm for solving coupled nonlinear differential equations. The method is based on using a neural network to correctly learn the error generated by, for example, Runge-Kutta on a model molecular dynamics (MD) problem. The neural network programs used in this study were developed by NASA. Comparisons are made for training the neural network using backpropagation and a new method which was found to converge with fewer iterations. The neural net programs, the MD model and the calculations are discussed.
Tests of track segment and vertex finding with neural networks
International Nuclear Information System (INIS)
Denby, B.; Lessner, E.; Lindsey, C.S.
1990-04-01
Feed forward neural networks have been trained, using back-propagation, to find the slopes of simulated track segments in a straw chamber and to find the vertex of tracks from both simulated and real events in a more conventional drift chamber geometry. Network architectures, training, and performance are presented. 12 refs., 7 figs
Recognition of decays of charged tracks with neural network techniques
International Nuclear Information System (INIS)
Stimpfl-Abele, G.
1991-01-01
We developed neural-network learning techniques for the recognition of decays of charged tracks using a feed-forward network with error back-propagation. Two completely different methods are described in detail and their efficiencies for several NN architectures are compared with conventional methods. Excellent results are obtained. (orig.)
Tracking and vertex finding with drift chambers and neural networks
International Nuclear Information System (INIS)
Lindsey, C.
1991-09-01
Finding tracks, track vertices and event vertices with neural networks from drift chamber signals is discussed. Simulated feed-forward neural networks have been trained with back-propagation to give track parameters using Monte Carlo simulated tracks in one case and actual experimental data in another. Effects on network performance of limited weight resolution, noise and drift chamber resolution are given. Possible implementations in hardware are discussed. 7 refs., 10 figs
Artificial neural networks for plasma spectroscopy analysis
International Nuclear Information System (INIS)
Morgan, W.L.; Larsen, J.T.; Goldstein, W.H.
1992-01-01
Artificial neural networks have been applied to a variety of signal processing and image recognition problems. Of the several common neural models the feed-forward, back-propagation network is well suited for the analysis of scientific laboratory data, which can be viewed as a pattern recognition problem. The authors present a discussion of the basic neural network concepts and illustrate its potential for analysis of experiments by applying it to the spectra of laser produced plasmas in order to obtain estimates of electron temperatures and densities. Although these are high temperature and density plasmas, the neural network technique may be of interest in the analysis of the low temperature and density plasmas characteristic of experiments and devices in gaseous electronics
Advances in Artificial Neural Networks – Methodological Development and Application
Directory of Open Access Journals (Sweden)
Yanbo Huang
2009-08-01
Full Text Available Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other networks such as radial basis function, recurrent network, feedback network, and unsupervised Kohonen self-organizing network. These networks, especially the multilayer perceptron network with a backpropagation training algorithm, have gained recognition in research and applications in various scientific and engineering areas. In order to accelerate the training process and overcome data over-fitting, research has been conducted to improve the backpropagation algorithm. Further, artificial neural networks have been integrated with other advanced methods such as fuzzy logic and wavelet analysis, to enhance the ability of data interpretation and modeling and to avoid subjectivity in the operation of the training algorithm. In recent years, support vector machines have emerged as a set of high-performance supervised generalized linear classifiers in parallel with artificial neural networks. A review on development history of artificial neural networks is presented and the standard architectures and algorithms of artificial neural networks are described. Furthermore, advanced artificial neural networks will be introduced with support vector machines, and limitations of ANNs will be identified. The future of artificial neural network development in tandem with support vector machines will be discussed in conjunction with further applications to food science and engineering, soil and water relationship for crop management, and decision support for precision agriculture. Along with the network structures and training algorithms, the applications of artificial neural networks will be reviewed as well, especially in the fields of agricultural and biological
Conjugate descent formulation of backpropagation error in ...
African Journals Online (AJOL)
The feedforward neural network architecture uses backpropagation learning to determine optimal weights between dierent interconnected layers. This learning procedure uses a gradient descent technique applied to a sum-of-squares error function for the given input-output pattern. It employs an iterative procedure to ...
A comparison of neural network architectures for the prediction of MRR in EDM
Jena, A. R.; Das, Raja
2017-11-01
The aim of the research work is to predict the material removal rate of a work-piece in electrical discharge machining (EDM). Here, an effort has been made to predict the material removal rate through back-propagation neural network (BPN) and radial basis function neural network (RBFN) for a work-piece of AISI D2 steel. The input parameters for the architecture are discharge-current (Ip), pulse-duration (Ton), and duty-cycle (τ) taken for consideration to obtained the output for material removal rate of the work-piece. In the architecture, it has been observed that radial basis function neural network is comparatively faster than back-propagation neural network but logically back-propagation neural network results more real value. Therefore BPN may consider as a better process in this architecture for consistent prediction to save time and money for conducting experiments.
Computationally Efficient Neural Network Intrusion Security Awareness
Energy Technology Data Exchange (ETDEWEB)
Todd Vollmer; Milos Manic
2009-08-01
An enhanced version of an algorithm to provide anomaly based intrusion detection alerts for cyber security state awareness is detailed. A unique aspect is the training of an error back-propagation neural network with intrusion detection rule features to provide a recognition basis. Network packet details are subsequently provided to the trained network to produce a classification. This leverages rule knowledge sets to produce classifications for anomaly based systems. Several test cases executed on ICMP protocol revealed a 60% identification rate of true positives. This rate matched the previous work, but 70% less memory was used and the run time was reduced to less than 1 second from 37 seconds.
Reconstruction of periodic signals using neural networks
Directory of Open Access Journals (Sweden)
José Danilo Rairán Antolines
2014-01-01
Full Text Available In this paper, we reconstruct a periodic signal by using two neural networks. The first network is trained to approximate the period of a signal, and the second network estimates the corresponding coefficients of the signal's Fourier expansion. The reconstruction strategy consists in minimizing the mean-square error via backpro-pagation algorithms over a single neuron with a sine transfer function. Additionally, this paper presents mathematical proof about the quality of the approximation as well as a first modification of the algorithm, which requires less data to reach the same estimation; thus making the algorithm suitable for real-time implementations.
Back propagation and Monte Carlo algorithms for neural network computations
International Nuclear Information System (INIS)
Junczys, R.; Wit, R.
1996-01-01
Results of teaching procedures for neural network for two different algorithms are presented. The first one is based on the well known back-propagation technique, the second is an adopted version of the Monte Carlo global minimum seeking method. Combination of these two, different in nature, approaches provides promising results. (author) nature, approaches provides promising results. (author)
Quick fuzzy backpropagation algorithm.
Nikov, A; Stoeva, S
2001-03-01
A modification of the fuzzy backpropagation (FBP) algorithm called QuickFBP algorithm is proposed, where the computation of the net function is significantly quicker. It is proved that the FBP algorithm is of exponential time complexity, while the QuickFBP algorithm is of polynomial time complexity. Convergence conditions of the QuickFBP, resp. the FBP algorithm are defined and proved for: (1) single output neural networks in case of training patterns with different targets; and (2) multiple output neural networks in case of training patterns with equivalued target vector. They support the automation of the weights training process (quasi-unsupervised learning) establishing the target value(s) depending on the network's input values. In these cases the simulation results confirm the convergence of both algorithms. An example with a large-sized neural network illustrates the significantly greater training speed of the QuickFBP rather than the FBP algorithm. The adaptation of an interactive web system to users on the basis of the QuickFBP algorithm is presented. Since the QuickFBP algorithm ensures quasi-unsupervised learning, this implies its broad applicability in areas of adaptive and adaptable interactive systems, data mining, etc. applications.
Energy Technology Data Exchange (ETDEWEB)
Ritter, G.X.; Sussner, P. [Univ. of Florida, Gainesville, FL (United States)
1996-12-31
The theory of artificial neural networks has been successfully applied to a wide variety of pattern recognition problems. In this theory, the first step in computing the next state of a neuron or in performing the next layer neural network computation involves the linear operation of multiplying neural values by their synaptic strengths and adding the results. Thresholding usually follows the linear operation in order to provide for nonlinearity of the network. In this paper we introduce a novel class of neural networks, called morphological neural networks, in which the operations of multiplication and addition are replaced by addition and maximum (or minimum), respectively. By taking the maximum (or minimum) of sums instead of the sum of products, morphological network computation is nonlinear before thresholding. As a consequence, the properties of morphological neural networks are drastically different than those of traditional neural network models. In this paper we consider some of these differences and provide some particular examples of morphological neural network.
Deep learning in neural networks: an overview.
Schmidhuber, Jürgen
2015-01-01
In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarizes relevant work, much of it from the previous millennium. Shallow and Deep Learners are distinguished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links between actions and effects. I review deep supervised learning (also recapitulating the history of backpropagation), unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.
DEFF Research Database (Denmark)
Prato, Carlo Giacomo; Gitelman, Victoria; Bekhor, Shlomo
2011-01-01
on 1,793 fatal traffic accidents occurred during the period between 2003 and 2006 and applies Kohonen and feed-forward back-propagation neural networks with the objective of extracting from the data typical patterns and relevant factors. Kohonen neural networks reveal five compelling accident patterns....... Feed-forward back-propagation neural networks indicate that sociodemographic characteristics of drivers and victims, accident location, and period of the day are extremely relevant factors. Accident patterns suggest that countermeasures are necessary for identified problems concerning mainly vulnerable...
RANTAI PASOK BERAS PADA BULOG BERBASIS NEURAL NETWORK
Directory of Open Access Journals (Sweden)
Muhammad Imam Ghozali
2016-11-01
Full Text Available Sebagai lembaga terpenting dalam menjaga ketahanan pangan di Indonesia, perusahaan umum (Perum Badan urusan Logistik (BULOG sejak didirikannya memiliki tugas memasok bahan pangan, sehingga pengetahuan dan pengalaman BULOG dalam manajemen rantai pasok pangan dan hasil pertanian lainnya seyogianya dapat diandalkan. Namun BULOG belum teruji dalam perspektif masih menghadapi berbagai permasalahan yang sangat kompleks, yang muncul mulai dari masalah pasokan gabah di level petani, proses penggilingan gabah di level industri penggilingan (miller, hingga proses distribusi beras ke level konsumen. Dengan demikian, sebagai komoditas pangan utama, permasalahan beras bukan hanya merupakan permasalahan ekonomi saja tetapi juga bersifat politis. Data mining dapat membantu dalam memprediksi suatu sistem, sehingga dapat dilakukan pada penelitian ini agar prediksi lebih tepat dan akurat. Penelitian ini teknik yang dipakai ialah neural network backpropagation, ada beberapa tahap dalam peneilitian ini yaitu tahap pengumpulan data historik, pengolahan data, model atau metode yang diusulkan, eksperimen pada model tersebut, evaluasi dan validasi hasil. Pada hasil analisa menunjukan bahwa model ini mempunyai tingkat kesalahan atau error yang kecil atau didalam backpropagation sering disebut dengan mean square erorr (MSE. Disimpulkan bahwa teknik data mining menggunakan neural network backpropagation dapat menghasilkan suatu nilai error yang minimal sehingga tepat dan akurat untuk menentukan jumlah pasokan beras pada tahun berikutnya. Kata kunci: pasok beras, supply chain, data mining, neural network backpropagation, mean square erorr.
File access prediction using neural networks.
Patra, Prashanta Kumar; Sahu, Muktikanta; Mohapatra, Subasish; Samantray, Ronak Kumar
2010-06-01
One of the most vexing issues in design of a high-speed computer is the wide gap of access times between the memory and the disk. To solve this problem, static file access predictors have been used. In this paper, we propose dynamic file access predictors using neural networks to significantly improve upon the accuracy, success-per-reference, and effective-success-rate-per-reference by using neural-network-based file access predictor with proper tuning. In particular, we verified that the incorrect prediction has been reduced from 53.11% to 43.63% for the proposed neural network prediction method with a standard configuration than the recent popularity (RP) method. With manual tuning for each trace, we are able to improve upon the misprediction rate and effective-success-rate-per-reference using a standard configuration. Simulations on distributed file system (DFS) traces reveal that exact fit radial basis function (RBF) gives better prediction in high end system whereas multilayer perceptron (MLP) trained with Levenberg-Marquardt (LM) backpropagation outperforms in system having good computational capability. Probabilistic and competitive predictors are the most suitable for work stations having limited resources to deal with and the former predictor is more efficient than the latter for servers having maximum system calls. Finally, we conclude that MLP with LM backpropagation algorithm has better success rate of file prediction than those of simple perceptron, last successor, stable successor, and best k out of m predictors.
Neural Network Back-Propagation Algorithm for Sensing Hypergols
Perotti, Jose; Lewis, Mark; Medelius, Pedro; Bastin, Gary
2013-01-01
Fast, continuous detection of a wide range of hazardous substances simultaneously is needed to achieve improved safety for personnel working with hypergolic fuels and oxidizers, as well as other hazardous substances, with a requirement for such detection systems to warn personnel immediately upon the sudden advent of hazardous conditions, with a high probability of detection and a low false alarm rate. The primary purpose of this software is to read the voltage outputs from voltage dividers containing carbon nano - tube sensors as a variable resistance leg, and to recognize quickly when a leak has occurred through recognizing that a generalized pattern change in resistivity of a carbon nanotube sensor has occurred upon exposure to dangerous substances, and, further, to identify quickly just what substance is present through detailed pattern recognition of the shape of the response provided by the carbon nanotube sensor.
Control of beam halo-chaos using neural network self-adaptation method
International Nuclear Information System (INIS)
Fang Jinqing; Huang Guoxian; Luo Xiaoshu
2004-11-01
Taking the advantages of neural network control method for nonlinear complex systems, control of beam halo-chaos in the periodic focusing channels (network) of high intensity accelerators is studied by feed-forward back-propagating neural network self-adaptation method. The envelope radius of high-intensity proton beam is reached to the matching beam radius by suitably selecting the control structure of neural network and the linear feedback coefficient, adjusted the right-coefficient of neural network. The beam halo-chaos is obviously suppressed and shaking size is much largely reduced after the neural network self-adaptation control is applied. (authors)
Chaotic diagonal recurrent neural network
International Nuclear Information System (INIS)
Wang Xing-Yuan; Zhang Yi
2012-01-01
We propose a novel neural network based on a diagonal recurrent neural network and chaos, and its structure and learning algorithm are designed. The multilayer feedforward neural network, diagonal recurrent neural network, and chaotic diagonal recurrent neural network are used to approach the cubic symmetry map. The simulation results show that the approximation capability of the chaotic diagonal recurrent neural network is better than the other two neural networks. (interdisciplinary physics and related areas of science and technology)
Inversion of a lateral log using neural networks
International Nuclear Information System (INIS)
Garcia, G.; Whitman, W.W.
1992-01-01
In this paper a technique using neural networks is demonstrated for the inversion of a lateral log. The lateral log is simulated by a finite difference method which in turn is used as an input to a backpropagation neural network. An initial guess earth model is generated from the neural network, which is then input to a Marquardt inversion. The neural network reacts to gross and subtle data features in actual logs and produces a response inferred from the knowledge stored in the network during a training process. The neural network inversion of lateral logs is tested on synthetic and field data. Tests using field data resulted in a final earth model whose simulated lateral is in good agreement with the actual log data
Control of GMA Butt Joint Welding Based on Neural Networks
DEFF Research Database (Denmark)
Christensen, Kim Hardam; Sørensen, Torben
2004-01-01
This paper presents results from an experimentally based research on Gas Metal Arc Welding (GMAW), controlled by the artificial neural network (ANN) technology. A system has been developed for modeling and online adjustment of welding parameters, appropriate to guarantee a high degree of quality......-linear least square error minimization, has been used with the back-propagation algorithm for training the network, while a Bayesian regularization technique has been successfully applied for minimizing the risk of inexpedient over-training....
Neural networks for sensor validation and plant monitoring
International Nuclear Information System (INIS)
Upadhyaya, B.R.; Eryurek, E.; Mathai, G.
1990-01-01
Sensor and process monitoring in power plants require the estimation of one or more process variables. Neural network paradigms are suitable for establishing general nonlinear relationships among a set of plant variables. Multiple-input multiple-output autoassociative networks can follow changes in plant-wide behavior. The backpropagation algorithm has been applied for training feedforward networks. A new and enhanced algorithm for training neural networks (BPN) has been developed and implemented in a VAX workstation. Operational data from the Experimental Breeder Reactor-II (EBR-II) have been used to study the performance of BPN. Several results of application to the EBR-II are presented
Prototype-Incorporated Emotional Neural Network.
Oyedotun, Oyebade K; Khashman, Adnan
2017-08-15
Artificial neural networks (ANNs) aim to simulate the biological neural activities. Interestingly, many ''engineering'' prospects in ANN have relied on motivations from cognition and psychology studies. So far, two important learning theories that have been subject of active research are the prototype and adaptive learning theories. The learning rules employed for ANNs can be related to adaptive learning theory, where several examples of the different classes in a task are supplied to the network for adjusting internal parameters. Conversely, the prototype-learning theory uses prototypes (representative examples); usually, one prototype per class of the different classes contained in the task. These prototypes are supplied for systematic matching with new examples so that class association can be achieved. In this paper, we propose and implement a novel neural network algorithm based on modifying the emotional neural network (EmNN) model to unify the prototype- and adaptive-learning theories. We refer to our new model as ``prototype-incorporated EmNN''. Furthermore, we apply the proposed model to two real-life challenging tasks, namely, static hand-gesture recognition and face recognition, and compare the result to those obtained using the popular back-propagation neural network (BPNN), emotional BPNN (EmNN), deep networks, an exemplar classification model, and k-nearest neighbor.
Analog design of a new neural network for optical character recognition.
Morns, I P; Dlay, S S
1999-01-01
An electronic circuit is presented for a new type of neural network, which gives a recognition rate of over 100 kHz. The network is used to classify handwritten numerals, presented as Fourier and wavelet descriptors, and has been shown to train far quicker than the popular backpropagation network while maintaining classification accuracy.
Internal measuring models in trained neural networks for parameter estimation from images
Feng, Tian-Jin; Feng, T.J.; Houkes, Z.; Korsten, Maarten J.; Spreeuwers, Lieuwe Jan
1992-01-01
The internal representations of 'learned' knowledge in neural networks are still poorly understood, even for backpropagation networks. The paper discusses a possible interpretation of learned knowledge of a network trained for parameter estimation from images. The outputs of the hidden layer are the
Stability Analysis of Neural Networks-Based System Identification
Directory of Open Access Journals (Sweden)
Talel Korkobi
2008-01-01
Full Text Available This paper treats some problems related to nonlinear systems identification. A stability analysis neural network model for identifying nonlinear dynamic systems is presented. A constrained adaptive stable backpropagation updating law is presented and used in the proposed identification approach. The proposed backpropagation training algorithm is modified to obtain an adaptive learning rate guarantying convergence stability. The proposed learning rule is the backpropagation algorithm under the condition that the learning rate belongs to a specified range defining the stability domain. Satisfying such condition, unstable phenomena during the learning process are avoided. A Lyapunov analysis leads to the computation of the expression of a convenient adaptive learning rate verifying the convergence stability criteria. Finally, the elaborated training algorithm is applied in several simulations. The results confirm the effectiveness of the CSBP algorithm.
Analysis of Accuracy and Epoch on Back-propagation BFGS Quasi-Newton
Silaban, Herlan; Zarlis, Muhammad; Sawaluddin
2017-12-01
Back-propagation is one of the learning algorithms on artificial neural networks that have been widely used to solve various problems, such as pattern recognition, prediction and classification. The Back-propagation architecture will affect the outcome of learning processed. BFGS Quasi-Newton is one of the functions that can be used to change the weight of back-propagation. This research tested some back-propagation architectures using classical back-propagation and back-propagation with BFGS. There are 7 architectures that have been tested on glass dataset with various numbers of neurons, 6 architectures with 1 hidden layer and 1 architecture with 2 hidden layers. BP with BFGS improves the convergence of the learning process. The average improvement convergence is 98.34%. BP with BFGS is more optimal on architectures with smaller number of neurons with decreased epoch number is 94.37% with the increase of accuracy about 0.5%.
Neural Networks For Electrohydrodynamic Effect Modelling
Directory of Open Access Journals (Sweden)
Wiesław Wajs
2004-01-01
Full Text Available This paper presents currently achieved results concerning methods of electrohydrodynamiceffect used in geophysics simulated with feedforward networks trained with backpropagation algorithm, radial basis function networks and generalized regression networks.
Efficient Cancer Detection Using Multiple Neural Networks.
Shell, John; Gregory, William D
2017-01-01
The inspection of live excised tissue specimens to ascertain malignancy is a challenging task in dermatopathology and generally in histopathology. We introduce a portable desktop prototype device that provides highly accurate neural network classification of malignant and benign tissue. The handheld device collects 47 impedance data samples from 1 Hz to 32 MHz via tetrapolar blackened platinum electrodes. The data analysis was implemented with six different backpropagation neural networks (BNN). A data set consisting of 180 malignant and 180 benign breast tissue data files in an approved IRB study at the Aurora Medical Center, Milwaukee, WI, USA, were utilized as a neural network input. The BNN structure consisted of a multi-tiered consensus approach autonomously selecting four of six neural networks to determine a malignant or benign classification. The BNN analysis was then compared with the histology results with consistent sensitivity of 100% and a specificity of 100%. This implementation successfully relied solely on statistical variation between the benign and malignant impedance data and intricate neural network configuration. This device and BNN implementation provides a novel approach that could be a valuable tool to augment current medical practice assessment of the health of breast, squamous, and basal cell carcinoma and other excised tissue without requisite tissue specimen expertise. It has the potential to provide clinical management personnel with a fast non-invasive accurate assessment of biopsied or sectioned excised tissue in various clinical settings.
Artificial neural network based approach to transmission lines protection
International Nuclear Information System (INIS)
Joorabian, M.
1999-05-01
The aim of this paper is to present and accurate fault detection technique for high speed distance protection using artificial neural networks. The feed-forward multi-layer neural network with the use of supervised learning and the common training rule of error back-propagation is chosen for this study. Information available locally at the relay point is passed to a neural network in order for an assessment of the fault location to be made. However in practice there is a large amount of information available, and a feature extraction process is required to reduce the dimensionality of the pattern vectors, whilst retaining important information that distinguishes the fault point. The choice of features is critical to the performance of the neural networks learning and operation. A significant feature in this paper is that an artificial neural network has been designed and tested to enhance the precision of the adaptive capabilities for distance protection
Handwritten Javanese Character Recognition Using Several Artificial Neural Network Methods
Directory of Open Access Journals (Sweden)
Gregorius Satia Budhi
2015-07-01
Full Text Available Javanese characters are traditional characters that are used to write the Javanese language. The Javanese language is a language used by many people on the island of Java, Indonesia. The use of Javanese characters is diminishing more and more because of the difficulty of studying the Javanese characters themselves. The Javanese character set consists of basic characters, numbers, complementary characters, and so on. In this research we have developed a system to recognize Javanese characters. Input for the system is a digital image containing several handwritten Javanese characters. Preprocessing and segmentation are performed on the input image to get each character. For each character, feature extraction is done using the ICZ-ZCZ method. The output from feature extraction will become input for an artificial neural network. We used several artificial neural networks, namely a bidirectional associative memory network, a counterpropagation network, an evolutionary network, a backpropagation network, and a backpropagation network combined with chi2. From the experimental results it can be seen that the combination of chi2 and backpropagation achieved better recognition accuracy than the other methods.
Neural Networks: Implementations and Applications
Vonk, E.; Veelenturf, L.P.J.; Jain, L.C.
1996-01-01
Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas
Neural network segmentation of magnetic resonance images
International Nuclear Information System (INIS)
Frederick, B.
1990-01-01
Neural networks are well adapted to the task of grouping input patterns into subsets which share some similarity. Moreover, once trained, they can generalize their classification rules to classify new data sets. Sets of pixel intensities from magnetic resonance (MR) images provide a natural input to a neural network; by varying imaging parameters, MR images can reflect various independent physical parameters of tissues in their pixel intensities. A neural net can then be trained to classify physically similar tissue types based on sets of pixel intensities resulting from different imaging studies on the same subject. This paper reports that a neural network classifier for image segmentation was implanted on a Sun 4/60, and was tested on the task of classifying tissues of canine head MR images. Four images of a transaxial slice with different imaging sequences were taken as input to the network (three spin-echo images and an inversion recovery image). The training set consisted of 691 representative samples of gray matter, white matter, cerebrospinal fluid, bone, and muscle preclassified by a neuroscientist. The network was trained using a fast backpropagation algorithm to derive the decision criteria to classify any location in the image by its pixel intensities, and the image was subsequently segmented by the classifier
Yorek, Nurettin; Ugulu, Ilker
2015-01-01
In this study, artificial neural networks are suggested as a model that can be "trained" to yield qualitative results out of a huge amount of categorical data. It can be said that this is a new approach applied in educational qualitative data analysis. In this direction, a cascade-forward back-propagation neural network (CFBPN) model was…
The DSFPN, a new neural network for optical character recognition.
Morns, L P; Dlay, S S
1999-01-01
A new type of neural network for recognition tasks is presented in this paper. The network, called the dynamic supervised forward-propagation network (DSFPN), is based on the forward only version of the counterpropagation network (CPN). The DSFPN, trains using a supervised algorithm and can grow dynamically during training, allowing subclasses in the training data to be learnt in an unsupervised manner. It is shown to train in times comparable to the CPN while giving better classification accuracies than the popular backpropagation network. Both Fourier descriptors and wavelet descriptors are used for image preprocessing and the wavelets are proven to give a far better performance.
Stochastic sensitivity analysis and Langevin simulation for neural network learning
International Nuclear Information System (INIS)
Koda, Masato
1997-01-01
A comprehensive theoretical framework is proposed for the learning of a class of gradient-type neural networks with an additive Gaussian white noise process. The study is based on stochastic sensitivity analysis techniques, and formal expressions are obtained for stochastic learning laws in terms of functional derivative sensitivity coefficients. The present method, based on Langevin simulation techniques, uses only the internal states of the network and ubiquitous noise to compute the learning information inherent in the stochastic correlation between noise signals and the performance functional. In particular, the method does not require the solution of adjoint equations of the back-propagation type. Thus, the present algorithm has the potential for efficiently learning network weights with significantly fewer computations. Application to an unfolded multi-layered network is described, and the results are compared with those obtained by using a back-propagation method
Vibration Based Damage Assessment of a Civil Engineering Structures using a Neural Networks
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Rytter, A.
In this paper the possibility of using a Multilayer Perceptron (MLP) network trained with the Backpropagation Algorith as a non-destructive damage assessment technique to locate and quantify a damage in Civil Engineering structures is investigated. Since artificial neural networks are proving...
High-Performance Neural Networks for Visual Object Classification
Cireşan, Dan C.; Meier, Ueli; Masci, Jonathan; Gambardella, Luca M.; Schmidhuber, Jürgen
2011-01-01
We present a fast, fully parameterizable GPU implementation of Convolutional Neural Network variants. Our feature extractors are neither carefully designed nor pre-wired, but rather learned in a supervised way. Our deep hierarchical architectures achieve the best published results on benchmarks for object classification (NORB, CIFAR10) and handwritten digit recognition (MNIST), with error rates of 2.53%, 19.51%, 0.35%, respectively. Deep nets trained by simple back-propagation perform better ...
Directory of Open Access Journals (Sweden)
Farahnaz SADOUGHI
2014-03-01
Full Text Available Breast cancer is the most commonly diagnosed cancer and the most common cause of death in women all over the world. Use of computer technology supporting breast cancer diagnosing is now widespread and pervasive across a broad range of medical areas. Early diagnosis of this disease can greatly enhance the chances of long-term survival of breast cancer victims. Artificial Neural Networks (ANN as mainly method play important role in early diagnoses breast cancer. This paper studies Levenberg Marquardet Backpropagation (LMBP neural network and Levenberg Marquardet Backpropagation based Particle Swarm Optimization(LMBP-PSO for the diagnosis of breast cancer. The obtained results show that LMBP and LMBP based PSO system provides higher classification efficiency. But LMBP based PSO needs minimum training and testing time. It helps in developing Medical Decision System (MDS for breast cancer diagnosing. It can also be used as secondary observer in clinical decision making.
Representation of neutron noise data using neural networks
International Nuclear Information System (INIS)
Korsah, K.; Damiano, B.; Wood, R.T.
1992-01-01
This paper describes a neural network-based method of representing neutron noise spectra using a model developed at the Oak Ridge National Laboratory (ORNL). The backpropagation neural network learned to represent neutron noise data in terms of four descriptors, and the network response matched calculated values to within 3.5 percent. These preliminary results are encouraging, and further research is directed towards the application of neural networks in a diagnostics system for the identification of the causes of changes in structural spectral resonances. This work is part of our current investigation of advanced technologies such as expert systems and neural networks for neutron noise data reduction, analysis, and interpretation. The objective is to improve the state-of-the-art of noise analysis as a diagnostic tool for nuclear power plants and other mechanical systems
Analysis of the experimental positron lifetime spectra by neural networks
International Nuclear Information System (INIS)
Avdic, S.; Chakarova, R.; Pazsit, I.
2003-01-01
This paper deals with the analysis of experimental positron lifetime spectra in polymer materials by using various algorithms of neural networks. A method based on the use of artificial neural networks for unfolding the mean lifetime and intensity of the spectral components of simulated positron lifetime spectra was previously suggested and tested on simulated data [Pazsit et al., Applied Surface Science, 149 (1998), 97]. In this work, the applicability of the method to the analysis of experimental positron spectra has been verified in the case of spectra from polymer materials with three components. It has been demonstrated that the backpropagation neural network can determine the spectral parameters with a high accuracy and perform the decomposition of lifetimes which differ by 10% or more. The backpropagation network has not been suitable for the identification of both the parameters and the number of spectral components. Therefore, a separate artificial neural network module has been designed to solve the classification problem. Module types based on self-organizing map and learning vector quantization algorithms have been tested. The learning vector quantization algorithm was found to have better performance and reliability. A complete artificial neural network analysis tool of positron lifetime spectra has been constructed to include a spectra classification module and parameter evaluation modules for spectra with a different number of components. In this way, both flexibility and high resolution can be achieved. (author)
Control of a hybrid compensator in a power network by an artificial neural network
Directory of Open Access Journals (Sweden)
I. S. Shaw
1998-07-01
Full Text Available Increased interest in the elimination of distortion in electrical power networks has led to the development of various compensator topologies. The increasing cost of electrical energy necessitates the cost-effective operation of any of these topologies. This paper considers the development of an artificial neural network based controller, trained by means of the backpropagation method, that ensures the cost-effective operation of the hybrid compensator consisting of various converters and filters.
Neural network application to diesel generator diagnostics
International Nuclear Information System (INIS)
Logan, K.P.
1990-01-01
Diagnostic problems typically begin with the observation of some system behavior which is recognized as a deviation from the expected. The fundamental underlying process is one involving pattern matching cf observed symptoms to a set of compiled symptoms belonging to a fault-symptom mapping. Pattern recognition is often relied upon for initial fault detection and diagnosis. Parallel distributed processing (PDP) models employing neural network paradigms are known to be good pattern recognition devices. This paper describes the application of neural network processing techniques to the malfunction diagnosis of subsystems within a typical diesel generator configuration. Neural network models employing backpropagation learning were developed to correctly recognize fault conditions from the input diagnostic symptom patterns pertaining to various engine subsystems. The resulting network models proved to be excellent pattern recognizers for malfunction examples within the training set. The motivation for employing network models in lieu of a rule-based expert system, however, is related to the network's potential for generalizing malfunctions outside of the training set, as in the case of noisy or partial symptom patterns
Vibration monitoring with artificial neural networks
International Nuclear Information System (INIS)
Alguindigue, I.
1991-01-01
Vibration monitoring of components in nuclear power plants has been used for a number of years. This technique involves the analysis of vibration data coming from vital components of the plant to detect features which reflect the operational state of machinery. The analysis leads to the identification of potential failures and their causes, and makes it possible to perform efficient preventive maintenance. Earlydetection is important because it can decrease the probability of catastrophic failures, reduce forced outgage, maximize utilization of available assets, increase the life of the plant, and reduce maintenance costs. This paper documents our work on the design of a vibration monitoring methodology based on neural network technology. This technology provides an attractive complement to traditional vibration analysis because of the potential of neural network to operate in real-time mode and to handle data which may be distorted or noisy. Our efforts have been concentrated on the analysis and classification of vibration signatures collected from operating machinery. Two neural networks algorithms were used in our project: the Recirculation algorithm for data compression and the Backpropagation algorithm to perform the actual classification of the patterns. Although this project is in the early stages of development it indicates that neural networks may provide a viable methodology for monitoring and diagnostics of vibrating components. Our results to date are very encouraging
Applying neural networks as software sensors for enzyme engineering.
Linko, S; Zhu, Y H; Linko, P
1999-04-01
The on-line control of enzyme-production processes is difficult, owing to the uncertainties typical of biological systems and to the lack of suitable on-line sensors for key process variables. For example, intelligent methods to predict the end point of fermentation could be of great economic value. Computer-assisted control based on artificial-neural-network models offers a novel solution in such situations. Well-trained feedforward-backpropagation neural networks can be used as software sensors in enzyme-process control; their performance can be affected by a number of factors.
Enhanced online convolutional neural networks for object tracking
Zhang, Dengzhuo; Gao, Yun; Zhou, Hao; Li, Tianwen
2018-04-01
In recent several years, object tracking based on convolution neural network has gained more and more attention. The initialization and update of convolution filters can directly affect the precision of object tracking effective. In this paper, a novel object tracking via an enhanced online convolution neural network without offline training is proposed, which initializes the convolution filters by a k-means++ algorithm and updates the filters by an error back-propagation. The comparative experiments of 7 trackers on 15 challenging sequences showed that our tracker can perform better than other trackers in terms of AUC and precision.
Using Neural Networks to Predict the Hardness of Aluminum Alloys
Directory of Open Access Journals (Sweden)
B. Zahran
2015-02-01
Full Text Available Aluminum alloys have gained significant industrial importance being involved in many of the light and heavy industries and especially in aerospace engineering. The mechanical properties of aluminum alloys are defined by a number of principal microstructural features. Conventional mathematical models of these properties are sometimes very complex to be analytically calculated. In this paper, a neural network model is used to predict the correlations between the hardness of aluminum alloys in relation to certain alloying elements. A backpropagation neural network is trained using a thorough dataset. The impact of certain elements is documented and an optimum structure is proposed.
DEFF Research Database (Denmark)
Krogh, Anders Stærmose; Riis, Søren Kamaric
1999-01-01
A general framework for hybrids of hidden Markov models (HMMs) and neural networks (NNs) called hidden neural networks (HNNs) is described. The article begins by reviewing standard HMMs and estimation by conditional maximum likelihood, which is used by the HNN. In the HNN, the usual HMM probability...... parameters are replaced by the outputs of state-specific neural networks. As opposed to many other hybrids, the HNN is normalized globally and therefore has a valid probabilistic interpretation. All parameters in the HNN are estimated simultaneously according to the discriminative conditional maximum...... likelihood criterion. The HNN can be viewed as an undirected probabilistic independence network (a graphical model), where the neural networks provide a compact representation of the clique functions. An evaluation of the HNN on the task of recognizing broad phoneme classes in the TIMIT database shows clear...
Neural networks for aircraft control
Linse, Dennis
1990-01-01
Current research in Artificial Neural Networks indicates that networks offer some potential advantages in adaptation and fault tolerance. This research is directed at determining the possible applicability of neural networks to aircraft control. The first application will be to aircraft trim. Neural network node characteristics, network topology and operation, neural network learning and example histories using neighboring optimal control with a neural net are discussed.
DEFF Research Database (Denmark)
Hansen, Lars Kai; Salamon, Peter
1990-01-01
We propose several means for improving the performance an training of neural networks for classification. We use crossvalidation as a tool for optimizing network parameters and architecture. We show further that the remaining generalization error can be reduced by invoking ensembles of similar...... networks....
Experiments in Neural-Network Control of a Free-Flying Space Robot
Wilson, Edward
1995-01-01
Four important generic issues are identified and addressed in some depth in this thesis as part of the development of an adaptive neural network based control system for an experimental free flying space robot prototype. The first issue concerns the importance of true system level design of the control system. A new hybrid strategy is developed here, in depth, for the beneficial integration of neural networks into the total control system. A second important issue in neural network control concerns incorporating a priori knowledge into the neural network. In many applications, it is possible to get a reasonably accurate controller using conventional means. If this prior information is used purposefully to provide a starting point for the optimizing capabilities of the neural network, it can provide much faster initial learning. In a step towards addressing this issue, a new generic Fully Connected Architecture (FCA) is developed for use with backpropagation. A third issue is that neural networks are commonly trained using a gradient based optimization method such as backpropagation; but many real world systems have Discrete Valued Functions (DVFs) that do not permit gradient based optimization. One example is the on-off thrusters that are common on spacecraft. A new technique is developed here that now extends backpropagation learning for use with DVFs. The fourth issue is that the speed of adaptation is often a limiting factor in the implementation of a neural network control system. This issue has been strongly resolved in the research by drawing on the above new contributions.
Critical Branching Neural Networks
Kello, Christopher T.
2013-01-01
It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…
International Nuclear Information System (INIS)
Cheon, Se Woo; Kim, Wan Joo; Chang, Soon Heung; Roh, Myung Sub
1991-01-01
The Back-propagation Neural Network (BPN) algorithm is applied to connectionist expert system for the identification of BWR transients. Several powerful features of neural network-based expert systems over traditional rule-based expert systems are described. The general mapping capability of the neural networks enables to identify transients easily. A number of case studies were performed with emphasis on the applicability of the neural networks to the diagnostic domain. It is revealed that the BPN algorithm can identify transients properly, even when incomplete or untrained symptoms are given. It is also shown that multiple transients are easily identified
Rainfall prediction with backpropagation method
Wahyuni, E. G.; Fauzan, L. M. F.; Abriyani, F.; Muchlis, N. F.; Ulfa, M.
2018-03-01
Rainfall is an important factor in many fields, such as aviation and agriculture. Although it has been assisted by technology but the accuracy can not reach 100% and there is still the possibility of error. Though current rainfall prediction information is needed in various fields, such as agriculture and aviation fields. In the field of agriculture, to obtain abundant and quality yields, farmers are very dependent on weather conditions, especially rainfall. Rainfall is one of the factors that affect the safety of aircraft. To overcome the problems above, then it’s required a system that can accurately predict rainfall. In predicting rainfall, artificial neural network modeling is applied in this research. The method used in modeling this artificial neural network is backpropagation method. Backpropagation methods can result in better performance in repetitive exercises. This means that the weight of the ANN interconnection can approach the weight it should be. Another advantage of this method is the ability in the learning process adaptively and multilayer owned on this method there is a process of weight changes so as to minimize error (fault tolerance). Therefore, this method can guarantee good system resilience and consistently work well. The network is designed using 4 input variables, namely air temperature, air humidity, wind speed, and sunshine duration and 3 output variables ie low rainfall, medium rainfall, and high rainfall. Based on the research that has been done, the network can be used properly, as evidenced by the results of the prediction of the system precipitation is the same as the results of manual calculations.
A novel approach to error function minimization for feedforward neural networks
International Nuclear Information System (INIS)
Sinkus, R.
1995-01-01
Feedforward neural networks with error backpropagation are widely applied to pattern recognition. One general problem encountered with this type of neural networks is the uncertainty, whether the minimization procedure has converged to a global minimum of the cost function. To overcome this problem a novel approach to minimize the error function is presented. It allows to monitor the approach to the global minimum and as an outcome several ambiguities related to the choice of free parameters of the minimization procedure are removed. (orig.)
Adaptive Learning Rule for Hardware-based Deep Neural Networks Using Electronic Synapse Devices
Lim, Suhwan; Bae, Jong-Ho; Eum, Jai-Ho; Lee, Sungtae; Kim, Chul-Heung; Kwon, Dongseok; Park, Byung-Gook; Lee, Jong-Ho
2017-01-01
In this paper, we propose a learning rule based on a back-propagation (BP) algorithm that can be applied to a hardware-based deep neural network (HW-DNN) using electronic devices that exhibit discrete and limited conductance characteristics. This adaptive learning rule, which enables forward, backward propagation, as well as weight updates in hardware, is helpful during the implementation of power-efficient and high-speed deep neural networks. In simulations using a three-layer perceptron net...
Nonlinear Time Series Prediction Using Chaotic Neural Networks
Li, Ke-Ping; Chen, Tian-Lun
2001-06-01
A nonlinear feedback term is introduced into the evaluation equation of weights of the backpropagation algorithm for neural network, the network becomes a chaotic one. For the purpose of that we can investigate how the different feedback terms affect the process of learning and forecasting, we use the model to forecast the nonlinear time series which is produced by Makey-Glass equation. By selecting the suitable feedback term, the system can escape from the local minima and converge to the global minimum or its approximate solutions, and the forecasting results are better than those of backpropagation algorithm. The project supported by National Basic Research Project "Nonlinear Science" and National Natural Science Foundation of China under Grant No. 60074020
Energy Technology Data Exchange (ETDEWEB)
Nose Filho, Kenji; Araujo, Klayton A.M.; Maeda, Jorge L.Y.; Lotufo, Anna Diva P. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Ilha Solteira, SP (Brazil)], Emails: kenjinose@yahoo.com.br, klayton_ama@hotmail.com, jorge-maeda@hotmail.com, annadiva@dee.feis.unesp.br
2009-07-01
This paper presents a development and implementation of a program to electrical load forecasting with data from a Brazilian electrical company, using four different architectures of neural networks of the MATLAB toolboxes: multilayer backpropagation gradient descendent with momentum, multilayer backpropagation Levenberg-Marquardt, adaptive network based fuzzy inference system and general regression neural network. The program presented a satisfactory performance, guaranteeing very good results. (author)
Backpropagation and ordered derivatives in the time scales calculus.
Seiffertt, John; Wunsch, Donald C
2010-08-01
Backpropagation is the most widely used neural network learning technique. It is based on the mathematical notion of an ordered derivative. In this paper, we present a formulation of ordered derivatives and the backpropagation training algorithm using the important emerging area of mathematics known as the time scales calculus. This calculus, with its potential for application to a wide variety of inter-disciplinary problems, is becoming a key area of mathematics. It is capable of unifying continuous and discrete analysis within one coherent theoretical framework. Using this calculus, we present here a generalization of backpropagation which is appropriate for cases beyond the specifically continuous or discrete. We develop a new multivariate chain rule of this calculus, define ordered derivatives on time scales, prove a key theorem about them, and derive the backpropagation weight update equations for a feedforward multilayer neural network architecture. By drawing together the time scales calculus and the area of neural network learning, we present the first connection of two major fields of research.
Learning behavior and temporary minima of two-layer neural networks
Annema, Anne J.; Hoen, Klaas; Hoen, Klaas; Wallinga, Hans
1994-01-01
This paper presents a mathematical analysis of the occurrence of temporary minima during training of a single-output, two-layer neural network, with learning according to the back-propagation algorithm. A new vector decomposition method is introduced, which simplifies the mathematical analysis of
DEFF Research Database (Denmark)
Bhowmik, Subrata; Weber, Felix; Høgsberg, Jan Becker
2013-01-01
This paper presents a systematic design and training procedure for the feed-forward backpropagation neural network (NN) modeling of both forward and inverse behavior of a rotary magnetorheological (MR) damper based on experimental data. For the forward damper model, with damper force as output...
Artificial Neural Network Model for Predicting Compressive
Directory of Open Access Journals (Sweden)
Salim T. Yousif
2013-05-01
Full Text Available Compressive strength of concrete is a commonly used criterion in evaluating concrete. Although testing of the compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placement. Therefore, strength estimation of concrete at early time is highly desirable. This study presents the effort in applying neural network-based system identification techniques to predict the compressive strength of concrete based on concrete mix proportions, maximum aggregate size (MAS, and slump of fresh concrete. Back-propagation neural networks model is successively developed, trained, and tested using actual data sets of concrete mix proportions gathered from literature. The test of the model by un-used data within the range of input parameters shows that the maximum absolute error for model is about 20% and 88% of the output results has absolute errors less than 10%. The parametric study shows that water/cement ratio (w/c is the most significant factor affecting the output of the model. The results showed that neural networks has strong potential as a feasible tool for predicting compressive strength of concrete.
Gain and exposure scheduling to compensate for photorefractive neural-network weight decay
Goldstein, Adam A.; Petrisor, Gregory C.; Jenkins, B. Keith
1995-03-01
A gain and exposure schedule that theoretically eliminates the effect of photorefractive weight decay for the general class of outer-product neural-network learning algorithms (e.g., backpropagation, Widrow-Hoff, perceptron) is presented. This schedule compensates for photorefractive diffraction-efficiency decay by iteratively increasing the spatial-light-modulator transfer function gain and decreasing the weight-update exposure time. Simulation results for the scheduling procedure, as applied to backpropagation learning for the exclusive-OR problem, show improved learning performance compared with results for networks trained without scheduling.
Application of neural networks to seismic active control
International Nuclear Information System (INIS)
Tang, Yu.
1995-01-01
An exploratory study on seismic active control using an artificial neural network (ANN) is presented in which a singledegree-of-freedom (SDF) structural system is controlled by a trained neural network. A feed-forward neural network and the backpropagation training method are used in the study. In backpropagation training, the learning rate is determined by ensuring the decrease of the error function at each training cycle. The training patterns for the neural net are generated randomly. Then, the trained ANN is used to compute the control force according to the control algorithm. The control strategy proposed herein is to apply the control force at every time step to destroy the build-up of the system response. The ground motions considered in the simulations are the N21E and N69W components of the Lake Hughes No. 12 record that occurred in the San Fernando Valley in California on February 9, 1971. Significant reduction of the structural response by one order of magnitude is observed. Also, it is shown that the proposed control strategy has the ability to reduce the peak that occurs during the first few cycles of the time history. These promising results assert the potential of applying ANNs to active structural control under seismic loads
Diagnosis method utilizing neural networks
International Nuclear Information System (INIS)
Watanabe, K.; Tamayama, K.
1990-01-01
Studies have been made on the technique of neural networks, which will be used to identify a cause of a small anomalous state in the reactor coolant system of the ATR (Advance Thermal Reactor). Three phases of analyses were carried out in this study. First, simulation for 100 seconds was made to determine how the plant parameters respond after the occurence of a transient decrease in reactivity, flow rate and temperature of feed water and increase in the steam flow rate and steam pressure, which would produce a decrease of water level in a steam drum of the ATR. Next, the simulation data was analysed utilizing an autoregressive model. From this analysis, a total of 36 coherency functions up to 0.5 Hz in each transient were computed among nine important and detectable plant parameters: neutron flux, flow rate of coolant, steam or feed water, water level in the steam drum, pressure and opening area of control valve in a steam pipe, feed water temperature and electrical power. Last, learning of neural networks composed of 96 input, 4-9 hidden and 5 output layer units was done by use of the generalized delta rule, namely a back-propagation algorithm. These convergent computations were continued as far as the difference between the desired outputs, 1 for direct cause or 0 for four other ones and actual outputs reached less than 10%. (1) Coherency functions were not governed by decreasing rate of reactivity in the range of 0.41x10 -2 dollar/s to 1.62x10 -2 dollar /s or by decreasing depth of the feed water temperature in the range of 3 deg C to 10 deg C or by a change of 10% or less in the three other causes. Change in coherency functions only depended on the type of cause. (2) The direct cause from the other four ones could be discriminated with 0.94+-0.01 of output level. A maximum of 0.06 output height was found among the other four causes. (3) Calculation load which is represented as products of learning times and numbers of the hidden units did not depend on the
Introduction to Artificial Neural Networks
DEFF Research Database (Denmark)
Larsen, Jan
1999-01-01
The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks.......The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks....
Artificial neural networks in the nuclear engineering (Part 2)
International Nuclear Information System (INIS)
Baptista Filho, Benedito Dias
2002-01-01
The field of Artificial Neural Networks (ANN), one of the branches of Artificial Intelligence has been waking up a lot of interest in the Nuclear Engineering (NE). ANN can be used to solve problems of difficult modeling, when the data are fail or incomplete and in high complexity problems of control. The first part of this work began a discussion with feed-forward neural networks in back-propagation. In this part of the work, the Multi-synaptic neural networks is applied to control problems. Also, the self-organized maps is presented in a typical pattern classification problem: transients classification. The main purpose of the work is to show that ANN can be successfully used in NE if a carefully choice of its type is done: the application sets this choice. (author)
HIV lipodystrophy case definition using artificial neural network modelling
DEFF Research Database (Denmark)
Ioannidis, John P A; Trikalinos, Thomas A; Law, Matthew
2003-01-01
OBJECTIVE: A case definition of HIV lipodystrophy has recently been developed from a combination of clinical, metabolic and imaging/body composition variables using logistic regression methods. We aimed to evaluate whether artificial neural networks could improve the diagnostic accuracy. METHODS......: The database of the case-control Lipodystrophy Case Definition Study was split into 504 subjects (265 with and 239 without lipodystrophy) used for training and 284 independent subjects (152 with and 132 without lipodystrophy) used for validation. Back-propagation neural networks with one or two middle layers...... were trained and validated. Results were compared against logistic regression models using the same information. RESULTS: Neural networks using clinical variables only (41 items) achieved consistently superior performance than logistic regression in terms of specificity, overall accuracy and area under...
Artificial neural network modelling
Samarasinghe, Sandhya
2016-01-01
This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .
Rotation Invariance Neural Network
Li, Shiyuan
2017-01-01
Rotation invariance and translation invariance have great values in image recognition tasks. In this paper, we bring a new architecture in convolutional neural network (CNN) named cyclic convolutional layer to achieve rotation invariance in 2-D symbol recognition. We can also get the position and orientation of the 2-D symbol by the network to achieve detection purpose for multiple non-overlap target. Last but not least, this architecture can achieve one-shot learning in some cases using thos...
Synthesis of recurrent neural networks for dynamical system simulation.
Trischler, Adam P; D'Eleuterio, Gabriele M T
2016-08-01
We review several of the most widely used techniques for training recurrent neural networks to approximate dynamical systems, then describe a novel algorithm for this task. The algorithm is based on an earlier theoretical result that guarantees the quality of the network approximation. We show that a feedforward neural network can be trained on the vector-field representation of a given dynamical system using backpropagation, then recast it as a recurrent network that replicates the original system's dynamics. After detailing this algorithm and its relation to earlier approaches, we present numerical examples that demonstrate its capabilities. One of the distinguishing features of our approach is that both the original dynamical systems and the recurrent networks that simulate them operate in continuous time. Copyright © 2016 Elsevier Ltd. All rights reserved.
Neural PID Control Strategy for Networked Process Control
Directory of Open Access Journals (Sweden)
Jianhua Zhang
2013-01-01
Full Text Available A new method with a two-layer hierarchy is presented based on a neural proportional-integral-derivative (PID iterative learning method over the communication network for the closed-loop automatic tuning of a PID controller. It can enhance the performance of the well-known simple PID feedback control loop in the local field when real networked process control applied to systems with uncertain factors, such as external disturbance or randomly delayed measurements. The proposed PID iterative learning method is implemented by backpropagation neural networks whose weights are updated via minimizing tracking error entropy of closed-loop systems. The convergence in the mean square sense is analysed for closed-loop networked control systems. To demonstrate the potential applications of the proposed strategies, a pressure-tank experiment is provided to show the usefulness and effectiveness of the proposed design method in network process control systems.
Recurrent networks for wave forecasting
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Prabaharan, N.
, merchant vessel routing, nearshore construction, etc. more efficiently and safely. This paper presents an application of the Artificial Neural Network, namely Backpropagation Recurrent Neural Network (BRNN) with rprop update algorithm for wave forecasting...
Neural Networks and Micromechanics
Kussul, Ernst; Baidyk, Tatiana; Wunsch, Donald C.
The title of the book, "Neural Networks and Micromechanics," seems artificial. However, the scientific and technological developments in recent decades demonstrate a very close connection between the two different areas of neural networks and micromechanics. The purpose of this book is to demonstrate this connection. Some artificial intelligence (AI) methods, including neural networks, could be used to improve automation system performance in manufacturing processes. However, the implementation of these AI methods within industry is rather slow because of the high cost of conducting experiments using conventional manufacturing and AI systems. To lower the cost, we have developed special micromechanical equipment that is similar to conventional mechanical equipment but of much smaller size and therefore of lower cost. This equipment could be used to evaluate different AI methods in an easy and inexpensive way. The proved methods could be transferred to industry through appropriate scaling. In this book, we describe the prototypes of low cost microequipment for manufacturing processes and the implementation of some AI methods to increase precision, such as computer vision systems based on neural networks for microdevice assembly and genetic algorithms for microequipment characterization and the increase of microequipment precision.
An Adaptive Filtering Algorithm Based on Genetic Algorithm-Backpropagation Network
Directory of Open Access Journals (Sweden)
Kai Hu
2013-01-01
Full Text Available A new image filtering algorithm is proposed. GA-BPN algorithm uses genetic algorithm (GA to decide weights in a back propagation neural network (BPN. It has better global optimal characteristics than traditional optimal algorithm. In this paper, we used GA-BPN to do image noise filter researching work. Firstly, this paper uses training samples to train GA-BPN as the noise detector. Then, we utilize the well-trained GA-BPN to recognize noise pixels in target image. And at last, an adaptive weighted average algorithm is used to recover noise pixels recognized by GA-BPN. Experiment data shows that this algorithm has better performance than other filters.
Neural network classification of quark and gluon jets
International Nuclear Information System (INIS)
Graham, M.A.; Jones, L.M.; Herbin, S.
1995-01-01
We demonstrate that there are characteristics common to quark jets and to gluon jets regardless of the interaction that produced them. The classification technique we use depends on the mass of the jet as well as the center-of-mass energy of the hard subprocess that produces the jet. In addition, we present the quark-gluon separability results of an artificial neural network trained on three-jet e + e - events at the Z 0 mass, using a back-propagation algorithm. The inputs to the network are the longitudinal momenta of the leading hadrons in the jet. We tested the network with quark and gluon jets from both e + e - →3 jets and bar pp→2 jets. Finally, we compare the performance of the artificial neural network with the results of making well chosen physical cuts
A SIMULATION OF THE PENICILLIN G PRODUCTION BIOPROCESS APPLYING NEURAL NETWORKS
Directory of Open Access Journals (Sweden)
A.J.G. da Cruz
1997-12-01
Full Text Available The production of penicillin G by Penicillium chrysogenum IFO 8644 was simulated employing a feedforward neural network with three layers. The neural network training procedure used an algorithm combining two procedures: random search and backpropagation. The results of this approach were very promising, and it was observed that the neural network was able to accurately describe the nonlinear behavior of the process. Besides, the results showed that this technique can be successfully applied to control process algorithms due to its long processing time and its flexibility in the incorporation of new data
Heat transfer prediction in a square porous medium using artificial neural network
Ahamad, N. Ameer; Athani, Abdulgaphur; Badruddin, Irfan Anjum
2018-05-01
Heat transfer in porous media has been investigated extensively because of its applications in various important fields. Neural network approach is applied to analyze steady two dimensional free convection flows through a porous medium fixed in a square cavity. The backpropagation neural network is trained and used to predict the heat transfer. The results are compared with available information in the literature. It is found that the heat transfer increases with increase in Rayleigh number. It is further found that the local Nusselt number decreases along the height of cavity. The neural network is found to predict the heat transfer behavior accurately for given parameters.
Application of artificial neural network for heat transfer in porous cone
Athani, Abdulgaphur; Ahamad, N. Ameer; Badruddin, Irfan Anjum
2018-05-01
Heat transfer in porous medium is one of the classical areas of research that has been active for many decades. The heat transfer in porous medium is generally studied by using numerical methods such as finite element method; finite difference method etc. that solves coupled partial differential equations by converting them into simpler forms. The current work utilizes an alternate method known as artificial neural network that mimics the learning characteristics of neurons. The heat transfer in porous medium fixed in a cone is predicted using backpropagation neural network. The artificial neural network is able to predict this behavior quite accurately.
Forecasting the mortality rates of Indonesian population by using neural network
Safitri, Lutfiani; Mardiyati, Sri; Rahim, Hendrisman
2018-03-01
A model that can represent a problem is required in conducting a forecasting. One of the models that has been acknowledged by the actuary community in forecasting mortality rate is the Lee-Certer model. Lee Carter model supported by Neural Network will be used to calculate mortality forecasting in Indonesia. The type of Neural Network used is feedforward neural network aligned with backpropagation algorithm in python programming language. And the final result of this study is mortality rate in forecasting Indonesia for the next few years
Neural networks for triggering
International Nuclear Information System (INIS)
Denby, B.; Campbell, M.; Bedeschi, F.; Chriss, N.; Bowers, C.; Nesti, F.
1990-01-01
Two types of neural network beauty trigger architectures, based on identification of electrons in jets and recognition of secondary vertices, have been simulated in the environment of the Fermilab CDF experiment. The efficiencies for B's and rejection of background obtained are encouraging. If hardware tests are successful, the electron identification architecture will be tested in the 1991 run of CDF. 10 refs., 5 figs., 1 tab
Using function approximation to determine neural network accuracy
International Nuclear Information System (INIS)
Wichman, R.F.; Alexander, J.
2013-01-01
Many, if not most, control processes demonstrate nonlinear behavior in some portion of their operating range and the ability of neural networks to model non-linear dynamics makes them very appealing for control. Control of high reliability safety systems, and autonomous control in process or robotic applications, however, require accurate and consistent control and neural networks are only approximators of various functions so their degree of approximation becomes important. In this paper, the factors affecting the ability of a feed-forward back-propagation neural network to accurately approximate a non-linear function are explored. Compared to pattern recognition using a neural network for function approximation provides an easy and accurate method for determining the network's accuracy. In contrast to other techniques, we show that errors arising in function approximation or curve fitting are caused by the neural network itself rather than scatter in the data. A method is proposed that provides improvements in the accuracy achieved during training and resulting ability of the network to generalize after training. Binary input vectors provided a more accurate model than with scalar inputs and retraining using a small number of the outlier x,y pairs improved generalization. (author)
Neural electrical activity and neural network growth.
Gafarov, F M
2018-05-01
The development of central and peripheral neural system depends in part on the emergence of the correct functional connectivity in its input and output pathways. Now it is generally accepted that molecular factors guide neurons to establish a primary scaffold that undergoes activity-dependent refinement for building a fully functional circuit. However, a number of experimental results obtained recently shows that the neuronal electrical activity plays an important role in the establishing of initial interneuronal connections. Nevertheless, these processes are rather difficult to study experimentally, due to the absence of theoretical description and quantitative parameters for estimation of the neuronal activity influence on growth in neural networks. In this work we propose a general framework for a theoretical description of the activity-dependent neural network growth. The theoretical description incorporates a closed-loop growth model in which the neural activity can affect neurite outgrowth, which in turn can affect neural activity. We carried out the detailed quantitative analysis of spatiotemporal activity patterns and studied the relationship between individual cells and the network as a whole to explore the relationship between developing connectivity and activity patterns. The model, developed in this work will allow us to develop new experimental techniques for studying and quantifying the influence of the neuronal activity on growth processes in neural networks and may lead to a novel techniques for constructing large-scale neural networks by self-organization. Copyright © 2018 Elsevier Ltd. All rights reserved.
PREDIKSI BISNIS FOREX MENGGUNAKAN MODEL NEURAL NETWORK BERBASIS ADA BOOST MENGGUNAKAN 2047 DATA
Directory of Open Access Journals (Sweden)
Suyatno Suyatno
2016-11-01
Full Text Available Setelah melakukan penelitian dan percobaan maka didapatkan hasil penelitian pertama yang telah dilakukan dengan menggunakan Algoritma Neural Network Backpropagatioan dengan menggunakan data sebanyak 268 menunjungkan tingkat akurasi error prediksi pada waktu prediksi per 5 menit sebesar 0.758619403, bila menggunakan data sebanyak 2047 menunjukkan tingkat akurasi error prediksi sebesar 0.500161212 dan hasil penelitian kedua yang telah dilakukan menggunakan Algoritma Optimasi Adaboost pada proses trainning dan ditambah Neural Network Backpropagation pada proses learning menunjukkan tingkat akurasi error prediksi pada waktu prediksi per 5 menit menggunakan data sebanyak 268 sebesar 0.397014925, bila menggunakan data sebanyak 2047 menunjukkan tingkat akurasi error prediksi sebesar 0.099951148. Tahap awal dalam melakukan penelitian ini sampai dengan pengujian menggunakan perhitungan prediksi nilai akurasi error menggunakan rumus MSE (Mean Sequare Error dengan menggunakan algoritma optimasi adaboost untuk memberikan jawaban atas permasalahan bahwa nilai akurasi error Algoritma Neural Network Backpropagation perlu direndahkan agar akurasi prediksi meningkat dan tahap kedua dilakukan uji coba menggunakan data yang lebih banyak dibandingan dengan tahap ke satu. Berdasarkan hasil penelitian yang telah dilakukan, dapat disimpulkan bahwa Algoritma Neural Network memiliki akurasi yang lebih rendah bila dibandingkan dengan akurasi menggunakan metode optimasi adaboost pada proses trainning ditambah dengan Neural Network, ini dapat dilihat dengan rendahnya tingkat error MSE menggunakan metode adaboost + neural network dan dapat disimpukan pula bahwa dengan menggunakan jumlah data yang lebih banyak maka dapat menurunkan tingkat akurasi error MSE sehingga berhasil meningkatkan akurasi prediksi dalam bisnis forex trading. Kata kunci: forex, trading, neural network, adaboost, central capital futures.
Intelligent Surveillance Robot with Obstacle Avoidance Capabilities Using Neural Network
Directory of Open Access Journals (Sweden)
Widodo Budiharto
2015-01-01
Full Text Available For specific purpose, vision-based surveillance robot that can be run autonomously and able to acquire images from its dynamic environment is very important, for example, in rescuing disaster victims in Indonesia. In this paper, we propose architecture for intelligent surveillance robot that is able to avoid obstacles using 3 ultrasonic distance sensors based on backpropagation neural network and a camera for face recognition. 2.4 GHz transmitter for transmitting video is used by the operator/user to direct the robot to the desired area. Results show the effectiveness of our method and we evaluate the performance of the system.
Fault Tolerant Neural Network for ECG Signal Classification Systems
Directory of Open Access Journals (Sweden)
MERAH, M.
2011-08-01
Full Text Available The aim of this paper is to apply a new robust hardware Artificial Neural Network (ANN for ECG classification systems. This ANN includes a penalization criterion which makes the performances in terms of robustness. Specifically, in this method, the ANN weights are normalized using the auto-prune method. Simulations performed on the MIT ? BIH ECG signals, have shown that significant robustness improvements are obtained regarding potential hardware artificial neuron failures. Moreover, we show that the proposed design achieves better generalization performances, compared to the standard back-propagation algorithm.
Supervised learning of probability distributions by neural networks
Baum, Eric B.; Wilczek, Frank
1988-01-01
Supervised learning algorithms for feedforward neural networks are investigated analytically. The back-propagation algorithm described by Werbos (1974), Parker (1985), and Rumelhart et al. (1986) is generalized by redefining the values of the input and output neurons as probabilities. The synaptic weights are then varied to follow gradients in the logarithm of likelihood rather than in the error. This modification is shown to provide a more rigorous theoretical basis for the algorithm and to permit more accurate predictions. A typical application involving a medical-diagnosis expert system is discussed.
Estimation of Solar Radiation using Artificial Neural Network
Directory of Open Access Journals (Sweden)
Slamet Suprayogi
2004-01-01
Full Text Available The solar radiation is the most important fator affeccting evapotranspiration, the mechanism of transporting the vapor from the water surface has also a great effect. The main objectives of this study were to investigate the potential of using Artificial Neural Network (ANN to predict solar radiation related to temperature. The three-layer backpropagation were developed, trained, and tested to forecast solar radiation for Ciriung sub Cachment. Result revealed that the ANN were able to well learn the events they were trained to recognize. Moreover, they were capable of effecctively generalize their training by predicting solar radiation for sets unseen cases.
An Artificial Neural Network for Data Forecasting Purposes
Directory of Open Access Journals (Sweden)
Catalina Lucia COCIANU
2015-01-01
Full Text Available Considering the fact that markets are generally influenced by different external factors, the stock market prediction is one of the most difficult tasks of time series analysis. The research reported in this paper aims to investigate the potential of artificial neural networks (ANN in solving the forecast task in the most general case, when the time series are non-stationary. We used a feed-forward neural architecture: the nonlinear autoregressive network with exogenous inputs. The network training function used to update the weight and bias parameters corresponds to gradient descent with adaptive learning rate variant of the backpropagation algorithm. The results obtained using this technique are compared with the ones resulted from some ARIMA models. We used the mean square error (MSE measure to evaluate the performances of these two models. The comparative analysis leads to the conclusion that the proposed model can be successfully applied to forecast the financial data.
Estimation of scattered photons using a neural network in SPECT
International Nuclear Information System (INIS)
Hasegawa, Wataru; Ogawa, Koichi
1994-01-01
In single photon emission CT (SPECT), measured projection data involve scattered photons. This causes degradation of spatial resolution and contrast in reconstructed images. The purpose of this study is to estimate the scattered photons, and eliminate them from measured data. To estimate the scattered photons, we used an artificial neural network which consists of five input units, five hidden units, and two output units. The inputs of the network are the ratios of the counts acquired by five narrow energy windows and their sum. The outputs are the ratios of the count of scattered photons and that of primary photons to the total count. The neural network was trained with a back-propagation algorithm using count data obtained by a Monte Carlo simulation. The results of simulation showed improvement of contrast and spatial resolution in reconstructed images. (author)
International Nuclear Information System (INIS)
Asada, N.; Eiho, S.; Doi, K.; MacMahon, H.; Montner, S.M.; Giger, M.L.
1989-01-01
An artificial neural network has been applied for pattern recognition and used as a tool in an expert system. The purpose of this study is to examine the potential usefulness of the neural network approach in medical applications for image recognition and decision making. The authors designed multilayer feedforward neural networks with a back-propagation algorithm for our study. Using first-pass radionuclide ventriculograms, we attempted to identify the right and left ventricles of the heart and the lungs by training the neural network from patterns of time-activity curves. In a preliminary study, the neural network enabled identification of the lungs and heart chambers once the network was trained sufficiently by means of repeated entries of data from the same case
International Nuclear Information System (INIS)
Nabeshima, Kunihiko; Suzuki, Katsuo; Shinohara, Yoshikuni; Tuerkcan, E.
1995-11-01
In this paper, the anomaly detection method for nuclear power plant monitoring and its program are described by using a neural network approach, which is based on the deviation between measured signals and output signals of neural network model. The neural network used in this study has three layered auto-associative network with 12 input/output, and backpropagation algorithm is adopted for learning. Furthermore, to obtain better dynamical model of the reactor plant, a new learning technique was developed in which the learning process of the present neural network is divided into initial and adaptive learning modes. The test results at the actual nuclear reactor shows that the neural network plant monitoring system is successfull in detecting in real-time the symptom of small anomaly over a wide power range including reactor start-up, shut-down and stationary operation. (author)
Online Signature Verification using Recurrent Neural Network and Length-normalized Path Signature
Lai, Songxuan; Jin, Lianwen; Yang, Weixin
2017-01-01
Inspired by the great success of recurrent neural networks (RNNs) in sequential modeling, we introduce a novel RNN system to improve the performance of online signature verification. The training objective is to directly minimize intra-class variations and to push the distances between skilled forgeries and genuine samples above a given threshold. By back-propagating the training signals, our RNN network produced discriminative features with desired metrics. Additionally, we propose a novel d...
International Nuclear Information System (INIS)
Cadini, F.; Zio, E.; Pedroni, N.
2007-01-01
In this paper, a locally recurrent neural network (LRNN) is employed for approximating the temporal evolution of a nonlinear dynamic system model of a simplified nuclear reactor. To this aim, an infinite impulse response multi-layer perceptron (IIR-MLP) is trained according to a recursive back-propagation (RBP) algorithm. The network nodes contain internal feedback paths and their connections are realized by means of IIR synaptic filters, which provide the LRNN with the necessary system state memory
Temporal neural networks and transient analysis of complex engineering systems
Uluyol, Onder
A theory is introduced for a multi-layered Local Output Gamma Feedback (LOGF) neural network within the paradigm of Locally-Recurrent Globally-Feedforward neural networks. It is developed for the identification, prediction, and control tasks of spatio-temporal systems and allows for the presentation of different time scales through incorporation of a gamma memory. It is initially applied to the tasks of sunspot and Mackey-Glass series prediction as benchmarks, then it is extended to the task of power level control of a nuclear reactor at different fuel cycle conditions. The developed LOGF neuron model can also be viewed as a Transformed Input and State (TIS) Gamma memory for neural network architectures for temporal processing. The novel LOGF neuron model extends the static neuron model by incorporating into it a short-term memory structure in the form of a digital gamma filter. A feedforward neural network made up of LOGF neurons can thus be used to model dynamic systems. A learning algorithm based upon the Backpropagation-Through-Time (BTT) approach is derived. It is applicable for training a general L-layer LOGF neural network. The spatial and temporal weights and parameters of the network are iteratively optimized for a given problem using the derived learning algorithm.
Determining the confidence levels of sensor outputs using neural networks
Energy Technology Data Exchange (ETDEWEB)
Broten, G S; Wood, H C [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Electrical Engineering
1996-12-31
This paper describes an approach for determining the confidence level of a sensor output using multi-sensor arrays, sensor fusion and artificial neural networks. The authors have shown in previous work that sensor fusion and artificial neural networks can be used to learn the relationships between the outputs of an array of simulated partially selective sensors and the individual analyte concentrations in a mixture of analyses. Other researchers have shown that an array of partially selective sensors can be used to determine the individual gas concentrations in a gaseous mixture. The research reported in this paper shows that it is possible to extract confidence level information from an array of partially selective sensors using artificial neural networks. The confidence level of a sensor output is defined as a numeric value, ranging from 0% to 100%, that indicates the confidence associated with a output of a given sensor. A three layer back-propagation neural network was trained on a subset of the sensor confidence level space, and was tested for its ability to generalize, where the confidence level space is defined as all possible deviations from the correct sensor output. A learning rate of 0.1 was used and no momentum terms were used in the neural network. This research has shown that an artificial neural network can accurately estimate the confidence level of individual sensors in an array of partially selective sensors. This research has also shown that the neural network`s ability to determine the confidence level is influenced by the complexity of the sensor`s response and that the neural network is able to estimate the confidence levels even if more than one sensor is in error. The fundamentals behind this research could be applied to other configurations besides arrays of partially selective sensors, such as an array of sensors separated spatially. An example of such a configuration could be an array of temperature sensors in a tank that is not in
Nonlinear signal processing using neural networks: Prediction and system modelling
Energy Technology Data Exchange (ETDEWEB)
Lapedes, A.; Farber, R.
1987-06-01
The backpropagation learning algorithm for neural networks is developed into a formalism for nonlinear signal processing. We illustrate the method by selecting two common topics in signal processing, prediction and system modelling, and show that nonlinear applications can be handled extremely well by using neural networks. The formalism is a natural, nonlinear extension of the linear Least Mean Squares algorithm commonly used in adaptive signal processing. Simulations are presented that document the additional performance achieved by using nonlinear neural networks. First, we demonstrate that the formalism may be used to predict points in a highly chaotic time series with orders of magnitude increase in accuracy over conventional methods including the Linear Predictive Method and the Gabor-Volterra-Weiner Polynomial Method. Deterministic chaos is thought to be involved in many physical situations including the onset of turbulence in fluids, chemical reactions and plasma physics. Secondly, we demonstrate the use of the formalism in nonlinear system modelling by providing a graphic example in which it is clear that the neural network has accurately modelled the nonlinear transfer function. It is interesting to note that the formalism provides explicit, analytic, global, approximations to the nonlinear maps underlying the various time series. Furthermore, the neural net seems to be extremely parsimonious in its requirements for data points from the time series. We show that the neural net is able to perform well because it globally approximates the relevant maps by performing a kind of generalized mode decomposition of the maps. 24 refs., 13 figs.
Trimaran Resistance Artificial Neural Network
2011-01-01
11th International Conference on Fast Sea Transportation FAST 2011, Honolulu, Hawaii, USA, September 2011 Trimaran Resistance Artificial Neural Network Richard...Trimaran Resistance Artificial Neural Network 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e... Artificial Neural Network and is restricted to the center and side-hull configurations tested. The value in the parametric model is that it is able to
Neural network classification of sweet potato embryos
Molto, Enrique; Harrell, Roy C.
1993-05-01
Somatic embryogenesis is a process that allows for the in vitro propagation of thousands of plants in sub-liter size vessels and has been successfully applied to many significant species. The heterogeneity of maturity and quality of embryos produced with this technique requires sorting to obtain a uniform product. An automated harvester is being developed at the University of Florida to sort embryos in vitro at different stages of maturation in a suspension culture. The system utilizes machine vision to characterize embryo morphology and a fluidic based separation device to isolate embryos associated with a pre-defined, targeted morphology. Two different backpropagation neural networks (BNN) were used to classify embryos based on information extracted from the vision system. One network utilized geometric features such as embryo area, length, and symmetry as inputs. The alternative network utilized polar coordinates of an embryo's perimeter with respect to its centroid as inputs. The performances of both techniques were compared with each other and with an embryo classification method based on linear discriminant analysis (LDA). Similar results were obtained with all three techniques. Classification efficiency was improved by reducing the dimension of the feature vector trough a forward stepwise analysis by LDA. In order to enhance the purity of the sample selected as harvestable, a reject to classify option was introduced in the model and analyzed. The best classifier performances (76% overall correct classifications, 75% harvestable objects properly classified, homogeneity improvement ratio 1.5) were obtained using 8 features in a BNN.
TAO-robust backpropagation learning algorithm.
Pernía-Espinoza, Alpha V; Ordieres-Meré, Joaquín B; Martínez-de-Pisón, Francisco J; González-Marcos, Ana
2005-03-01
In several fields, as industrial modelling, multilayer feedforward neural networks are often used as universal function approximations. These supervised neural networks are commonly trained by a traditional backpropagation learning format, which minimises the mean squared error (mse) of the training data. However, in the presence of corrupted data (outliers) this training scheme may produce wrong models. We combine the benefits of the non-linear regression model tau-estimates [introduced by Tabatabai, M. A. Argyros, I. K. Robust Estimation and testing for general nonlinear regression models. Applied Mathematics and Computation. 58 (1993) 85-101] with the backpropagation algorithm to produce the TAO-robust learning algorithm, in order to deal with the problems of modelling with outliers. The cost function of this approach has a bounded influence function given by the weighted average of two psi functions, one corresponding to a very robust estimate and the other to a highly efficient estimate. The advantages of the proposed algorithm are studied with an example.
Evolution of an artificial neural network based autonomous land vehicle controller.
Baluja, S
1996-01-01
This paper presents an evolutionary method for creating an artificial neural network based autonomous land vehicle controller. The evolved controllers perform better in unseen situations than those trained with an error backpropagation learning algorithm designed for this task. In this paper, an overview of the previous connectionist based approaches to this task is given, and the evolutionary algorithms used in this study are described in detail. Methods for reducing the high computational costs of training artificial neural networks with evolutionary algorithms are explored. Error metrics specific to the task of autonomous vehicle control are introduced; the evolutionary algorithms guided by these error metrics reveal improved performance over those guided by the standard sum-squared error metric. Finally, techniques for integrating evolutionary search and error backpropagation are presented. The evolved networks are designed to control Carnegie Mellon University's NAVLAB vehicles in road following tasks.
Reliability analysis of C-130 turboprop engine components using artificial neural network
Qattan, Nizar A.
In this study, we predict the failure rate of Lockheed C-130 Engine Turbine. More than thirty years of local operational field data were used for failure rate prediction and validation. The Weibull regression model and the Artificial Neural Network model including (feed-forward back-propagation, radial basis neural network, and multilayer perceptron neural network model); will be utilized to perform this study. For this purpose, the thesis will be divided into five major parts. First part deals with Weibull regression model to predict the turbine general failure rate, and the rate of failures that require overhaul maintenance. The second part will cover the Artificial Neural Network (ANN) model utilizing the feed-forward back-propagation algorithm as a learning rule. The MATLAB package will be used in order to build and design a code to simulate the given data, the inputs to the neural network are the independent variables, the output is the general failure rate of the turbine, and the failures which required overhaul maintenance. In the third part we predict the general failure rate of the turbine and the failures which require overhaul maintenance, using radial basis neural network model on MATLAB tool box. In the fourth part we compare the predictions of the feed-forward back-propagation model, with that of Weibull regression model, and radial basis neural network model. The results show that the failure rate predicted by the feed-forward back-propagation artificial neural network model is closer in agreement with radial basis neural network model compared with the actual field-data, than the failure rate predicted by the Weibull model. By the end of the study, we forecast the general failure rate of the Lockheed C-130 Engine Turbine, the failures which required overhaul maintenance and six categorical failures using multilayer perceptron neural network (MLP) model on DTREG commercial software. The results also give an insight into the reliability of the engine
Chen, Chau-Kuang
2010-01-01
Artificial Neural Network (ANN) and Support Vector Machine (SVM) approaches have been on the cutting edge of science and technology for pattern recognition and data classification. In the ANN model, classification accuracy can be achieved by using the feed-forward of inputs, back-propagation of errors, and the adjustment of connection weights. In…
2016-09-15
Requirements for the Degree of Doctor of Philosophy in Operations Research Michael P. Gibb, B.S., M.S. Captain, USAF September 2016 DISTRIBUTION...Bidstrup, P. Kohl, and G. May. Modeling the properties of PECVD silicon dioxide films using optimized back-propagation neural networks. IEEE Trans
Iris double recognition based on modified evolutionary neural network
Liu, Shuai; Liu, Yuan-Ning; Zhu, Xiao-Dong; Huo, Guang; Liu, Wen-Tao; Feng, Jia-Kai
2017-11-01
Aiming at multicategory iris recognition under illumination and noise interference, this paper proposes a method of iris double recognition based on a modified evolutionary neural network. An equalization histogram and Laplace of Gaussian operator are used to process the iris to suppress illumination and noise interference and Haar wavelet to convert the iris feature to binary feature encoding. Calculate the Hamming distance for the test iris and template iris , and compare with classification threshold, determine the type of iris. If the iris cannot be identified as a different type, there needs to be a secondary recognition. The connection weights in back-propagation (BP) neural network use modified evolutionary neural network to adaptively train. The modified neural network is composed of particle swarm optimization with mutation operator and BP neural network. According to different iris libraries in different circumstances of experimental results, under illumination and noise interference, the correct recognition rate of this algorithm is higher, the ROC curve is closer to the coordinate axis, the training and recognition time is shorter, and the stability and the robustness are better.
Application of neural networks to multiple alarm processing and diagnosis in nuclear power plants
International Nuclear Information System (INIS)
Cheon, Se Woo; Chang Soon Heung; Chung, Hak Yeong
1992-01-01
This paper presents feasibility studies of multiple alarm processing and diagnosis using neural networks. The back-propagation neural network model is applied to the training of multiple alarm patterns for the identification of failure in a reactor coolant pump (RCP) system. The general mapping capability of the neural network enables to identify a fault easily. The case studies are performed with emphasis on the applicability of the neural network to pattern recognition problems. It is revealed that the neural network model can identify the cause of multiple alarms properly, even when untrained or sensor-failed alarm symptoms are given. It is also shown that multiple failures are easily identified using the symptoms of multiple alarms
Metzler, R.; Kinzel, W.; Kanter, I.
2000-08-01
Several scenarios of interacting neural networks which are trained either in an identical or in a competitive way are solved analytically. In the case of identical training each perceptron receives the output of its neighbor. The symmetry of the stationary state as well as the sensitivity to the used training algorithm are investigated. Two competitive perceptrons trained on mutually exclusive learning aims and a perceptron which is trained on the opposite of its own output are examined analytically. An ensemble of competitive perceptrons is used as decision-making algorithms in a model of a closed market (El Farol Bar problem or the Minority Game. In this game, a set of agents who have to make a binary decision is considered.); each network is trained on the history of minority decisions. This ensemble of perceptrons relaxes to a stationary state whose performance can be better than random.
Sriyanto, -; Sutedi, -
2010-01-01
Diabetes Melitus (DM) is dangerous disease that affect many of the various layer of work society. This disease is not easy to accurately recognized by the general society. So we need to develop a system that can identify accurately. System is built using neural networks with backpropagation methods and the function activation sigmoid. Neural network architecture using 8 input layer, 2 output layer and 5 hidden layer. The results show that this methods succesfully clasifies data diabetics and ...
Sutedi, Sutedi
2018-01-01
Diabetes Melitus (DM) is dangerous disease that affect many of the various layer of work society. This disease is not easy to accurately recognized by the general society. So we need to develop a system that can identify accurately. System is built using neural networks with backpropagation methods and the function activation sigmoid. Neural network architecture using 8 input layer, 2 output layer and 5 hidden layer. The results show that this methods succesfully clasifies data diabetics and ...
Heiden, Uwe
1980-01-01
The purpose of this work is a unified and general treatment of activity in neural networks from a mathematical pOint of view. Possible applications of the theory presented are indica ted throughout the text. However, they are not explored in de tail for two reasons : first, the universal character of n- ral activity in nearly all animals requires some type of a general approach~ secondly, the mathematical perspicuity would suffer if too many experimental details and empirical peculiarities were interspersed among the mathematical investigation. A guide to many applications is supplied by the references concerning a variety of specific issues. Of course the theory does not aim at covering all individual problems. Moreover there are other approaches to neural network theory (see e.g. Poggio-Torre, 1978) based on the different lev els at which the nervous system may be viewed. The theory is a deterministic one reflecting the average be havior of neurons or neuron pools. In this respect the essay is writt...
Learning of N-layers neural network
Directory of Open Access Journals (Sweden)
Vladimír Konečný
2005-01-01
Full Text Available In the last decade we can observe increasing number of applications based on the Artificial Intelligence that are designed to solve problems from different areas of human activity. The reason why there is so much interest in these technologies is that the classical way of solutions does not exist or these technologies are not suitable because of their robustness. They are often used in applications like Business Intelligence that enable to obtain useful information for high-quality decision-making and to increase competitive advantage.One of the most widespread tools for the Artificial Intelligence are the artificial neural networks. Their high advantage is relative simplicity and the possibility of self-learning based on set of pattern situations.For the learning phase is the most commonly used algorithm back-propagation error (BPE. The base of BPE is the method minima of error function representing the sum of squared errors on outputs of neural net, for all patterns of the learning set. However, while performing BPE and in the first usage, we can find out that it is necessary to complete the handling of the learning factor by suitable method. The stability of the learning process and the rate of convergence depend on the selected method. In the article there are derived two functions: one function for the learning process management by the relative great error function value and the second function when the value of error function approximates to global minimum.The aim of the article is to introduce the BPE algorithm in compact matrix form for multilayer neural networks, the derivation of the learning factor handling method and the presentation of the results.
Directory of Open Access Journals (Sweden)
Edin TERZIC
2010-03-01
Full Text Available A measurement system has been developed using a single tube capacitive sensor to accurately determine the fluid level in vehicular fuel tanks. A novel approach based on artificial neural networks based signal pre-processing and classification has been described in this article. A broad investigation on the Backpropagation neural network and some selected signal pre-processing filters, namely, Moving Mean, Moving Median, and Wavelet Filter has also been presented. An on field drive trial was conducted under normal driving conditions at various fuel volumes ranging from 5 L to 50 L to acquire training samples from the capacitive sensor. A second field trial was conducted to obtain test samples to verify the performance of the neural network. The neural network was trained and verified with 50 % of the training and test samples. The results obtained using the neural network approach having different filtration methods are compared with the results obtained using simple Moving Mean and Moving Median functions. It is demonstrated that the Backpropagation neural network with Moving Median filter produced the most accurate outcome compared with the other signal filtration methods.
Empirical modeling of nuclear power plants using neural networks
International Nuclear Information System (INIS)
Parlos, A.G.; Atiya, A.; Chong, K.T.
1991-01-01
A summary of a procedure for nonlinear identification of process dynamics encountered in nuclear power plant components is presented in this paper using artificial neural systems. A hybrid feedforward/feedback neural network, namely, a recurrent multilayer perceptron, is used as the nonlinear structure for system identification. In the overall identification process, the feedforward portion of the network architecture provides its well-known interpolation property, while through recurrency and cross-talk, the local information feedback enables representation of time-dependent system nonlinearities. The standard backpropagation learning algorithm is modified and is used to train the proposed hybrid network in a supervised manner. The performance of recurrent multilayer perceptron networks in identifying process dynamics is investigated via the case study of a U-tube steam generator. The nonlinear response of a representative steam generator is predicted using a neural network and is compared to the response obtained from a sophisticated physical model during both high- and low-power operation. The transient responses compare well, though further research is warranted for training and testing of recurrent neural networks during more severe operational transients and accident scenarios
Neural Networks for Optimal Control
DEFF Research Database (Denmark)
Sørensen, O.
1995-01-01
Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process.......Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process....
Neural networks at the Tevatron
International Nuclear Information System (INIS)
Badgett, W.; Burkett, K.; Campbell, M.K.; Wu, D.Y.; Bianchin, S.; DeNardi, M.; Pauletta, G.; Santi, L.; Caner, A.; Denby, B.; Haggerty, H.; Lindsey, C.S.; Wainer, N.; Dall'Agata, M.; Johns, K.; Dickson, M.; Stanco, L.; Wyss, J.L.
1992-10-01
This paper summarizes neural network applications at the Fermilab Tevatron, including the first online hardware application in high energy physics (muon tracking): the CDF and DO neural network triggers; offline quark/gluon discrimination at CDF; ND a new tool for top to multijets recognition at CDF
Neural Networks for the Beginner.
Snyder, Robin M.
Motivated by the brain, neural networks are a right-brained approach to artificial intelligence that is used to recognize patterns based on previous training. In practice, one would not program an expert system to recognize a pattern and one would not train a neural network to make decisions from rules; but one could combine the best features of…
Using neural networks for prediction of nuclear parameters
Energy Technology Data Exchange (ETDEWEB)
Pereira Filho, Leonidas; Souto, Kelling Cabral, E-mail: leonidasmilenium@hotmail.com, E-mail: kcsouto@bol.com.br [Instituto Federal de Educacao, Ciencia e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, RJ (Brazil); Machado, Marcelo Dornellas, E-mail: dornemd@eletronuclear.gov.br [Eletrobras Termonuclear S.A. (GCN.T/ELETRONUCLEAR), Rio de Janeiro, RJ (Brazil). Gerencia de Combustivel Nuclear
2013-07-01
Dating from 1943, the earliest work on artificial neural networks (ANN), when Warren Mc Cullock and Walter Pitts developed a study on the behavior of the biological neuron, with the goal of creating a mathematical model. Some other work was done until after the 80 witnessed an explosion of interest in ANNs, mainly due to advances in technology, especially microelectronics. Because ANNs are able to solve many problems such as approximation, classification, categorization, prediction and others, they have numerous applications in various areas, including nuclear. Nodal method is adopted as a tool for analyzing core parameters such as boron concentration and pin power peaks for pressurized water reactors. However, this method is extremely slow when it is necessary to perform various core evaluations, for example core reloading optimization. To overcome this difficulty, in this paper a model of Multi-layer Perceptron (MLP) artificial neural network type backpropagation will be trained to predict these values. The main objective of this work is the development of Multi-layer Perceptron (MLP) artificial neural network capable to predict, in very short time, with good accuracy, two important parameters used in the core reloading problem - Boron Concentration and Power Peaking Factor. For the training of the neural networks are provided loading patterns and nuclear data used in cycle 19 of Angra 1 nuclear power plant. Three models of networks are constructed using the same input data and providing the following outputs: 1- Boron Concentration and Power Peaking Factor, 2 - Boron Concentration and 3 - Power Peaking Factor. (author)
Using neural networks for prediction of nuclear parameters
International Nuclear Information System (INIS)
Pereira Filho, Leonidas; Souto, Kelling Cabral; Machado, Marcelo Dornellas
2013-01-01
Dating from 1943, the earliest work on artificial neural networks (ANN), when Warren Mc Cullock and Walter Pitts developed a study on the behavior of the biological neuron, with the goal of creating a mathematical model. Some other work was done until after the 80 witnessed an explosion of interest in ANNs, mainly due to advances in technology, especially microelectronics. Because ANNs are able to solve many problems such as approximation, classification, categorization, prediction and others, they have numerous applications in various areas, including nuclear. Nodal method is adopted as a tool for analyzing core parameters such as boron concentration and pin power peaks for pressurized water reactors. However, this method is extremely slow when it is necessary to perform various core evaluations, for example core reloading optimization. To overcome this difficulty, in this paper a model of Multi-layer Perceptron (MLP) artificial neural network type backpropagation will be trained to predict these values. The main objective of this work is the development of Multi-layer Perceptron (MLP) artificial neural network capable to predict, in very short time, with good accuracy, two important parameters used in the core reloading problem - Boron Concentration and Power Peaking Factor. For the training of the neural networks are provided loading patterns and nuclear data used in cycle 19 of Angra 1 nuclear power plant. Three models of networks are constructed using the same input data and providing the following outputs: 1- Boron Concentration and Power Peaking Factor, 2 - Boron Concentration and 3 - Power Peaking Factor. (author)
Method Accelerates Training Of Some Neural Networks
Shelton, Robert O.
1992-01-01
Three-layer networks trained faster provided two conditions are satisfied: numbers of neurons in layers are such that majority of work done in synaptic connections between input and hidden layers, and number of neurons in input layer at least as great as number of training pairs of input and output vectors. Based on modified version of back-propagation method.
Neural Network Models for Free Radical Polymerization of Methyl Methacrylate
International Nuclear Information System (INIS)
Curteanu, S.; Leon, F.; Galea, D.
2003-01-01
In this paper, a neural network modeling of the batch bulk methyl methacrylate polymerization is performed. To obtain conversion, number and weight average molecular weights, three neural networks were built. Each was a multilayer perception with one or two hidden layers. The choice of network topology, i.e. the number of hidden layers and the number of neurons in these layers, was based on achieving a compromise between precision and complexity. Thus, it was intended to have an error as small as possible at the end of back-propagation training phases, while using a network with reduced complexity. The performances of the networks were evaluated by comparing network predictions with training data, validation data (which were not uses for training), and with the results of a mechanistic model. The accurate predictions of neural networks for monomer conversion, number average molecular weight and weight average molecular weight proves that this modeling methodology gives a good representation and generalization of the batch bulk methyl methacrylate polymerization. (author)
Artificial Neural Network applied to lightning flashes
Gin, R. B.; Guedes, D.; Bianchi, R.
2013-05-01
The development of video cameras enabled cientists to study lightning discharges comportment with more precision. The main goal of this project is to create a system able to detect images of lightning discharges stored in videos and classify them using an Artificial Neural Network (ANN)using C Language and OpenCV libraries. The developed system, can be split in two different modules: detection module and classification module. The detection module uses OpenCV`s computer vision libraries and image processing techniques to detect if there are significant differences between frames in a sequence, indicating that something, still not classified, occurred. Whenever there is a significant difference between two consecutive frames, two main algorithms are used to analyze the frame image: brightness and shape algorithms. These algorithms detect both shape and brightness of the event, removing irrelevant events like birds, as well as detecting the relevant events exact position, allowing the system to track it over time. The classification module uses a neural network to classify the relevant events as horizontal or vertical lightning, save the event`s images and calculates his number of discharges. The Neural Network was implemented using the backpropagation algorithm, and was trained with 42 training images , containing 57 lightning events (one image can have more than one lightning). TheANN was tested with one to five hidden layers, with up to 50 neurons each. The best configuration achieved a success rate of 95%, with one layer containing 20 neurons (33 test images with 42 events were used in this phase). This configuration was implemented in the developed system to analyze 20 video files, containing 63 lightning discharges previously manually detected. Results showed that all the lightning discharges were detected, many irrelevant events were unconsidered, and the event's number of discharges was correctly computed. The neural network used in this project achieved a
Neural Networks in Control Applications
DEFF Research Database (Denmark)
Sørensen, O.
The intention of this report is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...... study of the networks themselves. With this end in view the following restrictions have been made: - Amongst numerous neural network structures, only the Multi Layer Perceptron (a feed-forward network) is applied. - Amongst numerous training algorithms, only four algorithms are examined, all...... in a recursive form (sample updating). The simplest is the Back Probagation Error Algorithm, and the most complex is the recursive Prediction Error Method using a Gauss-Newton search direction. - Over-fitting is often considered to be a serious problem when training neural networks. This problem is specifically...
Control of Three-Phase Grid-Connected Microgrids Using Artificial Neural Networks
Shuhui, L.; Fu, X.; Jaithwa, I.; Alonso, E.; Fairbank, M.; Wunsch, D. C.
2015-01-01
A microgrid consists of a variety of inverter-interfaced distributed energy resources (DERs). A key issue is how to control DERs within the microgrid and how to connect them to or disconnect them from the microgrid quickly. This paper presents a strategy for controlling inverter-interfaced DERs within a microgrid using an artificial neural network, which implements a dynamic programming algorithm and is trained with a new Levenberg-Marquardt backpropagation algorithm. Compared to conventional...
Tripathy, Manoj
2012-01-01
This paper describes a new approach for power transformer differential protection which is based on the wave-shape recognition technique. An algorithm based on neural network principal component analysis (NNPCA) with back-propagation learning is proposed for digital differential protection of power transformer. The principal component analysis is used to preprocess the data from power system in order to eliminate redundant information and enhance hidden pattern of differential current to disc...
Alternating optimization method based on nonnegative matrix factorizations for deep neural networks
Sakurai, Tetsuya; Imakura, Akira; Inoue, Yuto; Futamura, Yasunori
2016-01-01
The backpropagation algorithm for calculating gradients has been widely used in computation of weights for deep neural networks (DNNs). This method requires derivatives of objective functions and has some difficulties finding appropriate parameters such as learning rate. In this paper, we propose a novel approach for computing weight matrices of fully-connected DNNs by using two types of semi-nonnegative matrix factorizations (semi-NMFs). In this method, optimization processes are performed b...
An evaluation of neural networks for identification of system parameters in reactor noise signals
International Nuclear Information System (INIS)
Miller, L.F.
1991-01-01
Several backpropagation neural networks for identifying fundamental mode eigenvalues were evaluated. The networks were trained and tested on analytical data and on results from other numerical methods. They were then used to predict first mode break frequencies for noise data from several sources. These predictions were, in turn, compared with analytical values and with results from alternative methods. Comparisons of results for some data sets suggest that the accuracy of predictions from neural networks are essentially equivalent to results from conventional methods while other evaluations indicate that either method may be superior. Experience gained from these numerical experiments provide insight for improving the performance of neural networks relative to other methods for identifying parameters associated with experimental data. Neural networks may also be used in support of conventional algorithms by providing starting points for nonlinear minimization algorithms
Falat, Lukas; Marcek, Dusan; Durisova, Maria
2016-01-01
This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process.
Directory of Open Access Journals (Sweden)
Lukas Falat
2016-01-01
Full Text Available This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process.
Marcek, Dusan; Durisova, Maria
2016-01-01
This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process. PMID:26977450
Power plant fault detection using artificial neural network
Thanakodi, Suresh; Nazar, Nazatul Shiema Moh; Joini, Nur Fazriana; Hidzir, Hidzrin Dayana Mohd; Awira, Mohammad Zulfikar Khairul
2018-02-01
The fault that commonly occurs in power plants is due to various factors that affect the system outage. There are many types of faults in power plants such as single line to ground fault, double line to ground fault, and line to line fault. The primary aim of this paper is to diagnose the fault in 14 buses power plants by using an Artificial Neural Network (ANN). The Multilayered Perceptron Network (MLP) that detection trained utilized the offline training methods such as Gradient Descent Backpropagation (GDBP), Levenberg-Marquardt (LM), and Bayesian Regularization (BR). The best method is used to build the Graphical User Interface (GUI). The modelling of 14 buses power plant, network training, and GUI used the MATLAB software.
International Nuclear Information System (INIS)
Seker, Serhat; Tuerkcan, Erdinc; Ayaz, Emine; Barutcu, Burak
2003-01-01
This paper addresses to the problem of utilisation of the artificial neural networks (ANNs) for detecting anomalies as well as physical parameters of a nuclear power plant during power operation in real time. Three different types of neural network algorithms were used namely, feed-forward neural network (back-propagation, BP) and two types of recurrent neural networks (RNN). The data used in this paper were gathered from the simulation of the power operation of the Japan's High Temperature Engineering Testing Reactor (HTTR). For the wide range of power operation, 56 signals were generated by the reactor dynamic simulation code for several hours of normal power operation at different power ramps between 30 and 100% nominal power. Paper will compare the outcomes of different neural networks and presents the neural network system and the determination of physical parameters from the simulated operating data
Nonlinear identification of process dynamics using neural networks
International Nuclear Information System (INIS)
Parlos, A.G.; Atiya, A.F.; Chong, K.T.
1992-01-01
In this paper the nonlinear identification of process dynamics encountered in nuclear power plant components is addressed, in an input-output sense, using artificial neural systems. A hybrid feedforward/feedback neural network, namely, a recurrent multilayer perceptron, is used as the model structure to be identified. The feedforward portion of the network architecture provides its well-known interpolation property, while through recurrency and cross-talk, the local information feedback enables representation of temporal variations in the system nonlinearities. The standard backpropagation learning algorithm is modified, and it is used for the supervised training of the proposed hybrid network. The performance of recurrent multilayer perceptron networks in identifying process dynamics is investigated via the case study of a U-tube steam generator. The response of representative steam generator is predicted using a neural network, and it is compared to the response obtained from a sophisticated computer model based on first principles. The transient responses compare well, although further research is warranted to determine the predictive capabilities of these networks during more severe operational transients and accident scenarios
Vibration monitoring of EDF rotating machinery using artificial neural networks
International Nuclear Information System (INIS)
Alguindigue, I.E.; Loskiewicz-Buczak, A.; Uhrig, R.E.; Hamon, L.; Lefevre, F.
1991-01-01
Vibration monitoring of components in nuclear power plants has been used for a number of years. This technique involves the analysis of vibration data coming from vital components of the plant to detect features which reflect the operational state of machinery. The analysis leads to the identification of potential failures and their causes, and makes it possible to perform efficient preventive maintenance. Earlydetection is important because it can decrease the probability of catastrophic failures, reduce forced outgage, maximize utilization of available assets, increase the life of the plant, and reduce maintenance costs. This paper documents our work on the design of a vibration monitoring methodology based on neural network technology. This technology provides an attractive complement to traditional vibration analysis because of the potential of neural networks to operate in real-time mode and to handle data which may be distorted or noisy. Our efforts have been concentrated on the analysis and classification of vibration signatures collected by Electricite de France (EDF). Two neural networks algorithms were used in our project: the Recirculation algorithm and the Backpropagation algorithm. Although this project is in the early stages of development it indicates that neural networks may provide a viable methodology for monitoring and diagnostics of vibrating components. Our results are very encouraging
Design of an Adaptive-Neural Network Attitude Controller of a Satellite using Reaction Wheels
Directory of Open Access Journals (Sweden)
Abbas Ajorkar
2015-04-01
Full Text Available In this paper, an adaptive attitude control algorithm is developed based on neural network for a satellite using four reaction wheels in a tetrahedron configuration. Then, an attitude control based on feedback linearization control has been designed and uncertainties in the moment of inertia matrix and disturbances torque have been considered. In order to eliminate the effect of these uncertainties, a multilayer neural network with back-propagation law is designed. In this structure, the parameters of the moment of inertia matrix and external disturbances are estimated and used in feedback linearization control law. Finally, the performance of the designed attitude controller is investigated by several simulations.
Neural network-based run-to-run controller using exposure and resist thickness adjustment
Geary, Shane; Barry, Ronan
2003-06-01
This paper describes the development of a run-to-run control algorithm using a feedforward neural network, trained using the backpropagation training method. The algorithm is used to predict the critical dimension of the next lot using previous lot information. It is compared to a common prediction algorithm - the exponentially weighted moving average (EWMA) and is shown to give superior prediction performance in simulations. The manufacturing implementation of the final neural network showed significantly improved process capability when compared to the case where no run-to-run control was utilised.
Failure detection studies by layered neural network
International Nuclear Information System (INIS)
Ciftcioglu, O.; Seker, S.; Turkcan, E.
1991-06-01
Failure detection studies by layered neural network (NN) are described. The particular application area is an operating nuclear power plant and the failure detection is of concern as result of system surveillance in real-time. The NN system is considered to be consisting of 3 layers, one of which being hidden, and the NN parameters are determined adaptively by the backpropagation (BP) method, the process being the training phase. Studies are performed using the power spectra of the pressure signal of the primary system of an operating nuclear power plant of PWR type. The studies revealed that, by means of NN approach, failure detection can effectively be carried out using the redundant information as well as this is the case in this work; namely, from measurement of the primary pressure signals one can estimate the primary system coolant temperature and hence the deviation from the operational temperature state, the operational status identified in the training phase being referred to as normal. (author). 13 refs.; 4 figs.; 2 tabs
Artificial Neural Network Analysis System
2001-02-27
Contract No. DASG60-00-M-0201 Purchase request no.: Foot in the Door-01 Title Name: Artificial Neural Network Analysis System Company: Atlantic... Artificial Neural Network Analysis System 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Powell, Bruce C 5d. PROJECT NUMBER 5e. TASK NUMBER...34) 27-02-2001 Report Type N/A Dates Covered (from... to) ("DD MON YYYY") 28-10-2000 27-02-2001 Title and Subtitle Artificial Neural Network Analysis
Energy Technology Data Exchange (ETDEWEB)
Koenig, R W.T.; Von Hellermann, M [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Svensson, J [Royal Inst. of Tech., Stockholm (Sweden)
1994-07-01
A back-propagation neural network technique is used at JET to extract plasma parameters like ion temperature, rotation velocities or spectral line intensities from charge exchange (CX) spectra. It is shown that in the case of the C VI CX spectra, neural networks can give a good estimation (better than +-20% accuracy) for the main plasma parameters (Ti, V{sub rot}). Since the neural network approach involves no iterations or initial guesses the speed with which a spectrum is processed is so high (0.2 ms/spectrum) that real time analysis will be achieved in the near future. 4 refs., 8 figs.
International Nuclear Information System (INIS)
Koenig, R.W.T.; Von Hellermann, M.
1994-01-01
A back-propagation neural network technique is used at JET to extract plasma parameters like ion temperature, rotation velocities or spectral line intensities from charge exchange (CX) spectra. It is shown that in the case of the C VI CX spectra, neural networks can give a good estimation (better than +-20% accuracy) for the main plasma parameters (Ti, V rot ). Since the neural network approach involves no iterations or initial guesses the speed with which a spectrum is processed is so high (0.2 ms/spectrum) that real time analysis will be achieved in the near future. 4 refs., 8 figs
Novel maximum-margin training algorithms for supervised neural networks.
Ludwig, Oswaldo; Nunes, Urbano
2010-06-01
This paper proposes three novel training methods, two of them based on the backpropagation approach and a third one based on information theory for multilayer perceptron (MLP) binary classifiers. Both backpropagation methods are based on the maximal-margin (MM) principle. The first one, based on the gradient descent with adaptive learning rate algorithm (GDX) and named maximum-margin GDX (MMGDX), directly increases the margin of the MLP output-layer hyperplane. The proposed method jointly optimizes both MLP layers in a single process, backpropagating the gradient of an MM-based objective function, through the output and hidden layers, in order to create a hidden-layer space that enables a higher margin for the output-layer hyperplane, avoiding the testing of many arbitrary kernels, as occurs in case of support vector machine (SVM) training. The proposed MM-based objective function aims to stretch out the margin to its limit. An objective function based on Lp-norm is also proposed in order to take into account the idea of support vectors, however, overcoming the complexity involved in solving a constrained optimization problem, usually in SVM training. In fact, all the training methods proposed in this paper have time and space complexities O(N) while usual SVM training methods have time complexity O(N (3)) and space complexity O(N (2)) , where N is the training-data-set size. The second approach, named minimization of interclass interference (MICI), has an objective function inspired on the Fisher discriminant analysis. Such algorithm aims to create an MLP hidden output where the patterns have a desirable statistical distribution. In both training methods, the maximum area under ROC curve (AUC) is applied as stop criterion. The third approach offers a robust training framework able to take the best of each proposed training method. The main idea is to compose a neural model by using neurons extracted from three other neural networks, each one previously trained by
Maximum solid concentrations of coal water slurries predicted by neural network models
Energy Technology Data Exchange (ETDEWEB)
Cheng, Jun; Li, Yanchang; Zhou, Junhu; Liu, Jianzhong; Cen, Kefa
2010-12-15
The nonlinear back-propagation (BP) neural network models were developed to predict the maximum solid concentration of coal water slurry (CWS) which is a substitute for oil fuel, based on physicochemical properties of 37 typical Chinese coals. The Levenberg-Marquardt algorithm was used to train five BP neural network models with different input factors. The data pretreatment method, learning rate and hidden neuron number were optimized by training models. It is found that the Hardgrove grindability index (HGI), moisture and coalification degree of parent coal are 3 indispensable factors for the prediction of CWS maximum solid concentration. Each BP neural network model gives a more accurate prediction result than the traditional polynomial regression equation. The BP neural network model with 3 input factors of HGI, moisture and oxygen/carbon ratio gives the smallest mean absolute error of 0.40%, which is much lower than that of 1.15% given by the traditional polynomial regression equation. (author)
Review On Applications Of Neural Network To Computer Vision
Li, Wei; Nasrabadi, Nasser M.
1989-03-01
Neural network models have many potential applications to computer vision due to their parallel structures, learnability, implicit representation of domain knowledge, fault tolerance, and ability of handling statistical data. This paper demonstrates the basic principles, typical models and their applications in this field. Variety of neural models, such as associative memory, multilayer back-propagation perceptron, self-stabilized adaptive resonance network, hierarchical structured neocognitron, high order correlator, network with gating control and other models, can be applied to visual signal recognition, reinforcement, recall, stereo vision, motion, object tracking and other vision processes. Most of the algorithms have been simulated on com-puters. Some have been implemented with special hardware. Some systems use features, such as edges and profiles, of images as the data form for input. Other systems use raw data as input signals to the networks. We will present some novel ideas contained in these approaches and provide a comparison of these methods. Some unsolved problems are mentioned, such as extracting the intrinsic properties of the input information, integrating those low level functions to a high-level cognitive system, achieving invariances and other problems. Perspectives of applications of some human vision models and neural network models are analyzed.
On-line plant-wide monitoring using neural networks
International Nuclear Information System (INIS)
Turkcan, E.; Ciftcioglu, O.; Eryurek, E.; Upadhyaya, B.R.
1992-06-01
The on-line signal analysis system designed for a multi-level mode operation using neural networks is described. The system is capable of monitoring the plant states by tracking different number of signals up to 32 simultaneously. The data used for this study were acquired from the Borssele Nuclear Power Plant (PWR type), and using the on-line monitoring system. An on-line plant-wide monitoring study using a multilayer neural network model is discussed in this paper. The back-propagation neural network algorithm is used for training the network. The technique assumes that each physical state of the power plant can be represented by a unique pattern of instrument readings which can be related to the condition of the plant. When disturbance occurs, the sensor readings undergo a transient, and form a different set of patterns which represent the new operational status. Diagnosing these patterns can be helpful in identifying this new state of the power plant. To this end, plant-wide monitoring with neutral networks is one of the new techniques in real-time applications. (author). 9 refs.; 5 figs
Neural networks and statistical learning
Du, Ke-Lin
2014-01-01
Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardw...
Optical Neural Network Classifier Architectures
National Research Council Canada - National Science Library
Getbehead, Mark
1998-01-01
We present an adaptive opto-electronic neural network hardware architecture capable of exploiting parallel optics to realize real-time processing and classification of high-dimensional data for Air...
Memristor-based neural networks
International Nuclear Information System (INIS)
Thomas, Andy
2013-01-01
The synapse is a crucial element in biological neural networks, but a simple electronic equivalent has been absent. This complicates the development of hardware that imitates biological architectures in the nervous system. Now, the recent progress in the experimental realization of memristive devices has renewed interest in artificial neural networks. The resistance of a memristive system depends on its past states and exactly this functionality can be used to mimic the synaptic connections in a (human) brain. After a short introduction to memristors, we present and explain the relevant mechanisms in a biological neural network, such as long-term potentiation and spike time-dependent plasticity, and determine the minimal requirements for an artificial neural network. We review the implementations of these processes using basic electric circuits and more complex mechanisms that either imitate biological systems or could act as a model system for them. (topical review)
What are artificial neural networks?
DEFF Research Database (Denmark)
Krogh, Anders
2008-01-01
Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb......Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb...
Research on artificial neural network applications for nuclear power plants
International Nuclear Information System (INIS)
Chang, Soon-Heung; Cheon, Se-Woo
1992-01-01
Artificial neural networks (ANNs) are an emerging computational technology which can significantly enhance a number of applications. These consist of many interconnected processing elements that exhibit human-like performance, i.e., learning, pattern recognition and associative memory skills. Several application studies on ANNs devoted to nuclear power plants have been carried out at the Korea Advanced Institute of Science and Technology since 1989. These studies include the feasibility of using ANNs for the following tasks: (1) thermal power prediction, (2) transient identification, (3) multiple alarm processing and diagnosis, (4) core thermal margin prediction, and (5) prediction of core parameters for fuel reloading. This paper introduces the back-propagation network (BPN) model which is the most commonly used algorithm, and summarizes each of the studies briefly. (author)
Ethnomathematics elements in Batik Bali using backpropagation method
Lestari, Mei; Irawan, Ari; Rahayu, Wanti; Wayan Parwati, Ni
2018-05-01
Batik is one of traditional arts that has been established by the UNESCO as Indonesia’s cultural heritage. Batik has varieties and motifs, and each motifs has its own uniqueness but seems similar, that makes it difficult to identify. This study aims to develop an application that can identify typical batik Bali with etnomatematics elements on it. Etnomatematics is a study that shows relation between culture and mathematics concepts. Etnomatematics in Batik Bali is more to geometrical concept in line of strong Balinese culture element. The identification process is use backpropagation method. Steps of backpropagation methods are image processing (including scalling and tresholding image process). Next step is insert the processed image to an artificial neural network. This study resulted an accuracy of identification of batik Bali that has Etnomatematics elements on it.
Robust recurrent neural network modeling for software fault detection and correction prediction
International Nuclear Information System (INIS)
Hu, Q.P.; Xie, M.; Ng, S.H.; Levitin, G.
2007-01-01
Software fault detection and correction processes are related although different, and they should be studied together. A practical approach is to apply software reliability growth models to model fault detection, and fault correction process is assumed to be a delayed process. On the other hand, the artificial neural networks model, as a data-driven approach, tries to model these two processes together with no assumptions. Specifically, feedforward backpropagation networks have shown their advantages over analytical models in fault number predictions. In this paper, the following approach is explored. First, recurrent neural networks are applied to model these two processes together. Within this framework, a systematic networks configuration approach is developed with genetic algorithm according to the prediction performance. In order to provide robust predictions, an extra factor characterizing the dispersion of prediction repetitions is incorporated into the performance function. Comparisons with feedforward neural networks and analytical models are developed with respect to a real data set
Complex-Valued Neural Networks
Hirose, Akira
2012-01-01
This book is the second enlarged and revised edition of the first successful monograph on complex-valued neural networks (CVNNs) published in 2006, which lends itself to graduate and undergraduate courses in electrical engineering, informatics, control engineering, mechanics, robotics, bioengineering, and other relevant fields. In the second edition the recent trends in CVNNs research are included, resulting in e.g. almost a doubled number of references. The parametron invented in 1954 is also referred to with discussion on analogy and disparity. Also various additional arguments on the advantages of the complex-valued neural networks enhancing the difference to real-valued neural networks are given in various sections. The book is useful for those beginning their studies, for instance, in adaptive signal processing for highly functional sensing and imaging, control in unknown and changing environment, robotics inspired by human neural systems, and brain-like information processing, as well as interdisciplina...
Evolving RBF neural networks for adaptive soft-sensor design.
Alexandridis, Alex
2013-12-01
This work presents an adaptive framework for building soft-sensors based on radial basis function (RBF) neural network models. The adaptive fuzzy means algorithm is utilized in order to evolve an RBF network, which approximates the unknown system based on input-output data from it. The methodology gradually builds the RBF network model, based on two separate levels of adaptation: On the first level, the structure of the hidden layer is modified by adding or deleting RBF centers, while on the second level, the synaptic weights are adjusted with the recursive least squares with exponential forgetting algorithm. The proposed approach is tested on two different systems, namely a simulated nonlinear DC Motor and a real industrial reactor. The results show that the produced soft-sensors can be successfully applied to model the two nonlinear systems. A comparison with two different adaptive modeling techniques, namely a dynamic evolving neural-fuzzy inference system (DENFIS) and neural networks trained with online backpropagation, highlights the advantages of the proposed methodology.
Advanced approach to numerical forecasting using artificial neural networks
Directory of Open Access Journals (Sweden)
Michael Štencl
2009-01-01
Full Text Available Current global market is driven by many factors, such as the information age, the time and amount of information distributed by many data channels it is practically impossible analyze all kinds of incoming information flows and transform them to data with classical methods. New requirements could be met by using other methods. Once trained on patterns artificial neural networks can be used for forecasting and they are able to work with extremely big data sets in reasonable time. The patterns used for learning process are samples of past data. This paper uses Radial Basis Functions neural network in comparison with Multi Layer Perceptron network with Back-propagation learning algorithm on prediction task. The task works with simplified numerical time series and includes forty observations with prediction for next five observations. The main topic of the article is the identification of the main differences between used neural networks architectures together with numerical forecasting. Detected differences then verify on practical comparative example.
Prediction of metal corrosion using feed-forward neural networks
International Nuclear Information System (INIS)
Mahjani, M.G.; Jalili, S.; Jafarian, M.; Jaberi, A.
2004-01-01
The reliable prediction of corrosion behavior for the effective control of corrosion is a fundamental requirement. Since real world corrosion never seems to involve quite the same conditions that have previously been tested, using corrosion literature does not provide the necessary answers. In order to provide a methodology for predicting corrosion in real and complex situations, artificial neural networks can be utilized. Feed-forward artificial neural network (FFANN) is an information-processing paradigm inspired by the way the densely interconnected, parallel structure of the human brain process information.The aim of the present work is to predict corrosion behavior in critical conditions, such as industrial applications, based on some laboratory experimental data. Electrochemical behavior of stainless steel in different conditions were studied, using polarization technique and Tafel curves. Back-propagation neural networks models were developed to predict the corrosion behavior. The trained networks result in predicted value in good comparison to the experimental data. They have generally been claimed to be successful in modeling the corrosion behavior. The results are presented in two tables. Table 1 gives corrosion behavior of stainless-steel as a function of pH and CuSO 4 concentration and table 2 gives corrosion behavior of stainless - steel as a function of electrode surface area and CuSO 4 concentration. (authors)
Ma, Tao; Wang, Fen; Cheng, Jianjun; Yu, Yang; Chen, Xiaoyun
2016-10-13
The development of intrusion detection systems (IDS) that are adapted to allow routers and network defence systems to detect malicious network traffic disguised as network protocols or normal access is a critical challenge. This paper proposes a novel approach called SCDNN, which combines spectral clustering (SC) and deep neural network (DNN) algorithms. First, the dataset is divided into k subsets based on sample similarity using cluster centres, as in SC. Next, the distance between data points in a testing set and the training set is measured based on similarity features and is fed into the deep neural network algorithm for intrusion detection. Six KDD-Cup99 and NSL-KDD datasets and a sensor network dataset were employed to test the performance of the model. These experimental results indicate that the SCDNN classifier not only performs better than backpropagation neural network (BPNN), support vector machine (SVM), random forest (RF) and Bayes tree models in detection accuracy and the types of abnormal attacks found. It also provides an effective tool of study and analysis of intrusion detection in large networks.
Neural networks and wavelet analysis in the computer interpretation of pulse oximetry data
Energy Technology Data Exchange (ETDEWEB)
Dowla, F.U.; Skokowski, P.G.; Leach, R.R. Jr.
1996-03-01
Pulse oximeters determine the oxygen saturation level of blood by measuring the light absorption of arterial blood. The sensor consists of red and infrared light sources and photodetectors. A method based on neural networks and wavelet analysis is developed for improved saturation estimation in the presence of sensor motion. Spectral and correlation functions of the dual channel oximetry data are used by a backpropagation neural network to characterize the type of motion. Amplitude ratios of red to infrared signals as a function of time scale are obtained from the multiresolution wavelet decomposition of the two-channel data. Motion class and amplitude ratios are then combined to obtain a short-time estimate of the oxygen saturation level. A final estimate of oxygen saturation is obtained by applying a 15 s smoothing filter on the short-time measurements based on 3.5 s windows sampled every 1.75 s. The design employs two backpropagation neural networks. The first neural network determines the motion characteristics and the second network determines the saturation estimate. Our approach utilizes waveform analysis in contrast to the standard algorithms that are based on the successful detection of peaks and troughs in the signal. The proposed algorithm is numerically efficient and has stable characteristics with a reduced false alarm rate with a small loss in detection. The method can be rapidly developed on a digital signal processing platform.
Fractional Hopfield Neural Networks: Fractional Dynamic Associative Recurrent Neural Networks.
Pu, Yi-Fei; Yi, Zhang; Zhou, Ji-Liu
2017-10-01
This paper mainly discusses a novel conceptual framework: fractional Hopfield neural networks (FHNN). As is commonly known, fractional calculus has been incorporated into artificial neural networks, mainly because of its long-term memory and nonlocality. Some researchers have made interesting attempts at fractional neural networks and gained competitive advantages over integer-order neural networks. Therefore, it is naturally makes one ponder how to generalize the first-order Hopfield neural networks to the fractional-order ones, and how to implement FHNN by means of fractional calculus. We propose to introduce a novel mathematical method: fractional calculus to implement FHNN. First, we implement fractor in the form of an analog circuit. Second, we implement FHNN by utilizing fractor and the fractional steepest descent approach, construct its Lyapunov function, and further analyze its attractors. Third, we perform experiments to analyze the stability and convergence of FHNN, and further discuss its applications to the defense against chip cloning attacks for anticounterfeiting. The main contribution of our work is to propose FHNN in the form of an analog circuit by utilizing a fractor and the fractional steepest descent approach, construct its Lyapunov function, prove its Lyapunov stability, analyze its attractors, and apply FHNN to the defense against chip cloning attacks for anticounterfeiting. A significant advantage of FHNN is that its attractors essentially relate to the neuron's fractional order. FHNN possesses the fractional-order-stability and fractional-order-sensitivity characteristics.
Use of Neural Networks for Damage Assessment in a Steel Mast
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Rytter, A.
1994-01-01
In this paper the possibility of using a Multilayer Perceptron (MLP) network trained with the Backpropagation Algorithm for detecting location and size of a damage in a civil engineering structure is investigated. The structure considered is a 20 m high steel lattice mast subjected to wind excita...... as well as full-scale tests where the mast is identified by an ARMA-model. The results show that a neural network trained with simulated data is capable for detecting location of a damage in a steel lattice mast when the network is subjected to experimental data.·...
Using neural networks with jet shapes to identify b jets in e+e- interactions
International Nuclear Information System (INIS)
Bellantoni, L.; Conway, J.S.; Jacobsen, J.E.; Pan, Y.B.; Wu Saulan
1991-01-01
A feed-forward neural network trained using backpropagation was used to discriminate between b and light quark jets in e + e - → Z 0 → qanti q events. The information presented to the network consisted of 25 jet shape variables. The network successfully identified b jets in two- and three-jet events modeled using a detector simulation. The jet identification efficiency for two-jet events was 61% and the probability to call a light quark jet a b jet equal to 20%. (orig.)
Classification of E-Nose Aroma Data of Four Fruit Types by ABC-Based Neural Network.
Adak, M Fatih; Yumusak, Nejat
2016-02-27
Electronic nose technology is used in many areas, and frequently in the beverage industry for classification and quality-control purposes. In this study, four different aroma data (strawberry, lemon, cherry, and melon) were obtained using a MOSES II electronic nose for the purpose of fruit classification. To improve the performance of the classification, the training phase of the neural network with two hidden layers was optimized using artificial bee colony algorithm (ABC), which is known to be successful in exploration. Test data were given to two different neural networks, each of which were trained separately with backpropagation (BP) and ABC, and average test performances were measured as 60% for the artificial neural network trained with BP and 76.39% for the artificial neural network trained with ABC. Training and test phases were repeated 30 times to obtain these average performance measurements. This level of performance shows that the artificial neural network trained with ABC is successful in classifying aroma data.
Modeling of methane emissions using artificial neural network approach
Directory of Open Access Journals (Sweden)
Stamenković Lidija J.
2015-01-01
Full Text Available The aim of this study was to develop a model for forecasting CH4 emissions at the national level, using Artificial Neural Networks (ANN with broadly available sustainability, economical and industrial indicators as their inputs. ANN modeling was performed using two different types of architecture; a Backpropagation Neural Network (BPNN and a General Regression Neural Network (GRNN. A conventional multiple linear regression (MLR model was also developed in order to compare model performance and assess which model provides the best results. ANN and MLR models were developed and tested using the same annual data for 20 European countries. The ANN model demonstrated very good performance, significantly better than the MLR model. It was shown that a forecast of CH4 emissions at the national level using the ANN model can be made successfully and accurately for a future period of up to two years, thereby opening the possibility to apply such a modeling technique which can be used to support the implementation of sustainable development strategies and environmental management policies. [Projekat Ministarstva nauke Republike Srbije, br. 172007
Directory of Open Access Journals (Sweden)
Małgorzata Pawul
2016-09-01
Full Text Available Recently, a lot of attention was paid to the improvement of methods which are used to air quality forecasting. Artificial neural networks can be applied to model these problems. Their advantage is that they can solve the problem in the conditions of incomplete information, without the knowledge of the analytical relationship between the input and output data. In this paper we applied artificial neural networks to predict the PM 10 concentrations as factors determining the occurrence of smog phenomena. To create these networks we used meteorological data and concentrations of PM 10. The data were recorded in 2014 and 2015 at three measuring stations operating in Krakow under the State Environmental Monitoring. The best results were obtained by three-layer perceptron with back-propagation algorithm. The neural networks received a good fit in all cases.
Modeling and prediction of Turkey's electricity consumption using Artificial Neural Networks
International Nuclear Information System (INIS)
Kavaklioglu, Kadir; Ozturk, Harun Kemal; Canyurt, Olcay Ersel; Ceylan, Halim
2009-01-01
Artificial Neural Networks are proposed to model and predict electricity consumption of Turkey. Multi layer perceptron with backpropagation training algorithm is used as the neural network topology. Tangent-sigmoid and pure-linear transfer functions are selected in the hidden and output layer processing elements, respectively. These input-output network models are a result of relationships that exist among electricity consumption and several other socioeconomic variables. Electricity consumption is modeled as a function of economic indicators such as population, gross national product, imports and exports. It is also modeled using export-import ratio and time input only. Performance comparison among different models is made based on absolute and percentage mean square error. Electricity consumption of Turkey is predicted until 2027 using data from 1975 to 2006 along with other economic indicators. The results show that electricity consumption can be modeled using Artificial Neural Networks, and the models can be used to predict future electricity consumption. (author)
Application of neural networks to signal prediction in nuclear power plant
International Nuclear Information System (INIS)
Wan Joo Kim; Soon Heung Chang; Byung Ho Lee
1993-01-01
This paper describes the feasibility study of an artificial neural network for signal prediction. The purpose of signal prediction is to estimate the value of undetected next time step signal. As the prediction method, based on the idea of auto regression, a few previous signals are inputs to the artificial neural network and the signal value of next time step is estimated with the outputs of the network. The artificial neural network can be applied to the nonlinear system and answers in short time. The training algorithm is a modified backpropagation model, which can effectively reduce the training time. The target signal of the simulation is the steam generator water level, which is one of the important parameters in nuclear power plants. The simulation result shows that the predicted value follows the real trend well
Putra, J. C. P.; Safrilah
2017-06-01
Artificial neural network approaches are useful to solve many complicated problems. It solves a number of problems in various areas such as engineering, medicine, business, manufacturing, etc. This paper presents an application of artificial neural network to predict a runway capacity at Juanda International Airport. An artificial neural network model of backpropagation and multi-layer perceptron is adopted to this research to learning process of runway capacity at Juanda International Airport. The results indicate that the training data is successfully recognizing the certain pattern of runway use at Juanda International Airport. Whereas, testing data indicate vice versa. Finally, it can be concluded that the approach of uniformity data and network architecture is the critical part to determine the accuracy of prediction results.
Hayashi, Hideaki; Shima, Keisuke; Shibanoki, Taro; Kurita, Yuichi; Tsuji, Toshio
2013-01-01
This paper outlines a probabilistic neural network developed on the basis of time-series discriminant component analysis (TSDCA) that can be used to classify high-dimensional time-series patterns. TSDCA involves the compression of high-dimensional time series into a lower-dimensional space using a set of orthogonal transformations and the calculation of posterior probabilities based on a continuous-density hidden Markov model that incorporates a Gaussian mixture model expressed in the reduced-dimensional space. The analysis can be incorporated into a neural network so that parameters can be obtained appropriately as network coefficients according to backpropagation-through-time-based training algorithm. The network is considered to enable high-accuracy classification of high-dimensional time-series patterns and to reduce the computation time taken for network training. In the experiments conducted during the study, the validity of the proposed network was demonstrated for EEG signals.
Neural networks in signal processing
International Nuclear Information System (INIS)
Govil, R.
2000-01-01
Nuclear Engineering has matured during the last decade. In research and design, control, supervision, maintenance and production, mathematical models and theories are used extensively. In all such applications signal processing is embedded in the process. Artificial Neural Networks (ANN), because of their nonlinear, adaptive nature are well suited to such applications where the classical assumptions of linearity and second order Gaussian noise statistics cannot be made. ANN's can be treated as nonparametric techniques, which can model an underlying process from example data. They can also adopt their model parameters to statistical change with time. Algorithms in the framework of Neural Networks in Signal processing have found new applications potentials in the field of Nuclear Engineering. This paper reviews the fundamentals of Neural Networks in signal processing and their applications in tasks such as recognition/identification and control. The topics covered include dynamic modeling, model based ANN's, statistical learning, eigen structure based processing and generalization structures. (orig.)
Determining the confidence levels of sensor outputs using neural networks
International Nuclear Information System (INIS)
Broten, G.S.; Wood, H.C.
1995-01-01
This paper describes an approach for determining the confidence level of a sensor output using multi-sensor arrays, sensor fusion and artificial neural networks. The authors have shown in previous work that sensor fusion and artificial neural networks can be used to learn the relationships between the outputs of an array of simulated partially selective sensors and the individual analyte concentrations in a mixture of analyses. Other researchers have shown that an array of partially selective sensors can be used to determine the individual gas concentrations in a gaseous mixture. The research reported in this paper shows that it is possible to extract confidence level information from an array of partially selective sensors using artificial neural networks. The confidence level of a sensor output is defined as a numeric value, ranging from 0% to 100%, that indicates the confidence associated with a output of a given sensor. A three layer back-propagation neural network was trained on a subset of the sensor confidence level space, and was tested for its ability to generalize, where the confidence level space is defined as all possible deviations from the correct sensor output. A learning rate of 0.1 was used and no momentum terms were used in the neural network. This research has shown that an artificial neural network can accurately estimate the confidence level of individual sensors in an array of partially selective sensors. This research has also shown that the neural network's ability to determine the confidence level is influenced by the complexity of the sensor's response and that the neural network is able to estimate the confidence levels even if more than one sensor is in error. The fundamentals behind this research could be applied to other configurations besides arrays of partially selective sensors, such as an array of sensors separated spatially. An example of such a configuration could be an array of temperature sensors in a tank that is not in
Entropy Learning in Neural Network
Directory of Open Access Journals (Sweden)
Geok See Ng
2017-12-01
Full Text Available In this paper, entropy term is used in the learning phase of a neural network. As learning progresses, more hidden nodes get into saturation. The early creation of such hidden nodes may impair generalisation. Hence entropy approach is proposed to dampen the early creation of such nodes. The entropy learning also helps to increase the importance of relevant nodes while dampening the less important nodes. At the end of learning, the less important nodes can then be eliminated to reduce the memory requirements of the neural network.
Çebi, A.; Akdoğan, E.; Celen, A.; Dalkilic, A. S.
2017-02-01
An artificial neural network (ANN) model of friction factor in smooth and microfin tubes under heating, cooling and isothermal conditions was developed in this study. Data used in ANN was taken from a vertically positioned heat exchanger experimental setup. Multi-layered feed-forward neural network with backpropagation algorithm, radial basis function networks and hybrid PSO-neural network algorithm were applied to the database. Inputs were the ratio of cross sectional flow area to hydraulic diameter, experimental condition number depending on isothermal, heating, or cooling conditions and mass flow rate while the friction factor was the output of the constructed system. It was observed that such neural network based system could effectively predict the friction factor values of the flows regardless of their tube types. A dependency analysis to determine the strongest parameter that affected the network and database was also performed and tube geometry was found to be the strongest parameter of all as a result of analysis.
Neural Network for Sparse Reconstruction
Directory of Open Access Journals (Sweden)
Qingfa Li
2014-01-01
Full Text Available We construct a neural network based on smoothing approximation techniques and projected gradient method to solve a kind of sparse reconstruction problems. Neural network can be implemented by circuits and can be seen as an important method for solving optimization problems, especially large scale problems. Smoothing approximation is an efficient technique for solving nonsmooth optimization problems. We combine these two techniques to overcome the difficulties of the choices of the step size in discrete algorithms and the item in the set-valued map of differential inclusion. In theory, the proposed network can converge to the optimal solution set of the given problem. Furthermore, some numerical experiments show the effectiveness of the proposed network in this paper.
Arabic Handwriting Recognition Using Neural Network Classifier
African Journals Online (AJOL)
pc
2018-03-05
Mar 5, 2018 ... an OCR using Neural Network classifier preceded by a set of preprocessing .... Artificial Neural Networks (ANNs), which we adopt in this research, consist of ... advantage and disadvantages of each technique. In [9],. Khemiri ...
Application of neural networks in coastal engineering
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.
the neural network attractive. A neural network is an information processing system modeled on the structure of the dynamic process. It can solve the complex/nonlinear problems quickly once trained by operating on problems using an interconnected number...
Ocean wave forecasting using recurrent neural networks
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Prabaharan, N.
, merchant vessel routing, nearshore construction, etc. more efficiently and safely. This paper describes an artificial neural network, namely recurrent neural network with rprop update algorithm and is applied for wave forecasting. Measured ocean waves off...
A Pruning Neural Network Model in Credit Classification Analysis
Directory of Open Access Journals (Sweden)
Yajiao Tang
2018-01-01
Full Text Available Nowadays, credit classification models are widely applied because they can help financial decision-makers to handle credit classification issues. Among them, artificial neural networks (ANNs have been widely accepted as the convincing methods in the credit industry. In this paper, we propose a pruning neural network (PNN and apply it to solve credit classification problem by adopting the well-known Australian and Japanese credit datasets. The model is inspired by synaptic nonlinearity of a dendritic tree in a biological neural model. And it is trained by an error back-propagation algorithm. The model is capable of realizing a neuronal pruning function by removing the superfluous synapses and useless dendrites and forms a tidy dendritic morphology at the end of learning. Furthermore, we utilize logic circuits (LCs to simulate the dendritic structures successfully which makes PNN be implemented on the hardware effectively. The statistical results of our experiments have verified that PNN obtains superior performance in comparison with other classical algorithms in terms of accuracy and computational efficiency.
Data acquisition in modeling using neural networks and decision trees
Directory of Open Access Journals (Sweden)
R. Sika
2011-04-01
Full Text Available The paper presents a comparison of selected models from area of artificial neural networks and decision trees in relation with actualconditions of foundry processes. The work contains short descriptions of used algorithms, their destination and method of data preparation,which is a domain of work of Data Mining systems. First part concerns data acquisition realized in selected iron foundry, indicating problems to solve in aspect of casting process modeling. Second part is a comparison of selected algorithms: a decision tree and artificial neural network, that is CART (Classification And Regression Trees and BP (Backpropagation in MLP (Multilayer Perceptron networks algorithms.Aim of the paper is to show an aspect of selecting data for modeling, cleaning it and reducing, for example due to too strong correlationbetween some of recorded process parameters. Also, it has been shown what results can be obtained using two different approaches:first when modeling using available commercial software, for example Statistica, second when modeling step by step using Excel spreadsheetbasing on the same algorithm, like BP-MLP. Discrepancy of results obtained from these two approaches originates from a priorimade assumptions. Mentioned earlier Statistica universal software package, when used without awareness of relations of technologicalparameters, i.e. without user having experience in foundry and without scheduling ranks of particular parameters basing on acquisition, can not give credible basis to predict the quality of the castings. Also, a decisive influence of data acquisition method has been clearly indicated, the acquisition should be conducted according to repetitive measurement and control procedures. This paper is based on about 250 records of actual data, for one assortment for 6 month period, where only 12 data sets were complete (including two that were used for validation of neural network and useful for creating a model. It is definitely too
Gross domestic product estimation based on electricity utilization by artificial neural network
Stevanović, Mirjana; Vujičić, Slađana; Gajić, Aleksandar M.
2018-01-01
The main goal of the paper was to estimate gross domestic product (GDP) based on electricity estimation by artificial neural network (ANN). The electricity utilization was analyzed based on different sources like renewable, coal and nuclear sources. The ANN network was trained with two training algorithms namely extreme learning method and back-propagation algorithm in order to produce the best prediction results of the GDP. According to the results it can be concluded that the ANN model with extreme learning method could produce the acceptable prediction of the GDP based on the electricity utilization.
Butterfly Classification by HSI and RGB Color Models Using Neural Networks
Directory of Open Access Journals (Sweden)
Jorge E. Grajales-Múnera
2013-11-01
Full Text Available This study aims the classification of Butterfly species through the implementation of Neural Networks and Image Processing. A total of 9 species of Morpho genre which has blue as a characteristic color are processed. For Butterfly segmentation we used image processing tools such as: Binarization, edge processing and mathematical morphology. For data processing RGB values are obtained for every image which are converted to HSI color model to identify blue pixels and obtain the data to the proposed Neural Networks: Back-Propagation and Perceptron. For analysis and verification of results confusion matrix are built and analyzed with the results of neural networks with the lowest error levels. We obtain error levels close to 1% in classification of some Butterfly species.
Adaptive online state-of-charge determination based on neuro-controller and neural network
Energy Technology Data Exchange (ETDEWEB)
Shen Yanqing, E-mail: network_hawk@126.co [Department of Automation, Chongqing Industry Polytechnic College, Jiulongpo District, Chongqing 400050 (China)
2010-05-15
This paper presents a novel approach using adaptive artificial neural network based model and neuro-controller for online cell State of Charge (SOC) determination. Taking cell SOC as model's predictive control input unit, radial basis function neural network, which can adjust its structure to prediction error with recursive least square algorithm, is used to simulate battery system. Besides that, neuro-controller based on Back-Propagation Neural Network (BPNN) and modified PID controller is used to decide the control input of battery system, i.e., cell SOC. Finally this algorithm is applied for the SOC determination of lead-acid batteries, and results of lab tests on physical cells, compared with model prediction, are presented. Results show that the ANN based battery system model adaptively simulates battery system with great accuracy, and the predicted SOC simultaneously converges to the real value quickly within the error of +-1 as time goes on.
The fundamentals of fuzzy neural network and application in nuclear monitoring
International Nuclear Information System (INIS)
Feng Diqing; Lei Ming
1995-01-01
The authors presents a fuzzy modeling method using fuzzy neural network with the back-propagation algorithm. The new method can identify the fuzzy model of a nonlinear system automatically. Fuzzy neural network is used to generate fuzzy rules and membership functions. The feasibility and inferential statistic of the method is examined by using numerical data and XOR problem. The FNN improves accuracy and reliability, reduces design time and minimizes system cost of fuzzy design. The FNN can be used for estimation of human injury in nuclear explosions and can be simplified to a rule neural network (RNN), which is used for pole extraction of signal. Preliminary simulation show that FNN has vest vistas in nuclear monitoring
Directory of Open Access Journals (Sweden)
Sen Tian
2014-01-01
Full Text Available With the development of mine industry, tailings storage facility (TSF, as the important facility of mining, has attracted increasing attention for its safety problems. However, the problems of low accuracy and slow operation rate often occur in current TSF safety evaluation models. This paper establishes a reasonable TSF safety evaluation index system and puts forward a new TSF safety evaluation model by combining the theories for the analytic hierarchy process (AHP and improved back-propagation (BP neural network algorithm. The varying proportions of cross validation were calculated, demonstrating that this method has better evaluation performance with higher learning efficiency and faster convergence speed and avoids the oscillation in the training process in traditional BP neural network method and other primary neural network methods. The entire analysis shows the combination of the two methods increases the accuracy and reliability of the safety evaluation, and it can be well applied in the TSF safety evaluation.
SPATIAL DATA MINING TOOLBOX FOR MAPPING SUITABILITY OF LANDFILL SITES USING NEURAL NETWORKS
Directory of Open Access Journals (Sweden)
S. K. M. Abujayyab
2016-09-01
Full Text Available Mapping the suitability of landfill sites is a complex field and is involved with multidiscipline. The purpose of this research is to create an ArcGIS spatial data mining toolbox for mapping the suitability of landfill sites at a regional scale using neural networks. The toolbox is constructed from six sub-tools to prepare, train, and process data. The employment of the toolbox is straightforward. The multilayer perceptron (MLP neural networks structure with a backpropagation learning algorithm is used. The dataset is mined from the north states in Malaysia. A total of 14 criteria are utilized to build the training dataset. The toolbox provides a platform for decision makers to implement neural networks for mapping the suitability of landfill sites in the ArcGIS environment. The result shows the ability of the toolbox to produce suitability maps for landfill sites.
Using a multi-state recurrent neural network to optimize loading patterns in BWRs
International Nuclear Information System (INIS)
Ortiz, Juan Jose; Requena, Ignacio
2004-01-01
A Multi-State Recurrent Neural Network is used to optimize Loading Patterns (LP) in BWRs. We have proposed an energy function that depends on fuel assembly positions and their nuclear cross sections to carry out optimisation. Multi-State Recurrent Neural Networks creates LPs that satisfy the Radial Power Peaking Factor and maximize the effective multiplication factor at the Beginning of the Cycle, and also satisfy the Minimum Critical Power Ratio and Maximum Linear Heat Generation Rate at the End of the Cycle, thereby maximizing the effective multiplication factor. In order to evaluate the LPs, we have used a trained back-propagation neural network to predict the parameter values, instead of using a reactor core simulator, which saved considerable computation time in the search process. We applied this method to find optimal LPs for five cycles of Laguna Verde Nuclear Power Plant (LVNPP) in Mexico
Neural networks and applications tutorial
Guyon, I.
1991-09-01
The importance of neural networks has grown dramatically during this decade. While only a few years ago they were primarily of academic interest, now dozens of companies and many universities are investigating the potential use of these systems and products are beginning to appear. The idea of building a machine whose architecture is inspired by that of the brain has roots which go far back in history. Nowadays, technological advances of computers and the availability of custom integrated circuits, permit simulations of hundreds or even thousands of neurons. In conjunction, the growing interest in learning machines, non-linear dynamics and parallel computation spurred renewed attention in artificial neural networks. Many tentative applications have been proposed, including decision systems (associative memories, classifiers, data compressors and optimizers), or parametric models for signal processing purposes (system identification, automatic control, noise canceling, etc.). While they do not always outperform standard methods, neural network approaches are already used in some real world applications for pattern recognition and signal processing tasks. The tutorial is divided into six lectures, that where presented at the Third Graduate Summer Course on Computational Physics (September 3-7, 1990) on Parallel Architectures and Applications, organized by the European Physical Society: (1) Introduction: machine learning and biological computation. (2) Adaptive artificial neurons (perceptron, ADALINE, sigmoid units, etc.): learning rules and implementations. (3) Neural network systems: architectures, learning algorithms. (4) Applications: pattern recognition, signal processing, etc. (5) Elements of learning theory: how to build networks which generalize. (6) A case study: a neural network for on-line recognition of handwritten alphanumeric characters.
Adaptive Graph Convolutional Neural Networks
Li, Ruoyu; Wang, Sheng; Zhu, Feiyun; Huang, Junzhou
2018-01-01
Graph Convolutional Neural Networks (Graph CNNs) are generalizations of classical CNNs to handle graph data such as molecular data, point could and social networks. Current filters in graph CNNs are built for fixed and shared graph structure. However, for most real data, the graph structures varies in both size and connectivity. The paper proposes a generalized and flexible graph CNN taking data of arbitrary graph structure as input. In that way a task-driven adaptive graph is learned for eac...
Neural Network Prediction of Disruptions Caused by Locked Modes on J-TEXT Tokamak
International Nuclear Information System (INIS)
Ding Yonghua; Jin Xuesong; Chen Zhenzhen; Zhuang Ge
2013-01-01
Prediction of disruptions caused by locked modes using the Back-Propagation (BP) neural network is completed on J-TEXT tokamak. The network, which is based on the BP neural network, uses Mirnov coils and locked mode coils signals as input data, and outputs a signal including information of prediction of locked mode. The rate of successful prediction of locked modes is more than 90%. For intrinsic locked mode disruptions, the network can give a prewarning signal about 1 ms ahead of the locking-time. For the disruption caused by resonant magnetic perturbation (RMPs) locked modes, the network can give a prewarning signal about 10 ms ahead of the locking-time
International Nuclear Information System (INIS)
Reifman, J.; Vitela, E.J.; Lee, J.C.
1993-01-01
Two complementary methods, statistical feature selection and nonlinear optimization through conjugate gradients, are used to expedite feedforward neural network training. Statistical feature selection techniques in the form of linear correlation coefficients and information-theoretic entropy are used to eliminate redundant and non-informative plant parameters to reduce the size of the network. The method of conjugate gradients is used to accelerate the network training convergence and to systematically calculate the Teaming and momentum constants at each iteration. The proposed techniques are compared with the backpropagation algorithm using the entire set of plant parameters in the training of neural networks to identify transients simulated with the Midland Nuclear Power Plant Unit 2 simulator. By using 25% of the plant parameters and the conjugate gradients, a 30-fold reduction in CPU time was obtained without degrading the diagnostic ability of the network
Hysteretic recurrent neural networks: a tool for modeling hysteretic materials and systems
International Nuclear Information System (INIS)
Veeramani, Arun S; Crews, John H; Buckner, Gregory D
2009-01-01
This paper introduces a novel recurrent neural network, the hysteretic recurrent neural network (HRNN), that is ideally suited to modeling hysteretic materials and systems. This network incorporates a hysteretic neuron consisting of conjoined sigmoid activation functions. Although similar hysteretic neurons have been explored previously, the HRNN is unique in its utilization of simple recurrence to 'self-select' relevant activation functions. Furthermore, training is facilitated by placing the network weights on the output side, allowing standard backpropagation of error training algorithms to be used. We present two- and three-phase versions of the HRNN for modeling hysteretic materials with distinct phases. These models are experimentally validated using data collected from shape memory alloys and ferromagnetic materials. The results demonstrate the HRNN's ability to accurately generalize hysteretic behavior with a relatively small number of neurons. Additional benefits lie in the network's ability to identify statistical information concerning the macroscopic material by analyzing the weights of the individual neurons
Neural network to diagnose lining condition
Yemelyanov, V. A.; Yemelyanova, N. Y.; Nedelkin, A. A.; Zarudnaya, M. V.
2018-03-01
The paper presents data on the problem of diagnosing the lining condition at the iron and steel works. The authors describe the neural network structure and software that are designed and developed to determine the lining burnout zones. The simulation results of the proposed neural networks are presented. The authors note the low learning and classification errors of the proposed neural networks. To realize the proposed neural network, the specialized software has been developed.
Crop Classification by Forward Neural Network with Adaptive Chaotic Particle Swarm Optimization
Directory of Open Access Journals (Sweden)
Yudong Zhang
2011-05-01
Full Text Available This paper proposes a hybrid crop classifier for polarimetric synthetic aperture radar (SAR images. The feature sets consisted of span image, the H/A/α decomposition, and the gray-level co-occurrence matrix (GLCM based texture features. Then, the features were reduced by principle component analysis (PCA. Finally, a two-hidden-layer forward neural network (NN was constructed and trained by adaptive chaotic particle swarm optimization (ACPSO. K-fold cross validation was employed to enhance generation. The experimental results on Flevoland sites demonstrate the superiority of ACPSO to back-propagation (BP, adaptive BP (ABP, momentum BP (MBP, Particle Swarm Optimization (PSO, and Resilient back-propagation (RPROP methods. Moreover, the computation time for each pixel is only 1.08 × 10−7 s.
Medical Imaging with Neural Networks
International Nuclear Information System (INIS)
Pattichis, C.; Cnstantinides, A.
1994-01-01
The objective of this paper is to provide an overview of the recent developments in the use of artificial neural networks in medical imaging. The areas of medical imaging that are covered include : ultrasound, magnetic resonance, nuclear medicine and radiological (including computerized tomography). (authors)
Optoelectronic Implementation of Neural Networks
Indian Academy of Sciences (India)
neural networks, such as learning, adapting and copying by means of parallel ... to provide robust recognition of hand-printed English text. Engine idle and misfiring .... and s represents the bounded activation function of a neuron. It is typically ...
Aphasia Classification Using Neural Networks
DEFF Research Database (Denmark)
Axer, H.; Jantzen, Jan; Berks, G.
2000-01-01
A web-based software model (http://fuzzy.iau.dtu.dk/aphasia.nsf) was developed as an example for classification of aphasia using neural networks. Two multilayer perceptrons were used to classify the type of aphasia (Broca, Wernicke, anomic, global) according to the results in some subtests...
Intelligent neural network diagnostic system
International Nuclear Information System (INIS)
Mohamed, A.H.
2010-01-01
Recently, artificial neural network (ANN) has made a significant mark in the domain of diagnostic applications. Neural networks are used to implement complex non-linear mappings (functions) using simple elementary units interrelated through connections with adaptive weights. The performance of the ANN is mainly depending on their topology structure and weights. Some systems have been developed using genetic algorithm (GA) to optimize the topology of the ANN. But, they suffer from some limitations. They are : (1) The computation time requires for training the ANN several time reaching for the average weight required, (2) Slowness of GA for optimization process and (3) Fitness noise appeared in the optimization of ANN. This research suggests new issues to overcome these limitations for finding optimal neural network architectures to learn particular problems. This proposed methodology is used to develop a diagnostic neural network system. It has been applied for a 600 MW turbo-generator as a case of real complex systems. The proposed system has proved its significant performance compared to two common methods used in the diagnostic applications.
Medical Imaging with Neural Networks
Energy Technology Data Exchange (ETDEWEB)
Pattichis, C [Department of Computer Science, University of Cyprus, Kallipoleos 75, P.O.Box 537, Nicosia (Cyprus); Cnstantinides, A [Department of Electrical Engineering, Imperial College of Science, Technology and Medicine, London SW7 2BT (United Kingdom)
1994-12-31
The objective of this paper is to provide an overview of the recent developments in the use of artificial neural networks in medical imaging. The areas of medical imaging that are covered include : ultrasound, magnetic resonance, nuclear medicine and radiological (including computerized tomography). (authors). 61 refs, 4 tabs.
Numerical experiments with neural networks
International Nuclear Information System (INIS)
Miranda, Enrique.
1990-01-01
Neural networks are highly idealized models which, in spite of their simplicity, reproduce some key features of the real brain. In this paper, they are introduced at a level adequate for an undergraduate computational physics course. Some relevant magnitudes are defined and evaluated numerically for the Hopfield model and a short term memory model. (Author)
Spin glasses and neural networks
International Nuclear Information System (INIS)
Parga, N.; Universidad Nacional de Cuyo, San Carlos de Bariloche
1989-01-01
The mean-field theory of spin glass models has been used as a prototype of systems with frustration and disorder. One of the most interesting related systems are models of associative memories. In these lectures we review the main concepts developed to solve the Sherrington-Kirkpatrick model and its application to neural networks. (orig.)
Directory of Open Access Journals (Sweden)
mustamin hamid
2016-09-01
Full Text Available Abstract - This research proposed a system to identify Plasmodium falciparum on blood smear using the neural network backpropagation. Modified K-Means (MK-Means is used to separate between the object with the background image because that method was able to equalize the value of fitness at all Center cluster so there is no dead center and can also cope with the local minimum value. The extraction of the features used in this study consists of color features i.e. calculation of the mean, standard deviation, skewness, curtosis and entropy of co-occurent matrix with the purpose to get the values of all the trait value image, obtained are then used to train a neural network with the backpropagation training algorithm. Method of backpropagation networks capable of acquiring knowledge even though there is no certainty, able to perform a generalization and extraction of a specific data pattern. The image of the preparations blood smear are classified using the method of neural network Backpropagation. The test results obtained from Tropozoit with the accuracy 100%, scizon 80% and gametocytes 80%. Identification is then obtained outcomes the introduction with an average accuracy of 86,66%.
Simplified LQG Control with Neural Networks
DEFF Research Database (Denmark)
Sørensen, O.
1997-01-01
A new neural network application for non-linear state control is described. One neural network is modelled to form a Kalmann predictor and trained to act as an optimal state observer for a non-linear process. Another neural network is modelled to form a state controller and trained to produce...
Analysis of neural networks through base functions
van der Zwaag, B.J.; Slump, Cornelis H.; Spaanenburg, L.
Problem statement. Despite their success-story, neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a "magic tool" but possibly even more
Genetic Algorithm Optimized Neural Networks Ensemble as ...
African Journals Online (AJOL)
NJD
Improvements in neural network calibration models by a novel approach using neural network ensemble (NNE) for the simultaneous ... process by training a number of neural networks. .... Matlab® version 6.1 was employed for building principal component ... provide a fair simulation of calibration data set with some degree.
Wan'e, Wu; Zuoming, Zhu
2012-01-01
A practical scheme for selecting characterization parameters of boron-based fuel-rich propellant formulation was put forward; a calculation model for primary combustion characteristics of boron-based fuel-rich propellant based on backpropagation neural network was established, validated, and then was used to predict primary combustion characteristics of boron-based fuel-rich propellant. The results show that the calculation error of burning rate is less than ± 7 . 3 %; in the formulation rang...
Gap Filling of Daily Sea Levels by Artificial Neural Networks
Directory of Open Access Journals (Sweden)
Lyubka Pashova
2013-06-01
Full Text Available In the recent years, intelligent methods as artificial neural networks are successfully applied for data analysis from different fields of the geosciences. One of the encountered practical problems is the availability of gaps in the time series that prevent their comprehensive usage for the scientific and practical purposes. The article briefly describes two types of the artificial neural network (ANN architectures - Feed-Forward Backpropagation (FFBP and recurrent Echo state network (ESN. In some cases, the ANN can be used as an alternative on the traditional methods, to fill in missing values in the time series. We have been conducted several experiments to fill the missing values of daily sea levels spanning a 5-years period using both ANN architectures. A multiple linear regression for the same purpose has been also applied. The sea level data are derived from the records of the tide gauge Burgas, which is located on the western Black Sea coast. The achieved results have shown that the performance of ANN models is better than that of the classical one and they are very promising for the real-time interpolation of missing data in the time series.
Neural network stochastic simulation applied for quantifying uncertainties
Directory of Open Access Journals (Sweden)
N Foudil-Bey
2016-09-01
Full Text Available Generally the geostatistical simulation methods are used to generate several realizations of physical properties in the sub-surface, these methods are based on the variogram analysis and limited to measures correlation between variables at two locations only. In this paper, we propose a simulation of properties based on supervised Neural network training at the existing drilling data set. The major advantage is that this method does not require a preliminary geostatistical study and takes into account several points. As a result, the geological information and the diverse geophysical data can be combined easily. To do this, we used a neural network with multi-layer perceptron architecture like feed-forward, then we used the back-propagation algorithm with conjugate gradient technique to minimize the error of the network output. The learning process can create links between different variables, this relationship can be used for interpolation of the properties on the one hand, or to generate several possible distribution of physical properties on the other hand, changing at each time and a random value of the input neurons, which was kept constant until the period of learning. This method was tested on real data to simulate multiple realizations of the density and the magnetic susceptibility in three-dimensions at the mining camp of Val d'Or, Québec (Canada.
Adaptive competitive learning neural networks
Directory of Open Access Journals (Sweden)
Ahmed R. Abas
2013-11-01
Full Text Available In this paper, the adaptive competitive learning (ACL neural network algorithm is proposed. This neural network not only groups similar input feature vectors together but also determines the appropriate number of groups of these vectors. This algorithm uses a new proposed criterion referred to as the ACL criterion. This criterion evaluates different clustering structures produced by the ACL neural network for an input data set. Then, it selects the best clustering structure and the corresponding network architecture for this data set. The selected structure is composed of the minimum number of clusters that are compact and balanced in their sizes. The selected network architecture is efficient, in terms of its complexity, as it contains the minimum number of neurons. Synaptic weight vectors of these neurons represent well-separated, compact and balanced clusters in the input data set. The performance of the ACL algorithm is evaluated and compared with the performance of a recently proposed algorithm in the literature in clustering an input data set and determining its number of clusters. Results show that the ACL algorithm is more accurate and robust in both determining the number of clusters and allocating input feature vectors into these clusters than the other algorithm especially with data sets that are sparsely distributed.
Directory of Open Access Journals (Sweden)
Suhendry Effendy
2010-12-01
Full Text Available This paper discusses the facial image recognition system using Discrete Wavelet Transform and back-propagation artificial neural network. Discrete Wavelet Transform processes the input image to obtain the essential features found on the face image. These features are then classified using an back-propagation artificial neural network for the input image to be identified. Testing the system using facial images in AT & T Database of Faces of 400 images comprising 40 facial images of individuals and web-camera catches as many as 100 images of 10 individuals. The accuracy of level of recognition on AT & T Database of Faces reaches 93.5%, while the accuracy of level of recognition on a web-camera capture images up to 96%. Testing is also done on image of AT & T Database of Faces with given noise. Apparently the noise in the image does not give meaningful effect on the level of recognition accuracy.
Optical resonators and neural networks
Anderson, Dana Z.
1986-08-01
It may be possible to implement neural network models using continuous field optical architectures. These devices offer the inherent parallelism of propagating waves and an information density in principle dictated by the wavelength of light and the quality of the bulk optical elements. Few components are needed to construct a relatively large equivalent network. Various associative memories based on optical resonators have been demonstrated in the literature, a ring resonator design is discussed in detail here. Information is stored in a holographic medium and recalled through a competitive processes in the gain medium supplying energy to the ring rsonator. The resonator memory is the first realized example of a neural network function implemented with this kind of architecture.
Kwon, Chung-Jin; Kim, Sung-Joong; Han, Woo-Young; Min, Won-Kyoung
2005-12-01
The rotor position and speed estimation of permanent-magnet synchronous motor(PMSM) was dealt with. By measuring the phase voltages and currents of the PMSM drive, two diagonally recurrent neural network(DRNN) based observers, a neural current observer and a neural velocity observer were developed. DRNN which has self-feedback of the hidden neurons ensures that the outputs of DRNN contain the whole past information of the system even if the inputs of DRNN are only the present states and inputs of the system. Thus the structure of DRNN may be simpler than that of feedforward and fully recurrent neural networks. If the backpropagation method was used for the training of the DRNN the problem of slow convergence arise. In order to reduce this problem, recursive prediction error(RPE) based learning method for the DRNN was presented. The simulation results show that the proposed approach gives a good estimation of rotor speed and position, and RPE based training has requires a shorter computation time compared to backpropagation based training.
Benediktsson, J. A.; Swain, P. H.; Ersoy, O. K.
1993-01-01
Application of neural networks to classification of remote sensing data is discussed. Conventional two-layer backpropagation is found to give good results in classification of remote sensing data but is not efficient in training. A more efficient variant, based on conjugate-gradient optimization, is used for classification of multisource remote sensing and geographic data and very-high-dimensional data. The conjugate-gradient neural networks give excellent performance in classification of multisource data, but do not compare as well with statistical methods in classification of very-high-dimentional data.
Classification of brain compartments and head injury lesions by neural networks applied to MRI
International Nuclear Information System (INIS)
Kischell, E.R.; Kehtarnavaz, N.; Hillman, G.R.; Levin, H.; Lilly, M.; Kent, T.A.
1995-01-01
An automatic, neural network-based approach was applied to segment normal brain compartments and lesions on MR images. Two supervised networks, backpropagation (BPN) and counterpropagation, and two unsupervised networks, Kohonen learning vector quantizer and analog adaptive resonance theory, were trained on registered T2-weighted and proton density images. The classes of interest were background, gray matter, white matter, cerebrospinal fluid, macrocystic encephalomalacia, gliosis, and 'unknown'. A comprehensive feature vector was chosen to discriminate these classes. The BPN combined with feature conditioning, multiple discriminant analysis followed by Hotelling transform, produced the most accurate and consistent classification results. Classifications of normal brain compartments were generally in agreement with expert interpretation of the images. Macrocystic encephalomalacia and gliosis were recognized and, except around the periphery, classified in agreement with the clinician's report used to train the neural network. (orig.)
Classification of brain compartments and head injury lesions by neural networks applied to MRI
Energy Technology Data Exchange (ETDEWEB)
Kischell, E R [Dept. of Electrical Engineering, Texas A and M Univ., College Station, TX (United States); Kehtarnavaz, N [Dept. of Electrical Engineering, Texas A and M Univ., College Station, TX (United States); Hillman, G R [Dept. of Pharmacology, Univ. of Texas Medical Branch, Galveston, TX (United States); Levin, H [Dept. of Neurosurgery, Univ. of Texas Medical Branch, Galveston, TX (United States); Lilly, M [Dept. of Neurosurgery, Univ. of Texas Medical Branch, Galveston, TX (United States); Kent, T A [Dept. of Neurology and Psychiatry, Univ. of Texas Medical Branch, Galveston, TX (United States)
1995-10-01
An automatic, neural network-based approach was applied to segment normal brain compartments and lesions on MR images. Two supervised networks, backpropagation (BPN) and counterpropagation, and two unsupervised networks, Kohonen learning vector quantizer and analog adaptive resonance theory, were trained on registered T2-weighted and proton density images. The classes of interest were background, gray matter, white matter, cerebrospinal fluid, macrocystic encephalomalacia, gliosis, and `unknown`. A comprehensive feature vector was chosen to discriminate these classes. The BPN combined with feature conditioning, multiple discriminant analysis followed by Hotelling transform, produced the most accurate and consistent classification results. Classifications of normal brain compartments were generally in agreement with expert interpretation of the images. Macrocystic encephalomalacia and gliosis were recognized and, except around the periphery, classified in agreement with the clinician`s report used to train the neural network. (orig.)
Photon spectrometry utilizing neural networks
International Nuclear Information System (INIS)
Silveira, R.; Benevides, C.; Lima, F.; Vilela, E.
2015-01-01
Having in mind the time spent on the uneventful work of characterization of the radiation beams used in a ionizing radiation metrology laboratory, the Metrology Service of the Centro Regional de Ciencias Nucleares do Nordeste - CRCN-NE verified the applicability of artificial intelligence (artificial neural networks) to perform the spectrometry in photon fields. For this, was developed a multilayer neural network, as an application for the classification of patterns in energy, associated with a thermoluminescent dosimetric system (TLD-700 and TLD-600). A set of dosimeters was initially exposed to various well known medium energies, between 40 keV and 1.2 MeV, coinciding with the beams determined by ISO 4037 standard, for the dose of 10 mSv in the quantity Hp(10), on a chest phantom (ISO slab phantom) with the purpose of generating a set of training data for the neural network. Subsequently, a new set of dosimeters irradiated in unknown energies was presented to the network with the purpose to test the method. The methodology used in this work was suitable for application in the classification of energy beams, having obtained 100% of the classification performed. (authors)
Laidi, Maamar; Hanini, Salah; Rezrazi, Ahmed; Yaiche, Mohamed Redha; El Hadj, Abdallah Abdallah; Chellali, Farouk
2017-04-01
In this study, a backpropagation artificial neural network (BP-ANN) model is used as an alternative approach to predict solar radiation on tilted surfaces (SRT) using a number of variables involved in physical process. These variables are namely the latitude of the site, mean temperature and relative humidity, Linke turbidity factor and Angstrom coefficient, extraterrestrial solar radiation, solar radiation data measured on horizontal surfaces (SRH), and solar zenith angle. Experimental solar radiation data from 13 stations spread all over Algeria around the year (2004) were used for training/validation and testing the artificial neural networks (ANNs), and one station was used to make the interpolation of the designed ANN. The ANN model was trained, validated, and tested using 60, 20, and 20 % of all data, respectively. The configuration 8-35-1 (8 inputs, 35 hidden, and 1 output neurons) presented an excellent agreement between the prediction and the experimental data during the test stage with determination coefficient of 0.99 and root meat squared error of 5.75 Wh/m2, considering a three-layer feedforward backpropagation neural network with Levenberg-Marquardt training algorithm, a hyperbolic tangent sigmoid and linear transfer function at the hidden and the output layer, respectively. This novel model could be used by researchers or scientists to design high-efficiency solar devices that are usually tilted at an optimum angle to increase the solar incident on the surface.
Optimizing the De-Noise Neural Network Model for GPS Time-Series Monitoring of Structures
Directory of Open Access Journals (Sweden)
Mosbeh R. Kaloop
2015-09-01
Full Text Available The Global Positioning System (GPS is recently used widely in structures and other applications. Notwithstanding, the GPS accuracy still suffers from the errors afflicting the measurements, particularly the short-period displacement of structural components. Previously, the multi filter method is utilized to remove the displacement errors. This paper aims at using a novel application for the neural network prediction models to improve the GPS monitoring time series data. Four prediction models for the learning algorithms are applied and used with neural network solutions: back-propagation, Cascade-forward back-propagation, adaptive filter and extended Kalman filter, to estimate which model can be recommended. The noise simulation and bridge’s short-period GPS of the monitoring displacement component of one Hz sampling frequency are used to validate the four models and the previous method. The results show that the Adaptive neural networks filter is suggested for de-noising the observations, specifically for the GPS displacement components of structures. Also, this model is expected to have significant influence on the design of structures in the low frequency responses and measurements’ contents.
Neural networks for feedback feedforward nonlinear control systems.
Parisini, T; Zoppoli, R
1994-01-01
This paper deals with the problem of designing feedback feedforward control strategies to drive the state of a dynamic system (in general, nonlinear) so as to track any desired trajectory joining the points of given compact sets, while minimizing a certain cost function (in general, nonquadratic). Due to the generality of the problem, conventional methods are difficult to apply. Thus, an approximate solution is sought by constraining control strategies to take on the structure of multilayer feedforward neural networks. After discussing the approximation properties of neural control strategies, a particular neural architecture is presented, which is based on what has been called the "linear-structure preserving principle". The original functional problem is then reduced to a nonlinear programming one, and backpropagation is applied to derive the optimal values of the synaptic weights. Recursive equations to compute the gradient components are presented, which generalize the classical adjoint system equations of N-stage optimal control theory. Simulation results related to nonlinear nonquadratic problems show the effectiveness of the proposed method.
Development of Fast-Running Simulation Methodology Using Neural Networks for Load Follow Operation
International Nuclear Information System (INIS)
Seong, Seung-Hwan; Park, Heui-Youn; Kim, Dong-Hoon; Suh, Yong-Suk; Hur, Seop; Koo, In-Soo; Lee, Un-Chul; Jang, Jin-Wook; Shin, Yong-Chul
2002-01-01
A new fast-running analytic model has been developed for analyzing the load follow operation. The new model was based on the neural network theory, which has the capability of modeling the input/output relationships of a nonlinear system. The new model is made up of two error back-propagation neural networks and procedures to calculate core parameters, such as the distributions and density of xenon in a quasi-steady-state core like load follow operation. One neural network is designed to retrieve the axial offset of power distribution, and the other is for reactivity corresponding to a given core condition. The training data sets for learning the neural networks in the new model are generated with a three-dimensional nodal code and, also, the measured data of the first-day test of load follow operation. Using the new model, the simulation results of the 5-day load follow test in a pressurized water reactor show a good agreement between the simulation data and the actual measured data. Required computing time for simulating a load follow operation is comparable to that of a fast-running lumped model. Moreover, the new model does not require additional engineering factors to compensate for the difference between the actual measurements and analysis results because the neural network has the inherent learning capability of neural networks to new situations
Peng, Jinzhu; Dubay, Rickey
2011-10-01
In this paper, an adaptive control approach based on the neural networks is presented to control a DC motor system with dead-zone characteristics (DZC), where two neural networks are proposed to formulate the traditional identification and control approaches. First, a Wiener-type neural network (WNN) is proposed to identify the motor DZC, which formulates the Wiener model with a linear dynamic block in cascade with a nonlinear static gain. Second, a feedforward neural network is proposed to formulate the traditional PID controller, termed as PID-type neural network (PIDNN), which is then used to control and compensate for the DZC. In this way, the DC motor system with DZC is identified by the WNN identifier, which provides model information to the PIDNN controller in order to make it adaptive. Back-propagation algorithms are used to train both neural networks. Also, stability and convergence analysis are conducted using the Lyapunov theorem. Finally, experiments on the DC motor system demonstrated accurate identification and good compensation for dead-zone with improved control performance over the conventional PID control. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Enhanced backpropagation training algorithm for transient event identification
International Nuclear Information System (INIS)
Vitela, J.; Reifman, J.
1993-01-01
We present an enhanced backpropagation (BP) algorithm for training feedforward neural networks that avoids the undesirable premature saturation of the network output nodes and accelerates the training process even in cases where premature saturation is not present. When the standard BP algorithm is applied to train patterns of nuclear power plant (NPP) transients, the network output nodes often become prematurely saturated causing the already slow rate of convergence of the algorithm to become even slower. When premature saturation occurs, the gradient of the prediction error becomes very small, although the prediction error itself is still large, yielding negligible weight updates and hence no significant decrease in the prediction error until the eventual recovery of the output nodes from saturation. By defining the onset of premature saturation and systematically modifying the gradient of the prediction error at saturation, we developed an enhanced BP algorithm that is compared with the standard BP algorithm in training a network to identify NPP transients
IMNN: Information Maximizing Neural Networks
Charnock, Tom; Lavaux, Guilhem; Wandelt, Benjamin D.
2018-04-01
This software trains artificial neural networks to find non-linear functionals of data that maximize Fisher information: information maximizing neural networks (IMNNs). As compressing large data sets vastly simplifies both frequentist and Bayesian inference, important information may be inadvertently missed. Likelihood-free inference based on automatically derived IMNN summaries produces summaries that are good approximations to sufficient statistics. IMNNs are robustly capable of automatically finding optimal, non-linear summaries of the data even in cases where linear compression fails: inferring the variance of Gaussian signal in the presence of noise, inferring cosmological parameters from mock simulations of the Lyman-α forest in quasar spectra, and inferring frequency-domain parameters from LISA-like detections of gravitational waveforms. In this final case, the IMNN summary outperforms linear data compression by avoiding the introduction of spurious likelihood maxima.
Neural Networks Methodology and Applications
Dreyfus, Gérard
2005-01-01
Neural networks represent a powerful data processing technique that has reached maturity and broad application. When clearly understood and appropriately used, they are a mandatory component in the toolbox of any engineer who wants make the best use of the available data, in order to build models, make predictions, mine data, recognize shapes or signals, etc. Ranging from theoretical foundations to real-life applications, this book is intended to provide engineers and researchers with clear methodologies for taking advantage of neural networks in industrial, financial or banking applications, many instances of which are presented in the book. For the benefit of readers wishing to gain deeper knowledge of the topics, the book features appendices that provide theoretical details for greater insight, and algorithmic details for efficient programming and implementation. The chapters have been written by experts ands seemlessly edited to present a coherent and comprehensive, yet not redundant, practically-oriented...
Scheduling with artificial neural networks
Gürgün, Burçkaan
1993-01-01
Ankara : Department of Industrial Engineering and The Institute of Engineering and Sciences of Bilkent Univ., 1993. Thesis (Master's) -- Bilkent University, 1993. Includes bibliographical references leaves 59-65. Artificial Neural Networks (ANNs) attempt to emulate the massively parallel and distributed processing of the human brain. They are being examined for a variety of problems that have been very difficult to solve. The objective of this thesis is to review the curren...
SELECTING NEURAL NETWORK ARCHITECTURE FOR INVESTMENT PROFITABILITY PREDICTIONS
Directory of Open Access Journals (Sweden)
Marijana Zekić-Sušac
2012-07-01
Full Text Available After production and operations, finance and investments are one of the mostfrequent areas of neural network applications in business. The lack of standardizedparadigms that can determine the efficiency of certain NN architectures in a particularproblem domain is still present. The selection of NN architecture needs to take intoconsideration the type of the problem, the nature of the data in the model, as well as somestrategies based on result comparison. The paper describes previous research in that areaand suggests a forward strategy for selecting best NN algorithm and structure. Since thestrategy includes both parameter-based and variable-based testings, it can be used forselecting NN architectures as well as for extracting models. The backpropagation, radialbasis,modular, LVQ and probabilistic neural network algorithms were used on twoindependent sets: stock market and credit scoring data. The results show that neuralnetworks give better accuracy comparing to multiple regression and logistic regressionmodels. Since it is model-independant, the strategy can be used by researchers andprofessionals in other areas of application.
Raingauge-Based Rainfall Nowcasting with Artificial Neural Network
Liong, Shie-Yui; He, Shan
2010-05-01
Rainfall forecasting and nowcasting are of great importance, for instance, in real-time flood early warning systems. Long term rainfall forecasting demands global climate, land, and sea data, thus, large computing power and storage capacity are required. Rainfall nowcasting's computing requirement, on the other hand, is much less. Rainfall nowcasting may use data captured by radar and/or weather stations. This paper presents the application of Artificial Neural Network (ANN) on rainfall nowcasting using data observed at weather and/or rainfall stations. The study focuses on the North-East monsoon period (December, January and February) in Singapore. Rainfall and weather data from ten stations, between 2000 and 2006, were selected and divided into three groups for training, over-fitting test and validation of the ANN. Several neural network architectures were tried in the study. Two architectures, Backpropagation ANN and Group Method of Data Handling ANN, yielded better rainfall nowcasting, up to two hours, than the other architectures. The obtained rainfall nowcasts were then used by a catchment model to forecast catchment runoff. The results of runoff forecast are encouraging and promising.With ANN's high computational speed, the proposed approach may be deliverable for creating the real-time flood early warning system.
The LILARTI neural network system
Energy Technology Data Exchange (ETDEWEB)
Allen, J.D. Jr.; Schell, F.M.; Dodd, C.V.
1992-10-01
The material of this Technical Memorandum is intended to provide the reader with conceptual and technical background information on the LILARTI neural network system of detail sufficient to confer an understanding of the LILARTI method as it is presently allied and to facilitate application of the method to problems beyond the scope of this document. Of particular importance in this regard are the descriptive sections and the Appendices which include operating instructions, partial listings of program output and data files, and network construction information.
Parameterization Of Solar Radiation Using Neural Network
International Nuclear Information System (INIS)
Jiya, J. D.; Alfa, B.
2002-01-01
This paper presents a neural network technique for parameterization of global solar radiation. The available data from twenty-one stations is used for training the neural network and the data from other ten stations is used to validate the neural model. The neural network utilizes latitude, longitude, altitude, sunshine duration and period number to parameterize solar radiation values. The testing data was not used in the training to demonstrate the performance of the neural network in unknown stations to parameterize solar radiation. The results indicate a good agreement between the parameterized solar radiation values and actual measured values
Neural Networks in Control Applications
DEFF Research Database (Denmark)
Sørensen, O.
are examined. The models are separated into three groups representing input/output descriptions as well as state space descriptions: - Models, where all in- and outputs are measurable (static networks). - Models, where some inputs are non-measurable (recurrent networks). - Models, where some in- and some...... outputs are non-measurable (recurrent networks with incomplete state information). The three groups are ordered in increasing complexity, and for each group it is shown how to solve the problems concerning training and application of the specific model type. Of particular interest are the model types...... Kalmann filter) representing state space description. The potentials of neural networks for control of non-linear processes are also examined, focusing on three different groups of control concepts, all considered as generalizations of known linear control concepts to handle also non-linear processes...
Directory of Open Access Journals (Sweden)
Golmohammadi Hassan
2013-01-01
Full Text Available A quantitative structure-property relationship (QSPR study based on partial least squares (PLS and artificial neural network (ANN was developed for the prediction of ferric iron precipitation in bioleaching process. The leaching temperature, initial pH, oxidation/reduction potential (ORP, ferrous concentration and particle size of ore were used as inputs to the network. The output of the model was ferric iron precipitation. The optimal condition of the neural network was obtained by adjusting various parameters by trial-and-error. After optimization and training of the network according to back-propagation algorithm, a 5-5-1 neural network was generated for prediction of ferric iron precipitation. The root mean square error for the neural network calculated ferric iron precipitation for training, prediction and validation set are 32.860, 40.739 and 35.890, respectively, which are smaller than those obtained by PLS model (180.972, 165.047 and 149.950, respectively. Results obtained reveal the reliability and good predictivity of neural network model for the prediction of ferric iron precipitation in bioleaching process.
Hybrid digital signal processing and neural networks for automated diagnostics using NDE methods
International Nuclear Information System (INIS)
Upadhyaya, B.R.; Yan, W.
1993-11-01
The primary purpose of the current research was to develop an integrated approach by combining information compression methods and artificial neural networks for the monitoring of plant components using nondestructive examination data. Specifically, data from eddy current inspection of heat exchanger tubing were utilized to evaluate this technology. The focus of the research was to develop and test various data compression methods (for eddy current data) and the performance of different neural network paradigms for defect classification and defect parameter estimation. Feedforward, fully-connected neural networks, that use the back-propagation algorithm for network training, were implemented for defect classification and defect parameter estimation using a modular network architecture. A large eddy current tube inspection database was acquired from the Metals and Ceramics Division of ORNL. These data were used to study the performance of artificial neural networks for defect type classification and for estimating defect parameters. A PC-based data preprocessing and display program was also developed as part of an expert system for data management and decision making. The results of the analysis showed that for effective (low-error) defect classification and estimation of parameters, it is necessary to identify proper feature vectors using different data representation methods. The integration of data compression and artificial neural networks for information processing was established as an effective technique for automation of diagnostics using nondestructive examination methods
Directory of Open Access Journals (Sweden)
Jesús Salvador Velázquez-González
2015-01-01
Full Text Available Una de las complicaciones más graves de la Diabetes Mellitus tipo 2 es la Retinopatía Diabética (RD. La RD es una enfermedad silenciosa y solo es reconocida por el portador cuándo los cambios en la retina han progresado a un nivel en el cual el tratamiento se complica, por lo que el diagnóstico oportuno y la remisión al oftalmólogo u optometrista para el manejo de esta enfermedad pueden prevenir el 98% de la pérdida visual grave. El objetivo de este trabajo es identificar de manera automática la No Retinopatía Diabética (NRD y la Retinopatía de Fondo, utilizando imágenes del fondo de ojo. Nuestros resultados muestran una efectividad del 92%, con una sensitividad y especificidad del 95%.
Directory of Open Access Journals (Sweden)
Oliveira-Esquerre K.P.
2002-01-01
Full Text Available This work presents a way to predict the biochemical oxygen demand (BOD of the output stream of the biological wastewater treatment plant at RIPASA S/A Celulose e Papel, one of the major pulp and paper plants in Brazil. The best prediction performance is achieved when the data are preprocessed using principal components analysis (PCA before they are fed to a backpropagated neural network. The influence of input variables is analyzed and satisfactory prediction results are obtained for an optimized situation.
Neural Network Compensation for Frequency Cross-Talk in Laser Interferometry
Lee, Wooram; Heo, Gunhaeng; You, Kwanho
The heterodyne laser interferometer acts as an ultra-precise measurement apparatus in semiconductor manufacture. However the periodical nonlinearity property caused from frequency cross-talk is an obstacle to improve the high measurement accuracy in nanometer scale. In order to minimize the nonlinearity error of the heterodyne interferometer, we propose a frequency cross-talk compensation algorithm using an artificial intelligence method. The feedforward neural network trained by back-propagation compensates the nonlinearity error and regulates to minimize the difference with the reference signal. With some experimental results, the improved accuracy is proved through comparison with the position value from a capacitive displacement sensor.
International Nuclear Information System (INIS)
Ferreira, Francisco J.O.; Crispim, Verginia R.; Silva, Ademir X.
2009-01-01
The artificial neural network technique was used to identify drugs and plastic explosives, from a tomography composed by a set of six neutrongraphic projections obtained in real time. Bidimensional tomographic images of samples of drugs, explosives and other materials, when digitally processed, yield the characteristic spectra of each type of material. The information contained in those spectra was then used for ANN training, the best images being obtained when the multilayer perceptron model, the back-propagation training algorithm and the Cross-validation interruption criterion were used. ANN showed to be useful in forecasting presence of drugs and explosives hitting a rate of success above 97 %. (author)
Artificial neural networks in prediction of mechanical behavior of concrete at high temperature
International Nuclear Information System (INIS)
Mukherjee, A.; Nag Biswas, S.
1997-01-01
The behavior of concrete structures that are exposed to extreme thermo-mechanical loading is an issue of great importance in nuclear engineering. The mechanical behavior of concrete at high temperature is non-linear. The properties that regulate its response are highly temperature dependent and extremely complex. In addition, the constituent materials, e.g. aggregates, influence the response significantly. Attempts have been made to trace the stress-strain curve through mathematical models and rheological models. However, it has been difficult to include all the contributing factors in the mathematical model. This paper examines a new programming paradigm, artificial neural networks, for the problem. Implementing a feedforward network and backpropagation algorithm the stress-strain relationship of the material is captured. The neural networks for the prediction of uniaxial behavior of concrete at high temperature has been presented here. The results of the present investigation are very encouraging. (orig.)
Prediction of geomagnetic storms from solar wind data with the use of a neural network
Directory of Open Access Journals (Sweden)
H. Lundstedt
Full Text Available An artificial feed-forward neural network with one hidden layer and error back-propagation learning is used to predict the geomagnetic activity index (D_{st} one hour in advance. The B_{z}-component and Σ_{Bz}, the density, and the velocity of the solar wind are used as input to the network. The network is trained on data covering a total of 8700 h, extracted from the 25-year period from 1963 to 1987, taken from the NSSDC data base. The performance of the network is examined with test data, not included in the training set, which covers 386 h and includes four different storms. Whilst the network predicts the initial and main phase well, the recovery phase is not modelled correctly, implying that a single hidden layer error back-propagation network is not enough, if the measured D_{st} is not available instantaneously. The performance of the network is independent of whether the raw parameters are used, or the electric field and square root of the dynamical pressure.
Practical neural network recipies in C++
Masters
2014-01-01
This text serves as a cookbook for neural network solutions to practical problems using C++. It will enable those with moderate programming experience to select a neural network model appropriate to solving a particular problem, and to produce a working program implementing that network. The book provides guidance along the entire problem-solving path, including designing the training set, preprocessing variables, training and validating the network, and evaluating its performance. Though the book is not intended as a general course in neural networks, no background in neural works is assum
Neural network modeling of emotion
Levine, Daniel S.
2007-03-01
This article reviews the history and development of computational neural network modeling of cognitive and behavioral processes that involve emotion. The exposition starts with models of classical conditioning dating from the early 1970s. Then it proceeds toward models of interactions between emotion and attention. Then models of emotional influences on decision making are reviewed, including some speculative (not and not yet simulated) models of the evolution of decision rules. Through the late 1980s, the neural networks developed to model emotional processes were mainly embodiments of significant functional principles motivated by psychological data. In the last two decades, network models of these processes have become much more detailed in their incorporation of known physiological properties of specific brain regions, while preserving many of the psychological principles from the earlier models. Most network models of emotional processes so far have dealt with positive and negative emotion in general, rather than specific emotions such as fear, joy, sadness, and anger. But a later section of this article reviews a few models relevant to specific emotions: one family of models of auditory fear conditioning in rats, and one model of induced pleasure enhancing creativity in humans. Then models of emotional disorders are reviewed. The article concludes with philosophical statements about the essential contributions of emotion to intelligent behavior and the importance of quantitative theories and models to the interdisciplinary enterprise of understanding the interactions of emotion, cognition, and behavior.
International Nuclear Information System (INIS)
Zio, Enrico; Pedroni, Nicola; Broggi, Matteo; Golea, Lucia Roxana
2009-01-01
In this paper, an infinite impulse response locally recurrent neural network (IIR-LRNN) is employed for modelling the dynamics of the Lead Bismuth Eutectic eXperimental Accelerator Driven System (LBE-XADS). The network is trained by recursive back-propagation (RBP) and its ability in estimating transients is tested under various conditions. The results demonstrate the robustness of the locally recurrent scheme in the reconstruction of complex nonlinear dynamic relationships
MEMBRAIN NEURAL NETWORK FOR VISUAL PATTERN RECOGNITION
Directory of Open Access Journals (Sweden)
Artur Popko
2013-06-01
Full Text Available Recognition of visual patterns is one of significant applications of Artificial Neural Networks, which partially emulate human thinking in the domain of artificial intelligence. In the paper, a simplified neural approach to recognition of visual patterns is portrayed and discussed. This paper is dedicated for investigators in visual patterns recognition, Artificial Neural Networking and related disciplines. The document describes also MemBrain application environment as a powerful and easy to use neural networks’ editor and simulator supporting ANN.
International Nuclear Information System (INIS)
Yang, A.-S.; Kuo, T.-C.; Ling, P.-H.
2003-01-01
The phase transport phenomenon of the high-pressure two-phase turbulent bubbly flow involves complicated interfacial interactions of the mass, momentum, and energy transfer processes between phases, revealing that an enormous effort is required in characterizing the liquid-gas flow behavior. Nonetheless, the instantaneous information of bubbly flow properties is often desired for many industrial applications. This investigation aims to demonstrate the successful use of neural networks in the real-time determination of two-phase flow properties at elevated pressures. Three back-propagation neural networks, trained with the simulation results of a comprehensive theoretical model, are established to predict the transport characteristics (specifically the distributions of void-fraction and axial liquid-gas velocities) of upward turbulent bubbly pipe flows at pressures covering 3.5-7.0 MPa. Comparisons of the predictions with the test target vectors indicate that the averaged root-mean-squared (RMS) error for each one of three back-propagation neural networks is within 4.59%. In addition, this study appraises the effects of different network parameters, including the number of hidden nodes, the type of transfer function, the number of training pairs, the learning rate-increasing ratio, the learning rate-decreasing ratio, and the momentum value, on the training quality of neural networks.
An Efficient Supervised Training Algorithm for Multilayer Spiking Neural Networks.
Xie, Xiurui; Qu, Hong; Liu, Guisong; Zhang, Malu; Kurths, Jürgen
2016-01-01
The spiking neural networks (SNNs) are the third generation of neural networks and perform remarkably well in cognitive tasks such as pattern recognition. The spike emitting and information processing mechanisms found in biological cognitive systems motivate the application of the hierarchical structure and temporal encoding mechanism in spiking neural networks, which have exhibited strong computational capability. However, the hierarchical structure and temporal encoding approach require neurons to process information serially in space and time respectively, which reduce the training efficiency significantly. For training the hierarchical SNNs, most existing methods are based on the traditional back-propagation algorithm, inheriting its drawbacks of the gradient diffusion and the sensitivity on parameters. To keep the powerful computation capability of the hierarchical structure and temporal encoding mechanism, but to overcome the low efficiency of the existing algorithms, a new training algorithm, the Normalized Spiking Error Back Propagation (NSEBP) is proposed in this paper. In the feedforward calculation, the output spike times are calculated by solving the quadratic function in the spike response model instead of detecting postsynaptic voltage states at all time points in traditional algorithms. Besides, in the feedback weight modification, the computational error is propagated to previous layers by the presynaptic spike jitter instead of the gradient decent rule, which realizes the layer-wised training. Furthermore, our algorithm investigates the mathematical relation between the weight variation and voltage error change, which makes the normalization in the weight modification applicable. Adopting these strategies, our algorithm outperforms the traditional SNN multi-layer algorithms in terms of learning efficiency and parameter sensitivity, that are also demonstrated by the comprehensive experimental results in this paper.
Kondo, Shuhei; Shibata, Tadashi; Ohmi, Tadahiro
1995-02-01
We have investigated the learning performance of the hardware backpropagation (HBP) algorithm, a hardware-oriented learning algorithm developed for the self-learning architecture of neural networks constructed using neuron MOS (metal-oxide-semiconductor) transistors. The solution to finding a mirror symmetry axis in a 4×4 binary pixel array was tested by computer simulation based on the HBP algorithm. Despite the inherent restrictions imposed on the hardware-learning algorithm, HBP exhibits equivalent learning performance to that of the original backpropagation (BP) algorithm when all the pertinent parameters are optimized. Very importantly, we have found that HBP has a superior generalization capability over BP; namely, HBP exhibits higher performance in solving problems that the network has not yet learnt.
Mode Choice Modeling Using Artificial Neural Networks
Edara, Praveen Kumar
2003-01-01
Artificial intelligence techniques have produced excellent results in many diverse fields of engineering. Techniques such as neural networks and fuzzy systems have found their way into transportation engineering. In recent years, neural networks are being used instead of regression techniques for travel demand forecasting purposes. The basic reason lies in the fact that neural networks are able to capture complex relationships and learn from examples and also able to adapt when new data becom...
Adaptive optimization and control using neural networks
Energy Technology Data Exchange (ETDEWEB)
Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.
1993-10-22
Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.
Application of Artificial Neural Networks in Canola Crop Yield Prediction
Directory of Open Access Journals (Sweden)
S. J. Sajadi
2014-02-01
Full Text Available Crop yield prediction has an important role in agricultural policies such as specification of the crop price. Crop yield prediction researches have been based on regression analysis. In this research canola yield was predicted using Artificial Neural Networks (ANN using 11 crop year climate data (1998-2009 in Gonbad-e-Kavoos region of Golestan province. ANN inputs were mean weekly rainfall, mean weekly temperature, mean weekly relative humidity and mean weekly sun shine hours and ANN output was canola yield (kg/ha. Multi-Layer Perceptron networks (MLP with Levenberg-Marquardt backpropagation learning algorithm was used for crop yield prediction and Root Mean Square Error (RMSE and square of the Correlation Coefficient (R2 criterions were used to evaluate the performance of the ANN. The obtained results show that the 13-20-1 network has the lowest RMSE equal to 101.235 and maximum value of R2 equal to 0.997 and is suitable for predicting canola yield with climate factors.
Differentiating Agar wood Oil Quality Using Artificial Neural Network
International Nuclear Information System (INIS)
Nurlaila Ismail; Nor Azah Mohd Ali; Mailina Jamil; Saiful Nizam Tajuddin; Mohd Nasir Taib
2013-01-01
Agar wood oil is well known as expensive oil extracted from the resinous of fragrant heartwood. The oil is getting high demand in the market especially from the Middle East countries, China and Japan because of its unique odor. As part of an on-going research in grading the agar wood oil quality, the application of Artificial Neural Network (ANN) is proposed in this study to analyze agar wood oil quality using its chemical profiles. The work involves of selected agar wood oil from low and high quality, the extraction of chemical compounds using GC-MS and Z-score to identify of the significant compounds as input to the network. The ANN programming algorithm was developed and computed automatically via Matlab software version R2010a. Back-propagation training algorithm and sigmoid transfer function were used to optimize the parameters in the training network. The result obtained showed the capability of ANN in analyzing the agar wood oil quality hence beneficial for the further application such as grading and classification for agar wood oil. (author)
Fuzzy neural network theory and application
Liu, Puyin
2004-01-01
This book systematically synthesizes research achievements in the field of fuzzy neural networks in recent years. It also provides a comprehensive presentation of the developments in fuzzy neural networks, with regard to theory as well as their application to system modeling and image restoration. Special emphasis is placed on the fundamental concepts and architecture analysis of fuzzy neural networks. The book is unique in treating all kinds of fuzzy neural networks and their learning algorithms and universal approximations, and employing simulation examples which are carefully designed to he
Boolean Factor Analysis by Attractor Neural Network
Czech Academy of Sciences Publication Activity Database
Frolov, A. A.; Húsek, Dušan; Muraviev, I. P.; Polyakov, P.Y.
2007-01-01
Roč. 18, č. 3 (2007), s. 698-707 ISSN 1045-9227 R&D Projects: GA AV ČR 1ET100300419; GA ČR GA201/05/0079 Institutional research plan: CEZ:AV0Z10300504 Keywords : recurrent neural network * Hopfield-like neural network * associative memory * unsupervised learning * neural network architecture * neural network application * statistics * Boolean factor analysis * dimensionality reduction * features clustering * concepts search * information retrieval Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.769, year: 2007
Finite connectivity attractor neural networks
International Nuclear Information System (INIS)
Wemmenhove, B; Coolen, A C C
2003-01-01
We study a family of diluted attractor neural networks with a finite average number of (symmetric) connections per neuron. As in finite connectivity spin glasses, their equilibrium properties are described by order parameter functions, for which we derive an integral equation in replica symmetric approximation. A bifurcation analysis of this equation reveals the locations of the paramagnetic to recall and paramagnetic to spin-glass transition lines in the phase diagram. The line separating the retrieval phase from the spin-glass phase is calculated at zero temperature. All phase transitions are found to be continuous
Directory of Open Access Journals (Sweden)
Yasir Hassan Ali
2015-01-01
Full Text Available The thickness of an oil film lubricant can contribute to less gear tooth wear and surface failure. The purpose of this research is to use artificial neural network (ANN computational modelling to correlate spur gear data from acoustic emissions, lubricant temperature, and specific film thickness (λ. The approach is using an algorithm to monitor the oil film thickness and to detect which lubrication regime the gearbox is running either hydrodynamic, elastohydrodynamic, or boundary. This monitoring can aid identification of fault development. Feed-forward and recurrent Elman neural network algorithms were used to develop ANN models, which are subjected to training, testing, and validation process. The Levenberg-Marquardt back-propagation algorithm was applied to reduce errors. Log-sigmoid and Purelin were identified as suitable transfer functions for hidden and output nodes. The methods used in this paper shows accurate predictions from ANN and the feed-forward network performance is superior to the Elman neural network.
Directory of Open Access Journals (Sweden)
A. K. CHOWDHURY
2016-02-01
Full Text Available In this paper an evolutionary technique for synthesizing Multi-Valued Logic (MVL functions using Neural Network Deployment Algorithm (NNDA is presented. The algorithm is combined with back-propagation learning capability and neural MVL operators. This research article is done to observe the anomalistic characteristics of MVL neural operators and their role in synthesis. The advantages of NNDA-MVL algorithm is demonstrated with realization of synthesized many valued functions with lesser MVL operators. The characteristic feature set consists of MVL gate count, network link count, network propagation delay and accuracy achieved in training. In brief, this paper depicts an effort of reduced network size for synthesized MVL functions. Trained MVL operators improve the basic architecture by reducing MIN gate and interlink connection by 52.94% and 23.38% respectively.
Xi, Jun; Xue, Yujing; Xu, Yinxiang; Shen, Yuhong
2013-11-01
In this study, the ultrahigh pressure extraction of green tea polyphenols was modeled and optimized by a three-layer artificial neural network. A feed-forward neural network trained with an error back-propagation algorithm was used to evaluate the effects of pressure, liquid/solid ratio and ethanol concentration on the total phenolic content of green tea extracts. The neural network coupled with genetic algorithms was also used to optimize the conditions needed to obtain the highest yield of tea polyphenols. The obtained optimal architecture of artificial neural network model involved a feed-forward neural network with three input neurons, one hidden layer with eight neurons and one output layer including single neuron. The trained network gave the minimum value in the MSE of 0.03 and the maximum value in the R(2) of 0.9571, which implied a good agreement between the predicted value and the actual value, and confirmed a good generalization of the network. Based on the combination of neural network and genetic algorithms, the optimum extraction conditions for the highest yield of green tea polyphenols were determined as follows: 498.8 MPa for pressure, 20.8 mL/g for liquid/solid ratio and 53.6% for ethanol concentration. The total phenolic content of the actual measurement under the optimum predicated extraction conditions was 582.4 ± 0.63 mg/g DW, which was well matched with the predicted value (597.2mg/g DW). This suggests that the artificial neural network model described in this work is an efficient quantitative tool to predict the extraction efficiency of green tea polyphenols. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
The Laplacian spectrum of neural networks
de Lange, Siemon C.; de Reus, Marcel A.; van den Heuvel, Martijn P.
2014-01-01
The brain is a complex network of neural interactions, both at the microscopic and macroscopic level. Graph theory is well suited to examine the global network architecture of these neural networks. Many popular graph metrics, however, encode average properties of individual network elements. Complementing these “conventional” graph metrics, the eigenvalue spectrum of the normalized Laplacian describes a network's structure directly at a systems level, without referring to individual nodes or connections. In this paper, the Laplacian spectra of the macroscopic anatomical neuronal networks of the macaque and cat, and the microscopic network of the Caenorhabditis elegans were examined. Consistent with conventional graph metrics, analysis of the Laplacian spectra revealed an integrative community structure in neural brain networks. Extending previous findings of overlap of network attributes across species, similarity of the Laplacian spectra across the cat, macaque and C. elegans neural networks suggests a certain level of consistency in the overall architecture of the anatomical neural networks of these species. Our results further suggest a specific network class for neural networks, distinct from conceptual small-world and scale-free models as well as several empirical networks. PMID:24454286
Smith, James A.
1992-01-01
The inversion of the leaf area index (LAI) canopy parameter from optical spectral reflectance measurements is obtained using a backpropagation artificial neural network trained using input-output pairs generated by a multiple scattering reflectance model. The problem of LAI estimation over sparse canopies (LAI 1000 percent for low LAI. Minimization methods applied to merit functions constructed from differences between measured reflectances and predicted reflectances using multiple-scattering models are unacceptably sensitive to a good initial guess for the desired parameter. In contrast, the neural network reported generally yields absolute percentage errors of <30 percent when weighting coefficients trained on one soil type were applied to predicted canopy reflectance at a different soil background.
Volatility Degree Forecasting of Stock Market by Stochastic Time Strength Neural Network
Directory of Open Access Journals (Sweden)
Haiyan Mo
2013-01-01
Full Text Available In view of the applications of artificial neural networks in economic and financial forecasting, a stochastic time strength function is introduced in the backpropagation neural network model to predict the fluctuations of stock price changes. In this model, stochastic time strength function gives a weight for each historical datum and makes the model have the effect of random movement, and then we investigate and forecast the behavior of volatility degrees of returns for the Chinese stock market indexes and some global market indexes. The empirical research is performed in testing the prediction effect of SSE, SZSE, HSI, DJIA, IXIC, and S&P 500 with different selected volatility degrees in the established model.
Application of BP Neural Network Algorithm in Traditional Hydrological Model for Flood Forecasting
Directory of Open Access Journals (Sweden)
Jianjin Wang
2017-01-01
Full Text Available Flooding contributes to tremendous hazards every year; more accurate forecasting may significantly mitigate the damages and loss caused by flood disasters. Current hydrological models are either purely knowledge-based or data-driven. A combination of data-driven method (artificial neural networks in this paper and knowledge-based method (traditional hydrological model may booster simulation accuracy. In this study, we proposed a new back-propagation (BP neural network algorithm and applied it in the semi-distributed Xinanjiang (XAJ model. The improved hydrological model is capable of updating the flow forecasting error without losing the leading time. The proposed method was tested in a real case study for both single period corrections and real-time corrections. The results reveal that the proposed method could significantly increase the accuracy of flood forecasting and indicate that the global correction effect is superior to the second-order autoregressive correction method in real-time correction.
Neural networks with discontinuous/impact activations
Akhmet, Marat
2014-01-01
This book presents as its main subject new models in mathematical neuroscience. A wide range of neural networks models with discontinuities are discussed, including impulsive differential equations, differential equations with piecewise constant arguments, and models of mixed type. These models involve discontinuities, which are natural because huge velocities and short distances are usually observed in devices modeling the networks. A discussion of the models, appropriate for the proposed applications, is also provided. This book also: Explores questions related to the biological underpinning for models of neural networks\\ Considers neural networks modeling using differential equations with impulsive and piecewise constant argument discontinuities Provides all necessary mathematical basics for application to the theory of neural networks Neural Networks with Discontinuous/Impact Activations is an ideal book for researchers and professionals in the field of engineering mathematics that have an interest in app...
Multistability in bidirectional associative memory neural networks
International Nuclear Information System (INIS)
Huang Gan; Cao Jinde
2008-01-01
In this Letter, the multistability issue is studied for Bidirectional Associative Memory (BAM) neural networks. Based on the existence and stability analysis of the neural networks with or without delay, it is found that the 2n-dimensional networks can have 3 n equilibria and 2 n equilibria of them are locally exponentially stable, where each layer of the BAM network has n neurons. Furthermore, the results has been extended to (n+m)-dimensional BAM neural networks, where there are n and m neurons on the two layers respectively. Finally, two numerical examples are presented to illustrate the validity of our results
Multistability in bidirectional associative memory neural networks
Huang, Gan; Cao, Jinde
2008-04-01
In this Letter, the multistability issue is studied for Bidirectional Associative Memory (BAM) neural networks. Based on the existence and stability analysis of the neural networks with or without delay, it is found that the 2 n-dimensional networks can have 3 equilibria and 2 equilibria of them are locally exponentially stable, where each layer of the BAM network has n neurons. Furthermore, the results has been extended to (n+m)-dimensional BAM neural networks, where there are n and m neurons on the two layers respectively. Finally, two numerical examples are presented to illustrate the validity of our results.
A review and analysis of neural networks for classification of remotely sensed multispectral imagery
Paola, Justin D.; Schowengerdt, Robert A.
1993-01-01
A literature survey and analysis of the use of neural networks for the classification of remotely sensed multispectral imagery is presented. As part of a brief mathematical review, the backpropagation algorithm, which is the most common method of training multi-layer networks, is discussed with an emphasis on its application to pattern recognition. The analysis is divided into five aspects of neural network classification: (1) input data preprocessing, structure, and encoding; (2) output encoding and extraction of classes; (3) network architecture, (4) training algorithms; and (5) comparisons to conventional classifiers. The advantages of the neural network method over traditional classifiers are its non-parametric nature, arbitrary decision boundary capabilities, easy adaptation to different types of data and input structures, fuzzy output values that can enhance classification, and good generalization for use with multiple images. The disadvantages of the method are slow training time, inconsistent results due to random initial weights, and the requirement of obscure initialization values (e.g., learning rate and hidden layer size). Possible techniques for ameliorating these problems are discussed. It is concluded that, although the neural network method has several unique capabilities, it will become a useful tool in remote sensing only if it is made faster, more predictable, and easier to use.
Molecular evolution of a peptide GPCR ligand driven by artificial neural networks.
Directory of Open Access Journals (Sweden)
Sebastian Bandholtz
Full Text Available Peptide ligands of G protein-coupled receptors constitute valuable natural lead structures for the development of highly selective drugs and high-affinity tools to probe ligand-receptor interaction. Currently, pharmacological and metabolic modification of natural peptides involves either an iterative trial-and-error process based on structure-activity relationships or screening of peptide libraries that contain many structural variants of the native molecule. Here, we present a novel neural network architecture for the improvement of metabolic stability without loss of bioactivity. In this approach the peptide sequence determines the topology of the neural network and each cell corresponds one-to-one to a single amino acid of the peptide chain. Using a training set, the learning algorithm calculated weights for each cell. The resulting network calculated the fitness function in a genetic algorithm to explore the virtual space of all possible peptides. The network training was based on gradient descent techniques which rely on the efficient calculation of the gradient by back-propagation. After three consecutive cycles of sequence design by the neural network, peptide synthesis and bioassay this new approach yielded a ligand with 70fold higher metabolic stability compared to the wild type peptide without loss of the subnanomolar activity in the biological assay. Combining specialized neural networks with an exploration of the combinatorial amino acid sequence space by genetic algorithms represents a novel rational strategy for peptide design and optimization.
Drift chamber tracking with neural networks
International Nuclear Information System (INIS)
Lindsey, C.S.; Denby, B.; Haggerty, H.
1992-10-01
We discuss drift chamber tracking with a commercial log VLSI neural network chip. Voltages proportional to the drift times in a 4-layer drift chamber were presented to the Intel ETANN chip. The network was trained to provide the intercept and slope of straight tracks traversing the chamber. The outputs were recorded and later compared off line to conventional track fits. Two types of network architectures were studied. Applications of neural network tracking to high energy physics detector triggers is discussed
Evolving Resilient Back-Propagation Algorithm for Energy Efficiency Problem
Directory of Open Access Journals (Sweden)
Yang Fei
2016-01-01
Full Text Available Energy efficiency is one of our most economical sources of new energy. When it comes to efficient building design, the computation of the heating load (HL and cooling load (CL is required to determine the specifications of the heating and cooling equipment. The objective of this paper is to model heating load and cooling load buildings using neural networks in order to predict HL load and CL load. Rprop with genetic algorithm was proposed to increase the global convergence capability of Rprop by modifying a corresponding weight. Comparison results show that Rprop with GA can successfully improve the global convergence capability of Rprop and achieve lower MSE than other perceptron training algorithms, such as Back-Propagation or original Rprop. In addition, the trained network has better generalization ability and stabilization performance.
Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan
2016-01-01
A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network's initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data.
Neural Network Based Load Frequency Control for Restructuring ...
African Journals Online (AJOL)
Neural Network Based Load Frequency Control for Restructuring Power Industry. ... an artificial neural network (ANN) application of load frequency control (LFC) of a Multi-Area power system by using a neural network controller is presented.
Hidden neural networks: application to speech recognition
DEFF Research Database (Denmark)
Riis, Søren Kamaric
1998-01-01
We evaluate the hidden neural network HMM/NN hybrid on two speech recognition benchmark tasks; (1) task independent isolated word recognition on the Phonebook database, and (2) recognition of broad phoneme classes in continuous speech from the TIMIT database. It is shown how hidden neural networks...
Neural Network Classifier Based on Growing Hyperspheres
Czech Academy of Sciences Publication Activity Database
Jiřina Jr., Marcel; Jiřina, Marcel
2000-01-01
Roč. 10, č. 3 (2000), s. 417-428 ISSN 1210-0552. [Neural Network World 2000. Prague, 09.07.2000-12.07.2000] Grant - others:MŠMT ČR(CZ) VS96047; MPO(CZ) RP-4210 Institutional research plan: AV0Z1030915 Keywords : neural network * classifier * hyperspheres * big -dimensional data Subject RIV: BA - General Mathematics
Neural Networks for Non-linear Control
DEFF Research Database (Denmark)
Sørensen, O.
1994-01-01
This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....
Interpretable neural networks with BP-SOM
Weijters, A.J.M.M.; Bosch, van den A.P.J.; Pobil, del A.P.; Mira, J.; Ali, M.
1998-01-01
Artificial Neural Networks (ANNS) are used successfully in industry and commerce. This is not surprising since neural networks are especially competitive for complex tasks for which insufficient domain-specific knowledge is available. However, interpretation of models induced by ANNS is often
The neural network approach to parton fitting
International Nuclear Information System (INIS)
Rojo, Joan; Latorre, Jose I.; Del Debbio, Luigi; Forte, Stefano; Piccione, Andrea
2005-01-01
We introduce the neural network approach to global fits of parton distribution functions. First we review previous work on unbiased parametrizations of deep-inelastic structure functions with faithful estimation of their uncertainties, and then we summarize the current status of neural network parton distribution fits
Neural Network to Solve Concave Games
Liu, Zixin; Wang, Nengfa
2014-01-01
The issue on neural network method to solve concave games is concerned. Combined with variational inequality, Ky Fan inequality, and projection equation, concave games are transformed into a neural network model. On the basis of the Lyapunov stable theory, some stability results are also given. Finally, two classic games’ simulation results are given to illustrate the theoretical results.
Neural Network Algorithm for Particle Loading
International Nuclear Information System (INIS)
Lewandowski, J.L.V.
2003-01-01
An artificial neural network algorithm for continuous minimization is developed and applied to the case of numerical particle loading. It is shown that higher-order moments of the probability distribution function can be efficiently renormalized using this technique. A general neural network for the renormalization of an arbitrary number of moments is given
Memory in Neural Networks and Glasses
Heerema, M.
2000-01-01
The thesis tries and models a neural network in a way which, at essential points, is biologically realistic. In a biological context, the changes of the synapses of the neural network are most often described by what is called `Hebb's learning rule'. On careful analysis it is, in fact, nothing but a
Directory of Open Access Journals (Sweden)
Hing Wah LEE
2009-03-01
Full Text Available In this study, a general purpose Artificial Neural Network (ANN model based on the feed-forward back-propagation (FFBP algorithm has been used to predict the deflections of a micromachined structures actuated electrostatically under different loadings and geometrical parameters. A limited range of simulation results obtained via CoventorWare™ numerical software will be used initially to train the neural network via back-propagation algorithm. The micromachined structures considered in the analyses are diaphragm, fixed-fixed beams and cantilevers. ANN simulation results are compared with results obtained via CoventorWare™ simulations and existing analytical work for validation purpose. The proposed ANN model accurately predicts the deflections of the micromachined structures with great reduction of simulation efforts, establishing the method superiority. This method can be extended for applications in other sensors particularly for modeling sensors applying electrostatic actuation which are difficult in nature due to the inherent non-linearity of the electro-mechanical coupling response.
Khellal, Atmane; Ma, Hongbin; Fei, Qing
2018-05-09
The success of Deep Learning models, notably convolutional neural networks (CNNs), makes them the favorable solution for object recognition systems in both visible and infrared domains. However, the lack of training data in the case of maritime ships research leads to poor performance due to the problem of overfitting. In addition, the back-propagation algorithm used to train CNN is very slow and requires tuning many hyperparameters. To overcome these weaknesses, we introduce a new approach fully based on Extreme Learning Machine (ELM) to learn useful CNN features and perform a fast and accurate classification, which is suitable for infrared-based recognition systems. The proposed approach combines an ELM based learning algorithm to train CNN for discriminative features extraction and an ELM based ensemble for classification. The experimental results on VAIS dataset, which is the largest dataset of maritime ships, confirm that the proposed approach outperforms the state-of-the-art models in term of generalization performance and training speed. For instance, the proposed model is up to 950 times faster than the traditional back-propagation based training of convolutional neural networks, primarily for low-level features extraction.
Earthquake-induced landslide-susceptibility mapping using an artificial neural network
Directory of Open Access Journals (Sweden)
S. Lee
2006-01-01
Full Text Available The purpose of this study was to apply and verify landslide-susceptibility analysis techniques using an artificial neural network and a Geographic Information System (GIS applied to Baguio City, Philippines. The 16 July 1990 earthquake-induced landslides were studied. Landslide locations were identified from interpretation of aerial photographs and field survey, and a spatial database was constructed from topographic maps, geology, land cover and terrain mapping units. Factors that influence landslide occurrence, such as slope, aspect, curvature and distance from drainage were calculated from the topographic database. Lithology and distance from faults were derived from the geology database. Land cover was identified from the topographic database. Terrain map units were interpreted from aerial photographs. These factors were used with an artificial neural network to analyze landslide susceptibility. Each factor weight was determined by a back-propagation exercise. Landslide-susceptibility indices were calculated using the back-propagation weights, and susceptibility maps were constructed from GIS data. The susceptibility map was compared with known landslide locations and verified. The demonstrated prediction accuracy was 93.20%.
Introduction to Concepts in Artificial Neural Networks
Niebur, Dagmar
1995-01-01
This introduction to artificial neural networks summarizes some basic concepts of computational neuroscience and the resulting models of artificial neurons. The terminology of biological and artificial neurons, biological and machine learning and neural processing is introduced. The concepts of supervised and unsupervised learning are explained with examples from the power system area. Finally, a taxonomy of different types of neurons and different classes of artificial neural networks is presented.
International Conference on Artificial Neural Networks (ICANN)
Mladenov, Valeri; Kasabov, Nikola; Artificial Neural Networks : Methods and Applications in Bio-/Neuroinformatics
2015-01-01
The book reports on the latest theories on artificial neural networks, with a special emphasis on bio-neuroinformatics methods. It includes twenty-three papers selected from among the best contributions on bio-neuroinformatics-related issues, which were presented at the International Conference on Artificial Neural Networks, held in Sofia, Bulgaria, on September 10-13, 2013 (ICANN 2013). The book covers a broad range of topics concerning the theory and applications of artificial neural networks, including recurrent neural networks, super-Turing computation and reservoir computing, double-layer vector perceptrons, nonnegative matrix factorization, bio-inspired models of cell communities, Gestalt laws, embodied theory of language understanding, saccadic gaze shifts and memory formation, and new training algorithms for Deep Boltzmann Machines, as well as dynamic neural networks and kernel machines. It also reports on new approaches to reinforcement learning, optimal control of discrete time-delay systems, new al...
Neural Based Orthogonal Data Fitting The EXIN Neural Networks
Cirrincione, Giansalvo
2008-01-01
Written by three leaders in the field of neural based algorithms, Neural Based Orthogonal Data Fitting proposes several neural networks, all endowed with a complete theory which not only explains their behavior, but also compares them with the existing neural and traditional algorithms. The algorithms are studied from different points of view, including: as a differential geometry problem, as a dynamic problem, as a stochastic problem, and as a numerical problem. All algorithms have also been analyzed on real time problems (large dimensional data matrices) and have shown accurate solutions. Wh
On-line validation of feedwater flow rate in nuclear power plants using neural networks
International Nuclear Information System (INIS)
Khadem, M.; Ipakchi, A.; Alexandro, F.J.; Colley, R.W.
1994-01-01
On-line calibration of feedwater flow rate measurement in nuclear power plants provides a continuous realistic value of feedwater flow rate. It also reduces the manpower required for periodic calibration needed due to the fouling and defouling of the venturi meter surface condition. This paper presents a method for on-line validation of feedwater flow rate in nuclear power plants. The method is an improvement of the previously developed method which is based on the use of a set of process variables dynamically related to the feedwater flow rate. The online measurements of this set of variables are used as inputs to a neural network to obtain an estimate of the feedwater flow rate reading. The difference between the on-line feedwater flow rate reading, and the neural network estimate establishes whether there is a need to apply a correction factor to the feedwater flow rate measurement for calculation of the actual reactor power. The method was applied to the feedwater flow meters in the two feedwater flow loops of the TMI-1 nuclear power plant. The venturi meters used for flow measurements are susceptible to frequent fouling that degrades their measurement accuracy. The fouling effects can cause an inaccuracy of up to 3% relative error in feedwater flow rate reading. A neural network, whose inputs were the readings of a set of reference instruments, was designed to predict both feedwater flow rates simultaneously. A multi-layer feedforward neural network employing the backpropagation algorithm was used. A number of neural network training tests were performed to obtain an optimum filtering technique of the input/output data of the neural networks. The result of the selection of the filtering technique was confirmed by numerous Fast Fourier Transform (FFT) tests. Training and testing were done on data from TMI-1 nuclear power plant. The results show that the neural network can predict the correct flow rates with an absolute relative error of less than 2%
Recurrent neural network based hybrid model for reconstructing gene regulatory network.
Raza, Khalid; Alam, Mansaf
2016-10-01
One of the exciting problems in systems biology research is to decipher how genome controls the development of complex biological system. The gene regulatory networks (GRNs) help in the identification of regulatory interactions between genes and offer fruitful information related to functional role of individual gene in a cellular system. Discovering GRNs lead to a wide range of applications, including identification of disease related pathways providing novel tentative drug targets, helps to predict disease response, and also assists in diagnosing various diseases including cancer. Reconstruction of GRNs from available biological data is still an open problem. This paper proposes a recurrent neural network (RNN) based model of GRN, hybridized with generalized extended Kalman filter for weight update in backpropagation through time training algorithm. The RNN is a complex neural network that gives a better settlement between biological closeness and mathematical flexibility to model GRN; and is also able to capture complex, non-linear and dynamic relationships among variables. Gene expression data are inherently noisy and Kalman filter performs well for estimation problem even in noisy data. Hence, we applied non-linear version of Kalman filter, known as generalized extended Kalman filter, for weight update during RNN training. The developed model has been tested on four benchmark networks such as DNA SOS repair network, IRMA network, and two synthetic networks from DREAM Challenge. We performed a comparison of our results with other state-of-the-art techniques which shows superiority of our proposed model. Further, 5% Gaussian noise has been induced in the dataset and result of the proposed model shows negligible effect of noise on results, demonstrating the noise tolerance capability of the model. Copyright © 2016 Elsevier Ltd. All rights reserved.
Neural Network with Local Memory for Nuclear Reactor Power Level Control
International Nuclear Information System (INIS)
Uluyol, Oender; Ragheb, Magdi; Tsoukalas, Lefteri
2001-01-01
A methodology is introduced for a neural network with local memory called a multilayered local output gamma feedback (LOGF) neural network within the paradigm of locally-recurrent globally-feedforward neural networks. It appears to be well-suited for the identification, prediction, and control tasks in highly dynamic systems; it allows for the presentation of different timescales through incorporation of a gamma memory. A learning algorithm based on the backpropagation-through-time approach is derived. The spatial and temporal weights of the network are iteratively optimized for a given problem using the derived learning algorithm. As a demonstration of the methodology, it is applied to the task of power level control of a nuclear reactor at different fuel cycle conditions. The results demonstrate that the LOGF neural network controller outperforms the classical as well as the state feedback-assisted classical controllers for reactor power level control by showing a better tracking of the demand power, improving the fuel and exit temperature responses, and by performing robustly in different fuel cycle and power level conditions
Improved head direction command classification using an optimised Bayesian neural network.
Nguyen, Son T; Nguyen, Hung T; Taylor, Philip B; Middleton, James
2006-01-01
Assistive technologies have recently emerged to improve the quality of life of severely disabled people by enhancing their independence in daily activities. Since many of those individuals have limited or non-existing control from the neck downward, alternative hands-free input modalities have become very important for these people to access assistive devices. In hands-free control, head movement has been proved to be a very effective user interface as it can provide a comfortable, reliable and natural way to access the device. Recently, neural networks have been shown to be useful not only for real-time pattern recognition but also for creating user-adaptive models. Since multi-layer perceptron neural networks trained using standard back-propagation may cause poor generalisation, the Bayesian technique has been proposed to improve the generalisation and robustness of these networks. This paper describes the use of Bayesian neural networks in developing a hands-free wheelchair control system. The experimental results show that with the optimised architecture, classification Bayesian neural networks can detect head commands of wheelchair users accurately irrespective to their levels of injuries.
Enhancing neural-network performance via assortativity
International Nuclear Information System (INIS)
Franciscis, Sebastiano de; Johnson, Samuel; Torres, Joaquin J.
2011-01-01
The performance of attractor neural networks has been shown to depend crucially on the heterogeneity of the underlying topology. We take this analysis a step further by examining the effect of degree-degree correlations - assortativity - on neural-network behavior. We make use of a method recently put forward for studying correlated networks and dynamics thereon, both analytically and computationally, which is independent of how the topology may have evolved. We show how the robustness to noise is greatly enhanced in assortative (positively correlated) neural networks, especially if it is the hub neurons that store the information.
Mass reconstruction with a neural network
International Nuclear Information System (INIS)
Loennblad, L.; Peterson, C.; Roegnvaldsson, T.
1992-01-01
A feed-forward neural network method is developed for reconstructing the invariant mass of hadronic jets appearing in a calorimeter. The approach is illustrated in W→qanti q, where W-bosons are produced in panti p reactions at SPS collider energies. The neural network method yields results that are superior to conventional methods. This neural network application differs from the classification ones in the sense that an analog number (the mass) is computed by the network, rather than a binary decision being made. As a by-product our application clearly demonstrates the need for using 'intelligent' variables in instances when the amount of training instances is limited. (orig.)
Neural network recognition of mammographic lesions
International Nuclear Information System (INIS)
Oldham, W.J.B.; Downes, P.T.; Hunter, V.
1987-01-01
A method for recognition of mammographic lesions through the use of neural networks is presented. Neural networks have exhibited the ability to learn the shape andinternal structure of patterns. Digitized mammograms containing circumscribed and stelate lesions were used to train a feedfoward synchronous neural network that self-organizes to stable attractor states. Encoding of data for submission to the network was accomplished by performing a fractal analysis of the digitized image. This results in scale invariant representation of the lesions. Results are discussed
A neural network approach to burst detection.
Mounce, S R; Day, A J; Wood, A S; Khan, A; Widdop, P D; Machell, J
2002-01-01
This paper describes how hydraulic and water quality data from a distribution network may be used to provide a more efficient leakage management capability for the water industry. The research presented concerns the application of artificial neural networks to the issue of detection and location of leakage in treated water distribution systems. An architecture for an Artificial Neural Network (ANN) based system is outlined. The neural network uses time series data produced by sensors to directly construct an empirical model for predication and classification of leaks. Results are presented using data from an experimental site in Yorkshire Water's Keighley distribution system.
Collision avoidance using neural networks
Sugathan, Shilpa; Sowmya Shree, B. V.; Warrier, Mithila R.; Vidhyapathi, C. M.
2017-11-01
Now a days, accidents on roads are caused due to the negligence of drivers and pedestrians or due to unexpected obstacles that come into the vehicle’s path. In this paper, a model (robot) is developed to assist drivers for a smooth travel without accidents. It reacts to the real time obstacles on the four critical sides of the vehicle and takes necessary action. The sensor used for detecting the obstacle was an IR proximity sensor. A single layer perceptron neural network is used to train and test all possible combinations of sensors result by using Matlab (offline). A microcontroller (ARM Cortex-M3 LPC1768) is used to control the vehicle through the output data which is received from Matlab via serial communication. Hence, the vehicle becomes capable of reacting to any combination of real time obstacles.
Neural networks: a biased overview
International Nuclear Information System (INIS)
Domany, E.
1988-01-01
An overview of recent activity in the field of neural networks is presented. The long-range aim of this research is to understand how the brain works. First some of the problems are stated and terminology defined; then an attempt is made to explain why physicists are drawn to the field, and their main potential contribution. In particular, in recent years some interesting models have been introduced by physicists. A small subset of these models is described, with particular emphasis on those that are analytically soluble. Finally a brief review of the history and recent developments of single- and multilayer perceptrons is given, bringing the situation up to date regarding the central immediate problem of the field: search for a learning algorithm that has an associated convergence theorem
A Newton-type neural network learning algorithm
International Nuclear Information System (INIS)
Ivanov, V.V.; Puzynin, I.V.; Purehvdorzh, B.
1993-01-01
First- and second-order learning methods for feed-forward multilayer networks are considered. A Newton-type algorithm is proposed and compared with the common back-propagation algorithm. It is shown that the proposed algorithm provides better learning quality. Some recommendations for their usage are given. 11 refs.; 1 fig.; 1 tab
Local Dynamics in Trained Recurrent Neural Networks.
Rivkind, Alexander; Barak, Omri
2017-06-23
Learning a task induces connectivity changes in neural circuits, thereby changing their dynamics. To elucidate task-related neural dynamics, we study trained recurrent neural networks. We develop a mean field theory for reservoir computing networks trained to have multiple fixed point attractors. Our main result is that the dynamics of the network's output in the vicinity of attractors is governed by a low-order linear ordinary differential equation. The stability of the resulting equation can be assessed, predicting training success or failure. As a consequence, networks of rectified linear units and of sigmoidal nonlinearities are shown to have diametrically different properties when it comes to learning attractors. Furthermore, a characteristic time constant, which remains finite at the edge of chaos, offers an explanation of the network's output robustness in the presence of variability of the internal neural dynamics. Finally, the proposed theory predicts state-dependent frequency selectivity in the network response.
Local Dynamics in Trained Recurrent Neural Networks
Rivkind, Alexander; Barak, Omri
2017-06-01
Learning a task induces connectivity changes in neural circuits, thereby changing their dynamics. To elucidate task-related neural dynamics, we study trained recurrent neural networks. We develop a mean field theory for reservoir computing networks trained to have multiple fixed point attractors. Our main result is that the dynamics of the network's output in the vicinity of attractors is governed by a low-order linear ordinary differential equation. The stability of the resulting equation can be assessed, predicting training success or failure. As a consequence, networks of rectified linear units and of sigmoidal nonlinearities are shown to have diametrically different properties when it comes to learning attractors. Furthermore, a characteristic time constant, which remains finite at the edge of chaos, offers an explanation of the network's output robustness in the presence of variability of the internal neural dynamics. Finally, the proposed theory predicts state-dependent frequency selectivity in the network response.
Chang, H.-C.; Kopaska-Merkel, D. C.; Chen, H.-C.; Rocky, Durrans S.
2000-01-01
Lithofacies identification supplies qualitative information about rocks. Lithofacies represent rock textures and are important components of hydrocarbon reservoir description. Traditional techniques of lithofacies identification from core data are costly and different geologists may provide different interpretations. In this paper, we present a low-cost intelligent system consisting of three adaptive resonance theory neural networks and a rule-based expert system to consistently and objectively identify lithofacies from well-log data. The input data are altered into different forms representing different perspectives of observation of lithofacies. Each form of input is processed by a different adaptive resonance theory neural network. Among these three adaptive resonance theory neural networks, one neural network processes the raw continuous data, another processes categorial data, and the third processes fuzzy-set data. Outputs from these three networks are then combined by the expert system using fuzzy inference to determine to which facies the input data should be assigned. Rules are prioritized to emphasize the importance of firing order. This new approach combines the learning ability of neural networks, the adaptability of fuzzy logic, and the expertise of geologists to infer facies of the rocks. This approach is applied to the Appleton Field, an oil field located in Escambia County, Alabama. The hybrid intelligence system predicts lithofacies identity from log data with 87.6% accuracy. This prediction is more accurate than those of single adaptive resonance theory networks, 79.3%, 68.0% and 66.0%, using raw, fuzzy-set, and categorical data, respectively, and by an error-backpropagation neural network, 57.3%. (C) 2000 Published by Elsevier Science Ltd. All rights reserved.
Nonlinear programming with feedforward neural networks.
Energy Technology Data Exchange (ETDEWEB)
Reifman, J.
1999-06-02
We provide a practical and effective method for solving constrained optimization problems by successively training a multilayer feedforward neural network in a coupled neural-network/objective-function representation. Nonlinear programming problems are easily mapped into this representation which has a simpler and more transparent method of solution than optimization performed with Hopfield-like networks and poses very mild requirements on the functions appearing in the problem. Simulation results are illustrated and compared with an off-the-shelf optimization tool.
Neural networks and orbit control in accelerators
International Nuclear Information System (INIS)
Bozoki, E.; Friedman, A.
1994-01-01
An overview of the architecture, workings and training of Neural Networks is given. We stress the aspects which are important for the use of Neural Networks for orbit control in accelerators and storage rings, especially its ability to cope with the nonlinear behavior of the orbit response to 'kicks' and the slow drift in the orbit response during long-term operation. Results obtained for the two NSLS storage rings with several network architectures and various training methods for each architecture are given
Tian, Wenliang; Meng, Fandi; Liu, Li; Li, Ying; Wang, Fuhui
2017-01-01
A concept for prediction of organic coatings, based on the alternating hydrostatic pressure (AHP) accelerated tests, has been presented. An AHP accelerated test with different pressure values has been employed to evaluate coating degradation. And a back-propagation artificial neural network (BP-ANN) has been established to predict the service property and the service lifetime of coatings. The pressure value (P), immersion time (t) and service property (impedance modulus |Z|) are utilized as the parameters of the network. The average accuracies of the predicted service property and immersion time by the established network are 98.6% and 84.8%, respectively. The combination of accelerated test and prediction method by BP-ANN is promising to evaluate and predict coating property used in deep sea. PMID:28094340
Modular representation of layered neural networks.
Watanabe, Chihiro; Hiramatsu, Kaoru; Kashino, Kunio
2018-01-01
Layered neural networks have greatly improved the performance of various applications including image processing, speech recognition, natural language processing, and bioinformatics. However, it is still difficult to discover or interpret knowledge from the inference provided by a layered neural network, since its internal representation has many nonlinear and complex parameters embedded in hierarchical layers. Therefore, it becomes important to establish a new methodology by which layered neural networks can be understood. In this paper, we propose a new method for extracting a global and simplified structure from a layered neural network. Based on network analysis, the proposed method detects communities or clusters of units with similar connection patterns. We show its effectiveness by applying it to three use cases. (1) Network decomposition: it can decompose a trained neural network into multiple small independent networks thus dividing the problem and reducing the computation time. (2) Training assessment: the appropriateness of a trained result with a given hyperparameter or randomly chosen initial parameters can be evaluated by using a modularity index. And (3) data analysis: in practical data it reveals the community structure in the input, hidden, and output layers, which serves as a clue for discovering knowledge from a trained neural network. Copyright © 2017 Elsevier Ltd. All rights reserved.
Application of neural network to CT
International Nuclear Information System (INIS)
Ma, Xiao-Feng; Takeda, Tatsuoki
1999-01-01
This paper presents a new method for two-dimensional image reconstruction by using a multilayer neural network. Multilayer neural networks are extensively investigated and practically applied to solution of various problems such as inverse problems or time series prediction problems. From learning an input-output mapping from a set of examples, neural networks can be regarded as synthesizing an approximation of multidimensional function (that is, solving the problem of hypersurface reconstruction, including smoothing and interpolation). From this viewpoint, neural networks are well suited to the solution of CT image reconstruction. Though a conventionally used object function of a neural network is composed of a sum of squared errors of the output data, we can define an object function composed of a sum of residue of an integral equation. By employing an appropriate line integral for this integral equation, we can construct a neural network that can be used for CT. We applied this method to some model problems and obtained satisfactory results. As it is not necessary to discretized the integral equation using this reconstruction method, therefore it is application to the problem of complicated geometrical shapes is also feasible. Moreover, in neural networks, interpolation is performed quite smoothly, as a result, inverse mapping can be achieved smoothly even in case of including experimental and numerical errors, However, use of conventional back propagation technique for optimization leads to an expensive computation cost. To overcome this drawback, 2nd order optimization methods or parallel computing will be applied in future. (J.P.N.)
Neural network regulation driven by autonomous neural firings
Cho, Myoung Won
2016-07-01
Biological neurons naturally fire spontaneously due to the existence of a noisy current. Such autonomous firings may provide a driving force for network formation because synaptic connections can be modified due to neural firings. Here, we study the effect of autonomous firings on network formation. For the temporally asymmetric Hebbian learning, bidirectional connections lose their balance easily and become unidirectional ones. Defining the difference between reciprocal connections as new variables, we could express the learning dynamics as if Ising model spins interact with each other in magnetism. We present a theoretical method to estimate the interaction between the new variables in a neural system. We apply the method to some network systems and find some tendencies of autonomous neural network regulation.
Diagnosis of mechanical pumping system using neural networks and system parameters analysis
International Nuclear Information System (INIS)
Tsai, Tai Ming; Wang, Wei Hui
2009-01-01
Normally, a mechanical pumping system is equipped to monitor some of the important input and output signals which are set to the prescribed values. This paper addressed dealing with these signals to establish the database of input- output relation by using a number of neural network models through learning algorithms. These signals encompass normal and abnormal running conditions. The abnormal running conditions were artificially generated. Meanwhile, for the purpose of setting up an on-line diagnosis network, the learning speed and accuracy of three kinds of networks, viz., the backpropagation (BPN), radial basis function (RBF) and adaptive linear (ADALINE) neural networks have been compared and assessed. The assessment criteria of the networks are compared with the correlation result matrix in terms of the neuron vectors. Both BPN and RBF are judged by the maximum vector based on the post-regression analysis, and the ADALINE is judged by the minimum vector based on the least mean square error analysis. By ignoring the neural network training time, it has been shown that if the mechanical diagnosis system is tackled off-line, the RBF method is suggested. However, for on-line diagnosis, the BPN method is recommended
Diagnosis of mechanical pumping system using neural networks and system parameters analysis
Energy Technology Data Exchange (ETDEWEB)
Tsai, Tai Ming; Wang, Wei Hui [National Taiwan Ocean University, Keelung (China)
2009-01-15
Normally, a mechanical pumping system is equipped to monitor some of the important input and output signals which are set to the prescribed values. This paper addressed dealing with these signals to establish the database of input- output relation by using a number of neural network models through learning algorithms. These signals encompass normal and abnormal running conditions. The abnormal running conditions were artificially generated. Meanwhile, for the purpose of setting up an on-line diagnosis network, the learning speed and accuracy of three kinds of networks, viz., the backpropagation (BPN), radial basis function (RBF) and adaptive linear (ADALINE) neural networks have been compared and assessed. The assessment criteria of the networks are compared with the correlation result matrix in terms of the neuron vectors. Both BPN and RBF are judged by the maximum vector based on the post-regression analysis, and the ADALINE is judged by the minimum vector based on the least mean square error analysis. By ignoring the neural network training time, it has been shown that if the mechanical diagnosis system is tackled off-line, the RBF method is suggested. However, for on-line diagnosis, the BPN method is recommended
Directory of Open Access Journals (Sweden)
Yao Yevenyo Ziggah
Full Text Available Abstract: Geocentric translation model (GTM in recent times has not gained much popularity in coordinate transformation research due to its attainable accuracy. Accurate transformation of coordinate is a major goal and essential procedure for the solution of a number of important geodetic problems. Therefore, motivated by the successful application of Artificial Intelligence techniques in geodesy, this study developed, tested and compared a novel technique capable of improving the accuracy of GTM. First, GTM based on official parameters (OP and new parameters determined using the arithmetic mean (AM were applied to transform coordinate from global WGS84 datum to local Accra datum. On the basis of the results, the new parameters (AM attained a maximum horizontal position error of 1.99 m compared to the 2.75 m attained by OP. In line with this, artificial neural network technology of backpropagation neural network (BPNN, radial basis function neural network (RBFNN and generalized regression neural network (GRNN were then used to compensate for the GTM generated errors based on AM parameters to obtain a new coordinate transformation model. The new implemented models offered significant improvement in the horizontal position error from 1.99 m to 0.93 m.
Model of Cholera Forecasting Using Artificial Neural Network in Chabahar City, Iran
Directory of Open Access Journals (Sweden)
Zahra Pezeshki
2016-02-01
Full Text Available Background: Cholera as an endemic disease remains a health issue in Iran despite decrease in incidence. Since forecasting epidemic diseases provides appropriate preventive actions in disease spread, different forecasting methods including artificial neural networks have been developed to study parameters involved in incidence and spread of epidemic diseases such as cholera. Objectives: In this study, cholera in rural area of Chabahar, Iran was investigated to achieve a proper forecasting model. Materials and Methods: Data of cholera was gathered from 465 villages, of which 104 reported cholera during ten years period of study. Logistic regression modeling and correlate bivariate were used to determine risk factors and achieve possible predictive model one-hidden-layer perception neural network with backpropagation training algorithm and the sigmoid activation function was trained and tested between the two groups of infected and non-infected villages after preprocessing. For determining validity of prediction, the ROC diagram was used. The study variables included climate conditions and geographical parameters. Results: After determining significant variables of cholera incidence, the described artificial neural network model was capable of forecasting cholera event among villages of test group with accuracy up to 80%. The highest accuracy was achieved when model was trained with variables that were significant in statistical analysis describing that the two methods confirm the result of each other. Conclusions: Application of artificial neural networking assists forecasting cholera for adopting protective measures. For a more accurate prediction, comprehensive information is required including data on hygienic, social and demographic parameters.
Biologically plausible learning in neural networks: a lesson from bacterial chemotaxis.
Shimansky, Yury P
2009-12-01
Learning processes in the brain are usually associated with plastic changes made to optimize the strength of connections between neurons. Although many details related to biophysical mechanisms of synaptic plasticity have been discovered, it is unclear how the concurrent performance of adaptive modifications in a huge number of spatial locations is organized to minimize a given objective function. Since direct experimental observation of even a relatively small subset of such changes is not feasible, computational modeling is an indispensable investigation tool for solving this problem. However, the conventional method of error back-propagation (EBP) employed for optimizing synaptic weights in artificial neural networks is not biologically plausible. This study based on computational experiments demonstrated that such optimization can be performed rather efficiently using the same general method that bacteria employ for moving closer to an attractant or away from a repellent. With regard to neural network optimization, this method consists of regulating the probability of an abrupt change in the direction of synaptic weight modification according to the temporal gradient of the objective function. Neural networks utilizing this method (regulation of modification probability, RMP) can be viewed as analogous to swimming in the multidimensional space of their parameters in the flow of biochemical agents carrying information about the optimality criterion. The efficiency of RMP is comparable to that of EBP, while RMP has several important advantages. Since the biological plausibility of RMP is beyond a reasonable doubt, the RMP concept provides a constructive framework for the experimental analysis of learning in natural neural networks.
Artificial Neural Network-Based System for PET Volume Segmentation
Directory of Open Access Journals (Sweden)
Mhd Saeed Sharif
2010-01-01
Full Text Available Tumour detection, classification, and quantification in positron emission tomography (PET imaging at early stage of disease are important issues for clinical diagnosis, assessment of response to treatment, and radiotherapy planning. Many techniques have been proposed for segmenting medical imaging data; however, some of the approaches have poor performance, large inaccuracy, and require substantial computation time for analysing large medical volumes. Artificial intelligence (AI approaches can provide improved accuracy and save decent amount of time. Artificial neural networks (ANNs, as one of the best AI techniques, have the capability to classify and quantify precisely lesions and model the clinical evaluation for a specific problem. This paper presents a novel application of ANNs in the wavelet domain for PET volume segmentation. ANN performance evaluation using different training algorithms in both spatial and wavelet domains with a different number of neurons in the hidden layer is also presented. The best number of neurons in the hidden layer is determined according to the experimental results, which is also stated Levenberg-Marquardt backpropagation training algorithm as the best training approach for the proposed application. The proposed intelligent system results are compared with those obtained using conventional techniques including thresholding and clustering based approaches. Experimental and Monte Carlo simulated PET phantom data sets and clinical PET volumes of nonsmall cell lung cancer patients were utilised to validate the proposed algorithm which has demonstrated promising results.
Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms.
Garro, Beatriz A; Vázquez, Roberto A
2015-01-01
Artificial Neural Network (ANN) design is a complex task because its performance depends on the architecture, the selected transfer function, and the learning algorithm used to train the set of synaptic weights. In this paper we present a methodology that automatically designs an ANN using particle swarm optimization algorithms such as Basic Particle Swarm Optimization (PSO), Second Generation of Particle Swarm Optimization (SGPSO), and a New Model of PSO called NMPSO. The aim of these algorithms is to evolve, at the same time, the three principal components of an ANN: the set of synaptic weights, the connections or architecture, and the transfer functions for each neuron. Eight different fitness functions were proposed to evaluate the fitness of each solution and find the best design. These functions are based on the mean square error (MSE) and the classification error (CER) and implement a strategy to avoid overtraining and to reduce the number of connections in the ANN. In addition, the ANN designed with the proposed methodology is compared with those designed manually using the well-known Back-Propagation and Levenberg-Marquardt Learning Algorithms. Finally, the accuracy of the method is tested with different nonlinear pattern classification problems.
Machine Learning Topological Invariants with Neural Networks
Zhang, Pengfei; Shen, Huitao; Zhai, Hui
2018-02-01
In this Letter we supervisedly train neural networks to distinguish different topological phases in the context of topological band insulators. After training with Hamiltonians of one-dimensional insulators with chiral symmetry, the neural network can predict their topological winding numbers with nearly 100% accuracy, even for Hamiltonians with larger winding numbers that are not included in the training data. These results show a remarkable success that the neural network can capture the global and nonlinear topological features of quantum phases from local inputs. By opening up the neural network, we confirm that the network does learn the discrete version of the winding number formula. We also make a couple of remarks regarding the role of the symmetry and the opposite effect of regularization techniques when applying machine learning to physical systems.
Genetic algorithm for neural networks optimization
Setyawati, Bina R.; Creese, Robert C.; Sahirman, Sidharta
2004-11-01
This paper examines the forecasting performance of multi-layer feed forward neural networks in modeling a particular foreign exchange rates, i.e. Japanese Yen/US Dollar. The effects of two learning methods, Back Propagation and Genetic Algorithm, in which the neural network topology and other parameters fixed, were investigated. The early results indicate that the application of this hybrid system seems to be well suited for the forecasting of foreign exchange rates. The Neural Networks and Genetic Algorithm were programmed using MATLAB«.
Stock market index prediction using neural networks
Komo, Darmadi; Chang, Chein-I.; Ko, Hanseok
1994-03-01
A neural network approach to stock market index prediction is presented. Actual data of the Wall Street Journal's Dow Jones Industrial Index has been used for a benchmark in our experiments where Radial Basis Function based neural networks have been designed to model these indices over the period from January 1988 to Dec 1992. A notable success has been achieved with the proposed model producing over 90% prediction accuracies observed based on monthly Dow Jones Industrial Index predictions. The model has also captured both moderate and heavy index fluctuations. The experiments conducted in this study demonstrated that the Radial Basis Function neural network represents an excellent candidate to predict stock market index.
Estimation of Conditional Quantile using Neural Networks
DEFF Research Database (Denmark)
Kulczycki, P.; Schiøler, Henrik
1999-01-01
The problem of estimating conditional quantiles using neural networks is investigated here. A basic structure is developed using the methodology of kernel estimation, and a theory guaranteeing con-sistency on a mild set of assumptions is provided. The constructed structure constitutes a basis...... for the design of a variety of different neural networks, some of which are considered in detail. The task of estimating conditional quantiles is related to Bayes point estimation whereby a broad range of applications within engineering, economics and management can be suggested. Numerical results illustrating...... the capabilities of the elaborated neural network are also given....
Convolutional Neural Network for Image Recognition
Seifnashri, Sahand
2015-01-01
The aim of this project is to use machine learning techniques especially Convolutional Neural Networks for image processing. These techniques can be used for Quark-Gluon discrimination using calorimeters data, but unfortunately I didn’t manage to get the calorimeters data and I just used the Jet data fromminiaodsim(ak4 chs). The Jet data was not good enough for Convolutional Neural Network which is designed for ’image’ recognition. This report is made of twomain part, part one is mainly about implementing Convolutional Neural Network on unphysical data such as MNIST digits and CIFAR-10 dataset and part 2 is about the Jet data.
Applications of neural network to numerical analyses
International Nuclear Information System (INIS)
Takeda, Tatsuoki; Fukuhara, Makoto; Ma, Xiao-Feng; Liaqat, Ali
1999-01-01
Applications of a multi-layer neural network to numerical analyses are described. We are mainly concerned with the computed tomography and the solution of differential equations. In both cases as the objective functions for the training process of the neural network we employed residuals of the integral equation or the differential equations. This is different from the conventional neural network training where sum of the squared errors of the output values is adopted as the objective function. For model problems both the methods gave satisfactory results and the methods are considered promising for some kind of problems. (author)
Nonequilibrium landscape theory of neural networks.
Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin
2013-11-05
The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape-flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments.
Nonequilibrium landscape theory of neural networks
Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin
2013-01-01
The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape–flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments. PMID:24145451
Parameter extraction with neural networks
Cazzanti, Luca; Khan, Mumit; Cerrina, Franco
1998-06-01
In semiconductor processing, the modeling of the process is becoming more and more important. While the ultimate goal is that of developing a set of tools for designing a complete process (Technology CAD), it is also necessary to have modules to simulate the various technologies and, in particular, to optimize specific steps. This need is particularly acute in lithography, where the continuous decrease in CD forces the technologies to operate near their limits. In the development of a 'model' for a physical process, we face several levels of challenges. First, it is necessary to develop a 'physical model,' i.e. a rational description of the process itself on the basis of know physical laws. Second, we need an 'algorithmic model' to represent in a virtual environment the behavior of the 'physical model.' After a 'complete' model has been developed and verified, it becomes possible to do performance analysis. In many cases the input parameters are poorly known or not accessible directly to experiment. It would be extremely useful to obtain the values of these 'hidden' parameters from experimental results by comparing model to data. This is particularly severe, because the complexity and costs associated with semiconductor processing make a simple 'trial-and-error' approach infeasible and cost- inefficient. Even when computer models of the process already exists, obtaining data through simulations may be time consuming. Neural networks (NN) are powerful computational tools to predict the behavior of a system from an existing data set. They are able to adaptively 'learn' input/output mappings and to act as universal function approximators. In this paper we use artificial neural networks to build a mapping from the input parameters of the process to output parameters which are indicative of the performance of the process. Once the NN has been 'trained,' it is also possible to observe the process 'in reverse,' and to extract the values of the inputs which yield outputs
The quest for a Quantum Neural Network
Schuld, M.; Sinayskiy, I.; Petruccione, F.
2014-01-01
With the overwhelming success in the field of quantum information in the last decades, the "quest" for a Quantum Neural Network (QNN) model began in order to combine quantum computing with the striking properties of neural computing. This article presents a systematic approach to QNN research, which so far consists of a conglomeration of ideas and proposals. It outlines the challenge of combining the nonlinear, dissipative dynamics of neural computing and the linear, unitary dynamics of quant...
Deep Learning Neural Networks and Bayesian Neural Networks in Data Analysis
Directory of Open Access Journals (Sweden)
Chernoded Andrey
2017-01-01
Full Text Available Most of the modern analyses in high energy physics use signal-versus-background classification techniques of machine learning methods and neural networks in particular. Deep learning neural network is the most promising modern technique to separate signal and background and now days can be widely and successfully implemented as a part of physical analysis. In this article we compare Deep learning and Bayesian neural networks application as a classifiers in an instance of top quark analysis.
Improved transformer protection using probabilistic neural network ...
African Journals Online (AJOL)
user
secure and dependable protection for power transformers. Owing to its superior learning and generalization capabilities Artificial. Neural Network (ANN) can considerably enhance the scope of WI method. ANN approach is faster, robust and easier to implement than the conventional waveform approach. The use of neural ...
Duan, Xiaoran; Yang, Yongli; Tan, Shanjuan; Wang, Sihua; Feng, Xiaolei; Cui, Liuxin; Feng, Feifei; Yu, Songcheng; Wang, Wei; Wu, Yongjun
2017-08-01
The purpose of the study was to explore the application of artificial neural network model in the auxiliary diagnosis of lung cancer and compare the effects of back-propagation (BP) neural network with Fisher discrimination model for lung cancer screening by the combined detections of four biomarkers of p16, RASSF1A and FHIT gene promoter methylation levels and the relative telomere length. Real-time quantitative methylation-specific PCR was used to detect the levels of three-gene promoter methylation, and real-time PCR method was applied to determine the relative telomere length. BP neural network and Fisher discrimination analysis were used to establish the discrimination diagnosis model. The levels of three-gene promoter methylation in patients with lung cancer were significantly higher than those of the normal controls. The values of Z(P) in two groups were 2.641 (0.008), 2.075 (0.038) and 3.044 (0.002), respectively. The relative telomere lengths of patients with lung cancer (0.93 ± 0.32) were significantly lower than those of the normal controls (1.16 ± 0.57), t = 4.072, P < 0.001. The areas under the ROC curve (AUC) and 95 % CI of prediction set from Fisher discrimination analysis and BP neural network were 0.670 (0.569-0.761) and 0.760 (0.664-0.840). The AUC of BP neural network was higher than that of Fisher discrimination analysis, and Z(P) was 0.76. Four biomarkers are associated with lung cancer. BP neural network model for the prediction of lung cancer is better than Fisher discrimination analysis, and it can provide an excellent and intelligent diagnosis tool for lung cancer.
An Introduction to Neural Networks for Hearing Aid Noise Recognition.
Kim, Jun W.; Tyler, Richard S.
1995-01-01
This article introduces the use of multilayered artificial neural networks in hearing aid noise recognition. It reviews basic principles of neural networks, and offers an example of an application in which a neural network is used to identify the presence or absence of noise in speech. The ability of neural networks to "learn" the…
A P2P Botnet detection scheme based on decision tree and adaptive multilayer neural networks.
Alauthaman, Mohammad; Aslam, Nauman; Zhang, Li; Alasem, Rafe; Hossain, M A
2018-01-01
In recent years, Botnets have been adopted as a popular method to carry and spread many malicious codes on the Internet. These malicious codes pave the way to execute many fraudulent activities including spam mail, distributed denial-of-service attacks and click fraud. While many Botnets are set up using centralized communication architecture, the peer-to-peer (P2P) Botnets can adopt a decentralized architecture using an overlay network for exchanging command and control data making their detection even more difficult. This work presents a method of P2P Bot detection based on an adaptive multilayer feed-forward neural network in cooperation with decision trees. A classification and regression tree is applied as a feature selection technique to select relevant features. With these features, a multilayer feed-forward neural network training model is created using a resilient back-propagation learning algorithm. A comparison of feature set selection based on the decision tree, principal component analysis and the ReliefF algorithm indicated that the neural network model with features selection based on decision tree has a better identification accuracy along with lower rates of false positives. The usefulness of the proposed approach is demonstrated by conducting experiments on real network traffic datasets. In these experiments, an average detection rate of 99.08 % with false positive rate of 0.75 % was observed.
Pandey, Daya Shankar; Das, Saptarshi; Pan, Indranil; Leahy, James J; Kwapinski, Witold
2016-12-01
In this paper, multi-layer feed forward neural networks are used to predict the lower heating value of gas (LHV), lower heating value of gasification products including tars and entrained char (LHV p ) and syngas yield during gasification of municipal solid waste (MSW) during gasification in a fluidized bed reactor. These artificial neural networks (ANNs) with different architectures are trained using the Levenberg-Marquardt (LM) back-propagation algorithm and a cross validation is also performed to ensure that the results generalise to other unseen datasets. A rigorous study is carried out on optimally choosing the number of hidden layers, number of neurons in the hidden layer and activation function in a network using multiple Monte Carlo runs. Nine input and three output parameters are used to train and test various neural network architectures in both multiple output and single output prediction paradigms using the available experimental datasets. The model selection procedure is carried out to ascertain the best network architecture in terms of predictive accuracy. The simulation results show that the ANN based methodology is a viable alternative which can be used to predict the performance of a fluidized bed gasifier. Copyright © 2016 Elsevier Ltd. All rights reserved.
Modelling of solar energy potential in Nigeria using an artificial neural network model
International Nuclear Information System (INIS)
Fadare, D.A.
2009-01-01
In this study, an artificial neural network (ANN) based model for prediction of solar energy potential in Nigeria (lat. 4-14 o N, log. 2-15 o E) was developed. Standard multilayered, feed-forward, back-propagation neural networks with different architecture were designed using neural toolbox for MATLAB. Geographical and meteorological data of 195 cities in Nigeria for period of 10 years (1983-1993) from the NASA geo-satellite database were used for the training and testing the network. Meteorological and geographical data (latitude, longitude, altitude, month, mean sunshine duration, mean temperature, and relative humidity) were used as inputs to the network, while the solar radiation intensity was used as the output of the network. The results show that the correlation coefficients between the ANN predictions and actual mean monthly global solar radiation intensities for training and testing datasets were higher than 90%, thus suggesting a high reliability of the model for evaluation of solar radiation in locations where solar radiation data are not available. The predicted solar radiation values from the model were given in form of monthly maps. The monthly mean solar radiation potential in northern and southern regions ranged from 7.01-5.62 to 5.43-3.54 kW h/m 2 day, respectively. A graphical user interface (GUI) was developed for the application of the model. The model can be used easily for estimation of solar radiation for preliminary design of solar applications.
Neural Networks in Mobile Robot Motion
Directory of Open Access Journals (Sweden)
Danica Janglová
2004-03-01
Full Text Available This paper deals with a path planning and intelligent control of an autonomous robot which should move safely in partially structured environment. This environment may involve any number of obstacles of arbitrary shape and size; some of them are allowed to move. We describe our approach to solving the motion-planning problem in mobile robot control using neural networks-based technique. Our method of the construction of a collision-free path for moving robot among obstacles is based on two neural networks. The first neural network is used to determine the “free” space using ultrasound range finder data. The second neural network “finds” a safe direction for the next robot section of the path in the workspace while avoiding the nearest obstacles. Simulation examples of generated path with proposed techniques will be presented.
water demand prediction using artificial neural network
African Journals Online (AJOL)
user
2017-01-01
Jan 1, 2017 ... Interface for activation and deactivation of valves. •. Interface demand ... process could be done and monitored at the computer terminal as expected of a .... [15] Arbib, M. A.The Handbook of Brain Theory and Neural. Networks.
Hopfield neural network in HEP track reconstruction
International Nuclear Information System (INIS)
Muresan, R.; Pentia, M.
1997-01-01
In experimental particle physics, pattern recognition problems, specifically for neural network methods, occur frequently in track finding or feature extraction. Track finding is a combinatorial optimization problem. Given a set of points in Euclidean space, one tries the reconstruction of particle trajectories, subject to smoothness constraints.The basic ingredients in a neural network are the N binary neurons and the synaptic strengths connecting them. In our case the neurons are the segments connecting all possible point pairs.The dynamics of the neural network is given by a local updating rule wich evaluates for each neuron the sign of the 'upstream activity'. An updating rule in the form of sigmoid function is given. The synaptic strengths are defined in terms of angle between the segments and the lengths of the segments implied in the track reconstruction. An algorithm based on Hopfield neural network has been developed and tested on the track coordinates measured by silicon microstrip tracking system
Additive Feed Forward Control with Neural Networks
DEFF Research Database (Denmark)
Sørensen, O.
1999-01-01
This paper demonstrates a method to control a non-linear, multivariable, noisy process using trained neural networks. The basis for the method is a trained neural network controller acting as the inverse process model. A training method for obtaining such an inverse process model is applied....... A suitable 'shaped' (low-pass filtered) reference is used to overcome problems with excessive control action when using a controller acting as the inverse process model. The control concept is Additive Feed Forward Control, where the trained neural network controller, acting as the inverse process model......, is placed in a supplementary pure feed-forward path to an existing feedback controller. This concept benefits from the fact, that an existing, traditional designed, feedback controller can be retained without any modifications, and after training the connection of the neural network feed-forward controller...
PREDIKSI FOREX MENGGUNAKAN MODEL NEURAL NETWORK
Directory of Open Access Journals (Sweden)
R. Hadapiningradja Kusumodestoni
2015-11-01
Full Text Available ABSTRAK Prediksi adalah salah satu teknik yang paling penting dalam menjalankan bisnis forex. Keputusan dalam memprediksi adalah sangatlah penting, karena dengan prediksi dapat membantu mengetahui nilai forex di waktu tertentu kedepan sehingga dapat mengurangi resiko kerugian. Tujuan dari penelitian ini dimaksudkan memprediksi bisnis fores menggunakan model neural network dengan data time series per 1 menit untuk mengetahui nilai akurasi prediksi sehingga dapat mengurangi resiko dalam menjalankan bisnis forex. Metode penelitian pada penelitian ini meliputi metode pengumpulan data kemudian dilanjutkan ke metode training, learning, testing menggunakan neural network. Setelah di evaluasi hasil penelitian ini menunjukan bahwa penerapan algoritma Neural Network mampu untuk memprediksi forex dengan tingkat akurasi prediksi 0.431 +/- 0.096 sehingga dengan prediksi ini dapat membantu mengurangi resiko dalam menjalankan bisnis forex. Kata kunci: prediksi, forex, neural network.
Artificial neural networks a practical course
da Silva, Ivan Nunes; Andrade Flauzino, Rogerio; Liboni, Luisa Helena Bartocci; dos Reis Alves, Silas Franco
2017-01-01
This book provides comprehensive coverage of neural networks, their evolution, their structure, the problems they can solve, and their applications. The first half of the book looks at theoretical investigations on artificial neural networks and addresses the key architectures that are capable of implementation in various application scenarios. The second half is designed specifically for the production of solutions using artificial neural networks to solve practical problems arising from different areas of knowledge. It also describes the various implementation details that were taken into account to achieve the reported results. These aspects contribute to the maturation and improvement of experimental techniques to specify the neural network architecture that is most appropriate for a particular application scope. The book is appropriate for students in graduate and upper undergraduate courses in addition to researchers and professionals.
Control of autonomous robot using neural networks
Barton, Adam; Volna, Eva
2017-07-01
The aim of the article is to design a method of control of an autonomous robot using artificial neural networks. The introductory part describes control issues from the perspective of autonomous robot navigation and the current mobile robots controlled by neural networks. The core of the article is the design of the controlling neural network, and generation and filtration of the training set using ART1 (Adaptive Resonance Theory). The outcome of the practical part is an assembled Lego Mindstorms EV3 robot solving the problem of avoiding obstacles in space. To verify models of an autonomous robot behavior, a set of experiments was created as well as evaluation criteria. The speed of each motor was adjusted by the controlling neural network with respect to the situation in which the robot was found.
Neural networks, D0, and the SSC
International Nuclear Information System (INIS)
Barter, C.; Cutts, D.; Hoftun, J.S.; Partridge, R.A.; Sornborger, A.T.; Johnson, C.T.; Zeller, R.T.
1989-01-01
We outline several exploratory studies involving neural network simulations applied to pattern recognition in high energy physics. We describe the D0 data acquisition system and a natual means by which algorithms derived from neural networks techniques may be incorporated into recently developed hardware associated with the D0 MicroVAX farm nodes. Such applications to the event filtering needed by SSC detectors look interesting. 10 refs., 11 figs
Neural network monitoring of resistive welding
International Nuclear Information System (INIS)
Quero, J.M.; Millan, R.L.; Franquelo, L.G.; Canas, J.
1994-01-01
Supervision of welding processes is one of the most important and complicated tasks in production lines. Artificial Neural Networks have been applied for modeling and control of ph physical processes. In our paper we propose the use of a neural network classifier for on-line non-destructive testing. This system has been developed and installed in a resistive welding station. Results confirm the validity of this novel approach. (Author) 6 refs
Neural Network Models for Time Series Forecasts
Tim Hill; Marcus O'Connor; William Remus
1996-01-01
Neural networks have been advocated as an alternative to traditional statistical forecasting methods. In the present experiment, time series forecasts produced by neural networks are compared with forecasts from six statistical time series methods generated in a major forecasting competition (Makridakis et al. [Makridakis, S., A. Anderson, R. Carbone, R. Fildes, M. Hibon, R. Lewandowski, J. Newton, E. Parzen, R. Winkler. 1982. The accuracy of extrapolation (time series) methods: Results of a ...
Using neural networks in software repositories
Eichmann, David (Editor); Srinivas, Kankanahalli; Boetticher, G.
1992-01-01
The first topic is an exploration of the use of neural network techniques to improve the effectiveness of retrieval in software repositories. The second topic relates to a series of experiments conducted to evaluate the feasibility of using adaptive neural networks as a means of deriving (or more specifically, learning) measures on software. Taken together, these two efforts illuminate a very promising mechanism supporting software infrastructures - one based upon a flexible and responsive technology.
Application of neural networks in CRM systems
Directory of Open Access Journals (Sweden)
Bojanowska Agnieszka
2017-01-01
Full Text Available The central aim of this study is to investigate how to apply artificial neural networks in Customer Relationship Management (CRM. The paper presents several business applications of neural networks in software systems designed to aid CRM, e.g. in deciding on the profitability of building a relationship with a given customer. Furthermore, a framework for a neural-network based CRM software tool is developed. Building beneficial relationships with customers is generating considerable interest among various businesses, and is often mentioned as one of the crucial objectives of enterprises, next to their key aim: to bring satisfactory profit. There is a growing tendency among businesses to invest in CRM systems, which together with an organisational culture of a company aid managing customer relationships. It is the sheer amount of gathered data as well as the need for constant updating and analysis of this breadth of information that may imply the suitability of neural networks for the application in question. Neural networks exhibit considerably higher computational capabilities than sequential calculations because the solution to a problem is obtained without the need for developing a special algorithm. In the majority of presented CRM applications neural networks constitute and are presented as a managerial decision-taking optimisation tool.
Logarithmic learning for generalized classifier neural network.
Ozyildirim, Buse Melis; Avci, Mutlu
2014-12-01
Generalized classifier neural network is introduced as an efficient classifier among the others. Unless the initial smoothing parameter value is close to the optimal one, generalized classifier neural network suffers from convergence problem and requires quite a long time to converge. In this work, to overcome this problem, a logarithmic learning approach is proposed. The proposed method uses logarithmic cost function instead of squared error. Minimization of this cost function reduces the number of iterations used for reaching the minima. The proposed method is tested on 15 different data sets and performance of logarithmic learning generalized classifier neural network is compared with that of standard one. Thanks to operation range of radial basis function included by generalized classifier neural network, proposed logarithmic approach and its derivative has continuous values. This makes it possible to adopt the advantage of logarithmic fast convergence by the proposed learning method. Due to fast convergence ability of logarithmic cost function, training time is maximally decreased to 99.2%. In addition to decrease in training time, classification performance may also be improved till 60%. According to the test results, while the proposed method provides a solution for time requirement problem of generalized classifier neural network, it may also improve the classification accuracy. The proposed method can be considered as an efficient way for reducing the time requirement problem of generalized classifier neural network. Copyright © 2014 Elsevier Ltd. All rights reserved.
Diabetic retinopathy screening using deep neural network.
Ramachandran, Nishanthan; Hong, Sheng Chiong; Sime, Mary J; Wilson, Graham A
2017-09-07
There is a burgeoning interest in the use of deep neural network in diabetic retinal screening. To determine whether a deep neural network could satisfactorily detect diabetic retinopathy that requires referral to an ophthalmologist from a local diabetic retinal screening programme and an international database. Retrospective audit. Diabetic retinal photos from Otago database photographed during October 2016 (485 photos), and 1200 photos from Messidor international database. Receiver operating characteristic curve to illustrate the ability of a deep neural network to identify referable diabetic retinopathy (moderate or worse diabetic retinopathy or exudates within one disc diameter of the fovea). Area under the receiver operating characteristic curve, sensitivity and specificity. For detecting referable diabetic retinopathy, the deep neural network had an area under receiver operating characteristic curve of 0.901 (95% confidence interval 0.807-0.995), with 84.6% sensitivity and 79.7% specificity for Otago and 0.980 (95% confidence interval 0.973-0.986), with 96.0% sensitivity and 90.0% specificity for Messidor. This study has shown that a deep neural network can detect referable diabetic retinopathy with sensitivities and specificities close to or better than 80% from both an international and a domestic (New Zealand) database. We believe that deep neural networks can be integrated into community screening once they can successfully detect both diabetic retinopathy and diabetic macular oedema. © 2017 Royal Australian and New Zealand College of Ophthalmologists.
Directory of Open Access Journals (Sweden)
Nandkumar Wagh
2014-01-01
Full Text Available Continuity of power supply is of utmost importance to the consumers and is only possible by coordination and reliable operation of power system components. Power transformer is such a prime equipment of the transmission and distribution system and needs to be continuously monitored for its well-being. Since ratio methods cannot provide correct diagnosis due to the borderline problems and the probability of existence of multiple faults, artificial intelligence could be the best approach. Dissolved gas analysis (DGA interpretation may provide an insight into the developing incipient faults and is adopted as the preliminary diagnosis tool. In the proposed work, a comparison of the diagnosis ability of backpropagation (BP, radial basis function (RBF neural network, and adaptive neurofuzzy inference system (ANFIS has been investigated and the diagnosis results in terms of error measure, accuracy, network training time, and number of iterations are presented.
Directory of Open Access Journals (Sweden)
Héliton Pandorfi
2016-06-01
Full Text Available ABSTRACT This study aimed to investigate the applicability of artificial neural networks (ANNs in the prediction of evapotranspiration of sweet pepper cultivated in a greenhouse. The used data encompass the second crop cycle, from September 2013 to February 2014, constituting 135 days of daily meteorological data, referring to the following variables: temperature and relative air humidity, wind speed and solar radiation (input variables, as well as evapotranspiration (output variable, determined using data obtained by load-cell weighing lysimeter. The recorded data were divided into three sets for training, testing and validation. The ANN learning model recognized the evapotranspiration patterns with acceptable accuracy, with mean square error of 0.005, in comparison to the data recorded in the lysimeter, with coefficient of determination of 0.87, demonstrating the best approximation for the 4-21-1 network architecture, with multilayers, error back-propagation learning algorithm and learning rate of 0.01.
Early detection of incipient faults in power plants using accelerated neural network learning
International Nuclear Information System (INIS)
Parlos, A.G.; Jayakumar, M.; Atiya, A.
1992-01-01
An important aspect of power plant automation is the development of computer systems able to detect and isolate incipient (slowly developing) faults at the earliest possible stages of their occurrence. In this paper, the development and testing of such a fault detection scheme is presented based on recognition of sensor signatures during various failure modes. An accelerated learning algorithm, namely adaptive backpropagation (ABP), has been developed that allows the training of a multilayer perceptron (MLP) network to a high degree of accuracy, with an order of magnitude improvement in convergence speed. An artificial neural network (ANN) has been successfully trained using the ABP algorithm, and it has been extensively tested with simulated data to detect and classify incipient faults of various types and severity and in the presence of varying sensor noise levels
Directory of Open Access Journals (Sweden)
Ruiyi Que
2012-08-01
Full Text Available Air speed, angle of sideslip and angle of attack are fundamental aerodynamic parameters for controlling most aircraft. For small aircraft for which conventional detecting devices are too bulky and heavy to be utilized, a novel and practical methodology by which the aerodynamic parameters are inferred using a micro hot-film flow sensor array mounted on the surface of the wing is proposed. A back-propagation neural network is used to model the coupling relationship between readings of the sensor array and aerodynamic parameters. Two different sensor arrangements are tested in wind tunnel experiments and dependence of the system performance on the sensor arrangement is analyzed.
Neural-Network Object-Recognition Program
Spirkovska, L.; Reid, M. B.
1993-01-01
HONTIOR computer program implements third-order neural network exhibiting invariance under translation, change of scale, and in-plane rotation. Invariance incorporated directly into architecture of network. Only one view of each object needed to train network for two-dimensional-translation-invariant recognition of object. Also used for three-dimensional-transformation-invariant recognition by training network on only set of out-of-plane rotated views. Written in C language.
Artificial Astrocytes Improve Neural Network Performance
Porto-Pazos, Ana B.; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso
2011-01-01
Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function. PMID:21526157
Artificial astrocytes improve neural network performance.
Directory of Open Access Journals (Sweden)
Ana B Porto-Pazos
Full Text Available Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN and artificial neuron-glia networks (NGN to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.
Artificial astrocytes improve neural network performance.
Porto-Pazos, Ana B; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso
2011-04-19
Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.
NEURAL NETWORKS FOR STOCK MARKET OPTION PRICING
Directory of Open Access Journals (Sweden)
Sergey A. Sannikov
2017-03-01
Full Text Available Introduction: The use of neural networks for non-linear models helps to understand where linear model drawbacks, coused by their specification, reveal themselves. This paper attempts to find this out. The objective of research is to determine the meaning of “option prices calculation using neural networks”. Materials and Methods: We use two kinds of variables: endogenous (variables included in the model of neural network and variables affecting on the model (permanent disturbance. Results: All data are divided into 3 sets: learning, affirming and testing. All selected variables are normalised from 0 to 1. Extreme values of income were shortcut. Discussion and Conclusions: Using the 33-14-1 neural network with direct links we obtained two sets of forecasts. Optimal criteria of strategies in stock markets’ option pricing were developed.
Hardware implementation of stochastic spiking neural networks.
Rosselló, Josep L; Canals, Vincent; Morro, Antoni; Oliver, Antoni
2012-08-01
Spiking Neural Networks, the last generation of Artificial Neural Networks, are characterized by its bio-inspired nature and by a higher computational capacity with respect to other neural models. In real biological neurons, stochastic processes represent an important mechanism of neural behavior and are responsible of its special arithmetic capabilities. In this work we present a simple hardware implementation of spiking neurons that considers this probabilistic nature. The advantage of the proposed implementation is that it is fully digital and therefore can be massively implemented in Field Programmable Gate Arrays. The high computational capabilities of the proposed model are demonstrated by the study of both feed-forward and recurrent networks that are able to implement high-speed signal filtering and to solve complex systems of linear equations.
Nonintrusive Method Based on Neural Networks for Video Quality of Experience Assessment
Directory of Open Access Journals (Sweden)
Diego José Luis Botia Valderrama
2016-01-01
Full Text Available The measurement and evaluation of the QoE (Quality of Experience have become one of the main focuses in the telecommunications to provide services with the expected quality for their users. However, factors like the network parameters and codification can affect the quality of video, limiting the correlation between the objective and subjective metrics. The above increases the complexity to evaluate the real quality of video perceived by users. In this paper, a model based on artificial neural networks such as BPNNs (Backpropagation Neural Networks and the RNNs (Random Neural Networks is applied to evaluate the subjective quality metrics MOS (Mean Opinion Score and the PSNR (Peak Signal Noise Ratio, SSIM (Structural Similarity Index Metric, VQM (Video Quality Metric, and QIBF (Quality Index Based Frame. The proposed model allows establishing the QoS (Quality of Service based in the strategy Diffserv. The metrics were analyzed through Pearson’s and Spearman’s correlation coefficients, RMSE (Root Mean Square Error, and outliers rate. Correlation values greater than 90% were obtained for all the evaluated metrics.
Hermite Functional Link Neural Network for Solving the Van der Pol-Duffing Oscillator Equation.
Mall, Susmita; Chakraverty, S
2016-08-01
Hermite polynomial-based functional link artificial neural network (FLANN) is proposed here to solve the Van der Pol-Duffing oscillator equation. A single-layer hermite neural network (HeNN) model is used, where a hidden layer is replaced by expansion block of input pattern using Hermite orthogonal polynomials. A feedforward neural network model with the unsupervised error backpropagation principle is used for modifying the network parameters and minimizing the computed error function. The Van der Pol-Duffing and Duffing oscillator equations may not be solved exactly. Here, approximate solutions of these types of equations have been obtained by applying the HeNN model for the first time. Three mathematical example problems and two real-life application problems of Van der Pol-Duffing oscillator equation, extracting the features of early mechanical failure signal and weak signal detection problems, are solved using the proposed HeNN method. HeNN approximate solutions have been compared with results obtained by the well known Runge-Kutta method. Computed results are depicted in term of graphs. After training the HeNN model, we may use it as a black box to get numerical results at any arbitrary point in the domain. Thus, the proposed HeNN method is efficient. The results reveal that this method is reliable and can be applied to other nonlinear problems too.
A neural network approach to breast cancer diagnosis as a constraint satisfaction problem
International Nuclear Information System (INIS)
Tourassi, Georgia D.; Markey, Mia K.; Lo, Joseph Y.; Floyd, Carey E. Jr.
2001-01-01
A constraint satisfaction neural network (CSNN) approach is proposed for breast cancer diagnosis using mammographic and patient history findings. Initially, the diagnostic decision to biopsy was formulated as a constraint satisfaction problem. Then, an associative memory type neural network was applied to solve the problem. The proposed network has a flexible, nonhierarchical architecture that allows it to operate not only as a predictive tool but also as an analysis tool for knowledge discovery of association rules. The CSNN was developed and evaluated using a database of 500 nonpalpable breast lesions with definitive histopathological diagnosis. The CSNN diagnostic performance was evaluated using receiver operating characteristic analysis (ROC). The results of the study showed that the CSNN ROC area index was 0.84±0.02. The CSNN predictive performance is competitive with that achieved by experienced radiologists and backpropagation artificial neural networks (BP-ANNs) presented before. Furthermore, the study illustrates how CSNN can be used as a knowledge discovery tool overcoming some of the well-known limitations of BP-ANNs
Neural network for adapting nuclear power plant control for wide-range operation
International Nuclear Information System (INIS)
Ku, C.C.; Lee, K.Y.; Edwards, R.M.
1991-01-01
A new concept of using neural networks has been evaluated for optimal control of a nuclear reactor. The neural network uses the architecture of a standard backpropagation network; however, a new dynamic learning algorithm has been developed to capture the underlying system dynamics. The learning algorithm is based on parameter estimation for dynamic systems. The approach is demonstrated on an optimal reactor temperature controller by adjusting the feedback gains for wide-range operation. Application of optimal control to a reactor has been considered for improving temperature response using a robust fifth-order reactor power controller. Conventional gain scheduling can be employed to extend the range of good performance to accommodate large changes in power where nonlinear characteristics significantly modify the dynamics of the power plant. Gain scheduling is developed based on expected parameter variations, and it may be advantageous to further adapt feedback gains on-line to better match actual plant performance. A neural network approach is used here to adapt the gains to better accommodate plant uncertainties and thereby achieve improved robustness characteristics
HTTR operation monitoring with neural network in 30 days operation at 850degC
International Nuclear Information System (INIS)
Shimizu, Atsushi; Nabeshima, Kunihiko; Nakagawa, Shigeaki
2009-01-01
The High temperature engineering test reactor (HTTR) executed the rated power operation for 30days of the first time (850degC in temperature of the nuclear reactor outlet coolant) until March, 27th through April, 26th, 2007. In this operation, HTTR was observed according to the operation monitoring model with the neural network, and the detection performance of neural network was verified during slight changes of reactor state at rated power. The neural network used for the operation monitoring was an auto-associative network, where 31 input 31 outputs and the hidden layers were connected with 20 units by the hierarchy of three layer structure. Back-propagation algorithm was used for study rule. The operation monitoring model in initial study was constructed by using the power up data between 30% and rated power, which were randomly studied. The adjustment study during the operation monitoring changes the internal structure of the initial study model to follow the changes of reactor status, such as the burn-up of the nuclear fuel for the rated power operation. As a monitoring result, slight changes of reactor state by the control system operation were correctly detected, and the on-line application to an early anomaly diagnosis for HTTR facilities will be expected. (author)
Neural network approaches to tracer identification as related to PIV research
International Nuclear Information System (INIS)
Seeley, C.H. Jr.
1992-12-01
Neural networks have become very powerful tools in many fields of interest. This thesis examines the application of neural networks to another rapidly growing field flow visualization. Flow visualization research is used to experimentally determine how fluids behave and to verify computational results obtained analytically. A form of flow visualization, particle image velocimetry (PIV). determines the flow movement by tracking neutrally buoyant particles suspended in the fluid. PIV research has begun to improve rapidly with the advent of digital imagers, which can quickly digitize an image into arrays of grey levels. These grey level arrays are analyzed to determine the location of the tracer particles. Once the particles positions have been determined across multiple image frames, it is possible to track their movements, and hence, the flow of the fluid. This thesis explores the potential of several different neural networks to identify the positions of the tracer particles. Among these networks are Backpropagation, Kohonen (counter-propagation), and Cellular. Each of these algorithms were employed in their basic form, and training and testing were performed on a synthetic grey level array. Modifications were then made to them in attempts to improve the results
Neural network approaches to tracer identification as related to PIV research
Energy Technology Data Exchange (ETDEWEB)
Seeley, C.H. Jr.
1992-12-01
Neural networks have become very powerful tools in many fields of interest. This thesis examines the application of neural networks to another rapidly growing field flow visualization. Flow visualization research is used to experimentally determine how fluids behave and to verify computational results obtained analytically. A form of flow visualization, particle image velocimetry (PIV). determines the flow movement by tracking neutrally buoyant particles suspended in the fluid. PIV research has begun to improve rapidly with the advent of digital imagers, which can quickly digitize an image into arrays of grey levels. These grey level arrays are analyzed to determine the location of the tracer particles. Once the particles positions have been determined across multiple image frames, it is possible to track their movements, and hence, the flow of the fluid. This thesis explores the potential of several different neural networks to identify the positions of the tracer particles. Among these networks are Backpropagation, Kohonen (counter-propagation), and Cellular. Each of these algorithms were employed in their basic form, and training and testing were performed on a synthetic grey level array. Modifications were then made to them in attempts to improve the results.
Noise Analysis studies with neural networks
International Nuclear Information System (INIS)
Seker, S.; Ciftcioglu, O.
1996-01-01
Noise analysis studies with neural network are aimed. Stochastic signals at the input of the network are used to obtain an algorithmic multivariate stochastic signal modeling. To this end, lattice modeling of a stochastic signal is performed to obtain backward residual noise sources which are uncorrelated among themselves. There are applied together with an additional input to the network to obtain an algorithmic model which is used for signal detection for early failure in plant monitoring. The additional input provides the information to the network to minimize the difference between the signal and the network's one-step-ahead prediction. A stochastic algorithm is used for training where the errors reflecting the measurement error during the training are also modelled so that fast and consistent convergence of network's weights is obtained. The lattice structure coupled to neural network investigated with measured signals from an actual power plant. (authors)
Self-organized critical neural networks
International Nuclear Information System (INIS)
Bornholdt, Stefan; Roehl, Torsten
2003-01-01
A mechanism for self-organization of the degree of connectivity in model neural networks is studied. Network connectivity is regulated locally on the basis of an order parameter of the global dynamics, which is estimated from an observable at the single synapse level. This principle is studied in a two-dimensional neural network with randomly wired asymmetric weights. In this class of networks, network connectivity is closely related to a phase transition between ordered and disordered dynamics. A slow topology change is imposed on the network through a local rewiring rule motivated by activity-dependent synaptic development: Neighbor neurons whose activity is correlated, on average develop a new connection while uncorrelated neighbors tend to disconnect. As a result, robust self-organization of the network towards the order disorder transition occurs. Convergence is independent of initial conditions, robust against thermal noise, and does not require fine tuning of parameters
Liang, Zhengzhao; Gong, Bin; Tang, Chunan; Zhang, Yongbin; Ma, Tianhui
2014-01-01
The right bank high slope of the Dagangshan Hydroelectric Power Station is located in complicated geological conditions with deep fractures and unloading cracks. How to obtain the mechanical parameters and then evaluate the safety of the slope are the key problems. This paper presented a displacement back analysis for the slope using an artificial neural network model (ANN) and particle swarm optimization model (PSO). A numerical model was established to simulate the displacement increment results, acquiring training data for the artificial neural network model. The backpropagation ANN model was used to establish a mapping function between the mechanical parameters and the monitoring displacements. The PSO model was applied to initialize the weights and thresholds of the backpropagation (BP) network model and determine suitable values of the mechanical parameters. Then the elastic moduli of the rock masses were obtained according to the monitoring displacement data at different excavation stages, and the BP neural network model was proved to be valid by comparing the measured displacements, the displacements predicted by the BP neural network model, and the numerical simulation using the back-analyzed parameters. The proposed model is useful for rock mechanical parameters determination and instability investigation of rock slopes.
Liang, Zhengzhao; Gong, Bin; Tang, Chunan; Zhang, Yongbin; Ma, Tianhui
2014-01-01
The right bank high slope of the Dagangshan Hydroelectric Power Station is located in complicated geological conditions with deep fractures and unloading cracks. How to obtain the mechanical parameters and then evaluate the safety of the slope are the key problems. This paper presented a displacement back analysis for the slope using an artificial neural network model (ANN) and particle swarm optimization model (PSO). A numerical model was established to simulate the displacement increment results, acquiring training data for the artificial neural network model. The backpropagation ANN model was used to establish a mapping function between the mechanical parameters and the monitoring displacements. The PSO model was applied to initialize the weights and thresholds of the backpropagation (BP) network model and determine suitable values of the mechanical parameters. Then the elastic moduli of the rock masses were obtained according to the monitoring displacement data at different excavation stages, and the BP neural network model was proved to be valid by comparing the measured displacements, the displacements predicted by the BP neural network model, and the numerical simulation using the back-analyzed parameters. The proposed model is useful for rock mechanical parameters determination and instability investigation of rock slopes. PMID:25140345
Artificial neural network intelligent method for prediction
Trifonov, Roumen; Yoshinov, Radoslav; Pavlova, Galya; Tsochev, Georgi
2017-09-01
Accounting and financial classification and prediction problems are high challenge and researchers use different methods to solve them. Methods and instruments for short time prediction of financial operations using artificial neural network are considered. The methods, used for prediction of financial data as well as the developed forecasting system with neural network are described in the paper. The architecture of a neural network used four different technical indicators, which are based on the raw data and the current day of the week is presented. The network developed is used for forecasting movement of stock prices one day ahead and consists of an input layer, one hidden layer and an output layer. The training method is algorithm with back propagation of the error. The main advantage of the developed system is self-determination of the optimal topology of neural network, due to which it becomes flexible and more precise The proposed system with neural network is universal and can be applied to various financial instruments using only basic technical indicators as input data.
Deformable image registration using convolutional neural networks
Eppenhof, Koen A.J.; Lafarge, Maxime W.; Moeskops, Pim; Veta, Mitko; Pluim, Josien P.W.
2018-01-01
Deformable image registration can be time-consuming and often needs extensive parameterization to perform well on a specific application. We present a step towards a registration framework based on a three-dimensional convolutional neural network. The network directly learns transformations between
Estimating Conditional Distributions by Neural Networks
DEFF Research Database (Denmark)
Kulczycki, P.; Schiøler, Henrik
1998-01-01
Neural Networks for estimating conditionaldistributions and their associated quantiles are investigated in this paper. A basic network structure is developed on the basis of kernel estimation theory, and consistency property is considered from a mild set of assumptions. A number of applications...
Artificial Neural Networks and Instructional Technology.
Carlson, Patricia A.
1991-01-01
Artificial neural networks (ANN), part of artificial intelligence, are discussed. Such networks are fed sample cases (training sets), learn how to recognize patterns in the sample data, and use this experience in handling new cases. Two cognitive roles for ANNs (intelligent filters and spreading, associative memories) are examined. Prototypes…
Learning drifting concepts with neural networks
Biehl, Michael; Schwarze, Holm
1993-01-01
The learning of time-dependent concepts with a neural network is studied analytically and numerically. The linearly separable target rule is represented by an N-vector, whose time dependence is modelled by a random or deterministic drift process. A single-layer network is trained online using
Evaluation of scoliosis using baropodometer and artificial neural network
Directory of Open Access Journals (Sweden)
Caroline Meireles Fanfoni
Full Text Available Abstract Introduction: One of the most recurrent pathologies in the spine is scoliosis. It occurs in the frontal plane and is formed by one or more curves in the spinal column. The scoliosis causes global postural misalignment in an individual. One of the modifications produced by postural misalignment is the way in which an individual distributes weight to the feet. We aimed to implement an electronic system for separating patients with Degree I scoliosis (i.e., 1° to 19° scoliosis according to the Ricard classification into two groups: C1 (1°-9° and C2 (10°-9°. The highest percentage of patients with scoliosis is in this range: those who do not need to wear vests or undergo surgery and whose treatment is performed via special physical exercise and frequent evaluations by healthcare professionals. Methods The electronic system consists of a baropodometer and artificial neural networks (ANNs. The classification of patients in the scoliosis groups was performed with MATLAB software and a Single Layer Perceptron network using the backpropagation training algorithm. Evaluations were performed on 63 volunteers. Results The mean classification sensitivity was 93.7% in the C1 group and 94.5% in the C2 group. The classification accuracy was 83.3% in the C1 group and 96.0% in the C2 group. Conclusion The implemented system can contribute to the treatment of patients with scoliosis grades ranging from 1° to 19°, which represents the highest incidence of this pathology, for which the monitoring of the clinical condition using noninvasive techniques is of fundamental importance.
Neural Network Aided Glitch-Burst Discrimination and Glitch Classification
Rampone, Salvatore; Pierro, Vincenzo; Troiano, Luigi; Pinto, Innocenzo M.
2013-11-01
We investigate the potential of neural-network based classifiers for discriminating gravitational wave bursts (GWBs) of a given canonical family (e.g. core-collapse supernova waveforms) from typical transient instrumental artifacts (glitches), in the data of a single detector. The further classification of glitches into typical sets is explored. In order to provide a proof of concept, we use the core-collapse supernova waveform catalog produced by H. Dimmelmeier and co-Workers, and the data base of glitches observed in laser interferometer gravitational wave observatory (LIGO) data maintained by P. Saulson and co-Workers to construct datasets of (windowed) transient waveforms (glitches and bursts) in additive (Gaussian and compound-Gaussian) noise with different signal-to-noise ratios (SNR). Principal component analysis (PCA) is next implemented for reducing data dimensionality, yielding results consistent with, and extending those in the literature. Then, a multilayer perceptron is trained by a backpropagation algorithm (MLP-BP) on a data subset, and used to classify the transients as glitch or burst. A Self-Organizing Map (SOM) architecture is finally used to classify the glitches. The glitch/burst discrimination and glitch classification abilities are gauged in terms of the related truth tables. Preliminary results suggest that the approach is effective and robust throughout the SNR range of practical interest. Perspective applications pertain both to distributed (network, multisensor) detection of GWBs, where some intelligence at the single node level can be introduced, and instrument diagnostics/optimization, where spurious transients can be identified, classified and hopefully traced back to their entry points.
Neural network tagging in a toy model
International Nuclear Information System (INIS)
Milek, Marko; Patel, Popat
1999-01-01
The purpose of this study is a comparison of Artificial Neural Network approach to HEP analysis against the traditional methods. A toy model used in this analysis consists of two types of particles defined by four generic properties. A number of 'events' was created according to the model using standard Monte Carlo techniques. Several fully connected, feed forward multi layered Artificial Neural Networks were trained to tag the model events. The performance of each network was compared to the standard analysis mechanisms and significant improvement was observed
Hindcasting of storm waves using neural networks
Digital Repository Service at National Institute of Oceanography (India)
Rao, S.; Mandal, S.
Department NN neural network net i weighted sum of the inputs of neuron i o k network output at kth output node P total number of training pattern s i output of neuron i t k target output at kth output node 1. Introduction Severe storms occur in Bay of Bengal...), forecasting of runoff (Crespo and Mora, 1993), concrete strength (Kasperkiewicz et al., 1995). The uses of neural network in the coastal the wave conditions will change from year to year, thus a proper statistical and climatological treatment requires several...
A quantum-implementable neural network model
Chen, Jialin; Wang, Lingli; Charbon, Edoardo
2017-10-01
A quantum-implementable neural network, namely quantum probability neural network (QPNN) model, is proposed in this paper. QPNN can use quantum parallelism to trace all possible network states to improve the result. Due to its unique quantum nature, this model is robust to several quantum noises under certain conditions, which can be efficiently implemented by the qubus quantum computer. Another advantage is that QPNN can be used as memory to retrieve the most relevant data and even to generate new data. The MATLAB experimental results of Iris data classification and MNIST handwriting recognition show that much less neuron resources are required in QPNN to obtain a good result than the classical feedforward neural network. The proposed QPNN model indicates that quantum effects are useful for real-life classification tasks.
An approach to unfold the response of a multi-element system using an artificial neural network
International Nuclear Information System (INIS)
Cordes, E.; Fehrenbacher, G.; Schuetz, R.; Sprunck, M.; Hahn, K.; Hofmann, R.; Wahl, W.
1998-01-01
An unfolding procedure is proposed which aims at obtaining spectral information of a neutron radiation field by the analysis of the response of a multi-element system consisting of converter type semiconductors. For the unfolding procedure an artificial neural network (feed forward network), trained by the back-propagation method, was used. The response functions of the single elements to neutron radiation were calculated by application of a computational model for an energy range from 10 -2 eV to 10 MeV. The training of the artificial neural network was based on the computation of responses of a six-element system for a set of 300 neutron spectra and the application of the back-propagation method. The validation was performed by the unfolding of 100 computed responses. Two unfolding examples were pointed out for the determination of the neutron spectra. The spectra resulting from the unfolding procedure agree well with the original spectra used for the response computation
Vibration Based Damage Assessment of a Cantilever using a Neural Network
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Rytter, A.
In this paper the possibility of using a Multilayer Perceptron (MLP) network trained with with the Backpropagation Algorithm as a non-destructive damage assessment technique to locate and quantify a damage in structures is investigated.......In this paper the possibility of using a Multilayer Perceptron (MLP) network trained with with the Backpropagation Algorithm as a non-destructive damage assessment technique to locate and quantify a damage in structures is investigated....
Neutron spectrometry with artificial neural networks
International Nuclear Information System (INIS)
Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.; Rodriguez, J.M.; Mercado S, G.A.; Iniguez de la Torre Bayo, M.P.; Barquero, R.; Arteaga A, T.
2005-01-01
An artificial neural network has been designed to obtain the neutron spectra from the Bonner spheres spectrometer's count rates. The neural network was trained using 129 neutron spectra. These include isotopic neutron sources; reference and operational spectra from accelerators and nuclear reactors, spectra from mathematical functions as well as few energy groups and monoenergetic spectra. The spectra were transformed from lethargy to energy distribution and were re-bin ned to 31 energy groups using the MCNP 4C code. Re-binned spectra and UTA4 response matrix were used to calculate the expected count rates in Bonner spheres spectrometer. These count rates were used as input and the respective spectrum was used as output during neural network training. After training the network was tested with the Bonner spheres count rates produced by a set of neutron spectra. This set contains data used during network training as well as data not used. Training and testing was carried out in the Mat lab program. To verify the network unfolding performance the original and unfolded spectra were compared using the χ 2 -test and the total fluence ratios. The use of Artificial Neural Networks to unfold neutron spectra in neutron spectrometry is an alternative procedure that overcomes the drawbacks associated in this ill-conditioned problem. (Author)
Neutron spectrometry using artificial neural networks
International Nuclear Information System (INIS)
Vega-Carrillo, Hector Rene; Martin Hernandez-Davila, Victor; Manzanares-Acuna, Eduardo; Mercado Sanchez, Gema A.; Pilar Iniguez de la Torre, Maria; Barquero, Raquel; Palacios, Francisco; Mendez Villafane, Roberto; Arteaga Arteaga, Tarcicio; Manuel Ortiz Rodriguez, Jose
2006-01-01
An artificial neural network has been designed to obtain neutron spectra from Bonner spheres spectrometer count rates. The neural network was trained using 129 neutron spectra. These include spectra from isotopic neutron sources; reference and operational spectra from accelerators and nuclear reactors, spectra based on mathematical functions as well as few energy groups and monoenergetic spectra. The spectra were transformed from lethargy to energy distribution and were re-binned to 31 energy groups using the MCNP 4C code. The re-binned spectra and the UTA4 response matrix were used to calculate the expected count rates in Bonner spheres spectrometer. These count rates were used as input and their respective spectra were used as output during the neural network training. After training, the network was tested with the Bonner spheres count rates produced by folding a set of neutron spectra with the response matrix. This set contains data used during network training as well as data not used. Training and testing was carried out using the Matlab ( R) program. To verify the network unfolding performance, the original and unfolded spectra were compared using the root mean square error. The use of artificial neural networks to unfold neutron spectra in neutron spectrometry is an alternative procedure that overcomes the drawbacks associated with this ill-conditioned problem
Using neural networks to describe tracer correlations
Directory of Open Access Journals (Sweden)
D. J. Lary
2004-01-01
Full Text Available Neural networks are ideally suited to describe the spatial and temporal dependence of tracer-tracer correlations. The neural network performs well even in regions where the correlations are less compact and normally a family of correlation curves would be required. For example, the CH4-N2O correlation can be well described using a neural network trained with the latitude, pressure, time of year, and methane volume mixing ratio (v.m.r.. In this study a neural network using Quickprop learning and one hidden layer with eight nodes was able to reproduce the CH4-N2O correlation with a correlation coefficient between simulated and training values of 0.9995. Such an accurate representation of tracer-tracer correlations allows more use to be made of long-term datasets to constrain chemical models. Such as the dataset from the Halogen Occultation Experiment (HALOE which has continuously observed CH4 (but not N2O from 1991 till the present. The neural network Fortran code used is available for download.
Neural network based multiscale image restoration approach
de Castro, Ana Paula A.; da Silva, José D. S.
2007-02-01
This paper describes a neural network based multiscale image restoration approach. Multilayer perceptrons are trained with artificial images of degraded gray level circles, in an attempt to make the neural network learn inherent space relations of the degraded pixels. The present approach simulates the degradation by a low pass Gaussian filter blurring operation and the addition of noise to the pixels at pre-established rates. The training process considers the degraded image as input and the non-degraded image as output for the supervised learning process. The neural network thus performs an inverse operation by recovering a quasi non-degraded image in terms of least squared. The main difference of the approach to existing ones relies on the fact that the space relations are taken from different scales, thus providing relational space data to the neural network. The approach is an attempt to come up with a simple method that leads to an optimum solution to the problem. Considering different window sizes around a pixel simulates the multiscale operation. In the generalization phase the neural network is exposed to indoor, outdoor, and satellite degraded images following the same steps use for the artificial circle image.
Inverting radiometric measurements with a neural network
Measure, Edward M.; Yee, Young P.; Balding, Jeff M.; Watkins, Wendell R.
1992-02-01
A neural network scheme for retrieving remotely sensed vertical temperature profiles was applied to observed ground based radiometer measurements. The neural network used microwave radiance measurements and surface measurements of temperature and pressure as inputs. Because the microwave radiometer is capable of measuring 4 oxygen channels at 5 different elevation angles (9, 15, 25, 40, and 90 degs), 20 microwave measurements are potentially available. Because these measurements have considerable redundancy, a neural network was experimented with, accepting as inputs microwave measurements taken at 53.88 GHz, 40 deg; 57.45 GHz, 40 deg; and 57.45, 90 deg. The primary test site was located at White Sands Missile Range (WSMR), NM. Results are compared with measurements made simultaneously with balloon borne radiosonde instruments and with radiometric temperature retrievals made using more conventional retrieval algorithms. The neural network was trained using a Widrow-Hoff delta rule procedure. Functions of date to include season dependence in the retrieval process and functions of time to include diurnal effects were used as inputs to the neural network.
Automatic adjustment of display window (gray-level condition) for MR images using neural networks
International Nuclear Information System (INIS)
Ohhashi, Akinami; Nambu, Kyojiro.
1992-01-01
We have developed a system to automatically adjust the display window width and level (WWL) for MR images using neural networks. There were three main points in the development of our system as follows: 1) We defined an index for the clarity of a displayed image, and called 'EW'. EW is a quantitative measure of the clarity of an image displayed in a certain WWL, and can be derived from the difference between gray-level with the WWL adjusted by a human expert and with a certain WWL. 2) We extracted a group of six features from a gray-level histogram of a displayed image. We designed two neural networks which are able to learn the relationship between these features and the desired output (teaching signal), 'EQ', which is normalized to 0 to 1.0 from EW. Two neural networks were used to share the patterns to be learned; one learns a variety of patterns with less accuracy, and the other learns similar patterns with accuracy. Learning was performed using a back-propagation method. As a result, the neural networks after learning are able to provide a quantitative measure, 'Q', of the clarity of images displayed in the designated WWL. 3) Using the 'Hill climbing' method, we have been able to determine the best possible WWL for a displaying image. We have tested this technique for MR brain images. The results show that this system can adjust WWL comparable to that adjusted by a human expert for the majority of test images. The neural network is effective for the automatic adjustment of the display window for MR images. We are now studying the application of this method to MR images of another regions. (author)
Classification of E-Nose Aroma Data of Four Fruit Types by ABC-Based Neural Network
Directory of Open Access Journals (Sweden)
M. Fatih Adak
2016-02-01
Full Text Available Electronic nose technology is used in many areas, and frequently in the beverage industry for classification and quality-control purposes. In this study, four different aroma data (strawberry, lemon, cherry, and melon were obtained using a MOSES II electronic nose for the purpose of fruit classification. To improve the performance of the classification, the training phase of the neural network with two hidden layers was optimized using artificial bee colony algorithm (ABC, which is known to be successful in exploration. Test data were given to two different neural networks, each of which were trained separately with backpropagation (BP and ABC, and average test performances were measured as 60% for the artificial neural network trained with BP and 76.39% for the artificial neural network trained with ABC. Training and test phases were repeated 30 times to obtain these average performance measurements. This level of performance shows that the artificial neural network trained with ABC is successful in classifying aroma data.
Prediction of U-Mo dispersion nuclear fuels with Al-Si alloy using artificial neural network
International Nuclear Information System (INIS)
Susmikanti, Mike; Sulistyo, Jos
2014-01-01
Dispersion nuclear fuels, consisting of U-Mo particles dispersed in an Al-Si matrix, are being developed as fuel for research reactors. The equilibrium relationship for a mixture component can be expressed in the phase diagram. It is important to analyze whether a mixture component is in equilibrium phase or another phase. The purpose of this research it is needed to built the model of the phase diagram, so the mixture component is in the stable or melting condition. Artificial neural network (ANN) is a modeling tool for processes involving multivariable non-linear relationships. The objective of the present work is to develop code based on artificial neural network models of system equilibrium relationship of U-Mo in Al-Si matrix. This model can be used for prediction of type of resulting mixture, and whether the point is on the equilibrium phase or in another phase region. The equilibrium model data for prediction and modeling generated from experimentally data. The artificial neural network with resilient backpropagation method was chosen to predict the dispersion of nuclear fuels U-Mo in Al-Si matrix. This developed code was built with some function in MATLAB. For simulations using ANN, the Levenberg-Marquardt method was also used for optimization. The artificial neural network is able to predict the equilibrium phase or in the phase region. The develop code based on artificial neural network models was built, for analyze equilibrium relationship of U-Mo in Al-Si matrix
Directory of Open Access Journals (Sweden)
Yu-Tzu Chang
2012-01-01
Full Text Available This paper aims to find the optimal set of initial weights to enhance the accuracy of artificial neural networks (ANNs by using genetic algorithms (GA. The sample in this study included 228 patients with first low-trauma hip fracture and 215 patients without hip fracture, both of them were interviewed with 78 questions. We used logistic regression to select 5 important factors (i.e., bone mineral density, experience of fracture, average hand grip strength, intake of coffee, and peak expiratory flow rate for building artificial neural networks to predict the probabilities of hip fractures. Three-layer (one hidden layer ANNs models with back-propagation training algorithms were adopted. The purpose in this paper is to find the optimal initial weights of neural networks via genetic algorithm to improve the predictability. Area under the ROC curve (AUC was used to assess the performance of neural networks. The study results showed the genetic algorithm obtained an AUC of 0.858±0.00493 on modeling data and 0.802 ± 0.03318 on testing data. They were slightly better than the results of our previous study (0.868±0.00387 and 0.796±0.02559, resp.. Thus, the preliminary study for only using simple GA has been proved to be effective for improving the accuracy of artificial neural networks.
Training Deep Convolutional Neural Networks with Resistive Cross-Point Devices.
Gokmen, Tayfun; Onen, Murat; Haensch, Wilfried
2017-01-01
In a previous work we have detailed the requirements for obtaining maximal deep learning performance benefit by implementing fully connected deep neural networks (DNN) in the form of arrays of resistive devices. Here we extend the concept of Resistive Processing Unit (RPU) devices to convolutional neural networks (CNNs). We show how to map the convolutional layers to fully connected RPU arrays such that the parallelism of the hardware can be fully utilized in all three cycles of the backpropagation algorithm. We find that the noise and bound limitations imposed by the analog nature of the computations performed on the arrays significantly affect the training accuracy of the CNNs. Noise and bound management techniques are presented that mitigate these problems without introducing any additional complexity in the analog circuits and that can be addressed by the digital circuits. In addition, we discuss digitally programmable update management and device variability reduction techniques that can be used selectively for some of the layers in a CNN. We show that a combination of all those techniques enables a successful application of the RPU concept for training CNNs. The techniques discussed here are more general and can be applied beyond CNN architectures and therefore enables applicability of the RPU approach to a large class of neural network architectures.
Training Deep Convolutional Neural Networks with Resistive Cross-Point Devices
Directory of Open Access Journals (Sweden)
Tayfun Gokmen
2017-10-01
Full Text Available In a previous work we have detailed the requirements for obtaining maximal deep learning performance benefit by implementing fully connected deep neural networks (DNN in the form of arrays of resistive devices. Here we extend the concept of Resistive Processing Unit (RPU devices to convolutional neural networks (CNNs. We show how to map the convolutional layers to fully connected RPU arrays such that the parallelism of the hardware can be fully utilized in all three cycles of the backpropagation algorithm. We find that the noise and bound limitations imposed by the analog nature of the computations performed on the arrays significantly affect the training accuracy of the CNNs. Noise and bound management techniques are presented that mitigate these problems without introducing any additional complexity in the analog circuits and that can be addressed by the digital circuits. In addition, we discuss digitally programmable update management and device variability reduction techniques that can be used selectively for some of the layers in a CNN. We show that a combination of all those techniques enables a successful application of the RPU concept for training CNNs. The techniques discussed here are more general and can be applied beyond CNN architectures and therefore enables applicability of the RPU approach to a large class of neural network architectures.
Identification and control of plasma vertical position using neural network in Damavand tokamak
International Nuclear Information System (INIS)
Rasouli, H.; Rasouli, C.; Koohi, A.
2013-01-01
In this work, a nonlinear model is introduced to determine the vertical position of the plasma column in Damavand tokamak. Using this model as a simulator, a nonlinear neural network controller has been designed. In the first stage, the electronic drive and sensory circuits of Damavand tokamak are modified. These circuits can control the vertical position of the plasma column inside the vacuum vessel. Since the vertical position of plasma is an unstable parameter, a direct closed loop system identification algorithm is performed. In the second stage, a nonlinear model is identified for plasma vertical position, based on the multilayer perceptron (MLP) neural network (NN) structure. Estimation of simulator parameters has been performed by back-propagation error algorithm using Levenberg–Marquardt gradient descent optimization technique. The model is verified through simulation of the whole closed loop system using both simulator and actual plant in similar conditions. As the final stage, a MLP neural network controller is designed for simulator model. In the last step, online training is performed to tune the controller parameters. Simulation results justify using of the NN controller for the actual plant.
Identification and control of plasma vertical position using neural network in Damavand tokamak
Energy Technology Data Exchange (ETDEWEB)
Rasouli, H. [School of Plasma Physics and Nuclear Fusion, Institute of Nuclear Science and Technology, AEOI, P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of); Advanced Process Automation and Control (APAC) Research Group, Faculty of Electrical Engineering, K.N. Toosi University of Technology, P.O. Box 16315-1355, Tehran (Iran, Islamic Republic of); Rasouli, C.; Koohi, A. [School of Plasma Physics and Nuclear Fusion, Institute of Nuclear Science and Technology, AEOI, P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of)
2013-02-15
In this work, a nonlinear model is introduced to determine the vertical position of the plasma column in Damavand tokamak. Using this model as a simulator, a nonlinear neural network controller has been designed. In the first stage, the electronic drive and sensory circuits of Damavand tokamak are modified. These circuits can control the vertical position of the plasma column inside the vacuum vessel. Since the vertical position of plasma is an unstable parameter, a direct closed loop system identification algorithm is performed. In the second stage, a nonlinear model is identified for plasma vertical position, based on the multilayer perceptron (MLP) neural network (NN) structure. Estimation of simulator parameters has been performed by back-propagation error algorithm using Levenberg-Marquardt gradient descent optimization technique. The model is verified through simulation of the whole closed loop system using both simulator and actual plant in similar conditions. As the final stage, a MLP neural network controller is designed for simulator model. In the last step, online training is performed to tune the controller parameters. Simulation results justify using of the NN controller for the actual plant.
Directory of Open Access Journals (Sweden)
J. C. Ochoa-Rivera
2002-01-01
Full Text Available A model for multivariate streamflow generation is presented, based on a multilayer feedforward neural network. The structure of the model results from two components, the neural network (NN deterministic component and a random component which is assumed to be normally distributed. It is from this second component that the model achieves the ability to incorporate effectively the uncertainty associated with hydrological processes, making it valuable as a practical tool for synthetic generation of streamflow series. The NN topology and the corresponding analytical explicit formulation of the model are described in detail. The model is calibrated with a series of monthly inflows to two reservoir sites located in the Tagus River basin (Spain, while validation is performed through estimation of a set of statistics that is relevant for water resources systems planning and management. Among others, drought and storage statistics are computed and compared for both the synthetic and historical series. The performance of the NN-based model was compared to that of a standard autoregressive AR(2 model. Results show that NN represents a promising modelling alternative for simulation purposes, with interesting potential in the context of water resources systems management and optimisation. Keywords: neural networks, perceptron multilayer, error backpropagation, hydrological scenario generation, multivariate time-series..
Training Deep Convolutional Neural Networks with Resistive Cross-Point Devices
Gokmen, Tayfun; Onen, Murat; Haensch, Wilfried
2017-01-01
In a previous work we have detailed the requirements for obtaining maximal deep learning performance benefit by implementing fully connected deep neural networks (DNN) in the form of arrays of resistive devices. Here we extend the concept of Resistive Processing Unit (RPU) devices to convolutional neural networks (CNNs). We show how to map the convolutional layers to fully connected RPU arrays such that the parallelism of the hardware can be fully utilized in all three cycles of the backpropagation algorithm. We find that the noise and bound limitations imposed by the analog nature of the computations performed on the arrays significantly affect the training accuracy of the CNNs. Noise and bound management techniques are presented that mitigate these problems without introducing any additional complexity in the analog circuits and that can be addressed by the digital circuits. In addition, we discuss digitally programmable update management and device variability reduction techniques that can be used selectively for some of the layers in a CNN. We show that a combination of all those techniques enables a successful application of the RPU concept for training CNNs. The techniques discussed here are more general and can be applied beyond CNN architectures and therefore enables applicability of the RPU approach to a large class of neural network architectures. PMID:29066942
RBF Neural Network Approach for Identification and Control of DC Motors
Directory of Open Access Journals (Sweden)
EA Feilat
2012-12-01
Full Text Available In this paper, a neural network approach for the identification and control of a separately excited direct (DC motor (SEDCM driving a centrifugal pump load is applied. In this application, two radial basis function neural networks (RBFNN are used: The first is a RBFNN identifier trained offline to emulate the dynamic performance of the DC motor-load system. The second is a RBFNN controller, which is trained to make the motor speed follow a selected reference signal. Two RBFNN control schemes are proposed using direct inverse and internal model control schemes. The performance of the RBFNN identifier and controller is investigated in terms of step response, sharp changes in speed trajectory, and sudden load change, as well as changes in motor parameters. The performance of RBFNN in system identification and control has been compared with the performance of the well-known back-propagation neural network (BPNN. The simulation results show that both of the BPNN and RBFNN controllers exhibit excellent dynamic response, adapt well to changes in speed trajectory and load connected to the motor, and adapt to the variations of motor parameters. Furthermore, the simulation results show that the step response of RBFNN internal model and direct inverse controllers are identical.
Xia, Peng; Hu, Jie; Peng, Yinghong
2017-10-25
A novel model based on deep learning is proposed to estimate kinematic information for myoelectric control from multi-channel electromyogram (EMG) signals. The neural information of limb movement is embedded in EMG signals that are influenced by all kinds of factors. In order to overcome the negative effects of variability in signals, the proposed model employs the deep architecture combining convolutional neural networks (CNNs) and recurrent neural networks (RNNs). The EMG signals are transformed to time-frequency frames as the input to the model. The limb movement is estimated by the model that is trained with the gradient descent and backpropagation procedure. We tested the model for simultaneous and proportional estimation of limb movement in eight healthy subjects and compared it with support vector regression (SVR) and CNNs on the same data set. The experimental studies show that the proposed model has higher estimation accuracy and better robustness with respect to time. The combination of CNNs and RNNs can improve the model performance compared with using CNNs alone. The model of deep architecture is promising in EMG decoding and optimization of network structures can increase the accuracy and robustness. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Determination of crack size around rivet hole through neural network using ultrasonic Lamb wave
International Nuclear Information System (INIS)
Choi, Sang Woo; Lee, Joon Hyun
1998-01-01
Rivets are typical structural features that are potential initiation sites for fatigue crack due to combination of local stress concentration around rivet hole and moisture trapping. For the viewpoint of structural assurance, it is crucial to evaluate the size of crack around rivets by appropriate nondestructive techniques. Guided waves, which direct wave energy along the plate, carry information about the material in their path and offer a potentially more efficient tool for nondestructive inspection of structural material. Neural network that is considered to be the most suitable for pattern recognition and has been used by researchers in NDE field to classify different types of flaws and flaw size. In this study, crack size determination around rivet through a neural network based on the back-propagation algorithm has been done by extracting some feature from time-domain waveforms of ultrasonic Lamb wave for Al 2024-T3 skin panel of aircraft. Special attention was paid to reduce the coupling effect between transducer and specimen by extracting some features related to only time component data in ultrasonic waveform. It was demonstrated clearly that features extraction based on time component data of the time-domain waveform of Lamb wave was very useful to determine crack size initiated from rivet hole through neural network.
Non-proliferative diabetic retinopathy symptoms detection and classification using neural network.
Al-Jarrah, Mohammad A; Shatnawi, Hadeel
2017-08-01
Diabetic retinopathy (DR) causes blindness in the working age for people with diabetes in most countries. The increasing number of people with diabetes worldwide suggests that DR will continue to be major contributors to vision loss. Early detection of retinopathy progress in individuals with diabetes is critical for preventing visual loss. Non-proliferative DR (NPDR) is an early stage of DR. Moreover, NPDR can be classified into mild, moderate and severe. This paper proposes a novel morphology-based algorithm for detecting retinal lesions and classifying each case. First, the proposed algorithm detects the three DR lesions, namely haemorrhages, microaneurysms and exudates. Second, we defined and extracted a set of features from detected lesions. The set of selected feature emulates what physicians looked for in classifying NPDR case. Finally, we designed an artificial neural network (ANN) classifier with three layers to classify NPDR to normal, mild, moderate and severe. Bayesian regularisation and resilient backpropagation algorithms are used to train ANN. The accuracy for the proposed classifiers based on Bayesian regularisation and resilient backpropagation algorithms are 96.6 and 89.9, respectively. The obtained results are compared with results of the recent published classifier. Our proposed classifier outperforms the best in terms of sensitivity and specificity.
Feedforward Nonlinear Control Using Neural Gas Network
Machón-González, Iván; López-García, Hilario
2017-01-01
Nonlinear systems control is a main issue in control theory. Many developed applications suffer from a mathematical foundation not as general as the theory of linear systems. This paper proposes a control strategy of nonlinear systems with unknown dynamics by means of a set of local linear models obtained by a supervised neural gas network. The proposed approach takes advantage of the neural gas feature by which the algorithm yields a very robust clustering procedure. The direct model of the ...
Directory of Open Access Journals (Sweden)
Tosun Erdi
2017-01-01
Full Text Available This study was aimed at estimating the variation of several engine control parameters within the rotational speed-load map, using regression analysis and artificial neural network techniques. Duration of injection, specific fuel consumption, exhaust gas at turbine inlet, and within the catalytic converter brick were chosen as the output parameters for the models, while engine speed and brake mean effective pressure were selected as independent variables for prediction. Measurements were performed on a turbocharged direct injection spark ignition engine fueled with gasoline. A three-layer feed-forward structure and back-propagation algorithm was used for training the artificial neural network. It was concluded that this technique is capable of predicting engine parameters with better accuracy than linear and non-linear regression techniques.
Directory of Open Access Journals (Sweden)
Dimililer Kamil
2018-01-01
Full Text Available Pests are divided into two as herbal and animal pests in agriculture, and detection and use of minimum pesticides are quite challenging task. Last three decades, researchers have been improving their studies on these manners. Therefore, effective, efficient, and as well as intelligent systems are designed and modelled. In this paper, an intelligent classification system is designed for detecting pests as herbal or animal to use of proper pesticides accordingly. The designed system suggests two main stages. Firstly, images are processed using different image processing techniques that images have specific distinguishing geometric patterns. The second stage is neural network phase for classification. A backpropagation neural network is used for training and testing with processed images. System is tested, and experiment results show efficiency and effective classification rate. Autonomy and time efficiency within the pesticide usage are also discussed.
International Nuclear Information System (INIS)
Bocco, M.
2006-01-01
The objective of this work was to develop neural network models of backpropagation type to estimate solar radiation based on extraterrestrial radiation data, daily temperature range, precipitation, cloudiness and relative sunshine duration. Data from Córdoba, Argentina, were used for development and validation. The behaviour and adjustment between values observed and estimates obtained by neural networks for different combinations of input were assessed. These estimations showed root mean square error between 3.15 and 3.88 MJ m -2 d -1 . The latter corresponds to the model that calculates radiation using only precipitation and daily temperature range. In all models, results show good adjustment to seasonal solar radiation. These results allow inferring the adequate performance and pertinence of this methodology to estimate complex phenomena, such as solar radiation [pt
International Nuclear Information System (INIS)
Wardaya, P D; Ridha, S
2014-01-01
In this paper a backpropagation neural network is utilized to perform house cluster segmentation from Google Earth data. The algorithm is subjected to identify houses in the image based on the RGB pattern within each pixel. Training data is given through cropping selection for a target that is a house cluster and a non object. The algorithm assigns 1 to a pixel belong to a class of object and 0 to a class of non object. The resulting outcome, a binary image, is then utilized to perform quantification to estimate the number of house clusters. The number of the hidden layer is varying in order to find its effect to the neural network performance and total computational time
Implementing Signature Neural Networks with Spiking Neurons.
Carrillo-Medina, José Luis; Latorre, Roberto
2016-01-01
Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm-i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data-to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the absence
Foreign currency rate forecasting using neural networks
Pandya, Abhijit S.; Kondo, Tadashi; Talati, Amit; Jayadevappa, Suryaprasad
2000-03-01
Neural networks are increasingly being used as a forecasting tool in many forecasting problems. This paper discusses the application of neural networks in predicting daily foreign exchange rates between the USD, GBP as well as DEM. We approach the problem from a time-series analysis framework - where future exchange rates are forecasted solely using past exchange rates. This relies on the belief that the past prices and future prices are very close related, and interdependent. We present the result of training a neural network with historical USD-GBP data. The methodology used in explained, as well as the training process. We discuss the selection of inputs to the network, and present a comparison of using the actual exchange rates and the exchange rate differences as inputs. Price and rate differences are the preferred way of training neural network in financial applications. Results of both approaches are present together for comparison. We show that the network is able to learn the trends in the exchange rate movements correctly, and present the results of the prediction over several periods of time.
Deep Neural Network Detects Quantum Phase Transition
Arai, Shunta; Ohzeki, Masayuki; Tanaka, Kazuyuki
2018-03-01
We detect the quantum phase transition of a quantum many-body system by mapping the observed results of the quantum state onto a neural network. In the present study, we utilized the simplest case of a quantum many-body system, namely a one-dimensional chain of Ising spins with the transverse Ising model. We prepared several spin configurations, which were obtained using repeated observations of the model for a particular strength of the transverse field, as input data for the neural network. Although the proposed method can be employed using experimental observations of quantum many-body systems, we tested our technique with spin configurations generated by a quantum Monte Carlo simulation without initial relaxation. The neural network successfully identified the strength of transverse field only from the spin configurations, leading to consistent estimations of the critical point of our model Γc = J.